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The art of teaching, Mark Van Doren said, is the art of assisting discovery. I have tried 
to write a book that assists students in discovering calculus—both for its practical power 
and its surprising beauty. In this edition, as in the first seven editions, I aim to convey 
to the student a sense of the utility of calculus and develop technical competence, but I 
also strive to give some appreciation for the intrinsic beauty of the subject. Newton 
undoubtedly experienced a sense of triumph when he made his great discoveries. I want 
students to share some of that excitement.

The emphasis is on understanding concepts. I think that nearly everybody agrees that 
this should be the primary goal of calculus instruction. In fact, the impetus for the cur-
rent calculus reform movement came from the Tulane Conference in 1986, which for-
mulated as their first recommendation: 

Focus on conceptual understanding.

I have tried to implement this goal through the Rule of Three: “Topics should be pre-
sented geometrically, numerically, and algebraically.” Visualization, numerical and 
graphical experimentation, and other approaches have changed how we teach concep-
tual reasoning in fundamental ways. More recently, the Rule of Three has been expanded 
to become the Rule of Four by emphasizing the verbal, or descriptive, point of view as 
well.

In writing the eighth edition my premise has been that it is possible to achieve con-
ceptual understanding and still retain the best traditions of traditional calculus. The book 
contains elements of reform, but within the context of a traditional curriculum.

I have written several other calculus textbooks that might be preferable for some instruc-
tors. Most of them also come in single variable and multivariable versions.

● Calculus, Eighth Edition, is similar to the present textbook except that the exponen-
tial, logarithmic, and inverse trigonometric functions are covered in the second 
semester.

● Essential Calculus, Second Edition, is a much briefer book (840 pages), though it 
contains almost all of the topics in Calculus, Eighth Edition. The relative brevity is 
achieved through briefer exposition of some topics and putting some features on the 
website.

● Essential Calculus: Early Transcendentals, Second Edition, resembles Essential 
Calculus, but the exponential, logarithmic, and inverse trigonometric functions are 
covered in Chapter 3.

A great discovery solves a great problem but there is a grain of discovery in the 
solution of any problem. Your problem may be modest; but if it challenges your 
curiosity and brings into play your inventive faculties, and if you solve it by your 
own means, you may experience the tension and enjoy the triumph of discovery.

G E O R G E  P O LYA

Preface
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xii Preface

● Calculus: Concepts and Contexts, Fourth Edition, emphasizes conceptual under-
standing even more strongly than this book. The coverage of topics is not encyclo-
pedic and the material on transcendental functions and on parametric equations is 
woven throughout the book instead of being treated in separate chapters.

● Calculus: Early Vectors introduces vectors and vector functions in the first semester 
and integrates them throughout the book. It is suitable for students taking engineer-
ing and physics courses concurrently with calculus.

● Brief Applied Calculus is intended for students in business, the social sciences, and 
the life sciences.

● Biocalculus: Calculus for the Life Sciences is intended to show students in the life 
sciences how calculus relates to biology. 

● Biocalculus: Calculus, Probability, and Statistics for the Life Sciences contains all 
the content of Biocalculus: Calculus for the Life Sciences as well as three addi-
tional chapters covering probability and statistics.

The changes have resulted from talking with my colleagues and students at the Univer-
sity of Toronto and from reading journals, as well as suggestions from users and review-
ers. Here are some of the many improvements that I’ve incorporated into this edition:

● The data in examples and exercises have been updated to be more timely.
● New examples have been added (see Examples 6.1.5, 11.2.5, and 14.3.3, for 

instance). And the solutions to some of the existing examples have been amplified. 
● Three new projects have been added: The project Controlling Red Blood Cell Loss 

During Surgery (page 244) describes the ANH procedure, in which blood is 
extracted from the patient before an operation and is replaced by saline solution. 
This dilutes the patient’s blood so that fewer red blood cells are lost during bleed-
ing and the extracted blood is returned to the patient after surgery. The project 
Planes and Birds: Minimizing Energy (page 344) asks how birds can minimize 
power and energy by flapping their wings versus gliding. In the project The Speedo 
LZR Racer (page 936) it is explained that this suit reduces drag in the water and, as 
a result, many swimming records were broken. Students are asked why a small 
decrease in drag can have a big effect on performance.

● I have streamlined Chapter 15 (Multiple Integrals) by combining the first two sec-
tions so that iterated integrals are treated earlier.

● More than 20% of the exercises in each chapter are new. Here are some of my 
favorites: 2.7.61, 2.8.36–38, 3.1.79–80, 3.11.54, 4.1.69, 4.3.34, 4.3.66, 4.4.80, 
4.7.39, 4.7.67, 5.1.19–20, 5.2.67–68, 5.4.70, 6.1.51, 8.1.39, 12.5.81, 12.6.29–30, 
14.6.65–66. In addition, there are some good new Problems Plus. (See Problems 
12–14 on page 272, Problem 13 on page 363, Problems 16–17 on page 426, and 
Problem 8 on page 986.)
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 Preface xiii

Conceptual Exercises
The most important way to foster conceptual understanding is through the problems 
that we assign. To that end I have devised various types of problems. Some exercise sets 
begin with requests to explain the meanings of the basic concepts of the section. (See, for 
instance, the first few exercises in Sections 2.2, 2.5, 11.2, 14.2, and 14.3.) Similarly, all 
the review sections begin with a Concept Check and a True-False Quiz. Other exercises 
test conceptual understanding through graphs or tables (see Exercises 2.7.17, 2.8.35–38, 
2.8.47–52, 9.1.11–13, 10.1.24–27, 11.10.2, 13.2.1–2, 13.3.33–39, 14.1.1–2, 14.1.32–38,  
14.1.41–44, 14.3.3–10, 14.6.1–2, 14.7.3–4, 15.1.6–8, 16.1.11–18, 16.2.17–18, and 
16.3.1–2).

Another type of exercise uses verbal description to test conceptual understanding 
(see Exercises 2.5.10, 2.8.66, 4.3.69–70, and 7.8.67). I particularly value problems that 
combine and compare graphical, numerical, and algebraic approaches (see Exercises 
2.6.45–46, 3.7.27, and 9.4.4).

Graded Exercise Sets
Each exercise set is carefully graded, progressing from basic conceptual exercises and 
skill-development problems to more challenging problems involving applications and 
proofs.

Real-World Data
My assistants and I spent a great deal of time looking in libraries, contacting companies 
and government agencies, and searching the Internet for interesting real-world data to 
introduce, motivate, and illustrate the concepts of calculus. As a result, many of the 
examples and exercises deal with functions defined by such numerical data or graphs. 
See, for instance, Figure 1 in Section 1.1 (seismograms from the Northridge earthquake), 
Exercise 2.8.35 (unemployment rates), Exercise 5.1.16 (velocity of the space shuttle 
Endeavour), and Figure 4 in Section 5.4 (San Francisco power consumption). Functions 
of two variables are illustrated by a table of values of the wind-chill index as a function 
of air temperature and wind speed (Example 14.1.2). Partial derivatives are introduced 
in Section 14.3 by examining a column in a table of values of the heat index (perceived 
air temperature) as a function of the actual temperature and the relative humidity. This 
example is pursued further in connection with linear approximations (Example 14.4.3). 
Directional derivatives are introduced in Section 14.6 by using a temperature contour 
map to estimate the rate of change of temperature at Reno in the direction of Las Vegas. 
Double integrals are used to estimate the average snowfall in Colorado on December 
20–21, 2006 (Example 15.1.9). Vector fields are introduced in Section 16.1 by depictions 
of actual velocity vector fields showing San Francisco Bay wind patterns.

Projects
One way of involving students and making them active learners is to have them work 
(perhaps in groups) on extended projects that give a feeling of substantial accomplish-
ment when completed. I have included four kinds of projects: Applied Projects involve 
applications that are designed to appeal to the imagination of students. The project after 
Section 9.3 asks whether a ball thrown upward takes longer to reach its maximum height 
or to fall back to its original height. (The answer might surprise you.) The project after 
Section 14.8 uses Lagrange multipliers to determine the masses of the three stages of 
a rocket so as to minimize the total mass while enabling the rocket to reach a desired 
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xiv Preface

velocity. Laboratory Projects involve technology; the one following Section 10.2 shows 
how to use Bézier curves to design shapes that represent letters for a laser printer. Writ-
ing Projects ask students to compare present-day methods with those of the founders of 
calculus—Fermat’s method for finding tangents, for instance. Suggested references are 
supplied. Discovery Projects anticipate results to be discussed later or encourage dis-
covery through pattern recognition (see the one following Section 7.6). Others explore 
aspects of geometry: tetrahedra (after Section 12.4), hyperspheres (after Section 15.6), 
and intersections of three cylinders (after Section 15.7). Additional projects can be found 
in the Instructor’s Guide (see, for instance, Group Exercise 5.1: Position from Samples).

Problem Solving
Students usually have difficulties with problems for which there is no single well-defined 
procedure for obtaining the answer. I think nobody has improved very much on George 
Polya’s four-stage problem-solving strategy and, accordingly, I have included a version 
of his problem-solving principles following Chapter 1. They are applied, both explicitly 
and implicitly, throughout the book. After the other chapters I have placed sections called 
Problems Plus, which feature examples of how to tackle challenging calculus problems. 
In selecting the varied problems for these sections I kept in mind the following advice 
from David Hilbert: “A mathematical problem should be difficult in order to entice us, 
yet not inaccessible lest it mock our efforts.” When I put these challenging problems on 
assignments and tests I grade them in a different way. Here I reward a student signifi-
cantly for ideas toward a solution and for recognizing which problem-solving principles 
are relevant.

Technology
The availability of technology makes it not less important but more important to clearly 
understand the concepts that underlie the images on the screen. But, when properly used, 
graphing calculators and computers are powerful tools for discovering and understand-
ing those concepts. This textbook can be used either with or without technology and I 
use two special symbols to indicate clearly when a particular type of machine is required. 
The icon ; indicates an exercise that definitely requires the use of such technology, 
but that is not to say that it can’t be used on the other exercises as well. The symbol CAS  
is reserved for problems in which the full resources of a computer algebra system (like 
Maple, Mathematica, or the TI-89) are required. But technology doesn’t make pencil 
and paper obsolete. Hand calculation and sketches are often preferable to technology for 
illustrating and reinforcing some concepts. Both instructors and students need to develop 
the ability to decide where the hand or the machine is appropriate.

Tools for Enriching Calculus
TEC is a companion to the text and is intended to enrich and complement its contents. 
(It is now accessible in the eBook via CourseMate and Enhanced WebAssign. Selected 
Visuals and Modules are available at www.stewartcalculus.com.) Developed by Harvey 
Keynes, Dan Clegg, Hubert Hohn, and myself, TEC uses a discovery and exploratory 
approach. In sections of the book where technology is particularly appropriate, marginal 
icons direct students to TEC Modules that provide a laboratory environment in which 
they can explore the topic in different ways and at different levels. Visuals are anima-
tions of figures in text; Modules are more elaborate activities and include exercises. 
Instructors can choose to become involved at several different levels, ranging from sim-
ply encouraging students to use the Visuals and Modules for independent exploration, 
to assigning specific exercises from those included with each Module, or to creating 
additional exercises, labs, and projects that make use of the Visuals and Modules.
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 Preface xv

TEC also includes Homework Hints for representative exercises (usually odd-num-
bered) in every section of the text, indicated by printing the exercise number in red. 
These hints are usually presented in the form of questions and try to imitate an effective 
teaching assistant by functioning as a silent tutor. They are constructed so as not to reveal 
any more of the actual solution than is minimally necessary to make further progress.

Enhanced WebAssign
Technology is having an impact on the way homework is assigned to students, particu-
larly in large classes. The use of online homework is growing and its appeal depends 
on ease of use, grading precision, and reliability. With the Eighth Edition we have been 
working with the calculus community and WebAssign to develop an online homework 
system. Up to 70% of the exercises in each section are assignable as online homework, 
including free response, multiple choice, and multi-part formats. 

The system also includes Active Examples, in which students are guided in step-by-
step tutorials through text examples, with links to the textbook and to video solutions.

Website
Visit CengageBrain.com or stewartcalculus.com for these additional materials:

● Homework Hints

● Algebra Review

● Lies My Calculator and Computer Told Me

● History of Mathematics, with links to the better historical websites

● Additional Topics (complete with exercise sets): Fourier Series, Formulas for the 
Remainder Term in Taylor Series, Rotation of Axes

● Archived Problems (Drill exercises that appeared in previous editions, together with 
their solutions)

● Challenge Problems (some from the Problems Plus sections from prior editions)

● Links, for particular topics, to outside Web resources

● Selected Visuals and Modules from Tools for Enriching Calculus (TEC)

The book begins with four diagnostic tests, in Basic Algebra, Analytic Geometry, Func-
tions, and Trigonometry.

This is an overview of the subject and includes a list of questions to motivate the study 
of calculus.

From the beginning, multiple representations of functions are stressed: verbal, numeri-
cal, visual, and algebraic. A discussion of mathematical models leads to a review of the 
standard functions, including exponential and logarithmic functions, from these four 
points of view.

The material on limits is motivated by a prior discussion of the tangent and velocity 
problems. Limits are treated from descriptive, graphical, numerical, and algebraic points 
of view. Section 2.4, on the precise definition of a limit, is an optional section. Sections 

Diagnostic Tests

A Preview of Calculus

1 Functions and Models

2 Limits and Derivatives
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2.7 and 2.8 deal with derivatives (especially with functions defined graphically and 
numerically) before the differentiation rules are covered in Chapter 3. Here the exam-
ples and exercises explore the meanings of derivatives in various contexts. Higher deriva-
tives are introduced in Section 2.8.

All the basic functions, including exponential, logarithmic, and inverse trigonometric 
functions, are differentiated here. When derivatives are computed in applied situations, 
students are asked to explain their meanings. Exponential growth and decay are now 
covered in this chapter.

The basic facts concerning extreme values and shapes of curves are deduced from the 
Mean Value Theorem. Graphing with technology emphasizes the interaction between 
calculus and calculators and the analysis of families of curves. Some substantial optimi-
zation problems are provided, including an explanation of why you need to raise your 
head 42° to see the top of a rainbow.

The area problem and the distance problem serve to motivate the definite integral, with 
sigma notation introduced as needed. (Full coverage of sigma notation is provided in 
Appendix E.) Emphasis is placed on explaining the meanings of integrals in various 
contexts and on estimating their values from graphs and tables.

Here I present the applications of integration—area, volume, work, average value—that 
can reasonably be done without specialized techniques of integration. General methods 
are emphasized. The goal is for students to be able to divide a quantity into small pieces, 
estimate with Riemann sums, and recognize the limit as an integral.

All the standard methods are covered but, of course, the real challenge is to be able to 
recognize which technique is best used in a given situation. Accordingly, in Section 7.5, 
I present a strategy for integration. The use of computer algebra systems is discussed in 
Section 7.6.

Here are the applications of integration—arc length and surface area—for which it is 
useful to have available all the techniques of integration, as well as applications to biol-
ogy, economics, and physics (hydrostatic force and centers of mass). I have also 
included a section on probability. There are more applications here than can realistically 
be covered in a given course. Instructors should select applications suitable for their 
students and for which they themselves have enthusiasm.

Modeling is the theme that unifies this introductory treatment of differential equations. 
Direction fields and Euler’s method are studied before separable and linear equations are 
solved explicitly, so that qualitative, numerical, and analytic approaches are given equal 
consideration. These methods are applied to the exponential, logistic, and other models 
for population growth. The first four or five sections of this chapter serve as a good 
introduction to first-order differential equations. An optional final section uses predator-
prey models to illustrate systems of differential equations.

This chapter introduces parametric and polar curves and applies the methods of calculus 
to them. Parametric curves are well suited to laboratory projects; the two presented here 
involve families of curves and Bézier curves. A brief treatment of conic sections in polar 
coordinates prepares the way for Kepler’s Laws in Chapter 13.

3 Differentiation Rules

4 Applications of Differentiation

5 Integrals

6 Applications of Integration

7 Techniques of Integration

8 Further Applications 
of Integration

9 Differential Equations

10 Parametric Equations 
and Polar Coordinates
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The convergence tests have intuitive justifications (see page 719) as well as formal 
proofs. Numerical estimates of sums of series are based on which test was used to prove 
convergence. The emphasis is on Taylor series and polynomials and their applications 
to physics. Error estimates include those from graphing devices.

The material on three-dimensional analytic geometry and vectors is divided into two 
chapters. Chapter 12 deals with vectors, the dot and cross products, lines, planes, and 
surfaces.

This chapter covers vector-valued functions, their derivatives and integrals, the length 
and curvature of space curves, and velocity and acceleration along space curves, culmi-
nating in Kepler’s laws.

Functions of two or more variables are studied from verbal, numerical, visual, and alge-
braic points of view. In particular, I introduce partial derivatives by looking at a specific 
column in a table of values of the heat index (perceived air temperature) as a function 
of the actual temperature and the relative humidity.

Contour maps and the Midpoint Rule are used to estimate the average snowfall and 
average temperature in given regions. Double and triple integrals are used to compute 
probabilities, surface areas, and (in projects) volumes of hyperspheres and volumes of 
intersections of three cylinders. Cylindrical and spherical coordinates are introduced in 
the context of evaluating triple integrals.

Vector fields are introduced through pictures of velocity fields showing San Francisco 
Bay wind patterns. The similarities among the Fundamental Theorem for line integrals, 
Green’s Theorem, Stokes’ Theorem, and the Divergence Theorem are emphasized.

Since first-order differential equations are covered in Chapter 9, this final chapter deals 
with second-order linear differential equations, their application to vibrating springs and 
electric circuits, and series solutions.

Calculus, Early Transcendentals, Eighth Edition, is supported by a complete set of 
ancillaries developed under my direction. Each piece has been designed to enhance 
student understanding and to facilitate creative instruction. The tables on pages xxi–xxii 
describe each of these ancillaries.

The preparation of this and previous editions has involved much time spent reading the 
reasoned (but sometimes contradictory) advice from a large number of astute reviewers. 
I greatly appreciate the time they spent to understand my motivation for the approach 
taken. I have learned something from each of them.

Eighth Edition Reviewers
Jay Abramson, Arizona State University
Adam Bowers, University of California San Diego
Neena Chopra, The Pennsylvania State University

11 Infinite Sequences and Series

12 Vectors and the  
Geometry of Space

13 Vector Functions

14 Partial Derivatives

15 Multiple Integrals

16 Vector Calculus

17 Second-Order 
Differential Equations
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■ Electronic items ■ Printed items (Table continues on page xxii)

Instructor’s Guide
by Douglas Shaw
ISBN 978-1-305-39371-4

Each section of the text is discussed from several viewpoints. 
The Instructor’s Guide contains suggested time to allot, points 
to stress, text discussion topics, core materials for lecture, 
workshop/discussion suggestions, group work exercises in  
a form suitable for handout, and suggested homework  
assignments.

Complete Solutions Manual
Single Variable Early Transcendentals
By Daniel Anderson, Jeffery A. Cole, and Daniel Drucker
ISBN 978-1-305-27239-2

Multivariable
By Dan Clegg and Barbara Frank
ISBN 978-1-305-27611-6

Includes worked-out solutions to all exercises in the text.

Printed Test Bank
By William Steven Harmon
ISBN 978-1-305-38722-5

Contains text-specific multiple-choice and free response test 
items.

Cengage Learning Testing Powered by Cognero
(login.cengage.com)

This flexible online system allows you to author, edit, and 
manage test bank content from multiple Cengage Learning 
solutions; create multiple test versions in an instant; and 
deliver tests from your LMS, your classroom, or wherever you 
want.

Stewart Website
www.stewartcalculus.com

Contents: Homework Hints ■ Algebra Review ■ Additional 
Topics ■ Drill exercises ■ Challenge Problems ■ Web 
Links ■ History of Mathematics ■ Tools for Enriching  
Calculus (TEC) 

TEC  TOOLS FOR ENRICHING™ CALCULUS
By James Stewart, Harvey Keynes, Dan Clegg, and developer 
Hubert Hohn

Tools for Enriching Calculus (TEC) functions as both a 
powerful tool for instructors and as a tutorial environment  
in which students can explore and review selected topics. The 
Flash simulation modules in TEC include instructions, written 
and audio explanations of the concepts, and exercises. TEC  
is accessible in the eBook via CourseMate and Enhanced 
WebAssign. Selected Visuals and Modules are available at 
www.stewartcalculus.com.

 Enhanced WebAssign®
www.webassign.net
Printed Access Code: ISBN 978-1-285-85826-5
Instant Access Code ISBN: 978-1-285-85825-8

Exclusively from Cengage Learning, Enhanced WebAssign 
offers an extensive online program for Stewart’s Calculus  
to encourage the practice that is so critical for concept 
mastery. The meticulously crafted pedagogy and exercises 
in our proven texts become even more effective in Enhanced 
WebAssign, supplemented by multimedia tutorial support and 
immediate feedback as students complete their assignments. 
Key features include: 
■  Thousands of homework problems that match your text-

book’s end-of-section exercises

■  Opportunities for students to review prerequisite skills and 
content both at the start of the course and at the beginning 
of each section

■  Read It eBook pages, Watch It videos, Master It tutorials, 
and Chat About It links

■  A customizable Cengage YouBook with highlighting, note-
taking, and search features, as well as links to multimedia 
resources

■  Personal Study Plans (based on diagnostic quizzing) that 
identify chapter topics that students will need to master

■  A WebAssign Answer Evaluator that recognizes and accepts 
equivalent mathematical responses in the same way an 
instructor grades

■  A Show My Work feature that gives instructors the option 
of seeing students’ detailed solutions

■  Visualizing Calculus Animations, Lecture Videos, and more
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Cengage Customizable YouBook
YouBook is an eBook that is both interactive and customiz-
able. Containing all the content from Stewart’s Calculus,  
YouBook features a text edit tool that allows instructors to 
modify the textbook narrative as needed. With YouBook, 
instructors can quickly reorder entire sections and chapters 
or hide any content they don’t teach to create an eBook that 
perfectly matches their syllabus. Instructors can further 
customize the text by adding instructor-created or YouTube 
video links. Additional media assets include animated figures, 
video clips, highlighting and note-taking features, and more. 
YouBook is available within Enhanced WebAssign.

CourseMate
CourseMate is a perfect self-study tool for students, and 
requires no set up from instructors. CourseMate brings course 
concepts to life with interactive learning, study, and exam 
preparation tools that support the printed textbook. Course-
Mate for Stewart’s Calculus includes an interactive eBook, 
Tools for Enriching Calculus, videos, quizzes, flashcards, 
and more. For instructors, CourseMate includes Engagement 
Tracker, a first-of-its-kind tool that monitors student  
engagement.

CengageBrain.com
To access additional course materials, please visit  
www.cengagebrain.com. At the CengageBrain.com home 
page, search for the ISBN of your title (from the back cover of 
your book) using the search box at the top of the page. This 
will take you to the product page where these resources can 
be found.

Student Solutions Manual
Single Variable Early Transcendentals
By Daniel Anderson, Jeffery A. Cole, and Daniel Drucker
ISBN 978-1-305-27242-2

Multivariable
By Dan Clegg and Barbara Frank
ISBN 978-1-305-27182-1

Provides completely worked-out solutions to all odd- 
numbered exercises in the text, giving students a chance to 

check their answer and ensure they took the correct steps  
to arrive at the answer. The Student Solutions Manual  
can be ordered or accessed online as an eBook at  
www.cengagebrain.com by searching the ISBN.

Study Guide
Single Variable Early Transcendentals
By Richard St. Andre
ISBN 978-1-305-27914-8

Multivariable
By Richard St. Andre
ISBN 978-1-305-27184-5

For each section of the text, the Study Guide provides students 
with a brief introduction, a short list of concepts to master, 
and summary and focus questions with explained answers. 
The Study Guide also contains “Technology Plus” questions 
and multiple-choice “On Your Own” exam-style questions. 
The Study Guide can be ordered or accessed online as an 
eBook at www.cengagebrain.com by searching the ISBN.

A Companion to Calculus
By Dennis Ebersole, Doris Schattschneider, Alicia Sevilla,  
and Kay Somers
ISBN 978-0-495-01124-8

Written to improve algebra and problem-solving skills of 
students taking a calculus course, every chapter in this 
companion is keyed to a calculus topic, providing concep-
tual background and specific algebra techniques needed to 
understand and solve calculus problems related to that topic. 
It is designed for calculus courses that integrate the review of 
precalculus concepts or for individual use. Order a copy of 
the text or access the eBook online at www.cengagebrain.com 
by searching the ISBN.

Linear Algebra for Calculus
by Konrad J. Heuvers, William P. Francis, John H. Kuisti, 
Deborah F. Lockhart, Daniel S. Moak, and Gene M. Ortner
ISBN 978-0-534-25248-9

This comprehensive book, designed to supplement the calcu-
lus course, provides an introduction to and review of the basic 
ideas of linear algebra. Order a copy of the text or access 
the eBook online at www.cengagebrain.com by searching the 
ISBN.
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To the Student

Reading a calculus textbook is different from reading a 
newspaper or a novel, or even a physics book. Don’t be dis-
couraged if you have to read a passage more than once  
in order to understand it. You should have pencil and paper 
and calculator at hand to sketch a diagram or make a  
calculation.

Some students start by trying their homework problems 
and read the text only if they get stuck on an exercise. I sug-
gest that a far better plan is to read and understand a section 
of the text before attempting the exercises. In particular, you 
should look at the definitions to see the exact meanings of 
the terms. And before you read each example, I suggest that 
you cover up the solution and try solving the problem your-
self. You’ll get a lot more from looking at the solution if 
you do so.

Part of the aim of this course is to train you to think logi-
cally. Learn to write the solutions of the exercises in a con-
nected, step-by-step fashion with explanatory sentences—
not just a string of disconnected equations or formulas.

The answers to the odd-numbered exercises appear at the 
back of the book, in Appendix I. Some exercises ask for a 
verbal explanation or interpretation or description. In such 
cases there is no single correct way of expressing the 
answer, so don’t worry that you haven’t found the definitive 
answer. In addition, there are often several different forms 
in which to express a numerical or algebraic answer, so if 
your answer differs from mine, don’t immediately assume 
you’re wrong. For example, if the answer given in the back 
of the book is s2 2 1 and you obtain 1y(1 1 s2 ), then 
you’re right and rationalizing the denominator will show 
that the answers are equivalent.

The icon ; indicates an exercise that definitely requires 
the use of either a graphing calculator or a computer with 
graphing software. But that doesn’t mean that graphing 
devices can’t be used to check your work on the other exer-
cises as well. The symbol CAS  is reserved for problems in 

which the full resources of a computer algebra system (like 
Maple, Mathematica, or the TI-89) are required.

You will also encounter the symbol |, which warns you 
against committing an error. I have placed this symbol in 
the margin in situations where I have observed that a large 
proportion of my students tend to make the same mistake.

Tools for Enriching Calculus, which is a companion to 
this text, is referred to by means of the symbol TEC  and can 
be accessed in the eBook via Enhanced WebAssign and 
CourseMate (selected Visuals and Modules are available at 
www.stewartcalculus.com). It directs you to modules in 
which you can explore aspects of calculus for which the 
computer is particularly useful. 

You will notice that some exercise numbers are printed 
in red: 5. This indicates that Homework Hints are available 
for the exercise. These hints can be found on stewartcalcu-
lus.com as well as Enhanced WebAssign and CourseMate. 
The homework hints ask you questions that allow you to 
make progress toward a solution without actually giving 
you the answer. You need to pursue each hint in an active 
manner with pencil and paper to work out the details. If a 
particular hint doesn’t enable you to solve the problem, you 
can click to reveal the next hint. 

I recommend that you keep this book for reference pur-
poses after you finish the course. Because you will likely 
forget some of the specific details of calculus, the book will 
serve as a useful reminder when you need to use calculus in 
subsequent courses. And, because this book contains more 
material than can be covered in any one course, it can also 
serve as a valuable resource for a working scientist or  
engineer.

Calculus is an exciting subject, justly considered to be 
one of the greatest achievements of the human intellect. I 
hope you will discover that it is not only useful but also 
intrinsically beautiful.

JAMES STEWART
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xxiv

Advances in technology continue to bring a wider variety of tools for 
doing mathematics. Handheld calculators are becoming more pow-
erful, as are software programs and Internet resources. In addition, 
many mathematical applications have been released for smartphones 
and tablets such as the iPad.

Some exercises in this text are marked with a graphing icon ;, 
which indicates that the use of some technology is required. Often this 
means that we intend for a graphing device to be used in drawing the 
graph of a function or equation. You might also need technology to 
find the zeros of a graph or the points of intersection of two graphs. 
In some cases we will use a calculating device to solve an equation or 
evaluate a definite integral numerically. Many scientific and graphing 
calculators have these features built in, such as the Texas Instruments 
TI-84 or TI-Nspire CX. Similar calculators are made by Hewlett Pack-
ard, Casio, and Sharp.
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You can also use computer software such  
as Graphing Calculator by Pacific Tech 
(www.pacifict.com) to perform many of these 
functions, as well as apps for phones and 
tablets, like Quick Graph (Colombiamug) or 
Math-Studio (Pomegranate Apps). Similar 
functionality is available using a web interface 
at WolframAlpha.com.
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Calculators, Computers, and 
Other Graphing Devices
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The CAS  icon is reserved for problems in which the full resources of 
a computer algebra system (CAS) are required. A CAS is capable of 
doing mathematics (like solving equations, computing derivatives or 
integrals) symbolically rather than just numerically.

Examples of well-established computer algebra systems are the com-
puter software packages Maple and Mathematica. The WolframAlpha 
website uses the Mathematica engine to provide CAS functionality  
via the Web.

Many handheld graphing calculators have CAS capabilities, such 
as the TI-89 and TI-Nspire CX CAS from Texas Instruments. Some 
tablet and smartphone apps also provide these capabilities, such as the 
previously mentioned MathStudio.

In general, when we use the term “calculator” in this book, we mean 
the use of any of the resources we have mentioned.
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xxvi

Success in calculus depends to a large extent on knowledge of the mathematics that 
precedes calculus: algebra, analytic geometry, functions, and trigonometry. The fol-
lowing tests are intended to diagnose weaknesses that you might have in these areas. 
After taking each test you can check your answers against the given answers and, if 
necessary, refresh your skills by referring to the review materials that are provided.

A

  . Evaluate each expression without using a calculator.
 (a) s23d4 (b) 234 (c) 324

 (d) 
523

521  (e) S 2
3D22

 (f) 1623y4

  .  Simplify each expression. Write your answer without negative exponents.

 (a) s200 2 s32  

 (b) s3a3b3ds4ab2d2

 (c) S 3x 3y2y 3

x 2y21y2D22

  . Expand and simplify.

   (a) 3sx 1 6d 1 4s2x 2 5d (b) sx 1 3ds4x 2 5d

   (c) ssa 1 sb dssa 2 sb d (d) s2x 1 3d2

   (e) sx 1 2d3

  . Factor each expression.
 (a) 4x 2 2 25 (b) 2x 2 1 5x 2 12
 (c) x 3 2 3x 2 2 4x 1 12 (d) x 4 1 27x
 (e) 3x 3y2 2 9x 1y2 1 6x21y2 (f) x 3y 2 4xy

  .  Simplify the rational expression.

   (a) 
x 2 1 3x 1 2
x 2 2 x 2 2

 (b) 
2x 2 2 x 2 1

x 2 2 9
?

x 1 3
2x 1 1

   (c) 
x 2

x 2 2 4
2

x 1 1
x 1 2

 (d) 

y
x

2
x
y

1
y

2
1
x

Diagnostic Tests
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 Diagnostic Tests xxvii

  . Rationalize the expression and simplify.

 (a) 
s10 

s5 2 2
 (b) 

s4 1 h 2 2
h

  . Rewrite by completing the square.
 (a) x 2 1 x 1 1 (b) 2x 2 2 12x 1 11

  . Solve the equation. (Find only the real solutions.)

 (a) x 1 5 − 14 2 1
2 x (b) 

2x
x 1 1

−
2x 2 1

x
 (c) x 2 2 x 2 12 − 0 (d) 2x 2 1 4x 1 1 − 0

 (e) x 4 2 3x 2 1 2 − 0 (f) 3| x 2 4 | − 10

 (g) 2xs4 2 xd21y2 2 3s4 2 x − 0

  .  Solve each inequality. Write your answer using interval notation.
 (a) 24 , 5 2 3x < 17 (b) x 2 , 2x 1 8
 (c) xsx 2 1dsx 1 2d . 0 (d) | x 2 4 | , 3

 (e) 
2x 2 3
x 1 1

< 1

  . State whether each equation is true or false.
 (a) sp 1 qd2 − p2 1 q 2 (b) sab − sa sb 

 (c) sa2 1 b2 − a 1 b (d) 
1 1 TC

C
− 1 1 T

 (e) 
1

x 2 y
−

1
x

2
1
y

 (f) 
1yx

ayx 2 byx
−

1
a 2 b

ANSWERS TO DIAGNOSTIC TEST A: ALGEBRA

 . (a) 81  (b) 281 (c) 1
81

  (d) 25  (e) 9
4 (f) 1

8

 . (a) 6s2  (b) 48a5b7 (c) 
x

9y7

 . (a) 11x 2 2 (b) 4x 2 1 7x 2 15
  (c) a 2 b (d) 4x 2 1 12x 1 9
  (e) x 3 1 6x 2 1 12x 1 8

 . (a) s2x 2 5ds2x 1 5d (b) s2x 2 3dsx 1 4d
  (c) sx 2 3dsx 2 2dsx 1 2d (d) xsx 1 3dsx 2 2 3x 1 9d
  (e) 3x21y2sx 2 1dsx 2 2d (f) xysx 2 2dsx 1 2d

 . (a) 
x 1 2
x 2 2

 (b) 
x 2 1
x 2 3

  (c) 
1

x 2 2
 (d) 2sx 1 yd

 . (a) 5s2 1 2s10  (b) 
1

s4 1 h 1 2

 . (a) sx 1 1
2d2

1 3
4 (b)  2sx 2 3d2 2 7

 . (a) 6  (b) 1 (c) 23, 4

  (d) 21 6 1
2s2  (e) 61, 6s2  (f) 2

3, 22
3

  (g) 12
5

 . (a) f24, 3d (b) s22, 4d
  (c) s22, 0d ø s1, `d (d) s1, 7d
  (e) s21, 4g

 . (a) False (b) True (c) False
  (d) False (e) False (f) True

If you had difficulty with these problems, you may wish to consult the  
Review of Algebra on the website www.stewartcalculus.com.
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xxviii Diagnostic Tests

ANSWERS TO DIAGNOSTIC TEST B: ANALYTIC GEOMETRY

 . (a) y − 23x 1 1 (b) y − 25

  (c) x − 2 (d) y − 1
2 x 2 6

 . sx 1 1d2 1 sy 2 4d2 − 52

 . Center s3, 25d, radius 5

 . (a) 24
3

  (b) 4x 1 3y 1 16 − 0; x-intercept 24, y-intercept 216
3

  (c) s21, 24d
  (d) 20
  (e) 3x 2 4y − 13
  (f) sx 1 1d2 1 sy 1 4d2 − 100

 . 

y

x1 2
0

y

x0

y

x0 4

3

_1

2

y

x
0

y

x0 4_4

y

x0 2

1

(a) (b) (c)

(d) (e) (f)

_1

3
2

_2

y=≈-1

≈+¥=4

 

y=1-   x1
2

B

  . Find an equation for the line that passes through the point s2, 25d and
 (a) has slope 23
 (b) is parallel to the x-axis
 (c) is parallel to the y-axis
 (d) is parallel to the line 2x 2 4y − 3

  .  Find an equation for the circle that has center s21, 4d and passes through the point s3, 22d.

  .  Find the center and radius of the circle with equation x 2 1 y 2 2 6x 1 10y 1 9 − 0.

  .  Let As27, 4d and Bs5, 212d be points in the plane.
 (a)  Find the slope of the line that contains A and B.
 (b)  Find an equation of the line that passes through A and B. What are the intercepts?
 (c) Find the midpoint of the segment AB.
 (d) Find the length of the segment AB.
 (e) Find an equation of the perpendicular bisector of AB.
 (f) Find an equation of the circle for which AB  is a diameter.

  .  Sketch the region in the xy-plane defined by the equation or inequalities.

 (a) 21 < y < 3 (b) | x | , 4 and | y | , 2

 (c) y , 1 2 1
2 x (d) y > x 2 2 1

 (e) x 2 1 y 2 , 4 (f) 9x 2 1 16y 2 − 144

If you had difficulty with these problems, you may wish to consult  
the review of analytic geometry in Appendixes B and C.
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 Diagnostic Tests xxix

C

  . The graph of a function f  is given at the left.
 (a) State the value of f s21d.
 (b) Estimate the value of f s2d.
 (c) For what values of x is f sxd − 2?
 (d) Estimate the values of x such that f sxd − 0.
 (e) State the domain and range of f.

  . If f sxd − x 3, evaluate the difference quotient 
f s2 1 hd 2 f s2d

h
 and simplify your answer.

  . Find the domain of the function.

 (a) f sxd −
2x 1 1

x 2 1 x 2 2
 (b) tsxd −

s3 x 

x 2 1 1
 (c) hsxd − s4 2 x 1 sx 2 2 1

  . How are graphs of the functions obtained from the graph of f ?
 (a) y − 2f sxd (b) y − 2 f sxd 2 1 (c) y − f sx 2 3d 1 2

  . Without using a calculator, make a rough sketch of the graph.
 (a) y − x 3 (b) y − sx 1 1d3 (c) y − sx 2 2d3 1 3
 (d) y − 4 2 x 2 (e) y − sx   (f) y − 2sx  

 (g) y − 22x (h) y − 1 1 x21

  . Let f sxd − H1 2 x 2

2x 1 1
if x < 0
if x . 0

 (a) Evaluate f s22d and f s1d. (b) Sketch the graph of f.

  .  If f sxd − x 2 1 2x 2 1 and tsxd − 2x 2 3, find each of the following functions.
 (a) f 8 t (b) t 8 f  (c) t 8 t 8 t

y

0 x

1

1

FIGURE FOR PROBLEM 1

ANSWERS TO DIAGNOSTIC TEST C: FUNCTIONS

 . (a) 22  (b) 2.8
  (c) 23, 1 (d) 22.5, 0.3
  (e) f23, 3g, f22, 3g

 . 12 1 6h 1 h 2

 . (a) s2`, 22d ø s22, 1d ø s1, `d
  (b) s2`, `d
  (c) s2`, 21g ø f1, 4g

 . (a) Reflect about the x-axis
  (b)  Stretch vertically by a factor of 2, then shift 1 unit  

downward
  (c) Shift 3 units to the right and 2 units upward

 . y

x0

(a)

1

1

y(b)

x0

1

_1

(c) y

x0

(2, 3)

y(d)

x0

4

2

(e) y

x0 1

(f ) y

x0 1

(g) y

x
0

1_1

y(h)

x0

1

1
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xxx Diagnostic Tests

    . (a) 23, 3  (b) y

x0_1

1

 . (a) s f 8 tdsxd − 4x 2 2 8x 1 2 

  (b) st 8 f dsxd − 2x 2 1 4x 2 5

  (c) st 8 t 8 tdsxd − 8x 2 21

D

  . Convert from degrees to radians.
 (a) 3008  (b) 2188

  . Convert from radians to degrees.
 (a) 5!y6 (b) 2

  .  Find the length of an arc of a circle with radius 12 cm if the arc subtends a central angle  
of 308.

  . Find the exact values.
 (a) tans!y3d (b) sins7!y6d (c) secs5!y3d

  .  Express the lengths a and b in the figure in terms of ".

  .  If sin x − 1
3 and sec y − 5

4, where x and y lie between 0 and !y2, evaluate sinsx 1 yd.

  . Prove the identities.

 (a) tan " sin " 1 cos " − sec " (b) 
2 tan x

1 1 tan2x
− sin 2x

  .  Find all values of x such that sin 2x − sin x and 0 < x < 2!.

  .  Sketch the graph of the function y − 1 1 sin 2x without using a calculator.

a

¨
b

24

FIGURE FOR PROBLEM 5

If you had difficulty with these problems, you should look at Appendix D of this book.

If you had difficulty with these problems, you should look at sections 1.1–1.3 of this book.

ANSWERS TO DIAGNOSTIC TEST D: TRIGONOMETRY

 . (a) 5!y3 (b) 2!y10

 . (a) 1508  (b) 3608y! < 114.68

 . 2! cm

 . (a) s3  (b) 21
2 (c) 2

 . (a) 24 sin " (b) 24 cos "

 . 1
15 s4 1 6s2 d

 . 0, !y3, !, 5!y3, 2!

 . 

_π π x0

2
y
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1

By the time you finish this course, you will be able to calcu- 
late the length of the curve used to design the Gateway Arch 

in St. Louis, determine where a pilot should start descent  
for a smooth landing, compute the force on a baseball bat 

when it strikes the ball, and measure the amount of light 
sensed by the human eye as the pupil changes size.

A Preview of Calculus

CALCULUS IS FUNDAMENTALLY DIFFERENT FROM the mathematics that you have studied previ-
ously: calculus is less static and more dynamic. It is concerned with change and motion; it deals 
with quantities that approach other quantities. For that reason it may be useful to have an overview 
of the subject before beginning its intensive study. Here we give a glimpse of some of the main 
ideas of calculus by showing how the concept of a limit arises when we attempt to solve a variety 
of problems.
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2 A PREVIEW OF CALCULUS

The Area Problem
The origins of calculus go back at least 2500 years to the ancient Greeks, who found 
areas using the “method of exhaustion.” They knew how to find the area A of any poly-
gon by dividing it into triangles as in Figure 1 and adding the areas of these triangles.

It is a much more difficult problem to find the area of a curved figure. The Greek  
method of exhaustion was to inscribe polygons in the figure and circumscribe polygons 
about the figure and then let the number of sides of the polygons increase. Figure 2 illus-
trates this process for the special case of a circle with inscribed regular polygons.

A¡™ !!!A¶ !!!AßA∞A¢A£

Let An be the area of the inscribed polygon with n sides. As n increases, it appears that 
An becomes closer and closer to the area of the circle. We say that the area of the circle 
is the limit of the areas of the inscribed polygons, and we write

A − lim 
n l `

An

The Greeks themselves did not use limits explicitly. However, by indirect reasoning, 
Eudoxus (fifth century bc) used exhaustion to prove the familiar formula for the area of 
a circle: A − !r 2.

We will use a similar idea in Chapter 5 to find areas of regions of the type shown in 
Figure 3. We will approximate the desired area A by areas of rectangles (as in Figure 4), 
let the width of the rectangles decrease, and then calculate A as the limit of these sums 
of areas of rectangles.

1
n

10 x

y
(1, 1)

10 x

y
(1, 1)

1
4

1
2

3
4

0 x

y

1

(1, 1)

10 x

y

y=≈

A

(1, 1)

The area problem is the central problem in the branch of calculus called integral cal-
culus. The techniques that we will develop in Chapter 5 for finding areas will also enable 
us to compute the volume of a solid, the length of a curve, the force of water against a 
dam, the mass and center of gravity of a rod, and the work done in pumping water out 
of a tank.

The Tangent Problem
Consider the problem of trying to find an equation of the tangent line t to a curve with 
equation y − f sxd at a given point P. (We will give a precise definition of a tangent line in 

A=A¡+A™+A£+A¢+A∞

A¡

A™
A£ A¢

A∞

FIGURE 1

FIGURE 2

TEC In the Preview Visual, you  
can see how areas of inscribed and 
circumscribed polygons approximate 
the area of a circle.

FIGURE 3 FIGURE 4
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Chapter 2. For now you can think of it as a line that touches the curve at P as in Figure 5.)  
Since we know that the point P lies on the tangent line, we can find the equation of t if we 
know its slope m. The problem is that we need two points to compute the slope and we 
know only one point, P, on t. To get around the problem we first find an approximation 
to m by taking a nearby point Q on the curve and computing the slope mPQ of the secant 
line PQ. From Figure 6 we see that

1  mPQ −
 f sxd 2 f sad

x 2 a
 

Now imagine that Q moves along the curve toward P as in Figure 7. You can see that 
the secant line rotates and approaches the tangent line as its limiting position. This means 
that the slope mPQ of the secant line becomes closer and closer to the slope m of the tan-
gent line. We write

m − lim 
Q lP

mPQ

and we say that m is the limit of mPQ as Q approaches P along the curve. Because x 
approaches a as Q approaches P, we could also use Equation 1 to write

2  m − lim 
x l a

 
 f sxd 2 f sad

x 2 a
 

Specific examples of this procedure will be given in Chapter 2.
The tangent problem has given rise to the branch of calculus called differential calcu- 

lus, which was not invented until more than 2000 years after integral calculus. The main  
ideas behind differential calculus are due to the French mathematician Pierre Fer-
mat (1601–1665) and were developed by the English mathematicians John Wallis  
(1616–1703), Isaac Barrow (1630–1677), and Isaac Newton (1642–1727) and the Ger-
man mathematician Gottfried Leibniz (1646–1716).

The two branches of calculus and their chief problems, the area problem and the tan-
gent problem, appear to be very different, but it turns out that there is a very close con-
nection between them. The tangent problem and the area problem are inverse problems 
in a sense that will be described in Chapter 5.

Velocity
When we look at the speedometer of a car and read that the car is traveling at 48 miyh, 
what does that information indicate to us? We know that if the velocity remains constant, 
then after an hour we will have traveled 48 mi. But if the velocity of the car varies, what 
does it mean to say that the velocity at a given instant is 48 miyh?

In order to analyze this question, let’s examine the motion of a car that travels along a 
straight road and assume that we can measure the distance traveled by the car (in feet) at  
l-second intervals as in the following chart:

t − Time elapsed ssd 0 1 2 3 4 5

d − Distance sftd 0 2 9 24 42 71

0

y

x

P

y=ƒ

t

P
Q

t

0 x

y

y

0 xa x

ƒ-f(a)P{a, f(a)}
x-a

t

Q{x, ƒ}

FIGURE 5  
The tangent line at P

FIGURE 6  
The secant line at PQ

FIGURE 7  
Secant lines approaching the  
tangent line
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4 A PREVIEW OF CALCULUS

As a first step toward finding the velocity after 2 seconds have elapsed, we find the aver-
age velocity during the time interval 2 < t < 4:

 average velocity −
change in position

time elapsed

 −
42 2 9
4 2 2

 − 16.5 ftys

Similarly, the average velocity in the time interval 2 < t < 3 is

average velocity −
24 2 9
3 2 2

− 15 ftys

We have the feeling that the velocity at the instant t − 2 can’t be much different from the 
average velocity during a short time interval starting at t − 2. So let’s imagine that the dis- 
tance traveled has been measured at 0.l-second time intervals as in the following chart:

t 2.0 2.1 2.2 2.3 2.4 2.5

d 9.00 10.02 11.16 12.45 13.96 15.80

Then we can compute, for instance, the average velocity over the time interval f2, 2.5g:

average velocity −
15.80 2 9.00

2.5 2 2
− 13.6 ftys

The results of such calculations are shown in the following chart:

Time interval f2, 3g f2, 2.5g f2, 2.4g f2, 2.3g f2, 2.2g f2, 2.1g

Average velocity sftysd 15.0 13.6 12.4 11.5 10.8 10.2

The average velocities over successively smaller intervals appear to be getting closer to  
a number near 10, and so we expect that the velocity at exactly t − 2 is about 10 ftys. In 
Chapter 2 we will define the instantaneous velocity of a moving object as the limiting value  
of the average velocities over smaller and smaller time intervals.

In Figure 8 we show a graphical representation of the motion of the car by plotting the 
distance traveled as a function of time. If we write d − f std, then f std is the number of 
feet traveled after t seconds. The average velocity in the time interval f2, tg is

average velocity −
change in position

time elapsed
−

 f std 2 f s2d
t 2 2

which is the same as the slope of the secant line PQ in Figure 8. The velocity v when 
t − 2 is the limiting value of this average velocity as t approaches 2; that is,

v − lim 
t l 2

 
 f std 2 f s2d

t 2 2

and we recognize from Equation 2 that this is the same as the slope of the tangent line 
to the curve at P.

t

d

0 1 2 3 4 5

10

20

P{2, f(2)}

Q{ t, f(t)}

FIGURE 8
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 A PREVIEW OF CALCULUS  5

Thus, when we solve the tangent problem in differential calculus, we are also solving 
problems concerning velocities. The same techniques also enable us to solve problems 
involving rates of change in all of the natural and social sciences.

The Limit of a Sequence
In the fifth century bc the Greek philosopher Zeno of Elea posed four problems, now 
known as Zeno’s paradoxes, that were intended to challenge some of the ideas concerning 
space and time that were held in his day. Zeno’s second paradox concerns a race between 
the Greek hero Achilles and a tortoise that has been given a head start. Zeno argued, as fol- 
lows, that Achilles could never pass the tortoise: Suppose that Achil les starts at position  
a1 and the tortoise starts at position t1. (See Figure 9.) When Achilles reaches the point 
a2 − t1, the tortoise is farther ahead at position t2. When Achilles reaches a3 − t2, the tor- 
toise is at t3. This process continues indefinitely and so it appears that the tortoise will 
always be ahead! But this defies common sense.

Achilles

tortoise

a¡ a™ a£ a¢ a∞

t ¡ t™ t£ t¢

. . .

. . .

One way of explaining this paradox is with the idea of a sequence. The successive posi-
tions of Achilles sa1, a2, a3, . . .d or the successive positions of the tortoise st1, t2, t3, . . .d 
form what is known as a sequence.

In general, a sequence hanj is a set of numbers written in a definite order. For instance, 
the sequence

h1, 12 , 13 , 14 , 15 , . . .j

can be described by giving the following formula for the nth term:

an −
1
n

We can visualize this sequence by plotting its terms on a number line as in Fig- 
ure 10(a) or by drawing its graph as in Figure 10(b). Observe from either picture that the 
terms of the sequence an − 1yn are becoming closer and closer to 0 as n increases. In 
fact, we can find terms as small as we please by making n large enough. We say that the 
limit of the sequence is 0, and we indicate this by writing

lim 
n l `

1
n

− 0

In general, the notation

lim 
n l `

an − L

is used if the terms an approach the number L as n becomes large. This means that the num- 
bers an can be made as close as we like to the number L by taking n sufficiently large.

FIGURE 9

1

n1 2 3 4 5 6 7 8

10

a¡a™a£a¢

(a)

(b)

FIGURE 10
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6 A PREVIEW OF CALCULUS

The concept of the limit of a sequence occurs whenever we use the decimal represen-
tation of a real number. For instance, if

 a1 − 3.1

 a2 − 3.14

 a3 − 3.141

 a4 − 3.1415

 a5 − 3.14159

 a6 − 3.141592

 a7 − 3.1415926

 f

then lim
n l `

 an − !

The terms in this sequence are rational approximations to !.
Let’s return to Zeno’s paradox. The successive positions of Achilles and the tortoise 

form sequences hanj and htnj, where an , tn for all n. It can be shown that both sequences 
have the same limit:

lim 
n l `

an − p − lim 
n l `

tn

It is precisely at this point p that Achilles overtakes the tortoise.

The Sum of a Series
Another of Zeno’s paradoxes, as passed on to us by Aristotle, is the following: “A man 
standing in a room cannot walk to the wall. In order to do so, he would first have to 
go half the distance, then half the remaining distance, and then again half of what still 
remains. This process can always be continued and can never be ended.” (See Figure 11.)

1
2

1
4

1
8

1
16

Of course, we know that the man can actually reach the wall, so this suggests that per-
haps the total distance can be expressed as the sum of infinitely many smaller distances 
as follows:

3  1 −
1
2

1
1
4

1
1
8

1
1
16

1 ∙ ∙ ∙ 1
1
2n 1 ∙ ∙ ∙

FIGURE 11
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 A PREVIEW OF CALCULUS 7

Zeno was arguing that it doesn’t make sense to add infinitely many numbers together. 
But there are other situations in which we implicitly use infinite sums. For instance, in 
decimal notation, the symbol 0.3 − 0.3333 . . . means

3
10

1
3

100
1

3
1000

1
3

10,000
1 ∙ ∙ ∙

and so, in some sense, it must be true that

3
10

1
3

100
1

3
1000

1
3

10,000
1 ∙ ∙ ∙ −

1
3

More generally, if dn denotes the nth digit in the decimal representation of a number, then

0.d1d2 d3 d4 . . . −
d1

10
1

d2

102 1
d3

103 1 ∙ ∙ ∙ 1
dn

10n 1 ∙ ∙ ∙

Therefore some infinite sums, or infinite series as they are called, have a meaning. But 
we must define carefully what the sum of an infinite series is.

Returning to the series in Equation 3, we denote by sn the sum of the first n terms of 
the series. Thus

 s1 − 1
2 − 0.5

 s2 − 1
2 1 1

4 − 0.75

 s3 − 1
2 1 1

4 1 1
8 − 0.875

 s4 − 1
2 1 1

4 1 1
8 1 1

16 − 0.9375

 s5 − 1
2 1 1

4 1 1
8 1 1

16 1 1
32 − 0.96875

 s6 − 1
2 1 1

4 1 1
8 1 1

16 1 1
32 1 1

64 − 0.984375

 s7 − 1
2 1 1

4 1 1
8 1 1

16 1 1
32 1 1

64 1 1
128 − 0.9921875

 f

 s10 − 1
2 1 1

4 1 ∙ ∙ ∙ 1 1
1024 < 0.99902344

 f

 s16 −
1
2

1
1
4

1 ∙ ∙ ∙ 1
1

216 < 0.99998474

Observe that as we add more and more terms, the partial sums become closer and closer 
to 1. In fact, it can be shown that by taking n large enough (that is, by adding sufficiently 
many terms of the series), we can make the partial sum sn as close as we please to the num- 
ber 1. It therefore seems reasonable to say that the sum of the infinite series is 1 and to 
write

1
2

1
1
4

1
1
8

1 ∙ ∙ ∙ 1
1
2n 1 ∙ ∙ ∙ − 1
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8 A PREVIEW OF CALCULUS

In other words, the reason the sum of the series is 1 is that

lim 
n l `

sn − 1

In Chapter 11 we will discuss these ideas further. We will then use Newton’s idea of 
combining infinite series with differential and integral calculus.

Summary
We have seen that the concept of a limit arises in trying to find the area of a region, the 
slope of a tangent to a curve, the velocity of a car, or the sum of an infinite series. In 
each case the common theme is the calculation of a quantity as the limit of other, easily 
calculated quantities. It is this basic idea of a limit that sets calculus apart from other 
areas of mathematics. In fact, we could define calculus as the part of mathematics that 
deals with limits.

After Sir Isaac Newton invented his version of calculus, he used it to explain the 
motion of the planets around the sun. Today calculus is used in calculating the orbits of 
satellites and spacecraft, in predicting population sizes, in estimating how fast oil prices 
rise or fall, in forecasting weather, in measuring the cardiac output of the heart, in cal-
culating life insurance premiums, and in a great variety of other areas. We will explore 
some of these uses of calculus in this book.

In order to convey a sense of the power of the subject, we end this preview with a list 
of some of the questions that you will be able to answer using calculus:

 1.  How can we explain the fact, illustrated in Figure 12, that the angle of elevation 
from an observer up to the highest point in a rainbow is 42°? (See page 285.)

 2.  How can we explain the shapes of cans on supermarket shelves? (See page 343.)

 3. Where is the best place to sit in a movie theater? (See page 465.)

 4.  How can we design a roller coaster for a smooth ride? (See page 182.)

 5. How far away from an airport should a pilot start descent? (See page 208.)

 6.  How can we fit curves together to design shapes to represent letters on a laser 
printer? (See page 657.)

 7.  How can we estimate the number of workers that were needed to build the Great 
Pyramid of Khufu in ancient Egypt? (See page 460.)

 8.  Where should an infielder position himself to catch a baseball thrown by an 
outfielder and relay it to home plate? (See page 465.)

 9.  Does a ball thrown upward take longer to reach its maximum height or to fall 
back to its original height? (See page 609.)

 10.  How can we explain the fact that planets and satellites move in elliptical orbits? 
(See page 868.)

 11.  How can we distribute water flow among turbines at a hydroelectric station so 
as to maximize the total energy production? (See page 980.)

 12.  If a marble, a squash ball, a steel bar, and a lead pipe roll down a slope, which 
of them reaches the bottom first? (See page 1052.)

rays from sun

observer

rays from sun

42°

138°

FIGURE 12
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9

Often a graph is the best 
way to represent a function 
because it conveys so much 

information at a glance. 
Shown is a graph of the 

vertical ground acceleration 
created by the 2011 

earthquake near Tohoku, 
Japan. The earthquake 

had a magnitude of 9.0 on 
the Richter scale and was 

so powerful that it moved 
northern Japan 8 feet closer 

to North America.

Functions and Models

THE FUNDAMENTAL OBJECTS THAT WE deal with in calculus are functions. This chapter pre-
pares the way for calculus by discussing the basic ideas concerning functions, their graphs, 
and ways of transforming and combining them. We stress that a function can be represented in 
different ways: by an equation, in a table, by a graph, or in words. We look at the main types of 
functions that occur in calculus and describe the process of using these functions as mathematical 
models of real-world phenomena.

1

Pictura Collectus/Alamy

Seismological Society of America

0
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_2000
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10 CHAPTER 1  Functions and Models

Functions arise whenever one quantity depends on another. Consider the following four 
situations.

A.  The area A of a circle depends on the radius r of the circle. The rule that connects r 
and A is given by the equation A − !r 2. With each positive number r there is associ-
ated one value of A, and we say that A is a function of r.

B.  The human population of the world P depends on the time t. The table gives esti-
mates of the world population Pstd at time t, for certain years. For instance,

Ps1950d < 2,560,000,000

But for each value of the time t there is a corresponding value of P, and we say that 
P is a function of t.

C.  The cost C of mailing an envelope depends on its weight w. Although there is no 
simple formula that connects w and C, the post office has a rule for determining C 
when w is known.

D.  The vertical acceleration a of the ground as measured by a seismograph during an 
earthquake is a function of the elapsed time t. Figure 1 shows a graph generated by 
seismic activity during the Northridge earthquake that shook Los Angeles in 1994. 
For a given value of t, the graph provides a corresponding value of a.

{cm/s@}

(seconds)5

50

10 15 20 25

a

t

100

30

_50

Calif. Dept. of Mines and Geology

Each of these examples describes a rule whereby, given a number (r, t, w, or t), 
another number (A, P, C, or a) is assigned. In each case we say that the second number 
is a function of the first number.

A function f  is a rule that assigns to each element x in a set D exactly one 
element, called f sxd, in a set E.

We usually consider functions for which the sets D and E are sets of real numbers. 
The set D is called the domain of the function. The number f sxd is the value of f  at x 
and is read “ f  of x.” The range of f  is the set of all possible values of f sxd as x varies 
throughout the domain. A symbol that represents an arbitrary number in the domain of a 
function f  is called an independent variable. A symbol that represents a number in the 
range of f  is called a dependent variable. In Example A, for instance, r is the indepen-
dent variable and A is the dependent variable.

Year
Population 
(millions)

1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2560
1960 3040
1970 3710
1980 4450
1990 5280
2000 6080
2010 6870

FIGURE 1
Vertical ground acceleration  

during the Northridge earthquake
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 SECTION 1.1  Four Ways to Represent a Function 11

It’s helpful to think of a function as a machine (see Figure 2). If x is in the domain of 
the function f, then when x enters the machine, it’s accepted as an input and the machine 
produces an output f sxd according to the rule of the function. Thus we can think of the 
domain as the set of all possible inputs and the range as the set of all possible outputs.

The preprogrammed functions in a calculator are good examples of a function as a 
machine. For example, the square root key on your calculator computes such a function. 
You press the key labeled s   (or sx ) and enter the input x. If x , 0, then x is not in the 
domain of this function; that is, x is not an acceptable input, and the calculator will indi-
cate an error. If x > 0, then an approximation to sx  will appear in the display. Thus the 
sx  key on your calculator is not quite the same as the exact mathematical function f  
defined by f sxd − sx .

Another way to picture a function is by an arrow diagram as in Figure 3. Each arrow 
connects an element of D to an element of E. The arrow indicates that f sxd is associated 
with x, f sad is associated with a, and so on.

The most common method for visualizing a function is its graph. If f  is a function 
with domain D, then its graph is the set of ordered pairs

hsx, f sxdd | x [ Dj

(Notice that these are input-output pairs.) In other words, the graph of f  consists of all 
points sx, yd in the coordinate plane such that y − f sxd and x is in the domain of f.

The graph of a function f  gives us a useful picture of the behavior or “life history” 
of a function. Since the y-coordinate of any point sx, yd on the graph is y − f sxd, we can 
read the value of f sxd from the graph as being the height of the graph above the point x 
(see Figure 4). The graph of f  also allows us to picture the domain of f  on the x-axis and 
its range on the y-axis as in Figure 5.

0

y ! ƒ(x)

domain

range

{x, ƒ}

ƒ

f(1)
f(2)

0 1 2 x xx

y y

EXAMPLE 1 The graph of a function f  is shown in Figure 6.
(a) Find the values of f s1d and f s5d.
(b) What are the domain and range of f ?

SOLUTION
(a) We see from Figure 6 that the point s1, 3d lies on the graph of f, so the value of f  
at 1 is f s1d − 3. (In other words, the point on the graph that lies above x − 1 is 3 units 
above the x-axis.)

When x − 5, the graph lies about 0.7 units below the x-axis, so we estimate that 
f s5d < 20.7.

(b) We see that f sxd is defined when 0 < x < 7, so the domain of f  is the closed inter-
val f0, 7g. Notice that f  takes on all values from 22 to 4, so the range of f  is

 hy | 22 < y < 4j − f22, 4g Q

x
(input)

ƒ
(output)

f

FIGURE 2
Machine diagram for a function f  

fD E

ƒ

f(a)a

x

FIGURE 3
Arrow diagram for f  

FIGURE 4 FIGURE 5

x

y

0

1

1

FIGURE 6

The notation for intervals is given in 
Appendix A.
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12 CHAPTER 1  Functions and Models

EXAMPLE 2 Sketch the graph and find the domain and range of each function.
(a) fsxd − 2x 2 1 (b) tsxd − x 2

SOLUTION
(a) The equation of the graph is y − 2x 2 1, and we recognize this as being the equa-
tion of a line with slope 2 and y-intercept 21. (Recall the slope-intercept form of the 
equation of a line: y − mx 1 b. See Appendix B.) This enables us to sketch a portion 
of the graph of f  in Figure 7. The expression 2x 2 1 is defined for all real numbers, so 
the domain of f  is the set of all real numbers, which we denote by R. The graph shows 
that the range is also R.

(b) Since ts2d − 22 − 4 and ts21d − s21d2 − 1, we could plot the points s2, 4d and 
s21, 1d, together with a few other points on the graph, and join them to produce the 
graph (Figure 8). The equation of the graph is y − x 2, which represents a parabola (see 
Appendix C). The domain of t is R. The range of t consists of all values of tsxd, that is, 
all numbers of the form x 2. But x 2 > 0 for all numbers x and any positive number y is a 
square. So the range of t is hy | y > 0j − f0, `d. This can also be seen from Figure 8. Q

EXAMPLE 3 If f sxd − 2x 2 2 5x 1 1 and h ± 0, evaluate 
f sa 1 hd 2 f sad

h
.

SOLUTION We first evaluate f sa 1 hd by replacing x by a 1 h in the expression for f sxd:

f sa 1 hd − 2sa 1 hd2 2 5sa 1 hd 1 1

  − 2sa2 1 2ah 1 h2d 2 5sa 1 hd 1 1

  − 2a2 1 4ah 1 2h2 2 5a 2 5h 1 1

Then we substitute into the given expression and simplify:

f sa 1 hd 2 f sad
h

−
s2a2 1 4ah 1 2h2 2 5a 2 5h 1 1d 2 s2a2 2 5a 1 1d

h

  −
2a2 1 4ah 1 2h2 2 5a 2 5h 1 1 2 2a2 1 5a 2 1

h

−
4ah 1 2h2 2 5h

h
− 4a 1 2h 2 5

Q

Representations of Functions
There are four possible ways to represent a function:

● verbally (by a description in words)
● numerically (by a table of values)
● visually (by a graph)
● algebraically  (by an explicit formula)

If a single function can be represented in all four ways, it’s often useful to go from one 
representation to another to gain additional insight into the function. (In Example 2, for 
instance, we started with algebraic formulas and then obtained the graphs.) But certain 
functions are described more naturally by one method than by another. With this in mind, 
let’s reexamine the four situations that we considered at the beginning of this section.

x

y=2x-1

0
-1

y

1
2

FIGURE 7

(_1, 1)

(2, 4)

0

y

1

x1

y=≈

FIGURE 8

The expression

f sa 1 hd 2 f sad
h

in Example 3 is called a difference 
quotient and occurs frequently in 
calculus. As we will see in Chapter 
2, it represents the average rate of 
change of f sxd between x − a and 
x − a 1 h.
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 SECTION 1.1  Four Ways to Represent a Function 13

A.  The most useful representation of the area of a circle as a function of its radius is 
probably the algebraic formula Asrd − !r 2, though it is possible to compile a table 
of values or to sketch a graph (half a parabola). Because a circle has to have a posi-
tive radius, the domain is hr | r . 0j − s0, `d, and the range is also s0, `d.

B.  We are given a description of the function in words: Pstd is the human population of 
the world at time t. Let’s measure t so that t − 0 corresponds to the year 1900. The 
table of values of world population provides a convenient representation of this func-
tion. If we plot these values, we get the graph (called a scatter plot) in Figure 9. It 
too is a useful representation; the graph allows us to absorb all the data at once. What 
about a formula? Of course, it’s impossible to devise an explicit formula that gives 
the exact human population Pstd at any time t. But it is possible to find an expression 
for a function that approximates Pstd. In fact, using methods explained in Section 
1.2, we obtain the approximation

Pstd < f std − s1.43653 3 109d ∙ s1.01395dt

  Figure 10 shows that it is a reasonably good “fit.” The function f  is called a mathe-
matical model for population growth. In other words, it is a function with an explicit 
formula that approximates the behavior of our given function. We will see, however, 
that the ideas of calculus can be applied to a table of values; an explicit formula is 
not necessary. 

5x10' 5x10'

P

t20 40 60 80 100 120 20 40 60
Years since 1900Years since 1900

80 100 120

P

t0 0

FIGURE 9 FIGURE 10

The function P is typical of the functions that arise whenever we attempt to apply 
calculus to the real world. We start with a verbal description of a function. Then we 
may be able to construct a table of values of the function, perhaps from instrument 
readings in a scientific experiment. Even though we don’t have complete knowledge 
of the values of the function, we will see throughout the book that it is still possible 
to perform the operations of calculus on such a function.

C.  Again the function is described in words: Let Cswd be the cost of mailing a large enve-
lope with weight w. The rule that the US Postal Service used as of 2015 is as follows: 
The cost is 98 cents for up to 1 oz, plus 21 cents for each additional ounce (or less) 
up to 13 oz. The table of values shown in the margin is the most convenient repre-
sentation for this function, though it is possible to sketch a graph (see Example 10).

D.  The graph shown in Figure 1 is the most natural representation of the vertical accel-
eration function astd. It’s true that a table of values could be compiled, and it is 
even possible to devise an approximate formula. But everything a geologist needs to 

t 
(years

since 1900)
Population 
(millions)

0 1650
10 1750
20 1860
30 2070
40 2300
50 2560
60 3040
70 3710
80 4450
90 5280

100 6080
110 6870

A function defined by a table of 
values is called a tabular function.

w (ounces) Cswd (dollars)

0 , w < 1  0.98

1 , w < 2  1.19
2 , w < 3  1.40
3 , w < 4  1.61
4 , w < 5  1.82

∙  ∙
∙  ∙
∙  ∙
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14 CHAPTER 1  Functions and Models

PS  In setting up applied functions as 
in Example 5, it may be useful to review 
the principles of problem solving as 
discussed on page 71, particularly  
Step 1: Understand the Problem.

know— amplitudes and patterns — can be seen easily from the graph. (The same is  
true for the patterns seen in electrocardiograms of heart patients and polygraphs for 
lie-detection.)

In the next example we sketch the graph of a function that is defined verbally.

EXAMPLE 4  When you turn on a hot-water faucet, the temperature T  of the water 
depends on how long the water has been running. Draw a rough graph of T  as a func-
tion of the time t that has elapsed since the faucet was turned on.

SOLUTION The initial temperature of the running water is close to room temperature 
because the water has been sitting in the pipes. When the water from the hot-water tank 
starts flowing from the faucet, T  increases quickly. In the next phase, T  is constant at 
the tempera ture of the heated water in the tank. When the tank is drained, T  decreases 
to the temperature of the water supply. This enables us to make the rough sketch of T  
as a function of t in Figure 11. Q

In the following example we start with a verbal description of a function in a physical 
situation and obtain an explicit algebraic formula. The ability to do this is a useful skill 
in solving calculus problems that ask for the maximum or minimum values of quantities.

EXAMPLE 5 A rectangular storage container with an open top has a volume of  
10 m3. The length of its base is twice its width. Material for the base costs $10 per 
square meter; material for the sides costs $6 per square meter. Express the cost of mate-
rials as a function of the width of the base.

SOLUTION We draw a diagram as in Figure 12 and introduce notation by letting w and 
2w be the width and length of the base, respectively, and h be the height. 

The area of the base is s2wdw − 2w2, so the cost, in dollars, of the material for the 
base is 10s2w2 d. Two of the sides have area wh and the other two have area 2wh, so the 
cost of the material for the sides is 6f2swhd 1 2s2whdg. The total cost is therefore

C − 10s2w2 d 1 6f2swhd 1 2s2whdg − 20w2 1 36wh

 To express C as a function of w alone, we need to eliminate h and we do so by using 
the fact that the volume is 10 m3. Thus

ws2wdh − 10

which gives   h −
10
2w2 −

5
w2

Substituting this into the expression for C, we have

C − 20w2 1 36wS 5
w2D − 20w2 1

180
w

Therefore the equation

Cswd − 20w2 1
180
w

    w . 0

expresses C as a function of w. Q

EXAMPLE 6 Find the domain of each function.

(a) f sxd − sx 1 2          (b) tsxd −
1

x 2 2 x

t

T

0

FIGURE 11

w
2w

h

FIGURE 12
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 SECTION 1.1  Four Ways to Represent a Function  15

SOLUTION
(a) Because the square root of a negative number is not defined (as a real number), 
the domain of f  consists of all values of x such that x 1 2 > 0. This is equivalent to 
x > 22, so the domain is the interval f22, `d.
(b) Since

tsxd −
1

x 2 2 x
−

1
xsx 2 1d

and division by 0 is not allowed, we see that tsxd is not defined when x − 0 or x − 1. 
Thus the domain of t is

hx | x ± 0, x ± 1j

which could also be written in interval notation as

 s2`, 0d ø s0, 1d ø s1, `d� Q

The graph of a function is a curve in the xy-plane. But the question arises: Which 
curves in the xy-plane are graphs of functions? This is answered by the following test.

The Vertical Line Test A curve in the xy-plane is the graph of a function of x if 
and only if no vertical line intersects the curve more than once.

The reason for the truth of the Vertical Line Test can be seen in Figure 13. If each 
vertical line x − a intersects a curve only once, at sa, bd, then exactly one function value 
is defined by f sad − b. But if a line x − a intersects the curve twice, at sa, bd and sa, cd,  
then the curve can’t represent a function because a function can’t assign two different 
values to a.

For example, the parabola x − y 2 2 2 shown in Figure 14(a) is not the graph of a 
function of x because, as you can see, there are vertical lines that intersect the parabola 
twice. The parabola, however, does contain the graphs of two functions of x. Notice 
that the equation x − y 2 2 2 implies y 2 − x 1 2, so y − 6sx 1 2 . Thus the upper 
and lower halves of the parabola are the graphs of the functions f sxd − sx 1 2  [from 
Example 6(a)] and tsxd − 2sx 1 2 . [See Figures 14(b) and (c).] 

We observe that if we reverse the roles of x and y, then the equation x − hsyd − y 2 2 2 
does define x as a function of y (with y as the independent variable and x as the depen-
dent variable) and the parabola now appears as the graph of the function h.

(b) y=œ„„„„x+2

_2 0 x

y

(_2, 0)

(a) x=¥-2

0 x

y

(c) y=_œ„„„„x+2

_2
0

y

x

Piecewise Defined Functions
The functions in the following four examples are defined by different formulas in dif-
ferent parts of their domains. Such functions are called piecewise defined functions.

a

x=a

(a, b)

0

a

(a, c)

(a, b)

x=a

0 x

y

x

y

(a) This curve represents a function.

(b) This curve doesn’t represent
     a function.

FIGURE 13

FIGURE 14

Domain Convention
If a function is given by a formula 
and the domain is not stated explic-
itly, the convention is that the domain 
is the set of all numbers for which 
the formula makes sense and defines 
a real number.
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16 CHAPTER 1  Functions and Models

EXAMPLE 7 A function f  is defined by

f sxd − H1 2 x
x 2

if  x < 21
if  x . 21

Evaluate f s22d, f s21d, and f s0d and sketch the graph.

SOLUTION Remember that a function is a rule. For this particular function the rule is 
the following: First look at the value of the input x. If it happens that x < 21, then the 
value of f sxd is 1 2 x. On the other hand, if x . 21, then the value of f sxd is x 2.

Since 22 < 21, we have f s22d − 1 2 s22d − 3.

Since 21 < 21, we have f s21d − 1 2 s21d − 2.

Since 0 . 21, we have f s0d − 02 − 0.

How do we draw the graph of f ? We observe that if x < 21, then f sxd − 1 2 x,  
so the part of the graph of f  that lies to the left of the vertical line x − 21 must coin-
cide with the line y − 1 2 x, which has slope 21 and y-intercept 1. If x . 21,  
then f sxd − x 2, so the part of the graph of f  that lies to the right of the line x − 21 
must coincide with the graph of y − x 2, which is a parabola. This enables us to sketch 
the graph in Figure 15. The solid dot indicates that the point s21, 2d is included on the 
graph; the open dot indicates that the point s21, 1d is excluded from the graph. Q

The next example of a piecewise defined function is the absolute value function. 
Recall that the absolute value of a number a, denoted by | a |, is the distance from a to 0 
on the real number line. Distances are always positive or 0, so we have

| a | > 0    for every number a

For example,

| 3 | − 3   | 23 | − 3   | 0 | − 0   | s2 2 1 | − s2 2 1   | 3 2 ! | − ! 2 3

In general, we have

| a | − a  if  a > 0

| a | − 2a if  a , 0

(Remember that if a is negative, then 2a is positive.)

EXAMPLE  8 Sketch the graph of the absolute value function f sxd − | x |.
SOLUTION From the preceding discussion we know that

| x | − Hx
2x

if  x > 0
if  x , 0

Using the same method as in Example 7, we see that the graph of f  coincides with the 
line y − x to the right of the y-axis and coincides with the line y − 2x to the left of the 
y-axis (see Figure 16). Q

1

x

y

1_1 0

FIGURE 15

For a more extensive review of 
absolute values, see Appendix A.

x

y=| x |

0

y

FIGURE 16
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 SECTION 1.1  Four Ways to Represent a Function  17

Point-slope form of the equation of 
a line:

y 2 y1 − msx 2 x1 d
See Appendix B.

EXAMPLE 9 Find a formula for the function f  graphed in Figure 17.

SOLUTION The line through s0, 0d and s1, 1d has slope m − 1 and y-intercept b − 0, 
so its equation is y − x. Thus, for the part of the graph of f  that joins s0, 0d to s1, 1d, 
we have

f sxd − x    if  0 < x < 1

The line through s1, 1d and s2, 0d has slope m − 21, so its point-slope form is

y 2 0 − s21dsx 2 2d    or    y − 2 2 x

So we have  f sxd − 2 2 x    if  1 , x < 2

We also see that the graph of f  coincides with the x-axis for x . 2. Putting this infor-
mation together, we have the following three-piece formula for f :

f sxd − Hx
2 2 x
0

if  0 < x < 1
if  1 , x < 2
if  x . 2 Q

EXAMPLE 10 In Example C at the beginning of this section we considered the cost 
Cswd of mailing a large envelope with weight w. In effect, this is a piecewise defined 
function because, from the table of values on page 13, we have

Cswd −    

0.98
1.19
1.40
1.61

if  0 , w < 1
if  1 , w < 2
if  2 , w < 3
if  3 , w < 4

 ∙
 ∙
 ∙

 The graph is shown in Figure 18. You can see why functions similar to this one are 
called step functions—they jump from one value to the next. Such functions will be 
studied in Chapter 2. Q

Symmetry
If a function f  satisfies f s2xd − f sxd for every number x in its domain, then f  is called 
an even function. For instance, the function f sxd − x 2 is even because

f s2xd − s2xd2 − x 2 − f sxd

The geometric significance of an even function is that its graph is symmetric with respect 
to the y-axis (see Figure 19). This means that if we have plotted the graph of f  for x > 0, 
we obtain the entire graph simply by reflecting this portion about the y-axis.

If f  satisfies f s2xd − 2f sxd for every number x in its domain, then f  is called an odd 
function. For example, the function f sxd − x 3 is odd because

f s2xd − s2xd3 − 2x 3 − 2f sxd

x

y

0 1

1

FIGURE 17

FIGURE 19  
An even function

0 x_x
f(_x) ƒ

x

y

C

0.50

1.00

1.50

0 1 2 3 54 w

FIGURE 18

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



18 CHAPTER 1  Functions and Models

The graph of an odd function is symmetric about the origin (see Figure 20). If we already 
have the graph of f  for x > 0, we can obtain the entire graph by rotating this portion 
through 1808 about the origin.

EXAMPLE 11 Determine whether each of the following functions is even, odd, or 
neither even nor odd.
(a) f sxd − x 5 1 x   (b) tsxd − 1 2 x 4   (c) hsxd − 2x 2 x 2 

SOLUTION
(a) f s2xd − s2xd5 1 s2xd − s21d5x 5 1 s2xd

 − 2x 5 2 x − 2sx 5 1 xd

 − 2f sxd

Therefore f  is an odd function.

(b) ts2xd − 1 2 s2xd4 − 1 2 x 4 − tsxd
So t is even.

(c) hs2xd − 2s2xd 2 s2xd2 − 22x 2 x 2

Since hs2xd ± hsxd and hs2xd ± 2hsxd, we conclude that h is neither even nor odd. Q

The graphs of the functions in Example 11 are shown in Figure 21. Notice that the 
graph of h is symmetric neither about the y-axis nor about the origin.

1

1 x

y

h1

1

y

x

g1

_1

1

y

x

f

_1

(a) (b) (c)

Increasing and Decreasing Functions
The graph shown in Figure 22 rises from A to B, falls from B to C, and rises again from C 
to D. The function f  is said to be increasing on the interval fa, bg, decreasing on fb, cg, 
and increasing again on fc, dg. Notice that if x1 and x2 are any two numbers between  
a and b with x1 , x2, then f sx1 d , f sx2 d. We use this as the defining property of an 
increasing function.

A

B

C

D
y=ƒ

f(x¡)

a

y

0 xx¡ x™ b c d

f(x™)

FIGURE 20  
An odd function

0
x

_x ƒ
x

y

FIGURE 21

FIGURE 22
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 SECTION 1.1  Four Ways to Represent a Function  19

A function f  is called increasing on an interval I if

f sx1 d , f sx2 d   whenever x1 , x2 in I

It is called decreasing on I if

f sx1 d . f sx2 d   whenever x1 , x2 in I

In the definition of an increasing function it is important to realize that the inequality 
f sx1 d , f sx2 d must be satisfied for every pair of numbers x1 and x2 in I with x1 , x2.

You can see from Figure 23 that the function f sxd − x 2 is decreasing on the interval 
s2`, 0g and increasing on the interval f0, `d.FIGURE 23

0

y

x

y=≈

 1.  If f sxd − x 1 s2 2 x  and tsud − u 1 s2 2 u , is it true  
that f − t?

 2.  If

f sxd −
x 2 2 x
x 2 1

    and    tsxd − x

is it true that f − t?

 3.  The graph of a function f  is given.
 (a) State the value of f s1d.
 (b) Estimate the value of f s21d.
 (c) For what values of x is f sxd − 1?
 (d) Estimate the value of x such that f sxd − 0.
 (e) State the domain and range of f.
 (f)  On what interval is f  increasing?

y

0 x1

1

 4.  The graphs of f  and t are given.

g

x

y

0

f
2

2

 (a) State the values of f s24d and ts3d.
 (b) For what values of x is f sxd − tsxd?

 (c) Estimate the solution of the equation f sxd − 21.
 (d) On what interval is f  decreasing?
 (e) State the domain and range of f.
 (f)  State the domain and range of t.

 5.  Figure 1 was recorded by an instrument operated by the 
California Department of Mines and Geology at the University 
Hospital of the University of Southern California in Los 
Angeles. Use it to estimate the range of the vertical ground 
acceleration function at USC during the Northridge earthquake.

 6.  In this section we discussed examples of ordinary, everyday 
functions: Population is a function of time, postage cost is a 
function of weight, water temperature is a function of time. Give 
three other examples of functions from everyday life that are 
described verbally. What can you say about the domain and 
range of each of your functions? If possible, sketch a rough 
graph of each function.

7–10  Determine whether the curve is the graph of a function of x.  
If it is, state the domain and range of the function.

7. 8. y

x0 1

1

y

x0

1

1

y

x0 1

1

y

x0 1

1

 9. 10.

1.1  EXERCISES
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20 CHAPTER 1  Functions and Models

 11.  Shown is a graph of the global average temperature T during 
the 20th century. Estimate the following.

 (a) The global average temperature in 1950
 (b) The year when the average temperature was 14.2°C
 (c) The year when the temperature was smallest? Largest?
 (d) The range of T

t

T (•C)

1900 1950 2000

13

14

Source: Adapted from Globe and Mail [Toronto], 5 Dec. 2009. Print.

 12.  Trees grow faster and form wider rings in warm years and 
grow more slowly and form narrower rings in cooler years. The 
figure shows ring widths of a Siberian pine from 1500 to 2000.

 (a) What is the range of the ring width function?
 (b)  What does the graph tend to say about the temperature 

of the earth? Does the graph reflect the volcanic erup-
tions of the mid-19th century?

R
in

g 
w

id
th

 (m
m

)

1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0
1500 1600 1700 1800 1900

Year

2000 t

R

Source: Adapted from G. Jacoby et al., “Mongolian Tree Rings and 20th-
Century Warming,” Science 273 (1996): 771–73.

 13.  You put some ice cubes in a glass, fill the glass with cold water, 
and then let the glass sit on a table. Describe how the tempera-
ture of the water changes as time passes. Then sketch a rough 
graph of the temperature of the water as a function of the 
elapsed time.

 14.  Three runners compete in a 100-meter race. The graph 
depicts the distance run as a function of time for each runner. 
Describe in words what the graph tells you about this race. 
Who won the race? Did each runner finish the race?

0

100

20

A B C
y

 15.  The graph shows the power consumption for a day in Septem-
ber in San Francisco. (P is measured in megawatts; t is mea-
sured in hours starting at midnight.)

 (a) What was the power consumption at 6 am? At 6 pm?
 (b)  When was the power consumption the lowest? When was 

it the highest? Do these times seem reasonable?

P

0 181512963 t21

400

600

800

200

Pacific Gas & Electric

 16.  Sketch a rough graph of the number of hours of daylight as a 
function of the time of year.

 17.  Sketch a rough graph of the outdoor temperature as a function 
of time during a typical spring day.

 18.   Sketch a rough graph of the market value of a new car as a 
function of time for a period of 20 years. Assume the car is 
well maintained.

 19.  Sketch the graph of the amount of a particular brand of coffee 
sold by a store as a function of the price of the coffee.

 20.  You place a frozen pie in an oven and bake it for an hour. 
Then you take it out and let it cool before eating it. Describe 
how the temperature of the pie changes as time passes. 
Then sketch a rough graph of the temperature of the pie as a 
function of time.

 21.  A homeowner mows the lawn every Wednesday afternoon. 
Sketch a rough graph of the height of the grass as a function 
of time over the course of a four-week period.

 22.  An airplane takes off from an airport and lands an hour later 
at another airport, 400 miles away. If t represents the time in 
minutes since the plane has left the terminal building, let xstd 
be the horizontal distance traveled and ystd be the altitude of 
the plane.

 (a) Sketch a possible graph of xstd.
 (b) Sketch a possible graph of ystd.
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 SECTION 1.1  Four Ways to Represent a Function 21

 (c) Sketch a possible graph of the ground speed.
 (d) Sketch a possible graph of the vertical velocity.

 23.  Temperature readings T (in °F) were recorded every two hours 
from midnight to 2:00 pm in Atlanta on June 4, 2013. The time 
t was measured in hours from midnight.

t 0 2  4  6 8 10 12 14

T 74 69 68 66 70 78 82 86

 (a)  Use the readings to sketch a rough graph of T as a function 
of t.

 (b)  Use your graph to estimate the temperature at 9:00 am.

 24.  Researchers measured the blood alcohol concentration (BAC) 
of eight adult male subjects after rapid consumption of 30 mL 
of ethanol (corresponding to two standard alcoholic drinks). 
The table shows the data they obtained by averaging the BAC 
(in mgymL) of the eight men.

 (a)  Use the readings to sketch the graph of the BAC as a 
function of t.

 (b)  Use your graph to describe how the effect of alcohol  
varies with time.

t (hours) BAC t (hours) BAC

0 0  1.75 0.22
0.2 0.25  2.0 0.18
0.5 0.41  2.25 0.15
0.75 0.40  2.5 0.12
1.0 0.33  3.0 0.07
1.25 0.29  3.5 0.03
1.5 0.24  4.0 0.01

Source: Adapted from P. Wilkinson et al., “Pharmacokinetics of Ethanol after 
Oral Administration in the Fasting State,” Journal of Pharmacokinetics and 
Biopharmaceutics 5 (1977): 207–24.

 25.  If f sxd − 3x 2 2 x 1 2, find f s2d,   f s22d,   f sad,   f s2ad,  
f sa 1 1d, 2 f sad,   f s2ad,   f sa2d, [ f sad]2, and   f sa 1 hd.

 26.  A spherical balloon with radius r inches has volume 
Vsrd − 4

3 !r 3. Find a function that represents the amount of 
air required to inflate the balloon from a radius of r inches 
to a radius of r 1 1 inches.

27–30 Evaluate the difference quotient for the given function.  
Simplify your answer.

 27. f sxd − 4 1 3x 2 x 2,    
f s3 1 hd 2 f s3d

h

 28.  f sxd − x 3,    
f sa 1 hd 2 f sad

h
 

29.   f sxd −
1
x

,    
f sxd 2 f sad

x 2 a

 30.  f sxd −
x 1 3
x 1 1

,    
f sxd 2 f s1d

x 2 1

31–37 Find the domain of the function.

 31. f sxd −
x 1 4
x 2 2 9

 32. f sxd −
2x 3 2 5

x 2 1 x 2 6

 33. f std − s3 2t 2 1  34. tstd − s3 2 t 2 s2 1 t 

 35. hsxd −
1

s4 x 2 2 5x 
 36. f sud −

u 1 1

1 1
1

u 1 1
 37. Fspd − s2 2 sp  

 38.  Find the domain and range and sketch the graph of the  
function hsxd − s4 2 x 2 .

39–40 Find the domain and sketch the graph of the function.

 39. f sxd − 1.6x 2 2.4 40. tstd −
t 2 2 1
t 1 1

41–44 Evaluate f s23d, f s0d, and f s2d for the piecewise defined 
function. Then sketch the graph of the function.

 41. f sxd − Hx 1 2
1 2 x

if  x , 0
if  x > 0

 42. f sxd − H3 2 1
2 x

2x 2 5
if  x , 2
if  x > 2

 43. f sxd − Hx 1 1
x 2

if  x < 21
if  x . 21

 44. f sxd − H21
7 2 2x

if  x < 1
if  x . 1

45–50 Sketch the graph of the function.

 45. f sxd − x 1 | x | 46. f sxd − | x 1 2 |
 47. tstd − |1 2 3t | 48. hstd − | t | 1 | t 1 1|
 49. f sxd − H| x |

1
if  | x | < 1
if  | x | . 1

 50. tsxd − || x | 2 1|

51–56 Find an expression for the function whose graph is the  
given curve.

 51.  The line segment joining the points s1, 23d and s5, 7d
 52.  The line segment joining the points s25, 10d and s7, 210d
 53.  The bottom half of the parabola x 1 sy 2 1d2 − 0

 54.  The top half of the circle x 2 1 sy 2 2d2 − 4
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 55. y

0 x

1

1

 56. y

0 x

1

1

57–61 Find a formula for the described function and state its 
domain.

 57.  A rectangle has perimeter 20 m. Express the area of the 
rectangle as a function of the length of one of its sides.

 58.  A rectangle has area 16 m2. Express the perimeter of the rect-
angle as a function of the length of one of its sides.

 59.  Express the area of an equilateral triangle as a function of the 
length of a side.

 60.  A closed rectangular box with volume 8 ft3 has length twice the 
width. Express the height of the box as a function of the width.

 61.  An open rectangular box with volume 2 m3 has a square base. 
Express the surface area of the box as a function of the length 
of a side of the base.

 62.  A Norman window has the shape of a rectangle surmounted 
by a semicircle. If the perimeter of the window is 30 ft, 
express the area A of the window as a function of the width 
x of the window.

x

 63.  A box with an open top is to be constructed from a rectan-
gular piece of cardboard with dimensions 12 in. by 20 in. 
by cutting out equal squares of side x at each corner and 
then folding up the sides as in the figure. Express the vol-
ume V of the box as a function of x.

20

12
x

x

x

x

x x

x x

 64.  A cell phone plan has a basic charge of $35 a month. The 
plan includes 400 free minutes and charges 10 cents for each 
additional minute of usage. Write the monthly cost C as a 
function of the number x of minutes used and graph C as a 
function of x for 0 < x < 600.

 65.  In a certain state the maximum speed permitted on freeways 
is 65 miyh and the minimum speed is 40 miyh. The fine for 
violating these limits is $15 for every mile per hour above the 
maximum speed or below the minimum speed. Express the 
amount of the fine F as a function of the driving speed x and 
graph Fsxd for 0 < x < 100.

 66.  An electricity company charges its customers a base rate 
of $10 a month, plus 6 cents per kilowatt-hour (kWh) for 
the first 1200 kWh and 7 cents per kWh for all usage over 
1200 kWh. Express the monthly cost E as a function of the 
amount x of electricity used. Then graph the function E for 
0 < x < 2000.

 67.  In a certain country, income tax is assessed as follows. There 
is no tax on income up to $10,000. Any income over $10,000 
is taxed at a rate of 10%, up to an income of $20,000. Any 
income over $20,000 is taxed at 15%.

 (a)  Sketch the graph of the tax rate R as a function of the 
income I.

 (b)  How much tax is assessed on an income of $14,000?  
On $26,000?

 (c)  Sketch the graph of the total assessed tax T as a function 
of the income I.

 68.  The functions in Example 10 and Exercise 67 are called step 
functions because their graphs look like stairs. Give two other 
examples of step functions that arise in everyday life.

69–70 Graphs of f  and t are shown. Decide whether each func-
tion is even, odd, or neither. Explain your reasoning.

 69. y

x

f
g

 70. y

x

f

g

 71. (a)  If the point s5, 3d is on the graph of an even function, 
what other point must also be on the graph?

 (b)  If the point s5, 3d is on the graph of an odd function, what 
other point must also be on the graph?

 72.  A function f  has domain f25, 5g and a portion of its graph  
is shown.

 (a) Complete the graph of f  if it is known that f  is even.
 (b) Complete the graph of f  if it is known that f  is odd.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 1.2  Mathematical Models: A Catalog of Essential Functions  23

x0

y

5_5

73–78 Determine whether f  is even, odd, or neither. If you have  
a graphing calculator, use it to check your answer visually.

 73. f sxd −
x

x 2 1 1
 74. f sxd −

x 2

x 4 1 1

 75. f sxd −
x

x 1 1
 76. f sxd − x | x |

 77. f sxd − 1 1 3x 2 2 x 4

 78. f sxd − 1 1 3x 3 2 x 5

 79.  If f  and t are both even functions, is f 1 t even? If f  and t 
are both odd functions, is f 1 t odd? What if f  is even and t is 
odd? Justify your answers.

 80.  If f  and t are both even functions, is the product ft even? If f  
and t are both odd functions, is ft odd? What if f  is even and  
t is odd? Justify your answers.

A mathematical model is a mathematical description (often by means of a function or 
an equation) of a real-world phenomenon such as the size of a population, the demand 
for a product, the speed of a falling object, the concentration of a product in a chemical 
reaction, the life expectancy of a person at birth, or the cost of emission reductions. The 
purpose of the model is to understand the phenomenon and perhaps to make predictions 
about future behavior.

Figure 1 illustrates the process of mathematical modeling. Given a real-world prob-
lem, our first task is to formulate a mathematical model by identifying and naming the 
independent and dependent variables and making assumptions that simplify the phenom-
enon enough to make it mathematically tractable. We use our knowledge of the physical 
situation and our mathematical skills to obtain equations that relate the variables. In 
situations where there is no physical law to guide us, we may need to collect data (either 
from a library or the Internet or by conducting our own experiments) and examine the 
data in the form of a table in order to discern patterns. From this numeri cal representation 
of a function we may wish to obtain a graphical representation by plotting the data. The 
graph might even suggest a suitable algebraic formula in some cases.

Real-world
problem

Mathematical
model

Real-world
predictions

Mathematical
conclusions

Test

Formulate Solve Interpret

The second stage is to apply the mathematics that we know (such as the calculus 
that will be developed throughout this book) to the mathematical model that we have 
formulated in order to derive mathematical conclusions. Then, in the third stage, we take 
those mathematical conclusions and interpret them as information about the original 
real-world phenomenon by way of offering explanations or making predictions. The final 
step is to test our predictions by checking against new real data. If the predictions don’t 
compare well with reality, we need to refine our model or to formulate a new model and 
start the cycle again.

A mathematical model is never a completely accurate representation of a physical 
situation—it is an idealization. A good model simplifies reality enough to permit math-

FIGURE 1
The modeling process
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24 CHAPTER 1  Functions and Models

ematical calculations but is accurate enough to provide valuable conclusions. It is impor-
tant to realize the limitations of the model. In the end, Mother Nature has the final say.

There are many different types of functions that can be used to model relationships  
observed in the real world. In what follows, we discuss the behavior and graphs of these  
functions and give examples of situations appropriately modeled by such functions.

Linear Models
When we say that y is a linear function of x, we mean that the graph of the function is 
a line, so we can use the slope-intercept form of the equation of a line to write a formula 
for the function as

y − f sxd − mx 1 b

where m is the slope of the line and b is the y-intercept.
A characteristic feature of linear functions is that they grow at a constant rate. For 

instance, Figure 2 shows a graph of the linear function f sxd − 3x 2 2 and a table of 
sample values. Notice that whenever x increases by 0.1, the value of f sxd increases by 
0.3. So f sxd increases three times as fast as x. Thus the slope of the graph y − 3x 2 2, 
namely 3, can be interpreted as the rate of change of y with respect to x.

x

y

0

y=3x-2

_2
1

 
x f sxd − 3x 2 2

1.0 1.0
1.1 1.3
1.2 1.6
1.3 1.9
1.4 2.2
1.5 2.5

EXAMPLE 1 
(a) As dry air moves upward, it expands and cools. If the ground temperature is 20°C 
and the temperature at a height of 1 km is 10°C, express the temperature T  (in °C) as a 
function of the height h (in kilometers), assuming that a linear model is appropriate.
(b) Draw the graph of the function in part (a). What does the slope represent?
(c) What is the temperature at a height of 2.5 km?

SOLUTION
(a) Because we are assuming that T  is a linear function of h, we can write

T − mh 1 b

We are given that T − 20 when h − 0, so 

20 − m ? 0 1 b − b

 In other words, the y-intercept is b − 20.
We are also given that T − 10 when h − 1, so

10 − m ? 1 1 20

The slope of the line is therefore m − 10 2 20 − 210 and the required linear function is

T − 210h 1 20

The coordinate geometry of lines is 
reviewed in Appendix B.

FIGURE 2
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 (b) The graph is sketched in Figure 3. The slope is m − 2 10°Cykm, and this repre- 
sents the rate of change of temperature with respect to height.

 (c) At a height of h − 2.5 km, the temperature is

 T − 210s2.5d 1 20 − 2 5°C Q

If there is no physical law or principle to help us formulate a model, we construct an 
empirical model, which is based entirely on collected data. We seek a curve that “fits” 
the data in the sense that it captures the basic trend of the data points.

EXAMPLE 2 Table 1 lists the average carbon dioxide level in the atmosphere, mea-
sured in parts per million at Mauna Loa Observatory from 1980 to 2012. Use the data 
in Table 1 to find a model for the carbon dioxide level.

SOLUTION We use the data in Table 1 to make the scatter plot in Figure 4, where t rep-
resents time (in years) and C represents the CO2 level (in parts per million, ppm).

C (ppm)

340

350

360

370

380

390

400

1980 1985 t1990 1995 2000 2005 2010

FIGURE 4 Scatter plot for the average CO2 level 

Notice that the data points appear to lie close to a straight line, so it’s natural to 
choose a linear model in this case. But there are many possible lines that approximate 
these data points, so which one should we use? One possibility is the line that passes 
through the first and last data points. The slope of this line is

393.8 2 338.7
2012 2 1980

−
55.1
32

− 1.721875 < 1.722

We write its equation as  

C 2 338.7 − 1.722st 2 1980d
or

1  C − 1.722t 2 3070.86

FIGURE 3 

T=_10h+20

T

h0

10

20

1 3

Year
CO2 level
(in ppm) Year

CO2 level
(in ppm)

1980 338.7 1998 366.5
1982 341.2 2000 369.4
1984 344.4 2002 373.2
1986 347.2 2004 377.5
1988 351.5 2006 381.9
1990 354.2 2008 385.6
1992 356.3 2010 389.9
1994 358.6 2012 393.8
1996 362.4

Table 1
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26 CHAPTER 1  Functions and Models

Equation 1 gives one possible linear model for the carbon dioxide level; it is graphed 
in Figure 5.

C (ppm)

340

350

360

370

380

390

400

1980 1985 t1990 1995 2000 2005 2010

Notice that our model gives values higher than most of the actual CO2 levels. A 
better linear model is obtained by a procedure from statistics called linear regression. 
If we use a graphing calculator, we enter the data from Table 1 into the data editor and 
choose the linear regression command. (With Maple we use the fit[leastsquare] com-
mand in the stats package; with Mathematica we use the Fit command.) The machine 
gives the slope and y-intercept of the regression line as

m − 1.71262      b − 23054.14

So our least squares model for the CO2 level is

2  C − 1.71262t 2 3054.14

In Figure 6 we graph the regression line as well as the data points. Comparing with 
Figure 5, we see that it gives a better fit than our previous linear model.

 

C (ppm)

340

350

360

370

380

390

400

1980 1985 t1990 1995 2000 2005 2010  Q

FIGURE 5  
Linear model through first  

and last data points

A computer or graphing calculator 
finds the regression line by the method 
of least squares, which is to minimize 
the sum of the squares of the vertical 
distances between the data points and 
the line. The details are explained in 
Section 14.7.

FIGURE 6  
The regression line
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EXAMPLE 3 Use the linear model given by Equa tion 2 to estimate the average CO2 
level for 1987 and to predict the level for the year 2020. According to this model, when 
will the CO2 level exceed 420 parts per million?

SOLUTION Using Equation 2 with t − 1987, we estimate that the average CO2 level in 
1987 was

Cs1987d − s1.71262ds1987d 2 3054.14 < 348.84

This is an example of interpolation because we have estimated a value between 
observed values. (In fact, the Mauna Loa Observatory reported that the average CO2 
level in 1987 was 348.93 ppm, so our estimate is quite accurate.)

With t − 2020, we get

Cs2020d − s1.71262ds2020d 2 3054.14 < 405.35

So we predict that the average CO2 level in the year 2020 will be 405.4 ppm. This is an 
example of extrapolation because we have predicted a value outside the time frame of 
observations. Consequently, we are far less certain about the accuracy of our prediction.

Using Equation 2, we see that the CO2 level exceeds 420 ppm when

1.71262t 2 3054.14 . 420

Solving this inequality, we get

t .
3474.14
1.71262

< 2028.55

We therefore predict that the CO2 level will exceed 420 ppm by the year 2029. This  
pre diction is risky because it involves a time quite remote from our observations. In 
fact, we see from Figure 6 that the trend has been for CO2 levels to increase rather more 
rapidly in recent years, so the level might exceed 420 ppm well before 2029. Q

Polynomials
A function P is called a polynomial if

Psxd − an xn 1 an21 xn21 1 ∙ ∙ ∙ 1 a2 x 2 1 a1 x 1 a0

where n is a nonnegative integer and the numbers a0, a1, a2, . . . , an are constants called 
the coefficients of the polynomial. The domain of any polynomial is R − s2`, `d.  
If the leading coefficient an ± 0, then the degree of the polynomial is n. For example, 
the function

Psxd − 2x 6 2 x 4 1 2
5 x 3 1 s2 

is a polynomial of degree 6.
A polynomial of degree 1 is of the form Psxd − mx 1 b and so it is a linear function.  

A polynomial of degree 2 is of the form Psxd − ax 2 1 bx 1 c and is called a quadratic 
function. Its graph is always a parabola obtained by shifting the parabola y − ax 2, as we 
will see in the next section. The parabola opens upward if a . 0 and downward if a , 0.  
(See Figure 7.)

A polynomial of degree 3 is of the form

Psxd − ax 3 1 bx 2 1 cx 1 d    a ± 0

FIGURE 7  
The graphs of quadratic functions  
are parabolas.

0

y

2

x1

(a) y=≈+x+1

y

2

x1

(b) y=_2≈+3x+1
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28 CHAPTER 1  Functions and Models

and is called a cubic function. Figure 8 shows the graph of a cubic function in part (a) 
and graphs of polynomials of degrees 4 and 5 in parts (b) and (c). We will see later why 
the graphs have these shapes.

(a) y=˛-x+1

x

1

y

10

(b) y=x$-3≈+x

x

2

y

1

(c) y=3x%-25˛+60x

x

20

y

1

Polynomials are commonly used to model various quantities that occur in the natural 
and social sciences. For instance, in Section 3.7 we will explain why economists often use  
a polynomial Psxd to represent the cost of producing x units of a commodity. In the fol-
lowing example we use a quadratic function to model the fall of a ball.

EXAMPLE 4 A ball is dropped from the upper observation deck of the CN Tower, 450 m 
above the ground, and its height h above the ground is recorded at 1-second intervals in 
Table 2. Find a model to fit the data and use the model to predict the time at which the 
ball hits the ground.

SOLUTION We draw a scatter plot of the data in Figure 9 and observe that a linear 
model is inappropriate. But it looks as if the data points might lie on a parabola, so we 
try a quadratic model instead. Using a graphing calculator or computer algebra system 
(which uses the least squares method), we obtain the following quadratic model:

 3  h − 449.36 1 0.96t 2 4.90t 2

2

200

400

4 6 8 t0

200

400

t
(seconds)

0 2 4 6 8

hh (meters)

In Figure 10 we plot the graph of Equation 3 together with the data points and see 
that the quadratic model gives a very good fit.

The ball hits the ground when h − 0, so we solve the quadratic equation

24.90t 2 1 0.96t 1 449.36 − 0

FIGURE 8 

Time 
(seconds)

Height 
(meters)

0 450
1 445
2 431
3 408
4 375
5 332
6 279
7 216
8 143
9 61

Table 2

FIGURE 9  
Scatter plot for a falling ball

FIGURE 10  
Quadratic model for a falling ball
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The quadratic formula gives

t −
20.96 6 ss0.96d2 2 4s24.90d s449.36d

2s24.90d

The positive root is t < 9.67, so we predict that the ball will hit the ground after about 
9.7 seconds. Q

Power Functions
A function of the form f sxd − xa, where a is a constant, is called a power function. We 
consider several cases.

(i ) a − n, where n is a positive integer

The graphs of f sxd − xn for n − 1, 2, 3, 4, and 5 are shown in Figure 11. (These are poly-
nomials with only one term.) We already know the shape of the graphs of y − x (a line 
through the origin with slope 1) and y − x 2 [a parabola, see Example 1.1.2(b)].

x

1

y

10

y=x%

x

1

y

10

y=x#

x

1

y

10

y=≈

x

1

y

10

y=x

x

1

y

10

y=x$

The general shape of the graph of f sxd − xn depends on whether n is even or odd. 
If n is even, then f sxd − xn is an even function and its graph is similar to the parabola 
y − x 2. If n is odd, then f sxd − xn is an odd function and its graph is similar to that 
of y − x 3. Notice from Figure 12, however, that as n increases, the graph of y − xn 
becomes flatter near 0 and steeper when | x | > 1. (If x is small, then x 2 is smaller, x 3  
is even smaller, x 4 is smaller still, and so on.)

y=x$

(1, 1)(_1, 1)

y=x^
y=≈

(_1, _1)

(1, 1)

0

y

x

x

y

0

y=x#
y=x%

(i i) a − 1yn, where n is a positive integer

The function f sxd − x 1yn − sn x  is a root function. For n − 2 it is the square root  
function f sxd − sx  , whose domain is f0, `d and whose graph is the upper half of the  

FIGURE 11 Graphs of f sxd − x n for n − 1, 2, 3, 4, 5

A family of functions is a collection  
of functions whose equations are 
related. Figure 12 shows two families  
of power functions, one with even  
powers and one with odd powers.

FIGURE 12 
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30 CHAPTER 1  Functions and Models

parabola x − y 2. [See Figure 13(a).] For other even values of n, the graph of y − sn x  is 
similar to that of y − sx . For n − 3 we have the cube root function f sxd − s3 x  whose 
domain is R (recall that every real number has a cube root) and whose graph is shown 
in Figure 13(b). The graph of y − sn x  for n odd sn . 3d is similar to that of y − s3 x .

(b) ƒ=Œ„x

x

y

0
(1, 1)

(a) ƒ=œ„x

x

y

0
(1, 1)

(iii) a − 21
The graph of the reciprocal function f sxd − x21 − 1yx is shown in Figure 14. Its 
graph has the equation y − 1yx, or xy − 1, and is a hyperbola with the coordinate axes 
as its asymptotes. This function arises in physics and chemistry in connection with 
Boyle’s Law, which says that, when the temperature is constant, the volume V  of a gas 
is inversely proportional to the pressure P:

V −
C
P

where C is a constant. Thus the graph of V  as a function of P (see Figure 15) has the 
same general shape as the right half of Figure 14.

Power functions are also used to model species-area relationships (Exercises 30–31), 
illumination as a function of distance from a light source (Exercise 29), and the period 
of revolution of a planet as a function of its distance from the sun (Exercise 32).

Rational Functions
A rational function f  is a ratio of two polynomials:

f sxd −
Psxd
Qsxd

where P and Q are polynomials. The domain consists of all values of x such that Qsxd ± 0. 
A simple example of a rational function is the function f sxd − 1yx, whose domain is 
hx | x ± 0j; this is the reciprocal function graphed in Figure 14. The function

f sxd −
2x 4 2 x 2 1 1

x 2 2 4

is a rational function with domain hx | x ± 62j. Its graph is shown in Figure 16.

Algebraic Functions
A function f  is called an algebraic function if it can be constructed using algebraic 
operations (such as addition, subtraction, multiplication, division, and taking roots) start-
ing with polynomials. Any rational function is automatically an algebraic function. Here 
are two more examples:

f sxd − sx 2 1 1      tsxd −
x 4 2 16x 2

x 1 sx 1 sx 2 2ds3 x 1 1 

FIGURE 13  
Graphs of root functions

x
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y

10

y=∆

FIGURE 14
The reciprocal function

P

V

0

FIGURE 15
Volume as a function of pressure  
at constant temperature

ƒ= 2x$-≈+1
≈-4

x

20

y
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FIGURE 16 
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When we sketch algebraic functions in Chapter 4, we will see that their graphs can 
assume a variety of shapes. Figure 17 illustrates some of the possibilities.
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(a) ƒ=xœ„„„„x+3

x

1
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(b) ©=$œ„„„„„„≈-25

x

1

y

10

(c) h(x)=x@?#(x-2)@

_3

An example of an algebraic function occurs in the theory of relativity. The mass of a 
particle with velocity v is

m − f svd −
m0

s1 2 v 2yc 2 

where m0 is the rest mass of the particle and c − 3.0 3 105 kmys is the speed of light in a  
vacuum.

Trigonometric Functions
Trigonometry and the trigonometric functions are reviewed on Reference Page 2 and also 
in Appendix D. In calculus the convention is that radian measure is always used (except 
when otherwise indicated). For example, when we use the function f sxd − sin x, it is  
understood that sin x means the sine of the angle whose radian measure is x. Thus the 
graphs of the sine and cosine functions are as shown in Figure 18.

(a) ƒ=sin x

π
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5π
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3π
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π
2_

x

y

π0_π
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_1 2π 3π

(b) ©=cos x
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π_π
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π
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5π
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3π
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π
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Notice that for both the sine and cosine functions the domain is s2`, `d and the range 
is the closed interval f21, 1g. Thus, for all values of x, we have

21 < sin x < 1      21 < cos x < 1

or, in terms of absolute values,

| sin x | < 1      | cos x | < 1

Also, the zeros of the sine function occur at the integer multiples of !; that is,

sin x − 0    when    x − n!  n an integer

FIGURE 17

The Reference Pages are located at 
the back of the book.

FIGURE 18
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An important property of the sine and cosine functions is that they are periodic func-
tions and have period 2!. This means that, for all values of x,

 
sinsx 1 2!d − sin x      cossx 1 2!d − cos x

The periodic nature of these functions makes them suitable for modeling repetitive phe-
nomena such as tides, vibrating springs, and sound waves. For instance, in Example 1.3.4  
we will see that a reasonable model for the number of hours of daylight in Philadelphia 
t days after January 1 is given by the function

Lstd − 12 1 2.8 sinF 2!

365
st 2 80dG

EXAMPLE 5 What is the domain of the function  f sxd −
1

1 2 2 cos x
?

SOLUTION This function is defined for all values of x except for those that make the 
denominator 0. But

1 2 2 cos x − 0  &?  cos x −
1
2

   &?  x −
!

3
 1 2n!  or  x −

5!

3
 1 2n!

where n is any integer (because the cosine function has period 2!). So the domain of f  
is the set of all real numbers except for the ones noted above.  Q

The tangent function is related to the sine and cosine functions by the equation

tan x −
sin x
cos x

and its graph is shown in Figure 19. It is undefined whenever cos x − 0, that is, when 
x − 6!y2, 63!y2, . . . . Its range is s2`, `d. Notice that the tangent function has per iod !:

tansx 1 !d − tan x    for all x

The remaining three trigonometric functions (cosecant, secant, and cotangent) are  
the reciprocals of the sine, cosine, and tangent functions. Their graphs are shown in  
Appendix D.

Exponential Functions
The exponential functions are the functions of the form f sxd − bx, where the base b is  
a positive constant. The graphs of y − 2x and y − s0.5dx are shown in Figure 20. In both 
cases the domain is s2`, `d and the range is s0, `d.

Exponential functions will be studied in detail in Section 1.4, and we will see that they  
are useful for modeling many natural phenomena, such as population growth (if b . 1)  
and radioactive decay (if b , 1d.

Logarithmic Functions
The logarithmic functions f sxd − logb x, where the base b is a positive constant, are the  
inverse functions of the exponential functions. They will be studied in Section 1.5. Figure 

FIGURE 19
y − tan xy=tan x
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FIGURE 20
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21 shows the graphs of four logarithmic functions with various bases. In each case the 
domain is s0, `d, the range is s2`, `d, and the function increases slowly when x . 1.

EXAMPLE 6 Classify the following functions as one of the types of functions that we 
have discussed.

(a) f sxd − 5x (b) tsxd − x 5

(c) hsxd −
1 1 x

1 2 sx  (d) ustd − 1 2 t 1 5t 4

SOLUTION  

(a) f sxd − 5x is an exponential function. (The x is the exponent.)

(b) tsxd − x 5 is a power function. (The x is the base.) We could also consider it to be a 
polynomial of degree 5.

(c) hsxd −
1 1 x

1 2 sx  is an algebraic function.

(d) ustd − 1 2 t 1 5t 4 is a polynomial of degree 4. Q

1. 2 EXERCISES

1–2 Classify each function as a power function, root function, 
polynomial (state its degree), rational function, algebraic function, 
trigonometric function, exponential function, or logarithmic function.

 1. (a) f sxd − log2 x (b) tsxd − s4 x 

  (c) hsxd −
2x 3

1 2 x 2  (d) ustd − 1 2 1.1t 1 2.54t 2

  (e) vstd − 5 t (f ) ws"d − sin " cos2"

 2. (a) y − ! x (b) y − x!

  (c) y − x 2s2 2 x 3d (d) y − tan t 2 cos t

  (e) y −
s

1 1 s
 (f ) y −

sx 3 2 1
1 1 s3 x 

3–4 Match each equation with its graph. Explain your choices. 
(Don’t use a computer or graphing calculator.)

 3. (a) y − x 2     (b) y − x 5     (c) y − x 8

f

0

g
h

y

x

 4. (a) y − 3x (b) y − 3x (c) y − x 3 (d) y − s3 x 

G

f

g

F
y

x

5–6 Find the domain of the function.

 5.  f sxd −
cos x 

1 2 sin x
 6.  tsxd −

1
1 2 tan x

 7. (a)   Find an equation for the family of linear functions with 
slope 2 and sketch several members of the family.

 (b)  Find an equation for the family of linear functions such 
that f s2d − 1 and sketch several members of the family.

 (c)  Which function belongs to both families?

 8.  What do all members of the family of linear functions 
f sxd − 1 1 msx 1 3d have in common? Sketch several 
members of the family.

0

y

1

x1

y=log£ x
y=log™ x

y=log∞ x
y=log¡¸ x

FIGURE 21
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34 CHAPTER 1  Functions and Models

 9.  What do all members of the family of linear functions 
f sxd − c 2 x have in common? Sketch several members of 
the family.

 10.  Find expressions for the quadratic functions whose graphs 
are shown.

y

(0, 1)

(1, _2.5)

(_2, 2)
y

x0

(4, 2)

f

g
x0

3

 11.  Find an expression for a cubic function f  if f s1d − 6 and 
f s21d − f s0d − f s2d − 0.

 12.  Recent studies indicate that the average surface tempera- 
ture of the earth has been rising steadily. Some scientists  
have modeled the temperature by the linear function 
T − 0.02t 1 8.50, where T is temperature in °C and t  
represents years since 1900.

 (a)  What do the slope and T-intercept represent?
 (b)  Use the equation to predict the average global surface  

temperature in 2100.

 13.  If the recommended adult dosage for a drug is D (in mg), 
then to determine the appropriate dosage c for a child of 
age a, pharmacists use the equation c − 0.0417Dsa 1 1d. 
Suppose the dosage for an adult is 200 mg.

 (a)  Find the slope of the graph of c. What does it represent?
 (b)  What is the dosage for a newborn?

 14.  The manager of a weekend flea market knows from past 
experience that if he charges x dollars for a rental space at 
the market, then the number y of spaces he can rent is given 
by the equation y − 200 2 4x.

 (a)  Sketch a graph of this linear function. (Remember that 
the rental charge per space and the number of spaces 
rented can’t be negative quantities.)

 (b)  What do the slope, the y-intercept, and the x-intercept of 
the graph represent?

 15.  The relationship between the Fahrenheit sFd and Celsius 
sCd temperature scales is given by the linear function 
F − 9

5 C 1 32.
 (a) Sketch a graph of this function.
 (b)  What is the slope of the graph and what does it repre-

sent? What is the F-intercept and what does it represent?

 16.  Jason leaves Detroit at 2:00 pm and drives at a constant speed 
west along I-94. He passes Ann Arbor, 40 mi from Detroit, at 
2:50 pm.

 (a)  Express the distance traveled in terms of the time 
elapsed.

 (b)  Draw the graph of the equation in part (a).
 (c)  What is the slope of this line? What does it represent?

 17.   Biologists have noticed that the chirping rate of crickets of 
a certain species is related to temperature, and the relation-
ship appears to be very nearly linear. A cricket produces 
113 chirps per minute at 70°F and 173 chirps per minute  
at 80°F.

 (a)  Find a linear equation that models the temperature T as  
a function of the number of chirps per minute N.

 (b)  What is the slope of the graph? What does it represent?
 (c)  If the crickets are chirping at 150 chirps per minute, 

estimate the temperature.

 18.  The manager of a furniture factory finds that it costs $2200 
to manufacture 100 chairs in one day and $4800 to produce 
300 chairs in one day.

 (a)  Express the cost as a function of the number of chairs 
produced, assuming that it is linear. Then sketch the 
graph.

 (b)  What is the slope of the graph and what does it represent?
 (c)  What is the y-intercept of the graph and what does it  

represent?

 19.  At the surface of the ocean, the water pressure is the same  
as the air pressure above the water, 15 lbyin2. Below the sur- 
face, the water pressure increases by 4.34 lbyin2 for every  
10 ft of descent.

 (a)  Express the water pressure as a function of the depth 
below the ocean surface.

 (b)  At what depth is the pressure 100 lbyin2?

 20.  The monthly cost of driving a car depends on the number 
of miles driven. Lynn found that in May it cost her $380 to 
drive 480 mi and in June it cost her $460 to drive 800 mi.

 (a)  Express the monthly cost C as a function of the distance 
driven d, assuming that a linear relationship gives a 
suitable model.

 (b)   Use part (a) to predict the cost of driving 1500 miles per 
month.

 (c)   Draw the graph of the linear function. What does the 
slope represent?

 (d)  What does the C-intercept represent?
 (e)  Why does a linear function give a suitable model in this  

situation?

  21–22 For each scatter plot, decide what type of function you 
might choose as a model for the data. Explain your choices.

 21. 

0 x

y(a)

 0 x

y(b)
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 22. 

0 x

y(a)

 0 x

y(b)

 23.  The table shows (lifetime) peptic ulcer rates (per 100 popula-
tion) for various family incomes as reported by the National 
Health Interview Survey.

Income
Ulcer rate  

(per 100 population)

$4,000  14.1
$6,000  13.0
$8,000  13.4

$12,000  12.5
$16,000  12.0
$20,000  12.4
$30,000  10.5
$45,000  9.4
$60,000  8.2

 (a)  Make a scatter plot of these data and decide whether a  
linear model is appropriate.

 (b)  Find and graph a linear model using the first and last 
data points.

 (c) Find and graph the least squares regression line.
 (d)  Use the linear model in part (c) to estimate the ulcer 

rate for an income of $25,000.
 (e)  According to the model, how likely is someone with an 

income of $80,000 to suffer from peptic ulcers?
 (f )  Do you think it would be reasonable to apply the model 

to someone with an income of $200,000?

 24.  Biologists have observed that the chirping rate of crickets of 
a certain species appears to be related to temperature. The 
table shows the chirping rates for various temperatures.

 (a) Make a scatter plot of the data.
 (b) Find and graph the regression line.
 (c)  Use the linear model in part (b) to estimate the chirping 

rate at 100°F.

Temperature 
(°F)

Chirping rate 
(chirpsymin)

Temperature 
(°F)

Chirping rate 
(chirpsymin)

50 20 75 140
55 46 80 173
60 79 85 198
65 91 90 211
70 113

;

;

 25.  Anthropologists use a linear model that relates human femur 
(thighbone) length to height. The model allows an anthro-
pologist to determine the height of an individual when only a 
partial skeleton (including the femur) is found. Here we find 
the model by analyzing the data on femur length and height 
for the eight males given in the following table.

 (a)  Make a scatter plot of the data.
 (b) Find and graph the regression line that models the data.
 (c)  An anthropologist finds a human femur of length  

53 cm. How tall was the person?

Femur length 
(cm)

Height 
(cm)

Femur length 
(cm)

Height 
(cm)

50.1 178.5 44.5 168.3
48.3 173.6 42.7 165.0
45.2 164.8 39.5 155.4
44.7 163.7 38.0 155.8

 26.  When laboratory rats are exposed to asbestos fibers, some 
of them develop lung tumors. The table lists the results of 
several experiments by different scientists.

 (a)  Find the regression line for the data.
 (b)  Make a scatter plot and graph the regression line.  

Does the regression line appear to be a suitable model 
for the data?

 (c)  What does the y-intercept of the regression line represent?

Asbestos 
exposure 

(fibersymL)

Percent of mice 
that develop 
lung tumors

Asbestos 
exposure 

(fibersymL)

Percent of mice 
that develop 
lung tumors

50 2 1600 42
400 6 1800 37
500 5 2000 38
900 10 3000 50

1100 26

 27.  The table shows world average daily oil consumption from 
1985 to 2010 measured in thousands of barrels per day.

 (a)  Make a scatter plot and decide whether a linear model 
is appropriate.

 (b)  Find and graph the regression line.
 (c)  Use the linear model to estimate the oil consumption in 

2002 and 2012.

Years  
since 1985

Thousands of barrels  
of oil per day

0 60,083
5 66,533
10 70,099
15 76,784
20 84,077
25 87,302

Source: US Energy Information Administration

;

;

;
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 28.  The table shows average US retail residential prices of 
electricity from 2000 to 2012, measured in cents per 
kilowatt hour.

 (a)  Make a scatter plot. Is a linear model appropriate?
 (b)  Find and graph the regression line.
 (c)  Use your linear model from part (b) to estimate the 

average retail price of electricity in 2005 and 2013.

Years since 2000 CentsykWh

0 8.24
2 8.44
4 8.95
6 10.40
8 11.26

10 11.54
12 11.58

Source:  US Energy Information Administration

 29.  Many physical quantities are connected by inverse square 
laws, that is, by power functions of the form f sxd − kx22.  
In particular, the illumination of an object by a light source 
is inversely proportional to the square of the distance from 
the source. Suppose that after dark you are in a room with 
just one lamp and you are trying to read a book. The light is 
too dim and so you move halfway to the lamp. How much 
brighter is the light?

 30.  It makes sense that the larger the area of a region, the larger 
the number of species that inhabit the region. Many ecolo-
gists have modeled the species-area relation with a power 
function and, in particular, the number of species S of bats 
living in caves in central Mexico has been related to the 
surface area A of the caves by the equation S − 0.7A0.3.

 (a)  The cave called Misión Imposible near Puebla, 
Mexico, has a surface area of A − 60 m2. How many 
species of bats would you expect to find in that cave?

 (b)  If you discover that four species of bats live in a cave, 
estimate the area of the cave.

;  31.  The table shows the number N of species of reptiles and 
amphibians inhabiting Caribbean islands and the area A of 
the island in square miles.

 (a)  Use a power function to model N as a function of A.
 (b)  The Caribbean island of Dominica has area 291 mi2. 

How many species of reptiles and amphibians would 
you expect to find on Dominica?

Island A N

Saba  4  5
Monserrat  40  9
Puerto Rico  3,459  40
Jamaica  4,411  39
Hispaniola  29,418  84
Cuba   44,218  76

 32.  The table shows the mean (average) distances d of the 
planets from the sun (taking the unit of measurement to be 
the distance from the earth to the sun) and their periods T 
(time of revolution in years).

 (a) Fit a power model to the data.
 (b)  Kepler’s Third Law of Planetary Motion states that 

“The square of the period of revolution of a planet 
is propor tional to the cube of its mean distance from 
the sun.”  
Does your model corroborate Kepler’s Third Law?

Planet d T

Mercury  0.387  0.241
Venus  0.723  0.615
Earth  1.000  1.000
Mars  1.523  1.881
Jupiter  5.203  11.861
Saturn  9.541  29.457
Uranus  19.190  84.008
Neptune  30.086  164.784

;

;

In this section we start with the basic functions we discussed in Section 1.2 and obtain 
new functions by shifting, stretching, and reflecting their graphs. We also show how to 
combine pairs of functions by the standard arithmetic operations and by composition.

Transformations of Functions
By applying certain transformations to the graph of a given function we can obtain 
the graphs of related functions. This will give us the ability to sketch the graphs of  
many functions quickly by hand. It will also enable us to write equations for given graphs.

Let’s first consider translations. If c is a positive number, then the graph of y − f sxd 1 c 
is just the graph of y − f sxd shifted upward a distance of c units (because each y-coordi-

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 1.3  New Functions from Old Functions  37

nate is increased by the same number c). Likewise, if tsxd − f sx 2 cd, where c . 0, then 
the value of t at x is the same as the value of f  at x 2 c (c units to the left of x). There- 
fore the graph of y − f sx 2 cd is just the graph of y − f sxd shifted c units to the right 
(see Figure 1).

Vertical and Horizontal Shifts  Suppose c . 0. To obtain the graph of

 y − f sxd 1 c, shift the graph of y − f sxd a distance c units upward
 y − f sxd 2 c, shift the graph of y − f sxd a distance c units downward
 y − f sx 2 cd, shift the graph of y − f sxd a distance c units to the right
 y − f sx 1 cd, shift the graph of y − f sxd a distance c units to the left

y=   ƒ1
c

x

y

0

y=f(_x)
y=ƒ

y=_ƒ

y=cƒ
(c>1)

x

y

0

y=f(x-c)y=f(x+c) y =ƒ

y=ƒ-c

y=ƒ+c

c

c

c c

Now let’s consider the stretching and reflecting transformations. If c . 1, then the  
graph of y − cf sxd is the graph of y − f sxd stretched by a factor of c in the vertical  
direction (because each y-coordinate is multiplied by the same number c). The graph of 
y − 2f sxd is the graph of y − f sxd reflected about the x-axis because the point sx, yd is 
replaced by the point sx, 2yd. (See Figure 2 and the following chart, where the results of 
other stretching, shrinking, and reflecting transformations are also given.)

Vertical and Horizontal Stretching and Reflecting Suppose c . 1. To obtain the 
graph of

 y − cf sxd, stretch the graph of y − f sxd vertically by a factor of c
 y − s1ycd f sxd, shrink the graph of y − f sxd vertically by a factor of c
 y − f scxd, shrink the graph of y − f sxd horizontally by a factor of c
 y − f sxycd, stretch the graph of y − f sxd horizontally by a factor of c
 y − 2f sxd, reflect the graph of y − f sxd about the x-axis
 y − f s2xd, reflect the graph of y − f sxd about the y-axis

FIGURE 2 Stretching and reflecting the graph of fFIGURE 1 Translating the graph of f
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38 CHAPTER 1  Functions and Models

Figure 3 illustrates these stretching transformations when applied to the cosine function 
with c − 2. For instance, in order to get the graph of y − 2 cos x we multiply the y-coordi-
nate of each point on the graph of y − cos x by 2. This means that the graph of y − cos x 
gets stretched vertically by a factor of 2.

x

1
2

y

0

y=cos x

y=cos 2xy=cos    x1
2

x

1

2

y

0

y=2 cos x
y=cos x

y=    cos x1
2

1

EXAMPLE 1 Given the graph of y − sx , use transformations to graph y − sx 2 2, 
y − sx 2 2 , y − 2sx , y − 2sx , and y − s2x .

SOLUTION The graph of the square root function y − sx , obtained from Fig- 
ure 1.2.13(a), is shown in Figure 4(a). In the other parts of the figure we sketch 
y − sx 2 2 by shifting 2 units downward, y − sx 2 2  by shifting 2 units to the 
right, y − 2sx  by reflecting about the x-axis, y − 2sx  by stretching vertically by a 
factor of 2, and y − s2x  by reflecting about the y-axis.

(a) y=œ„x (b) y=œ„-2x (c) y=œ„„„„x-2 (d) y=_œ„x (e) y=2œ„x (f ) y=œ„„_x

0 x

y

0 x

y

0 x

y

20 x

y

_2

0 x

y

1

10 x

y

�
Q

EXAMPLE 2 Sketch the graph of the function f sxd − x 2 1 6x 1 10.

SOLUTION Completing the square, we write the equation of the graph as

y − x 2 1 6x 1 10 − sx 1 3d2 1 1

This means we obtain the desired graph by starting with the parabola y − x 2 and shift-
ing 3 units to the left and then 1 unit upward (see Figure 5).

(a) y=≈ (b) y=(x+3)@+1

x0_1_3

1

y

(_3, 1)
x0

y

Q

FIGURE 3

FIGURE 4

FIGURE 5
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EXAMPLE 3 Sketch the graphs of the following functions.
(a) y − sin 2x (b) y − 1 2 sin x

SOLUTION
(a) We obtain the graph of y − sin 2x from that of y − sin x by compressing horizon-
tally by a factor of 2. (See Figures 6 and 7.) Thus, whereas the period of y − sin x is  
2!, the period of y − sin 2x is 2!y2 − !.

x0

y

1

π
2

π
4

π

y=sin 2x

FIGURE 7

(b) To obtain the graph of y − 1 2 sin x, we again start with y − sin x. We reflect  
about the x-axis to get the graph of y − 2sin x and then we shift 1 unit upward to get 
y − 1 2 sin x. (See Figure 8.)

x

1
2

y

π0 2π

y=1-sin x

π
2

3π
2  Q

EXAMPLE 4 Figure 9 shows graphs of the number of hours of daylight as functions of 
the time of the year at several latitudes. Given that Philadelphia is located at approxi-
mately 408N latitude, find a function that models the length of daylight at Philadelphia.

0

2

4

6

8
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12

14

16

18

20

Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Hours

60° N

50° N
40° N
30° N
20° N

FIGURE 6

x0

y

1

π
2 π

y=sin x

FIGURE 8

FIGURE 9 
 Graph of the length of daylight from 

March 21 through December 21  
at various latitudes 

Source: Adapted from L. Harrison,  
Daylight, Twilight, Darkness and Time   
(New York: Silver, Burdett, 1935), 40.
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SOLUTION Notice that each curve resembles a shifted and stretched sine function. 
By looking at the blue curve we see that, at the latitude of Philadelphia, daylight 
lasts about 14.8 hours on June 21 and 9.2 hours on December 21, so the amplitude 
of the curve (the factor by which we have to stretch the sine curve vertically) is 
1
2 s14.8 2 9.2d − 2.8.

By what factor do we need to stretch the sine curve horizontally if we measure the 
time t in days? Because there are about 365 days in a year, the period of our model 
should be 365. But the period of y − sin t is 2!, so the horizontal stretching factor  
is 2!y365.

We also notice that the curve begins its cycle on March 21, the 80th day of the 
year, so we have to shift the curve 80 units to the right. In addition, we shift it 12 units 
upward. Therefore we model the length of daylight in Philadelphia on the tth day of the 
year by the function

Lstd − 12 1 2.8 sinF 2!

365
st 2 80dG

Q

Another transformation of some interest is taking the absolute value of a function. If 
y − | f sxd|, then according to the definition of absolute value, y − f sxd when f sxd > 0 
and y − 2f sxd when f sxd , 0. This tells us how to get the graph of y − | f sxd| from the 
graph of y − f sxd: The part of the graph that lies above the x-axis remains the same; the 
part that lies below the x-axis is reflected about the x-axis.

EXAMPLE 5 Sketch the graph of the function y − | x 2 2 1 |.
SOLUTION We first graph the parabola y − x 2 2 1 in Figure 10(a) by shifting the 
parabola y − x 2 downward 1 unit. We see that the graph lies below the x-axis when 
21 , x , 1, so we reflect that part of the graph about the x-axis to obtain the graph of 
y − | x 2 2 1| in Figure 10(b).� Q

Combinations of Functions
Two functions f  and t can be combined to form new functions f 1 t, f 2 t, ft, and fyt  
in a manner similar to the way we add, subtract, multiply, and divide real numbers. The 
sum and difference functions are defined by

s f 1 tdsxd − f sxd 1 tsxd       s f 2 tdsxd − f sxd 2 tsxd

If the domain of f  is A and the domain of t is B, then the domain of f 1 t is the inter-
section A > B because both f sxd and tsxd have to be defined. For example, the domain
of f sxd − sx  is A − f0, `d and the domain of tsxd − s2 2 x  is B − s2`, 2g, so the
domain of s f 1 tdsxd − sx 1 s2 2 x  is A > B − f0, 2g.

Similarly, the product and quotient functions are defined by

s ftdsxd − f sxdtsxd      S  f
tDsxd −

 f sxd
tsxd

The domain of ft is A > B, but we can’t divide by 0 and so the domain of fyt is 
hx [ A > B | tsxd ± 0j. For instance, if f sxd − x 2 and tsxd − x 2 1, then the domain 
of the rational function s fytdsxd − x 2ysx 2 1d is hx | x ± 1j, or s2`, 1d ø s1, `d. 

There is another way of combining two functions to obtain a new function. For
example, suppose that y − f sud − su  and u − tsxd − x 2 1 1. Since y is a function 
of u and u is, in turn, a function of x, it follows that y is ultimately a function of x. 

FIGURE 10

0 x

y

_1 1

(a) y=≈-1

(b) y=| ≈-1 |

0 x

y

_1 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 1.3  New Functions from Old Functions 41

We compute this by substitution:

y − f sud − f stsxdd − f sx 2 1 1d − sx 2 1 1

The procedure is called composition because the new function is composed of the two 
given functions f  and t.

In general, given any two functions f  and t, we start with a number x in the domain 
of t and calculate tsxd. If this number tsxd is in the domain of f, then we can calculate 
the value of f stsxdd. Notice that the output of one function is used as the input to the next 
function. The result is a new function hsxd − f stsxdd obtained by substituting t into f. It is  
called the composition (or composite) of f  and t and is denoted by f 8 t (“ f  circle t”).

Definition Given two functions f  and t, the composite function f 8 t (also called 
the composition of f  and t) is defined by

s f 8 tdsxd − f stsxdd

The domain of f 8 t is the set of all x in the domain of t such that tsxd is in the domain  
of f. In other words, s f 8 tdsxd is defined whenever both tsxd and f stsxdd are defined. 
Figure 11 shows how to picture f 8 t in terms of machines.

EXAMPLE 6 If f sxd − x 2 and tsxd − x 2 3, find the composite functions f 8 t and t 8 f.

SOLUTION We have

 s f 8 tdsxd − f stsxdd − f sx 2 3d − sx 2 3d2

 st 8 f dsxd − ts f sxdd − tsx 2 d − x 2 2 3 Q

NOTE You can see from Example 6 that, in general, f 8 t ± t 8 f. Remember, the 
notation f 8 t means that the function t is applied first and then f  is applied second. In 
Example 6, f 8 t is the function that first subtracts 3 and then squares; t 8 f  is the function 
that first squares and then subtracts 3.

EXAMPLE 7 If f sxd − sx  and tsxd − s2 2 x , find each of the following functions 
and their domains.
(a) f 8 t      (b) t 8 f       (c) f 8 f       (d) t 8 t
SOLUTION
(a) s f 8 tdsxd − f stsxdd − f (s2 2 x) − ss2 2 x − s4 2 2 x 

The domain of f 8 t is hx | 2 2 x > 0j − hx | x < 2j − s2`, 2g.

(b) st 8 f dsxd − ts f sxdd − t(sx ) − s2 2 sx 

For sx  to be defined we must have x > 0. For s2 2 sx  to be defined we must have
2 2 sx > 0, that is, sx < 2, or x < 4. Thus we have 0 < x < 4, so the domain of 
t 8 f  is the closed interval f0, 4g.

(c) s f 8 f dsxd − f s f sxdd − f (sx ) − ssx − s4 x 

The domain of f 8 f  is f0, `d.

FIGURE 11  
The f 8 t machine is composed of 
the t machine (first) and then the  
f  machine.

f

g

f{©}

f • g

x

©

(input)

(output)

If 0 < a < b, then a 2 < b 2.
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 (a) y − f sx 2 4d (b) y − f sxd 1 3
 (c) y − 1

3 f sxd (d) y − 2f sx 1 4d
 (e) y − 2 f sx 1 6d

!@

$

%

#f

y

3

_3

6

0 x3_3_6 6

 1.  Suppose the graph of f  is given. Write equations for the graphs 
that are obtained from the graph of f  as follows.

 (a) Shift 3 units upward.
 (b) Shift 3 units downward.
 (c) Shift 3 units to the right.
 (d) Shift 3 units to the left.
 (e) Reflect about the x-axis.
 (f ) Reflect about the y-axis.
 (g) Stretch vertically by a factor of 3.
 (h) Shrink vertically by a factor of 3.

 2.  Explain how each graph is obtained from the graph of y − f sxd.
 (a) y − f sxd 1 8 (b) y − f sx 1 8d
 (c) y − 8 f sxd (d) y − f s8xd
 (e) y − 2f sxd 2 1 (f) y − 8 f s 1

8 xd
 3.  The graph of y − f sxd is given. Match each equation with its 

graph and give reasons for your choices.

(d) st 8 tdsxd − tstsxdd − t(s2 2 x ) − s2 2 s2 2 x 

This expression is defined when both 2 2 x > 0 and 2 2 s2 2 x > 0. The first 
inequality means x < 2, and the second is equivalent to s2 2 x < 2, or 2 2 x < 4, or 
x > 22. Thus 22 < x < 2, so the domain of t 8 t is the closed interval f22, 2g. Q

It is possible to take the composition of three or more functions. For instance, the 
composite function f 8 t 8 h is found by first applying h, then t, and then f  as follows:

s f 8 t 8 hdsxd − f stshsxddd

EXAMPLE 8 Find f 8 t 8 h if f sxd − xysx 1 1d, tsxd − x 10, and hsxd − x 1 3.

SOLUTION
 s f 8 t 8 hdsxd − f stshsxddd − f stsx 1 3dd

  − f ssx 1 3d10 d −
sx 1 3d10

sx 1 3d10 1 1
 Q

So far we have used composition to build complicated functions from simpler ones. 
But in calculus it is often useful to be able to decompose a complicated function into 
simpler ones, as in the following example.

EXAMPLE  9 Given Fsxd − cos2sx 1 9d, find functions f , t, and h such that F − f 8 t 8 h.

SOLUTION Since Fsxd − fcossx 1 9dg2, the formula for F says: First add 9, then take 
the cosine of the result, and finally square. So we let

hsxd − x 1 9      tsxd − cos x      f sxd − x 2

Then  s f 8 t 8 hdsxd − f stshsxddd − f stsx 1 9dd − f scossx 1 9dd

   − fcossx 1 9dg2 − Fsxd Q

1. 3  EXERCISES
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 4.  The graph of f  is given. Draw the graphs of the following 
functions.

 (a) y − f sxd 2 3 (b) y − f sx 1 1d

 (c) y − 1
2 f sxd (d) y − 2f sxd

x

y

0 1

2

 5.  The graph of f  is given. Use it to graph the following  
functions.

 (a) y − f s2xd (b) y − f s 1
2xd

 (c) y − f s2xd (d) y − 2f s2xd

x

y

0 1

1

  6–7 The graph of y − s3x 2 x 2  is given. Use transformations  
to create a function whose graph is as shown.

1.5 y=œ„„„„„„3x-≈

x

y

30

 6. 

5 x

y

20

3
 7. 

_4 _1

_2.5

x

y

_1 0

 8. (a)  How is the graph of y − 2 sin x related to the graph of 
y − sin x? Use your answer and Figure 6 to sketch the  
graph of y − 2 sin x.

 (b)  How is the graph of y − 1 1 sx   related to the graph of 
y − sx

  

? Use your answer and Figure 4(a) to sketch the 
graph of y − 1 1 sx .

9–24 Graph the function by hand, not by plotting points, but by 
starting with the graph of one of the standard functions given in 
Section 1.2, and then applying the appropriate transformations.

 9. y − 2x 2 10. y − sx 2 3d2

 11. y − x 3 1 1 12. y − 1 2
1
x

 13. y − 2 cos 3x 14. y − 2sx 1 1 

 15. y − x 2 2 4x 1 5 16. y − 1 1 sin !x

 17. y − 2 2 sx  18. y − 3 2 2 cos x

 19. y − sin( 1
2 x) 20. y − | x | 2 2

 21. y − | x 2 2 | 22. y −
1
4

 tanSx 2
!

4 D
 23. y − | sx 2 1 | 24. y − | cos !x |

 25.  The city of New Orleans is located at latitude 30°N. Use 
Figure 9 to find a function that models the number of hours 
of daylight at New Orleans as a function of the time of year. 
To check the accuracy of your model, use the fact that on 
March 31 the sun rises at 5:51 am and sets at 6:18 pm in 
New Orleans. 

 26.  A variable star is one whose brightness alternately increases 
and decreases. For the most visible variable star, Delta 
Cephei, the time between periods of maximum brightness is 
5.4 days, the average brightness (or magnitude) of the star 
is 4.0, and its brightness varies by 60.35 magnitude. Find 
a function that models the brightness of Delta Cephei as a 
function of time.

 27.  Some of the highest tides in the world occur in the Bay of 
Fundy on the Atlantic Coast of Canada. At Hopewell Cape 
the water depth at low tide is about 2.0 m and at high tide  
it is about 12.0 m. The natural period of oscillation is  
about 12 hours and on June 30, 2009, high tide occurred  
at 6:45 am. Find a function involving the cosine function  
that models the water depth Dstd (in meters) as a function  
of time t (in hours after midnight) on that day.

 28.  In a normal respiratory cycle the volume of air that moves 
into and out of the lungs is about 500 mL. The reserve and 
residue volumes of air that remain in the lungs occupy 
about 2000 mL and a single respiratory cycle for an average 
human takes about 4 seconds. Find a model for the total 
volume of air Vstd in the lungs as a function of time.

 29. (a)  How is the graph of y − f (| x |) related to the graph of f ?
 (b) Sketch the graph of y − sin | x |.
 (c) Sketch the graph of y − s| x |.
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44 CHAPTER 1  Functions and Models

 52. Use the table to evaluate each expression.
 (a)  f sts1dd (b) ts f s1dd (c) f s f s1dd
 (d) tsts1dd (e) st 8 f ds3d (f ) s f 8 tds6d

x 1 2 3 4 5 6

f sxd 3 1 4 2 2 5

tsxd 6 3 2 1 2 3

 53.  Use the given graphs of f  and t to evaluate each expression, or 
explain why it is undefined.

  (a) f sts2dd (b) ts f s0dd (c) s f 8 tds0d
 (d) st 8 f ds6d (e) st 8 tds22d (f ) s f 8 f ds4d

x

y

0

fg

2

2

 54.  Use the given graphs of f  and t to estimate the value of 
f stsxdd for x − 25, 24, 23, . . . , 5. Use these estimates to 
sketch a rough graph of f 8 t.

g

f

x

y

0 1

1

 55.  A stone is dropped into a lake, creating a circular ripple that 
travels outward at a speed of 60 cmys.

 (a)  Express the radius r of this circle as a function of the  
time t (in seconds).

 (b)  If A is the area of this circle as a function of the radius, 
find A 8 r and interpret it.

 56.  A spherical balloon is being inflated and the radius of the 
balloon is increasing at a rate of 2 cmys.

 (a)  Express the radius r of the balloon as a function of the  
time t (in seconds).

 (b)  If V is the volume of the balloon as a function of the 
radius, find V 8 r and interpret it.

 57.  A ship is moving at a speed of 30 kmyh parallel to a straight 
shoreline. The ship is 6 km from shore and it passes a light-
house at noon.

 (a)  Express the distance s between the lighthouse and the ship 

 30.  Use the given graph of f  to sketch the graph of y − 1yf sxd. 
Which features of f  are the most important in sketching 
y − 1yf sxd? Explain how they are used.

1

10 x

y
 

31–32 Find (a) f 1 t, (b) f 2 t, (c) ft, and (d) fyt and state their 
domains.

 31.  f sxd − x 3 1 2x 2, tsxd − 3x 2 2 1

 32. f sxd − s3 2 x , tsxd − sx 2 2 1

 33–38 Find the functions (a) f 8 t, (b) t 8 f , (c) f 8 f , and (d) t 8 t 
and their domains.

