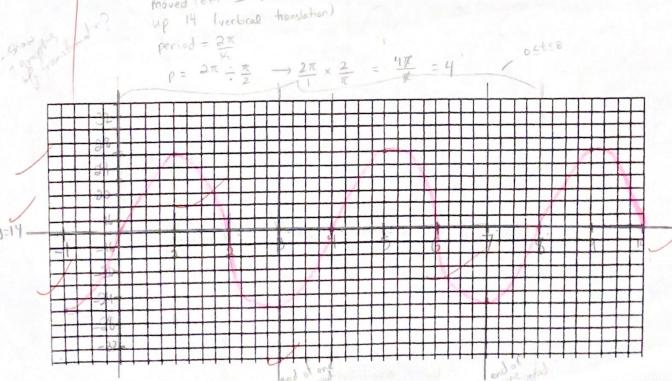


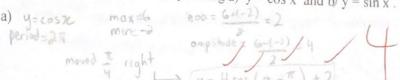
4. Use <u>special triangles</u>, a <u>complete sketch</u> from $\{0 \le \theta \le 2\pi\}$ to find θ in radians in fractional form (with π) for $\sin \theta = -\frac{1}{2}$. A complete diagram includes all <u>3</u> sides of any triangles used.

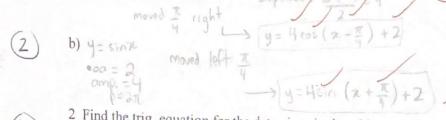

- Sin = $\frac{y}{r} = \frac{1}{2}$ Sin $\theta = -\frac{1}{2} \rightarrow \sin is$ negative in the 3rd and 4th quadrants $\mathcal{H} = \pm 1$ y = -1 r = 2 $-2\pi - \frac{\pi}{4} = \frac{7\pi}{4}$
- Graph the following equation on the grid given. Set up appropriate scales and <u>show all transformations</u>. The graph represents height (H) in metres, after time (t) in seconds.

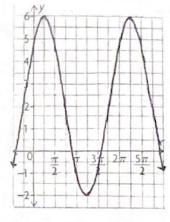
$$H(t) = -12\cos\left(\frac{\pi}{2}(t+1)\right) + 14 \qquad \{0 \le t \le 8\}$$

$$\alpha = 12$$
reflection in x-axis
moved left 1 (horizontal translation)
$$\mu \rho = 14 \quad \text{(vertical translation)}$$

$$\rho = 2\pi$$


$$\rho = 2\pi$$




Part B - Application (26)

4

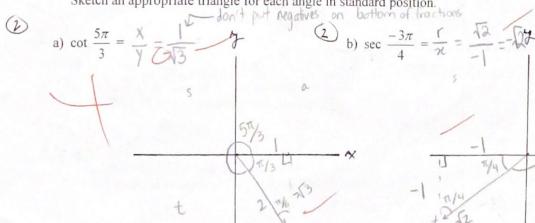
1. Find the equation of the graph using a) $y = \cos x$ and b) $y = \sin x$.

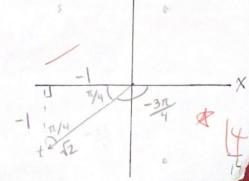
2 Find the trig. equation for the data given in the table.

Melissa used a motion detector to measure the horizontal distance between her and a child on a swing. She stood in front of the child and recorded the distance, d(t), in metres over a period of time, t, in seconds. The data she collected are given in the following tables

Time (s)	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1
Distance (m)	3.8	3.68	3.33	2.81	2.2	1.59	1.07	0.72	0.6	0.72	1.07	1.59

Time (s)	1.2	1,3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4
Distance (m)	2.2	2.81	3.33	3.68	3.8	3.68	3.33	2.81	2.2	1.59	1.07	0.72	0.6


max=3.8


mn=0.6

Started at a maximum
$$\rightarrow$$
 use cos

 $k = \frac{2\pi}{P} = \frac{2\pi}{1.6}$
 $eoa = 3.8 + 0.6 = 2.2$
 $y = 1.6 \cos(\frac{5\pi}{4}\pi) + 2.2$

3. Determine the exact value using radicals (if needed) and fractions for the following. Sketch an appropriate triangle for each angle in standard position.

