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4. Use special triangles, a complete sketch from {0<6<2xn | to find 0 in radians in

= ; I :
fractional form ( with 7 ) for sin®=- — . A complete diagram includes all 3 sides of any
triangles used ka
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5. Graph the following equation on the grid given. Set up appropriate scales and show all
@ transformations. The graph represents height (H) in metres, after time (t) in seconds.
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Part B - Application (26)

l.

Find t af;
tp cquation of the graph using a) Yy=cosx and b/ y =sin x
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2 Find the trig. equation for the data given in the table.

Melissa used a motion detector to measure the horizontal distance between
her and a child on a swing. She stood in front of the child and recorded the
distance, 4(¢), in metres over a period of time, #, in seconds. The data she
ollected are given in the following tables

Time (s) 0 0.1 02 |03 (04 (05 |06 |07 |08 |09 |1 3.1
Distance (m)( 38 | 368 (333 (281 [22 [159] 107|072 | 06 | 072 107 | 159

nce (m)| 22 281 | 333|368 |38 368 [ 333 | 281 | 22 159 1107 {072 | 06

3. Determine the exact value using radicals (if needed) and fractions for the following.
Sketch an appropriate triangle for each angle in standard position.
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5. Given tan 6

{ by the function I(d)
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find all values for 0 in radians ( 2 decimals) for
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Sketch appropriate triangle(s) for 0 and label diagram for x, y, and r

f the daily temperature from day 50 to day
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Part C - Communication (8\

1. Describe, i i
. Les I general, in words. where v ~ -
o gmp-—fa—_h » Where you would find the following situations in the

a) sinusoidal graph (y=sinxory=cosx)
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1) IROC is a minimum (lowest possible negative value )
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iv) AROC >0 (positive)
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2. Abumblebee is flying ina circular motion

@ within a verucal plane, ar a constant speed.

The height ot the bumblebee abave the ground,

1s a funcrion of time, can be modelled by a

sinusoidal function. At ¢ = 0, the bumblebee is

at its lowest point above the ground.

a)  What does the amplitude of the sinusoidal

function represent in this situation? ///
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b) Whar does the period of the sinusoidal
funcrion represent in this situation? L
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¢} Whar does the equation of the axis of the

sinusoidal function represent in this situac
b

. ;.
d) If a retlection in the horizontal axis \v.{s
applied to the sinusoidal function, was the

.ine function or the cosine function used? Expluu://»'
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Part D - Thinking & Inquiry { | Z\, £

PN l. A contestant on a game show spins a wheel that is located on a plane perpendicular to the

@ floor. He grabs the only 1ed peg on the circumference of the wheel, which is 0.75m above
the floor, and pushes it downward The red peg reaches a minimum height of 0.25m above
the floor and a maximum height of 2.75m above the floor. Find the equation of the sine
function that represents the height-of the red peg above the floor, as a function of the total
distance red peg has traveled
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2. The number of hours of daylight in Australia can be modeled by a trig. function of time,
in days, from the beginning of the year (364 days). The longest day of the year is Dec 2
(day 336) with 16.2 hours of daylight. The shortest is June 3 (day 154) with 114 hours.

a) Find an equation for this situation.
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b) Use your answer in a) to find the hours of daylight on Jan. 24 (one decimal). f I—
=
! y b
- -