 33. f sxd − 3x 1 5, tsxd − x 2 1 x

 34. f sxd − x 3 2 2, tsxd − 1 2 4x 

 35. f sxd − sx 1 1, tsxd − 4x 2 3

 36. f sxd − sin x, tsxd − x 2 1 1

 37. f sxd − x 1
1
x

, tsxd −
x 1 1
x 1 2

 38. f sxd −
x

1 1 x
, tsxd − sin 2x

 39–42 Find f 8 t 8 h.

 39. f sxd − 3x 2 2, tsxd − sin x,  hsxd − x 2

 40. f sxd − | x 2 4 |, tsxd − 2 x,  hsxd − sx 

 41. f sxd − sx 2 3 , tsxd − x 2,  hsxd − x 3 1 2

 42. f sxd − tan x, tsxd −
x

x 2 1
,  hsxd − s3 x 

 43–48 Express the function in the form f 8 t.

 43. Fsxd − s2x 1 x 2d4 44. Fsxd − cos2x

 45. Fsxd −
s3 x 

1 1 s3 x 
 46. Gsxd −   3Î x

1 1 x
 

 47. vstd − secst 2d tanst 2d 48. ustd −
tan t

1 1 tan t

 49–51 Express the function in the form f 8 t 8 h.

 49. Rsxd − ssx 2 1  50. Hsxd − s8 2 1 | x | 
 51. Sstd − sin2scos td
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In Appendix G we present an alterna-
tive approach to the exponential and 
logarithmic functions using integral 
calculus.

as a function of d, the distance the ship has traveled since 
noon; that is, find f  so that s − f sdd.

 (b)  Express d as a function of t, the time elapsed since noon; 
that is, find t so that d − tstd.

 (c)  Find f 8 t. What does this function represent?

 58.  An airplane is flying at a speed of 350 miyh at an altitude of 
one mile and passes directly over a radar station at time t − 0.

 (a)  Express the horizontal distance d (in miles) that the plane 
has flown as a function of t.

 (b)  Express the distance s between the plane and the radar  
station as a function of d.

 (c) Use composition to express s as a function of t.

 59. The Heaviside function H is defined by

Hstd − H0
1

if  t , 0
if  t > 0

   It is used in the study of electric circuits to represent the 
sudden surge of electric current, or voltage, when a switch is 
instantaneously turned on.

 (a) Sketch the graph of the Heaviside function.
 (b)  Sketch the graph of the voltage Vstd in a circuit if the 

switch is turned on at time t − 0 and 120 volts are  
applied instantaneously to the circuit. Write a formula  
for Vstd in terms of Hstd.

 (c)  Sketch the graph of the voltage Vstd in a circuit if the 
switch is turned on at time t − 5 seconds and 240 volts 
are applied instantaneously to the circuit. Write a formula 
for Vstd in terms of Hstd. (Note that starting at t − 5  
corre sponds to a translation.)

 60.  The Heaviside function defined in Exercise 59 can also 
be used to define the ramp function y − ctHstd, which 

The function f sxd − 2x is called an exponential function because the variable, x, is the 
exponent. It should not be confused with the power function tsxd − x 2, in which the 
variable is the base.

In general, an exponential function is a function of the form

f sxd − bx

where b is a positive constant. Let’s recall what this means.
If x − n, a positive integer, then

bn − b ? b ? ∙ ∙ ∙ ? b 
  

  n factors

If x − 0, then b 0 − 1, and if x − 2n, where n is a positive integer, then

b2n −
1
bn

represents a gradual increase in voltage or current in a circuit.
 (a) Sketch the graph of the ramp function y − tHstd.
 (b)  Sketch the graph of the voltage Vstd in a circuit if the 

switch is turned on at time t − 0 and the voltage is gradu-
ally increased to 120 volts over a 60-second time interval. 
Write a formula for Vstd in terms of Hstd for t < 60.

 (c)  Sketch the graph of the voltage Vstd in a circuit if the 
switch is turned on at time t − 7 seconds and the voltage 
is gradually increased to 100 volts over a period of 25 sec-
onds. Write a formula for Vstd in terms of Hstd for t < 32.

 61.  Let f  and t be linear functions with equations f sxd − m1x 1 b1 
and tsxd − m2 x 1 b2. Is f 8 t also a linear function? If so, 
what is the slope of its graph?

 62.  If you invest x dollars at 4% interest compounded annually,  
then the amount Asxd of the investment after one year is 
Asxd − 1.04x. Find A 8 A, A 8 A 8 A, and A 8 A 8 A 8 A. What 
do these compositions represent? Find a formula for the com-
position of n copies of A.

 63. (a)  If tsxd − 2x 1 1 and hsxd − 4x 2 1 4x 1 7, find a func-
tion f  such that f 8 t − h. (Think about what operations 
you would have to perform on the formula for t to end up 
with the formula for h.)

 (b)  If f sxd − 3x 1 5 and hsxd − 3x 2 1 3x 1 2, find a func-
tion t such that f 8 t − h.

 64.  If f sxd − x 1 4 and hsxd − 4x 2 1, find a function t such  
that t 8 f − h.

 65.  Suppose t is an even function and let h − f 8 t. Is h always an 
even function?

 66.  Suppose t is an odd function and let h − f 8 t. Is h always an 
odd function? What if f  is odd? What if f  is even?
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If x is a rational number, x − pyq, where p and q are integers and q . 0, then

bx − bpyq − sq bp 
− ssq b d p

But what is the meaning of bx if x is an irrational number? For instance, what is meant 
by 2s3 or 5!?

To help us answer this question we first look at the graph of the function y − 2x,  
where x is rational. A representation of this graph is shown in Figure 1. We want to 
enlarge the domain of y − 2x to include both rational and irrational numbers.

There are holes in the graph in Figure 1 corresponding to irrational values of x. We 
want to fill in the holes by defining f sxd − 2x, where x [ R, so that f  is an increasing 
function. In particular, since the irrational number s3  satisfies

1.7 , s3 , 1.8

we must have 21.7 , 2s3 , 21.8

and we know what 21.7 and 21.8 mean because 1.7 and 1.8 are rational numbers. Similarly,  
if we use better approximations for s3 , we obtain better approximations for 2s3:

 1.73 , s3 , 1.74  ?  21.73 , 2s3 , 21.74

 1.732 , s3 , 1.733  ?  21.732 , 2s3 , 21.733

 1.7320 , s3 , 1.7321  ?  21.7320 , 2s3 , 21.7321

 1.73205 , s3 , 1.73206 ? 21.73205 , 2s3 , 21.73206

 . . . .
 . . . .
 . . . .

It can be shown that there is exactly one number that is greater than all of the numbers

21.7,   21.73,   21.732,   21.7320,   21.73205,   . . .

and less than all of the numbers

21.8,   21.74,   21.733,   21.7321,   21.73206,   . . .

We define 2s3 to be this number. Using the preceding approximation process we can 
compute it correct to six decimal places:

2s3 < 3.321997

Similarly, we can define 2x (or bx, if b . 0) where x is any irrational number. Figure 
2 shows how all the holes in Figure 1 have been filled to complete the graph of the 
function f sxd − 2x, x [ R.

x10

y

1

A proof of this fact is given in  
J. Marsden and A. Weinstein, 
Calculus Unlimited (Menlo Park, CA: 
Benjamin/Cummings, 1981). 

FIGURE 2  
 y − 2 x, x real 

FIGURE 1  
Representation of y − 2x, x rational

x0

y

1

1
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 SECTION 1.4  Exponential Functions 47

The graphs of members of the family of functions y − bx are shown in Figure 3 for 
various values of the base b. Notice that all of these graphs pass through the same point 
s0, 1d because b 0 − 1 for b ± 0. Notice also that as the base b gets larger, the exponential 
function grows more rapidly (for x . 0).

0

1®

1.5®2®4®10®”   ’®1
4”   ’®1

2

x

y

1

You can see from Figure 3 that there are basically three kinds of exponential functions 
y − bx. If 0 , b , 1, the exponential function decreases; if b − 1, it is a constant; and 
if b . 1, it increases. These three cases are illustrated in Figure 4. Observe that if b ± 1, 
then the exponential function y − bx has domain R and range s0, `d. Notice also that, 
since s1ybdx − 1ybx − b2x, the graph of y − s1ybdx is just the reflection of the graph of 
y − bx about the y-axis.

(a) y=b®,  0<b<1 (b) y=1® (c) y=b®,  b>1

1
(0, 1)

(0, 1)

x0

y y

x0x0

y

One reason for the importance of the exponential function lies in the following proper-
ties. If x and y are rational numbers, then these laws are well known from elementary  
algebra. It can be proved that they remain true for arbitrary real numbers x and y. 

Laws of Exponents If a and b are positive numbers and x and y are any real 
numbers, then

1. bx1y − bxby   2. bx2y −
bx

by    3. sbx dy − bxy   4. sabdx − axbx

EXAMPLE 1 Sketch the graph of the function y − 3 2 2x and determine its domain 
and range.

SOLUTION First we reflect the graph of y − 2x [shown in Figures 2 and 5(a)] about the 
x-axis to get the graph of y − 22x in Figure 5(b). Then we shift the graph of y − 22x 

FIGURE 3

If 0 , b , 1, then b x approaches 0 
as x becomes large. If b . 1, then b x 
approaches 0 as x decreases through 
negative values. In both cases the  
x-axis is a horizontal asymptote. These 
matters are discussed in Sec tion 2.6.

FIGURE 4

www.stewartcalculus.com
For review and practice using the 
Laws of Exponents, click on Review 
of Algebra.

For a review of reflecting and shifting 
graphs, see Section 1.3.
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 upward 3 units to obtain the graph of y − 3 2 2x in Figure 5(c). The domain is R and 
the range is s2`, 3d.

 

0

1

(a) y=2®

x

y

0

_1

(b) y=_2®

x

y

y=3

0

2

(c) y=3-2®

x

y

Q

EXAMPLE 2 Use a graphing device to compare the exponential function f sxd − 2x 
and the power function tsxd − x 2. Which function grows more quickly when x is large?

SOLUTION Figure 6 shows both functions graphed in the viewing rectangle f22, 6g  
by f0, 40g. We see that the graphs intersect three times, but for x . 4 the graph of 
f sxd − 2x stays above the graph of tsxd − x 2. Figure 7 gives a more global view and 
shows that for large values of x, the exponential function y − 2x grows far more rapidly 
than the power function y − x 2.

250

0 8

y=2®

y=≈

40

0_2 6

y=2® y=≈

FIGURE 6 FIGURE 7 Q

Applications of Exponential Functions
The exponential function occurs very frequently in mathematical models of nature and  
society. Here we indicate briefly how it arises in the description of population growth 
and radioactive decay. In later chapters we will pursue these and other applications in 
greater detail.

First we consider a population of bacteria in a homogeneous nutrient medium. Suppose 
that by sampling the population at certain intervals it is determined that the population  
doubles every hour. If the number of bacteria at time t is pstd, where t is measured in 
hours, and the initial population is ps0d − 1000, then we have

 ps1d − 2ps0d − 2 3 1000

 ps2d − 2ps1d − 22 3 1000

 ps3d − 2ps2d − 23 3 1000

FIGURE 5

Example 2 shows that y − 2x increases 
more quickly than y − x 2. To demon-
strate just how quickly f sxd − 2x 
increases, let’s perform the following 
thought experiment. Suppose we start 
with a piece of paper a thousandth of  
an inch thick and we fold it in half 50 
times. Each time we fold the paper in 
half, the thickness of the paper doubles, 
so the thickness of the resulting paper 
would be 250y1000 inches. How thick  
do you think that is? It works out to  
be more than 17 million miles!
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It seems from this pattern that, in general,

pstd − 2t 3 1000 − s1000d2 t

This population function is a constant multiple of the exponential function y − 2t, so it  
exhibits the rapid growth that we observed in Figures 2 and 7. Under ideal conditions  
(unlimited space and nutrition and absence of disease) this exponential growth is typical 
of what actually occurs in nature.

What about the human population? Table 1 shows data for the population of the world 
in the 20th century and Figure 8 shows the corresponding scatter plot.

5x10'

P

t20 40 60 80 100 1200
Years since 1900

The pattern of the data points in Figure 8 suggests exponential growth, so we use a graph-   
ing calculator with exponential regression capability to apply the method of least squares 
and obtain the exponential model

P − s1436.53d ? s1.01395d t

where t − 0 corresponds to 1900. Figure 9 shows the graph of this exponential function  
together with the original data points. We see that the exponential curve fits the data rea-
sonably well. The period of relatively slow population growth is explained by the two 
world wars and the Great Depression of the 1930s.

5x10'

20 40 60 80 100 120

P

t0

Years since 1900

FIGURE 8  
Scatter plot for world  

population growth

FIGURE 9  
Exponential model for  

population growth

t
(years since 1900)

Population 
(millions)

0 1650
10 1750
20 1860
30 2070
40 2300
50 2560
60 3040
70 3710
80 4450
90 5280

100 6080
110 6870

Table 1
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In 1995 a paper appeared detailing the effect of the protease inhibitor ABT-538 on the 
human immunodeficiency virus HIV-1.1 Table 2 shows values of the plasma viral load 
Vstd of patient 303, measured in RNA copies per mL, t days after ABT-538 treatment was 
begun. The corresponding scatter plot is shown in Figure 10.
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FIGURE 10 Plasma viral load in patient 303

The rather dramatic decline of the viral load that we see in Figure 10 reminds us of 
the graphs of the exponential function y − bx in Figures 3 and 4(a) for the case where the 
base b is less than 1. So let’s model the function Vstd by an exponential function. Using 
a graphing calculator or computer to fit the data in Table 2 with an exponential function 
of the form y − a ? bt, we obtain the model

V − 96.39785 ? s0.818656dt

In Figure 11 we graph this exponential function with the data points and see that the 
model represents the viral load reasonably well for the first month of treatment.
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We could use the graph in Figure 11 to estimate the half-life of V, that is, the time 
required for the viral load to be reduced to half its initial value (see Exercise 33). In the 
next example we are given the half-life of a radioactive element and asked to find the 
mass of a sample at any time.

EXAMPLE 3 The half-life of strontium-90, 90Sr, is 25 years. This means that half of 
any given quantity of 90Sr will disintegrate in 25 years.
(a) If a sample of 90Sr has a mass of 24 mg, find an expression for the mass mstd that 
remains after t years.
(b) Find the mass remaining after 40 years, correct to the nearest milligram.
(c) Use a graphing device to graph mstd and use the graph to estimate the time required 
for the mass to be reduced to 5 mg.

Table 2

t (days) Vstd

 1  76.0

 4  53.0

 8  18.0

11  9.4

15  5.2

22  3.6

FIGURE 11 
 Exponential model for viral load

1. D. Ho et al., “Rapid Turnover of Plasma Virions and CD4 Lymphocytes in HIV-1 Infection,” Nature 373 
(1995): 123–26.
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SOLUTION 
(a) The mass is initially 24 mg and is halved during each 25-year period, so

 ms0d − 24

 ms25d −
1
2

s24d

 ms50d −
1
2

?
1
2

s24d −
1
22 s24d

 ms75d −
1
2

?
1
22 s24d −

1
23 s24d

 ms100d −
1
2

?
1
23 s24d −

1
24 s24d

From this pattern, it appears that the mass remaining after t years is

mstd −
1

2ty25 s24d − 24 ? 22ty25 − 24 ? s221y25dt

This is an exponential function with base b − 221y25 − 1y21y25.

(b) The mass that remains after 40 years is

ms40d − 24 ? 2240y25 < 7.9 mg

(c) We use a graphing calculator or computer to graph the function mstd − 24 ? 22ty25 
in Figure 12. We also graph the line m − 5 and use the cursor to estimate that mstd − 5 
when t < 57. So the mass of the sample will be reduced to 5 mg after about 57 years. Q

The Number e
Of all possible bases for an exponential function, there is one that is most convenient 
for the purposes of calculus. The choice of a base b is influenced by the way the graph 
of y − bx crosses the y-axis. Figures 13 and 14 show the tangent lines to the graphs of 
y − 2x and y − 3x at the point s0, 1d. (Tangent lines will be defined precisely in Section 
2.7. For present purposes, you can think of the tangent line to an exponential graph at a 
point as the line that touches the graph only at that point.) If we measure the slopes of 
these tangent lines at s0, 1d, we find that m < 0.7 for y − 2x and m < 1.1 for y − 3x.

0

1

mÅ1.1

0

y=2®

1
mÅ0.7

x

y y=3®

x

y

FIGURE 13  FIGURE 14

It turns out, as we will see in Chapter 3, that some of the formulas of calculus will be 
greatly simplified if we choose the base b so that the slope of the tangent line to y − bx 

m=24 · 2_t/25

m=5

30

0 100

FIGURE 12
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at s0, 1d is exactly 1. (See Figure 15.) In fact, there is such a number and it is denoted by 
the letter e. (This notation was chosen by the Swiss mathematician Leonhard Euler in 
1727, probably because it is the first letter of the word exponential.) In view of Figures 
13 and 14, it comes as no surprise that the number e lies between 2 and 3 and the graph 
of y − ex lies between the graphs of y − 2x and y − 3x. (See Figure 16.) In Chapter 3 
we will see that the value of e, correct to five decimal places, is

e < 2.71828

We call the function f sxd − ex the natural exponential function.

0

1

y=2®

y=e®

y=3®y

x

EXAMPLE 4 Graph the function y − 1
2 e2x 2 1 and state the domain and range.

SOLUTION We start with the graph of y − ex from Figures 15 and 17(a) and reflect about 
the y-axis to get the graph of y − e2x in Figure 17(b). (Notice that the graph crosses the  
y-axis with a slope of 21). Then we compress the graph vertically by a factor of 2 to  
obtain the graph of y − 1

2 e2x in Figure 17(c). Finally, we shift the graph downward one 
unit to get the desired graph in Figure 17(d). The domain is R and the range is s21, `d. 

1
2(d) y=   e–®-1

y=_1
0

1

1
2(c) y=   e–®

0

1

0

(b) y=e–®

1

x0

y

(a) y=´

1

y

x

y

x

y

x

Q

How far to the right do you think we would have to go for the height of the graph 
of y − ex to exceed a million? The next example demonstrates the rapid growth of this 
function by providing an answer that might surprise you.

EXAMPLE 5 Use a graphing device to find the values of x for which ex . 1,000,000.

0

y=´

1

m=1

x

y

FIGURE 15 
 The natural exponential function 
crosses the y-axis with a slope of 1.

FIGURE 16

FIGURE 17

TEC Module 1.4 enables you to graph 
exponential functions with various 
bases and their tangent lines in order 
to estimate more closely the value of b 
for which the tangent has slope 1.
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SOLUTION In Figure 18 we graph both the function y − ex and the horizontal line 
y − 1,000,000. We see that these curves intersect when x < 13.8. Thus ex . 106 when 
x . 13.8. It is perhaps surprising that the values of the exponential function have 
already surpassed a million when x is only 14. 

 

1.5x10^

0 15

y=´

y=10^

 QFIGURE 18

  1–4 Use the Law of Exponents to rewrite and simplify the  
expression.

 1. (a) 
423

228  (b) 
1

s3 x 4 

 2. (a) 8 4y3 (b) xs3x 2d3

 3. (a) b8s2bd4 (b) 
s6y3d4

2y 5

 4. (a) 
x 2n ? x 3n21

x n12  (b) 
sasb 

s3 ab 

 5. (a)  Write an equation that defines the exponential function 
with base b . 0.

 (b) What is the domain of this function?
 (c) If b ± 1, what is the range of this function?
 (d)  Sketch the general shape of the graph of the exponential 

function for each of the following cases.
 (i) b . 1
 (ii) b − 1
 (iii) 0 , b , 1

 6. (a) How is the number e defined?
 (b) What is an approximate value for e?
 (c) What is the natural exponential function?

 7–10 Graph the given functions on a common screen. How are 
these graphs related?

 7. y − 2x,  y − e x,  y − 5x,  y − 20 x

 8. y − e x,  y − e 2x,  y − 8x,  y − 82x

;

 9. y − 3x,  y − 10 x,  y − ( 1
3)x

,  y − ( 1
10 )x

 10. y − 0.9 x,  y − 0.6x,  y − 0.3x,  y − 0.1x

  11–16 Make a rough sketch of the graph of the function. Do not 
use a calculator. Just use the graphs given in Figures 3 and 13 
and, if necessary, the transformations of Section 1.3.

 11. y − 4x 2 1 12. y − s0.5dx 21

 13. y − 222x 14. y − e | x |

 15. y − 1 2 1
2 e2x 16. y − 2s1 2 e x d

 17.  Starting with the graph of y − e x, write the equation of the 
graph that results from

 (a) shifting 2 units downward.
 (b) shifting 2 units to the right.
 (c) reflecting about the x-axis.
 (d) reflecting about the y-axis.
 (e) reflecting about the x-axis and then about the y-axis.

 18.  Starting with the graph of y − e x, find the equation of the 
graph that results from

 (a) reflecting about the line y − 4.
 (b) reflecting about the line x − 2.

  19–20 Find the domain of each function.

 19. (a) f sxd −
1 2 e x 2

1 2 e12x 2 (b) f sxd −
1 1 x
e cos x

 20. (a) tstd − s10 t 2 100  (b) tstd − sinse t 2 1d
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 21–22 Find the exponential function f sxd − Cb x whose graph  
is given.

 21.  22. 

0

(1, 6)

(3, 24)
y

x

(_1, 3)

”1,    ’4
3

0

y

x

 

  23.  If f sxd − 5x, show that

 f sx 1 hd 2 f sxd
h

− 5xS 5h 2 1
h D

 24.  Suppose you are offered a job that lasts one month. Which 
of the following methods of payment do you prefer?

 I. One million dollars at the end of the month.
 II.  One cent on the first day of the month, two cents on the 

second day, four cents on the third day, and, in general, 
2n21 cents on the nth day.

 25.  Suppose the graphs of f sxd − x 2 and tsxd − 2x are drawn 
on a coordinate grid where the unit of measurement is  
1 inch. Show that, at a distance 2 ft to the right of the origin, 
the height of the graph of f  is 48 ft but the height of the 
graph of t is about 265 mi.

 26.  Compare the functions f sxd − x 5 and tsxd − 5x by graph-
ing both functions in several viewing rectangles. Find all 
points of intersection of the graphs correct to one decimal 
place. Which function grows more rapidly when x is large?

 27.  Compare the functions f sxd − x 10 and tsxd − e x by 
graphing both f  and t in several viewing rectangles. When 
does the graph of t finally surpass the graph of f ?

 28.  Use a graph to estimate the values of x such that 
e x . 1,000,000,000.

 29.  A researcher is trying to determine the doubling time for 
a population of the bacterium Giardia lamblia. He starts 
a culture in a nutrient solution and estimates the bacteria 
count every four hours. His data are shown in the table.

Time (hours) 0 4 8 12 16 20 24

Bacteria count
sCFUymLd 37 47 63 78 105 130 173

 (a)  Make a scatter plot of the data.
 (b)  Use a graphing calculator to find an exponential curve 

f std − a ? bt that models the bacteria population  
t hours later.

;

;

;

;

 (c)  Graph the model from part (b) together with the scatter 
plot in part (a). Use the TRACE feature to determine 
how long it takes for the bacteria count to double.

©
 S

eb
as

tia
n 

Ka
ul

itz
ki 

/ S
hu

tte
rs

to
ck

.co
m

G. lamblia

30.     A bacteria culture starts with 500 bacteria and doubles in 
size every half hour.

 (a)  How many bacteria are there after 3 hours?
 (b)  How many bacteria are there after t hours?
 (c)  How many bacteria are there after 40 minutes?
 (d)  Graph the population function and estimate the time 

for the population to reach 100,000.

 31.   The half-life of bismuth-210, 210Bi, is 5 days.
 (a)  If a sample has a mass of 200 mg, find the amount 

remaining after 15 days.
 (b)  Find the amount remaining after t days.
 (c)  Estimate the amount remaining after 3 weeks.
 (d)  Use a graph to estimate the time required for the mass 

to be reduced to 1 mg.

 32.   An isotope of sodium, 24Na, has a half-life of 15 hours. A 
sample of this isotope has mass 2 g.

 (a)  Find the amount remaining after 60 hours.
 (b)  Find the amount remaining after t hours.
 (c)  Estimate the amount remaining after 4 days.
 (d)  Use a graph to estimate the time required for the mass 

to be reduced to 0.01 g.

 33.  Use the graph of V in Figure 11 to estimate the half-life 
of the viral load of patient 303 during the first month of 
treatment.

 34.  After alcohol is fully absorbed into the body, it is metabo-
lized with a half-life of about 1.5 hours. Suppose you have 
had three alcoholic drinks and an hour later, at midnight, 
your blood alcohol concentration (BAC) is 0.6 mgymL.

 (a)  Find an exponential decay model for your BAC t hours 
after midnight.

 (b)  Graph your BAC and use the graph to determine when 
you can drive home if the legal limit is 0.08 mgymL.

Source: Adapted from P. Wilkinson et al., “Pharmacokinetics of Ethanol after 
Oral Administration in the Fasting State,” Journal of Pharmacokinetics and 
Biopharmaceutics 5 (1977): 207–24.

 35.  Use a graphing calculator with exponential regression 
capability to model the population of the world with the 

;

;

;

;

;
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data from 1950 to 2010 in Table 1 on page 49. Use the 
model to esti mate the population in 1993 and to predict 
the population in the year 2020.

 36.  The table gives the population of the United States, in mil-
lions, for the years 1900–2010. Use a graphing calculator 

Year Population Year Population

1900  76 1960  179
1910  92 1970  203
1920  106 1980  227
1930  123 1990  250
1940  131 2000  281
1950 150 2010 310

;

with exponential regression capability to model the US 
population since 1900. Use the model to estimate the 
population in 1925 and to predict the population in the  
year 2020.

 37.  If you graph the function

f sxd −
1 2 e 1yx

1 1 e 1yx

you’ll see that f  appears to be an odd function. Prove it.

 38.  Graph several members of the family of functions

f sxd −
1

1 1 ae bx

 where a . 0. How does the graph change when b changes? 
How does it change when a changes?

;

;

Table 1 gives data from an experiment in which a bacteria culture started with 100 bac-
teria in a limited nutrient medium; the size of the bacteria population was recorded at 
hourly intervals. The number of bacteria N is a function of the time t: N − f std.

Suppose, however, that the biologist changes her point of view and becomes inter-
ested in the time required for the population to reach various levels. In other words, she is 
thinking of t as a function of N. This function is called the inverse function of f , denoted 
by f 21, and read “ f  inverse.” Thus t − f 21sNd is the time required for the population 
level to reach N. The values of f 21 can be found by reading Table 1 from right to left or 
by consulting Table 2. For instance, f 21s550d − 6 because f s6d − 550.

t 
(hours)

 N − f std
 − population at time t

0 100
1 168
2 259
3 358
4 445
5 509
6 550
7 573
8 586

Table 1 N as a function of t

  

N
 t − f 21 sNd
 − time to reach N bacteria

100 0
168 1
259 2
358 3
445 4
509 5
550 6
573 7
586 8

Table 2 t as a function of N

Not all functions possess inverses. Let’s compare the functions f  and t whose arrow  
diagrams are shown in Figure 1. Note that f  never takes on the same value twice (any two 
inputs in A have different outputs), whereas t does take on the same value twice (both 2  
and 3 have the same output, 4). In symbols,

ts2d − ts3d

but f sx1 d ± f sx 2 d    whenever x1 ± x 2

Functions that share this property with f  are called one-to-one functions.

4
3
2
1

10

4

2
g

4
3
2
1

10
7
4
2

f

FIGURE 1  
f  is one-to-one; t is not.
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1   Definition A function f  is called a one-to-one function if it never takes on 
the same value twice; that is,

f sx1 d ± f sx2 d    whenever x1 ± x2

In the language of inputs and outputs, 
this definition says that f  is one-to-one 
if each output corresponds to only one 
input.

If a horizontal line intersects the graph of f  in more than one point, then we see from 
Figure 2 that there are numbers x1 and x2 such that f sx1 d − f sx2 d. This means that f  is 
not one-to-one. 

0

‡fl
y=ƒ

y

x⁄ ¤

Therefore we have the following geometric method for determining whether a func-
tion is one-to-one.

 Horizontal Line Test A function is one-to-one if and only if no horizontal line 
intersects its graph more than once.

EXAMPLE 1 Is the function f sxd − x 3 one-to-one?

SOLUTION 1 If x1 ± x 2, then x 3
1 ± x 3

2  (two different numbers can’t have the same 
cube). Therefore, by Definition 1, f sxd − x 3 is one-to-one.

SOLUTION 2 From Figure 3 we see that no horizontal line intersects the graph of 
f sxd − x 3 more than once. Therefore, by the Horizontal Line Test, f  is one-to-one. Q

EXAMPLE 2 Is the function tsxd − x 2 one-to-one?

SOLUTION 1 This function is not one-to-one because, for instance,

ts1d − 1 − ts21d

and so 1 and 21 have the same output.

SOLUTION 2 From Figure 4 we see that there are horizontal lines that intersect the graph 
of t more than once. Therefore, by the Horizontal Line Test, t is not one-to-one. Q

One-to-one functions are important because they are precisely the functions that pos-
sess inverse functions according to the following definition.

2   Definition Let f  be a one-to-one function with domain A and range B.
Then its inverse function f 21 has domain B and range A and is defined by

f 21syd − x  &?  f sxd − y

for any y in B.

FIGURE 2  
This function is not one-to-one  

because f sx1d − f sx2d.

FIGURE 3  
f sxd − x 3 is one-to-one.

0

y=˛

y

x

FIGURE 4  
tsxd − x 2 is not one-to-one.

0

y=≈

x

y
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This definition says that if f  maps x into y, then f 21 maps y back into x. (If f  were 
not one-to-one, then f 21 would not be uniquely defined.) The arrow diagram in Figure 5 
indicates that f 21 reverses the effect of f. Note that

 domain of f 21 − range of f

 range of f 21 − domain of f

For example, the inverse function of f sxd − x 3 is f 21sxd − x 1y3 because if y − x 3, 
 then

f 21syd − f 21sx 3 d − sx 3 d1y3 − x

CAUTION Do not mistake the 21 in f 21 for an exponent. Thus

f 21sxd  does not mean  
1

f sxd

The reciprocal 1yf sxd could, however, be written as f f sxdg21.

EXAMPLE 3 If f s1d − 5, f s3d − 7, and f s8d − 210, find f 21s7d, f 21s5d, and 
f 21s210d.

SOLUTION From the definition of f 21 we have

f 21s7d − 3    because    f s3d − 7

f 21s5d − 1    because    f s1d − 5

f 21s210d − 8    because    f s8d − 210

The diagram in Figure 6 makes it clear how f 21 reverses the effect of f  in this case. Q

The letter x is traditionally used as the independent variable, so when we concentrate 
on f 21 rather than on f, we usually reverse the roles of x and y in Definition 2 and write

3  
 

f 21sxd − y  &?  f syd − x

By substituting for y in Definition 2 and substituting for x in (3), we get the follow-
ing cancellation equations:

4  

 

 f 21s f sxdd − x for every x in A

 f s f 21sxdd − x for every x in B

FIGURE 5 

x

y

A

B
f – !f

B

5
7
_10

f

A

1
3
8

A

1
3
8

f –!

B

5
7
_10

FIGURE 6  
The inverse function reverses inputs 
and outputs.
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The first cancellation equation says that if we start with x, apply f, and then apply f 21, 
we arrive back at x, where we started (see the machine diagram in Figure 7). Thus f 21 
undoes what f  does. The second equation says that f  undoes what f 21 does.

x xf ƒ f –!

For example, if f sxd − x 3, then f 21sxd − x 1y3 and so the cancellation equations become

 f 21s f sxdd − sx 3 d1y3 − x

 f s f 21sxdd − sx 1y3 d3 − x

These equations simply say that the cube function and the cube root function cancel each 
other when applied in succession.

Now let’s see how to compute inverse functions. If we have a function y − f sxd and 
are able to solve this equation for x in terms of y, then according to Definition 2 we must 
have x − f 21syd. If we want to call the independent variable x, we then interchange x and 
y and arrive at the equation y − f 21sxd.

5   How to Find the Inverse Function of a One-to-One Function f

STEP 1 Write y − f sxd.

STEP 2 Solve this equation for x in terms of y (if possible).

STEP 3  To express f 21 as a function of x, interchange x and y. 
The resulting equation is y − f 21sxd.

EXAMPLE 4 Find the inverse function of f sxd − x 3 1 2.

SOLUTION According to (5) we first write

y − x 3 1 2

Then we solve this equation for x:

 x 3 − y 2 2

 x − s3 y 2 2 

Finally, we interchange x and y:

 y − s3 x 2 2 

Therefore the inverse function is f 21sxd − s3 x 2 2 . Q

The principle of interchanging x and y to find the inverse function also gives us the 
method for obtaining the graph of f 21 from the graph of f. Since f sad − b if and only  
if f 21sbd − a, the point sa, bd is on the graph of f  if and only if the point sb, ad is on the 

FIGURE 7

In Example 4, notice how f 21 reverses 
the effect of f . The function f  is the 
rule “Cube, then add 2”; f 21 is the rule 
“Subtract 2, then take the cube root.”
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graph of f 21. But we get the point sb, ad from sa, bd by reflecting about the line y − x. 
(See Figure 8.)

0

y

x

(b, a)

(a, b)

y=x

0

y

x

f –!

y=x f

 FIGURE 8 FIGURE 9

Therefore, as illustrated by Figure 9:

The graph of f 21 is obtained by reflecting the graph of f  about the line y − x.

EXAMPLE 5 Sketch the graphs of f sxd − s21 2 x  and its inverse function using the 
same coordinate axes.

SOLUTION First we sketch the curve y − s21 2 x  (the top half of the parabola 
y 2 − 21 2 x, or x − 2y 2 2 1) and then we reflect about the line y − x to get the  
graph of f 21. (See Figure 10.) As a check on our graph, notice that the expression for 
f 21 is f 21sxd − 2x 2 2 1, x > 0. So the graph of f 21 is the right half of the parabola 
y − 2x 2 2 1 and this seems reasonable from Figure 10. Q

Logarithmic Functions
If b . 0 and b ± 1, the exponential function f sxd − bx is either increasing or decreasing 
and so it is one-to-one by the Horizontal Line Test. It therefore has an inverse function 
f 21, which is called the logarithmic function with base b and is denoted by logb. If we 
use the formulation of an inverse function given by (3),

f 21sxd − y  &?  f syd − x

then we have 

6  
 

logb x − y  &?  by − x

Thus, if x . 0, then logb x is the exponent to which the base b must be raised to give x. 
For example, log10 0.001 − 23 because 1023 − 0.001.

The cancellation equations (4), when applied to the functions f sxd − bx and 
f 21sxd − logb x, become

7  

 

 logbsbx d − x for every x [ R

 blogb x − x for every x . 0

0

y=x
y=ƒ

(0, _1)

y=f –!(x)

(_1, 0)

y

x

FIGURE 10 
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The logarithmic function logb has domain s0, `d and range R. Its graph is the reflec-
tion of the graph of y − bx about the line y − x.

Figure 11 shows the case where b . 1. (The most important logarithmic functions have  
base b . 1.) The fact that y − bx is a very rapidly increasing function for x . 0 is  
reflected in the fact that y − logb x is a very slowly increasing function for x . 1.

Figure 12 shows the graphs of y − logb x with various values of the base  b . 1. Since 
logb 1 − 0, the graphs of all logarithmic functions pass through the point s1, 0d.

0

y

1

x1

y=log£ x
y=log™ x

y=log∞ x
y=log¡¸ x

The following properties of logarithmic functions follow from the corresponding 
properties of exponential functions given in Section 1.4.

Laws of Logarithms If x and y are positive numbers, then

 1. logbsxyd − logb x 1 logb y  

 2. logbS x
yD − logb x 2 logb y

 3. logbsxrd − r logb x    (where r is any real number)

EXAMPLE 6 Use the laws of logarithms to evaluate log2 80 2 log2 5.

SOLUTION Using Law 2, we have

log2 80 2 log2 5 − log2S 80
5 D − log2 16 − 4

because 24 − 16. Q

Natural Logarithms
Of all possible bases b for logarithms, we will see in Chapter 3 that the most convenient 
choice of a base is the number e, which was defined in Section 1.4. The logarithm with 
base e is called the natural logarithm and has a special notation:

loge x − ln x

If we put b − e and replace loge with “ln” in (6) and (7), then the defining properties 
of the natural logarithm function become

FIGURE 11

0

y=x

y=b®,  b>1

y=logb x,  b>1

y

x

FIGURE 12

Notation for Logarithms
Most textbooks in calculus and the 
sciences, as well as calculators, 
use the notation ln x for the natural 
logarithm and log x for the “common 
logarithm,” log10 x. In the more advanced 
mathematical and scientific literature 
and in computer languages, however, 
the notation log x usually denotes the 
natural logarithm.
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8  
 

ln x − y  &?  ey − x

9  

 

  lnsex d − x x [ R

  e ln x − x x . 0

In particular, if we set x − 1, we get

ln e − 1

EXAMPLE 7 Find x if ln x − 5.

SOLUTION 1 From (8) we see that

ln x − 5    means    e 5 − x

Therefore x − e 5.
(If you have trouble working with the “ln” notation, just replace it by loge. Then the 

equation becomes loge x − 5; so, by the definition of logarithm, e 5 − x.)

SOLUTION 2 Start with the equation

ln x − 5

and apply the exponential function to both sides of the equation:

e ln x − e 5

But the second cancellation equation in (9) says that e ln x − x. Therefore x − e 5. Q

EXAMPLE 8 Solve the equation e 523x − 10.

SOLUTION We take natural logarithms of both sides of the equation and use (9):

 lnse 523x d − ln 10

 5 2 3x − ln 10

 3x − 5 2 ln 10

 x − 1
3 s5 2 ln 10d

Since the natural logarithm is found on scientific calculators, we can approximate the 
solution: to four decimal places, x < 0.8991. Q

EXAMPLE 9 Express ln a 1 1
2 ln b as a single logarithm.

SOLUTION Using Laws 3 and 1 of logarithms, we have

 ln a 1 1
2 ln b − ln a 1 ln b 1y2

 − ln a 1 lnsb 

  − ln(asb ) Q
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The following formula shows that logarithms with any base can be expressed in terms 
of the natural logarithm.

10   Change of Base Formula For any positive number b sb ± 1d, we have

logb x −
ln x
ln b

 

PROOF Let y − logb x. Then, from (6), we have by − x. Taking natural logarithms of 
both sides of this equation, we get y ln b − ln x. Therefore

 y −
ln x
ln b

 Q

Scientific calculators have a key for natural logarithms, so Formula 10 enables us 
to use a calculator to compute a logarithm with any base (as shown in the following 
example). Simi larly, Formula 10 allows us to graph any logarithmic function on a graph-
ing calculator or computer (see Exercises 43 and 44).

EXAMPLE 10 Evaluate log8 5 correct to six decimal places.

SOLUTION Formula 10 gives

 log8 5 −
ln 5
ln 8

< 0.773976 
Q

Graph and Growth of the Natural Logarithm
The graphs of the exponential function y − ex and its inverse function, the natural loga-
rithm function, are shown in Figure 13. Because the curve y − ex crosses the y-axis with  
a slope of 1, it follows that the reflected curve y − ln x crosses the x-axis with a slope of 1.

In common with all other logarithmic functions with base greater than 1, the natural 
logarithm is an increasing function defined on s0, `d and the y-axis is a vertical asymp-
tote. (This means that the values of ln x become very large negative as x approaches 0.)

EXAMPLE 11 Sketch the graph of the function y − lnsx 2 2d 2 1.

SOLUTION We start with the graph of y − ln x as given in Figure 13. Using the transfor- 
mations of Section 1.3, we shift it 2 units to the right to get the graph of y − lnsx 2 2d 
and then we shift it 1 unit downward to get the graph of y − lnsx 2 2d 2 1. (See 
 Fig ure 14.)

0

y

2 x(3, 0)

x=2

y=ln(x-2)

0

y

x

y=ln x

(1, 0) 0

y

2 x

x=2

(3, _1)

y=ln(x-2)-1

y

1
0

x1

y=x
y=´

y=ln x

FIGURE 13  
The graph of y − ln x is the reflection 
of the graph of y − ex about the line 
y − x .

FIGURE 14 � Q
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Although ln x is an increasing function, it grows very slowly when x . 1. In fact, ln x  
grows more slowly than any positive power of x. To illustrate this fact, we compare  
approximate values of the functions y − ln x and y − x 1y2 − sx  in the following table 
and we graph them in Figures 15 and 16. You can see that initially the graphs of y − sx  
and y − ln x grow at comparable rates, but eventually the root function far surpasses 
the logarithm.

x 1 2 5 10 50 100 500 1000 10,000 100,000

ln x 0 0.69 1.61 2.30 3.91 4.6 6.2 6.9 9.2 11.5

sx 1 1.41 2.24 3.16 7.07 10.0 22.4 31.6 100 316

ln x

sx 
0 0.49 0.72 0.73 0.55 0.46 0.28 0.22 0.09 0.04

x0

y

1000

20

y=œ„x

y=ln x

x0

y

1

1

y=œ„x

y=ln x

FIGURE 15 FIGURE 16

Inverse Trigonometric Functions
When we try to find the inverse trigonometric functions, we have a slight difficulty:  
Because the trigonometric functions are not one-to-one, they don’t have inverse func-
tions. The difficulty is overcome by restricting the domains of these functions so that 
they become one-to-one.

You can see from Figure 17 that the sine function y − sin x is not one-to-one (use 
the Horizontal Line Test). But the function f sxd − sin x, 2!y2 < x < !y2, is one-to-
one (see Figure 18). The inverse function of this restricted sine function f  exists and is 
denoted by sin21 or arcsin. It is called the inverse sine function or the arcsine function.

y

0_π π xπ
2

y=sin x

0

y

x

_ π
2

π
2

 FIGURE 18  
 y − sin x, 2!

2 < x < !
2  

FIGURE 17
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Since the definition of an inverse function says that

f 21sxd − y  &?  f syd − x

we have

sin21x − y  &?  sin y − x  and  2
!

2
< y <

!

2

Thus, if 21 < x < 1, sin21x is the number between 2!y2 and !y2 whose sine is x.

EXAMPLE 12 Evaluate (a) sin21s1
2d and (b) tansarcsin 13 d.

SOLUTION

(a) We have
sin21s1

2d −
!

6

because sins!y6d − 1
2 and !y6 lies between 2!y2 and !y2.

(b) Let " − arcsin 13, so sin " − 1
3. Then we can draw a right triangle with angle " as  

in Figure 19 and deduce from the Pythagorean Theorem that the third side has length 
s9 2 1 − 2s2 . This enables us to read from the triangle that

tansarcsin 13 d − tan " −
1

2s2 
Q

The cancellation equations for inverse functions become, in this case,

 sin21ssin xd − x  for 2
!

2
< x <

!

2

 sinssin21xd − x  for 21 < x < 1

The inverse sine function, sin21, has domain f21, 1g and range f2!y2, !y2g, and  
its graph, shown in Figure 20, is obtained from that of the restricted sine function (Fig-
ure 18) by reflection about the line y − x.

The inverse cosine function is handled similarly. The restricted cosine function 
f sxd − cos x, 0 < x < !, is one-to-one (see Figure 21) and so it has an inverse function 
denoted by cos21 or arccos.

cos21x − y  &?  cos y − x  and  0 < y < !

The cancellation equations are

 cos21scos xd − x  for 0 < x < !

 cosscos21xd − x  for 21 < x < 1

sin21x ±
1

sin x

2 œ„2

3

¨
1

FIGURE 19

0

y

x1_1

π
2

_ π
2

FIGURE 20  
y − sin21 x − arcsin x

FIGURE 21  
y − cos x, 0 < x < !
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x

1

ππ
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The inverse cosine function, cos21, has domain f21, 1g and range f0, !g. Its graph is 
shown in Figure 22.

The tangent function can be made one-to-one by restricting it to the interval 
s2!y2, !y2d. Thus the inverse tangent function is defined as the inverse of the func-
tion f sxd − tan x, 2!y2 , x , !y2. (See Figure 23.) It is denoted by tan21 or arctan.

tan21x − y  &?  tan y − x  and  2
!

2
, y ,

!

2

EXAMPLE 13 Simplify the expression cosstan21xd.

SOLUTION 1 Let y − tan21x. Then tan y − x and 2!y2 , y , !y2. We want to find 
cos y but, since tan y is known, it is easier to find sec y first:

 sec2 y − 1 1 tan2 y − 1 1 x 2

 sec y − s1 1 x 2     ssince sec y . 0 for 2!y2 , y , !y2d

Thus cosstan21xd − cos y −
1

sec y
−

1

s1 1 x 2 

SOLUTION 2 Instead of using trigonometric identities as in Solution 1, it is perhaps 
easier to use a diagram. If y − tan21x, then tan y − x, and we can read from Figure 24 
(which illustrates the case y . 0) that

 cosstan21xd − cos y −
1

s1 1 x 2 
  Q

The inverse tangent function, tan21 − arctan, has domain R and range s2!y2, !y2d. 
Its graph is shown in Figure 25.

π
2

_ π
2

y

0
x

We know that the lines x − 6!y2 are vertical asymptotes of the graph of tan. Since 
the graph of tan21 is obtained by reflecting the graph of the restricted tangent function 
about the line y − x, it follows that the lines y − !y2 and y − 2!y2 are horizontal 
asymptotes of the graph of tan21.

FIGURE 25  
y − tan21 x − arctan x

 FIGURE 22  
y − cos21x − arccos x
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ππ
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FIGURE 24 
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FIGURE 23  
y − tan x, 2!

2  , x , !2
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π
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 1.  (a) What is a one-to-one function?
 (b)  How can you tell from the graph of a function whether it 

is one-to-one?

 2. (a)  Suppose f  is a one-to-one function with domain A and 
range B. How is the inverse function f 21 defined? What is 
the domain of f 21? What is the range of f 21?

 (b)  If you are given a formula for f, how do you find a  
formula for f 21?

 (c)  If you are given the graph of f, how do you find the graph 
of f 21?

  3–14 A function is given by a table of values, a graph, a formula, 
or a verbal description. Determine whether it is one-to-one.

 3. x 1 2 3 4 5 6

f sxd 1.5 2.0 3.6 5.3 2.8 2.0

 4. x 1 2 3 4 5 6

f sxd 1.0 1.9 2.8 3.5 3.1 2.9

 5. 6. y

x
x

y

 7. 8. y

xx

y

 9. f sxd − 2x 2 3 10. f sxd − x 4 2 16

 11. tsxd − 1 2 sin x 12. tsxd − s3 x 

 13. f std is the height of a football t seconds after kickoff.

 14. f std is your height at age t.

 15.  Assume that f  is a one-to-one function.
 (a)  If f s6d − 17, what is f 21s17d?
 (b)   If f 21s3d − 2, what is f s2d?

 16.  If f sxd − x 5 1 x 3 1 x, find f 21s3d and f s f 21s2dd.

 17. If tsxd − 3 1 x 1 e x, find t21s4d.

 18. The graph of f  is given.
 (a) Why is f  one-to-one?
 (b) What are the domain and range of f 21?
 (c) What is the value of f 21s2d?
 (d) Estimate the value of f 21s0d.

y

x0 1

1

 19.  The formula C − 5
9 sF 2 32d, where F > 2459.67, 

expresses the Celsius temperature C as a function of the 
Fahrenheit temperature F. Find a formula for the inverse 
function and interpret it. What is the domain of the inverse 
function?

The remaining inverse trigonometric functions are not used as frequently and are 
summarized here.

11    y − csc21x (| x | > 1)  &?  csc y − x and  y [ s0, !y2g ø s!, 3!y2g

  y − sec21x (| x | > 1)  &?  sec y − x and  y [ f0, !y2d ø f!, 3!y2d

  y − cot21x sx [ Rd   &?  cot y − x and  y [ s0, !d

The choice of intervals for y in the definitions of csc21 and sec21 is not universally 
agreed upon. For instance, some authors use y [ f0, !y2d ø s!y2, !g in the definition 
of sec21. [You can see from the graph of the secant function in Figure 26 that both this 
choice and the one in (11) will work.]

0

y

x
_1 2ππ

FIGURE 26  
 y − sec x
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 20.  In the theory of relativity, the mass of a particle with speed ! is

m − f svd −
m 0

s1 2 v 2yc 2 

  where m 0 is the rest mass of the particle and c is the speed of 
light in a vacuum. Find the inverse function of f  and explain 
its meaning.

 21–26 Find a formula for the inverse of the function.

 21. f sxd − 1 1 s2 1 3x 22. f sxd −
4x 2 1
2x 1 3

 23. f sxd − e 2x21 24. y − x 2 2 x,  x > 1
2

 25. y − lnsx 1 3d 26. y −
1 2 e2x

1 1 e2x

 27–28 Find an explicit formula for f 21 and use it to graph f 21, 
f, and the line y − x on the same screen. To check your work, see 
whether the graphs of f  and f 21 are reflections about the line.

 27. f sxd − s4x 1 3  28. f sxd − 1 1 e2x

 29–30 Use the given graph of f  to sketch the graph of f 21.

 29. 30. y

x0 1

1

y

x0 2

1

 31. Let f sxd − s1 2 x 2 , 0 < x < 1.
 (a) Find f 21. How is it related to f ?
 (b) Identify the graph of f  and explain your answer to part (a).

 32. Let tsxd − s3 1 2 x 3  .
 (a) Find t21. How is it related to t?
 (b)  Graph t. How do you explain your answer to part (a)?

 33. (a) How is the logarithmic function y − logb x defined?
 (b) What is the domain of this function?
 (c) What is the range of this function?
 (d)  Sketch the general shape of the graph of the function  

y − logb x if b . 1.

 34. (a) What is the natural logarithm?
 (b) What is the common logarithm?
 (c)  Sketch the graphs of the natural logarithm function and the 

natural exponential function with a common set of axes.

 35–38 Find the exact value of each expression.

 35. (a) log2 32 (b) log8 2

 36. (a) log5  
1

125 (b) lns1ye 2 d

 37. (a) log10 40 1 log10 2.5
 (b) log 8 60 2 log 8 3 2 log 8 5

;

;

 38. (a) e2ln 2 (b) e lnsln e3d

 39–41 Express the given quantity as a single logarithm.

 39. ln 10 1 2 ln 5 40. ln b 1 2 ln c 2 3 ln d

 41. 1
3 lnsx 1 2d3 1 1

2 fln x 2 lnsx 2 1 3x 1 2d2g

 42.  Use Formula 10 to evaluate each logarithm correct to six 
decimal places.

 (a) log5 10 (b) log3 57

 43–44 Use Formula 10 to graph the given functions on a 
common screen. How are these graphs related?

 43. y − log1.5 x,  y − ln x,  y − log10 x,  y − log50 x

 44. y − ln x,  y − log10 x,  y − e x,  y − 10 x

 45.  Suppose that the graph of y − log2 x is drawn on a coordi-
nate grid where the unit of measurement is an inch. How 
many miles to the right of the origin do we have to move 
before the height of the curve reaches 3 ft?

 46.  Compare the functions f sxd − x 0.1 and tsxd − ln x by 
graphing both f  and t in several viewing rectangles.  
When does the graph of f  finally surpass the graph of t?

  47–48 Make a rough sketch of the graph of each function.  
Do not use a calculator. Just use the graphs given in Figures 12 
and 13 and, if necessary, the transformations of Section 1.3.

 47. (a) y − log10sx 1 5d (b) y − 2ln x

 48. (a) y − lns2xd (b) y − ln | x |

  49–50 (a) What are the domain and range of f ?
(b) What is the x-intercept of the graph of f ?
(c) Sketch the graph of f.

 49. f sxd − ln x 1 2 50. f sxd − lnsx 2 1d 2 1

51–54 Solve each equation for x.

 51. (a) e724x − 6 (b) lns3x 2 10d − 2

 52. (a) lnsx 2 2 1d − 3 (b) e 2x 2 3e x 1 2 − 0

 53. (a) 2x25 − 3 (b) ln x 1 lnsx 2 1d − 1

 54. (a) lnsln xd − 1 (b) e ax − Ce bx, where a ± b

55–56 Solve each inequality for x.

 55. (a) ln x , 0 (b) e x . 5

 56. (a) 1 , e 3x21 , 2 (b) 1 2 2 ln x , 3

 57. (a)  Find the domain of f sxd − lnse x 2 3d.
 (b)  Find f 21 and its domain.

;

;
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68 CHAPTER 1  Functions and Models

 58. (a)  What are the values of e ln 300 and lnse 300d?
 (b)  Use your calculator to evaluate e ln 300 and lnse 300d. What 

do you notice? Can you explain why the calculator has 
trouble?

 59.  Graph the function f sxd − sx 3 1 x 2 1 x 1 1 and explain 
why it is one-to-one. Then use a computer algebra system 
to find an explicit expression for f 21sxd. (Your CAS will 
produce three possible expressions. Explain why two of 
them are irrelevant in this context.)

 60.  (a)  If tsxd − x 6 1 x 4, x > 0, use a computer algebra sys-
tem to find an expression for t 21sxd.

 (b)  Use the expression in part (a) to graph y − tsxd, y − x, 
and y − t 21sxd on the same screen.

 61.  If a bacteria population starts with 100 bacteria and doubles 
every three hours, then the number of bacteria after t hours 
is n − f std − 100 ∙ 2 ty3. 

 (a)  Find the inverse of this function and explain its meaning.
 (b) When will the population reach 50,000?

 62.  When a camera flash goes off, the batteries immediately 
begin to recharge the flash’s capacitor, which stores electric 
charge given by

Qstd − Q0s1 2 e 2tya d

  (The maximum charge capacity is Q0 and t is measured in 
seconds.)

 (a)  Find the inverse of this function and explain its meaning.
 (b)  How long does it take to recharge the capacitor to 90% 

of capacity if a − 2?

63–68 Find the exact value of each expression.

 63. (a) cos21 s21d (b) sin21s0.5d

 64. (a) tan21 s3  (b) arctans21d

CAS

CAS

 65. (a) csc21 s2  (b) arcsin 1

 66. (a) sin21(21ys2 ) (b) cos21(s3 y2)
 67. (a) cot21(2s3 ) (b) sec21 2

 68. (a) arcsinssins5!y4dd (b) cos(2 sin21 ( 5
13))

 69. Prove that cosssin21 xd − s1 2 x 2 .

70–72 Simplify the expression.

 70. tanssin21xd 71. sinstan21xd 72. sins2 arccos xd

73-74 Graph the given functions on the same screen. How are 
these graphs related?

 73. y − sin x, 2!y2 < x < !y2;  y − sin21x;  y − x

 74. y − tan x, 2!y2 , x , !y2;  y − tan21x;  y − x

 75.  Find the domain and range of the function

tsxd − sin21s3x 1 1d

 76. (a)  Graph the function f sxd − sinssin21xd and explain the 
appearance of the graph.

 (b)  Graph the function tsxd − sin21ssin xd. How do you 
explain the appearance of this graph?

 77. (a)  If we shift a curve to the left, what happens to its 
reflection about the line y − x? In view of this geo-
metric principle, find an expression for the inverse of 
tsxd − f sx 1 cd, where f  is a one-to-one function.

 (b)  Find an expression for the inverse of hsxd − f scxd,  
where c ± 0.

;

;

CONCEPT CHECK Answers to the Concept Check can be found on the back endpapers.

1 REVIEW

 1. (a) What is a function? What are its domain and range?
 (b) What is the graph of a function?
 (c)  How can you tell whether a given curve is the graph of  

a function?

 2.  Discuss four ways of representing a function. Illustrate your 
discussion with examples.

 3.  (a)  What is an even function? How can you tell if a function 
is even by looking at its graph? Give three examples of an 
even function.

 (b)  What is an odd function? How can you tell if a function 
is odd by looking at its graph? Give three examples of  
an odd function.

 4. What is an increasing function?

 5. What is a mathematical model?

 6. Give an example of each type of function.
 (a) Linear function (b) Power function
 (c) Exponential function (d) Quadratic function
 (e) Polynomial of degree 5 (f ) Rational function

 7.  Sketch by hand, on the same axes, the graphs of the following 
functions.

 (a) f sxd − x (b) tsxd − x 2

 (c) hsxd − x 3 (d) jsxd − x 4
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TRUE-FALSE QUIZ

Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

 1. If f  is a function, then f ss 1 td − f ssd 1 f std.

 2. If f ssd − f std, then s − t.

 3. If f  is a function, then f s3xd − 3 f sxd.

 4.  If x1 , x2 and f  is a decreasing function, then f sx1 d . f sx2 d

 5.  A vertical line intersects the graph of a function at most once.

 6. If f  and t are functions, then f 8 t − t 8 f.

 7.  If f  is one-to-one, then f 21sxd −
1

 f sxd
.

 8. You can always divide by e x.

 9. If 0 , a , b, then ln a , ln b.

 10. If x . 0, then sln xd6 − 6 ln x.

 11. If x . 0 and a . 1, then 
ln x
ln a

− ln 
x
a

 .

 12. tan21s21d − 3!y4

 13. tan21x −
sin21x
cos21x

 14. If x is any real number, then sx 2 − x.

 8.  Draw, by hand, a rough sketch of the graph of each function.
 (a) y − sin x (b) y − tan x (c) y − e x

 (d) y − ln x (e) y − 1yx (f ) y − | x |
 (g) y − sx  (h) y − tan21x

 9.  Suppose that f  has domain A and t has domain B.
 (a) What is the domain of f 1 t?
 (b) What is the domain of f t?
 (c) What is the domain of fyt?

 10.  How is the composite function f 8 t defined? What is its 
domain?

 11.  Suppose the graph of f  is given. Write an equation for each of 
the graphs that are obtained from the graph of f  as follows.

 (a) Shift 2 units upward. (b) Shift 2 units downward.
 (c) Shift 2 units to the right. (d) Shift 2 units to the left.
 (e) Reflect about the x-axis. 

 (f ) Reflect about the y-axis.
 (g) Stretch vertically by a factor of 2.
 (h) Shrink vertically by a factor of 2.
 (i) Stretch horizontally by a factor of 2.
 ( j) Shrink horizontally by a factor of 2.

 12. (a)  What is a one-to-one function? How can you tell if a 
function is one-to-one by looking at its graph?

 (b)  If f  is a one-to-one function, how is its inverse function  
f 21 defined? How do you obtain the graph of f 21 from  
the graph of f ?

 13. (a)  How is the inverse sine function f sxd − sin21x defined? 
What are its domain and range?

 (b)  How is the inverse cosine function f sxd − cos21x  
defined? What are its domain and range?

 (c)  How is the inverse tangent function f sxd − tan21x  
defined? What are its domain and range?

 (f) Is f  one-to-one? Explain.
 (g) Is f  even, odd, or neither even nor odd? Explain.

 2.  The graph of t is given.

gy

x0 1

1

 (a) State the value of ts2d.
 (b) Why is t one-to-one?
 (c) Estimate the value of t21s2d.
 (d) Estimate the domain of t21.
 (e) Sketch the graph of t21.

EXERCISES

 1. Let f  be the function whose graph is given.

y

x1
1

f

 (a) Estimate the value of f s2d.
 (b) Estimate the values of x such that f sxd − 3.
 (c) State the domain of f.
 (d) State the range of f.
 (e) On what interval is f  increasing?
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70 CHAPTER 1  Functions and Models

 21.  Life expectancy improved dramatically in the 20th century. 
The table gives the life expectancy at birth (in years) of males 
born in the United States. Use a scatter plot to choose an 
appropriate type of model. Use your model to predict the life 
span of a male born in the year 2010.

Birth year Life expectancy Birth year Life expectancy

1900 48.3 1960 66.6
1910 51.1 1970 67.1
1920 55.2 1980 70.0
1930 57.4 1990 71.8
1940 62.5 2000 73.0
1950 65.6

 22.  A small-appliance manufacturer finds that it costs $9000 to 
produce 1000 toaster ovens a week and $12,000 to produce 
1500 toaster ovens a week.

 (a)  Express the cost as a function of the number of toaster 
ovens produced, assuming that it is linear. Then sketch 
the graph.

 (b)  What is the slope of the graph and what does it represent?
 (c)  What is the y-intercept of the graph and what does it  

represent?

 23. If f sxd − 2x 1 ln x, find f 21s2d.

 24. Find the inverse function of f sxd −
x 1 1

2x 1 1
.

 25. Find the exact value of each expression.
 (a) e 2 ln 3 (b) log10 25 1 log10 4

 (c) tansarcsin 12 d (d) sinscos21 s4
5dd

 26. Solve each equation for x.
 (a) e x − 5 (b) ln x − 2
 (c) eex − 2 (d) tan21x − 1

 27.  The half-life of palladium-100, 100Pd, is four days. (So half of 
any given quantity of 100Pd will disintegrate in four days.) The 
initial mass of a sample is one gram.

 (a)  Find the mass that remains after 16 days.
 (b)  Find the mass mstd that remains after t days.
 (c)  Find the inverse of this function and explain its meaning.
 (d) When will the mass be reduced to 0.01g?

 28.  The population of a certain species in a limited environment 
with initial population 100 and carrying capacity 1000 is

Pstd −
100,000

100 1 900e2t

 where t is measured in years.
 (a)  Graph this function and estimate how long it takes for the 

population to reach 900.
 (b)  Find the inverse of this function and explain its meaning.
 (c)  Use the inverse function to find the time required for  

the population to reach 900. Compare with the result of 
part (a).

;

 3.  If f sxd − x 2 2 2x 1 3, evaluate the difference quotient

f sa 1 hd 2 f sad
h

 4.  Sketch a rough graph of the yield of a crop as a function of the 
amount of fertilizer used.

5–8 Find the domain and range of the function. Write your answer 
in interval notation.

 5. f sxd − 2ys3x 2 1d 6. tsxd − s16 2 x 4 

 7. hsxd − lnsx 1 6d 8. Fstd − 3 1 cos 2t

 9.  Suppose that the graph of f  is given. Describe how the graphs 
of the following functions can be obtained from the graph of f.

 (a) y − f sxd 1 8 (b) y − f sx 1 8d
 (c) y − 1 1 2 f sxd (d) y − f sx 2 2d 2 2
 (e) y − 2f sxd (f ) y − f 21sxd

 10.  The graph of f  is given. Draw the graphs of the following 
functions.

 (a) y − f sx 2 8d (b) y − 2f sxd
 (c) y − 2 2 f sxd (d) y − 1

2 f sxd 2 1
 (e) y − f 21sxd (f ) y − f 21sx 1 3d

y

x0 1

1

11–16 Use transformations to sketch the graph of the function.

 11. y − sx 2 2d3 12. y − 2sx 

 13. y − x 2 2 2x 1 2 14. y − lnsx 1 1d

 15. f sxd − 2cos 2x 16. f sxd − H2x
e x 2 1

if  x , 0
if  x > 0

 17. Determine whether f  is even, odd, or neither even nor odd.
 (a) f sxd − 2x 5 2 3x 2 1 2
 (b) f sxd − x 3 2 x 7

 (c) f sxd − e2x2
 (d) f sxd − 1 1 sin x

 18.  Find an expression for the function whose graph consists of 
the line segment from the point s22, 2d to the point s21, 0d 
together with the top half of the circle with center the origin 
and radius 1.

 19.  If f sxd − ln x and tsxd − x 2 2 9, find the functions  
(a) f 8 t, (b) t 8 f , (c) f 8 f , (d) t 8 t, and their domains.

 20.  Express the function Fsxd − 1ysx 1 sx  as a composition of 
three functions.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



71

Principles of 
Problem Solving

There are no hard and fast rules that will ensure success in solving problems. However, 
it is possible to outline some general steps in the problem-solving process and to give 
some principles that may be useful in the solution of certain problems. These steps and 
principles are just common sense made explicit. They have been adapted from George 
Polya’s book How To Solve It.

The first step is to read the problem and make sure that you understand it clearly. Ask 
yourself the following questions:

What is the unknown?

What are the given quantities?

What are the given conditions?

For many problems it is useful to 

draw a diagram

and identify the given and required quantities on the diagram.
Usually it is necessary to

introduce suitable notation

In choosing symbols for the unknown quantities we often use letters such as a, b, c, m, n,  
x, and y, but in some cases it helps to use initials as suggestive symbols; for instance, V  
for volume or t for time. 

Find a connection between the given information and the unknown that will enable you 
to calculate the unknown. It often helps to ask yourself explicitly: “How can I relate the 
given to the unknown?” If you don’t see a connection immediately, the following ideas 
may be helpful in devising a plan.

Try to Recognize Something Familiar Relate the given situation to previous knowledge. 
Look at the unknown and try to recall a more familiar problem that has a similar unknown.

Try to Recognize Patterns Some problems are solved by recognizing that some kind of 
pattern is occurring. The pattern could be geometric, or numerical, or algebraic. If you 
can see regularity or repetition in a problem, you might be able to guess what the con-
tinuing pattern is and then prove it.

Use Analogy Try to think of an analogous problem, that is, a similar problem, a related 
problem, but one that is easier than the original problem. If you can solve the similar, 
simpler problem, then it might give you the clues you need to solve the original, more 
difficult problem. For instance, if a problem involves very large numbers, you could first 
try a similar problem with smaller numbers. Or if the problem involves three-dimensional 
geometry, you could look for a similar problem in two-dimensional geometry. Or if the 
problem you start with is a general one, you could first try a special case.

Introduce Something Extra It may sometimes be necessary to introduce something new, 
an auxiliary aid, to help make the connection between the given and the unknown. For 
instance, in a problem where a diagram is useful the auxiliary aid could be a new line 
drawn in a diagram. In a more algebraic problem it could be a new unknown that is 
related to the original unknown.

Take Cases We may sometimes have to split a problem into several cases and give a 
different argument for each of the cases. For instance, we often have to use this strategy 
in dealing with absolute value.

1 UNDERSTAND THE PROBLEM

2 THINK OF A PLAN
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Work Backward Sometimes it is useful to imagine that your problem is solved and 
work backward, step by step, until you arrive at the given data. Then you may be able 
to reverse your steps and thereby construct a solution to the original problem. This pro-
cedure is commonly used in solving equations. For instance, in solving the equation 
3x 2 5 − 7, we suppose that x is a number that satisfies 3x 2 5 − 7 and work back-
ward. We add 5 to each side of the equation and then divide each side by 3 to get x − 4. 
Since each of these steps can be reversed, we have solved the problem.

Establish Subgoals In a complex problem it is often useful to set subgoals (in which the 
desired situation is only partially fulfilled). If we can first reach these subgoals, then we 
may be able to build on them to reach our final goal.

Indirect Reasoning Sometimes it is appropriate to attack a problem indirectly. In using 
proof by contradiction to prove that P implies Q, we assume that P is true and Q is false 
and try to see why this can’t happen. Somehow we have to use this information and arrive 
at a contradiction to what we absolutely know is true.

Mathematical Induction In proving statements that involve a positive integer n, it is 
frequently helpful to use the following principle.

Principle of Mathematical Induction Let Sn be a statement about the positive  
integer n. Suppose that

1.  S1 is true.

2.  Sk11 is true whenever Sk is true.

 Then Sn is true for all positive integers n.

This is reasonable because, since S1 is true, it follows from condition 2 swith k − 1d 
that S2 is true. Then, using condition 2 with k − 2, we see that S3 is true. Again using 
condition 2, this time with k − 3, we have that S4 is true. This procedure can be followed 
indefinitely.

In Step 2 a plan was devised. In carrying out that plan we have to check each stage of the 
plan and write the details that prove that each stage is correct.

Having completed our solution, it is wise to look back over it, partly to see if we have 
made errors in the solution and partly to see if we can think of an easier way to solve the 
problem. Another reason for looking back is that it will familiarize us with the method 
of solution and this may be useful for solving a future problem. Descartes said, “Every 
problem that I solved became a rule which served afterwards to solve other problems.”

These principles of problem solving are illustrated in the following examples. Before 
you look at the solutions, try to solve these problems yourself, referring to these Principles 
of Problem Solving if you get stuck. You may find it useful to refer to this section from 
time to time as you solve the exercises in the remaining chapters of this book.

EXAMPLE 1 Express the hypotenuse h of a right triangle with area 25 m2 as a function 
of its perimeter P.

SOLUTION Let’s first sort out the information by identifying the unknown quantity and 
the data:

 Unknown: hypotenuse h

 Given quantities: perimeter P, area 25 m 2

3 CARRY OUT THE PLAN

4 LOOK BACK

PS  Understand the problem
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It helps to draw a diagram and we do so in Figure 1.

a

h
b

In order to connect the given quantities to the unknown, we introduce two extra 
variables a and b, which are the lengths of the other two sides of the triangle. This 
enables us to express the given condition, which is that the triangle is right-angled, by 
the Pythago rean Theorem:

h 2 − a 2 1 b 2

The other connections among the variables come by writing expressions for the area 
and perimeter:

25 − 1
2 ab      P − a 1 b 1 h

Since P is given, notice that we now have three equations in the three unknowns a, b,  
and h:

1     h 2 − a 2 1 b 2

2     25 − 1
2 ab

3     P − a 1 b 1 h

Although we have the correct number of equations, they are not easy to solve in a 
straightforward fashion. But if we use the problem-solving strategy of trying to recog-
nize something familiar, then we can solve these equations by an easier method. Look 
at the right sides of Equations 1, 2, and 3. Do these expressions remind you of anything 
familiar? Notice that they contain the ingredients of a familiar formula:

sa 1 bd2 − a 2 1 2ab 1 b 2

Using this idea, we express sa 1 bd2 in two ways. From Equations 1 and 2 we have

sa 1 bd2 − sa 2 1 b 2 d 1 2ab − h 2 1 4s25d

From Equation 3 we have

sa 1 bd2 − sP 2 hd2 − P2 2 2Ph 1 h 2

Thus  h 2 1 100 − P2 2 2Ph 1 h 2

  2Ph − P2 2 100

  h −
P2 2 100

2P

This is the required expression for h as a function of P.� Q

As the next example illustrates, it is often necessary to use the problem-solving prin-
ciple of taking cases when dealing with absolute values.

EXAMPLE 2 Solve the inequality | x 2 3 | 1 | x 1 2 | , 11.

SOLUTION Recall the definition of absolute value:

| x | − Hx
2x

if x > 0
if x , 0

PS  Draw a diagram

FIGURE 1 

PS  Connect the given with the 
unknown
PS  Introduce something extra

PS  Relate to the familiar
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It follows that

 | x 2 3 | − Hx 2 3
2sx 2 3d

if  x 2 3 > 0
if  x 2 3 , 0

 − Hx 2 3
2x 1 3

if  x > 3
if  x , 3

Similarly

 | x 1 2 | − Hx 1 2
2sx 1 2d

if  x 1 2 > 0
if  x 1 2 , 0

 − Hx 1 2
2x 2 2

if  x > 22
if  x , 22

These expressions show that we must consider three cases:

x , 22      22 < x , 3      x > 3

CASE I If x , 22, we have

 | x 2 3 | 1 | x 1 2 | , 11

 2x 1 3 2 x 2 2 , 11

 22x , 10

 x . 25

CASE II If 22 < x , 3,  the given inequality becomes

 2x 1 3 1 x 1 2 , 11

 5 , 11  (always true)

CASE III If x > 3, the inequality becomes

 x 2 3 1 x 1 2 , 11

 2x , 12

 x , 6

Combining cases I, II, and III, we see that the inequality is satisfied when 25 , x , 6.  
So the solution is the interval s25, 6d. Q

In the following example we first guess the answer by looking at special cases and 
recognizing a pattern. Then we prove our conjecture by mathematical induction.

In using the Principle of Mathematical Induction, we follow three steps:

Step 1 Prove that Sn is true when n − 1.

Step 2 Assume that Sn is true when n − k and deduce that Sn is true when n − k 1 1.

Step 3 Conclude that Sn is true for all n by the Principle of Mathematical Induction.

PS  Take cases
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EXAMPLE 3 If f0sxd − xysx 1 1d and fn11 − f0 8 fn for n − 0, 1, 2, . . . , find a formula 
for fnsxd.

SOLUTION We start by finding formulas for fnsxd for the special cases n − 1, 2, and 3.

   f1sxd − s f0 8 f0dsxd − f0( f0sxd) − f0S x
x 1 1D

 −

x
x 1 1
x

x 1 1
1 1

−

x
x 1 1

2x 1 1
x 1 1

−
x

2x 1 1

   f2sxd − s f0 8 f1 dsxd − f0( f1sxd) − f0S x
2x 1 1D

 −

x
2x 1 1
x

2x 1 1
1 1

−

x
2x 1 1
3x 1 1
2x 1 1

−
x

3x 1 1

   f3sxd − s f0 8 f2 dsxd − f0( f2sxd) − f0S x
3x 1 1D

 −

x
3x 1 1
x

3x 1 1
1 1

−

x
3x 1 1
4x 1 1
3x 1 1

−
x

4x 1 1

We notice a pattern: The coefficient of x in the denominator of fnsxd is  n 1 1 in the 
three cases we have computed. So we make the guess that, in general,

4    fnsxd −
x

sn 1 1dx 1 1

To prove this, we use the Principle of Mathematical Induction. We have already verified 
that (4) is true for n − 1. Assume that it is true for n − k, that is,

fksxd −
x

sk 1 1dx 1 1

Then   fk11sxd − s f0 8 fk dsxd − f0( fksxd) − f0S x
sk 1 1dx 1 1D

  −

x
sk 1 1dx 1 1

x
sk 1 1dx 1 1

1 1
−

x
sk 1 1dx 1 1
sk 1 2dx 1 1
sk 1 1dx 1 1

−
x

sk 1 2dx 1 1

This expression shows that (4) is true for n − k 1 1. Therefore, by mathematical 
induction, it is true for all positive integers n. Q

PS  Analogy: Try a similar, simpler 
problem

PS  Look for a pattern
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 1.  One of the legs of a right triangle has length 4 cm. Express the length of the altitude perpen-
dicular to the hypotenuse as a function of the length of the hypotenuse.

 2.  The altitude perpendicular to the hypotenuse of a right triangle is 12 cm. Express the length 
of the hypotenuse as a function of the perimeter.

 3.  Solve the equation | 2x 2 1 | 2 | x 1 5 | − 3.

 4. Solve the inequality | x 2 1 | 2 | x 2 3 | > 5.

 5. Sketch the graph of the function f sxd − | x 2 2 4 | x | 1 3 |.
 6. Sketch the graph of the function tsxd − | x 2 2 1 | 2 | x 2 2 4 |.
 7. Draw the graph of the equation x 1 | x | − y 1 | y |.
 8. Sketch the region in the plane consisting of all points sx, yd such that 

| x 2 y | 1 | x | 2 | y | < 2

 9.  The notation maxha, b, . . .j means the largest of the numbers a, b, . . . . Sketch the graph of 
each function.

  (a)  f sxd − maxhx, 1yxj
  (b) f sxd − maxhsin x, cos xj
  (c) f sxd − maxhx 2, 2 1 x, 2 2 xj

 10.  Sketch the region in the plane defined by each of the following equations or inequalities.
  (a)  maxhx, 2yj − 1
  (b) 21 < maxhx, 2yj < 1
  (c) maxhx, y 2j − 1

 11. Evaluate slog2 3dslog3 4dslog4 5d ∙ ∙ ∙ slog31 32d.

 12. (a) Show that the function f sxd − ln(x 1 sx 2 1 1 ) is an odd function.
  (b) Find the inverse function of f.

 13. Solve the inequality lnsx 2 2 2x 2 2d < 0.

 14. Use indirect reasoning to prove that log2 5 is an irrational number.

 15.  A driver sets out on a journey. For the first half of the distance she drives at the leisurely  
pace of 30 miyh; she drives the second half at 60 miyh. What is her average speed on  
this trip?

 16. Is it true that f 8 st 1 hd − f 8 t 1 f 8 h?

 17. Prove that if n is a positive integer, then 7n 2 1 is divisible by 6.

 18. Prove that 1 1 3 1 5 1 ∙ ∙ ∙ 1 s2n 2 1d − n2.

 19. If f0sxd − x 2 and fn11sxd − f0s fnsxdd for n − 0, 1, 2, . . . , find a formula for fnsxd.

 20. (a)  If f0sxd −
1

2 2 x
 and fn11 − f0 8  fn for n − 0, 1, 2, . . . ,  find an expression for fnsxd and 

use mathematical induction to prove it.
  (b)  Graph f0, f1, f2, f3 on the same screen and describe the effects of repeated composition.;

Problems
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The maximum sustain-
able swimming speed S of 

salmon depends on the water 
temperature T. Exercise 58 in 

Section 2.7 asks you to analyze 
how S varies as T changes by 

estimating the derivative of S 
with respect to T.

IN A PREVIEW OF CALCULUS  (page 1) we saw how the idea of a limit underlies the various 
branches of calculus. It is therefore appropriate to begin our study of calculus by investigating 
limits and their properties. The special type of limit that is used to find tangents and velocities 
gives rise to the central idea in differential calculus, the derivative.

© Jody Ann / Shutterstock.com

Limits and Derivatives2
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In this section we see how limits arise when we attempt to find the tangent to a curve or 
the velocity of an object.

The Tangent Problem
The word tangent is derived from the Latin word tangens, which means “touching.” Thus 
a tangent to a curve is a line that touches the curve. In other words, a tangent line should 
have the same direction as the curve at the point of contact. How can this idea be made 
precise?

For a circle we could simply follow Euclid and say that a tangent is a line that 
intersects the circle once and only once, as in Figure 1(a). For more complicated curves 
this definition is inadequate. Figure l(b) shows two lines l and t passing through a point 
P on a curve C. The line l intersects C only once, but it certainly does not look like what 
we think of as a tangent. The line t, on the other hand, looks like a tangent but it intersects 
C twice.

To be specific, let’s look at the problem of trying to find a tangent line t to the parabola 
y − x 2 in the following example.

EXAMPLE 1 Find an equation of the tangent line to the parabola y − x 2 at the  
point Ps1, 1d.

SOLUTION We will be able to find an equation of the tangent line t as soon as we know 
its slope m. The difficulty is that we know only one point, P, on t, whereas we need two 
points to compute the slope. But observe that we can compute an approximation to m 
by choosing a nearby point Qsx, x 2 d on the parabola (as in Figure 2) and computing the 
slope mPQ of the secant line PQ. [A secant line, from the Latin word secans, meaning 
cutting, is a line that cuts (intersects) a curve more than once.]

We choose x ± 1 so that Q ± P. Then

mPQ −
x 2 2 1
x 2 1

For instance, for the point Qs1.5, 2.25d we have

mPQ −
2.25 2 1
1.5 2 1

−
1.25
0.5

− 2.5

The tables in the margin show the values of mPQ for several values of x close to 1. The 
closer Q is to P, the closer x is to 1 and, it appears from the tables, the closer mPQ is to 
2. This suggests that the slope of the tangent line t should be m − 2.

We say that the slope of the tangent line is the limit of the slopes of the secant lines, 
and we express this symbolically by writing

lim
Q lP

 mPQ − m    and    lim
x l 1

 
x 2 2 1
x 2 1

− 2

Assuming that the slope of the tangent line is indeed 2, we use the point-slope form 
of the equation of a line [y 2 y1 − msx 2 x1d, see Appendix B] to write the equation of 
the tangent line through s1, 1d as

y 2 1 − 2sx 2 1d    or    y − 2x 2 1

(a)

(b)

t

P
Ct

l

FIGURE 1 

x

y

0

y=≈

tQ{x, ≈}

P(1, 1)

FIGURE 2 

x mPQ

2 3
1.5 2.5
1.1 2.1
1.01 2.01
1.001 2.001

x mPQ

0 1
0.5 1.5
0.9 1.9
0.99 1.99
0.999 1.999
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 SECTION 2.1  The Tangent and Velocity Problems  79

Figure 3 illustrates the limiting process that occurs in this example. As Q approaches 
P along the parabola, the corresponding secant lines rotate about P and approach the 
tangent line t.

Q approaches P from the right

Q approaches P from the left

P

y

x0

Q

t

P

y

x0

Q
t

P

y

x0

Q

t

P

y

x0
Q

t

P

y

x0
Q

t

x0

P

y
Q

t

� Q

Many functions that occur in science are not described by explicit equations; they are 
defined by experimental data. The next example shows how to estimate the slope of the 
tangent line to the graph of such a function.

EXAMPLE 2 The flash unit on a camera operates by storing charge on a capacitor and 
releasing it suddenly when the flash is set off. The data in the table describe the charge 
Q remaining on the capacitor (measured in microcoulombs) at time t (measured in 
seconds after the flash goes off). Use the data to draw the graph of this function and 
estimate the slope of the tangent line at the point where t − 0.04. [Note: The slope of 
the tangent line represents the electric current flowing from the capacitor to the flash 
bulb (measured in microamperes).]

SOLUTION In Figure 4 we plot the given data and use them to sketch a curve that 
approximates the graph of the function.

t

Q

0 0.02 0.04 0.06 0.08 0.1

90
100

60
70
80

50

(seconds)

(microcoulombs)

FIGURE 3 

TEC In Visual 2.1 you can see how 
the process in Figure 3 works for 
additional functions.

t Q

0.00 100.00
0.02  81.87
0.04  67.03
0.06  54.88
0.08  44.93
0.10  36.76

FIGURE 4 
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80 CHAPTER 2  Limits and Derivatives

Given the points Ps0.04, 67.03d and Rs0.00, 100.00d on the graph, we find that the 
slope of the secant line PR is

mPR −
100.00 2 67.03

0.00 2 0.04
− 2824.25

The table at the left shows the results of similar calculations for the slopes of other 
secant lines. From this table we would expect the slope of the tangent line at t − 0.04 
to lie somewhere between 2742 and 2607.5. In fact, the average of the slopes of the 
two closest secant lines is

1
2 s2742 2 607.5d − 2674.75

So, by this method, we estimate the slope of the tangent line to be about 2675.
Another method is to draw an approximation to the tangent line at P and measure 

the sides of the triangle ABC, as in Figure 5.

t

Q

A

B C

P

0 0.02 0.04 0.06 0.08 0.1

90
100

60
70
80

50

(seconds)

(microcoulombs)

This gives an estimate of the slope of the tangent line as

2 | AB |
| BC | < 2

80.4 2 53.6
0.06 2 0.02

− 2670
� Q

The Velocity Problem
If you watch the speedometer of a car as you travel in city traffic, you see that the 
speed doesn’t stay the same for very long; that is, the velocity of the car is not constant. 
We assume from watching the speedometer that the car has a definite velocity at each 
moment, but how is the “instantaneous” velocity defined? Let’s investigate the example 
of a falling ball.

EXAMPLE 3 Suppose that a ball is dropped from the upper observation deck of  
the CN Tower in Toronto, 450 m above the ground. Find the velocity of the ball after  
5 seconds.

SOLUTION Through experiments carried out four centuries ago, Galileo discovered that 
the distance fallen by any freely falling body is proportional to the square of the time it 
has been falling. (This model for free fall neglects air resistance.) If the distance fallen 

R mPR

(0.00, 100.00) 2824.25
(0.02, 81.87) 2742.00
(0.06, 54.88) 2607.50
(0.08, 44.93) 2552.50
(0.10, 36.76) 2504.50

FIGURE 5 

 The physical meaning of the answer 
in Example 2 is that the electric cur-
rent flowing from the capacitor to 
the flash bulb after 0.04 seconds is 
about 2670 microamperes.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 2.1  The Tangent and Velocity Problems  81

St
ev

e 
Al

le
n 

/ S
to

ck
by

te
 / 

Ge
tty

 Im
ag

es

The CN Tower in Toronto was the 
tallest freestanding building in the 
world for 32 years.

after t seconds is denoted by sstd and measured in meters, then Galileo’s law is 
expressed by the equation

sstd − 4.9t 2

The difficulty in finding the velocity after 5 seconds is that we are dealing with a 
single instant of time st − 5d, so no time interval is involved. However, we can approxi-
mate the desired quantity by computing the average velocity over the brief time interval 
of a tenth of a second from t − 5 to t − 5.1:

 average velocity −
change in position

time elapsed

 −
ss5.1d 2 ss5d

0.1

 −
4.9s5.1d2 2 4.9s5d2

0.1
− 49.49 mys

The following table shows the results of similar calculations of the average velocity 
over successively smaller time periods.

Time interval Average velocity smysd

5 < t < 6 53.9

5 < t < 5.1 49.49

5 < t < 5.05 49.245

5 < t < 5.01 49.049
5 < t < 5.001 49.0049

It appears that as we shorten the time period, the average velocity is becoming closer to 
49 mys. The instantaneous velocity when t − 5 is defined to be the limiting value of 
these average velocities over shorter and shorter time periods that start at t − 5. Thus it 
appears that the (instantaneous) velocity after 5 seconds is

v − 49 mys� Q

You may have the feeling that the calculations used in solving this problem are very 
similar to those used earlier in this section to find tangents. In fact, there is a close 
connection between the tangent problem and the problem of finding velocities. If we 
draw the graph of the distance function of the ball (as in Figure 6) and we consider the 
points Psa, 4.9a 2 d and Qsa 1 h, 4.9sa 1 hd2 d on the graph, then the slope of the secant 
line PQ is

mPQ −
4.9sa 1 hd2 2 4.9a 2

sa 1 hd 2 a

which is the same as the average velocity over the time interval fa, a 1 hg. Therefore 
the velocity at time t − a (the limit of these average velocities as h approaches 0) must 
be equal to the slope of the tangent line at P (the limit of the slopes of the secant lines).

Examples 1 and 3 show that in order to solve tangent and velocity problems we must 
be able to find limits. After studying methods for computing limits in the next five sec-
tions, we will return to the problems of finding tangents and velocities in Section 2.7.FIGURE 6 

t

s

Q

a a+h0

slope of secant line
! average velocity

P

s=4.9t @

t

s

0 a

slope of tangent line
! instantaneous velocityP

s=4.9t @
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82 CHAPTER 2  Limits and Derivatives

EXERCISES

 1.  A tank holds 1000 gallons of water, which drains from the  
bottom of the tank in half an hour. The values in the table 
show the volume V of water remaining in the tank (in gallons) 
after t minutes.

t smind 5 10 15 20 25 30

V sgald 694 444 250 111 28 0

 (a)  If P is the point s15, 250d on the graph of V, find the 
slopes of the secant lines PQ when Q is the point on the 
graph with t − 5, 10, 20, 25, and 30.

 (b)  Estimate the slope of the tangent line at P by averaging 
the slopes of two secant lines.

 (c)  Use a graph of the function to estimate the slope of the  
tangent line at P. (This slope represents the rate at which 
the water is flowing from the tank after 15 minutes.)

 2.  A cardiac monitor is used to measure the heart rate of a patient 
after surgery. It compiles the number of heartbeats after t min-
utes. When the data in the table are graphed, the slope of the 
tangent line represents the heart rate in beats per minute.

t smind 36 38 40 42 44

Heartbeats 2530 2661 2806 2948 3080

The monitor estimates this value by calculating the slope of 
a secant line. Use the data to estimate the patient’s heart rate 
after 42 minutes using the secant line between the points with 
the given values of t.

 (a) t − 36  and  t − 42 (b) t − 38  and  t − 42
 (c) t − 40  and  t − 42 (d) t − 42  and  t − 44

What are your conclusions?

 3.  The point Ps2, 21d lies on the curve y − 1ys1 2 xd.
 (a)  If Q is the point sx, 1ys1 2 xdd, use your calculator to find 

the slope of the secant line PQ (correct to six decimal 
places) for the following values of x :

 (i) 1.5 (ii) 1.9 (iii) 1.99 (iv) 1.999
 (v) 2.5 (vi) 2.1 (vii) 2.01 (viii) 2.001
 (b)  Using the results of part (a), guess the value of the slope 

of the tangent line to the curve at Ps2, 21d.
 (c)  Using the slope from part (b), find an equation of the 

tangent line to the curve at Ps2, 21d.

 4.  The point Ps0.5, 0d lies on the curve y − cos !x.
 (a)  If Q is the point sx, cos !xd, use your calculator to find the 

slope of the secant line PQ (correct to six decimal places) 
for the following values of x :
 (i) 0 (ii) 0.4 (iii) 0.49
 (iv) 0.499 (v) 1 (vi) 0.6
 (vii) 0.51 (viii) 0.501

   (b)   Using the results of part (a), guess the value of the 
slope of the tangent line to the curve at Ps0.5, 0d.

 (c)  Using the slope from part (b), find an equation of the 
tangent line to the curve at Ps0.5, 0d.

 (d)  Sketch the curve, two of the secant lines, and the 
tangent line.

 5.  If a ball is thrown into the air with a velocity of 40 ftys, its 
height in feet t seconds later is given by y − 40t 2 16t 2.

 (a)  Find the average velocity for the time period beginning 
when t − 2 and lasting

 (i) 0.5 seconds (ii) 0.1 seconds
 (iii) 0.05 seconds (iv) 0.01 seconds
 (b) Estimate the instantaneous velocity when t − 2.

 6.  If a rock is thrown upward on the planet Mars with a 
velocity of 10 mys, its height in meters t seconds later is 
given by y − 10t 2 1.86t 2.

 (a) Find the average velocity over the given time intervals:
 (i) [1, 2] (ii) [1, 1.5]
 (iii) [1, 1.1] (iv) [1, 1.01]
 (v) [1, 1.001]
 (b) Estimate the instantaneous velocity when t − 1.

 7.  The table shows the position of a motorcyclist after acceler-
ating from rest.

t ssecondsd 0 1 2 3 4 5 6

s (feet) 0 4.9 20.6 46.5 79.2 124.8 176.7

 (a)  Find the average velocity for each time period:
  (i) f2, 4g    (ii) f3, 4g    (iii) f4, 5g    (iv) f4, 6g
 (b)  Use the graph of s as a function of t to estimate the 

instantaneous velocity when t − 3.

 8.  The displacement (in centimeters) of a particle moving 
back and forth along a straight line is given by the equation 
of motion s − 2 sin !t 1 3 cos !t, where t is measured in 
seconds.

 (a)  Find the average velocity during each time period:
 (i) [1, 2] (ii) [1, 1.1]
 (iii) [1, 1.01] (iv) [1, 1.001]
 (b)  Estimate the instantaneous velocity of the particle  

when t − 1.

 9. The point Ps1, 0d lies on the curve y − sins10!yxd.
 (a)  If Q is the point sx, sins10!yxdd, find the slope of the 

secant line PQ (correct to four decimal places) for 
x − 2, 1.5, 1.4, 1.3, 1.2, 1.1, 0.5, 0.6, 0.7, 0.8, and 0.9. 
Do the slopes appear to be approaching a limit?

 (b)  Use a graph of the curve to explain why the slopes of 
the secant lines in part (a) are not close to the slope of 
the tangent line at P.

 (c)  By choosing appropriate secant lines, estimate the slope 
of the tangent line at P.

;
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 SECTION 2.2  The Limit of a Function 83

Having seen in the preceding section how limits arise when we want to find the tangent 
to a curve or the velocity of an object, we now turn our attention to limits in general and 
numerical and graphical methods for computing them.

Let’s investigate the behavior of the function f  defined by f sxd − x 2 2 x 1 2 for 
values of x near 2. The following table gives values of f sxd for values of x close to 2 but 
not equal to 2.

x f sxd x f sxd

1.0 2.000000 3.0 8.000000
1.5 2.750000 2.5 5.750000
1.8 3.440000 2.2 4.640000
1.9 3.710000 2.1 4.310000
1.95 3.852500 2.05 4.152500
1.99 3.970100 2.01 4.030100
1.995 3.985025 2.005 4.015025
1.999 3.997001 2.001 4.003001

From the table and the graph of f  (a parabola) shown in Figure 1 we see that the closer 
x is to 2 (on either side of 2), the closer f sxd is to 4. In fact, it appears that we can make the 
values of f sxd as close as we like to 4 by taking x sufficiently close to 2. We express this by  
saying “the limit of the function f sxd − x 2 2 x 1 2 as x approaches 2 is equal to 4.” The 
notation for this is

lim
x l

 

2
 sx 2 2 x 1 2d − 4

In general, we use the following notation.

1   Intuitive Definition of a Limit Suppose f sxd is defined when x is near the 
number a. (This means that f  is defined on some open interval that contains a, 
except possibly at a itself.) Then we write

lim
x l a

 f sxd − L

and say “the limit of f sxd, as x approaches a, equals L”

if we can make the values of f sxd arbitrarily close to L (as close to L as we like) by 
restricting x to be sufficiently close to a (on either side of a) but not equal to a.

Roughly speaking, this says that the values of f sxd approach L as x approaches a. In 
other words, the values of f sxd tend to get closer and closer to the number L as x gets 
closer and closer to the number a (from either side of a) but x ± a. (A more precise defi-
nition will be given in Section 2.4.)

An alternative notation for

lim
x l a

 f sxd − L

is f sxd l L    as    x l a

which is usually read “ f sxd approaches L as x approaches a.”

FIGURE 1

4
ƒ
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4.
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2
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y=≈-x+2
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84 CHAPTER 2  Limits and Derivatives

Notice the phrase “but x ± a” in the definition of limit. This means that in find ing the 
limit of f sxd as x approaches a, we never consider x − a. In fact, f sxd need not even be 
defined when x − a. The only thing that matters is how f  is defined near a.

Figure 2 shows the graphs of three functions. Note that in part (c), f sad is not defined 
and in part (b), f sad ± L. But in each case, regardless of what happens at a, it is true  
that  lim x l a f sxd − L.

(c)

x

y

0

L

a

(b)

x

y

0

L

a

(a)

x

y

0

L

a

EXAMPLE 1 Guess the value of lim
x l1

 
x 2 1
x 2 2 1

.

SOLUTION Notice that the function f sxd − sx 2 1dysx 2 2 1d is not defined when x − 1, 
but that doesn’t matter because the definition of lim x l a f sxd says that we consider 
values of x that are close to a but not equal to a.

The tables at the left give values of f sxd (correct to six decimal places) for values of 
x that approach 1 (but are not equal to 1). On the basis of the values in the tables, we 
make the guess that

 lim
x l 1

 
x 2 1
x 2 2 1

− 0.5 Q

Example 1 is illustrated by the graph of f  in Figure 3. Now let’s change f  slightly by 
giving it the value 2 when x − 1 and calling the resulting function t:

tsxd − H x 2 1
x 2 2 1

if x ± 1

2 if x − 1

This new function t still has the same limit as x approaches 1. (See Figure 4.)

0 1

0.5

x-1
≈-1y=

0 1

0.5

y=©

2

y

x

y

x

FIGURE 3 FIGURE 4

FIGURE 2 lim
x l a

 f sxd − L in all three cases

x , 1 f sxd

0.5 0.666667
0.9 0.526316
0.99 0.502513
0.999 0.500250
0.9999 0.500025

x . 1 f sxd

1.5 0.400000
1.1 0.476190
1.01 0.497512
1.001 0.499750
1.0001 0.499975

1 0.5
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 SECTION 2.2  The Limit of a Function 85

EXAMPLE 2 Estimate the value of lim
t l 0

 
st 2 1 9 2 3

t 2 .

SOLUTION The table lists values of the function for several values of t near 0.

t st 2 1 9 2 3
t 2

61.0 0.162277 . . .

60.5 0.165525 . . .

60.1 0.166620 . . .

60.05 0.166655 . . .
60.01 0.166666 . . .

As t approaches 0, the values of the function seem to approach 0.1666666 . . . and so 
we guess that

 lim
t l 0

 
st 2 1 9 2 3

t 2 −
1
6

 Q

In Example 2 what would have happened if we had taken even smaller values of t? The 
table in the margin shows the results from one calculator; you can see that something 
strange seems to be happening.

If you try these calculations on your own calculator you might get different values, 
but eventually you will get the value 0 if you make t sufficiently small. Does this mean 
that the answer is really 0 instead of 16 ? No, the value of the limit is 16, as we will show in 
the next section. The problem is that the calculator gave false values because st 2 1 9  is 
very close to 3 when t is small. (In fact, when t is sufficiently small, a calculator’s value 
for st 2 1 9  is 3.000. . . to as many digits as the calculator is capable of carrying.)

Something similar happens when we try to graph the function

f std −
st 2 1 9 2 3

t 2

of Example 2 on a graphing calculator or computer. Parts (a) and (b) of Figure 5 show 
quite accurate graphs of f , and when we use the trace mode (if available) we can estimate 
easily that the limit is about 16. But if we zoom in too much, as in parts (c) and (d), then we 
get inaccurate graphs, again because of rounding errors from the subtraction.

0.1

0.2

0.1

0.2

sad 25 < t < 5 sbd 20.1 < t < 0.1 scd 21026 < t < 1026 sdd 21027 < t < 1027

t st 2 1 9 2 3
t 2

60.001 0.166667
60.0001 0.166670
60.00001 0.167000
60.000001 0.000000

www.stewartcalculus.com
For a further explanation of why 
calculators sometimes give false 
values, click on Lies My Calculator 
and Computer Told Me. In particu-
lar, see the section called The Perils 
of Subtraction.

FIGURE 5 
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86 CHAPTER 2  Limits and Derivatives

EXAMPLE 3 Guess the value of lim 
x l 0

 
sin x

x
.

SOLUTION The function f sxd − ssin xdyx is not defined when x − 0. Using a calcula-
tor (and remembering that, if x [ R, sin x means the sine of the angle whose radian 
measure is x), we construct a table of values correct to eight decimal places. From the 
table at the left and the graph in Figure 6 we guess that

 lim 
x l 0

sin x
x

− 1

This guess is in fact correct, as will be proved in Chapter 3 using a geometric argument. 

 0 x_1 1

y
sin x

xy=1

 
Q

EXAMPLE 4 Investigate lim 
x l 0

 sin 
!

x
.

SOLUTION Again the function f sxd − sins!yxd is undefined at 0. Evaluating the 
function for some small values of x, we get

 f s1d − sin ! − 0        f (1
2) − sin 2! − 0

 f (1
3) − sin 3! − 0        f (1

4) − sin 4! − 0

 f s0.1d − sin 10! − 0        f s0.01d − sin 100! − 0

Similarly, f s0.001d − f s0.0001d − 0. On the basis of this information we might be 
tempted to guess that

 lim 
x l 0

 sin 
!

x
− 0

but this time our guess is wrong. Note that although f s1ynd − sin n! − 0 for any 
integer n, it is also true that f sxd − 1 for infinitely many values of x (such as 2y5 or 
2y101) that approach 0. You can see this from the graph of f  shown in Figure 7.

y=sin(π/x)

x

y
1

1

_1

_1

x
sin x

x

61.0 0.84147098
60.5 0.95885108
60.4 0.97354586
60.3 0.98506736
60.2 0.99334665
60.1 0.99833417
60.05 0.99958339
60.01 0.99998333
60.005 0.99999583
60.001 0.99999983

FIGURE 6

Computer Algebra Systems
Computer algebra systems (CAS) 
have commands that compute limits. 
In order to avoid the types of pitfalls 
demonstrated in Examples 2, 4, and 
5, they don’t find limits by numerical 
experimentation. Instead, they use more 
sophisticated techniques such as com- 
puting infinite series. If you have access 
to a CAS, use the limit command to 
compute the limits in the examples of 
this section and to check your answers 
in the exercises of this chapter.

FIGURE 7
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The dashed lines near the y-axis indicate that the values of sins!yxd oscillate 
between 1 and 21 infinitely often as x approaches 0. (See Exercise 51.) 

Since the values of f sxd do not approach a fixed number as x approaches 0,

 
lim
x l 0

 sin 
!

x
does not exist

 Q

EXAMPLE 5 Find lim
x l 0

 Sx 3 1
cos 5x
10,000D.

SOLUTION As before, we construct a table of values. From the first table in the margin 
it appears that

lim
x l 0

 Sx 3 1
cos 5x
10,000D − 0

But if we persevere with smaller values of x, the second table suggests that

 lim 
x l 0

 Sx 3 1
cos 5x
10,000D − 0.000100 −

1
10,000

Later we will see that lim x l 0 cos 5x − 1; then it follows that the limit is 0.0001. Q

Examples 4 and 5 illustrate some of the pitfalls in guessing the value of a limit. It is 
easy to guess the wrong value if we use inappropriate values of x, but it is difficult to 
know when to stop calculating values. And, as the discussion after Example 2 shows, 
sometimes calculators and computers give the wrong values. In the next section, how-
ever, we will develop foolproof methods for calculating limits.

One-Sided Limits

EXAMPLE 6 The Heaviside function H is defined by

Hstd − H0
1

if t , 0
if t > 0

[This function is named after the electrical engineer Oliver Heaviside (1850–1925) and 
can be used to describe an electric current that is switched on at time t − 0.] Its graph 
is shown in Figure 8.

As t approaches 0 from the left, Hstd approaches 0. As t approaches 0 from the right, 
Hstd approaches 1. There is no single number that Hstd approaches as t approaches 0. 
Therefore lim t l 0 Hstd does not exist. Q

We noticed in Example 6 that Hstd approaches 0 as t approaches 0 from the left and 
Hstd approaches 1 as t approaches 0 from the right. We indicate this situation symboli-
cally by writing

lim
t l 02

 Hstd − 0    and    lim
t l 01

 Hstd − 1

The notation t l 02 indicates that we consider only values of t that are less than 0. Like-
wise, t l 01 indicates that we consider only values of t that are greater than 0.

x x 3 1
cos 5x
10,000

1 1.000028
0.5 0.124920
0.1 0.001088
0.05 0.000222
0.01 0.000101

x x 3 1
cos 5x
10,000

0.005 0.00010009
0.001 0.00010000

t

y

1

0

FIGURE 8  
The Heaviside function
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88 CHAPTER 2  Limits and Derivatives

2   Definition of One-Sided Limits We write

lim
x la2

 f sxd − L

and say the left-hand limit of f sxd as x approaches a [or the limit of f sxd as  
x approaches a from the left] is equal to L if we can make the values of f sxd  
arbitrarily close to L by taking x to be sufficiently close to a with x less than a.

Notice that Definition 2 differs from Definition 1 only in that we require x to be less 
than a. Similarly, if we require that x be greater than a, we get “the right-hand limit of 
f sxd as x approaches a is equal to L” and we write

lim
x l

 

a1
 f sxd − L

Thus the notation x l a1 means that we consider only x greater than a. These defini-
tions are illustrated in Figure 9.

0 x

y

L

xa0 x

y

ƒ L

x a

ƒ

x    a+x    a_
(a) lim  ƒ=L (b) lim  ƒ=L

By comparing Definition l with the definitions of one-sided limits, we see that the 
following is true.

3      lim
x l a

 f sxd − L   if and only if   lim
x l

 

a2 f sxd − L  and  lim
x l

 

a1
 f sxd − L

EXAMPLE 7 The graph of a function t is shown in Figure 10. Use it to state the values 
(if they exist) of the following:

(a) lim
x l 22

 tsxd      (b) lim
x l 21

 tsxd      (c) lim
x l 2

 tsxd

(d) lim
x l 52

 tsxd      (e) lim
x l 51

 tsxd      (f ) lim
x l 5

 tsxd

SOLUTION From the graph we see that the values of tsxd approach 3 as x approaches 2 
from the left, but they approach 1 as x approaches 2 from the right. Therefore

(a) lim
x l 22

 tsxd − 3    and    (b) lim
x l 21

 tsxd − 1

(c) Since the left and right limits are different, we conclude from (3) that limx l 2 tsxd 
does not exist.

The graph also shows that

(d) lim
x l 52

 tsxd − 2    and    (e) lim
x l 51

 tsxd − 2

FIGURE 9 

FIGURE 10 

y

0 x

y=©

1 2 3 4 5

1

3

4
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 SECTION 2.2  The Limit of a Function 89

(f ) This time the left and right limits are the same and so, by (3), we have

lim
x l 5

 tsxd − 2

Despite this fact, notice that ts5d ± 2.� Q

Infinite Limits

EXAMPLE 8 Find lim
x l 0

 
1
x 2  if it exists.

SOLUTION As x becomes close to 0, x 2 also becomes close to 0, and 1yx 2 becomes very 
large. (See the table in the margin.) In fact, it appears from the graph of the function 
f sxd − 1yx 2 shown in Figure 11 that the values of f sxd can be made arbitrarily large 
by taking x close enough to 0. Thus the values of f sxd do not approach a number, so 
lim x l 0 s1yx 2 d does not exist. Q

To indicate the kind of behavior exhibited in Example 8, we use the notation

lim 
x l 0

 
1
x 2 − `

This does not mean that we are regarding ` as a number. Nor does it mean that the limit  
exists. It simply expresses the particular way in which the limit does not exist: 1yx 2 can 
be made as large as we like by taking x close enough to 0.

In general, we write symbolically

 lim 
x l a

 f sxd − `

to indicate that the values of f sxd tend to become larger and larger (or “increase without 
bound”) as x becomes closer and closer to a.

4   Intuitive Definition of an Infinite Limit Let f  be a function defined on both 
sides of a, except possibly at a itself. Then

 lim 
x l a

 f sxd − `

means that the values of f sxd can be made arbitrarily large (as large as we please) 
by taking x sufficiently close to a, but not equal to a.

Another notation for limx l a f sxd − ` is

f sxd l `    as    x l a

Again, the symbol ̀  is not a number, but the expression lim x l a f sxd − ` is often read as

“the limit of f sxd, as x approaches a, is infinity”

or “ f sxd becomes infinite as x approaches a”

or “ f sxd increases without bound as x approaches a”

This definition is illustrated graphically in Figure 12.

x
1
x 2

61 1
60.5 4
60.2 25
60.1 100
60.05 400
60.01 10,000
60.001 1,000,000

FIGURE 11 

y=

0

y

x

1
≈

FIGURE 12 
lim
x l a

 f sxd − `

x

y

x=a

y=ƒ

a0
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90 CHAPTER 2  Limits and Derivatives

A similar sort of limit, for functions that become large negative as x gets close to a, is 
defined in Definition 5 and is illustrated in Figure 13.

5   Definition Let f  be a function defined on both sides of a, except possibly at 
a itself. Then

 lim 
x l a

 f sxd − 2`

means that the values of f sxd can be made arbitrarily large negative by taking x 
sufficiently close to a, but not equal to a.

The symbol limx l a f sxd − 2` can be read as “the limit of f sxd, as x approaches a, is 
negative infinity” or “ f sxd decreases without bound as x approaches a.” As an example 
we have

lim
x l

 

0
 S2

1
x 2D − 2`

Similar definitions can be given for the one-sided infinite limits

 lim
x l

 

a2
 f sxd − ` lim

x l
 

a1
 f sxd − `

 lim
x l

 

a2
 f sxd − 2` lim

x l
 

a1
 f sxd − 2`

remembering that x l a2 means that we consider only values of x that are less than a,  
and similarly x l a1 means that we consider only x . a. Illustrations of these four 
cases are given in Figure 14.

(d) lim  ƒ=_`

a

y

0 x

x a+x a_
(c) lim  ƒ=_`

y

0 a x

(a) lim  ƒ=`

y

0 a x

x a_
(b) lim  ƒ=`

a

y

x

x a+

0

6   Definition The vertical line x − a is called a vertical asymptote of the  
curve y − f sxd if at least one of the following statements is true:

 lim
x l

 

a
 f sxd − ` lim

x l
 

a2
 f sxd − `  lim

x l
 

a1
 f sxd − `

 lim
x l

 

a
 f sxd − 2` lim

x l
 

a2
 f sxd − 2` lim

x l
 

a1
 f sxd − 2`

For instance, the y-axis is a vertical asymptote of the curve y − 1yx 2 because 
limx l 0 s1yx 2 d − `. In Figure 14 the line x − a is a vertical asymptote in each of 

When we say a number is “large nega-
tive,” we mean that it is negative but its 
magnitude (absolute value) is large.

FIGURE 14 

0 x

y

x=a

y=ƒ
a

FIGURE 13 
 lim
x l a

 f sxd − 2`
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 SECTION 2.2  The Limit of a Function 91

the four cases shown. In general, knowledge of vertical asymptotes is very useful in 
sketching graphs.

EXAMPLE 9 Find lim
x l

 

31
 

2x
x 2 3

 and lim
x l

 

32
 

2x
x 2 3

.

SOLUTION If x is close to 3 but larger than 3, then the denominator x 2 3 is a small 
positive number and 2x is close to 6. So the quotient 2xysx 2 3d is a large positive 
number. [For instance, if x − 3.01 then 2xysx 2 3d − 6.02y0.01 − 602.] Thus, intui-
tively, we see that

lim
x l

 

31
 

2x
x 2 3

− `

Likewise, if x is close to 3 but smaller than 3, then x 2 3 is a small negative number 
but 2x is still a positive number (close to 6). So 2xysx 2 3d is a numerically large nega-
tive number. Thus

  lim
x l

 

32
 

2x
x 2 3

− 2`

The graph of the curve y − 2xysx 2 3d is given in Figure 15. The line x − 3 is a verti-
cal asymptote. Q

EXAMPLE 10 Find the vertical asymptotes of f sxd − tan x.

SOLUTION Because

tan x −
sin x
cos x

there are potential vertical asymptotes where cos x − 0. In fact, since cos x l 01 as 
x l s!y2d2 and cos x l 02 as x l s!y2d1, whereas sin x is positive (near 1) when x 
is near !y2, we have

lim
x l

 s!y2d2
 tan x − `    and    lim

x l
 s!y2d1

 tan x − 2`

This shows that the line x − !y2 is a vertical asymptote. Similar reasoning shows  
that the lines x − !y2 1 n!, where n is an integer, are all vertical asymptotes of 
f sxd − tan x. The graph in Figure 16 confirms this. Q

Another example of a function whose graph has a vertical asymptote is the natural 
logarithmic function y − ln x. From Figure 17 we see that

lim
x l

 

01
 ln x − 2`

and so the line x − 0 (the y-axis) is a vertical asymptote. In fact, the same is true for 
y − log b x provided that b . 1. (See Figures 1.5.11 and 1.5.12.)

FIGURE 16  
y − tan x

__ x

y

π0_π

1

π
2

3π
 2

π
2

3π
 2

FIGURE 17  
The y-axis is a vertical asymptote of  
the natural logarithmic function.

x0

y

1

y=ln x

FIGURE 15 

5
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y
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92 CHAPTER 2  Limits and Derivatives

   1. Explain in your own words what is meant by the equation

lim
x l 2

 f sxd − 5

   Is it possible for this statement to be true and yet f s2d − 3? 
Explain.

  2. Explain what it means to say that

lim
x l 12

f sxd − 3    and     lim
x l11

 f sxd − 7

   In this situation is it possible that limx l 1 f sxd exists?  
Explain.

  3.  Explain the meaning of each of the following.
 (a) lim

x l
 

23
f sxd − ` (b) lim

x l 41
f sxd − 2`

 4.  Use the given graph of f  to state the value of each quantity,  
 if it exists. If it does not exist, explain why.

 (a) lim
x l

 

22
f sxd (b) lim

x l 21
f sxd (c) lim

x l 2
 f sxd

 (d) f s2d (e) lim
x l 4

 f sxd (f ) f s4d

y

0 x2 4

4

2

 5.  For the function f  whose graph is given, state the value of 
each quantity, if it exists. If it does not exist, explain why.

 (a) lim
x l 1

 f sxd (b) lim
x l 32

f sxd (c) lim
x l 31

f sxd

 (d) lim
x l 3

 f sxd (e) f s3d

y

0 x2 4

4

2

 6.  For the function h whose graph is given, state the value of 
each quantity, if it exists. If it does not exist, explain why.

 (a) lim
x l 232

hsxd (b) lim
x l 231

hsxd (c) lim
x l 23

hsxd

 (d) hs23d (e) lim
xl

 

02 
hsxd (f ) lim

x l
 

01 
hsxd

 (g) lim
x l 0

 hsxd (h) hs0d (i) lim
x l 2

 hsxd

 ( j) hs2d (k) lim
x l

 

51
hsxd (l) lim

x l
 

52 
hsxd

y

0 x2_2_4 4 6

  7.  For the function t whose graph is given, state the value of 
each quantity, if it exists. If it does not exist, explain why.

 (a) lim
t l 02

tstd (b) lim
t l 01

tstd (c) lim
t l 0

tstd

 (d) lim
t l 22

tstd (e) lim
t l 21

tstd (f ) lim
t l 2

tstd

 (g) ts2d (h) lim
t l 4

 tstd

y

t2 4

4

2

 8.  For the function A whose graph is shown, state the following.
 (a)  lim 

x l23
 Asxd (b) lim

x l22
 Asxd 

 (c) lim
x l21

 Asxd (d)  lim 
x l21

 Asxd

 (e) The equations of the vertical asymptotes

0

y

x2_3 5

 9.  For the function f  whose graph is shown, state the following.
 (a) lim 

x l27
 f sxd (b) lim 

x l23 
 f sxd (c) lim

x l 0 
 f sxd

 (d) lim
x l 62

f sxd (e) lim
x l 61

f sxd
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 (f ) The equations of the vertical asymptotes.

x

y

0 6_3_7

 10.  A patient receives a 150-mg injection of a drug every 
4 hours. The graph shows the amount f std of the drug in 
the blood stream after t hours. Find

lim
tl 122

 f std    and    lim
tl 121

 f std

and explain the significance of these one-sided limits.

4 8 12 16 t

f(t)

150

0

300

11–12 Sketch the graph of the function and use it to determine 
the values of a for which limx l a f sxd exists.

 11. f sxd − H1 1 x
x 2

2 2 x

if x , 21
if  21 < x , 1
if x > 1

 12. f sxd − H1 1 sin x
cos x
sin x

if x , 0
if  0 < x < !

if x . !

 13–14 Use the graph of the function f  to state the value of 
each limit, if it exists. If it does not exist, explain why.
(a) lim

x l 02 
f sxd   (b) lim

x l 01 
f sxd   (c) lim

x l 0 
f sxd

 13. f sxd −
1

1 1 e 1yx  14. f sxd −
x 2 1 x

sx 3 1 x 2 

15–18 Sketch the graph of an example of a function f  that  
satisfies all of the given conditions.

 15. lim
x l 02

 f sxd − 21,  lim
x l 01

 f sxd − 2,  f s0d − 1

 16. lim
x l 0

 f sxd − 1,  lim
x l 32

 f sxd − 22,  lim
x l 31

 f sxd − 2,

 f s0d − 21,  f s3d − 1

;

 17. lim
x l 31

 f sxd − 4,  lim
x l 32

 f sxd − 2,  lim
x l 22

 f sxd − 2,

 f s3d − 3,  f s22d − 1

 18. lim
x l 02

 f sxd − 2,  lim
x l 01

 f sxd − 0,  lim
x l 42

 f sxd − 3,

 lim
x l 41

 f sxd − 0,  f s0d − 2,  f s4d − 1

19–22 Guess the value of the limit (if it exists) by evaluating 
the function at the given numbers (correct to six decimal places).

 19.  lim
x l

 

3
 
x 2 2 3x
x 2 2 9

,  

 x − 3.1, 3.05, 3.01, 3.001, 3.0001, 

 2.9, 2.95, 2.99, 2.999, 2.9999

 20.  lim
x l

 

23
 
x 2 2 3x
x 2 2 9

,

 x − 22.5, 22.9, 22.95, 22.99, 22.999, 22.9999,

 23.5, 23.1, 23.05, 23.01, 23.001, 23.0001

 21.  lim
tl 0

 
e5 t 2 1

t
,  t − 60.5, 60.1, 60.01, 60.001, 60.0001

 22. lim
hl 0

 
s2 1 hd5 2 32

h
,

h − 60.5, 60.1, 60.01, 60.001, 60.0001

23–28 Use a table of values to estimate the value of the limit. 
If you have a graphing device, use it to confirm your result 
graphically.

 23. lim
x l 4

 
ln x 2 ln 4

x 2 4
 24. lim

p l 21
 

1 1 p 9

1 1 p 15

 25.  lim
" l 0

 
sin 3"

tan 2"
 26. lim

t l 0
 
5 t 2 1

t

 27.  lim
x l01

 x x  28. lim
x l01

 x 2 ln x

 29.  (a)  By graphing the function f sxd − scos 2x 2 cos xdyx 2 
and zooming in toward the point where the graph 
crosses the y-axis, estimate the value of lim x l 0 f sxd.

 (b)  Check your answer in part (a) by evaluating f sxd for  
values of x that approach 0.

 30.  (a)  Estimate the value of

lim
x l 0

 
sin x

sin !x

  by graphing the function f sxd − ssin xdyssin !xd. 
State your answer correct to two decimal places.

 (b)  Check your answer in part (a) by evaluating f sxd for  
values of x that approach 0.

;

;
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94 CHAPTER 2  Limits and Derivatives

31– 43 Determine the infinite limit.

 31.  lim
x l51

 
x 1 1
x 2 5

 32. lim
x l

 

52
 
x 1 1
x 2 5

 33. lim
x l

 

1
 

2 2 x
sx 2 1d2  34. lim

x l32
 

sx 

sx 2 3d5

 35. lim
x l

 

31
 lnsx 2 2 9d 36. lim

x l 01
 lnssin xd

 37. lim
xls!y2d1

 
1
x

 sec x 38. lim
x l!2

 cot x

 39. lim
x l2!2

 x csc x 40. lim
x l

 

22
 

x 2 2 2x
x 2 2 4x 1 4

41.  lim
x l21

 
x 2 2 2x 2 8
x 2 2 5x 1 6

 42. lim
xl01

 S 1
x

2 ln xD
43.  lim

xl0
 sln x 2 2 x22d

 44.  (a) Find the vertical asymptotes of the function

y −
x 2 1 1

3x 2 2x 2

 (b)  Confirm your answer to part (a) by graphing the  
function.

 45. Determine lim
x l

 

12
 

1
x 3 2 1

 and lim
x l

 

11
 

1
x 3 2 1

 (a)  by evaluating f sxd − 1ysx 3 2 1d for values of x that 
approach 1 from the left and from the right,

 (b) by reasoning as in Example 9, and
 (c) from a graph of f.

 46.  (a)  By graphing the function f sxd − stan 4xdyx and 
zooming in toward the point where the graph crosses 
the y-axis, estimate the value of lim x l 0 f sxd.

 (b)  Check your answer in part (a) by evaluating f sxd for  
values of x that approach 0.

 47. (a)  Estimate the value of the limit lim x l 0 s1 1 xd1yx to 
five decimal places. Does this number look familiar?

 (b)  Illustrate part (a) by graphing the function 
y − s1 1 xd1yx.

 48. (a)  Graph the function f sxd − e x 1 ln | x 2 4 | for  
0 < x < 5. Do you think the graph is an accurate  
representation of f ?

 (b)  How would you get a graph that represents f  better?

 49. (a)  Evaluate the function f sxd − x 2 2 s2xy1000d for 
x − 1, 0.8, 0.6, 0.4, 0.2, 0.1, and 0.05, and guess the 
value of

lim 
x l 0

 Sx 2 2
2x

1000D

;

;
;

;

;

 (b)  Evaluate f sxd for x − 0.04, 0.02, 0.01, 0.005, 0.003, 
and 0.001. Guess again.

 50. (a)  Evaluate hsxd − stan x 2 xdyx 3 for x − 1, 0.5, 0.1, 
0.05, 0.01, and 0.005.

 (b) Guess the value of lim 
x l 0

 
tan x 2 x

x 3 .

 (c)  Evaluate hsxd for successively smaller values of x 
until you finally reach a value of 0 for hsxd. Are you 
still confident that your guess in part (b) is correct? 
Explain why you eventually obtained 0 values. (In 
Section 4.4 a method for evaluating this limit will be 
explained.)

 (d)  Graph the function h in the viewing rectangle f21, 1g 
by f0, 1g. Then zoom in toward the point where the 
graph crosses the y-axis to estimate the limit of hsxd 
as x approaches 0. Continue to zoom in until you 
observe distortions in the graph of h. Compare with 
the results of part (c).

 51.  Graph the function f sxd − sins!yxd of Example 4 in 
the viewing rectangle f21, 1g by f21, 1g. Then zoom in 
toward the origin several times. Comment on the behav-
ior of this function.

 52. Consider the function f sxd − tan 
1
x

.

 (a)  Show that f sxd − 0 for x −
1
!

, 
1

2!
, 

1
3!

, . . .

 (b)  Show that f sxd − 1 for x −
4
!

, 
4

5!
, 

4
9!

, . . .

 (c) What can you conclude about lim
x l 01

 tan 
1
x

 ?

 53.  Use a graph to estimate the equations of all the vertical 
asymptotes of the curve

y − tans2 sin xd 2! < x < !

 Then find the exact equations of these asymptotes.

 54.  In the theory of relativity, the mass of a particle with 
velocity v is

m −
m0

s1 2 v2yc2 

  where m0 is the mass of the particle at rest and c is the 
speed of light. What happens as v l c2?

 55.  (a)  Use numerical and graphical evidence to guess the 
value of the limit

lim
xl1

 
x3 2 1

sx 2 1

 (b)  How close to 1 does x have to be to ensure that the 
fun ction in part (a) is within a distance 0.5 of its limit?

;

;

;

;
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In Section 2.2 we used calculators and graphs to guess the values of limits, but we saw 
that such methods don’t always lead to the correct answer. In this section we use the fol-
lowing properties of limits, called the Limit Laws, to calculate limits.

 Limit Laws Suppose that c is a constant and the limits

lim
x l a

 f sxd    and    lim
x l a

 tsxd

exist. Then

1. lim
x l a

 f f sxd 1 tsxdg − lim
x l a

 f sxd 1 lim
x l a

 tsxd

2. lim
x l a

 f f sxd 2 tsxdg − lim
x l a

 f sxd 2 lim
x l a

 tsxd

3. lim
x l a

 fcf sxdg − c lim
x l a

 f sxd

4. lim
x l a

 f f sxd tsxdg − lim
x l a

 f sxd ? lim
x l a

 tsxd

5. lim
x l a

 
 f sxd
tsxd

−
lim
x l a 

f sxd

lim
xla

 tsxd
    if lim

x l a

 tsxd ± 0

These five laws can be stated verbally as follows:

 1. The limit of a sum is the sum of the limits.

 2. The limit of a difference is the difference of the limits.

 3.  The limit of a constant times a function is the constant times the limit of the 
function.

 4. The limit of a product is the product of the limits.

 5.  The limit of a quotient is the quotient of the limits (provided that the limit of 
the denominator is not 0).

It is easy to believe that these properties are true. For instance, if f sxd is close to L 
and tsxd is close to M, it is reasonable to conclude that f sxd 1 tsxd is close to L 1 M. 
This gives us an intuitive basis for believing that Law 1 is true. In Section 2.4 we give a 
precise definition of a limit and use it to prove this law. The proofs of the remaining laws 
are given in Appendix F.

EXAMPLE 1 Use the Limit Laws and the graphs of f  and t in Figure 1 to evaluate the 
following limits, if they exist.

(a) lim
x l 22

 f f sxd 1 5tsxdg      (b) lim
x l 1

 f f sxdtsxdg      (c) lim
x l 2

 
 f sxd
tsxd

SOLUTION  
(a) From the graphs of f  and t we see that

lim
x l 22

 f sxd − 1    and    lim
x l 22

 tsxd − 21

Sum Law

Difference Law

Constant Multiple Law

Product Law

Quotient Law

x

y

0

f

g
1

1

FIGURE 1 
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96 CHAPTER 2  Limits and Derivatives

Therefore we have

 lim
x l 22

 f f sxd 1 5tsxdg − lim
x l 22

 f sxd 1 lim
x l 22

 f5tsxdg    (by Limit Law 1)

 − lim
x l 22

 f sxd 1 5 lim
x l 22

 tsxd     (by Limit Law 3)

 − 1 1 5s21d − 24

(b) We see that lim x l 1 f sxd − 2. But lim x l 1 tsxd does not exist because the left and 
right limits are different:

lim
x l 12

tsxd − 22      lim
x l 11

tsxd − 21

So we can’t use Law 4 for the desired limit. But we can use Law 4 for the one-sided 
limits:

 lim
x l 12

 f f sxdtsxdg − lim
x l12

 f sxd ? lim
x l12

 tsxd − 2 ? s22d − 24

 lim
x l 11

 f f sxdtsxdg − lim
x l11

 f sxd ? lim
x l11

 tsxd − 2 ? s21d − 22

The left and right limits aren’t equal, so lim x l 1 f f sxdtsxdg does not exist.

(c) The graphs show that

lim
x l 2

 f sxd < 1.4    and    lim
x l 2

 tsxd − 0

Because the limit of the denominator is 0, we can’t use Law 5. The given limit does not 
exist because the denominator approaches 0 while the numerator approaches a nonzero 
number. Q

If we use the Product Law repeatedly with tsxd − f sxd, we obtain the following law.

6. lim
x l

 

a
 f f sxdgn − f lim

x l
 

a
 f sxdg n     where n is a positive integer

In applying these six limit laws, we need to use two special limits: 

7. lim
x l a

 c − c 8. lim
x l a

 x − a

These limits are obvious from an intuitive point of view (state them in words or draw 
graphs of y − c and y − x), but proofs based on the precise definition are requested in 
the exercises for Section 2.4.

If we now put f sxd − x in Law 6 and use Law 8, we get another useful special limit.

9. lim
x l a

 xn − an    where n is a positive integer

A similar limit holds for roots as follows. (For square roots the proof is outlined in 
Exercise 2.4.37.)

10.  lim
x l a

 sn x − sn a    where n is a positive integer

(If n is even, we assume that a . 0.)

Power Law
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Newton and Limits
Isaac Newton was born on Christmas 
Day in 1642, the year of Galileo’s death. 
When he entered Cambridge University 
in 1661 Newton didn’t know much 
mathematics, but he learned quickly 
by reading Euclid and Descartes and by 
attending the lectures of Isaac Barrow. 
Cam bridge was closed because of the 
plague in 1665 and 1666, and Newton 
returned home to reflect on what he 
had learned. Those two years were 
amazingly productive for at that time 
he made four of his major discoveries: 
(1) his repre senta tion of functions as 
sums of infinite series, including the 
binomial theorem; (2) his work on differ-
ential and integral calculus; (3) his laws 
of motion and law of universal gravita-
tion; and (4) his prism experi ments on 
the nature of light and color. Because of 
a fear of controversy and criticism, he 
was reluctant to publish his discoveries 
and it wasn’t until 1687, at the urging 
of the astronomer Halley, that Newton 
published Principia Mathematica. In 
this work, the great est scientific treatise 
ever written, Newton set forth his ver-
sion of calculus and used it to investi-
gate mechanics, fluid dynamics, and 
wave motion, and to explain the motion 
of planets and comets.

The beginnings of calculus are 
found in the calculations of areas and 
volumes by ancient Greek scholars such 
as Eudoxus and Archimedes. Although 
aspects of the idea of a limit are implicit 
in their “method of exhaustion,” Eudoxus 
and Archimedes never explicitly formu-
lated the concept of a limit. Like wise, 
mathematicians such as Cavalieri, Fer - 
mat, and Barrow, the immediate precur-
sors of Newton in the development of 
calculus, did not actually use limits. It 
was Isaac Newton who was the first to 
talk explicitly about limits. He explained 
that the main idea behind limits is that 
quantities “approach nearer than by 
any given difference.” Newton stated 
that the limit was the basic concept in 
calculus, but it was left to later mathe-
maticians like Cauchy to clarify his ideas 
about limits.

More generally, we have the following law, which is proved in Section 2.5 as a con-
sequence of Law 10.

11. lim 
x l

 

a
sn f sxd − sn lim

x l
 

a
 f sxd   where n is a positive integer

 fIf n is even, we assume that lim
x l

 

a
 f sxd . 0.g

 

EXAMPLE 2 Evaluate the following limits and justify each step.

(a) lim
x l

 

5
 s2x 2 2 3x 1 4d (b) lim

x l
 

22
 
x 3 1 2x 2 2 1

5 2 3x

SOLUTION

(a)  lim
x l

 

5
 s2x 2 2 3x 1 4d − lim

x l
 

5
 s2x 2 d 2 lim

x l
 

5
 s3xd 1 lim

x l
 

5
 4  (by Laws 2 and 1)

  − 2 lim
x l

 

5
 x 2 2 3 lim

x l
 

5
 x 1 lim

x l
 

5
 4   (by 3)

  − 2s52 d 2 3s5d 1 4   (by 9, 8, and 7)

  − 39

(b) We start by using Law 5, but its use is fully justified only at the final stage when we 
see that the limits of the numerator and denominator exist and the limit of the denomi-
nator is not 0.

  lim
x l

 

22
 
x 3 1 2x 2 2 1

5 2 3x
−

lim
x l

 

22
 sx 3 1 2x 2 2 1d

lim
x l

 

22
 s5 2 3xd    (by Law 5)

  
−

lim
x l

 

22 
x 3 1 2 lim

x l
 

22 x
2 2 lim

x l
 

22
 1

lim
x l

 

22
 5 2 3 lim

x l
 

22
 x    (by 1, 2, and 3)

  −
s22d3 1 2s22d2 2 1

5 2 3s22d
   (by 9, 8, and 7)

  − 2
1

11
 Q

NOTE If we let f sxd − 2x 2 2 3x 1 4, then f s5d − 39. In other words, we would 
have gotten the correct answer in Example 2(a) by substituting 5 for x. Similarly, direct 
substitution provides the correct answer in part (b). The functions in Example 2 are 
a polynomial and a rational function, respectively, and similar use of the Limit Laws 
proves that direct substitution always works for such functions (see Exercises 57 and 58). 
We state this fact as follows.

Direct Substitution Property If f  is a polynomial or a rational function and a is 
in the domain of f , then

lim
x l

 

a
 f sxd − f sad

Root Law
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Functions with the Direct Substitution Property are called continuous at a and will be 
studied in Section 2.5. However, not all limits can be evaluated by direct substitution, as 
the following examples show.

EXAMPLE 3 Find lim
xl1

 
x 2 2 1
x 2 1

.

SOLUTION Let f sxd − sx 2 2 1dysx 2 1d. We can’t find the limit by substituting x − 1 
 because f s1d isn’t defined. Nor can we apply the Quotient Law, because the limit of 
the denominator is 0. Instead, we need to do some preliminary algebra. We factor the 
numerator as a difference of squares:

x 2 2 1
x 2 1

−
sx 2 1dsx 1 1d

x 2 1

The numerator and denominator have a common factor of x 2 1. When we take the 
limit as x approaches 1, we have x ± 1 and so x 2 1 ± 0. Therefore we can cancel the 
common factor and then compute the limit by direct substitution as follows:

 lim
x l 1

 
x 2 2 1
x 2 1

− lim
x l 1

 
sx 2 1dsx 1 1d

x 2 1

 − lim
x l 1

 sx 1 1d

 − 1 1 1 − 2

The limit in this example arose in Example 2.1.1 when we were trying to find the  
tangent to the parabola y − x 2 at the point s1, 1d. Q

NOTE In Example 3 we were able to compute the limit by replacing the given func-
tion f sxd − sx 2 2 1dysx 2 1d by a simpler function, tsxd − x 1 1, with the same limit. 
This is valid because f sxd − tsxd except when x − 1, and in computing a limit as x 
approaches 1 we don’t consider what happens when x is actually equal to 1. In general, 
we have the following useful fact.

If f sxd − tsxd when x ± a, then lim
xla

 f sxd − lim
x la

 tsxd, provided the limits exist.

EXAMPLE 4 Find lim
x l1

 tsxd where 

tsxd − Hx 1 1
!

if  x ± 1
if  x − 1

SOLUTION Here t is defined at x − 1 and ts1d − !, but the value of a limit as x 
approaches 1 does not depend on the value of the function at 1. Since tsxd − x 1 1 for 
x ± 1, we have

 lim
x l 1

 tsxd − lim
x l 1

 sx 1 1d − 2 Q

Note that the values of the functions in Examples 3 and 4 are identical except when  
x − 1 (see Figure 2) and so they have the same limit as x approaches 1.

Notice that in Example 3 we do not 
have an infinite limit even though the 
denominator approaches 0 as x l 1. 
When both numerator and denominator 
approach 0, the limit may be infinite or 
it may be some finite value.

y=©

1 2 3

1

x

y

0

2

3

y=ƒ

1 2 3

1

x

y

0

2

3

FIGURE 2  
The graphs of the functions f  (from 
Example 3) and t (from Example 4)
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EXAMPLE 5 Evaluate lim
h l 0

 
s3 1 hd2 2 9

h
.

SOLUTION If we define 

Fshd −
s3 1 hd2 2 9

h

then, as in Example 3, we can’t compute lim h l 0 Fshd by letting h − 0 since Fs0d is  
undefined. But if we simplify Fshd algebraically, we find that

Fshd −
s9 1 6h 1 h 2 d 2 9

h
−

6h 1 h 2

h
−

hs6 1 hd
h

− 6 1 h

(Recall that we consider only h ± 0 when letting h approach 0.) Thus

 lim
h l 0

 
s3 1 hd2 2 9

h
− lim

h l 0
 s6 1 hd − 6 Q

EXAMPLE 6 Find lim
t l 0

 
st 2 1 9 2 3

t 2 .

SOLUTION We can’t apply the Quotient Law immediately, since the limit of the 
denominator is 0. Here the preliminary algebra consists of rationalizing the numerator:

 lim
t l 0

 
st 2 1 9 2 3

t 2 − lim
t l 0

 
st 2 1 9 2 3

t 2 ?
st 2 1 9 1 3

st 2 1 9 1 3

 − lim
t l 0

 
st 2 1 9d 2 9

t2(st 2 1 9 1 3)

  − lim
t l 0

 
t 2

t 2(st 2 1 9 1 3)

   − lim
t l 0

 
1

st 2 1 9 1 3

 −
1

slim
t l0

 st 2 1 9d 1 3

   −
1

3 1 3
−

1
6

This calculation confirms the guess that we made in Example 2.2.2. Q

Some limits are best calculated by first finding the left- and right-hand limits. The 
following theorem is a reminder of what we discovered in Section 2.2. It says that a two-
sided limit exists if and only if both of the one-sided limits exist and are equal.

1   Theorem lim
x l a

 f sxd − L    if and only if    lim
x l

 

a2
 f sxd − L − lim

x l
 

a1
 f sxd

Here we use several properties of 
limits (5, 1, 10, 7, 9).
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When computing one-sided limits, we use the fact that the Limit Laws also hold for 
one-sided limits.

EXAMPLE 7 Show that lim
x l 0

 | x | − 0.

SOLUTION Recall that

| x | − Hx
2x

if  x > 0
if  x , 0

Since | x | − x for x . 0, we have

lim
x l

 

01
 | x | − lim

x l
 

01
 x − 0

For x , 0 we have | x | − 2x and so 

lim
x l

 

02
 | x | − lim

x l
 

02
 s2xd − 0

Therefore, by Theorem 1, 
 lim

x l 0
 | x | − 0� Q

EXAMPLE 8 Prove that lim
x l 0

 | x |
x

 does not exist.

SOLUTION Using the facts that | x | − x when x . 0 and | x | − 2x when  x , 0, we 
have

 lim
x l

 

01
 | x |

x
− lim

x l
 

01
 
x
x

− lim
x l

 

01
 1 − 1

 lim
x l

 

02
 | x |

x
− lim

x l
 

02
 
2x
x

− lim
x l

 

02
 s21d − 21

Since the right- and left-hand limits are different, it follows from Theorem 1 that 
lim x l 0 | x |yx does not exist. The graph of the function f sxd − | x |yx is shown in Fig-
ure 4 and supports the one-sided limits that we found.� Q

EXAMPLE 9 If

f sxd − Hsx 2 4 

8 2 2x
if  x . 4
if  x , 4

determine whether lim x l 4 f sxd exists.

SOLUTION Since f sxd − sx 2 4  for x . 4, we have

lim
x l

 

41
 f sxd − lim

x l
 

41
 sx 2 4 − s4 2 4 − 0

Since f sxd − 8 2 2x for x , 4, we have

lim
x l

 

42
 f sxd − lim

x l
 

42
 s8 2 2xd − 8 2 2 ? 4 − 0

The right- and left-hand limits are equal. Thus the limit exists and

lim
x l 4

 f sxd − 0

The graph of f  is shown in Figure 5.� Q

1

_1
x

y

0

y= |x|
x

FIGURE 4 

It is shown in Example 2.4.3 that 
lim x l 01 sx − 0.

4 x

y

0

FIGURE 5 

The result of Example 7 looks plausible  
from Figure 3.

y

x0

y=|x|

FIGURE 3 
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EXAMPLE 10 The greatest integer function is defined by v x b − the largest integer 

that is less than or equal to x. (For instance, v4 b − 4, v4.8b − 4, v! b − 3, vs2 b − 1,

v21
2b − 21.) Show that lim x l3 v x b  does not exist.

SOLUTION The graph of the greatest integer function is shown in Figure 6. Since  
 v x b − 3 for 3 < x , 4, we have

lim
x l

 

31
 v x b − lim

x l
 

31
 3 − 3

Since v x b − 2 for 2 < x , 3, we have

lim
x l

 

32
 v x b − lim

x l
 

32
 2 − 2

Because these one-sided limits are not equal, lim xl3 v x b  does not exist by Theorem 1. Q

The next two theorems give two additional properties of limits. Their proofs can be 
found in Appendix F.

2   Theorem If f sxd < tsxd when x is near a (except possibly at a) and the limits 
of f  and t both exist as x approaches a, then

lim
x l a

 f sxd < lim
x l a

 tsxd

3   The Squeeze Theorem If f sxd < tsxd < hsxd when x is near a (except  
possibly at a) and

lim
x l a

 f sxd − lim
x l a

 hsxd − L

then lim
x l a

 tsxd − L

The Squeeze Theorem, which is sometimes called the Sandwich Theorem or the 
Pinching Theorem, is illustrated by Figure 7. It says that if tsxd is squeezed between 
f sxd and hsxd near a, and if f  and h have the same limit L at a, then t is forced to have 
the same limit L at a.

EXAMPLE 11 Show that lim
x l 0

 x 2 sin 
1
x

− 0.

SOLUTION First note that we cannot use

 lim
x l 0

 x 2 sin 
1
x

− lim
x l 0

 x 2 ? lim
x l 0

sin 
1
x

because lim x l 0 sins1yxd does not exist (see Example 2.2.4).
Instead we apply the Squeeze Theorem, and so we need to find a function f  smaller 

than tsxd − x 2 sins1yxd and a function h bigger than t such that both f sxd and hsxd
approach 0. To do this we use our knowledge of the sine function. Because the sine of 

Other notations for v x b  are fxg and :x;. 
The greatest integer function is 
sometimes called the floor function.

y=[ x]

1 2 3

1
2
3
4

4 5 x

y

0

FIGURE 6  
 Greatest integer function

0 x

y

a

L

f

g
h

FIGURE 7 
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102 CHAPTER 2  Limits and Derivatives

 4. lim
xl 21

 sx 4 2 3xdsx 2 1 5x 1 3d

 5. lim
t l 22

 
t 4 2 2

2t 2 2 3t 1 2
 6. lim

ul
 

22
 su 4 1 3u 1 6 

 7. lim
x l 8

 s1 1 s3 x ds2 2 6x 2 1 x 3d 8. lim
t l 2

 S t 2 2 2
t 3 2 3t 1 5D2

 9. lim
x l 2

 Î 2x 2 1 1
3x 2 2

 

 10. (a) What is wrong with the following equation?

x 2 1 x 2 6
x 2 2

− x 1 3

 (b) In view of part (a), explain why the equation

lim
x l

 

2
 
x 2 1 x 2 6

x 2 2
− lim

x l
 

2
 sx 1 3d

is correct.

11–32 Evaluate the limit, if it exists.

 11. lim
x l

 

5
 
x 2 2 6x 1 5

x 2 5
 12. lim

x l
 

23
 

x 2 1 3x
x 2 2 x 2 12

  

 13. lim
x l

 

5
 
x 2 2 5x 1 6

x 2 5
 14. lim

x l
 

4
 

x 2 1 3x
x 2 2 x 2 12

 15. lim
t l

 

23
 

t 2 2 9
2t 2 1 7t 1 3

 16. lim
x l

 

21
 
2x 2 1 3x 1 1
x 2 2 2x 2 3

 17. lim
h l

 

0
 
s25 1 hd2 2 25

h
 18. lim

h l
 

0
 
s2 1 hd3 2 8

h

 1.  Given that

lim
x l

 

2
 f sxd − 4   lim

x l
 

2
 tsxd − 22   lim

x l
 

2
 hsxd − 0

   find the limits that exist. If the limit does not exist, explain why.
 (a) lim

x l
 

2
 f f sxd 1 5tsxdg (b) lim

x l
 

2
 ftsxdg3

 (c) lim
x l 2

 sf sxd  (d) lim
x l

 

2
 
3f sxd
tsxd

 (e) lim
x l

 

2
 
tsxd
hsxd

 (f ) lim
x l

 

2
 
tsxdhsxd

f sxd

 2.  The graphs of f  and t are given. Use them to evaluate each 
limit, if it exists. If the limit does not exist, explain why.

 (a) lim
x l

 

2
 f f sxd 1 tsxdg (b) lim

x l
 

0
 f f sxd 2 tsxdg

 (c) lim
x l

 

21
 f f sxdtsxdg (d) lim

x l
 

3
 

f sxd
tsxd

 (e) lim
x l

 

2
 fx 2 f sxdg (f ) f s21d 1 lim

x l
 

21
 tsxd

y=©

0 1

1

y=ƒ

0 1

1

y y

x x

 3–9 Evaluate the limit and justify each step by indicating the 
appropriate Limit Law(s).

 3. lim
x l

 

3
 s5x 3 2 3x 2 1 x 2 6d

any number lies between 21 and 1, we can write.

4   21 < sin 
1
x

< 1

Any inequality remains true when multiplied by a positive number. We know that 
x 2 > 0 for all x and so, multiplying each side of the inequalities in (4) by x 2, we get

2x 2 < x 2 sin 
1
x

< x 2

as illustrated by Figure 8. We know that

lim
x l 0

 x 2 − 0    and    lim
x l 0

 s2x 2 d − 0

Taking f sxd − 2x 2, tsxd − x 2 sins1yxd, and hsxd − x 2 in the Squeeze Theorem, we 
obtain

 lim
x l 0

 x 2 sin 
1
x

− 0 Q

y=≈

y=_≈

0 x

y

FIGURE 8 
y − x 2 sins1yxd
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 40. Prove that lim
x l

 

01
 sx  esins!yxd − 0.

41–46 Find the limit, if it exists. If the limit does not exist, 
explain why.

 41. lim
x l 3

 s2x 1  | x 2 3 |d 42. lim
x l

 

26
 
2x 1 12

| x 1 6 |

 43. lim
x l

 

0.52
 

2x 2 1

| 2x 3 2 x 2 |  44. lim
x l

 

22
 
2 2 | x |
2 1 x

 45. lim
x l

 

02
 S 1

x
2

1

| x | D 46. lim
x l

 

01
 S 1

x
2

1

| x | D
 47. The signum (or sign) function, denoted by sgn, is defined by 

sgn x − H21
0
1

if  x , 0
if  x − 0
if  x . 0

 (a) Sketch the graph of this function.
 (b)  Find each of the following limits or explain why it does 

not exist.
 (i) lim

x l
 

01
 sgn x (ii) lim

x l
 

02
 sgn x

 (iii) lim
x l 0

 sgn x (iv) lim
x l 0

 | sgn x |
 48. Let tsxd − sgnssin xd .
 (a)  Find each of the following limits or explain why it does 

not exist.
 (i) lim

x l
 

01
 tsxd (ii) lim

x l02
  tsxd (iii) lim

x l
 

0
 tsxd

 (iv) lim
x l

 

!1
 tsxd (v) lim

x l!2
  tsxd (vi) lim

x l
 

! 
 tsxd

 (b)  For which values of a does lim x l a tsxd not exist?
 (c) Sketch a graph of t.

 49. Let tsxd −
x 2 1 x 2 6

| x 2 2 | .

 (a) Find
 (i) lim

x l
 

21
 tsxd (ii) lim

x l
 

22
 tsxd

 (b) Does limx l 2 tsxd exist?
 (c) Sketch the graph of t.