(3)

(3)

- 4. The daily high temperature of a city, in degrees Celsius, as a function of the number of days into the year, can be described by the function $T(d) = -17 \cos(\frac{2\pi}{365}(d-8)) + 22$.
- a) What is the average rate of change of the daily temperature from day 50 to day 110? Show work.

$$x=50$$
 $y=-17\cos\left(\frac{3\pi}{365}\left(92\right)\right)+22$
 $=9.25295118$

$$x=50$$

$$y=-17\cos\left(\frac{3\pi}{365}(42)\right)+22$$

$$=9.25295118$$

$$x=110$$

$$y=-17\cos\left(\frac{3\pi}{365}(42)\right)+22$$

$$=25.12797198$$

$$(50,9.25295118)y1$$

$$=(10,25.12797198)y.$$

b) What is the IROC on day 325. Show work. Use h = 0.01.

$$h = 0.01$$

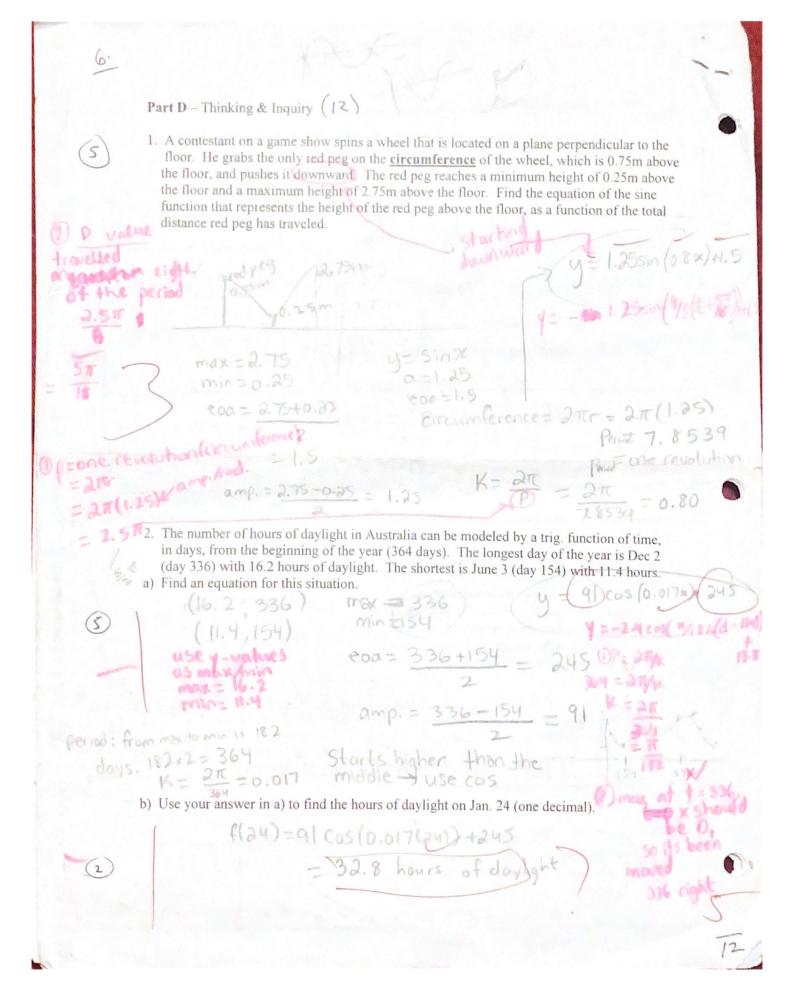
$$f(a+h) - f(0)$$

$$f(32)$$

flath)-flo)
$$f(325.01) = -17\cos(\frac{2\pi}{365}(317.01)) + 22$$

 $f(346) - f(0)$ $f(325) = -17\cos(\frac{2\pi}{365}(317)) + 22$
 $f(346) - f(0)$ $f(325) = -17\cos(\frac{2\pi}{365}(317)) + 22$

5. Given $\tan \theta = -\frac{24}{7}$, find all values for θ in radians (2 decimals) for $\{0 \le \theta \le 6.28\}$


Sketch appropriate triangle(s) for θ and label diagram for x, y, and r

$$tan = \frac{y}{2} = -\frac{24}{7}$$
 $tan^{-1} \left(-\frac{24}{7} \right)$

$$24^{2}+7^{2}=r^{2}$$

 $r=25$

$$O_2 = \pi - 1.28$$
 $O_2 = 1.86$ pad

Part C - Communication (8)
 Describe, in general, in words, where you would find the following situations in the given graph.
a) sinusoidal graph ($y = \sin x$ or $y = \cos x$)
i) IROC = 0 at any max or min goint
ii) AROC = 0 and horizontal Tire between 2 points on the
graph
iii) IROC is a minimum (lowest possible negative value)
right between a max and a min value
iv) AROC > 0 (positive)
when slope is positive, from any lower to high point (on y-values), when graph is increasing
 2. A bumblebee is flying in a circular motion within a vertical plane, at a constant speed. The height of the bumblebee above the ground, as a function of time, can be modelled by a sinusoidal function. At t = 0, the bumblebee is at its lowest point above the ground. a) What does the amplitude of the sinusoidal function represent in this situation?
the radius of the bee's movement, how far out it b) What does the period of the sinusoidal goes in any direction function represent in this situation?
One circular motion of the bee
what does the equation of the axis of the sinusoidal function represent in this situation? how high the centre of the circle. The around is from the ground
d) If a reflection in the horizontal axis was applied to the sinusoidal function, was the sine function or the cosine function used? Explain (OSine - the bee Starts at a minimum, not the
middle 8