 50. Let

f sxd − Hx 2 1 1
sx 2 2d2

if x , 1
if x > 1

 (a) Find lim x l12 f sxd and lim x l11  f sxd.
 (b) Does lim x l1 f sxd exist?
 (c) Sketch the graph of f.

 51. Let

Bstd − H4 2 1
2 t

st 1 c 

if t , 2

if t > 2

  Find the value of c so that lim
t l 2

  Bstd exists.

 19. lim
x l

 

22
 

x 1 2
x 3 1 8

 20. lim
t l 1

 
t 4 2 1
t 3 2 1

 21. lim
h l 0

 
s9 1 h 2 3

h
 22. lim

ul 2
 
s4u 1 1 2 3

u 2 2

 23. lim
x l

 

3
 

1
x

2
1
3

x 2 3
 24. lim

h l
 

0
 
s3 1 hd21 2 321

h

 25. lim
t l 0

 
s1 1 t 2 s1 2 t 

t
 26. lim

t l
 

0
 S 1

t
2

1
t 2 1 tD

 27. lim
x l 16

 
4 2 sx 

16x 2 x 2  28. lim
x l

 

2
 

x 2 2 4x 1 4
x 4 2 3x 2 2 4

 29. lim
t l 0

 S 1
ts1 1 t 

2
1
t D 30. lim

xl24
 
sx 2 1 9 2 5

x 1 4

 31. lim
h l 0

 
sx 1 hd3 2 x 3

h
 32. lim

h l 0
 

1
sx 1 hd2 2

1
x 2

h

 33. (a) Estimate the value of

lim
x l

 

0
 

x

s1 1 3x 2 1

   by graphing the function f sxd − xyss1 1 3x 2 1d.
 (b)  Make a table of values of f sxd for x close to 0 and guess 

the value of the limit.
 (c)  Use the Limit Laws to prove that your guess is correct.

 34.  (a) Use a graph of

f sxd −
s3 1 x 2 s3 

x

  to estimate the value of limx l 0 f sxd to two decimal 
places.

 (b)  Use a table of values of f sxd to estimate the limit to 
four decimal places.

 (c)  Use the Limit Laws to find the exact value of the limit.

 35.  Use the Squeeze Theorem to show that 
limx l 0 sx 2 cos 20!xd − 0. Illustrate by graphing the 
functions f sxd − 2x 2, tsxd − x 2 cos 20!x, and hsxd − x 2 
on the same screen.

 36.  Use the Squeeze Theorem to show that

lim
x l

 

0
 sx 3 1 x 2  sin 

!

x
− 0

   Illustrate by graphing the functions f, t, and h (in the 
notation of the Squeeze Theorem) on the same screen.

 37.  If 4x 2 9 < f sxd < x 2 2 4x 1 7 for x > 0, find lim
x l 4

  f sxd.

 38. If 2x < tsxd < x 4 2 x 2 1 2 for all x, evaluate lim
x l 1

 tsxd.

 39. Prove that lim
x l

 

0
 x 4 cos 

2
x

− 0.

;

;

;

;
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The intuitive definition of a limit given in Section 2.2 is inadequate for some purposes 
because such phrases as “x is close to 2” and “ f sxd gets closer and closer to L” are vague. 
In order to be able to prove conclusively that

lim
x l 0

 Sx 3 1
cos 5x
10,000D − 0.0001    or    lim

x l 0
 
sin x

x
− 1

we must make the definition of a limit precise.

 59.  If lim
x l 1

 
f sxd 2 8

x 2 1
− 10, find lim

x l 1
 f sxd.

 60. If lim
x l 0

 
f sxd
x 2 − 5, find the following limits.

 (a) lim
x l 0

 f sxd (b) lim
x l 0

 
f sxd

x
 61. If

f sxd − Hx 2

0
if x is rational
if x is irrational

prove that lim x l 0 f sxd − 0.

 62.  Show by means of an example that limx l a f f sxd 1 tsxdg may 
exist even though neither lim x l a f sxd nor limx l a tsxd exists.

 63.  Show by means of an example that limx l a f f sxd tsxdg may 
exist even though neither limx l a f sxd nor limx l a tsxd exists.

 64. Evaluate lim
x l 2

 
s6 2 x 2 2

s3 2 x 2 1
.

 65. Is there a number a such that

lim
x l

 

22
 
3x 2 1 ax 1 a 1 3

x 2 1 x 2 2
exists? If so, find the value of a and the value of the limit.

 66.  The figure shows a fixed circle C1 with equation 
sx 2 1d2 1 y 2 − 1 and a shrinking circle C2 with radius r 
and center the origin. P is the point s0, rd, Q is the upper 
point of intersection of the two circles, and R is the point of 
intersection of the line PQ and the x-axis. What happens to R 
as C2 shrinks, that is, as r l 01?

x

y

0

P Q
C™

C¡
R

 52. Let

tsxd −   

x
3
2 2 x 2 
x 2 3

  if  x , 1
  if  x − 1
  if  1 , x < 2
  if  x . 2

 (a) Evaluate each of the following, if it exists.
 (i) lim

x l
 

12
 tsxd (ii) lim

x l 1
 tsxd (iii) ts1d

 (iv) lim
x l

 

22
 tsxd (v) lim

x l 21

 tsxd (vi) lim
x l 2

 tsxd

 (b) Sketch the graph of t.

 53. (a)  If the symbol v b  denotes the greatest integer function 
defined in Example 10, evaluate

 (i) lim
x l

 

221
 v x b  (ii) lim

x l
 

22
 v x b  (iii) lim

x l
 

22.4
 v x b

 (b) If n is an integer, evaluate
 (i) lim

x l
 

n2
 v x b  (ii) lim

x l n1 
 v x b

 (c) For what values of a does limx l a v x b  exist?

 54.  Let f sxd − vcos x b , 2! < x < !.
 (a) Sketch the graph of f.
 (b) Evaluate each limit, if it exists.
 (i) lim

x l 0
 f sxd (ii) lim

x l
 s!y2d2

 f sxd

 (iii) lim
x l

 s!y2d1 
f sxd (iv) lim

x l
 

!y2
 f sxd

 (c) For what values of a does limx l a f sxd exist?

 55.  If f sxd − v x b 1 v2x b , show that limx l 2 f sxd exists but is 
not equal to f s2d.

 56. In the theory of relativity, the Lorentz contraction formula

L − L0 s1 2 v 2yc 2 

expresses the length L of an object as a function of its velocity 
v with respect to an observer, where L0 is the length of the 
object at rest and c is the speed of light. Find limv l

 

c2 L and 
interpret the result. Why is a left-hand limit necessary?

 57. If p is a polynomial, show that lim xl a psxd − psad.

 58.  If r is a rational function, use Exercise 57 to show that 
limx l a rsxd − rsad for every number a in the domain of r.
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To motivate the precise definition of a limit, let’s consider the function

f sxd − H2x 2 1
6

if  x ± 3
if  x − 3

Intuitively, it is clear that when x is close to 3 but x ± 3, then f sxd is close to 5, and so 
lim x l3 f sxd − 5.

To obtain more detailed information about how f sxd varies when x is close to 3, we 
ask the following question:

How close to 3 does x have to be so that f sxd differs from 5 by less than 0.l?

The distance from x to 3 is | x 2 3 | and the distance from f sxd to 5 is | f sxd 2 5 |, so our 
problem is to find a number " such that

| f sxd 2 5 | , 0.1    if    | x 2 3 | , "  but x ± 3

If | x 2 3 | . 0, then x ± 3, so an equivalent formulation of our problem is to find a 
number " such that

| f sxd 2 5 | , 0.1    if    0 , | x 2 3 | , "

Notice that if 0 , | x 2 3 | , s0.1dy2 − 0.05, then

| f sxd 2 5 | − | s2x 2 1d 2 5 | − | 2x 2 6 | − 2| x 2 3 | , 2s0.05d − 0.1

that is, | f sxd 2 5 | , 0.1    if    0 , | x 2 3 | , 0.05

Thus an answer to the problem is given by " − 0.05; that is, if x is within a distance of 
0.05 from 3, then f sxd will be within a distance of 0.1 from 5.

If we change the number 0.l in our problem to the smaller number 0.01, then by using 
the same method we find that f sxd will differ from 5 by less than 0.01 provided that x 
differs from 3 by less than (0.01)y2 − 0.005:

| f sxd 2 5 | , 0.01    if    0 , | x 2 3 | , 0.005

Similarly,

| f sxd 2 5 | , 0.001    if    0 , | x 2 3 | , 0.0005

The numbers 0.1, 0.01, and 0.001 that we have considered are error tolerances that we 
might allow. For 5 to be the precise limit of f sxd as x approaches 3, we must not only be 
able to bring the difference between f sxd and 5 below each of these three numbers; we 
must be able to bring it below any positive number. And, by the same reasoning, we can! 
If we write « (the Greek letter epsilon) for an arbitrary positive number, then we find as 
before that

1    | f sxd 2 5 | , «    if    0 , | x 2 3 | , " −
«

2

This is a precise way of saying that f sxd is close to 5 when x is close to 3 because (1) says 
that we can make the values of f sxd within an arbitrary distance « from 5 by restricting 
the val ues of x to be within a distance «y2 from 3 (but x ± 3).

It is traditional to use the Greek letter  
" (delta) in this situation.
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106 CHAPTER 2  Limits and Derivatives

Note that (1) can be rewritten as follows:

if  3 2 ! , x , 3 1 !  sx ± 3d    then    5 2 « , f sxd , 5 1 «

and this is illustrated in Figure 1. By taking the values of x (± 3) to lie in the interval 
s3 2 !, 3 1 !d we can make the values of f sxd lie in the interval s5 2 «, 5 1 «d.

Using (1) as a model, we give a precise definition of a limit.

2   Precise Definition of a Limit Let f  be a function defined on some open 
interval that contains the number a, except possibly at a itself. Then we say that  
the limit of f sxd as x approaches a is L, and we write

lim
x l a

  f sxd − L

if for every number « . 0 there is a number ! . 0 such that

if  0 , | x 2 a | , !    then    | f sxd 2 L | , «

Since | x 2 a | is the distance from x to a and | f sxd 2 L | is the distance from f sxd to 
L, and since « can be arbitrarily small, the definition of a limit can be expressed in words 
as follows:

lim x l a f sxd 5 L means that the distance between f sxd and L can be made arbitrarily small 
by requiring that the distance from x to a be sufficiently small (but not 0).

Alternatively,

lim x l a f sxd 5 L means that the values of f sxd can be made as close as we please to L  
by requiring x to be close enough to a (but not equal to a).

We can also reformulate Definition 2 in terms of intervals by observing that the 
inequality | x 2 a | , ! is equivalent to 2! , x 2 a , !, which in turn can be writ-
ten as a 2 ! , x , a 1 !. Also 0 , | x 2 a | is true if and only if x 2 a ± 0, that is, 
x ± a. Similarly, the inequality | f sxd 2 L | , « is equivalent to the pair of inequalities 
L 2 « , f sxd , L 1 «. Therefore, in terms of intervals, Definition 2 can be stated as 
follows:

lim x l a f sxd 5 L means that for every « . 0 (no matter how small « is) we can find 
! . 0 such that if x lies in the open interval sa 2 !, a 1 !d and x ± a, then f sxd lies in  
the open interval sL 2 «, L 1 «d.

We interpret this statement geometrically by representing a function by an arrow dia-
gram as in Figure 2, where f  maps a subset of R onto another subset of R.

x a f(a) ƒ

f

The definition of limit says that if any small interval sL 2 «, L 1 «d is given around L,  
then we can find an interval sa 2 !, a 1 !d around a such that f  maps all the points in 
sa 2 !, a 1 !d (except possibly a) into the interval sL 2 «, L 1 «d. (See Figure 3.)

0 x

y

5+∑
5

5-∑

3
3+∂3-∂

ƒ
is in
here

when x is in here
(x≠3)

FIGURE 1 

FIGURE 2 
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a-∂ a

ƒ

a+∂

x
f

L-∑ L L+∑

Another geometric interpretation of limits can be given in terms of the graph of a 
function. If « . 0 is given, then we draw the horizontal lines y 5 L 1 « and y 5 L 2 « 
and the graph of f. (See Figure 4.) If lim x l a f sxd 5 L, then we can find a number ! . 0 
such that if we restrict x to lie in the interval sa 2 !, a 1 !d and take x ± a, then the 
curve y 5 f sxd lies between the lines y 5 L 2 « and y 5 L 1 «. (See Figure 5.) You can 
see that if such a ! has been found, then any smaller ! will also work.

It is important to realize that the process illustrated in Figures 4 and 5 must work 
for every positive number «, no matter how small it is chosen. Figure 6 shows that if a 
smaller « is chosen, then a smaller ! may be required.

0 x

y

a

y=L+∑

y=L-∑

a-∂ a+∂

∑
∑

L

when x is in here
(x≠ a)

ƒ
is in
here

0 x

y

a

y=L+∑

y=L-∑

∑
∑

L

y=ƒ

L+∑

L-∑

0 x

y

a

y=L+∑

y=L-∑

a-∂ a+∂

EXAMPLE 1 Since f sxd − x 3 2 5x 1 6 is a polynomial, we know from the Direct 
Substitution Property that lim x l1 f sxd − f s1d − 13 2 5s1d 1 6 − 2. Use a graph to 
find a number ! such that if x is within ! of 1, then y is within 0.2 of 2, that is,

if    | x 2 1 | , !    then    | sx3 2 5x 1 6d 2 2 | , 0.2

In other words, find a number ! that corresponds to « 5 0.2 in the definition of a limit 
for the function f sxd 5 x3 2 5x 1 6 with a 5 1 and L 5 2.

SOLUTION A graph of f  is shown in Figure 7; we are interested in the region near the 
point s1, 2d. Notice that we can rewrite the inequality

 | sx3 2 5x 1 6d 2 2 | , 0.2

as 20.2 , sx 3 2 5x 1 6d 2 2 , 0.2

or equivalently 1.8 , x3 2 5x 1 6 , 2.2

So we need to determine the values of x for which the curve y 5 x3 2 5x 1 6 lies 
between the horizontal lines y 5 1.8 and y 5 2.2. Therefore we graph the curves 
y 5 x3 2 5x 1 6, y 5 1.8, and y 5 2.2 near the point s1, 2d in Figure 8. Then we 

FIGURE 4 FIGURE 5 FIGURE 6

15

_5

_3 3

FIGURE 7 

y=˛-5x+6
y=2.2

y=1.8

(1, 2)

0.8 1.2

2.3

1.7

FIGURE 8 

FIGURE 3 
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108 CHAPTER 2  Limits and Derivatives

use the cursor to estimate that the x-coordinate of the point of intersection of the line 
y 5 2.2 and the curve y 5 x3 2 5x 1 6 is about 0.911. Similarly, y 5 x3 2 5x 1 6 
intersects the line y 5 1.8 when x < 1.124. So, rounding toward 1 to be safe, we can 
say that

if    0.92 , x , 1.12    then    1.8 , x3 2 5x 1 6 , 2.2

This interval s0.92, 1.12d is not symmetric about x 5 1. The distance from x 5 1 to the 
left endpoint is 1 2 0.92 5 0.08 and the distance to the right endpoint is 0.12. We can 
choose ! to be the smaller of these numbers, that is, ! 5 0.08. Then we can rewrite our 
inequalities in terms of distances as follows:

if    | x 2 1 | , 0.08    then    | sx3 2 5x 1 6d 2 2 | , 0.2

This just says that by keeping x within 0.08 of 1, we are able to keep f sxd within 0.2  
of 2.

Although we chose ! 5 0.08, any smaller positive value of ! would also have 
worked. Q

The graphical procedure in Example 1 gives an illustration of the definition for 
« 5 0.2, but it does not prove that the limit is equal to 2. A proof has to provide a ! for 
every «.

In proving limit statements it may be helpful to think of the definition of limit as a 
challenge. First it challenges you with a number «. Then you must be able to produce a 
suitable !. You have to be able to do this for every « . 0, not just a particular «.

Imagine a contest between two people, A and B, and imagine yourself to be B. Person 
A stipulates that the fixed number L should be approximated by the values of f sxd to within 
a degree of accuracy « (say, 0.01). Person B then responds by finding a number ! such 
that if 0 , | x 2 a | , !, then | f sxd 2 L | , «. Then A may become more exacting and 
challenge B with a smaller value of « (say, 0.0001). Again B has to respond by finding a 
corresponding !. Usually the smaller the value of «, the smaller the corresponding value 
of ! must be. If B always wins, no matter how small A makes «, then lim x l a f sxd 5 L.

EXAMPLE 2 Prove that lim
x l3

s4x 2 5d − 7.

SOLUTION 
1. Preliminary analysis of the problem (guessing a value for !). Let « be a given 

positive number. We want to find a number ! such that

if    0 , | x 2 3 | , !    then    | s4x 2 5d 2 7 | , «

But | s4x 2 5d 2 7 | 5 | 4x 2 12 | 5 | 4sx 2 3d | 5 4| x 2 3 |. Therefore we want !  
such that

if    0 , | x 2 3 | , !    then    4| x 2 3 | , «

that is, if    0 , | x 2 3 | , !    then    | x 2 3 | ,
«

4

This suggests that we should choose ! 5 «y4.

2. Proof (showing that this ! works). Given « . 0, choose ! 5 «y4. If 
0 , | x 2 3 | , !, then

| s4x 2 5d 2 7 | − | 4x 2 12 | − 4| x 2 3 | , 4! − 4S «

4D − «

TEC In Module 2.4/2.6 you can 
explore the precise definition of a limit 
both graphically and numerically.
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Thus
if    0 , | x 2 3 | , !    then    | s4x 2 5d 2 7 | , «

Therefore, by the definition of a limit,

lim
x l3

 s4x 2 5d − 7 

This example is illustrated by Figure 9.

FIGURE 9

y

0 x

7+∑
7

7-∑

3-∂ 3+∂
3

y=4x-5

 Q

Note that in the solution of Example 2 there were two stages—guessing and proving.  
We made a preliminary analysis that enabled us to guess a value for !. But then in the 
second stage we had to go back and prove in a careful, logical fashion that we had made 
a correct guess. This procedure is typical of much of mathematics. Sometimes it is neces-
sary to first make an intelligent guess about the answer to a problem and then prove that 
the guess is correct.

The intuitive definitions of one-sided limits that were given in Section 2.2 can be pre-
cisely reformulated as follows.

3   Definition of Left-Hand Limit 

lim
x l

 

a2
 f sxd − L 

  if for every number « . 0 there is a number ! . 0 such that

 if    a 2 ! , x , a    then    | f sxd 2 L | , «

4   Definition of Right-Hand Limit 

 lim
x la1

 f sxd − L 

  if for every number « . 0 there is a number ! . 0 such that

 if    a , x , a 1 !    then    | f sxd 2 L | , «

Notice that Definition 3 is the same as Definition 2 except that x is restricted to lie in 
the left half sa 2 !, ad of the interval sa 2 !, a 1 !d. In Definition 4, x is restricted to lie 
in the right half sa, a 1 !d of the interval sa 2 !, a 1 !d.

Cauchy and Limits
After the invention of calculus in the 
17th century, there followed a period 
of free development of the subject in 
the 18th century. Mathematicians like 
the Bernoulli brothers and Euler were 
eager to exploit the power of calculus 
and boldly explored the consequences 
of this new and wonderful mathemati-
cal theory without worrying too much 
about whether their proofs were com-
pletely correct.
  The 19th century, by contrast, was the 
Age of Rigor in mathematics. There was 
a movement to go back to the founda-
tions of the subject—to provide careful 
definitions and rigorous proofs. At the 
forefront of this movement was the 
French mathematician Augustin-Louis 
Cauchy (1789–1857), who started out as 
a military engineer before becoming a 
mathematics professor in Paris. Cauchy 
took Newton’s idea of a limit, which was 
kept alive in the 18th century by the 
French mathematician Jean d’Alembert, 
and made it more precise. His definition 
of a limit reads as follows: “When the 
successive values attributed to a vari-
able approach indefinitely a fixed value 
so as to end by differing from it by as 
little as one wishes, this last is called the 
limit of all the others.” But when Cauchy 
used this definition in examples and 
proofs, he often employed delta-epsilon 
inequalities similar to the ones in this 
section. A typical Cauchy proof starts 
with: “Designate by ! and « two very 
small numbers; . . .” He used « because 
of the correspondence between epsi-
lon and the French word erreur and ! 
because delta corresponds to différence. 
Later, the German mathematician Karl 
Weierstrass (1815–1897) stated the 
definition of a limit exactly as in our 
Definition 2.
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EXAMPLE 3 Use Definition 4 to prove that lim
x l 01

 sx − 0.

SOLUTION 
1. Guessing a value for !. Let « be a given positive number. Here a 5 0 and L 5 0, 

so we want to find a number ! such that

 if    0 , x , !    then     | sx 2 0 | , «

that is, if    0 , x , !    then    sx , «

or, squaring both sides of the inequality sx , «, we get

if    0 , x , !    then    x , «2

This suggests that we should choose ! 5 «2.

2. Showing that this ! works. Given « . 0, let ! 5 «2. If 0 , x , !, then

sx , s! 5 s« 2 5 «

so | sx 2 0 | , « 

According to Definition 4, this shows that limx l 01 sx − 0. Q

EXAMPLE 4 Prove that lim
x l 3

 x2 5 9.

SOLUTION 
1. Guessing a value for !. Let « . 0 be given. We have to find a number ! . 0  

such that

if    0 , | x 2 3 | , !    then    | x2 2 9 | , «

To connect | x2 2 9 | with | x 2 3 | we write | x2 2 9 | 5 | sx 1 3dsx 2 3d |. Then  
we want

if    0 , | x 2 3 | , !    then    | x 1 3 | | x 2 3 | , «

Notice that if we can find a positive constant C such that | x 1 3 | , C, then 

| x 1 3 | | x 2 3 | , C| x 2 3 |
and we can make C| x 2 3 | , « by taking | x 2 3 | , «yC, so we could choose 
! − «yC.

We can find such a number C if we restrict x to lie in some interval centered at 3. 
In fact, since we are interested only in values of x that are close to 3, it is reasonable 
to assume that x is within a distance l from 3, that is, | x 2 3 | , 1. Then 2 , x , 4, 
so 5 , x 1 3 , 7. Thus we have | x 1 3 | , 7, and so C 5 7 is a suitable choice for 
the constant.

But now there are two restrictions on | x 2 3 |, namely

| x 2 3 | , 1    and    | x 2 3 | ,
«

C
5

«

7

To make sure that both of these inequalities are satisfied, we take ! to be the smaller of 
the two numbers 1 and «y7. The notation for this is ! 5 minh1, «y7j.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 2.4  The Precise Definition of a Limit 111

2. Showing that this ! works. Given « . 0, let ! 5 minh1, «y7j. If
0 , | x 2 3 | , !, then | x 2 3 | , 1  ?  2 , x , 4  ?  | x 1 3 | , 7 (as in part l).
We also have | x 2 3 | , «y7, so

| x 2 2 9 | − | x 1 3 | | x 2 3 | , 7 ?
«

7
− «

This shows that lim x l3 x2 5 9. Q

As Example 4 shows, it is not always easy to prove that limit statements are true  
using the «, ! definition. In fact, if we had been given a more complicated function such 
as f sxd 5 s6x2 2 8x 1 9dys2x2 2 1d, a proof would require a great deal of ingenuity. 
Fortunately this is unnecessary because the Limit Laws stated in Section 2.3 can be 
proved using Definition 2, and then the limits of complicated functions can be found 
rigorously from the Limit Laws without resorting to the definition directly.

For instance, we prove the Sum Law: If lim x l a f sxd 5 L and lim x l a tsxd 5 M both 
exist, then

lim
x l a

 f f sxd 1 tsxdg − L 1 M

The remaining laws are proved in the exercises and in Appendix F.

PROOF OF THE SUM LAW Let « . 0 be given. We must find ! . 0 such that

if    0 , | x 2 a | , !    then    | f sxd 1 tsxd 2 sL 1 Md | , «

Using the Triangle Inequality we can write

5    | f sxd 1 tsxd 2 sL 1 Md | 5 | s f sxd 2 Ld 1 stsxd 2 Md |
 < | f sxd 2 L | 1 | tsxd 2 M |

We make | f sxd 1 tsxd 2 sL 1 Md | less than « by making each of the terms | f sxd 2 L | 
and | tsxd 2 M | less than «y2.

Since «y2 . 0 and lim x l a f sxd 5 L, there exists a number !1 . 0 such that

if    0 , | x 2 a | , !1    then    | f sxd 2 L | ,
«

2

Similarly, since limx l a tsxd − M, there exists a number ! 2 . 0 such that

if    0 , | x 2 a | , ! 2    then    | tsxd 2 M | ,
«

2

Let ! − minh!1, !2j, the smaller of the numbers !1 and ! 2. Notice that

if    0 , | x 2 a | , !  then  0 , | x 2 a | , !1  and  0 , | x 2 a | , ! 2

and so | f sxd 2 L | ,
«

2
    and    | tsxd 2 M | ,

«

2
Therefore, by (5),

 | f sxd 1 tsxd 2 sL 1 Md | < | f sxd 2 L | 1 | tsxd 2 M |
 ,

«

2
1

«

2
5 «

Triangle Inequality:

| a 1 b | < | a | 1 | b |
(See Appendix A).

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



112 CHAPTER 2  Limits and Derivatives

To summarize,

if    0 , | x 2 a | , !    then    | f sxd 1 tsxd 2 sL 1 Md | , «

Thus, by the definition of a limit,

 lim
x l a

 f f sxd 1 tsxdg − L 1 M  Q

Infinite Limits
Infinite limits can also be defined in a precise way. The following is a precise version of 
Definition 2.2.4.

6   Precise Definition of an Infinite Limit Let f  be a function defined on some 
open interval that contains the number a, except possibly at a itself. Then

lim
x l a

 f sxd − `

  means that for every positive number M there is a positive number ! such that

if    0 , | x 2 a | , !    then    f sxd . M

This says that the values of f sxd can be made arbitrarily large (larger than any given 
number M) by requiring x to be close enough to a (within a distance !, where ! depends 
on M, but with x ± a). A geometric illustration is shown in Figure 10.

Given any horizontal line y 5 M, we can find a number ! . 0 such that if we restrict 
x to lie in the interval sa 2 !, a 1 !d but x ± a, then the curve y 5 f sxd lies above the 
line y − M. You can see that if a larger M is chosen, then a smaller ! may be required.

EXAMPLE 5 Use Definition 6 to prove that lim
x l 0

 
1
x 2 − `.

SOLUTION Let M be a given positive number. We want to find a number ! such that

if    0 , | x | , !    then    1yx2 . M

But 
1
x 2 . M  &?  x 2 ,

1
M

  &?  sx 2 

, Î 1
M

   &?  | x | ,
1

sM  

So if we choose ! − 1ysM  and 0 , | x | , ! − 1ysM , then 1yx 2 . M. This shows 
that 1yx2 l ` as x l 0. Q

Similarly, the following is a precise version of Definition 2.2.5. It is illustrated by 
Figure 11.

7   Definition Let f  be a function defined on some open interval that contains 
the number a, except possibly at a itself. Then

lim
x l a

 f sxd − 2`

  means that for every negative number N there is a positive number ! such that

if    0 , | x 2 a | , !    then    f sxd , N

FIGURE 10

0 x

y

y=MM

a
a+∂a-∂

y

y=N

0 x

N

a

a+∂a-∂

FIGURE 11 
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 1.  Use the given graph of f  to find a number ! such that

if    | x 2 1 | , !    then    | f sxd 2 1 | , 0.2

x

y

0

1.2
1

0.8

1 1.10.7

 2.  Use the given graph of f  to find a number ! such that

if    0 , | x 2 3 | , !    then    | f sxd 2 2 | , 0.5

x

y

0

2.5
2

1.5

3 3.82.6

 3.  Use the given graph of f sxd − sx  to find a number ! such 
that

if    | x 2 4 | , !    then    | sx 2 2 | , 0.4

??

y=œ„x

x

y

40

2
2.4

1.6

 4.  Use the given graph of f sxd 5 x 2 to find a number ! such that

if    | x 2 1 | , !    then    | x 2 2 1 | , 1
2

x

y

? 1 ?0

1.5

1

0.5

y=≈

 5.  Use a graph to find a number ! such that

if    Z x 2
"

4 Z , !    then    | tan x 2 1| , 0.2

 6.  Use a graph to find a number ! such that

if    | x 2 1| , !    then    Z 2x
x 2 1 4

2 0.4 Z , 0.1

 7.  For the limit

lim
x l 2

 sx 3 2 3x 1 4d 5 6

 illustrate Definition 2 by finding values of ! that corre-
spond to « 5 0.2 and « 5 0.1.

 8.  For the limit

lim
x l 0

 
e 2x 2 1

x
5 2

 illustrate Definition 2 by finding values of ! that corre-
spond to « 5 0.5 and « 5 0.1.

 9.  (a) Use a graph to find a number ! such that

if   2 , x , 2 1 !   then   
1

lnsx 2 1d
. 100

 (b) What limit does part (a) suggest is true?

 10.  Given that lim x l "  csc2 x − `, illustrate Definition 6 by  
finding values of ! that correspond to (a) M − 500 and  
(b) M − 1000.

 11.  A machinist is required to manufacture a circular metal 
disk with area 1000 cm2. 

 (a)  What radius produces such a disk?
 (b)  If the machinist is allowed an error tolerance of

65 cm2 in the area of the disk, how close to the ideal 
radius in part (a) must the machinist control the radius?

 (c)  In terms of the «, ! definition of limx l a f sxd 5 L, 
what is x? What is f sxd? What is a? What is L? What 
value of « is given? What is the corresponding value  
of !?

 12.  A crystal growth furnace is used in research to determine 
how best to manufacture crystals used in electronic compo-
nents for the space shuttle. For proper growth of the crystal, 
the temperature must be controlled accurately by adjusting 
the input power. Suppose the relationship is given by 

T swd − 0.1w 2 1 2.155w 1 20

where T is the temperature in degrees Celsius and w is the 
power input in watts.

 (a)  How much power is needed to maintain the tempera-
ture at 200°C?

;

;

;

;

;

;

;
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114 CHAPTER 2  Limits and Derivatives

 (b)  If the temperature is allowed to vary from 200°C by  
up to 61°C, what range of wattage is allowed for the  
input power?

 (c)  In terms of the «, ! definition of limx l a f sxd 5 L, what  
is x? What is f sxd? What is a? What is L? What value of  
« is given? What is the corresponding value of !?

 13. (a)  Find a number ! such that if | x 2 2| , !, then 
| 4x 2 8| , «, where « 5 0.1.

 (b) Repeat part (a) with « 5 0.01.

 14.  Given that limx l 2 s5x 2 7d 5 3, illustrate Definition 2 by 
finding values of ! that correspond to « 5 0.1, « 5 0.05, and 
« 5 0.01.

15–18 Prove the statement using the «, ! definition of a limit and 
illustrate with a diagram like Figure 9.

 15. lim
x l 3

  s1 1 1
3 xd − 2 16. lim

x l
 

4
 s2x 2 5d 5 3

 17. lim
xl23

 s1 2 4xd − 13 18. lim
xl22

 s3x 1 5d − 21

19–32 Prove the statement using the «, ! definition of a limit.

 19. lim
x l

 

1
 
2 1 4x

3
5 2 20. lim

x l 10
  s3 2 4

5 xd − 25

 21. lim
xl4

 
x 2 2 2x 2 8

x 2 4
− 6 22. lim

x l21.5
 
9 2 4x 2

3 1 2x
− 6

 23. lim
x l a

 x − a 24. lim
x l a

 c − c

 25. lim
x l 0

 x 2 − 0 26. lim
x l 0

 x 3 − 0

 27. lim
x l 0

 | x | − 0 28. lim
xl

 

261
 s8 6 1 x − 0

 29. lim
x l 2

 sx 2 2 4x 1 5d 5 1 30. lim
x l 2

 sx 2 1 2x 2 7d 5 1

 31. lim
x l

 

22
 sx 2 2 1d 5 3 32. lim

x l 2
 x 3 5 8

 33.  Verify that another possible choice of ! for showing that 
lim x l3 x 2 5 9 in Example 4 is ! 5 min h2, «y8j.

 34.  Verify, by a geometric argument, that the largest possible choice 
of ! for showing that lim x l3 x 2 − 9 is ! − s9 1 « 2 3.

 35.  (a)  For the limit limx l 1 sx3 1 x 1 1d 5 3, use a graph to 
find a value of ! that corresponds to « 5 0.4.

 (b)  By using a computer algebra system to solve the cubic 
equation x3 1 x 1 1 5 3 1 «, find the largest possible 
value of ! that works for any given « . 0.

 (c)  Put « 5 0.4 in your answer to part (b) and compare 
with your answer to part (a).

 36. Prove that lim
x l2

 
1
x

−
1
2

.

 37.  Prove that lim
x l a

 sx − sa  if a . 0.

FHint: Use | sx 2 sa | − | x 2 a |
sx  1 sa 

 . F
 38.  If H is the Heaviside function defined in Example 2.2.6, 

prove, using Definition 2, that lim t l 0 Hstd does not exist. 
[Hint: Use an indirect proof as follows. Suppose that the 
limit is L. Take « 5 1

2 in the definition of a limit and try to 
arrive at a contradiction.]

 39. If the function f  is defined by

f sxd − H0
1

if  x is rational
if  x is irrational

prove that lim x l 0 f sxd does not exist.

 40.  By comparing Definitions 2, 3, and 4, prove Theorem 2.3.1.

 41. How close to 23 do we have to take x so that
1

sx 1 3d4 . 10,000

 42. Prove, using Definition 6, that lim
x l23

 
1

sx 1 3d4 − `.

 43. Prove that lim
x l 01

 ln x − 2`.

 44.  Suppose that lim x l a f sxd 5 ` and lim x l a tsxd 5 c, where 
c is a real number. Prove each statement.

 (a) lim
x l a

 f f sxd 1 tsxdg − `

 (b) lim
x l a

 f f sxdtsxdg 5 `  if  c . 0

 (c) lim
xl a

 f f sxdtsxdg 5 2`  if  c , 0

CAS

We noticed in Section 2.3 that the limit of a function as x approaches a can often be 
found simply by calculating the value of the function at a. Functions with this property 
are called continuous at a. We will see that the mathematical definition of continuity cor-
responds closely with the meaning of the word continuity in everyday language. (A con-
tinuous process is one that takes place gradually, without interruption or abrupt change.)

1   Definition A function f  is continuous at a number a if

lim
xl a

 f sxd − f sad
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 SECTION 2.5  Continuity 115

Notice that Definition l implicitly requires three things if f  is continuous at a:

1. f sad is defined (that is, a is in the domain of f )

2. lim
x l

 

a
 f sxd exists

3. lim
x l

 

a
 f sxd 5 f sad

The definition says that f  is continuous at a if f sxd approaches f sad as x approaches 
a. Thus a continuous function f  has the property that a small change in x produces only 
a small change in f sxd. In fact, the change in f sxd can be kept as small as we please by 
keeping the change in x sufficiently small.

If f  is defined near a (in other words, f  is defined on an open interval containing a, 
except perhaps at a), we say that f  is discontinuous at a (or f  has a discontinuity at a)  
if f  is not continuous at a.

Physical phenomena are usually continuous. For instance, the displacement or veloc-
ity of a vehicle varies continuously with time, as does a person’s height. But disconti-
nuities do occur in such situations as electric currents. [See Example 2.2.6, where the 
Heaviside function is discontinuous at 0 because lim t l 0 Hstd does not exist.]

Geometrically, you can think of a function that is continuous at every number in an 
interval as a function whose graph has no break in it: the graph can be drawn without 
removing your pen from the paper.

EXAMPLE 1 Figure 2 shows the graph of a function f. At which numbers is f  discon-
tinuous? Why?

SOLUTION It looks as if there is a discontinuity when a − 1 because the graph has a 
break there. The official reason that f  is discontinuous at 1 is that f s1d is not defined.

The graph also has a break when a 5 3, but the reason for the discontinuity is dif-
ferent. Here, f s3d is defined, but lim x l3 f sxd does not exist (because the left and right 
limits are different). So f  is discontinuous at 3.

What about a 5 5? Here, f s5d is defined and lim x l5 f sxd exists (because the left 
and right limits are the same). But

lim
x l 5

 f sxd ± f s5d

So f  is discontinuous at 5. Q

Now let’s see how to detect discontinuities when a function is defined by a formula.

EXAMPLE 2 Where are each of the following functions discontinuous?

(a) f sxd 5
x2 2 x 2 2

x 2 2
 (b) f sxd − H 1

x 2 if  x ± 0

1 if  x − 0

(c) f sxd − H x 2 2 x 2 2
x 2 2

if  x ± 2

1 if  x − 2

 (d) f sxd − v x b

SOLUTION 
(a) Notice that f s2d is not defined, so f  is discontinuous at 2. Later we’ll see why f  is 
continuous at all other numbers.

FIGURE 2

y

0 x1 2 3 4 5

As illustrated in Figure 1, if f  is con-
tinuous, then the points sx, f sxdd on  
the graph of f  approach the point 
sa, f sadd on the graph. So there is no 
gap in the curve.

FIGURE 1

f(a)

x0

y

a

y=ƒ
ƒ

approaches
f(a).

As x approaches a,

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



116 CHAPTER 2  Limits and Derivatives

(b) Here f s0d 5 1 is defined but

lim
x l 0

 f sxd − lim
x l 0

 
1
x 2

does not exist. (See Example 2.2.8.) So f  is discontinuous at 0.

(c) Here f s2d 5 1 is defined and

lim
x l2

 f sxd − lim
x l2

x 2 2 x 2 2
x 2 2

− lim
x l2

 
sx 2 2dsx 1 1d

x 2 2
− lim

x l2
 sx 1 1d − 3

exists. But 
lim
x l2

 f sxd ± f s2d

so f  is not continuous at 2.

(d) The greatest integer function f sxd − v x b  has discontinuities at all of the inte - 
gers because lim x ln v x b  does not exist if n is an integer. (See Example 2.3.10 and 
Exercise 2.3.53.) Q

Figure 3 shows the graphs of the functions in Example 2. In each case the graph can’t be 
drawn without lifting the pen from the paper because a hole or break or jump occurs in the 
graph. The kind of discontinuity illustrated in parts (a) and (c) is called removable because  
we could remove the discontinuity by redefining f  at just the single number 2. [The 
func tion tsxd − x 1 1 is continuous.] The discontinuity in part (b) is called an infinite 
discontinuity. The discontinuities in part (d) are called jump discontinuities because 
the function “jumps” from one value to another.

1 2 3

1

x

y

0

(d) ƒ=[x]

1 2

1

x

y

0

(c) ƒ= if  x≠2
1 if x=2

≈-x-2
x-2(b) ƒ= if  x≠0

1 if 

1

x=0

1

x

y

01 2 x

y

0

1

(a) ƒ=≈-x-2
x-2 ≈

2   Definition A function f  is continuous from the right at a number a if

lim
x l

 

a1
 f sxd − f sad

and f  is continuous from the left at a if

lim
x l

 

a2
 f sxd − f sad

EXAMPLE 3 At each integer n, the function f sxd − v x b  [see Figure 3(d)] is continu-
ous from the right but discontinuous from the left because

lim
x l

 

n1
 f sxd − lim

x l
 

n1
 v xb − n − f snd

FIGURE 3  
Graphs of the functions in Example 2
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but lim
x l

 

n2
 f sxd − lim

x l
 

n2
v x b − n 2 1 ± f snd Q

3   Definition  A function f  is continuous on an interval if it is continuous at 
every number in the interval. (If f  is defined only on one side of an endpoint of the 
interval, we understand continuous at the endpoint to mean continuous from the 
right or continuous from the left.)

EXAMPLE 4 Show that the function f sxd − 1 2 s1 2 x 2  is continuous on the  
interval f21, 1g.

SOLUTION If 21 , a , 1, then using the Limit Laws, we have

  lim
x l a

 f sxd − lim
x l a

 (1 2 s1 2 x 2 )

  − 1 2 lim
x l a

 s1 2 x 2  (by Laws 2 and 7)

  − 1 2 s  lim 
x l a

s1 2 x 2 d   (by 11)

  − 1 2 s1 2 a 2  (by 2, 7, and 9)

  − f sad

Thus, by Definition l, f  is continuous at a if 21 , a , 1. Similar calculations show that

lim
x l

 

211
 f sxd − 1 − f s21d    and    lim

x l
 

12
 f sxd − 1 − f s1d

so f  is continuous from the right at 21 and continuous from the left at 1. Therefore, 
according to Definition 3, f  is continuous on f21, 1g.

The graph of f  is sketched in Figure 4. It is the lower half of the circle

 x 2 1 sy 2 1d2 − 1 Q

Instead of always using Definitions 1, 2, and 3 to verify the continuity of a function as 
we did in Example 4, it is often convenient to use the next theorem, which shows how to 
build up complicated continuous functions from simple ones.

4   Theorem If f  and t are continuous at a and c is a constant, then the following 
functions are also continuous at a:

1. f 1 t 2. f 2 t 3. cf

4. ft  5. 
f
t   if tsad ± 0

PROOF Each of the five parts of this theorem follows from the corresponding Limit 
Law in Section 2.3. For instance, we give the proof of part 1. Since f  and t are continu-
ous at a, we have

lim
x l a

 f sxd − f sad    and    lim
x l a

 tsxd − tsad

1-1

1

x

y

0

ƒ=1-œ„„„„„1-≈

FIGURE 4 
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Therefore

  lim
x l a

 s f 1 tdsxd − lim
x l a

 f f sxd 1 tsxdg

  − lim
x l a

 f sxd 1 lim
x l a

 tsxd    (by Law 1)

  − f sad 1 tsad

  − s f 1 tdsad

This shows that f 1 t is continuous at a. Q

It follows from Theorem 4 and Definition 3 that if f  and t are continuous on an inter-
val, then so are the functions f 1 t, f 2 t, cf, ft, and (if t is never 0) fyt. The following 
theorem was stated in Section 2.3 as the Direct Substitution Property.

5   Theorem  
(a)  Any polynomial is continuous everywhere; that is, it is continuous on 

R − s2`, `d.
  (b)  Any rational function is continuous wherever it is defined; that is, it is contin-

uous on its domain.

PROOF
(a) A polynomial is a function of the form

Psxd − cn xn 1 cn21xn21 1 ∙ ∙ ∙ 1 c1x 1 c0 

where c0, c1, . . . , cn are constants. We know that

lim
x l a

 c0 − c0    (by Law 7)

and lim
x l a

 xm − am    m − 1, 2, . . . , n    (by 9)

This equation is precisely the statement that the function f sxd − xm is a continuous 
function. Thus, by part 3 of Theorem 4, the function tsxd − cxm is continuous. Since P 
is a sum of functions of this form and a constant function, it follows from part 1 of  
Theorem 4 that P is continuous.

(b) A rational function is a function of the form

f sxd −
Psxd
Qsxd

where P and Q are polynomials. The domain of f  is D − hx [ R | Qsxd ± 0j. We 
know from part (a) that P and Q are continuous everywhere. Thus, by part 5 of Theo-
rem 4, f  is continuous at every number in D. Q

As an illustration of Theorem 5, observe that the volume of a sphere varies con-
tinuously with its radius because the formula Vsrd − 4

3"r 3 shows that V  is a polyno-
mial function of r. Likewise, if a ball is thrown vertically into the air with a velocity 
of 50 ftys, then the height of the ball in feet t seconds later is given by the formula  
h − 50t 2 16t 2. Again this is a polynomial function, so the height is a continuous func-
tion of the elapsed time, as we might expect.
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Knowledge of which functions are continuous enables us to evaluate some limits very 
quickly, as the following example shows. Compare it with Example 2.3.2(b).

EXAMPLE 5 Find lim
x l

 

22
 
x 3 1 2x 2 2 1

5 2 3x
.

SOLUTION The function

f sxd −
x 3 1 2x 2 2 1

5 2 3x

is rational, so by Theorem 5 it is continuous on its domain, which is h x | x ± 5
3 j.  

Therefore

 lim
x l22

 
x 3 1 2x 2 2 1

5 2 3x
− lim

x l22
 f sxd − f s22d

  −
s22d3 1 2s22d2 2 1

5 2 3s22d
− 2

1
11

 
Q

It turns out that most of the familiar functions are continuous at every number in their 
domains. For instance, Limit Law 10 (page 96) is exactly the statement that root func-
tions are continuous.

From the appearance of the graphs of the sine and cosine functions (Figure 1.2.18), 
we would certainly guess that they are continuous. We know from the definitions of sin # 
and cos # that the coordinates of the point P in Figure 5 are scos #, sin #d. As # l 0, we 
see that P approaches the point s1, 0d and so cos # l 1 and sin # l 0. Thus

6    lim 
# l 0

 cos # − 1 lim 
# l 0

 sin # − 0

Since cos 0 − 1 and sin 0 − 0, the equations in (6) assert that the cosine and sine func- 
tions are continuous at 0. The addition formulas for cosine and sine can then be used to  
deduce that these functions are continuous everywhere (see Exercises 64 and 65).

It follows from part 5 of Theorem 4 that

tan x −
sin x
cos x

is continuous except where cos x − 0. This happens when x is an odd integer multiple 
of "y2, so y − tan x has infinite discontinuities when x − 6"y2, 63"y2, 65"y2, and 
so on (see Figure 6).

__ x

y

π0_π

1

π
2

3π
 2

π
2

3π
 2

¨

1

x0

y

(1, 0)

P(cos ¨, sin ¨)

FIGURE 5 

Another way to establish the limits in 
(6) is to use the Squeeze Theorem with 
the inequality sin # , # (for # . 0), 
which is proved in Section 3.3.

FIGURE 6   
y − tan x
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The inverse function of any continuous one-to-one function is also continuous. (This 
fact is proved in Appendix F, but our geometric intuition makes it seem plausible: The 
graph of f 21 is obtained by reflecting the graph of f  about the line y − x. So if the graph 
of f  has no break in it, neither does the graph of f 21.) Thus the inverse trigonometric 
functions are continuous.

In Section 1.4 we defined the exponential function y − bx so as to fill in the holes 
in the graph of y − bx where x is rational. In other words, the very definition of y − bx 
makes it a continuous function on R. Therefore its inverse function y − logb x is con-
tinuous on s0, `d.

7   Theorem The following types of functions are continuous at every number in 
their domains:

polynomials      rational functions      root functions

trigonometric functions      inverse trigonometric functions

exponential functions logarithmic functions

The inverse trigonometric functions are 
reviewed in Section 1.5.

EXAMPLE 6 Where is the function f sxd −
ln x 1 tan21x

x 2 2 1
 continuous?

SOLUTION We know from Theorem 7 that the function y − ln x is continuous for x . 0 
and y − tan21x is continuous on R. Thus, by part 1 of Theorem 4, y − ln x 1 tan21x is 
continuous on s0, `d. The denominator, y − x 2 2 1, is a polynomial, so it is continuous 
everywhere. Therefore, by part 5 of Theorem 4, f  is continuous at all positive numbers 
x except where x 2 2 1 − 0 &?  x − 61. So f  is continuous on the intervals s0, 1d 
and s1, `d. Q

EXAMPLE 7 Evaluate lim
x l

 

"
 

sin x
2 1 cos x

.

SOLUTION Theorem 7 tells us that y − sin x is continuous. The function in the 
denomi nator, y − 2 1 cos x, is the sum of two continuous functions and is therefore 
continuous. Notice that this function is never 0 because cos x > 21 for all x and so 
2 1 cos x . 0 everywhere. Thus the ratio

f sxd −
sin x

2 1 cos x

is continuous everywhere. Hence, by the definition of a continuous function,

 lim 
x l

 

" 

sin x
2 1 cos x

− lim
x l

 

" 
f sxd − f s"d −

sin "
2 1 cos "

−
0

2 2 1
− 0 Q

Another way of combining continuous functions f  and t to get a new continuous 
function is to form the composite function f 8 t. This fact is a consequence of the fol-
lowing theorem.

8   Theorem If f  is continuous at b and lim
x l

 

a
 tsxd − b,  then lim

x l
 

a
 f stsxdd − f sbd.  

In other words,

lim
x l a

 f stsxdd − f  S  lim
xl a

 tsxd D
This theorem says that a limit symbol 
can be moved through a function sym-
bol if the function is continuous and the 
limit exists. In other words, the order of 
these two symbols can be reversed.
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Intuitively, Theorem 8 is reasonable because if x is close to a, then tsxd is close to b, 
and since f  is continuous at b, if tsxd is close to b, then fstsxdd is close to f sbd. A proof 
of Theorem 8 is given in Appendix F.

EXAMPLE 8 Evaluate lim
x l

 

1
 arcsinS 1 2 sx 

1 2 x D.

SOLUTION Because arcsin is a continuous function, we can apply Theorem 8:

 lim
x l

 

1
 arcsinS 1 2 sx 

1 2 x D − arcsinSlim
x l1

 
1 2 sx 

1 2 x D
 − arcsinSlim

x l
 

1
 

1 2 sx 

(1 2 sx ) (1 1 sx )D
 − arcsinSlim

x l
 

1
 

1
1 1 sx D

  − arcsin 
1
2

−
!

6
 Q

Let’s now apply Theorem 8 in the special case where f sxd − sn x , with n being a posi-
tive integer. Then

 f stsxdd − sn tsxd

and f Slim
xla

 tsxdD − sn lim 
x l a

tsxd

If we put these expressions into Theorem 8, we get

 lim 
x l a

 sn tsxd − sn lim 
x l a

 tsxd

and so Limit Law 11 has now been proved. (We assume that the roots exist.)

9   Theorem If t is continuous at a and f  is continuous at tsad, then the com-
posite function f 8 t given by s f 8 tdsxd − f stsxdd is continuous at a.

This theorem is often expressed informally by saying “a continuous function of a 
continuous function is a continuous function.”

PROOF Since t is continuous at a, we have

lim
x l a

 tsxd − tsad

Since f  is continuous at b − tsad, we can apply Theorem 8 to obtain

lim
x l a

 f stsxdd − f stsadd
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122 CHAPTER 2  Limits and Derivatives

which is precisely the statement that the function hsxd − f stsxdd is continuous at a;  
that is, f 8 t is continuous at a. Q

EXAMPLE 9 Where are the following functions continuous?
(a) hsxd − sinsx 2 d (b) Fsxd − lns1 1 cos xd

SOLUTION 
(a) We have hsxd − f stsxdd, where

tsxd − x 2    and    f sxd − sin x

Now t is continuous on R since it is a polynomial, and f  is also continuous everywhere. 
Thus h − f 8 t is continuous on R by Theorem 9.

(b) We know from Theorem 7 that f sxd − ln x is continuous and tsxd − 1 1 cos x is 
continuous (because both y − 1 and y − cos x are continuous). Therefore, by Theo-
rem 9, Fsxd − f stsxdd is continuous wherever it is defined. Now ln s1 1 cos xd is 
defined when 1 1 cos x . 0. So it is undefined when cos x − 21, and this happens 
when x − 6", 63", . . . . Thus F has discontinuities when x is an odd multiple of " 
and is continuous on the intervals between these values (see Figure 7). Q

An important property of continuous functions is expressed by the following theorem, 
whose proof is found in more advanced books on calculus.

10   The Intermediate Value Theorem Suppose that f  is continuous on the 
closed interval fa, bg and let N be any number between f sad and f sbd, where 
f sad ± f sbd. Then there exists a number c in sa, bd such that f scd − N.

The Intermediate Value Theorem states that a continuous function takes on every 
intermediate value between the function values f sad and f sbd. It is illustrated by Figure 
8. Note that the value N can be taken on once [as in part (a)] or more than once [as in 
part (b)].

(b)

0 x

y

f(b)

N

f(a)

a c£ b

y=ƒ

c™c¡

(a)

0 x

y

f(b)

N

f(a)

b

y=ƒ

a c

FIGURE 8 

If we think of a continuous function as a function whose graph has no hole or break, 
then it is easy to believe that the Intermediate Value Theorem is true. In geometric terms  
it says that if any horizontal line y − N is given between y − f sad and y − f sbd as in Fig-
ure 9, then the graph of f  can’t jump over the line. It must intersect y − N somewhere.

It is important that the function f  in Theorem 10 be continuous. The Intermediate 
Value Theorem is not true in general for discontinuous functions (see Exercise 50).

2

_6

_10 10 

FIGURE 7  
y − lns1 1 cos xd

b0 x

y
f(a)

N

f(b)

a

y=N
y=ƒ

FIGURE 9 
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One use of the Intermediate Value Theorem is in locating roots of equations as in the 
following example.

EXAMPLE 10 Show that there is a root of the equation

4x 3 2 6x 2 1 3x 2 2 − 0

between 1 and 2.

SOLUTION Let f sxd − 4x 3 2 6x 2 1 3x 2 2. We are looking for a solution of the given 
equation, that is, a number c between 1 and 2 such that f scd − 0. Therefore we take 
a − 1, b − 2, and N − 0 in Theorem 10. We have

 f s1d − 4 2 6 1 3 2 2 − 21 , 0

and  f s2d − 32 2 24 1 6 2 2 − 12 . 0

Thus f s1d , 0 , f s2d; that is, N − 0 is a number between f s1d and f s2d. Now f  is 
continuous since it is a polynomial, so the Intermediate Value Theorem says there 
is a number c between 1 and 2 such that f scd − 0. In other words, the equation 
4x 3 2 6x 2 1 3x 2 2 − 0 has at least one root c in the interval s1, 2d.

In fact, we can locate a root more precisely by using the Intermediate Value Theorem 
again. Since

f s1.2d − 20.128 , 0    and    f s1.3d − 0.548 . 0

a root must lie between 1.2 and 1.3. A calculator gives, by trial and error,

f s1.22d − 20.007008 , 0    and    f s1.23d − 0.056068 . 0

so a root lies in the interval s1.22, 1.23d. Q

We can use a graphing calculator or computer to illustrate the use of the Intermediate 
Value Theorem in Example 10. Figure 10 shows the graph of f  in the viewing rectangle 
f21, 3g by f23, 3g and you can see that the graph crosses the x-axis between 1 and 2. Fig-
ure 11 shows the result of zooming in to the viewing rectangle f1.2, 1.3g by f20.2, 0.2g.

0.2

_0.2

1.2 1.3

3

_3

_1 3

 FIGURE 10 FIGURE 11

In fact, the Intermediate Value Theorem plays a role in the very way these graphing 
devices work. A computer calculates a finite number of points on the graph and turns on 
the pixels that contain these calculated points. It assumes that the function is continuous 
and takes on all the intermediate values between two consecutive points. The computer 
therefore “connects the dots” by turning on the intermediate pixels.
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 1.  Write an equation that expresses the fact that a function f  is 
continuous at the number 4.

 2.  If f  is continuous on s2`, `d, what can you say about its 
graph?

 3.  (a)  From the graph of f , state the numbers at which f  is 
discontinuous and explain why.

  (b)  For each of the numbers stated in part (a), determine 
whether f  is continuous from the right, or from the left,  
or neither.

y

x_4 2 4 6_2 0

 4.  From the graph of t, state the intervals on which t is  
continuous.

10_3 _2 2 3

y

x

 5 – 8 Sketch the graph of a function f  that is continuous except for 
the stated discontinuity.

 5. Discontinuous, but continuous from the right, at 2

 6.   Discontinuities at 21 and 4, but continuous from the left at 
21 and from the right at 4

 7. Removable discontinuity at 3, jump discontinuity at 5

 8.  Neither left nor right continuous at 22, continuous only from 
the left at 2

 9.  The toll T charged for driving on a certain stretch of a toll road 
is $5 except during rush hours (between 7 am and 10 am and 
between 4 pm and 7 pm) when the toll is $7.

  (a)  Sketch a graph of T as a function of the time t, measured 
in hours past midnight.

  (b)  Discuss the discontinuities of this function and their sig-
nificance to someone who uses the road.

 10. Explain why each function is continuous or discontinuous.
  (a) The temperature at a specific location as a function of time
  (b)  The temperature at a specific time as a function of the 

distance due west from New York City
  (c)  The altitude above sea level as a function of the distance 

due west from New York City
  (d)  The cost of a taxi ride as a function of the distance traveled
  (e)  The current in the circuit for the lights in a room as a 

function of time

11–14 Use the definition of continuity and the properties of limits 
to show that the function is continuous at the given number a.

 11. f sxd − sx 1 2x 3 d4,  a − 21

 12.  tstd −
t 2 1 5t
2t 1 1

 ,  a − 2

 13.  psvd − 2s3v2 1 1 ,  a − 1

 14. f sxd − 3x4 2 5x 1 s3 x 2 1 4 ,  a − 2

 15 –16 Use the definition of continuity and the properties of limits 
to show that the function is continuous on the given interval.

 15. f sxd − x 1 sx 2 4  ,  f4, `d

 16. tsxd −
x 2 1
3x 1 6

,  s2`, 22d

 17– 22 Explain why the function is discontinuous at the given 
number a. Sketch the graph of the function.

 17. f sxd −
1

x 1 2
 a − 22

 18. f sxd − H 1
x 1 2
1

    if  x ± 22

    if  x − 22
 a − 22

 19. f sxd − Hx 1 3
2x

if x < 21
if x . 21

 a − 21

 20. f sxd − H x 2 2 x
x 2 2 1
1

    if  x ± 1

    if  x − 1
 a − 1

 21. f sxd − Hcos x
0
1 2 x 2

if x , 0
if  x − 0
if x . 0

  a − 0

 22. f sxd − H 2x 2 2 5x 2 3
x 2 3

6

    if  x ± 3

    if  x − 3
 a − 3
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 23 –24 How would you “remove the discontinuity” of f ?  
In other words, how would you define f s2d in order to make  
f  continuous at 2?

 23. f sxd −
x 2 2 x 2 2

x 2 2
 24. f sxd −

x 3 2 8
x 2 2 4

 25 – 32 Explain, using Theorems 4, 5, 7, and 9, why the function 
is continuous at every number in its domain. State the domain.

 25.  Fsxd −
2x 2 2 x 2 1

x 2 1 1
 26. Gsxd −

x 2 1 1
2x 2 2 x 2 1

 27. Qsxd −
s3 x 2 2  
x 3 2 2

 28. Rstd −
e sin t

2 1 cos !t

 29. Astd − arcsins1 1 2td 30. Bsxd −
tan x

s4 2 x 2 

 31. Msxd − Î1 1
1
x

  32. Nsrd − tan21s1 1 e2r 2d

33 –34 Locate the discontinuities of the function and illustrate 
by graphing.

 33. y −
1

1 1 e 1yx  34. y − lnstan2xd

 35 – 38 Use continuity to evaluate the limit.

 35. lim
x l

 

2
 x s20 2 x 2 

 36. lim
x l

 

!
 sinsx 1 sin xd

 37. lim
x l

 

1
 lnS 5 2 x 2

1 1 x D 38. lim
xl4

 3sx 222x24 

 39 – 40 Show that f  is continuous on s2`, `d.

 39.  f sxd − H1 2 x 2     if  x < 1
lnx          if  x . 1

 40.  f sxd − Hsin x    if  x , !y4
cos x    if  x > !y4

 41– 43 Find the numbers at which f  is discontinuous. At which  
of these numbers is f  continuous from the right, from the left,  
or neither? Sketch the graph of f .

 41.  f sxd − Hx 2

x
1yx

if  x , 21
if  21 < x , 1
if  x > 1

 42. f sxd − H2 x

3 2 x
sx   

  if  x < 1
  if  1 , x < 4
  if  x . 4

;

 43. f sxd − Hx 1 2
ex

2 2 x

if x , 0
if  0 < x < 1
if x . 1

 44.  The gravitational force exerted by the planet Earth on a unit 
mass at a distance r from the center of the planet is

Fsrd −

GMr
R 3 if  r , R

GM
r 2   if  r > R

 where M is the mass of Earth, R is its radius, and G is the 
gravitational constant. Is F a continuous function of r?

 45.  For what value of the constant c is the function f  continuous 
on s2`, `d?

f sxd − Hcx 2 1 2x
x 3 2 cx

if  x , 2
if  x > 2

 46. Find the values of a and b that make f  continuous everywhere.

f sxd −

x 2 2 4
x 2 2

ax 2 2 bx 1 3
2x 2 a 1 b

if x , 2

if  2 < x , 3
if x > 3

 47.  Suppose f  and t are continuous functions such that ts2d − 6 
and lim x l2  f3 f sxd 1 f sxdtsxdg − 36. Find f s2d.

 48.  Let f sxd − 1yx and tsxd − 1yx 2.
 (a) Find s f + tdsxd.
  (b) Is f + t continuous everywhere? Explain.

 49.  Which of the following functions f  has a removable discon-
tinuity at a? If the discontinuity is removable, find a function 
t that agrees with f  for x ± a and is continuous at a.

  (a) f sxd −
x 4 2 1
x 2 1

,  a − 1

  (b) f sxd −
x 3 2 x 2 2 2x

x 2 2
,  a − 2

  (c) f sxd − v sin x b ,  a − !

 50.  Suppose that a function f  is continuous on [0, 1] except at 
0.25 and that f s0d − 1 and f s1d − 3. Let N − 2. Sketch two 
pos sible graphs of f , one showing that f  might not satisfy the 
conclusion of the Intermediate Value Theorem and one show-
ing that f  might still satisfy the conclusion of the Intermediate 
Value Theorem (even though it doesn’t satisfy the hypothesis).

 51.  If f sxd − x 2 1 10 sin x, show that there is a number c such 
that f scd − 1000.

 52.  Suppose f  is continuous on f1, 5g and the only solutions of 
the equation f sxd − 6 are x − 1 and x − 4. If f s2d − 8, 
explain why f s3d . 6.
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126 CHAPTER 2  Limits and Derivatives

 53– 56 Use the Intermediate Value Theorem to show that 
there is a root of the given equation in the specified interval.

 53. x 4 1 x 2 3 − 0,  s1, 2d

 54. ln x − x 2 sx ,  s2, 3d

 55. e x − 3 2 2x,  s0, 1d 

 56. sin x − x 2 2 x,  s1, 2d

57 – 58 (a) Prove that the equation has at least one real root.  
(b) Use your calculator to find an interval of length 0.01 that  
contains a root.

 57. cos x − x 3 58. ln x − 3 2 2x

59– 60 (a) Prove that the equation has at least one real root.  
(b) Use your graphing device to find the root correct to three  
decimal places.

 59. 100e2xy100 − 0.01x 2

 60. arctan x − 1 2 x

61– 62  Prove, without graphing, that the graph of the func-
tion has at least two x-intercepts in the specified interval.

 61.  y −  sin x 3,  s1, 2d 

 62.  y − x 2 2 3 1 1yx,  s0, 2d

 63. Prove that f  is continuous at a if and only if

lim
h l 0

 f sa 1 hd − f sad

 64.  To prove that sine is continuous, we need to show  
that lim x l a sin x − sin a for every real number a.  
By Exercise 63 an equivalent statement is that

lim
h l 0

 sinsa 1 hd − sin a

Use (6) to show that this is true.

;

 65. Prove that cosine is a continuous function.

 66. (a) Prove Theorem 4, part 3.
 (b) Prove Theorem 4, part 5.

 67. For what values of x is f  continuous?

f sxd − H0
1

if  x is rational
if  x is irrational

 68. For what values of x is t continuous?

tsxd − H0
x

if  x is rational
if  x is irrational

 69. Is there a number that is exactly 1 more than its cube?

 70.  If a and b are positive numbers, prove that the equation

a
x 3 1 2x 2 2 1

1
b

x 3 1 x 2 2
− 0

has at least one solution in the interval s21, 1d.

 71. Show that the function

f sxd − Hx 4 sins1yxd
0

if x ± 0
if x − 0

is continuous on s2`, `d.

 72. (a)  Show that the absolute value function Fsxd − | x | is 
continuous everywhere.

 (b)  Prove that if f  is a continuous function on an interval, 
then so is | f |.

 (c)  Is the converse of the statement in part (b) also true? In 
other words, if | f | is continuous, does it follow that f  is 
continuous? If so, prove it. If not, find a counterexample.

 73.  A Tibetan monk leaves the monastery at 7:00 am and 
takes his usual path to the top of the mountain, arriving at 
7:00 pm. The following morning, he starts at 7:00 am at the 
top and takes the same path back, arriving at the monastery 
at 7:00 pm. Use the Intermediate Value Theorem to show 
that there is a point on the path that the monk will cross at 
exactly the same time of day on both days.

In Sections 2.2 and 2.4 we investigated infinite limits and vertical asymptotes. There we 
let x approach a number and the result was that the values of y became arbitrarily large 
(positive or negative). In this section we let x become arbitrarily large (positive or nega-
tive) and see what happens to y.

Let’s begin by investigating the behavior of the function f  defined by

f sxd −
x 2 2 1
x 2 1 1
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as x becomes large. The table at the left gives values of this function correct to six 
decimal places, and the graph of f  has been drawn by a computer in Figure 1.

x10

y
y=1

y=≈-1
≈+1

FIGURE 1 

As x grows larger and larger you can see that the values of f sxd get closer and closer  
to 1. (The graph of f  approaches the horizontal line y − 1 as we look to the right.) In 
fact, it seems that we can make the values of f sxd as close as we like to 1 by taking x 
sufficiently large. This situation is expressed symbolically by writing

lim
x l `

 
x 2 2 1
x 2 1 1

− 1

In general, we use the notation

lim
x l `

 f sxd − L

to indicate that the values of f sxd approach L as x becomes larger and larger.

1   Intuitive Definition of a Limit at Infinity Let f  be a function defined on 
some interval sa, `d. Then

lim
x l `

 f sxd − L

  means that the values of f sxd can be made arbitrarily close to L by requiring x to 
be sufficiently large.

Another notation for lim x l ` f sxd − L is

f sxd l L  as  x l `

The symbol ` does not represent a number. Nonetheless, the expression lim
x l

 

`
 f sxd − L 

is often read as
“the limit of f sxd, as x approaches infinity, is L”

or “the limit of f sxd, as x becomes infinite, is L”

or “the limit of f sxd, as x increases without bound, is L”

The meaning of such phrases is given by Definition 1. A more precise definition, similar 
to the «, " definition of Section 2.4, is given at the end of this section.

Geometric illustrations of Definition 1 are shown in Figure 2. Notice that there are 
many ways for the graph of f  to approach the line y − L (which is called a horizontal 
asymptote) as we look to the far right of each graph.

Referring back to Figure 1, we see that for numerically large negative values of x, 
the values of f sxd are close to 1. By letting x decrease through negative values without 
bound, we can make f sxd as close to 1 as we like. This is expressed by writing

lim
x l2`

 
x 2 2 1
x 2 1 1

− 1 

x

y

0

y=ƒ

y=L

0 x

y

y=ƒ

y=L

x

y

0

y=ƒ

y=L

FIGURE 2  
Examples illustrating lim

x l `
 f sxd − L 

x f sxd
0 21

61 0
62 0.600000
63 0.800000
64 0.882353
65 0.923077

610 0.980198
650 0.999200

6100 0.999800
61000 0.999998
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The general definition is as follows.

2   Definition Let f  be a function defined on some interval s2`, ad. Then

lim
x l 2`

 f sxd − L

  means that the values of f sxd can be made arbitrarily close to L by requiring x to 
be sufficiently large negative.

Again, the symbol 2` does not represent a number, but the expression lim
x l 2`

 f sxd − L 
is often read as

“the limit of f sxd, as x approaches negative infinity, is L”

Definition 2 is illustrated in Figure 3. Notice that the graph approaches the line y − L as 
we look to the far left of each graph.

3   Definition The line y − L is called a horizontal asymptote of the curve 
y − f sxd if either 

lim
x l

 

`
 f sxd − L    or    lim

x l
 

2`
 f sxd − L

For instance, the curve illustrated in Figure 1 has the line y − 1 as a horizontal asymp-
tote because 

lim
x l `

 
x 2 2 1
x 2 1 1

− 1

An example of a curve with two horizontal asymptotes is y − tan21x. (See Figure 4.)  
In fact,

lim
x l2`

 tan21x − 2
!

2
      lim

x l `
 tan21x −

!

2

so both of the lines y − 2!y2 and y − !y2 are horizontal asymptotes. (This follows 
from the fact that the lines x − 6!y2 are vertical asymptotes of the graph of the tangent 
function.)

EXAMPLE 1 Find the infinite limits, limits at infinity, and asymptotes for the function 
f  whose graph is shown in Figure 5.

SOLUTION We see that the values of f sxd become large as x l 21 from both sides, so

lim
x l21

 f sxd − `

Notice that f sxd becomes large negative as x approaches 2 from the left, but large posi-
tive as x approaches 2 from the right. So

lim
x l

 

22
 f sxd − 2`    and    lim

x l
 

21
 f sxd − `

Thus both of the lines x − 21 and x − 2 are vertical asymptotes.

FIGURE 3  
Examples illustrating lim

x l 2`
 f sxd − L 

0

y

x

y=ƒ

y=L

x0

y

y=ƒ
y=L

y

0
x

π
2

_ π
2

FIGURE 4  
y − tan21x

4

0 x

y

2

2

FIGURE 5
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As x becomes large, it appears that f sxd approaches 4. But as x decreases through 
negative values, f sxd approaches 2. So

lim
x l `

 f sxd − 4    and    lim
x l2`

 f sxd − 2

This means that both y − 4 and y − 2 are horizontal asymptotes. Q

EXAMPLE 2 Find lim
x l `

 
1
x

 and lim
x l2`

 
1
x

.

SOLUTION Observe that when x is large, 1yx is small. For instance, 

 
1

100
− 0.01      

1
10,000

− 0.0001      
1

1,000,000
− 0.000001

In fact, by taking x large enough, we can make 1yx as close to 0 as we please. There-
fore, according to Definition 1, we have 

lim
x l `

 
1
x

− 0

Similar reasoning shows that when x is large negative, 1yx is small negative, so we also 
have

lim
x l2`

 
1
x

− 0

It follows that the line y − 0 (the x-axis) is a horizontal asymptote of the curve 
y − 1yx. (This is an equilateral hyperbola; see Figure 6.) Q

Most of the Limit Laws that were given in Section 2.3 also hold for limits at infinity. It 
can be proved that the Limit Laws listed in Section 2.3 (with the exception of Laws 9 and 
10) are also valid if “x l a” is replaced by “x l `” or “x l 2`.” In particular, if we 
combine Laws 6 and 11 with the results of Example 2, we obtain the following important 
rule for calculating limits.

5   Theorem If r . 0 is a rational number, then

lim
x l `

 
1
xr − 0

If r . 0 is a rational number such that xr is defined for all x, then

lim 
x l2`

 
1
xr − 0

EXAMPLE 3 Evaluate

lim
x l

 

`
 

3x 2 2 x 2 2
5x 2 1 4x 1 1

and indicate which properties of limits are used at each stage.

SOLUTION As x becomes large, both numerator and denominator become large, so it 
isn’t obvious what happens to their ratio. We need to do some preliminary algebra. 

0

y

x

y=∆

FIGURE 6  

lim
x l `

 
1
x

− 0, lim
x l2`

 
1
x

− 0
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To evaluate the limit at infinity of any rational function, we first divide both the 
numerator and denominator by the highest power of x that occurs in the denominator. 
(We may assume that x ± 0, since we are interested only in large values of x.) In this 
case the highest power of x in the denominator is x 2, so we have

 lim
x l

 

`
 

3x 2 2 x 2 2
5x 2 1 4x 1 1

−  lim
x l

 

`
 

3x2 2 x 2 2
x 2

5x2 1 4x 1 1
x 2

− lim
x l

 

`
  

3 2
1
x

2
2
x 2

5 1
4
x

1
1
x 2

−
lim
xl`
S3 2

1
x

2
2
x 2D

lim
xl`S5 1

4
x

1
1
x 2D  (by Limit Law 5)

 −
lim
x l

 

`
 3 2 lim

x l
 

`
 
1
x

2 2 lim
x l

 

`
 

1
x 2

lim
x l

 

`
 5 1 4 lim

x l
 

`
 
1
x

1 lim
x l

 

`
 

1
x 2

 (by 1, 2, and 3)

 −
3 2 0 2 0
5 1 0 1 0

 (by 7 and Theorem 5)

 −
3
5

A similar calculation shows that the limit as x l 2` is also 35. Figure 7 illustrates the 
results of these calculations by showing how the graph of the given rational function 
approaches the horizontal asymptote y − 3

5 − 0.6. Q

EXAMPLE 4 Find the horizontal and vertical asymptotes of the graph of the function

f sxd −
s2x 2 1 1

3x 2 5

SOLUTION Dividing both numerator and denominator by x and using the properties of 
limits, we have 

lim
x l `

s2x 2 1 1
3x 2 5

− lim
x l `

 

s2x2 1 1
x

3x 2 5
x

− lim
x l `

 
Î2x 2 1 1 

x 2

3x 2 5
x

    (since sx 2 − x for x . 0)

−
lim
x l `

 Î2 1
1
x 2

lim
x l `

 S3 2
5
xD

−
Î lim

x l `
 2 1 lim

x l `
 

1
x 2

lim
x l `

 3 2 5 lim
x l `

 
1
x

−
s2 1 0 

3 2 5 ? 0
−

s2 

3

Therefore the line y − s2 y3 is a horizontal asymptote of the graph of f.

1

y=0.6

x

y

0

FIGURE 7  

y −  
3x 2 2 x 2 2

5x 2 1 4x 1 1
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In computing the limit as x l 2`, we must remember that for x , 0, we have
sx 2 − | x | − 2x. So when we divide the numerator by x, for x , 0 we get

s2x 2 1 1 

x
−

s2x 2 1 1 

2sx 2 
− 2Î2x 2 1 1

x 2
 − 2Î2 1

1
x 2

 

Therefore

lim
x l2`

 
s2x 2 1 1

3x 2 5
− lim

x l2`
 
2Î2 1

1
x 2

 

3 2
5
x

 −
2Î2 1 lim 

x l2`
 

1
x 2

 

3 2 5 lim 
x l2`

 
1
x

− 2
s2 

3

Thus the line y − 2s2 y3 is also a horizontal asymptote.
A vertical asymptote is likely to occur when the denominator, 3x 2 5, is 0, that is, 

when x − 5
3. If x is close to 53 and x . 5

3, then the denominator is close to 0 and 3x 2 5 
is positive. The numerator s2x 2 1 1 is always positive, so f sxd is positive. Therefore

lim
x l s5y3d1

 
s2x 2 1 1

3x 2 5
− `

(Notice that the numerator does not approach 0 as x l 5y3). 
If x is close to 53 but x , 5

3, then 3x 2 5 , 0 and so f sxd is large negative. Thus

lim
x l

 s5y3d2
 
s2x 2 1 1

3x 2 5
− 2`

The vertical asymptote is x − 5
3. All three asymptotes are shown in Figure 8. Q

EXAMPLE 5 Compute lim
x l

 

`
 (sx 2 1 1 2 x).

SOLUTION Because both sx 2 1 1 and x are large when x is large, it’s difficult to see 
what happens to their difference, so we use algebra to rewrite the function. We first 
multiply numerator and denominator by the conjugate radical:

 lim
x l

 

`
 (sx 2 1 1 2 x) − lim

x l
 

`
 (sx 2 1 1 2 x) ?  

sx 2 1 1 1 x
sx 2 1 1 1 x

 − lim
x l

 

`
 
sx 2 1 1d 2 x 2

sx 2 1 1 1 x
− lim

x l
 

`
 

1
sx 2 1 1 1 x

Notice that the denominator of this last expression (sx 2 1 1 1 x) becomes large as 
x l ` (it’s bigger than x). So

 lim
x l

 

`
 (sx 2 1 1 2 x) − lim

x l
 

`
 

1

sx 2 1 1 1 x
− 0

Figure 9 illustrates this result. Q

x

y

y= œ„2
3

y=_ œ„2
3

x=5
3

FIGURE 8  

y −  
s2x 2 1 1 

3x 2 5
 

We can think of the given function as 
having a denominator of 1.

FIGURE 9

y=   ≈+1œ„„„„„-x

x

y

0 1

1
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132 CHAPTER 2  Limits and Derivatives

EXAMPLE 6 Evaluate lim
x l

 

21
 arctanS 1

x 2 2D.

SOLUTION If we let t − 1ysx 2 2d, we know that t l ` as x l 21. Therefore, by the  
second equation in (4), we have

 lim
x l

 

21
 arctanS 1

x 2 2D − lim
t l `

 arctan t −
!

2
 Q

The graph of the natural exponential function y − ex has the line y − 0 (the x-axis) as 
a horizontal asymptote. (The same is true of any exponential function with base b . 1.)
In fact, from the graph in Figure 10 and the corresponding table of values, we see that

lim
x l

 

2`
 ex − 0

Notice that the values of ex approach 0 very rapidly.

y=´

x0

1

y

1

    

x ex

0 1.00000
21 0.36788
22 0.13534
23 0.04979
25 0.00674
28 0.00034

210 0.00005

EXAMPLE 7 Evaluate lim
x l

 

02
 e 1yx.

SOLUTION If we let t − 1yx, we know that t l 2` as x l 02. Therefore, by (6),

lim
x l

 

02
 e 1yx − lim

t l 2`
 e t − 0

(See Exercise 81.) Q

EXAMPLE 8 Evaluate lim
x l `

 sin x.

SOLUTION As x increases, the values of sin x oscillate between 1 and 21 infinitely often 
and so they don’t approach any definite number. Thus lim x l` sin x does not exist. Q

Infinite Limits at Infinity
The notation

lim
x l

 

`
 f sxd − `

is used to indicate that the values of f sxd become large as x becomes large. Similar mean-

6

FIGURE 10  

PS  The problem-solving strategy 
for Examples 6 and 7 is introducing 
something extra (see page 71). Here, 
the something extra, the auxiliary aid, 
is the new variable t.
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ings are attached to the following symbols:

lim
x l

 

2`
 f sxd − `      lim

x l
 

`
 f sxd − 2`      lim

x l
 

2`
 f sxd − 2`

EXAMPLE 9 Find lim
x l `

 x 3 and lim
x l2`

 x 3.

SOLUTION When x becomes large, x 3 also becomes large. For instance,

103 − 1000      1003 − 1,000,000      10003 − 1,000,000,000

In fact, we can make x 3 as big as we like by requiring x to be large enough. Therefore 
we can write

lim
x l `

 x 3 − `

Similarly, when x is large negative, so is x 3. Thus

lim
x l2`

 x 3 − 2`

These limit statements can also be seen from the graph of y − x 3 in Figure 11. Q

Looking at Figure 10 we see that

lim 
x l`

 ex − `

but, as Figure 12 demonstrates, y − ex becomes large as x l ` at a much faster rate 
than y − x 3.

EXAMPLE 10 Find lim
x l

 

`
 sx 2 2 xd.

SOLUTION It would be wrong to write

 lim
x l

 

`
 sx 2 2 xd − lim

x l
 

`
 x 2 2 lim

x l
 

`
 x − ` 2 `

The Limit Laws can’t be applied to infinite limits because ` is not a number  
(` 2 ` can’t be defined). However, we can write

lim
x l

 

`
 sx 2 2 xd − lim

x l
 

`
 xsx 2 1d − `

because both x and x 2 1 become arbitrarily large and so their product does too.� Q

EXAMPLE 11 Find lim
x l `

 
x 2 1 x
3 2 x

.

SOLUTION As in Example 3, we divide the numerator and denominator by the highest 
power of x in the denominator, which is just x:

 lim 
x l`

 
x 2 1 x
3 2 x

−  lim 
x l`

 
x 1 1
3
x

2 1
− 2`

because x 1 1 l ` and 3yx 2 1 l 0 2 1 − 21 as x l `.� Q

FIGURE 11  
lim
x l `

 x 3 − `, lim
x l2`

 x 3 − 2`

x

y

0

y=˛

x0

100

y

1

y=˛

y=´

FIGURE 12  
ex is much larger than x 3  
when x is large.
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The next example shows that by using infinite limits at infinity, together with inter-
cepts, we can get a rough idea of the graph of a polynomial without having to plot a large 
number of points.

EXAMPLE 12 Sketch the graph of y − sx 2 2d4sx 1 1d3sx 2 1d by finding its inter-
cepts and its limits as x l ` and as x l 2`.

SOLUTION The y-intercept is f s0d − s22d4s1d3s21d − 216 and the x-intercepts are 
found by setting y − 0: x − 2, 21, 1. Notice that since sx 2 2d4 is never negative, 
the function doesn’t change sign at 2; thus the graph doesn’t cross the x-axis at 2. The 
graph crosses the axis at 21 and 1.

When x is large positive, all three factors are large, so

lim
x l `

 sx 2 2d4sx 1 1d3sx 2 1d − `

When x is large negative, the first factor is large positive and the second and third fac-
tors are both large negative, so 

lim
x l2`

 sx 2 2d4sx 1 1d3sx 2 1d − `

Combining this information, we give a rough sketch of the graph in Figure 13.� Q

Precise Definitions
Definition 1 can be stated precisely as follows.

7   Precise Definition of a Limit at Infinity Let f  be a function defined on some 
interval sa, `d. Then

lim
x l `

 f sxd − L

  means that for every « . 0 there is a corresponding number N such that

if    x . N    then    | f sxd 2 L | , «

In words, this says that the values of f sxd can be made arbitrarily close to L (within a  
distance «, where « is any positive number) by requiring x to be sufficiently large (larger 
than N, where N depends on «). Graphically it says that by keeping x large enough 
(larger than some number N) we can make the graph of f  lie between the given hori-
zontal lines y − L 2 « and y − L 1 « as in Figure 14. This must be true no matter how 
small we choose «. 

0

y

xN

L

when x is in here

ƒ is
in here

 is

y=L-∑

y=L+∑
∑
∑

y=ƒ

y

0 x_1 21

_16

FIGURE 13  
y − sx 2 2d4sx 1 1d3sx 2 1d

FIGURE 14  
lim
x l `

 f sxd − L
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Figure 15 shows that if a smaller value of « is chosen, then a larger value of N may  
be required.

0 xN

L

y=ƒ

y=L-∑

y=L+∑

Similarly, a precise version of Definition 2 is given by Definition 8, which is illus-
trated in Figure 16.

8   Definition Let f  be a function defined on some interval s2`, ad. Then

lim
x l 2`

 f sxd − L

  means that for every « . 0 there is a corresponding number N such that

if    x , N    then    | f sxd 2 L | , «

xN

y

L
y=L-∑

y=L+∑
y=ƒ

0

In Example 3 we calculated that 

lim
x l `

 
3x 2 2 x 2 2

5x 2 1 4x 1 1
−

3
5

In the next example we use a graphing device to relate this statement to Definition 7 with 
L − 3

5 − 0.6 and « − 0.1.

EXAMPLE 13 Use a graph to find a number N such that 

if  x . N    then    Z 3x 2 2 x 2 2
5x 2 1 4x 1 1

2 0.6 Z , 0.1

FIGURE 15  
lim
x l `

 f sxd − L

FIGURE 16  
lim

x l2`
 f sxd − L

TEC In Module 2.4y2.6 you can 
explore the precise definition of a limit 
both graphically and numerically.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



136 CHAPTER 2  Limits and Derivatives

SOLUTION We rewrite the given inequality as

0.5 ,
3x 2 2 x 2 2

5x 2 1 4x 1 1
, 0.7

We need to determine the values of x for which the given curve lies between the hori-
zontal lines y − 0.5 and y − 0.7. So we graph the curve and these lines in Figure 17.  
Then we use the cursor to estimate that the curve crosses the line y − 0.5 when 
x < 6.7. To the right of this number it seems that the curve stays between the lines 
y − 0.5 and y − 0.7. Rounding up to be safe, we can say that

if  x . 7    then    Z 3x 2 2 x 2 2
5x 2 1 4x 1 1

2 0.6 Z , 0.1

In other words, for « − 0.1 we can choose N − 7 (or any larger number) in Defini  - 
tion 7. Q

EXAMPLE 14 Use Definition 7 to prove that lim
x l `

 
1
x

− 0.

SOLUTION Given « . 0, we want to find N such that

if    x . N    then    Z 1
x

2 0 Z , «

In computing the limit we may assume that x . 0. Then 1yx , «  &?  x . 1y«. Let’s 
choose N − 1y«. So

if    x . N −
1
«

    then    Z 1
x

2 0 Z −
1
x

, «

Therefore, by Definition 7,

lim
x l `

 
1
x

− 0

Figure 18 illustrates the proof by showing some values of « and the corresponding 
values of N.

x

y

0 N=5
∑=0.2

x

y

0 N=1

∑=1

x

y

0 N=10
∑=0.1

Q

1

0 15

y=0.7
y=0.5

y= 3≈-x-2
5≈+4x+1

FIGURE 17  

FIGURE 18 
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Finally we note that an infinite limit at infinity can be defined as follows. The geomet-
ric illustration is given in Figure 19.

9   Definition of an Infinite Limit at Infinity Let f  be a function defined on 
some interval sa, `d. Then

lim
x l `

 f sxd − `

means that for every positive number M there is a corresponding positive number  
N such that

if  x . N    then    f sxd . M

Similar definitions apply when the symbol ` is replaced by 2`. (See Exercise 80.)

0 x

y

N

M
y=M

FIGURE 19  
lim
x l `

 f sxd − `

 1.  Explain in your own words the meaning of each of the  
following.

 (a) lim
x l `

 f sxd − 5 (b) lim
x l 2`

 f sxd − 3

 2. (a)  Can the graph of y − f sxd intersect a vertical asymptote? 
Can it intersect a horizontal asymptote? Illustrate by 
sketching graphs.

 (b)  How many horizontal asymptotes can the graph of 
y − f sxd have? Sketch graphs to illustrate the possibilities.

 3. For the function f  whose graph is given, state the following.
 (a) lim

x l
 

`
 f sxd (b) lim

x l
 

2`
 f sxd

 (c) lim
x l

 

1
 f sxd (d) lim

x l
 

3
 f sxd

 (e) The equations of the asymptotes

1 x

y

1

 4. For the function t whose graph is given, state the following.
 (a) lim

x l
 

`
 tsxd (b) lim

x l
 

2`
 tsxd

 (c) lim
x l

 

0
 tsxd (d) lim

x l
 

22
 tsxd

 (e) lim
x l

 

21
 tsxd (f ) The equations of the asymptotes

1 x

y

1

5–10 Sketch the graph of an example of a function f  that satis-
fies all of the given conditions.

 5. lim
x l 0

 f sxd − 2`,  lim
x l

 

2`
 f sxd − 5,  lim

x l
 

`
 f sxd − 25

 6.  lim
x l

 

2
 f sxd − `,  lim

x l
 

221
 f sxd − `,  lim

x l
 

222
 f sxd − 2`,  

  lim
x l

 

2`
 f sxd − 0,  lim

x l
 

`
 f sxd − 0,  f s0d − 0

 7. lim
x l

 

2
 f sxd − 2`,   lim

x l
 

`
 f sxd − `,   lim

x l
 

2`
 f sxd − 0,

  lim
x l

 

01
 f sxd − `,  lim

x l
 

02
 f sxd − 2`

 8.  lim
x l `

 f sxd − 3, lim
x l

 

22
 f sxd − `, lim

x l
 

21
 f sxd − 2`, f  is odd

 9. f s0d − 3,  lim
x l

 

02
 f sxd − 4,  lim

x l
 

01
 f sxd − 2,

  lim
x l

 

2`
 f sxd − 2`,  lim

x l
 

42
 f sxd − 2`,  lim

x l
 

41
 f sxd − `,

  lim
x l

 

`
 f sxd − 3

 10. lim
x l 3

 f sxd − 2`,  lim
x l

 

`
 f sxd − 2,   f s0d − 0,  f  is even
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138 CHAPTER 2  Limits and Derivatives

 11. Guess the value of the limit

lim
x l

 

`
 
x 2

2x

   by evaluating the function f sxd − x 2y2x for x − 0, 1, 2, 3,  
4, 5, 6, 7, 8, 9, 10, 20, 50, and 100. Then use a graph of f  
to support your guess.

 12.  (a) Use a graph of

f sxd − S1 2
2
xDx

to estimate the value of lim x l ` f sxd correct to two 
decimal places.

 (b)  Use a table of values of f sxd to estimate the limit to 
four decimal places.

13–14 Evaluate the limit and justify each step by indicating the 
appropriate properties of limits.

 13. lim
x l `

 
2x2 2 7

5x2 1 x 2 3
 14. lim

x l `
Î 9x 3 1 8x 2 4

3 2 5x 1 x 3

15–42 Find the limit or show that it does not exist.

 15. lim
x l `

 
3x 2 2
2x 1 1

 16. lim
x l `

 
1 2 x 2

x 3 2 x 1 1

 17. lim
x l 2`

 
x 2 2
x 2 1 1

 18. lim
x l 2`

 
4x 3 1 6x 2 2 2
2x 3 2 4x 1 5

 19. lim
t l `

 
st  1 t 2

2t 2 t 2  20. lim
tl `

 
t 2 tst  

2t 3y2 1 3t 2 5

 21. lim
x l `

 
s2x 2 1 1d2

sx 2 1d2sx 2 1 xd
 22. lim

x l `
 

x 2

sx 4 1 1 

 23. lim
x l `

 
s1 1 4x 6 

2 2 x 3
 24. lim

x l 2`
 
s1 1 4x 6 

2 2 x 3

 25. lim
x l `

 
sx 1 3x 2 

4x 2 1
 26. lim

x l `
 

x 1 3x 2

4x 2 1

 27. lim
x l

 

`
 (s9x 2 1 x 2 3x)

 28. lim
x l2`

 (s4x 2 1 3x  1 2x)

 29. lim
x l

 

`
 (sx 2 1 ax 2 sx2 1 bx )

 30. lim
x l

 

`
 sx 2 1 1

 31. lim
x l `

 
x 4 2 3x 2 1 x
x 3 2 x 1 2

 32. lim
x l ` 

se2x 1 2 cos 3xd

 33. lim
x l 2`

sx 2 1 2x7 d 34. lim
x l 2`

 
1 1 x 6

x 4 1 1

;

;

 35.  lim 
x l `

 arctanse x d 36. lim
x l `

 
e 3x 2 e23x

e 3x 1 e23x

 37. lim
x l `

 
1 2 e x

1 1 2e x  38. lim
x l `

 
sin2x

x 2 1 1

 39. lim
x l `

 se22x cos xd 40. lim
x l 01

 tan21sln xd

 41. lim
x l `

 flns1 1 x 2d 2 lns1 1 xdg

 42. lim
x l `

 flns2 1 xd 2 lns1 1 xdg

 43. (a) For f sxd −
x

ln x
 find each of the following limits.

 (i) lim
x l 01

 f sxd (ii) lim
x l 12

 f sxd (iii) lim
x l11

 f sxd

 (b) Use a table of values to estimate lim 
x l

 

`
 f sxd.

  (c)  Use the information from parts (a) and (b) to make a 
rough sketch of the graph of f.

 44. For f sxd −
2
x

2
1

ln x
 find each of the following limits.

 (a) lim
xl`

 f sxd (b) lim
x l 01

 f sxd

 (c) lim
x l 12

 f sxd (d) lim
x l11

 f sxd

  (e)  Use the information from parts (a)–(d) to make a rough 
sketch of the graph of f.

 45. (a) Estimate the value of

lim
x l

 

2`
 (sx 2 1 x 1 1 1 x)

   by graphing the function f sxd − sx 2 1 x 1 1 1 x.

 (b)  Use a table of values of f sxd to guess the value of the 
limit.

 (c)  Prove that your guess is correct.

 46. (a) Use a graph of

f sxd − s3x 2 1 8x 1 6 2 s3x 2 1 3x 1 1

  to estimate the value of lim x l ` f sxd to one decimal 
place.

 (b)  Use a table of values of f sxd to estimate the limit to 
four decimal places.

 (c)  Find the exact value of the limit.

47–52 Find the horizontal and vertical asymptotes of each 
curve. If you have a graphing device, check your work by graph-
ing the curve and estimating the asymptotes.

 47. y −
5 1 4x
x 1 3

 48. y −
2x 2 1 1

3x 2 1 2x 2 1

 49. y −
2x 2 1 x 2 1
x 2 1 x 2 2

 50. y −
1 1 x 4

x 2 2 x 4

;

;
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 51. y −
x 3 2 x

x 2 2 6x 1 5
 52. y −

2e x

e x 2 5

 53. Estimate the horizontal asymptote of the function

f sxd −
3x 3 1 500x 2

x 3 1 500x 2 1 100x 1 2000

 by graphing f  for 210 < x < 10. Then calculate the equa-
tion of the asymptote by evaluating the limit. How do you 
explain the discrepancy?

 54. (a) Graph the function

f sxd −
s2x 2 1 1

3x 2 5

  How many horizontal and vertical asymptotes do you 
observe? Use the graph to estimate the values of the 
limits

 lim
x l

 

`
 
s2x 2 1 1

3x 2 5
    and    lim

x l
 

2`
 
s2x 2 1 1

3x 2 5

 (b)  By calculating values of f sxd, give numerical estimates 
of the limits in part (a).

 (c)  Calculate the exact values of the limits in part (a). Did 
you get the same value or different values for these two 
limits? [In view of your answer to part (a), you might 
have to check your calculation for the second limit.]

 55. Let P and Q be polynomials. Find

lim
x l `

 
Psxd
Qsxd

 if the degree of P is (a) less than the degree of Q and  
(b) greater than the degree of Q.

 56.  Make a rough sketch of the curve y − x n (n an integer)  
for the following five cases:

 (i) n − 0 (ii) n . 0, n odd
 (iii) n . 0, n even (iv) n , 0, n odd
 (v) n , 0, n even

Then use these sketches to find the following limits.
 (a) lim

x l
 

01
 x n (b) lim

x l
 

02
 x n

 (c) lim
x l

 

`
 x n (d) lim

x l
 

2`
 x n

 57.  Find a formula for a function f  that satisfies the following 
conditions:

lim
x l

 

6`
 f sxd − 0,  lim

x l
 

0
 f sxd − 2`,  f s2d − 0,

lim
x l

 

32
 f sxd − `,  lim

x l
 

31
 f sxd − 2`

 58.  Find a formula for a function that has vertical asymptotes 
x − 1 and x − 3 and horizontal asymptote y − 1.

 59.  A function f  is a ratio of quadratic functions and has a 
vertical asymptote x − 4 and just one x-intercept, x − 1.  

;

;

It is known that f  has a removable discontinuity at 
x − 21 and lim x l21 f sxd − 2. Evaluate

 (a)  f s0d (b) lim
x l `

 f sxd

60–64 Find the limits as x l ` and as x l 2`. Use this 
information, together with intercepts, to give a rough sketch of 
the graph as in Example 12.

 60. y − 2x 3 2 x 4 61. y − x 4 2 x6

 62. y − x 3sx 1 2d2sx 2 1d

 63. y − s3 2 xds1 1 xd2s1 2 xd4  

 64. y − x 2sx 2 2 1d2sx 1 2d

65.  (a)  Use the Squeeze Theorem to evaluate lim
x l `

 
sin x

x
.

  (b)  Graph f sxd − ssin xdyx. How many times does the 
graph cross the asymptote?

 66.  By the end behavior of a function we mean the behavior 
of its values as x l ` and as x l 2`.

 (a)  Describe and compare the end behavior of the func-
tions

Psxd − 3x 5 2 5x 3 1 2x      Qsxd − 3x 5

  by graphing both functions in the viewing rect-
angles f22, 2g by f22, 2g and f210, 10g by 
f210,000, 10,000g.

 (b)  Two functions are said to have the same end behavior 
if their ratio approaches 1 as x l `. Show that  P and 
Q have the same end behavior.

 67. Find limx l ` f sxd if, for all x . 1,

10e x 2 21
2e x , f sxd ,

5sx

sx 2 1

 68. (a)  A tank contains 5000 L of pure water. Brine that con-
tains 30 g of salt per liter of water is pumped into the 
tank at a rate of 25 Lymin. Show that the concentra-
tion of salt after t minutes (in grams per liter) is

Cstd −
30t

200 1 t

 (b) What happens to the concentration as t l `?

 69.  In Chapter 9 we will be able to show, under certain 
assump tions, that the velocity vstd of a falling raindrop at 
time t is

vstd − v*s1 2 e 2t tyv*d

where t is the acceleration due to gravity and v* is the  
terminal velocity of the raindrop.

 (a) Find lim t l ` vstd.
 (b)  Graph vstd if v* − 1 mys and t − 9.8 mys2. How long 

does it take for the velocity of the raindrop to reach 
99% of its terminal velocity?

;

;

;
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140 CHAPTER 2  Limits and Derivatives

The problem of finding the tangent line to a curve and the problem of finding the velocity 
of an object both involve finding the same type of limit, as we saw in Section 2.1. This 
special type of limit is called a derivative and we will see that it can be interpreted as a 
rate of change in any of the natural or social sciences or engineering.

Tangents
If a curve C has equation y − f sxd and we want to find the tangent line to C at the point 
Psa, f sadd, then we consider a nearby point Qsx, f sxdd, where x ± a, and compute the 
slope of the secant line PQ:

mPQ −
 f sxd 2 f sad

x 2 a

Then we let Q approach P along the curve C by letting x approach a. If mPQ approaches 

 70.  (a)  By graphing y − e 2xy10 and y − 0.1 on a common 
screen, discover how large you need to make x so that 
e 2xy10 , 0.1.

 (b)  Can you solve part (a) without using a graphing  
device?

 71.  Use a graph to find a number N such that

if   x . N   then   Z 3x 2 1 1
2x 2 1 x 1 1

2 1.5 Z , 0.05

 72.  For the limit 

lim
xl`

 
1 2 3x

sx 2 1 1
  − 23

illustrate Definition 7 by finding values of N that correspond 
to « − 0.1 and « − 0.05.

 73.  For the limit 

lim
x l2`

 
1 2 3x

sx 2 1 1
  − 3

illustrate Definition 8 by finding values of N that correspond 
to « − 0.1 and « − 0.05.

 74.  For the limit 

lim
x l `

 sx ln x − `

illustrate Definition 9 by finding a value of N that corre-
sponds to M − 100.

 75.  (a)  How large do we have to take x so that 
1yx 2 , 0.0001?

 (b) Taking r − 2 in Theorem 5, we have the statement

lim
x l `

 
1
x 2 − 0

 Prove this directly using Definition 7.

;

;

;

;

;

 76. (a)  How large do we have to take x so that 
1ysx , 0.0001?

 (b) Taking r − 1
2 in Theorem 5, we have the statement

lim
x l `

 
1

sx 
− 0

 Prove this directly using Definition 7.

 77. Use Definition 8 to prove that lim
x l2`

 
1
x

− 0.

 78. Prove, using Definition 9, that lim
x l `

 x 3 − `.

 79.  Use Definition 9 to prove that lim 
x l `

 e x − `.

 80. Formulate a precise definition of 

lim 
x l2`

 f sxd − 2`

  Then use your definition to prove that

lim 
x l2`

 s1 1 x 3 d − 2`

 81. (a) Prove that

 lim
xl`

 f sxd − lim
t l

 

01 f s1ytd

 and  lim
xl2`

 f sxd − lim
t l

 

02 f s1ytd

  if these limits exist.
 (b) Use part (a) and Exercise 65 to find

lim 
x l 01

 x sin 
1
x
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 SECTION 2.7  Derivatives and Rates of Change 141

a number m, then we define the tangent t to be the line through P with slope m. (This 
amounts to saying that the tangent line is the limiting position of the secant line PQ as Q 
approaches P. See Figure 1.)

1   Definition The tangent line to the curve y − f sxd at the point Psa, f sadd is 
the line through P with slope

m − lim
x l a

 
 f sxd 2 f sad

x 2 a

provided that this limit exists.

In our first example we confirm the guess we made in Example 2.1.1.

EXAMPLE 1 Find an equation of the tangent line to the parabola y − x 2 at the  
point Ps1, 1d.

SOLUTION Here we have a − 1 and f sxd − x 2, so the slope is

 m − lim
x l1

 
 f sxd 2 f s1d

x 2 1
− lim

x l1
 
x 2 2 1
x 2 1

 − lim
x l1

 
sx 2 1dsx 1 1d

x 2 1

 − lim
x l1

 sx 1 1d − 1 1 1 − 2

Using the point-slope form of the equation of a line, we find that an equation of the 
tangent line at s1, 1d is

 y 2 1 − 2sx 2 1d    or    y − 2x 2 1 Q

We sometimes refer to the slope of the tangent line to a curve at a point as the slope 
of the curve at the point. The idea is that if we zoom in far enough toward the point, the 
curve looks almost like a straight line. Figure 2 illustrates this procedure for the curve 
y − x 2 in Example 1. The more we zoom in, the more the parabola looks like a line. In 
other words, the curve becomes almost indistinguishable from its tangent line.

(1, 1)

2

0 2

(1, 1)

1.5

0.5 1.5

(1, 1)

1.1

0.9 1.1

0 x

y

P

t
Q

Q
Q

0 x

y

a x

P{a, f(a)}
ƒ-f(a)

x-a

Q{x, ƒ}

FIGURE 1 

Point-slope form for a line through the 
point sx1, y1d with slope m:

y 2 y1 − msx 2 x1d

TEC Visual 2.7 shows an animation 
of Figure 2.

FIGURE 2 Zooming in toward the point (1, 1) on the parabola y − x 2
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142 CHAPTER 2  Limits and Derivatives

There is another expression for the slope of a tangent line that is sometimes easier to 
use. If h − x 2 a, then x − a 1 h and so the slope of the secant line PQ is

mPQ −
 f sa 1 hd 2 f sad

h

(See Figure 3 where the case h . 0 is illustrated and Q is to the right of P. If it happened 
that h , 0, however, Q would be to the left of P.)

Notice that as x approaches a, h approaches 0 (because h − x 2 a) and so the expres-
sion for the slope of the tangent line in Definition 1 becomes

m − lim
h l 0

 
 f sa 1 hd 2 f sad

h

EXAMPLE 2 Find an equation of the tangent line to the hyperbola y − 3yx at the  
point s3, 1d.

SOLUTION Let f sxd − 3yx. Then, by Equation 2, the slope of the tangent at s3, 1d is

m − lim
h l 0

 
 f s3 1 hd 2 f s3d

h

− lim
h l 0

 

3
3 1 h

2 1

h
− lim

h l 0
 

3 2 s3 1 hd
3 1 h

h

 − lim
h l 0

 
2h

hs3 1 hd
− lim

h l 0
2

1
3 1 h

− 2
1
3

Therefore an equation of the tangent at the point s3, 1d is 

y 2 1 − 21
3 sx 2 3d

which simplifies to x 1 3y 2 6 − 0

The hyperbola and its tangent are shown in Figure 4. Q

Velocities
In Section 2.1 we investigated the motion of a ball dropped from the CN Tower and 
defined its velocity to be the limiting value of average velocities over shorter and shorter 
time periods.

In general, suppose an object moves along a straight line according to an equation of 
motion s − f std, where s is the displacement (directed distance) of the object from the 
origin at time t. The function f  that describes the motion is called the position func-
tion of the object. In the time interval from t − a to t − a 1 h the change in position is 
f sa 1 hd 2 f sad. (See Figure 5.) 

0 x

y

a a+h

P{a, f(a)}
h

Q{a+h, f(a+h)}
t

f(a+h)-f(a)

FIGURE 3 

2

y=

(3, 1)

x+3y-6=0

x

y

0

3
x

FIGURE 4 

0 s
f(a+h)-f(a)

position at
time t=a

position at
time t=a+h

f(a)

f(a+h)

FIGURE 5 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 2.7  Derivatives and Rates of Change 143

The average velocity over this time interval is

average velocity −
displacement

time
−

 f sa 1 hd 2 f sad
h

which is the same as the slope of the secant line PQ in Figure 6.
Now suppose we compute the average velocities over shorter and shorter time inter-

vals fa, a 1 hg. In other words, we let h approach 0. As in the example of the falling ball, 
we define the velocity (or instantaneous velocity) vsad at time t − a to be the limit of 
these average velocities:

vsad − lim
h l 0

 
 f sa 1 hd 2 f sad

h

This means that the velocity at time t − a is equal to the slope of the tangent line at P 
(compare Equations 2 and 3).

Now that we know how to compute limits, let’s reconsider the problem of the fall-
ing ball.

EXAMPLE 3 Suppose that a ball is dropped from the upper observation deck of the 
CN Tower, 450 m above the ground.
(a) What is the velocity of the ball after 5 seconds?
(b) How fast is the ball traveling when it hits the ground?

SOLUTION We will need to find the velocity both when t − 5 and when the ball hits 
the ground, so it’s efficient to start by finding the velocity at a general time t. Using the 
equation of motion s − f std − 4.9t 2, we have

 vstd − lim
h l 0

 
 f st 1 hd 2 f std

h
− lim

h l 0
 
4.9st 1 hd2 2 4.9t 2

h

 − lim
h l 0

 
4.9st 2 1 2th 1 h 2 2 t 2 d

h
− lim

h l 0
 
4.9s2th 1 h 2 d

h

− lim
hl0

 
4.9hs2t 1 hd

h
− lim

h l 0
 4.9s2t 1 hd − 9.8t

(a) The velocity after 5 seconds is vs5d − s9.8ds5d − 49 mys.

(b) Since the observation deck is 450 m above the ground, the ball will hit the ground 
at the time t when sstd − 450, that is,

4.9t 2 − 450

This gives

t 2 −
450
4.9

    and    t − Î450
4.9

< 9.6 s

0

P{a, f(a)}

Q{a+h, f(a+h)}

h

a+ha

s

t

mPQ=
! average velocity

f(a+h)-f(a)
h 

FIGURE 6 

3

Recall from Section 2.1: The dis tance 
(in meters) fallen after t seconds is 
4.9t 2.
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144 CHAPTER 2  Limits and Derivatives

The velocity of the ball as it hits the ground is therefore

 vSÎ450
4.9

D − 9.8Î450
4.9

< 94 mys Q

Derivatives
We have seen that the same type of limit arises in finding the slope of a tangent line 
(Equation 2) or the velocity of an object (Equation 3). In fact, limits of the form

lim
h l

 

0
 
 f sa 1 hd 2 f sad

h

arise whenever we calculate a rate of change in any of the sciences or engineering, such  
as a rate of reaction in chemistry or a marginal cost in economics. Since this type of limit 
occurs so widely, it is given a special name and notation.

4   Definition  The derivative of a function f  at a number a, denoted by  
f 9sad, is

f 9sad − lim
h l

 

0
 
 f sa 1 hd 2 f sad

h
  if this limit exists.

If we write x − a 1 h, then we have h − x 2 a and h approaches 0 if and only if x 
approaches a. Therefore an equivalent way of stating the definition of the derivative, as 
we saw in finding tangent lines, is

f 9sad − lim
x l a

 
 f sxd 2 f sad

x 2 a

EXAMPLE 4  
Find the derivative of the function f sxd − x 2 2 8x 1 9 at the number a.

SOLUTION From Definition 4 we have

  f 9sad − lim
h l

 

0
 
 f sa 1 hd 2 f sad

h

 − lim
h l

 

0
 
fsa 1 hd2 2 8sa 1 hd 1 9g 2 fa 2 2 8a 1 9g

h

 − lim
h l

 

0
 
a 2 1 2ah 1 h 2 2 8a 2 8h 1 9 2 a 2 1 8a 2 9

h

 − lim
h l

 

0
 
2ah 1 h 2 2 8h

h
− lim

h l
 

0
 s2a 1 h 2 8d

  − 2a 2 8 Q

f 9sad is read “ f  prime of a.”

5

Definitions 4 and 5 are equivalent, so 
we can use either one to compute the
derivative. In practice, Definition 4 
often leads to simpler computations.
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We defined the tangent line to the curve y − f sxd at the point Psa, f sadd to be the line 
that passes through P and has slope m given by Equation 1 or 2. Since, by Defini tion 4, 
this is the same as the derivative f 9sad, we can now say the following.

The tangent line to y − f sxd at sa, f sadd is the line through sa, f sadd whose slope is 
equal to f 9sad, the derivative of f  at a.

If we use the point-slope form of the equation of a line, we can write an equation of 
the tangent line to the curve y − f sxd at the point sa, f sadd:

y 2 f sad − f 9sadsx 2 ad

EXAMPLE 5 Find an equation of the tangent line to the parabola y − x 2 2 8x 1 9 at 
the point s3, 26d.

SOLUTION From Example 4 we know that the derivative of f sxd − x 2 2 8x 1 9 at 
the number a is f 9sad − 2a 2 8. Therefore the slope of the tangent line at s3, 26d is 
f 9s3d − 2s3d 2 8 − 22. Thus an equation of the tangent line, shown in Figure 7, is

 y 2 s26d − s22dsx 2 3d    or    y − 22x Q

Rates of Change
Suppose y is a quantity that depends on another quantity x. Thus y is a function of x and 
we write y − f sxd. If x changes from x1 to x2, then the change in x (also called the incre-
ment of x) is

Dx − x2 2 x1

and the corresponding change in y is

Dy − f sx2d 2 f sx1d

The difference quotient

Dy
Dx

−
 f sx2d 2 f sx1d

x2 2 x1

is called the average rate of change of y with respect to x over the interval fx1, x2g and 
can be interpreted as the slope of the secant line PQ in Figure 8.

By analogy with velocity, we consider the average rate of change over smaller and 
smaller intervals by letting x2 approach x1 and therefore letting Dx approach 0. The limit 
of these average rates of change is called the (instantaneous) rate of change of y with 
respect to x at x − x1, which (as in the case of velocity) is interpreted as the slope of the 
tangent to the curve y − f sxd at Psx1, f sx1dd:

6     instantaneous rate of change − lim      
Dx l 0

 
Dy
Dx

− lim 
x2 l x1

  f sx2d 2 f sx1d
x2 2 x1

We recognize this limit as being the derivative f 9sx1d.

y=≈-8x+9

(3, _6)

y=_2x

0 x

y

FIGURE 7 

 average rate of change − mPQ 

instantaneous rate of change −
slope of tangent at P  

FIGURE 8 

average rate of change ! mPQ 

instantaneous rate of change !
slope of tangent at P  

0 x

y

⁄ ¤

Q{¤, ‡}

Îx

ÎyP{⁄, fl}
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146 CHAPTER 2  Limits and Derivatives

We know that one interpretation of the derivative f 9sad is as the slope of the tangent 
line to the curve y − f sxd when x − a.  We now have a second interpretation:

 The derivative f 9sad is the instantaneous rate of change of y − f sxd with respect 
to x when x − a.

The connection with the first interpretation is that if we sketch the curve y − f sxd, 
then the instantaneous rate of change is the slope of the tangent to this curve at the point 
where x − a. This means that when the derivative is large (and therefore the curve is 
steep, as at the point P in Figure 9), the y-values change rapidly. When the derivative is 
small, the curve is relatively flat (as at point Q) and the y-values change slowly.

In particular, if s − f std is the position function of a particle that moves along a 
straight line, then f 9sad is the rate of change of the displacement s with respect to the 
time t. In other words, f 9sad is the velocity of the particle at time t − a. The speed of the 
particle is the absolute value of the velocity, that is, | f 9sad |.

In the next example we discuss the meaning of the derivative of a function that is 
defined verbally.

EXAMPLE 6 A manufacturer produces bolts of a fabric with a fixed width. The cost of 
producing x yards of this fabric is C − f sxd dollars.
(a) What is the meaning of the derivative f 9sxd? What are its units?
(b) In practical terms, what does it mean to say that f 9s1000d − 9?
(c) Which do you think is greater, f 9s50d or f 9s500d? What about f 9s5000d?

SOLUTION 
(a) The derivative f 9sxd is the instantaneous rate of change of C with respect to x; that 
is, f 9sxd means the rate of change of the production cost with respect to the number of 
yards produced. (Economists call this rate of change the marginal cost. This idea is 
discussed in more detail in Sections 3.7 and 4.7.)

Because

f 9sxd − lim
Dx l 0

 
DC
Dx

the units for f 9sxd are the same as the units for the difference quotient DCyDx. Since 
DC is measured in dollars and Dx in yards, it follows that the units for f 9sxd are dollars 
per yard.

(b) The statement that f 9s1000d − 9 means that, after 1000 yards of fabric have been 
manufactured, the rate at which the production cost is increasing is $9yyard. (When 
x − 1000, C is increasing 9 times as fast as x.)

Since Dx − 1 is small compared with x − 1000, we could use the approximation

f 9s1000d <
DC
Dx

−
DC
1

− DC

and say that the cost of manufacturing the 1000th yard (or the 1001st) is about $9.

(c) The rate at which the production cost is increasing (per yard) is probably lower 
when x − 500 than when x − 50 (the cost of making the 500th yard is less than the 
cost of the 50th yard) because of economies of scale. (The manufacturer makes more 

FIGURE 9   
The y-values are changing rapidly
at P and slowly at Q.

P

Q

x

y

Here we are assuming that the cost 
function is well behaved; in other 
words, Csxd doesn’t oscillate rapidly 
near x − 1000.
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efficient use of the fixed costs of production.) So

f 9s50d . f 9s500d

But, as production expands, the resulting large-scale operation might become ineffi-
cient and there might be overtime costs. Thus it is possible that the rate of increase of 
costs will eventually start to rise. So it may happen that

 f 9s5000d . f 9s500d Q

In the following example we estimate the rate of change of the national debt with 
respect to time. Here the function is defined not by a formula but by a table of values.

EXAMPLE 7 Let Dstd be the US national debt at time t. The table in the margin gives 
approximate values of this function by providing end of year estimates, in billions of 
dollars, from 1985 to 2010. Interpret and estimate the value of D9s2000d.

SOLUTION The derivative D9s2000d means the rate of change of D with respect to t 
when t − 2000, that is, the rate of increase of the national debt in 2000.

According to Equation 5,

D9s2000d − lim
t l 2000

 
Dstd 2 Ds2000d

t 2 2000

So we compute and tabulate values of the difference quotient (the average rates of 
change) as follows.

t Time interval Average rate of change −  
Dstd 2 Ds2000d

t 2 2000

1985 [1985, 2000] 247.75 
1990 [1990, 2000] 229.74
1995 [1995, 2000] 134.70 
2005 [2000, 2005] 501.64
2010 [2000, 2010] 836.30 

From this table we see that D9s2000d lies somewhere between 134.70 and 501.64 billion 
dollars per year. [Here we are making the reasonable assumption that the debt didn’t 
fluctuate wildly between 1995 and 2005.] We estimate that the rate of increase of the  
national debt of the United States in 2000 was the average of these two numbers, namely

D9s2000d < 318 billion dollars per year

Another method would be to plot the debt function and estimate the slope of the 
tangent line when t − 2000. Q

In Examples 3, 6, and 7 we saw three specific examples of rates of change: the veloc-
ity of an object is the rate of change of displacement with respect to time; marginal cost 
is the rate of change of production cost with respect to the number of items produced; the 
rate of change of the debt with respect to time is of interest in economics. Here is a small 
sample of other rates of change: In physics, the rate of change of work with respect to 
time is called power. Chemists who study a chemical reaction are interested in the rate of 
change in the concentration of a reactant with respect to time (called the rate of reaction). 

t Dstd

1985 1945.9
1990 3364.8
1995 4988.7
2000 5662.2
2005 8170.4
2010 14,025.2

Source: US Dept. of the Treasury

A Note On Units
The units for the average rate of change 
DDyDt are the units for DD divided by 
the units for Dt, namely billions of dol-
lars per year. The instantaneous rate of 
change is the limit of the average rates 
of change, so it is measured in the same 
units: billions of dollars per year.
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148 CHAPTER 2  Limits and Derivatives

 (b)  Find equations of the tangent lines at the points s1, 1d 
and (4, 12 ).

 (c)  Graph the curve and both tangents on a common 
screen.

 11. (a)  A particle starts by moving to the right along a hori-
zontal line; the graph of its position function is shown 
in the figure. When is the particle moving to the right? 
Moving to the left? Standing still?

 (b)  Draw a graph of the velocity function.

s (meters)

0 2 4 6

4

2

t (seconds)

 12.  Shown are graphs of the position functions of two runners, 
A and B, who run a 100-meter race and finish in a tie.

s (meters)

0 4 8 12

80

40

t (seconds)

A

B

 (a)  Describe and compare how the runners run the race.
 (b)  At what time is the distance between the runners the 

greatest?
 (c)  At what time do they have the same velocity?

 13.   If a ball is thrown into the air with a velocity of 40 ftys, its 
height (in feet) after t seconds is given by y − 40t 2 16t 2. 
Find the velocity when t − 2.

;

 1. A curve has equation y − f sxd.
 (a)  Write an expression for the slope of the secant line 

through the points Ps3, f s3dd and Qsx, f sxdd.
 (b)  Write an expression for the slope of the tangent line at P.

 2.  Graph the curve y − e x in the viewing rectangles f21, 1g 
by f0, 2g, f20.5, 0.5g by f0.5, 1.5g, and f20.1, 0.1g by 
f0.9, 1.1g. What do you notice about the curve as you  
zoom in toward the point s0, 1d?

 3. (a)  Find the slope of the tangent line to the parabola 
y − 4x 2 x 2 at the point s1, 3d

 (i) using Definition 1 (ii) using Equation 2

 (b) Find an equation of the tangent line in part (a).
 (c)  Graph the parabola and the tangent line. As a check on 

your work, zoom in toward the point s1, 3d until the 
parabola and the tangent line are indistinguishable.

 4.  (a)  Find the slope of the tangent line to the curve 
y − x 2 x 3 at the point s1, 0d

 (i) using Definition 1 (ii) using Equation 2
 (b) Find an equation of the tangent line in part (a).
 (c)  Graph the curve and the tangent line in successively 

smaller viewing rectangles centered at s1, 0d until the 
curve and the line appear to coincide.

5–8 Find an equation of the tangent line to the curve at the  
given point.

 5.  y − 4x 2 3x 2,  s2, 24d 6. y − x 3 2 3x 1 1,  s2, 3d

 7. y − sx ,  s1, 1d 8. y −
2x 1 1
x 1 2

,  s1, 1d

 9. (a)  Find the slope of the tangent to the curve 
y − 3 1 4x 2 2 2x 3 at the point where x − a.

 (b)  Find equations of the tangent lines at the points s1, 5d  
and s2, 3d.

 (c)  Graph the curve and both tangents on a common 
screen.

 10. (a)  Find the slope of the tangent to the curve y − 1ysx  at 
the point where x − a.

;

;

;

;

A biologist is interested in the rate of change of the population of a colony of bacteria 
with respect to time. In fact, the computation of rates of change is important in all of the 
natural sciences, in engineering, and even in the social sciences. Further examples will 
be given in Section 3.7.

All these rates of change are derivatives and can therefore be interpreted as slopes of 
tangents. This gives added significance to the solution of the tangent problem. Whenever 
we solve a problem involving tangent lines, we are not just solving a problem in geom-
etry. We are also implicitly solving a great variety of problems involving rates of change 
in science and engineering.
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 19.  For the function f  graphed in Exercise 18:
 (a) Estimate the value of f 9s50d.
 (b) Is f 9s10d . f 9s30d?

 (c) Is f 9s60d .
f s80d 2 f s40d

80 2 40
? Explain.

 20.   Find an equation of the tangent line to the graph of y − tsxd 
at x − 5 if ts5d − 23 and t9s5d − 4.

 21.   If an equation of the tangent line to the curve y − f sxd at the 
point where a − 2 is y − 4x 2 5, find f s2d and f 9s2d.

 22.  If the tangent line to y − f sxd at (4, 3) passes through the 
point (0, 2), find f s4d and f 9s4d.

 23.  Sketch the graph of a function f  for which f s0d − 0, 
f 9s0d − 3, f 9s1d − 0, and f 9s2d − 21.

 24.  Sketch the graph of a function t for which 
ts0d − ts2d − ts4d − 0, t9s1d − t9s3d − 0,

  t9s0d − t9s4d − 1, t9s2d − 21, limx l ` tsxd − `, and
 limx l 2` tsxd − 2`.

 25.   Sketch the graph of a function t that is continuous on its 
domain s25, 5d and where ts0d − 1, t9s0d − 1, t9s22d − 0, 
limx l 251 tsxd − `, and limx l52 tsxd − 3.

 26.  Sketch the graph of a function f  where the domain is s22, 2d, 
f 9s0d − 22, lim x l22 f sxd − `, f  is continuous at all 
numbers in its domain except 61, and f  is odd.

 27.   If f sxd − 3x 2 2 x 3, find f 9s1d and use it to find an equation of 
the tangent line to the curve y − 3x 2 2 x 3 at the point s1, 2d.

 28.   If tsxd − x 4 2 2, find t9s1d and use it to find an equation of 
the tangent line to the curve y − x 4 2 2 at the point s1, 21d.

 29. (a)  If Fsxd − 5xys1 1 x 2d, find F9s2d and use it to find an 
equation of the tangent line to the curve y − 5xys1 1 x 2d 
at the point s2, 2d.

   (b)  Illustrate part (a) by graphing the curve and the tangent 
line on the same screen.

 30. (a)  If Gsxd − 4x 2 2 x 3, find G9sad and use it to find equa-
tions of the tangent lines to the curve y − 4x 2 2 x 3 at  
the points s2, 8d and s3, 9d.

   (b)  Illustrate part (a) by graphing the curve and the tangent 
lines on the same screen.

31–36 Find f 9sad.

 31. f sxd − 3x 2 2 4x 1 1 32. f std − 2t 3 1 t

 33. f std −
2t 1 1
t 1 3

 34. f sxd − x 22

 35. f sxd − s1 2 2x  36. f sxd −
4

s1 2 x 

37–42 Each limit represents the derivative of some function f  at 
some number a. State such an f  and a in each case.

 37. lim
h l

 

0
 
s9 1 h 2 3

h
 38. lim

h l
 

0
 
e221h 2 e22

h

;

;

 14.   If a rock is thrown upward on the planet Mars with a 
velocity of 10 mys, its height (in meters) after t seconds is 
given by H − 10t 2 1.86t 2.

 (a) Find the velocity of the rock after one second.
 (b) Find the velocity of the rock when t − a.
 (c) When will the rock hit the surface?
 (d) With what velocity will the rock hit the surface?

 15.   The displacement (in meters) of a particle moving in a 
straight line is given by the equation of motion s − 1yt 2,  
where t is measured in seconds. Find the velocity of the  
par ticle at times t − a, t − 1, t − 2, and t − 3.

 16.   The displacement (in feet) of a particle moving in a straight 
line is given by s − 1

2 t 2 2 6t 1 23, where t is measured in 
seconds.

 (a)  Find the average velocity over each time interval:
 (i) f4, 8g (ii) f6, 8g
 (iii) f8, 10g (iv) f8, 12g
 (b) Find the instantaneous velocity when t − 8.
 (c)  Draw the graph of s as a function of t and draw the 

secant lines whose slopes are the average velocities in 
part (a). Then draw the tangent line whose slope is the 
instantaneous velocity in part (b).

 17.  For the function t whose graph is given, arrange the 
following numbers in increasing order and explain your 
reasoning:

0 t9s22d t9s0d t9s2d t9s4d

y=©

1 3 4_1 0 x2

y

 18.   The graph of a function f  is shown.
 (a)  Find the average rate of change of f  on the interval  

f20, 60g.
 (b)  Identify an interval on which the average rate of change 

of f  is 0.
 (c)  Which interval gives a larger average rate of change, 

f40, 60g or f40, 70g?

 (d)  Compute 
f s40d 2 f s10d

40 2 10
; what does this value repre-

  sent geometrically?

x

y

20 40 60

400

800

0
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 48.  The number N of locations of a popular coffeehouse chain 
is given in the table. (The numbers of locations as of 
October 1 are given.)

Year 2004 2006 2008 2010 2012

N 8569 12,440 16,680 16,858 18,066

 (a)  Find the average rate of growth
 (i) from 2006 to 2008 
 (ii) from 2008 to 2010

 In each case, include the units. What can you conclude?
 (b)  Estimate the instantaneous rate of growth in 2010 by  

taking the average of two average rates of change.  
What are its units?

 (c)  Estimate the instantaneous rate of growth in 2010 by 
measuring the slope of a tangent.

 49.  The table shows world average daily oil consumption from 
1985 to 2010 measured in thousands of barrels per day.

 (a)  Compute and interpret the average rate of change from 
1990 to 2005. What are the units?

 (b)  Estimate the instantaneous rate of change in 2000 by 
taking the average of two average rates of change.  
What are its units?

Years  
since 1985

Thousands of barrels  
of oil per day

0 60,083
5 66,533

10 70,099
15 76,784
20 84,077
25 87,302

Source: US Energy Information Administration

 50.  The table shows values of the viral load Vstd in HIV patient 
303, measured in RNA copiesymL, t days after ABT-538 
treatment was begun.

t 4 8 11 15 22

Vstd 53 18 9.4 5.2 3.6

 (a)  Find the average rate of change of V with respect to t 
over each time interval:

 (i) f4, 11g (ii) f8, 11g
 (iii) f11, 15g (iv) f11, 22g
  What are the units?
 (b) Estimate and interpret the value of the derivative V9s11d.

 Source: Adapted from D. Ho et al., “Rapid Turnover of Plasma Virions and 
CD4 Lymphocytes in HIV-1 Infection,” Nature 373 (1995): 123–26.

 39. lim
x l

 

2
 
x6 2 64
x 2 2

 40. lim
x l

 

1y4
 

1
x

2 4

x 2 1
4

 41. lim
h l

 

0
 
coss! 1 hd 1 1

h
 42. lim

" l !y6
 
sin " 2 1

2

" 2 !y6

43–44 A particle moves along a straight line with equation of 
motion s − f std, where s is measured in meters and t in seconds. 
Find the velocity and the speed when t − 4.

 43. f std − 80t 2 6t 2 44. f std − 10 1
45

t 1 1

 45.  A warm can of soda is placed in a cold refrigerator. Sketch 
the graph of the temperature of the soda as a function of time. 
Is the initial rate of change of temperature greater or less than 
the rate of change after an hour?

 46.  A roast turkey is taken from an oven when its temperature 
has reached 185°F and is placed on a table in a room where 
the temperature is 75°F. The graph shows how the tempera-
ture of the turkey decreases and eventually approaches room 
temperature. By measuring the slope of the tangent, estimate 
the rate of change of the temperature after an hour.

P

T (°F)

0 30 60 90 120 150

100

200

t  (min)

 47.  Researchers measured the average blood alcohol concen - 
tration Cstd of eight men starting one hour after consumption 
of 30 mL of ethanol (corresponding to two alcoholic drinks).

t (hours) 1.0 1.5 2.0 2.5 3.0

Cstd smgymLd 0.33 0.24 0.18 0.12 0.07

 (a)  Find the average rate of change of C with respect to t 
over each time interval:

 (i) f1.0, 2.0g (ii) f1.5, 2.0g 
 (iii) f2.0, 2.5g (iv) f2.0, 3.0g
  In each case, include the units.
 (b)  Estimate the instantaneous rate of change at  t − 2 and 

interpret your result. What are the units?
  Source: Adapted from P. Wilkinson et al., “Pharmacokinetics of Ethanol after 

Oral Administration in the Fasting State,” Journal of Pharmacokinetics and 
Biopharmaceutics 5 (1977): 207–24.
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 51.  The cost (in dollars) of producing x units of a certain com-
modity is Csxd − 5000 1 10x 1 0.05x 2.

 (a)  Find the average rate of change of C with respect to x 
when the production level is changed

 (i) from x − 100 to x − 105
 (ii) from x − 100 to x − 101
 (b)  Find the instantaneous rate of change of C with respect 

to x when x − 100. (This is called the marginal cost. Its 
significance will be explained in Section 3.7.)

 52.  If a cylindrical tank holds 100,000 gallons of water, which 
can be drained from the bottom of the tank in an hour, then 
Torricelli’s Law gives the volume V of water remaining in the 
tank after t minutes as

Vstd − 100,000(1 2 1
60 t)2    0 < t < 60

 Find the rate at which the water is flowing out of the tank 
(the instantaneous rate of change of V with respect to t) as 
a function of t. What are its units? For times t −  0, 10, 20, 
30, 40, 50, and 60 min, find the flow rate and the amount of 
water remaining in the tank. Summarize your findings in a 
sentence or two. At what time is the flow rate the greatest? 
The least?

 53.  The cost of producing x ounces of gold from a new gold mine 
is C − f sxd dollars.

 (a)  What is the meaning of the derivative f 9sxd? What are its 
units?

 (b) What does the statement f 9s800d − 17 mean?
 (c)  Do you think the values of f 9sxd will increase or decrease 

in the short term? What about the long term? Explain.

 54.  The number of bacteria after t hours in a controlled laboratory 
experiment is n − f std.

 (a)  What is the meaning of the derivative f 9s5d? What are its 
units?

 (b)  Suppose there is an unlimited amount of space and 
nutrients for the bacteria. Which do you think is larger, 
f 9s5d or f 9s10d? If the supply of nutrients is limited, 
would that affect your conclusion? Explain.

 55.  Let H std be the daily cost (in dollars) to heat an office build-
ing when the outside temperature is t degrees Fahrenheit.

 (a) What is the meaning of H9s58d? What are its units?
 (b)  Would you expect H9s58d to be positive or negative? 

Explain.

 56.  The quantity (in pounds) of a gourmet ground coffee that is 
sold by a coffee company at a price of p dollars per pound  
is Q − f s pd.

 (a)  What is the meaning of the derivative f 9s8d? What are its 
units?

 (b) Is f 9s8d positive or negative? Explain.

 57.  The quantity of oxygen that can dissolve in water depends on 
the temperature of the water. (So thermal pollution influences 

the oxygen content of water.) The graph shows how oxygen 
solubility S varies as a function of the water temperature T.

 (a)  What is the meaning of the derivative S9sT d? What are 
its units?

 (b)  Estimate the value of S9s16d and interpret it.

(mg/L)

4

8

12

16

S

0 T (°F)8 16 24 32 40

Source: C. Kupchella et al., Environmental Science: Living Within the 
System of Nature, 2d ed. (Boston: Allyn and Bacon, 1989). 

 58.  The graph shows the influence of the temperature T on the 
maximum sustainable swimming speed S of Coho salmon.

 (a)  What is the meaning of the derivative S9sT d? What are 
its units?

 (b)  Estimate the values of S9s15d and S9s25d and interpret 
them.

200 10

S (cm/s)

20

T (°C)

59–60 Determine whether f 9s0d exists.

 59. f sxd − Hx sin 
1
x

    if  x ± 0

0 if  x − 0

 60. f sxd − Hx 2 sin 
1
x

    if  x ± 0

0 if  x − 0

 61.  (a)  Graph the function f sxd − sin x 2 1
1000 sins1000xd in the 

viewing rectangle  f22!, 2!g by f24, 4g. What slope 
does the graph appear to have at the origin?

 (b)  Zoom in to the viewing window f20.4, 0.4g by 
f20.25, 0.25g and estimate the value of f 9s0d. Does this 
agree with your answer from part (a)?

 (c)  Now zoom in to the viewing window f20.008, 0.008g 
by f20.005, 0.005g. Do you wish to revise your estimate 
for f 9s0d?

;
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WRITING PROJECT EARLY METHODS FOR FINDING TANGENTS

The first person to formulate explicitly the ideas of limits and derivatives was Sir Isaac 
Newton in the 1660s. But Newton acknowledged that “If I have seen further than other men, 
it is because I have stood on the shoulders of giants.” Two of those giants were Pierre Fermat 
(1601–1665) and Newton’s mentor at Cambridge, Isaac Barrow (1630–1677). Newton was 
familiar with the methods that these men used to find tangent lines, and their methods played a 
role in Newton’s eventual formulation of calculus.

The following references contain explanations of these methods. Read one or more of the 
references and write a report comparing the methods of either Fermat or Barrow to modern 
methods. In particular, use the method of Section 2.7 to find an equation of the tangent line to 
the curve y − x 3 1 2x at the point (1, 3) and show how either Fermat or Barrow would have 
solved the same problem. Although you used derivatives and they did not, point out similari-
ties between the methods.

1.  Carl Boyer and Uta Merzbach, A History of Mathematics (New York: Wiley, 1989),  
pp. 389, 432.

2.  C. H. Edwards, The Historical Development of the Calculus (New York: Springer-Verlag, 
1979), pp. 124, 132.

3.  Howard Eves, An Introduction to the History of Mathematics, 6th ed. (New York: Saunders, 
1990), pp. 391, 395.

4.  Morris Kline, Mathematical Thought from Ancient to Modern Times (New York: Oxford 
University Press, 1972), pp. 344, 346.

In the preceding section we considered the derivative of a function f  at a fixed number a:

f 9sad − lim
h l 0

 
 f sa 1 hd 2 f sad

h

Here we change our point of view and let the number a vary. If we replace a in Equa-
tion 1 by a variable x, we obtain

f 9sxd − lim
h l 0

 
f sx 1 hd 2 f sxd

h

Given any number x for which this limit exists, we assign to x the number f 9sxd. So we 
can regard f 9 as a new function, called the derivative of f  and defined by Equation 2. 
We know that the value of f 9 at x, f 9sxd, can be interpreted geometrically as the slope of 
the tangent line to the graph of f  at the point sx, f sxdd.

1

2
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The function f 9 is called the derivative of f  because it has been “derived” from f  by 
the limiting operation in Equation 2. The domain of f 9 is the set hx | f 9sxd existsj and 
may be smaller than the domain of f.

EXAMPLE 1 The graph of a function f  is given in Figure 1. Use it to sketch the graph 
of the derivative f 9.

SOLUTION We can estimate the value of the derivative at any value of x by drawing the 
tangent at the point sx, f sxdd and estimating its slope. For instance, for x − 5 we draw  
the tangent at P in Figure 2(a) and estimate its slope to be about 32, so f 9s5d < 1.5. This 
allows us to plot the point P9s5, 1.5d on the graph of f 9 directly beneath P. (The slope 
of the graph of f  becomes the y-value on the graph of f 9.) Repeating this procedure at 
several points, we get the graph shown in Figure 2(b). Notice that the tangents at A, B,  
and C are horizontal, so the derivative is 0 there and the graph of f 9 crosses the x-axis 
(where y − 0) at the points A9, B9, and C9, directly beneath A, B, and C. Between A and 
B the tangents have positive slope, so f 9sxd is positive there. (The graph is above the  
x-axis.) But between B and C the tangents have negative slope, so f 9sxd is negative 
there.

m=0

m=0

Pª (5, 1.5)

y

B

A mÅ

C

P

(a)

x

1

10

y=ƒ

y

Aª Bª Cª

(b)

x

1

10 5

y=fª(x)

3
2

m=0

5

 Q

x

y

10

1

y=ƒ

FIGURE 1 

TEC Visual 2.8 shows an animation 
of Figure 2 for several functions.

FIGURE 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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EXAMPLE 2 
(a) If f sxd − x 3 2 x, find a formula for f 9sxd.
(b) Illustrate this formula by comparing the graphs of f  and f 9.

SOLUTION
(a) When using Equation 2 to compute a derivative, we must remember that the variable 
is h and that x is temporarily regarded as a constant during the calculation of the limit.

   f 9sxd − lim
h l 0

  
 f sx 1 hd 2 f sxd

h
− lim

h l 0
 
 fsx 1 hd3 2 sx 1 hdg 2 fx 3 2 xg

h

  − lim
h l 0

 
x 3 1 3x 2h 1 3xh 2 1 h 3 2 x 2 h 2 x 3 1 x

h

  − lim
h l 0

 
3x 2h 1 3xh 2 1 h 3 2 h

h

 − lim
h l 0

 s3x 2 1 3xh 1 h 2 2 1d − 3x 2 2 1

(b) We use a graphing device to graph f  and f 9 in Figure 3. Notice that f 9sxd − 0 
when f  has horizontal tangents and f 9sxd is positive when the tangents have positive 
slope. So these graphs serve as a check on our work in part (a). Q

EXAMPLE 3 If f sxd − sx , find the derivative of f. State the domain of f 9.

SOLUTION 

f 9sxd − lim
h l

 

0
 
 f sx 1 hd 2 f sxd

h

− lim
h l

 

0
 
sx 1 h 2 sx 

h

− lim
h l

 

0
 Ssx 1 h 2 sx 

h
?

sx 1 h 1 sx 

sx 1 h 1 sx D  (Rationalize the numerator.)

− lim
h l

 

0
 

sx 1 hd 2 x

h(sx 1 h 1 sx ) − lim
h l

 

0
 

h

h(sx 1 h 1 sx )

− lim
h l

 

0
 

1

sx 1 h 1 sx −
1

sx 1 sx −
1

2sx 

We see that f 9sxd exists if x . 0, so the domain of f 9 is s0, `d. This is slightly smaller 
than the domain of f , which is f0, `d. Q

Let’s check to see that the result of Example 3 is reasonable by looking at the graphs 
of f  and f 9 in Figure 4. When x is close to 0, sx  is also close to 0, so f 9sxd − 1y(2sx ) 
is very large and this corresponds to the steep tangent lines near s0, 0d in Figure 4(a) and 
the large values of f 9sxd just to the right of 0 in Figure 4(b). When x is large, f 9sxd is very 
small and this corresponds to the flatter tangent lines at the far right of the graph of f  and 
the horizontal asymptote of the graph of f 9.

FIGURE 3 

2

_2

_2 2

2
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EXAMPLE 4 Find f 9 if f sxd −
1 2 x
2 1 x

.

SOLUTION

 f 9sxd − lim
h l 0

 
 f sx 1 hd 2 f sxd

h

 −  lim 
h l 0

  

1 2 sx 1 hd
2 1 sx 1 hd

2
1 2 x
2 1 x

h

 −  lim 
h l 0

 
s1 2 x 2 hds2 1 xd 2 s1 2 xds2 1 x 1 hd

hs2 1 x 1 hds2 1 xd

 −   lim 
h l 0

 
s2 2 x 2 2h 2 x 2 2 xhd 2 s2 2 x 1 h 2 x 2 2 xhd

hs2 1 x 1 hds2 1 xd

 −  lim 
h l 0

 
23h

hs2 1 x 1 hds2 1 xd
 −  lim 

h l 0
 

23
s2 1 x 1 hds2 1 xd

− 2
3

s2 1 xd2
 Q

Other Notations
If we use the traditional notation y − f sxd to indicate that the independent variable is x 
and the dependent variable is y, then some common alternative notations for the deriva-
tive are as follows:

f 9sxd − y9 −
dy
dx

−
df
dx

−
d

dx
 f sxd − Df sxd − Dx f sxd

The symbols D and dydx are called differentiation operators because they indicate the 
operation of differentiation, which is the process of calculating a derivative.

The symbol dyydx, which was introduced by Leibniz, should not be regarded as a 
ratio (for the time being); it is simply a synonym for f 9sxd. Nonetheless, it is a very useful 
and suggestive notation, especially when used in conjunction with increment notation. 
Referring to Equation 2.7.6, we can rewrite the definition of derivative in Leibniz nota-
tion in the form

dy
dx

− lim
Dx l 0

 
Dy
Dx

If we want to indicate the value of a derivative dyydx in Leibniz notation at a specific 
number a, we use the notation

dy
dx Z

x−a
    or    

dy
dxGx−a

which is a synonym for f 9sad. The vertical bar means “evaluate at.”

3   Definition  A function f  is differentiable at a if f 9sad exists. It is differen-
tiable on an open interval sa, bd [or sa, `d or s2`, ad or s2`, `d] if it is differen-
tiable at every number in the interval.

a
b

2
c
d

e
−

ad 2 bc
bd

?
1
e

Leibniz
Gottfried Wilhelm Leibniz was born in 
Leipzig in 1646 and studied law, theol-
ogy, philosophy, and mathematics at 
the university there, graduating with 
a bachelor’s degree at age 17. After 
earning his doctorate in law at age 20, 
Leibniz entered the diplomatic service 
and spent most of his life traveling to 
the capitals of Europe on political mis-
sions. In particular, he worked to avert a 
French military threat against Ger many 
and attempted to reconcile the Catholic 
and Protestant churches.

His serious study of mathematics did 
not begin until 1672 while he was on 
a diplomatic mission in Paris. There he 
built a calculating machine and met 
scientists, like Huygens, who directed his 
attention to the latest develop ments in 
mathematics and science. Leibniz sought 
to develop a symbolic logic and system 
of notation that would simplify logical 
reasoning. In particular, the version 
of calculus that he published in 1684 
established the notation and the rules for 
finding derivatives that we use today.

Unfortunately, a dreadful priority 
dispute arose in the 1690s between the 
followers of Newton and those of Leibniz 
as to who had invented calculus first. 
Leibniz was even accused of plagiarism 
by members of the Royal Society in Eng-
land. The truth is that each man invented 
calculus independently. Newton arrived 
at his version of calculus first but, because 
of his fear of controversy, did not publish 
it immediately. So Leibniz’s 1684 account 
of calculus was the first to be published.
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156 CHAPTER 2  Limits and Derivatives

EXAMPLE 5 Where is the function f sxd − | x | differentiable?

SOLUTION If x . 0, then | x | − x and we can choose h small enough that x 1 h . 0 
and hence | x 1 h | − x 1 h. Therefore, for x . 0, we have

  f 9sxd − lim
h l 0

 | x 1 h | 2 | x |
h

− lim
h l 0

 
sx 1 hd 2 x

h

 − lim
h l 0

 
h
h

− lim
h l 0

 1 − 1

and so f  is differentiable for any x . 0.
Similarly, for x , 0 we have | x | − 2x and h can be chosen small enough that

x 1 h , 0 and so | x 1 h | − 2sx 1 hd. Therefore, for x , 0,

  f 9sxd − lim
h l 0

 | x 1 h | 2 | x |
h

− lim
h l 0

 
2sx 1 hd 2 s2xd

h

 −  lim
h l 0

 
2h
h

− lim
h l 0

 s21d − 21

and so f  is differentiable for any x , 0.
For x − 0 we have to investigate

  f 9s0d − lim
h l 0

 
 f s0 1 hd 2 f s0d

h

 − lim
h l 0

 | 0 1 h | 2 | 0 |
h

− lim
hl0

 | h |
h

  (if it exists)

Let’s compute the left and right limits separately:

lim
h l

 

01
 | h |

h
− lim

h l
 

01
 
h
h

− lim
h l

 

01
 1 − 1

and lim
h l

 

02
 | h |

h
− lim

h l
 

02
 
2h
h

− lim
h l

 

02
 s21d − 21

Since these limits are different, f 9s0d does not exist. Thus f  is differentiable at all x 
except 0.

A formula for f 9 is given by

f 9sxd − H1
21

if  x . 0
if  x , 0

and its graph is shown in Figure 5(b). The fact that f 9s0d does not exist is reflected 
geometrically in the fact that the curve y − | x | does not have a tangent line at s0, 0d. 
[See Figure 5(a).] Q

Both continuity and differentiability are desirable properties for a function to have. 
The following theorem shows how these properties are related.

4   Theorem If f  is differentiable at a, then f  is continuous at a.

FIGURE 5 

x

1

y

_1
0

x

y

0

(a) y=ƒ=| x |

(b) y=fª(x) 
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 SECTION 2.8   The Derivative as a Function 157

PROOF To prove that f  is continuous at a, we have to show that lim x l a f sxd − f sad. 
We do this by showing that the difference f sxd 2 f sad approaches 0.

The given information is that f  is differentiable at a, that is,

f 9sad − lim
x l a

 
f sxd 2 f sad

x 2 a

exists (see Equation 2.7.5). To connect the given and the unknown, we divide and  
multiply f sxd 2 f sad by x 2 a (which we can do when x ± a):

f sxd 2 f sad −
 f sxd 2 f sad

x 2 a
 sx 2 ad

Thus, using the Product Law and (2.7.5), we can write

 lim
x l a

 f f sxd 2 f sadg − lim
x l a

 
 f sxd 2 f sad

x 2 a
 sx 2 ad

 − lim
x l a

 
 f sxd 2 f sad

x 2 a
? lim

x l a
 sx 2 ad

 − f 9sad ? 0 − 0

To use what we have just proved, we start with f sxd and add and subtract f sad:

 lim
x l a

 f sxd − lim
x l a

 f f sad 1 s f sxd 2 f saddg

 − lim
x l a

 f sad 1 lim
x l a

 f f sxd 2 f sadg

 − f sad 1 0 − f sad

Therefore f  is continuous at a. Q

NOTE The converse of Theorem 4 is false; that is, there are functions that are con-
tinuous but not differentiable. For instance, the function f sxd − | x | is continuous at 0 
because

lim
x l 0

 f sxd − lim
x l 0

 | x | − 0 − f s0d

(See Example 2.3.7.) But in Example 5 we showed that f  is not differentiable at 0.

How Can a Function Fail To Be Differentiable?
We saw that the function y − | x | in Example 5 is not differentiable at 0 and Figure 5(a) 
shows that its graph changes direction abruptly when x − 0. In general, if the graph of a 
function f  has a “corner” or “kink” in it, then the graph of f  has no tangent at this point  
and f  is not differentiable there. [In trying to compute f 9sad, we find that the left and 
right limits are different.]

Theorem 4 gives another way for a function not to have a derivative. It says that if f  is 
not continuous at a, then f  is not differentiable at a. So at any discontinuity (for instance, 
a jump discontinuity) f  fails to be differentiable.

PS  An important aspect of problem 
solving is trying to find a connection 
between the given and the unknown. 
See Step 2 (Think of a Plan) in Principles 
of Problem Solving on page 71.
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158 CHAPTER 2  Limits and Derivatives

A third possibility is that the curve has a vertical tangent line when x − a; that is, f  
is continuous at a and

lim
x l a | f 9sxd | − `

This means that the tangent lines become steeper and steeper as x l a. Figure 6 shows 
one way that this can happen; Figure 7(c) shows another. Figure 7 illustrates the three 
possibilities that we have discussed.

(a) A corner (c) A vertical tangent(b) A discontinuity

x

y

a0 x

y

a0x

y

a0

A graphing calculator or computer provides another way of looking at differen - 
tiability. If f  is differentiable at a, then when we zoom in toward the point sa, f sadd the graph 
straightens out and appears more and more like a line. (See Figure 8. We saw a specific  
example of this in Figure 2.7.2.) But no matter how much we zoom in toward a point like 
the ones in Figures 6 and 7(a), we can’t eliminate the sharp point or corner (see Figure 9). 

x

y

a0x

y

a0

 FIGURE 8  FIGURE 9 
 f  is differentiable at a. f  is not differentiable at a.

Higher Derivatives
If f  is a differentiable function, then its derivative f 9 is also a function, so f 9 may have 
a derivative of its own, denoted by s f 9d9 − f 0. This new function f 0 is called the second  
derivative of f  because it is the derivative of the derivative of f. Using Leibniz notation, 
we write the second derivative of y − f sxd as

  
d
dx

     S dy
dxD    −    

d 2y
dx 2

derivative 
of

first
derivative

second 
derivative

FIGURE 6 

vertical tangent
line

x

y

a0

FIGURE 7  
Three ways for f  not to be 

differentiable at a
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 SECTION 2.8   The Derivative as a Function 159

EXAMPLE 6 If f sxd − x 3 2 x, find and interpret f 0sxd.

SOLUTION In Example 2 we found that the first derivative is f 9sxd − 3x 2 2 1. So the 
second derivative is

  f 99sxd − s f 9d9sxd − lim
h l

 

0
 
 f 9sx 1 hd 2 f 9sxd

h

 − lim
h l

 

0
 
 f3sx 1 hd2 2 1g 2 f3x 2 2 1g

h

 − lim
h l

 

0
 
 3x 2 1 6xh 1 3h2 2 1 2 3x 2 1 1

h

 − lim
h l

 

0
 s6x 1 3hd − 6x

The graphs of f , f 9, and f 0 are shown in Figure 10.
We can interpret f 0sxd as the slope of the curve y − f 9sxd at the point sx, f 9sxdd. In 

other words, it is the rate of change of the slope of the original curve y − f sxd.
Notice from Figure 10 that f 0sxd is negative when y − f 9sxd has negative slope  

and positive when y − f 9sxd has positive slope. So the graphs serve as a check on our  
calculations. Q

In general, we can interpret a second derivative as a rate of change of a rate of change. 
The most familiar example of this is acceleration, which we define as follows.

If s − sstd is the position function of an object that moves in a straight line, we know 
that its first derivative represents the velocity vstd of the object as a function of time:

vstd − s9std −
ds
dt

The instantaneous rate of change of velocity with respect to time is called the accelera-
tion astd of the object. Thus the acceleration function is the derivative of the velocity 
function and is therefore the second derivative of the position function:

astd − v9std − s0std

or, in Leibniz notation,

a −
dv
dt

−
d 2s
dt 2

Acceleration is the change in velocity you feel when speeding up or slowing down in 
a car.

The third derivative f - is the derivative of the second derivative: f -− s f 0 d9. So 
f -sxd can be interpreted as the slope of the curve y − f 0sxd or as the rate of change of 
f 0sxd. If y − f sxd, then alternative notations for the third derivative are

y- − f -sxd −
d
dx

 S d 2 y
dx 2D −

d 3y
dx 3

f · fª f

1.5

_2

2

_1.5

FIGURE 10 

TEC In Module 2.8 you can see how 
changing the coefficients of a polyno-
mial f  affects the appearance of the 
graphs of f , f 9, and f 99.
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160 CHAPTER 2  Limits and Derivatives

 2. (a) f 9s0d (b) f 9s1d (c) f 9s2d (d) f 9s3d
 (e) f 9s4d (f ) f 9s5d (g) f 9s6d (h) f 9s7d 

y

0 x

1

1

1–2 Use the given graph to estimate the value of each derivative. 
Then sketch the graph of f 9.

 1. (a) f 9s23d (b) f 9s22d (c) f 9s21d (d) f 9s0d
 (e) f 9s1d (f ) f 9s2d (g) f 9s3d 

y

x

1

1

We can also interpret the third derivative physically in the case where the function 
is the position function s − sstd of an object that moves along a straight line. Because 
s-− ss0 d9 − a9, the third derivative of the position function is the derivative of the accel-
eration function and is called the jerk:

j −
da
dt

−
d 3s
dt 3

Thus the jerk j is the rate of change of acceleration. It is aptly named because a large jerk 
means a sudden change in acceleration, which causes an abrupt movement in a vehicle.

The differentiation process can be continued. The fourth derivative f + is usually 
denoted by f s4d. In general, the nth derivative of f  is denoted by f snd and is obtained from 
f  by differentiating n times. If y − f sxd, we write

y snd − f sndsxd −
dn y
dxn

EXAMPLE 7 If f sxd − x3 2 x, find f -sxd and f s4dsxd.

SOLUTION In Example 6 we found that f 0sxd − 6x. The graph of the second derivative 
has equation y − 6x and so it is a straight line with slope 6. Since the derivative f -sxd 
is the slope of f 0sxd, we have

f -sxd − 6

for all values of x. So f - is a constant function and its graph is a horizontal line. There-
fore, for all values of x,

 f s4dsxd − 0 Q

We have seen that one application of second and third derivatives occurs in analyzing 
the motion of objects using acceleration and jerk. We will investigate another applica-
tion of second derivatives in Section 4.3, where we show how knowledge of f 0 gives us 
information about the shape of the graph of f. In Chapter 11 we will see how second and 
higher derivatives enable us to represent functions as sums of infinite series.
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 8. 

0 x

y
  9. 

0 x

y

 10. 

x

y

0

  11. 

0 x

y

 12.  Shown is the graph of the population function Pstd for yeast 
cells in a laboratory culture. Use the method of Example 1 to 
graph the derivative P9std. What does the graph of P9 tell us 
about the yeast population?

(yeast cells)

t (hours)

P

0 5 10 15

500

 13.  A rechargeable battery is plugged into a charger. The graph 
shows Cstd, the percentage of full capacity that the battery 
reaches as a function of time t elapsed (in hours).

 (a)  What is the meaning of the derivative C9std?
 (b)  Sketch the graph of C9std. What does the graph tell you?

t (hours)20 4 6 8 10 12

20

40

60

80

100

Percentage
of full charge

C

 3.  Match the graph of each function in (a)–(d) with the graph of 
its derivative in I–IV. Give reasons for your choices.

y

0

y

0

y

0

y

0

xx

x x

(b)(a)

(c) (d)

III

III IV

y

0

y

0

y

0

x

x

y

0

x

x

4–11 Trace or copy the graph of the given function f. (Assume 
that the axes have equal scales.) Then use the method of Example 1 
to sketch the graph of f 9 below it.

 4. 

0 x

y   5. 

x

y

0

 6. 

0 x

y   7. 

x

y

0
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162 CHAPTER 2  Limits and Derivatives

 (b)  Use symmetry to deduce the values of f 9(21
2 ), f 9s21d, 

f 9s22d, and f 9s23d.
 (c) Use the values from parts (a) and (b) to graph f 9.
 (d) Guess a formula for f 9sxd.
 (e)  Use the definition of derivative to prove that your guess 

in part (d) is correct.

21–31 Find the derivative of the function using the definition of 
derivative. State the domain of the function and the domain of its 
derivative.

 21. f sxd − 3x 2 8 22. f sxd − mx 1 b

 23. f std − 2.5t 2 1 6t 24. f sxd − 4 1 8x 2 5x 2

 25. f sxd − x 2 2 2x 3 26. tstd −
1

st 

 27. tsxd − s9 2 x  28. f sxd −
x 2 2 1
2x 2 3

 29. Gstd −
1 2 2t
3 1 t

 30. f sxd − x 3y2

 31. f sxd − x 4

 32. (a)  Sketch the graph of f sxd − s6 2 x  by starting with 
the graph of y − sx  and using the transformations of 
Sec tion 1.3.

 (b) Use the graph from part (a) to sketch the graph of f 9.
 (c)  Use the definition of a derivative to find f 9sxd. What are 

the domains of f  and f 9?
 (d)  Use a graphing device to graph f 9 and compare with 

your sketch in part (b).

 33. (a) If f sxd − x 4 1 2x, find f 9sxd.
 (b)  Check to see that your answer to part (a) is reasonable 

by comparing the graphs of f  and f 9.

 34. (a) If f sxd − x 1 1yx,  find f 9sxd.
 (b)  Check to see that your answer to part (a) is reasonable 

by comparing the graphs of f  and f 9.

 35.  The unemployment rate Ustd varies with time. The table 
gives the percentage of unemployed in the US labor force 
from 2003 to 2012.

 (a) What is the meaning of U9std? What are its units?
 (b) Construct a table of estimated values for U9std.

t Ustd t Ustd

2003 6.0 2008 5.8
2004 5.5 2009 9.3
2005 5.1 2010 9.6
2006 4.6 2011 8.9
2007 4.6 2012 8.1

Source: US Bureau of Labor Statistics

;

;

;

 14.  The graph (from the US Department of Energy) shows 
how driving speed affects gas mileage. Fuel economy F is 
measured in miles per gallon and speed v is measured in 
miles per hour.

 (a)  What is the meaning of the derivative F9svd?
 (b)  Sketch the graph of F9svd.
 (c)  At what speed should you drive if you want to save 

on gas?

√ (mi/h)0

10

30

20

70604020 503010

F    (mi/gal)

 15.  The graph shows how the average age of first marriage 
of Japanese men varied in the last half of the 20th  
century. Sketch the graph of the derivative function  
M9std. During which years was the derivative negative?

1990 2000

25

M

1960 1970 1980

27

t

16–18 Make a careful sketch of the graph of f  and below 
it sketch the graph of f 9 in the same manner as in Exercises 
4–11. Can you guess a formula for f 9sxd from its graph?

 16. f sxd − sin x 17. f sxd − e x 18. f sxd − ln x

 19.  Let f sxd − x 2.
 (a)  Estimate the values of f 9s0d, f 9( 1

2), f 9s1d, and f 9s2d 
by using a graphing device to zoom in on the graph 
of f.

 (b)  Use symmetry to deduce the values of f 9(21
2 ), 

f 9s21d, and f 9s22d.
 (c)  Use the results from parts (a) and (b) to guess a 

formula for f 9sxd.
 (d)  Use the definition of derivative to prove that your 

guess in part (c) is correct.

 20.  Let f sxd − x 3.
 (a)  Estimate the values of f 9s0d, f 9( 1

2), f 9s1d, f 9s2d, and 
f 9s3d by using a graphing device to zoom in on the 
graph of f.

;

;
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 40.  Suppose N is the number of people in the United States who 
travel by car to another state for a vacation this year when 
the average price of gasoline is p dollars per gallon. Do you 
expect dNydp to be positive or negative? Explain.

41–44 The graph of f  is given. State, with reasons, the numbers 
at which f  is not differentiable.

 41. 

_2 2 x

y

0

 42.

2 4 x

y

_2

 43. 

2 4 6 x

y

0

 44.

_2 2 4 x

y

0

 45.  Graph the function f sxd − x 1 s| x | . Zoom in repeatedly, 
first toward the point (21, 0) and then toward the origin. 
What is different about the behavior of f  in the vicinity of 
these two points? What do you conclude about the differen-
tiability of f ?

 46.  Zoom in toward the points (1, 0), (0, 1), and (21, 0) on 
the graph of the function tsxd − sx 2 2 1d2y3. What do you 
notice? Account for what you see in terms of the differentia-
bility of t.

47–48 The graphs of a function f  and its derivative f 9 are 
shown. Which is bigger, f 9s21d or f 99s1d?

 47. 

1
x

y

0

 48. 

1 x

y

;

;

 36.  The table gives the number Nstd, measured in thousands, of 
minimally invasive cosmetic surgery procedures performed 
in the United States for various years t.

t Nstd  (thousands)

2000 5,500
2002 4,897
2004 7,470
2006 9,138
2008 10,897
2010 11,561 
2012 13,035

Source: American Society of Plastic Surgeons

 (a) What is the meaning of N9std? What are its units?
 (b) Construct a table of estimated values for N9std.
 (c) Graph N and N9.
 (d)  How would it be possible to get more accurate values 

for N9std?

 37.  The table gives the height as time passes of a typical pine 
tree grown for lumber at a managed site.

Tree age (years) 14 21 28 35 42 49

Height (feet) 41 54 64 72 78 83

Source: Arkansas Forestry Commission

If Hstd is the height of the tree after t years, construct a table 
of estimated values for H9 and sketch its graph.

 38.  Water temperature affects the growth rate of brook trout. 
The table shows the amount of weight gained by brook trout 
after 24 days in various water temperatures.

Temperature (°C) 15.5 17.7 20.0 22.4 24.4

Weight gained (g) 37.2 31.0 19.8 9.7 29.8

If Wsxd is the weight gain at temperature x, construct a table 
of estimated values for W9 and sketch its graph. What are 
the units for W9sxd?
Source: Adapted from J. Chadwick Jr., “Temperature Effects on Growth 
and Stress Physiology of Brook Trout: Implications for Climate Change 
Impacts on an Iconic Cold-Water Fish.” Masters Theses. Paper 897. 2012. 
scholarworks.umass.edu/theses/897.

 39.  Let P represent the percentage of a city’s electrical power 
that is produced by solar panels t years after January 1, 2000.

 (a) What does dPydt represent in this context?
 (b) Interpret the statement 

dP
dt Z

t −2

− 3.5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



164 CHAPTER 2  Limits and Derivatives

53–54 Use the definition of a derivative to find f 9sxd and f 0sxd. 
Then graph f , f 9, and f 0 on a common screen and check to see if 
your answers are reasonable.

 53. f sxd − 3x 2 1 2x 1 1 54. f sxd − x 3 2 3x

 55.  If f sxd − 2x 2 2 x3, find f 9sxd, f 0sxd, f -sxd, and f s4dsxd. 
Graph f , f 9, f 0, and f -on a common screen. Are the  
graphs consistent with the geometric interpretations of these 
derivatives?

 56. (a)  The graph of a position function of a car is shown, where 
s is measured in feet and t in seconds. Use it to graph 
the velocity and acceleration of the car. What is the 
acceleration at t − 10 seconds?

100 t

s

100

20

 (b)  Use the acceleration curve from part (a) to estimate the 
jerk at t − 10 seconds. What are the units for jerk?

 57. Let f sxd − s3 x .
 (a) If a ± 0, use Equation 2.7.5 to find f 9sad.
 (b) Show that f 9s0d does not exist.
 (c)  Show that y − s3 x   has a vertical tangent line at s0, 0d. 

(Recall the shape of the graph of f . See Figure 1.2.13.)

 58. (a) If tsxd − x 2y3, show that t9s0d does not exist.
 (b) If a ± 0, find t9sad.
 (c) Show that y − x 2y3 has a vertical tangent line at s0, 0d.
 (d) Illustrate part (c) by graphing y − x 2y3.

 59.   Show that the function f sxd − | x 2 6 | is not differentiable  
at 6. Find a formula for f 9 and sketch its graph.

 60.  Where is the greatest integer function f sxd − v x b  not 
differentiable? Find a formula for f 9 and sketch its graph.

 61. (a) Sketch the graph of the function f sxd − x | x |.
 (b) For what values of x is f  differentiable?
 (c) Find a formula for f 9.

 62. (a) Sketch the graph of the function tsxd − x 1 | x |.
 (b) For what values of x is t differentiable?
 (c) Find a formula for t9.

 63.  Recall that a function f  is called even if f s2xd − f sxd  
for all x in its domain and odd if f s2xd − 2f sxd for all  
such x. Prove each of the following.

 (a) The derivative of an even function is an odd function.
 (b) The derivative of an odd function is an even function.

;

;

;

 49.  The figure shows the graphs of f , f 9, and f 0. Identify each 
curve, and explain your choices.

x

y a

b

c

 50.  The figure shows graphs of f,  f 9, f 0, and f -. Identify each 
curve, and explain your choices.

x

y a b c d

 51.  The figure shows the graphs of three functions. One is the 
position function of a car, one is the velocity of the car, and 
one is its acceleration. Identify each curve, and explain your 
choices.

t

y a

b c

0

 52.  The figure shows the graphs of four functions. One is the 
position function of a car, one is the velocity of the car, one 
is its acceleration, and one is its jerk. Identify each curve, 
and explain your choices.

8et0208x52
08/29/13

0 t

y

a
b c

d
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 1.   Explain what each of the following means and illustrate with 
a sketch.

 (a) lim
x l

 

a
 f sxd − L (b) lim

x l
 

a1
 f sxd − L (c) lim

x l
 

a2
 f sxd − L

 (d) lim
x l

 

a
 f sxd − ` (e) lim

xl`
 f sxd − L

 2.  Describe several ways in which a limit can fail to exist. Illus-
trate with sketches.

 3. State the following Limit Laws.
 (a) Sum Law
 (b) Difference Law
 (c) Constant Multiple Law
 (d) Product Law
 (e) Quotient Law
 (f) Power Law
 (g) Root Law

 4. What does the Squeeze Theorem say?

 5. (a)  What does it mean to say that the line x − a is a vertical 
asymptote of the curve y − f sxd? Draw curves to illus-
trate the various possibilities.

 (b)  What does it mean to say that the line y − L is a hori-
zontal asymptote of the curve y − f sxd? Draw curves to 
illustrate the various possibilities.

 6.  Which of the following curves have vertical asymptotes? 
Which have horizontal asymptotes?

 (a) y − x 4 (b) y − sin x (c) y − tan x 
 (d) y − tan21x (e) y − e x (f ) y − ln x
 (g) y − 1yx (h) y − sx 

 7. (a) What does it mean for f  to be continuous at a?
 (b)  What does it mean for f  to be continuous on the 

interval s2`, `d? What can you say about the graph 
of such a function?

 8. (a)  Give examples of functions that are continuous on 
f21, 1g.

 (b)  Give an example of a function that is not continuous 
on f0, 1g.

 9. What does the Intermediate Value Theorem say?

 10.  Write an expression for the slope of the tangent line to 
the curve y − f sxd at the point sa, f sadd.

 11.  Suppose an object moves along a straight line with posi-
tion f std at time t. Write an expression for the instanta-
neous velocity of the object at time t − a. How can you 
interpret this velocity in terms of the graph of f ?

 12.  If y − f sxd and x changes from x1 to x2, write expres-
sions for the following.

 (a)  The average rate of change of y with respect to x 
over the interval fx1, x2 g.

 (b)  The instantaneous rate of change of y with respect to 
x at x − x1.

 13.  Define the derivative f 9sad. Discuss two ways of inter-
preting this number.

 14.  Define the second derivative of f. If f std is the position 
function of a particle, how can you interpret the second 
derivative?

2 REVIEW

CONCEPT CHECK Answers to the Concept Check can be found on the back endpapers.

 65.  Nick starts jogging and runs faster and faster for 3 mintues, 
then he walks for 5 minutes. He stops at an intersection for 2 
minutes, runs fairly quickly for 5 minutes, then walks for 4 
minutes. 

 (a)  Sketch a possible graph of the distance s Nick has cov-
ered after t minutes.

 (b) Sketch a graph of dsydt.

 66.  When you turn on a hot-water faucet, the temperature T of 
the water depends on how long the water has been running.

 (a)  Sketch a possible graph of T as a function of the time t 
that has elapsed since the faucet was turned on.

 (b)  Describe how the rate of change of T with respect to t 
varies as t increases.

 (c) Sketch a graph of the derivative of T.

 67.  Let ! be the tangent line to the parabola y − x 2 at the point 
s1, 1d. The angle of inclination of ! is the angle ! that ! 
makes with the positive direction of the x-axis. Calculate ! 
correct to the nearest degree.

 64.  The left-hand and right-hand derivatives of f  at a are 
defined by

f 92sad − lim
h l

 

02
 
 f sa 1 hd 2 f sad

h

and f 91sad − lim
h l

 

01
 
 f sa 1 hd 2 f sad

h

if these limits exist. Then f 9sad exists if and only if these 
one-sided derivatives exist and are equal.

 (a)  Find f 92s4d and f 91s4d for the function

f sxd −   

0
5 2 x

if  x < 0
if  0 , x , 4

1
5 2 x

if  x > 4

 (b) Sketch the graph of f.
 (c) Where is f  discontinuous?
 (d) Where is f  not differentiable?
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Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

 1.  lim
x l

 

4
 S 2x

x 2 4
2

8
x 2 4D − lim

x l
 

4
 

2x
x 2 4

2 lim
x l

 

4
 

8
x 2 4

 2. lim
x l

 

1
 
x 2 1 6x 2 7
x 2 1 5x 2 6

−
lim
x l

 

1 sx 2 1 6x 2 7d

lim
x l

 

1
 sx 2 1 5x 2 6d

 3. lim
x l 1

 
x 2 3

x 2 1 2x 2 4
−

lim
x l 1 sx 2 3d

lim
x l 1

 sx 2 1 2x 2 4d

 4.  
x 2 2 9
x 2 3

− x 1 3

 5. lim
x l 3

 
x 2 2 9
x 2 3

− lim
x l 3

 sx 1 3d

 6.  If limx l 5 f sxd − 2 and  limx l 5 tsxd − 0, then 
limx l 5 f f sxdytsxdg does not exist.

 7.  If lim x l5 f sxd − 0 and  limx l 5 tsxd − 0, then 
limx l 5 f f sxdytsxdg does not exist.

 8.  If neither limx l a f sxd nor limx l a tsxd exists, then 
limx l a f f sxd 1 tsxdg does not exist.

 9.  If limx l a f sxd exists but limx l a tsxd does not exist, then 
limx l a f f sxd 1 tsxdg does not exist.

 10. If limx l 6 f f sxd tsxdg exists, then the limit must be f s6d ts6d.

 11. If p is a polynomial, then limx l b psxd − psbd.

 12.  If limx l 0 f sxd − ` and limx l 0 tsxd − `, then 
limx l 0 f f sxd 2 tsxdg − 0.

 13.  A function can have two different horizontal asymptotes.

 14.  If f  has domain f0, `d and has no horizontal asymptote, then 
limx l ` f sxd − ` or limx l ` f sxd − 2`.

 15.  If the line x − 1 is a vertical asymptote of y − f sxd, then f  is 
not defined at 1.

 16.  If f s1d . 0 and f s3d , 0, then there exists a number c 
between 1 and 3 such that f scd − 0.

 17.  If f  is continuous at 5 and f s5d − 2 and f s4d − 3, then 
limx l 2 f s4x 2 2 11d − 2.

 18.  If f  is continuous on f21, 1g and f s21d − 4 and f s1d − 3, 
then there exists a number r such that | r | , 1 and f srd − ".

 19.  Let f  be a function such that lim x l 0 f sxd − 6. Then there 
exists a positive number # such that if 0 , | x | , #, then 
| f sxd 2 6 | , 1.

 20.  If f sxd . 1 for all x and lim x l 0 f sxd exists, then 
lim x l 0 f sxd . 1.

 21. If f  is continuous at a, then f  is differentiable at a.

 22. If f 9srd exists, then limx l r f sxd − f srd.

 23.  
d 2y
dx 2 − S dy

dxD2

 24.  The equation x 10 2 10x 2 1 5 − 0 has a root in the  
interval s0, 2d.

 25.   If f  is continuous at a, so is | f |.
 26. If | f | is continuous at a, so is f .

TRUE-FALSE QUIZ

EXERCISES

 (iv) lim
x l

 

4
 f sxd (v)   lim

x l
 

0
 f sxd (vi) lim

x l
 

22
 f sxd

 (vii) lim
x l

 

`
 f sxd (viii) lim

x l 2`
 f sxd

 (b) State the equations of the horizontal asymptotes.
 (c) State the equations of the vertical asymptotes.
 (d) At what numbers is f  discontinuous? Explain.

 2.  Sketch the graph of a function f  that satisfies all of the 
following conditions:

 lim
x l

 

2`
 f sxd − 22,  lim

x l `
 f sxd − 0,  lim

x l
 

23
 f sxd − `,

 lim
x l

 

32
 f sxd − 2`,  lim

x l
 

31
 f sxd − 2,

 f  is continuous from the right at 3

 1. The graph of f  is given.

0 x

y

1
1

 (a) Find each limit, or explain why it does not exist.
 (i) lim

x l
 

21
 f sxd (ii) lim 

x l
 

231
 f sxd (iii) lim

x l
 

23
 f sxd

 15. (a)  What does it mean for f  to be differentiable at a?
 (b)  What is the relation between the differentiability and  

continuity of a function?
 (c)  Sketch the graph of a function that is continuous but not 

differentiable at a − 2.

 16.  Describe several ways in which a function can fail to be  
differentiable. Illustrate with sketches.
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3–20 Find the limit.

 3. lim
x l

 

1
 e x3 2x 4. lim

x l
 

3
 

x 2 2 9
x 2 1 2x 2 3

 5. lim
x l

 

23
 

x 2 2 9
x 2 1 2x 2 3

 6. lim
x l

 

11
 

x 2 2 9
x 2 1 2x 2 3

 7. lim
h l

 

0
 
sh 2 1d3 1 1

h
 8. lim

t l
 

2
 
t 2 2 4
t 3 2 8

 9. lim
r l

 

9
 

sr  

sr 2 9d4  10. lim
v l 41

 
4 2 v

| 4 2 v |
 11. lim

u l 1
 

u 4 2 1
u3 1 5u 2 2 6u

 12. lim
x l 3

 
sx 1 6 2 x

x 3 2 3x 2

 13. lim
x l `

 
sx 2 2 9 

2x 2 6
 14. lim

x l 2`
 
sx 2 2 9 

2x 2 6

 15. lim
x l!2 lnssin xd 16. lim

x l 2`
 
1 2 2x 2 2 x 4

5 1 x 2 3x 4

 17. lim
x l `

 (sx 2 1 4x 1 1 2 x) 18. lim
xl`

 e x2x2

 19. lim
x l

 

01 tan21s1yxd 20. lim
x l 1

 S 1
x 2 1

1
1

x 2 2 3x 1 2D
21–22 Use graphs to discover the asymptotes of the curve. Then 
prove what you have discovered.

 21. y −
cos2x

x 2  22. y − sx 2 1 x 1 1 2 sx 2 2 x 

 23. If 2x 2 1 < f sxd < x 2 for 0 , x , 3, find limx l1 f sxd.

 24. Prove that limx l 0 x 2 coss1yx 2 d − 0.

25–28 Prove the statement using the precise definition of a limit.

 25. lim
x l 2

 s14 2 5xd − 4 26. lim
x l 0

 s3 x − 0

 27. lim
x l 2

 sx 2 2 3xd − 22 28. lim
x l

 

41
 

2

sx 2 4 
− `

 29. Let

f sxd − Hs2x 

3 2 x
sx 2 3d2

if x , 0
if 0 < x , 3
if x . 3

 (a) Evaluate each limit, if it exists.

 (i) lim
x l

 

01
 f sxd (ii) lim

x l
 

02
f sxd (iii) lim

x l
 

0
 f sxd

 (iv) lim
x l

 

32
 f sxd (v) lim

x l
 

31
 f sxd (vi) lim

x l
 

3
 f sxd

 (b) Where is f  discontinuous?
 (c) Sketch the graph of f.

 30. Let

tsxd −

2x 2 x 2

2 2 x
x 2 4
!

if 0 < x < 2
if 2 , x < 3
if 3 , x , 4
if x > 4

;

 (a)  For each of the numbers 2, 3, and 4, discover whether 
t is continuous from the left, continuous from the 
right, or continuous at the number.

 (b) Sketch the graph of t.

31–32 Show that the function is continuous on its domain. 
State the domain.

 31. hsxd − xesin x 32. tsxd −
sx 2 2 9 

x 2 2 2

33–34 Use the Intermediate Value Theorem to show that there 
is a root of the equation in the given interval.

 33. x 5 2 x 3 1 3x 2 5 − 0,   s1, 2d

 34. cossx − e x 2 2,  s0, 1d

 35. (a)  Find the slope of the tangent line to the curve 
y − 9 2 2x 2 at the point s2, 1d.

 (b) Find an equation of this tangent line.

 36.  Find equations of the tangent lines to the curve

y −
2

1 2 3x

 at the points with x-coordinates 0 and 21.

 37.  The displacement (in meters) of an object moving in a 
straight line is given by s − 1 1 2t 1 1

4t 2, where t is mea-
sured in seconds.

 (a)  Find the average velocity over each time period.
(i) f1, 3g  (ii) f1, 2g  (iii) f1, 1.5g  (iv) f1, 1.1g

 (b) Find the instantaneous velocity when t − 1.

 38.  According to Boyle’s Law, if the temperature of a con-
fined gas is held fixed, then the product of the pressure P 
and the volume V is a constant. Suppose that, for a certain 
gas, PV − 800, where P is measured in pounds per square 
inch and V is measured in cubic inches.

 (a)  Find the average rate of change of P as V increases 
from 200 in3 to 250 in3.

 (b)  Express V as a function of P and show that the instan- 
tan eous rate of change of V with respect to P is 
inversely proportional to the square of P.

 39. (a)  Use the definition of a derivative to find f 9s2d, where 
f sxd − x 3 2 2x.

 (b)  Find an equation of the tangent line to the curve 
y − x 3 2 2x at the point (2, 4).

 (c)  Illustrate part (b) by graphing the curve and the tan-
gent line on the same screen.

 40. Find a function f  and a number a such that

lim
h l

 

0
 
s2 1 hd6 2 64

h
− f 9sad

 41.  The total cost of repaying a student loan at an interest rate 
of r% per year is C − f srd.

 (a)  What is the meaning of the derivative f 9srd? What are 
its units?

;
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 (b) What does the statement f 9s10d − 1200 mean?
 (c) Is f 9srd always positive or does it change sign?

42–44 Trace or copy the graph of the function. Then sketch a 
graph of its derivative directly beneath.

 42. 

0 x

y  43. 

0 x

y

 44. 

x

y

0

 45. (a)  If f sxd − s3 2 5x , use the definition of a derivative  
to find f 9sxd.

 (b) Find the domains of f  and f 9.
 (c)  Graph f  and f 9 on a common screen. Compare the graphs 

to see whether your answer to part (a) is reasonable.

 46. (a)  Find the asymptotes of the graph of f sxd −
4 2 x
3 1 x

 and 
use them to sketch the graph.

 (b) Use your graph from part (a) to sketch the graph of f 9.
 (c) Use the definition of a derivative to find f 9sxd.
 (d)  Use a graphing device to graph f 9 and compare with 

your sketch in part (b).

 47.  The graph of f  is shown. State, with reasons, the numbers  
at which f  is not differentiable.

x

y

20 4 6_1

 48.  The figure shows the graphs of f , f 9, and f 0. Identify each 
curve, and explain your choices.

x

y
a

b

c
0

;

;

 49.  Sketch the graph of a function f  that satisfies all of the 
following conditions: The domain of f  is all real numbers 
except 0,  lim

x l 02
 f sxd − 1, lim

x l 01
 f sxd − 0, f 9sxd . 0 for 

all x in the domain of f , lim
xl 2`

 f 9sxd − 0, lim
xl`

 f 9sxd − 1.

 50.  Let Pstd be the percentage of Americans under the age of 18 at 
time t. The table gives values of this function in census years 
from 1950 to 2010.

t Pstd t Pstd

1950  31.1 1990  25.7
1960  35.7 2000  25.7
1970  34.0 2010  24.0
1980  28.0

 (a) What is the meaning of P9std? What are its units? 
 (b) Construct a table of estimated values for P9std.
 (c) Graph P and P9. 
 (d)  How would it be possible to get more accurate values  

for P9std?

 51.  Let Bstd be the number of US $20 bills in circulation at time t. 
The table gives values of this function from 1990 to 2010, as 
of December 31, in billions. Interpret and estimate the value 
of B9s2000d.

t 1990 1995 2000 2005 2010

Bstd 3.45 4.21 4.93 5.77 6.53

 52.  The total fertility rate at time t, denoted by Fstd, is an esti-
mate of the average number of children born to each woman 
(assuming that current birth rates remain constant). The 
graph of the total fertility rate in the United States shows  
the fluctuations from 1940 to 2010.

 (a)  Estimate the values of F9s1950d, F9s1965d, and F9s1987d.
 (b) What are the meanings of these derivatives?
 (c)  Can you suggest reasons for the values of these derivatives?

t

y

1940 1960 1970 1980 1990 2000 20101950

1.5

2.0

2.5

3.0

3.5

y=F(t)

baby
boom

baby
bust

baby
boomlet

 53.  Suppose that | f sxd | < tsxd for all x, where lim x l a tsxd − 0. 
Find lim x l a f sxd.

 54.  Let f sxd − v x b 1 v2x b .
 (a) For what values of a does lim x l a f sxd exist?
 (b) At what numbers is f  discontinuous?
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In our discussion of the principles of problem solving we considered the problem-solving 
strategy of introducing something extra (see page 71). In the following example we show 
how this principle is sometimes useful when we evaluate limits. The idea is to change the 
variable—to introduce a new variable that is related to the original variable—in such a 
way as to make the problem simpler. Later, in Section 5.5, we will make more extensive 
use of this general idea.

EXAMPLE 1 Evaluate lim
x l 0

 
s3 1 1 cx 2 1

x
, where c is a constant.

SOLUTION As it stands, this limit looks challenging. In Section 2.3 we evaluated sev-
eral limits in which both numerator and denominator approached 0. There our strategy 
was to perform some sort of algebraic manipulation that led to a simplifying cancella-
tion, but here it’s not clear what kind of algebra is necessary.

So we introduce a new variable t by the equation

t − s3 1 1 cx 

We also need to express x in terms of t, so we solve this equation:

 t 3 − 1 1 cx       x −
t 3 2 1

c
  sif c ± 0d

Notice that x l 0 is equivalent to t l 1. This allows us to convert the given limit into 
one involving the variable t:

 lim
x l 0

s3 1 1 cx 2 1
x

− lim
t l1

 
t 2 1

st 3 2 1dyc

 − lim
t l1

 
cst 2 1d
t 3 2 1

The change of variable allowed us to replace a relatively complicated limit by a simpler 
one of a type that we have seen before. Factoring the denominator as a difference of 
cubes, we get

 lim
t l1

 
cst 2 1d
t 3 2 1

− lim
t l1

 
cst 2 1d

st 2 1dst 2 1 t 1 1d

 − lim
t l1

 
c

t 2 1 t 1 1
−

c
3

In making the change of variable we had to rule out the case c − 0. But if c − 0, the 
function is 0 for all nonzero x and so its limit is 0. Therefore, in all cases, the limit  
is cy3. Q

The following problems are meant to test and challenge your problem-solving skills. 
Some of them require a considerable amount of time to think through, so don’t be dis-
couraged if you can’t solve them right away. If you get stuck, you might find it helpful to 
refer to the discussion of the principles of problem solving on page 71.

 1. Evaluate lim
x l

 

1
 
s3 x 2 1

sx 2 1
.

 2. Find numbers a and b such that lim
x l

 

0
 
sax 1 b 2 2

x
− 1.

Problems Plus

Problems

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



170

 3. Evaluate lim
x l

 

0
 | 2x 2 1 | 2 | 2x 1 1 |

x
.

 4.  The figure shows a point P on the parabola y − x 2 and the point Q where the perpendicular 
bisector of OP intersects the y-axis. As P approaches the origin along the parabola, what 
happens to Q? Does it have a limiting position? If so, find it.

 5.  Evaluate the following limits, if they exist, where v x b  denotes the greatest integer function.

 (a) lim
x l 0

 
v x b

x
 (b) lim

x l 0
 x v1yx b

 6. Sketch the region in the plane defined by each of the following equations.
 (a) v xb 2 1 v yb 2 − 1 (b) v xb 2 2 v yb 2 − 3
 (c) v x 1 yb 2 − 1 (d) v xb 1 v yb − 1

 7. Find all values of a such that f  is continuous on R:

f sxd − Hx 1 1
x 2

if   x < a
if   x . a

 8.  A fixed point of a function f  is a number c in its domain such that f scd − c. (The function 
doesn’t move c; it stays fixed.)

 (a)  Sketch the graph of a continuous function with domain f0, 1g whose range also lies in 
f0, 1g. Locate a fixed point of f .

 (b)  Try to draw the graph of a continuous function with domain f0, 1g and range in f0, 1g 
that does not have a fixed point. What is the obstacle?

 (c)  Use the Intermediate Value Theorem to prove that any continuous function with 
domain f0, 1g and range in f0, 1g must have a fixed point. 

 9.  If limx l a f f sxd 1 tsxdg − 2 and limx l a f f sxd 2 tsxdg − 1, find limx l a f f sxd tsxdg.

 10. (a)  The figure shows an isosceles triangle ABC with /B − /C. The bisector of angle B 
intersects the side AC at the point P. Suppose that the base BC remains fixed but the 
altitude | AM | of the triangle approaches 0, so A approaches the midpoint M of BC. 
What happens to P during this process? Does it have a limiting position? If so, find it.

 (b)  Try to sketch the path traced out by P during this process. Then find an equation of this 
curve and use this equation to sketch the curve.

 11. (a)  If we start from 0° latitude and proceed in a westerly direction, we can let Tsxd denote  
the temperature at the point x at any given time. Assuming that T is a continuous func-
tion of x, show that at any fixed time there are at least two diametrically opposite points 
on the equator that have exactly the same temperature.

 (b)  Does the result in part (a) hold for points lying on any circle on the earth’s surface?
 (c)  Does the result in part (a) hold for barometric pressure and for altitude above sea level?

 12.  If f  is a differentiable function and tsxd − x f sxd, use the definition of a derivative to show 
that t9sxd − x f 9sxd 1 f sxd.

 13.  Suppose f  is a function that satisfies the equation

f sx 1 yd − f sxd 1 f syd 1 x 2 y 1 xy 2

 for all real numbers x and y. Suppose also that

lim
x l

 

0
 
 f sxd

x
− 1

 (a) Find f s0d.      (b) Find f 9s0d.      (c) Find f 9sxd.

 14.  Suppose f  is a function with the property that | f sxd | < x 2 for all x. Show that f s0d − 0. 
Then show that f 9s0d − 0.

FIGURE FOR PROBLEM 4

0

PQ

y=≈

x

y

FIGURE FOR PROBLEM 10

A

CB M

P
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In the project on page 208 
you will calculate the distance 

from an airport runway at 
which a pilot should start 

descent for a smooth landing. 
© Mechanik / Shutterstock.com

Differentiation Rules

WE HAVE SEEN HOW TO INTERPRET derivatives as slopes and rates of change. We have seen 
how to estimate derivatives of functions given by tables of values. We have learned how to graph 
derivatives of functions that are defined graphically. We have used the definition of a derivative to 
calculate the derivatives of functions defined by formulas. But it would be tedious if we always 
had to use the definition, so in this chapter we develop rules for finding derivatives without hav-
ing to use the definition directly. These differentiation rules enable us to calculate with relative 
ease the derivatives of polynomials, rational functions, algebraic functions, exponential and loga-
rithmic functions, and trigonometric and inverse trigonometric functions. We then use these rules 
to solve problems involving rates of change and the approximation of functions.

3
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172 CHAPTER 3  Differentiation Rules

In this section we learn how to differentiate constant functions, power functions, polyno-
mials, and exponential functions.

Let’s start with the simplest of all functions, the constant function f sxd − c. The graph 
of this function is the horizontal line y − c, which has slope 0, so we must have f 9sxd − 0. 
(See Figure 1.) A formal proof, from the definition of a derivative, is also easy:

 f 9sxd − lim
h l 0

 
 f sx 1 hd 2 f sxd

h
− lim

h l 0
 
c 2 c

h
− lim

h l 0
 0 − 0

In Leibniz notation, we write this rule as follows.

Derivative of a Constant Function 

d
dx

 scd − 0

Power Functions
We next look at the functions f sxd − xn, where n is a positive integer. If n − 1, the 
graph of f sxd − x is the line y − x, which has slope 1. (See Figure 2.) So

1   
d
dx

 sxd − 1 

(You can also verify Equation 1 from the definition of a derivative.) We have already 
investigated the cases n − 2 and n − 3. In fact, in Section 2.8 (Exercises 19 and 20) we 
found that

2   
d
dx

 sx 2 d − 2x      
d
dx

 sx 3 d − 3x 2 

For n − 4 we find the derivative of f sxd − x 4 as follows:

  f 9sxd − lim
h l 0

 
 f sx 1 hd 2 f sxd

h
− lim

h l 0
 
sx 1 hd4 2 x 4

h

 − lim
h l 0

 
x 4 1 4x 3h 1 6x 2h 2 1 4xh 3 1 h 4 2 x 4

h

 − lim
h l 0

 
4x 3h 1 6x 2h 2 1 4xh 3 1 h 4

h

 − lim
h l 0

 s4x 3 1 6x 2h 1 4xh 2 1 h 3 d − 4x 3

Thus

3   
d
dx

 sx 4 d − 4x 3 

y

c

0 x

y=c
slope=0

FIGURE 1  
The graph of f sxd − c is the line  
y − c, so f 9sxd − 0.

y

0
x

y=x

slope=1

FIGURE 2  
The graph of f sxd − x is the line  
y − x, so f 9sxd − 1.
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Comparing the equations in (1), (2), and (3), we see a pattern emerging. It seems to be a 
rea sonable guess that, when n is a positive integer, sdydxdsxn d − nxn21. This turns out to 
be true.

The Power Rule If n is a positive integer, then

d
dx

 sxn d − nxn21

FIRST PROOF The formula

xn 2 an − sx 2 adsxn21 1 xn22a 1 ∙ ∙ ∙ 1 xan22 1 an21 d

 can be verified simply by multiplying out the right-hand side (or by summing the sec-
ond factor as a geometric series). If f sxd − xn, we can use Equation 2.7.5 for f 9sad and 
the equation above to write

  f 9sad − lim
x l a

 
 f sxd 2 f sad

x 2 a
− lim

x l a
 
xn 2 an

x 2 a

 − lim
x l a

 sxn21 1 xn22a 1 ∙ ∙ ∙ 1 xan22 1 an21 d

 − an21 1 an22a 1 ∙ ∙ ∙ 1 aan22 1 an21

 − nan21

SECOND PROOF

f 9sxd −  lim
h l 0

 
 f sx 1 hd 2 f sxd

h
−  lim

h l 0
 
sx 1 hdn 2 xn

h

 In finding the derivative of x 4 we had to expand sx 1 hd4. Here we need to expand 
sx 1 hdn and we use the Binomial Theorem to do so:

  f 9sxd − lim
h l 0

 
Fxn 1 nxn21h 1

nsn 2 1d
2

xn22h 2 1 ∙ ∙ ∙ 1 nxhn21 1 hnG 2 xn

h

 − lim
h l 0

 
nxn21h 1

nsn 2 1d
2

xn22h 2 1 ∙ ∙ ∙ 1 nxhn21 1 hn

h

 − lim
h l 0

 Fnxn21 1
nsn 2 1d

2
xn22h 1 ∙ ∙ ∙ 1 nxhn22 1 hn21G

 − nxn21

 because every term except the first has h as a factor and therefore approaches 0. Q

We illustrate the Power Rule using various notations in Example 1.

The Binomial Theorem is given on  
Reference Page 1.
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174 CHAPTER 3  Differentiation Rules

EXAMPLE 1 
(a) If f sxd − x 6, then f 9sxd − 6x 5. (b) If y − x 1000, then y9 − 1000x 999.

(c) If y − t 4, then 
dy
dt

− 4t 3. (d) 
d
dr

 sr 3 d − 3r 2
� Q

What about power functions with negative integer exponents? In Exercise 65 we ask 
you to verify from the definition of a derivative that

d
dx

 S 1
xD − 2

1
x 2

We can rewrite this equation as

d
dx

 sx21 d − s21dx22

and so the Power Rule is true when n − 21. In fact, we will show in the next section  
[Exercise 3.2.64(c)] that it holds for all negative integers.

What if the exponent is a fraction? In Example 2.8.3 we found that

d
dx

 sx −
1

2sx 

which can be written as
d
dx

 sx1y2 d − 1
2 x21y2

This shows that the Power Rule is true even when n − 1
2. In fact, we will show in Sec- 

tion 3.6 that it is true for all real numbers n.

The Power Rule (General Version) If n is any real number, then

d
dx

 sxn d − nxn21

EXAMPLE 2 Differentiate:

(a) f sxd −
1
x 2  (b) y − s3 x 2 

SOLUTION In each case we rewrite the function as a power of x.
(a) Since f sxd − x22, we use the Power Rule with n − 22:

f 9sxd −
d
dx

 sx22 d − 22x2221 − 22x23 − 2
2
x 3

(b) 
dy
dx

−
d
dx

 ss3 x 2 d −
d
dx

 sx 2y3 d − 2
3 x s2y3d21 − 2

3 x21y3 Q

Observe from Figure 3 that the function y in Example 2(b) is increasing when y9 is 
positive and is decreasing when y9 is negative. In Chapter 4 we will prove that, in gen-
eral, a function increases when its derivative is positive and decreases when its deriva-
tive is negative.

Figure 3 shows the function y in 
Example 2(b) and its derivative y9. 
Notice that y is not differentiable  
at 0 ( y9 is not defined there). 

2

_2

_3 3

y
yª

FIGURE 3  
y − s3 x 2 
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The Power Rule enables us to find tangent lines without having to resort to the defini- 
tion of a derivative. It also enables us to find normal lines. The normal line to a curve 
C at a point P is the line through P that is perpendicular to the tangent line at P. (In the 
study of optics, one needs to consider the angle between a light ray and the normal line 
to a lens.)

EXAMPLE 3 Find equations of the tangent line and normal line to the curve y − xsx  
at the point s1, 1d. Illustrate by graphing the curve and these lines.

SOLUTION The derivative of f sxd − xsx − xx 1y2 − x 3y2 is

f 9sxd − 3
2 x s3y2d21 − 3

2 x 1y2 − 3
2 sx 

So the slope of the tangent line at (1, 1) is f 9s1d − 3
2. Therefore an equation of the 

tangent line is

y 2 1 − 3
2 sx 2 1d    or    y − 3

2 x 2 1
2

The normal line is perpendicular to the tangent line, so its slope is the negative recipro-
cal of 3

2 , that is, 22
3. Thus an equation of the normal line is

y 2 1 − 22
3 sx 2 1d    or    y − 22

3 x 1 5
3

We graph the curve and its tangent line and normal line in Figure 4. Q

New Derivatives from Old
When new functions are formed from old functions by addition, subtraction, or multiplica-
tion by a constant, their derivatives can be calculated in terms of derivatives of the old 
func tions. In particular, the following formula says that the derivative of a constant times 
a function is the constant times the derivative of the function.

The Constant Multiple Rule If c is a constant and f  is a differentiable func-
tion, then

d
dx

 fcf sxdg − c 
d
dx

 f sxd

PROOF Let tsxd − cf sxd. Then

 t9sxd − lim
h l 0

 
tsx 1 hd 2 tsxd

h
−  lim

h l 0
 
cf sx 1 hd 2 cf sxd

h

  − lim
h l 0

 cF  f sx 1 hd 2 f sxd
h G

  − c lim
h l 0

 
 f sx 1 hd 2 f sxd

h
    (by Limit Law 3)

  − cf 9sxd  Q

Geometric Interpretation  
of the Constant Multiple Rule

x

y

0

y=2ƒ

y=ƒ

Multiplying by c − 2 stretches the 
graph vertically by a factor of 2. All 
the rises have been doubled but the 
runs stay the same. So the slopes are 
doubled too.

3

_1

_1 3

tangent

normal

FIGURE 4  
y − xsx 
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176 CHAPTER 3  Differentiation Rules

EXAMPLE 4 

(a) 
d
dx

 s3x 4 d − 3 
d
dx

 sx 4 d − 3s4x 3 d − 12x 3

(b) 
d
dx

 s2xd −
d
dx

 fs21dxg − s21d 
d
dx

 sxd − 21s1d − 21 Q

The next rule tells us that the derivative of a sum of functions is the sum of the  
derivatives.

The Sum Rule If f  and t are both differentiable, then

d
dx

 f f sxd 1 tsxdg −
d
dx

 f sxd 1
d
dx

 tsxd

PROOF Let Fsxd − f sxd 1 tsxd. Then

  F9sxd − lim
h l 0

 
Fsx 1 hd 2 Fsxd

h

  − lim
h l 0

 
f f sx 1 hd 1 tsx 1 hdg 2 f f sxd 1 tsxdg

h

  − lim
h l 0

 F  f sx 1 hd 2 f sxd
h

1
tsx 1 hd 2 tsxd

h G
 − lim

h l 0
 
 f sx 1 hd 2 f sxd

h
1 lim

hl 0
 
tsx 1 hd 2 tsxd

h
    (by Limit Law 1)

  − f 9sxd 1 t9sxd Q

The Sum Rule can be extended to the sum of any number of functions. For instance, 
using this theorem twice, we get

s f 1 t 1 hd9 − fs f 1 td 1 hg9 − s f 1 td9 1 h9 − f 9 1 t9 1 h9

By writing f 2 t as f 1 s21dt and applying the Sum Rule and the Constant Multiple 
Rule, we get the following formula.

The Difference Rule If f  and t are both differentiable, then

d
dx

 f f sxd 2 tsxdg −
d
dx

 f sxd 2
d
dx

 tsxd

The Constant Multiple Rule, the Sum Rule, and the Difference Rule can be com-
bined with the Power Rule to differentiate any polynomial, as the following examples  
demonstrate.

Using prime notation, we can write the  
Sum Rule as

s f 1 td9 − f 9 1 t9
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EXAMPLE 5 

d
dx

 sx 8 1 12x 5 2 4x 4 1 10x 3 2 6x 1 5d

 − 
d
dx

 sx 8 d 1 12 
d
dx

 sx 5 d 2 4 
d
dx

 sx 4 d 1 10 
d
dx

 sx 3 d 2 6 
d
dx

 sxd 1
d
dx

 s5d

 − 8x 7 1 12s5x 4 d 2 4s4x 3 d 1 10s3x 2 d 2 6s1d 1 0

  − 8x 7 1 60x 4 2 16x 3 1 30x 2 2 6 Q

EXAMPLE 6 Find the points on the curve y − x 4 2 6x 2 1 4 where the tangent line is 
horizontal.

SOLUTION Horizontal tangents occur where the derivative is zero. We have

 
dy
dx

−
d
dx

 sx 4 d 2 6 
d
dx

 sx 2 d 1
d
dx

 s4d

 − 4x 3 2 12x 1 0 − 4xsx 2 2 3d

Thus dyydx − 0 if x − 0 or x 2 2 3 − 0, that is, x − 6s3 . So the given curve has 
horizontal tangents when x − 0, s3 , and 2s3 . The corresponding points are s0, 4d, 
ss3 , 25d, and s2s3 , 25d. (See Figure 5.) Q

EXAMPLE 7 The equation of motion of a particle is s − 2t 3 2 5t 2 1 3t 1 4, where s 
is measured in centimeters and  t in seconds. Find the acceleration as a function of time. 
What is the acceleration after 2 seconds?

SOLUTION The velocity and acceleration are

 vstd −
ds
dt

− 6t 2 2 10t 1 3

astd −
dv
dt

− 12 t 2 10

The acceleration after 2 s is as2d − 14 cmys2. Q

Exponential Functions
Let’s try to compute the derivative of the exponential function f sxd − bx using the defi-
nition of a derivative:

  f 9sxd − lim
h l 0

 
 f sx 1 hd 2 f sxd

h
− lim

h l 0
 
bx1h 2 bx

h

 − lim
h l 0

 
bxbh 2 bx

h
− lim

h l 0
 
bxsbh 2 1d

h

The factor bx doesn’t depend on h, so we can take it in front of the limit:

f 9sxd − bx lim
h l 0

 
bh 2 1

h

0 x

y

(0, 4)

{œ„3, _5}{_œ„3, _5}

FIGURE 5  
The curve y − x 4 2 6x 2 1 4 and its 
horizontal tangents
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178 CHAPTER 3  Differentiation Rules

Notice that the limit is the value of the derivative of f  at 0, that is,

 lim
h l 0

 
bh 2 1

h
− f 9s0d

Therefore we have shown that if the exponential function f sxd − bx is differentiable at 
0, then it is differentiable everywhere and

4   f 9sxd − f 9s0dbx
 

This equation says that the rate of change of any exponential function is proportional to 
the function itself. (The slope is proportional to the height.)

Numerical evidence for the existence of f 9s0d is given in the table at the left for the  
cases b − 2 and b − 3. (Values are stated correct to four decimal places.) It appears that 
the limits exist and 

for b − 2,   f 9s0d − lim
h l 0

 
2h 2 1

h
< 0.69

for b − 3,   f 9s0d − lim
h l 0

 
3h 2 1

h
< 1.10

In fact, it can be proved that these limits exist and, correct to six decimal places, the 
values are

d
dx

 s2x d Z
x−0

< 0.693147      d
dx

 s3x d Z
x−0

< 1.098612

Thus, from Equation 4, we have

5   
d
dx

 s2x d < s0.69d2x      
d
dx

 s3x d < s1.10d3x 

Of all possible choices for the base b in Equation 4, the simplest differentiation formula 
occurs when f 9s0d − 1. In view of the estimates of f 9s0d for b − 2 and b − 3, it seems 
rea sonable that there is a number b between 2 and 3 for which f 9s0d − 1. It is traditional to  
denote this value by the letter e. (In fact, that is how we introduced e in Section 1.4.) Thus 
we have the following definition.

Definition of the Number e 

e is the number such that  lim
h l 0

 
eh 2 1

h
− 1

In Exercise 1 we will see that e lies 
between 2.7 and 2.8. Later we will 
be able to show that, correct to five 
decimal places,

e < 2.71828

Geometrically, this means that of all the possible exponential functions y − bx, the 
function f sxd − ex is the one whose tangent line at (0, 1d has a slope f 9s0d that is exactly 
1. (See Figures 6 and 7.)

h 2 h 2 1
h

3h 2 1
h

0.1 0.7177 1.1612

0.01 0.6956 1.1047

0.001 0.6934 1.0992

0.0001 0.6932 1.0987

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 3.1  Derivatives of Polynomials and Exponential Functions  179

0

y

1

x

slope=1

slope=e®

y=e®

{x, e ® }

0

y

1

x

y=2®

y=e®

y=3®

FIGURE 6 FIGURE 7

If we put b − e and, therefore, f 9s0d − 1 in Equation 4, it becomes the following 
impor tant differentiation formula.

Derivative of the Natural Exponential Function

d
dx

 sex d − ex
TEC Visual 3.1 uses the slope-a-
scope to illustrate this formula.

Thus the exponential function f sxd − ex has the property that it is its own derivative. 
The geometrical significance of this fact is that the slope of a tangent line to the curve 
y − ex is equal to the y-coordinate of the point (see Figure 7).

EXAMPLE 8 If f sxd − ex 2 x, find f 9 and f 99. Compare the graphs of f  and f 9.

SOLUTION Using the Difference Rule, we have

f 9sxd −
d
dx

 sex 2 xd −
d
dx

 sex d 2
d
dx

 sxd − ex 2 1

In Section 2.8 we defined the second derivative as the derivative of f 9, so

f 99sxd −
d
dx

 sex 2 1d −
d
dx

 sex d 2
d
dx

 s1d − ex

The function f  and its derivative f 9 are graphed in Figure 8. Notice that f  has a hori-
zontal tangent when x − 0; this corresponds to the fact that f 9s0d − 0. Notice also that,  
for x . 0, f 9sxd is positive and f  is increasing. When x , 0, f 9sxd is negative and f  is 
decreasing. Q

EXAMPLE 9 At what point on the curve y − ex is the tangent line parallel to the  
line y − 2x?

SOLUTION Since y − ex, we have y9 − ex. Let the x-coordinate of the point in ques-
tion be a. Then the slope of the tangent line at that point is ea. This tangent line will be 
parallel to the line y − 2x if it has the same slope, that is, 2. Equating slopes, we get

ea − 2      a − ln 2

Therefore the required point is sa, ea d − sln 2, 2d. (See Figure 9.) Q

3

_1

1.5_1.5

f

fª

FIGURE 8 

1

1

0 x

2

3
y

y=´

y=2x

(ln 2, 2)

FIGURE 9 
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180 CHAPTER 3  Differentiation Rules

 1. (a) How is the number e defined?
 (b)  Use a calculator to estimate the values of the limits

lim
h l 0

 
2.7h 2 1

h
    and    lim

h l 0
 
2.8h 2 1

h

   correct to two decimal places. What can you conclude 
about the value of e?

 2. (a)  Sketch, by hand, the graph of the function f sxd − e x, 
paying particular attention to how the graph crosses the  
y-axis. What fact allows you to do this?

 (b)  What types of functions are f sxd − e x and tsxd − x e ? 
Compare the differentiation formulas for f  and t.

 (c)  Which of the two functions in part (b) grows more rapidly 
when x is large?

3–32 Differentiate the function.

 3. f sxd − 2 40 4. f sxd − e 5

 5. f sxd − 5.2x 1 2.3 6. tsxd − 7
4 x 2 2 3x 1 12

 7. f std − 2t 3 2 3t 2 2 4t 8. f std − 1.4t 5 2 2.5t 2 1 6.7

 9. tsxd − x 2s1 2 2xd 10. Hsud − s3u 2 1dsu 1 2d

 11. tstd − 2t23y4 12. Bsyd − cy26

 13. Fsrd −
5
r 3  14. y − x 5y3 2 x 2y3

 15. Rsad − s3a 1 1d2 16. hstd − s4 t  2 4e t

 17. Ss pd − sp 2 p 18. y − s3 x s2 1 xd

 19. y − 3e x 1
4

s3 x 
 20. SsRd − 4!R 2

 21. hsud − Au 3 1 Bu 2 1 Cu 22. y −
sx 1 x

x 2

 23. y −
x 2 1 4x 1 3

sx 
 24. Gstd − s5t 1

s7 

t

 25. jsxd − x 2.4 1 e 2.4 26. ksrd − e r 1 r e

 27. Gsqd − s1 1 q21d2 28. Fszd −
A 1 Bz 1 Cz 2

z 2

 29. f svd −
s3 v 2 2ve v

v
 30. Dstd −

1 1 16t 2

s4td3

 31. z −
A
y10 1 Be

y
 32. y − e x11 1 1

33–36 Find an equation of the tangent line to the curve at the  
given point.

 33. y − 2x 3 2 x 2 1 2, s1, 3d

 34. y − 2e x 1 x, s0, 2d

 35. y − x 1
2
x

, s2, 3d 36. y − s4 x 2 x, s1, 0d

37–38 Find equations of the tangent line and normal line to the 
curve at the given point.

 37. y − x4 1 2e x,  s0, 2d 38. y 2 − x 3,  s1, 1d

39–40 Find an equation of the tangent line to the curve at the 
given point. Illustrate by graphing the curve and the tangent line 
on the same screen.

 39.  y − 3x2 2 x3,  s1, 2d 40. y − x 2 sx ,  s1, 0d

41–42 Find f 9sxd. Compare the graphs of f  and f 9 and use them 
to explain why your answer is reasonable.

 41. f sxd − x 4 2 2x 3 1 x 2

 42. f sxd − x 5 2 2x 3 1 x 2 1

 43.  (a)  Graph the function 

f sxd − x 4 2 3x 3 2 6x 2 1 7x 1 30 

 in the viewing rectangle f23, 5g by f210, 50g.
 (b)  Using the graph in part (a) to estimate slopes, make  

a rough sketch, by hand, of the graph of f 9. (See  
Example 2.8.1.)

 (c)  Calculate f 9sxd and use this expression, with a graphing 
device, to graph f 9. Compare with your sketch in part (b).

 44. (a)  Graph the function tsxd − e x 2 3x 2 in the viewing rect-
angle f21, 4g by f28, 8g.

 (b)  Using the graph in part (a) to estimate slopes, make a 
rough sketch, by hand, of the graph of t9. (See  
Example 2.8.1.)

 (c)  Calculate t9sxd and use this expression, with a graphing 
device, to graph t9. Compare with your sketch in part (b).

45–46 Find the first and second derivatives of the function.

 45. f sxd − 0.001x 5 2 0.02x 3 46. G srd − sr  1 s3 r  

47–48 Find the first and second derivatives of the function. Check 
to see that your answers are reasonable by comparing the graphs 
of f , f 9, and f 99.

 47. f sxd − 2x 2 5x 3y4 48. f sxd − e x 2 x 3

;

;

;

;

;

3.1 EXERCISES
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 55.  Find the points on the curve y − 2x 3 1 3x 2 2 12x 1 1 
where the tangent is horizontal.

 56.  For what value of x does the graph of f sxd − e x 2 2x have 
a horizontal tangent?

 57.  Show that the curve y − 2e x 1 3x 1 5x 3 has no tangent 
line with slope 2.

 58.  Find an equation of the tangent line to the curve y − x 4 1 1 
that is parallel to the line 32x 2 y − 15.

 59.  Find equations of both lines that are tangent to the curve 
y − x 3 2 3x 2 1 3x 2 3 and are parallel to the line 
3x 2 y − 15.

 60.  At what point on the curve y − 1 1 2e x 2 3x is the tangent 
line parallel to the line 3x 2 y − 5? Illustrate by graphing 
the curve and both lines.

 61.  Find an equation of the normal line to the curve y − sx  
that is parallel to the line 2x 1 y − 1.

 62.  Where does the normal line to the parabola y − x 2 2 1 at 
the point s21, 0d intersect the parabola a second time? 
Illustrate with a sketch.

 63.  Draw a diagram to show that there are two tangent lines to 
the parabola y − x 2 that pass through the point s0, 24d. 
Find the coordinates of the points where these tangent lines 
intersect the parabola.

 64. (a)  Find equations of both lines through the point s2, 23d 
that are tangent to the parabola y − x 2 1 x.

 (b)  Show that there is no line through the point s2, 7d that 
is tangent to the parabola. Then draw a diagram to see 
why.

 65.  Use the definition of a derivative to show that if f sxd − 1yx, 
then f 9sxd − 21yx 2. (This proves the Power Rule for the 
case n − 21.)

 66.  Find the nth derivative of each function by calculating the 
first few derivatives and observing the pattern that occurs.

 (a)  f sxd − x n (b) f sxd − 1yx

 67.  Find a second-degree polynomial P such that Ps2d − 5, 
P9s2d − 3, and P99s2d − 2.

 68.  The equation y99 1 y9 2 2y − x 2 is called a differential 
equation because it involves an unknown function y and its 
derivatives y9 and y99. Find constants A, B, and C such that 
the function y − Ax 2 1 Bx 1 C satisfies this equation. 
(Differential equations will be studied in detail in 
Chapter 9.)

 69.  Find a cubic function y − ax 3 1 bx 2 1 cx 1 d whose 
graph has horizontal tangents at the points s22, 6d and 
s2, 0d.

 70.  Find a parabola with equation y − ax 2 1 bx 1 c that has 
slope 4 at x − 1, slope 28 at x − 21, and passes through 
the point s2, 15d.

;

 49.  The equation of motion of a particle is s − t 3 2 3t, where s 
is in meters and t is in seconds. Find

 (a) the velocity and acceleration as functions of t,
 (b) the acceleration after 2 s, and
 (c) the acceleration when the velocity is 0.

 50.  The equation of motion of a particle is 
s − t 4 2 2t 3 1 t 2 2 t, where s is in meters and t is in 
seconds.

 (a)  Find the velocity and acceleration as functions of t.
 (b)  Find the acceleration after 1 s.
 (c)  Graph the position, velocity, and acceleration functions  

on the same screen.

 51.  Biologists have proposed a cubic polynomial to model the 
length L of Alaskan rockfish at age A:

L − 0.0155A3 2 0.372A2 1 3.95A 1 1.21

  where L is measured in inches and A in years. Calculate

dL
dA

 Z
A−12

  and interpret your answer.

 52.  The number of tree species S in a given area A in the Pasoh 
Forest Reserve in Malaysia has been modeled by the power 
function

SsAd − 0.882A0.842

   where A is measured in square meters. Find S9s100d and 
interpret your answer.
Source: Adapted from K. Kochummen et al., “Floristic Composition of Pasoh 
Forest Reserve, A Lowland Rain Forest in Peninsular Malaysia,” Journal of 
Tropical Forest Science 3 (1991):1–13.

 53.  Boyle’s Law states that when a sample of gas is compressed 
at a constant temperature, the pressure P of the gas is 
inversely proportional to the volume V of the gas.

 (a)  Suppose that the pressure of a sample of air that occu-
pies 0.106 m3 at 25°C is 50 kPa. Write V as a function 
of P.

 (b)  Calculate dVydP when P − 50 kPa. What is the mean-
ing of the derivative? What are its units?

 54.  Car tires need to be inflated properly because overinflation 
or underinflation can cause premature tread wear. The data 
in the table show tire life L (in thousands of miles) for a 
certain type of tire at various pressures P (in lbyin2).

P 26 28 31 35 38 42 45

L 50 66 78 81 74 70 59

 (a)  Use a calculator to model tire life with a quadratic func-
tion of the pressure.

  (b)  Use the model to estimate dLydP when P − 30 and 
when P − 40. What is the meaning of the derivative? 
What are the units? What is the significance of the signs 
of the derivatives?

;

;
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APPLIED PROJECT BUILDING A BETTER ROLLER COASTER

 79.  What is the value of c such that the line y − 2x 1 3 is tangent 
to the parabola y − cx 2?

 80.  The graph of any quadratic function f sxd − ax 2 1 bx 1 c is a 
parabola. Prove that the average of the slopes of the tangent 
lines to the parabola at the endpoints of any interval f p, qg 
equals the slope of the tangent line at the midpoint of the 
interval.

 81. Let

f sxd − Hx 2

mx 1 b
if x < 2
if x . 2

   Find the values of m and b that make f  differentiable 
everywhere.

 82.  A tangent line is drawn to the hyperbola xy − c at a point P.
 (a)  Show that the midpoint of the line segment cut from this 

tangent line by the coordinate axes is P.
 (b)  Show that the triangle formed by the tangent line and the 

coordinate axes always has the same area, no matter where 
P is located on the hyperbola.

 83.  Evaluate lim
x l 1

 
x 1000 2 1

x 2 1
.

 84.  Draw a diagram showing two perpendicular lines that intersect 
on the y-axis and are both tangent to the parabola y − x 2. 
Where do these lines intersect?

 85.  If c . 1
2, how many lines through the point s0, cd are normal 

lines to the parabola y − x 2? What if c < 1
2?

 86.  Sketch the parabolas y − x 2 and y − x 2 2 2x 1 2. Do you 
think there is a line that is tangent to both curves? If so, find 
its equation. If not, why not?

 71. Let

f sxd − Hx 2 1 1
x 1 1

if x , 1
if x > 1

  Is f  differentiable at 1? Sketch the graphs of f  and f 9.

 72. At what numbers is the following function t differentiable?

tsxd − H2x
2x 2 x 2

2 2 x

if x < 0
if  0 , x , 2
if x > 2

  Give a formula for t9 and sketch the graphs of t and t9.

 73. (a)  For what values of x is the function f sxd − | x 2 2 9 | 
differentiable? Find a formula for f 9.

 (b) Sketch the graphs of f  and f 9.

 74.  Where is the function hsxd − | x 2 1 | 1 | x 1 2 | differenti-
able? Give a formula for h9 and sketch the graphs of h and h9.

 75.  Find the parabola with equation y − ax 2 1 bx whose tangent 
line at (1, 1) has equation y − 3x 2 2.

 76.  Suppose the curve y − x 4 1 ax 3 1 bx 2 1 cx 1 d has a tan- 
gent line when x − 0 with equation y − 2x 1 1 and a tangent 
line when x − 1 with equation y − 2 2 3x. Find the values of 
a, b, c, and d.

 77.  For what values of a and b is the line 2x 1 y − b tangent to the 
parabola y − ax 2 when x − 2?

 78.  Find the value of c such that the line y − 3
2 x 1 6 is tangent to 

the curve y − csx .

 

Suppose you are asked to design the first ascent and drop for a new roller coaster. By study-
ing photographs of your favorite coasters, you decide to make the slope of the ascent 0.8 and 
the slope of the drop 21.6. You decide to connect these two straight stretches y − L1sxd and 
y − L 2sxd with part of a parabola y − f sxd − ax 2 1 bx 1 c, where x and f sxd are measured 
in feet. For the track to be smooth there can’t be abrupt changes in direction, so you want the 
linear segments L1 and L 2 to be tangent to the parabola at the transition points P and Q. (See 
the figure.) To simplify the equations, you decide to place the origin at P.

1.  (a)  Suppose the horizontal distance between P and Q is 100 ft. Write equations in a, b, and 
c that will ensure that the track is smooth at the transition points.

 (b)  Solve the equations in part (a) for a, b, and c to find a formula for f sxd.
 (c)  Plot L1, f , and L 2 to verify graphically that the transitions are smooth.
 (d)  Find the difference in elevation between P and Q.

2.  The solution in Problem 1 might look smooth, but it might not feel smooth because the 
piecewise defined function [consisting of L1sxd for x , 0, f sxd for 0 < x < 100, and 

;

L™

L¡ P
f

Q
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 SECTION 3.2  The Product and Quotient Rules 183

   L 2sxd for x . 100] doesn’t have a continuous second derivative. So you decide to 
improve the design by using a quadratic function qsxd − ax 2 1 bx 1 c only on the 
interval 10 < x < 90 and connecting it to the linear functions by means of two cubic 
functions:

 tsxd − kx3 1 lx2 1 mx 1 n  0 < x , 10

 hsxd − px 3 1 qx 2 1 rx 1 s  90 , x < 100

   (a)  Write a system of equations in 11 unknowns that ensure that the functions and their 
first two derivatives agree at the transition points.

 CAS   (b)  Solve the equations in part (a) with a computer algebra system to find formulas for 
qsxd, tsxd, and hsxd.

   (c)  Plot L1, t, q, h, and L 2, and compare with the plot in Problem 1(c).

©
 S

us
an

a 
Or

te
ga

 / 
Sh

ut
te
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to
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om

The formulas of this section enable us to differentiate new functions formed from old 
functions by multiplication or division.

The Product Rule
By analogy with the Sum and Difference Rules, one might be tempted to guess, as Leib-
niz did three centuries ago, that the derivative of a product is the product of the deriva-
tives. We can see, however, that this guess is wrong by looking at a particular example. 
Let f sxd − x and tsxd − x 2. Then the Power Rule gives f 9sxd − 1 and t9sxd − 2x. But 
s ftdsxd − x 3, so s ftd9sxd − 3x 2. Thus s ftd9 ± f 9t9. The correct formula was discovered 
by Leibniz (soon after his false start) and is called the Product Rule.

Before stating the Product Rule, let’s see how we might discover it. We start by assum-
ing that u − f sxd and v − tsxd are both positive differentiable functions. Then we can  
interpret the product uv as an area of a rectangle (see Figure 1). If x changes by an 
amount Dx, then the corresponding changes in u and v are

Du − f sx 1 Dxd 2 f sxd      Dv − tsx 1 Dxd 2 tsxd

and the new value of the product, su 1 Dudsv 1 Dvd, can be interpreted as the area of the 
large rectangle in Figure 1 (provided that Du and Dv happen to be positive).

The change in the area of the rectangle is

1    Dsuvd − su 1 Dudsv 1 Dvd 2 uv − u Dv 1 v Du 1 Du Dv

  − the sum of the three shaded areas

If we divide by Dx, we get

Dsuvd
Dx

− u 
Dv
Dx

1 v 
Du
Dx

1 Du 
Dv
Dx

u Î√Î√

√ u√

u

Îu Î√

√ Îu

Îu

FIGURE 1  
The geometry of the Product Rule

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



184 CHAPTER 3  Differentiation Rules

If we now let Dx l 0, we get the derivative of uv:

 
d
dx

 suvd −  lim
Dx l 0

 
Dsuvd

Dx
− lim

Dx l 0
 Su 

Dv
Dx

1 v 
Du
Dx

1 Du 
Dv
DxD

 − u lim
Dx l 0

 
Dv
Dx

1 v lim
Dx l 0

Du
Dx

1 S lim
Dx l 0

 DuDS lim
Dx l 0

 
Dv
DxD

 − u 
dv
dx

1 v 
du
dx

1 0 ?
dv
dx

2    
d
dx

 suvd − u 
dv
dx

1 v 
du
dx

(Notice that Du l 0 as Dx l 0 since f  is differentiable and therefore continuous.)
Although we started by assuming (for the geometric interpretation) that all the quanti-

ties are positive, we notice that Equation 1 is always true. (The algebra is valid whether 
u, v, Du, and Dv are positive or negative.) So we have proved Equation 2, known as the  
Product Rule, for all differentiable functions u and v.

The Product Rule If f  and t are both differentiable, then

d
dx

 f f sxdtsxdg − f sxd 
d
dx

 ftsxdg 1 tsxd 
d
dx

 f f sxdg

In prime notation:

s ftd9 − ft9 1 t f 9

In words, the Product Rule says that the derivative of a product of two functions is the 
first function times the derivative of the second function plus the second function times 
the derivative of the first function.

EXAMPLE 1 
(a) If f sxd − xex, find f 9sxd.
(b) Find the nth derivative, f sndsxd.

SOLUTION 
(a) By the Product Rule, we have

  f 9sxd −
d
dx

 sxex d

 − x 
d
dx

 sex d 1 ex 
d
dx

 sxd

 − xex 1 ex ∙ 1 − sx 1 1dex

(b) Using the Product Rule a second time, we get

  f 99sxd −
d
dx

 fsx 1 1dex g

 − sx 1 1d 
d
dx

 sex d 1 ex 
d
dx

 sx 1 1d

     − sx 1 1dex 1 ex ? 1 − sx 1 2dex

Recall that in Leibniz notation the 
definition of a derivative can be written 
as

dy
dx

− lim
Dx l 0

 
Dy
Dx

3

_1

_3 1.5
ff ª

Figure 2 shows the graphs of the 
function f  of Example 1 and its 
derivative f 9. Notice that f 9sxd is 
positive when f  is increasing and 
negative when f  is decreasing.

FIGURE 2
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Further applications of the Product Rule give

f 999sxd − sx 1 3dex      f s4dsxd − sx 1 4dex

In fact, each successive differentiation adds another term ex, so

f sndsxd − sx 1 ndex Q

EXAMPLE 2 Differentiate the function f std − st   sa 1 btd.

SOLUTION 1 Using the Product Rule, we have

  f 9std − st    
d
dt

 sa 1 btd 1 sa 1 btd 
d
dt

 (st )

 − st   ? b 1 sa 1 btd ? 1
2 t21y2

 − bst  1
a 1 bt
2st  −

a 1 3bt
2st  

SOLUTION 2 If we first use the laws of exponents to rewrite f std, then we can proceed 
directly without using the Product Rule.

 f std − ast  1 btst  − at 1y2 1 bt 3y2

  f 9std − 1
2at21y2 1 3

2 bt 1y2

which is equivalent to the answer given in Solution 1. Q

Example 2 shows that it is sometimes easier to simplify a product of functions before 
differentiating than to use the Product Rule. In Example 1, however, the Product Rule is 
the only possible method.

EXAMPLE 3 If f sxd − sx  tsxd, where ts4d − 2 and t9s4d − 3, find f 9s4d.

SOLUTION Applying the Product Rule, we get

  f 9sxd −
d
dx

  fsx  tsxdg − sx   
d
dx

 ftsxdg 1 tsxd 
d
dx

 fsx g

 − sx  t9sxd 1 tsxd ∙ 12 x21y2

 − sx  t9sxd 1
tsxd
2sx 

So f 9s4d − s4  t9s4d 1
ts4d
2s4 − 2 ∙ 3 1

2
2 ∙ 2

− 6.5 Q

The Quotient Rule
We find a rule for differentiating the quotient of two differentiable functions u − f sxd 
and v − tsxd in much the same way that we found the Product Rule. If x, u, and v change 

In Example 2, a and b are constants.  
It is customary in mathematics to use 
letters near the beginning of the 
alphabet to represent constants and 
letters near the end of the alphabet to 
represent variables.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



186 CHAPTER 3  Differentiation Rules

by amounts Dx, Du, and Dv, then the corresponding change in the quotient uyv is

 DS u
vD −

u 1 Du
v 1 Dv

2
u
v

−
su 1 Dudv 2 usv 1 Dvd

vsv 1 Dvd

 −
vDu 2 uDv
vsv 1 Dvd

so

d
dxS u

vD − lim
Dx l 0

 
Dsuyvd

Dx
− lim

Dx l 0
 
v 

Du
Dx

2 u 
Dv
Dx

vsv 1 Dvd

As Dx l 0, Dv l 0 also, because v − tsxd is differentiable and therefore continuous. 
Thus, using the Limit Laws, we get

d
dxS u

vD −
v lim

Dx l 0
 
Du
Dx

2 u lim
Dx l 0

 
Dv
Dx

v lim
Dx l 0

sv 1 Dvd
−

v 
du
dx

2 u 
dv
dx

v2

The Quotient Rule If f  and t are differentiable, then

d
dx

 F  f sxd
tsxd G −

tsxd 
d
dx

 f f sxdg 2 f sxd 
d
dx

 ftsxdg

ftsxdg 2

In words, the Quotient Rule says that the derivative of a quotient is the denominator 
times the derivative of the numerator minus the numerator times the derivative of the  
denominator, all divided by the square of the denominator.

The Quotient Rule and the other differentiation formulas enable us to compute the  
derivative of any rational function, as the next example illustrates.

EXAMPLE 4 Let y −
x 2 1 x 2 2

x 3 1 6
. Then

 y9 −
sx 3 1 6d 

d
dx

 sx 2 1 x 2 2d 2 sx 2 1 x 2 2d 
d
dx

 sx 3 1 6d

sx 3 1 6d2

 −
sx 3 1 6ds2x 1 1d 2 sx 2 1 x 2 2ds3x 2 d

sx 3 1 6d2

 −
s2x 4 1 x 3 1 12x 1 6d 2 s3x 4 1 3x 3 2 6x 2 d

sx 3 1 6d2

 −
2x 4 2 2x 3 1 6x 2 1 12x 1 6

sx 3 1 6d2 Q

We can use a graphing device to  
check that the answer to Example 4  
is plausible. Figure 3 shows the graphs  
of the function of Example 4 and its 
derivative. Notice that when y grows 
rapidly (near 22), y9 is large. And  
when y grows slowly, y9 is near 0.

1.5

_1.5

_4 4

yª

y

FIGURE 3

In prime notation:

S f
tD9

−
t f 9 2 ft9

t2
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EXAMPLE 5 Find an equation of the tangent line to the curve y − exys1 1 x 2 d at 
  the point s1, 12ed.
SOLUTION According to the Quotient Rule, we have

 
dy
dx

−
s1 1 x 2 d 

d
dx

 sex d 2 ex  
d
dx

 s1 1 x 2 d

s1 1 x 2 d2

 −
s1 1 x2dex 2 exs2xd

s1 1 x2d2 −
exs1 2 2x 1 x2d

s1 1 x2d2

 −
exs1 2 xd2

s1 1 x 2 d2

So the slope of the tangent line at s1, 12ed is

dy
dx Z

x−1
− 0

This means that the tangent line at s1, 12ed is horizontal and its equation is y − 1
2e. fSee 

Figure 4. Notice that the function is increasing and crosses its tangent line at s1, 12ed.g
Q

NOTE Don’t use the Quotient Rule every time you see a quotient. Sometimes it’s 
easier to rewrite a quotient first to put it in a form that is simpler for the purpose of dif-
ferentiation. For instance, although it is possible to differentiate the function

Fsxd −
3x 2 1 2sx 

x

using the Quotient Rule, it is much easier to perform the division first and write the func-
tion as

Fsxd − 3x 1 2x21y2

before differentiating.
We summarize the differentiation formulas we have learned so far as follows.

Table of Differentiation Formulas

 
d
dx

 scd − 0 d
dx

 sxn d − nxn21 d
dx

 sex d − ex

 scf d9 − cf 9 s f 1 td9 − f 91 t9 s f 2 td9 − f 92 t9

 s ftd9 − ft9 1 tf 9 S f
tD9

−
tf 9 2 ft9

t2

2.5

0_2 3.5

y= ´
1+≈

y= e1
2

FIGURE 4 
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 29. f sxd −
x 2

1 1 e x  30. f sxd −
x

x 2 2 1

31–32 Find an equation of the tangent line to the given curve at 
the specified point.

 31. y −
x 2 2 1

x 2 1 x 1 1
, s1, 0d 32. y −

1 1 x
1 1 e x , (0, 12)

33–34 Find equations of the tangent line and normal line to the 
given curve at the specified point.

 33. y − 2xe x,  s0, 0d 34. y −
2x

x 2 1 1
,  s1, 1d

 35. (a)  The curve y − 1ys1 1 x2d is called a witch of Maria 
Agnesi. Find an equation of the tangent line to this curve 
at the point s21, 12 d.

 (b)  Illustrate part (a) by graphing the curve and the tangent 
line on the same screen.

 36. (a)  The curve y − xys1 1 x 2 d is called a serpentine. Find 
an equation of the tangent line to this curve at the point 
s3, 0.3d.

 (b)  Illustrate part (a) by graphing the curve and the tangent 
line on the same screen.

 37. (a) If f sxd − sx 3 2 xde x, find f 9sxd.
 (b)  Check to see that your answer to part (a) is reasonable by 

comparing the graphs of f  and f 9.

 38. (a) If f sxd − e xys2x 2 1 x 1 1d, find f 9sxd.
 (b)  Check to see that your answer to part (a) is reasonable by 

comparing the graphs of f  and f 9.

 39. (a)  If f sxd − sx 2 2 1dysx 2 1 1d, find f 9sxd and f 99sxd.
 (b)  Check to see that your answers to part (a) are reasonable 

by comparing the graphs of f , f 9, and f 99.

 40. (a)  If f sxd − sx 2 2 1de x, find f 9sxd and f 99sxd.
 (b)  Check to see that your answers to part (a) are reasonable 

by comparing the graphs of f , f 9, and f 99.

 41.  If f sxd − x 2ys1 1 xd, find f 99s1d.

 42.  If tsxd − xye x, find t sndsxd.

 43.  Suppose that f s5d − 1, f 9s5d − 6, ts5d − 23, and t9s5d − 2. 
Find the following values.

 (a) s ftd9s5d (b) s fytd9s5d (c) styf d9s5d

 44.   Suppose that f s4d − 2, ts4d − 5, f 9s4d − 6, and t9s4d − 23. 
Find h9s4d.

 (a)  hsxd − 3 f sxd 1 8tsxd (b) hsxd − f sxdtsxd

 (c) hsxd −
f sxd
tsxd

 (d) hsxd −
tsxd

f sxd 1 tsxd

;

;

;

;

;

;

3.2 EXERCISES

 1.  Find the derivative of f sxd − s1 1 2x 2dsx 2 x 2d in two ways: 
by using the Product Rule and by performing the multiplica-
tion first. Do your answers agree?

 2.  Find the derivative of the function

Fsxd −
x 4 2 5x 3 1 sx 

x 2

   in two ways: by using the Quotient Rule and by simplifying 
first. Show that your answers are equivalent. Which method do 
you prefer?

3–26 Differentiate.

 3. f sxd − s3x 2 2 5xde x 4. tsxd − (x 1 2sx ) ex

 5. y −
x
e x  6. y −

e x

1 2 e x

 7. tsxd −
1 1 2x
3 2 4x

 8. Gsxd −
x 2 2 2
2x 1 1

 9. Hsud − su 2 su dsu 1 su d

 10. Jsvd − sv 3 2 2vdsv24 1 v22d

 11. Fsyd − S 1
y2 2

3
y4Dsy 1 5y3d

 12. f szd − s1 2 e zdsz 1 e zd

 13. y −
x 2 1 1
x 3 2 1

 14. y −
sx 

2 1 x

 15. y −
t 3 1 3t

t 2 2 4t 1 3
 16. y −

1
t 3 1 2t 2 2 1

 17. y − e psp 1 psp d 18. hsrd −
ae r

b 1 e r

 19. y −
s 2 ss 

s 2  20. y − sz 2 1 e zdsz 

 21. f std −
s3 t 

t 2 3
 22. Vstd −

4 1 t
te t

 23. f sxd −
x 2e x

x 2 1 e x  24. Fstd −
At

Bt 2 1 Ct 3

 25. f sxd −
x

x 1
c
x

 26. f sxd −
ax 1 b
cx 1 d

27–30 Find f 9sxd and f 99sxd.

 27. f sxd − sx 3 1 1de x 28. f sxd − sx e x
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 54.  Find equations of the tangent lines to the curve

y −
x 2 1
x 1 1

   that are parallel to the line x 2 2y − 2.

 55.  Find R9s0d, where

Rsxd −
x 2 3x 3 1 5x 5

1 1 3x 3 1 6x 6 1 9x 9

   Hint: Instead of finding R9sxd first, let f sxd be the numerator 
and tsxd the denominator of Rsxd and compute R9s0d from f s0d, 
f 9s0d, ts0d, and t9s0d.

 56.  Use the method of Exercise 55 to compute Q9s0d, where

Qsxd −
1 1 x 1 x 2 1 xe x

1 2 x 1 x 2 2 xe x

 57.  In this exercise we estimate the rate at which the total personal 
income is rising in the Richmond-Petersburg, Virginia, metro - 
politan area. In 1999, the population of this area was 961,400, 
and the population was increasing at roughly 9200 people per 
year. The average annual income was $30,593 per capita, and 
this average was increasing at about $1400 per year (a little 
above the national average of about $1225 yearly). Use the 
Product Rule and these figures to estimate the rate at which 
total personal income was rising in the Richmond-Petersburg 
area in 1999. Explain the meaning of each term in the Product 
Rule.

 58.  A manufacturer produces bolts of a fabric with a fixed width. 
The quantity q of this fabric (measured in yards) that is sold is 
a function of the selling price p (in dollars per yard), so we can 
write q − f spd. Then the total revenue earned with selling price 
p is Rspd − pf spd.

 (a)  What does it mean to say that f s20d − 10,000 and 
f 9s20d − 2350?

 (b)  Assuming the values in part (a), find R9s20d and interpret 
your answer.

 59.  The Michaelis-Menten equation for the enzyme chymotrypsin 
is

v −
0.14fSg

0.015 1 fSg

   where v is the rate of an enzymatic reaction and [S] is the con- 
centration of a substrate S. Calculate dvyd fSg and interpret it.

 60.  The biomass Bstd of a fish population is the total mass of the 
members of the population at time t. It is the product of the 
number of individuals Nstd in the population and the average 
mass Mstd of a fish at time t. In the case of guppies, breeding 
occurs continually. Suppose that at time t − 4 weeks the pop-
ulation is 820 guppies and is growing at a rate of 50 guppies 
per week, while the average mass is 1.2 g and is increasing at 
a rate of 0.14 gyweek. At what rate is the biomass increasing 
when t − 4?

 45. If f sxd − e xtsxd, where ts0d − 2 and t9s0d − 5, find f 9s0d.

 46. If hs2d − 4 and h9s2d − 23, find

d
dx

 S hsxd
x DZ

x−2

 47.  If tsxd − xf sxd, where f s3d − 4 and f 9s3d − 22, find an 
equation of the tangent line to the graph of t at the point  
where x − 3.

 48.  If f s2d − 10 and f 9sxd − x 2 f sxd for all x, find f 99s2d.

 49.  If f  and t are the functions whose graphs are shown, let 
usxd − f sxdtsxd and vsxd − f sxdytsxd.

 (a) Find u9s1d. (b) Find v9s5d.

f
g

x

y

0

1

1

 50.  Let Psxd − FsxdGsxd and Qsxd − FsxdyGsxd, where F and G 
are the functions whose graphs are shown.

 (a)  Find P9s2d. (b) Find Q9s7d.

F

G

x

y

0 1

1

 51.  If t is a differentiable function, find an expression for the  
derivative of each of the following functions.

 (a) y − xtsxd (b) y −
x

tsxd
 (c) y −

tsxd
x

 52.  If f  is a differentiable function, find an expression for the 
derivative of each of the following functions.

 (a) y − x 2 f sxd (b) y −
 f sxd

x 2

 (c) y −
x 2

f sxd
 (d) y −

1 1 x f sxd
sx 

 53.  How many tangent lines to the curve y − xysx 1 1) pass 
through the point s1, 2d? At which points do these tangent lines 
touch the curve?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



190 CHAPTER 3  Differentiation Rules

 64. (a)  If t is differentiable, the Reciprocal Rule says that

d
dx

 F 1
tsxdG − 2

t9sxd
ftsxdg2

   Use the Quotient Rule to prove the Reciprocal Rule.
 (b)  Use the Reciprocal Rule to differentiate the function in 

Exercise 16.
 (c)  Use the Reciprocal Rule to verify that the Power Rule is 

valid for negative integers, that is,

d
dx

 sx2nd − 2nx2n21

   for all positive integers n.

 61. (a)  Use the Product Rule twice to prove that if f , t, and h are 
differentiable, then s fthd9 − f 9th 1 ft9h 1 fth9.

 (b) Taking f − t − h in part (a), show that

d
dx

 f f sxdg3 − 3f f sxdg2 f 9sxd

 (c)  Use part (b) to differentiate y − e 3x.

 62. (a)  If Fsxd − f sxd tsxd, where f  and t have derivatives of all 
orders, show that F99 − f 99t 1 2 f 9t9 1 ft99.

 (b)  Find similar formulas for F999 and F s4d.
 (c)  Guess a formula for F snd.

 63.  Find expressions for the first five derivatives of f sxd − x 2e x. 
Do you see a pattern in these expressions? Guess a formula for 
f sndsxd and prove it using mathematical induction.

Before starting this section, you might need to review the trigonometric functions. In 
particular, it is important to remember that when we talk about the function f  defined for 
all real numbers x by

f sxd − sin x

it is understood that sin x means the sine of the angle whose radian measure is x. A simi-
lar convention holds for the other trigonometric functions cos, tan, csc, sec, and cot. 
Recall from Section 2.5 that all of the trigonometric functions are continuous at every 
number in their domains.

If we sketch the graph of the function f sxd − sin x and use the interpretation of f 9sxd  
as the slope of the tangent to the sine curve in order to sketch the graph of f 9 (see Exer-
cise 2.8.16), then it looks as if the graph of f 9 may be the same as the cosine curve (see 
Figure 1).

x0 2π

x0 π
2

π

π
2

π

ƒ=y= sin x

y

y

fª(xy= )

FIGURE 1

TEC Visual 3.3 shows an animation 
of Figure 1.

A review of the trigonometric functions 
is given in Appendix D.
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 SECTION 3.3  Derivatives of Trigonometric Functions 191

Let’s try to confirm our guess that if f sxd − sin x, then f 9sxd − cos x. From the defi-
nition of a derivative, we have

  f 9sxd − lim
h l 0

 
 f sx 1 hd 2 f sxd

h
− lim

h l 0
 
sinsx 1 hd 2 sin x

h

 − lim
h l 0

 
sin x cos h 1 cos x sin h 2 sin x

h

 − lim
h l 0

 F sin x cos h 2 sin x
h

1
cos x sin h

h G
 − lim

h l 0
 Fsin x S cos h 2 1

h D 1 cos x S sin h
h DG

1    − lim
h l 0

 sin x ? lim
h l 0

 
cos h 2 1

h
1 lim

h l 0
 cos x ? lim

h l 0
 
sin h

h

Two of these four limits are easy to evaluate. Since we regard x as a constant when com-
puting a limit as h l 0, we have

lim
h l 0

 sin x − sin x    and    lim
h l 0

 cos x − cos x

The limit of ssin hdyh is not so obvious. In Example 2.2.3 we made the guess, on the basis 
of numerical and graphical evidence, that

2   lim
! l 0

 
sin !

!
− 1

We now use a geometric argument to prove Equation 2. Assume first that ! lies between  
0 and "y2. Figure 2(a) shows a sector of a circle with center O, central angle !, and  
radius 1. BC is drawn perpendicular to OA. By the definition of radian measure, we have 
arc AB − !. Also | BC | − | OB | sin ! − sin !. From the diagram we see that

| BC | , | AB | , arc AB

Therefore sin ! , !    so    
sin !

!
, 1

Let the tangent lines at A and B intersect at E. You can see from Figure 2(b) that the  
cir cumference of a circle is smaller than the length of a circumscribed polygon, and so 
arc AB , | AE | 1 | EB |. Thus

 ! − arc AB , | AE | 1 | EB |
 , | AE | 1 | ED |
 − | AD | − | OA | tan !

 − tan !

(In Appendix F the inequality ! < tan ! is proved directly from the definition of the 

We have used the addition formula for 
sine. See Appendix D.

(b)

(a)

B

A
E

O

¨

B

A
O

1

D

E

C

FIGURE 2
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192 CHAPTER 3  Differentiation Rules

length of an arc without resorting to geometric intuition as we did here.) Therefore we 
have

 ! ,
sin !
cos !

so  cos ! ,
sin !

!
, 1

We know that lim ! l 0 1 − 1 and lim ! l 0 cos ! − 1, so by the Squeeze Theorem, we have

lim
!l

 

01
 
sin !

!
− 1

But the function ssin !dy! is an even function, so its right and left limits must be equal. 
Hence, we have

lim
! l 0

 
sin !

!
− 1

so we have proved Equation 2.
We can deduce the value of the remaining limit in (1) as follows:

 lim
! l 0

 
cos ! 2 1

!
− lim

! l 0
 S cos ! 2 1

!
?

cos ! 1 1
cos ! 1 1D − lim

! l 0
 

cos2! 2 1
! scos ! 1 1d

 − lim
! l 0

 
2sin2!

! scos ! 1 1d
− 2lim

! l 0
 S sin !

!
?

sin !
cos ! 1 1D

 − 2lim
! l 0

 
sin !

!
? lim

! l 0
 

sin !
cos ! 1 1

 − 21 ? S 0
1 1 1D − 0    (by Equation 2)

3   lim
! l 0

 
cos ! 2 1

!
− 0

If we now put the limits (2) and (3) in (1), we get

 f 9sxd − lim
h l 0

 sin x ? lim
h l 0

 
cos h 2 1

h
1 lim

h l 0
 cos x ? lim

h l 0
 
sin h

h

 − ssin xd ? 0 1 scos xd ? 1 − cos x

So we have proved the formula for the derivative of the sine function:

4   
d
dx

 ssin xd − cos x

We multiply numerator and denomina-
tor by cos ! 1 1 in order to put the 
function in a form in which we can use 
the limits we know.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 3.3  Derivatives of Trigonometric Functions 193

EXAMPLE 1 Differentiate y − x 2 sin x.

SOLUTION Using the Product Rule and Formula 4, we have

 
dy
dx

− x 2 
d
dx

 ssin xd 1 sin x 
d
dx

 sx 2 d

 − x 2 cos x 1 2x sin x Q

Using the same methods as in the proof of Formula 4, one can prove (see Exercise 
20) that

5   
d
dx

 scos xd − 2sin x

The tangent function can also be differentiated by using the definition of a derivative,    
but it is easier to use the Quotient Rule together with Formulas 4 and 5:

 
d
dx

 stan xd −
d
dx

 S sin x
cos xD

 −
cos x 

d
dx

 ssin xd 2 sin x 
d
dx

 scos xd

cos2x

 −
cos x ? cos x 2 sin x s2sin xd

cos2x

 −
cos2x 1 sin2x

cos2x

 −
1

cos2x
− sec2x

6   
d
dx

 stan xd − sec2x

The derivatives of the remaining trigonometric functions, csc, sec, and cot, can also 
be found easily using the Quotient Rule (see Exercises 17–19). We collect all the dif-
ferentiation formulas for trigonometric functions in the following table. Remember that 
they are valid only when x is measured in radians.

Derivatives of Trigonometric Functions 

 
d
dx

 ssin xd − cos x 
d
dx

 scsc xd − 2csc x cot x

 
d
dx

 scos xd − 2sin x 
d
dx

 ssec xd − sec x tan x

 
d
dx

 stan xd − sec2x 
d
dx

 scot xd − 2csc2x

5

_5

_4 4

yyª

FIGURE 3

Figure 3 shows the graphs of the 
function of Example 1 and its deriva-
tive. Notice that y9 − 0 whenever y has 
a horizontal tangent.

When you memorize this table, it is 
helpful to notice that the minus signs 
go with the derivatives of the “cofunc-
tions,” that is, cosine, cosecant, and 
cotangent.
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194 CHAPTER 3  Differentiation Rules

EXAMPLE 2 Differentiate f sxd −
sec x

1 1 tan x
. For what values of x does the graph  

of f  have a horizontal tangent?

SOLUTION The Quotient Rule gives 

  f 9sxd −
s1 1 tan xd 

d
dx

 ssec xd 2 sec x 
d
dx

 s1 1 tan xd

s1 1 tan xd2

 −
s1 1 tan xd sec x tan x 2 sec x ? sec2x

s1 1 tan xd2

 −
sec x stan x 1 tan2x 2 sec2xd

s1 1 tan xd2

 −
sec x stan x 2 1d

s1 1 tan xd2

In simplifying the answer we have used the identity tan2x 1 1 − sec2x.
Since sec x is never 0, we see that f 9sxd − 0 when tan x − 1, and this occurs when 

x − n" 1 "y4, where n is an integer (see Figure 4). Q

Trigonometric functions are often used in modeling real-world phenomena. In par-
ticular, vibrations, waves, elastic motions, and other quantities that vary in a periodic 
manner can be described using trigonometric functions. In the following example we 
discuss an instance of simple harmonic motion.

EXAMPLE 3 An object at the end of a vertical spring is stretched 4 cm beyond its rest 
position and released at time t − 0. (See Figure 5 and note that the downward direction 
is positive.) Its position at time t is

s − f std − 4 cos t

Find the velocity and acceleration at time t and use them to analyze the motion of the 
object.

SOLUTION The velocity and acceleration are

v −
ds
dt

−
d
dt

 s4 cos td − 4 
d
dt

 scos td − 24 sin t

a −
dv
dt

−
d
dt

 s24 sin td − 24 
d
dt

 ssin td − 24 cos t

The object oscillates from the lowest point ss − 4 cmd to the highest point 
ss − 24 cmd. The period of the oscillation is 2", the period of cos t.

The speed is | v | − 4| sin t |, which is greatest when | sin t | − 1, that is, when 
cos t − 0. So the object moves fastest as it passes through its equilibrium position 
ss − 0d. Its speed is 0 when sin t − 0, that is, at the high and low points.

The acceleration a − 24 cos t − 0 when s − 0. It has greatest magnitude at the 
high and low points. See the graphs in Figure 6. Q

3

_3

_3 5

FIGURE 4 
 The horizontal tangents in Example 2 

s

0

4

FIGURE 5

2

_2

√
s a

π 2π t0

FIGURE 6
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EXAMPLE 4 Find the 27th derivative of cos x.

SOLUTION The first few derivatives of f sxd − cos x are as follows:

f 9sxd − 2sin x

 f 99sxd − 2cos x

 f999sxd − sin x

f s4dsxd − cos x

 f s5dsxd − 2sin x

We see that the successive derivatives occur in a cycle of length 4 and, in particular, 
f sndsxd − cos x whenever n is a multiple of 4. Therefore

f s24dsxd − cos x

and, differentiating three more times, we have

f s27dsxd − sin x Q

Our main use for the limit in Equation 2 has been to prove the differentiation formula 
for the sine function. But this limit is also useful in finding certain other trigonometric 
limits, as the following two examples show.

EXAMPLE 5 Find lim
x l 0

 
sin 7x

4x
.

SOLUTION In order to apply Equation 2, we first rewrite the function by multiplying 
and dividing by 7:

sin 7x
4x

−
7
4 S sin 7x

7x D
If we let ! − 7x, then ! l 0 as x l 0, so by Equation 2 we have

lim
x l 0

 
sin 7x

4x
−

7
4

 lim
x l 0

S sin 7x
7x D

   −
7
4

 lim
! l 0

 
sin !

!
−

7
4

? 1 −
7
4

Q

EXAMPLE 6 Calculate lim
x l 0

 x cot x.

SOLUTION Here we divide numerator and denominator by x:

  lim
x l 0

 x cot x − lim
x l 0

 
x cos x
sin x

  − lim
x l 0

 
cos x
sin x

x

−
lim
x l 0 

cos x

lim
x l 0

 
sin x

x

 −
cos 0

1
    (by the continuity of cosine and Equation 2)

  − 1 Q

PS  Look for a pattern.

Note that sin 7x ± 7 sin x.
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196 CHAPTER 3  Differentiation Rules

 31. (a)  Use the Quotient Rule to differentiate the function

f sxd −
tan x 2 1

sec x

 (b)  Simplify the expression for f sxd by writing it in terms  
of sin x and cos x, and then find f 9sxd.

 (c)  Show that your answers to parts (a) and (b) are  
equivalent.

 32.  Suppose f s"y3d − 4 and f 9s"y3d − 22, and let 
tsxd − f sxd sin x and hsxd − scos xdyf sxd. Find 

 (a) t9s"y3d (b) h9s"y3d

33–34 For what values of x does the graph of f  have a horizon-
tal tangent?

 33. f sxd − x 1 2 sin x 34. f sxd − e x cos x

 35.  A mass on a spring vibrates horizontally on a smooth  
level surface (see the figure). Its equation of motion is  
xstd − 8 sin t, where t is in seconds and x in centimeters.

 (a) Find the velocity and acceleration at time t.
 (b)  Find the position, velocity, and acceleration of the mass  

at time t − 2"y3. In what direction is it moving at that 
time?

x x0

equilibrium
position

 36.  An elastic band is hung on a hook and a mass is hung on the 
lower end of the band. When the mass is pulled downward 
and then released, it vibrates vertically. The equation of 
motion is s − 2 cos t 1 3 sin t, t > 0, where s is measured  
in centi meters and t in seconds. (Take the positive direction 
to be downward.)

 (a) Find the velocity and acceleration at time t.
 (b) Graph the velocity and acceleration functions.
 (c)  When does the mass pass through the equilibrium  

position for the first time?
 (d)  How far from its equilibrium position does the mass 

travel?
 (e)  When is the speed the greatest?

 37.  A ladder 10 ft long rests against a vertical wall. Let ! be the 
angle between the top of the ladder and the wall and let x be 
the distance from the bottom of the ladder to the wall. If the 
bottom of the ladder slides away from the wall, how fast 
does x change with respect to ! when ! − "y3?

 38.  An object with weight W is dragged along a horizontal 
plane by a force acting along a rope attached to the object. 

;

1–16 Differentiate.

 1. f sxd − x 2 sin x 2. f sxd − x cos x 1 2 tan x

 3. f sxd − e x cos x 4. y − 2 sec x 2 csc x

 5. y − sec ! tan ! 6. ts!d − e!stan! 2 !d

 7. y − c cos t 1 t 2 sin t 8. f std −
cot t

e t

 9. y −
x

2 2 tan x
 10. y − sin ! cos !

 11. f s!d −
sin !

1 1 cos !
 12. y −

cos x
1 2 sin x

 13. y −
t sin t
1 1 t

 14. y −
sin t

1 1 tan t

 15. f s!d − ! cos ! sin ! 16. f std − te t cot t

 17. Prove that 
d
dx

 scsc xd − 2csc x cot x.

 18. Prove that 
d
dx

 ssec xd − sec x tan x.

 19. Prove that 
d
dx

 scot xd − 2csc2x.

 20.  Prove, using the definition of derivative, that if  
f sxd − cos x, then f 9sxd − 2sin x.

21–24 Find an equation of the tangent line to the curve at the 
given point.

 21. y − sin x 1 cos x, s0, 1d 22. y − e x cos x, s0, 1d

 23. y − cos x 2 sin x, s", 21d 24. y − x 1 tan x, s", "d

 25. (a)  Find an equation of the tangent line to the curve 
y − 2x sin x at the point s"y2, "d.

 (b)  Illustrate part (a) by graphing the curve and the tangent 
line on the same screen.

 26. (a)  Find an equation of the tangent line to the curve 
y − 3x 1 6 cos x at the point s"y3, " 1 3d.

 (b)  Illustrate part (a) by graphing the curve and the tangent 
line on the same screen.

 27. (a)  If f sxd − sec x 2 x, find f 9sxd.
 (b)  Check to see that your answer to part (a) is reasonable by 

graphing both f  and f 9 for | x | , "y2.

 28. (a)  If f sxd − e x cos x, find f 9sxd and f 99sxd.
 (b)  Check to see that your answers to part (a) are reasonable 

by graphing f , f 9, and f 99.

 29.  If Hs!d − ! sin !, find H9s!d and H99s!d.

 30.  If f std − sec t, find f 0s"y4d.

;

;

;

;

3.3 EXERCISES
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 55.  Differentiate each trigonometric identity to obtain a new  
(or familiar) identity.

 (a) tan x −
sin x
cos x

 (b) sec x −
1

cos x

 (c) sin x 1 cos x −
1 1 cot x

csc x

 56.  A semicircle with diameter PQ sits on an isosceles triangle 
PQR to form a region shaped like a two-dimensional 
ice-cream cone, as shown in the figure. If As!d is the area of 
the semicircle and Bs!d is the area of the triangle, find

lim
!l

 

01 
As!d
Bs!d

P Q

R

B(¨)

A(¨)

¨

10 cm 10 cm

 57.  The figure shows a circular arc of length s and a chord of 
length d, both subtended by a central angle !. Find

lim
!l

 

01 
s
d

d

¨

s

 58.  Let f sxd −
x

s1 2 cos 2x 
.

 (a)  Graph f . What type of discontinuity does it appear to  
have at 0?

 (b)  Calculate the left and right limits of f  at 0. Do these  
values confirm your answer to part (a)?

;

If the rope makes an angle ! with the plane, then the 
magnitude of the force is

F −
#W

# sin ! 1 cos !

   where # is a constant called the coefficient of friction.
 (a) Find the rate of change of F with respect to !.
 (b) When is this rate of change equal to 0?
 (c)  If W − 50 lb and # − 0.6, draw the graph of F as 

a function of ! and use it to locate the value of ! for 
which dFyd! − 0. Is the value consistent with your 
answer to part (b)?

39–50 Find the limit.

 39. lim
xl0

 
sin 5x

3x
 40. lim

xl0
 

sin x
sin "x

 41. lim
t l 0

 
tan 6t
sin 2t

 42. lim
! l 0

 
cos ! 2 1

sin !

 43. lim
x l 0

 
sin 3x

5x 3 2 4x
 44. lim

x l 0
 
sin 3x sin 5x

x 2

 45. lim
! l 0

 
sin !

! 1 tan !
 46. lim

xl0
 csc x sinssin xd

 47. lim
! l 0

 
cos ! 2 1

2! 2  48. lim
x l 0

 
sinsx 2d

x

 49. lim
x l "y4

 
1 2 tan x

sin x 2 cos x
 50. lim

x l 1
 

sinsx 2 1d
x 2 1 x 2 2

51–52 Find the given derivative by finding the first few deriva-
tives and observing the pattern that occurs.

 51. 
d 99

dx99
 ssin xd 52. 

d 35

dx 35
 sx sin xd

 53.  Find constants A and B such that the function 
y − A sin x 1 B cos x satisfies the differential equation 
y99 1 y9 2 2y − sin x.

 54. (a) Evaluate lim
x l `

 x sin 
1
x

.

 (b) Evaluate lim
x l 0

 x sin 
1
x

.

 (c) Illustrate parts (a) and (b) by graphing y − x sins1yxd.

;

;

Suppose you are asked to differentiate the function 

Fsxd − sx 2 1 1

The differentiation formulas you learned in the previous sections of this chapter do not  
enable you to calculate F9sxd.
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198 CHAPTER 3  Differentiation Rules

Observe that F is a composite function. In fact, if we let y − f sud − su  and let 
u − tsxd − x 2 1 1, then we can write y − Fsxd − f stsxdd, that is, F − f 8 t. We know 
how to differentiate both f  and t, so it would be useful to have a rule that tells us how to 
find the derivative of F − f 8 t in terms of the derivatives of f  and t.

It turns out that the derivative of the composite function f 8 t is the product of the  
derivatives of f  and t. This fact is one of the most important of the differentiation rules and 
is called the Chain Rule. It seems plausible if we interpret derivatives as rates of change.  
Regard duydx as the rate of change of u with respect to x, dyydu as the rate of change of 
y with respect to u, and dyydx as the rate of change of y with respect to x. If u changes 
twice as fast as x and y changes three times as fast as u, then it seems reasonable that y 
changes six times as fast as x, and so we expect that

dy
dx

−
dy
du

 
du
dx

The Chain Rule If t is differentiable at x and f  is differentiable at tsxd, then 
the composite function F − f 8 t defined by Fsxd − f stsxdd is differentiable at x 
and F9 is given by the product

F9sxd − f 9stsxdd ? t9sxd

 In Leibniz notation, if y − f sud and u − tsxd are both differentiable functions, 
then

dy
dx

−
dy
du

 
du
dx

COMMENTS ON THE PROOF OF THE CHAIN RULE Let Du be the change in u correspond-
ing to a change of Dx in x, that is,

Du − tsx 1 Dxd 2 tsxd

 Then the corresponding change in y is

Dy − f su 1 Dud 2 f sud

 It is tempting to write

  
dy
dx

− lim
Dxl 0

 
Dy
Dx

1    − lim
Dx l 0

 
Dy
Du

?
Du
Dx

  − lim
Dx l 0

 
Dy
Du

? lim
Dx l 0

 
Du
Dx

  − lim
Du l 0

 
Dy
Du

? lim
Dx l 0

 
Du
Dx

 
(Note that Du l 0 as Dx l 0 
since t is continuous.)

  −
dy
du

 
du
dx

James Gregory
The first person to formulate the 
Chain Rule was the Scottish mathe- 
matician James Gregory (1638–1675), 
who also designed the first practical 
reflecting telescope. Gregory disco- 
vered the basic ideas of calculus at 
about the same time as Newton. He 
became the first Professor of 
Mathematics at the University of St. 
Andrews and later held the same 
position at the University of Edin- 
burgh. But one year after accep- 
ting that position he died at the age 
of 36.

See Section 1.3 for a review of  
composite functions.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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The only flaw in this reasoning is that in (1) it might happen that Du − 0 (even when 
Dx ± 0) and, of course, we can’t divide by 0. Nonetheless, this reasoning does at least 
suggest that the Chain Rule is true. A full proof of the Chain Rule is given at the end of 
this section. Q

The Chain Rule can be written either in the prime notation

2  s f 8 td9sxd − f 9stsxdd ? t9sxd

or, if y − f sud and u − tsxd, in Leibniz notation:

3  
dy
dx

−
dy
du

 
du
dx

Equation 3 is easy to remember because if dyydu and duydx were quotients, then we 
could cancel du. Remember, however, that du has not been defined and duydx should not 
be thought of as an actual quotient.

EXAMPLE 1 Find F9sxd if Fsxd − sx 2 1 1.

SOLUTION 1 (using Equation 2): At the beginning of this section we expressed F as 
Fsxd − s f 8 tdsxd − f stsxdd where f sud − su  and tsxd − x 2 1 1. Since

f 9sud − 1
2 u21y2 −

1
2su 

    and    t9sxd − 2x

we have  F9sxd − f 9stsxdd ? t9sxd

−
1

2sx 2 1 1
? 2x −

x

sx 2 1 1

SOLUTION 2 (using Equation 3): If we let u − x 2 1 1 and y − su , then

  F9sxd −
dy
du

 
du
dx

−
1

2su  s2xd −
1

2sx 2 1 1
s2xd −

x

sx 2 1 1
 Q

When using Formula 3 we should bear in mind that dyydx refers to the derivative of  
y when y is considered as a function of x (called the derivative of y with respect to x), 
whereas dyydu refers to the derivative of y when considered as a function of u (the 
derivative of y with respect to u). For instance, in Example 1, y can be considered as a 
function of x (y − sx 2 1 1) and also as a function of u (y − su ). Note that

dy
dx

− F9sxd −
x

sx 2 1 1
    whereas    

dy
du

− f 9sud −
1

2su 

NOTE In using the Chain Rule we work from the outside to the inside. Formula 2 
says that we differentiate the outer function f  [at the inner function tsxd] and then we 
multiply by the derivative of the inner function.

d
dx

f stsxdd − f 9 stsxdd ? t9sxd

 

outer
function

evaluated
at inner
function

derivative
of outer
function

evaluated
at inner
function

derivative
of inner
function

7et0304note1
01/13/10
MasterID: 01592
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200 CHAPTER 3  Differentiation Rules

EXAMPLE 2 Differentiate (a) y − sinsx 2 d and (b) y − sin2x.

SOLUTION 
(a) If y − sinsx 2 d, then the outer function is the sine function and the inner function is 
the squaring function, so the Chain Rule gives

 
dy
dx

−
d

dx
sin sx 2 d − cos sx 2 d ? 2x

 

outer
function

evaluated
at inner
function

derivative
of outer
function

evaluated
at inner
function

derivative
of inner
function

7et0304note2
01/13/10
MasterID: 01593

 − 2x cossx 2 d

(b) Note that sin2x − ssin xd2. Here the outer function is the squaring function and the 
inner function is the sine function. So

dy
dx

−
d

dx
 ssin xd2           −            2 ? ssin xd ? cos x

 

inner
function

derivative
of outer
function

evaluated
at inner
function

derivative
of inner
function

7et0304note3
01/13/10
MasterID: 01594

 

inner
function

derivative
of outer
function

evaluated
at inner
function

derivative
of inner
function

7et0304note3
01/13/10
MasterID: 01594

The answer can be left as 2 sin x cos x or written as sin 2x (by a trigonometric identity 
known as the double-angle formula). Q

In Example 2(a) we combined the Chain Rule with the rule for differentiating the sine 
function. In general, if y − sin u, where u is a differentiable function of x, then, by the 
Chain Rule,

dy
dx

−
dy
du

 
du
dx

− cos u 
du
dx

Thus 
d

dx
 ssin ud − cos u 

du
dx

In a similar fashion, all of the formulas for differentiating trigonometric functions can 
be combined with the Chain Rule.

Let’s make explicit the special case of the Chain Rule where the outer function f  is 
a power function. If y − ftsxdgn, then we can write y − f sud − un where u − tsxd. By 
using the Chain Rule and then the Power Rule, we get

dy
dx

−
dy
du

 
du
dx

− nun21 
du
dx

− nftsxdgn21t9sxd

4  The Power Rule Combined with the Chain Rule If n is any real number 
and u − tsxd is differentiable, then

d
dx

 sun d − nun21 
du
dx

 Alternatively, 
d

dx
 ftsxdgn − nftsxdgn21 ? t9sxd

Notice that the derivative in Example 1 could be calculated by taking n − 1
2 in Rule 4.

See Reference Page 2 or Appendix D.
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EXAMPLE 3 Differentiate y − sx 3 2 1d100.

SOLUTION Taking u − tsxd − x 3 2 1 and n − 100 in (4), we have

 
dy
dx

−
d
dx

 sx 3 2 1d100 − 100sx 3 2 1d99 
d
dx

 sx 3 2 1d

  − 100sx 3 2 1d99 ? 3x 2 − 300x 2sx 3 2 1d99  
Q

EXAMPLE 4 Find f 9sxd if f sxd −
1

s3 x 2 1 x 1 1
.

SOLUTION First rewrite f : f sxd − sx 2 1 x 1 1d21y3

Thus  f 9sxd − 21
3 sx 2 1 x 1 1d24y3 

d
dx

 sx 2 1 x 1 1d

  − 21
3 sx 2 1 x 1 1d24y3s2x 1 1d Q

EXAMPLE 5 Find the derivative of the function 

tstd − S t 2 2
2t 1 1D9

SOLUTION Combining the Power Rule, Chain Rule, and Quotient Rule, we get 

 t9std − 9S t 2 2
2t 1 1D8

 
d
dt

 S t 2 2
2t 1 1D

 − 9S t 2 2
2t 1 1D8

 
s2t 1 1d ? 1 2 2st 2 2d

s2t 1 1d2  −
45st 2 2d8

s2t 1 1d10 Q

EXAMPLE 6 Differentiate y − s2x 1 1d5sx 3 2 x 1 1d4.

SOLUTION In this example we must use the Product Rule before using the Chain Rule:

 
dy
dx

− s2x 1 1d5 
d

dx
 sx 3 2 x 1 1d4 1 sx 3 2 x 1 1d4 

d
dx

 s2x 1 1d5

  − s2x 1 1d5 ? 4sx 3 2 x 1 1d3 
d

dx
 sx 3 2 x 1 1d

  1 sx 3 2 x 1 1d4 ? 5s2x 1 1d4 
d

dx
 s2x 1 1d

  − 4s2x 1 1d5sx 3 2 x 1 1d3s3x 2 2 1d 1 5sx 3 2 x 1 1d4s2x 1 1d4 ? 2

Noticing that each term has the common factor 2s2x 1 1d4sx 3 2 x 1 1d3, we could  
factor it out and write the answer as

 
dy
dx

− 2s2x 1 1d4sx 3 2 x 1 1d3s17x 3 1 6x 2 2 9x 1 3d Q

10

_10

_2 1

y

yª

FIGURE 1

The graphs of the functions y and y9  
in Example 6 are shown in Figure 1. 
Notice that y9 is large when y increases 
rapidly and y9 − 0 when y has a hori- 
zontal tangent. So our answer appears  
to be reasonable.
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202 CHAPTER 3  Differentiation Rules

EXAMPLE 7 Differentiate y − e sin x.

SOLUTION Here the inner function is tsxd − sin x and the outer function is the expo-
nential function f sxd − ex. So, by the Chain Rule,

 
dy
dx

−
d

dx
 se sin x d − e sin x 

d
dx

 ssin xd − e sin x cos x Q

We can use the Chain Rule to differentiate an exponential function with any base 
b . 0. Recall from Section 1.5 that b − e ln b. So

bx − se ln b dx − e sln bdx

and the Chain Rule gives

 
d

dx
 sbx d −

d
dx

 se sln bdx d − e sln bdx 
d

dx
 sln bdx

 − e sln bdx ∙ ln b − bx ln b

because ln b is a constant. So we have the formula

5   
d

dx
 sbx d − bx ln b

In particular, if b − 2, we get

6   
d

dx
 s2x d − 2x ln 2

In Section 3.1 we gave the estimate

d
dx

 s2x d < s0.69d2x

This is consistent with the exact formula (6) because ln 2 < 0.693147. 
The reason for the name “Chain Rule” becomes clear when we make a longer chain 

by adding another link. Suppose that y − f sud, u − tsxd, and x − hstd, where f , t, and 
h are differentiable functions. Then, to compute the derivative of y with respect to t, we 
use the Chain Rule twice:

dy
dt

−
dy
dx

 
dx
dt

−
dy
du

 
du
dx

 
dx
dt

EXAMPLE 8 If f sxd − sinscosstan xdd, then

  f 9sxd − cosscosstan xdd 
d
dx

 cosstan xd

 − cosscosstan xddf2sinstan xdg 
d
dx

 stan xd

 − 2cosscosstan xdd sinstan xd sec2x

Notice that we used the Chain Rule twice. Q

More generally, the Chain Rule gives

d
dx

 seud − eu 
du
dx

Don’t confuse Formula 5 (where x is 
the exponent) with the Power Rule 
(where x is the base):

d
dx

 sx n d − nx n21
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EXAMPLE 9 Differentiate y − e sec 3 !.

SOLUTION The outer function is the exponential function, the middle function is the 
secant function, and the inner function is the tripling function. So we have

 
dy
d!

− e sec 3! 
d

d!
 ssec 3!d

 − e sec 3! sec 3! tan 3! 
d

d!
 s3!d

 − 3e sec 3! sec 3! tan 3! Q

How to Prove the Chain Rule
Recall that if y − f sxd and x changes from a to a 1 Dx, we define the increment of y as

Dy − f sa 1 Dxd 2 f sad

According to the definition of a derivative, we have

lim
Dx l 0

 
Dy
Dx

− f 9sad

So if we denote by « the difference between the difference quotient and the derivative,  
we obtain

lim
Dx l 0

 « − lim
Dx l 0

SDy
Dx

2 f 9sadD − f 9sad 2 f 9sad − 0

But « −
Dy
Dx

2 f 9sad ? Dy − f 9sad Dx 1 « Dx

If we define « to be 0 when Dx − 0, then « becomes a continuous function of Dx. Thus, 
for a differentiable function f, we can write

7   Dy − f 9sad Dx 1 « Dx where     « l 0 as Dx l 0

and « is a continuous function of Dx. This property of differentiable functions is what  
enables us to prove the Chain Rule.

PROOF OF THE CHAIN RULE Suppose u − tsxd is differentiable at a and y − f sud is dif-
ferentiable at b − tsad. If Dx is an increment in x and Du and Dy are the corresponding 
increments in u and y, then we can use Equation 7 to write

8   Du − t9sad Dx 1 «1 Dx − ft9sad 1 «1g Dx

where «1 l 0 as Dx l 0. Similarly

9   Dy − f 9sbd Du 1 «2 Du − f f 9sbd 1 «2 g Du

where «2 l 0 as Du l 0. If we now substitute the expression for Du from Equation 8 
into Equation 9, we get

Dy − f f 9sbd 1 «2 g ft9sad 1 «1g Dx
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204 CHAPTER 3  Differentiation Rules

 31. Fstd − et sin 2t 32. Fstd −
t 2

st 3 1 1 

 33. Gsxd − 4 Cyx 34. Usyd − S y 4 1 1
y 2 1 1D5

 35. y − cosS 1 2 e2x

1 1 e2xD 36. y − x 2e21yx

 37. y − cot2ssin !d 38. y − s1 1 xe22x 

 39. f std − tanssecscos tdd 40. y − e sin 2x 1 sinse 2xd

 41. f std − sin2se sin2 t d 42. y − sx 1 sx 1 sx 

 43. tsxd − s2ra rx 1 ndp 44. y − 2 34x

 45. y − cosssinstan "xd 46. y − fx 1 sx 1 sin2xd3g 4

47–50 Find y9 and y 99.

 47. y − cosssin 3!d 48. y −
1

s1 1 tan xd2

 49. y − s1 2 sec t  50. y − eex

51–54 Find an equation of the tangent line to the curve at the given 
point.

 51. y − 2 x, s0, 1d 52. y − s1 1 x 3 

, s2, 3d

 53. y − sinssin xd, s", 0d 54. y − xe2x 2

, s0, 0d

 55. (a)  Find an equation of the tangent line to the curve 
y − 2ys1 1 e2x d at the point s0, 1d.

 (b)  Illustrate part (a) by graphing the curve and the tangent line 
on the same screen.

;

3.4 EXERCISES

1–6 Write the composite function in the form f stsxdd.  
[Identify the inner function u − tsxd and the outer function 
y − f sud.] Then find the derivative dyydx.

 1. y − s3 1 1 4x  2. y − s2x 3 1 5d4

 3. y − tan "x 4. y − sinscot xd

 5. y − esx 

 6. y − s2 2 e x 

7–46 Find the derivative of the function.

 7. Fsxd − s5x 6 1 2x 3d4 8. Fsxd − s1 1 x 1 x 2d99

 9. f sxd − s5x 1 1  10. f sxd −
1

s3 x 2 2 1 

 11. f s!d − coss! 2d 12. ts!d − cos2 !

 13. y − x 2e23x 14. f std − t sin "t

 15. f std − e at sin bt 16. tsxd − e x 22x

 17. f sxd − s2x 2 3d4sx 2 1 x 1 1d5

 18. tsxd − sx 2 1 1d3sx 2 1 2d6

 19. hstd − st 1 1d2y3s2t 2 2 1d3

 20. Fstd − s3t 2 1d4s2t 1 1d23

 21. y − Î x
x 1 1

  22. y − Sx 1
1
xD5

 23. y − e tan ! 24. f std − 2 t 3

 25. tsud − S u 3 2 1
u 3 1 1D8

 26. sstd − Î 1 1 sin t
1 1 cos t

 

 27. rstd − 10 2st  

 28. f szd − e zysz21d

 29. Hsrd −
sr 2 2 1d3

s2r 1 1d5  30. Js!d − tan2sn!d

so 
Dy
Dx

− f f 9sbd 1 «2 g ft9sad 1 «1g

 As Dx l 0, Equation 8 shows that Du l 0. So both «1 l 0 and «2 l 0 as Dx l 0. 
Therefore

 
dy
dx

− lim
Dx l 0

 
Dy
Dx

− lim
Dx l 0

 f f 9sbd 1 «2 g ft9sad 1 «1g

 − f 9sbd t9sad − f 9stsadd t9sad

This proves the Chain Rule. Q

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 3.4  The Chain Rule 205

 66.  If f  is the function whose graph is shown, let hsxd − f s f sxdd 
and tsxd − f sx 2 d. Use the graph of f  to estimate the value  
of each derivative.

 (a) h9s2d      (b) t9s2d

x

y

0 1

y=ƒ

1

 67.  If tsxd − sf sxd , where the graph of f  is shown, evaluate 
t9s3d.

x

y

0

1

1

f

 68.  Suppose f  is differentiable on R and ! is a real number.  
Let Fsxd − f sx ! d and Gsxd − f f sxdg!. Find expressions  
for (a) F9sxd and (b) G9sxd.

 69.  Suppose f  is differentiable on R. Let Fsxd − f se x d and 
Gsxd − e f sxd. Find expressions for (a) F9sxd and (b) G9sxd.

 70.  Let tsxd − e cx 1 f sxd and hsxd − ekx f sxd, where f s0d − 3, 
f 9s0d − 5, and f 99s0d − 22.

 (a)  Find t9s0d and t99s0d in terms of c.
 (b)  In terms of k, find an equation of the tangent line to the 

graph of h at the point where x − 0.

 71.  Let rsxd − f stshsxddd, where hs1d − 2, ts2d − 3, h9s1d − 4, 
t9s2d − 5, and f 9s3d − 6. Find r9s1d.

 72.  If t is a twice differentiable function and f sxd − xtsx 2 d, find 
f 99 in terms of t, t9, and t99.

 73.   If Fsxd − f s3f s4 f sxddd, where f s0d − 0 and f 9s0d − 2,  
find F9s0d.

 74.   If Fsxd − f sx f sx f sxddd, where f s1d − 2, f s2d − 3,  
f 9s1d − 4, f 9s2d − 5, and f 9s3d − 6, find F9s1d.

 75.  Show that the function y − e 2xsA cos 3x 1 B sin 3xd satisfies 
the differential equation y99 2 4y9 1 13y − 0.

 76.  For what values of r does the function y − erx satisfy the  
differential equation y99 2 4y9 1 y − 0?

 77.  Find the 50th derivative of y − cos 2x.

 78. Find the 1000th derivative of f sxd − xe2x.

 56. (a)  The curve y − | x |ys2 2 x 2  is called a bullet-nose 
curve. Find an equation of the tangent line to this curve at 
the point s1, 1d.

 (b)  Illustrate part (a) by graphing the curve and the tangent 
line on the same screen.

 57. (a)  If f sxd − xs2 2 x 2 , find f 9sxd.
 (b)  Check to see that your answer to part (a) is reasonable by 

comparing the graphs of f  and f 9.

 58.  The function f sxd − sinsx 1 sin 2xd, 0 < x < ", arises in 
applications to frequency modulation (FM) synthesis.

 (a)  Use a graph of f  produced by a calculator to make a 
rough sketch of the graph of f 9.

 (b)  Calculate f 9sxd and use this expression, with a calculator, 
to graph f 9. Compare with your sketch in part (a).

 59.  Find all points on the graph of the function 
f sxd − 2 sin x 1 sin2x at which the tangent line is horizontal.

 60.  At what point on the curve y − s1 1 2x  is the tangent line 
perpendicular to the line 6x 1 2y − 1?

 61.  If Fsxd − f stsxdd, where f s22d − 8, f 9s22d − 4, f 9s5d − 3, 
ts5d − 22, and t9s5d − 6, find F9s5d.

 62.  If hsxd − s4 1 3f sxd , where f s1d − 7 and f 9s1d − 4,  
find h9s1d.

 63. A table of values for f , t, f 9, and t9 is given.

x f sxd tsxd f 9sxd t9sxd
1 3 2 4 6
2 1 8 5 7
3 7 2 7 9

 (a) If hsxd − f stsxdd, find h9s1d.
 (b) If Hsxd − ts f sxdd, find H9s1d.

 64. Let f  and t be the functions in Exercise 63.
 (a) If Fsxd − f s f sxdd, find F9s2d.
 (b) If Gsxd − tstsxdd, find G9s3d.

 65.  If f  and t are the functions whose graphs are shown, let 
usxd − f stsxdd, vsxd − ts f sxdd, and wsxd − tstsxdd. Find 
each derivative, if it exists. If it does not exist, explain why.

 (a) u9s1d      (b) v9s1d      (c) w9s1d

x

y

0

f

g
1

1

;

;

;
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206 CHAPTER 3  Differentiation Rules

 (c)  Graph p for the case a − 10, k − 0.5 with t measured in 
hours. Use the graph to estimate how long it will take for 
80% of the population to hear the rumor.

 85.  The average blood alcohol concentration (BAC) of eight 
male subjects was measured after consumption of 15 mL of 
ethanol (corresponding to one alcoholic drink). The resulting 
data were modeled by the concentration function

Cstd − 0.0225te20.0467t

   where t is measured in minutes after consumption and C is 
measured in mgymL.

 (a) How rapidly was the BAC increasing after 10 minutes?
 (b) How rapidly was it decreasing half an hour later?
  Source: Adapted from P. Wilkinson et al., “Pharmacokinetics of Ethanol after 

Oral Administration in the Fasting State,” Journal of Pharmacokinetics and 
Biopharmaceutics 5 (1977): 207–24.

 86.  In Section 1.4 we modeled the world population from 1900 
to 2010 with the exponential function

Pstd − s1436.53d ? s1.01395d t

   where t − 0 corresponds to the year 1900 and Pstd is 
measured in millions. According to this model, what was the 
rate of increase of world population in 1920? In 1950? In 
2000?

 87.  A particle moves along a straight line with displacement sstd, 
velocity vstd, and acceleration astd. Show that

astd − vstd 
dv
ds

   Explain the difference between the meanings of the 
derivatives dvydt and dvyds.

 88.  Air is being pumped into a spherical weather balloon. At  
any time t, the volume of the balloon is Vstd and its radius  
is rstd.

 (a)  What do the derivatives dVydr and dVydt represent?
 (b)  Express dVydt in terms of drydt.

 89.  The flash unit on a camera operates by storing charge on a 
capacitor and releasing it suddenly when the flash is set off. 
The following data describe the charge Q remaining on the 
capacitor (measured in microcoulombs, mC) at time t (mea- 
sured in seconds).

t  0.00  0.02  0.04  0.06  0.08  0.10

Q 100.00 81.87 67.03 54.88 44.93 36.76

 (a)  Use a graphing calculator or computer to find an expo-
nential model for the charge.

 (b)  The derivative Q9std represents the electric current (mea-
sured in microamperes, mA) flowing from the capacitor 
to the flash bulb. Use part (a) to estimate the current 
when t − 0.04 s. Compare with the result of Example 
2.1.2.

;

;

 79.  The displacement of a particle on a vibrating string is given 
by the equation sstd − 10 1 1

4 sins10" td where s is measured 
in centimeters and t in seconds. Find the velocity of the 
particle after t seconds.

 80.  If the equation of motion of a particle is given by 
s − A coss#t 1 $d, the particle is said to undergo simple  
harmonic motion.

 (a) Find the velocity of the particle at time t.
 (b) When is the velocity 0?

 81.   A Cepheid variable star is a star whose brightness alternately 
increases and decreases. The most easily visible such star is 
Delta Cephei, for which the interval between times of max- 
imum brightness is 5.4 days. The average brightness of this 
star is 4.0 and its brightness changes by 60.35. In view of 
these data, the brightness of Delta Cephei at time t, where t 
is mea sured in days, has been modeled by the function

Bstd − 4.0 1 0.35 sinS 2" t
5.4 D

 (a) Find the rate of change of the brightness after t days.
 (b)  Find, correct to two decimal places, the rate of increase 

after one day.

 82.  In Example 1.3.4 we arrived at a model for the length of day- 
light (in hours) in Philadelphia on the tth day of the year:

Lstd − 12 1 2.8 sinF 2"

365
st 2 80dG

   Use this model to compare how the number of hours of 
day light is increasing in Philadelphia on March 21 and  
May 21.

 83.  The motion of a spring that is subject to a frictional force or  
a damping force (such as a shock absorber in a car) is often 
modeled by the product of an exponential function and a sine 
or cosine function. Suppose the equation of motion of a 
point on such a spring is

sstd − 2e21.5 t sin 2"t

   where s is measured in centimeters and t in seconds. Find  
the velocity after t seconds and graph both the position and 
velocity functions for 0 < t < 2.

 84.  Under certain circumstances a rumor spreads according to  
the equation

pstd −
1

1 1 ae 2k t

   where pstd is the proportion of the population that has heard 
the rumor at time t and a and k are positive constants. [In 
Sec tion 9.4 we will see that this is a reasonable equation  
for pstd.]

 (a) Find lim t l ` pstd.
 (b) Find the rate of spread of the rumor.

;
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 94.  Use the Chain Rule and the Product Rule to give an  
alternative proof of the Quotient Rule.

  [Hint: Write f sxdytsxd − f sxdftsxdg21.]

 95. (a) If n is a positive integer, prove that

d
dx

 ssinnx cos nxd − n sinn21x cossn 1 1dx

 (b)  Find a formula for the derivative of y − cosnx cos nx 
that is similar to the one in part (a).

 96.  Suppose y − f sxd is a curve that always lies above the  
x-axis and never has a horizontal tangent, where f  is 
dif ferentiable everywhere. For what value of y is the rate  
of change of y 5 with respect to x eighty times the rate of 
change of y with respect to x?

 97.  Use the Chain Rule to show that if ! is measured in 
degrees, then

d
d!

 ssin !d −
"

180
 cos !

   (This gives one reason for the convention that radian 
measure is always used when dealing with trigonometric 
functions in calculus: the differentiation formulas would 
not be as simple if we used degree measure.)

 98. (a) Write | x | − sx 2  and use the Chain Rule to show that

d
dx

 | x | −
x

| x |
 (b)  If f sxd − | sin x |, find f 9sxd and sketch the graphs of f   

and f 9. Where is f  not differentiable?
 (c)  If tsxd − sin | x |, find t9sxd and sketch the graphs of t  

and t9. Where is t not differentiable?

 99.  If y − f sud and u − tsxd, where f  and t are twice differ- 
en tiable functions, show that

d 2 y
dx 2 −

d 2 y
du 2 S du

dxD2

1
dy
du

 
d 2u
dx 2

 100.  If y − f sud and u − tsxd, where f  and t possess third 
derivatives, find a formula for d 3yydx 3 similar to the one 
given in Exercise 99.

 90.   The table gives the US population from 1790 to 1860.

Year Population Year Population

1790 3,929,000 1830 12,861,000
1800 5,308,000 1840 17,063,000
1810 7,240,000 1850 23,192,000
1820 9,639,000 1860 31,443,000

 (a)  Use a graphing calculator or computer to fit an expo-
nential function to the data. Graph the data points and 
the exponential model. How good is the fit?

 (b)  Estimate the rates of population growth in 1800 and 
1850 by averaging slopes of secant lines.

 (c)  Use the exponential model in part (a) to estimate the 
rates of growth in 1800 and 1850. Compare these esti-
mates with the ones in part (b).

 (d)  Use the exponential model to predict the popula-
tion in 1870. Compare with the actual population of 
38,558,000. Can you explain the discrepancy?

 91.  Computer algebra systems have commands that differentiate 
functions, but the form of the answer may not be convenient 
and so further commands may be necessary to simplify the 
answer.

 (a)  Use a CAS to find the derivative in Example 5 and 
compare with the answer in that example. Then use the 
simplify command and compare again.

 (b)  Use a CAS to find the derivative in Example 6. What  
happens if you use the simplify command? What hap-
pens if you use the factor command? Which form of the 
answer would be best for locating horizontal tangents?

 92. (a) Use a CAS to differentiate the function

f sxd − Î x 4 2 x 1 1
x 4 1 x 1 1

  and to simplify the result.
 (b) Where does the graph of f  have horizontal tangents?
 (c)  Graph f  and f 9 on the same screen. Are the graphs 

consistent with your answer to part (b)?

 93. Use the Chain Rule to prove the following.
 (a)  The derivative of an even function is an odd function.
 (b)  The derivative of an odd function is an even function.

;

CAS

CAS
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208 CHAPTER 3  Differentiation Rules

APPLIED PROJECT WHERE SHOULD A PILOT START DESCENT?

An approach path for an aircraft landing is shown in the figure and satisfies the following  
conditions:

 (i)  The cruising altitude is h when descent starts at a horizontal distance , from touch-
down at the origin.

 (ii) The pilot must maintain a constant horizontal speed v throughout descent.
 (iii)  The absolute value of the vertical acceleration should not exceed a constant k (which is 

much less than the acceleration due to gravity). 

1.  Find a cubic polynomial Psxd − ax 3 1 bx 2 1 cx 1 d that satisfies condition (i) by  
imposing suitable conditions on Psxd and P9sxd at the start of descent and at touchdown.

2. Use conditions (ii) and (iii) to show that  

6hv 2

,2 < k

3.  Suppose that an airline decides not to allow vertical acceleration of a plane to exceed  
k − 860 miyh2. If the cruising altitude of a plane is 35,000 ft and the speed is 300 miyh, 
how far away from the airport should the pilot start descent?

4. Graph the approach path if the conditions stated in Problem 3 are satisfied.

y

x0

y=P(x)

!

h

;

The functions that we have met so far can be described by expressing one variable explic-
itly in terms of another variable—for example,

y − sx 3 1 1    or    y − x sin x

or, in general, y − f sxd. Some functions, however, are defined implicitly by a relation 
between x and y such as

1   x 2 1 y 2 − 25

or

2   x 3 1 y 3 − 6xy

In some cases it is possible to solve such an equation for y as an explicit function (or 
several functions) of x. For instance, if we solve Equation 1 for y, we get y − 6s25 2 x 2 ,  
so two of the functions determined by the implicit Equation l are f sxd − s25 2 x 2  and 
tsxd − 2s25 2 x 2 . The graphs of f  and t are the upper and lower semicircles of the  
cir cle x 2 1 y 2 − 25. (See Figure 1.)

0 x

y

0 x

y

0 x

y

(c) ©=_œ„„„„„„25-≈(b) ƒ=œ„„„„„„25-≈(a) ≈+¥=25FIGURE 1
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It’s not easy to solve Equation 2 for y explicitly as a function of x by hand. (A com-
puter algebra system has no trouble, but the expressions it obtains are very complicated.) 
Nonetheless, (2) is the equation of a curve called the folium of Descartes shown in  
Figure 2 and it implicitly defines y as several functions of x. The graphs of three such 
functions are shown in Figure 3. When we say that f  is a function defined implicitly by 
Equa tion 2, we mean that the equation

x 3 1 f f sxdg3 − 6x f sxd

is true for all values of x in the domain of f .

x

y

0

˛+Á=6xy

x

y

0 x

y

0x

y

0

FIGURE 2 The folium of Descartes FIGURE 3  Graphs of three functions defined by the folium of Descartes

Fortunately, we don’t need to solve an equation for y in terms of x in order to find the 
derivative of y. Instead we can use the method of implicit differentiation. This consists 
of differentiating both sides of the equation with respect to x and then solving the resul-
ting equation for y9. In the examples and exercises of this section it is always assumed 
that the given equation determines y implicitly as a differentiable function of x so that the 
method of implicit differentiation can be applied.

EXAMPLE 1 

(a) If x 2 1 y 2 − 25, find 
dy
dx

.

(b) Find an equation of the tangent to the circle x 2 1 y 2 − 25 at the point s3, 4d.

SOLUTION 1
(a) Differentiate both sides of the equation x 2 1 y 2 − 25:

 
d

dx
 sx 2 1 y 2 d −

d
dx

 s25d

 
d

dx
 sx 2 d 1

d
dx

 sy 2 d − 0

Remembering that y is a function of x and using the Chain Rule, we have 

d
dx

 sy 2 d −
d
dy

 sy 2 d 
dy
dx

− 2y 
dy
dx

Thus 2x 1 2y 
dy
dx

− 0
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Now we solve this equation for dyydx: 

dy
dx

− 2
x
y

(b) At the point s3, 4d we have x − 3 and y − 4, so

dy
dx

− 2
3
4

An equation of the tangent to the circle at s3, 4d is therefore

y 2 4 − 23
4 sx 2 3d    or    3x 1 4y − 25

SOLUTION 2
(b) Solving the equation x 2 1 y 2 − 25 for y, we get y − 6s25 2 x 2 . The point 
s3, 4d lies on the upper semicircle y − s25 2 x 2  and so we consider the function 
f sxd − s25 2 x 2 . Differentiating f  using the Chain Rule, we have

  f 9sxd − 1
2 s25 2 x 2 d21y2 

d
dx

 s25 2 x 2 d

 − 1
2 s25 2 x 2 d21y2s22xd − 2

x

s25 2 x 2 

So  f 9s3d − 2
3

s25 2 32 
− 2

3
4

and, as in Solution 1, an equation of the tangent is 3x 1 4y − 25. Q

NOTE 1 The expression dyydx − 2xyy in Solution 1 gives the derivative in terms of 
both x and y. It is correct no matter which function y is determined by the given equation. 
For instance, for y − f sxd − s25 2 x 2  we have

dy
dx

− 2
x
y

− 2
x

s25 2 x 2 

whereas for y − tsxd − 2s25 2 x 2  we have

dy
dx

− 2
x
y

− 2
x

2s25 2 x 2 −
x

s25 2 x 2 

EXAMPLE 2 
(a) Find y9 if x 3 1 y 3 − 6xy.
(b) Find the tangent to the folium of Descartes x 3 1 y 3 − 6xy at the point s3, 3d.
(c) At what point in the first quadrant is the tangent line horizontal?

SOLUTION
(a) Differentiating both sides of x 3 1 y 3 − 6xy with respect to x, regarding y as a 
function of x, and using the Chain Rule on the term y 3 and the Product Rule on the 
term 6xy, we get

  3x 2 1 3y 2 y9 − 6xy9 1 6y

or    x 2 1 y 2y9 − 2xy9 1 2y

Example 1 illustrates that even when  
it is possible to solve an equation 
explicitly for y in terms of x, it may be 
easier to use implicit differentiation.
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We now solve for y9:  y 2y9 2 2xy9 − 2y 2 x 2

  sy 2 2 2xdy9 − 2y 2 x 2

  y9 −
2y 2 x 2

y 2 2 2x

(b) When x − y − 3,

y9 −
2 ? 3 2 32

32 2 2 ? 3
− 21 

and a glance at Figure 4 confirms that this is a reasonable value for the slope at s3, 3d. 
So an equation of the tangent to the folium at s3, 3d is

y 2 3 − 21sx 2 3d    or    x 1 y − 6

(c) The tangent line is horizontal if y9 − 0. Using the expression for y9 from part (a),  
we see that y9 − 0 when 2y 2 x 2 − 0 (provided that y 2 2 2x ± 0d. Substituting 
y − 1

2 x 2 in the equation of the curve, we get

x 3 1 (1
2 x 2)3 − 6x(1

2 x 2)

which simplifies to x 6 − 16x 3. Since x ± 0 in the first quadrant, we have x 3 − 16. If 
x − 161y3 − 24y3, then y − 1

2 s28y3 d − 25y3. Thus the tangent is horizontal at s24y3, 25y3 d, 
which is approximately (2.5198, 3.1748). Looking at Figure 5, we see that our answer  
is reasonable. Q

NOTE 2 There is a formula for the three roots of a cubic equation that is like the 
quad ratic formula but much more complicated. If we use this formula (or a computer 
algebra system) to solve the equation x 3 1 y 3 − 6xy for y in terms of x, we get three 
functions determined by the equation: 

y − f sxd − s3 21
2 x 3 1 s1

4 x 6 2 8x 3  1 s3 21
2 x 3 2 s1

4 x 6 2 8x 3  

and

y − 1
2 f2f sxd 6 s23 (s3 21

2 x 3 1 s1
4 x 6 2 8x 3  2 s3 21

2 x 3 2 s1
4 x 6 2 8x 3  )g

(These are the three functions whose graphs are shown in Figure 3.) You can see that the 
method of implicit differentiation saves an enormous amount of work in cases such as 
this. Moreover, implicit differentiation works just as easily for equations such as

y 5 1 3x 2 y 2 1 5x 4 − 12

for which it is impossible to find a similar expression for y in terms of x.

EXAMPLE 3 Find y9 if sinsx 1 yd − y 2 cos x.

SOLUTION Differentiating implicitly with respect to x and remembering that y is a 
function of x, we get

cossx 1 yd ? s1 1 y9d − y 2s2sin xd 1 scos xds2yy9d

0

y

x

(3, 3)

FIGURE 4

FIGURE 5

4

0 4

Abel and Galois
The Norwegian mathematician Niels 
Abel proved in 1824 that no general 
formula can be given for the roots of 
a fifth-degree equation in terms of 
radicals. Later the French mathemati-
cian Evariste Galois proved that it is 
impossible to find a general formula 
for the roots of an nth-degree equa-
tion (in terms of algebraic operations 
on the coefficients) if n is any integer 
larger than 4.
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212 CHAPTER 3  Differentiation Rules

(Note that we have used the Chain Rule on the left side and the Product Rule and Chain 
Rule on the right side.) If we collect the terms that involve y9, we get

cossx 1 yd 1 y 2 sin x − s2y cos xdy9 2 cossx 1 yd ? y9

So y9 −
 y 2 sin x 1 cossx 1 yd
2y cos x 2 cossx 1 yd

Figure 6, drawn with the implicit-plotting command of a computer algebra system, 
shows part of the curve sinsx 1 yd − y 2 cos x. As a check on our calculation, notice 
that y9 − 21 when x − y − 0 and it appears from the graph that the slope is approxi-
mately 21 at the origin. Q

Figures 7, 8, and 9 show three more curves produced by a computer algebra system 
with an implicit-plotting command. In Exercises 41–42 you will have an opportunity to 
create and examine unusual curves of this nature.

15

_15

_15 15

4 

_4

_4 4

12

_12

_12 12

FIGURE 7
sx 2 2 1dsx 2 2 4dsx 2 2 9d

− y 2sy 2 2 4dsy 2 2 9d

FIGURE 8
cossx 2 sin yd − sinsy 2 sin xd

FIGURE 9
sinsxyd − sin x 1 sin y

The following example shows how to find the second derivative of a function that is  
defined implicitly.

EXAMPLE 4 Find y99 if x 4 1 y 4 − 16.

SOLUTION Differentiating the equation implicitly with respect to x, we get

4x 3 1 4y 3y9 − 0

Solving for y9 gives

3   y9 − 2
x 3

y 3

To find y99 we differentiate this expression for y9 using the Quotient Rule and remem-
bering that y is a function of x:

 y99 −
d
dx

 S2
x 3

y 3 D − 2
y 3 sdydxdsx 3 d 2 x 3 sdydxdsy 3 d

sy 3 d2

 − 2
y 3 ? 3x 2 2 x 3s3y 2 y9d

y 6

2

_2

_2 2

FIGURE 6 
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If we now substitute Equation 3 into this expression, we get

 y99 − 2

3x 2 y 3 2 3x 3y 2S2
x 3

y 3D
y 6

 − 2
3sx 2 y 4 1 x 6 d

y 7 − 2
3x 2sy 4 1 x 4 d

y 7

But the values of x and y must satisfy the original equation x 4 1 y 4 − 16. So the 
answer simplifies to

 y99 − 2
3x 2s16d

y 7 − 248 
x 2

y 7  Q

 

x

2

y

20

x$+y$=16

 

Derivatives of Inverse Trigonometric Functions
The inverse trigonometric functions were reviewed in Section 1.5. We discussed their 
continuity in Section 2.5 and their asymptotes in Section 2.6. Here we use implicit 
differentia tion to find the derivatives of the inverse trigonometric functions, assuming 
that these functions are differentiable. [In fact, if f  is any one-to-one differentiable func-
tion, it can be proved that its inverse function f 21 is also differentiable, except where its 
tangents are vertical. This is plausible because the graph of a differentiable function has 
no corner or kink and so if we reflect it about y − x, the graph of its inverse function also 
has no corner or kink.]

Recall the definition of the arcsine function:

y − sin21x    means    sin y − x  and  2
!

2
< y <

!

2

Differentiating sin y − x implicitly with respect to x, we obtain

cos y 
dy
dx

− 1    or    
dy
dx

−
1

cos y

Now cos y > 0, since 2!y2 < y < !y2, so

cos y − s1 2 sin 2 y − s1 2 x 2 

FIGURE 10

Figure 10 shows the graph of the curve 
x 4 1 y 4 − 16 of Example 4. Notice 
that it’s a stretched and flat tened version 
of the circle x 2 1 y 2 − 4. For this 
reason it’s sometimes called a fat circle. 
It starts out very steep on the left but 
quickly becomes very flat. This can be 
seen from the expression

y9 − 2
x 3

y 3 − 2S x
yD3
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Therefore 
dy
dx

−
1

cos y
−

1

s1 2 x 2 

 
d

dx
 ssin21xd −

1

s1 2 x 2 

The formula for the derivative of the arctangent function is derived in a similar way. 
If y − tan21x, then tan y − x. Differentiating this latter equation implicitly with respect 
to x, we have

 sec2 y 
dy
dx

− 1

 
dy
dx

−
1

sec2 y
−

1
1 1 tan2 y

−
1

1 1 x 2

 
d

dx
 stan21xd −

1
1 1 x 2

EXAMPLE 5 Differentiate (a) y −
1

sin21x
 and (b) f sxd − x arctansx .

SOLUTION

(a)  
dy
dx

−
d

dx
 ssin21xd21 − 2ssin21xd22 

d
dx

 ssin21xd

  − 2
1

ssin21xd2 s1 2 x 2 

(b)   f 9sxd − x 
1

1 1 (sx )2  ( 1
2 x21y2) 1 arctansx 

  −
sx 

2s1 1 xd
1 arctansx  Q

The inverse trigonometric functions that occur most frequently are the ones that we 
have just discussed. The derivatives of the remaining four are given in the following 
table. The proofs of the formulas are left as exercises.

Derivatives of Inverse Trigonometric Functions 

 
d

dx
 ssin21xd −

1

s1 2 x 2
         

d
dx

 scsc21xd − 2
1

xsx 2 2 1

 
d

dx
 scos21xd − 2

1

s1 2 x 2 
         

d
dx

 ssec21xd −
1

xsx 2 2 1

 
d

dx
 stan21xd −

1
1 1 x 2              

d
dx

 scot21xd − 2
1

1 1 x 2

The formulas for the derivatives of 
csc21x and sec21x depend on the 
definitions that are used for these 
functions. See Exercise 64.

Figure 11 shows the graph of 
f sxd − tan21x and its derivative 
f 9sxd − 1ys1 1 x 2 d. Notice that f  is 
increasing and f 9sxd is always positive. 
The fact that tan21x l 6!y2 as 
x l 6` is reflected in the fact that 
f 9sxd l 0 as x l 6`.

1.5

_1.5

_6 6

y=tan–! x
y= 1

1+≈

FIGURE 11

Recall that arctan x is an alternative  
notation for tan21x.

The same method can be used to find  
a formula for the derivative of any 
inverse function. See Exercise 77.
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 29. x2 1 y2 − s2x2 1 2y2 2 xd2, s0, 12d, (cardioid)

x

y

 30. x 2y3 1 y 2y3 − 4, s23s3, 1d, (astroid)

x

y

0 8

 31. 2sx 2 1 y 2 d2 − 25sx 2 2 y 2 d, (3, 1), (lemniscate)

x

y

0

 32. y2sy2 2 4d − x2sx2 2 5d, (0, 22), (devil’s curve)

x

y

 33. (a)  The curve with equation y 2 − 5x 4 2 x 2 is called a 
kampyle of Eudoxus. Find an equation of the tangent 
line to this curve at the point s1, 2d.

 (b)  Illustrate part (a) by graphing the curve and the tangent 
line on a common screen. (If your graphing device will 
graph implicitly defined curves, then use that capabil-
ity. If not, you can still graph this curve by graphing its 
upper and lower halves separately.)

 34. (a)  The curve with equation y 2 − x 3 1 3x 2 is called the 
Tschirnhausen cubic. Find an equation of the tangent 
line to this curve at the point s1, 22d.

 (b)  At what points does this curve have horizontal 
tangents?

 (c)  Illustrate parts (a) and (b) by graphing the curve and the 
tangent lines on a common screen.

;

;

3.5 EXERCISES

1–4 
(a) Find y9 by implicit differentiation.
(b)  Solve the equation explicitly for y and differentiate to get y9 

in terms of x.
(c)  Check that your solutions to parts (a) and (b) are consistent 

by substituting the expression for y into your solution for 
part (a).

 1. 9x 2 2 y 2 − 1 2. 2x 2 1 x 1 xy − 1

 3. sx 1 sy − 1 4. 
2
x

2
1
y

− 4

5–20 Find dyydx by implicit differentiation.

 5. x 2 2 4xy 1 y 2 − 4 6. 2x 2 1 xy 2 y 2 − 2

 7. x 4 1 x 2y 2 1 y 3 − 5 8. x 3 2 xy 2 1 y 3 − 1

 9. 
x 2

x 1 y
− y 2 1 1 10. xe y − x 2 y

 11. y cos x − x 2 1 y 2 12. cossxyd − 1 1 sin y

 13. sx 1 y − x 4 1 y 4 14. e y sin x − x 1 xy

 15. e xyy − x 2 y 16. xy − sx 2 1 y 2 

 17. tan21sx 2yd − x 1 xy 2 18. x sin y 1 y sin x − 1

 19. sinsxyd − cossx 1 yd 20. tansx 2 yd −
y

1 1 x 2

 21.  If f sxd 1 x2 f f sxdg3 − 10 and f s1d − 2, find f 9s1d.

 22.  If tsxd 1 x sin tsxd − x 2, find t9s0d.

 23–24 Regard y as the independent variable and x as the depen-
dent variable and use implicit differentiation to find dxydy.

 23. x 4y2 2 x 3y 1 2xy3 − 0 24. y sec x − x tan y

25–32 Use implicit differentiation to find an equation of the 
tangent line to the curve at the given point.

 25. y sin 2x − x cos 2y,  s!y2, !y4d

 26. sinsx 1 yd − 2x 2 2y,  s!, !d

 27. x 2 2 xy 2 y 2 − 1, s2, 1d (hyperbola)

 28. x 2 1 2xy 1 4y 2 − 12, s2, 1d (ellipse)
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216 CHAPTER 3  Differentiation Rules

function. If y − x pyq, then y q − x p. Use implicit differentia-
tion to show that

y9 −
 p
q

 x s pyqd21

49–60 Find the derivative of the function. Simplify where 
possible.

 49. y − stan21xd2 50. y − tan21sx 2d

 51. y − sin21s2x 1 1d 52. tsxd − arccossx 

 53. Fsxd − x sec21sx 3d

 54. y − tan21sx 2 s1 1 x 2 d
 55. hstd − cot21std 1 cot21s1ytd 56. Rstd − arcsins1ytd

 57. y − x sin21 x 1 s1 2 x 2  

 58. y − cos21ssin21 td

 59. y − arccosS b 1 a cos x
a 1 b cos xD, 0 < x < !, a . b . 0

 60. y − arctanÎ 1 2 x
1 1 x

61–62 Find f 9sxd. Check that your answer is reasonable by 
comparing the graphs of f  and f 9.

 61. f sxd − s1 2 x 2  arcsin x 62. f sxd − arctansx 2 2 xd

 63.  Prove the formula for sdydxdscos21xd by the same method as  
for sdydxdssin21xd.

 64. (a)  One way of defining sec21x is to say that 
y − sec21x &? sec y − x and 0 < y , !y2 or 
! < y , 3!y2. Show that, with this definition,

d
dx

 ssec21xd −
1

xsx 2 2 1

 (b)  Another way of defining sec21x that is sometimes 
used is to say that y − sec21x &? sec y − x and 
0 < y < !, y ± !y2. Show that, with this definition,

d
dx

ssec21xd −
1

| x |sx 2 2 1

65–68 Two curves are orthogonal if their tangent lines are 
perpendicular at each point of intersection. Show that the given 
families of curves are orthogonal trajectories of each other; that 
is, every curve in one family is orthogonal to every curve in the 
other family. Sketch both families of curves on the same axes.

 65. x 2 1 y 2 − r 2,   ax 1 by − 0

 66. x 2 1 y 2 − ax,   x 2 1 y 2 − by

 67. y − cx 2,   x 2 1 2y 2 − k

 68. y − ax 3,   x 2 1 3y 2 − b

;

35–38 Find y99 by implicit differentiation.

 35. x 2 1 4y 2 − 4 36. x 2 1 xy 1 y 2 − 3

 37. sin y 1 cos x − 1 38. x 3 2 y 3 − 7

 39.  If xy 1 e y − e, find the value of y99 at the point where 
x − 0.

 40.  If x 2 1 xy 1 y 3 − 1, find the value of y999 at the point 
where x − 1.

 41.  Fanciful shapes can be created by using the implicit plotting 
capabilities of computer algebra systems.

 (a) Graph the curve with equation

ysy 2 2 1dsy 2 2d − xsx 2 1dsx 2 2d

   At how many points does this curve have horizontal  
tangents? Estimate the x-coordinates of these points.

 (b)  Find equations of the tangent lines at the points (0, 1)  
and (0, 2).

 (c)  Find the exact x-coordinates of the points in part (a).
 (d)  Create even more fanciful curves by modifying the  

equation in part (a).

 42. (a) The curve with equation

2y 3 1 y 2 2 y 5 − x 4 2 2x 3 1 x 2

   has been likened to a bouncing wagon. Use a computer 
algebra system to graph this curve and discover why.

 (b)  At how many points does this curve have horizontal  
tangent lines? Find the x-coordinates of these points.

 43.  Find the points on the lemniscate in Exercise 31 where the  
tangent is horizontal.

 44.  Show by implicit differentiation that the tangent to the 
ellipse

x 2

a 2 1
 y 2

b2 − 1

  at the point sx0, y0 d is
x0 x
a 2 1

 y0 y
b2 − 1

 45. Find an equation of the tangent line to the hyperbola

x 2

a 2 2
 y 2

b2 − 1

  at the point sx0, y0d.

 46.  Show that the sum of the x- and y-intercepts of any tangent
  line to the curve sx 1 sy − sc  is equal to c.

 47.  Show, using implicit differentiation, that any tangent line at  
a point P to a circle with center O is perpendicular to the  
radius OP.

 48.  The Power Rule can be proved using implicit differentiation  
for the case where n is a rational number, n − pyq, and 
y − f sxd − x n is assumed beforehand to be a differentiable 

CAS

CAS
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 (b)  Illustrate part (a) by graphing the ellipse and the normal 
line.

 75.  Find all points on the curve x 2 y 2 1 xy − 2 where the slope 
of the tangent line is 21.

 76.  Find equations of both the tangent lines to the ellipse 
x 2 1 4y 2 − 36 that pass through the point s12, 3d.

 77. (a)  Suppose f  is a one-to-one differentiable function and its 
inverse function f 21 is also differentiable. Use implicit 
differentiation to show that

s f 21d9sxd −
1

 f 9s f 21sxdd

  provided that the denominator is not 0.
 (b) If f s4d − 5 and f 9s4d − 2

3, find s f 21d9s5d.

 78. (a)  Show that f sxd − x 1 e x is one-to-one.
 (b) What is the value of f 21s1d?
 (c)  Use the formula from Exercise 77(a) to find s f 21d9s1d.

 79.  The Bessel function of order 0, y − J sxd, satisfies the 
differential equation xy99 1 y9 1 xy − 0 for all values of x 
and its value at 0 is J s0d − 1.

 (a)  Find J9s0d.
 (b)  Use implicit differentiation to find J99s0d.

 80.  The figure shows a lamp located three units to the right of  
the y-axis and a shadow created by the elliptical region 
x 2 1 4y 2 < 5. If the point s25, 0d is on the edge of the 
shadow, how far above the x-axis is the lamp located?

?

x

y

30_5
≈+4¥=5

; 69.  Show that the ellipse x 2ya 2 1 y 2yb 2 − 1 and the hyperbola 
x 2yA2 2 y 2yB 2 − 1 are orthogonal trajectories if A2 , a 2 
and a 2 2 b 2 − A2 1 B 2 (so the ellipse and hyperbola have 
the same foci).

 70.  Find the value of the number a such that the families of 
curves y − sx 1 cd21 and y − asx 1 kd1y3 are orthogonal 
trajectories.

 71. (a)  The van der Waals equation for n moles of a gas is

SP 1
n 2a
V 2 DsV 2 nbd − nRT

   where P is the pressure, V is the volume, and T is the 
temperature of the gas. The constant R is the universal 
gas constant and a and b are positive constants that are 
characteristic of a particular gas. If T remains constant, 
use implicit differentiation to find dVydP.

 (b)  Find the rate of change of volume with respect to 
pressure of 1 mole of carbon dioxide at a volume 
of V − 10 L and a pressure of P − 2.5 atm. Use 
a − 3.592 L2-atmymole2 and b − 0.04267 Lymole.

 72. (a)  Use implicit differentiation to find y9 if

x 2 1 xy 1 y 2 1 1 − 0

 (b)  Plot the curve in part (a). What do you see? Prove that 
what you see is correct.

 (c)  In view of part (b), what can you say about the  
expression for y9 that you found in part (a)?

 73.  The equation x 2 2 xy 1 y 2 − 3 represents a “rotated 
ellipse,” that is, an ellipse whose axes are not parallel to the 
coordinate axes. Find the points at which this ellipse crosses 
the x-axis and show that the tangent lines at these points are 
parallel.

 74. (a)  Where does the normal line to the ellipse 
x 2 2 xy 1 y 2 − 3 at the point s21, 1d intersect the 
ellipse a second time? 

CAS

LABORATORY PROJECT CAS  FAMILIES OF IMPLICIT CURVES

In this project you will explore the changing shapes of implicitly defined curves as you vary the 
constants in a family, and determine which features are common to all members of the family.

1. Consider the family of curves

y 2 2 2x 2sx 1 8d − cfsy 1 1d2sy 1 9d 2 x 2g

 (a)  By graphing the curves with c − 0 and c − 2, determine how many points of inter-
section there are. (You might have to zoom in to find all of them.)

 (b)  Now add the curves with c − 5 and c − 10 to your graphs in part (a). What do you 
notice? What about other values of c?
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218 CHAPTER 3  Differentiation Rules

2. (a)  Graph several members of the family of curves

x 2 1 y 2 1 cx 2y 2 − 1

   Describe how the graph changes as you change the value of c.
 (b)  What happens to the curve when c − 21? Describe what appears on the screen.  

Can you prove it algebraically?
 (c)  Find y9 by implicit differentiation. For the case c − 21, is your expression for y9 

consistent with what you discovered in part (b)?

In this section we use implicit differentiation to find the derivatives of the logarithmic 
func tions y − log b x and, in particular, the natural logarithmic function y − ln x. [It can 
be proved that logarithmic functions are differentiable; this is certainly plausible from 
their graphs (see Figure 1.5.12).]

1   
d

dx
 slog b xd −

1
x ln b

PROOF Let y − log b x. Then
by − x

 Differentiating this equation implicitly with respect to x, using Formula 3.4.5, we get

bysln bd 
dy
dx

− 1

 and so 
dy
dx

−
1

by ln b
−

1
x ln b

 Q

If we put b − e in Formula 1, then the factor ln b on the right side becomes ln e − 1 
and we get the formula for the derivative of the natural logarithmic function loge x − ln x:

2   
d

dx
 sln xd −

1
x

By comparing Formulas 1 and 2, we see one of the main reasons that natural loga-
rithms (logarithms with base e) are used in calculus: The differentiation formula is sim-
plest when b − e because ln e − 1.

EXAMPLE 1 Differentiate y − lnsx 3 1 1d.

SOLUTION To use the Chain Rule, we let u − x 3 1 1. Then y − ln u, so

dy
dx

−
dy
du

 
du
dx

−
1
u

 
du
dx

 −  
1

x 3 1 1
 s3x 2 d −

3x 2

x 3 1 1
Q

Formula 3.4.5 says that

d
dx

 sb x d − b x  ln b
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In general, if we combine Formula 2 with the Chain Rule as in Example 1, we get

3   
d

dx
 sln ud −

1
u

 
du
dx

 or 
d

dx
 fln tsxdg −

t9sxd
tsxd

EXAMPLE 2 Find 
d
dx

 lnssin xd.

SOLUTION Using (3), we have

d
dx

 lnssin xd −
1

sin x
 

d
dx

 ssin xd −
1

sin x
 cos x − cot x Q

EXAMPLE 3 Differentiate f sxd − sln x .

SOLUTION This time the logarithm is the inner function, so the Chain Rule gives

f 9sxd − 1
2 sln xd21y2 

d
dx

 sln xd −
1

2sln x ?
1
x

−
1

2xsln x 
Q

EXAMPLE 4 Differentiate f sxd − log10s2 1 sin xd.

SOLUTION Using Formula 1 with b − 10, we have

  f 9sxd −
d
dx

 log10s2 1 sin xd

 −
1

s2 1 sin xd ln 10
 

d
dx

 s2 1 sin xd

 −
cos x

s2 1 sin xd ln 10
Q

EXAMPLE 5 Find 
d
dx

 ln 
x 1 1

sx 2 2 .

SOLUTION 1 

 
d
dx

 ln 
x 1 1

sx 2 2 −
1

x 1 1

sx 2 2 

 
d

dx
 

x 1 1

sx 2 2 

 −
sx 2 2 

x 1 1
 
sx 2 2  ∙ 1 2 sx 1 1d(1

2)sx 2 2d21y2

x 2 2

 −
x 2 2 2 1

2 sx 1 1d
sx 1 1dsx 2 2d

 −
x 2 5

2sx 1 1dsx 2 2d

Figure 1 shows the graph of the 
function f  of Example 5 together with 
the graph of its derivative. It gives a 
visual check on our calculation. Notice 
that f 9sxd is large negative when f  is 
rapidly decreasing.

x0

y

1
f

f ª

FIGURE 1
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220 CHAPTER 3  Differentiation Rules

SOLUTION 2 If we first simplify the given function using the laws of logarithms, then 
the differentiation becomes easier:

 
d
dx

 ln 
x 1 1

sx 2 2 −
d
dx

 flnsx 1 1d 2 1
2 lnsx 2 2dg

 −
1

x 1 1
2

1
2 S 1

x 2 2D
(This answer can be left as written, but if we used a common denominator we would 
see that it gives the same answer as in Solution 1.) Q

EXAMPLE 6 Find f 9sxd if f sxd − ln | x |.
SOLUTION Since

f sxd − Hln x
lns2xd

if x . 0
if x , 0

it follows that

f 9sxd −

1
x

if x . 0

1
2x

 s21d −
1
x

   if x , 0

Thus f 9sxd − 1yx for all x ± 0. Q

The result of Example 6 is worth remembering:

4   
d
dx

 ln | x | −
1
x

 

Logarithmic Differentiation
The calculation of derivatives of complicated functions involving products, quotients, or 
powers can often be simplified by taking logarithms. The method used in the following  
example is called logarithmic differentiation.

EXAMPLE 7 Differentiate y −
x 3y4 sx 2 1 1

s3x 1 2d5
.

SOLUTION We take logarithms of both sides of the equation and use the Laws of Loga-
rithms to simplify:

ln y − 3
4 ln x 1 1

2 lnsx 2 1 1d 2 5 lns3x 1 2d

Differentiating implicitly with respect to x gives

1
y

 
dy
dx

−
3
4

?
1
x

1
1
2

?
2x

x 2 1 1
2 5 ?

3
3x 1 2

Solving for dyydx, we get

  
dy
dx

− yS 3
4x

1
x

x 2 1 1
2

15
3x 1 2D

3

_3

_3 3

f
f ª

Figure 2 shows the graph of the 
function f sxd − ln | x | in Example 6 
and its derivative f 9sxd − 1yx. Notice 
that when x is small, the graph of 
y − ln | x | is steep and so f 9sxd is large 
(positive or negative).

FIGURE 2
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Because we have an explicit expression for y, we can substitute and write

dy
dx

−
x 3y4 sx 2 1 1

s3x 1 2d5 S 3
4x

1
x

x 2 1 1
2

15
3x 1 2D Q

Steps in Logarithmic Differentiation 

1.  Take natural logarithms of both sides of an equation y − f sxd and use the Laws 
of Logarithms to simplify.

2. Differentiate implicitly with respect to x.

3. Solve the resulting equation for y9.

If f sxd , 0 for some values of x, then ln f sxd is not defined, but we can write  
| y | − | f sxd | and use Equation 4. We illustrate this procedure by proving the general 
version of the Power Rule, as promised in Section 3.1.

The Power Rule If n is any real number and f sxd − xn, then

f 9sxd − nxn21

PROOF Let y − xn and use logarithmic differentiation:

ln | y | − ln | x |n − n ln | x |    x ± 0

 Therefore 
y9

y
−

n
x

 Hence y9 − n 
y
x

− n 
xn

x
− nxn21 Q

You should distinguish carefully between the Power Rule fsxn d9 − nxn21 g, where the 
base is variable and the exponent is constant, and the rule for differentiating exponential 
functions fsbx d9 − bx ln bg, where the base is constant and the exponent is variable.

In general there are four cases for exponents and bases:

1. 
d
dx

 sbnd − 0    (b and n are constants)

2. 
d
dx

 f f sxdgn − nf f sxdgn21 f 9sxd

3. 
d
dx

 fb tsxdg − b tsxdsln bdt9sxd

4.  To find sdydxdf f sxdg tsxd, logaritmic differentiation can be used, as in the next 
example.

If x − 0, we can show that f 9s0d − 0 
for n . 1 directly from the definition  
of a derivative.

Constant base, constant exponent

Variable base, constant exponent

Constant base, variable exponent

Variable base, variable exponent

If we hadn’t used logarithmic differen-
tiation in Example 7, we would have 
had to use both the Quotient Rule  
and the Product Rule. The resulting 
calculation would have been  
horrendous.
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EXAMPLE 8 Differentiate y − xsx 

.

SOLUTION 1 Since both the base and the exponent are variable, we use logarithmic 
differentiation:

 ln y − ln xsx 

− sx  ln x

 
 y9

y
− sx ?

1
x

1 sln xd 
1

2sx  

 y9 − yS 1

sx 1
ln x
2sx D − xsx S 2 1 ln x

2sx D
SOLUTION 2 Another method is to write xsx 

− se ln x dsx 

:

d
dx

 sxsx d −
d
dx

 sesx  ln x d − esx  ln x 
d
dx

 ssx  ln xd

 − xsx S 2 1 ln x
2sx D    (as in Solution 1) Q

The Number e as a Limit
We have shown that if f sxd − ln x, then f 9sxd − 1yx. Thus f 9s1d − 1. We now use this 
fact to express the number e as a limit.

From the definition of a derivative as a limit, we have

  f 9s1d − lim
h l 0

 
 f s1 1 hd 2 f s1d

h
− lim

x l 0
 
 f s1 1 xd 2 f s1d

x

 − lim
x l 0

 
lns1 1 xd 2 ln 1

x
− lim

x l 0
 
1
x

 lns1 1 xd

 − lim
x l 0

 lns1 1 xd1yx

Because f 9s1d − 1, we have
lim
x l 0

 lns1 1 xd1yx − 1

Then, by Theorem 2.5.8 and the continuity of the exponential function, we have

e − e1 − elim x l 0 lns11xd1yx

− lim
x l 0

 elns11xd1yx

− lim
x l 0

 s1 1 xd1yx

5   e − lim
x l 0

 s1 1 xd1yx

Formula 5 is illustrated by the graph of the function y − s1 1 xd1yx in Figure 4 and a 
table of values for small values of x. This illustrates the fact that, correct to seven decimal 
places,

e < 2.7182818

If we put n − 1yx in Formula 5, then n l ` as x l 01 and so an alternative expres-
sion for e is

6   e − lim
n l `

 S1 1
1
nDn

1

1

f

f ª

x0

y

FIGURE 3

Figure 3 illustrates Example 8 by 
showing the graphs of f sxd − x sx and 
its derivative.

x s1 1 xd1yx

0.1 2.59374246
0.01 2.70481383
0.001 2.71692393
0.0001 2.71814593
0.00001 2.71826824
0.000001 2.71828047
0.0000001 2.71828169
0.00000001 2.71828181

2
3

y=(1+x)!?®

1

0

y

x

FIGURE 4
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33–34 Find an equation of the tangent line to the curve at the 
given point.

 33. y − lnsx 2 2 3x 1 1d,  s3, 0d

 34. y − x 2 ln x,  s1, 0d

 35.  If f sxd − sin x 1 ln x, find f 9sxd. Check that your answer is 
reasonable by comparing the graphs of f  and f 9.

 36.  Find equations of the tangent lines to the curve y − sln xdyx 
at the points s1, 0d and se, 1yed. Illustrate by graphing the 
curve and its tangent lines.

 37.  Let f sxd − cx 1 lnscos xd. For what value of c is 
f 9s!y4d − 6?

 38.  Let f sxd − logbs3x 2 2 2d. For what value of b is f 9s1d − 3?

39–50 Use logarithmic differentiation to find the derivative of the 
function.

 39. y − sx 2 1 2d2sx 4 1 4d4 40. y −
e2x cos2x

x 2 1 x 1 1

 41. y − Î x 2 1
x 4 1 1  42. y − sx ex22xsx 1 1d2y3

 43. y − x x 44. y − x cos x

 45. y − x sin x 46. y − sx x

 47. y − scos xdx 48. y − ssin xd ln x

 49. y − stan xd1yx 50. y − sln xdcos x

 51. Find y9 if y − lnsx 2 1 y 2 d.

 52. Find y9 if x y − y x.

 53. Find a formula for f sndsxd if f sxd − lnsx 2 1d.

 54. Find 
d 9

dx 9 sx 8 ln xd.

 55. Use the definition of derivative to prove that

lim
x l 0

 
lns1 1 xd

x
− 1

 56. Show that lim
n l `

 S1 1
x
nDn

− e x for any x . 0.

;

;

3.6 EXERCISES

 1.  Explain why the natural logarithmic function y − ln x is used 
much more frequently in calculus than the other logarithmic 
functions y − logb x.

2–22 Differentiate the function.

 2. f sxd − x ln x 2 x

 3. f sxd − sinsln xd 4. f sxd − lnssin2xd

 5. f sxd − ln 
1
x

 6. y −
1

ln x

 7. f sxd − log10s1 1 cos xd 8. f sxd − log10 sx 

 9. tsxd − lnsxe22xd 10. tstd − s1 1 ln t 

 11. Fstd − sln td2 sin t 12. hsxd − lnsx 1 sx 2 2 1 d

 13. Gsyd − ln 
s2y 1 1d5

sy 2 1 1 
 14. Psvd −

ln v
1 2 v

 15. Fssd − ln ln s 16. y − ln | 1 1 t 2 t 3 |
 17. T szd − 2z log2 z 18. y − lnscsc x 2 cot xd

 19. y − lnse2x 1 xe2x d 20. Hszd − lnÎ a 2 2 z 2

a 2 1 z 2  

 21. y − tan flnsax 1 bdg 22. y − log2 sx log5 xd

23–26 Find y9 and y99.

 23. y − sx  ln x 24. y −
ln x

1 1 ln x

 25. y − ln | sec x | 26. y − lns1 1 ln xd

27–30 Differentiate f  and find the domain of f .

 27. f sxd −
x

1 2 lnsx 2 1d
 28. f sxd − s2 1 ln x 

 29. f sxd − lnsx 2 2 2xd 30. f sxd − ln ln ln x

 31.  If f sxd − lnsx 1 ln xd, find f 9s1d.

 32. If f sxd − cossln x 2d, find f 9s1d.
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We know that if y − f sxd, then the derivative dyydx can be interpreted as the rate of 
change of y with respect to x. In this section we examine some of the applications of this 
idea to physics, chemistry, biology, economics, and other sciences.

Let’s recall from Section 2.7 the basic idea behind rates of change. If x changes from 
x1 to x2, then the change in x is

Dx − x2 2 x1

and the corresponding change in y is

Dy − f sx2 d 2 f sx1d

The difference quotient 
Dy
Dx

−
 f sx2 d 2 f sx1d

x2 2 x1

is the average rate of change of y with respect to x over the interval fx1, x2 g and can 
be interpreted as the slope of the secant line PQ in Figure 1. Its limit as Dx l 0 is the 
derivative f 9sx1d, which can therefore be interpreted as the instantaneous rate of change 
of y with respect to x or the slope of the tangent line at Psx1, f sx1dd. Using Leibniz nota-
tion, we write the process in the form

dy
dx

− lim
Dx l 0

 
Dy
Dx

Whenever the function y − f sxd has a specific interpretation in one of the sciences, its 
derivative will have a specific interpretation as a rate of change. (As we discussed in Sec-
tion 2.7, the units for dyydx are the units for y divided by the units for x.) We now look 
at some of these interpretations in the natural and social sciences.

Physics
If s − f std is the position function of a particle that is moving in a straight line, then DsyDt 
represents the average velocity over a time period Dt, and v − dsydt represents the instan-
taneous velocity (the rate of change of displacement with respect to time). The instanta-
neous rate of change of velocity with respect to time is acceleration: astd − v9std − s99std.  
This was discussed in Sections 2.7 and 2.8, but now that we know the differentiation 
formulas, we are able to solve problems involving the motion of objects more easily.

EXAMPLE 1 The position of a particle is given by the equation

s − f std − t 3 2 6t 2 1 9t 

where t is measured in seconds and s in meters.
(a) Find the velocity at time t.
(b) What is the velocity after 2 s? After 4 s?
(c) When is the particle at rest?
(d) When is the particle moving forward (that is, in the positive direction)?
(e) Draw a diagram to represent the motion of the particle.
(f) Find the total distance traveled by the particle during the first five seconds.
(g) Find the acceleration at time t and after 4 s.

0 x

y

Îy

⁄

P{⁄, fl}

Q{¤, ‡}

Îx

¤

mPQ ! average rate of change
m=fª(⁄)=instantaneous rate

of change

FIGURE 1
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(h) Graph the position, velocity, and acceleration functions for 0 < t < 5.
(i) When is the particle speeding up? When is it slowing down?

SOLUTION 
(a) The velocity function is the derivative of the position function.

 s − f std − t 3 2 6t 2 1 9t

 vstd −
ds
dt

− 3t 2 2 12t 1 9

(b) The velocity after 2 s means the instantaneous velocity when t − 2, that is,

vs2d −
ds
dt Z

t−2
− 3s2d2 2 12s2d 1 9 − 23 mys

The velocity after 4 s is

vs4d − 3s4d2 2 12s4d 1 9 − 9 mys

(c) The particle is at rest when vstd − 0, that is,

3t 2 2 12t 1 9 − 3st 2 2 4t 1 3d − 3st 2 1dst 2 3d − 0

and this is true when t − 1 or t − 3. Thus the particle is at rest after 1 s and after 3 s.

(d) The particle moves in the positive direction when vstd . 0, that is,

3t 2 2 12t 1 9 − 3st 2 1dst 2 3d . 0

This inequality is true when both factors are positive st . 3d or when both factors are 
negative st , 1d. Thus the particle moves in the positive direction in the time intervals 
t , 1 and t . 3. It moves backward (in the negative direction) when 1 , t , 3.

(e) Using the information from part (d) we make a schematic sketch in Figure 2 of the 
motion of the particle back and forth along a line (the s-axis).

(f) Because of what we learned in parts (d) and (e), we need to calculate the distances 
traveled during the time intervals [0, 1], [1, 3], and [3, 5] separately.

The distance traveled in the first second is

| f s1d 2 f s0d | − | 4 2 0 | − 4 m

From t − 1 to t − 3 the distance traveled is

| f s3d 2 f s1d | − | 0 2 4 | − 4 m

From t − 3 to t − 5 the distance traveled is

| f s5d 2 f s3d | − | 20 2 0 | − 20 m

The total distance is 4 1 4 1 20 − 28 m.

(g) The acceleration is the derivative of the velocity function:

astd −
d 2s
dt 2 −

dv
dt

− 6t 2 12

as4d − 6s4d 2 12 − 12 mys2

(h) Figure 3 shows the graphs of s, v, and a.

t=0
s=0

t=1
s=4

s

t=3
s=0

FIGURE 2
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226 CHAPTER 3  Differentiation Rules

( i) The particle speeds up when the velocity is positive and increasing (v and a are  
both positive) and also when the velocity is negative and decreasing (v and a are both 
negative). In other words, the particle speeds up when the velocity and acceleration  
have the same sign. (The particle is pushed in the same direction it is moving.) From 
Figure 3 we see that this happens when 1 , t , 2 and when t . 3. The particle slows 
down when v and a have opposite signs, that is, when 0 < t , 1 and when 2 , t , 3. 
Figure 4 summarizes the motion of the particle.

1

5

_5

√
s

a

forward

slows
down

slows
down

backward

speeds
up

speeds
up

forward

t0

Q

EXAMPLE 2 If a rod or piece of wire is homogeneous, then its linear density is uniform 
and is defined as the mass per unit length s" − myld and measured in kilograms per 
meter. Suppose, however, that the rod is not homogeneous but that its mass measured 
from its left end to a point x is m − f sxd, as shown in Figure 5.

x¡ x™
This part of the rod has mass ƒ. 

x

The mass of the part of the rod that lies between x − x1 and x − x2 is given by 
Dm − f sx2 d 2 f sx1d, so the average density of that part of the rod is

average density −
Dm
Dx

−
 f sx2 d 2 f sx1d

x2 2 x1

If we now let Dx l 0 (that is, x2 l x1), we are computing the average density over 
smaller and smaller intervals. The linear density " at x1 is the limit of these average 
densities as Dx l 0; that is, the linear density is the rate of change of mass with 
respect to length. Symbolically, 

" − lim
Dx l 0

 
Dm
Dx

−
dm
dx

Thus the linear density of the rod is the derivative of mass with respect to length.
For instance, if m − f sxd − sx , where x is measured in meters and m in kilograms, 

then the average density of the part of the rod given by 1 < x < 1.2 is

Dm
Dx

−
 f s1.2d 2 f s1d

1.2 2 1
−

s1.2 2 1
0.2

< 0.48 kgym

TEC In Module 3.7 you can see 
an animation of Figure 4 with an 
expression for s that you can choose 
yourself.

FIGURE 4

FIGURE 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 3.7  Rates of Change in the Natural and Social Sciences 227

while the density right at x − 1 is

 " −
dm
dx Z

x−1
−

1
2sx  Z

x−1
− 0.50 kgym Q

EXAMPLE 3 A current exists whenever electric charges move. Figure 6 shows part 
of a wire and electrons moving through a plane surface, shaded red. If DQ is the net 
charge that passes through this surface during a time period Dt, then the average cur-
rent during this time interval is defined as

average current −
DQ
Dt

−
Q2 2 Q1

t2 2 t1

If we take the limit of this average current over smaller and smaller time intervals, 
we get what is called the current I at a given time t1:

I − lim
Dt l 0

 
DQ
Dt

−
dQ
dt

Thus the current is the rate at which charge flows through a surface. It is measured in 
units of charge per unit time (often coulombs per second, called amperes). Q

Velocity, density, and current are not the only rates of change that are important in 
physics. Others include power (the rate at which work is done), the rate of heat flow, 
temperature gradient (the rate of change of temperature with respect to position), and the 
rate of decay of a radioactive substance in nuclear physics.

Chemistry

EXAMPLE 4 A chemical reaction results in the formation of one or more substances 
(called products) from one or more starting materials (called reactants). For instance, 
the “equation”

2H2 1 O2 l 2H2O

indicates that two molecules of hydrogen and one molecule of oxygen form two mol-
ecules of water. Let’s consider the reaction

A 1 B l C

where A and B are the reactants and C is the product. The concentration of a reactant 
A is the number of moles (1 mole − 6.022 3 1023 molecules) per liter and is denoted 
by fAg. The concentration varies during a reaction, so fAg, fBg, and fCg are all func-
tions of time std. The average rate of reaction of the product C over a time interval 
t1 < t < t2 is

DfCg
Dt

−
fCgst2 d 2 fCgst1d

t2 2 t1

But chemists are more interested in the instantaneous rate of reaction, which is 
obtained by taking the limit of the average rate of reaction as the time interval Dt 
approaches 0:

rate of reaction − lim
Dt l 0

 
DfCg

Dt
−

dfCg
dt

!
!

!!
! !

!

FIGURE 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



228 CHAPTER 3  Differentiation Rules

Since the concentration of the product increases as the reaction proceeds, the derivative 
dfCgydt will be positive, and so the rate of reaction of C is positive. The concentrations 
of the reactants, however, decrease during the reaction, so, to make the rates of reaction 
of A and B positive numbers, we put minus signs in front of the derivatives dfAgydt 
and dfBgydt. Since fAg and fBg each decrease at the same rate that fCg increases, we 
have

rate of reaction −
dfCg

dt
− 2

dfAg
dt

− 2
dfBg
dt

More generally, it turns out that for a reaction of the form

aA 1 bB l cC 1 dD

we have

2
1
a

 
dfAg

dt
− 2

1
b

 
dfBg

dt
−

1
c

 
dfCg

dt
−

1
d

 
dfDg

dt

The rate of reaction can be determined from data and graphical methods. In some cases 
there are explicit formulas for the concentrations as functions of time, which enable us 
to compute the rate of reaction (see Exercise 24). Q

EXAMPLE 5 One of the quantities of interest in thermodynamics is compressibility. 
If a given substance is kept at a constant temperature, then its volume V  depends on its 
pressure P. We can consider the rate of change of volume with respect to pressure— 
namely, the derivative dVydP. As P increases, V  decreases, so dVydP , 0. The com-
pressibility is defined by introducing a minus sign and dividing this derivative by the 
volume V:

isothermal compressibility − # − 2
1
V

 
dV
dP

Thus # measures how fast, per unit volume, the volume of a substance decreases as the 
pressure on it increases at constant temperature.

For instance, the volume V  (in cubic meters) of a sample of air at 258C was found to 
be related to the pressure P (in kilopascals) by the equation

V −
5.3
P

The rate of change of V  with respect to P when P − 50 kPa is

 
dV
dP Z

P−50
− 2

5.3
P 2 Z

P−50

 − 2
5.3

2500
− 20.00212 m3ykPa

The compressibility at that pressure is

 # − 2
1
V

 
dV
dP Z

P−50
−

0.00212
5.3
50

− 0.02 sm3ykPadym3 Q

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 3.7  Rates of Change in the Natural and Social Sciences 229

Biology

EXAMPLE 6 Let n − f std be the number of individuals in an animal or plant popu la- 
tion at time t. The change in the population size between the times t − t1 and t − t2 
is Dn − f st2 d 2 f st1d, and so the average rate of growth during the time period 
t1 < t < t2 is

average rate of growth −
Dn
Dt

−
 f st2 d 2 f st1d

t2 2 t1

The instantaneous rate of growth is obtained from this average rate of growth by let-
ting the time period Dt approach 0:

growth rate − lim
Dt l 0

 
Dn
Dt

−
dn
dt

Strictly speaking, this is not quite accurate because the actual graph of a population 
function n − f std would be a step function that is discontinuous whenever a birth or 
death occurs and therefore not differentiable. However, for a large animal or plant  
population, we can replace the graph by a smooth approximating curve as in Figure 7.

t

n

0

To be more specific, consider a population of bacteria in a homogeneous nutrient 
medium. Suppose that by sampling the population at certain intervals it is determined 
that the population doubles every hour. If the initial population is n0 and the time t is 
measured in hours, then

  f s1d − 2 f s0d − 2n0

  f s2d − 2 f s1d − 22n0

  f s3d − 2 f s2d − 23n0

and, in general,
f std − 2tn0 

The population function is n − n0 2t.

FIGURE 7 
 A smooth curve approximating  

a growth function
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E. coli bacteria are about 2 micrometers 
(mm) long and 0.75 mm wide. The 
image was produced with a scanning 
electron microscope.
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230 CHAPTER 3  Differentiation Rules

In Section 3.4 we showed that

d
dx

 sbx d − bx ln b

So the rate of growth of the bacteria population at time t is

dn
dt

−
d
dt

 sn02td − n02t ln 2

For example, suppose that we start with an initial population of n0 − 100 bacteria. 
Then the rate of growth after 4 hours is

dn
dt

 Z
t−4

− 100 ? 24 ln 2 − 1600 ln 2 < 1109

This means that, after 4 hours, the bacteria population is growing at a rate of about 
1109 bacteria per hour. Q

EXAMPLE 7 When we consider the flow of blood through a blood vessel, such as a 
vein or artery, we can model the shape of the blood vessel by a cylindrical tube with 
radius R and length l as illustrated in Figure 8.

R r

l

Because of friction at the walls of the tube, the velocity v of the blood is greatest along 
the central axis of the tube and decreases as the distance r from the axis increases until 
v becomes 0 at the wall. The relationship between v and r is given by the law of lami-
nar flow discovered by the French physician Jean-Louis-Marie Poiseuille in 1840. This 
law states that

1   v −
P

4!l
 sR2 2 r 2 d

where ! is the viscosity of the blood and P is the pressure difference between the ends 
of the tube. If P and l are constant, then v is a function of r with domain f0, Rg.

The average rate of change of the velocity as we move from r − r1 outward to 
r − r2 is given by

Dv
Dr

−
vsr2 d 2 vsr1d

r2 2 r1

and if we let Dr l 0, we obtain the velocity gradient, that is, the instantaneous rate of 
change of velocity with respect to r:

velocity gradient − lim
Dr l 0

 
Dv
Dr

−
dv
dr

Using Equation 1, we obtain

dv
dr

−
P

4!l
 s0 2 2rd − 2

Pr
2!l

FIGURE 8  
Blood flow in an artery

For more detailed information, see  
W. Nichols and M. O’Rourke (eds.), 
McDonald’s Blood Flow in Arteries: 
Theoretical, Experimental, and Clinical 
Principles, 5th ed. (New York, 2005).
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For one of the smaller human arteries we can take ! − 0.027, R − 0.008 cm,  
l − 2 cm, and P − 4000 dynesycm2, which gives

 v −
4000

4s0.027d2
 s0.000064 2 r 2 d

 < 1.85 3 104s6.4 3 1025 2 r 2 d

At r − 0.002 cm the blood is flowing at a speed of

 vs0.002d < 1.85 3 104s64 3 1026 2 4 3 1026 d

 − 1.11 cmys

and the velocity gradient at that point is

dv
dr Z

r−0.002
− 2

4000s0.002d
2s0.027d2

< 274 scmysdycm

To get a feeling for what this statement means, let’s change our units from centi -
meters to micrometers (1 cm − 10,000 mm). Then the radius of the artery is 80 mm. 
The velocity at the central axis is 11,850 mmys, which decreases to 11,110 mmys at 
a distance of r − 20 mm. The fact that dvydr − 274 (mmys)ymm means that, when 
r − 20 mm, the velocity is decreasing at a rate of about 74 mmys for each micrometer 
that we proceed away from the center. Q

Economics

EXAMPLE 8 Suppose Csxd is the total cost that a company incurs in producing  
x units of a certain commodity. The function C is called a cost function. If the  
number of items produced is increased from x1 to x2, then the additional cost is 
DC − Csx2 d 2 Csx1d, and the average rate of change of the cost is

DC
Dx

−
Csx2 d 2 Csx1d

x2 2 x1
−

Csx1 1 Dxd 2 Csx1d
Dx

The limit of this quantity as Dx l 0, that is, the instantaneous rate of change of  
cost with respect to the number of items produced, is called the marginal cost by  
economists:

marginal cost − lim
Dx l 0

 
DC
Dx

−
dC
dx

[Since x often takes on only integer values, it may not make literal sense to let Dx 
approach 0, but we can always replace Csxd by a smooth approximating function as in 
Example 6.]

Taking Dx − 1 and n large (so that Dx is small compared to n), we have

C9snd < Csn 1 1d 2 Csnd

Thus the marginal cost of producing n units is approximately equal to the cost of pro-
ducing one more unit [the sn 1 1dst unit].

It is often appropriate to represent a total cost function by a polynomial

Csxd − a 1 bx 1 cx 2 1 dx 3
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where a represents the overhead cost (rent, heat, maintenance) and the other terms  
represent the cost of raw materials, labor, and so on. (The cost of raw materials may be 
proportional to x, but labor costs might depend partly on higher powers of x because of 
overtime costs and inefficiencies involved in large-scale operations.)

For instance, suppose a company has estimated that the cost (in dollars) of produc-
ing x items is

Csxd − 10,000 1 5x 1 0.01x 2

Then the marginal cost function is

C9sxd − 5 1 0.02x

The marginal cost at the production level of 500 items is

C9s500d − 5 1 0.02s500d − $15yitem

This gives the rate at which costs are increasing with respect to the production level 
when x − 500 and predicts the cost of the 501st item.

The actual cost of producing the 501st item is

 Cs501d 2 Cs500d − f10,000 1 5s501d 1 0.01s501d2 g

2 f10,000 1 5s500d 1 0.01s500d2 g

 − $15.01

Notice that C9s500d < Cs501d 2 Cs500d. Q

Economists also study marginal demand, marginal revenue, and marginal profit, 
which are the derivatives of the demand, revenue, and profit functions. These will be 
considered in Chapter 4 after we have developed techniques for finding the maximum 
and minimum values of functions.

Other Sciences
Rates of change occur in all the sciences. A geologist is interested in knowing the rate 
at which an intruded body of molten rock cools by conduction of heat into surrounding 
rocks. An engineer wants to know the rate at which water flows into or out of a reservoir. 
An urban geographer is interested in the rate of change of the population density in a city 
as the distance from the city center increases. A meteorologist is concerned with the rate 
of change of atmospheric pressure with respect to height (see Exercise 3.8.19).

In psychology, those interested in learning theory study the so-called learning curve, 
which graphs the performance Pstd of someone learning a skill as a function of the 
training time t. Of particular interest is the rate at which performance improves as time 
passes, that is, dPydt.

In sociology, differential calculus is used in analyzing the spread of rumors (or innova-
tions or fads or fashions). If pstd denotes the proportion of a population that knows a rumor 
by time t, then the derivative dpydt represents the rate of spread of the rumor (see Exer- 
 cise 3.4.84).

A Single Idea, Many Interpretations
Velocity, density, current, power, and temperature gradient in physics; rate of reaction 
and compressibility in chemistry; rate of growth and blood velocity gradient in biology; 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 3.7  Rates of Change in the Natural and Social Sciences 233

marginal cost and marginal profit in economics; rate of heat flow in geology; rate of 
improvement of performance in psychology; rate of spread of a rumor in sociology—
these are all special cases of a single mathematical concept, the derivative.

This is an illustration of the fact that part of the power of mathematics lies in its  
abstractness. A single abstract mathematical concept (such as the derivative) can have dif- 
ferent interpretations in each of the sciences. When we develop the properties of the  
mathematical concept once and for all, we can then turn around and apply these results to  
all of the sciences. This is much more efficient than developing properties of special con-
cepts in each separate science. The French mathematician Joseph Fourier (1768–1830) 
put it succinctly: “Mathematics compares the most diverse phenomena and discovers the 
secret analogies that unite them.”

3.7 EXERCISES

  7.  The height (in meters) of a projectile shot vertically upward 
from a point 2 m above ground level with an initial velocity 
of 24.5 mys is h − 2 1 24.5t 2 4.9t 2 after t seconds.

 (a) Find the velocity after 2 s and after 4 s.
 (b) When does the projectile reach its maximum height?
 (c) What is the maximum height?
 (d) When does it hit the ground?
 (e) With what velocity does it hit the ground?

 8.  If a ball is thrown vertically upward with a velocity of  
80 ftys, then its height after t seconds is s − 80t 2 16t 2.

 (a) What is the maximum height reached by the ball?
 (b)  What is the velocity of the ball when it is 96 ft above the 

ground on its way up? On its way down?

 9.  If a rock is thrown vertically upward from the surface of  
Mars with velocity 15 mys, its height after t seconds is 
h − 15t 2 1.86t 2.

 (a) What is the velocity of the rock after 2 s?
 (b)  What is the velocity of the rock when its height is 25 m 

on its way up? On its way down?

 10.  A particle moves with position function

s − t 4 2 4t 3 2 20t 2 1 20t    t > 0

 (a)  At what time does the particle have a velocity of 20 mys?
 (b)  At what time is the acceleration 0? What is the signifi-

cance of this value of t?

 11. (a)  A company makes computer chips from square wafers  
of silicon. It wants to keep the side length of a wafer very 
close to 15 mm and it wants to know how the area Asxd of  
a wafer changes when the side length x changes. Find 
A9s15d and explain its meaning in this situation.

 (b)  Show that the rate of change of the area of a square 
with respect to its side length is half its perimeter. Try 
to explain geometrically why this is true by drawing a 
square whose side length x is increased by an amount Dx.  
How can you approximate the resulting change in area 
DA if Dx is small?

1–4 A particle moves according to a law of motion s − f std, 
t > 0, where t is measured in seconds and s in feet.
(a) Find the velocity at time t.
(b) What is the velocity after 1 second?
(c) When is the particle at rest?
(d) When is the particle moving in the positive direction?
(e) Find the total distance traveled during the first 6 seconds.
(f)  Draw a diagram like Figure 2 to illustrate the motion of the 

particle.
(g) Find the acceleration at time t and after 1 second.
(h)  Graph the position, velocity, and acceleration functions  

for 0 < t < 6.
(i)  When is the particle speeding up? When is it slowing down?

 1. f std − t 3 2 8t 2 1 24t 2. f std −
9t

t 2 1 9

 3. f std − sins"ty2d 4. f std − t 2e2t

 5.  Graphs of the velocity functions of two particles are shown, 
where t is measured in seconds. When is each particle 
speeding up? When is it slowing down? Explain.

 (a)  (b) 

t

√

0 1

    

t

√

0 1

 6.  Graphs of the position functions of two particles are shown, 
where t is measured in seconds. When is each particle 
speeding up? When is it slowing down? Explain.

 
(a)  (b) 

t

s

0 1

    

t

s

0 1

;
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234 CHAPTER 3  Differentiation Rules

 19.  The quantity of charge Q in coulombs (C) that has passed 
through a point in a wire up to time t (measured in seconds) is 
given by Qstd − t 3 2 2t 2 1 6t 1 2. Find the current when  
(a) t − 0.5 s and (b) t − 1 s. [See Example 3. The unit of 
current is an ampere (1 A − 1 Cys).] At what time is the 
current lowest?

 20.  Newton’s Law of Gravitation says that the magnitude F of the 
force exerted by a body of mass m on a body of mass M is

F −
GmM

r 2

   where G is the gravitational constant and r is the distance 
between the bodies.

 (a)  Find dFydr and explain its meaning. What does the minus 
sign indicate?

 (b)  Suppose it is known that the earth attracts an object with  
a force that decreases at the rate of 2 Nykm when  
r − 20,000 km. How fast does this force change when  
r − 10,000 km?

 21.  The force F acting on a body with mass m and velocity v is the 
rate of change of momentum: F − sdydtdsmvd. If m is constant, 
this becomes F − ma, where a − dvydt is the acceleration. But 
in the theory of relativity the mass of a particle varies with v as 
follows: m − m0ys1 2 v 2yc 2 , where m0 is the mass of the 
particle at rest and c is the speed of light. Show that

F −
m0a

s1 2 v 2yc 2d3y2

 22.  Some of the highest tides in the world occur in the Bay of 
Fundy on the Atlantic Coast of Canada. At Hopewell Cape the  
water depth at low tide is about 2.0 m and at high tide it is 
about 12.0 m. The natural period of oscillation is a little more 
than 12 hours and on June 30, 2009, high tide occurred at  
6:45 am. This helps explain the following model for the water 
depth D (in meters) as a function of the time t (in hours after 
midnight) on that day:

Dstd − 7 1 5 cosf0.503st 2 6.75dg

   How fast was the tide rising (or falling) at the following times?
 (a) 3:00 am (b) 6:00 am
 (c) 9:00 am (d) Noon

 23.  Boyle’s Law states that when a sample of gas is compressed at  
a constant temperature, the product of the pressure and the 
volume remains constant: PV − C.

 (a)  Find the rate of change of volume with respect to pressure.
 (b)  A sample of gas is in a container at low pressure and is 

steadily compressed at constant temperature for 10 min-
utes. Is the volume decreasing more rapidly at the begin-
ning or the end of the 10 minutes? Explain.

 (c)  Prove that the isothermal compressibility (see  
Example 5) is given by # − 1yP.

 12. (a)  Sodium chlorate crystals are easy to grow in the shape of 
cubes by allowing a solution of water and sodium chlorate 
to evaporate slowly. If V is the volume of such a cube with 
side length x, calculate dVydx when x − 3 mm and explain 
its meaning.

 (b)  Show that the rate of change of the volume of a cube with 
respect to its edge length is equal to half the surface area of 
the cube. Explain geometrically why this result is true by 
arguing by analogy with Exercise 11(b).

 13. (a)  Find the average rate of change of the area of a circle with 
respect to its radius r as r changes from

 (i) 2 to 3 (ii) 2 to 2.5 (iii) 2 to 2.1
 (b) Find the instantaneous rate of change when r − 2.
 (c)  Show that the rate of change of the area of a circle with 

respect to its radius (at any r) is equal to the circumference 
of the circle. Try to explain geometrically why this is true 
by drawing a circle whose radius is increased by an amount 
Dr. How can you approximate the resulting change in area 
DA if Dr is small?

 14.  A stone is dropped into a lake, creating a circular ripple that 
travels outward at a speed of 60 cmys. Find the rate at which 
the area within the circle is increasing after (a) 1 s, (b) 3 s,  
and (c) 5 s. What can you conclude?

 15.  A spherical balloon is being inflated. Find the rate of increase 
of the surface area sS − 4"r 2 d with respect to the radius r 
when r is (a) 1 ft, (b) 2 ft, and (c) 3 ft. What conclusion can you 
make?

 16. (a)  The volume of a growing spherical cell is V − 4
3 "r 3, where 

the radius r is measured in micrometers (1 μm − 1026 m). 
Find the average rate of change of V with respect to r when 
r changes from

 (i) 5 to 8 μm (ii) 5 to 6 μm (iii) 5 to 5.1 μm
 (b)  Find the instantaneous rate of change of V with respect to r 

when r − 5 μm.
 (c)  Show that the rate of change of the volume of a sphere with 

respect to its radius is equal to its surface area. Explain 
geometrically why this result is true. Argue by analogy 
with Exercise 13(c).

 17.  The mass of the part of a metal rod that lies between its left  
end and a point x meters to the right is 3x 2 kg. Find the linear 
density (see Example 2) when x is (a) 1 m, (b) 2 m, and  
(c) 3 m. Where is the density the highest? The lowest?

 18.  If a tank holds 5000 gallons of water, which drains from the 
bottom of the tank in 40 minutes, then Torricelli’s Law gives 
the volume V of water remaining in the tank after t minutes as

V − 5000s1 2 1
40 td2    0 < t < 40

   Find the rate at which water is draining from the tank after  
(a) 5 min, (b) 10 min, (c) 20 min, and (d) 40 min. At what time 
is the water flowing out the fastest? The slowest? Summarize 
your findings.
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 (e)  In Section 1.1 we modeled Pstd with the exponential  
function

f std − s1.43653 3 10 9d ? s1.01395d t

   Use this model to find a model for the rate of population 
growth.

 (f)  Use your model in part (e) to estimate the rate of growth 
in 1920 and 1980. Compare with your estimates in parts 
(a) and (d).

 (g) Estimate the rate of growth in 1985.

 28.  The table shows how the average age of first marriage of  
Japanese women has varied since 1950.

t Astd t Astd
1950 23.0 1985 25.5
1955 23.8 1990 25.9
1960 24.4 1995 26.3
1965 24.5 2000 27.0
1970 24.2 2005 28.0
1975 24.7 2010 28.8
1980 25.2

 (a)  Use a graphing calculator or computer to model these 
data with a fourth-degree polynomial.

 (b)  Use part (a) to find a model for A9std.
 (c)  Estimate the rate of change of marriage age for women  

in 1990.
 (d)  Graph the data points and the models for A and A9.

 29.  Refer to the law of laminar flow given in Example 7. 
Consider a blood vessel with radius 0.01 cm, length  
3 cm, pressure difference 3000 dynesycm2, and viscosity 
! − 0.027.

 (a)  Find the velocity of the blood along the center-
line r − 0, at radius r − 0.005 cm, and at the wall 
r − R − 0.01 cm.

 (b)  Find the velocity gradient at r − 0, r − 0.005, and 
r − 0.01.

 (c)  Where is the velocity the greatest? Where is the velocity 
changing most?

 30.  The frequency of vibrations of a vibrating violin string is 
given by

f −
1

2L
 ÎT

$
 

   where L is the length of the string, T is its tension, and $ is  
its linear density. [See Chapter 11 in D. E. Hall, Musical  
Acoustics, 3rd ed. (Pacific Grove, CA: Brooks/Cole, 2002).]

 (a) Find the rate of change of the frequency with respect to
 (i) the length (when T and $ are constant),
 (ii) the tension (when L and $ are constant), and
 (iii) the linear density (when L and T are constant).
 (b)  The pitch of a note (how high or low the note sounds) 

is determined by the frequency f . (The higher the fre- 
quency, the higher the pitch.) Use the signs of the  

;

 24.  If, in Example 4, one molecule of the product C is formed  
from one molecule of the reactant A and one molecule of the 
reactant B, and the initial concentrations of A and B have a 
common value fAg − fBg − a molesyL, then

fCg − a 2ktysakt 1 1d

  where k is a constant.
 (a) Find the rate of reaction at time t.
 (b) Show that if x − fCg, then

dx
dt

− ksa 2 xd2

 (c) What happens to the concentration as t l `?
 (d) What happens to the rate of reaction as t l `?
 (e)  What do the results of parts (c) and (d) mean in practical 

terms?

 25.  In Example 6 we considered a bacteria population that  
doubles every hour. Suppose that another population of 
bacteria triples every hour and starts with 400 bacteria. Find 
an expression for the number n of bacteria after t hours and 
use it to estimate the rate of growth of the bacteria popula-
tion after 2.5 hours.

 26.  The number of yeast cells in a laboratory culture increases  
rapidly initially but levels off eventually. The population is 
modeled by the function

n − f std −
a

1 1 be20.7t

   where t is measured in hours. At time t − 0 the population is 
20 cells and is increasing at a rate of 12 cellsyhour. Find the 
values of a and b. According to this model, what happens to 
the yeast population in the long run?

 27.  The table gives the population of the world Pstd, in millions, 
where t is measured in years and t − 0 corresponds to the 
year 1900.

t
Population 
(millions) t

Population 
(millions)

 0  1650  60  3040
10  1750  70  3710
20  1860  80  4450
30  2070  90  5280
40  2300  100  6080
50  2560  110  6870

 (a)  Estimate the rate of population growth in 1920 and in 
1980 by averaging the slopes of two secant lines.

 (b)  Use a graphing device to find a cubic function (a third-
degree polynomial) that models the data.

 (c)  Use your model in part (b) to find a model for the rate of 
population growth.

 (d)  Use part (c) to estimate the rates of growth in 1920 and 
1980. Compare with your estimates in part (a).

;
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    given by the equation

t − lnS 3c 1 s9c 2 2 8c 

2 D
   Calculate the derivative of t with respect to c and interpret it.

 36.  Invasive species often display a wave of advance as 
they colonize new areas. Mathematical models based on 
random dispersal and reproduction have demonstrated that 
the speed with which such waves move is given by the 
function f srd − 2sDr , where r is the reproductive rate 
of individuals and D is a parameter quantifying dispersal. 
Calculate the derivative of the wave speed with respect to 
the reproductive rate r and explain its meaning.

 37.  The gas law for an ideal gas at absolute temperature T (in 
kelvins), pressure  P (in atmospheres), and volume V (in 
liters) is PV − nRT, where n is the number of moles of the 
gas and R − 0.0821 is the gas constant. Suppose that, at a 
certain instant, P − 8.0 atm and is increasing at a rate of  
0.10 atmymin and V − 10 L and is decreasing at a rate of  
0.15 Lymin. Find the rate of change of T with respect to 
time at that instant if n − 10 mol.

 38.  In a fish farm, a population of fish is introduced into a pond 
and harvested regularly. A model for the rate of change of 
the fish population is given by the equation

dP
dt

− r0S1 2
Pstd
Pc
DPstd 2 #Pstd

   where r0 is the birth rate of the fish, Pc is the maximum 
population that the pond can sustain (called the carrying 
capacity), and # is the percentage of the population that is 
harvested.

 (a)  What value of dPydt corresponds to a stable population?
 (b)  If the pond can sustain 10,000 fish, the birth rate is 5%, 

and the harvesting rate is 4%, find the stable population 
level.

 (c) What happens if # is raised to 5%?

 39.  In the study of ecosystems, predator-prey models are often 
used to study the interaction between species. Consider 
populations of tundra wolves, given by Wstd, and caribou, 
given by Cstd, in northern Canada. The interaction has been 
modeled by the equations

dC
dt

− aC 2 bCW      
dW
dt

− 2cW 1 dCW

 (a)  What values of dCydt and dWydt correspond to stable  
populations?

 (b)  How would the statement “The caribou go extinct” be  
represented mathematically?

 (c)  Suppose that a − 0.05, b − 0.001, c − 0.05, and  
d − 0.0001. Find all population pairs sC, W d that lead 
to stable populations. According to this model, is it pos-
sible for the two species to live in balance or will one or 
both species become extinct?

derivatives in part (a) to determine what happens to the 
pitch of a note

 (i)  when the effective length of a string is decreased by 
placing a finger on the string so a shorter portion of 
the string vibrates,

 (ii)  when the tension is increased by turning a tuning 
peg,

 (iii)  when the linear density is increased by switching to 
another string.

 31.  Suppose that the cost (in dollars) for a company to produce  
x pairs of a new line of jeans is

Csxd − 2000 1 3x 1 0.01x 2 1 0.0002x 3

 (a)  Find the marginal cost function.
 (b)  Find C9s100d and explain its meaning. What does it  

predict?
 (c)  Compare C9s100d with the cost of manufacturing the 

101st pair of jeans.

 32.  The cost function for a certain commodity is

Csqd − 84 1 0.16q 2 0.0006q 2 1 0.000003q 3

 (a) Find and interpret C9s100d.
 (b)  Compare C9s100d with the cost of producing the 101st 

item.

 33.  If psxd is the total value of the production when there are  
x workers in a plant, then the average productivity of the 
workforce at the plant is

Asxd −
 psxd

x

 (a)  Find A9sxd. Why does the company want to hire more  
workers if A9sxd . 0?

 (b)  Show that A9sxd . 0 if p9sxd is greater than the average  
productivity.

 34.  If R denotes the reaction of the body to some stimulus of 
strength x, the sensitivity S is defined to be the rate of change 
of the reaction with respect to x. A particular example is 
that when the brightness x of a light source is increased, 
the eye reacts by decreasing the area R of the pupil. The 
experimental formula

R −
40 1 24x 0.4

1 1 4x 0.4

   has been used to model the dependence of R on x when 
R is measured in square millimeters and x is measured in 
appropriate units of brightness.

 (a) Find the sensitivity.
 (b)  Illustrate part (a) by graphing both R and S as functions  

of x. Comment on the values of R and S at low levels of 
brightness. Is this what you would expect?

 35.   Patients undergo dialysis treatment to remove urea from their 
blood when their kidneys are not functioning properly. Blood 
is diverted from the patient through a machine that filters 
out urea. Under certain conditions, the duration of dialysis 
required, given that the initial urea concentration is c . 1, is 

;
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In many natural phenomena, quantities grow or decay at a rate proportional to their size. 
For instance, if y − f std is the number of individuals in a population of animals or bac-
teria at time t, then it seems reasonable to expect that the rate of growth f 9std is propor-
tional to the population f std; that is, f 9std − kf std for some constant k. Indeed, under 
ideal conditions (unlimited environment, adequate nutrition, immunity to disease) the 
mathematical model given by the equation f 9std − kf std predicts what actually happens 
fairly accurately. Another example occurs in nuclear physics where the mass of a radio-
active substance decays at a rate proportional to the mass. In chemistry, the rate of a 
unimolecular first-order reaction is proportional to the concentration of the substance. In 
finance, the value of a savings account with continuously compounded interest increases 
at a rate proportional to that value.

In general, if ystd is the value of a quantity y at time t and if the rate of change of y 
with respect to t is proportional to its size ystd at any time, then

1   
dy
dt

− ky

where k is a constant. Equation 1 is sometimes called the law of natural growth (if 
k . 0d or the law of natural decay (if k , 0). It is called a differential equation 
because it involves an unknown function y and its derivative dyydt.

It’s not hard to think of a solution of Equation 1. This equation asks us to find a func-
tion whose derivative is a constant multiple of itself. We have met such functions in  
this chapter. Any exponential function of the form ystd − Cekt, where C is a constant, 
satisfies

y9std − Cskektd − ksCektd − kystd

We will see in Section 9.4 that any function that satisfies dyydt − ky must be of the form 
y − Cekt. To see the significance of the constant C, we observe that

ys0d − Cek?0 − C

Therefore C is the initial value of the function.

2   Theorem The only solutions of the differential equation dyydt − ky are the 
exponential functions

ystd − ys0dekt

Population Growth
What is the significance of the proportionality constant k? In the context of population 
growth, where Pstd is the size of a population at time t, we can write

3   
dP
dt

− kP    or    
1
P

 
dP
dt

− k

The quantity
1
P

 
dP
dt

is the growth rate divided by the population size; it is called the relative growth rate.  
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According to (3), instead of saying “the growth rate is proportional to population size”  
we could say “the relative growth rate is constant.” Then (2) says that a population with  
constant relative growth rate must grow exponentially. Notice that the relative growth 
rate k appears as the coefficient of t in the exponential function Cekt. For instance, if

dP
dt

− 0.02P

and t is measured in years, then the relative growth rate is k − 0.02 and the population  
grows at a relative rate of 2% per year. If the population at time 0 is P0, then the expres-
sion for the population is

Pstd − P0e 0.02 t

EXAMPLE 1 Use the fact that the world population was 2560 million in 1950 and  
3040 million in 1960 to model the population of the world in the second half of the 20th 
century. (Assume that the growth rate is proportional to the population size.) What is 
the relative growth rate? Use the model to estimate the world population in 1993 and to 
predict the population in the year 2020.

SOLUTION We measure the time t in years and let t − 0 in the year 1950. We measure 
the population Pstd in millions of people. Then Ps0d − 2560 and Ps10d − 3040. Since 
we are assuming that dPydt − kP, Theorem 2 gives

Pstd − Ps0dekt − 2560ekt

 Ps10d − 2560e 10k − 3040

 k −
1
10

 ln 
3040
2560

< 0.017185

The relative growth rate is about 1.7% per year and the model is

Pstd − 2560e 0.017185 t

We estimate that the world population in 1993 was

Ps43d − 2560e 0.017185s43d < 5360 million

The model predicts that the population in 2020 will be

Ps70d − 2560e 0.017185s70d < 8524 million

The graph in Figure 1 shows that the model is fairly accurate to the end of the 20th cen-
tury (the dots represent the actual population), so the estimate for 1993 is quite reliable. 
But the prediction for 2020 is riskier.

 

6000

P

t200 40
Years since 1950

Population
(in millions)

P=2560e0.017185t

 Q

FIGURE 1  
A model for world population growth 
in the second half of the 20th century

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 3.8  Exponential Growth and Decay 239

Radioactive Decay
Radioactive substances decay by spontaneously emitting radiation. If mstd is the mass  
remaining from an initial mass m0 of the substance after time t, then the relative decay 
rate

2
1
m

 
dm
dt

has been found experimentally to be constant. (Since dmydt is negative, the relative 
decay rate is positive.) It follows that

dm
dt

− km

where k is a negative constant. In other words, radioactive substances decay at a rate 
proportional to the remaining mass. This means that we can use (2) to show that the mass  
decays exponentially:

mstd − m0ekt

Physicists express the rate of decay in terms of half-life, the time required for half of 
any given quantity to decay.

EXAMPLE 2 The half-life of radium-226 is 1590 years.
(a) A sample of radium-226 has a mass of 100 mg. Find a formula for the mass of the 
sample that remains after t years.
(b) Find the mass after 1000 years correct to the nearest milligram.
(c) When will the mass be reduced to 30 mg?

SOLUTION
(a) Let mstd be the mass of radium-226 (in milligrams) that remains after t years. Then 
dmydt − km and ms0d − 100, so (2) gives

mstd − ms0dekt − 100ekt

In order to determine the value of k, we use the fact that ms1590d − 1
2 s100d. Thus

100e 1590k − 50    so    e 1590k − 1
2

and  1590k − ln 12 − 2ln 2

 k − 2
ln 2

1590

Therefore mstd − 100e2sln 2dty1590

We could use the fact that e ln 2 − 2 to write the expression for mstd in the alternative 
form

mstd − 100 3 22ty1590

(b) The mass after 1000 years is 

ms1000d − 100e2sln 2d1000y1590 < 65 mg

(c) We want to find the value of t such that mstd − 30, that is,

100e2sln 2dty1590 − 30    or    e2sln 2dty1590 − 0.3
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We solve this equation for t by taking the natural logarithm of both sides:

 2
ln 2

1590
 t − ln 0.3

Thus  t − 21590 
ln 0.3
ln 2

< 2762 years Q

As a check on our work in Example 2, we use a graphing device to draw the graph of  
mstd in Figure 2 together with the horizontal line m − 30. These curves intersect when 
t < 2800, and this agrees with the answer to part (c).

Newton’s Law of Cooling
Newton’s Law of Cooling states that the rate of cooling of an object is proportional to the 
temperature difference between the object and its surroundings, provided that this dif-
ference is not too large. (This law also applies to warming.) If we let Tstd be the temper-
ature of the object at time t and Ts be the temperature of the surroundings, then we can 
formulate Newton’s Law of Cooling as a differential equation:

dT
dt

− ksT 2 Tsd

where k is a constant. This equation is not quite the same as Equation 1, so we make the 
change of variable ystd − Tstd 2 Ts. Because Ts is constant, we have y9std − T 9std and 
so the equation becomes

dy
dt

− ky

We can then use (2) to find an expression for y, from which we can find T.

EXAMPLE 3 A bottle of soda pop at room temperature (72°F) is placed in a refrigera-
tor where the temperature is 44°F. After half an hour the soda pop has cooled to 61°F.
(a) What is the temperature of the soda pop after another half hour?
(b) How long does it take for the soda pop to cool to 50°F?

SOLUTION
(a) Let Tstd be the temperature of the soda after t minutes. The surrounding tempera-
ture is Ts − 448 F, so Newton’s Law of Cooling states that

dT
dt

− ksT 2 44d

If we let y − T 2 44, then ys0d − Ts0d 2 44 − 72 2 44 − 28, so y satisfies

dy
dt

− ky    ys0d − 28

and by (2) we have

ystd − ys0dekt − 28ekt

We are given that Ts30d − 61, so ys30d − 61 2 44 − 17 and

28e30k − 17    e30k − 17
28

m=30

0 4000

150

m=100e_(ln 2)t/1590

FIGURE 2
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Taking logarithms, we have

k −
lns17

28 d
30

< 20.01663

Thus
  ystd − 28e20.01663 t

  Tstd − 44 1 28e20.01663 t

Ts60d − 44 1 28e20.01663s60d < 54.3

So after another half hour the pop has cooled to about 54°F.

(b) We have Tstd − 50 when

 44 1 28e20.01663t − 50

e20.01663 t − 6
28

  t −
lns 6

28d
20.01663

< 92.6

The pop cools to 50°F after about 1 hour 33 minutes. Q

Notice that in Example 3, we have 

lim
t l `

 Tstd − lim
t l `

 s44 1 28e20.01663 td − 44 1 28 ? 0 − 44

which is to be expected. The graph of the temperature function is shown in Figure 3.

Continuously Compounded Interest

EXAMPLE 4 If $1000 is invested at 6% interest, compounded annually, then after  
1 year the investment is worth $1000s1.06d − $1060, after 2 years it’s worth 
$f1000s1.06dg1.06 − $1123.60, and after t years it’s worth $1000s1.06dt. In general,  
if an amount A0 is invested at an interest rate r sr − 0.06 in this example), then after  
t years it’s worth A0s1 1 rd t. Usually, however, interest is compounded more fre-
quently, say, n times a year. Then in each compounding period the interest rate is ryn 
and there are nt compounding periods in t years, so the value of the investment is

A0S1 1
r
nDnt

For instance, after 3 years at 6% interest a $1000 investment will be worth

 $1000s1.06d3 − $1191.02 with annual compounding

 $1000s1.03d6 − $1194.05 with semiannual compounding

 $1000s1.015d12 − $1195.62 with quarterly compounding

 $1000s1.005d36 − $1196.68 with monthly compounding

 $1000S1 1
0.06
365 D365 ? 3

− $1197.20 with daily compounding

72
T

t600 30 90

44

FIGURE 3
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You can see that the interest paid increases as the number of compounding periods snd 
increases. If we let n l `, then we will be compounding the interest continuously and 
the value of the investment will be

  Astd − lim
n l `

 A0S1 1
r
nDnt

  − lim
n l `

 A0FS1 1
r
nDnyrGrt

  − A0F lim
n l `

 S1 1
r
nDnyrGrt

 − A0F lim
ml `

 S1 1
1
mDmGrt

    (where m − nyr)

But the limit in this expression is equal to the number e (see Equation 3.6.6). So with 
continuous compounding of interest at interest rate r, the amount after t years is

Astd − A0ert

If we differentiate this equation, we get

 
dA
dt

− rA0ert − rAstd

which says that, with continuous compounding of interest, the rate of increase of an 
investment is proportional to its size.

Returning to the example of $1000 invested for 3 years at 6% interest, we see that 
with continuous compounding of interest the value of the investment will be

 As3d − $1000e s0.06d3 − $1197.22

Notice how close this is to the amount we calculated for daily compounding, $1197.20. 
But the amount is easier to compute if we use continuous compounding. Q

3.8 EXERCISES

 1.  A population of protozoa develops with a constant relative 
growth rate of 0.7944 per member per day. On day zero the 
population consists of two members. Find the population size 
after six days.

 2.  A common inhabitant of human intestines is the bacterium 
Escherichia coli, named after the German pediatrician Theodor 
Escherich, who identified it in 1885. A cell of this bacterium  
in a nutrient-broth medium divides into two cells every 
20 minutes. The initial population of a culture is 50 cells.

 (a) Find the relative growth rate.
 (b) Find an expression for the number of cells after t hours.

 (c) Find the number of cells after 6 hours.
 (d) Find the rate of growth after 6 hours.
 (e) When will the population reach a million cells?

 3.  A bacteria culture initially contains 100 cells and grows at a 
rate proportional to its size. After an hour the population has 
increased to 420.

 (a)  Find an expression for the number of bacteria after t hours.
 (b) Find the number of bacteria after 3 hours.
 (c) Find the rate of growth after 3 hours.
 (d) When will the population reach 10,000?
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 7. Experiments show that if the chemical reaction 

N2O5 l 2NO2 1 1
2 O2

   takes place at 458C, the rate of reaction of dinitrogen pent-
oxide is proportional to its concentration as follows:

2
dfN2O5g

dt
− 0.0005fN2O5g

  (See Example 3.7.4.)
 (a)  Find an expression for the concentration fN2O5g after  

t seconds if the initial concentration is C.
 (b)  How long will the reaction take to reduce the concentra-

tion of N2O5 to 90% of its original value?

 8. Strontium-90 has a half-life of 28 days. 
 (a)  A sample has a mass of 50 mg initially. Find a formula for 

the mass remaining after t days.
 (b) Find the mass remaining after 40 days.
 (c)  How long does it take the sample to decay to a mass  

of 2 mg?
 (d) Sketch the graph of the mass function.

 9.  The half-life of cesium-137 is 30 years. Suppose we have a 
100-mg sample.

 (a)  Find the mass that remains after t years.
 (b) How much of the sample remains after 100 years?
 (c)  After how long will only 1 mg remain?

 10.  A sample of tritium-3 decayed to 94.5% of its original amount 
after a year.

 (a) What is the half-life of tritium-3?
 (b)  How long would it take the sample to decay to 20% of its 

original amount?

 11.  Scientists can determine the age of ancient objects by the 
method of radiocarbon dating. The bombardment of the upper 
atmosphere by cosmic rays converts nitrogen to a radioactive 
isotope of carbon, 14C, with a half-life of about 5730 years. 
Vegetation absorbs carbon dioxide through the atmosphere and 
animal life assimilates 14C through food chains. When a plant 
or animal dies, it stops replacing its carbon and the amount of 
14C begins to decrease through radioactive decay. Therefore 
the level of radioactivity must also decay exponentially.

 A discovery revealed a parchment fragment that had about 
74% as much 14C radioactivity as does plant material on the 
earth today. Estimate the age of the parchment.

 12.  Dinosaur fossils are too old to be reliably dated using 
carbon-14. (See Exercise 11.) Suppose we had a 68-million-
year-old dinosaur fossil. What fraction of the living dino-
saur’s 14C would be remaining today? Suppose the minimum 
detectable amount is 0.1%. What is the maximum age of a 
fossil that we could date using 14C?

 13.  Dinosaur fossils are often dated by using an element other 
than carbon, such as potassium-40, that has a longer half-life 
(in this case, approximately 1.25 billion years). Suppose the 
minimum detectable amount is 0.1% and a dinosaur is dated 

 4.  A bacteria culture grows with constant relative growth rate. 
The bacteria count was 400 after 2 hours and 25,600 after  
6 hours.

 (a)  What is the relative growth rate? Express your answer  
as a percentage.

 (b) What was the intitial size of the culture?
 (c)  Find an expression for the number of bacteria after  

t hours.
 (d) Find the number of cells after 4.5 hours.
 (e) Find the rate of growth after 4.5 hours.
 (f) When will the population reach 50,000?

 5.  The table gives estimates of the world population, in millions, 
from 1750 to 2000.

Year Population Year Population

1750  790 1900 1650
1800  980 1950 2560
1850  1260 2000 6080

 (a)  Use the exponential model and the population figures for 
1750 and 1800 to predict the world population in 1900 
and 1950. Compare with the actual figures.

 (b)  Use the exponential model and the population figures for 
1850 and 1900 to predict the world population in 1950. 
Compare with the actual population.

 (c)  Use the exponential model and the population figures for 
1900 and 1950 to predict the world population in 2000. 
Compare with the actual population and try to explain the 
discrepancy.

 6.  The table gives the population of Indonesia, in millions, for 
the second half of the 20th century.

Year Population

1950  83
1960 100
1970 122
1980 150
1990 182
2000 214

 (a)  Assuming the population grows at a rate proportional 
to its size, use the census figures for 1950 and 1960 to 
predict the population in 1980. Compare with the actual 
figure.

 (b)  Use the census figures for 1960 and 1980 to predict the 
population in 2000. Compare with the actual population.

 (c)  Use the census figures for 1980 and 2000 to predict the 
population in 2010 and compare with the actual popula-
tion of 243 million.

 (d)  Use the model in part (c) to predict the population in 
2020. Do you think the prediction will be too high or too 
low? Why?
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A typical volume of blood in the human body is about 5 L. A certain percentage of that volume 
(called the hematocrit) consists of red blood cells (RBCs); typically the hematocrit is about 
45% in males. Suppose that a surgery takes four hours and a male patient bleeds 2.5 L of blood. 
During surgery the patient’s blood volume is maintained at 5 L by injection of saline solu-
tion, which mixes quickly with the blood but dilutes it so that the hematocrit decreases as time 
passes.

1.  Assuming that the rate of RBC loss is proportional to the volume of RBCs, determine the 
patient’s volume of RBCs by the end of the operation.

2.  A procedure called acute normovolemic hemodilution (ANH) has been developed to 
minimize RBC loss during surgery. In this procedure blood is extracted from the patient 
before the operation and replaced with saline solution. This dilutes the patient’s blood, 
resulting in fewer RBCs being lost during the bleeding. The extracted blood is then returned 
to the patient after surgery. Only a certain amount of blood can be extracted, however, 
because the RBC concentration can never be allowed to drop below 25% during surgery. 
What is the maximum amount of blood that can be extracted in the ANH procedure for the 
surgery described in this project?

3.  What is the RBC loss without the ANH procedure? What is the loss if the procedure is 
carried out with the volume calculated in Problem 2?

APPLIED PROJECT CONTROLLING RED BLOOD CELL LOSS DURING SURGERY

with 40 K to be 68 million years old. Is such a dating 
possible? In other words, what is the maximum age of a 
fossil that we could date using 40 K?

 14.  A curve passes through the point s0, 5d and has the property 
that the slope of the curve at every point P is twice the  
y-coordinate of P. What is the equation of the curve?

 15.  A roast turkey is taken from an oven when its temperature 
has reached 185°F and is placed on a table in a room where 
the temperature is 75°F.

 (a)  If the temperature of the turkey is 1508F after half an 
hour, what is the temperature after 45 minutes?

 (b) When will the turkey have cooled to 1008F?

 16.  In a murder investigation, the temperature of the corpse was 
32.5°C at 1:30 pm and 30.3°C an hour later. Normal body 
temperature is 37.0°C and the temperature of the 
surroundings was 20.0°C. When did the murder take place?

 17.  When a cold drink is taken from a refrigerator, its 
temperature is 5°C. After 25 minutes in a 20°C room its 
temperature has increased to 10°C.

 (a) What is the temperature of the drink after 50 minutes?
 (b) When will its temperature be 15°C?

 18.  A freshly brewed cup of coffee has temperature 958C in a  
20°C room. When its temperature is 70°C, it is cooling at a 
rate of 1°C per minute. When does this occur?

 19.  The rate of change of atmospheric pressure P with respect to 
altitude h is proportional to P, provided that the temperature 
is constant. At 15°C the pressure is 101.3 kPa at sea level 
and 87.14 kPa at h − 1000 m.

 (a) What is the pressure at an altitude of 3000 m?
 (b)  What is the pressure at the top of Mount McKinley, at an 

altitude of 6187 m?

 20. (a)  If $1000 is borrowed at 8% interest, find the amounts  
due at the end of 3 years if the interest is compounded  
(i) annually, (ii) quarterly, (iii) monthly, (iv) weekly,  
(v) daily, (vi) hourly, and (vii) continuously.

 (b)  Suppose $1000 is borrowed and the interest is com-
pounded continuously. If Astd is the amount due after t 
years, where 0 < t < 3, graph Astd for each of the inter-
est rates 6%, 8%, and 10% on a common screen.

 21. (a)  If $3000 is invested at 5% interest, find the value of the 
investment at the end of 5 years if the interest is com-
pounded (i) annually, (ii) semiannually, (iii) monthly,  
(iv) weekly, (v) daily, and (vi) continuously.

 (b)  If Astd is the amount of the investment at time t for the 
case of continuous compounding, write a differential 
equation and an initial condition satisfied by Astd.

 22. (a)  How long will it take an investment to double in value if 
the interest rate is 6% compounded continuously?

 (b) What is the equivalent annual interest rate?

;
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If we are pumping air into a balloon, both the volume and the radius of the balloon are  
increasing and their rates of increase are related to each other. But it is much easier to 
measure directly the rate of increase of the volume than the rate of increase of the radius.

In a related rates problem the idea is to compute the rate of change of one quantity in 
terms of the rate of change of another quantity (which may be more easily measured). 
The procedure is to find an equation that relates the two quantities and then use the Chain 
Rule to differentiate both sides with respect to time.

EXAMPLE 1 Air is being pumped into a spherical balloon so that its volume increases 
at a rate of 100 cm3ys. How fast is the radius of the balloon increasing when the diam-
eter is 50 cm?

SOLUTION We start by identifying two things:

 the given information:

the rate of increase of the volume of air is 100 cm3ys

 and the unknown:

the rate of increase of the radius when the diameter is 50 cm

In order to express these quantities mathematically, we introduce some suggestive 
notation:

Let V  be the volume of the balloon and let r be its radius.

The key thing to remember is that rates of change are derivatives. In this problem, the 
volume and the radius are both functions of the time t. The rate of increase of the vol-
ume with respect to time is the derivative dVydt, and the rate of increase of the radius is 
drydt. We can therefore restate the given and the unknown as follows:

 Given: 
dV
dt

− 100 cm3ys

 Unknown: 
dr
dt

when r − 25 cm

In order to connect dVydt and drydt, we first relate V  and r by the formula for the 
volume of a sphere:

V − 4
3 !r 3

In order to use the given information, we differentiate each side of this equation with 
respect to t. To differentiate the right side, we need to use the Chain Rule:

dV
dt

−
dV
dr

 
dr
dt

− 4!r 2 
dr
dt

Now we solve for the unknown quantity:

dr
dt

−
1

4!r 2  
dV
dt

PS  According to the Principles of Prob-
lem Solving discussed on page 71, the 
first step is to understand the problem. 
This includes reading the problem 
carefully, identifying the given and the 
unknown, and introducing suitable 
notation.

PS  The second stage of problem solv-
ing is to think of a plan for connecting 
the given and the unknown.

Notice that, although dVydt is constant,  
drydt is not constant.
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If we put r − 25 and dVydt − 100 in this equation, we obtain

dr
dt

−
1

4!s25d2 100 −
1

25!

The radius of the balloon is increasing at the rate of 1ys25!d < 0.0127 cmys. Q

EXAMPLE 2 A ladder 10 ft long rests against a vertical wall. If the bottom of the lad-
der slides away from the wall at a rate of 1 ftys, how fast is the top of the ladder sliding 
down the wall when the bottom of the ladder is 6 ft from the wall? 

SOLUTION We first draw a diagram and label it as in Figure 1. Let x feet be the dis-
tance from the bottom of the ladder to the wall and y feet the distance from the top of 
the ladder to the ground. Note that x and y are both functions of t (time, measured in 
seconds).

We are given that dxydt − 1 ftys and we are asked to find dyydt when x − 6 ft (see 
Figure 2). In this problem, the relationship between x and y is given by the Pythagorean 
Theorem:

x 2 1 y 2 − 100

Differentiating each side with respect to t using the Chain Rule, we have

2x 
dx
dt

1 2y 
dy
dt

− 0

and solving this equation for the desired rate, we obtain

dy
dt

− 2
x
y

 
dx
dt

When x − 6, the Pythagorean Theorem gives y − 8 and so, substituting these values  
and dxydt − 1, we have

dy
dt

− 2
6
8

s1d − 2
3
4

 ftys

The fact that dyydt is negative means that the distance from the top of the ladder to 
the ground is decreasing at a rate of 34 ftys. In other words, the top of the ladder is sliding 
down the wall at a rate of 3

4 ftys. Q

EXAMPLE 3 A water tank has the shape of an inverted circular cone with base radius 
2 m and height 4 m. If water is being pumped into the tank at a rate of 2 m3ymin, find 
the rate at which the water level is rising when the water is 3 m deep.

SOLUTION We first sketch the cone and label it as in Figure 3. Let V , r, and h be the 
volume of the water, the radius of the surface, and the height of the water at time t, 
where t is measured in minutes.

We are given that dVydt − 2 m3ymin and we are asked to find dhydt when h is 3 m. 
The quantities V  and h are related by the equation

V − 1
3 !r 2h

but it is very useful to express V  as a function of h alone. In order to eliminate r, we use 

ground

wall

10
y

x

y

x

dy
dt =?

dx
dt =1
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r

h
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the similar triangles in Figure 3 to write

r
h

−
2
4

      r −
h
2

and the expression for V  becomes

V −
1
3

!S h
2D2

h −
!

12
h 3

Now we can differentiate each side with respect to t:

 
dV
dt

−
!

4
 h 2 

dh
dt

so  
dh
dt

−
4

!h 2  
dV
dt

Substituting h − 3 m and dVydt − 2 m3ymin, we have

dh
dt

−
4

!s3d2 ? 2 −
8

9!

The water level is rising at a rate of 8ys9!d < 0.28 mymin. Q

Problem Solving Strategy It is useful to recall some of the problem-solving  
principles from page 71 and adapt them to related rates in light of our experience in  
Examples 1–3:
1. Read the problem carefully.

2. Draw a diagram if possible.

3. Introduce notation. Assign symbols to all quantities that are functions of time.

4. Express the given information and the required rate in terms of derivatives.

5.  Write an equation that relates the various quantities of the problem. If necessary, 
use the geometry of the situation to eliminate one of the variables by substitution 
(as in Example 3).

6. Use the Chain Rule to differentiate both sides of the equation with respect to t.

7.  Substitute the given information into the resulting equation and solve for the  
unknown rate.

The following examples are further illustrations of the strategy.

EXAMPLE 4 Car A is traveling west at 50 miyh and car B is traveling north at  
60 miyh. Both are headed for the intersection of the two roads. At what rate are  
the cars approaching each other when car A is 0.3 mi and car B is 0.4 mi from the  
intersection?

SOLUTION We draw Figure 4, where C is the intersection of the roads. At a given time 
t, let x be the distance from car A to C, let y be the distance from car B to C, and let z 
be the distance between the cars, where x, y, and z are measured in miles.

We are given that dxydt − 250 miyh and dyydt − 260 miyh. (The derivatives are 
negative because x and y are decreasing.) We are asked to find dzydt. The equation that 

C

zy

x

B

A

FIGURE 4

PS  Look back: What have we learned 
from Examples 1–3 that will help us 
solve future problems?

 WARNING A common error is  
to substitute the given numerical 
information (for quantities that vary 
with time) too early. This should be 
done only after the differentiation. 
(Step 7 follows Step 6.) For instance, 
in Example 3 we dealt with general 
values of h until we finally substituted 
h − 3 at the last stage. (If we had put 
h − 3 earlier, we would have gotten 
dVydt − 0, which is clearly wrong.)
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relates x, y, and z is given by the Pythagorean Theorem:

z2 − x 2 1 y 2

Differentiating each side with respect to t, we have

 2z 
dz
dt

− 2x 
dx
dt

1 2y 
dy
dt

 
dz
dt

−
1
z

 Sx 
dx
dt

1 y 
dy
dt D

When x − 0.3 mi and y − 0.4 mi, the Pythagorean Theorem gives z − 0.5 mi, so

 
dz
dt

−
1

0.5
 f0.3s250d 1 0.4s260dg

 − 278 miyh

The cars are approaching each other at a rate of 78 miyh. Q

EXAMPLE 5 A man walks along a straight path at a speed of 4 ftys. A searchlight is 
located on the ground 20 ft from the path and is kept focused on the man. At what rate 
is the searchlight rotating when the man is 15 ft from the point on the path closest to 
the searchlight?

SOLUTION We draw Figure 5 and let x be the distance from the man to the point on the 
path closest to the searchlight. We let " be the angle between the beam of the search-
light and the perpendicular to the path.

We are given that dxydt − 4 ftys and are asked to find d"ydt when x − 15. The 
equation that relates x and " can be written from Figure 5:

x
20

− tan "      x − 20 tan "

Differentiating each side with respect to t, we get

dx
dt

− 20 sec2" 
d"

dt

so 
d"

dt
−

1
20

 cos2" 
dx
dt

 −
1
20

 cos2" s4d −
1
5

 cos2"

When x − 15, the length of the beam is 25, so cos " − 4
5 and

d"

dt
−

1
5

 S 4
5D2

−
16
125

− 0.128 

The searchlight is rotating at a rate of 0.128 radys. Q

x

20
¨

FIGURE 5
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3 cmys. How fast is the x-coordinate of the point changing at 
that instant?

13–16
(a) What quantities are given in the problem?
(b) What is the unknown?
(c) Draw a picture of the situation for any time t.
(d) Write an equation that relates the quantities.
(e) Finish solving the problem.

 13.  A plane flying horizontally at an altitude of 1 mi and a speed of  
500 miyh passes directly over a radar station. Find the rate at 
which the distance from the plane to the station is increasing 
when it is 2 mi away from the station.

 14.    If a snowball melts so that its surface area decreases at a rate of 
1 cm2ymin, find the rate at which the diameter decreases when 
the diameter is 10 cm.

 15.  A street light is mounted at the top of a 15-ft-tall pole. A man  
6 ft tall walks away from the pole with a speed of 5 ftys along a 
straight path. How fast is the tip of his shadow moving when he 
is 40 ft from the pole?

 16.   At noon, ship A is 150 km west of ship B. Ship A is sailing east 
at 35 kmyh and ship B is sailing north at 25 kmyh. How fast is 
the distance between the ships changing at 4:00 pm?

 17.  Two cars start moving from the same point. One travels south 
at 60 miyh and the other travels west at 25 miyh. At what rate 
is the distance between the cars increasing two hours later?

 18.  A spotlight on the ground shines on a wall 12 m away. If a man 
2 m tall walks from the spotlight toward the building at a speed 
of 1.6 mys, how fast is the length of his shadow on the build-
ing decreasing when he is 4 m from the building?

 19.  A man starts walking north at 4 ftys from a point P. Five min-
utes later a woman starts walking south at 5 ftys from a point 
500 ft due east of P. At what rate are the people moving apart 
15 min after the woman starts walking?

 20.  A baseball diamond is a square with side 90 ft. A batter hits the 
ball and runs toward first base with a speed of 24 ftys.

 (a)  At what rate is his distance from second base decreasing 
when he is halfway to first base?

 (b)  At what rate is his distance from third base increasing at 
the same moment?

90 ft

3.9 EXERCISES

 1.  If V is the volume of a cube with edge length x and the cube 
expands as time passes, find dVydt in terms of dxydt.

 2. (a)  If A is the area of a circle with radius r and the circle 
expands as time passes, find dAydt in terms of drydt.

 (b)  Suppose oil spills from a ruptured tanker and spreads in 
a circular pattern. If the radius of the oil spill increases at 
a constant rate of 1 mys, how fast is the area of the spill 
increasing when the radius is 30 m?

 3.  Each side of a square is increasing at a rate of 6 cmys. At what 
rate is the area of the square increasing when the area of the 
square is 16 cm2?

 4.  The length of a rectangle is increasing at a rate of 8 cmys and 
its width is increasing at a rate of 3 cmys. When the length is 
20 cm and the width is 10 cm, how fast is the area of the 
rectangle increasing?

 5.  A cylindrical tank with radius 5 m is being filled with water  
at a rate of 3 m3ymin. How fast is the height of the water 
increasing?

 6.  The radius of a sphere is increasing at a rate of 4 mmys. How 
fast is the volume increasing when the diameter is 80 mm?

 7.  The radius of a spherical ball is increasing at a rate of 
2 cmymin. At what rate is the surface area of the ball 
increasing when the radius is 8 cm?

 8.  The area of a triangle with sides of lengths a and b and 
contained angle ! is

A − 1
2 ab sin !

 (a)  If a − 2 cm, b − 3 cm, and ! increases at a rate of 
0.2 radymin, how fast is the area increasing when  
! − "y3?

 (b)  If a − 2 cm, b increases at a rate of 1.5 cmymin, and ! 
increases at a rate of 0.2 radymin, how fast is the area 
increasing when b − 3 cm and ! − "y3?

 (c)  If a increases at a rate of 2.5 cmymin, b increases at a rate 
of 1.5 cmymin, and ! increases at a rate of 0.2 radymin, 
how fast is the area increasing when a − 2 cm, b − 3 cm, 
and ! − "y3?

 9.  Suppose y − s2x 1 1 , where x and y are functions of t.
 (a)  If dxydt − 3, find dyydt when x − 4.
 (b)  If dyydt − 5, find dxydt when x − 12.

 10.  Suppose 4x 2 1 9y 2 − 36, where x and y are functions of t.
 (a)  If dyydt − 1

3, find dxydt when x − 2 and y − 2
3 s5 .

 (b)  If dxydt − 3, find dyydt when x − 22 and y − 2
3 s5 .

 11.  If x 2 1 y 2 1 z 2 − 9, dxydt − 5, and dyydt − 4, find dzydt 
when sx, y, zd − s2, 2, 1d.

 12.  A particle is moving along a hyperbola xy − 8. As it reaches 
the point s4, 2d, the y-coordinate is decreasing at a rate of 
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the shape of a cone whose base diameter and height are 
always equal. How fast is the height of the pile increasing 
when the pile is 10 ft high?

 30.  A kite 100 ft above the ground moves horizontally at a speed 
of 8 ftys. At what rate is the angle between the string and the 
horizontal decreasing when 200 ft of string has been let out?

 31.  The sides of an equilateral triangle are increasing at a rate of 
10 cmymin. At what rate is the area of the triangle increasing 
when the sides are 30 cm long?

 32.  How fast is the angle between the ladder and the ground  
changing in Example 2 when the bottom of the ladder is 6 ft 
from the wall?

 33.  The top of a ladder slides down a vertical wall at a rate of 
0.15 mys. At the moment when the bottom of the ladder is  
3 m from the wall, it slides away from the wall at a rate of 
0.2 mys. How long is the ladder?

 34.  According to the model we used to solve Example 2, what 
happens as the top of the ladder approaches the ground? Is 
the model appropriate for small values of y?

 35.  If the minute hand of a clock has length r (in centimeters), 
find the rate at which it sweeps out area as a function of r.

 36.  A faucet is filling a hemispherical basin of diameter 60 cm  
with water at a rate of 2 Lymin. Find the rate at which the 
water is rising in the basin when it is half full. [Use the 
following facts: 1 L is 1000 cm3. The volume of the portion 
of a sphere with radius r from the bottom to a height h is 
V − ! (rh 2 2 1

3 h 3), as we will show in Chapter 6.]

 37.  Boyle’s Law states that when a sample of gas is compressed 
at a constant temperature, the pressure P and volume V 
satisfy the equation PV − C, where C is a constant. Suppose 
that at a certain instant the volume is 600 cm3, the pressure  
is 150 kPa, and the pressure is increasing at a rate of 
20 kPaymin. At what rate is the volume decreasing at this 
instant?

 38.  When air expands adiabatically (without gaining or losing 
heat), its pressure P and volume V are related by the 
equation PV 1.4 − C, where C is a constant. Suppose that at  
a certain instant the volume is 400 cm3 and the pressure is 
80 kPa and is decreasing at a rate of 10 kPaymin. At what 
rate is the volume increasing at this instant?

;

 21.  The altitude of a triangle is increasing at a rate of 1 cmymin 
while the area of the triangle is increasing at a rate of  
2 cm2ymin. At what rate is the base of the triangle changing 
when the altitude is 10 cm and the area is 100 cm2?

 22.  A boat is pulled into a dock by a rope attached to the bow of 
the boat and passing through a pulley on the dock that is 1 m 
higher than the bow of the boat. If the rope is pulled in at a 
rate of 1 mys, how fast is the boat approaching the dock 
when it is 8 m from the dock?

 23.  At noon, ship A is 100 km west of ship B. Ship A is sailing 
south at 35 kmyh and ship B is sailing north at 25 kmyh. 
How fast is the distance between the ships changing at  
4:00 pm?

 24.  A particle moves along the curve y − 2 sins!xy2d. As the 
particle passes through the point (1

3, 1), its x-coordinate 
increases at a rate of s10  cmys. How fast is the distance 
from the particle to the origin changing at this instant?

 25.  Water is leaking out of an inverted conical tank at a rate of 
10,000 cm3ymin at the same time that water is being pumped 
into the tank at a constant rate. The tank has height 6 m and 
the diameter at the top is 4 m. If the water level is rising at a 
rate of 20 cmymin when the height of the water is 2 m, find 
the rate at which water is being pumped into the tank.

 26.  A trough is 10 ft long and its ends have the shape of isos- 
celes triangles that are 3 ft across at the top and have a height 
of 1 ft. If the trough is being filled with water at a rate of 
12 ft 3ymin, how fast is the water level rising when the water 
is 6 inches deep?

 27.  A water trough is 10 m long and a cross-section has the 
shape of an isosceles trapezoid that is 30 cm wide at the 
bottom, 80 cm wide at the top, and has height 50 cm. If the 
trough is being filled with water at the rate of 0.2 m3ymin, 
how fast is the water level rising when the water is 30 cm 
deep?

 28.  A swimming pool is 20 ft wide, 40 ft long, 3 ft deep at the 
shallow end, and 9 ft deep at its deepest point. A cross-
section is shown in the figure. If the pool is being filled at a 
rate of 0.8 ft 3ymin, how fast is the water level rising when 
the depth at the deepest point is 5 ft?

3
6

12 6166

 29.  Gravel is being dumped from a conveyor belt at a rate of  
30 ft 3ymin, and its coarseness is such that it forms a pile in 
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 43.  A television camera is positioned 4000 ft from the base of a 
rocket launching pad. The angle of elevation of the camera has 
to change at the correct rate in order to keep the rocket in 
sight. Also, the mechanism for focusing the camera has to take 
into account the increasing distance from the camera to the 
rising rocket. Let’s assume the rocket rises vertically and its 
speed is 600 ftys when it has risen 3000 ft.

 (a)  How fast is the distance from the television camera to the 
rocket changing at that moment?

 (b)  If the television camera is always kept aimed at the rocket, 
how fast is the camera’s angle of elevation changing at 
that same moment?

 44.  A lighthouse is located on a small island 3 km away from the 
nearest point P on a straight shoreline and its light makes four 
revolutions per minute. How fast is the beam of light moving 
along the shoreline when it is 1 km from P?

 45.  A plane flies horizontally at an altitude of 5 km and passes 
directly over a tracking telescope on the ground. When the 
angle of elevation is !y3, this angle is decreasing at a rate of 
!y6 radymin. How fast is the plane traveling at that time?

 46.  A Ferris wheel with a radius of 10 m is rotating at a rate of one 
revolution every 2 minutes. How fast is a rider rising when his 
seat is 16 m above ground level?

 47.  A plane flying with a constant speed of 300 kmyh passes over  
a ground radar station at an altitude of 1 km and climbs at an 
angle of 308. At what rate is the distance from the plane to the 
radar station increasing a minute later?

 48.  Two people start from the same point. One walks east at  
3 miyh and the other walks northeast at 2 miyh. How fast is 
the distance between the people changing after 15 minutes?

 49.  A runner sprints around a circular track of radius 100 m at  
a constant speed of 7 mys. The runner’s friend is standing  
at a distance 200 m from the center of the track. How fast is  
the distance between the friends changing when the distance 
between them is 200 m?

 50.  The minute hand on a watch is 8 mm long and the hour hand  
is 4 mm long. How fast is the distance between the tips of the 
hands changing at one o’clock?

 39.  If two resistors with resistances R1 and R2 are connected in  
parallel, as in the figure, then the total resistance R, measured 
in ohms (V), is given by

1
R

−
1
R1

1
1
R2

   If R1 and R2 are increasing at rates of 0.3 Vys and 0.2 Vys,  
respectively, how fast is R changing when R1 − 80 V and 
R2 − 100 V?

R¡ R™

 40.  Brain weight B as a function of body weight W in fish has  
been modeled by the power function B − 0.007W 2y3, where  
B and W are measured in grams. A model for body weight  
as a function of body length L (measured in centimeters) is 
W − 0.12L2.53. If, over 10 million years, the average length of  
a certain species of fish evolved from 15 cm to 20 cm at a 
constant rate, how fast was this species’ brain growing when 
the average length was 18 cm?

 41.  Two sides of a triangle have lengths 12 m and 15 m. The angle 
between them is increasing at a rate of 2 8ymin. How fast is the 
length of the third side increasing when the angle between the 
sides of fixed length is 60°?

 42.  Two carts, A and B, are connected by a rope 39 ft long that 
passes over a pulley P (see the figure). The point Q is on the 
floor 12 ft directly beneath P and between the carts. Cart A  
is being pulled away from Q at a speed of 2 ftys. How fast is  
cart B moving toward Q at the instant when cart A is 5 ft  
from Q?

A B

Q

P

12  ft

We have seen that a curve lies very close to its tangent line near the point of tangency. In 
fact, by zooming in toward a point on the graph of a differentiable function, we noticed 
that the graph looks more and more like its tangent line. (See Figure 2.7.2.) This observa-
tion is the basis for a method of finding approximate values of functions.

The idea is that it might be easy to calculate a value f sad of a function, but difficult 
(or even impossible) to compute nearby values of f . So we settle for the easily computed 
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values of the linear function L whose graph is the tangent line of f  at sa, f sadd. (See 
Figure 1.)

In other words, we use the tangent line at sa, f sadd as an approximation to the curve 
y − f sxd when x is near a. An equation of this tangent line is 

y − f sad 1 f 9sadsx 2 ad

and the approximation

1   f sxd < f sad 1 f 9sadsx 2 ad

is called the linear approximation or tangent line approximation of f  at a. The linear 
function whose graph is this tangent line, that is,

2   Lsxd − f sad 1 f 9sadsx 2 ad

is called the linearization of f  at a.

EXAMPLE 1 Find the linearization of the function f sxd − sx 1 3  at a − 1 and use it 
to approximate the numbers s3.98  and s4.05 . Are these approximations over- 
estimates or underestimates?

SOLUTION The derivative of f sxd − sx 1 3d1y2 is

f 9sxd − 1
2 sx 1 3d21y2 −

1
2sx 1 3 

and so we have f s1d − 2 and f 9s1d − 1
4. Putting these values into Equation 2, we see  

that the linearization is

Lsxd − f s1d 1 f 9s1dsx 2 1d − 2 1 1
4 sx 2 1d −

7
4

1
x
4

The corresponding linear approximation (1) is

sx 1 3 <
7
4

1
x
4

    (when x is near 1)

In particular, we have

s3.98 < 7
4 1 0.98

4 − 1.995    and    s4.05 < 7
4 1 1.05

4 − 2.0125

The linear approximation is illustrated in Figure 2. We see that, indeed, the tangent line 
approximation is a good approximation to the given function when x is near l. We also 
see that our approximations are overestimates because the tangent line lies above the 
curve.

Of course, a calculator could give us approximations for s3.98  and s4.05 , but the 
linear approximation gives an approximation over an entire interval. Q

x0

y

{a, f(a)}

y=ƒ

y=L(x)

FIGURE 1

y=    x+3

_3 0 x

y

1

(1, 2)
y=   + x

4
7
4

œ„„„„

FIGURE 2
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In the following table we compare the estimates from the linear approximation in  
Example 1 with the true values. Notice from this table, and also from Figure 2, that the tan- 
gent line approximation gives good estimates when x is close to 1 but the accuracy of the 
approximation deteriorates when x is farther away from 1.

x From Lsxd Actual value

s3.9 0.9 1.975  1.97484176. . .

s3.98 0.98 1.995  1.99499373. . .

s4 1 2  2.00000000. . .

s4.05 1.05 2.0125  2.01246117. . .

s4.1 1.1 2.025  2.02484567. . .

s5 2 2.25  2.23606797. . .

s6 3 2.5  2.44948974. . .

How good is the approximation that we obtained in Example 1? The next example 
shows that by using a graphing calculator or computer we can determine an interval 
throughout which a linear approximation provides a specified accuracy.

EXAMPLE 2 For what values of x is the linear approximation

sx 1 3 <
7
4

1
x
4

accurate to within 0.5? What about accuracy to within 0.1?

SOLUTION Accuracy to within 0.5 means that the functions should differ by less  
than 0.5: Z sx 1 3 2 S 7

4
1

x
4D Z , 0.5

Equivalently, we could write

sx 1 3 2 0.5 ,
7
4

1
x
4

, sx 1 3 1 0.5

This says that the linear approximation should lie between the curves obtained by shift-
ing the curve y − sx 1 3  upward and downward by an amount 0.5. Figure 3 shows  
the tangent line y − s7 1 xdy4 intersecting the upper curve y − sx 1 3 1 0.5 at P  
and Q. Zooming in and using the cursor, we estimate that the x-coordinate of P is about  
22.66 and the x-coordinate of Q is about 8.66. Thus we see from the graph that the 
approximation

sx 1 3 <
7
4

1
x
4

is accurate to within 0.5 when 22.6 , x , 8.6. (We have rounded to be safe.)
Similarly, from Figure 4 we see that the approximation is accurate to within 0.1 

when 21.1 , x , 3.9. Q

Applications to Physics
Linear approximations are often used in physics. In analyzing the consequences of an 
equation, a physicist sometimes needs to simplify a function by replacing it with its linear  
approximation. For instance, in deriving a formula for the period of a pendulum, phys-

4.3

_1

_4 10

y=   x+3-0.5œ„„„„

Q

P
L(x)

y=   x+3+0.5œ„„„„

FIGURE 3

3

1
_2

y=   x+3-0.1œ„„„„

Q

P

5

y=   x+3+0.1œ„„„„
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ics textbooks obtain the expression aT − 2t sin "  for tangential acceleration and then 
replace sin "  by "  with the remark that sin "  is very close to "  if "  is not too large. [See, 
for exam ple, Physics: Calculus, 2d ed., by Eugene Hecht (Pacific Grove, CA: Brooks/
Cole, 2000), p. 431.] You can verify that the linearization of the function f sxd − sin x at 
a − 0 is Lsxd − x and so the lin ear approximation at 0 is

sin x < x

(see Exercise 42). So, in effect, the derivation of the formula for the period of a pendulum 
uses the tangent line approximation for the sine function.

Another example occurs in the theory of optics, where light rays that arrive at shallow 
angles relative to the optical axis are called paraxial rays. In paraxial (or Gaussian) optics,  
both sin " and cos " are replaced by their linearizations. In other words, the linear  
approximations

sin " < "    and    cos " < 1

are used because " is close to 0. The results of calculations made with these approxima-
tions became the basic theoretical tool used to design lenses. [See Optics, 4th ed., by 
Eugene Hecht (San Francisco, 2002), p. 154.]

In Section 11.11 we will present several other applications of the idea of linear approxi-
mations to physics and engineering.

Differentials
The ideas behind linear approximations are sometimes formulated in the terminology and 
notation of differentials. If y − f sxd, where f  is a differentiable function, then the differ-
ential dx is an independent variable; that is, dx can be given the value of any real number. 
The differential dy is then defined in terms of dx by the equation

3   dy − f 9sxd dx

So dy is a dependent variable; it depends on the values of x and dx. If dx is given a spe-
cific value and x is taken to be some specific number in the domain of f , then the numer-
ical value of dy is determined.

The geometric meaning of differentials is shown in Figure 5. Let Psx, f sxdd and 
Qsx 1 Dx, f sx 1 Dxdd be points on the graph of f  and let dx − Dx. The corresponding 
change in y is

Dy − f sx 1 Dxd 2 f sxd

The slope of the tangent line PR is the derivative f 9sxd. Thus the directed distance from 
S to R is f 9sxd dx − dy. Therefore dy represents the amount that the tangent line rises or 
falls (the change in the linearization), whereas Dy represents the amount that the curve 
y − f sxd rises or falls when x changes by an amount dx.

EXAMPLE 3 Compare the values of Dy and dy if y − f sxd − x 3 1 x 2 2 2x 1 1 and  
x changes (a) from 2 to 2.05 and (b) from 2 to 2.01.

SOLUTION 
(a) We have

 f s2d − 23 1 22 2 2s2d 1 1 − 9

  f s2.05d − s2.05d3 1 s2.05d2 2 2s2.05d 1 1 − 9.717625

 Dy − f s2.05d 2 f s2d − 0.717625

If dx ± 0, we can divide both sides of  
Equation 3 by dx to obtain

dy
dx

− f 9sxd

We have seen similar equations before, 
but now the left side can genuinely be 
interpreted as a ratio of differentials.

R

0 x

y

Îy

x

P

Q

dx=Îx

x+Îx

y=ƒ

S

dy

FIGURE 5
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In general, dy − f 9sxd dx − s3x 2 1 2x 2 2d dx

When x − 2 and dx − Dx − 0.05, this becomes

dy − f3s2d2 1 2s2d 2 2g0.05 − 0.7

(b)   f s2.01d − s2.01d3 1 s2.01d2 2 2s2.01d 1 1 − 9.140701

 Dy − f s2.01d 2 f s2d − 0.140701

When dx − Dx − 0.01,

 dy − f3s2d2 1 2s2d 2 2g0.01 − 0.14 Q

Notice that the approximation Dy < dy becomes better as Dx becomes smaller in  
Example 3. Notice also that dy was easier to compute than Dy. For more complicated 
functions it may be impossible to compute Dy exactly. In such cases the approximation 
by differentials is especially useful.

In the notation of differentials, the linear approximation (1) can be written as

f sa 1 dxd < f sad 1 dy

For instance, for the function f sxd − sx 1 3  in Example 1, we have

dy − f 9sxd dx −
dx

2sx 1 3 

If a − 1 and dx − Dx − 0.05, then

dy −
0.05

2s1 1 3 − 0.0125

and s4.05 − f s1.05d < f s1d 1 dy − 2.0125

just as we found in Example 1.
Our final example illustrates the use of differentials in estimating the errors that occur  

because of approximate measurements.

EXAMPLE 4 The radius of a sphere was measured and found to be 21 cm with a pos-
sible error in measurement of at most 0.05 cm. What is the maximum error in using this 
value of the radius to compute the volume of the sphere?

SOLUTION If the radius of the sphere is r, then its volume is V − 4
3 !r 3. If the error 

in the measured value of r is denoted by dr − Dr, then the corresponding error in the 
calculated value of V  is DV , which can be approximated by the differential

dV − 4!r 2 dr

When r − 21 and dr − 0.05, this becomes

dV − 4!s21d20.05 < 277

The maximum error in the calculated volume is about 277 cm3. Q

Figure 6 shows the function in Exam- 
ple 3 and a comparison of dy and Dy 
when a − 2. The viewing rectangle is 
f1.8, 2.5g by f6, 18g.

y=˛+≈-2x+1

(2, 9)

dy Îy

FIGURE 6
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NOTE Although the possible error in Example 4 may appear to be rather large, a 
better picture of the error is given by the relative error, which is computed by dividing 
the error by the total volume:

DV
V

<
dV
V

−
4!r 2 dr

4
3 !r 3 − 3 

dr
r

Thus the relative error in the volume is about three times the relative error in the radius.  
In Example 4 the relative error in the radius is approximately dryr − 0.05y21 < 0.0024 
and it produces a relative error of about 0.007 in the volume. The errors could also be  
expressed as percentage errors of 0.24% in the radius and 0.7% in the volume.

1–4 Find the linearization Lsxd of the function at a.

 1. f sxd − x 3 2 x 2 1 3, a − 22

 2. f sxd − sin x, a − !y6

 3. f sxd − sx , a − 4

 4. f sxd − 2 x, a − 0

 5.  Find the linear approximation of the function 
f sxd − s1 2 x  at a − 0 and use it to approximate the 
numbers s0.9  and s0.99 . Illustrate by graphing f  and the 
tangent line.

 6.  Find the linear approximation of the function 
tsxd − s3 1 1 x  at a − 0 and use it to approximate the 
numbers s3 0.95  and s3 1.1 . Illustrate by graphing t and the 
tangent line.

7–10 Verify the given linear approximation at a − 0. Then 
determine the values of x for which the linear approximation is 
accurate to within 0.1.

 7. lns1 1 xd < x 8. s1 1 xd23 < 1 2 3x

 9. s4 1 1 2x < 1 1 1
2 x 10. e x cos x < 1 1 x

11–14 Find the differential of each function.

 11. (a) y − xe24x (b) y − s1 2 t 4 

 12. (a) y −
1 1 2u
1 1 3u

 (b) y − " 2 sin 2"

 13. (a) y − tan st   (b) y −
1 2 v 2

1 1 v 2

 14. (a) y − lnssin "d (b) y −
e x

1 2 e x

;

;

;

15–18 (a) Find the differential dy and (b) evaluate dy for the 
given values of x and dx.

 15. y − e x y10,  x − 0,  dx − 0.1

 16. y − cos !x,  x − 1
3,  dx − 20.02

 17. y − s3 1 x 2 ,  x − 1,  dx − 20.1

 18. y −
x 1 1
x 2 1

,  x − 2,  dx − 0.05

19–22 Compute Dy and dy for the given values of x and 
dx − Dx. Then sketch a diagram like Figure 5 showing the line 
segments with lengths dx, dy, and Dy.

 19. y − x 2 2 4x, x − 3, Dx − 0.5

 20. y − x 2 x 3, x − 0, Dx − 20.3

 21. y − sx 2 2 , x − 3, Dx − 0.8

 22. y − e x, x − 0, Dx − 0.5

23–28 Use a linear approximation (or differentials) to estimate 
the given number.

 23. s1.999d4 24. 1y4.002

 25. s3 1001  26. s100.5 

 27. e 0.1 28. cos  29°

29–31 Explain, in terms of linear approximations or differen-
tials, why the approximation is reasonable.

 29. sec 0.08 < 1 30. s4.02 < 2.005

 31. 
1

9.98
< 0.1002

3.10 EXERCISES
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    (This is known as Poiseuille’s Law; we will show why it  
is true in Section 8.4.) A partially clogged artery can be 
expanded by an operation called angioplasty, in which a  
balloon-tipped catheter is inflated inside the artery in order  
to widen it and restore the normal blood flow.

     Show that the relative change in F is about four times the 
relative change in R. How will a 5% increase in the radius 
affect the flow of blood?

 41.  Establish the following rules for working with differentials 
(where c denotes a constant and u and v are functions of x).

 (a) dc − 0 (b) dscud − c du
 (c) dsu 1 vd − du 1 dv (d) dsuvd − u dv 1 v du

 (e) dS u
vD −

v du 2 u dv
v2  (f) dsx n d − nx n21 dx

 42.  On page 431 of Physics: Calculus, 2d ed., by Eugene Hecht 
(Pacific Grove, CA: Brooks/Cole, 2000), in the course of 
deriving the formula T − 2!sLyt  for the period of a 
pendulum of length L, the author obtains the equation 
aT − 2t sin " for the tangential acceleration of the bob of 
the pendulum. He then says, “for small angles, the value of 
" in radians is very nearly the value of sin "; they differ by 
less than 2% out to about 20°.”

 (a)  Verify the linear approximation at 0 for the sine 
function:

sin x < x

 (b)  Use a graphing device to determine the values of x for 
which sin x and x differ by less than 2%. Then verify 
Hecht’s statement by converting from radians to  
degrees.

 43.  Suppose that the only information we have about a function 
f  is that f s1d − 5 and the graph of its derivative is as 
shown.

 (a)  Use a linear approximation to estimate f s0.9d and 
f s1.1d.

 (b)  Are your estimates in part (a) too large or too small? 
Explain.

y

x0 1

y=fª(x)

1

 44.  Suppose that we don’t have a formula for tsxd but we know 
that ts2d − 24 and t9sxd − sx 2 1 5  for all x.

 (a)  Use a linear approximation to estimate ts1.95d  
and ts2.05d.

 (b)  Are your estimates in part (a) too large or too small? 
Explain.

;

 32.  Let f sxd − sx 2 1d2      tsxd − e22x

  and hsxd − 1 1 lns1 2 2xd

 (a)  Find the linearizations of f , t, and h at a − 0. What do 
you notice? How do you explain what happened?

 (b)  Graph f , t, and h and their linear approximations. For 
which function is the linear approximation best? For 
which is it worst? Explain.

 33.  The edge of a cube was found to be 30 cm with a possible 
error in measurement of 0.1 cm. Use differentials to esti- 
mate the maximum possible error, relative error, and per- 
centage error in computing (a) the volume of the cube and 
(b) the sur face area of the cube.

 34.  The radius of a circular disk is given as 24 cm with a 
maxi mum error in measurement of 0.2 cm.

 (a)  Use differentials to estimate the maximum error in the 
calculated area of the disk.

 (b) What is the relative error? What is the percentage error?

 35.  The circumference of a sphere was measured to be 84 cm 
with a possible error of 0.5 cm.

 (a)  Use differentials to estimate the maximum error in the  
calculated surface area. What is the relative error?

 (b)  Use differentials to estimate the maximum error in the  
calculated volume. What is the relative error?

 36.  Use differentials to estimate the amount of paint needed to 
apply a coat of paint 0.05 cm thick to a hemispherical dome 
with diameter 50 m.

 37. (a)  Use differentials to find a formula for the approximate 
volume of a thin cylindrical shell with height h, inner 
radius r, and thickness Dr.

 (b)  What is the error involved in using the formula from  
part (a)?

 38.  One side of a right triangle is known to be 20 cm long and 
the opposite angle is measured as 30°, with a possible error  
of 61°.

 (a)  Use differentials to estimate the error in computing the 
length of the hypotenuse.

 (b)  What is the percentage error?

 39.  If a current I passes through a resistor with resistance R, 
Ohm’s Law states that the voltage drop is V − RI. If V is 
constant and R is measured with a certain error, use 
differentials to show that the relative error in calculating  
I is approximately the same (in magnitude) as the relative 
error in R.

 40.  When blood flows along a blood vessel, the flux F (the 
volume of blood per unit time that flows past a given point) 
is proportional to the fourth power of the radius R of the 
blood vessel:

F − kR 4

;
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LABORATORY PROJECT ; TAYLOR POLYNOMIALS

The tangent line approximation Lsxd is the best first-degree (linear) approximation to f sxd 
near x − a because f sxd and Lsxd have the same rate of change (derivative) at a. For a better 
approximation than a linear one, let’s try a second-degree (quadratic) approximation Psxd. In 
other words, we approximate a curve by a parabola instead of by a straight line. To make sure 
that the approximation is a good one, we stipulate the following:

 (i) Psad − f sad (P and f  should have the same value at a.)
 (ii) P9sad − f 9sad (P and f  should have the same rate of change at a.)
 (iii) P99sad − f 99sad (The slopes of P and f  should change at the same rate at a.)

1.  Find the quadratic approximation Psxd − A 1 Bx 1 Cx 2 to the function f sxd − cos x that 
satisfies conditions (i), (ii), and (iii) with a − 0. Graph P, f , and the linear approximation 
Lsxd − 1 on a common screen. Comment on how well the functions P and L approximate f .

2.  Determine the values of x for which the quadratic approximation f sxd < Psxd in Problem 1 
is accurate to within 0.1. [Hint: Graph y − Psxd, y − cos x 2 0.1,  and y − cos x 1 0.1 on 
a common screen.]

3.  To approximate a function f  by a quadratic function P near a number a, it is best to write P 
in the form

Psxd − A 1 Bsx 2 ad 1 Csx 2 ad2

 Show that the quadratic function that satisfies conditions (i), (ii), and (iii) is

Psxd − f sad 1 f 9sadsx 2 ad 1 1
2 f 99sadsx 2 ad2

4.  Find the quadratic approximation to f sxd − sx 1 3  near a − 1. Graph f , the quadratic 
approximation, and the linear approximation from Example 3.10.2 on a common screen. 
What do you conclude?

5.  Instead of being satisfied with a linear or quadratic approximation to f sxd near x − a,  
let’s try to find better approximations with higher-degree polynomials. We look for an  
nth-degree polynomial

Tnsxd − c0 1 c1sx 2 ad 1 c2sx 2 ad2 1 c3sx 2 ad3 1 ∙ ∙ ∙ 1 cnsx 2 adn

  such that Tn and its first n derivatives have the same values at x − a as f  and its first n  
derivatives. By differentiating repeatedly and setting x − a, show that these conditions are 
satisfied if c0 − f sad, c1 − f 9sad, c2 − 1

2 f 99 sad, and in general

ck −
 f skdsad

k!

 where k! − 1 ? 2 ? 3 ? 4 ? ∙ ∙ ∙ ? k. The resulting polynomial

Tnsxd − f sad 1 f 9sadsx 2 ad 1
 f 99sad

2!
sx 2 ad2 1 ∙ ∙ ∙ 1

 f sndsad
n!

sx 2 adn

 is called the nth-degree Taylor polynomial of f  centered at a.

6.  Find the 8th-degree Taylor polynomial centered at a − 0 for the function f sxd − cos x. 
Graph f  together with the Taylor polynomials T2, T4, T6, T8 in the viewing rectangle  
f25, 5g by f21.4, 1.4g and comment on how well they approximate f .
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Certain even and odd combinations of the exponential functions ex and e2x arise so fre-
quently in mathematics and its applications that they deserve to be given special names.  
In many ways they are analogous to the trigonometric functions, and they have the same  
relationship to the hyperbola that the trigonometric functions have to the circle. For this 
reason they are collectively called hyperbolic functions and individually called hyper-
bolic sine, hyperbolic cosine, and so on.

Definition of the Hyperbolic Functions

 sinh x −
ex 2 e2x

2
 csch x −

1
sinh x

 cosh x −
ex 1 e2x

2
 sech x −

1
cosh x

 tanh x −
sinh x
cosh x

 coth x −
cosh x
sinh x

The graphs of hyperbolic sine and cosine can be sketched using graphical addition as 
in Figures 1 and 2.

y

0 x

y=_1

y=11
2y=    ́

y=_     e–®1
2

y=sinh x

0

y

x
y=    e–®1

2
1
2y=    ́

y=cosh x

1

0

y

x

FIGURE 1 
y − sinh x − 1

2e x 2 1
2e2x

FIGURE 2 
y − cosh x − 1

2e x 1 1
2e2x

FIGURE 3 
y − tanh x

Note that sinh has domain R and range R, while cosh has domain R and range f1, `d.  
The graph of tanh is shown in Figure 3. It has the horizontal asymptotes y − 61. (See  
Exercise 23.)

Some of the mathematical uses of hyperbolic functions will be seen in Chapter 7. 
Applications to science and engineering occur whenever an entity such as light, velocity, 
electricity, or radioactivity is gradually absorbed or extinguished, for the decay can be 
represented by hyperbolic functions. The most famous application is the use of hyper-
bolic cosine to describe the shape of a hanging wire. It can be proved that if a heavy 
flexible cable (such as a telephone or power line) is suspended between two points at the 
same height, then it takes the shape of a curve with equation y − c 1 a coshsxyad called 
a catenary (see Figure 4). (The Latin word catena means “chain.”)

y

0 x

FIGURE 4  
A catenary y − c 1 a coshsxyad
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Another application of hyperbolic functions occurs in the description of ocean waves: 
The velocity of a water wave with length L moving across a body of water with depth d 
is modeled by the function

v − Î tL
2!

 tanhS 2!d
L D

where t is the acceleration due to gravity. (See Figure 5 and Exercise 49.)
The hyperbolic functions satisfy a number of identities that are similar to well-known 

trigonometric identities. We list some of them here and leave most of the proofs to the  
exercises.

Hyperbolic Identities 

 sinhs2xd − 2sinh x coshs2xd − cosh x

 cosh2x 2 sinh2x − 1 1 2 tanh2x − sech2x

 sinhsx 1 yd − sinh x cosh y 1 cosh x sinh y

 coshsx 1 yd − cosh x cosh y 1 sinh x sinh y

EXAMPLE 1 Prove (a) cosh2x 2 sinh2x − 1 and (b) 1 2 tanh2x − sech2x.

SOLUTION

(a)  cosh2x 2 sinh2x − S ex 1 e2x

2 D2

2 S ex 2 e2x

2 D2

 −
e 2x 1 2 1 e22x

4
2

e 2x 2 2 1 e22x

4

 −
4
4

− 1

(b) We start with the identity proved in part (a):

cosh2x 2 sinh2x − 1

If we divide both sides by cosh2x, we get

 1 2
sinh2x
cosh2x

−
1

cosh2x

or  1 2 tanh2x − sech2x  Q

The identity proved in Example 1(a) gives a clue to the reason for the name “hyper-
bolic” functions:

If t is any real number, then the point Pscos t, sin td lies on the unit circle x 2 1 y 2 − 1  
because cos2t 1 sin2t − 1. In fact, t can be interpreted as the radian measure of /POQ  
in Figure 6. For this reason the trigonometric functions are sometimes called circular  
functions.

L
d

FIGURE 5  
Idealized ocean wave
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The Gateway Arch in St. Louis was 
designed using a hyperbolic cosine 
function (see Exercise 48).
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 SECTION 3.11  Hyperbolic Functions 261

Likewise, if t is any real number, then the point Pscosh t, sinh td lies on the right branch 
of the hyperbola x 2 2 y 2 − 1 because cosh2t 2 sinh2t − 1 and cosh t > 1. This time, t 
does not represent the measure of an angle. However, it turns out that t represents twice 
the area of the shaded hyperbolic sector in Figure 7, just as in the trigonometric case t 
represents twice the area of the shaded circular sector in Figure 6.

The derivatives of the hyperbolic functions are easily computed. For example,

d
dx

 ssinh xd −
d
dx

 S ex 2 e2x

2 D −
ex 1 e2x

2
− cosh x

We list the differentiation formulas for the hyperbolic functions as Table 1. The remain-
ing proofs are left as exercises. Note the analogy with the differentiation formulas for 
trigonometric functions, but beware that the signs are different in some cases.

1  Derivatives of Hyperbolic Functions

 
d

dx
 ssinh xd − cosh x    

d
dx

 scsch xd − 2csch x coth x

 
d

dx
 scosh xd − sinh x    

d
dx

 ssech xd − 2sech x tanh x

 
d

dx
 stanh xd − sech2x     

d
dx

 scoth xd − 2csch2x

EXAMPLE 2 Any of these differentiation rules can be combined with the Chain Rule. 
For instance,

d
dx

 scosh sx d − sinh sx ?
d
dx

 sx −
sinh sx 

2sx Q

Inverse Hyperbolic Functions
You can see from Figures 1 and 3 that sinh and tanh are one-to-one functions and so they 
have inverse functions denoted by sinh21 and tanh21. Figure 2 shows that cosh is not one- 
to-one, but when restricted to the domain f0, `d it becomes one-to-one. The inverse 
hyperbolic cosine function is defined as the inverse of this restricted function.

2   y − sinh21x  &? sinh y − x

 y − cosh21x &?  cosh y − x and y > 0

 y − tanh21x  &?  tanh y − x

The remaining inverse hyperbolic functions are defined similarly (see Exercise 28).

FIGURE 7
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262 CHAPTER 3  Differentiation Rules

We can sketch the graphs of sinh21, cosh21, and tanh21 in Figures 8, 9, and 10 by using 
Figures 1, 2, and 3.

0

y

x
0

y

x1

0

y

x1_1

FIGURE 8 y − sinh21 x 
domain − R range − R

FIGURE 9 y − cosh21 x 
domain − f1, `d range − f0, `d

FIGURE 10 y − tanh21 x 
domain − s21, 1d range − R

Since the hyperbolic functions are defined in terms of exponential functions, it’s not  
surprising to learn that the inverse hyperbolic functions can be expressed in terms of 
logarithms. In particular, we have:

3    sinh21x − lnsx 1 sx 2 1 1d x [ R

4    cosh21x − lnsx 1 sx 2 2 1d x > 1

5    tanh21x − 1
2 lnS 1 1 x

1 2 xD  21 , x , 1

EXAMPLE 3 Show that sinh21x − lnsx 1 sx 2 1 1d.
SOLUTION Let y − sinh21x. Then

x − sinh y −
ey 2 e2y

2

so ey 2 2x 2 e2y − 0

or, multiplying by ey,
e 2y 2 2xey 2 1 − 0

This is really a quadratic equation in ey:

sey d2 2 2xsey d 2 1 − 0

Solving by the quadratic formula, we get

ey −
2x 6 s4x 2 1 4 

2
− x 6 sx 2 1 1

Note that ey . 0, but x 2 sx 2 1 1 , 0 (because x , sx 2 1 1). Thus the minus sign 
is inadmissible and we have

ey − x 1 sx 2 1 1

Formula 3 is proved in Example 3.  
The proofs of Formulas 4 and 5 are 
requested in Exercises 26 and 27.
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Therefore y − lnsey d − lnsx 1 sx 2 1 1d
This shows that  sinh21x − lnsx 1 sx 2 1 1d
(See Exercise 25 for another method.) Q

6  Derivatives of Inverse Hyperbolic Functions 

 
d

dx
 ssinh21xd −

1

s1 1 x 2 
     

d
dx

 scsch21xd − 2
1

| x |sx 2 1 1

 
d

dx
 scosh21xd −

1

sx 2 2 1
     

d
dx

 ssech21xd − 2
1

xs1 2 x 2 

 
d

dx
 stanh21xd −

1
1 2 x 2      

d
dx

 scoth21xd −
1

1 2 x 2

Notice that the formulas for the 
derivatives of tanh21x and coth21x 
appear to be identical. But the domains 
of these functions have no numbers in 
common: tanh21x is defined for | x | , 1, 
whereas coth21x is defined for | x | . 1.

The inverse hyperbolic functions are all differentiable because the hyperbolic func-
tions are differentiable. The formulas in Table 6 can be proved either by the method for 
inverse functions or by differentiating Formulas 3, 4, and 5.

EXAMPLE 4 Prove that 
d
dx

 ssinh21xd −
1

s1 1 x 2 
.

SOLUTION 1 Let y − sinh21x. Then sinh y − x. If we differentiate this equation implic-
itly with respect to x, we get

cosh y 
dy
dx

− 1

Since cosh2 y 2 sinh2 y − 1 and cosh y > 0, we have cosh y − s1 1 sinh2 y , so

dy
dx

−
1

cosh y
−

1

s1 1 sinh2 y 
−

1

s1 1 x 2 

SOLUTION 2 From Equation 3 (proved in Example 3), we have

 
d
dx

 ssinh21xd −
d
dx

 lnsx 1 sx 2 1 1d

 −
1

x 1 sx 2 1 1
 

d
dx

 sx 1 sx 2 1 1d

 −
1

x 1 sx 2 1 1
 S1 1

x

sx 2 1 1D
 −

sx 2 1 1 1 x

(x 1 sx 2 1 1)sx 2 1 1

 −
1

sx 2 1 1
Q
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264 CHAPTER 3  Differentiation Rules

 21.  If cosh x − 5
3 and x . 0, find the values of the other hyper- 

bolic functions at x.

 22. (a)  Use the graphs of sinh, cosh, and tanh in Figures 1–3 to 
draw the graphs of csch, sech, and coth.

 (b)  Check the graphs that you sketched in part (a) by using a 
graphing device to produce them.

 23.  Use the definitions of the hyperbolic functions to find each 
of the following limits.

 (a) lim
x l `

 tanh x (b) lim
x l2`

 tanh x

 (c) lim
x l `

 sinh x (d) lim
x l2`

 sinh x

 (e) lim
x l `

 sech x (f) lim
x l `

 coth x

 (g) lim
x l

 

01
 coth x (h) lim

x l
 

02
 coth x

 (i) lim
x l2`

 csch x ( j) lim
xl`

 
sinh x

e x

 24.  Prove the formulas given in Table 1 for the derivatives of the 
functions (a) cosh, (b) tanh, (c) csch, (d) sech, and (e) coth.

 25.  Give an alternative solution to Example 3 by letting 
y − sinh21x and then using Exercise 9 and Example 1(a)  
with x replaced by y.

 26. Prove Equation 4.

 27.  Prove Equation 5 using (a) the method of Example 3 and  
(b) Exercise 18 with x replaced by y.

 28.  For each of the following functions (i) give a definition like 
those in (2), (ii) sketch the graph, and (iii) find a formula 
similar to Equation 3.

 (a) csch21      (b) sech21      (c) coth21

 29.  Prove the formulas given in Table 6 for the derivatives of the 
following functions.

 (a) cosh21      (b) tanh21      (c) csch21

 (d) sech21      (e) coth21

30–45 Find the derivative. Simplify where possible.

 30. f sxd − e x cosh x

 31. f sxd − tanh sx  32. tsxd − sinh2 x

;

3.11 EXERCISES

1–6 Find the numerical value of each expression.

 1. (a) sinh 0 (b) cosh 0

 2. (a) tanh 0 (b) tanh 1

 3. (a) coshsln 5d (b) cosh 5

 4. (a) sinh 4 (b) sinhsln 4d

 5. (a) sech 0 (b) cosh21 1

 6. (a) sinh 1 (b) sinh21 1

7–19 Prove the identity.

 7. sinhs2xd − 2sinh x
  (This shows that sinh is an odd function.)

 8. coshs2xd − cosh x
  (This shows that cosh is an even function.)

 9. cosh x 1 sinh x − e x

 10. cosh x 2 sinh x − e2x

 11. sinhsx 1 yd − sinh x cosh y 1 cosh x sinh y

 12. coshsx 1 yd − cosh x cosh y 1 sinh x sinh y

 13. coth2x 2 1 − csch2x

 14. tanhsx 1 yd −
tanh x 1 tanh y

1 1 tanh x tanh y

 15. sinh 2x − 2 sinh x cosh x

 16. cosh 2x − cosh2x 1 sinh2x

 17. tanhsln xd −
x 2 2 1
x 2 1 1

 18. 
1 1 tanh x
1 2 tanh x

− e 2x

 19. scosh x 1 sinh xdn − cosh nx 1 sinh nx
  (n any real number)

 20.  If tanh x − 12
13, find the values of the other hyperbolic func- 

tions at x.

EXAMPLE 5 Find 
d
dx

 ftanh21ssin xdg.

SOLUTION Using Table 6 and the Chain Rule, we have

 
d
dx

 ftanh21ssin xdg −
1

1 2 ssin xd2  
d
dx

 ssin xd

 −
1

1 2 sin2x
 cos x −

cos x
cos2x

− sec x Q
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y

0 x_7 7

5
¨

 52.  Using principles from physics it can be shown that when a 
cable is hung between two poles, it takes the shape of a curve 
y − f sxd that satisfies the differential equation 

d 2 y
dx 2 −

"t
T
Î1 1 S dy

dxD2 

   where " is the linear density of the cable, t is the acceleration  
due to gravity, T is the tension in the cable at its lowest point,  
and the coordinate system is chosen appropriately. Verify that 
the function

y − f sxd −
T
"t  coshS "tx

T D
  is a solution of this differential equation.

 53.  A cable with linear density " − 2 kgym is strung from the 
tops of two poles that are 200 m apart.

 (a)  Use Exercise 52 to find the tension T so that the cable is  
60 m above the ground at its lowest point. How tall are  
the poles?

 (b)  If the tension is doubled, what is the new low point of the 
cable? How tall are the poles now?

 54.  A model for the velocity of a falling object after time t is

vstd − Îmt
k

  tanhStÎ tk
m

 D
   where m is the mass of the object, t − 9.8 mys2 is the 

acceleration due to gravity, k is a constant, t is measured in 
seconds, and v in mys.

 (a)  Calculate the terminal velocity of the object, that is, 
lim tl` vstd.

 (b)  If a person falls from a building, the value of the constant 
k depends on his or her position. For a “belly-to-earth” 
position, k − 0.515 kgys, but for a “feet-first” position, 
k − 0.067 kgys. If a 60-kg person falls in belly-to-earth 
position, what is the terminal velocity? What about feet-
first? 

Source: L. Long et al., “How Terminal Is Terminal Velocity?” American Math-
ematical Monthly 113 (2006): 752–55.

 55. (a)  Show that any function of the form

y − A sinh mx 1 B cosh mx

   satisfies the differential equation y99 − m 2 y.
 (b)  Find y − ysxd such that y99 − 9y, ys0d − 24,  

and y9s0d − 6.

 56.  If x − lnssec # 1 tan #d, show that sec # − cosh x.

 33. hsxd − sinhsx 2d 34. Fstd − lnssinh td

 35. Gstd − sinhsln td 

 36. y − sech x s1 1 ln sech xd

 37. y − e cosh 3x 38. f std −
1 1 sinh t
1 2 sinh t

 39. tstd − t coth st 2 1 1  40. y − sinh21stan xd

 41. y − cosh21sx 

 42. y − x tanh21x 1 ln s1 2 x 2 

 43. y − x sinh21sxy3d 2 s9 1 x 2 

 44. y − sech21se2xd

 45. y − coth21ssec xd

 46.  Show that 
d
dx
Î4 1 1 tanh x

1 2 tanh x
  − 1

2 exy2.

 47. Show that 
d
dx

 arctanstanh xd − sech 2x.

 48.  The Gateway Arch in St. Louis was designed by Eero  
Saarinen and was constructed using the equation

y − 211.49 2 20.96 cosh 0.03291765x

   for the central curve of the arch, where x and y are measured 
in meters and | x | < 91.20.

 (a)  Graph the central curve.
 (b)  What is the height of the arch at its center?
 (c)  At what points is the height 100 m?
 (d)  What is the slope of the arch at the points in part (c)?

 49.  If a water wave with length L moves with velocity v in a 
body of water with depth d, then

v − Î tL
2!

 tanhS2!d
L D

   where t is the acceleration due to gravity. (See Figure 5.) 
Explain why the approximation

v < Î tL
2!

 

  is appropriate in deep water.

 50.  A flexible cable always hangs in the shape of a catenary 
y − c 1 a coshsxyad, where c and a are constants and a . 0 
(see Figure 4 and Exercise 52). Graph several members of 
the family of functions y − a coshsxyad. How does the graph 
change as a varies?

 51.  A telephone line hangs between two poles 14 m apart in the 
shape of the catenary y − 20 coshsxy20d 2 15, where x and 
y are measured in meters.

 (a)  Find the slope of this curve where it meets the right pole.
 (b) Find the angle # between the line and the pole.

;

;
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266 CHAPTER 3  Differentiation Rules

 59.  Show that if a ± 0 and b ± 0, then there exist numbers $  
and % such that ae x 1 be2x equals either 

$ sinhsx 1 %d  or  $ coshsx 1 %d

In other words, almost every function of the form 
f sxd − ae x 1 be2x is a shifted and stretched hyperbolic sine 
or cosine function.

 57.  At what point of the curve y − cosh x does the tangent have 
slope 1?

 58.  Investigate the family of functions

fnsxd − tanhsn sin xd

   where n is a positive integer. Describe what happens to the 
graph of fn when n becomes large.

;

 (d)  Why is the natural logarithmic function y − ln x used more  
often in calculus than the other logarithmic functions 
y − log b x?

 4. (a)  Explain how implicit differentiation works.
 (b)  Explain how logarithmic differentiation works.

 5.  Give several examples of how the derivative can be interpreted 
as a rate of change in physics, chemistry, biology, economics, 
or other sciences.

 6. (a)  Write a differential equation that expresses the law of 
natural growth.

 (b)  Under what circumstances is this an appropriate model for 
population growth?

 (c) What are the solutions of this equation?

 7. (a)  Write an expression for the linearization of f  at a.
 (b)  If y − f sxd, write an expression for the differential dy.
 (c)  If dx − Dx, draw a picture showing the geometric mean-

ings of Dy and dy.

CONCEPT CHECK Answers to the Concept Check can be found on the back endpapers.

 1.  State each differentiation rule both in symbols and in words.
 (a) The Power Rule (b) The Constant Multiple Rule
 (c) The Sum Rule (d) The Difference Rule
 (e) The Product Rule (f) The Quotient Rule
 (g) The Chain Rule

 2.  State the derivative of each function.
 (a) y − x n (b) y − e x (c) y − b x

 (d) y − ln x (e) y − logb x (f) y − sin x
 (g) y − cos x (h) y − tan x (i) y − csc x
 ( j) y − sec x (k) y − cot x (l) y − sin21x
 (m) y − cos21x (n) y − tan21x (o) y − sinh x
 (p) y − cosh x (q) y − tanh x (r) y − sinh21x
 (s) y − cosh21x (t) y − tanh21x

 3. (a) How is the number e defined?
 (b) Express e as a limit.
 (c)  Why is the natural exponential function y − e x used more 

often in calculus than the other exponential functions 
y − b x?

3 REVIEW

TRUE-FALSE QUIZ

 4. If f  is differentiable, then 
d
dx

 sf sxd −
f 9sxd

2sf sxd 
.

 5. If f  is differentiable, then 
d
dx

 f ssx d −
 f 9sxd
2sx 

.

 6. If y − e2, then y9 − 2e.

 7. 
d
dx

 s10 x d − x10 x21 8. 
d
dx

 sln 10d −
1
10

 9. 
d
dx

 stan2xd −
d
dx

 ssec2xd

 10. 
d
dx

 | x 2 1 x | − | 2x 1 1 |

Determine whether the statement is true or false. If it is true, explain 
why. If it is false, explain why or give an example that disproves the 
statement.

 1. If f  and t are differentiable, then
d
dx

 f f sxd 1 tsxdg − f 9sxd 1 t9sxd

 2. If f  and t are differentiable, then
d
dx

 f f sxdtsxdg − f 9sxdt9sxd

 3. If f  and t are differentiable, then
d
dx

 f f stsxddg − f 9stsxddt9sxd
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 14.  An equation of the tangent line to the parabola y − x 2  
at s22, 4d is y 2 4 − 2xsx 1 2d.

 15. If tsxd − x 5, then lim
x l 2

 
tsxd 2 ts2d

x 2 2
− 80

 11.  The derivative of a polynomial is a polynomial.

 12.  If f sxd − sx 6 2 x 4d5, then f s31dsxd − 0.

 13.  The derivative of a rational function is a rational function.

EXERCISES

 45. y − lnscosh 3xd 46. y − ln Z x 2 2 4
2x 1 5 Z

 47. y − cosh21ssinh xd 48. y − x tanh21sx 

 49. y − cossestan 3x d 50. y − sin2scosssin !x d

 51. If f std − s4t 1 1, find f 99s2d.

 52. If ts#d − # sin #, find t99s!y6d.

 53.  Find y99 if x 6 1 y 6 − 1.

 54. Find f sndsxd if f sxd − 1ys2 2 xd.

 55.  Use mathematical induction (page 72) to show that if 
f sxd − xe x, then f sndsxd − sx 1 nde x.

 56. Evaluate lim
tl 0

 
t 3

tan3 s2td
.

57–59 Find an equation of the tangent to the curve at the given 
point.

 57. y − 4 sin2x,  s!y6, 1d 58. y −
x2 2 1
x2 1 1

,  s0, 21d

 59. y − s1 1 4 sin x ,  s0, 1d

 60–61 Find equations of the tangent line and normal line to the 
curve at the given point.

 60. x2 1 4xy 1 y2 − 13,  s2, 1d

 61. y − s2 1 xde2x,  s0, 2d

 62.  If f sxd − xesin x, find f 9sxd. Graph f  and f 9 on the same 
screen and comment.

 63. (a) If f sxd − xs5 2 x , find f 9sxd.
 (b)  Find equations of the tangent lines to the curve 

y − xs5 2 x  at the points s1, 2d and s4, 4d.
 (c)  Illustrate part (b) by graphing the curve and tangent lines 

on the same screen.
 (d)  Check to see that your answer to part (a) is reasonable by 

comparing the graphs of f  and f 9.

 64. (a)  If f sxd − 4x 2 tan x, 2!y2 , x , !y2, find f 9 and f 99.
 (b)  Check to see that your answers to part (a) are reasonable 

by comparing the graphs of f , f 9, and f 99.

;

;

;

;

1–50 Calculate y9.

 1. y − sx 2 1 x 3d4 2. y −
1

sx 
2

1

s5 x3 

 3. y −
x 2 2 x 1 2

sx 
 4. y −

tan x
1 1 cos x

 5. y − x 2 sin !x 6. y − x cos21x

 7. y −
t 4 2 1
t 4 1 1

 8. xe y − y sin x

 9. y − lnsx ln xd 10. y − emx cos nx

 11. y − sx  cos sx  12. y − sarcsin 2xd2

 13. y −
e1yx

x 2  14. y − ln sec x

 15. y 1 x cos y − x 2y 16. y − S u 2 1
u 2 1 u 1 1D4

 17. y − sarctan x  18. y − cotscsc xd

 19. y − tanS t
1 1 t 2D 20. y − e x sec x

 21. y − 3 x ln x 22. y − secs1 1 x 2 d

 23. y − s1 2 x 21 d21 24. y − 1ys3 x 1 sx  

 25. sinsxyd − x2 2 y 26. y − ssin sx 

 27. y − log 5s1 1 2xd 28. y − scos xdx

 29. y − ln sin x 2 1
2 sin2x 30. y −

sx 2 1 1d4

s2x 1 1d3s3x 2 1d5

 31. y − x tan21s4xd 32. y − e cos x 1 cosse x d

 33. y − ln | sec 5x 1 tan 5x | 34. y − 10tan !#

 35. y − cots3x 2 1 5d 36. y − st lnst 4d 

 37. y − sinstan s1 1 x 3 d 38. y − arctansarcsin sx d
 39. y − tan2ssin #d 40. xe y − y 2 1

 41. y −
sx 1 1 s2 2 xd5

sx 1 3d7  42. y −
sx 1 &d4

x 4 1 &4

 43. y − x sinhsx 2 d 44. y −
sin mx

x
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 82. (a)  Graph the function f sxd − x 2 2 sin x in the viewing  
rectangle f0, 8g by f22, 8g.

 (b)  On which interval is the average rate of change larger: 
f1, 2g or f2, 3g?

 (c)  At which value of x is the instantaneous rate of change 
larger: x − 2 or x − 5?

 (d)  Check your visual estimates in part (c) by computing 
f 9sxd and comparing the numerical values of f 9s2d  
and f 9s5d.

 83.  At what point on the curve y − flnsx 1 4dg2 is the tangent  
horizontal?

 84. (a)  Find an equation of the tangent to the curve y − e x that 
is parallel to the line x 2 4y − 1.

 (b)  Find an equation of the tangent to the curve y − e x that 
passes through the origin.

 85.  Find a parabola y − ax 2 1 bx 1 c that passes through the 
point s1, 4d and whose tangent lines at x − 21 and x − 5 
have slopes 6 and 22, respectively.

 86.  The function Cstd − Kse2at 2 e2bt d, where a, b, and K are 
positive constants and b . a, is used to model the concen-
tration at time t of a drug injected into the bloodstream.

 (a) Show that lim t l ` Cstd − 0.
 (b)  Find C9std, the rate of change of drug concentration in 

the blood.
 (c) When is this rate equal to 0?

 87.  An equation of motion of the form s − Ae2ct coss!t 1 "d 
represents damped oscillation of an object. Find the velocity 
and acceleration of the object.

 88.  A particle moves along a horizontal line so that its coor-
dinate at time t is x − sb 2 1 c 2t 2 , t > 0, where b and c  
are positive constants.

 (a) Find the velocity and acceleration functions.
 (b)  Show that the particle always moves in the positive  

direction.

 89.  A particle moves on a vertical line so that its coordinate at 
time t is y − t 3 2 12t 1 3, t > 0.

 (a) Find the velocity and acceleration functions.
 (b)  When is the particle moving upward and when is it  

moving downward?
 (c)  Find the distance that the particle travels in the time  

interval 0 < t < 3.
 (d)  Graph the position, velocity, and acceleration functions 

for 0 < t < 3.
 (e)  When is the particle speeding up? When is it slowing 

down?

 90.  The volume of a right circular cone is V − 1
3#r 2h, where  

r is the radius of the base and h is the height.
 (a)  Find the rate of change of the volume with respect to 

the height if the radius is constant.

;

;

 65.  At what points on the curve y − sin x 1 cos x,  
0 < x < 2#, is the tangent line horizontal?

 66.  Find the points on the ellipse x 2 1 2y 2 − 1 where the  
tangent line has slope 1.

 67. If f sxd − sx 2 adsx 2 bdsx 2 cd, show that

 f 9sxd
f sxd

−
1

x 2 a
1

1
x 2 b

1
1

x 2 c

 68. (a) By differentiating the double-angle formula

cos 2x − cos2x 2 sin2x

   obtain the double-angle formula for the sine function.
 (b) By differentiating the addition formula

sinsx 1 ad − sin x cos a 1 cos x sin a

   obtain the addition formula for the cosine function.

 69.  Suppose that
f s1d − 2 f 9s1d − 3 f s2d − 1 f 9s2d − 2
ts1d − 3 t9s1d − 1 ts2d − 1 t9s2d − 4

 (a) If Ssxd − f sxd 1 tsxd, find S9s1d.
 (b) If Psxd − f sxdtsxd, find P9s2d.
 (c) If Qsxd − f sxdytsxd, find Q9s1d.
 (d) If Csxd − f stsxdd, find C9s2d.

 70.  If f  and t are the functions whose graphs are shown, let 
Psxd − f sxdtsxd, Qsxd − f sxdytsxd, and Csxd − f stsxdd.  
Find (a) P9s2d, (b) Q9s2d, and (c) C9s2d.

0

g

f

y

x1

1

71–78 Find f 9 in terms of t9.

 71. f sxd − x 2tsxd 72. f sxd − tsx 2 d

 73. f sxd − ftsxdg2 74. f sxd − tstsxdd

 75. f sxd − tse x d 76. f sxd − e tsxd 

 77. f sxd − ln | tsxd | 78. f sxd − tsln xd

79–81 Find h9 in terms of f 9 and t9.

 79. hsxd −
 f sxdtsxd

f sxd 1 tsxd
 80. hsxd − Î  f sxd

tsxd

 81. hsxd − f stssin 4xdd
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100.  A waterskier skis over the ramp shown in the figure at a 
speed of 30 ftys. How fast is she rising as she leaves the 
ramp?

4 ft

15 ft

 101.  The angle of elevation of the sun is decreasing at a rate of 
0.25 radyh. How fast is the shadow cast by a 400-ft-tall  
building increasing when the angle of elevation of the sun  
is !y6?

 102. (a)  Find the linear approximation to f sxd − s25 2 x 2   
near 3.

 (b)  Illustrate part (a) by graphing f  and the linear  
approximation.

 (c)  For what values of x is the linear approximation accurate 
to within 0.1?

 103. (a)  Find the linearization of f sxd − s3 1 1 3x  at a − 0. 
State the corresponding linear approximation and use it 
to give an approximate value for s3 1.03 .

 (b)  Determine the values of x for which the linear approxi-
mation given in part (a) is accurate to within 0.1.

 104. Evaluate dy if y − x 3 2 2x 2 1 1, x − 2, and dx − 0.2.

 105.  A window has the shape of a square surmounted by a semi - 
circle. The base of the window is measured as having width 
60 cm with a possible error in measurement of 0.1 cm. Use 
differentials to estimate the maximum error possible in 
computing the area of the window.

106–108 Express the limit as a derivative and evaluate.

 106. lim
x l1

 
x 17 2 1
x 2 1

 107. lim
h l 0

 
s4 16 1 h 2 2

h

 108. lim
" l !y3

 
cos " 2 0.5

" 2 !y3

 109. Evaluate lim
x l 0

 
s1 1 tan x 2 s1 1 sin x 

x 3 .

 110.  Suppose f  is a differentiable function such that f stsxdd − x 
and f 9sxd − 1 1 f f sxdg2. Show that t9sxd − 1ys1 1 x 2 d.

 111. Find f 9sxd if it is known that

d
dx

 f f s2xdg − x 2

 112.  Show that the length of the portion of any tangent line to the 
astroid x 2y3 1 y 2y3 − a 2y3 cut off by the coordinate axes is 
constant.

;

;

 (b)  Find the rate of change of the volume with respect to the 
radius if the height is constant.

 91.  The mass of part of a wire is xs1 1 sx d kilograms, where  
x is measured in meters from one end of the wire. Find the 
linear density of the wire when x − 4 m.

 92.  The cost, in dollars, of producing x units of a certain com- 
modity is

Csxd − 920 1 2x 2 0.02x 2 1 0.00007x 3

 (a) Find the marginal cost function.
 (b) Find C9s100d and explain its meaning.
 (c)  Compare C9s100d with the cost of producing the  

101st item.

 93.  A bacteria culture contains 200 cells initially and grows at a 
rate proportional to its size. After half an hour the population 
has increased to 360 cells.

 (a)  Find the number of bacteria after t hours.
 (b)  Find the number of bacteria after 4 hours.
 (c) Find the rate of growth after 4 hours.
 (d) When will the population reach 10,000?

 94.  Cobalt-60 has a half-life of 5.24 years.
 (a)  Find the mass that remains from a 100-mg sample after  

20 years.
 (b)  How long would it take for the mass to decay to 1 mg?

 95.  Let Cstd be the concentration of a drug in the bloodstream. As  
the body eliminates the drug, Cstd decreases at a rate that is 
proportional to the amount of the drug that is present at the 
time. Thus C9std − 2kCstd, where k is a positive number 
called the elimination constant of the drug.

 (a)  If C0 is the concentration at time t − 0, find the concen-
tration at time t.

 (b)  If the body eliminates half the drug in 30 hours, how long 
does it take to eliminate 90% of the drug?

 96.  A cup of hot chocolate has temperature 80°C in a room kept  
at 20°C. After half an hour the hot chocolate cools to 60°C.

 (a)  What is the temperature of the chocolate after another 
half hour?

 (b)  When will the chocolate have cooled to 40°C?

 97.  The volume of a cube is increasing at a rate of 10 cm3ymin. 
How fast is the surface area increasing when the length of an 
edge is 30 cm?

 98.  A paper cup has the shape of a cone with height 10 cm and 
radius 3 cm (at the top). If water is poured into the cup at a 
rate of 2 cm3ys, how fast is the water level rising when the 
water is 5 cm deep?

 99.  A balloon is rising at a constant speed of 5 ftys. A boy is 
cycling along a straight road at a speed of 15 ftys. When he 
passes under the balloon, it is 45 ft above him. How fast is the 
distance between the boy and the balloon increasing 3 s later?
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Problems Plus Before you look at the examples, cover up the solutions and try them yourself first.

EXAMPLE 1 How many lines are tangent to both of the parabolas y − 21 2 x 2 and 
y − 1 1 x 2? Find the coordinates of the points at which these tangents touch the  
parabolas.

SOLUTION To gain insight into this problem, it is essential to draw a diagram. So we 
sketch the parabolas y − 1 1 x 2 (which is the standard parabola y − x 2 shifted 1 unit 
upward) and y − 21 2 x 2 (which is obtained by reflecting the first parabola about the  
x-axis). If we try to draw a line tangent to both parabolas, we soon discover that there 
are only two possibilities, as illustrated in Figure 1.

Let P be a point at which one of these tangents touches the upper parabola and let a 
be its x-coordinate. (The choice of notation for the unknown is important. Of course we  
could have used b or c or x0 or x1 instead of a. However, it’s not advisable to use x in 
place of a because that x could be confused with the variable x in the equation of the 
parabola.) Then, since P lies on the parabola y − 1 1 x 2, its y-coordinate must be 
1 1 a 2. Because of the symmetry shown in Figure 1, the coordinates of the point Q 
where the tangent touches the lower parabola must be s2a, 2s1 1 a 2 dd.

To use the given information that the line is a tangent, we equate the slope of the 
line PQ to the slope of the tangent line at P. We have

mPQ −
1 1 a 2 2 s21 2 a 2 d

a 2 s2ad
−

1 1 a 2

a

If f sxd − 1 1 x 2, then the slope of the tangent line at P is f 9sad − 2a. Thus the condi-
tion that we need to use is that

1 1 a 2

a
− 2a

Solving this equation, we get 1 1 a 2 − 2a 2, so a 2 − 1 and a − 61. Therefore the 
points are (1, 2) and s21, 22d. By symmetry, the two remaining points are s21, 2d and 
s1, 22d. Q

EXAMPLE 2 For what values of c does the equation ln x − cx 2 have exactly one  
solution?

SOLUTION One of the most important principles of problem solving is to draw a dia- 
gram, even if the problem as stated doesn’t explicitly mention a geometric situation. 
Our present problem can be reformulated geometrically as follows: For what values of 
c does the curve y − ln x intersect the curve y − cx 2 in exactly one point?

Let’s start by graphing y − ln x and y − cx 2 for various values of c. We know that, 
for c ± 0, y − cx 2 is a parabola that opens upward if c . 0 and downward if c , 0. 
Figure 2 shows the parabolas y − cx 2 for several positive values of c. Most of them 
don’t intersect y − ln x at all and one intersects twice. We have the feeling that there 
must be a value of c (somewhere between 0.1 and 0.3) for which the curves intersect 
exactly once, as in Figure 3.

To find that particular value of c, we let a be the x-coordinate of the single point of 
intersection. In other words, ln a − ca 2, so a is the unique solution of the given equa-
tion. We see from Figure 3 that the curves just touch, so they have a common tangent 
line when x − a. That means the curves y − ln x and y − cx 2 have the same slope 
when x − a. Therefore

1
a

− 2ca

x

y

P

Q

1

_1

FIGURE 1

0

3≈ ≈
0.3≈

0.1≈

≈1
2

x

y

y=ln x

FIGURE 2

y=c≈
c=?

y

x0 a

y=ln x

FIGURE 3
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Solving the equations ln a − ca 2 and 1ya − 2ca, we get

ln a − ca 2 − c ?
1
2c

−
1
2

Thus a − e 1y2 and

c −
ln a
a 2 −

ln e 1y2

e
−

1
2e

For negative values of c we have the situation illustrated in Figure 4: All parabolas 
y − cx 2 with negative values of c intersect y − ln x exactly once. And let’s not forget 
about c − 0: The curve y − 0x 2 − 0 is just the x-axis, which intersects y − ln x 
exactly once.

To summarize, the required values of c are c − 1ys2ed and c < 0. Q

 1.  Find points P and Q on the parabola y − 1 2 x 2 so that the triangle ABC formed by the  
x-axis and the tangent lines at P and Q is an equilateral triangle. (See the figure.)

x

y

P Q

A

0B C

 2.  Find the point where the curves y − x 3 2 3x 1 4 and y − 3sx 2 2 xd are tangent to each 
other, that is, have a common tangent line. Illustrate by sketching both curves and the  
common tangent.

 3.  Show that the tangent lines to the parabola y − ax 2 1 bx 1 c at any two points with  
x-coordinates p and q must intersect at a point whose x-coordinate is halfway between p  
and q.

 4.  Show that

d
dx S sin2x

1 1 cot x
1

cos2x
1 1 tan xD − 2cos 2x

 5.  If f sxd − lim
t l x

 
sec t 2 sec x

t 2 x
, find the value of f 9s!y4d.

 6. Find the values of the constants a and b such that

lim
x l 0

 
 s3 ax 1 b 2 2

x
−

5
12

 7. Show that sin21stanh xd − tan21ssinh xd.

 8.  A car is traveling at night along a highway shaped like a parabola with its vertex at the 
origin (see the figure). The car starts at a point 100 m west and 100 m north of the origin 
and travels in an easterly direction. There is a statue located 100 m east and 50 m north of 
the origin. At what point on the highway will the car’s headlights illuminate the statue?

 9. Prove that 
d n

dx n  ssin4x 1 cos4xd − 4n21  coss4x 1 n!y2d.

y

x
0

y=ln x

FIGURE 4

Problems

;

x

y

FIGURE FOR PROBLEM 8
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 10. If f  is differentiable at a, where a . 0, evaluate the following limit in terms of f 9sad:

lim
x l a

 
 f sxd 2 f sad
sx  2 sa  

 11.  The figure shows a circle with radius 1 inscribed in the parabola y − x 2. Find the center of 
the circle.

x0

y

11

y=≈

 12.  Find all values of c such that the parabolas y − 4x 2 and x − c 1 2y 2 intersect each other 
at right angles.

 13.  How many lines are tangent to both of the circles x 2 1 y 2 − 4 and x 2 1 sy 2 3d2 − 1?  
At what points do these tangent lines touch the circles?

 14.  If f sxd −
x 46 1 x 45 1 2

1 1 x
, calculate f s46ds3d. Express your answer using factorial notation:

  n! − 1 ? 2 ? 3 ? ∙ ∙ ∙ ? sn 2 1d ? n.

 15.  The figure shows a rotating wheel with radius 40 cm and a connecting rod AP with length  
1.2 m. The pin P slides back and forth along the x-axis as the wheel rotates counter-
clockwise at a rate of 360 revolutions per minute.

 (a)  Find the angular velocity of the connecting rod, d!ydt, in radians per second,  
when " − #y3.

 (b) Express the distance x − | OP | in terms of ".
 (c) Find an expression for the velocity of the pin P in terms of ".

A

P(x, 0)
¨ å

x

y

O

 16.  Tangent lines T1 and T2 are drawn at two points P1 and P2 on the parabola y − x 2 and they 
intersect at a point P. Another tangent line T is drawn at a point between P1 and P2; it 
intersects T1 at Q1 and T2 at Q2. Show that

| PQ1 |
| PP1 | 1 | PQ2 |

| PP2 | − 1

 17. Show that

d n

dx n  se ax sin bxd − r ne ax sinsbx 1 n"d

  where a and b are positive numbers, r 2 − a 2 1 b 2, and " − tan21sbyad.
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 18. Evaluate lim
x l #

 
e sin x 2 1

x 2 #
.

 19.  Let T and N be the tangent and normal lines to the ellipse x 2y9 1 y 2y4 − 1 at any point 
P on the ellipse in the first quadrant. Let xT and yT be the x- and y-intercepts of T and xN 
and yN be the intercepts of N. As P moves along the ellipse in the first quadrant (but not 
on the axes), what values can xT, yT, xN, and yN take on? First try to guess the answers just 
by looking at the figure. Then use calculus to solve the problem and see how good your 
intuition is.

xN xT

yT

yN

3

2

T

N

P

x

y

0

 20. Evaluate lim
x l 0

 
sins3 1 xd2 2 sin 9

x
.

 21. (a)  Use the identity for tansx 2 yd (see Equation 14b in Appendix D) to show that if two 
lines L1 and L 2 intersect at an angle !, then

tan ! −
m2 2 m1

1 1 m1m2

   where m1 and m2 are the slopes of L1 and L 2, respectively.
  (b)  The angle between the curves C1 and C2 at a point of intersection P is defined to be  

the angle between the tangent lines to C1 and C2 at P (if these tangent lines exist). Use 
part (a) to find, correct to the nearest degree, the angle between each pair of curves at 
each point of intersection.

   (i) y − x 2  and  y − sx 2 2d2

   (ii) x 2 2 y 2 − 3  and  x 2 2 4x 1 y 2 1 3 − 0

 22.  Let Psx1, y1d be a point on the parabola y 2 − 4px with focus Fsp, 0d. Let ! be the angle 
between the parabola and the line segment FP, and let $ be the angle between the 
horizontal line y − y1 and the parabola as in the figure. Prove that ! − $. (Thus, by a 
prin ciple of geometrical optics, light from a source placed at F will be reflected along a 
line parallel to the x-axis. This explains why paraboloids, the surfaces obtained by rotating 
parabolas about their axes, are used as the shape of some automobile headlights and 
mirrors for telescopes.)

0 x

y

F(p, 0)

P(⁄, ›)

¥=4px

y=›

å

∫
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 23.  Suppose that we replace the parabolic mirror of Problem 22 by a spherical mirror. 
Although the mirror has no focus, we can show the existence of an approximate focus. 
In the figure, C is a semicircle with center O. A ray of light coming in toward the mirror 
parallel to the axis along the line PQ will be reflected to the point R on the axis so that 
/PQO − /OQR (the angle of incidence is equal to the angle of reflection). What happens 
to the point R as P is taken closer and closer to the axis?

 24. If f  and t are differentiable functions with f s0d − ts0d − 0 and t9s0d ± 0, show that

lim
x l 0

 
 f sxd
tsxd

−
 f 9s0d
t9s0d

 25. Evaluate lim
x l 0

 
sinsa 1 2xd 2 2 sinsa 1 xd 1 sin a

x 2 .

 26. (a)  The cubic function f sxd − xsx 2 2dsx 2 6d has three distinct zeros: 0, 2, and 6. Graph  
f  and its tangent lines at the average of each pair of zeros. What do you notice?

  (b)  Suppose the cubic function f sxd − sx 2 adsx 2 bdsx 2 cd has three distinct zeros:  
a, b, and c. Prove, with the help of a computer algebra system, that a tangent line 
drawn at the average of the zeros a and b intersects the graph of f  at the third zero.

 27.  For what value of k does the equation e2x − ksx  have exactly one solution?

 28. For which positive numbers a is it true that a x > 1 1 x for all x?

 29. If

y −
x

sa 2 2 1
2

2

sa 2 2 1
 arctan 

sin x

a 1 sa 2 2 1 1 cos x

  show that y9 −
1

a 1 cos x
.

 30.  Given an ellipse x 2ya 2 1 y 2yb 2 − 1, where a ± b, find the equation of the set of all points 
from which there are two tangents to the curve whose slopes are (a) reciprocals and  
(b) negative reciprocals.

 31.  Find the two points on the curve y − x 4 2 2x 2 2 x that have a common tangent line.

 32.  Suppose that three points on the parabola y − x 2 have the property that their normal lines 
intersect at a common point. Show that the sum of their x-coordinates is 0.

 33.  A lattice point in the plane is a point with integer coordinates. Suppose that circles with 
radius r are drawn using all lattice points as centers. Find the smallest value of r such that 
any line with slope 25 intersects some of these circles.

 34.  A cone of radius r centimeters and height h centimeters is lowered point first at a rate of 
1 cmys into a tall cylinder of radius R centimeters that is partially filled with water. How 
fast is the water level rising at the instant the cone is completely submerged?

 35.  A container in the shape of an inverted cone has height 16 cm and radius 5 cm at the top. It  
is partially filled with a liquid that oozes through the sides at a rate proportional to the area  
of the container that is in contact with the liquid. (The surface area of a cone is #rl, where 
r is the radius and l is the slant height.) If we pour the liquid into the container at a rate of 
2 cm3ymin, then the height of the liquid decreases at a rate of 0.3 cmymin when the height  
is 10 cm. If our goal is to keep the liquid at a constant height of 10 cm, at what rate should 
we pour the liquid into the container?

OR

P
Q

¨
¨

C

A

FIGURE FOR PROBLEM 23

CAS
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When we view the world 
around us, the light entering 

the eye near the center of the 
pupil is perceived brighter 

than light entering closer to 
the edges of the pupil. This 

phenomenon, known as 
the Stiles–Crawford effect, is 

explored as the pupil changes 
in radius in Exercise 80  

on page 313. 

Applications of Differentiation4

© Tatiana Makotra / Shutterstock.com

WE HAVE ALREADY INVESTIGATED SOME of the applications of derivatives, but now that we 
know the differen tiation rules we are in a better position to pursue the applications of differentia-
tion in greater depth. Here we learn how derivatives affect the shape of a graph of a function and, 
in particular, how they help us locate maximum and minimum values of functions. Many practi-
cal problems require us to minimize a cost or maximize an area or somehow find the best possible 
outcome of a situation. In particular, we will be able to investigate the optimal shape of a can and 
to explain the location of rainbows in the sky.
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276 CHAPTER 4  Applications of Differentiation

Some of the most important applications of differential calculus are optimization prob-
lems, in which we are required to find the optimal (best) way of doing something. Here 
are examples of such problems that we will solve in this chapter:

 What is the shape of a can that minimizes manufacturing costs?

 What is the maximum acceleration of a space shuttle? (This is an important 
question to the astronauts who have to withstand the effects of acceleration.)

 What is the radius of a contracted windpipe that expels air most rapidly during 
a cough?

 At what angle should blood vessels branch so as to minimize the energy  
expended by the heart in pumping blood?

These problems can be reduced to finding the maximum or minimum values of a func-
tion. Let’s first explain exactly what we mean by maximum and minimum values.

We see that the highest point on the graph of the function f  shown in Figure 1 is the 
point s3, 5d. In other words, the largest value of f  is f s3d − 5. Likewise, the smallest 
value is f s6d − 2. We say that f s3d − 5 is the absolute maximum of f  and f s6d − 2 is 
the absolute minimum. In general, we use the following definition.

1   Definition Let c be a number in the domain D of a function f. Then f scd is 
the

 value of f  on D if f scd > f sxd for all x in D.

 value of f  on D if f scd < f sxd for all x in D.

An absolute maximum or minimum is sometimes called a  maximum or mini-
mum. The maximum and minimum values of f  are called  of f .

Figure 2 shows the graph of a function f  with absolute maximum at d and absolute 
minimum at a. Note that sd, f sddd is the highest point on the graph and sa, f sadd is the 
lowest point. In Figure 2, if we consider only values of x near b [for instance, if we 
restrict our attention to the interval sa, cd], then f sbd is the largest of those values of f sxd 
and is called a local maximum value of f . Likewise, f scd is called a local minimum value 
of f  because f scd < f sxd for x near c [in the interval sb, dd, for instance]. The function f  
also has a local minimum at e. In general, we have the following definition.

2   Definition The number f scd is a

 value of f  if f scd > f sxd when x is near c.

 value of f  if f scd < f sxd when x is near c.

In Definition 2 (and elsewhere), if we say that something is true  c, we mean that it 
is true on some open interval containing c. For instance, in Figure 3 we see that f s4d − 5 
is a local minimum because it’s the smallest value of f  on the interval I. It’s not the abso-
lute minimum because f sxd takes smaller values when x is near 12 (in the interval K,  
for instance). In fact f s12d − 3 is both a local minimum and the absolute minimum. 
Similarly, f s8d − 7 is a local maximum, but not the absolute maximum because f  takes 
larger values near 1.

FIGURE 1
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EXAMPLE 1 The function f sxd − cos x takes on its (local and absolute) maxi-
mum value of 1 infinitely many times, since cos 2n! − 1 for any integer n and 
21 < cos x < 1 for all x. (See Figure 4.) Likewise, coss2n 1 1d! − 21 is its mini-
mum value, where n is any integer.

 

0

y

x

Local and absolute maximum

Local and absolute minimum

π 2π 3π

  Q

EXAMPLE 2 If f sxd − x 2, then f sxd > f s0d because x 2 > 0 for all x. Therefore 
f s0d − 0 is the absolute (and local) minimum value of f. This corresponds to the fact 
that the origin is the lowest point on the parabola y − x 2. (See Figure 5.) However, 
there is no highest point on the parabola and so this function has no maximum value.  Q

EXAMPLE 3 From the graph of the function f sxd − x 3, shown in Figure 6, we see that 
this function has neither an absolute maximum value nor an absolute minimum value. 
In fact, it has no local extreme values either. Q

EXAMPLE 4 The graph of the function 

f sxd − 3x 4 2 16x 3 1 18x 2    21 < x < 4 

is shown in Figure 7. You can see that f s1d − 5 is a local maximum, whereas the 
absolute maximum is f s21d − 37. (This absolute maximum is not a local maximum 
because it occurs at an endpoint.) Also, f s0d − 0 is a local minimum and f s3d − 227 
is both a local and an absolute minimum. Note that f  has neither a local nor an absolute 
maximum at x − 4.

 

(_1, 37)

_1 1 2 3 4 5

(3, _27)

(1, 5)

y

x

y=3x$-16˛+18≈

 Q

We have seen that some functions have extreme values, whereas others do not. The 
following theorem gives conditions under which a function is guaranteed to possess 
extreme values.

x

y

0

y=≈

FIGURE 5  
Mimimum value 0, no maximum

FIGURE 6  
No mimimum, no maximum

x

y

0

y=˛

FIGURE 7 

FIGURE 4
y − cosx
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278 CHAPTER 4  Applications of Differentiation

3   The Extreme Value Theorem If f  is continuous on a closed interval fa, bg, 
then f  attains an absolute maximum value f scd and an absolute minimum value 
f sdd at some numbers c and d in fa, bg.

The Extreme Value Theorem is illustrated in Figure 8. Note that an extreme value can 
be taken on more than once. Although the Extreme Value Theorem is intuitively very 
plausible, it is difficult to prove and so we omit the proof.

x

y

0 ba c d x

y

0 ba c¡ d c™x

y

0 d=ba c

FIGURE 8  Functions continuous on a closed interval always attain extreme values.

Figures 9 and 10 show that a function need not possess extreme values if either 
hypothe sis (continuity or closed interval) is omitted from the Extreme Value Theorem.

1

x

y

0

FIGURE 10
This continuous function g has
no maximum or minimum.

2

1

x

y

0

FIGURE 9
This function has minimum value
f(2)=0, but no maximum value.

2

3

The function f  whose graph is shown in Figure 9 is defined on the closed interval 
[0, 2] but has no maximum value. (Notice that the range of f  is [0, 3). The function 
takes on val ues arbitrarily close to 3, but never actually attains the value 3.) This does 
not contradict the Extreme Value Theorem because f  is not continuous. [Nonetheless, a 
discontinuous function could have maximum and minimum values. See Exercise 13(b).]

The function t shown in Figure 10 is continuous on the open interval (0, 2) but has 
neither a maximum nor a minimum value. [The range of t is s1, `d. The function takes 
on arbitrarily large values.] This does not contradict the Extreme Value Theorem because 
the interval (0, 2) is not closed.

The Extreme Value Theorem says that a continuous function on a closed interval has a 
maximum value and a minimum value, but it does not tell us how to find these extreme 
values. Notice in Figure 8 that the absolute maximum and minimum values that are 
between a and b occur at local maximum or minimum values, so we start by looking for 
local extreme values.

Figure 11 shows the graph of a function f  with a local maximum at c and a local  
minimum at d. It appears that at the maximum and minimum points the tangent lines are 
hor izontal and therefore each has slope 0. We know that the derivative is the slope of the 

0 xc d

y
{c, f (c)}

{d, f (d)}

FIGURE 11 
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 SECTION 4.1  Maximum and Minimum Values 279

tan gent line, so it appears that f 9scd − 0 and f 9sdd − 0. The following theorem says that 
this is always true for differentiable functions.

4   Fermat’s Theorem If f  has a local maximum or minimum at c, and if f 9scd 
exists, then f 9scd − 0.

PROOF Suppose, for the sake of definiteness, that f  has a local maximum at c. Then, 
according to Definition 2, f scd > f sxd if x is sufficiently close to c. This implies that if h 
is sufficiently close to 0, with h being positive or negative, then

f scd > f sc 1 hd

and therefore

5  f sc 1 hd 2 f scd < 0

We can divide both sides of an inequality by a positive number. Thus, if h . 0 and h is 
sufficiently small, we have

 f sc 1 hd 2 f scd
h

< 0

Taking the right-hand limit of both sides of this inequality (using Theorem 2.3.2), we get

lim
hl

 

01
 
 f sc 1 hd 2 f scd

h
< lim

h l
 

01 
0 − 0

But since f 9scd exists, we have

f 9scd − lim
h l 0

 
 f sc 1 hd 2 f scd

h
− lim

h l
 

01
 
 f sc 1 hd 2 f scd

h

and so we have shown that f 9scd < 0.
If h , 0, then the direction of the inequality (5) is reversed when we divide by h:

 f sc 1 hd 2 f scd
h

> 0    h , 0

So, taking the left-hand limit, we have

f 9scd − lim
h l 0

 
 f sc 1 hd 2 f scd

h
− lim

h l
 

02 
 f sc 1 hd 2 f scd

h
> 0

We have shown that f 9scd > 0 and also that f 9scd < 0. Since both of these inequalities 
must be true, the only possibility is that f 9scd − 0.

We have proved Fermat’s Theorem for the case of a local maximum. The case of 
a local minimum can be proved in a similar manner, or we could use Exercise 78 to 
deduce it from the case we have just proved (see Exercise 79). Q

The following examples caution us against reading too much into Fermat’s Theorem: 
We can’t expect to locate extreme values simply by setting f 9sxd − 0 and solving for x.

Fermat
Fermat’s Theorem is named after 
Pierre Fermat (1601–1665), a French 
lawyer who took up mathematics as 
a hobby. Despite his amateur status, 
Fermat was one of the two inventors 
of analytic geometry (Descartes was 
the other). His methods for finding 
tangents to curves and maximum and 
minimum values (before the invention 
of limits and derivatives) made him a 
forerunner of Newton in the creation 
of differ ential calculus.
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280 CHAPTER 4  Applications of Differentiation

EXAMPLE 5 If f sxd − x 3, then f 9sxd − 3x 2, so f 9s0d − 0. But f  has no maximum 
or minimum at 0, as you can see from its graph in Figure 12. (Or observe that x 3 . 0 
for x . 0 but x 3 , 0 for x , 0.) The fact that f 9s0d − 0 simply means that the curve 
y − x 3 has a horizontal tangent at s0, 0d. Instead of having a maximum or minimum at 
s0, 0d, the curve crosses its horizontal tangent there. Q

EXAMPLE 6 The function f sxd − | x | has its (local and absolute) minimum value at 
0, but that value can’t be found by setting f 9sxd − 0 because, as was shown in Example 
2.8.5, f 9s0d does not exist. (See Figure 13.) Q

WARNING  Examples 5 and 6 show that we must be careful when using Fermat’s Theo-
rem. Example 5 demonstrates that even when f 9scd − 0 there need not be a maximum 
or minimum at c. (In other words, the converse of Fermat’s Theorem is false in gen-
eral.) Fur thermore, there may be an extreme value even when f 9scd does not exist (as in 
Example 6).

Fermat’s Theorem does suggest that we should at least start looking for extreme val-
ues of f  at the numbers c where f 9scd − 0 or where f 9scd does not exist. Such numbers 
are given a special name.

6   Definition A  of a function f  is a number c in the domain of 
f  such that either f 9scd − 0 or f 9scd does not exist.

EXAMPLE 7 Find the critical numbers of f sxd − x 3y5s4 2 xd.

SOLUTION The Product Rule gives

  f 9sxd − x 3y5s21d 1 s4 2 xd(3
5 x22y5) − 2x 3y5 1

3s4 2 xd
5x 2 y5

 −
25x 1 3s4 2 xd

5x 2y5 −
12 2 8x

5x 2y5

[The same result could be obtained by first writing f sxd − 4x 3y5 2 x 8y5.] Therefore 
f 9sxd − 0 if 12 2 8x − 0, that is, x − 3

2, and f 9sxd does not exist when x − 0. Thus the 
critical numbers are 32 and 0. Q

In terms of critical numbers, Fermat’s Theorem can be rephrased as follows (compare 
Definition 6 with Theorem 4):

7   If f  has a local maximum or minimum at c, then c is a critical number of f.

To find an absolute maximum or minimum of a continuous function on a closed 
interval, we note that either it is local [in which case it occurs at a critical number by (7)] 
or it occurs at an endpoint of the interval, as we see from the examples in Figure 8. Thus 
the following three-step procedure always works.

Figure 14 shows a graph of the function 
f  in Example 7. It supports our answer 
because there is a horizontal tangent 
when x − 1.5 fwhere f 9sxd − 0g and  
a vertical tangent when x − 0 fwhere 
f 9sxd is undefinedg.

3.5

_2

_0.5 5

FIGURE 14

FIGURE 12 
If f sxd − x 3, then  f 9s0d − 0,  
but f  has no maximum  
or minimum.

y=˛

x

y

0

FIGURE 13 
If f sxd − | x |, then  f s0d − 0 is  
a minimum value, but f 9s0d does  
not exist.

x0

y=|x|

y
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 SECTION 4.1  Maximum and Minimum Values 281

The Closed Interval Method To find the absolute maximum and minimum values 
of a continuous function f  on a closed interval fa, bg:
1. Find the values of f  at the critical numbers of f  in sa, bd.
2.   Find the values of f  at the endpoints of the interval.

3.  The largest of the values from Steps 1 and 2 is the absolute maximum value;  
the smallest of these values is the absolute minimum value.

EXAMPLE 8 Find the absolute maximum and minimum values of the function

f sxd − x 3 2 3x 2 1 1    21
2 < x < 4

SOLUTION Since f  is continuous on f21
2, 4g, we can use the Closed Interval Method:

 f sxd − x 3 2 3x 2 1 1

  f 9sxd − 3x 2 2 6x − 3xsx 2 2d

Since f 9sxd exists for all x, the only critical numbers of f  occur when f 9sxd − 0, that is, 
x − 0 or x − 2. Notice that each of these critical numbers lies in the interval s21

2, 4d. 
The values of f  at these critical numbers are

f s0d − 1      f s2d − 23

The values of f  at the endpoints of the interval are

f s21
2 d − 1

8      f s4d − 17

Comparing these four numbers, we see that the absolute maximum value is f s4d − 17 
and the absolute minimum value is f s2d − 23.

Note that in this example the absolute maximum occurs at an endpoint, whereas the 
absolute minimum occurs at a critical number. The graph of f  is sketched in Figure 15.

 Q

If you have a graphing calculator or a computer with graphing software, it is possible 
to estimate maximum and minimum values very easily. But, as the next example shows, 
calculus is needed to find the exact values.

EXAMPLE 9 
(a) Use a graphing device to estimate the absolute minimum and maximum values of 
the function f sxd − x 2 2 sin x, 0 < x < 2!.
(b) Use calculus to find the exact minimum and maximum values.

SOLUTION  
(a) Figure 16 shows a graph of f  in the viewing rectangle f0, 2!g by f21, 8g. By 
moving the cursor close to the maximum point, we see that the y-coordinates don’t 
change very much in the vicinity of the maximum. The absolute maximum value is 
about 6.97 and it occurs when x < 5.2. Similarly, by moving the cursor close to the 
minimum point, we see that the absolute minimum value is about 20.68 and it occurs 
when x < 1.0. It is possible to get more accurate estimates by zooming in toward the 
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282 CHAPTER 4  Applications of Differentiation

maximum and minimum points (or using a built-in maximum or minimum feature),  
but instead let’s use calculus.

(b) The function f sxd − x 2 2 sin x is continuous on f0, 2!g. Since  
f 9sxd − 1 2 2 cos x, we have f 9sxd − 0 when cos x − 1

2 and this occurs when  
x − !y3 or 5!y3. The values of f  at these critical numbers are

  f s!y3d −
!

3
2 2 sin 

!

3
−

!

3
2 s3 < 20.684853

and   f s5!y3d −
5!

3
2 2 sin 

5!

3
−

5!

3
1 s3 < 6.968039

The values of f  at the endpoints are 

f s0d − 0    and    f s2!d − 2! < 6.28

Comparing these four numbers and using the Closed Interval Method, we see that the 
absolute minimum value is f s!y3d − !y3 2 s3  and the absolute maximum value is 
f s5!y3d − 5!y3 1 s3 . The values from part (a) serve as a check on our work. Q

EXAMPLE 10 The Hubble Space Telescope was deployed on April 24, 1990, by the 
space shuttle Discovery. A model for the velocity of the shuttle during this mission, 
from liftoff at t − 0 until the solid rocket boosters were jettisoned at t − 126 seconds, 
is given by

vstd − 0.001302t 3 2 0.09029t 2 1 23.61t 2 3.083

(in feet per second). Using this model, estimate the absolute maximum and minimum 
values of the acceleration of the shuttle between liftoff and the jettisoning of the 
boosters.

SOLUTION We are asked for the extreme values not of the given velocity function, 
but rather of the acceleration function. So we first need to differentiate to find the 
acceleration:

 astd − v9std −
d
dt

 s0.001302t 3 2 0.09029t 2 1 23.61t 2 3.083d

 − 0.003906t 2 2 0.18058t 1 23.61

We now apply the Closed Interval Method to the continuous function a on the interval 
0 < t < 126. Its derivative is

a9std − 0.007812t 2 0.18058

The only critical number occurs when a9std − 0:

t1 −
0.18058
0.007812

< 23.12

Evaluating astd at the critical number and at the endpoints, we have

as0d − 23.61      ast1d < 21.52      as126d < 62.87

So the maximum acceleration is about 62.87 ftys2 and the minimum acceleration is  
about 21.52 ftys2. Q

NA
SA
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 (c)  Sketch the graph of a function that has a local maximum  
at 2 and is not continuous at 2.

 12. (a)  Sketch the graph of a function on [21, 2] that has an  
absolute maximum but no local maximum.

 (b)  Sketch the graph of a function on [21, 2] that has a local 
maximum but no absolute maximum.

 13. (a)  Sketch the graph of a function on [21, 2] that has an  
absolute maximum but no absolute minimum.

 (b)  Sketch the graph of a function on [21, 2] that is dis-
continuous but has both an absolute maximum and an 
absolute minimum.

 14. (a)  Sketch the graph of a function that has two local max-
ima, one local minimum, and no absolute minimum.

 (b)  Sketch the graph of a function that has three local min-
ima, two local maxima, and seven critical numbers.

15–28 Sketch the graph of f  by hand and use your sketch to  
find the absolute and local maximum and minimum values of f. 
(Use the graphs and transformations of Sections 1.2 and 1.3.)

 15. f sxd − 1
2s3x 2 1d,  x < 3

 16. f sxd − 2 2 1
3 x,  x > 22

 17. f sxd − 1yx,  x > 1

 18. f sxd − 1yx,  1 , x , 3

 19. f sxd − sin x,  0 < x , !y2

 20. f sxd − sin x,  0 , x < !y2

 21. f sxd − sin x,  2!y2 < x < !y2

 22. f std − cos t,  23!y2 < t < 3!y2

 23. f sxd − ln x,  0 , x < 2

 24. f sxd − | x |
 25. f sxd − 1 2 sx 

 26. f sxd − e x

 27. f sxd − Hx 2

2 2 3x
if 21 < x < 0
if 0 , x < 1

 28. f sxd − H2x 1 1
4 2 2x

if 0 < x , 1
if 1 < x < 3

29–44 Find the critical numbers of the function.

 29. f sxd − 4 1 1
3 x 2 1

2x 2 30. f sxd − x 3 1 6x 2 2 15x

 31. f sxd − 2x 3 2 3x 2 2 36x 32. f sxd − 2x 3 1 x 2 1 2x

 33. tstd − t 4 1 t 3 1 t 2 1 1 34. tstd − | 3t 2 4 |
 35. tsyd −

y 2 1
y 2 2 y 1 1

 36. hspd −
p 2 1
p2 1 4

 1.   Explain the difference between an absolute minimum and a 
local minimum.

 2.  Suppose f  is a continuous function defined on a closed 
interval fa, bg.

 (a)  What theorem guarantees the existence of an absolute 
max imum value and an absolute minimum value for f ?

 (b)  What steps would you take to find those maximum and 
minimum values?

3–4 For each of the numbers a, b, c, d, r, and s, state whether the 
function whose graph is shown has an absolute maximum or min-
imum, a local maximum or minimum, or neither a maximum  
nor a minimum.

3. 

x

y

0 a b c d r s

  4. 

x

y

0 a b c d r s

5–6 Use the graph to state the absolute and local maximum and 
minimum values of the function.

5. y

0 x

y=ƒ
1

1

  6. y

0 x

y=©

1

1

7–10 Sketch the graph of a function f  that is continuous on [1, 5] 
and has the given properties.

 7.  Absolute maximum at 5, absolute minimum at 2,  
local maximum at 3, local minima at 2 and 4

 8.  Absolute maximum at 4, absolute minimum at 5,  
local maximum at 2, local minimum at 3

 9.  Absolute minimum at 3, absolute maximum at 4,  
local maximum at 2

 10.  Absolute maximum at 2, absolute minimum at 5, 4 is a 
critical number but there is no local maximum or minimum 
there.

 11. (a)  Sketch the graph of a function that has a local maximum  
at 2 and is differentiable at 2.

 (b)  Sketch the graph of a function that has a local maximum  
at 2 and is continuous but not differentiable at 2.
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284 CHAPTER 4  Applications of Differentiation

 67. f sxd − xsx 2 x 2 

 68. f sxd − x 2 2 cos x,  22 < x < 0

 69.  After the consumption of an alcoholic beverage, the concen-
tration of alcohol in the bloodstream (blood alcohol concentra-
tion, or BAC) surges as the alcohol is absorbed, followed by a 
gradual decline as the alcohol is metabolized. The function 

Cstd − 1.35te22.802 t

models the average BAC, measured in mgymL, of a group of 
eight male subjects t hours after rapid consumption of 15 mL 
of ethanol (corresponding to one alcoholic drink). What is the 
maximum average BAC during the first 3 hours? When does 
it occur?
Source: Adapted from P. Wilkinson et al., “Pharmacokinetics of Ethanol after 
Oral Administration in the Fasting State,” Journal of Pharmacokinetics and 
Biopharmaceutics 5 (1977): 207–24.

 70.  After an antibiotic tablet is taken, the concentration of the 
antibiotic in the bloodstream is modeled by the function

Cstd − 8se20.4 t 2 e20.6 t d

where the time t is measured in hours and C is measured in  
mgymL. What is the maximum concentration of the antibiotic 
during the first 12 hours?

 71.  Between 0°C and 30°C, the volume V (in cubic centimeters) 
of 1 kg of water at a temperature T is given approximately by 
the formula

V − 999.87 2 0.06426T 1 0.0085043T 2 2 0.0000679T 3

Find the temperature at which water has its maximum density.

 72.  An object with weight W is dragged along a horizontal plane 
by a force acting along a rope attached to the object. If the 
rope makes an angle ! with the plane, then the magnitude of 
the force is

F −
"W

" sin ! 1 cos !

where " is a positive constant called the coefficient of friction 
and where 0 < ! < #y2. Show that F is minimized when 
tan ! − ".

 73.  The water level, measured in feet above mean sea level, of 
Lake Lanier in Georgia, USA, during 2012 can be modeled 
by the function 

Lstd − 0.01441t 3 2 0.4177t 2 1 2.703t 1 1060.1

where t is measured in months since January 1, 2012. Esti-
mate when the water level was highest during 2012.

 74.  On May 7, 1992, the space shuttle Endeavour was launched  
on mission STS-49, the purpose of which was to install a new 
perigee kick motor in an Intelsat communications satellite. 
The table gives the velocity data for the shuttle between liftoff 
and the jettisoning of the solid rocket boosters.

 (a)  Use a graphing calculator or computer to find the cubic 
polynomial that best models the velocity of the shuttle for 

;

 37. hstd − t 3y4 2 2 t 1y4 38. tsxd − s3 4 2 x 2 

 39. Fsxd − x 4y5sx 2 4d2  40. ts!d − 4! 2 tan !

 41. f s!d − 2 cos ! 1 sin2! 42. hstd − 3t 2 arcsin t

 43. f sxd − x 2e23x 44. f sxd − x 22 ln x

45–46 A formula for the derivative of a function f  is given. 
How many critical numbers does f  have?

 45. f 9sxd − 5e20.1 | x | sinx 2 1 46. f 9sxd −
100 cos2 x
10 1 x 2 2 1

47–62 Find the absolute maximum and absolute minimum 
values of f  on the given interval.

 47. f sxd − 12 1 4x 2 x 2,  f0, 5g

 48. f sxd − 5 1 54x 2 2x 3,  f0, 4g

 49. f sxd − 2x 3 2 3x 2 2 12x 1 1,  f22, 3g

 50. f sxd − x 3 2 6x 2 1 5,  f23, 5g

 51. f sxd − 3x 4 2 4x 3 2 12x 2 1 1,  f22, 3g

 52. f std − st 2 2 4d3,  f22, 3g

 53. f sxd − x 1
1
x

,  f0.2, 4g

 54. f sxd −
x

x 2 2 x 1 1
,  f0, 3g

 55. f std − t 2 s3 t ,  f21, 4g

 56. f std −
st 

1 1 t 2 ,  f0, 2g

 57. f std − 2cos t 1 sin 2t,  f0, #y2g

 58. f std − t 1 cot sty2d,  f#y4, 7#y4g

 59. f sxd − x22 ln x ,  f1
2, 4g

 60. f sxd − xe xy2,  f23, 1g

 61. f sxd − lnsx 2 1 x 1 1d, f21, 1g

 62. f sxd − x 2 2 tan21x,  f0, 4g

 63.  If a and b are positive numbers, find the maximum value  
of f sxd − x as1 2 xdb, 0 < x < 1.

 64.  Use a graph to estimate the critical numbers of 
f sxd − |1 1 5x 2 x 3 | correct to one decimal place.

 65–68
(a)  Use a graph to estimate the absolute maximum and  

minimum values of the function to two decimal places.
(b)  Use calculus to find the exact maximum and minimum 

values.

 65. f sxd − x 5 2 x 3 1 2,  21 < x < 1

 66. f sxd − e x 1 e22x,  0 < x < 1

;

;

;
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the time interval t [ f0, 125g. Then graph this polynomial.
 (b)  Find a model for the acceleration of the shuttle and use it 

to estimate the maximum and minimum values of the 
acceleration during the first 125 seconds.

Event Time (s) Velocity (ftys)

Launch   0    0
Begin roll maneuver  10  185
End roll maneuver  15  319
Throttle to 89%  20  447
Throttle to 67%  32  742
Throttle to 104%  59 1325
Maximum dynamic pressure  62 1445
Solid rocket booster separation 125 4151

 75.  When a foreign object lodged in the trachea (windpipe) forces 
a person to cough, the diaphragm thrusts upward causing an 
increase in pressure in the lungs. This is accompanied by a 
contraction of the trachea, making a narrower channel for 
the expelled air to flow through. For a given amount of air to 
escape in a fixed time, it must move faster through the narrower 
channel than the wider one. The greater the velocity of the air-
stream, the greater the force on the foreign object. X rays show 
that the radius of the circular tracheal tube contracts to about 
two-thirds of its normal radius during a cough. According to 
a mathematical model of coughing, the velocity v of the air-
stream is related to the radius r of the trachea by the equation

vsrd − ksr0 2 rdr 2    1
2 r0 < r < r0

where k is a constant and r0 is the normal radius of the trachea. 

The restriction on r is due to the fact that the tracheal wall 
stiffens under pressure and a contraction greater than 12 r0 is 
prevented (otherwise the person would suffocate).

 (a)  Determine the value of r in the interval f 1
2 r0, r0g at 

which v has an absolute maximum. How does this 
compare with experimental evidence?

 (b)  What is the absolute maximum value of v on the  
interval?

 (c) Sketch the graph of v on the interval f0, r0 g.

 76.  Show that 5 is a critical number of the function

tsxd − 2 1 sx 2 5d3

but t does not have a local extreme value at 5.

 77.  Prove that the function

f sxd − x 101 1 x 51 1 x 1 1

has neither a local maximum nor a local minimum.

 78.  If f  has a local minimum value at c, show that the function 
tsxd − 2f sxd has a local maximum value at c.

 79.  Prove Fermat’s Theorem for the case in which f  has a 
local minimum at c.

 80.  A cubic function is a polynomial of degree 3; that is, it has 
the form f sxd − ax 3 1 bx 2 1 cx 1 d, where a ± 0.

 (a)  Show that a cubic function can have two, one, or no 
critical number(s). Give examples and sketches to 
illustrate the three possibilities.

 (b)  How many local extreme values can a cubic function 
have?

APPLIED PROJECT 

Rainbows are created when raindrops scatter sunlight. They have fascinated mankind since 
ancient times and have inspired attempts at scientific explanation since the time of Aristotle. In 
this project we use the ideas of Descartes and Newton to explain the shape, location, and colors 
of rainbows. 

 1.  The figure shows a ray of sunlight entering a spherical raindrop at A. Some of the 
light is reflected, but the line AB shows the path of the part that enters the drop. Notice 
that the light is refracted toward the normal line AO and in fact Snell’s Law says that 
sin " − k sin #, where " is the angle of incidence, # is the angle of refraction, and k < 4

3 
is the index of refraction for water. At B some of the light passes through the drop and is 
refracted into the air, but the line BC shows the part that is reflected. (The angle of inci-
dence equals the angle of reflection.) When the ray reaches C, part of it is reflected, but for 
the time being we are more interested in the part that leaves the raindrop at C. (Notice that 
it is refracted away from the normal line.) The angle of deviation Ds"d is the amount of 
clockwise rotation that the ray has undergone during this three-stage process. Thus

Ds"d − s" 2 #d 1 s! 2 2#d 1 s" 2 #d − ! 1 2" 2 4#

 Show that the minimum value of the deviation is Ds"d < 1388 and occurs when " < 59.48 .

THE CALCULUS OF RAINBOWS
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LABORATORY PROJECT

Bimportant. Figure 1 displays data from an observational study that clearly depicts this trend.

 1.  Draw the causal diagram that corresponds to the initial expectationt.

 2.  Suppose.

 3.  Suppose.

THE PARADOX

The significance of the minimum deviation is that when " < 59.48 we have D9s"d < 0, 
so DDyD" < 0. This means that many rays with " < 59.48 become deviated by approxi-
mately the same amount. It is the concentration of rays coming from near the direction of 
minimum deviation that creates the brightness of the primary rainbow. The figure at the left 
shows that the angle of elevation from the observer up to the highest point on the rainbow 
is 1808 2 1388 − 428 . (This angle is called the rainbow angle.)

 2.  Problem 1 explains the location of the primary rainbow, but how do we explain the colors? 
Sunlight comprises a range of wavelengths, from the red range through orange, yellow, 
green, blue, indigo, and violet. As Newton discovered in his prism experiments of 1666, the 
index of refraction is different for each color. (The effect is called dispersion.) For red light 
the refractive index is k < 1.3318, whereas for violet light it is k < 1.3435. By repeating 
the calculation of Problem 1 for these values of k, show that the rainbow angle is about 
42.38 for the red bow and 40.68 for the violet bow. So the rainbow really consists of seven 
individual bows corresponding to the seven colors.

 3.  Perhaps you have seen a fainter secondary rainbow above the primary bow. That results 
from the part of a ray that enters a raindrop and is refracted at A, reflected twice (at B and 
C), and refracted as it leaves the drop at D (see the figure at the left). This time the devia-
tion angle Ds"d is the total amount of counterclockwise rotation that the ray undergoes in 
this four-stage process. Show that

Ds"d − 2" 2 6# 1 2!

and Ds"d has a minimum value when

cos " − Î k 2 2 1
8

 

Taking k − 4
3, show that the minimum deviation is about 1298 and so the rainbow angle for 

the secondary rainbow is about 518 , as shown in the figure at the left.

 4.  Show that the colors in the secondary rainbow appear in the opposite order from those in 
the primary rainbow.
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 SECTION 4.2  The Mean Value Theorem  287

We will see that many of the results of this chapter depend on one central fact, which is 
called the Mean Value Theorem. But to arrive at the Mean Value Theorem we first need 
the following result.

Rolle’s Theorem Let f  be a function that satisfies the following three hypotheses:

1. f  is continuous on the closed interval fa, bg.
2. f  is differentiable on the open interval sa, bd.
3. f sad − f sbd
Then there is a number c in sa, bd such that f 9scd − 0.

Rolle
Rolle’s Theorem was first published 
in 1691 by the French mathematician 
Michel Rolle (1652–1719) in a book  
entitled Méthode pour resoudre les 
Egalitez. He was a vocal critic of the 
methods of his day and attacked calcu-
lus as being a “collection of ingenious 
fallacies.” Later, however, he became 
convinced of the essential correctness  
of the methods of calculus.

Before giving the proof let’s take a look at the graphs of some typical functions that  
satisfy the three hypotheses. Figure 1 shows the graphs of four such functions. In each 
case it appears that there is at least one point sc, f scdd on the graph where the tangent is 
hori zontal and therefore f 9scd − 0. Thus Rolle’s Theorem is plausible.

(b)

a c b x

y

0

(c)

ba c¡ c™ x

y

0

(d)

ba c

y

x0

(a)

ba c¡ c™ x

y

0

PROOF There are three cases:

CASE I f sxd − k, a constant 
Then f 9sxd − 0, so the number c can be taken to be any number in sa, bd.

CASE II f sxd . f sad for some x in sa, bd [as in Figure 1(b) or (c)]
 By the Extreme Value Theorem (which we can apply by hypothesis 1), f  has a maxi-
mum value somewhere in fa, bg. Since f sad − f sbd, it must attain this maximum value 
at a number c in the open interval sa, bd. Then f  has a local maximum at c and, by 
hypothesis 2, f  is differentiable at c. Therefore f 9scd − 0 by Fermat’s Theorem.

CASE III f sxd , f sad for some x in sa, bd [as in Figure 1(c) or (d)]
By the Extreme Value Theorem, f  has a minimum value in fa, bg and, since 
f sad − f sbd, it attains this minimum value at a number c in sa, bd. Again f 9scd − 0 by 
Fermat’s Theorem. Q

EXAMPLE 1 Let’s apply Rolle’s Theorem to the position function s − f std of a 
moving object. If the object is in the same place at two different instants t − a and 
t − b, then f sad − f sbd. Rolle’s Theorem says that there is some instant of time t − c 
between a and b when f 9scd − 0; that is, the velocity is 0. (In particular, you can see 
that this is true when a ball is thrown directly upward.) Q

EXAMPLE 2 Prove that the equation x 3 1 x 2 1 − 0 has exactly one real root.

SOLUTION First we use the Intermediate Value Theorem (2.5.10) to show that a root 
exists. Let f sxd − x 3 1 x 2 1. Then f s0d − 21 , 0 and f s1d − 1 . 0. Since f  is a 

FIGURE 1 

PS  Take cases
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polynomial, it is continuous, so the Intermediate Value Theorem states that there is a 
number c between 0 and 1 such that f scd − 0. Thus the given equation has a root.

To show that the equation has no other real root, we use Rolle’s Theorem and argue 
by contradiction. Suppose that it had two roots a and b. Then f sad − 0 − f sbd and, 
since f  is a polynomial, it is differentiable on sa, bd and continuous on fa, bg. Thus, by 
Rolle’s Theorem, there is a number c between a and b such that f 9scd − 0. But

f 9sxd − 3x 2 1 1 > 1    for all x

(since x 2 > 0) so f 9sxd can never be 0. This gives a contradiction. Therefore the equa-
tion can’t have two real roots. Q

Our main use of Rolle’s Theorem is in proving the following important theorem, 
which was first stated by another French mathematician, Joseph-Louis Lagrange.

The Mean Value Theorem Let f  be a function that satisfies the following 
hypotheses:

1. f  is continuous on the closed interval fa, bg.
2. f  is differentiable on the open interval sa, bd.
Then there is a number c in sa, bd such that

1   f 9scd −
 f sbd 2 f sad

b 2 a
  or, equivalently,

2   f sbd 2 f sad − f 9scdsb 2 ad

The Mean Value Theorem is an 
example of what is called an existence 
theorem. Like the Intermediate Value 
Theorem, the Extreme Value Theorem, 
and Rolle’s Theorem, it guarantees that 
there exists a number with a certain 
property, but it doesn’t tell us how to 
find the number.

Before proving this theorem, we can see that it is reasonable by interpreting it geomet-
rically. Figures 3 and 4 show the points Asa, f sadd and Bsb, f sbdd on the graphs of two 
dif ferentiable functions. The slope of the secant line AB is

3   mAB −
 f sbd 2 f sad

b 2 a

which is the same expression as on the right side of Equation 1. Since f 9scd is the slope of 
the tangent line at the point sc, f scdd, the Mean Value Theorem, in the form given by Equa-
tion 1, says that there is at least one point Psc, f scdd on the graph where the slope of the 
tangent line is the same as the slope of the secant line AB. In other words, there is a point 
P where the tangent line is parallel to the secant line AB. (Imagine a line far away that 
stays parallel to AB while moving toward AB until it touches the graph for the first time.)

0 x

y

a c b

B{b, f(b)}

P{c, f(c)}

A{a, f(a)}

0 x

y

c¡ c™

BP¡

A P™

ba

FIGURE 3 FIGURE 4

Figure 2 shows a graph of the func-
tion f sxd − x 3 1 x 2 1 discussed in 
Example 2. Rolle’s Theorem shows 
that, no matter how much we enlarge 
the viewing rectangle, we can never 
find a second x-intercept.

FIGURE 2

_2

3

_3

2
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 SECTION 4.2  The Mean Value Theorem 289

PROOF We apply Rolle’s Theorem to a new function h defined as the difference 
between f  and the function whose graph is the secant line AB. Using Equation 3  
and the point-slope equation of a line, we see that the equation of the line AB can  
be written as

y 2 f sad −
 f sbd 2 f sad

b 2 a
 sx 2 ad

or as y − f sad 1
 f sbd 2 f sad

b 2 a
 sx 2 ad

So, as shown in Figure 5,

4   hsxd − f sxd 2 f sad 2
 f sbd 2 f sad

b 2 a
 sx 2 ad

First we must verify that h satisfies the three hypotheses of Rolle’s Theorem.

1.  The function h is continuous on fa, bg because it is the sum of f  and a first-degree 
polynomial, both of which are continuous.

2.  The function h is differentiable on sa, bd because both f  and the first-degree poly-
nomial are differentiable. In fact, we can compute h9 directly from Equation 4:

h9sxd − f 9sxd 2
 f sbd 2 f sad

b 2 a

(Note that f sad and f f sbd 2 f sadgysb 2 ad are constants.)

3.  hsad − f sad 2 f sad 2
 f sbd 2 f sad

b 2 a
 sa 2 ad − 0

  hsbd − f sbd 2 f sad 2
 f sbd 2 f sad

b 2 a
 sb 2 ad

  − f sbd 2 f sad 2 f f sbd 2 f sadg − 0

Therefore hsad − hsbd.

Since h satisfies the hypotheses of Rolle’s Theorem, that theorem says there is a num-
ber c in sa, bd such that h9scd − 0. Therefore

0 − h9scd − f 9scd 2
 f sbd 2 f sad

b 2 a

and so f 9scd −
 f sbd 2 f sad

b 2 a
 Q

EXAMPLE 3 To illustrate the Mean Value Theorem with a specific function, let’s 
consider f sxd − x 3 2 x, a − 0, b − 2. Since f  is a polynomial, it is continuous and 
differentiable for all x, so it is certainly continuous on f0, 2g and differentiable on s0, 2d. 
Therefore, by the Mean Value Theorem, there is a number c in s0, 2d such that

f s2d 2 f s0d − f 9scds2 2 0d

Now f s2d − 6, f s0d − 0, and f 9sxd − 3x 2 2 1, so this equation becomes

6 − s3c 2 2 1d2 − 6c 2 2 2

which gives c 2 − 4
3, that is, c − 62ys3 . But c must lie in s0, 2d, so c − 2ys3 .  

FIGURE 5
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Lagrange and the  
Mean Value Theorem
The Mean Value Theorem was first 
formulated by Joseph-Louis Lagrange 
(1736–1813), born in Italy of a French 
father and an Italian mother. He was a 
child prodigy and became a professor in 
Turin at the tender age of 19. Lagrange 
made great contributions to number 
theory, theory of functions, theory of 
equations, and analytical and celestial 
mechanics. In particular, he applied 
calculus to the analysis of the stability 
of the solar system. At the invitation 
of Frederick the Great, he succeeded 
Euler at the Berlin Academy and, when 
Frederick died, Lagrange accepted King 
Louis XVI’s invitation to Paris, where he 
was given apartments in the Louvre 
and became a professor at the Ecole 
Polytechnique. Despite all the trappings 
of luxury and fame, he was a kind and 
quiet man, living only for science.
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Figure 6 illustrates this calculation: The tangent line at this value of c is parallel to the 
secant line OB.�� Q

EXAMPLE 4 If an object moves in a straight line with position function s − f std, then 
the average velocity between t − a and t − b is

 f sbd 2 f sad
b 2 a

and the velocity at t − c is f 9scd. Thus the Mean Value Theorem (in the form of Equa-
tion 1) tells us that at some time t − c between a and b the instantaneous velocity f 9scd 
is equal to that average velocity. For instance, if a car traveled 180 km in 2 hours, then 
the speedometer must have read 90 kmyh at least once.

In general, the Mean Value Theorem can be interpreted as saying that there is a 
number at which the instantaneous rate of change is equal to the average rate of change 
over an interval.� Q

The main significance of the Mean Value Theorem is that it enables us to obtain infor- 
mation about a function from information about its derivative. The next example pro-
vides an instance of this principle.

EXAMPLE 5 Suppose that f s0d − 23 and f 9sxd < 5 for all values of x. How large can 
f s2d possibly be?

SOLUTION We are given that f  is differentiable (and therefore continuous) everywhere.  
In particular, we can apply the Mean Value Theorem on the interval f0, 2g. There exists 
a number c such that

f s2d 2 f s0d − f 9scds2 2 0d

so f s2d − f s0d 1 2 f 9scd − 23 1 2 f 9scd

We are given that f 9sxd < 5 for all x, so in particular we know that f 9scd < 5. Multiply-
ing both sides of this inequality by 2, we have 2 f 9scd < 10, so

f s2d − 23 1 2 f 9scd < 23 1 10 − 7

The largest possible value for f s2d is 7. Q

The Mean Value Theorem can be used to establish some of the basic facts of differ-
ential calculus. One of these basic facts is the following theorem. Others will be found 
in the following sections.

5   Theorem If f 9sxd − 0 for all x in an interval sa, bd, then f  is constant on sa, bd.

PROOF Let x1 and x2 be any two numbers in sa, bd with x1 , x2. Since f  is differen-
tiable on sa, bd, it must be differentiable on sx1, x2 d and continuous on fx1, x2 g. By 
applying the Mean Value Theorem to f  on the interval fx1, x2 g, we get a number c such 
that x1 , c , x2 and

6   f sx2d 2 f sx1d − f 9scdsx2 2 x1d

Since f 9sxd − 0 for all x, we have f 9scd − 0, and so Equation 6 becomes

f sx2 d 2 f sx1d − 0    or    f sx2 d − f sx1d

FIGURE 6 
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Therefore f  has the same value at any two numbers x1 and x2 in sa, bd. This means that 
f  is constant on sa, bd. Q

7   Corollary If f 9sxd − t9sxd for all x in an interval sa, bd, then f 2 t is constant 
on sa, bd; that is, f sxd − tsxd 1 c where c is a constant.

PROOF Let Fsxd − f sxd 2 tsxd. Then

F9sxd − f 9sxd 2 t9sxd − 0

for all x in sa, bd. Thus, by Theorem 5, F is constant; that is, f 2 t is constant. Q

NOTE Care must be taken in applying Theorem 5. Let

f sxd −
x

| x | − H1
21

if x . 0
if x , 0

The domain of f  is D − hx | x ± 0j and f 9sxd − 0 for all x in D. But f  is obviously not 
a constant function. This does not contradict Theorem 5 because D is not an interval. 
Notice that f  is constant on the interval s0, `d and also on the interval s2`, 0d.

EXAMPLE 6 Prove the identity tan21x 1 cot21x − !y2.

SOLUTION Although calculus isn’t needed to prove this identity, the proof using calcu-
lus is quite simple. If f sxd − tan21x 1 cot21x, then

f 9sxd −
1

1 1 x 2 2
1

1 1 x 2 − 0

for all values of x. Therefore f sxd − C, a constant. To determine the value of C, we put 
x − 1 [because we can evaluate f s1d exactly]. Then

C − f s1d − tan21 1 1 cot21 1 −
!

4
1

!

4
−

!

2
Thus tan21x 1 cot21x − !y2. Q

Corollary 7 says that if two functions 
have the same derivatives on an inter-
val, then their graphs must be vertical 
translations of each other there. In 
other words, the graphs have the same 
shape, but could be shifted up or down.

 1.  The graph of a function f  is shown. Verify that f  satisfies the 
hypotheses of Rolle’s Theorem on the interval f0, 8g. Then 
estimate the value(s) of c that satisfy the conclusion of Rolle’s 
Theorem on that interval.

y=ƒy

x

1

10

 2.  Draw the graph of a function defined on f0, 8g such that 
f s0d − f s8d − 3 and the function does not satisfy the 
conclusion of Rolle’s Theorem on f0, 8g.

 3.  The graph of a function t is shown.

y=©
y

x

1

10

 (a)  Verify that t satisfies the hypotheses of the Mean Value 
Theorem on the interval f0, 8g.

 (b)  Estimate the value(s) of c that satisfy the conclusion of the 
Mean Value Theorem on the interval f0, 8g.

 (c)  Estimate the value(s) of c that satisfy the conclusion of the 
Mean Value Theorem on the interval f2, 6g.
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292 CHAPTER 4  Applications of Differentiation

 4.  Draw the graph of a function that is continuous on f0, 8g 
where f s0d − 1 and f s8d − 4 and that does not satisfy the 
conclusion of the Mean Value Theorem on f0, 8g.

5–8 Verify that the function satisfies the three hypotheses of 
Rolle’s Theorem on the given interval. Then find all numbers c 
that satisfy the conclusion of Rolle’s Theorem.

 5. f sxd − 2x2 2 4x 1 5,  f21, 3g

 6. f sxd − x 3 2 2x 2 2 4x 1 2,  f22, 2g

 7. f sxd − sinsxy2d,  f!y2, 3!y2g

 8. f sxd − x 1 1yx,  f 1
2 , 2g

 9.  Let f sxd − 1 2 x 2y3. Show that f s21d − f s1d but there is 
no number c in s21, 1d such that f 9scd − 0. Why does this 
not contradict Rolle’s Theorem?

 10.  Let f sxd − tan x. Show that f s0d − f s!d but there is no 
number c in s0, !d such that f 9scd − 0. Why does this not 
contradict Rolle’s Theorem?

11–14 Verify that the function satisfies the hypotheses of the 
Mean Value Theorem on the given interval. Then find all num-
bers c that satisfy the conclusion of the Mean Value Theorem.

 11. f sxd − 2x 2 2 3x 1 1,  f0, 2g

 12. f sxd − x 3 2 3x 1 2,  f22, 2g

 13. f sxd − ln x,  f1, 4g 14. f sxd − 1yx,  f1, 3g

15–16 Find the number c that satisfies the conclusion of the 
Mean Value Theorem on the given interval. Graph the func-
tion, the secant line through the endpoints, and the tangent line 
at sc, f scdd. Are the secant line and the tangent line parallel?

 15. f sxd − sx  ,  f0, 4g 16. f sxd − e2x,  f0, 2g

 17.  Let f sxd − sx 2 3d22. Show that there is no value of c 
in s1, 4d such that f s4d 2 f s1d − f 9scds4 2 1d. Why does 
this not contradict the Mean Value Theorem?

 18.  Let f sxd − 2 2 | 2x 2 1|. Show that there is no value of 
c such that f s3d 2 f s0d − f 9scds3 2 0d. Why does this not 
contradict the Mean Value Theorem?

19–20 Show that the equation has exactly one real root.

 19. 2x 1 cos x − 0 20. x 3 1 e x − 0

 21.  Show that the equation x 3 2 15x 1 c − 0 has at most one 
root in the interval f22, 2g.

 22.  Show that the equation x 4 1 4x 1 c − 0 has at most two  
real roots.

 23. (a)  Show that a polynomial of degree 3 has at most three 
real roots.

;

 (b)  Show that a polynomial of degree n has at most n real 
roots.

 24. (a)  Suppose that f  is differentiable on R and has two roots. 
Show that f 9 has at least one root.

 (b)  Suppose f  is twice differentiable on R and has three 
roots. Show that f 0 has at least one real root.

 (c) Can you generalize parts (a) and (b)?

 25.  If f s1d − 10 and f 9sxd > 2 for 1 < x < 4, how small can 
f s4d possibly be?

 26.  Suppose that 3 < f 9sxd < 5 for all values of x. Show that 
18 < f s8d 2 f s2d < 30.

 27.  Does there exist a function f  such that f s0d − 21, f s2d − 4, 
and f 9sxd < 2 for all x?

 28.  Suppose that f  and t are continuous on fa, bg and differ- 
enti able on sa, bd. Suppose also that f sad − tsad and 
f 9sxd , t9sxd for a , x , b. Prove that f sbd , tsbd. [Hint: 
Apply the Mean Value Theorem to the function h − f 2 t.]

 29. Show that sin x , x  if  0 , x , 2!.

 30.  Suppose f  is an odd function and is differentiable every-
where. Prove that for every positive number b, there exists  
a number c in s2b, bd such that f 9scd − f sbdyb.

 31. Use the Mean Value Theorem to prove the inequality

| sin a 2 sin b | < | a 2 b |    for all a and b

 32.  If f 9sxd − c (c a constant) for all x, use Corollary 7 to show 
that f sxd − cx 1 d for some constant d.

 33. Let f sxd − 1yx and

tsxd −     

1
x if x . 0

1 1
1
x

if x , 0

 Show that f 9sxd − t9sxd for all x in their domains. Can we 
conclude from Corollary 7 that f 2 t is constant?

 34. Use the method of Example 6 to prove the identity 

2 sin21x − cos21s1 2 2x 2 d    x > 0

 35. Prove the identity arcsin 
x 2 1
x 1 1

− 2 arctan sx  2
!

2
.

 36.  At 2:00 pm a car’s speedometer reads 30 miyh. At 2:10 pm it 
reads 50 miyh. Show that at some time between 2:00 and 
2:10 the acceleration is exactly 120 miyh2.

 37.  Two runners start a race at the same time and finish in a tie. 
Prove that at some time during the race they have the same 
speed. [Hint: Consider f std − tstd 2 hstd, where t and h are 
the position functions of the two runners.]

 38.  A number a is called a fixed point of a function f  if 
f sad − a. Prove that if f 9sxd ± 1 for all real numbers x, then 
f  has at most one fixed point. 
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Many of the applications of calculus depend on our ability to deduce facts about a func-
tion f  from information concerning its derivatives. Because f 9sxd represents the slope of 
the curve y − f sxd at the point sx, f sxdd, it tells us the direction in which the curve pro-
ceeds at each point. So it is reasonable to expect that information about f 9sxd will provide 
us with information about f sxd.

What Does  f 9 Say About f  ?
To see how the derivative of f  can tell us where a function is increasing or decreasing, 
look at Figure 1. (Increasing functions and decreasing functions were defined in Section 
1.1.) Between A and  B and between C and D, the tangent lines have positive slope and 
so f 9sxd . 0. Between B and C, the tangent lines have negative slope and so f 9sxd , 0. 
Thus it appears that f  increases when f 9sxd is positive and decreases when f 9sxd is nega-
tive. To prove that this is always the case, we use the Mean Value Theorem.

Increasing/Decreasing Test
(a) If f 9sxd . 0 on an interval, then f  is increasing on that interval.

(b) If f 9sxd , 0 on an interval, then f  is decreasing on that interval.

Let’s abbreviate the name of this test to  
the I/D Test.

PROOF
(a) Let x1 and x2 be any two numbers in the interval with x1 , x2. According to the 
definition of an increasing function (page 19), we have to show that f sx1d , f sx2 d.

Because we are given that f 9sxd . 0, we know that f  is differentiable on fx1, x2 g. So, 
by the Mean Value Theorem, there is a number c between x1 and x2 such that

1   f sx2 d 2 f sx1d − f 9scdsx2 2 x1d

Now f 9scd . 0 by assumption and x2 2 x1 . 0 because x1 , x2. Thus the right side of 
Equation 1 is positive, and so

f sx2 d 2 f sx1d . 0    or    f sx1d , f sx2 d

This shows that f  is increasing.
Part (b) is proved similarly. Q

EXAMPLE 1 Find where the function f sxd − 3x 4 2 4x 3 2 12x 2 1 5 is increasing 
and where it is decreasing.

SOLUTION  We start by differentiating f :

f 9sxd − 12x 3 2 12x 2 2 24x − 12xsx 2 2dsx 1 1d

To use the IyD Test we have to know where f 9sxd . 0 and where f 9sxd , 0. To 
solve these inequalities we first find where f 9sxd − 0, namely at x − 0, 2, and 21. 
These are the critical numbers of f , and they divide the domain into four intervals 
(see the number line at the left). Within each interval, f 9sxd must be always posi-
tive or always negative. (See Examples 3 and 4 in Appendix A.) We can determine 
which is the case for each interval from the signs of the three factors of f 9sxd, namely, 
12x, x 2 2, and x 1 1, as shown in the following chart. A plus sign indicates that the 
given expression is positive, and a minus sign indicates that it is negative. The last col-

0_1 2 x

D

A

B

C

y

0 x

FIGURE 1 
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umn of the chart gives the conclusion based on the IyD Test. For instance, f 9sxd , 0 for 
0 , x , 2, so f  is decreasing on (0, 2). (It would also be true to say that f  is decreas-
ing on the closed interval f0, 2g.)

Interval 12x x 2 2 x 1 1 f 9sxd f

 x , 21  2 2 2 2 decreasing on (2`, 21)

 21 , x , 0 2 2 1 1 increasing on (21, 0)

 0 , x , 2 1 2 1 2 decreasing on (0, 2)

 x . 2 1 1 1 1 increasing on (2, `)

The graph of f  shown in Figure 2 confirms the information in the chart. Q

Local Extreme Values
Recall from Section 4.1 that if f  has a local maximum or minimum at c, then c must be 
a critical number of f  (by Fermat’s Theorem), but not every critical number gives rise to 
a maximum or a minimum. We therefore need a test that will tell us whether or not f  has 
a local maximum or minimum at a critical number.

You can see from Figure 2 that f s0d − 5 is a local maximum value of f  because f   
increases on s21, 0d and decreases on s0, 2d. Or, in terms of derivatives, f 9sxd . 0 for 
21 , x , 0 and f 9sxd , 0 for 0 , x , 2. In other words, the sign of f 9sxd changes 
from positive to negative at 0. This observation is the basis of the following test.

The First Derivative Test  Suppose that c is a critical number of a continuous 
function f.

(a)  If f 9 changes from positive to negative at c, then f  has a local maximum at c.

(b)  If f 9 changes from negative to positive at c, then f  has a local minimum at c.

(c)  If f 9 is positive to the left and right of c, or negative to the left and right of c,  
then f  has no local maximum or minimum at c.

The First Derivative Test is a consequence of the IyD Test. In part (a), for instance, 
since the sign of f 9sxd changes from positive to negative at c, f  is increasing to the left of 
c and decreasing to the right of c. It follows that f  has a local maximum at c.

It is easy to remember the First Derivative Test by visualizing diagrams such as those 
in Figure 3.

0 x

y

c

fª(x)>0 fª(x)<0

(a) Local maximum

c0 x

y

fª(x)<0

fª(x)<0

(d) No maximum or minimum(c) No maximum or minimum

c0 x

y

fª(x)>0
fª(x)>0

c0 x

y

fª(x)<0 fª(x)>0

(b) Local minimum

EXAMPLE 2 Find the local minimum and maximum values of the function f  in  
Example 1.

20

_30

_2 3

FIGURE 2 

FIGURE 3 
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SOLUTION From the chart in the solution to Example 1 we see that f 9sxd changes from 
negative to positive at 21, so f s21d − 0 is a local minimum value by the First Deriva-
tive Test. Similarly, f 9 changes from negative to positive at 2, so f s2d − 227 is also a 
local minimum value. As noted previously, f s0d − 5 is a local maximum value because 
f 9sxd changes from positive to negative at 0. Q

EXAMPLE 3 Find the local maximum and minimum values of the function

tsxd − x 1 2 sin x    0 < x < 2!

SOLUTION As in Example 1, we start by finding the critical numbers. The derivative is:

t9sxd − 1 1 2 cos x

so t9sxd − 0 when cos x − 21
2. The solutions of this equation are 2!y3 and 4!y3. 

Because t is differentiable everywhere, the only critical numbers are 2!y3 and 4!y3. 
We split the domain into intervals according to the critical numbers. Within each 
interval, t9sxd is either always positive or always negative and so we analyze t in the 
following chart.

Interval t9sxd − 1 1 2 cos x t
 0 , x , 2!y3 1 increasing on s0, 2!y3d

 2!y3 , x , 4!y3 2 decreasing on s2!y3, 4!y3d
 4!y3 , x , 2! 1 increasing on s4!y3, 2!d

Because t9sxd changes from positive to negative at 2!y3, the First Derivative Test tells 
us that there is a local maximum at 2!y3 and the local maximum value is

ts2!y3d −
2!

3
1 2 sin 

2!

3
−

2!

3
1 2Ss3 

2 D −
2!

3
1 s3 < 3.83

Likewise, t9sxd changes from negative to positive at 4!y3 and so

ts4!y3d −
4!

3
1 2 sin 

4!

3
−

4!

3
1 2S2

s3 

2 D −
4!

3
2 s3 < 2.46

is a local minimum value. The graph of t in Figure 4 supports our conclusion. Q

What Does  f 99 Say About f  ?
Figure 5 shows the graphs of two increasing functions on sa, bd. Both graphs join point 
A to point B but they look different because they bend in different directions. How can 
we dis tinguish between these two types of behavior? 

a b

f

A

B

x

y

0 a

g

A

B

x

y

0

(a) (b)

b

The 1 signs in the chart come from the 
fact that t9sxd . 0 when cos x . 2 1

2. 
From the graph of y − cos x, this is  
true in the indicated intervals.

6

0 2π2π
3

4π
3

FIGURE 4  
tsxd − x 1 2 sin x

FIGURE 5  
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In Figure 6 tangents to these curves have been drawn at several points. In (a) the curve 
lies above the tangents and f  is called concave upward on sa, bd. In (b) the curve lies 
below the tangents and t is called concave downward on sa, bd.

 Definition If the graph of f  lies above all of its tangents on an interval I, then it is 
called concave upward on I. If the graph of f  lies below all of its tangents on I, it 
is called concave downward on I.

Figure 7 shows the graph of a function that is concave upward (abbreviated CU) on 
the intervals sb, cd, sd, ed, and se, pd and concave downward (CD) on the intervals sa, bd, 
sc, dd, and sp, qd.

a b c d e p q

B C

D
P

x

y

0

CD CU CD CU CDCU

FIGURE 7 

Let’s see how the second derivative helps determine the intervals of concavity. Look-
ing at Figure 6(a), you can see that, going from left to right, the slope of the tangent 
increas es. This means that the derivative f 9 is an increasing function and therefore its 
derivative f 0 is positive. Likewise, in Figure 6(b) the slope of the tangent decreases from 
left to right, so f 9 decreases and therefore f 0 is negative. This reasoning can be reversed 
and suggests that the following theorem is true. A proof is given in Appendix F with the 
help of the Mean Value Theorem.

Concavity Test
(a) If f 0sxd . 0 for all x in I, then the graph of f  is concave upward on I.

(b) If f 0sxd , 0 for all x in I, then the graph of f  is concave downward on I.

EXAMPLE 4 Figure 8 shows a population graph for Cyprian honeybees raised in an  
apiary. How does the rate of population increase change over time? When is this rate 
highest? Over what intervals is P concave upward or concave downward?

t

P

3

20

0
Time (in weeks)

6 9 12 15

40

60

80

Number of bees
(in thousands)

18

g

A

B

x

y

0

f

A

B

x

y

0

(a) Concave upward

(b) Concave downward

FIGURE 6  

FIGURE 8  
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SOLUTION By looking at the slope of the curve as t increases, we see that the rate 
of increase of the population is initially very small, then gets larger until it reaches a 
maximum at about t − 12 weeks, and decreases as the population begins to level off. 
As the population approaches its maximum value of about 75,000 (called the carrying 
capacity), the rate of increase, P9std, approaches 0. The curve appears to be concave 
upward on (0, 12) and concave downward on (12, 18). Q

In Example 4, the population curve changed from concave upward to concave down-
ward at approximately the point (12, 38,000). This point is called an inflection point of 
the curve. The significance of this point is that the rate of population increase has its 
maximum value there. In general, an inflection point is a point where a curve changes its 
direction of concavity.

 Definition A point P on a curve y − f sxd is called an inflection point if f  is con-
tinuous there and the curve changes from concave upward to concave downward or 
from concave downward to concave upward at P.

For instance, in Figure 7, B, C, D, and P are the points of inflection. Notice that if a 
curve has a tangent at a point of inflection, then the curve crosses its tangent there.

In view of the Concavity Test, there is a point of inflection at any point where the 
second derivative changes sign.

EXAMPLE 5 Sketch a possible graph of a function f  that satisfies the following  
conditions:

   sid f 9sxd . 0 on s2`, 1d, f 9sxd , 0 on s1, `d
   siid f 0sxd . 0 on s2`, 22d and s2, `d, f 0sxd , 0 on s22, 2d
 siiid lim

x l
 

2`
 f sxd − 22,  lim

x l
 

`
 f sxd − 0

SOLUTION Condition (i) tells us that f  is increasing on s2`, 1d and decreasing on 
s1, `d. Condition (ii) says that f  is concave upward on s2`, 22d and s2, `d, and con-
cave downward on s22, 2d. From condition (iii) we know that the graph of f  has two 
horizontal asymptotes: y − 22 (to the left) and y − 0 (to the right).

We first draw the horizontal asymptote y − 22 as a dashed line (see Figure 9). We 
then draw the graph of f  approaching this asymptote at the far left, increasing to its 
maximum point at x − 1, and decreasing toward the x-axis as at the far right. We also 
make sure that the graph has inflection points when x − 22 and 2. Notice that we 
made the curve bend upward for x , 22 and x . 2, and bend downward when x is 
between 22 and 2. Q

Another application of the second derivative is the following test for identifying local 
maximum and minimum values. It is a consequence of the Concavity Test, and serves as 
an alternative to the First Derivative Test.

The Second Derivative Test  Suppose f 0 is continuous near c.

(a) If f 9scd − 0 and f 0scd . 0, then f  has a local minimum at c.

(b) If f 9scd − 0 and f 0scd , 0, then f  has a local maximum at c.

For instance, part (a) is true because f 0sxd . 0 near c and so f  is concave upward  
near c. This means that the graph of f  lies above its horizontal tangent at c and so f  has  
a local minimum at c. (See Figure 10.)

x

y=_2

0 1 2-2

y

FIGURE 9  

f ª(c)=0
f(c)

ƒ

c

P

x x

y

0

f

FIGURE 10  
f 99scd . 0,  f  is concave upward
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EXAMPLE 6 Discuss the curve y − x 4 2 4x 3 with respect to concavity, points of  
inflection, and local maxima and minima. Use this information to sketch the curve.

SOLUTION If f sxd − x 4 2 4x 3, then

 f 9sxd − 4x 3 2 12x 2 − 4x 2sx 2 3d

 f 0sxd − 12x 2 2 24x − 12xsx 2 2d

To find the critical numbers we set f 9sxd − 0 and obtain x − 0 and x − 3. (Note that f 9 
is a polynomial and hence defined everywhere.) To use the Second Derivative Test we 
evaluate f 0 at these critical numbers:

f 0s0d − 0      f 0s3d − 36 . 0

Since f 9s3d − 0 and f 0s3d . 0, f s3d − 227 is a local minimum. [In fact, the expres-
sion for f 9sxd shows that f  decreases to the left of 3 and increases to the right of 3.] 
Since f 0s0d − 0, the Second Derivative Test gives no information about the critical 
number 0. But since f 9sxd , 0 for x , 0 and also for 0 , x , 3, the First Derivative 
Test tells us that f  does not have a local maximum or minimum at 0. 

Since f 0sxd − 0 when x − 0 or 2, we divide the real line into intervals with these 
numbers as endpoints and complete the following chart.

Interval f 99sxd − 12x sx 2 2d Concavity

s2`, 0d 1 upward

s0, 2d 2 downward

s2, `d 1 upward

The point s0, 0d is an inflection point since the curve changes from concave upward 
to concave downward there. Also s2, 216d is an inflection point since the curve 
changes from concave downward to concave upward there.

Using the local minimum, the intervals of concavity, and the inflection points, we 
sketch the curve in Figure 11. Q

NOTE The Second Derivative Test is inconclusive when f 0scd − 0. In other words, 
at such a point there might be a maximum, there might be a minimum, or there might be 
neither (as in Example 6). This test also fails when f 0scd does not exist. In such cases the 
First Derivative Test must be used. In fact, even when both tests apply, the First Deriva-
tive Test is often the easier one to use.

EXAMPLE 7 Sketch the graph of the function f sxd − x 2y3s6 2 xd1y3.

SOLUTION Calculation of the first two derivatives gives 

f 9sxd −
4 2 x

x 1y3s6 2 xd2y3       f 0sxd −
28

x 4y3s6 2 xd5y3

Since f 9sxd − 0 when x − 4 and f 9sxd does not exist when x − 0 or x − 6, the critical 
numbers are 0, 4, and 6.

x

y

2 3

(2, _16)

(3, _27)

y=x$-4˛

inflection
points

(0, 0)

FIGURE 11 

Use the differentiation rules to check  
these calculations.
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Interval 4 2 x x1y3 s6 2 xd2y3 f 9sxd f

 x , 0 1 2 1 2 decreasing on s2`, 0d
 0 , x , 4 1 1 1 1 increasing on s0, 4d
 4 , x , 6 2 1 1 2 decreasing on s4, 6d

 x . 6 2 1 1 2 decreasing on s6, `d

To find the local extreme values we use the First Derivative Test. Since f 9 changes 
from negative to positive at 0, f s0d − 0 is a local minimum. Since f 9 changes from pos-
itive to negative at 4, f s4d − 25y3 is a local maximum. The sign of f 9 does not change 
at 6, so there is no minimum or maximum there. (The Second Derivative Test could be 
used at 4 but not at 0 or 6 since f 0 does not exist at either of these numbers.)

Looking at the expression for f 0sxd and noting that x 4y3 > 0 for all x, we have 
f 0sxd , 0 for x , 0 and for 0 , x , 6 and f 0sxd . 0 for x . 6. So f  is concave 
downward on s2`, 0d and s0, 6d and concave upward on s6, `d, and the only inflec-
tion point is s6, 0d. The graph is sketched in Figure 12. Note that the curve has vertical 
tangents at s0, 0d and s6, 0d because | f 9sxd | l ` as x l 0 and as x l 6. Q

EXAMPLE 8 Use the first and second derivatives of f sxd − e 1yx, together with asymp-
totes, to sketch its graph.

SOLUTION Notice that the domain of f  is hx | x ± 0j, so we check for vertical 
asymptotes by computing the left and right limits as x l 0. As x l 01, we know that 
t − 1yx l `, so

lim
xl 01

e 1yx − lim
tl `

 e t − `

and this shows that x − 0 is a vertical asymptote. As x l 02, we have  
t − 1yx l 2`, so

lim
xl 02

e 1yx − lim
tl2`

 e t − 0

As x l 6`, we have 1yx l 0 and so

lim
xl 6`

e 1yx − e 0 − 1

This shows that y − 1 is a horizontal asymptote (both to the left and right).
Now let’s compute the derivative. The Chain Rule gives

f 9sxd − 2
e 1yx

x 2

Since e 1yx . 0 and x 2 . 0 for all x ± 0, we have f 9sxd , 0 for all x ± 0. Thus f  is 
decreasing on s2`, 0d and on s0, `d. There is no critical number, so the function has no 
local maximum or minimum. The second derivative is

f 0sxd − 2
x 2e 1yxs21yx 2 d 2 e 1yxs2xd

x 4 −
e 1yxs2x 1 1d

x 4

Since e 1yx . 0 and x 4 . 0, we have f 0sxd . 0 when x . 21
2 sx ± 0d and f 0sxd , 0 

when x , 21
2. So the curve is concave downward on s2`, 21

2 d and concave upward on 

s21
2, 0d and on s0, `d. The inflection point is s21

2, e22d.
To sketch the graph of f  we first draw the horizontal asymptote y − 1 (as a dashed 

line), together with the parts of the curve near the asymptotes in a preliminary sketch 

y

x0

2
3
4

1 2 3 4 5 7

(4, 2%?# )

y=x@ ?#(6-x)! ?#

FIGURE 12 

TEC  In Module 4.3 you can practice 
using information about f 9, f 0, and 
asymptotes to determine the shape of 
the graph of f.

Try reproducing the graph in Fig ure 12 
with a graphing calculator or computer. 
Some machines produce the complete 
graph, some produce only the portion 
to the right of the y-axis, and some 
produce only the portion between 
x − 0 and x − 6. For an explanation 
and cure, see Example 7 in “Graphing 
Calculators and Computers” at  
www.stewartcalculus.com. An equiva-
lent expression that gives the correct 
graph is
 

y − sx 2 d1y3 ?
6 2 x

| 6 2 x | | 6 2 x |1y3
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[Figure 13(a)]. These parts reflect the information concerning limits and the fact 
that f  is decreasing on both s2`, 0d and s0, `d. Notice that we have indicated that 
f sxd l 0 as x l 02 even though f s0d does not exist. In Figure 13(b) we finish the 
sketch by incorporating the information concerning concavity and the inflection point. 
In Figure 13(c) we check our work with a graphing device.

(a) Preliminary sketch (b) Finished sketch (c) Computer confirmation

4

_1

_3 3

x0

y

y=1

y=‰

inflection
point

x0

y

y=1

FIGURE 13  Q

1–2 Use the given graph of f  to find the following.
(a) The open intervals on which f  is increasing.
(b) The open intervals on which f  is decreasing.
(c) The open intervals on which f  is concave upward.
(d) The open intervals on which f  is concave downward.
(e) The coordinates of the points of inflection.

 1. y

0 x

1

1

  2. y

0 x

1

1

 3. Suppose you are given a formula for a function f.
 (a)  How do you determine where f  is increasing or  

decreasing?
 (b)  How do you determine where the graph of f  is concave 

upward or concave downward?
 (c) How do you locate inflection points?

  4.  (a) State the First Derivative Test.
 (b)  State the Second Derivative Test. Under what circum-

stances is it inconclusive? What do you do if it fails?

5–6 The graph of the derivative f 9 of a function f  is shown.
(a) On what intervals is f  increasing or decreasing?

(b)  At what values of x does f  have a local maximum or  
minimum?

 5. 

2 4 6 x

y

0

y=fª(x)

 6. 

0

y

x

y=fª(x)

2 4 6 8

 7.  In each part state the x-coordinates of the inflection points  
of f. Give reasons for your answers.

 (a) The curve is the graph of f.
 (b) The curve is the graph of f 9.
 (c) The curve is the graph of f 0.

2

y

0 x4 6 8
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 27.  f 9s0d − f 9s2d − f 9s4d − 0,  
 f 9sxd . 0 if x , 0 or 2 , x , 4,  
 f 9sxd , 0 if 0 , x , 2 or x . 4,  
 f 0sxd . 0 if 1 , x , 3,  f 0sxd , 0 if x , 1 or x . 3

 28.  f 9sxd . 0 for all x ± 1,  vertical asymptote x − 1,
 f 99sxd . 0 if x , 1 or x . 3,  f 99sxd , 0 if 1 , x , 3

 29.  f 9s5d − 0,  f 9sxd , 0 when x , 5,
 f 9sxd . 0 when x . 5,  f 99s2d − 0,  f 99s8d − 0,
 f 99sxd , 0 when x , 2 or x . 8,
 f 99sxd . 0 for 2 , x , 8,  lim

xl`
 f sxd − 3,  lim

xl 2`
 f sxd − 3

 30.  f 9s0d − f 9s4d − 0,  f 9sxd − 1 if x , 21,
 f 9sxd . 0 if 0 , x , 2,
 f 9sxd , 0 if 21 , x , 0 or 2 , x , 4 or x . 4,
 lim

x l22
f 9sxd − `,  lim

x l21
f 9sxd − 2`,

  f 99sxd . 0 if 21 , x , 2 or 2 , x , 4,   
f 0sxd , 0 if x . 4

 31.  f 9sxd . 0 if x ± 2,  f 99sxd . 0 if x , 2,
 f 99sxd , 0 if x . 2,  f  has inflection point s2, 5d,
 lim

xl`
 f sxd − 8,  lim

xl 2`
 f sxd − 0

 32.  Suppose f s3d − 2,  f 9s3d − 1
2, and f 9sxd . 0 and f 0sxd , 0 

for all x.
 (a) Sketch a possible graph for f.
 (b)  How many solutions does the equation f sxd − 0 have? 

Why?
 (c) Is it possible that f 9s2d − 1

3? Why?

 33.  Suppose f  is a continuous function where f sxd . 0 for all x, 
f s0d − 4,  f 9sxd . 0 if x , 0 or x . 2,  f 9sxd , 0 
if 0 , x , 2,  f 99s21d − f 99s1d − 0,  f 99sxd . 0 if 
x , 21 or x . 1,  f 99sxd , 0 if 21 , x , 1.

 (a)  Can f  have an absolute maximum? If so, sketch a possible 
graph of f. If not, explain why.

 (b)  Can f  have an absolute minimum? If so, sketch a possible 
graph of f. If not, explain why.

 (c)  Sketch a possible graph for f  that does not achieve an 
absolute minimum.

 34.  The graph of a function y − f sxd is shown. At which point(s) 
are the following true?

 (a) 
dy
dx

 and 
d 2y
dx 2  are both positive.

 (b)  
dy
dx

 and 
d 2y
dx 2   are both negative.

 (c) 
dy
dx

 is negative but 
d 2y
dx 2  is positive.

0

y

x

A B

C
DD

E

 8.  The graph of the first derivative f 9 of a function f  is shown.
 (a) On what intervals is f  increasing? Explain.
 (b)  At what values of x does f  have a local maximum or  

minimum? Explain.
 (c)  On what intervals is f  concave upward or concave down-

ward? Explain.
 (d)  What are the x-coordinates of the inflection points of f ? 

Why?

0

y

x2 4 6 8

y=fª(x)

9–18
(a) Find the intervals on which f  is increasing or decreasing.
(b) Find the local maximum and minimum values of f.
(c) Find the intervals of concavity and the inflection points.

 9.  f sxd − x 3 2 3x 2 2 9x 1 4

 10.  f sxd − 2x 3 2 9x 2 1 12x 2 3

 11. f sxd − x4 2 2x2 1 3 12. f sxd −
x

x 2 1 1
 13. f sxd − sin x 1 cos x,    0 < x < 2!

 14. f sxd − cos2x 2 2 sin x,  0 < x < 2!

 15. f sxd − e2x 1 e2x 16. f sxd − x 2 ln x

 17. f sxd − x 2 2 x 2 ln x 18. f sxd − x 4e2x

19–21 Find the local maximum and minimum values of f  using 
both the First and Second Derivative Tests. Which method do you 
prefer?

 19. f sxd − 1 1 3x 2 2 2x 3 20. f sxd −
x 2

x 2 1
 21. f sxd − sx  2 s4 x  

 22.  (a) Find the critical numbers of f sxd − x 4sx 2 1d3.
 (b)  What does the Second Derivative Test tell you about the 

behavior of f  at these critical numbers?
 (c) What does the First Derivative Test tell you?

 23. Suppose f 0 is continuous on s2`, `d.
 (a)  If f 9s2d − 0 and f 0s2d − 25, what can you say about f ?
 (b)  If f 9s6d − 0 and f 0s6d − 0, what can you say about f ?

24–31 Sketch the graph of a function that satisfies all of the given 
conditions.

 24.  (a) f 9sxd , 0 and f 0sxd , 0 for all x
 (b) f 9sxd . 0 and f 0sxd . 0 for all x

 25.  (a) f 9sxd . 0 and f 0sxd , 0 for all x
 (b) f 9sxd , 0 and f 0sxd . 0 for all x

 26. Vertical asymptote x − 0,   f 9sxd . 0 if x , 22,
 f 9sxd , 0 if x . 22 sx ± 0d,
 f 0sxd , 0 if x , 0,  f 0sxd . 0 if x . 0

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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(e)  Use the information from parts (a)–(d) to sketch the graph  
of f.

 49. f sxd − 1 1
1
x

2
1
x 2  50. f sxd −

x 2 2 4
x 2 1 4

 51. f sxd − sx 2 1 1 2 x 52. f sxd −
e x

1 2 e x

 53. f sxd − e2x 2
 54. f sxd − x 2 1

6 x 2 2 2
3 ln x

 55. f sxd − lns1 2 ln xd 56. f sxd − earctan x

 57.  Suppose the derivative of a function f  is 
f 9sxd − sx 1 1d2 sx 2 3d5 sx 2 6d4. On what interval is f  
increasing?

 58.  Use the methods of this section to sketch the curve 
y − x 3 2 3a 2x 1 2a 3, where a is a positive constant. What 
do the members of this family of curves have in common? 
How do they differ from each other?

59–60
(a)  Use a graph of f  to estimate the maximum and minimum  

values. Then find the exact values.
(b)  Estimate the value of x at which f  increases most rapidly. 

Then find the exact value.

 59. f sxd −
x 1 1

sx 2 1 1
 60. f sxd − x 2 e2x

61–62
(a)  Use a graph of f  to give a rough estimate of the intervals of 

concavity and the coordinates of the points of inflection.
(b) Use a graph of f 0 to give better estimates.

 61. f sxd − sin 2x 1 sin 4x,  0 < x < !

 62. f sxd − sx 2 1d2 sx 1 1d3

63–64 Estimate the intervals of concavity to one decimal place 
by using a computer algebra system to compute and graph f 0.

 63. f sxd −
x 4 1 x 3 1 1

sx 2 1 x 1 1 
 64. f sxd −

x 2 tan21 x
1 1 x 3

 65.  A graph of a population of yeast cells in a new laboratory 
culture as a function of time is shown.

2 6 10 14 184 8 12 160
Time (in hours)

Number
of

yeast cells

100
200
300
400
500
600
700

 (a) Describe how the rate of population increase varies.

;

;

CAS

35–36 The graph of the derivative f 9 of a continuous function f  
is shown.
(a) On what intervals is f  increasing? Decreasing?
(b)  At what values of x does f  have a local maximum? Local 

minimum?
(c) On what intervals is f  concave upward? Concave downward?
(d) State the x-coordinate(s) of the point(s) of inflection.
(e) Assuming that f s0d − 0, sketch a graph of f.

 35.  

2 4 6 8

y

0 x

_2

y=fª(x)

2

 36. 
y

0 x2 4 6 8

_2

y=fª(x)

2

37–48 
(a) Find the intervals of increase or decrease.
(b) Find the local maximum and minimum values.
(c) Find the intervals of concavity and the inflection points.
(d)  Use the information from parts (a)–(c) to sketch the graph. 

Check your work with a graphing device if you have one.

 37. f sxd − x 3 2 12x 1 2 38. f sxd − 36x 1 3x 2 2 2x 3

 39. f sxd − 1
2 x 4 2 4x 2 1 3 40. tsxd − 200 1 8x 3 1 x 4

 41. hsxd − sx 1 1d5 2 5x 2 2 42. hsxd − 5x 3 2 3x 5

 43. Fsxd − xs6 2 x  44.  Gsxd − 5x 2y3 2 2x 5y3

 45. Csxd − x1y3sx 1 4d 46. f sxd − lnsx 2 1 9d

 47.  f s"d − 2 cos " 1 cos2",  0 < " < 2!

 48. Ssxd − x 2 sin x,  0 < x < 4!

49–56
(a) Find the vertical and horizontal asymptotes.
(b) Find the intervals of increase or decrease.
(c) Find the local maximum and minimum values.
(d) Find the intervals of concavity and the inflection points.
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the positive constant # is called the standard deviation. For 
simplicity, let’s scale the function so as to remove the factor 
1ys#s2! d and let’s analyze the special case where $ − 0. 
So we study the function

f sxd − e2x 2ys2# 2d

 (a)  Find the asymptote, maximum value, and inflection 
points of f .

 (b) What role does # play in the shape of the curve? 
 (c)  Illustrate by graphing four members of this family on the 

same screen.

 73.  Find a cubic function f sxd − ax 3 1 bx 2 1 cx 1 d that has a 
local maximum value of 3 at x − 22 and a local minimum 
value of 0 at x − 1.

 74. For what values of the numbers a and b does the function

f sxd − axe bx2

have the maximum value f s2d − 1?

 75.  (a)  If the function f sxd − x 3 1 ax 2 1 bx has the local mini-
mum value 22

9 s3  at x − 1ys3 , what are the values of a 
and b?

 (b)  Which of the tangent lines to the curve in part (a) has the 
smallest slope?

 76.  For what values of a and b is s2, 2.5d an inflection point of the 
curve x 2y 1 ax 1 by − 0? What additional inflection points 
does the curve have?

 77.  Show that the curve y − s1 1 xdys1 1 x 2d has three points 
of inflection and they all lie on one straight line.

 78.  Show that the curves y − e2x and y − 2e2x touch the curve 
y − e2x sin x at its inflection points.

 79.  Show that the inflection points of the curve y − x sin x lie on 
the curve y 2sx 2 1 4d − 4x 2.

80–82 Assume that all of the functions are twice differentiable 
and the second derivatives are never 0.

 80.  (a)  If f  and t are concave upward on I, show that f 1 t is 
concave upward on I.

 (b)  If f  is positive and concave upward on I, show that the 
function tsxd − f f sxdg 2 is concave upward on I.

 81.  (a)  If f  and t are positive, increasing, concave upward func-
tions on I, show that the product function ft is concave 
upward on I.

 (b)  Show that part (a) remains true if f  and t are both  
decreasing.

 (c)  Suppose f  is increasing and t is decreasing. Show, by  
giving three examples, that ft may be concave upward, 
concave downward, or linear. Why doesn’t the argument 
in parts (a) and (b) work in this case?

 82.  Suppose f  and t are both concave upward on s2`, `d.  
Under what condition on f  will the composite function 
hsxd − f stsxdd be concave upward?

;

 (b) When is this rate highest?
 (c)  On what intervals is the population function concave 

upward or downward?
 (d) Estimate the coordinates of the inflection point.

 66.  In an episode of The Simpsons television show, Homer 
reads from a newspaper and announces “Here’s good news! 
According to this eye-catching article, SAT scores are 
declining at a slower rate.” Interpret Homer’s statement in 
terms of a function and its first and second derivatives. 

 67.  The president announces that the national deficit is increas-
ing, but at a decreasing rate. Interpret this statement in terms 
of a function and its first and second derivatives.

 68.  Let f std be the temperature at time t where you live and sup-
pose that at time t − 3 you feel uncomfortably hot. How do 
you feel about the given data in each case?

 (a) f 9s3d − 2,    f 0s3d − 4
 (b) f 9s3d − 2,    f 0s3d − 24
 (c) f 9s3d − 22,    f 0s3d − 4
 (d) f 9s3d − 22,    f 0s3d − 24

 69.  Let Kstd be a measure of the knowledge you gain by 
studying for a test for t hours. Which do you think is larger, 
Ks8d 2 Ks7d or Ks3d 2 Ks2d? Is the graph of K concave 
upward or concave downward? Why?

 70.  Coffee is being poured into the mug shown in the figure at a 
constant rate (measured in volume per unit time). Sketch a  
rough graph of the depth of the coffee in the mug as a func-
tion of time. Account for the shape of the graph in terms of 
concavity. What is the significance of the inflection point?

 71.  A drug response curve describes the level of medication 
in the bloodstream after a drug is administered.  A surge 
function Sstd − At pe2kt is often used to model the response  
curve, reflecting an initial surge in the drug level and then a 
more gradual decline.  If, for a particular drug, A − 0.01, 
p − 4, k − 0.07, and t is measured in minutes, estimate the 
times corresponding to the inflection points and explain their 
significance.  If you have a graphing device, use it to graph 
the drug response curve.

 72. The family of bell-shaped curves

y −
1

#s2! 
 e2sx2$d2ys2# 2d

occurs in probability and statistics, where it is called the nor-
mal density function. The constant $ is called the mean and 
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Suppose we are trying to analyze the behavior of the function

Fsxd −
ln x

x 2 1

Although F is not defined when x − 1, we need to know how F behaves near 1. In par-
tic ular, we would like to know the value of the limit

lim
x l1

 
ln x

x 2 1

In computing this limit we can’t apply Law 5 of limits (the limit of a quotient is the 
quo tient of the limits, see Section 2.3) because the limit of the denominator is 0. In fact, 
although the limit in (1) exists, its value is not obvious because both numerator and 
denominator approach 0 and 00 is not defined.

In general, if we have a limit of the form

lim
x l a

 
 f sxd
tsxd

where both f sxd l 0 and tsxd l 0 as x l a, then this limit may or may not exist and is 
called an indeterminate form of type 0

0. We met some limits of this type in Chapter 2. 
For rational functions, we can cancel common factors:

lim
x l1

 
x 2 2 x
x 2 2 1

− lim
x l1

 
xsx 2 1d

sx 1 1dsx 2 1d
− lim

x l1
 

x
x 1 1

−
1
2

1

 90.  Suppose that f 09 is continuous and f 9scd − f 0scd − 0, but 
f -scd . 0. Does f  have a local maximum or minimum at  
c? Does f  have a point of inflection at c?

 91.  Suppose f  is differentiable on an interval I and f 9sxd . 0 
for all numbers x in I except for a single number c. Prove 
that f  is increasing on the entire interval I.

 92.  For what values of c is the function

f sxd − cx 1
1

x 2 1 3
increasing on s2`, `d?

 93.  The three cases in the First Derivative Test cover the situa-
tions one commonly encounters but do not exhaust all pos-
sibilities. Consider the functions f, t, and h whose values at 
0 are all 0 and, for x ± 0,

 f sxd − x 4 sin 
1
x

      tsxd − x 4S2 1 sin 
1
xD

hsxd − x 4S22 1 sin 
1
xD

 (a)  Show that 0 is a critical number of all three functions 
but their derivatives change sign infinitely often on both 
sides of 0.

 (b)  Show that f  has neither a local maximum nor a local 
min imum at 0, t has a local minimum, and h has a local  
maximum.

 83.  Show that tan x . x for 0 , x , !y2. [Hint: Show that 
f sxd − tan x 2 x is increasing on s0, !y2d.]

 84.  (a) Show that e x > 1 1 x for x > 0.
 (b) Deduce that e x > 1 1 x 1 1

2 x 2 for x > 0.
 (c)  Use mathematical induction to prove that for x > 0 and 

any positive integer n,

e x > 1 1 x 1
x 2

2!
1 ∙ ∙ ∙ 1

x n

n!

 85.  Show that a cubic function (a third-degree polynomial)  
always has exactly one point of inflection. If its graph has 
three x-intercepts x1, x2, and x3, show that the x-coordinate 
of the inflection point is sx1 1 x2 1 x3 dy3.

 86.  For what values of c does the polynomial 
Psxd − x 4 1 cx 3 1 x 2 have two inflection points? One 
inflection point? None? Illustrate by graphing P for several 
values of c. How does the graph change as c decreases?

 87.  Prove that if sc, f scdd is a point of inflection of the graph  
of f  and f 0 exists in an open interval that contains c, then 
f 0scd − 0. [Hint: Apply the First Derivative Test and  
Fermat’s Theorem to the function t − f 9.]

 88.  Show that if f sxd − x 4, then f 0s0d − 0, but s0, 0d is not an 
inflection point of the graph of f .

 89.  Show that the function tsxd − x | x | has an inflection point 
at s0, 0d but t0s0d does not exist.

;
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We used a geometric argument to show that

lim
x l 0

 
sin x

x
− 1

But these methods do not work for limits such as (1), so in this section we introduce a 
sys tematic method, known as l’Hospital’s Rule, for the evaluation of indeterminate forms.

Another situation in which a limit is not obvious occurs when we look for a horizontal 
asymptote of F and need to evaluate the limit

lim
x l `

 
ln x

x 2 1

It isn’t obvious how to evaluate this limit because both numerator and denominator 
become large as x l `. There is a struggle between numerator and denominator. If the 
numerator wins, the limit will be ` (the numerator was increasing significantly faster 
than the denominator); if the denominator wins, the answer will be 0. Or there may be 
some compromise, in which case the answer will be some finite positive number.

In general, if we have a limit of the form

lim
x l a

 
 f sxd
tsxd

where both f sxd l ` (or 2`) and tsxd l ` (or 2`), then the limit may or may not 
exist and is called an indeterminate form of type `y`. We saw in Section 2.6 that 
this type of limit can be evaluated for certain functions, including rational functions, by 
dividing numerator and denominator by the highest power of x that occurs in the denom-
inator. For instance,

lim
x l `

 
x 2 2 1

2x 2 1 1
− lim

x l `
 
1 2

1
x 2

2 1
1
x 2

−
1 2 0
2 1 0

−
1
2

This method does not work for limits such as (2), but l’Hospital’s Rule also applies to this 
type of indeterminate form.

L’Hospital’s Rule  Suppose f  and t are differentiable and t9sxd ± 0 on an open 
interval I that contains a (except possibly at a). Suppose that

 lim
x l a

 f sxd − 0    and     lim
x l a

 tsxd − 0

or that  lim
x l a

 f sxd − 6`    and     lim
x l a

 tsxd − 6`

(In other words, we have an indeterminate form of type 00 or ỳ`.) Then

lim
x l a

 
 f sxd
tsxd

− lim
x l a

 
 f 9sxd
t9sxd

if the limit on the right side exists (or is ` or 2`).

NOTE 1 L’Hospital’s Rule says that the limit of a quotient of functions is equal to the 
limit of the quotient of their derivatives, provided that the given conditions are satisfied. 

2

Figure 1 suggests visually why 
l’Hospital’s Rule might be true. The 
first graph shows two differentiable 
functions f  and t, each of which 
approaches 0 as x l a. If we were 
to zoom in toward the point sa, 0d, 
the graphs would start to look almost 
linear. But if the functions actually 
were linear, as in the second graph, 
then their ratio would be

m1sx 2 ad
m2sx 2 ad

−
m1

m2

which is the ratio of their deriva-
tives. This suggests that

lim
x l a

 
f sxd
tsxd

− lim 
x l a

 
 f 9sxd
t9sxd

FIGURE 1 

0

y

xa

y=m¡(x-a)

y=m™(x-a)

0

y

xa

f

g
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It is especially important to verify the conditions regarding the limits of f  and t before 
using l’Hospital’s Rule.

NOTE 2 L’Hospital’s Rule is also valid for one-sided limits and for limits at infinity 
or negative infinity; that is, “x l a” can be replaced by any of the symbols x l a1, 
x l a2, x l `, or x l 2`.

NOTE 3 For the special case in which f sad − tsad − 0, f 9 and t9 are continuous, 
and t9sad ± 0, it is easy to see why l’Hospital’s Rule is true. In fact, using the alternative 
form of the definition of a derivative, we have

 lim
x l a

 
 f 9sxd
t9sxd

−
 f 9sad
t9sad

−
lim
x l a

 
 f sxd 2 f sad

x 2 a

lim
x l a

 
tsxd 2 tsad

x 2 a

− lim
x l a

 

 
 f sxd 2 f sad

x 2 a

 
tsxd 2 tsad

x 2 a

   − lim
x l a

 
 f sxd 2 f sad
tsxd 2 tsad

− lim
x l a

 
 f sxd
tsxd

  fsince f sad − tsad − 0g

It is more difficult to prove the general version of l’Hospital’s Rule. See Appendix F.

EXAMPLE 1 Find lim
x l 1

 
ln x

x 2 1
.

SOLUTION Since

lim
x l1

 ln x − ln 1 − 0    and    lim
x l1

 sx 2 1d − 0

the limit is an indeterminate form of type 00 , so we can apply l’Hospital’s Rule:

 lim
x l 1

 
ln x

x 2 1
− lim

x l 1
 

d
dx

 sln xd

d
dx

 sx 2 1d
− lim

x l 1
 
1yx
1

 − lim
x l 1

 
1
x

− 1 Q

EXAMPLE 2 Calculate lim
x l `

 
ex

x 2 .

SOLUTION We have lim x l ` ex − ` and lim x l ` x 2 − `, so the limit is an indetermi-
nate form of type `y`, and l’Hospital’s Rule gives

lim
x l `

ex

x 2 − lim
x l `

 

d
dx

sex d

d
dx

sx 2d
− lim

x l `
 

ex

2x

Since ex l ` and 2x l ` as x l `, the limit on the right side is also indeterminate, but 
a second application of l’Hospital’s Rule gives

 lim
x l `

 
ex

x 2 − lim
x l `

 
ex

2x
− lim

x l `
 
ex

2
− ` Q

L’Hospital
L’Hospital’s Rule is named after a 
French nobleman, the Marquis de 
l’Hospital (1661– 1704), but was 
discovered by a Swiss mathe matician, 
John Bernoulli (1667–1748). You 
might sometimes see l’Hospital 
spelled as l’Hôp ital, but he spelled 
his own name l’Hospi tal, as was 
common in the 17th century. See 
Exercise 83 for the example that the 
Marquis used to illustrate his rule. See 
the project on page 314 for further 
historical details.

 Notice that when using 
l’Hospital’s Rule we differentiate the 
numerator and denominator sepa-
rately. We do not use the Quotient 
Rule. 

The graph of the function of Example 2 
is shown in Figure 2. We have noticed 
previously that exponential functions 
grow far more rapidly than power func-
tions, so the result of Example 2 is not 
unexpected. See also Exercise 73.

y=´
≈

10

20

0

FIGURE 2
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EXAMPLE 3 Calculate lim
x l `

 
ln x

sx .

SOLUTION Since ln x l ` and sx l ` as x l ` , l’Hospital’s Rule applies:

lim
x l `

 
ln x

sx 
− lim

x l `
 

1yx
1
2 x21y2 − lim

xl`
 

1yx
1y(2sx )

Notice that the limit on the right side is now indeterminate of type 00 . But instead of 
applying l’Hospital’s Rule a second time as we did in Example 2, we simplify the 
expression and see that a second application is unnecessary:

 lim
x l `

 
ln x

sx 
− lim

x l `
 

1yx
1y(2sx ) − lim

x l `
 

2

sx − 0  Q

In both Examples 2 and 3 we evaluated limits of type `y`, but we got two different 
results. In Example 2, the infinite limit tells us that the numerator ex increases signifi-
cantly faster than the denominator x 2, resulting in larger and larger ratios. In fact, y − ex 
grows more quickly than all the power functions y − xn (see Exercise 73). In Example 
3 we have the opposite situation; the limit of 0 means that the denominator outpaces the 
numerator, and the ratio eventually approaches 0. 

EXAMPLE 4 Find lim
x l 0

 
tan x 2 x

x 3 . (See Exercise 2.2.50.)

SOLUTION Noting that both tan x 2 x l 0 and x 3 l 0 as x l 0, we use l’Hospital’s 
Rule:

lim
x l 0

 
tan x 2 x

x 3 − lim
x l 0

 
sec2x 2 1

3x 2

Since the limit on the right side is still indeterminate of type 00 , we apply l’Hospital’s 
Rule again:

lim
x l 0

 
sec2x 2 1

3x 2 − lim
x l 0

 
2 sec2x tan x

6x

Because limx l 0 sec2x − 1, we simplify the calculation by writing

lim
x l 0

 
2 sec2x tan x

6x
−

1
3

 lim
x l 0

 sec2x ? lim
x l 0

 
tan x

x
−

1
3

 lim
xl 0

 
tan x

x

We can evaluate this last limit either by using l’Hospital’s Rule a third time or by 
writing tan x as ssin xdyscos xd and making use of our knowledge of trigonometric 
limits. Putting together all the steps, we get

lim
x l 0

 
tan x 2 x

x3 − lim
x l 0

 
sec2x 2 1

3x2 − lim
x l 0

 
2 sec2x tan x

6x

  −
1
3

 lim
x l 0

 
tan x

x
−

1
3

 lim
x l 0

 
sec2x

1
−

1
3

 Q

0

_1

2

10,000

y= ln x
œ„x

FIGURE 3 

The graph of the function of Example 
3 is shown in Figure 3. We have dis-
cussed previously the slow growth of 
logarithms, so it isn’t surprising that 
this ratio approaches 0 as x l `. See 
also Exercise 74.

The graph in Figure 4 gives visual 
confirmation of the result of Example 4. 
If we were to zoom in too far, how- 
ever, we would get an inaccurate graph 
because tan x is close to x when x is 
small. See Exercise 2.2.50(d).

FIGURE 4 

y= tan x- x
˛

0
_1 1

1
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EXAMPLE 5 Find lim
x l !2

 sin x
1 2 cos x

.

SOLUTION If we blindly attempted to use l’Hospital’s Rule, we would get

 lim
x l !2

 sin x
1 2 cos x

− lim
x l !2

 cos x
sin x

− 2`

This is wrong! Although the numerator sin x l 0 as x l !2, notice that the denomi-
nator s1 2 cos xd does not approach 0, so l’Hospital’s Rule can’t be applied here.

The required limit is, in fact, easy to find because the function is continuous at ! 
and the denominator is nonzero there:

 lim
x l !2

 sin x
1 2 cos x

−
sin !

1 2 cos !
− 0

1 2 s21d
− 0 Q

Example 5 shows what can go wrong if you use l’Hospital’s Rule without think-
ing. Other limits can be found using l’Hospital’s Rule but are more easily found by other 
methods. (See Examples 2.3.3, 2.3.5, and 2.6.3, and the discussion at the beginning of 
this section.) So when evaluating any limit, you should consider other meth ods before 
using l’Hospital’s Rule.

Indeterminate Products
If lim x l a f sxd − 0 and lim x l a tsxd − ` (or 2`), then it isn’t clear what the value of 
lim x l a f f sxd tsxdg, if any, will be. There is a struggle between f  and t. If f  wins, the 
answer will be 0; if t wins, the answer will be ` (or 2`). Or there may be a compromise 
where the answer is a finite nonzero number. This kind of limit is called an indetermi-
nate form of type 0 ? `. We can deal with it by writing the product ft as a quotient:

ft −
 f

1yt     or    ft −
t

1yf

This converts the given limit into an indeterminate form of type 00 or ỳ` so that we can 
use l’Hospital’s Rule.

EXAMPLE 6 Evaluate lim
x l

 

01
 x ln x.

SOLUTION The given limit is indeterminate because, as x l 01, the first factor sxd  
approaches 0 while the second factor sln xd approaches 2`. Writing x − 1ys1yxd, we 
have 1yx l ` as x l 01, so l’Hospital’s Rule gives

  lim
x l 01

 x ln x − lim
x l 01

 ln x
1yx

− lim
x l 01

 1yx
21yx 2 − lim

x l 01
 s2xd − 0 Q

NOTE In solving Example 6 another possible option would have been to write

lim
x l 01

 x ln x − lim
x l 01

 
x

1yln x

This gives an indeterminate form of the type 00, but if we apply l’Hospital’s Rule we get 
a more complicated expression than the one we started with. In general, when we rewrite 
an indeterminate product, we try to choose the option that leads to the simpler limit.

Figure 5 shows the graph of the 
function in Example 6. Notice that 
the function is undefined at x − 0; 
the graph approaches the origin but 
never quite reaches it.

0

y

x1

y=x ln x

FIGURE 5 
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Indeterminate Differences
If lim x l a f sxd − ` and lim x l a tsxd − `, then the limit

lim
x l a

 f f sxd 2 tsxdg

is called an indeterminate form of type ` 2 `. Again there is a contest between f  and 
t. Will the answer be ` ( f  wins) or will it be 2` (t wins) or will they compromise on a 
finite number? To find out, we try to convert the difference into a quotient (for instance, 
by using a common denominator, or rationalization, or factoring out a common factor) 
so that we have an indeterminate form of type 00 or ỳ` .

EXAMPLE 7 Compute lim
x l11

 S 1
ln x

2
1

x 2 1D.

SOLUTION First notice that 1ysln xd l ` and 1ysx 2 1d l ` as x l 11, so the limit 
is indeterminate of type ` 2 `. Here we can start with a common denominator:

lim
x l11

 S 1
ln x

2
1

x 2 1 D − lim
x l11

 
x 2 1 2 ln x
sx 2 1d ln x

Both numerator and denominator have a limit of 0, so l’Hospital’s Rule applies, giving

lim
x l11

 
x 2 1 2 ln x
sx 2 1d ln x

− lim
x l11

 
1 2

1
x

sx 2 1d ?
1
x

1 ln x
 − lim

x l11
 

x 2 1
x 2 1 1 x ln x

Again we have an indeterminate limit of type 00 , so we apply l’Hospital’s Rule a second 
time:

lim
x l11

 
x 2 1

x 2 1 1 x ln x
− lim

x l11
 

1

1 1 x ?
1
x

1 ln x
 

 − lim
x l11

 
1

2 1 ln x
−

1
2

 Q

EXAMPLE 8 Calculate lim
xl`

 sex 2 xd .

SOLUTION This is an indeterminate difference because both ex and x approach infinity. 
We would expect the limit to be infinity because ex l ` much faster than x. But we can 
verify this by factoring out x :

ex 2 x − xS ex

x
2 1D

The term exyx l ` as x l ` by l’Hospital’s Rule and so we now have a product in 
which both factors grow large:

 lim
xl`

 sex 2 xd − lim
xl`

 FxS ex

x
2 1DG − `  Q
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Indeterminate Powers
Several indeterminate forms arise from the limit

lim
x la

− f f sxdg tsxd

1. lim
x l a

 f sxd − 0 and lim
x l a

 tsxd − 0 type 00

2. lim
x l a

 f sxd − ` and lim
x l a

 tsxd − 0 type ` 0

3. lim
x l a

 f sxd − 1 and lim
x l a

 tsxd − 6` type 1`

Each of these three cases can be treated either by taking the natural logarithm:

let  y − f f sxdg tsxd,  then  ln y − tsxd ln f sxd

or by writing the function as an exponential:

f f sxdg tsxd − e tsxd ln f sxd

(Recall that both of these methods were used in differentiating such functions.) In either 
method we are led to the indeterminate product tsxd ln f sxd, which is of type 0 ? `.

EXAMPLE 9 Calculate lim
x l 01

 s1 1 sin 4xdcot x.

SOLUTION First notice that as x l 01, we have 1 1 sin 4x l 1 and cot x l `, so the 
given limit is indeterminate (type 1`). Let

y − s1 1 sin 4xdcot x

Then  ln y − lnfs1 1 sin 4xdcot x g − cot x lns1 1 sin 4xd −
lns1 1 sin 4xd

tan x

so l’Hospital’s Rule gives

lim
x l 01

 ln y − lim
xl 01

lns1 1 sin 4xd
tan x

− lim
x l 01

 

4 cos 4x
1 1 sin 4x

sec2x
− 4

So far we have computed the limit of ln y, but what we want is the limit of y. To find 
this we use the fact that y − e ln y:

 lim
x l 01

 s1 1 sin 4xdcot x − lim
x l 01

 y − lim
x l 01

 e ln y − e 4 Q

EXAMPLE 10 Find lim
x l 01

 x x.

SOLUTION Notice that this limit is indeterminate since 0 x − 0 for any x . 0 but 
x 0 − 1 for any x ± 0. (Recall that 00 is undefined.) We could proceed as in Example 9 
or by writing the function as an exponential:

x x − se ln x dx − ex ln x

In Example 6 we used l’Hospital’s Rule to show that

lim
x l 01

 x ln x − 0

Although forms of the type 00, `0, 
and 1` are indeterminate, the form 
0` is not indeterminate. (See 
Exercise 86.)

The graph of the function y − x x, 
x . 0, is shown in Figure 6. Notice 
that although 00 is not defined, the 
values of the function approach 1 as 
x l 01. This confirms the result of 
Example 10.

FIGURE 6

2

0 2_1
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Therefore 

 lim
x l 01

 x x − lim
x l 01

 ex ln x − e 0 − 1 Q

1–4 Given that

lim
x l a

 f sxd − 0        lim
x l a

 tsxd − 0       lim
x l a

 hsxd − 1

lim
x l a

 psxd − `       lim
x l a

 qsxd − `

which of the following limits are indeterminate forms? For  
those that are not an indeterminate form, evaluate the limit 
where possible.

 1. (a) lim
x l a

 
 f sxd
tsxd

 (b) lim
x l a

 
 f sxd
psxd

 (c) lim
x l a

 
hsxd
psxd

 (d) lim
x l a

 
psxd
 f sxd

 (e) lim
x l a

 
psxd
qsxd

 2. (a) lim
x l a

 f f sxdpsxdg (b) lim
x l a

 fhsxdpsxdg

 (c) lim
x l a

 f psxdqsxdg

 3. (a) lim
x l a

 f f sxd 2 psxdg (b) lim
x l a

 f psxd 2 qsxdg

 (c) lim
x l a

 f psxd 1 qsxdg

 4. (a) lim
xl a

 f f sxdg tsxd (b) lim
x l a 

f f sxdg psxd

 (c) lim
x l a

 fhsxdg psxd (d)    lim
x l a

 f psxdg f sxd

 (e) lim
x l a

 f psxdgqsxd (f) lim
x l a

 qsxdspsxd

5–6 Use the graphs of f and t and their tangent lines at s2, 0d to 

find lim
x l

 

2
 
f sxd
tsxd

.

 5. y y=1.8(x-2)

x0
y=    (x-2)4

5

2

f

g

  6. y
y=1.5(x-2)

x0
2

y=2-x

f

g

 7.  The graph of a function f  and its tangent line at 0 are shown. 

What is the value of lim
x l

 

0
 

f sxd
e x 2 1

?

0

y

x

y=ƒ

y=x

8–68 Find the limit. Use l’Hospital’s Rule where appropriate. 
If there is a more elementary method, consider using it. If 
l’Hospital’s Rule doesn’t apply, explain why.

 8. lim
x l 3

 
x 2 3
x 2 2 9

 9. lim
x l

 

4
  

x 2 2 2x 2 8
x 2 4

 10. lim
x l 22

 
x 3 1 8
x 1 2

 11. lim 
x l

 

1

x 3 2 2x 2 1 1
x 3 2 1

 12. lim
x l 1y2

 
6x 2 1 5x 2 4

4x 2 1 16x 2 9

 13.   lim
x l

 s!y2d1
 cos x
1 2 sin x

 14. lim
x l 0

 
tan 3x
sin 2x

 15.  lim
t l 0

 
e 2 t 2 1

sin t
 16. lim

x  l 0
  

x 2

1 2 cos x

 17. lim
" l !y2

 
1 2 sin "

1 1 cos 2"
 18. lim

" l !
 
1 1 cos "
1 2 cos "

 19. lim
x l `

 
ln x

sx 
 20. lim

x l `
 

x 1 x 2

1 2 2x 2

 21. lim
x l 01

 
ln x

x
 22. lim

x l `
 
lnsx 

x 2

 23. lim
t l 1

 
t 8 2 1
t 5 2 1

 24. lim
t l 0

 
8 t 2 5 t

t

 25. lim
x l 0

 
s1 1 2x 2 s1 2 4x 

x
 26. lim

ul `
 
e uy10

u3

 27. lim
x l 0

 
e x 2 1 2 x

x 2  28. lim
x l 0

 
sinh x 2 x

x 3
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 67. lim
x l 01

 s1 1 sin 3xd1yx 68. lim
x l `

 S 2x 2 3
2x 1 5D2x11

69–70 Use a graph to estimate the value of the limit. Then use 
l’Hospital’s Rule to find the exact value.

 69. lim
x l `

 S1 1
2
xDx

 70. lim
x l 0

 
5x 2 4x

3x 2 2x

71–72 Illustrate l’Hospital’s Rule by graphing both f sxdytsxd 
and f 9sxdyt9sxd near x − 0 to see that these ratios have the same 
limit as x l 0. Also, calculate the exact value of the limit.

 71. f sxd − e x 2 1,  tsxd − x 3 1 4x

 72. f sxd − 2x sin x,  tsxd − sec x 2 1

 73.  Prove that

lim
x l `

 
e x

x n − `

for any positive integer n. This shows that the exponential 
function approaches infinity faster than any power of x.

 74. Prove that

lim
x l `

 
ln x
x p − 0

 for any number p . 0. This shows that the logarithmic 
function approaches infinity more slowly than any power 
of x.

75–76 What happens if you try to use l’Hospital’s Rule to find 
the limit? Evaluate the limit using another method.

 75. lim
xl `

 
x

sx 2 1 1
 76. lim

x l
 s!y2d2

 
sec x
tan x

 77.  Investigate the family of curves f sxd − e x 2 cx. In par- 
ticular, find the limits as x l 6` and determine the 
values of c for which f  has an absolute minimum. What 
happens to the minimum points as c increases?

 78.  If an object with mass m is dropped from rest, one model 
for its speed v after t seconds, taking air resistance into 
account, is

v −
mt
c

 s1 2 e 2ctym d

  where t is the acceleration due to gravity and c is a posi-
tive constant. (In Chapter 9 we will be able to deduce this 
equation from the assumption that the air resistance is 
propor tional to the speed of the object; c is the proportion-
ality constant.)

 (a) Calculate lim t l ` v. What is the meaning of this limit?
 (b)  For fixed t, use l’Hospital’s Rule to calculate 

lim cl 01
 v. What can you conclude about the velocity 

of a falling object in a vacuum?

;

;

;

 29. lim
x l 0

 
tanh x
tan x

 30. lim
x l 0

 
x 2 sin x
x 2 tan x

 31. lim
x l 0

 
sin21x

x
 32. lim

x l `
 
sln xd2

x

 33. lim
x l 0

 
x3 x

3x 2 1
 34. lim

x l 0
 
cos mx 2 cos nx

x 2

 35. lim
x l 0

 
lns1 1 xd

cos x 1 ex 2 1
 36. lim

x l 1
 

x sinsx 2 1d
2x 2 2 x 2 1

 37. lim
x l 01 

 
arctans2xd

ln x
 38. lim

x l
 

01 
x x 2 1

ln x 1 x 2 1

 39. lim
x l 1

 
x a 2 1
x b 2 1

, b ± 0 40. lim
x l 0

 
e x 2 e2x 2 2x

x 2 sin x

 41. lim
x l 0

 
cos x 2 1 1 1

2 x 2

x 4  42. lim
x l

 

a1 
cos x lnsx 2 ad

lnse x 2 ea d

 43. lim
x l `

 x sins!yxd 44. lim
x l `

 sx  e2xy2

 45. lim
x l 0

 sin 5x csc 3x 46. lim
x l 2`

 x lnS1 2
1
xD

 47. lim
x l `

 x 3e 2x 2
 48. lim

x l `
 x 3y2 sins1yxd

 49. lim
x l

 

11 ln x tans!xy2d 50. lim
x l

 s!y2d2
cos x sec 5x

 51. lim
x l 1

 S x
x 2 1

2
1

ln xD 52. lim
x l 0

 scsc x 2 cot xd

 53. lim
x l

 

01S 1
x

2
1

e x 2 1D 54. lim
x l 01

 S 1
x

2
1

tan21 xD
 55. lim

x l `
 sx 2 ln xd 

 56. lim
x l

 

11
 flnsx 7 2 1d 2 lnsx 5 2 1dg

 57. lim
x l

 

01
 xsx 

 58. lim
x l 01

 stan 2xdx

 59. lim
x l 0

 s1 2 2xd1yx 60. lim
x l `

 S1 1
a
xDbx

 61. lim
x l

 

11
 x 1ys12xd 62. lim

x l `
 x sln 2dys1 1 ln xd

 63. lim
x l `

 x 1yx 64. lim
x l `

 x e2x

 65. lim
x l

 

01
 s4x 1 1dcot x 66. lim

x l 1
 s2 2 xdtans!xy2d
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 81.  Some populations initally grow exponentially but eventually 
level off. Equations of the form

Pstd −
M

1 1 Ae2kt

where M, A, and k are positive constants, are called logistic 
equations and are often used to model such populations. (We 
will investigate these in detail in Chapter 9.) Here M is called 
the carrying capacity and represents the maximum population

size that can be supported, and A −
M 2 P0

P0

, where P0 is the 
initial population.

 (a)  Compute lim tl ` Pstd. Explain why your answer is to be 
expected.

 (b)  Compute lim Ml ` Pstd. (Note that A is defined in terms  
of M.) What kind of function is your result?

 82.  A metal cable has radius r and is covered by insulation so that 
the distance from the center of the cable to the exterior of the 
insulation is R. The velocity v of an electrical impulse in the 
cable is 

v − 2cS r
RD2

 lnS r
RD

where c is a positive constant. Find the following limits and 
interpret your answers.

 (a)  lim
R l

 

r1
 v (b) lim

r l
 

01
 v

 83.  The first appearance in print of l’Hospital’s Rule was in the 
book Analyse des Infiniment Petits published by the Marquis 
de l’Hospital in 1696. This was the first calculus textbook 
ever published and the example that the Marquis used in that 
book to illustrate his rule was to find the limit of the function

y −
s2a 3x 2 x 4 2 as3 aax 

a 2 s4 ax 3 

 as x approaches a, where a . 0. (At that time it was common 
to write aa instead of a 2.) Solve this problem.

 84.  The figure shows a sector of a circle with central angle !. Let 
As!d be the area of the segment between the chord PR and 
the arc PR. Let Bs!d be the area of the triangle PQR. Find 
lim !

 
l

  01  "s!dy#s!d.

P

Q R

A(¨)

B(¨)

O
¨

 85. Evaluate 

lim
x l `

 Fx 2 x 2 lnS 1 1 x
x DG.

 79.  If an initial amount A0 of money is invested at an interest 
rate r compounded n times a year, the value of the invest-
ment after t years is

A − A0S1 1
r
nDnt

If we let n l `, we refer to the continuous compounding 
of interest. Use l’Hospital’s Rule to show that if interest is 
compounded continuously, then the amount after t years is

A − A0ert

 80.  Light enters the eye through the pupil and strikes the retina, 
where photoreceptor cells sense light and color. W. Stanley 
Stiles and B. H. Crawford studied the phenomenon in which 
measured brightness decreases as light enters farther from  
the center of the pupil. (See the figure.) 

B

A

A light beam A that enters through the center of the pupil 
measures brighter than a beam B entering near the edge  
of the pupil.

They detailed their findings of this phenomenon, known as 
the Stiles–Crawford effect of the first kind, in an important 
paper published in 1933. In particular, they observed that 
the amount of luminance sensed was not proportional to 
the area of the pupil as they expected. The percentage P of 
the total luminance entering a pupil of radius r mm that is 
sensed at the retina can be described by

P −
1 2 102$r 2

$r 2  ln 10

where $ is an experimentally determined constant, typically 
about 0.05.

 (a)  What is the percentage of luminance sensed by a pupil 
of radius 3 mm? Use $ − 0.05.

 (b)  Compute the percentage of luminance sensed by a pupil 
of radius 2 mm. Does it make sense that it is larger than 
the answer to part (a)?

 (c)  Compute lim
r l 01

 P. Is the result what you would expect?  

Is this result physically possible?

Source: Adapted from W. Stiles and B. Crawford, “The Luminous Efficiency 
of Rays Entering the Eye Pupil at Different Points.” Proceedings of the 
Royal Society of London, Series B: Biological Sciences 112 (1933): 428–50.
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314 CHAPTER 4  Applications of Differentiation

 90. If f 0 is continuous, show that

lim
h l 0

 
 f sx 1 hd 2 2 f sxd 1 f sx 2 hd

h 2 − f 0sxd

 91. Let

f sxd − He21yx 2

0
 if  x ± 0
 if  x − 0

 (a) Use the definition of derivative to compute f 9s0d.
 (b)  Show that f  has derivatives of all orders that are defined 

on R. [Hint: First show by induction that there is a 
poly nomial pnsxd and a nonnegative integer kn such that 
f sndsxd − pnsxdf sxdyxkn for x ± 0.]

 92.  Let

f sxd − H| x |x

1
if x ± 0
if x − 0

 (a) Show that f  is continuous at 0.
 (b)  Investigate graphically whether f  is differentiable at 0  

by zooming in several times toward the point s0, 1d on 
the graph of  f .

 (c)  Show that f  is not differentiable at 0. How can you 
reconcile this fact with the appearance of the graphs in 
part (b)?

;

 86.  Suppose f  is a positive function. If lim xl a f sxd − 0 and 
lim xl a tsxd − `, show that

lim
x  l a

 f f sxdg tsxd − 0

This shows that 0` is not an indeterminate form.

 87.  If f 9 is continuous, f s2d − 0, and f 9s2d − 7, evaluate

lim
x l 0

 
 f s2 1 3xd 1 f s2 1 5xd

x

 88.  For what values of a and b is the following equation true?

lim
x l 0

 S sin 2x
x3 1 a 1

b
x2D − 0

 89.  If f 9 is continuous, use l’Hospital’s Rule to show that

lim
h l 0

 
 f sx 1 hd 2 f sx 2 hd

2h
− f 9sxd

Explain the meaning of this equation with the aid of a 
diagram.

WRITING PROJECT

L’Hospital’s Rule was first published in 1696 in the Marquis de l’Hospital’s calculus textbook 
Analyse des Infiniment Petits, but the rule was discovered in 1694 by the Swiss mathematician 
John (Johann) Bernoulli. The explanation is that these two mathematicians had entered into a 
curious business arrangement whereby the Marquis de l’Hospital bought the rights to Ber-
noulli’s mathematical discoveries. The details, including a translation of l’Hospital’s letter to 
Bernoulli pro posing the arrangement, can be found in the book by Eves [1].

Write a report on the historical and mathematical origins of l’Hospital’s Rule. Start by pro-
viding brief biographical details of both men (the dictionary edited by Gillispie [2] is a good 
source) and outline the business deal between them. Then give l’Hospital’s state ment of his 
rule, which is found in Struik’s sourcebook [4] and more briefly in the book of Katz [3]. Notice 
that l’Hospital and Bernoulli formulated the rule geometrically and gave the answer in terms of 
differentials. Compare their statement with the version of l’Hospital’s Rule given in Section 4.4 
and show that the two statements are essentially the same.

 1.  Howard Eves, In Mathematical Circles (Volume 2: Quadrants III and IV) (Boston: Prindle, 
Weber and Schmidt, 1969), pp. 20–22.

 2.  C. C. Gillispie, ed., Dictionary of Scientific Biography (New York: Scribner’s, 1974). See 
the article on Johann Bernoulli by E. A. Fellmann and J. O. Fleckenstein in Volume II and 
the article on the Marquis de l’Hospital by Abraham Robinson in Volume VIII.

 3.  Victor Katz, A History of Mathematics: An Introduction (New York: HarperCollins, 1993), 
p. 484.

 4.  D. J. Struik, ed., A Sourcebook in Mathematics, 1200–1800 (Princeton, NJ: Princeton 
University Press, 1969), pp. 315–16.

www.stewartcalculus.com
The Internet is another source of 
information for this project. Click on 
History of Mathematics for a list of 
reliable websites.
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THE ORIGINS OF L’HOSPITAL’S RULE
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 SECTION 4.5  Summary of Curve Sketching 315

So far we have been concerned with some particular aspects of curve sketching: domain, 
range, and symmetry in Chapter 1; limits, continuity, and asymptotes in Chapter 2; deriv-
atives and tangents in Chapters 2 and 3; and extreme values, intervals of increase and 
decrease, concavity, points of inflection, and l’Hospital’s Rule in this chapter. It is now 
time to put all of this information together to sketch graphs that reveal the important 
features of functions.

You might ask: Why don’t we just use a graphing calculator or computer to graph a 
curve? Why do we need to use calculus?

It’s true that modern technology is capable of producing very accurate graphs. But 
even the best graphing devices have to be used intelligently. It is easy to arrive at a 
misleading graph, or to miss important details of a curve, when relying solely on tech- 
nology. (See “Graphing Calculators and Computers” at www.stewartcalculus.com, espe-
cially Examples 1, 3, 4, and 5. See also Section 4.6.) The use of calculus enables us to 
discover the most interesting aspects of graphs and in many cases to calculate maximum 
and minimum points and inflection points exactly instead of approximately.

For instance, Figure 1 shows the graph of f sxd − 8x 3 2 21x 2 1 18x 1 2. At first 
glance it seems reasonable: It has the same shape as cubic curves like y − x 3, and it 
appears to have no maximum or minimum point. But if you compute the derivative, you 
will see that there is a maximum when x − 0.75 and a minimum when x − 1. Indeed, 
if we zoom in to this portion of the graph, we see that behavior exhibited in Figure 2. 
Without calculus, we could easily have overlooked it.

In the next section we will graph functions by using the interaction between calculus 
and graphing devices. In this section we draw graphs by first considering the following 
information. We don’t assume that you have a graphing device, but if you do have one 
you should use it as a check on your work.

Guidelines for Sketching a Curve
The following checklist is intended as a guide to sketching a curve y − f sxd by hand. Not 
every item is relevant to every function. (For instance, a given curve might not have an 
asymptote or possess symmetry.) But the guidelines provide all the information you need 
to make a sketch that displays the most important aspects of the function.
A.  Domain It’s often useful to start by determining the domain D of f , that is, the set 

of values of x for which f sxd is defined.
B.  Intercepts The y-intercept is f s0d and this tells us where the curve intersects the  

y-axis. To find the x-intercepts, we set y − 0 and solve for x. (You can omit this step 
if the equa tion is difficult to solve.)

C.  Symmetry
 (i ) If f s2xd − f sxd for all x in D, that is, the equation of the curve is unchanged 
when x is replaced by 2x, then f  is an even function and the curve is symmetric 
about the y-axis. This means that our work is cut in half. If we know what the curve 
looks like for x > 0, then we need only reflect about the y-axis to obtain the com-
plete curve [see Figure 3(a)]. Here are some examples: y − x 2, y − x 4, y − | x |, and 
y − cos x.
 (ii) If f s2xd − 2f sxd for all x in D, then f  is an odd function and the curve 
is sym metric about the origin. Again we can obtain the complete curve if we know 
what it looks like for x > 0. [Rotate 180° about the origin; see Figure 3(b).] Some 
simple examples of odd functions are y − x, y − x 3, y − x 5, and y − sin x.

FIGURE 1 

30

_10

_2 4

y=8˛-21≈+18x+2

y=8˛-21≈+18x+2

8

6
0 2

FIGURE 2 

(a) Even function: reflectional symmetry

(b) Odd function: rotational symmetry

x

y

0

x

y

0

FIGURE 3 
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316 CHAPTER 4  Applications of Differentiation

 (iii) If f sx 1 pd − f sxd for all x in D, where p is a positive constant, then f  is 
called a periodic function and the smallest such number p is called the period. For 
instance, y − sin x has period 2! and y − tan x has period !. If we know what the 
graph looks like in an interval of length p, then we can use translation to sketch the 
entire graph (see Figure 4).

a-p a a+p a+2p x

y

0

period p

D.  Asymptotes
 (i) Horizontal Asymptotes. Recall from Section 2.6 that if either lim x l ` f sxd − L 
or lim x l2 ` f sxd − L, then the line y − L is a horizontal asymptote of the curve 
y − f sxd. If it turns out that lim x l ` f sxd − ` (or 2`), then we do not have an  
asymptote to the right, but this fact is still useful information for sketching the curve.
 (ii) Vertical Asymptotes. Recall from Section 2.2 that the line x − a is a vertical 
asymptote if at least one of the following statements is true:

 lim
x l

 

a1
  f sxd − `    lim

x l
 

a2
  f sxd − `

 lim
x l

 

a1
  f sxd − 2`    lim

x l
 

a2
  f sxd − 2`

(For rational functions you can locate the vertical asymptotes by equating the denomi-
nator to 0 after canceling any common factors. But for other functions this method 
does not apply.) Furthermore, in sketching the curve it is very useful to know exactly 
which of the statements in (1) is true. If f sad is not defined but a is an endpoint of the 
domain of f, then you should compute lim xl a2 f sxd or lim xl a1 f sxd, whether or not 
this limit is infinite.
 (iii) Slant Asymptotes. These are discussed at the end of this section.

E.  Intervals of Increase or Decrease Use the I/D Test. Compute f 9sxd and find the 
intervals on which f 9sxd is positive ( f  is increasing) and the intervals on which f 9sxd 
is negative ( f  is decreasing).

F.  Local Maximum and Minimum Values Find the critical numbers of f  [the num-
bers c where f 9scd − 0 or f 9scd does not exist]. Then use the First Derivative Test. 
If f 9 changes from positive to negative at a critical number c, then f scd is a local 
maximum. If f 9 changes from negative to positive at c, then f scd is a local minimum. 
Although it is usually prefer able to use the First Derivative Test, you can use the 
Second Derivative Test if f 9scd − 0 and f 0scd ± 0. Then f 0scd . 0 implies that f scd 
is a local minimum, whereas f 0scd , 0 implies that f scd is a local maximum.

G.  Concavity and Points of Inflection Compute f 0sxd and use the Concavity Test. The 
curve is concave upward where f 0sxd . 0 and concave downward where f 0sxd , 0. 
Inflection points occur where the direction of concavity changes.

H.  Sketch the Curve Using the information in items A–G, draw the graph. Sketch the 
asymptotes as dashed lines. Plot the intercepts, maximum and minimum points, and 
inflection points. Then make the curve pass through these points, rising and falling 
according to E, with concavity according to G, and approaching the asymptotes. 

FIGURE 4  
Periodic function: 

 translational symmetry

1
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 SECTION 4.5  Summary of Curve Sketching 317

If additional accuracy is desired near any point, you can compute the value of the 
derivative there. The tangent indicates the direction in which the curve proceeds.

EXAMPLE 1 Use the guidelines to sketch the curve y −
2x 2

x 2 2 1
.

A. The domain is

hx | x 2 2 1 ± 0j − hx | x ± 61j − s2`, 21d ø s21, 1d ø s1, `d

B. The x- and y-intercepts are both 0.
C. Since f s2xd − f sxd, the function f  is even. The curve is symmetric about the y-axis.

D. lim
x l6`

 
2x 2

x 2 2 1
− lim

x l6`
 

2
1 2 1yx 2 − 2

 Therefore the line y − 2 is a horizontal asymptote.
  Since the denominator is 0 when x − 61, we compute the following limits:

 lim
x l

 

11
 2x 2

x 2 2 1
− `                 lim

x l
 

12
 

2x 2

x 2 2 1
− 2`

 lim
x l

 

211
 

2x 2

x 2 2 1
− 2`            lim

x l
 

212
 

2x 2

x 2 2 1
− `

  Therefore the lines x − 1 and x − 21 are vertical asymptotes. This information 
about limits and asymptotes enables us to draw the preliminary sketch in Figure 5, 
showing the parts of the curve near the asymptotes.

E. f 9sxd −
sx 2 2 1ds4xd 2 2x 2 ? 2x

sx 2 2 1d2 −
24x

sx 2 2 1d2

  Since f 9sxd . 0 when x , 0 sx ± 21d and f 9sxd , 0 when x . 0 sx ± 1d, f  is  
increasing on s2`, 21d and s21, 0d and decreasing on s0, 1d and s1, `d.

F.  The only critical number is x − 0. Since f 9 changes from positive to negative at 0, 
f s0d − 0 is a local maximum by the First Derivative Test.

G. f 0sxd −
sx 2 2 1d2s24d 1 4x ? 2sx 2 2 1d2x

sx 2 2 1d4 −
12x 2 1 4
sx 2 2 1d3

 Since 12x 2 1 4 . 0 for all x, we have

f 0sxd . 0  &?  x 2 2 1 . 0  &?  | x | . 1

  and f 0sxd , 0   &?   | x | , 1. Thus the curve is concave upward on the intervals 
s2`, 21d and s1, `d and concave downward on s21, 1d. It has no point of inflec-
tion since 1 and 21 are not in the domain of f.

H. Using the information in E–G, we finish the sketch in Figure 6. Q

EXAMPLE 2 Sketch the graph of f sxd −
x 2

sx 1 1
.

A. Domain − hx | x 1 1 . 0j − hx | x . 21j − s21, `d

x=1x=_1

y=2

x

y

0

FIGURE 5  
Preliminary sketch

We have shown the curve approaching 
its horizontal asymptote from above 
in Figure 5. This is confirmed by the 
intervals of increase and decrease.

x=1x=_1

y=2

x

y

0

FIGURE 6  
Finished sketch of y −

2x 2

x 2 2 1
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318 CHAPTER 4  Applications of Differentiation

B. The x- and y-intercepts are both 0.
C. Symmetry: None
D. Since

lim
x l `

 
x 2

sx 1 1
− `

  there is no horizontal asymptote. Since sx 1 1 l 0 as x l 211 and f sxd is 
always positive, we have

lim
x l

 

211

x 2

sx 1 1
− `

  and so the line x − 21 is a vertical asymptote.

E. f 9sxd −
sx 1 1 s2xd 2 x 2 ? 1y(2sx 1 1)

x 1 1
−

3x 2 1 4x
2sx 1 1d3y2 −

xs3x 1 4d
2sx 1 1d3y2

  We see that f 9sxd − 0 when x − 0 (notice that 24
3 is not in the domain of f ), so the 

only critical number is 0. Since f 9sxd , 0 when 21 , x , 0 and f 9sxd . 0 when 
x . 0, f  is decreasing on s21, 0d and increasing on s0, `d.

F.  Since f 9s0d − 0 and f 9 changes from negative to positive at 0, f s0d − 0 is a local 
(and absolute) minimum by the First Derivative Test.

G. f 0sxd −
2sx 1 1d3y2s6x 1 4d 2 s3x 2 1 4xd3sx 1 1d1y2

4sx 1 1d3 −
3x 2 1 8x 1 8

4sx 1 1d5y2

   Note that the denominator is always positive. The numerator is the quadratic
  3x 2 1 8x 1 8, which is always positive because its discriminant is 

b 2 2 4ac − 232, which is negative, and the coefficient of x 2 is positive. Thus 
f 0sxd . 0 for all x in the domain of f, which means that f  is concave upward on 
s21, `d and there is no point of inflection.

H. The curve is sketched in Figure 7. Q

EXAMPLE 3 Sketch the graph of f sxd − xex.
A. The domain is R.
B. The x- and y-intercepts are both 0.
C. Symmetry: None
D.  Because both x and ex become large as x l `, we have lim x l ` xex − `. As 

x l 2`, however, ex l 0 and so we have an indeterminate product that requires 
the use of l’Hospital’s Rule:

lim
x l2` 

xex − lim
x l2`

 
x

e2x − lim
x l2`

 
1

2e2x − lim
x l2`

s2ex d − 0

 Thus the x-axis is a horizontal asymptote.

E. f 9sxd − xex 1 ex − sx 1 1dex

  Since ex is always positive, we see that f 9sxd . 0 when x 1 1 . 0, and f 9sxd , 0 
when x 1 1 , 0. So f  is increasing on s21, `d and decreasing on s2`, 21d.

F.  Because f 9s21d − 0 and f 9 changes from negative to positive at x − 21, 
f s21d − 2e21 < 20.37 is a local (and absolute) minimum.

G. f 0sxd − sx 1 1dex 1 ex − sx 1 2dex

  Since f 0sxd . 0 if x . 22 and f 0sxd , 0 if x , 22, f  is concave upward on 

x=_1 x

y

0

œ„„„„
y= ≈

x+1

FIGURE 7  
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 SECTION 4.5  Summary of Curve Sketching 319

s22, `d and concave downward on s2`, 22d. The inflection point is  
s22, 22e22 d < s22, 20.27d.

H. We use this information to sketch the curve in Figure 8. Q

EXAMPLE 4 Sketch the graph of f sxd −
cos x

2 1 sin x
.

A. The domain is R.
B.  The y-intercept is f s0d − 1

2. The x-intercepts occur when cos x − 0, that is, 
x − s!y2d 1 n!, where n is an integer.

C.  f  is neither even nor odd, but f sx 1 2!d − f sxd for all x and so f  is periodic and 
has period 2!. Thus, in what follows, we need to consider only 0 < x < 2! and 
then extend the curve by translation in part H.

D. Asymptotes: None

E. f 9sxd −
s2 1 sin xds2sin xd 2 cos x scos xd

s2 1 sin xd2 − 2
2 sin x 1 1
s2 1 sin xd2

  The denominator is always positive, so f 9sxd . 0 when 2 sin x 1 1 , 0    &?    
sin x , 21

2    &? 7!y6 , x , 11!y6. So f  is increasing on s7!y6, 11!y6d and 
decreasing on s0, 7!y6d and s11!y6, 2!d.

F.  From part E and the First Derivative Test, we see that the local minimum value is 
f s7!y6d − 21ys3  and the local maximum value is f s11!y6d − 1ys3 .

G.  If we use the Quotient Rule again and simplify, we get

f 0sxd − 2
2 cos x s1 2 sin xd

s2 1 sin xd3

  Because s2 1 sin xd3 . 0 and 1 2 sin x > 0 for all x, we know that f 0sxd . 0 
when cos x , 0, that is, !y2 , x , 3!y2. So f  is concave upward on s!y2, 3!y2d 
and concave downward on s0, !y2d and s3!y2, 2!d. The inflection points are 
s!y2, 0d and s3!y2, 0d.

H.  The graph of the function restricted to 0 < x < 2! is shown in Figure 9. Then we 
extend it, using periodicity, to the complete graph in Figure 10.

y
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2

”     ,      ’11π
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1
2

2π 3π

 
Q

EXAMPLE 5 Sketch the graph of y − lns4 2 x 2 d.
A. The domain is

hx | 4 2 x 2 . 0j − hx | x 2 , 4j − hx | | x | , 2j − s22, 2d

x

y

1

_1_2

y=x´

(_1, _1/e)

FIGURE 8  

FIGURE 9 FIGURE 10
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320 CHAPTER 4  Applications of Differentiation

B. The y-intercept is f s0d − ln 4. To find the x-intercept we set

y − lns4 2 x 2 d − 0

  We know that ln 1 − 0, so we have 4 2 x 2 − 1 ? x 2 − 3 and therefore the  
x-intercepts are 6s3 .

C . Since f s2xd − f sxd, f  is even and the curve is symmetric about the y-axis.
D.  We look for vertical asymptotes at the endpoints of the domain. Since 4 2 x 2 l 01 

as x l 22 and also as x l 221, we have

lim
x l

 

22
 lns4 2 x 2 d − 2`      lim

x l
 

221
 lns4 2 x 2 d − 2`

 Thus the lines x − 2 and x − 22 are vertical asymptotes.

E . f 9sxd −
22x

4 2 x 2

  Since f 9sxd . 0 when 22 , x , 0 and f 9sxd , 0 when 0 , x , 2, f  is increasing  
on s22, 0d and decreasing on s0, 2d.

F .   The only critical number is x − 0. Since f 9 changes from positive to negative at 0, 
f s0d − ln 4 is a local maximum by the First Derivative Test.

G. f 0sxd −
s4 2 x 2 ds22d 1 2xs22xd

s4 2 x 2 d2 −
28 2 2x 2

s4 2 x 2 d2

  Since f 0sxd , 0 for all x, the curve is concave downward on s22, 2d and has no 
inflection point.

H.  Using this information, we sketch the curve in Figure 11. Q

Slant Asymptotes
Some curves have asymptotes that are oblique, that is, neither horizontal nor vertical. If

lim
x l `

 f f sxd 2 smx 1 bdg − 0

where m ± 0, then the line y − mx 1 b is called a slant asymptote because the ver-
tical distance between the curve y − f sxd and the line y − mx 1 b approaches 0, as 
in  Fig ure  12. (A similar situation exists if we let x l 2`.) For rational functions, 
slant  asymp totes occur when the degree of the numerator is one more than the degree of 
the denominator. In such a case the equation of the slant asymptote can be found by long 
division as in the following example.

EXAMPLE 6 Sketch the graph of f sxd −
x 3

x 2 1 1
.

A. The domain is R − s2`, `d.
B. The x- and y-intercepts are both 0.
C. Since f s2xd − 2f sxd, f  is odd and its graph is symmetric about the origin.
D.  Since x 2 1 1 is never 0, there is no vertical asymptote. Since f sxd l ` as x l ` 

and f sxd l 2` as x l 2`, there is no horizontal asymptote. But long division

0

y

x
{œ„3, 0}{_œ„3, 0}

x=2x=_2
(0, ln 4)

FIGURE 11  
y − lns4 2 x 2d

y=ƒ

x

y

0

y=mx+b

ƒ-(mx+b)

FIGURE 12 
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  gives

 f sxd −
x 3

x 2 1 1
− x 2

x
x 2 1 1

 This equation suggests that y − x is a candidate for a slant asymptote. In fact,

 f sxd 2 x − 2
x

x 2 1 1
− 2

1
x

1 1
1
x 2

l 0   as  x l 6`

 So the line y − x is a slant asymptote.

E. f 9sxd −
sx 2 1 1ds3x2d 2 x 3 ? 2x

sx 2 1 1d2 −
x 2sx 2 1 3d
sx 2 1 1d2

 Since f 9sxd . 0 for all x (except 0), f  is increasing on s2`, `d.
F.  Although f 9s0d − 0, f 9 does not change sign at 0, so there is no local maximum or 

minimum.

G. f 0sxd −
sx 2 1 1d2s4x3 1 6xd 2 sx 4 1 3x 2 d ? 2sx 2 1 1d2x

sx 2 1 1d4 −
2xs3 2 x 2 d
sx 2 1 1d3

 Since f 0sxd − 0 when x − 0 or x − 6s3 , we set up the following chart:

Interval x 3 2 x 2 sx 2 1 1d3 f 99sxd f

 x , 2s3 2 2 1 1 CU on (2`, 2s3 )
 2s3 , x , 0 2 1 1 2 CD on (2s3 , 0)

0 , x , s3 1 1 1 1 CU on (0, s3 )
 x . s3 1 2 1 2 CD on (s3 , `)

 The points of inflection are (2s3 , 23
4 s3 ), s0, 0d, and (s3 , 34 s3 ).

H. The graph of f  is sketched in Figure 13. Q

y=x

”_œ„3, _       ’3œ„3
4

inflection
points

y= ˛
≈+1

x

y

0

”œ„3,        ’3œ„3
4

FIGURE 13 

1–54 Use the guidelines of this section to sketch the curve.

 1. y − x 3 1 3x2 2. y − 2 1 3x 2 2 x 3

 3. y − x 4 2 4x 4. y − x 4 2 8x 2 1 8

 5. y − xsx 2 4d3 6. y − x 5 2 5x

 7. y − 1
5 x 5 2 8

3 x 3 1 16x 8. y − s4 2 x 2 d5

 9. y −
x

x 2 1
 10. y −

x 2 1 5x
25 2 x2

 11. y −
x 2 x 2

2 2 3x 1 x 2  12. y − 1 1
1
x

1
1
x 2

 13. y −
x

x 2 2 4
 14. y −

1
x 2 2 4

 15. y −
x 2

x 2 1 3
 16. y −

sx 2 1d2

x 2 1 1

 17. y −
x 2 1

x 2  18. y −
x

x 3 2 1
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322 CHAPTER 4  Applications of Differentiation

 19. y −
x3

x3 1 1
 20. y −

x 3

x 2 2

 21. y − sx 2 3dsx  22. y − sx 2 4ds3 x 

 23. y − sx 2 1 x 2 2  24. y − sx 2 1 x  2 x

 25. y −
x

sx 2 1 1
 26. y − xs2 2 x 2 

 27. y −
s1 2 x 2 

x
 28. y −

x

sx 2 2 1

 29. y − x 2 3x1y3 30. y − x 5y3 2 5x 2y3

 31. y − s3 x 2 2 1 32. y − s3 x 3 1 1

 33. y − sin3 x 34. y − x 1 cos x

 35. y − x tan x,  2!y2 , x , !y2

 36. y − 2x 2 tan x,  2!y2 , x , !y2

 37. y − sin x 1 s3  cos x,  22! < x < 2!

 38. y − csc x 2 2sin x,  0 , x , !

 39. y −
sin x

1 1 cos x
 40. y −

sin x
2 1 cos x

 41. y − arctanse xd 42. y − s1 2 xde x

 43. y − 1ys1 1 e 2x d

 44. y − e2x sin x,  0 < x < 2!

 45. y −
1
x 1 ln x 46. y − e2 x 2 e x

 47. y − s1 1 e x d22 48. y − e xyx 2

 49. y − lnssin xd 50. y − lns1 1 x3d

 51. y − xe21yx 52. y −
ln x
x 2

 53. y − earctan x 54. y − tan21S x 2 1
x 1 1D

 55.   In the theory of relativity, the mass of a particle is

m −
m0

s1 2 v2yc2 

where m0 is the rest mass of the particle, m is the mass 
when the particle moves with speed v relative to the 
observer, and c is the speed of light. Sketch the graph of m 
as a function of v.

 56.   In the theory of relativity, the energy of a particle is

E − sm0
2 c4 1 h2 c 2y"2 

where m0 is the rest mass of the particle, " is its wave 

length, and h is Planck’s constant. Sketch the graph of E as a 
function of ". What does the graph say about the energy?

 57.   A model for the spread of a rumor is given by the equation

pstd −
1

1 1 ae2kt

where pstd is the proportion of the population that knows the 
rumor at time t and a and k are positive constants.

 (a)  When will half the population have heard the rumor?
 (b)  When is the rate of spread of the rumor greatest?
 (c) Sketch the graph of p.

 58.   A model for the concentration at time t of a drug injected 
into the bloodstream is

Cstd − Kse2at 2 e2btd

where a, b, and K are positive constants and b . a. Sketch 
the graph of the concentration function. What does the 
graph tell us about how the concentration varies as time 
passes?

 59.   The figure shows a beam of length L embedded in concrete 
walls. If a constant load W is distributed evenly along its 
length, the beam takes the shape of the deflection curve

y − 2
W

24EI
 x 4 1

WL
12EI

 x 3 2
WL2

24EI
 x 2

where E and I are positive constants. (E is Young’s modu-
lus of elasticity and I is the moment of inertia of a cross- 
section of the beam.) Sketch the graph of the deflection 
curve.

Wy

0
L

 60.   Coulomb’s Law states that the force of attraction between 
two charged particles is directly proportional to the product 
of the charges and inversely proportional to the square of 
the distance between them. The figure shows particles with 
charge 1 located at positions 0 and 2 on a coordinate line and 
a particle with charge 21 at a position x between them. It 
follows from Coulomb’s Law that the net force acting on the 
middle particle is

Fsxd − 2
k

x 2 1
k

sx 2 2d2          0 , x , 2

where k is a positive constant. Sketch the graph of the net 
force function. What does the graph say about the force?

7et0405x60
09/11/09
MasterID: 00518

_1 xx
+1

2
+1

0
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61–64 Find an equation of the slant asymptote. Do not sketch 
the curve.

 61. y −
x2 1 1
x 1 1

 62. y −
4x 3 2 10x 2 2 11x 1 1

x 2 2 3x

 63. y −
2x 3 2 5x 2 1 3x

x 2 2 x 2 2
 64. y −

26x 4 1 2x3 1 3
2x 3 2 x

65–70 Use the guidelines of this section to sketch the curve. In 
guideline D find an equation of the slant asymptote.

 65. y −
x 2

x 2 1
 66. y −

1 1 5x 2 2x 2

x 2 2

 67. y −
x 3 1 4

x 2  68. y −
x 3

sx 1 1d2

 69. y − 1 1 1
2 x 1 e2x 70. y − 1 2 x 1 e11xy3

 71.   Show that the curve y − x 2 tan21x has two slant asymp-
totes: y − x 1 !y2 and y − x 2 !y2. Use this fact to help 
sketch the curve.

 72.   Show that the curve y − sx2 1 4x  has two slant asymp-
totes: y − x 1 2 and y − 2x 2 2. Use this fact to help 
sketch the curve.

 73.   Show that the lines y − sbyadx and y − 2sbyadx are slant 
asymptotes of the hyperbola sx 2ya 2 d 2 sy 2yb 2 d − 1.

 74. Let f sxd − sx 3 1 1dyx. Show that

lim
x l 6`

 f f sxd 2 x 2 g − 0

This shows that the graph of f  approaches the graph of 
y − x 2, and we say that the curve y − f sxd is asymptotic  
to the parabola y − x 2. Use this fact to help sketch the 
graph of f.

 75.   Discuss the asymptotic behavior of f sxd − sx 4 1 1dyx in  
the same manner as in Exercise 74. Then use your results 
to help sketch the graph of f.

 76.   Use the asymptotic behavior of f sxd − sin x 1 e2x 
to sketch its graph without going through the curve-
sketching procedure of this section.

The method we used to sketch curves in the preceding section was a culmination of much 
of our study of differential calculus. The graph was the final object that we produced. 
In this section our point of view is completely different. Here we start with a graph 
produced by a graphing calculator or computer and then we refine it. We use calculus 
to make sure that we reveal all the important aspects of the curve. And with the use of 
graphing devices we can tackle curves that would be far too complicated to consider 
without technology. The theme is the interaction between calculus and calculators.

EXAMPLE 1 Graph the polynomial f sxd − 2x 6 1 3x 5 1 3x 3 2 2x 2. Use the graphs 
of f 9 and f 0 to estimate all maximum and minimum points and intervals of concavity.

SOLUTION If we specify a domain but not a range, many graphing devices will deduce 
a suitable range from the values computed. Figure 1 shows the plot from one such 
device if we specify that 25 < x < 5. Although this viewing rectangle is useful for 
showing that the asymptotic behavior (or end behavior) is the same as for y − 2x 6, it is 
obviously hiding some finer detail. So we change to the viewing rectangle f23, 2g by 
f250, 100g shown in Figure 2.

FIGURE 1 

41,000

_1000
_5 5

y=ƒ

     FIGURE 2 

100

_50

_3 2

y=ƒ

You may want to read “Graphing 
Calculators and Computers” at  
www.stewartcalculus.com if you 
haven’t already. In particular, it 
explains how to avoid some of the 
pitfalls of graphing devices by choosing 
appropriate viewing rectangles.
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324 CHAPTER 4  Applications of Differentiation

From this graph it appears that there is an absolute minimum value of about 215.33 
when x < 21.62 (by using the cursor) and f  is decreasing on s2`, 21.62d and 
increasing on s21.62, `d. Also there appears to be a horizontal tangent at the origin and 
inflection points when x − 0 and when x is somewhere between 22 and 21.

Now let’s try to confirm these impressions using calculus. We differentiate and get 

 f 9sxd − 12x 5 1 15x 4 1 9x 2 2 4x

  f 0sxd − 60x 4 1 60x 3 1 18x 2 4

When we graph f 9 in Figure 3 we see that f 9sxd changes from negative to positive when 
x < 21.62; this confirms (by the First Derivative Test) the minimum value that we 
found earlier. But, perhaps to our surprise, we also notice that f 9sxd changes from posi-
tive to negative when x − 0 and from negative to positive when x < 0.35. This means 
that f  has a local maximum at 0 and a local minimum when x < 0.35, but these were 
hidden in Figure 2. Indeed, if we now zoom in toward the origin in Figure 4, we see 
what we missed before: a local maximum value of 0 when x − 0 and a local minimum 
value of about 20.1 when x < 0.35.

What about concavity and inflection points? From Figures 2 and 4 there appear to 
be inflection points when x is a little to the left of 21 and when x is a little to the right 
of 0. But it’s difficult to determine inflection points from the graph of f , so we graph 
the second derivative f 0 in Figure 5. We see that f 0 changes from positive to negative 
when x < 21.23 and from negative to positive when x < 0.19. So, correct to two deci-
mal places, f  is concave upward on s2`, 21.23d and s0.19, `d and concave downward 
on s21.23, 0.19d. The inflection points are s21.23, 210.18d and s0.19, 20.05d.

We have discovered that no single graph reveals all the important features of this 
polynomial. But Figures 2 and 4, when taken together, do provide an accurate picture.

 Q

EXAMPLE 2 Draw the graph of the function

f sxd −
x 2 1 7x 1 3

x 2

in a viewing rectangle that contains all the important features of the function. Estimate 
the maximum and minimum values and the intervals of concavity. Then use calculus to 
find these quantities exactly.

SOLUTION Figure 6, produced by a computer with automatic scaling, is a disaster. 
Some graphing calculators use f210, 10g by f210, 10g as the default viewing rect-
angle, so let’s try it. We get the graph shown in Figure 7; it’s a major improvement.

3 ! 10!*

_5 5

y=ƒ

10

_10

_10 10

y=ƒ

FIGURE 6 FIGURE 7

FIGURE 3 

FIGURE 4 

20

_5

_3 2

y=fª(x)

1

_1

_1 1

y=ƒ

10

_30

_3 2

y=f·(x)

FIGURE 5 
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 SECTION 4.6  Graphing with Calculus and Calculators 325

The y-axis appears to be a vertical asymptote and indeed it is because 

lim
x l 0

 
x 2 1 7x 1 3

x 2 − `

Figure 7 also allows us to estimate the x-intercepts: about 20.5 and 26.5. The 
exact values are obtained by using the quadratic formula to solve the equation 
x 2 1 7x 1 3 − 0; we get x − (27 6 s37 )y2.

To get a better look at horizontal asymptotes, we change to the viewing rectangle 
f220, 20g by f25, 10g in Figure 8. It appears that y − 1 is the horizontal asymptote 
and this is easily confirmed:

lim
x l 6`

 
x 2 1 7x 1 3

x 2 − lim
x l 6`

 S1 1
7
x

1
3
x 2D − 1

To estimate the minimum value we zoom in to the viewing rectangle f23, 0g by 
f24, 2g in Figure 9. The cursor indicates that the absolute minimum value is about 
23.1 when x < 20.9, and we see that the function decreases on s2`, 20.9d and s0, `d 
and increases on s20.9, 0d. The exact values are obtained by differentiating:

f 9sxd − 2
7
x 2 2

6
x 3 − 2

7x 1 6
x 3

This shows that f 9sxd . 0 when 26
7 , x , 0 and f 9sxd , 0 when x , 26

7 and when
x . 0. The exact minimum value is f (26

7 ) − 237
12 < 23.08.

Figure 9 also shows that an inflection point occurs somewhere between x − 21 and 
x − 22. We could estimate it much more accurately using the graph of the second 
deriv ative, but in this case it’s just as easy to find exact values. Since

f 0sxd −
14
x 3 1

18
x 4 −

2s7x 1 9d
x 4

we see that f 0sxd . 0 when x . 29
7 sx ± 0d. So f  is concave upward on s29

7, 0d and 

s0, `d and concave downward on s2`, 29
7 d. The inflection point is s29

7, 271
27 d.

The analysis using the first two derivatives shows that Figure 8 displays all the 
major aspects of the curve. Q

EXAMPLE 3 Graph the function f sxd −
x 2sx 1 1d3

sx 2 2d2sx 2 4d4 .

SOLUTION Drawing on our experience with a rational function in Example 2, let’s 
start by graphing f  in the viewing rectangle f210, 10g by f210, 10g. From Figure 10 
we have the feeling that we are going to have to zoom in to see some finer detail and 
also zoom out to see the larger picture. But, as a guide to intelligent zooming, let’s 
first take a close look at the expression for f sxd. Because of the factors sx 2 2d2 and 
sx 2 4d4 in the denominator, we expect x − 2 and x − 4 to be the vertical asymp-
totes. Indeed

lim
x l

 

2
 

x 2sx 1 1d3

sx 2 2d2sx 2 4d4 − `    and    lim
x l

 

4
 

x 2sx 1 1d3

sx 2 2d2sx 2 4d4 − `

10

_5

_20 20

y=ƒ

y=1

FIGURE 8

2

_4

_3 0
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FIGURE 9 
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326 CHAPTER 4  Applications of Differentiation

To find the horizontal asymptotes, we divide numerator and denominator by x 6:

x 2sx 1 1d3

sx 2 2d2sx 2 4d4 −

x 2

x 3 ?
sx 1 1d3

x 3

sx 2 2d2

x 2 ?
sx 2 4d4

x 4

−

1
x S1 1

1
xD3

S1 2
2
xD2S1 2

4
xD4

This shows that f sxd l 0 as x l 6`, so the x-axis is a horizontal asymptote.
It is also very useful to consider the behavior of the graph near the x-intercepts 

using an analysis like that in Example 2.6.12. Since x 2 is positive, f sxd does not 
change sign at 0 and so its graph doesn’t cross the x-axis at 0. But, because of the 
factor sx 1 1d3, the graph does cross the x-axis at 21 and has a horizontal tangent 
there. Putting all this information together, but without using derivatives, we see that 
the curve has to look something like the one in Figure 11.

Now that we know what to look for, we zoom in (several times) to produce the 
graphs in Figures 12 and 13 and zoom out (several times) to get Figure 14.

0.05

_0.05

_100 1
y=ƒ

0.0001

_0.0001

_1.5 0.5
y=ƒ

500

_10
_1 10

y=ƒ

 FIGURE 13 FIGURE 14

We can read from these graphs that the absolute minimum is about 20.02 and 
occurs when x < 220. There is also a local maximum <0.00002 when x < 20.3 and 
a local minimum <211 when x < 2.5. These graphs also show three inflection points 
near 235, 25, and 21 and two between 21 and 0. To estimate the inflection points 
closely we would need to graph f 0, but to compute f 0 by hand is an unreasonable 
chore. If you have a computer algebra system, then it’s easy to do (see Exercise 15).

We have seen that, for this particular function, three graphs (Figures 12, 13, and 14) 
are necessary to convey all the useful information. The only way to display all these 
features of the function on a single graph is to draw it by hand. Despite the exaggera-
tions and distortions, Figure 11 does manage to summarize the essential nature of the 
function. Q

EXAMPLE 4 Graph the function f sxd − sinsx 1 sin 2xd. For 0 < x < !, estimate 
all maximum and minimum values, intervals of increase and decrease, and inflection 
points.

SOLUTION We first note that f  is periodic with period 2!. Also, f  is odd and 
| f sxd | < 1 for all x. So the choice of a viewing rectangle is not a problem for this func-
tion: We start with f0, !g by f21.1, 1.1g. (See Figure 15.) It appears that there are three 
local maximum values and two local minimum values in that window. To confirm

x

y

1 2 3_1 4

FIGURE 11 
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 this and locate them more accurately, we calculate that

f 9sxd − cossx 1 sin 2xd ? s1 1 2 cos 2xd

and graph both f  and f 9 in Figure 16.
Using zoom-in and the First Derivative Test, we find the following approximate  

values:

 Intervals of increase:  s0, 0.6d, s1.0, 1.6d, s2.1, 2.5d

 Intervals of decrease:  s0.6, 1.0d, s1.6, 2.1d, s2.5, !d

 Local maximum values: f s0.6d < 1, f s1.6d < 1, f s2.5d < 1

 Local minimum values:  f s1.0d < 0.94, f s2.1d < 0.94

The second derivative is

f 0sxd − 2s1 1 2 cos 2xd2 sinsx 1 sin 2xd 2 4 sin 2x cossx 1 sin 2xd

Graphing both f  and f 0 in Figure 17, we obtain the following approximate values:

 Concave upward on:  s0.8, 1.3d, s1.8, 2.3d

 Concave downward on: s0, 0.8d, s1.3, 1.8d, s2.3, !d

 Inflection points:  s0, 0d, s0.8, 0.97d, s1.3, 0.97d, s1.8, 0.97d, s2.3, 0.97d

Having checked that Figure 15 does indeed represent f  accurately for 0 < x < !,  
we can state that the extended graph in Figure 18 represents f  accurately for 
22! < x < 2!. Q

Our final example is concerned with families of functions. This means that the func-
tions in the family are related to each other by a formula that contains one or more arbi-
trary constants. Each value of the constant gives rise to a member of the family and the 
idea is to see how the graph of the function changes as the constant changes.

EXAMPLE 5 How does the graph of f sxd − 1ysx 2 1 2x 1 cd vary as c varies?

SOLUTION The graphs in Figures 19 and 20 (the special cases c − 2 and c − 22)  
show two very different-looking curves. 
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The family of functions

f sxd − sinsx 1 sin cxd
where c is a constant, occurs in appli- 
cations to frequency modulation (FM) 
synthesis. A sine wave is modulated by 
a wave with a different frequency 
ssin cxd. The case where c − 2 is 
studied in Example 4. Exercise 27 
explores another special case.
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328 CHAPTER 4  Applications of Differentiation

Before drawing any more graphs, let’s see what members of this family have in 
common. Since

lim
x l 6`

 
1

x 2 1 2x 1 c
− 0

for any value of c, they all have the x-axis as a horizontal asymptote. A vertical asymp-
tote will occur when x 2 1 2x 1 c − 0. Solving this quadratic equation, we get 
x − 21 6 s1 2 c . When c . 1, there is no vertical asymptote (as in Figure 19).  
When c − 1, the graph has a single vertical asymptote x − 21 because

lim
x l21

 
1

x 2 1 2x 1 1
− lim

x l21
 

1
sx 1 1d2 − `

When c , 1, there are two vertical asymptotes: x − 21 6 s1 2 c  (as in Figure 20)
Now we compute the derivative:

f 9sxd − 2
2x 1 2

sx 2 1 2x 1 cd2

This shows that f 9sxd − 0 when x − 21 (if c ± 1), f 9sxd . 0 when x , 21, and 
f 9sxd , 0 when x . 21. For c > 1, this means that f  increases on s2`, 21d 
and decreases on s21, `d. For c . 1, there is an absolute maximum value 
f s21d − 1ysc 2 1d. For c , 1, f s21d − 1ysc 2 1d is a local maximum value and the 
intervals of increase and decrease are interrupted at the vertical asymptotes.

Figure 21 is a “slide show” displaying five members of the family, all graphed in the 
viewing rectangle f25, 4g by f22, 2g. As predicted, a transition takes place from two 
vertical asymptotes to one at c − 1, and then to none for c . 1. As c increases from 
1, we see that the maximum point becomes lower; this is explained by the fact that 
1ysc 2 1d l 0 as c l `. As c decreases from 1, the vertical asymptotes become more 
widely separated because the distance between them is 2s1 2 c , which becomes large 
as c l 2`. Again, the maximum point approaches the x-axis because 1ysc 2 1d l 0 
as c l 2`.

c=3c=2c=1c=0c=_1

There is clearly no inflection point when c < 1. For c . 1 we calculate that

f 0sxd −
2s3x 2 1 6x 1 4 2 cd

sx 2 1 2x 1 cd3

and deduce that inflection points occur when x − 21 6 s3sc 2 1dy3. So the inflection 
points become more spread out as c increases and this seems plausible from the last 
two parts of Figure 21. Q

FIGURE 21  
The family of functions 
f sxd − 1ysx2 1 2x 1 cd

TEC See an animation of Figure 21 in 
Visual 4.6.
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; 
1–8 Produce graphs of f  that reveal all the important aspects 
of the curve. In particular, you should use graphs of f 9 and 
f 0 to estimate the intervals of increase and decrease, extreme 
values, intervals of concavity, and inflection points.

 1. f sxd − x 5 2 5x4 2 x 3 2 28x 2 2 2x

 2. f sxd − 22x6 1 5x 5 1 140x 3 2 110x 2

 3. f sxd − x 6 2 5x 5 1 25x 3 2 6x 2 2 48x

 4. f sxd −
x4 2 x 3 2 8
x 2 2 x 2 6

 5. f sxd −
x

x 3 1 x 2 1 1

 6. f sxd − 6 sin x 2 x 2,  25 < x < 3

 7. f sxd − 6 sin x 1 cot x,  2! < x < !

 8. f sxd − e x 2 0.186x 4

9–10 Produce graphs of f  that reveal all the important aspects 
of the curve. Estimate the intervals of increase and decrease 
and intervals of concavity, and use calculus to find these inter-
vals exactly.

 9. f sxd − 1 1
1
x

1
8
x 2 1

1
x 3  10. f sxd −

1
x 8 2

2 3 108

x 4

 11–12
 (a) Graph the function.
 (b)  Use l’Hospital’s Rule to explain the behavior as x l 0.
 (c)  Estimate the minimum value and intervals of concavity. 

Then use calculus to find the exact values.

 11. f sxd − x 2 ln x 12. f sxd − xe1yx

13–14 Sketch the graph by hand using asymptotes and inter-
cepts, but not derivatives. Then use your sketch as a guide to 
producing graphs (with a graphing device) that display the 
major features of the curve. Use these graphs to estimate the 
maximum and minimum values.

 13. f sxd −
sx 1 4dsx 2 3d2

x 4sx 2 1d

 14. f sxd −
s2x 1 3d2sx 2 2d5

x 3sx 2 5d2

 15.  If f  is the function considered in Example 3, use a com-
puter algebra system to calculate f 9 and then graph it to 
confirm that all the maximum and minimum values are as 
given in the example. Calculate f 0 and use it to estimate 
the intervals of concavity and inflection points.

 16.  If f  is the function of Exercise 14, find f 9 and f 0 and 
use their graphs to estimate the intervals of increase and 
decrease and concavity of f.

CAS

CAS

17–22 Use a computer algebra system to graph f  and to find 
f 9 and f 0. Use graphs of these derivatives to estimate the 
intervals of increase and decrease, extreme values, intervals  
of concavity, and inflection points of f.

 17. f sxd −
x 3 1 5x 2 1 1

x 4 1 x 3 2 x 2 1 2

 18. f sxd −
x 2y3

1 1 x 1 x 4

 19. f sxd − sx 1 5 sin x ,  x < 20

 20. f sxd − x 2 tan21sx 2d

 21. f sxd −
1 2 e1yx

1 1 e1yx

 22. f sxd −
3

3 1 2 sin x

23–24 Graph the function using as many viewing rectangles 
as you need to depict the true nature of the function.

 23. f sxd −
1 2 cossx 4d

x 8

 24. f sxd − e x 1 ln| x 2 4 |

25–26
 (a) Graph the function.
 (b)  Explain the shape of the graph by computing the limit as 

x l 01 or as x l `.
 (c)  Estimate the maximum and minimum values and then use  

calculus to find the exact values.
 (d)  Use a graph of f 0 to estimate the x-coordinates of the 

inflection points.

 25. f sxd − x 1yx 26. f sxd − ssin xdsin x

 27.  In Example 4 we considered a member of the family 
of functions f sxd − sinsx 1 sin cxd that occur in FM 
synthesis. Here we investigate the function with c − 3. 
Start by graphing f  in the viewing rectangle f0, !g by 
f21.2, 1.2g. How many local maximum points do you 
see? The graph has more than are visible to the naked eye. 
To discover the hidden maximum and minimum points 
you will need to examine the graph of f 9 very carefully. 
In fact, it helps to look at the graph of f 0 at the same 
time. Find all the maximum and minimum values and 
inflection points. Then graph f  in the viewing rectangle 
f22!, 2!g by f21.2, 1.2g and comment on symmetry.

28–35 Describe how the graph of f  varies as c varies. Graph 
several members of the family to illustrate the trends that you 

CAS

CAS

CAS
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x l 6`. Identify any transitional values of c where the basic 
shape changes. What happens to the maximum or minimum 
points and inflection points as c changes? Illustrate by graph-
ing several members of the family.

 38.  Investigate the family of curves given by the equation 
f sxd − x 4 1 cx 2 1 x. Start by determining the transitional 
value of c at which the number of inflection points changes. 
Then graph several members of the family to see what shapes 
are possible. There is another transitional value of c at which 
the number of critical numbers changes. Try to discover it 
graphically. Then prove what you have discovered.

 39. (a)  Investigate the family of polynomials given by the equa-
tion f sxd − cx 4 2 2x 2 1 1. For what values of c does 
the curve have minimum points?

 (b)  Show that the minimum and maximum points of every 
curve in the family lie on the parabola y − 1 2 x 2. 
Illustrate by graphing this parabola and several members 
of the family.

 40. (a)  Investigate the family of polynomials given by the equa-
tion f sxd − 2x 3 1 cx 2 1 2x. For what values of c does 
the curve have maximum and minimum points?

 (b)  Show that the minimum and maximum points of every 
curve in the family lie on the curve y − x 2 x 3. Illustrate 
by graphing this curve and several members of the family.

discover. In particular, you should investigate how maximum  
and minimum points and inflection points move when c changes. 
You should also identify any transitional values of c at which the 
basic shape of the curve changes.

 28. f sxd − x 3 1 cx

 29. f sxd − x2 1 6x 1 cyx (Trident of Newton)

 30. f sxd − xsc 2 2 x 2  31. f sxd − e x 1 ce2x

 32. f sxd − lnsx 2 1 cd 33. f sxd −
cx

1 1 c 2x 2

 34. f sxd −
sin x

c 1 cos x
 35. f sxd − cx 1 sin x

 36.  The family of functions f std − Cse2at 2 e2bt d, where a,  
b, and C are positive numbers and b . a, has been used to 
model the concentration of a drug injected into the blood-
stream at time t − 0. Graph several members of this family. 
What do they have in common? For fixed values of C and a,  
discover graphically what happens as b increases. Then use 
calculus to prove what you have discovered.

 37.  Investigate the family of curves given by f sxd − xe2cx,  
where c is a real number. Start by computing the limits as 

The methods we have learned in this chapter for finding extreme values have practi-
cal applications in many areas of life. A businessperson wants to minimize costs and 
maximize profits. A traveler wants to minimize transportation time. Fermat’s Principle in 
optics states that light follows the path that takes the least time. In this section we solve 
such problems as maximizing areas, volumes, and profits and minimizing distances, 
times, and costs.

In solving such practical problems the greatest challenge is often to convert the word 
problem into a mathematical optimization problem by setting up the function that is to  
be maximized or minimized. Let’s recall the problem-solving principles discussed on 
page 71 and adapt them to this situation:

Steps In Solving Optimization Problems
1.  Understand the Problem The first step is to read the problem carefully until it is 

clearly understood. Ask yourself: What is the unknown? What are the given quanti-
ties? What are the given conditions?

2.  Draw a Diagram In most problems it is useful to draw a diagram and identify the 
given and required quantities on the diagram.

3.  Introduce Notation Assign a symbol to the quantity that is to be maximized or 
minimized (let’s call it Q for now). Also select symbols sa, b, c, . . . , x, yd for other 
unknown quantities and label the diagram with these symbols. It may help to use 
initials as suggestive symbols—for example, A for area, h for height, t for time.

PS
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4. Express Q in terms of some of the other symbols from Step 3.
5.  If Q has been expressed as a function of more than one variable in Step 4, use the 

given information to find relationships (in the form of equations) among these 
variables. Then use these equations to eliminate all but one of the variables in the 
expression for Q. Thus Q will be expressed as a function of one variable x, say, 
Q − f sxd. Write the domain of this function in the given context.

6.  Use the methods of Sections 4.1 and 4.3 to find the absolute maximum or minimum 
value of f. In particular, if the domain of f  is a closed interval, then the Closed 
Interval Method in Section 4.1 can be used.

EXAMPLE 1  A farmer has 2400 ft of fencing and wants to fence off a rectangular field 
that borders a straight river. He needs no fence along the river. What are the dimensions 
of the field that has the largest area?

SOLUTION In order to get a feeling for what is happening in this problem, let’s experi-
ment with some specific cases. Figure 1 (not to scale) shows three possible ways of 
laying out the 2400 ft of fencing.

100
2200

100

Area=100 · 2200=220,000 ft@

700

1000

700

Area=700 · 1000=700,000 ft@

1000

400

1000

Area=1000 · 400=400,000 ft@

We see that when we try shallow, wide fields or deep, narrow fields, we get rela-
tively small areas. It seems plausible that there is some intermediate configuration that 
produces the largest area.

Figure 2 illustrates the general case. We wish to maximize the area A of the rect-
angle. Let x and y be the depth and width of the rectangle (in feet). Then we express A 
in terms of x and y:

A − xy

We want to express A as a function of just one variable, so we eliminate y by express-
ing it in terms of x. To do this we use the given information that the total length of the 
fencing is 2400 ft. Thus 

2x 1 y − 2400

From this equation we have y − 2400 2 2x, which gives

A − xy − xs2400 2 2xd − 2400x 2 2x 2

Note that the largest x can be is 1200 (this uses all the fence for the depth and none for 
the width) and x can’t be negative, so the function that we wish to maximize is

Asxd − 2400x 2 2x 2    0 < x < 1200

PS   Understand the problem
PS   Analogy: Try special cases
PS   Draw diagrams

FIGURE 1  

FIGURE 2  

x

y

A x

PS   Introduce notation
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The derivative is A9sxd − 2400 2 4x, so to find the critical numbers we solve the  
equation

2400 2 4x − 0

which gives x − 600. The maximum value of A must occur either at this critical number 
or at an endpoint of the interval. Since As0d − 0, As600d − 720,000, and As1200d − 0, 
the Closed Interval Method gives the maximum value as As600d − 720,000.

[Alternatively, we could have observed that A0sxd − 24 , 0 for all x, so A is 
always concave downward and the local maximum at x − 600 must be an absolute 
maximum.]

The corresponding y-value is y − 2400 2 2s600d − 1200; so the rectangular field 
should be 600 ft deep and 1200 ft wide.  Q

EXAMPLE 2  A cylindrical can is to be made to hold 1 L of oil. Find the dimensions 
that will minimize the cost of the metal to manufacture the can.

SOLUTION Draw the diagram as in Figure 3, where r is the radius and h the height (both 
in centimeters). In order to minimize the cost of the metal, we minimize the total surface 
area of the cylinder (top, bottom, and sides). From Figure 4 we see that the sides are 
made from a rectangular sheet with dimensions 2!r and h. So the surface area is

A − 2!r 2 1 2!rh

We would like to express A in terms of one variable, r. To eliminate h we use the 
fact that the volume is given as 1 L, which is equivalent to 1000 cm3. Thus

!r 2h − 1000

which gives h − 1000ys!r 2 d. Substitution of this into the expression for A gives

A − 2!r 2 1 2!rS 1000
!r 2 D − 2!r 2 1

2000
r

We know r must be positive, and there are no limitations on how large r can be. There-
fore the function that we want to minimize is

Asrd − 2!r 2 1
2000

r
    r . 0

To find the critical numbers, we differentiate:

A9srd − 4!r 2
2000

r 2 −
4s!r 3 2 500d

r 2

Then A9srd − 0 when !r 3 − 500, so the only critical number is r − s3 500y!  .
Since the domain of A is s0, `d, we can’t use the argument of Example 1 concern-

ing endpoints. But we can observe that A9srd , 0 for r , s3 500y!   and A9srd . 0 for 
r . s3 500y!  , so A is decreasing for all r to the left of the critical number and increas-
ing for all r to the right. Thus r − s3 500y!   must give rise to an absolute minimum.

[Alternatively, we could argue that Asrd l ` as r l 01 and Asrd l ` as r l `, so 
there must be a minimum value of Asrd, which must occur at the critical number. See 
Figure 5.]

r

h

FIGURE 3 

r

Area 2{πr@} Area (2πr)h

2πr

h

FIGURE 4 

r

y

0 10

1000 y=A(r)

FIGURE 5 
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The value of h corresponding to r − s3 500y!   is

h −
1000
!r 2 −

1000
!s500y!d2y3 − 2Î3

500
!

 − 2r

Thus, to minimize the cost of the can, the radius should be s3 500y!   cm and the height 
should be equal to twice the radius, namely, the diameter. Q

NOTE 1 The argument used in Example 2 to justify the absolute minimum is a vari-
ant of the First Derivative Test (which applies only to local maximum or minimum val-
ues) and is stated here for future reference.

 First Derivative Test for Absolute Extreme Values Suppose that c is a critical 
number of a continuous function f  defined on an interval.

(a)  If f 9sxd . 0 for all x , c and f 9sxd , 0 for all x . c, then f scd is the abso- 
lute maximum value of f.

(b)  If f 9sxd , 0 for all x , c and f 9sxd . 0 for all x . c, then f scd is the abso- 
lute minimum value of f.

TEC Module 4.7 takes you through 
six additional optimization problems, 
including animations of the physical 
situations.

NOTE 2 An alternative method for solving optimization problems is to use implicit 
differentiation. Let’s look at Example 2 again to illustrate the method. We work with the 
same equations

A − 2!r 2 1 2!rh      !r 2h − 1000

but instead of eliminating h, we differentiate both equations implicitly with respect to r:

A9 − 4!r 1 2!rh9 1 2!h      !r 2h9 1 2!rh − 0

The minimum occurs at a critical number, so we set A9 − 0, simplify, and arrive at the  
equations

2r 1 rh9 1 h − 0      rh9 1 2h − 0

and subtraction gives 2r 2 h − 0, or h − 2r.

EXAMPLE 3  Find the point on the parabola y 2 − 2x that is closest to the point s1, 4d.

SOLUTION The distance between the point s1, 4d and the point sx, yd is

d − ssx 2 1d2 1 sy 2 4d2 

(See Figure 6.) But if sx, yd lies on the parabola, then x − 1
2 y 2, so the expression for d 

becomes

d − s(1
2 y2 2 1)2 1 sy 2 4d2 

(Alternatively, we could have substituted y − s2x  to get d in terms of x alone.) 
Instead of minimizing d, we minimize its square:

d 2 − f syd − s1
2 y 2 2 1d 2 1 sy 2 4d2

In the Applied Project on page 343 we 
investigate the most economical shape 
for a can by taking into account other 
manufacturing costs.

x

y

0 1

1

2 3 4

¥=2x(1, 4)

(x, y)

FIGURE 6
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(You should convince yourself that the minimum of d occurs at the same point as the 
minimum of d 2, but d 2 is easier to work with.) Note that there are no restrictions on y, 
so the domain is all real numbers. Differentiating, we obtain

f 9syd − 2s1
2 y 2 2 1dy 1 2sy 2 4d − y 3 2 8

so f 9syd − 0 when y − 2. Observe that f 9syd , 0 when y , 2 and f 9syd . 0 when 
y . 2, so by the First Derivative Test for Absolute Extreme Values, the absolute mini-
mum occurs when y − 2. (Or we could simply say that because of the geometric nature 
of the problem, it’s obvious that there is a closest point but not a farthest point.) The 
corresponding value of x is x − 1

2 y 2 − 2. Thus the point on y 2 − 2x closest to s1, 4d is 
s2, 2d. [The distance between the points is d − sf s2d − s5 .] Q

EXAMPLE 4  A man launches his boat from point A on a bank of a straight river, 3 km 
wide, and wants to reach point B, 8 km downstream on the opposite bank, as quickly as 
possible (see Figure 7). He could row his boat directly across the river to point C and 
then run to B, or he could row directly to B, or he could row to some point D between 
C and B and then run to B. If he can row 6 kmyh and run 8 kmyh, where should he 
land to reach B as soon as possible? (We assume that the speed of the water is negli-
gible compared with the speed at which the man rows.)

SOLUTION If we let x be the distance from C to D, then the running distance is 
| DB | − 8 2 x and the Pythagorean Theorem gives the rowing distance as

| AD | − sx 2 1 9 . We use the equation

time −
distance

rate

Then the rowing time is sx 2 1 9 y6 and the running time is s8 2 xdy8, so the total time 
T  as a function of x is

Tsxd −
sx 2 1 9 

6
1

8 2 x
8

The domain of this function T  is f0, 8g. Notice that if x − 0, he rows to C and if x − 8, 
he rows directly to B. The derivative of T  is

T9sxd −
x

6sx 2 1 9 
2

1
8

Thus, using the fact that x > 0, we have

T9sxd − 0  &?  
x

6sx 2 1 9 
−

1
8

  &?  4x − 3sx 2 1 9  

  &?  16x 2 − 9sx 2 1 9d  &?  7x 2 − 81

  &?  x −
9

s7 

The only critical number is x − 9ys7 . To see whether the minimum occurs at this 
critical number or at an endpoint of the domain f0, 8g, we follow the Closed Interval 

8 km

C

D

B

A

3 km

x

FIGURE 7 
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Method by evaluating T  at all three points:

Ts0d − 1.5      TS 9
s7 D − 1 1

s7 

8
< 1.33      Ts8d −

s73 

6
< 1.42 

Since the smallest of these values of T  occurs when x − 9ys7 , the absolute minimum 
value of T  must occur there. Figure 8 illustrates this calculation by showing the graph 
of T.

Thus the man should land the boat at a point 9ys7  km (<3.4 km) downstream from 
his starting point. Q

EXAMPLE 5  Find the area of the largest rectangle that can be inscribed in a semicircle 
of radius r.

SOLUTION 1 Let’s take the semicircle to be the upper half of the circle x 2 1 y 2 − r 2 
with center the origin. Then the word inscribed means that the rectangle has two  
vertices on the semicircle and two vertices on the x-axis as shown in Figure 9.

Let sx, yd be the vertex that lies in the first quadrant. Then the rectangle has sides of 
lengths 2x and y, so its area is

A − 2xy

To eliminate y we use the fact that sx, yd lies on the circle x 2 1 y 2 − r 2 and so
y − sr 2 2 x 2 . Thus

A − 2xsr 2 2 x 2 

The domain of this function is 0 < x < r. Its derivative is

A9 − 2sr 2 2 x 2 2
2x 2

sr 2 2 x 2 
−

2sr 2 2 2x 2 d
sr 2 2 x 2 

which is 0 when 2x 2 − r 2, that is, x − rys2  (since x > 0). This value of x gives a  
maximum value of A since As0d − 0 and Asrd − 0. Therefore the area of the largest 
inscribed rectangle is

AS r

s2 D − 2 
r

s2 Îr 2 2
r 2

2
 − r 2

SOLUTION 2 A simpler solution is possible if we think of using an angle as a variable. 
Let " be the angle shown in Figure 10. Then the area of the rectangle is

As"d − s2r cos "dsr sin "d − r 2s2 sin " cos "d − r 2 sin 2"

We know that sin 2" has a maximum value of 1 and it occurs when 2" − !y2. So As"d 
has a maximum value of r 2 and it occurs when " − !y4.

Notice that this trigonometric solution doesn’t involve differentiation. In fact, we  
didn’t need to use calculus at all. Q

Applications to Business and Economics
In Section 3.7 we introduced the idea of marginal cost. Recall that if Csxd, the cost func-
tion, is the cost of producing x units of a certain product, then the marginal cost is the 
rate of change of C with respect to x. In other words, the marginal cost function is the 
derivative, C9sxd, of the cost function.

x

T

0

1

2 4 6

y=T(x)

FIGURE 8 

x

y

0
2x

(x, y) 
y

_r r

FIGURE 9 

r

¨
r cos ̈

r sin ̈

FIGURE 10 
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Now let’s consider marketing. Let psxd be the price per unit that the company can 
charge if it sells x units. Then p is called the demand function (or price function) and 
we would expect it to be a decreasing function of x. (More units sold corresponds to a 
lower price.) If x units are sold and the price per unit is psxd, then the total revenue is

Rsxd − quantity 3 price − xpsxd

and R is called the revenue function. The derivative R9 of the revenue function is called 
the marginal revenue function and is the rate of change of revenue with respect to the 
num ber of units sold.

If x units are sold, then the total profit is

Psxd − Rsxd 2 Csxd

and P is called the profit function. The marginal profit function is P9, the derivative of 
the profit function. In Exercises 59–63 you are asked to use the marginal cost, revenue, 
and profit functions to minimize costs and maximize revenues and profits.

EXAMPLE 6  A store has been selling 200 flat-screen TVs a week at $350 each. A mar-
ket survey indicates that for each $10 rebate offered to buyers, the number of TVs sold 
will increase by 20 a week. Find the demand function and the revenue function. How 
large a rebate should the store offer to maximize its revenue?

SOLUTION If x is the number of TVs sold per week, then the weekly increase in sales is 
x 2 200. For each increase of 20 units sold, the price is decreased by $10. So for each 
additional unit sold, the decrease in price will be 1

20 3 10 and the demand function is

 psxd − 350 2 10
20 sx 2 200d − 450 2 1

2 x

The revenue function is
 Rsxd − xpsxd − 450x 2 1

2 x 2

Since R9sxd − 450 2 x, we see that R9sxd − 0 when x − 450. This value of x gives an 
absolute maximum by the First Derivative Test (or simply by observing that the graph 
of R is a parabola that opens downward). The corresponding price is

 ps450d − 450 2 1
2 s450d − 225

and the rebate is 350 2 225 − 125. Therefore, to maximize revenue, the store should 
offer a rebate of $125. Q

First number Second number Product

 1 22  22
 2 21  42
 3 20  60

. . .

. . .

. . .

 1.  Consider the following problem: Find two numbers whose 
sum is 23 and whose product is a maximum.

 (a)  Make a table of values, like the one at the right, so that 
the sum of the numbers in the first two columns is always 
23. On the basis of the evidence in your table, estimate 
the answer to the problem.

 (b)  Use calculus to solve the problem and compare with your 
answer to part (a).
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ing up the sides. Find the largest volume that such a box can 
have.

 (a)  Draw several diagrams to illustrate the situation, some 
short boxes with large bases and some tall boxes with 
small bases. Find the volumes of several such boxes. 
Does it appear that there is a maximum volume? If so, 
estimate it.

 (b)  Draw a diagram illustrating the general situation. Intro-
duce notation and label the diagram with your symbols.

 (c) Write an expression for the volume.
 (d)  Use the given information to write an equation that 

relates the variables.
 (e)  Use part (d) to write the volume as a function of one  

variable.
 (f  )  Finish solving the problem and compare the answer with 

your estimate in part (a).

 13.  A farmer wants to fence in an area of 1.5 million square feet 
in a rectangular field and then divide it in half with a fence 
parallel to one of the sides of the rectangle. How can he do 
this so as to minimize the cost of the fence?

 14.  A box with a square base and open top must have a volume of 
32,000 cm3. Find the dimensions of the box that minimize the 
amount of material used.

 15.  If 1200 cm2 of material is available to make a box with a 
square base and an open top, find the largest possible volume 
of the box.

 16.  A rectangular storage container with an open top is to have 
a volume of 10 m3. The length of its base is twice the width. 
Material for the base costs $10 per square meter. Material for 
the sides costs $6 per square meter. Find the cost of materials 
for the cheapest such container.

 17.  Do Exercise 16 assuming the container has a lid that is made 
from the same material as the sides.

 18.  A farmer wants to fence in a rectangular plot of land adjacent 
to the north wall of his barn. No fencing is needed along the 
barn, and the fencing along the west side of the plot is shared 
with a neighbor who will split the cost of that portion of the 
fence. If the fencing costs $20 per linear foot to install and 
the farmer is not willing to spend more than $5000, find the 
dimensions for the plot that would enclose the most area.

 19.  If the farmer in Exercise 18 wants to enclose 8000 square  
feet of land, what dimensions will minimize the cost of  
the fence?

 20. (a)  Show that of all the rectangles with a given area, the one 
with smallest perimeter is a square.

 (b)  Show that of all the rectangles with a given perimeter, the 
one with greatest area is a square.

 21.  Find the point on the line y − 2x 1 3 that is closest to the 
origin.

 22.  Find the point on the curve y − sx  that is closest to the  
point s3, 0d.

 2.  Find two numbers whose difference is 100 and whose product 
is a minimum.

 3.  Find two positive numbers whose product is 100 and whose 
sum is a minimum.

 4.  The sum of two positive numbers is 16. What is the smallest 
possible value of the sum of their squares?

 5.   What is the maximum vertical distance between the line 
y − x 1 2 and the parabola y − x 2 for 21 < x < 2?

 6.   What is the minimum vertical distance between the parabolas 
y − x 2 1 1 and y − x 2 x 2?

 7.  Find the dimensions of a rectangle with perimeter 100 m 
whose area is as large as possible.

 8.  Find the dimensions of a rectangle with area 1000 m2 whose 
perimeter is as small as possible.

 9.  A model used for the yield Y of an agricultural crop as a 
function of the nitrogen level N in the soil (measured in 
appropriate units) is

Y −
kN

1 1 N 2

where k is a positive constant. What nitrogen level gives the 
best yield?

 10.  The rate sin mg carbonym3yhd at which photosynthesis takes 
place for a species of phytoplankton is modeled by the  
function

P −
100 I

I 2 1 I 1 4

where I is the light intensity (measured in thousands of foot-
candles). For what light intensity is P a maximum?

 11.  Consider the following problem: A farmer with 750 ft of 
fencing wants to enclose a rectangular area and then divide 
it into four pens with fencing parallel to one side of the 
rectangle. What is the largest possible total area of the  
four pens?

 (a)  Draw several diagrams illustrating the situation, some 
with shallow, wide pens and some with deep, narrow pens. 
Find the total areas of these configurations. Does it appear 
that there is a maximum area? If so, estimate it.

 (b)  Draw a diagram illustrating the general situation. Intro-
duce notation and label the diagram with your symbols.

 (c) Write an expression for the total area.
 (d)  Use the given information to write an equation that 

relates the variables.
 (e)  Use part (d) to write the total area as a function of one 

variable.
 (f  )  Finish solving the problem and compare the answer with 

your estimate in part (a).

 12.  Consider the following problem: A box with an open top is to 
be constructed from a square piece of cardboard, 3 ft wide, by 
cutting out a square from each of the four corners and bend-
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338 CHAPTER 4  Applications of Differentiation

 39.  If you are offered one slice from a round pizza (in other 
words, a sector of a circle) and the slice must have a 
perimeter of 32 inches, what diameter pizza will reward 
you with the largest slice?

 40.  A fence 8 ft tall runs parallel to a tall building at a distance 
of 4 ft from the building. What is the length of the shortest 
ladder that will reach from the ground over the fence to 
the wall of the building?

 41.  A cone-shaped drinking cup is made from a circular piece 
of paper of radius R by cutting out a sector and joining 
the edges CA and CB. Find the maximum capacity of 
such a cup.

A B

R

C

 42.  A cone-shaped paper drinking cup is to be made to hold 
27 cm3 of water. Find the height and radius of the cup that 
will use the smallest amount of paper.

 43.  A cone with height h is inscribed in a larger cone with  
height H so that its vertex is at the center of the base of 
the larger cone. Show that the inner cone has maximum 
volume when h − 1

3 H.

 44.  An object with weight W is dragged along a horizontal 
plane by a force acting along a rope attached to the object. 
If the rope makes an angle ! with a plane, then the magni-
tude of the force is

F −
"W

" sin ! 1 cos !

where " is a constant called the coefficient of friction. For 
what value of ! is F smallest?

 45.  If a resistor of R ohms is connected across a battery of E 
volts with internal resistance r ohms, then the power (in 
watts) in the external resistor is

P −
E 2R

sR 1 rd2

If E and r are fixed but R varies, what is the maximum 
value of the power?

 46.  For a fish swimming at a speed v relative to the water, 
the energy expenditure per unit time is proportional to 
v 3. It is believed that migrating fish try to minimize the 
total energy required to swim a fixed distance. If the fish 
are swimming against a current u su , vd, then the time 

 23.  Find the points on the ellipse 4x 2 1 y 2 − 4 that are farthest 
away from the point s1, 0d.

 24.  Find, correct to two decimal places, the coordinates of the 
point on the curve y − sin x that is closest to the point s4, 2d.

 25.  Find the dimensions of the rectangle of largest area that can 
be inscribed in a circle of radius r.

 26.  Find the area of the largest rectangle that can be inscribed in 
the ellipse x 2ya2 1 y 2yb 2 − 1.

 27.  Find the dimensions of the rectangle of largest area that can 
be inscribed in an equilateral triangle of side L if one side of 
the rectangle lies on the base of the triangle.

 28.  Find the area of the largest trapezoid that can be inscribed 
in a circle of radius 1 and whose base is a diameter of the 
circle.

 29.  Find the dimensions of the isosceles triangle of largest area 
that can be inscribed in a circle of radius r.

 30.  If the two equal sides of an isosceles triangle have length a,  
find the length of the third side that maximizes the area of 
the triangle.

 31.  A right circular cylinder is inscribed in a sphere of radius r. 
Find the largest possible volume of such a cylinder.

 32.  A right circular cylinder is inscribed in a cone with height h 
and base radius r. Find the largest possible volume of such  
a cylinder.

 33.  A right circular cylinder is inscribed in a sphere of radius r. 
Find the largest possible surface area of such a cylinder.

 34.  A Norman window has the shape of a rectangle sur- 
mounted by a semicircle. (Thus the diameter of the  
semicircle is equal to the width of the rectangle. See Exer-
cise 1.1.62.) If the perimeter of the window is 30 ft, find 
the dimensions of the window so that the greatest possible 
amount of light is admitted.

 35.  The top and bottom margins of a poster are each 6 cm and 
the side margins are each 4 cm. If the area of printed mate-
rial on the poster is fixed at 384 cm2, find the dimensions of 
the poster with the smallest area.

 36.  A poster is to have an area of 180 in2 with 1-inch margins at 
the bottom and sides and a 2-inch margin at the top. What 
dimensions will give the largest printed area?

 37.  A piece of wire 10 m long is cut into two pieces. One piece 
is bent into a square and the other is bent into an equilateral 
triangle. How should the wire be cut so that the total area 
enclosed is (a) a maximum? (b) A minimum?

 38.  Answer Exercise 37 if one piece is bent into a square and 
the other into a circle.

;
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opposite A on the other side of the lake in the shortest 
possible time (see the figure). She can walk at the rate of  
4 miyh and row a boat at 2 miyh. How should she proceed?

¨

B

A C22

 51.  An oil refinery is located on the north bank of a straight 
river that is 2 km wide. A pipeline is to be constructed from 
the refinery to storage tanks located on the south bank of 
the river 6 km east of the refinery. The cost of laying pipe is 
$400,000ykm over land to a point P on the north bank and 
$800,000ykm under the river to the tanks. To minimize the 
cost of the pipeline, where should P be located?

 52.  Suppose the refinery in Exercise 51 is located 1 km north  
of the river. Where should P be located?

 53.  The illumination of an object by a light source is directly 
proportional to the strength of the source and inversely pro-
portional to the square of the distance from the source.  
If two light sources, one three times as strong as the other,  
are placed 10 ft apart, where should an object be placed  
on the line between the sources so as to receive the least 
illumination?

 54.  Find an equation of the line through the point s3, 5d that cuts 
off the least area from the first quadrant.

 55.  Let a and b be positive numbers. Find the length of the short-
est line segment that is cut off by the first quadrant and passes 
through the point sa, bd.

 56.  At which points on the curve y − 1 1 40x 3 2 3x 5 does the 
tangent line have the largest slope?

 57.  What is the shortest possible length of the line segment that 
is cut off by the first quadrant and is tangent to the curve 
y − 3yx at some point?

 58.  What is the smallest possible area of the triangle that is cut 
off by the first quadrant and whose hypotenuse is tangent to 
the parabola y − 4 2 x 2 at some point?

 59. (a)  If Csxd is the cost of producing x units of a commodity, 
then the average cost per unit is csxd − Csxdyx. Show 
that if the average cost is a minimum, then the marginal 
cost equals the average cost.

 (b)  If Csxd − 16,000 1 200x 1 4x 3y2, in dollars, find (i) the 
cost, average cost, and marginal cost at a production level 
of 1000 units; (ii) the production level that will minimize 
the average cost; and (iii) the minimum average cost.

;

required to swim a distance L is Lysv 2 ud and the total 
energy E required to swim the distance is given by

Esvd − av 3 ?
L

v 2 u

where a is the proportionality constant.
 (a) Determine the value of v that minimizes E.
 (b) Sketch the graph of E.

Note: This result has been verified experimentally; migrat-
ing fish swim against a current at a speed 50% greater than 
the current speed.

 47.  In a beehive, each cell is a regular hexagonal prism, open 
at one end with a trihedral angle at the other end as in the 
figure. It is believed that bees form their cells in such a 
way as to min imize the surface area for a given side length 
and height, thus using the least amount of wax in cell 
construction. Examination of these cells has shown that 
the measure of the apex angle " is amazingly consistent. 
Based on the geometry of the cell, it can be shown that the 
surface area S is given by

S − 6sh 2 3
2 s2 cot " 1 (3s 2s3 y2) csc "

where s, the length of the sides of the hexagon, and h, the 
height, are constants.

 (a) Calculate dSyd".
 (b) What angle should the bees prefer?
 (c)  Determine the minimum surface area of the cell (in 

terms of s and h).
Note: Actual measurements of the angle " in beehives 
have been made, and the measures of these angles seldom 
differ from the calculated value by more than 28.

s

trihedral
angle ̈rear

of cell

front
of cell

h

b

 48.  A boat leaves a dock at 2:00 pm and travels due south at a 
speed of 20 kmyh. Another boat has been heading due east 
at 15 kmyh and reaches the same dock at 3:00 pm. At what 
time were the two boats closest together?

 49.  Solve the problem in Example 4 if the river is 5 km wide 
and point B is only 5 km downstream from A.

 50.  A woman at a point A on the shore of a circular lake with 
radius 2 mi wants to arrive at the point C diametrically 
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340 CHAPTER 4  Applications of Differentiation

 (c)  Show that the triangle formed by the tangent line and the 
coordinate axes has minimum area ab.

 68.  The frame for a kite is to be made from six pieces of wood. 
The four exterior pieces have been cut with the lengths indi-
cated in the figure. To maximize the area of the kite, how long 
should the diagonal pieces be?

a

a b

b

 69.  A point P needs to be located somewhere on the line AD so 
that the total length L of cables linking P to the points A, B. 
and C is minimized (see the figure). Express L as a function 
of x − | AP | and use the graphs of L and dLydx to estimate 
the minimum value of L.

B C

P

A

2 m 3 m
D

5 m

 70.  The graph shows the fuel consumption c of a car (measured 
in gallons per hour) as a function of the speed v of the car. 
At very low speeds the engine runs inefficiently, so initially c 
decreases as the speed increases. But at high speeds the fuel 
consumption increases. You can see that csvd is minimized for 
this car when v < 30 miyh. However, for fuel efficiency, what 
must be minimized is not the consumption in gallons per hour 
but rather the fuel consumption in gallons per mile. Let’s call 
this consumption G. Using the graph, estimate the speed at 
which G has its minimum value.

√

c

0 20 40 60

 71.  Let v1 be the velocity of light in air and v2 the velocity of light 
in water. According to Fermat’s Principle, a ray of light will 
travel from a point A in the air to a point B in the water by a 
path ACB that minimizes the time taken. Show that

sin "1

sin "2
−

v1

v2

CAS

;

 60. (a)  Show that if the profit Psxd is a maximum, then the 
marginal revenue equals the marginal cost.

 (b)  If Csxd − 16,000 1 500x 2 1.6x 2 1 0.004x 3 is the cost 
function and psxd − 1700 2 7x is the demand function, 
find the production level that will maximize profit.

 61.  A baseball team plays in a stadium that holds 55,000 specta-
tors. With ticket prices at $10, the average attendance had 
been 27,000. When ticket prices were lowered to $8, the 
average attendance rose to 33,000.

 (a) Find the demand function, assuming that it is linear.
 (b) How should ticket prices be set to maximize revenue?

 62.  During the summer months Terry makes and sells necklaces 
on the beach. Last summer he sold the necklaces for $10 
each and his sales averaged 20 per day. When he increased 
the price by $1, he found that the average decreased by two 
sales per day.

 (a) Find the demand function, assuming that it is linear.
 (b)  If the material for each necklace costs Terry $6, what 

should the selling price be to maximize his profit?

 63.  A retailer has been selling 1200 tablet computers a week 
at $350 each. The marketing department estimates that an 
additional 80 tablets will sell each week for every $10 that 
the price is lowered.

 (a) Find the demand function.
 (b)  What should the price be set at in order to maximize 

revenue?
 (c)  If the retailer’s weekly cost function is 

Csxd − 35,000 1 120x

what price should it choose in order to maximize its 
profit?

 64.  A company operates 16 oil wells in a designated area. Each 
pump, on average, extracts 240 barrels of oil daily. The com-
pany can add more wells but every added well reduces the 
average daily ouput of each of the wells by 8 barrels. How 
many wells should the company add in order to maximize 
daily production?

 65.  Show that of all the isosceles triangles with a given perime-
ter, the one with the greatest area is equilateral.

 66.  Consider the situation in Exercise 51 if the cost of laying 
pipe under the river is considerably higher than the cost of 
laying pipe over land ($400,000ykm). You may suspect that 
in some instances, the minimum distance possible under the 
river should be used, and P should be located 6 km from the 
refinery, directly across from the storage tanks. Show that this 
is never the case, no matter what the “under river” cost is.

 67.  Consider the tangent line to the ellipse 
x 2

a 2 1
y2

b2 − 1
at a point s p, qd in the first quadrant. 

 (a)  Show that the tangent line has x-intercept a2yp and  
y-intercept b2yq.

 (b)  Show that the portion of the tangent line cut off by the 
coordinate axes has minimum length a 1 b.
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where !1 (the angle of incidence) and !2 (the angle of refrac-
tion) are as shown. This equation is known as Snell’s Law.

C

A

B

¨¡

¨™

 72.  Two vertical poles PQ and ST are secured by a rope PRS 
going from the top of the first pole to a point R on the ground 
between the poles and then to the top of the second pole as in 
the figure. Show that the shortest length of such a rope occurs 
when !1 − ! 2.

Q R T

P
S

¨¡ ¨™

 73.  The upper right-hand corner of a piece of paper, 12 in. by  
8 in., as in the figure, is folded over to the bottom edge. How 
would you fold it so as to minimize the length of the fold?  
In other words, how would you choose x to minimize y?

xy

8

12

 74.  A steel pipe is being carried down a hallway 9 ft wide. At 
the end of the hall there is a right-angled turn into a narrower 
hallway 6 ft wide. What is the length of the longest pipe that 
can be carried horizontally around the corner?

6

¨

9

 75.  An observer stands at a point P, one unit away from a 
track. Two runners start at the point S in the figure and run 
along the track. One runner runs three times as fast as the 
other. Find the maximum value of the observer’s angle of 
sight ! between the runners.

S

1

P

¨

 76.  A rain gutter is to be constructed from a metal sheet of 
width 30 cm by bending up one-third of the sheet on each 
side through an angle !. How should ! be chosen so that 
the gutter will carry the maximum amount of water?

10 cm 10 cm 10 cm

¨ ¨

 77.  Where should the point P be chosen on the line segment 
AB so as to maximize the angle !?

5

2

A

B

P ¨
3

 78.  A painting in an art gallery has height h and is hung so that 
its lower edge is a distance d above the eye of an observer 
(as in the figure). How far from the wall should the 
observer stand to get the best view? (In other words, where 
should the observer stand so as to maximize the angle ! 
subtended at his eye by the painting?)

¨

h

d

 79.  Find the maximum area of a rectangle that can be circum-
scribed about a given rectangle with length L and width W. 
[Hint: Express the area as a function of an angle !.]
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fly in order to minimize the total energy expended in 
returning to its nesting area?

 (b)  Let W and L denote the energy (in joules) per kilo-
meter flown over water and land, respectively. What 
would a large value of the ratio WyL mean in terms 
of the bird’s flight? What would a small value mean? 
Determine the ratio WyL corresponding to the mini-
mum expenditure of energy.

 (c)  What should the value of WyL be in order for the bird 
to fly directly to its nesting area D? What should the 
value of WyL be for the bird to fly to B and then along 
the shore to D?

 (d)  If the ornithologists observe that birds of a certain 
species reach the shore at a point 4 km from B, how 
many times more energy does it take a bird to fly over 
water than over land?

13 km
B

C D

island

5 km

nest

 82.  Two light sources of identical strength are placed 10 m 
apart. An object is to be placed at a point P on a line ,,  
paral lel to the line joining the light sources and at a dis-
tance d meters from it (see the figure). We want to locate 
P on , so that the intensity of illumination is minimized. 
We need to use the fact that the intensity of illumination 
for a single source is directly proportional to the strength 
of the source and inversely proportional to the square of 
the distance from the source.

 (a)  Find an expression for the intensity Isxd at the point P.
 (b)  If d − 5 m, use graphs of Isxd and I9sxd to show that 

the intensity is minimized when x − 5 m, that is, 
when P is at the midpoint of ,.

 (c)  If d − 10 m, show that the intensity (perhaps surpris-
ingly) is not minimized at the midpoint.

 (d)  Somewhere between d − 5 m and d − 10 m there is 
a transitional value of d at which the point of minimal 
illumination abruptly changes. Estimate this value of d 
by graphical methods. Then find the exact value of d.

7et0407x78
09/11/09
MasterID: 00567

!
P

d

10 m

x

;

 80.  The blood vascular system consists of blood vessels (arteries, 
arterioles, capillaries, and veins) that convey blood from the 
heart to the organs and back to the heart. This system should 
work so as to minimize the energy expended by the heart in 
pumping the blood. In particular, this energy is reduced when 
the resistance of the blood is lowered. One of Poiseuille’s 
Laws gives the resistance R of the blood as

R − C 
L
r 4

where L is the length of the blood vessel, r is the radius, and 
C is a positive constant determined by the viscosity of the 
blood. (Poiseuille established this law experimentally, but it 
also follows from Equation 8.4.2.) The figure shows a main 
blood vessel with radius r1 branching at an angle " into a 
smaller vessel with radius r2.

b

A

B

r¡

r™

¨

C

a

vascular
branching

 (a)  Use Poiseuille’s Law to show that the total resistance of 
the blood along the path ABC is

R − CS a 2 b cot "
r1

4 1
b csc "

r2
4 D

where a and b are the distances shown in the figure.
 (b) Prove that this resistance is minimized when

cos " −
r 4

2

r 4
1

 (c)  Find the optimal branching angle (correct to the nearest 
degree) when the radius of the smaller blood vessel is 
two-thirds the radius of the larger vessel.

 81.  Ornithologists have determined that some species of birds 
tend to avoid flights over large bodies of water during daylight 
hours. It is believed that more energy is required to fly over 
water than over land because air generally rises over land and 
falls over water during the day. A bird with these tendencies 
is released from an island that is 5 km from the nearest point 
B on a straight shoreline, flies to a point C on the shoreline, 
and then flies along the shoreline to its nesting area D. Assume 
that the bird instinctively chooses a path that will minimize its 
energy expenditure. Points B and D are 13 km apart.

 (a)  In general, if it takes 1.4 times as much energy to fly over 
water as it does over land, to what point C should the bird 
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 APPLIED PROJECT  The Shape of a Can 343

In this project we investigate the most economical shape for a can. We first interpret this to mean 
that the volume V of a cylindrical can is given and we need to find the height h and radius r that 
minimize the cost of the metal to make the can (see the figure). If we disregard any waste metal 
in the manufacturing process, then the problem is to minimize the surface area of the cylinder. 
We solved this problem in Example 4.7.2 and we found that h − 2r; that is, the height should be 
the same as the diameter. But if you go to your cupboard or your supermarket with a ruler, you 
will discover that the height is usually greater than the diameter and the ratio hyr varies from 2 
up to about 3.8. Let’s see if we can explain this phenomenon.

1.  The material for the cans is cut from sheets of metal. The cylindrical sides are formed by 
bending rectangles; these rectangles are cut from the sheet with little or no waste. But if the 
top and bottom discs are cut from squares of side 2r (as in the figure), this leaves considerable 
waste metal, which may be recycled but has little or no value to the can makers. If this is the 
case, show that the amount of metal used is minimized when

h
r

−
8
!

< 2.55

2.  A more efficient packing of the discs is obtained by dividing the metal sheet into hexagons 
and cutting the circular lids and bases from the hexagons (see the figure). Show that if this 
strategy is adopted, then

h
r

−
4s3 

!
< 2.21

3.  The values of hyr that we found in Problems 1 and 2 are a little closer to the ones that  
actually occur on supermarket shelves, but they still don’t account for everything. If we  
look more closely at some real cans, we see that the lid and the base are formed from discs 
with radius larger than r that are bent over the ends of the can. If we allow for this we would 
increase hyr. More significantly, in addition to the cost of the metal we need to incorporate 
the manufacturing of the can into the cost. Let’s assume that most of the expense is incurred 
in joining the sides to the rims of the cans. If we cut the discs from hexagons as in Problem 2, 
then the total cost is proportional to

4s3  r 2 1 2!rh 1 ks4!r 1 hd

  where k is the reciprocal of the length that can be joined for the cost of one unit area of metal. 
Show that this expression is minimized when

s3 V  

k
− Î!h

r
 ?

2! 2 hyr

!hyr 2 4s3 

4.  Plot s3 V  yk as a function of x − hyr and use your graph to argue that when a can is large or 
joining is cheap, we should make hyr approximately 2.21 (as in Problem 2). But when the can 
is small or joining is costly, hyr should be substantially larger.

5.  Our analysis shows that large cans should be almost square but small cans should be tall and 
thin. Take a look at the relative shapes of the cans in a supermarket. Is our conclusion usu-
ally true in practice? Are there exceptions? Can you suggest reasons why small cans are not 
always tall and thin?

3

;

r

h

Discs cut from squares

Discs cut from hexagons

APPLIED PROJECT THE SHAPE OF A CAN
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344 CHAPTER 4  Applications of Differentiation

APPLIED PROJECT PLANES AND BIRDS: MINIMIZING ENERGY

Small birds like finches alternate between flapping their wings and keeping them folded while 
gliding (see Figure 1). In this project we analyze this phenomenon and try to determine how 
frequently a bird should flap its wings. Some of the principles are the same as for fixed-wing 
aircraft and so we begin by considering how required power and energy depend on the speed of 
airplanes.1

FIGURE 1 

1.  The power needed to propel an airplane forward at velocity v is 

P − Av 3 1
BL2

v

where A and B are positive constants specific to the particular aircraft and L is the lift, the 
upward force supporting the weight of the plane. Find the speed that minimizes the required 
power.

2.   The speed found in Problem 1 minimizes power but a faster speed might use less fuel. The 
energy needed to propel the airplane a unit distance is E − Pyv. At what speed is energy 
minimized?

3.  Hows much faster is the speed for minimum energy than the speed for minimum power?

4.  In applying the equation of Problem 1 to bird flight we split the term Av3 into two parts: Abv3 
for the bird’s body and Awv3 for its wings. Let x be the fraction of flying time spent in flapping 
mode. If m is the bird’s mass and all the lift occurs during flapping, then the lift is mtyx and 
so the power needed during flapping is 

Pflap − sAb 1 Awdv 3 1
Bsmtyxd2

v

The power while wings are folded is Pfold − Abv3. Show that the average power over an entire 
flight cycle is 

P − xPflap 1 s1 2 xdPfold − Abv3 1 xAwv3 1
Bm2t2

xv

5.  For what value of x is the average power a minimum? What can you conclude if the bird flies 
slowly? What can you conclude if the bird flies faster and faster?

6.  The average energy over a cycle is E − Pyv. What value of x minimizes E?

1. Adapted from R. McNeill Alexander, Optima for Animals (Princeton, NJ: Princeton University  
Press, 1996.)

©
 T

ar
gn

 P
le

ia
de

s /
 S

hu
tt

er
st

oc
k.

co
m

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 4.8  Newton’s Method 345

Suppose that a car dealer offers to sell you a car for $18,000 or for payments of $375 per 
month for five years. You would like to know what monthly interest rate the dealer is, in 
effect, charging you. To find the answer, you have to solve the equation

48xs1 1 xd60 2 s1 1 xd60 1 1 − 0

(The details are explained in Exercise 41.) How would you solve such an equation?
For a quadratic equation ax 2 1 bx 1 c − 0 there is a well-known formula for the 

solutions. For third- and fourth-degree equations there are also formulas for the solu-
tions, but they are extremely complicated. If f  is a polynomial of degree 5 or higher, 
there is no such formula (see the note on page 211). Likewise, there is no formula that 
will enable us to find the exact roots of a transcendental equation such as cos x − x.

We can find an approximate solution to Equation 1 by plotting the left side of the 
equation. Using a graphing device, and after experimenting with viewing rectangles, we 
pro duce the graph in Figure 1.

We see that in addition to the solution x − 0, which doesn’t interest us, there is a 
solution between 0.007 and 0.008. Zooming in shows that the root is approximately 
0.0076. If we need more accuracy we could zoom in repeatedly, but that becomes tire-
some. A faster alternative is to use a calculator or computer algebra system to solve the 
equation numerically. If we do so, we find that the root, correct to nine decimal places, 
is 0.007628603.

How do these devices solve equations? They use a variety of methods, but most of 
them make some use of Newton’s method, also called the Newton-Raphson method. 
We will explain how this method works, partly to show what happens inside a calculator 
or computer, and partly as an application of the idea of linear approximation.

The geometry behind Newton’s method is shown in Figure 2. We wish to solve an 
equation of the form f sxd − 0, so the roots of the equation correspond to the x-intercepts 
of the graph of f. The root that we are trying to find is labeled r in the figure. We start 
with a first approximation x1, which is obtained by guess ing, or from a rough sketch of 
the graph of f , or from a computer-generated graph of f. Consider the tangent line L to 
the curve y − f sxd at the point sx1, f sx1dd and look at the x-intercept of L, labeled x2.  
The idea behind Newton’s method is that the tangent line is close to the curve and so 
its x-intercept, x2, is close to the x-intercept of the curve (namely, the root r that we are 
seeking). Because the tangent is a line, we can easily find its x-intercept.

To find a formula for x2 in terms of x1 we use the fact that the slope of L is f 9sx1d, so 
its equation is

y 2 f sx1d − f 9sx1dsx 2 x1d

Since the x-intercept of L is x2 , we know that the point sx2, 0d  is on the line, and so

0 2 f sx1d − f 9sx1dsx2 2 x1d

If f 9sx1d ± 0, we can solve this equation for x2 :

x2 − x1 2
 f sx1d
f 9sx1d

We use x2 as a second approximation to r.

1

0.15

_0.05

0 0.012

FIGURE 1 

Try to solve Equation 1 numerically 
using your calculator or computer. 
Some machines are not able to solve it. 
Others are successful but require you to
specify a starting point for the search.

y

0 x

{x ¡, f(x¡)}

x™ x ¡
L

r

y=ƒ

FIGURE 2 
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346 CHAPTER 4  Applications of Differentiation

Next we repeat this procedure with x1 replaced by the second approximation x2 , using 
the tangent line at sx2, f sx2 dd. This gives a third approximation:

x3 − x2 2
 f sx2 d
f 9sx2 d

If we keep repeating this process, we obtain a sequence of approximations x1, x2, x3, x4, . . . 
as shown in Figure 3. In general, if the nth approximation is xn and f 9sxn d ± 0, then 
the next approximation is given by

xn11 − xn 2
 f sxn d
f 9sxn d

If the numbers xn become closer and closer to r as n becomes large, then we say that 
the sequence converges to r and we write

lim
n l `

 xn − r

 Although the sequence of successive approximations converges to the desired root for 
fun ctions of the type illustrated in Figure 3, in certain circumstances the sequence may 
not converge. For example, consider the situation shown in Figure 4. You can see that 
x2 is a worse approximation than x1. This is likely to be the case when f 9sx1d is close to 
0. It might even happen that an approximation (such as x3 in Figure 4) falls outside the 
domain of f. Then Newton’s method fails and a better initial approximation x1 should 
be chosen. See Exercises 31–34 for specific examples in which Newton’s method works 
very slowly or does not work at all.

EXAMPLE 1  Starting with x1 − 2, find the third approximation x3 to the root of the 
equation x 3 2 2x 2 5 − 0.

SOLUTION We apply Newton’s method with

f sxd − x 3 2 2x 2 5    and    f 9sxd − 3x 2 2 2

Newton himself used this equation to illustrate his method and he chose x1 − 2 after 
some experimentation because f s1d − 26, f s2d − 21, and f s3d − 16. Equation 2 
becomes

xn11 − xn 2
f sxnd
f 9sxnd

− xn 2
xn

3 2 2xn 2 5
3xn

2 2 2

With n − 1 we have

 x2 − x1 2
f sx1d
f 9sx1d

− x1 2
x1

3 2 2x1 2 5
3x1

2 2 2

 − 2 2
23 2 2s2d 2 5

3s2d2 2 2
− 2.1

Then with n − 2 we obtain

 x3 − x2 2
x2

3 2 2x2 2 5
3x2

2 2 2
− 2.1 2

s2.1d3 2 2s2.1d 2 5
3s2.1d2 2 2

< 2.0946

y

0 xx™ x¡x£
x¢

r

{x™, f(x™)}

{x¡, f(x¡)}

FIGURE 3 
2

Sequences were briefly introduced 
in A Preview of Calculus on page 5. 
A more thorough discussion starts 
in Section 11.1.

x

y

0
r

x™
x£ x¡

FIGURE 4 

TEC In Module 4.8 you can investi-
gate how Newton’s method works for 
several functions and what happens 
when you change x1.

  Figure 5 shows the geometry behind 
the first step in Newton’s method in 
Example 1. Since f 9s2d − 10, the 
tangent line to y − x3 2 2x 2 5 at 
s2, 21d has equation y − 10x 2 21  
so its x-intercept is x 2 − 2.1.

1

1.8 2.2

_2
y=10x-21

x™

y=˛-2x-5

FIGURE 5 
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 SECTION 4.8  Newton’s Method 347

It turns out that this third approximation x3 < 2.0946 is accurate to four decimal 
places.� Q

Suppose that we want to achieve a given accuracy, say to eight decimal places, using 
Newton’s method. How do we know when to stop? The rule of thumb that is generally 
used is that we can stop when successive approximations xn and xn11 agree to eight deci-
mal places. (A precise statement concerning accuracy in Newton’s method will be given 
in Exercise 11.11.39.)

Notice that the procedure in going from n to n 1 1 is the same for all values of n. (It is 
called an iterative process.) This means that Newton’s method is particularly convenient 
for use with a programmable calculator or a computer.

EXAMPLE 2  Use Newton’s method to find s6 2  correct to eight decimal places.

SOLUTION First we observe that finding s6 2  is equivalent to finding the positive root of 
the equation 

x 6 2 2 − 0

so we take f sxd − x 6 2 2. Then f 9sxd − 6x 5 and Formula 2 (Newton’s method) 
becomes

xn11 − xn 2
fsxnd
f 9sxnd

− xn 2
xn

6 2 2
6xn

5

If we choose x1 − 1 as the initial approximation, then we obtain

x2 < 1.16666667

x3 < 1.12644368

x4 < 1.12249707

x5 < 1.12246205

x6 < 1.12246205

Since x5 and x6 agree to eight decimal places, we conclude that

s6 2 < 1.12246205

to eight decimal places. Q

EXAMPLE 3  Find, correct to six decimal places, the root of the equation cos x − x.

SOLUTION We first rewrite the equation in standard form:

cos x 2 x − 0

Therefore we let f sxd − cos x 2 x. Then f 9sxd − 2sin x 2 1, so Formula 2 becomes

xn11 − xn 2
cos xn 2 xn

2sin xn 2 1
− xn 1

cos xn 2 xn

sin xn 1 1

In order to guess a suitable value for x1 we sketch the graphs of y − cos x and y − x in 
Figure 6. It appears that they intersect at a point whose x-coordinate is somewhat less 

1

y

xπ

y=cos x
y=x

π
2

FIGURE 6 
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348 CHAPTER 4  Applications of Differentiation

than 1, so let’s take x1 − 1 as a convenient first approximation. Then, remembering to 
put our calculator in radian mode, we get

x2 < 0.75036387

x3 < 0.73911289

x4 < 0.73908513

x5 < 0.73908513

Since x4 and x5 agree to six decimal places (eight, in fact), we conclude that the root of 
the equation, correct to six decimal places, is 0.739085. Q

Instead of using the rough sketch in Figure 6 to get a starting approximation for 
Newton’s method in Example 3, we could have used the more accurate graph that a 
calculator or computer provides. Figure 7 suggests that we use x1 − 0.75 as the initial 
approximation. Then Newton’s method gives

x2 < 0.73911114    

x3 < 0.73908513    

x4 < 0.73908513

and so we obtain the same answer as before, but with one fewer step.

1

0 1

y=x

y=cos x

FIGURE 7

 1.  The figure shows the graph of a function f. Suppose that 
Newton’s method is used to approximate the root s of the 
equation f sxd − 0 with initial approximation x1 − 6.

 (a)  Draw the tangent lines that are used to find x2 and x3, 
and esti mate the numerical values of x2 and x3.

 (b)  Would x1 − 8 be a better first approximation? Explain.

 2.  Follow the instructions for Exercise 1(a) but use x1 − 1  
as the starting approximation for finding the root r.

 3.  Suppose the tangent line to the curve y − f sxd at the point 
s2, 5d has the equation y − 9 2 2x. If Newton’s method is 
used to locate a root of the equation f sxd − 0 and the initial 
approximation is x1 − 2, find the second approximation x2.

 4.  For each initial approximation, determine graphically what 
happens if Newton’s method is used for the function whose 
graph is shown.

 (a) x1 − 0 (b) x1 − 1 (c) x1 − 3
 (d) x1 − 4 (e) x1 − 5

3

y

0 51 x

 5.  For which of the initial approximations x1 − a, b, c, and d do 
you think Newton’s method will work and lead to the root of 
the equation f sxd − 0?

y

0 b c da x

6–8 Use Newton’s method with the specified initial approxima-
tion x1 to find x3, the third approximation to the root of the given 
equation. (Give your answer to four decimal places.)

 6. 2x 3 2 3x 2 1 2 − 0 , x1 − 21
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 29. (a)  Apply Newton’s method to the equation x 2 2 a − 0 to 
derive the following square-root algorithm (used by the 
ancient Babylonians to compute sa ):

xn11 −
1
2 Sxn 1

a
xn
D

 (b)  Use part (a) to compute s1000  correct to six decimal 
places.

 30. (a)  Apply Newton’s method to the equation 1yx 2 a − 0 
to derive the following reciprocal algorithm:

xn11 − 2xn 2 axn
2

  (This algorithm enables a computer to find reciprocals 
without actually dividing.)

 (b)  Use part (a) to compute 1y1.6984 correct to six 
decimal places.

 31.  Explain why Newton’s method doesn’t work for finding the 
root of the equation 

x 3 2 3x 1 6 − 0 

  if the initial approximation is chosen to be x1 − 1.

 32. (a)  Use Newton’s method with x1 − 1 to find the root of 
the equation x 3 2 x − 1 correct to six decimal places.

 (b)  Solve the equation in part (a) using x1 − 0.6 as the 
initial approximation.

 (c)  Solve the equation in part (a) using x1 − 0.57.  
(You definitely need a programmable calculator for 
this part.)

 (d)  Graph f sxd − x 3 2 x 2 1 and its tangent lines at 
x1 − 1, 0.6, and 0.57 to explain why Newton’s method 
is so sensitive to the value of the initial approximation.

 33.  Explain why Newton’s method fails when applied to the 
   equation s3 x  − 0 with any initial approximation x1 ± 0. 

Illustrate your explanation with a sketch.

 34. If

f sxd − Hsx  

2s2x  
if x > 0
if x , 0

then the root of the equation f sxd − 0 is x − 0. Explain 
why Newton’s method fails to find the root no matter 
which initial approximation x1 ± 0 is used. Illustrate your 
explanation with a sketch.

 35. (a)  Use Newton’s method to find the critical numbers of 
the function 

f sxd − x 6 2 x 4 1 3x 3 2 2x 

   correct to six decimal places.
 (b)  Find the absolute minimum value of f  correct to four 

decimal places. 

;

 7. 
2
x

2 x 2 1 1 − 0, x1 − 2 8. x 7 1 4 − 0, x1 − 21

 9.  Use Newton’s method with initial approximation x1 − 21 
to find x2, the second approximation to the root of the 
equation x 3 1 x 1 3 − 0. Explain how the method works 
by first graphing the function and its tangent line at s21, 1d.

 10.  Use Newton’s method with initial approximation x1 − 1 to 
find x2, the second approximation to the root of the equation 
x4 2 x 2 1 − 0. Explain how the method works by first 
graphing the function and its tangent line at s1, 21d.

11–12 Use Newton’s method to approximate the given number 
correct to eight decimal places.

 11. s4 75  12. s8 500 

13–14 (a) Explain how we know that the given equation must 
have a root in the given interval. (b) Use Newton’s method to 
approximate the root correct to six decimal places.

 13. 3x4 2 8x 3 1 2 − 0,  f2, 3g

 14. 22x 5 1 9x4 2 7x3 2 11x − 0,  f3, 4g

 15–16 Use Newton’s method to approximate the indicated root 
of the equation correct to six decimal places.

 15. The negative root of e x − 4 2 x 2

 16. The positive root of 3 sin x − x

17–22 Use Newton’s method to find all solutions of the equation 
correct to six decimal places.

 17. 3 cos x − x 1 1 18. sx 1 1 − x 2 2 x

 19. 2x − 2 2 x2 20. ln x −
1

x 2 3

 21. x 3 − tan21x 22. sin x − x 2 2 2

23–28 Use Newton’s method to find all the solutions of the 
equation correct to eight decimal places. Start by drawing a 
graph to find initial approximations.

 23. 22x7 2 5x4 1 9x 3 1 5 − 0

 24. x 5 2 3x 4 1 x 3 2 x 2 2 x 1 6 − 0

 25. 
x

x 2 1 1
− s1 2 x 

 26. cossx 2 2 xd − x 4

 27. 4e2x 2
 sin x − x 2 2 x 1 1

 28. lnsx 2 1 2d −
3x

sx2 1 1 

;

;

;
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350 CHAPTER 4  Applications of Differentiation

Replacing i by x, show that

48xs1 1 xd60 2 s1 1 xd60 1 1 − 0 

Use Newton’s method to solve this equation.

 42.  The figure shows the sun located at the origin and the earth 
at the point s1, 0d. (The unit here is the distance between 
the centers of the earth and the sun, called an astronomical 
unit: 1 AU < 1.496 3 108 km.) There are five locations 
L1, L 2, L 3, L 4, and L 5 in this plane of rotation of the earth 
about the sun where a satellite remains motionless with 
respect to the earth because the forces acting on the satellite 
(including the gravitational attractions of the earth and the 
sun) balance each other. These locations are called libration 
points. (A solar research satellite has been placed at one of 
these libration points.) If m1 is the mass of the sun, m2 is the 
mass of the earth, and r − m2ysm1 1 m2 d, it turns out that 
the x-coordinate of L 1 is the unique root of the fifth-degree 
equation

 psxd − x 5 2 s2 1 rdx 4 1 s1 1 2rdx 3 2 s1 2 rdx 2

1 2s1 2 rdx 1 r 2 1 − 0 

and the x-coordinate of L 2 is the root of the equation

psxd 2 2rx 2 − 0

Using the value r < 3.04042 3 1026, find the locations of the 
libration points (a) L 1  and (b) L 2.

L¡ L™L ∞

L¢

L£

sun earth

x

y

 36.  Use Newton’s method to find the absolute maximum value 
of the function f sxd − x cos x, 0 < x < !, correct to six 
decimal places.

 37.  Use Newton’s method to find the coordinates of the 
inflection point of the curve y − x 2 sin x, 0 < x < !, 
correct to six decimal places.

 38.  Of the infinitely many lines that are tangent to the curve 
y − 2sin x and pass through the origin, there is one that 
has the largest slope. Use Newton’s method to find the 
slope of that line correct to six decimal places.

 39.  Use Newton’s method to find the coordinates, correct to six 
decimal places, of the point on the parabola y − sx 2 1d2 
that is closest to the origin.

 40.  In the figure, the length of the chord AB is 4 cm and the 
length of the arc AB is 5 cm. Find the central angle ",  
in radians, correct to four decimal places. Then give the 
answer to the nearest degree.

5 cm

4 cm

¨

BA

 41.  A car dealer sells a new car for $18,000. He also offers to 
sell the same car for payments of $375 per month for five 
years. What monthly interest rate is this dealer charging?

To solve this problem you will need to use the formula 
for the present value A of an annuity consisting of n equal 
payments of size R with interest rate i per time period: 

A −
R
i

 f1 2 s1 1 i d2n g

A physicist who knows the velocity of a particle might wish to know its position at a 
given time. An engineer who can measure the variable rate at which water is leaking 
from a tank wants to know the amount leaked over a certain time period. A biologist who 
knows the rate at which a bacteria population is increasing might want to deduce what 
the size of the population will be at some future time. In each case, the problem is to 
find a function F whose derivative is a known function f. If such a function F exists, it  
is called an antiderivative of f.

 Definition A function F is called an antiderivative of f  on an interval I if 
F9sxd − f sxd for all x in I.
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For instance, let f sxd − x 2. It isn’t difficult to discover an antiderivative of f  if we 
keep the Power Rule in mind. In fact, if Fsxd − 1

3 x 3, then F9sxd − x 2 − f sxd. But the 
function Gsxd − 1

3 x 3 1 100 also satisfies G9sxd − x 2. Therefore both F and G are antide-
rivatives of f. Indeed, any function of the form Hsxd − 1

3 x 3 1 C, where C is a constant, 
is an antiderivative of f. The question arises: Are there any others?

To answer this question, recall that in Section 4.2 we used the Mean Value Theorem to 
prove that if two functions have identical derivatives on an interval, then they must differ 
by a constant (Corollary 4.2.7). Thus if F and G are any two antiderivatives of f , then

F9sxd − f sxd − G9sxd

so Gsxd 2 Fsxd − C, where C is a constant. We can write this as Gsxd − Fsxd 1 C, so 
we have the following result.

1   Theorem If F is an antiderivative of f  on an interval I, then the most general 
antiderivative of f  on I is

Fsxd 1 C

  where C is an arbitrary constant.

Going back to the function f sxd − x 2, we see that the general antiderivative of f  is 
1
3 x 3 1 C. By assigning specific values to the constant C, we obtain a family of functions 
whose graphs are vertical translates of one another (see Figure 1). This makes sense 
because each curve must have the same slope at any given value of x.

EXAMPLE 1  Find the most general antiderivative of each of the following functions.
(a) f sxd − sin x      (b) f sxd − 1yx      (c) f sxd − xn,  n ± 21

SOLUTION 
(a) If Fsxd − 2cos x , then F9sxd − sin x, so an antiderivative of sin x is 2cos x. By 
Theorem 1, the most general antiderivative is Gsxd − 2cos x 1 C.
(b) Recall from Section 3.6 that

d
dx

 sln xd −
1
x

So on the interval s0, `d the general antiderivative of 1yx is ln x 1 C. We also learned 
that

d
dx

 (ln | x |) −
1
x

for all x ± 0. Theorem 1 then tells us that the general antiderivative of f sxd − 1yx is 
ln | x | 1 C on any interval that doesn’t contain 0. In particular, this is true on each of 
the intervals s2`, 0d and s0, `d. So the general antiderivative of f  is

Fsxd − Hln x 1 C1

lns2xd 1 C2

if  x . 0
if  x , 0

(c) We use the Power Rule to discover an antiderivative of xn. In fact, if n ± 21, then

d
dx

 S xn11

n 1 1D −
sn 1 1dxn

n 1 1
− xn

FIGURE 1  
Members of the family of 
antiderivatives of f sxd − x 2
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352 CHAPTER 4  Applications of Differentiation

Therefore the general antiderivative of f sxd − xn is

Fsxd −
xn11

n 1 1
1 C

This is valid for n > 0 since then f sxd − xn is defined on an interval. If n is negative 
(but n ± 21), it is valid on any interval that doesn’t contain 0. Q

As in Example 1, every differentiation formula, when read from right to left, gives 
rise to an antidifferentiation formula. In Table 2 we list some particular antiderivatives. 
Each for mula in the table is true because the derivative of the function in the right column 
appears in the left column. In particular, the first formula says that the antiderivative of 
a constant times a function is the constant times the antiderivative of the function. The 
second formula says that the antiderivative of a sum is the sum of the antiderivatives. (We 
use the notation F9− f , G9 − t.)

Function Particular antiderivative Function Particular antiderivative

cf sxd cFsxd sin x 2cos x

f sxd 1 tsxd Fsxd 1 Gsxd sec2x tan x

x n  sn ± 21d
x n11

n 1 1
sec x tan x sec x

1
x

ln | x |
1

s1 2 x 2 sin21x

e x e x 1
1 1 x 2 tan21x

b x
b x

ln b cosh x sinh x

cos x sin x sinh x cosh x

To obtain the most general anti derivative 
from the particular ones in Table 2, we 
have to add a constant (or constants),  
as in Example 1.

EXAMPLE 2  Find all functions t such that

t9sxd − 4 sin x 1
2x 5 2 sx 

x

SOLUTION We first rewrite the given function as follows:

t9sxd − 4 sin x 1
2x 5

x
2

sx 

x
− 4 sin x 1 2x 4 2

1
sx 

Thus we want to find an antiderivative of 

t9sxd − 4 sin x 1 2x 4 2 x21y2

Using the formulas in Table 2 together with Theorem 1, we obtain

 tsxd − 4s2cos xd 1 2 
x 5

5
2

x1y2

1
2

1 C

 − 24 cos x 1 2
5 x 5 2 2sx 1 C  Q

 Table of  
Antidifferentiation  
Formulas

2

We often use a capital letter F to repre-
sent an antiderivative of a function f.  
If we begin with derivative notation, f 9, 
an antiderivative is f, of course.
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 SECTION 4.9  Antiderivatives 353

In applications of calculus it is very common to have a situation as in Example 2, 
where it is required to find a function, given knowledge about its derivatives. An equation 
that involves the derivatives of a function is called a differential equation. These will 
be studied in some detail in Chapter 9, but for the present we can solve some elementary 
differential equations. The general solution of a differential equation involves an arbi-
trary con stant (or constants) as in Example 2. However, there may be some extra condi-
tions given that will determine the constants and therefore uniquely specify the solution.

EXAMPLE 3  Find f  if f 9sxd − ex 1 20s1 1 x 2 d21 and f s0d − 22.

SOLUTION The general antiderivative of

f 9sxd − ex 1
20

1 1 x 2

is f sxd − ex 1 20 tan21x 1 C

To determine C we use the fact that f s0d − 22: 

f s0d − e 0 1 20 tan21 0 1 C − 22

Thus we have C − 22 2 1 − 23, so the particular solution is

 f sxd − ex 1 20 tan21x 2 3 Q

EXAMPLE 4  Find f  if f 0sxd − 12x 2 1 6x 2 4, f s0d − 4, and f s1d − 1.

SOLUTION The general antiderivative of f 0sxd − 12x 2 1 6x 2 4 is

f 9sxd − 12 
x 3

3
1 6 

x 2

2
2 4x 1 C − 4x 3 1 3x 2 2 4x 1 C

Using the antidifferentiation rules once more, we find that

f sxd − 4 
x 4

4
1 3 

x 3

3
2 4 

x 2

2
1 Cx 1 D − x 4 1 x 3 2 2x 2 1 Cx 1 D

To determine C and D we use the given conditions that f s0d − 4 and f s1d − 1. Since 
f s0d − 0 1 D − 4, we have D − 4. Since

f s1d − 1 1 1 2 2 1 C 1 4 − 1

we have C − 23. Therefore the required function is

 f sxd − x 4 1 x 3 2 2x 2 2 3x 1 4 Q

If we are given the graph of a function f, it seems reasonable that we should be able to 
sketch the graph of an antiderivative F. Suppose, for instance, that we are given that 
Fs0d − 1. Then we have a place to start, the point s0,1d, and the direction in which we move 
our pencil is given at each stage by the derivative F9sxd − f sxd. In the next example we use 
the principles of this chapter to show how to graph F even when we don’t have a formula 
for f. This would be the case, for instance, when f sxd is determined by experimental data.

Figure 2 shows the graphs of the func- 
tion f 9 in Example 3 and its anti-
derivative f. Notice that f 9sxd . 0, so 
f  is always increasing. Also notice that 
when f 9 has a maximum or minimum, 
f  appears to have an inflection point. 
So the graph serves as a check on our 
calculation.

FIGURE 2 

40

_2 3
f

fª

_25
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354 CHAPTER 4  Applications of Differentiation

EXAMPLE 5  The graph of a function f  is given in Figure 3. Make a rough sketch of 
an antiderivative F, given that Fs0d − 2.

SOLUTION We are guided by the fact that the slope of y − Fsxd is f sxd. We start at the 
point s0, 2d and draw F as an initially decreasing function since f sxd is negative when 
0 , x , 1. Notice that f s1d − f s3d − 0, so F has horizontal tangents when x − 1 and 
x − 3. For 1 , x , 3, f sxd is positive and so F is increasing. We see that F has a local 
minimum when x − 1 and a local maximum when x − 3. For x . 3, f sxd is negative 
and so F is decreasing on s3, `d. Since f sxd l 0 as x l `, the graph of F becomes 
flatter as x l `. Also notice that F0sxd − f 9sxd changes from positive to negative at 
x − 2 and from negative to positive at x − 4, so F has inflection points when x − 2 and 
x − 4. We use this information to sketch the graph of the antiderivative in Figure 4. Q

Rectilinear Motion
Antidifferentiation is particularly useful in analyzing the motion of an object moving in 
a straight line. Recall that if the object has position function s − f std, then the velocity 
function is vstd − s9std. This means that the position function is an antiderivative of the 
velocity function. Likewise, the acceleration function is astd − v9std, so the velocity 
function is an antiderivative of the acceleration. If the acceleration and the initial values ss0d 
and vs0d are known, then the position function can be found by antidifferentiating twice.

EXAMPLE 6 A particle moves in a straight line and has acceleration given by 
astd − 6t 1 4. Its initial velocity is vs0d − 26 cmys and its initial displacement is 
ss0d − 9 cm. Find its position function sstd.

SOLUTION Since v9std − astd − 6t 1 4, antidifferentiation gives

vstd − 6 
t 2

2
1 4t 1 C − 3t 2 1 4t 1 C

Note that vs0d − C. But we are given that vs0d − 26, so C − 26 and

vstd − 3t 2 1 4t 2 6

Since vstd − s9std, s is the antiderivative of v:

sstd − 3 
t 3

3
1 4 

t 2

2
2 6t 1 D − t 3 1 2t 2 2 6t 1 D

This gives ss0d − D. We are given that ss0d − 9, so D − 9 and the required position 
function is

 sstd − t 3 1 2t 2 2 6t 1 9 Q

An object near the surface of the earth is subject to a gravitational force that produces 
a downward acceleration denoted by t. For motion close to the ground we may assume 
that t is constant, its value being about 9.8 mys2 (or 32 ftys2).

EXAMPLE 7 A ball is thrown upward with a speed of 48 ftys from the edge of a cliff 
432 ft above the ground. Find its height above the ground t seconds later. When does it 
reach its maximum height? When does it hit the ground?

1 2 30 4 x

y

y=ƒ

FIGURE 3 

x

y

1

2

0

y=F(x)

1

FIGURE 4 
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 13. f sxd −
1
5

2
2
x

 14. f std −
3t 4 2 t 3 1 6t 2

t 4

 15. tstd −
1 1 t 1 t 2

st  
 16. rs"d − sec" tan " 2 2e "

 17. hs"d − 2 sin " 2 sec2 " 18. tsvd − 2 cos v 2
3

s1 2 v2 

 19. f sxd − 2 x 1 4 sinh x 20. f sxd − 1 1 2 sin x 1 3ysx 

 21. f sxd −
2x 4 1 4x 3 2 x

x 3 , x . 0

1–22 Find the most general antiderivative of the function.  
(Check your answer by differentiation.)

 1. f sxd − 4x 1 7 2. f sxd − x 2 2 3x 1 2

 3. f sxd − 2x 3 2 2
3 x 2 1 5x 4. f sxd − 6x5 2 8x4 2 9x 2

 5. f sxd − xs12x 1 8d 6. f sxd − sx 2 5d2

 7. f sxd − 7x 2y5 1 8x24y5 8. f sxd − x3.4 2 2xs221

 9. f sxd − s2  10. f sxd − e 2

 11. f sxd − 3sx 2 2s3 x  12. f sxd − s3 x 2 1 xsx 

SOLUTION The motion is vertical and we choose the positive direction to be upward. 
At time t the distance above the ground is sstd and the velocity vstd is decreasing. There-
fore the acceleration must be negative and we have

astd −
dv
dt

− 232

Taking antiderivatives, we have

vstd − 232t 1 C

To determine C we use the given information that vs0d − 48. This gives 48 − 0 1 C, so

vstd − 232t 1 48

The maximum height is reached when vstd − 0, that is, after 1.5 seconds. Since 
s9std − vstd, we antidifferentiate again and obtain

sstd − 216t 2 1 48t 1 D

Using the fact that ss0d − 432, we have 432 − 0 1 D and so

sstd − 216t 2 1 48t 1 432

The expression for sstd is valid until the ball hits the ground. This happens when 
sstd − 0, that is, when

 216t 2 1 48t 1 432 − 0

or, equivalently,  t 2 2 3t 2 27 − 0

Using the quadratic formula to solve this equation, we get

t −
3 6 3s13 

2

We reject the solution with the minus sign since it gives a negative value for t. Therefore 
the ball hits the ground after 3(1 1 s13 )y2 < 6.9 seconds. Q

Figure 5 shows the position function of 
the ball in Example 7. The graph cor-
roborates the con clusions we reached: 
The ball reaches its maximum height 
after 1.5 seconds and hits the ground 
after about 6.9 seconds.

500

0 8

FIGURE 5 
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356 CHAPTER 4  Applications of Differentiation

51–52 The graph of a function f  is shown. Which graph is  
an antiderivative of f  and why?

 51. y

x

f b

c

a

 52.

x

y
f

b

c

a

 53.  The graph of a function is shown in the figure. Make a 
rough sketch of an antiderivative F, given that Fs0d − 1.

y
y=ƒ

0 x1

 54.  The graph of the velocity function of a particle is shown  
in the figure. Sketch the graph of a position function.

√

0 t

 55.  The graph of f 9 is shown in the figure. Sketch the graph  
of f  if f  is continuous and f s0d − 21.

_1
x

y

0 1 2

1

2 y=fª(x)

 56. (a) Use a graphing device to graph f sxd − 2x 2 3sx .
 (b)  Starting with the graph in part (a), sketch a rough graph 

of the antiderivative F that satisfies Fs0d − 1.
 (c)  Use the rules of this section to find an expression  

for Fsxd.
 (d)  Graph F using the expression in part (c). Compare with 

your sketch in part (b).

57–58 Draw a graph of f  and use it to make a rough sketch  
of the antiderivative that passes through the origin.

 57. f sxd −
sin x

1 1 x 2 ,  22! < x < 2!

 58. f sxd − sx 4 2 2x 2 1 2 2 2,  23 < x < 3

;

;

 22. f sxd −
2x 2 1 5
x 2 1 1

23–24 Find the antiderivative F of f  that satisfies the given 
condition. Check your answer by comparing the graphs of 
f  and F.

 23. f sxd − 5x 4 2 2x 5, Fs0d − 4

 24. f sxd − 4 2 3s1 1 x 2 d21, Fs1d − 0

25–48 Find f.

 25. f 0sxd − 20x 3 2 12x 2 1 6x

 26. f 0sxd − x 6 2 4x 4 1 x 1 1

 27. f 0sxd − 2x 1 3e x 28. f 0sxd − 1yx 2

 29. f -std − 12 1 sin t 30. f -std − st 2 2 cos t

 31. f 9sxd − 1 1 3sx ,  f s4d − 25

 32. f 9sxd − 5x 4 2 3x 2 1 4,  f s21d − 2

 33. f 9std − 4ys1 1 t 2d,  f s1d − 0

 34. f 9std − t 1 1yt 3,  t . 0,  f s1d − 6

 35. f 9sxd − 5x 2y3,  f s8d − 21

 36. f 9sxd − sx 1 1dysx ,  f s1d − 5

 37.  f 9std − sec t ssec t 1 tan td,  2!y2 , t , !y2,  
f s!y4d − 21

 38. f 9std − 3t 2 3yt ,  f s1d − 2,  f s21d − 1

 39. f 0sxd − 22 1 12x 2 12x 2, f s0d − 4,  f 9s0d − 12

 40. f 0sxd − 8x 3 1 5,  f s1d − 0,  f 9s1d − 8

 41. f 0s"d − sin " 1 cos ",  f s0d − 3,  f 9s0d − 4

 42. f 0std − t 2 1 1yt 2, t . 0,  f s2d − 3,  f 9s1d − 2

 43. f 0sxd − 4 1 6x 1 24x 2,  f s0d − 3,  f s1d − 10

 44. f 0sxd − x 3 1 sinh x,  f s0d − 1,  f s2d − 2.6

 45. f 0sxd − e x 2 2 sin x,  f s0d − 3,  f s!y2d − 0

 46. f 0std − s3 t 2 cos t,  f s0d − 2,  f s1d − 2

 47. f 0sxd − x 22,  x . 0,  f s1d − 0,  f s2d − 0

 48. f -sxd − cos x,  f s0d − 1,  f 9s0d − 2,  f 0s0d − 3

 49.  Given that the graph of f  passes through the point  
(2, 5) and that the slope of its tangent line at sx, f sxdd  
is 3 2 4x, find f s1d.

 50.  Find a function f  such that f 9sxd − x 3 and the line 
x 1 y − 0 is tangent to the graph of f .

;
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producing one item is $562, find the cost of producing 100 
items.

 72.  The linear density of a rod of length 1 m is given by 
!sxd − 1ysx  , in grams per centimeter, where x is mea-
sured in centimeters from one end of the rod. Find the 
mass of the rod.

 73.  Since raindrops grow as they fall, their surface area increases 
and therefore the resistance to their falling increases. A 
raindrop has an initial downward velocity of 10 mys and its 
downward acceleration is

a − H9 2 0.9t
0

if 0 < t < 10
if t . 10

If the raindrop is initially 500 m above the ground, how 
long does it take to fall?

 74.  A car is traveling at 50 miyh when the brakes are fully 
applied, producing a constant deceleration of 22 ftys2. What 
is the distance traveled before the car comes to a stop?

 75.  What constant acceleration is required to increase the speed 
of a car from 30 miyh to 50 miyh in 5 seconds?

 76.  A car braked with a constant deceleration of 16 ftys2, pro-
ducing skid marks measuring 200 ft before coming to a 
stop. How fast was the car traveling when the brakes were 
first applied?

 77.  A car is traveling at 100 kmyh when the driver sees an  
accident 80 m ahead and slams on the brakes. What con-
stant deceleration is required to stop the car in time to  
avoid a pileup?

 78.  A model rocket is fired vertically upward from rest. Its 
acceler ation for the first three seconds is astd − 60t, at 
which time the fuel is exhausted and it becomes a freely 
“falling” body. Fourteen seconds later, the rocket’s 
parachute opens, and the (downward) velocity slows 
linearly to 218 ftys in 5 seconds. The rocket then “floats” 
to the ground at that rate.

 (a)  Determine the position function s and the velocity func- 
tion v (for all times t). Sketch the graphs of s and v.

 (b)  At what time does the rocket reach its maximum height, 
and what is that height?

 (c) At what time does the rocket land?

 79.  A high-speed bullet train accelerates and decelerates at the 
rate of 4 ftys2. Its maximum cruising speed is 90 miyh.

 (a)  What is the maximum distance the train can travel if it 
accelerates from rest until it reaches its cruising speed 
and then runs at that speed for 15 minutes?

 (b)  Suppose that the train starts from rest and must come to  
a complete stop in 15 minutes. What is the maximum 
distance it can travel under these conditions?

 (c)  Find the minimum time that the train takes to travel 
between two consecutive stations that are 45 miles 
apart.

 (d)  The trip from one station to the next takes 37.5 minutes. 
How far apart are the stations?

59–64 A particle is moving with the given data. Find the position 
of the particle.

 59. vstd − sin t 2 cos t,  ss0d − 0

 60. vstd − t 2 2 3st  , ss4d − 8

 61. astd − 2t 1 1,  ss0d − 3,  vs0d − 22

 62. astd − 3 cos t 2 2 sin t,  ss0d − 0,  vs0d − 4

 63. astd − 10 sin t 1 3 cos t,  ss0d − 0,  ss2"d − 12

 64. astd − t 2 2 4t 1 6,  ss0d − 0,  ss1d − 20

 65.  A stone is dropped from the upper observation deck (the 
Space Deck) of the CN Tower, 450 m above the ground.

 (a)  Find the distance of the stone above ground level at time t.
 (b) How long does it take the stone to reach the ground?
 (c) With what velocity does it strike the ground?
 (d)  If the stone is thrown downward with a speed of 5 mys, 

how long does it take to reach the ground?

 66.  Show that for motion in a straight line with constant accelera-
tion a, initial velocity v0, and initial displacement s0, the 
dis placement after time t is

s − 1
2 at 2 1 v0 t 1 s0

 67.  An object is projected upward with initial velocity v0 meters 
per second from a point s0 meters above the ground. Show that 

fvstdg2 − v0
2 2 19.6fsstd 2 s0 g

 68.  Two balls are thrown upward from the edge of the cliff in 
Example 7. The first is thrown with a speed of 48 ftys and the 
other is thrown a second later with a speed of 24 ftys. Do the 
balls ever pass each other?

 69.  A stone was dropped off a cliff and hit the ground with a 
speed of 120 ftys. What is the height of the cliff? 

 70.  If a diver of mass m stands at the end of a diving board with 
length L and linear density !, then the board takes on the 
shape of a curve y − f sxd, where

EIy 0 − mtsL 2 xd 1 1
2 !tsL 2 xd2

E and I are positive constants that depend on the material of 
the board and t s, 0d is the acceleration due to gravity.

 (a)  Find an expression for the shape of the curve.
 (b)  Use f sLd to estimate the distance below the horizontal at 

the end of the board.

y

x0

 71.  A company estimates that the marginal cost (in dollars per 
item) of producing x items is 1.92 2 0.002x. If the cost of 
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358 CHAPTER 4  Applications of Differentiation

 (d)  How can you use l’Hospital’s Rule if you have a power 
f f sxdgtsxd where f sxd l 0 and tsxd l 0 as x l a?

 8.  State whether each of the following limit forms is 
indeterminate. Where possible, state the limit.

 (a) 
0
0

 (b) 
`

`
 (c) 

0
`

 (d) 
`

0

 (e) ` 1 ` (f ) ` 2 ` (g) ` ? ` (h) ` ? 0

 (i ) 00 ( j ) 0` (k) `0 ( l ) 1`

 9.  If you have a graphing calculator or computer, why do you 
need calculus to graph a function?

 10. (a)  Given an initial approximation x1 to a root of the equation 
f sxd − 0, explain geometrically, with a diagram, how the 
second approximation x2 in Newton’s method is obtained.

 (b)  Write an expression for x2 in terms of x1, f sx1d, and f 9sx1d.
 (c)  Write an expression for xn11 in terms of xn, f sxn d, and 

f 9sxnd.
 (d)  Under what circumstances is Newton’s method likely to 

fail or to work very slowly?

 11. (a) What is an antiderivative of a function f ?
 (b)  Suppose F1 and F2 are both antiderivatives of f  on an  

interval I. How are F1 and F2 related?

 9.  There exists a function f  such that f sxd . 0, f 9sxd , 0,  
and f 0 sxd . 0 for all x.

 10.  There exists a function f  such that f sxd , 0, f 9sxd , 0, 
and f 0 sxd . 0 for all x.

 11.  If f  and t are increasing on an interval I, then f 1 t is  
increasing on I.

 12.  If f  and t are increasing on an interval I, then f 2 t is  
increasing on I.

 13.  If f  and t are increasing on an interval I, then ft is  
increasing on I.

 14.  If f  and t are positive increasing functions on an interval I, 
then ft is increasing on I.

 15.  If f  is increasing and f sxd . 0 on I, then tsxd − 1yf sxd is 
decreasing on I.

 16. If f  is even, then f 9 is even.

 17. If f  is periodic, then f 9 is periodic.

 1.  Explain the difference between an absolute maximum and  
a local maximum. Illustrate with a sketch.

 2. (a) What does the Extreme Value Theorem say?
 (b) Explain how the Closed Interval Method works.

 3. (a) State Fermat’s Theorem.
 (b) Define a critical number of f.

 4. (a) State Rolle’s Theorem.
 (b)  State the Mean Value Theorem and give a geometric  

interpretation.

 5. (a) State the Increasing/Decreasing Test.
 (b)  What does it mean to say that f  is concave upward on an 

interval I?
 (c) State the Concavity Test.
 (d) What are inflection points? How do you find them?

 6. (a) State the First Derivative Test.
 (b) State the Second Derivative Test.
 (c)  What are the relative advantages and disadvantages of  

these tests?

 7. (a) What does l’Hospital’s Rule say?
 (b)  How can you use l’Hospital’s Rule if you have a product 

f sxd tsxd where f sxd l 0 and tsxd l ` as x l a?
 (c)  How can you use l’Hospital’s Rule if you have a difference 

f sxd 2 tsxd where f sxd l ` and tsxd l ` as x l a?

Determine whether the statement is true or false. If it is true, explain 
why. If it is false, explain why or give an example that disproves the 
statement.

 1. If f 9scd − 0, then f  has a local maximum or minimum at c.

 2. If f  has an absolute minimum value at c, then f 9scd − 0.

 3.  If f  is continuous on sa, bd, then f  attains an absolute 
maximum value f scd and an absolute minimum value f sd d at 
some numbers c and d in sa, bd.

 4.  If f  is differentiable and f s21d − f s1d, then there is a number 
c such that | c | , 1 and f 9scd − 0.

 5.  If f 9sxd , 0 for 1 , x , 6, then f  is decreasing on (1, 6).

 6.  If f 0s2d − 0, then s2, f s2dd is an inflection point of the  
curve y − f sxd.

 7.  If f 9sxd − t9sxd for 0 , x , 1, then f sxd − tsxd for 
0 , x , 1.

 8.  There exists a function f  such that f s1d − 22, f s3d − 0,  
and f 9sxd . 1 for all x.

4 REVIEW

CONCEPT CHECK Answers to the Concept Check can be found on the back endpapers.

TRUE –FALSE QUIZ
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 20. If lim
xl`

 f sxd − 1 and lim
xl`

 tsxd − `, then 

lim
xl`

 f f sxdg tsxd − 1

 21. lim
x l 0

 
x
e x − 1

 18.  The most general antiderivative of f sxd − x 22 is

Fsxd − 2
1
x

1 C

 19. If f 9sxd exists and is nonzero for all x, then f s1d ± f s0d.

1–6 Find the local and absolute extreme values of the function 
on the given interval.

 1. f sxd − x 3 2 9x 2 1 24x 2 2,  f0, 5g

 2. f sxd − xs1 2 x  ,  f21, 1g

 3. f sxd −
3x 2 4
x 2 1 1

,  f22, 2g

 4. f sxd − sx 2 1 x 1 1 ,  f22, 1g

 5. f sxd − x 1 2 cos x,  f2!, !g

 6. f sxd − x2e2x,  f21, 3g

 

7–14 Evaluate the limit.

 7. lim
x l 0

e x 2 1
tan x

   8. lim
xl 0

 
tan 4x

x 1 sin 2x

 9. lim
xl 0

 
e2x 2 e22x

lnsx 1 1d
 10. lim

xl `
 
e2x 2 e22x

lnsx 1 1d

 11. lim
x l 2`

 sx 2 2 x 3de 2x 12. lim
xl

 

!2
 sx 2 !d csc x

 13. lim
x l 11

 S x
x 2 1

2
1

ln xD 14. lim
x l

 s!y2d 2
stan xdcos x

15–17 Sketch the graph of a function that satisfies the given  
conditions.

 15. f s0d − 0, f 9s22d − f 9s1d − f 9s9d − 0,

lim
x l `

 f sxd − 0,    lim
x l

 

6
 f sxd − 2`,

f 9sxd , 0 on s2`, 22d, s1, 6d, and s9, `d,

f 9sxd . 0 on s22, 1d and s6, 9d,

f 0sxd . 0 on s2`, 0d and s12, `d, 

f 0sxd , 0 on s0, 6d and s6, 12d

 16.  f s0d − 0,  f  is continuous and even,  

f 9sxd − 2x if 0 , x , 1, f 9sxd − 21 if 1 , x , 3,

f 9sxd − 1 if x . 3

 17.  f  is odd,  f 9sxd , 0 for 0 , x , 2,  

f 9sxd . 0 for x . 2,  f 0sxd . 0 for 0 , x , 3,

f 0sxd , 0 for x . 3,  lim
x l `

 f sxd − 22

 18.  The figure shows the graph of the derivative f 9of a function f.
 (a) On what intervals is f  increasing or decreasing?
 (b)  For what values of x does f  have a local maximum or  

minimum?
 (c) Sketch the graph of f 0.
 (d) Sketch a possible graph of f.

0 x

y

1 2 3 4 5 6 7_1
_2

y=f ª(x)

19–34 Use the guidelines of Section 4.5 to sketch the curve.

 19. y − 2 2 2x 2 x 3

 20. y − 22x 3 2 3x 2 1 12x 1 5

 21. y − 3x 4 2 4x 3 1 2 22. y −
x

1 2 x 2

 23. y −
1

xsx 2 3d2  24. y −
1
x 2 2

1
sx 2 2d2

 25. y −
sx 2 1d3

x 2  26. y − s1 2 x  1 s1 1 x  

 27. y − xs2 1 x   28. y − x 2y3sx 2 3d2

EXERCISES

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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 29. y − e x sin x,  2! < x < !

 30. y − 4x 2 tan x, 2!y2 , x , !y2

 31. y − sin21s1yxd 32. y − e2x2x 2

 33. y − sx 2 2de2x 34. y − x 1 lnsx 2 1 1d

35–38 Produce graphs of f  that reveal all the important 
aspects of the curve. Use graphs of f 9 and f 0 to estimate the 
intervals of increase and decrease, extreme values, intervals of 
concavity, and inflection points. In Exercise 35 use calculus to 
find these quantities exactly.

 35. f sxd −
x 2 2 1

x 3

 36. f sxd −
x 3 1 1
x 6 1 1

 37. f sxd − 3x 6 2 5x 5 1 x 4 2 5x 3 2 2x 2 1 2

 38. f sxd − x 2 1 6.5 sin x,  25 < x < 5

 39.  Graph f sxd − e 21yx2
 in a viewing rectangle that shows all 

the main aspects of this function. Estimate the inflection 
points. Then use calculus to find them exactly.

 40.  (a) Graph the function f sxd − 1ys1 1 e 1yx d .
 (b)  Explain the shape of the graph by computing the 

limits of f sxd as x approaches `, 2`, 01, and 02.
 (c)  Use the graph of f  to estimate the coordinates of the 

inflection points.
 (d) Use your CAS to compute and graph f 0.
 (e)  Use the graph in part (d) to estimate the inflection 

points more accurately.

41–42 Use the graphs of f, f 9, and f 0 to estimate the  
x-coordinates of the maximum and minimum points and 
inflection points of f.

 41. f sxd −
cos2 x

sx 2 1 x 1 1 
,  2! < x < !

 42. f sxd − e20.1x lnsx 2 2 1d

 43.  Investigate the family of functions f sxd − lnssin x 1 C d. 
What features do the members of this family have in 
common? How do they differ? For which values of C is 
f  continuous on s2`, `d? For which values of C does f  
have no graph at all? What happens as C l `?

;

;

CAS

CAS

;

 44.  Investigate the family of functions f sxd − cxe2cx 2
.  

What happens to the maximum and minimum points and 
the inflection points as c changes? Illustrate your conclu-
sions by graphing several members of the family.

 45.  Show that the equation 3x 1 2 cos x 1 5 − 0 has exactly 
one real root.

 46.  Suppose that f  is continuous on f0, 4g, f s0d − 1, and 
2 < f 9sxd < 5 for all x in s0, 4d. Show that 9 < f s4d < 21.

 47.  By applying the Mean Value Theorem to the function 
f sxd − x 1y5 on the interval f32, 33g, show that

2 , s5 33 , 2.0125

 48.  For what values of the constants a and b is s1, 3d a point of 
inflection of the curve y − ax 3 1 bx 2?

 49.  Let tsxd − f sx 2 d, where f  is twice differentiable for all x, 
f 9sxd . 0 for all x ± 0, and f  is concave downward on 
s2`, 0d and concave upward on s0, `d.

 (a) At what numbers does t have an extreme value?
 (b) Discuss the concavity of t.

 50.  Find two positive integers such that the sum of the first 
number and four times the second number is 1000 and  
the product of the numbers is as large as possible.

 51.  Show that the shortest distance from the point sx1, y1d to the 
straight line Ax 1 By 1 C − 0 is

| Ax1 1 By1 1 C |
sA2 1 B2 

 52.  Find the point on the hyperbola xy − 8 that is closest to the 
point s3, 0d.

 53.  Find the smallest possible area of an isosceles triangle that 
is circumscribed about a circle of radius r.

 54.  Find the volume of the largest circular cone that can be 
inscribed in a sphere of radius r.

 55.  In DABC, D lies on AB, CD ! AB, | AD | − | BD | − 4 cm, 
and | CD | − 5 cm. Where should a point P be chosen on 
CD so that the sum | PA | 1 | PB | 1 | PC | is a minimum?

 56. Solve Exercise 55 when | CD | − 2 cm.

 57. The velocity of a wave of length L in deep water is

v − KÎ L
C

1
C
L

 

where K and C are known positive constants. What is the 
length of the wave that gives the minimum velocity?

 58.  A metal storage tank with volume V is to be constructed 
in the shape of a right circular cylinder surmounted by a 

;
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hemisphere. What dimensions will require the least amount 
of metal?

 59.  A hockey team plays in an arena with a seating capacity of 
15,000 spectators. With the ticket price set at $12, average 
attendance at a game has been 11,000. A market survey 
indicates that for each dollar the ticket price is lowered, 
average attendance will increase by 1000. How should the 
owners of the team set the ticket price to maximize their 
revenue from ticket sales?

 60.  A manufacturer determines that the cost of making  
x units of a commodity is

Csxd − 1800 1 25x 2 0.2x 2 1 0.001x 3

and the demand function is psxd − 48.2 2 0.03x.
 (a)  Graph the cost and revenue functions and use the 

graphs to estimate the production level for maximum 
profit.

 (b)  Use calculus to find the production level for maximum 
profit.

 (c)  Estimate the production level that minimizes the aver-
age cost.

 61.  Use Newton’s method to find the root of the equation 

x5 2 x4 1 3x2 2 3x 2 2 − 0 

  in the interval f1, 2g correct to six decimal places.

 62.  Use Newton’s method to find all solutions of the equation 
sin x − x 2 2 3x 1 1 correct to six decimal places.

 63.  Use Newton’s method to find the absolute maximum 
value of the function f std − cos t 1 t 2 t 2 correct to eight 
decimal places.

 64.  Use the guidelines in Section 4.5 to sketch the curve 
y − x sin x, 0 < x < 2!. Use Newton’s method when  
necessary.

65–68 Find the most general antiderivative of the function.

 65. f sxd − 4sx 2 6x 2 1 3

 66. tsxd −
1
x

1
1

x 2 1 1

 67. f std − 2 sin t 2 3e t

 68. f sxd − x23 1 cosh x

69–72 Find f.

 69. f 9std − 2t 2 3 sin t,  f s0d − 5

 70. f 9sud −
u2 1 su  

u
,  f s1d − 3

;

 71. f 0sxd − 1 2 6x 1 48x 2,  f s0d − 1,  f 9s0d − 2

 72. f 0sxd − 5x 3 1 6x 2 1 2,  f s0d − 3,  f s1d − 22

73–74 A particle is moving with the given data. Find the 
position of the particle.

 73. vstd − 2t 2 1ys1 1 t 2d,  ss0d − 1

 74. astd − sin t 1 3 cos t,  ss0d − 0,  vs0d − 2

 75. (a)  If f sxd − 0.1e x 1 sin x, 24 < x < 4, use a graph of f  
to sketch a rough graph of the antiderivative F of f  that 
satisfies Fs0d − 0.

 (b) Find an expression for Fsxd.
 (c)  Graph F using the expression in part (b). Compare with 

your sketch in part (a).

 76.  Investigate the family of curves given by

f sxd − x 4 1 x 3 1 cx 2

In particular you should determine the transitional value of 
c at which the number of critical numbers changes and the 
transitional value at which the number of inflection points 
changes. Illustrate the various possible shapes with graphs.

 77.  A canister is dropped from a helicopter 500 m above  
the ground. Its parachute does not open, but the canister 
has been designed to withstand an impact velocity of 100 
mys. Will it burst?

 78.  In an automobile race along a straight road, car A passed 
car B twice. Prove that at some time during the race their 
accelera tions were equal. State the assumptions that you 
make.

 79.  A rectangular beam will be cut from a cylindrical log of 
radius 10 inches.

 (a)  Show that the beam of maximal cross-sectional area is 
a square.

 (b)  Four rectangular planks will be cut from the four  
sections of the log that remain after cutting the square

depth

width

10

;

;
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362 CHAPTER 4  Applications of Differentiation

   beam. Determine the dimensions of the planks that will 
have maximal cross-sectional area.

 (c)  Suppose that the strength of a rectangular beam is 
proportional to the product of its width and the square of 
its depth. Find the dimensions of the strongest beam that 
can be cut from the cylindrical log.

 80.  If a projectile is fired with an initial velocity v at an angle 
of inclination " from the horizontal, then its trajectory, 
neglecting air resistance, is the parabola

y − stan "dx 2
t

2v2 cos2"
 x 2    0 , " ,

!

2

 (a)  Suppose the projectile is fired from the base of a plane 
that is inclined at an angle #, # . 0, from the horizontal, 
as shown in the figure. Show that the range of the projec-
tile, measured up the slope, is given by

Rs"d −
2v 2 cos " sins" 2 #d

t cos2#
 

 (b) Determine " so that R is a maximum.
 (c)  Suppose the plane is at an angle # below the horizontal. 

Determine the range R in this case, and determine the 
angle at which the projectile should be fired to maxi-
mize R.

¨
å

x

y

0

R

 81.  If an electrostatic field E acts on a liquid or a gaseous polar 
dielectric, the net dipole moment P per unit volume is

PsEd −
e E 1 e2E

e E 2 e2E  2
1
E

 Show that lim E l
  

01  PsEd − 0.

 82.  If a metal ball with mass m is projected in water and the force 
of resistance is proportional to the square of the velocity, then 
the distance the ball travels in time t is

 sstd −
m
c

 ln coshÎ tc
mt

 

where c is a positive constant. Find lim c
 
l  01  sstd.

 83. Show that, for x . 0,
x

1 1 x 2 , tan21x , x

 84.  Sketch the graph of a function f  such that f 9sxd , 0 for  
all x, f 0sxd . 0 for | x | . 1, f 0sxd , 0 for | x | , 1, and 
lim x l6` f f sxd 1 xg − 0.

 85.  A light is to be placed atop a pole of height h feet to 
illuminate a busy traffic circle, which has a radius of 40 ft. 
The intensity of illumination I at any point P on the circle 
is directly proportional to the cosine of the angle " (see the 
figure) and inversely proportional to the square of the distance 
d from the source.

 (a) How tall should the light pole be to maximize I?
 (b)  Suppose that the light pole is h feet tall and that a 

woman is walking away from the base of the pole at the 
rate of 4 ftys. At what rate is the intensity of the light at 
the point on her back 4 ft above the ground decreasing 
when she reaches the outer edge of the traffic circle?

h
¨

d

40 P 

 86.  Water is flowing at a constant rate into a spherical tank. Let 
Vstd be the volume of water in the tank and Hstd be the height 
of the water in the tank at time t.

 (a)  What are the meanings of V9std and H9std? Are these 
derivatives positive, negative, or zero?

 (b)  Is V 0std positive, negative, or zero? Explain.
 (c)  Let t1, t2, and t3 be the times when the tank is one-quarter 

full, half full, and three-quarters full, respectively. 
Are the values H 0st1d, H 0st2d, and H 0st3d positive, 
negative, or zero? Why?
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Problems Plus  1.  If a rectangle has its base on the x-axis and two vertices on the curve y − e2x 2
, show that 

the rectangle has the largest possible area when the two vertices are at the points of inflec-
tion of the curve.

 2. Show that | sin x 2 cos x | < s2  for all x.

 3.  Does the function f sxd − e10 | x22 |2x 2
 have an absolute maximum? If so, find it. What about 

an absolute minimum?

  4.  Show that x 2y 2 s4 2 x 2 ds4 2 y 2 d < 16 for all numbers x and y such that | x | < 2 and 
| y | < 2.

 5.  Show that the inflection points of the curve y − ssin xdyx lie on the curve y 2 sx 4 1 4d − 4.

 6.  Find the point on the parabola y − 1 2 x 2 at which the tangent line cuts from the first 
quadrant the triangle with the smallest area.

 7.  If a, b, c, and d are constants such that

lim
x l 0

 
ax 2 1 sin bx 1 sin cx 1 sin dx

3x 2 1 5x 4 1 7x 6 − 8

 find the value of the sum a 1 b 1 c 1 d.

 8.  Evaluate

lim
xl`

 
sx 1 2d1yx 2 x 1yx

sx 1 3d1yx 2 x1yx

 9.  Find the highest and lowest points on the curve x 2 1 xy 1 y 2 − 12.

 10. Sketch the set of all points sx, yd such that | x 1 y | < e x.

 11.  If Psa, a 2d is any point on the parabola y − x 2, except for the origin, let Q be the point 
where the normal line at P intersects the parabola again (see the figure).

 (a) Show that the y-coordinate of Q is smallest when a − 1ys2 .
 (b) Show that the line segment PQ has the shortest possible length when a − 1ys2 .

 12.  For what values of c does the curve y − cx 3 1 e x have inflection points?

 13.  An isosceles triangle is circumscribed about the unit circle so that the equal sides meet  
at the point s0, ad on the y-axis (see the figure). Find the value of a that minimizes the 
lengths of the equal sides. (You may be surprised that the result does not give an equi- 
lateral triangle.).

 14. Sketch the region in the plane consisting of all points sx, yd such that

2xy < | x 2 y | < x 2 1 y 2

 15.  The line y − mx 1 b intersects the parabola y − x 2 in points A and B. (See the fig- 
ure.) Find the point P on the arc AOB of the parabola that maximizes the area of the  
triangle PAB.

 16.  ABCD is a square piece of paper with sides of length 1 m. A quarter-circle is drawn from  
B to D with center A. The piece of paper is folded along EF, with E on AB and F on AD,  
so that A falls on the quarter-circle. Determine the maximum and minimum areas that the 
triangle AEF can have.

 17. For which positive numbers a does the curve y − a x intersect the line y − x?

 18. For what value of a is the following equation true?

lim
x l `

 S x 1 a
x 2 aDx

− e

0 x

y

P

Q

FIGURE FOR PROBLEM 11  

FIGURE FOR PROBLEM 13  

O

y

x

y=≈

y=mx+b
P

B

A

FIGURE FOR PROBLEM 15  
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 19.  Let f sxd − a1 sin x 1 a2 sin 2x 1 ∙ ∙ ∙ 1 an sin nx, where a1, a2, . . . , an are real numbers 
and n is a positive integer. If it is given that | f sxd | < | sin x | for all x, show that

| a1 1 2a2 1 ∙ ∙ ∙ 1 nan | < 1

 20.  An arc PQ of a circle subtends a central angle " as in the figure. Let As"d be the area 
between the chord PQ and the arc PQ. Let Bs"d be the area between the tangent lines 
PR, QR, and the arc. Find

lim
" l 01

 
As"d
Bs"d

 21.  The speeds of sound c1 in an upper layer and c2 in a lower layer of rock and the thick ness 
h of the upper layer can be determined by seismic exploration if the speed of sound in the 
lower layer is greater than the speed in the upper layer. A dynamite charge is detonated at 
a point P and the transmitted signals are recorded at a point Q, which is a distance D from 
P. The first signal to arrive at Q travels along the surface and takes T1 seconds. The next 
signal travels from P to a point R, from R to S in the lower layer, and then to Q, taking T2 
seconds. The third signal is reflected off the lower layer at the midpoint O of RS and takes 
T3 seconds to reach Q. (See the figure.)

 (a) Express T1, T2, and T3 in terms of D, h, c1, c2, and ".
 (b)  Show that T2 is a minimum when sin " − c1yc2.
 (c)  Suppose that D − 1 km, T1 − 0.26 s, T2 − 0.32 s, and T3 − 0.34 s. Find c1, c2, and h.

  Note: Geophysicists use this technique when studying the structure of the earth’s crust, 
whether searching for oil or examining fault lines.

 22.  For what values of c is there a straight line that intersects the curve 

y − x 4 1 cx 3 1 12x 2 2 5x 1 2

 in four distinct points?

 23.  One of the problems posed by the Marquis de l’Hospital in his calculus textbook Analyse 
des Infiniment Petits concerns a pulley that is attached to the ceiling of a room at a point 
C by a rope of length r. At another point B on the ceiling, at a distance d from C (where 
d . r), a rope of length , is attached and passed through the pulley at F and connected to a 
weight W. The weight is released and comes to rest at its equilibrium position D. (See the 
figure.) As l’Hospital argued, this happens when the distance | ED | is maximized. Show 
that when the system reaches equilibrium, the value of x is

r
4d

 (r 1 sr 2 1 8d 2 )

 Notice that this expression is independent of both W and ,.

 24.  Given a sphere with radius r, find the height of a pyramid of minimum volume whose base 
is a square and whose base and triangular faces are all tangent to the sphere. What if the 
base of the pyramid is a regular n-gon? (A regular n-gon is a polygon with n equal sides and 
angles.) (Use the fact that the volume of a pyramid is 13 Ah, where A is the area of the base.)

 25.   Assume that a snowball melts so that its volume decreases at a rate proportional to its 
surface area. If it takes three hours for the snowball to decrease to half its original volume, 
how much longer will it take for the snowball to melt completely?

 26.  A hemispherical bubble is placed on a spherical bubble of radius 1. A smaller hemispher-
ical bubble is then placed on the first one. This process is continued until n chambers, 
including the sphere, are formed. (The figure shows the case n − 4.) Use mathematical 
induction to prove that the maximum height of any bubble tower with n chambers is 
1 1 sn .

FIGURE FOR PROBLEM 20  
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Q
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FIGURE FOR PROBLEM 21  

D

h

R

¨
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Q
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¨

speed of sound=c¡
P

FIGURE FOR PROBLEM 23  
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FIGURE FOR PROBLEM 26  
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The photo shows Lake 
Lanier, which is a reservoir 

in Georgia, USA. In Exercise 
70 in Section 5.4 you will 

estimate the amount of water 
that flowed into Lake Lanier 

during a certain time period.

  
Integrals

IN CHAPTER 2  we used the tangent and velocity problems to introduce the derivative, which is 
the central idea in differential calculus. In much the same way, this chapter starts with the area 
and distance problems and uses them to formulate the idea of a definite integral, which is the 
basic concept of integral calculus. We will see in Chapters 6 and 8 how to use the integral to solve 
problems concerning volumes, lengths of curves, population predictions, cardiac output, forces 
on a dam, work, consumer surplus, and baseball, among many others.

 There is a connection between integral calculus and differential calculus. The Fundamental 
Theorem of Calculus relates the integral to the derivative, and we will see in this chapter that it 
greatly simplifies the solution of many problems.

5

JRC, Inc. / Alamy
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In this section we discover that in trying to find the area under a curve or the distance 
traveled by a car, we end up with the same special type of limit.

The Area Problem
We begin by attempting to solve the area problem: Find the area of the region S that 
lies under the curve y − f sxd from a to b. This means that S, illustrated in Figure 1, is 
bounded by the graph of a continuous function f  [where f sxd > 0], the vertical lines 
x − a and x − b, and the x-axis.

In trying to solve the area problem we have to ask ourselves: What is the meaning 
of the word area? This question is easy to answer for regions with straight sides. For a 
rectangle, the area is defined as the product of the length and the width. The area of a 
triangle is half the base times the height. The area of a polygon is found by dividing it 
into triangles (as in Figure 2) and adding the areas of the triangles.

h

b

A=   bh   A=A¡+A™+A£+A¢A=lw
l

w

1
2

A¡
A™ A£

A¢

However, it isn’t so easy to find the area of a region with curved sides. We all have an 
intuitive idea of what the area of a region is. But part of the area problem is to make this 
intuitive idea precise by giving an exact definition of area.

Recall that in defining a tangent we first approximated the slope of the tangent line by 
slopes of secant lines and then we took the limit of these approximations. We pursue a 
sim ilar idea for areas. We first approximate the region S by rectangles and then we take 
the limit of the areas of these rectangles as we increase the number of rectangles. The 
follow ing example illustrates the procedure.

EXAMPLE 1  Use rectangles to estimate the area under the parabola y − x 2 from 0 to 1 
(the parabolic region S illustrated in Figure 3).

SOLUTION We first notice that the area of S must be somewhere between 0 and 1 
because S is contained in a square with side length 1, but we can certainly do better 
than that. Suppose we divide S into four strips S1, S2, S3, and S4 by drawing the vertical 
lines x − 1

4, x − 1
2, and x − 3

4 as in Figure 4(a).

(b)

0 1

(1, 1)

3
4

1
2

1
4

(a)

0

y
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(1, 1)
y=≈

3
4

1
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1
4

S¢

S£S™
S¡

y

x

Now is a good time to read (or reread)  
A Preview of Calculus (see page 1). It 
discusses the unifying ideas of calculus 
and helps put in perspec tive where we 
have been and where we are going.

0

y

a b x

y=ƒ

S
x=a

x=b

FIGURE 1  
S − hsx, yd | a < x < b, 0 < y < f sxdj

FIGURE 2  

0

y

x1

(1, 1)

y=≈

S

FIGURE 3  

FIGURE 4  
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 SECTION 5.1  Areas and Distances 367

We can approximate each strip by a rectangle that has the same base as the strip and 
whose height is the same as the right edge of the strip [see Figure 4(b)]. In other words, 
the heights of these rectangles are the values of the function f sxd − x 2 at the right end -

points of the subintervals f0, 14 g, f1
4 , 12 g, f1

2, 34g, and f3
4, 1g.

Each rectangle has width 14 and the heights are (1
4)2

, ( 1
2)2

, ( 3
4)2

, and 12. If we let R4 be 
the sum of the areas of these approximating rectangles, we get

R4 − 1
4 ? (1

4)2
1 1

4 ? (1
2)2

1 1
4 ? (3

4)2
1 1

4 ? 12 − 15
32 − 0.46875

From Figure 4(b) we see that the area A of S is less than R4, so

A , 0.46875

Instead of using the rectangles in Figure 4(b) we could use the smaller rectangles in 
Figure 5 whose heights are the values of f  at the left endpoints of the subintervals. (The 
leftmost rectangle has collapsed because its height is 0.) The sum of the areas of these 
approximating rectangles is

L4 − 1
4 ? 02 1 1

4 ? (1
4)2

1 1
4 ? (1

2)2
1 1

4 ? (3
4)2

− 7
32 − 0.21875

We see that the area of S is larger than L4, so we have lower and upper estimates for A:

0.21875 , A , 0.46875

We can repeat this procedure with a larger number of strips. Figure 6 shows what 
happens when we divide the region S into eight strips of equal width.

(a) Using left endpoints (b) Using right endpoints

0 1

(1, 1)

1
8

0 11
8

y=≈
(1, 1)

y

x

y

x

By computing the sum of the areas of the smaller rectangles sL8 d and the sum of the 
areas of the larger rectangles sR8 d, we obtain better lower and upper estimates for A:

0.2734375 , A , 0.3984375

So one possible answer to the question is to say that the true area of S lies somewhere 
between 0.2734375 and 0.3984375.

We could obtain better estimates by increasing the number of strips. The table at 
the left shows the results of similar calculations (with a computer) using n rectangles 
whose heights are found with left endpoints sLn d or right endpoints sRn d. In particular, 
we see by using 50 strips that the area lies between 0.3234 and 0.3434. With 1000 
strips we narrow it down even more: A lies between 0.3328335 and 0.3338335. A good 
estimate is obtained by averaging these numbers: A < 0.3333335. Q

0

y

x1

(1, 1)

3
4

1
2

1
4

y=≈

FIGURE 5 

FIGURE 6  
Approximating S with eight rectangles

n L n Rn

10 0.2850000 0.3850000
20 0.3087500 0.3587500
30 0.3168519 0.3501852
50 0.3234000 0.3434000

100 0.3283500 0.3383500
1000 0.3328335 0.3338335
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368 CHAPTER 5  Integrals

From the values in the table in Example 1, it looks as if Rn is approaching 1
3 as n  

increases. We confirm this in the next example.

EXAMPLE 2  For the region S in Example 1, show that the sum of the areas of the 
upper approximating rectangles approaches 13, that is,

lim
n l `

 Rn − 1
3

SOLUTION Rn is the sum of the areas of the n rectangles in Figure 7. Each rectangle  
has width 1yn and the heights are the values of the function f sxd − x 2 at the points 
1yn, 2yn, 3yn, . . . , nyn; that is, the heights are s1ynd2, s2ynd2, s3ynd2, . . . , snynd2. Thus

 Rn −
1
n

 S 1
nD2

1
1
n

 S 2
nD2

1
1
n

 S 3
nD2

1 ∙ ∙ ∙ 1
1
n

 S n
nD2

 −
1
n

 ∙ 
1
n 2  s12 1 22 1 32 1 ∙ ∙ ∙ 1 n 2 d

 −
1
n 3  s12 1 22 1 32 1 ∙ ∙ ∙ 1 n 2 d

Here we need the formula for the sum of the squares of the first n positive integers:

 12 1 22 1 32 1 ∙ ∙ ∙ 1 n 2 −
nsn 1 1ds2n 1 1d

6

Perhaps you have seen this formula before. It is proved in Example 5 in Appendix E.
Putting Formula 1 into our expression for Rn, we get

Rn −
1
n 3  ∙ 

nsn 1 1ds2n 1 1d
6

−
sn 1 1ds2n 1 1d

6n 2

Thus we have

 lim
n l `

 Rn − lim
n l `

 
sn 1 1ds2n 1 1d

6n 2

 − lim
n l `

 
1
6

 S n 1 1
n DS 2n 1 1

n D
 − lim

n l `
 
1
6

 S1 1
1
nDS2 1

1
nD

 −
1
6

? 1 ? 2 −
1
3

 Q

It can be shown that the lower approximating sums also approach 13, that is,

lim
n l `

 Ln − 1
3

FIGURE 7 

1
n

0

y

x1

(1, 1)

y=≈

1

Here we are computing the limit of 
the sequence hRn j. Sequences and their 
limits were discussed in A Preview of 
Calculus and will be studied in detail in 
Section 11.1. The idea is very similar to 
a limit at infinity (Section 2.6) except 
that in writing lim n l ` we restrict n to 
be a positive integer. In particular, we 
know that

lim
nl `

 
1
n

− 0

When we write lim n l ` Rn − 1
3 we 

mean that we can make Rn as close to 13 
as we like by taking n sufficiently large.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 5.1  Areas and Distances 369

From Figures 8 and 9 it appears that, as n increases, both Ln and Rn become better and 
bet ter approximations to the area of S. Therefore we define the area A to be the limit of 
the sums of the areas of the approximating rectangles, that is,

A − lim
n l `

 Rn − lim
n l `

 Ln − 1
3

10

y

n=50    R∞¸=0.3434

10

y

n=30    R£¸Å0.3502

10 x x x

y

n=10    R¡¸=0.385

FIGURE 8 Right endpoints produce upper sums because f sxd − x 2 is increasing.

10

y

n=10    L¡¸=0.285

10x x

y

n=30    L£¸Å0.3169

10 x

y
n=50    L∞¸=0.3234

FIGURE 9 Left endpoints produce lower sums because f sxd − x 2 is increasing.

Let’s apply the idea of Examples 1 and 2 to the more general region S of Figure 1. 
We start by subdividing S into n strips S1, S2, . . . , Sn of equal width as in Figure 10. 

ba0

y

x.  .  ..  .  .

y=ƒ

S¡ S™ S£ Si Sn

xixi-1 xn-1x2⁄ ‹

TEC In Visual 5.1 you can create 
pictures like those in Figures 8 and 9 
for other values of n.

FIGURE 10 
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370 CHAPTER 5  Integrals

The width of the interval fa, bg is b 2 a, so the width of each of the n strips is

Dx −
b 2 a

n

These strips divide the interval fa, bg into n subintervals

fx0, x1g, fx1, x2 g, fx2, x3 g, . . . , fxn21, xn g

where x0 − a and xn − b. The right endpoints of the subintervals are

x1 − a 1 Dx,

x2 − a 1 2 Dx,

x3 − a 1 3 Dx,

∙
∙
∙

Let’s approximate the ith strip Si by a rectangle with width Dx and height f sxid, which 
is the value of f  at the right endpoint (see Figure 11). Then the area of the ith rectangle 
is f sxid Dx. What we think of intuitively as the area of S is approximated by the sum of 
the areas of these rectangles, which is

Rn − f sx1d Dx 1 f sx2 d Dx 1 ∙ ∙ ∙ 1 f sxn d Dx

0

y

x

Îx

f(xi)

xixi-1a bx2⁄ ‹

Figure 12 shows this approximation for n − 2, 4, 8, and 12. Notice that this approxi-
mation appears to become better and better as the number of strips increases, that is, as 
n l `. Therefore we define the area A of the region S in the following way.

0

y

xa ⁄

(a) n=2

0

y

xa ⁄ x2 ‹

(b) n=4
0

y

xa

(c) n=8
0

y

xab b b b

(d) n=12

FIGURE 11  

FIGURE 12
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 SECTION 5.1  Areas and Distances 371

2   Definition The area A of the region S that lies under the graph of the contin-
uous function f  is the limit of the sum of the areas of approximating rectangles:

A − lim
n l `

 Rn − lim
n l ` 

f f sx1d Dx 1 f sx2 d Dx 1 ∙ ∙ ∙ 1 f sxn d Dxg

It can be proved that the limit in Definition 2 always exists, since we are assuming that 
f  is continuous. It can also be shown that we get the same value if we use left endpoints:

 A − lim
n l `

 Ln − lim
n l `

 f f sx0 d Dx 1 f sx1d Dx 1 ∙ ∙ ∙ 1 f sxn21d Dxg

In fact, instead of using left endpoints or right endpoints, we could take the height of 
the ith rectangle to be the value of f  at any number xi* in the ith subinterval fxi21, xig. 
We call the numbers x1*, x2*, . . . , xn* the sample points. Figure 13 shows approximating 
rectangles when  the sample points are not chosen to be endpoints. So a more general 
expression for the area of S is

 A − lim
n l ` 

f f sx1*d Dx 1 f sx2*d Dx 1 ∙ ∙ ∙ 1 f sxn* d Dxg

xixi-10

y

xa bx2⁄ ‹ xn-1

x¡* x™* x£* xn*xi*

Îx

f(xi*)

NOTE It can be shown that an equivalent definition of area is the following: A is the 
unique number that is smaller than all the upper sums and bigger than all the lower sums.
We saw in Examples 1 and 2, for instance, that the area sA − 1

3d is trapped between 
all the left approximating sums Ln and all the right approximating sums Rn. The function 
in those examples, f sxd − x 2, happens to be increasing on f0, 1g and so the lower sums 
arise from left endpoints and the upper sums from right endpoints. (See Figures 8 and 9.) 
In gen eral, we form lower (and upper) sums by choosing the sample points xi* so that 
f sxi*d is the minimum (and maximum) value of f  on the ith subinterval. (See Figure 14 
and Exercises 7–8.)

0

y

xa b

3

4

FIGURE 13

FIGURE 14
Lower sums (short rectangles) and 

upper sums (tall rectangles)
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372 CHAPTER 5  Integrals

We often use sigma notation to write sums with many terms more compactly. For 
instance,

o
n

i−1
 f sxid Dx − f sx1d Dx 1 f sx2 d Dx 1 ∙ ∙ ∙ 1 f sxn d Dx

So the expressions for area in Equations 2, 3, and 4 can be written as follows:

 A − lim
n l `

 o
n

i−1
 f sxid Dx

 A − lim
n l `

 o
n

i−1
 f sxi21d Dx

 A − lim
n l `

 o
n

i−1
 f sxi*d Dx

We can also rewrite Formula 1 in the following way:

o
n

i−1
 i 2 −

nsn 1 1ds2n 1 1d
6

EXAMPLE 3  Let A be the area of the region that lies under the graph of f sxd − e2x 
between x − 0 and x − 2.
(a) Using right endpoints, find an expression for A as a limit. Do not evaluate the limit.
(b) Estimate the area by taking the sample points to be midpoints and using four sub -
intervals and then ten subintervals.

SOLUTION
(a) Since a − 0 and b − 2, the width of a subinterval is

Dx −
2 2 0

n
−

2
n

So x1 − 2yn, x2 − 4yn, x3 − 6yn, xi − 2iyn, and xn − 2nyn. The sum of the areas of 
the approximating rectangles is

 Rn − f sx1d Dx 1 f sx2 d Dx 1 ∙ ∙ ∙ 1 f sxn d Dx

 − e2x1 Dx 1 e2x2 Dx 1 ∙ ∙ ∙ 1 e2xn Dx

 − e22ynS 2
nD 1 e24ynS 2

nD 1 ∙ ∙ ∙ 1 e22nynS 2
nD

According to Definition 2, the area is

A − lim
n l `

 Rn − lim
n l `

 
2
n

 se22yn 1 e24yn 1 e26yn 1 ∙ ∙ ∙ 1 e22nyn d

Using sigma notation we could write

A − lim
n l `

 
2
n

 o
n

i−1
 e22iyn

It is difficult to evaluate this limit directly by hand, but with the aid of a computer alge-
bra system it isn’t hard (see Exercise 30). In Section 5.3 we will be able to find A more 
easily using a different method.

If you need practice with sigma notation, 
look at the examples and try some of 
the exercises in Appendix E.

This tells us to
end with i=n.
This tells us
to add.

This tells us to
start with i=m.

µ f(xi) Îx
n

i=m

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 5.1  Areas and Distances 373

(b) With n − 4 the subintervals of equal width Dx − 0.5 are f0, 0.5g , f0.5, 1g , f1, 1.5g, 
and f1.5, 2g . The midpoints of these subintervals are x1* − 0.25, x2* − 0.75, x3* − 1.25, 
and x4* − 1.75, and the sum of the areas of the four approximating rectangles (see Fig-
ure 15) is

 M4 − o
4

i−1
 f sxi*d Dx

 − f s0.25d Dx 1 f s0.75d Dx 1 f s1.25d Dx 1 f s1.75d Dx

 − e20.25s0.5d 1 e20.75s0.5d 1 e21.25s0.5d 1 e21.75s0.5d

 − 1
2 se20.25 1 e20.75 1 e21.25 1 e21.75 d < 0.8557

So an estimate for the area is
A < 0.8557

With n − 10 the subintervals are f0, 0.2g, f0.2, 0.4g, . . . , f1.8, 2g and the midpoints are 
x1* − 0.1, x2* − 0.3, x3* − 0.5, . . . , x10* − 1.9. Thus

 A < M10 − f s0.1d Dx 1 f s0.3d Dx 1 f s0.5d Dx 1 ∙ ∙ ∙ 1 f s1.9d Dx

 − 0.2se20.1 1 e20.3 1 e20.5 1 ∙ ∙ ∙ 1 e21.9 d < 0.8632

From Figure 16 it appears that this estimate is better than the estimate with n − 4. Q

The Distance Problem
Now let’s consider the distance problem: Find the distance traveled by an object during a 
certain time period if the velocity of the object is known at all times. (In a sense this is the 
inverse problem of the velocity problem that we discussed in Section 2.1.) If the velocity 
remains constant, then the distance problem is easy to solve by means of the formula

distance − velocity 3 time

But if the velocity varies, it’s not so easy to find the distance traveled. We investigate the 
problem in the following example.

EXAMPLE 4 Suppose the odometer on our car is broken and we want to estimate the 
distance driven over a 30-second time interval. We take speedometer readings every 
five seconds and record them in the following table:

Time (s) 0 5 10 15 20 25 30

Velocity (miyh) 17 21 24 29 32 31 28

In order to have the time and the velocity in consistent units, let’s convert the velocity 
readings to feet per second (1 miyh −  5280y3600 ftys):

Time (s) 0 5 10 15 20 25 30

Velocity (ftys) 25 31 35 43 47 45 41

During the first five seconds the velocity doesn’t change very much, so we can estimate 
the distance traveled during that time by assuming that the velocity is constant. If we 
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374 CHAPTER 5  Integrals

take the velocity during that time interval to be the initial velocity (25 ftys), then we 
obtain the approximate distance traveled during the first five seconds:

25 ftys 3 5 s − 125 ft

Similarly, during the second time interval the velocity is approximately constant and 
we take it to be the velocity when t − 5 s. So our estimate for the distance traveled 
from t − 5 s to t − 10 s is

31 ftys 3 5 s − 155 ft

If we add similar estimates for the other time intervals, we obtain an estimate for the 
total distance traveled:

s25 3 5d 1 s31 3 5d 1 s35 3 5d 1 s43 3 5d 1 s47 3 5d 1 s45 3 5d − 1130 ft

We could just as well have used the velocity at the end of each time period instead 
of the velocity at the beginning as our assumed constant velocity. Then our estimate 
becomes

s31 3 5d 1 s35 3 5d 1 s43 3 5d 1 s47 3 5d 1 s45 3 5d 1 s41 3 5d − 1210 ft

If we had wanted a more accurate estimate, we could have taken velocity readings 
every two seconds, or even every second. Q

Perhaps the calculations in Example 4 remind you of the sums we used earlier to 
estimate areas. The similarity is explained when we sketch a graph of the velocity func-
tion of the car in Figure 17 and draw rectangles whose heights are the initial velocities 
for each time interval. The area of the first rectangle is 25 3 5 − 125, which is also 
our estimate for the dis tance traveled in the first five seconds. In fact, the area of each 
rectangle can be interpreted as a distance because the height represents velocity and the 
width represents time. The sum of the areas of the rectangles in Figure 17 is L6 − 1130, 
which is our initial estimate for the total distance traveled.

In general, suppose an object moves with velocity v − f std, where a < t < b and 
f std > 0 (so the object always moves in the positive direction). We take velocity read-
ings at times t0 s− ad, t1, t2, . . . , tn s− bd so that the velocity is approximately constant 
on each subinterval. If these times are equally spaced, then the time between consecutive 
readings is Dt − sb 2 adyn. During the first time interval the velocity is approximately 
f st0 d and so the distance traveled is approximately f st0 d Dt. Similarly, the distance trav-
eled during the second time interval is about f st1d Dt and the total distance traveled dur-
ing the time inter val fa, bg is approximately

f st0 d Dt 1 f st1d Dt 1 ∙ ∙ ∙ 1 f stn21d Dt − o
n

i−1
 f sti21d Dt

If we use the velocity at right endpoints instead of left endpoints, our estimate for the 
total distance becomes

f st1d Dt 1 f st2 d Dt 1 ∙ ∙ ∙ 1 f stn d Dt − o
n

i−1
 f stid Dt

The more frequently we measure the velocity, the more accurate our estimates become, 
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FIGURE 17 
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so it seems plausible that the exact distance d traveled is the limit of such expressions:

d − lim
nl`

 o
n

i−1
 f sti21d Dt − lim

nl`
 o

n

i−1
 f stid Dt

We will see in Section 5.4 that this is indeed true.
Because Equation 5 has the same form as our expressions for area in Equations 2 

and 3, it follows that the distance traveled is equal to the area under the graph of the 
velocity func tion. In Chapter 6 we will see that other quantities of interest in the natural 
and social sciences—such as the work done by a variable force or the cardiac output of 
the heart—can also be interpreted as the area under a curve. So when we compute areas 
in this chapter, bear in mind that they can be interpreted in a variety of practical ways.

5

 1. (a)  By reading values from the given graph of f, use five rect-
angles to find a lower estimate and an upper estimate for 
the area under the given graph of f  from x − 0 to x − 10. 
In each case sketch the rectangles that you use.

 (b) Find new estimates using ten rectangles in each case.

y

x0 4

4

2

y=ƒ

8

 2. (a)  Use six rectangles to find estimates of each type for the 
area under the given graph of f  from x − 0 to x − 12.

 (i)  L6  (sample points are left endpoints)
 (ii)  R6  (sample points are right endpoints)
 (iii)  M6  (sample points are midpoints)
 (b)  Is L6 an underestimate or overestimate of the true area?
 (c) Is R6 an underestimate or overestimate of the true area?
 (d)  Which of the numbers L6, R6, or M6 gives the best esti-

mate? Explain.

y

x0 4

4

8

y=ƒ

8 12

 3. (a)  Estimate the area under the graph of f sxd − 1yx from 
x − 1 to x − 2 using four approximating rectangles  
and right endpoints. Sketch the graph and the rectangles. 
Is your estimate an underestimate or an overestimate?

 (b)  Repeat part (a) using left endpoints.

 4. (a)  Estimate the area under the graph of f sxd − sin x from 
x − 0 to x − !y2 using four approximating rect angles 
and right endpoints. Sketch the graph and the rectangles. 
Is your estimate an underestimate or an overestimate?

 (b)  Repeat part (a) using left endpoints.

 5. (a)  Estimate the area under the graph of f sxd − 1 1 x 2 
from x − 21 to x − 2 using three rectangles and right 
end points. Then improve your estimate by using six 
rect angles. Sketch the curve and the approximating 
rectangles.

 (b) Repeat part (a) using left endpoints.
 (c) Repeat part (a) using midpoints.
 (d)  From your sketches in parts (a)–(c), which appears to be 

the best estimate?

 6. (a)  Graph the function

f sxd − x 2 2 ln x  1 < x < 5

 (b)  Estimate the area under the graph of f  using four 
approximating rectangles and taking the sample points 
to be (i) right endpoints and (ii) midpoints. In each case 
sketch the curve and the rectangles.

 (c)  Improve your estimates in part (b) by using eight  
rectangles.

 7.  Evaluate the upper and lower sums for f sxd − 2 1 sin x,  
0 < x < !, with n − 2, 4, and 8. Illustrate with diagrams 
like Figure 14.

 8.  Evaluate the upper and lower sums for f sxd − 1 1 x 2, 
21 < x < 1, with n − 3 and 4. Illustrate with diagrams like 
Figure 14.

;
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376 CHAPTER 5  Integrals

9–10 With a programmable calculator (or a computer), it is 
pos sible to evaluate the expressions for the sums of areas of 
approximating rectangles, even for large values of n, using 
looping. (On a TI use the Is. command or a For-EndFor loop, 
on a Casio use Isz, on an HP or in BASIC use a FOR-NEXT 
loop.) Compute the sum of the areas of approximating rect-
angles using equal subintervals and right end points for n − 10, 
30, 50, and 100. Then guess the value of the exact area.

 9. The region under y − x 4 from 0 to 1

 10. The region under y − cos x from 0 to !y2

 11.  Some computer algebra systems have commands that will 
draw approximating rectangles and evaluate the sums of 
their areas, at least if xi* is a left or right endpoint. (For 
instance, in Maple use leftbox, rightbox, left-
sum, and rightsum.)

 (a)  If f sxd − 1ysx 2 1 1d, 0 < x < 1, find the left and 
right sums for n − 10, 30, and 50.

 (b) Illustrate by graphing the rectangles in part (a).
 (c)  Show that the exact area under f  lies between 0.780 

and 0.791.

 12. (a)  If f sxd − ln x, 1 < x < 4, use the commands dis-
cussed in Exercise 11 to find the left and right sums 
for n − 10, 30, and 50.

 (b)  Illustrate by graphing the rectangles in part (a).
 (c)  Show that the exact area under f  lies between 2.50 

and 2.59.

 13.  The speed of a runner increased steadily during the first 
three seconds of a race. Her speed at half-second intervals 
is given in the table. Find lower and upper estimates for 
the distance that she traveled during these three seconds.

t (s) 0 0.5 1.0 1.5 2.0 2.5 3.0

v (ftys) 0 6.2 10.8 14.9 18.1 19.4 20.2

 14.  The table shows speedometer readings at 10-second 
intervals during a 1-minute period for a car racing at the 
Daytona International Speedway in Florida.

 (a)  Estimate the distance the race car traveled during this 

CAS

CAS

time period using the velocities at the beginning of the 
time intervals.

 (b)  Give another estimate using the velocities at the end of 
the time periods.

 (c)  Are your estimates in parts (a) and (b) upper and lower 
estimates? Explain.

 15.  Oil leaked from a tank at a rate of rstd liters per hour. The rate 
decreased as time passed and values of the rate at two-hour 
time intervals are shown in the table. Find lower and upper 
estimates for the total amount of oil that leaked out.

t (h) 0 2 4 6 8 10

rstd (Lyh) 8.7 7.6 6.8 6.2 5.7 5.3

 16.  When we estimate distances from velocity data, it is some-
times necessary to use times t0, t1, t2, t3, . . . that are not 
equally spaced. We can still estimate distances using the time 
periods Dti − ti 2 ti21. For example, on May 7, 1992, the 
space shuttle Endeavour was launched on mission STS-49, 
the purpose of which was to install a new perigee kick motor 
in an Intelsat communications satellite. The table, provided 
by NASA, gives the velocity data for the shuttle between 
liftoff and the jettisoning of the solid rocket boosters. Use 
these data to estimate the height above the earth’s surface of 
the Endeavour, 62 seconds after liftoff.

Event Time ssd Velocity sftysd

Launch   0    0

Begin roll maneuver  10  185

End roll maneuver  15  319

Throttle to 89%  20  447

Throttle to 67%  32  742

Throttle to 104%  59 1325

Maximum dynamic pressure  62 1445

Solid rocket booster separation 125 4151

 17.  The velocity graph of a braking car is shown. Use it to esti mate 
the distance traveled by the car while the brakes are applied.

√

t
(seconds)

0 2

20

40

60

4 6

(ft /s)

Time (s) Velocity (miyh)

 0  182.9
10  168.0
20  106.6
30  99.8
40  124.5
50  176.1
60  175.6
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Singapore between March 1 and May 24, 2003, using 
both left endpoints and right endpoints.

 (b)  How would you interpret the number of SARS deaths 
as an area under a curve?

Source: A. Gumel et al., “Modelling Strategies for Controlling SARS 
Outbreaks,” Proceedings of the Royal Society of London: Series B 271 
(2004): 2223–32.

21–23 Use Definition 2 to find an expression for the area 
under the graph of f  as a limit. Do not evaluate the limit.

 21. f sxd −
2x

x 2 1 1
,  1 < x < 3

 22. f sxd − x 2 1 s1 1 2x ,  4 < x < 7

 23. f sxd − ssin x ,  0 < x < !

24–25 Determine a region whose area is equal to the given 
limit. Do not evaluate the limit.

 24. lim
n l `

 o
n

i−1
 
3
n

 Î1 1
3i
n

  25. lim
n l `

 o
n

i−1
 

!

4n
 tan 

i!
4n

 26. (a)  Use Definition 2 to find an expression for the area 
under the curve y − x 3 from 0 to 1 as a limit.

 (b)  The following formula for the sum of the cubes of 
the first n integers is proved in Appendix E. Use it to 
evaluate the limit in part (a).

13 1 23 1 33 1 ∙ ∙ ∙ 1 n 3 − F nsn 1 1d
2 G2

 27.  Let A be the area under the graph of an increasing con-
tinuous function f  from a to b, and let  Ln and Rn be the  
approximations to A with n subintervals using left and 
right endpoints, respectively.

 (a)  How are A, Ln, and Rn related?
 (b) Show that

Rn 2 Ln −
b 2 a

n
 f f sbd 2 f sadg

   Then draw a diagram to illustrate this equation by 
showing that the n rectangles representing Rn 2 Ln 
can be reassem bled to form a single rectangle whose 
area is the right side of the equation.

 (c) Deduce that

Rn 2 A ,
b 2 a

n
 f f sbd 2 f sadg

 28.  If A is the area under the curve y − e x from 1 to 3,  
use Exercise 27 to find a value of n such that 
Rn 2 A , 0.0001.

 18.  The velocity graph of a car accelerating from rest to a speed 
of 120 kmyh over a period of 30 seconds is shown. Estimate 
the distance traveled during this period.

40

80

√
(km/h)

t
(seconds)

0 10 20 30

 19.  In someone infected with measles, the virus level N (mea-
sured in number of infected cells per mL of blood plasma) 
reaches a peak density at about t − 12 days (when a rash 
appears) and then decreases fairly rapidly as a result of 
immune response. The area under the graph of Nstd from 
t − 0 to t − 12 (as shown in the figure) is equal to the total 
amount of infection needed to develop symptoms (measured 
in density of infected cells 3 time). The function N has been 
modeled by the function 

f std − 2tst 2 21dst 1 1d

Use this model with six subintervals and their midpoints 
to estimate the total amount of infection needed to develop 
symptoms of measles.

0

N

t (days) 2112

N=f(t)
1000

Source: J. M. Heffernan et al., “An In-Host Model of Acute Infection: Measles 
as a Case Study,” Theoretical Population Biology 73 (2006): 134– 47.

 20.   The table shows the number of people per day who died 
from SARS in Singapore at two-week intervals beginning on 
March 1, 2003.

Date Deaths per day Date Deaths per day

March 1 0.0079  April 26 0.5620
March 15 0.0638 May 10 0.4630
March 29 0.1944 May 24 0.2897
April 12 0.4435

 (a)  By using an argument similar to that in Example 4, 
estimate the number of people who died of SARS in 
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378 CHAPTER 5  Integrals

 29. (a)  Express the area under the curve y − x 5 from 0 to 2 
as a limit.

 (b)  Use a computer algebra system to find the sum in 
your expression from part (a).

 (c) Evaluate the limit in part (a).

 30.  Find the exact area of the region under the graph of 
y − e2x from 0 to 2 by using a computer algebra system 
to evaluate the sum and then the limit in Example 3(a). 
Compare your answer with the estimate obtained in 
Example 3(b).

 31.  Find the exact area under the cosine curve y − cos x from 
x − 0 to x − b, where 0 < b < !y2. (Use a computer 

CAS

CAS

CAS

algebra system both to evaluate the sum and compute the 
limit.) In particular, what is the area if b − !y2?

 32. (a)  Let An be the area of a polygon with n equal sides 
inscribed in a circle with radius r. By dividing the poly-
gon into n congruent triangles with central angle 2!yn, 
show that

An − 1
2 nr 2 sinS2!

n D
 (b)  Show that limn l ` An − !r 2. [Hint: Use Equation 3.3.2 

on page 191.]

We saw in Section 5.1 that a limit of the form

lim
n l `

 o
n

i−1
 f sxi*d Dx − lim

n l `
 f f sx1*d Dx 1 f sx2*d Dx 1 ∙ ∙ ∙ 1 f sxn*d Dxg

arises when we compute an area. We also saw that it arises when we try to find the dis-
tance traveled by an object. It turns out that this same type of limit occurs in a wide vari-
ety of situations even when f  is not necessarily a positive function. In Chapters 6 and 8 
we will see that limits of the form (1) also arise in finding lengths of curves, volumes of 
solids, centers of mass, force due to water pressure, and work, as well as other quantities. 
We therefore give this type of limit a special name and notation.

2   Definition of a Definite Integral If f  is a function defined for a < x < b, 
we divide the interval fa, bg into n subintervals of equal width Dx − sb 2 adyn. 
We let x0 s− ad, x1, x2, . . . , xn s− bd be the endpoints of these subintervals and we 
let x1*, x2*, . . . , xn* be any sample points in these subintervals, so xi* lies in the i th 
subinterval fxi21, xig. Then the definite integral of f  from a to b is

yb

a
 f sxd dx − lim

n l `
 o

n

i−1
 f sxi*d Dx

 provided that this limit exists and gives the same value for all possible choices of 
sample points. If it does exist, we say that f  is integrable on fa, bg.

The precise meaning of the limit that defines the integral is as follows:

For every number « . 0 there is an integer N such that

Z yb

a
 f sxd dx 2 o

n

i−1
 f sxi*d Dx Z , «

for every integer n . N and for every choice of xi* in fxi21, xig.

NOTE 1 The symbol y was introduced by Leibniz and is called an integral sign. It 
is an elongated S and was chosen because an integral is a limit of sums. In the notation 

1
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 SECTION 5.2  The Definite Integral 379

 yb
a  f sxd dx, f sxd is called the integrand and a and b are called the limits of integration; 

a is the lower limit and b is the upper limit. For now, the symbol dx has no meaning by 
itself; yb

a  f sxd dx is all one symbol. The dx simply indicates that the independent vari able 
is x. The procedure of calculating an integral is called integration.

NOTE 2 The definite integral yb
a  f sxd dx is a number; it does not depend on x. In fact, 

we could use any letter in place of x without changing the value of the integral:

yb

a
 f sxd dx − yb

a
 f std dt − yb

a
 f srd dr

NOTE 3 The sum

o
n

i−1
 f sxi*d Dx

that occurs in Definition 2 is called a Riemann sum after the German mathematician 
Bernhard Riemann (1826 –1866). So Definition 2 says that the definite integral of an 
integrable function can be approximated to within any desired degree of accuracy by a 
Riemann sum.

We know that if f  happens to be positive, then the Riemann sum can be interpreted 
as a sum of areas of approximating rectangles (see Figure 1). By comparing Definition 2 
with the definition of area in Section 5.1, we see that the definite integral yb

a  f sxd dx can 
be interpreted as the area under the curve y − f sxd from a to b. (See Figure 2.)

xi*0

y

xa

Îx y=ƒ

0

y

xab b

FIGURE 1  
If f sxd > 0, the Riemann sum o  f sxi*d Dx  
is the sum of areas of rectangles.

FIGURE 2  
If f sxd > 0, the integral yb

a f sxd dx is the  
area under the curve y − f sxd from a to b.

If f  takes on both positive and negative values, as in Figure 3, then the Riemann sum 
is the sum of the areas of the rectangles that lie above the x-axis and the negatives of the 
areas of the rectangles that lie below the x-axis (the areas of the blue rectangles minus 
the areas of the gold rectangles). When we take the limit of such Riemann sums, we get 
the situation illustrated in Figure 4. A definite integral can be interpreted as a net area, 
that is, a difference of areas:

yb

a
 f sxd dx − A1 2 A2

where A1 is the area of the region above the x-axis and below the graph of f , and A2 is 
the area of the region below the x-axis and above the graph of f .

NOTE 4 Although we have defined yb
a  f sxd dx by dividing fa, bg into subintervals of 

equal width, there are situations in which it is advantageous to work with subintervals of 
unequal width. For instance, in Exercise 5.1.16, NASA provided velocity data at times 
that were not equally spaced, but we were still able to estimate the distance traveled. And 
there are methods for numerical integration that take advantage of unequal subintervals.

Riemann
Bernhard Riemann received his Ph.D. 
under the direction of the legendary 
Gauss at the University of Göttingen and 
remained there to teach. Gauss, who 
was not in the habit of praising other 
mathematicians, spoke of Riemann’s  
“creative, active, truly mathematical 
mind and gloriously fertile originality.” 
The definition (2) of an integral that we 
use is due to Riemann. He also made 
major contributions to the theory of 
functions of a complex variable, math-
ematical physics, number theory, and 
the foundations of geometry. Riemann’s 
broad concept of space and geometry 
turned out to be the right setting, 50  
years later, for Einstein’s general rela-
tivity theory. Riemann’s health was poor  
throughout his life, and he died of 
tuberculosis at the age of 39.

0

y=ƒ
y

a b x

FIGURE 3  

o  f sxi*d Dx is an approximation 
  to the net area.

y=ƒ
y

xa b0

FIGURE 4  

yb

a
 f sxd dx is the net area.
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380 CHAPTER 5  Integrals

If the subinterval widths are Dx1, Dx2, . . . , Dxn , we have to ensure that all these 
widths approach 0 in the limiting process. This happens if the largest width, max Dxi , 
approaches 0. So in this case the definition of a definite integral becomes

yb

a
 f sxd dx − lim

max Dxi l 0
  o

n

i−1
 f sxi*d Dxi

NOTE 5 We have defined the definite integral for an integrable function, but not all 
functions are integrable (see Exercises 71–72). The following theorem shows that the 
most commonly occurring functions are in fact integrable. The theorem is proved in 
more advanced courses. 

3   Theorem If f  is continuous on fa, bg, or if f  has only a finite number of jump 
discontinuities, then f  is integrable on fa, bg; that is, the definite integral yb

a  f sxd dx 
exists.

If f  is integrable on fa, bg, then the limit in Definition 2 exists and gives the same 
value no matter how we choose the sample points xi*. To simplify the calculation of the 
integral we often take the sample points to be right endpoints. Then xi* − xi and the defi-
nition of an integral simplifies as follows.

4   Theorem If f  is integrable on fa, bg, then

yb

a
 f sxd dx − lim

nl`
o

n

i−1
 f sxid Dx

where Dx −
b 2 a

n
    and    xi − a 1 i Dx

EXAMPLE 1  Express

lim
n l `

 o
n

i−1
 sx i

3 1 xi sin xid Dx

as an integral on the interval f0, !g.

SOLUTION Comparing the given limit with the limit in Theorem 4, we see that they 
will be identical if we choose f sxd − x 3 1 x sin x. We are given that a − 0 and b − !. 
Therefore, by Theorem 4, we have

 lim
n l `

 o
n

i−1
 sx i

3 1 xi sin xid Dx − y!

0
sx 3 1 x sin xd dx Q

Later, when we apply the definite integral to physical situations, it will be important to 
recognize limits of sums as integrals, as we did in Example 1. When Leibniz chose the 
notation for an integral, he chose the ingredients as reminders of the limiting process. In 
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 SECTION 5.2  The Definite Integral 381

general, when we write

lim
n l `

 o
n

i−1
 f sx i*d Dx − yb

a
 f sxd dx

we replace lim o  by y, xi* by x, and Dx by dx.

Evaluating Integrals
When we use a limit to evaluate a definite integral, we need to know how to work 
with sums. The following three equations give formulas for sums of powers of positive 
integers. Equation 5 may be familiar to you from a course in algebra. Equations 6 and 7 
were discussed in Section 5.1 and are proved in Appendix E.

5     o
n

i−1
 i −

nsn 1 1d
2

6     o
n

i−1
 i 2 −

nsn 1 1ds2n 1 1d
6

7     o
n

i−1
 i 3 − F nsn 1 1d

2 G2

The remaining formulas are simple rules for working with sigma notation:

8     o
n

i−1
 c − nc

9     o
n

i−1
 cai − c o

n

i−1
 ai

10     o
n

i−1
 sai 1 bid − o

n

i−1
 ai 1 o

n

i−1
 bi

11     o
n

i−1
 sai 2 bid − o

n

i−1
 ai 2 o

n

i−1
 bi

EXAMPLE 2 
(a) Evaluate the Riemann sum for f sxd − x 3 2 6x, taking the sample points to be right 
endpoints and a − 0, b − 3, and n − 6.

(b) Evaluate y3

0
 sx 3 2 6xd dx.

SOLUTION
(a) With n − 6 the interval width is

Dx −
b 2 a

n
−

3 2 0
6

−
1
2

and the right endpoints are x1 − 0.5, x2 − 1.0, x3 − 1.5, x4 − 2.0, x5 − 2.5, and 

Formulas 8 –11 are proved by writing 
out each side in expanded form. The 
left side of Equation 9 is

ca1 1 ca2 1 ∙ ∙ ∙ 1 can

The right side is
csa1 1 a2 1 ∙ ∙ ∙ 1 an d

These are equal by the distributive 
property. The other formulas are 
discussed in Appendix E.
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x6 − 3.0. So the Riemann sum is

 R6 − o
6

i−1
 f sxid Dx

 − f s0.5d Dx 1 f s1.0d Dx 1 f s1.5d Dx 1 f s2.0d Dx 1 f s2.5d Dx 1 f s3.0d Dx

 − 1
2 s22.875 2 5 2 5.625 2 4 1 0.625 1 9d

 − 23.9375

Notice that f  is not a positive function and so the Riemann sum does not represent 
a sum of areas of rectangles. But it does represent the sum of the areas of the blue 
rectangles (above the x-axis) minus the sum of the areas of the gold rectangles  
(below the x-axis) in Figure 5.

(b) With n subintervals we have

Dx −
b 2 a

n
−

3
n

So x0 − 0, x1 − 3yn, x2 − 6yn, x3 − 9yn, and, in general, xi − 3iyn. Since we are 
using right endpoints, we can use Theorem 4:

 y3

0
 sx 3 2 6xd dx − lim

n l `
 o

n

i−1
 f sxid Dx − lim

n l `
 o

n

i−1
 fS 3i

n D 
3
n

 − lim 
n l `

 
3
n

 o
n

i−1
 FS 3i

n D3

2 6S 3i
n DG (Equation 9 with c − 3yn)

 − lim 
n l `

 
3
n

 o
n

i−1
 F 27

n 3  i 3 2
18
n

 iG
 − lim 

n l `
 F 81

n 4  o
n

i−1
 i 3 2

54
n 2  o

n

i−1
 iG (Equations 11 and 9)

 − lim 
n l `

 H 81
n 4  F nsn 1 1d

2 G2

2
54
n 2  

nsn 1 1d
2 J (Equations 7 and 5)

 − lim 
n l `

 F 81
4

 S1 1
1
nD2

2 27S1 1
1
nDG

 −
81
4

2 27 − 2
27
4

− 26.75

This integral can’t be interpreted as an area because f  takes on both positive and nega-
tive values. But it can be interpreted as the difference of areas A1 2 A2, where A1 and 
A2 are shown in Figure 6.

FIGURE 5 

0

y

3 x

5 y=˛-6x

In the sum, n is a constant (unlike i),  
so we can move 3yn in front of the  
o  sign.

A™

A¡

0

y

3 x

5 y=˛-6x

FIGURE 6  

y3

0
 sx3 2 6xd dx − A1 2 A2 − 26.75
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 SECTION 5.2  The Definite Integral 383

Figure 7 illustrates the calculation by showing the positive and negative terms in 
the right Riemann sum Rn for n − 40. The values in the table show the Riemann sums 
approaching the exact value of the integral, 26.75, as n l `.

0

y

3 x

5 y=˛-6x

     

n Rn

40  26.3998
100  26.6130
500  26.7229

1000  26.7365
5000  26.7473

 Q

A much simpler method for evaluating the integral in Example 2 will be given in 
Section 5.4.

EXAMPLE 3  
(a) Set up an expression for y3

1 ex dx as a limit of sums.
(b) Use a computer algebra system to evaluate the expression.

SOLUTION
(a) Here we have f sxd − ex, a − 1, b − 3, and

Dx −
b 2 a

n
−

2
n

So x0 − 1, x1 − 1 1 2yn, x2 − 1 1 4yn, x3 − 1 1 6yn, and

xi − 1 1
2i
n

From Theorem 4, we get

  y3

1
 ex dx − lim

n l `
 o

n

i−1
 f sxid Dx

 − lim
n l `

 o
n

i−1
 fS1 1

2i
n D 

2
n

 − lim
n l `

 
2
n

 o
n

i−1
 e112iyn

(b) If we ask a computer algebra system to evaluate the sum and simplify, we obtain

o
n

i−1
 e 112iyn −

e s3n12dyn 2 e sn12dyn

e 2yn 2 1

Now we ask the computer algebra system to evaluate the limit:

y3

1
 ex dx − lim

n l `
 
2
n

?
e s3n12dyn 2 e sn12dyn

e 2yn 2 1
− e 3 2 e

We will learn a much easier method for the evaluation of integrals in the next section.  
 Q

FIGURE 7  
R40 < 26.3998

Because f sxd − e x is positive, the 
integral in Example 3 represents  
the area shown in Figure 8.

x

y

0 1 3

10

y=´

FIGURE 8

A computer algebra system is able to 
find an explicit expression for this sum 
because it is a geometric series. The 
limit could be found using l’Hospital’s 
Rule.
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EXAMPLE 4 Evaluate the following integrals by interpreting each in terms of areas.

(a) y1

0
 s1 2 x 2 dx (b) y3

0
 sx 2 1d dx

SOLUTION
(a) Since f sxd − s1 2 x 2 > 0, we can interpret this integral as the area under the 
curve y − s1 2 x 2  from 0 to 1. But, since y 2 − 1 2 x 2, we get x 2 1 y 2 − 1, which 
shows that the graph of f  is the quarter-circle with radius 1 in Figure 9. Therefore

y1

0
s1 2 x 2 dx − 1

4 !s1d2 −
!

4

(In Section 7.3 we will be able to prove that the area of a circle of radius r is !r 2.)

(b) The graph of y − x 2 1 is the line with slope 1 shown in Figure 10. We compute 
the integral as the difference of the areas of the two triangles:

 y3

0
 sx 2 1d dx − A1 2 A2 − 1

2 s2 ∙ 2d 2 1
2 s1 ∙ 1d − 1.5 Q

The Midpoint Rule
We often choose the sample point xi* to be the right endpoint of the ith subinterval 
because it is convenient for computing the limit. But if the purpose is to find an approxi-
mation to an integral, it is usually better to choose xi* to be the midpoint of the interval, 
which we denote by xi. Any Riemann sum is an approximation to an integral, but if we 
use midpoints we get the following approximation.

 Midpoint Rule 

yb

a
 f sxd dx < o

n

i−1
 f sxid Dx − Dx f f sx1d 1 ∙ ∙ ∙ 1 f sxn dg 

where  Dx −
b 2 a

n

and  xi − 1
2 sxi21 1 xid − midpoint of fxi21, xig

TEC Module 5.2 / 7.7 shows how the  
Midpoint Rule estimates improve as n  
increases.

EXAMPLE 5  Use the Midpoint Rule with n − 5 to approximate y2

1
 
1
x

 dx.

SOLUTION The endpoints of the five subintervals are 1, 1.2, 1.4, 1.6, 1.8, and 2.0,  
so the midpoints are 1.1, 1.3, 1.5, 1.7, and 1.9. The width of the subintervals is 
Dx − s2 2 1dy5 − 1

5, so the Midpoint Rule gives 

 y2

1
 
1
x

 dx < Dx f f s1.1d 1 f s1.3d 1 f s1.5d 1 f s1.7d 1 f s1.9dg

 −
1
5

 S 1
1.1

1
1

1.3
1

1
1.5

1
1

1.7
1

1
1.9D  

 < 0.691908  

Since f sxd − 1yx . 0 for 1 < x < 2, the integral represents an area, and the approxi -

x

y

10

1
y=   1-≈

or
≈+¥=1

œ„„„„„

FIGURE 9 

x

y

10

_1

3

y=x-1

A¡

(3, 2)

A™

FIGURE 10 
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 SECTION 5.2  The Definite Integral 385

mation given by the Midpoint Rule is the sum of the areas of the rectangles shown in 
Figure 11. Q

At the moment we don’t know how accurate the approximation in Example 5 is, 
but in Section 7.7 we will learn a method for estimating the error involved in using the 
Midpoint Rule. At that time we will discuss other methods for approximating definite 
integrals.

If we apply the Midpoint Rule to the integral in Example 2, we get the picture in Fig-
ure 12. The approximation M40 < 26.7563 is much closer to the true value 26.75 than 
the right endpoint approximation, R40 < 26.3998, shown in Figure 7.

0

y

3 x

5 y=˛-6x

Properties of the Definite Integral
When we defined the definite integral yb

a  f sxd dx, we implicitly assumed that a , b. But 
the definition as a limit of Riemann sums makes sense even if a . b. Notice that if we 
reverse a and b, then Dx changes from sb 2 adyn to sa 2 bdyn. Therefore

ya

b
 f sxd dx − 2yb

a
 f sxd dx

If a − b, then Dx − 0 and so

ya

a
 f sxd dx − 0

We now develop some basic properties of integrals that will help us to evaluate inte-
grals in a simple manner. We assume that f  and t are continuous functions.

 Properties of the Integral

1. yb

a
 c dx − csb 2 ad,  where c is any constant

2. yb

a
 f f sxd 1 tsxdg dx − yb

a
 f sxd dx 1 yb

a
 tsxd dx

3.  yb

a
 cf sxd dx − c yb

a
 f sxd dx,  where c is any constant

4. yb

a
 f f sxd 2 tsxdg dx − yb

a
 f sxd dx 2 yb

a
 tsxd dx

0 x

y

1 2

y= 1
x

FIGURE 11 

TEC In Visual 5.2 you can compare 
left, right, and midpoint approxima-
tions to the integral in Example 2 for 
different values of n.

FIGURE 12  
M40 < 26.7563
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386 CHAPTER 5  Integrals

Property 1 says that the integral of a constant function f sxd − c is the constant times 
the length of the interval. If c . 0 and a , b, this is to be expected because csb 2 ad is 
the area of the shaded rectangle in Figure 13.

0

y

xa b

c y=c

area=c(b-a)

Property 2 says that the integral of a sum is the sum of the integrals. For positive 
functions it says that the area under f 1 t is the area under f  plus the area under t.  
Figure 14 helps us understand why this is true: In view of how graphical addition works, 
the corresponding vertical line segments have equal height.

In general, Property 2 follows from Theorem 4 and the fact that the limit of a sum is 
the sum of the limits:

 yb

a
 f f sxd 1 tsxdg dx − lim

n l `
 o

n

i−1
 f f sxid 1 tsxidg Dx

 − lim
n l `

 Fo
n

i−1
 f sxid Dx 1 o

n

i−1
 tsxid DxG

 − lim
n l `

 o
n

i−1
 f sxid Dx 1 lim

n l `
 o

n

i−1
 tsxid Dx

 − yb

a
 f sxd dx 1 yb

a
 tsxd dx

Property 3 can be proved in a similar manner and says that the integral of a constant 
times a function is the constant times the integral of the function. In other words, a con-
stant (but only a constant) can be taken in front of an integral sign. Property 4 is proved 
by writing f 2 t − f 1 s2td and using Properties 2 and 3 with c − 21.

EXAMPLE 6  Use the properties of integrals to evaluate y1

0
 s4 1 3x 2 d dx.

SOLUTION Using Properties 2 and 3 of integrals, we have

y1

0
 s4 1 3x 2 d dx − y1

0
 4 dx 1 y1

0
 3x 2 dx − y1

0
 4 dx 1 3 y1

0
 x 2 dx

We know from Property 1 that

y1

0
 4 dx − 4s1 2 0d − 4

and we found in Example 5.1.2 that y1

0
 x 2 dx − 1

3. So

 y1

0
 s4 1 3x 2 d dx − y1

0
 4 dx 1 3 y1

0
 x 2 dx

  − 4 1 3 ∙ 13 − 5  Q

The next property tells us how to combine integrals of the same function over adjacent 
intervals.

FIGURE 13  

yb

a
 c dx − csb 2 ad

y

0 xa b

f
g

f+g

FIGURE 14  

yb

a
 f f sxd 1 tsxdgdx −

yb

a
f sxddx 1 yb

a
tsxddx

Property 3 seems intuitively reasonable 
because we know that multiplying 
a function by a positive number c 
stretches or shrinks its graph vertically 
by a factor of c. So it stretches or 
shrinks each approximating rectangle 
by a factor c and therefore it has the 
effect of multiplying the area by c.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 5.2  The Definite Integral 387

5.  yc

a
 f sxd dx 1 yb

c
 f sxd dx − yb

a
 f sxd dx

This is not easy to prove in general, but for the case where f sxd > 0 and a , c , b 
Property 5 can be seen from the geometric interpretation in Figure 15: the area under 
y − f sxd from a to c plus the area from c to b is equal to the total area from a to b.

EXAMPLE 7 If it is known that y10
0  f sxd dx − 17 and y8

0 f sxd dx − 12, find y10
8  f sxd dx.

SOLUTION  By Property 5, we have

y8

0
 f sxd dx 1 y10

8
 f sxd dx − y10

0
 f sxd dx

so y10

8
 f sxd dx − y10

0
 f sxd dx 2 y8

0
 f sxd dx − 17 2 12 − 5 Q

Properties 1–5 are true whether a , b, a − b, or a . b. The following properties, in 
which we compare sizes of functions and sizes of integrals, are true only if a < b.

 Comparison Properties of the Integral

6. If f sxd > 0 for a < x < b, then yb

a
 f sxd dx > 0.

7. If f sxd > tsxd for a < x < b, then yb

a
 f sxd dx > yb

a
 tsxd dx.

8. If m < f sxd < M for a < x < b, then

msb 2 ad < yb

a
 f sxd dx < Msb 2 ad

If f sxd > 0, then yb

a
 f sxd dx represents the area under the graph of f, so the geometric 

interpretation of Property 6 is simply that areas are positive. (It also follows directly from 
the definition because all the quantities involved are positive.) Property 7 says that a big-
ger function has a bigger integral. It follows from Properties 6 and 4 because f 2 t > 0.

Property 8 is illustrated by Figure 16 for the case where f sxd > 0. If f  is continuous, 
we could take m and M to be the absolute minimum and maximum values of f  on the 
inter val fa, bg. In this case Property 8 says that the area under the graph of f  is greater 
than the area of the rectangle with height m and less than the area of the rectangle with 
height M.

PROOF OF PROPERTY 8 Since m < f sxd < M, Property 7 gives

yb

a
 m dx < yb

a
 f sxd dx < yb

a
 M dx

Using Property 1 to evaluate the integrals on the left and right sides, we obtain

 msb 2 ad < yb

a
 f sxd dx < Msb 2 ad Q

Property 8 is useful when all we want is a rough estimate of the size of an integral 
with out going to the bother of using the Midpoint Rule.

0

y

xa bc

y=ƒ

FIGURE 15 

0

y

m

M

xa b

y=ƒ

FIGURE 16 
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388 CHAPTER 5  Integrals

EXAMPLE 8 Use Property 8 to estimate y1

0
 e2x 2

 dx.

SOLUTION Because f sxd − e2x 2
 is a decreasing function on f0, 1g, its absolute maxi- 

mum value is M − f s0d − 1 and its absolute minimum value is m − f s1d − e21. Thus, 
by Property 8,

 e21s1 2 0d < y1

0
 e2x 2

 dx < 1s1 2 0d

or  e21 < y1

0
 e2x 2

dx < 1

Since e21 < 0.3679, we can write

 0.367 < y1

0
 e2x 2

 dx < 1 Q

The result of Example 8 is illustrated in Figure 17. The integral is greater than the area 
of the lower rectangle and less than the area of the square.

y

x10

1
y=1

y=e–x2

y=1/e

FIGURE 17 

 1.   Evaluate the Riemann sum for f sxd − x 2 1, 26 < x < 4, 
with five subintervals, taking the sample points to be right end-
points. Explain, with the aid of a diagram, what the Riemann 
sum represents.

 2.   If 
f sxd − cos x   0 < x < 3!y4

evaluate the Riemann sum with n − 6, taking the sample 
points to be left endpoints. (Give your answer correct to six 
decimal places.) What does the Riemann sum represent?  
Illustrate with a diagram.

 3.  If f sxd − x 2 2 4, 0 < x < 3, find the Riemann sum with 
n − 6, taking the sample points to be midpoints. What does 
the Riemann sum represent? Illustrate with a diagram.

 4. (a)  Find the Riemann sum for f sxd − 1yx, 1 < x < 2, with 
four terms, taking the sample points to be right endpoints. 
(Give your answer correct to six decimal places.) Explain 
what the Riemann sum represents with the aid of a sketch.

 (b)  Repeat part (a) with midpoints as the sample points.

 5.   The graph of a function f  is given. Estimate y10
0  f sxd dx using 

five subintervals with (a) right endpoints, (b) left endpoints, 
and (c) midpoints.

x

y

0

1

1

 6.  The graph of t is shown. Estimate y4
22 tsxd dx with six sub- 

intervals using (a) right endpoints, (b) left endpoints, and 
(c) midpoints.

x

y

1

1

 7.   A table of values of an increasing function f  is shown. Use 
the table to find lower and upper estimates for y30

10  f sxd dx.

x 10 14 18 22 26 30

f sxd 212 26 22 1 3 8

 8.   The table gives the values of a function obtained from an 
experiment. Use them to estimate y9

3  f sxd dx using three 
equal subintervals with (a) right endpoints, (b) left end-
points, and (c) midpoints. If the function is known to be an 
increasing function, can you say whether your estimates 
are less than or greater than the exact value of the integral?

x 3 4 5 6 7 8 9

f sxd 23.4 22.1 20.6 0.3 0.9 1.4 1.8
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9–12 Use the Midpoint Rule with the given value of n to 
approximate the integral. Round the answer to four decimal 
places.

 9. y8

0
 sinsx dx, n − 4 10. y1

0
 sx 3 1 1  dx,  n − 5

 11. y2

0
 

x
x 1 1

dx, n − 5 12. y!

0
 x sin2x dx,  n − 4

 13.  If you have a CAS that evaluates midpoint approximations 
and graphs the corresponding rectangles (use RiemannSum 
or middlesum and middlebox commands in Maple), 
check the answer to Exercise 11 and illustrate with a graph. 
Then repeat with n − 10 and n − 20.

 14.   With a programmable calculator or computer (see the 
instructions for Exercise 5.1.9), compute the left and right 
Riemann sums for the function f sxd − xysx 1 1d on the 
interval f0, 2g with n − 100. Explain why these estimates 
show that

0.8946 , y2

0
 

x
x 1 1

dx , 0.9081

 15.  Use a calculator or computer to make a table of values of 
right Riemann sums Rn for the integral y!

0  sin x dx with 
n − 5, 10, 50, and 100. What value do these numbers 
appear to be approaching?

 16.   Use a calculator or computer to make a table of values 
of left and right Riemann sums Ln and Rn for the integral 
y2
0  e2x 2

 dx with n − 5, 10, 50, and 100. Between what two 
numbers must the value of the integral lie? Can you make a 

  similar statement for the integral y2
21 e

2x 2 dx? Explain.

17–20 Express the limit as a definite integral on the given 
interval.

 17. lim
n l `

 o
n

i−1
 

e xi

1 1 xi
Dx, f0, 1g

 18. lim
n l `

 o
n

i−1
 xi s1 1 x 3

i   Dx, f2, 5g

 19. lim
n l `

 o
n

i−1
 f5sxi*d3 2 4xi*g Dx,  f2, 7]

 20. lim
n l `

 o
n

i−1
 xi*
sxi*d2 1 4

Dx,  f1, 3g

21–25 Use the form of the definition of the integral given in 
Theorem 4 to evaluate the integral.

 21. y5

2
 s4 2 2xd dx 22. y4

1
 sx 2 2 4x 1 2 d dx

 23. y0

22
 sx 2 1 x d dx 24. y2

0
 s2x 2 x 3 d dx

 25. y1

0
 sx 3 2 3x 2d dx

CAS

 26.  (a)  Find an approximation to the integral y4
0 sx 2 2 3xd dx

using a Riemann sum with right endpoints and n − 8.
 (b)  Draw a diagram like Figure 3 to illustrate the approxi-

mation in part (a).
 (c) Use Theorem 4 to evaluate y4

0 sx 2 2 3xd dx.
 (d)  Interpret the integral in part (c) as a difference of areas 

and illustrate with a diagram like Figure 4.

 27. Prove that yb

a
 x dx −

b 2 2 a 2

2
.

 28. Prove that yb

a
 x 2 dx −

b 3 2 a 3

3
.

29–30 Express the integral as a limit of Riemann sums. Do not 
evaluate the limit.

 29. y3

1
 s4 1 x2 dx 30. y5

2
 Sx 2 1

1
xD dx

31–32 Express the integral as a limit of sums. Then evaluate, 
using a computer algebra system to find both the sum and the 
limit.

 31. y!

0
 sin 5x dx 32. y10

2
 x 6 dx

 33.  The graph of f  is shown. Evaluate each integral by inter- 
preting it in terms of areas.

 (a) y2

0
 f sxd dx (b) y5

0
 f sxd dx

 (c) y7

5
 f sxd dx (d) y9

0
 f sxd dx

x

y

0

2

4 6 82

y=ƒ

 34.  The graph of t consists of two straight lines and a semi - 
circle. Use it to evaluate each integral.

 (a) y2

0
 tsxd dx      (b) y6

2
 tsxd dx      (c) y7

0
 tsxd dx

x

y

0

2

4 7

4

y=©

CAS
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35–40 Evaluate the integral by interpreting it in terms of areas.

 35. y2

21
 s1 2 xd dx 36. y9

0
 (1

3 x 2 2) dx

 37. y0

23
 (1 1 s9 2 x 2 ) dx 38. y5

25
 (x 2 s25 2 x 2 ) dx

 39. y3

24
 | 1

2 x | dx 40. y1

0
 | 2x 2 1 | dx

 41. Evaluate y1

1
 s1 1 x 4  dx.

 42.  Given that y!

0
 sin4 x dx − 3

8 !, what is y0

!
 sin4 " d"?

 43.  In Example 5.1.2 we showed that y1
0 x

2 dx − 1
3. Use this fact 

   and the properties of integrals to evaluate y1
0 s5 2 6x 2 d dx.

 44.  Use the properties of integrals and the result of Example 3 
to evaluate y3

1 s2e x 2 1d dx.

 45.  Use the result of Example 3 to evaluate y3
1  e x12 dx.

 46.  Use the result of Exercise 27 and the fact that 
y!y2
0  cos x dx − 1 (from Exercise 5.1.31), together with the 

properties of integrals, to evaluate y!y2
0

 s2 cos x 2 5xd dx.

 47. Write as a single integral in the form yb
a  f sxd dx:

y2

22 
 f sxd dx 1 y5

2
 f sxd dx 2 y21

22
 f sxd dx

 48. If y8
2  f sxd dx − 7.3 and y4

2  f sxd dx − 5.9, find y8
4  f sxd dx.

 49.  If y 9
0  f sxd dx − 37 and y 9

0  tsxd dx − 16, find 

y9

0
 f2 f sxd 1 3tsxdg dx

 50. Find y5
0 f sxd dx if

f sxd − H3     for x , 3
x     for x > 3

 51.  For the function f  whose graph is shown, list the following 
quantities in increasing order, from smallest to largest, and 
explain your reasoning.

 (A) y8
0 f sxd dx (B) y3

0 f sxd dx (C) y8
3 f sxd dx

 (D) y8
4 f sxd dx (E) f 9s1d

y

0 x

2

5

 52.  If Fsxd − yx
2 f std dt, where f  is the function whose graph is 

given, which of the following values is largest?
 (A) Fs0d (B) Fs1d (C) Fs2d
 (D) Fs3d (E) Fs4d

y

0 t1 2 3 4

y=f(t)

 53.  Each of the regions A, B, and C bounded by the graph of f  
and the x-axis has area 3. Find the value of

y2

24
 f f sxd 1 2x 1 5g dx

y

0 x_4 _2 2A

B
C

 54.  Suppose f  has absolute minimum value m and absolute max-
imum value M. Between what two values must y2

0 f sxd dx lie?  
Which property of integrals allows you to make your  
conclusion?

55–58 Use the properties of integrals to verify the inequality 
without evaluating the integrals.

 55. y4

0
 sx 2 2 4x 1 4d dx > 0

 56. y1

0
 s1 1 x 2   dx < y1

0
 s1 1 x  dx

 57. 2 < y1

21
 s1 1 x 2 dx < 2s2 

 58. 
!

12
< y!y3

!y6
 sin x dx <

s3 !

12

59–64 Use Property 8 to estimate the value of the integral.

 59. y1

0
 x3 dx 60. y3

0
 

1
x 1 4  dx

 61. y!y3

!y4
 tan x dx 62. y2

0
 sx 3 2 3x 1 3d dx

 63. y2

0
 xe2x dx 64. y2!

!
 sx 2 2 sin xd dx

65–66 Use properties of integrals, together with Exercises 27 and 
28, to prove the inequality.

 65. y3

1
 sx 4 1 1 dx >

26
3

 66. y!y2

0
 x sin x dx <

! 2

8
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 DISCOVERY PROJECT  Area Functions 391

 72.  Let f s0d − 0 and f sxd − 1yx if 0 , x < 1. Show that f  
is not integrable on f0, 1g. [Hint: Show that the first term 
in the Riemann sum, f sx1*d Dx, can be made arbitrarily 
large.]

73–74 Express the limit as a definite integral.

 73. lim
n l `

 o
n

i−1
 
i 4

n 5   [Hint: Consider f sxd − x 4.]

 74. lim
n l `

 
1
n

 o
n

i−1
 

1
1 1 siynd2

 75.  Find y2
1
 x 22 dx. Hint: Choose xi* to be the geometric mean 

of xi21 and xi (that is, xi* − sxi21 xi
   ) and use the identity

1
msm 1 1d

−
1
m

2
1

m 1 1

 67.  Which of the integrals y2
1 arctan x dx, y2

1 arctan sx dx, and 
y2

1 arctanssin xd dx has the largest value? Why?

 68.  Which of the integrals y0.5
0  cossx 2d dx,  y0.5

0  cos sx dx is larger? 
Why? 

 69. Prove Property 3 of integrals.

 70. (a)  If f  is continuous on fa, bg, show that

u yb

a
 f sxd dx u < yb

a
 | f sxd | dx

  [Hint: 2| f sxd | < f sxd < | f sxd |.]
 (b) Use the result of part (a) to show that

u y2!

0
 f sxd sin 2x dx u < y2!

0
  | f sxd | dx

 71.  Let f sxd − 0 if x is any rational number and f sxd − 1 if x is 
any irrational number. Show that f  is not integrable on f0, 1g.

DISCOVERY PROJECT AREA FUNCTIONS

 1. (a)  Draw the line y − 2t 1 1 and use geometry to find the area under this line, above the  
t-axis, and between the vertical lines t − 1 and t − 3.

(b)  If x . 1, let Asxd be the area of the region that lies under the line y − 2t 1 1 
between t − 1 and t − x. Sketch this region and use geometry to find an expression 
for Asxd.

(c) Differentiate the area function Asxd. What do you notice?

 2. (a) If x > 21, let

Asxd − yx

21
 s1 1 t 2 d dt

Asxd represents the area of a region. Sketch that region.
(b) Use the result of Exercise 5.2.28 to find an expression for Asxd.
(c) Find A9sxd. What do you notice?
(d)  If x > 21 and h is a small positive number, then Asx 1 hd 2 Asxd represents the 

area of a region. Describe and sketch the region.
(e)  Draw a rectangle that approximates the region in part (d). By comparing the areas of 

these two regions, show that

Asx 1 hd 2 Asxd
h

< 1 1 x 2

(f) Use part (e) to give an intuitive explanation for the result of part (c).

 3. (a)  Draw the graph of the function f sxd − cossx 2 d in the viewing rectangle f0, 2g  
by f21.25, 1.25g.

(b) If we define a new function t by

tsxd − yx

0
 cos st 2 d dt

  then tsxd is the area under the graph of f  from 0 to x [until f sxd becomes negative, at 
which point tsxd becomes a difference of areas]. Use part (a) to determine the value 

;
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The Fundamental Theorem of Calculus is appropriately named because it establishes a  
con nection between the two branches of calculus: differential calculus and integral 
calculus. Differential calculus arose from the tangent problem, whereas integral calcu-
lus arose from a seemingly unrelated problem, the area problem. Newton’s mentor at 
Cambridge, Isaac Barrow (1630 –1677), discovered that these two problems are actu-
ally closely related. In fact, he realized that differentiation and integration are inverse 
processes. The Fundamental Theorem of Calculus gives the precise inverse relationship 
between the derivative and the integral. It was Newton and Leibniz who exploited this 
relationship and used it to develop calculus into a systematic mathema tical method. In 
particular, they saw that the Fundamental Theorem enabled them to compute areas and 
integrals very easily without having to compute them as limits of sums as we did in Sec-
tions 5.1 and 5.2.

The first part of the Fundamental Theorem deals with functions defined by an equa-
tion of the form

tsxd − y x

a
 f std dt

where f  is a continuous function on fa, bg and x varies between a and b. Observe that t 
depends only on x, which appears as the variable upper limit in the integral. If x is a fixed 
number, then the integral yx

a f std dt is a definite number. If we then let x vary, the number 
yx
a f std dt also varies and defines a function of x denoted by tsxd.

If f  happens to be a positive function, then tsxd can be interpreted as the area under the 
graph of f  from a to x, where x can vary from a to b. (Think of t as the “area so far” 
function; see Figure 1.)

EXAMPLE 1  If f  is the function whose graph is shown in Figure 2 and 
tsxd − yx

0 f std dt, find the values of ts0d, ts1d, ts2d, ts3d, ts4d, and ts5d. Then sketch a 
rough graph of t.

SOLUTION First we notice that ts0d − y0
0 f std dt − 0. From Figure 3 we see that ts1d is 

the area of a triangle:

ts1d − y1

0
 f std dt − 1

2 s1 ? 2d − 1

1

0

y

ta bx

area=©

y=f(t)

FIGURE 1  

t0

1

1

22

42

y

y=f(t)

FIGURE 2  

of x at which tsxd starts to decrease. [Unlike the integral in Problem 2, it is impossible 
to evaluate the integral defining t to obtain an explicit expression for tsxd.]

(c)  Use the integration command on your calculator or computer to estimate ts0.2d, 
ts0.4d, ts0.6d, . . . , ts1.8d, ts2d. Then use these values to sketch a graph of t.

(d)  Use your graph of t from part (c) to sketch the graph of t9 using the interpretation of 
t9sxd as the slope of a tangent line. How does the graph of t9 compare with the graph 
of f ?

 4.  Suppose f  is a continuous function on the interval fa, bg and we define a new function t 
by the equation

tsxd − yx

a
 f std dt

Based on your results in Problems 1–3, conjecture an expression for t9sxd.
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To find ts2d we add to ts1d the area of a rectangle:

ts2d − y2

0
 f std dt − y1

0
 f std dt 1 y2

1
 f std dt − 1 1 s1 ? 2d − 3

We estimate that the area under f  from 2 to 3 is about 1.3, so

ts3d − ts2d 1 y3

2
 f std dt < 3 1 1.3 − 4.3

g(1)=1

t0

1

1

22
y

t0

1

1

22

2

y

g(2)=3

t0

1

1

22

2

y

3

g(3)Å4.3

t0

1

1

22

42

y

g(4)Å3

t0

1

1

22

42

y

g(5)Å1.7

For t . 3, f std is negative and so we start subtracting areas:

ts4d − ts3d 1 y4

3
 f std dt < 4.3 1 s21.3d − 3.0

ts5d − ts4d 1 y5

4
 f std dt < 3 1 s21.3d − 1.7

We use these values to sketch the graph of t in Figure 4. Notice that, because f std 
is positive for t , 3, we keep adding area for t , 3 and so t is increasing up to x − 3, 
where it attains a maximum value. For x . 3, t decreases because f std is negative. Q

If we take f std − t and a − 0, then, using Exercise 5.2.27, we have

tsxd − y x

0
 t dt −

x 2

2

Notice that t9sxd − x, that is, t9 − f . In other words, if t is defined as the integral of f  by 
Equation 1, then t turns out to be an antiderivative of f , at least in this case. And if we 
sketch the derivative of the function t shown in Figure 4 by estimating slopes of tangents, 
we get a graph like that of f  in Figure 2. So we suspect that t9− f  in Example 1 too.

To see why this might be generally true we consider any continuous function f  with 
f sxd > 0. Then tsxd − yx

a  f std dt can be interpreted as the area under the graph of f  from 
a to x, as in Figure 1.

In order to compute t9sxd from the definition of a derivative we first observe that, for 
h . 0, tsx 1 hd 2 tsxd is obtained by subtracting areas, so it is the area under the graph of 
f  from x to x 1 h (the blue area in Figure 5). For small h you can see from the figure that 
this area is approximately equal to the area of the rectangle with height f sxd and width h:

tsx 1 hd 2 tsxd < hf sxd

so 
tsx 1 hd 2 tsxd

h
< f sxd

FIGURE 3  

FIGURE 4 

tsxd − yx

0
 f std dt

x0

1

1

2

42

y

3

4

53

g

y

0 ta bx x+h

h

ƒ

FIGURE 5 
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394 CHAPTER 5  Integrals

Intuitively, we therefore expect that

t9sxd − lim
h l 0

 
tsx 1 hd 2 tsxd

h
− f sxd

The fact that this is true, even when f  is not necessarily positive, is the first part of the 
Fun damental Theorem of Calculus.

 The Fundamental Theorem of Calculus, Part 1 If f  is continuous on fa, bg, then 
the function t defined by

tsxd − y x

a
 f std dt    a < x < b

is continuous on fa, bg and differentiable on sa, bd, and t9sxd − f sxd.

PROOF If x and x 1 h are in sa, bd, then

  tsx 1 hd 2 tsxd − y x1h

a
 f std dt 2 y x

a
 f std dt

  − Sy x

a
 f std dt 1 y x1h

x
 f std dtD 2 y x

a
 f std dt    (by Property 5)

  − y x1h

x
 f std dt

and so, for h ± 0,

tsx 1 hd 2 tsxd
h

−
1
h

 y x1h

x
 f std dt

For now let’s assume that h . 0. Since f  is continuous on fx, x 1 hg, the Extreme 
Value Theorem says that there are numbers u and v in fx, x 1 hg such that f sud − m 
and f svd − M, where m and M are the absolute minimum and maximum values of f  on 
fx, x 1 hg. (See Figure 6.)

By Property 8 of integrals, we have

 mh < y x1h

x
 f std dt < Mh

that is,  f sudh < yx1h

x
 f std dt < f svdh

Since h . 0, we can divide this inequality by h:

f sud <
1
h

 y x1h

x
 f std dt < f svd

Now we use Equation 2 to replace the middle part of this inequality:

f sud <
tsx 1 hd 2 tsxd

h
< f svd

Inequality 3 can be proved in a similar manner for the case where h , 0. (See Exer-
cise 77.)

We abbreviate the name of this theorem 
as FTC1. In words, it says that the 
derivative of a definite integral with 
respect to its upper limit is the inte-
grand evaluated at the upper limit.

0

y

xx u √=x+h

y=ƒ

m
M

FIGURE 6 

2

3

TEC Module 5.3 provides visual  
evidence for FTC1.
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 SECTION 5.3  The Fundamental Theorem of Calculus 395

Now we let h l 0. Then u l x and v l x, since u and v lie between x and x 1 h.
Therefore

lim
h l 0

 f sud − lim
u l x

 f sud − f sxd    and    lim
h l 0

 f svd − lim
v l x

 f svd − f sxd

because f  is continuous at x. We conclude, from (3) and the Squeeze Theorem, that

t9sxd − lim
h l 0

 
tsx 1 hd 2 tsxd

h
− f sxd

If x − a or b, then Equation 4 can be interpreted as a one-sided limit. Then Theo-
rem 2.8.4 (modified for one-sided limits) shows that t is continuous on fa, bg. Q

Using Leibniz notation for derivatives, we can write FTC1 as

d
dx

 y x

a
 f std dt − f sxd

when f  is continuous. Roughly speaking, Equation 5 says that if we first integrate f  
and then differentiate the result, we get back to the original function f.

EXAMPLE 2 Find the derivative of the function tsxd − y x

0
 s1 1 t 2  dt.

SOLUTION Since f std − s1 1 t 2  is continuous, Part 1 of the Fundamental Theorem  
of Calculus gives

 t9sxd − s1 1 x 2  Q

EXAMPLE 3 Although a formula of the form tsxd − yx
a f std dt may seem like a strange 

way of defining a function, books on physics, chemistry, and statistics are full of such 
functions. For instance, the Fresnel function

Ssxd − y x

0
 sins! t 2y2d dt

is named after the French physicist Augustin Fresnel (1788 –1827), who is famous for 
his works in optics. This function first appeared in Fresnel’s theory of the diffraction of 
light waves, but more recently it has been applied to the design of highways.

Part 1 of the Fundamental Theorem tells us how to differentiate the Fresnel function:

S9sxd − sins!x 2y2d

This means that we can apply all the methods of differential calculus to analyze S (see 
Exercise 71).

Figure 7 shows the graphs of f sxd − sins!x 2y2d and the Fresnel function 
Ssxd − yx

0 f std dt. A computer was used to graph S by computing the value of this inte-
gral for many values of x. It does indeed look as if Ssxd is the area under the graph of f  
from 0 to x [until x < 1.4 when Ssxd becomes a difference of areas]. Figure 8 shows a 
larger part of the graph of S.

If we now start with the graph of S in Figure 7 and think about what its derivative 
should look like, it seems reasonable that S9sxd − f sxd. [For instance, S is increasing 
when f sxd . 0 and decreasing when f sxd , 0.] So this gives a visual confirmation of 
Part 1 of the Fundamental Theorem of Calculus. Q

4

5

10 x

1
y

f
S

FIGURE 7  
f sxd − sins!x 2y2d

Ssxd − y x

0
 sins!t 2y2d dt

y

1

0.5

x

FIGURE 8  
The Fresnel function

Ssxd − y x

0
 sins!t 2y2d dt
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396 CHAPTER 5  Integrals

EXAMPLE 4 Find 
d

dx
 y x4

1
 sec t dt.

SOLUTION Here we have to be careful to use the Chain Rule in conjunction with FTC1. 
Let u − x 4. Then

  
d

dx
 y x4

1
 sec t dt −

d
dx

 yu

1
 sec t dt

  −
d

du
 Fyu

1
 sec t dtG 

du
dx

 (by the Chain Rule)

  − sec u  
du
dx

 (by FTC1)

  − secsx 4 d ? 4x 3  Q

In Section 5.2 we computed integrals from the definition as a limit of Riemann sums 
and we saw that this procedure is sometimes long and difficult. The second part of 
the Fun damental Theorem of Calculus, which follows easily from the first part, provides 
us with a much simpler method for the evaluation of integrals.

 The Fundamental Theorem of Calculus, Part 2 If f  is continuous on fa, bg, then

yb

a
 f sxd dx − Fsbd 2 Fsad

where F is any antiderivative of f, that is, a function such that F9− f.

We abbreviate this theorem as FTC2.

PROOF Let tsxd − yx
a f std dt. We know from Part 1 that t9sxd − f sxd; that is, t is an 

antiderivative of f. If F is any other antiderivative of f  on fa, bg, then we know from 
Corollary 4.2.7 that F and t differ by a constant:

Fsxd − tsxd 1 C

for a , x , b. But both F and t are continuous on fa, bg and so, by taking limits of 
both sides of Equation 6 (as x l a1 and x l b2), we see that it also holds when x − a 
and x − b. So Fsxd − tsxd 1 C for all x in fa, bg.

If we put x − a in the formula for tsxd, we get

tsad − ya

a
 f std dt − 0

So, using Equation 6 with x − b and x − a, we have

 Fsbd 2 Fsad − ftsbd 1 Cg 2 ftsad 1 Cg

  − tsbd 2 tsad − tsbd − yb

a
 f std dt Q

Part 2 of the Fundamental Theorem states that if we know an antiderivative F of f, 
then we can evaluate yb

a  f sxd dx simply by subtracting the values of F at the endpoints 
of the interval fa, bg. It’s very surprising that yb

a  f sxd dx, which was defined by a com-
plicated pro cedure involving all of the values of f sxd for a < x < b, can be found by 
knowing the val ues of Fsxd at only two points, a and b.

6
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 SECTION 5.3  The Fundamental Theorem of Calculus 397

Although the theorem may be surprising at first glance, it becomes plausible if we 
interpret it in physical terms. If vstd is the velocity of an object and sstd is its position at 
time t, then vstd − s9std, so s is an antiderivative of v. In Section 5.1 we considered an 
object that always moves in the positive direction and made the guess that the area under 
the velocity curve is equal to the distance traveled. In symbols:

yb

a
 vstd dt − ssbd 2 ssad

That is exactly what FTC2 says in this context.

EXAMPLE 5  Evaluate the integral y3

1
 ex dx.

SOLUTION The function f sxd − ex is continuous everywhere and we know that an anti-
derivative is Fsxd − ex, so Part 2 of the Fundamental Theorem gives

y3

1
 ex dx − Fs3d 2 Fs1d − e 3 2 e

Notice that FTC2 says we can use any antiderivative F of f. So we may as well use 
the simplest one, namely Fsxd − ex, instead of ex 1 7 or ex 1 C. Q

We often use the notation

Fsxdg a

b
− Fsbd 2 Fsad

So the equation of FTC2 can be written as

yb

a
 f sxd dx − Fsxdg a

b
    where    F9− f  

Other common notations are Fsxd |a
b and fFsxdg a

b.

EXAMPLE 6  Find the area under the parabola y − x 2 from 0 to 1.

SOLUTION An antiderivative of f sxd − x 2 is Fsxd − 1
3 x 3. The required area A is found 

using Part 2 of the Fundamental Theorem:

 A − y1

0
 x 2 dx −

x 3

3 G0

1

−
13

3
2

03

3
−

1
3

 Q

If you compare the calculation in Example 6 with the one in Example 5.1.2, you will 
see that the Fundamental Theorem gives a much shorter method.

EXAMPLE 7  Evaluate y6

3
 
dx
x

.

SOLUTION The given integral is an abbreviation for

y6

3
 
1
x

 dx

An antiderivative of f sxd − 1yx is Fsxd − ln | x | and, because 3 < x < 6, we can write 
Fsxd − ln x. So

  y6

3
 
1
x

 dx − ln xg 6

3 − ln 6 2 ln 3 − ln 
6
3

− ln 2 Q

Compare the calculation in Example 5 
with the much harder one in Example 
5.2.3.

In applying the Fundamental Theorem 
we use a particular antiderivative F  
of f . It is not necessary to use the  
most general antiderivative.
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398 CHAPTER 5  Integrals

EXAMPLE 8  Find the area under the cosine curve from 0 to b, where 0 < b < !y2.

SOLUTION Since an antiderivative of f sxd − cos x is Fsxd − sin x, we have

A − yb

0
 cos x dx − sin xg b

0 − sin b 2 sin 0 − sin b

In particular, taking b − !y2, we have proved that the area under the cosine curve 
from 0 to !y2 is sins!y2d − 1. (See Figure 9.) Q

When the French mathematician Gilles de Roberval first found the area under the 
sine and cosine curves in 1635, this was a very challenging problem that required a great 
deal of ingenuity. If we didn’t have the benefit of the Fundamental Theorem, we would 
have  to compute a difficult limit of sums using obscure trigonometric identities (or a 
computer algebra system as in Exercise 5.1.31). It was even more difficult for Roberval 
because the apparatus of limits had not been invented in 1635. But in the 1660s and 
1670s, when the Fundamental Theorem was discovered by Barrow and exploited by 
Newton and Leibniz, such problems became very easy, as you can see from Example 8.

EXAMPLE 9  What is wrong with the following calculation?

 y3

21
 

1
x2  dx −

x21

21G
3

21

− 2
1
3

2 1 − 2
4
3

SOLUTION To start, we notice that this calculation must be wrong because the answer 
is negative but f sxd − 1yx 2 > 0 and Property 6 of integrals says that yb

a  f sxd dx > 0 
when f > 0. The Fundamental Theorem of Calculus applies to continuous functions. It 
can’t be applied here because f sxd − 1yx 2 is not continuous on f21, 3g. In fact, f  has 
an infinite discontinuity at x − 0, so

 y3

21
 

1
x 2  dx    does not exist. Q

Differentiation and Integration as Inverse Processes
We end this section by bringing together the two parts of the Fundamental Theorem.

 The Fundamental Theorem of Calculus Suppose f  is continuous on fa, bg.

1. If tsxd − yx
a f std dt, then t9sxd − f sxd.

2. yb
a  f sxd dx − Fsbd 2 Fsad, where F is any antiderivative of f , that is, F9− f.

We noted that Part 1 can be rewritten as

d
dx

 y x

a
 f std dt − f sxd

which says that if f  is integrated and then the result is differentiated, we arrive back at 
the original function f. Since F9sxd − f sxd, Part 2 can be rewritten as

yb

a
 F9sxd dx − Fsbd 2 Fsad

y

0

1

x

y=cos x

area=1
π
2

FIGURE 9 
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This version says that if we take a function F, first differentiate it, and then integrate the 
result, we arrive back at the original function F, but in the form Fsbd 2 Fsad. Taken 
together, the two parts of the Fundamental Theorem of Calculus say that differentiation 
and integration are inverse processes. Each undoes what the other does.

The Fundamental Theorem of Calculus is unquestionably the most important theo-
rem in calculus and, indeed, it ranks as one of the great accomplishments of the human 
mind. Before it was discovered, from the time of Eudoxus and Archimedes to the time of 
Galileo and Fermat, problems of finding areas, volumes, and lengths of curves were so 
difficult that only a genius could meet the challenge. But now, armed with the systematic 
method that Newton and Leibniz fashioned out of the Funda mental Theorem, we will 
see in the chap ters to come that these challenging problems are accessible to all of us.

 1.  Explain exactly what is meant by the statement that 
“differenti ation and integration are inverse processes.”

 2.  Let tsxd − yx

0 f std dt, where f  is the function whose graph is 
shown.

 (a)  Evaluate tsxd for x − 0, 1, 2, 3, 4, 5, and 6.
 (b)  Estimate ts7d.
 (c)  Where does t have a maximum value? Where does it 

have a minimum value?
 (d)  Sketch a rough graph of t.

t

y

0

1

1 4 6

f

 3.  Let tsxd − yx
0 f std dt, where f  is the function whose graph is 

shown.
 (a) Evaluate ts0d, ts1d, ts2d, ts3d, and ts6d.
 (b) On what interval is t increasing?
 (c) Where does t have a maximum value?
 (d) Sketch a rough graph of t.

1 5 t

y

1

0

f

 4.  Let tsxd − yx
0 f std dt, where f  is the function whose graph is 

shown.
 (a) Evaluate ts0d and ts6d.
 (b) Estimate tsxd for x − 1, 2, 3, 4, and 5.
 (c) On what interval is t increasing?

 (d) Where does t have a maximum value?
 (e) Sketch a rough graph of t.
 (f)  Use the graph in part (e) to sketch the graph of t9sxd. 

Compare with the graph of f.

y

0 t

2

52

f

5–6 Sketch the area represented by tsxd. Then find t9sxd in two 
ways: (a) by using Part 1 of the Fundamental Theorem and (b) by 
evaluating the integral using Part 2 and then differentiating.

 5. tsxd − yx

1
 t 2 dt   6. tsxd − y x

0
 s2 1 sin td dt

7–18 Use Part 1 of the Fundamental Theorem of Calculus to find 
the derivative of the function.

 7. tsxd − yx

0
 st 1 t 3  dt   8. tsxd − yx

1
 lns1 1 t 2d dt

 9. tssd − ys

5
 st 2 t 2d8 dt 10. hsud − yu

0
 

st 

t 1 1
 dt

 11. Fsxd − y0

x
 s1 1 sec t  dt

FHint: y0

x
s1 1 sec t  dt − 2yx

0
 s1 1 sec t  dtG

 12. Rsyd − y2

y
 t 3 sin t dt

 13. hsxd − y ex

1
 ln t dt 14. hsxd − ysx 

1
 

z 2

z 4 1 1
 dz
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 15. y − y 3x12

1
 

t
1 1 t 3  dt 16. y − yx4

0
  cos2! d !

 17. y − y"y4

sx 
! tan ! d ! 18. y − y1

sin x
 s1 1 t 2  dt

19–44 Evaluate the integral.

 19. y 3

1
 sx2 1 2x 2 4d dx 20. y1

21
 x 100 dx

 21. y2

0
 ( 4

5 t 3 2 3
4 t 2 1 2

5 t) dt 22. y1

0
 (1 2 8v3 1 16v7) dv

 23. y9

1
 sx  dx 24. y8

1
 x 22y3 dx

 25. y"

"y6
 sin ! d! 26. y5

25
 e dx

 27. y1

0
 su 1 2dsu 2 3d du 28. y4

0
 s4 2 tdst  dt

 29. y4

1
 
2 1 x 2

sx  
 dx 30. y2

21
 s3u 2 2dsu 1 1d du

 31. y"y2

"y6
 csc t cot t dt 32. y"y3

"y4
 csc2 ! d!

 33. y1

0
 s1 1 rd3 dr 34. y3

0
 s2 sin x 2 e xd dx

 35. y2

1
 
v3 1 3v6

v4  dv 36. y18

1
Î 3

z
  
dz

 37. y1

0
 sx e 1 e xd dx 38. y1

0
 cosh t dt

 39. ys3

1ys3 
8

1 1 x 2  
dx 40. y3

1
 
y 3 2 2y2 2 y

y 2  dy

 41. y4

0
 2s ds 42. y1ys2 

1y2
 

4

s1 2 x 2  dx

 43. y"

0
 f sxd dx  where f sxd − Hsin x

cos x
if 0 < x , "y2
if "y2 < x < "

 44. y2

22
 f sxd dx  where f sxd − H2

4 2 x 2

if 22 < x < 0
if 0 , x < 2

45–48 Sketch the region enclosed by the given curves and 
calculate its area.

 45. y − sx ,    y − 0,   x − 4

 46. y − x 3,    y − 0,   x − 1

 47. y − 4 2 x 2,    y − 0

;

 48. y − 2x 2 x 2,    y − 0

49–52 Use a graph to give a rough estimate of the area of  
the region that lies beneath the given curve. Then find the 
exact area.

 49. y − s3 x ,  0 < x < 27

 50. y − x 24,  1 < x < 6

 51. y − sin x, 0 < x < "

 52. y − sec2x, 0 < x < "y3

53–54 Evaluate the integral and interpret it as a difference of 
areas. Illustrate with a sketch.

 53. y2

21
 x 3 dx 54. y2"

"y6
 cos x dx

55–58 What is wrong with the equation?

 55. y1

22
 x24 dx −

x23

23G
1

22

− 2
3
8

 56. y2

21
 

4
x 3  dx − 2

2
x 2G2

21

−
3
2

 57. y"

"y3
 sec ! tan ! d! − sec !g"

"y3 − 23

 58. y"

0
 sec2x dx − tan xg 0

"

− 0

59–63 Find the derivative of the function.

 59. tsxd − y3x

2x
 
u 2 2 1
u 2 1 1

 du

F Hint: y3x

2x
 f sud du − y0

2x
 f sud du 1 y3x

0
 f sud duG

 60. tsxd − y112x

122x
 t sin t dt

 61. Fsxd − yx2

x
 et 2

 dt 62. Fsxd − y2x

sx 
  arctan t dt

 63. y − ysin x

cos x
 lns1 1 2vd dv

 64.  If f sxd − yx

0 s1 2 t 2de t 2 dt, on what interval is f  
increasing?

 65.  On what interval is the curve

y − yx

0
 

t 2

t 2 1 t 1 2
 dt

concave downward?

;

;
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 66.  Let Fsxd − yx
1 f std dt, where f  is the function whose graph 

is shown. Where is F concave downward?

y

0 t1_1

 67.  Let Fsxd − yx
2 e

t2
 dt. Find an equation of the tangent line to 

the curve y − Fsxd at the point with x-coordinate 2.

 68.  If f sxd − ysin x
0  s1 1 t 2  dt and tsyd − yy

3 f sxd dx, find 
t 0s!y6d.

 69.  If f s1d − 12, f 9 is continuous, and y4
1  f 9sxd dx − 17, what 

is the value of f s4d?

 70.  The error function

erfsxd −
2

s!  
 y x

0
 e2t 2

 dt

is used in probability, statistics, and engineering.
 (a)  Show that yb

a e
2t 2

 dt − 1
2 s!  

 

ferfsbd 2 erfsadg.
 (b)  Show that the function y − e x 2

erfsxd satisfies the dif-
ferential equation y9 − 2xy 1 2ys!  

 

.

 71.  The Fresnel function S was defined in Example 3 and 
graphed in Figures 7 and 8.

 (a)  At what values of x does this function have local 
maxi mum values?

 (b) On what intervals is the function concave upward?
 (c)  Use a graph to solve the following equation correct to 

two decimal places:

y x

0
 sins! t 2y2d dt − 0.2

 72. The sine integral function

Sisxd − y x

0
 
sin t

t
 dt

is important in electrical engineering. [The integrand 
f std − ssin tdyt is not defined when t − 0, but we know 
that its limit is 1 when t l 0. So we define f s0d − 1 and 
this makes f  a continuous function everywhere.]

 (a) Draw the graph of Si.
 (b)  At what values of x does this function have local 

maxi mum values?
 (c)  Find the coordinates of the first inflection point to the 

right of the origin.
 (d) Does this function have horizontal asymptotes?
 (e)  Solve the following equation correct to one decimal 

place:

yx

0
 
sin t

t
 dt − 1

CAS

CAS

73–74  Let tsxd − yx

0 f std dt, where f  is the function whose 
graph is shown.
(a)  At what values of x do the local maximum and minimum 

values of t occur?
(b) Where does t attain its absolute maximum value?
(c) On what intervals is t concave downward?
(d) Sketch the graph of t.
 73. y

2 t0
_1
_2

1
2

4 6 8

3

f

 74. y

1 t0 73 5 9

f

_0.2

0.2

0.4

75–76 Evaluate the limit by first recognizing the sum as a 
Riemann sum for a function defined on f0, 1g.

 75. lim
n l `

 o
n

i−1
 S i 4

n5 1
i

n2D
 76. lim

n l `
 
1
n

 SÎ 1
n

 1Î 2
n

 1Î 3
n

 1 ∙ ∙ ∙ 1Î n
n

 D
 77. Justify (3) for the case h , 0.

 78.  If f  is continuous and t and h are differentiable functions, 
find a formula for

d
dx

 yhsxd

tsxd
 f std dt

 79. (a) Show that 1 < s1 1 x 3 < 1 1 x 3 for x > 0.
 (b) Show that 1 < y1

0 s1 1 x 3 dx < 1.25.

 80. (a) Show that cossx 2d > cos x for 0 < x < 1.

 (b) Deduce that y!y6
0  cossx 2d dx > 1

2.

 81. Show that

0 < y10

5
 

x 2

x 4 1 x 2 1 1
 dx < 0.1

by comparing the integrand to a simpler function.
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402 CHAPTER 5  Integrals

 82. Let

f sxd −

0
x
2 2 x
0

if x , 0
if 0 < x < 1
if 1 , x < 2
if x . 2

   and  tsxd − y x

0
 f std dt

 (a) Find an expression for tsxd similar to the one for f sxd.
 (b) Sketch the graphs of f  and t.
 (c) Where is f  differentiable? Where is t differentiable?

 83. Find a function f  and a number a such that

6 1 y x

a
 
 f std
t 2  dt − 2sx     for all x . 0

 84.  The area labeled B is three times the area labeled A. Express b 
in terms of a.

0

y

xa
A

y=´

0

y

xb

B

y=´

 85.  A manufacturing company owns a major piece of equip ment 
that depreciates at the (continuous) rate f − f std, where t is 
the time measured in months since its last overhaul. Because a 
fixed cost A is incurred each time the machine is overhauled, 
the company wants to determine the optimal time T (in 
months) between overhauls.

 (a)  Explain why y t

0 f ssd ds represents the loss in value of the 
machine over the period of time t since the last overhaul.

 (b) Let C − Cstd be given by

Cstd −
1
t

 FA 1 y t

0
 f ssd dsG

   What does C represent and why would the company want 
to minimize C?

 (c)  Show that C has a minimum value at the numbers t − T 
where CsT d − f sT d.

 86.  A high-tech company purchases a new computing system 
whose initial value is V. The system will depreciate at the 
rate f − f std and will accumulate maintenance costs at the 
rate t − tstd, where t is the time measured in months. The 
com pany wants to determine the optimal time to replace the 
system.

 (a) Let

Cstd −
1
t

 y t

0
 f f ssd 1 tssdg ds

   Show that the critical numbers of C occur at the num bers 
t where Cstd − f std 1 tstd.

 (b) Suppose that

f std − H V
15

2
V

450
 t

0

  if 0 , t < 30

  if t . 30

 and tstd −
Vt 2

12,900
    t . 0

   Determine the length of time T for the total deprecia   tion 
Dstd − y t

0 f ssd ds to equal the initial value V.
 (c) Determine the absolute minimum of C on s0, T g.
 (d)  Sketch the graphs of C and f 1 t in the same coordinate 

system, and verify the result in part (a) in this case.

We saw in Section 5.3 that the second part of the Fundamental Theorem of Calculus pro-
vides a very powerful method for evaluating the definite integral of a function, assuming 
that we can find an antiderivative of the function. In this section we introduce a notation 
for antiderivatives, review the formulas for antiderivatives, and use them to evaluate defi-
nite integrals. We also reformulate FTC2 in a way that makes it easier to apply to science 
and engineering problems.

Indefinite Integrals
Both parts of the Fundamental Theorem establish connections between antiderivatives 
and definite integrals. Part 1 says that if f  is continuous, then yx

a f std dt is an antiderivative 
of f. Part 2 says that yb

a  f sxd dx can be found by evaluating Fsbd 2 Fsad, where F is an 
antiderivative of f.

We need a convenient notation for antiderivatives that makes them easy to work with. 
Because of the relation between antiderivatives and integrals given by the Fundamental 
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 SECTION 5.4  Indefinite Integrals and the Net Change Theorem 403

Theorem, the notation y f sxd dx is traditionally used for an antiderivative of f  and is 
called an indefinite integral. Thus

y f sxd dx − Fsxd    means    F9sxd − f sxd

For example, we can write

y x 2 dx −
x 3

3
1 C because  

d
dx

 S x 3

3
1 CD − x 2

So we can regard an indefinite integral as representing an entire family of functions (one 
antiderivative for each value of the constant C ).

You should distinguish carefully between definite and indefinite integrals. A defi nite 
integral yb

a  f sxd dx is a number, whereas an indefinite integral y f sxd dx is a func tion (or 
family of functions). The connection between them is given by Part 2 of the Fundamental 
Theorem: If f  is continuous on fa, bg, then

yb

a
 f sxd dx − y f sxd dxg a

b

The effectiveness of the Fundamental Theorem depends on having a supply of anti-
derivatives of functions. We therefore restate the Table of Antidifferentiation Formulas 
from Section 4.9, together with a few others, in the notation of indefinite integrals. Any 
formula can be verified by differentiating the function on the right side and ob tain ing the 
integrand. For instance,

y sec2x dx − tan x 1 C    because    
d
dx

 stan x 1 Cd − sec2x 

y cf sxd dx − c y f sxd dx y f f sxd 1 tsxdg dx − y f sxd dx 1 y tsxd dx

y k dx − kx 1 C

y xn dx −
xn11

n 1 1
1 C  sn ± 21d y 

1
x

 dx − ln | x | 1 C

y ex dx − ex 1 C y bx dx −
bx

ln b
1 C

y sin x dx − 2cos x 1 C y cos x dx − sin x 1 C

y sec2x dx − tan x 1 C y csc2x dx − 2cot x 1 C

y sec x tan x dx − sec x 1 C y csc x cot x dx − 2csc x 1 C

y 
1

x 2 1 1
 dx − tan21x 1 C y 

1

s1 2 x 2 
 dx − sin21x 1 C

y sinh x dx − cosh x 1 C y cosh x dx − sinh x 1 C

1   Table of  
Indefinite Integrals

Recall from Theorem 4.9.1 that the most general antiderivative on a given interval is 
obtained by adding a constant to a particular antiderivative. We adopt the convention 
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404 CHAPTER 5  Integrals

that when a formula for a general indefinite integral is given, it is valid only on an 
interval. Thus we write

y 
1
x 2  dx − 2

1
x

1 C

with the understanding that it is valid on the interval s0, `d or on the interval s2`, 0d. 
This is true despite the fact that the general antiderivative of the function f sxd − 1yx 2, 
x ± 0, is

Fsxd −
2

1
x

1 C1 if x , 0

 
2

1
x

1 C2 if x . 0

EXAMPLE 1  Find the general indefinite integral

y s10x 4 2 2 sec2xd dx

SOLUTION Using our convention and Table 1, we have

 y s10x 4 2 2 sec2xd dx − 10 y x 4 dx 2 2 y sec2x dx

 − 10 
x 5

5
2 2 tan x 1 C

 − 2x 5 2 2 tan x 1 C

You should check this answer by differentiating it. Q

EXAMPLE 2 Evaluate y 
cos "
sin2"

 d".

SOLUTION This indefinite integral isn’t immediately apparent in Table 1, so we use 
trigonometric identities to rewrite the function before integrating:

 y 
cos "
sin2"

 d" − y S 1
sin "DS cos "

sin " D d"

  − y csc " cot " d" − 2csc " 1 C Q

EXAMPLE 3  Evaluate y3

0
 sx 3 2 6xd dx.

SOLUTION Using FTC2 and Table 1, we have 

 y3

0
 sx 3 2 6xd dx −

x 4

4
2 6 

x 2

2 G0

3

 − (1
4 ? 34 2 3 ? 32 ) 2 (1

4 ? 04 2 3 ? 02 )

 − 81
4 2 27 2 0 1 0 − 26.75

Compare this calculation with Example 5.2.2(b).  Q

4

_4

_1.5 1.5

FIGURE 1 

The indefinite integral in Example 1  
is graphed in Figure 1 for several 
values of C. Here the value of C is  
the y-intercept.
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EXAMPLE 4 Find y2

0
 S2x 3 2 6x 1

3
x 2 1 1D dx and interpret the result in terms of 

areas.

SOLUTION The Fundamental Theorem gives

 y2

0
 S2x 3 2 6x 1

3
x 2 1 1D dx − 2 

x 4

4
2 6 

x 2

2
1 3 tan21xG

0

2

 − 1
2 x 4 2 3x 2 1 3 tan21xg 2

0

 − 1
2 s24 d 2 3s22 d 1 3 tan21 2 2 0

 − 24 1 3 tan21 2

This is the exact value of the integral. If a decimal approximation is desired, we can use 
a calculator to approximate tan21 2. Doing so, we get

 y2

0
 S2x 3 2 6x 1

3
x 2 1 1D dx < 20.67855 Q

EXAMPLE 5  Evaluate y9

1
 
2t 2 1 t 2 st  

2 1
t 2  dt.

SOLUTION First we need to write the integrand in a simpler form by carrying out the 
division:

 y9

1
 
2t 2 1 t 2 st  2 1

t 2  dt − y9

1
 s2 1 t 1y2 2 t22 d dt

 − 2t 1
t 3y2

3
2

2
t21

21G1

9

− 2t 1 2
3 t 3y2 1

1
t G1

9

 − (2 ? 9 1 2
3 ? 93y2 1 1

9) 2 (2 ? 1 1 2
3 ? 13y2 1 1

1)

 − 18 1 18 1 1
9 2 2 2 2

3 2 1 − 324
9 Q

Applications
Part 2 of the Fundamental Theorem says that if f  is continuous on fa, bg, then

yb

a
 f sxd dx − Fsbd 2 Fsad

where F is any antiderivative of f. This means that F9 − f , so the equation can be rewrit-
ten as

yb

a
 F9sxd dx − Fsbd 2 Fsad

We know that F9sxd represents the rate of change of y − Fsxd with respect to x and 
Fsbd 2 Fsad is the change in y when x changes from a to b. [Note that y could, for 
instance, increase, then decrease, then increase again. Although y might change in both 

Figure 2 shows the graph of the inte-
grand in Example 4. We know from 
Section 5.2 that the value of the integral 
can be interpreted as a net area: the sum 
of the areas labeled with a plus sign 
minus the area labeled with a minus 
sign.

0

y

2 x

3

FIGURE 2
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406 CHAPTER 5  Integrals

directions, Fsbd 2 Fsad represents the net change in y.] So we can reformulate FTC2 in 
words as follows.

Net Change Theorem  The integral of a rate of change is the net change: 

yb

a
 F9sxd dx − Fsbd 2 Fsad

This principle can be applied to all of the rates of change in the natural and social sci-
ences that we discussed in Section 3.7. Here are a few instances of this idea:

●  If Vstd is the volume of water in a reservoir at time t, then its derivative V9std is the 
rate at which water flows into the reservoir at time t. So

y t2

t1
  V9std dt − Vst2 d 2 Vst1d

is the change in the amount of water in the reservoir between time t1 and time t2.

●  If fCgstd is the concentration of the product of a chemical reaction at time t, then 
the rate of reaction is the derivative dfCgydt. So

y t2

t1
  
dfCg

dt
 dt − fCgst2 d 2 fCgst1d

is the change in the concentration of C from time t1 to time t2.

●  If the mass of a rod measured from the left end to a point x is msxd, then the linear 
density is #sxd − m9sxd. So

yb

a
 #sxd dx − msbd 2 msad

is the mass of the segment of the rod that lies between x − a and x − b.

●  If the rate of growth of a population is dnydt, then

y t2

t1
  
dn
dt

 dt − nst2 d 2 nst1d

is the net change in population during the time period from t1 to t2. (The popu-
lation increases when births happen and decreases when deaths occur. The net 
change takes into account both births and deaths.)

●  If Csxd is the cost of producing x units of a commodity, then the marginal cost is 
the derivative C9sxd. So

 yx2

x1
 C9sxd dx − Csx2 d 2 Csx1d

is the increase in cost when production is increased from x1 units to x2 units.

●  If an object moves along a straight line with position function sstd, then its veloc-
ity is vstd − s9std, so

y t2

t1
 vstd dt − sst2 d 2 sst1d

is the net change of position, or displacement, of the particle during the time 
period from t1 to t2. In Section 5.1 we guessed that this was true for the case 

2
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 SECTION 5.4  Indefinite Integrals and the Net Change Theorem 407

where the object moves in the positive direction, but now we have proved that it is 
always true.

●  If we want to calculate the distance the object travels during the time interval,  
we have to consider the intervals when vstd > 0 (the particle moves to the right) 
and also the intervals when vstd < 0 (the particle moves to the left). In both cases 
the distance is computed by integrating | vstd |, the speed. Therefore

y t2

t1
| vstd | dt − total distance traveled

Figure 3 shows how both displacement and distance traveled can be interpreted  
in terms of areas under a velocity curve.

displacement − y t2

t1
  vstddt − A1 2 A2 1 A3

distance − y t2

t1
  |vstd|dt − A1 1 A2 1 A3

● The acceleration of the object is astd − v9std, so

y t2

t1
 astd dt − vst2 d 2 vst1d

is the change in velocity from time t1 to time t2.

EXAMPLE 6  A particle moves along a line so that its velocity at time t is 
vstd − t 2 2 t 2 6 (measured in meters per second).
(a) Find the displacement of the particle during the time period 1 < t < 4.
(b) Find the distance traveled during this time period.

SOLUTION
(a) By Equation 2, the displacement is

 ss4d 2 ss1d − y4

1
 vstd dt − y4

1
 st 2 2 t 2 6d dt

 − F t 3

3
2

t 2

2
2 6tG

1

4

− 2
9
2

This means that the particle moved 4.5 m toward the left.

(b) Note that vstd − t 2 2 t 2 6 − st 2 3dst 1 2d and so vstd < 0 on the interval f1, 3g 
and vstd > 0 on f3, 4g. Thus, from Equation 3, the distance traveled is

 y4

1
 | vstd | dt − y3

1
 f2vstdg dt 1 y4

3
 vstd dt

 − y3

1
 s2t 2 1 t 1 6d dt 1 y4

3
 st 2 2 t 2 6d dt

 − F2
t 3

3
1

t 2

2
1 6tG3

1

1 F t 3

3
2

t 2

2
2 6tG

3

4

  −
61
6

< 10.17 m  Q

3

√

0 t

A¡

A™
A£

t¡ t™

√(t)

FIGURE 3  

To integrate the absolute value of vstd, 
we use Property 5 of integrals from 
Section 5.2 to split the integral into 
two parts, one where vstd < 0 and one 
where vstd > 0.
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408 CHAPTER 5  Integrals

EXAMPLE 7  Figure 4 shows the power consumption in the city of San Francisco for 
a day in September (P is measured in megawatts; t is measured in hours starting at 
midnight). Estimate the energy used on that day.

P

0 181512963 t21

400

600

800

200

Pacific Gas & Electric

SOLUTION Power is the rate of change of energy: Pstd − E9std. So, by the Net Change 
Theorem,

y24

0
 Pstd dt − y24

0
 E9std dt − Es24d 2 Es0d

is the total amount of energy used on that day. We approximate the value of the integral 
using the Midpoint Rule with 12 subintervals and Dt − 2:

 y24

0
 Pstd dt < fPs1d 1 Ps3d 1 Ps5d 1 ∙ ∙ ∙ 1 Ps21d 1 Ps23dg Dt

 < s440 1 400 1 420 1 620 1 790 1 840 1 850

1 840 1 810 1 690 1 670 1 550ds2d

− 15,840

The energy used was approximately 15,840 megawatt-hours. Q

How did we know what units to use for energy in Example 7? The integral y24
0  Pstd dt 

is defined as the limit of sums of terms of the form Psti*d Dt. Now Psti*d is measured in 
megawatts and Dt is measured in hours, so their product is measured in megawatt-hours. 
The same is true of the limit. In general, the unit of measurement for yb

a f sxd dx is the 
product of the unit for f sxd and the unit for x.

FIGURE 4

A note on units

1–4 Verify by differentiation that the formula is correct.

 1. y 
1

x 2s1 1 x 2 
 dx − 2

s1 1 x 2 

x
1 C

 2. y cos2 x dx − 1
2 x 1 1

4 sin 2x 1 C

 3. y tan2 x dx − tan x 2 x 1 C

 4. y xsa 1 bx  dx −
2

15b2 s3bx 2 2adsa 1 bxd3y2 1 C

5–18 Find the general indefinite integral.

 5. y sx1.3 1 7x 2.5d dx

 6. y s4 x5  dx
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 7. y (5 1 2
3 x2 1 3

4 x3) dx

 8. y (u6 2 2u5 2 u3 1 2
7) du

 9. y su 1 4ds2u 1 1d du 10. y st st 2 1 3t 1 2d dt

 11. y 
 1 1 sx 1 x

x
 dx

 12. y Sx 2 1 1 1
1

x 2 1 1D dx

 13. y ssin x 1 sinh xd dx 14. y S 1 1 r
r D2

 dr

 15. y s2 1 tan2 !d d! 16. y sec t ssec t 1 tan td dt

 17. y 2ts1 1 5t d dt 18. y 
sin 2x
sin x

 dx

 19–20 Find the general indefinite integral. Illustrate by graph-
ing several members of the family on the same screen.

 19. y (cos x 1 1
2 x) dx 20. y se x 2 2x 2d dx

21–46 Evaluate the integral.

 21. y3

22
 sx 2 2 3d dx 22. y2

1
 s4x 3 2 3x 2 1 2xd dx

 23. y0

22
 (1

2 t 4 1 1
4 t 3 2 t) dt

 24. y3

0
 s1 1 6w 2 2 10w4d dw

 25. y2

0
 s2x 2 3ds4x 2 1 1d dx 26. y1

21
 ts1 2 td2 dt

 27. y"

0
 s5e x 1 3 sin xd dx 28. y2

1
 S 1

x 2 2
4
x 3D dx

 29. y4

1
 S 4 1 6u

su D du 30. y1

0
 

4
1 1 p2  dp

 31. y1

0
 x(s3 x 1 s4 x ) dx 32. y4

1
 
sy 2 y

y 2  dy

 33. y2

1
 S x

2
2

2
xD dx 34. y1

0
 s5x 2 5 xd dx

 35. y1

0
 sx 10 1 10 xd dx 36. y"y4

0
 sec! tan ! d!

 37. y"y4

0
 
1 1 cos2!

cos2!
 d!

;

 38. y"y3

0
 
sin ! 1 sin ! tan2!

sec2!
 d!

 39. y8

1
 
2 1 t

s3 t 2 
 dt 40. y10

210
 

2e x

sinh x 1 cosh x
 dx

 41. ys3y2

0
 

dr

s1 2 r 2 
 42. y2

1
 
sx 2 1d3

x 2  dx

 43. y1ys3

0
 
t 2 2 1
t 4 2 1

 dt 44. y2

0
 | 2x 2 1 | dx

 45. y2

21
 (x 2 2 | x |) dx 46. y3"y2

0
 | sin x | dx

 47.  Use a graph to estimate the x-intercepts of the curve 
y − 1 2 2x 2 5x 4. Then use this information to estimate 
the area of the region that lies under the curve and above 
the x-axis.

 48. Repeat Exercise 47 for the curve y − sx 2 1 1d21 2 x 4.

 49.  The area of the region that lies to the right of the y-axis and 
to the left of the parabola x − 2y 2 y 2 (the shaded region 
in the figure) is given by the integral y2

0 s2y 2 y 2 d dy. (Turn 
your head clockwise and think of the region as lying below 
the curve x − 2y 2 y 2 from y − 0 to y − 2.) Find the area 
of the region.

0

y

x1

x=2y-¥
2

 50.  The boundaries of the shaded region are the y-axis, the line 
y − 1, and the curve y − s4 x  . Find the area of this region 
by writing x as a function of y and integrating with respect 
to y (as in Exercise 49).

y=$œ„x

y=1

0

y

x1

1

 51.  If w9std is the rate of growth of a child in pounds per year, 
what does y10

5  w9std dt represent?

 52.  The current in a wire is defined as the derivative of the 
charge: Istd − Q9std. (See Example 3.7.3.) What does 
yb

a  Istd dt represent?

;

;
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410 CHAPTER 5  Integrals

 53.  If oil leaks from a tank at a rate of rstd gallons per minute at 
time t, what does y120

0  rstd dt represent?

 54.  A honeybee population starts with 100 bees and increases 
at a rate of n9std bees per week. What does 100 1 y15

0  n9std dt 
represent?

 55.  In Section 4.7 we defined the marginal revenue function R9sxd 
as the derivative of the revenue function Rsxd, where x is the 
number of units sold. What does y5000

1000 R9sxd dx represent?

 56.  If f sxd is the slope of a trail at a distance of x miles from the 
start of the trail, what does y5

3 f sxd dx represent?

 57.  If x is measured in meters and f sxd is measured in newtons, 
what are the units for y100

0  f sxd dx?

 58.  If the units for x are feet and the units for asxd are pounds per 
foot, what are the units for daydx? What units does y8

2 asxd dx 
have?

59–60 The velocity function (in meters per second) is given for a 
particle moving along a line. Find (a) the displacement and (b) the 
distance traveled by the particle during the given time interval.

 59. vstd − 3t 2 5,  0 < t < 3

 60. vstd − t 2 2 2t 2 3,  2 < t < 4

61–62 The acceleration function (in mys2) and the initial velocity 
are given for a particle moving along a line. Find (a) the velocity 
at time t and (b) the distance traveled during the given time 
interval.

 61. astd − t 1 4,  vs0d − 5,  0 < t < 10

 62. astd − 2t 1 3,  vs0d − 24,  0 < t < 3

 63.  The linear density of a rod of length 4 m is given by 
    #sxd − 9 1 2sx   measured in kilograms per meter, where x 

is measured in meters from one end of the rod. Find the total 
mass of the rod.

 64.  Water flows from the bottom of a storage tank at a rate of 
rstd − 200 2 4t liters per minute, where 0 < t < 50. Find 
the amount of water that flows from the tank during the first 
10 minutes.

 65.  The velocity of a car was read from its speedometer at 
10-second intervals and recorded in the table. Use the Mid-
point Rule to estimate the distance traveled by the car.

t (s) v smiyhd t (s) v smiyhd

0 0 60 56
10 38 70 53
20 52 80 50
30 58 90 47
40 55 100 45
50 51

 66.  Suppose that a volcano is erupting and readings of the rate 
rstd at which solid materials are spewed into the atmosphere 
are given in the table. The time t is measured in seconds and 
the units for rstd are tonnes (metric tons) per second.

t 0 1 2 3 4 5 6

rstd 2 10 24 36 46 54 60

 (a)  Give upper and lower estimates for the total quantity 
Qs6d of erupted materials after six seconds.

 (b)  Use the Midpoint Rule to estimate Qs6d.

 67.  The marginal cost of manufacturing x yards of a certain fabric 
is 

C9sxd − 3 2 0.01x 1 0.000006x 2 

(in dollars per yard). Find the increase in cost if the produc-
tion level is raised from 2000 yards to 4000 yards.

 68.  Water flows into and out of a storage tank. A graph of the rate 
of change rstd of the volume of water in the tank, in liters per 
day, is shown. If the amount of water in the tank at time t − 0 
is 25,000 L, use the Midpoint Rule to estimate the amount of 
water in the tank four days later.

3

2000

_1000

r

t0 1 2 4

1000

 69.  The graph of the acceleration astd of a car measured in ftys2 is 
shown. Use the Midpoint Rule to estimate the increase in the 
velocity of the car during the six-second time interval.

0

4

42 6

8

12
a

t (seconds) 

 70.  Lake Lanier in Georgia, USA, is a reservoir created by 
Buford Dam on the Chattahoochee River. The table shows 
the rate of inflow of water, in cubic feet per second, as 
measured every morning at 7:30 am by the US Army Corps 
of Engineers. Use the Midpoint Rule to estimate the amount 
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of water that flowed into Lake Lanier from July 18th, 2013, at 
7:30 am to July 26th at 7:30 am.

Day
Inflow rate

sft3ysd

July 18 5275
July 19 6401
July 20 2554
July 21 4249
July 22 3016
July 23 3821
July 24 2462
July 25 2628
July 26 3003

 71.  A bacteria population is 4000 at time t − 0 and its rate of 
growth is 1000 ? 2 t bacteria per hour after t hours. What is the 
population after one hour?

 72.  Shown is the graph of traffic on an Internet service provider’s 
T1 data line from midnight to 8:00 am. D is the data through-
put, measured in megabits per second. Use the Midpoint Rule 
to estimate the total amount of data transmitted during that 
time period.

0

0.4

4 6

0.8

2 8

D

t (hours)

 73.  Shown is the power consumption in the province of 
Ontario, Canada, for December 9, 2004 (P is measured in 
megawatts; t is measured in hours starting at midnight). 
Using the fact that power is the rate of change of energy, 
estimate the energy used on that day.

P

0 181512963 t21

18,000

16,000

20,000

22,000

Independent Electricity Market Operator

 74.  On May 7, 1992, the space shuttle Endeavour was launched 
on mission STS-49, the purpose of which was to install a 
new perigee kick motor in an Intelsat communications satel-
lite. The table gives the velocity data for the shuttle between 
liftoff and the jettisoning of the solid rocket boosters.

 (a)  Use a graphing calculator or computer to model these 
data by a third-degree polynomial.

 (b)  Use the model in part (a) to estimate the height reached 
by the Endeavour, 125 seconds after liftoff.

Event Time (s) Velocity sftysd
Launch 0 0
Begin roll maneuver 10 185
End roll maneuver 15 319
Throttle to 89% 20 447
Throttle to 67% 32 742
Throttle to 104% 59 1325
Maximum dynamic pressure 62 1445
Solid rocket booster separation 125 4151

;

WRITING PROJECT  NEWTON, LEIBNIZ, AND THE INVENTION OF CALCULUS

We sometimes read that the inventors of calculus were Sir Isaac Newton (1642–1727) and Gott-
fried Wilhelm Leibniz (1646 –1716). But we know that the basic ideas behind integration were 
investigated 2500 years ago by ancient Greeks such as Eudoxus and Archimedes, and methods 
for finding tangents were pioneered by Pierre Fermat (1601–1665), Isaac Barrow (1630 –1677), 
and others. Barrow––who taught at Cambridge and was a major influence on Newton––was the 
first to understand the inverse relationship between differentiation and integration. What Newton 
and Leibniz did was to use this relationship, in the form of the Fundamental Theorem of Calcu-
lus, in order to develop calculus into a systematic mathematical discipline. It is in this sense that 
Newton and Leibniz are credited with the invention of calculus.

Read about the contributions of these men in one or more of the given references and write 
a report on one of the following three topics. You can include biographical details, but the main 
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412 CHAPTER 5  Integrals

thrust of your report should be a description, in some detail, of their methods and notations. In 
particular, you should consult one of the sourcebooks, which give excerpts from the original 
publications of Newton and Leibniz, translated from Latin to English.

● The Role of Newton in the Development of Calculus

● The Role of Leibniz in the Development of Calculus

●  The Controversy between the Followers of Newton and Leibniz over  
Priority in the Invention of Calculus

References

1.  Carl Boyer and Uta Merzbach, A History of Mathematics (New York: Wiley, 1987),  
Chapter 19.

2.  Carl Boyer, The History of the Calculus and Its Conceptual Development (New York: Dover, 
1959), Chapter V.

3.  C. H. Edwards, The Historical Development of the Calculus (New York: Springer-Verlag, 
1979), Chapters 8 and 9.

4.  Howard Eves, An Introduction to the History of Mathematics, 6th ed. (New York: Saunders, 
1990), Chapter 11.

5.  C. C. Gillispie, ed., Dictionary of Scientific Biography (New York: Scribner’s, 1974).  
See the article on Leibniz by Joseph Hofmann in Volume VIII and the article on Newton by  
I. B. Cohen in Volume X.

6.  Victor Katz, A History of Mathematics: An Introduction (New York: HarperCollins, 1993), 
Chapter 12.

7.  Morris Kline, Mathematical Thought from Ancient to Modern Times (New York: Oxford 
University Press, 1972), Chapter 17.

Sourcebooks

1.  John Fauvel and Jeremy Gray, eds., The History of Mathematics: A Reader (London:  
MacMillan Press, 1987), Chapters 12 and 13.

2. D. E. Smith, ed., A Sourcebook in Mathematics (New York: Dover, 1959), Chapter V.

3.  D. J. Struik, ed., A Sourcebook in Mathematics, 1200 –1800 (Princeton, NJ: Princeton  
University Press, 1969), Chapter V.

Because of the Fundamental Theorem, it’s important to be able to find antiderivatives. 
But our antidifferentiation formulas don’t tell us how to evaluate integrals such as

y 2xs1 1 x 2 dx

To find this integral we use the problem-solving strategy of introducing something extra. 
Here the “something extra” is a new variable; we change from the variable x to a new 
variable u. Suppose that we let u be the quantity under the root sign in (1), u − 1 1 x 2. 
Then the differential of u is du − 2x dx. Notice that if the dx in the notation for an inte-

1

PS
Differentials were defined in  
Sec tion 3.10. If u − f sxd, then

du − f 9sxd dx
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gral were to be interpreted as a differential, then the differential 2x dx would occur in (1) 
and so, formally, without justifying our calculation, we could write

 y 2xs1 1 x 2  dx − y s1 1 x 2  2x dx − y su
  du

 − 2
3 u3y2 1 C − 2

3 s1 1 x 2d3y2 1 C

But now we can check that we have the correct answer by using the Chain Rule to dif-
ferentiate the final function of Equation 2: 

d
dx

 f2
3s1 1 x 2d3y2 1 Cg − 2

3 ? 3
2s1 1 x 2d1y2 ? 2x − 2xs1 1 x 2 

In general, this method works whenever we have an integral that we can write in the 
form y f stsxdd t9sxd dx. Observe that if F9− f , then

y F9stsxdd t9sxd dx − Fstsxdd 1 C

because, by the Chain Rule, 

d
dx

 fFstsxddg − F9stsxdd t9sxd

If we make the “change of variable” or “substitution” u − tsxd, then from Equation 3 
we have 

y F9stsxdd t9sxd dx − Fstsxdd 1 C − Fsud 1 C − y F9sud du

or, writing F9 − f , we get 

y f stsxdd t9sxd dx − y f sud du

Thus we have proved the following rule.

4   The Substitution Rule If u − tsxd is a differentiable function whose range is 
an interval I and f  is continuous on I, then

y f stsxdd t9sxd dx − y f sud du 

Notice that the Substitution Rule for integration was proved using the Chain Rule for 
differentiation. Notice also that if u − tsxd, then du − t9sxd dx, so a way to remember 
the Sub stitution Rule is to think of dx and du in (4) as differentials.

Thus the Substitution Rule says: It is permissible to operate with dx and du after  
integral signs as if they were differentials.

EXAMPLE 1  Find y x 3 cossx 4 1 2d dx.

SOLUTION We make the substitution u − x 4 1 2 because its differential is 
du − 4x 3 dx, which, apart from the constant factor 4, occurs in the integral. Thus, using

2

3
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414 CHAPTER 5  Integrals

 x 3 dx − 1
4 du and the Substitution Rule, we have

 y x 3 cossx 4 1 2d dx − y cos u ? 1
4 du − 1

4 y cos u du

 − 1
4 sin u 1 C

 − 1
4 sinsx 4 1 2d 1 C

Notice that at the final stage we had to return to the original variable x. Q

The idea behind the Substitution Rule is to replace a relatively complicated integral  
by a simpler integral. This is accomplished by changing from the original variable x 
to a new variable u that is a function of x. Thus in Example 1 we replaced the integral 
y x 3 cossx 4 1 2d dx by the simpler integral 14 y cos u du.

The main challenge in using the Substitution Rule is to think of an appropriate substi-
tution. You should try to choose u to be some function in the integrand whose differential 
also occurs (except for a constant factor). This was the case in Example 1. If that is not 
pos sible, try choosing u to be some complicated part of the integrand (perhaps the inner 
function in a composite function). Finding the right substitution is a bit of an art. It’s not 
unusual to guess wrong; if your first guess doesn’t work, try another substitution.

EXAMPLE 2  Evaluate y s2x 1 1 dx.

SOLUTION 1 Let u − 2x 1 1. Then du − 2 dx, so dx − 1
2 du. Thus the Substitution 

Rule gives

 y s2x 1 1 dx − y su  ? 1
2 du − 1

2 y u 1y2 du

 −
1
2

?
u 3y2

3y2
1 C − 1

3 u 3y2 1 C

 − 1
3 s2x 1 1d3y2 1 C

SOLUTION 2 Another possible substitution is u − s2x 1 1. Then

du −
dx

s2x 1 1
    so    dx − s2x 1 1 du − u du

(Or observe that u 2 − 2x 1 1,  so 2u du − 2 dx.) Therefore

 y s2x 1 1 dx − y u ? u du − y u 2 du

  −
u 3

3
1 C − 1

3 s2x 1 1d3y2 1 C Q

EXAMPLE 3  Find y 
x

s1 2 4x 2 
 dx.

SOLUTION Let u − 1 2 4x 2. Then du − 28x dx, so x dx − 21
8 du and

 y 
x

s1 2 4x 2  dx − 21
8y 

1

su  du − 21
8y u21y2 du

 − 21
8 (2su ) 1 C − 21

4 s1 2 4x 2 1 C Q

Check the answer by differentiating it.
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 SECTION 5.5  The Substitution Rule 415

The answer to Example 3 could be checked by differentiation, but instead let’s  
check  it with a graph. In Figure 1 we have used a computer to graph both the integrand
f sxd − xys1 2 4x 2  and its indefinite integral tsxd − 21

4 s1 2 4x 2  (we take the case 
C − 0). Notice that tsxd decreases when f sxd is negative, increases when f sxd is posi-
tive, and has its minimum value when f sxd − 0. So it seems reasonable, from the graphi-
cal evi dence, that t is an antiderivative of f.

EXAMPLE 4  Calculate y e 5x dx.

SOLUTION If we let u − 5x, then du − 5 dx, so dx − 1
5 du. Therefore

 y e 5x dx − 1
5 y eu du − 1

5 eu 1 C − 1
5 e 5x 1 C Q

NOTE With some experience, you might be able to evaluate integrals like those in 
Examples 1– 4 without going to the trouble of making an explicit substitution. By recog-
nizing the pattern in Equation 3, where the integrand on the left side is the product of the 
derivative of an outer function and the derivative of the inner function, we could work 
Example 1 as follows:

y x 3 cossx 4 1 2d dx − y cossx 4 1 2d ? x 3 dx − 1
4 y cossx 4 1 2d ? s4x 3d dx

   − 1
4 y cossx 4 1 2d ?

d
dx

 sx 4 1 2d dx − 1
4 sinsx 4 1 2d 1 C

Similarly, the solution to Example 4 could be written like this:

y e 5x dx − 1
5 y 5e 5x dx − 1

5 y 
d
dx

 se 5xd dx − 1
5 e 5x 1 C

The following example, however, is more complicated and so an explicit substitution is 
advisable.

EXAMPLE 5  Find y s1 1 x 2  x 5 dx.

SOLUTION An appropriate substitution becomes more obvious if we factor x 5 as x 4 ? x. 
Let u − 1 1 x 2. Then du − 2x dx, so x dx − 1

2 du. Also x 2 − u 2 1, so x 4 − su 2 1d2:

 y s1 1 x 2  x 5 dx − y s1 1 x 2  x 4 ∙ x dx

 − y su  su 2 1d2 ?  12 du − 1
2 y su  su 2 2 2u 1 1d du 

 − 1
2 y su 5y2 2 2u 3y2 1 u 1y2 d du

 − 1
2 (2

7 u 7y2 2 2 ? 2
5u 5y2 1 2

3u 3y2) 1 C

  − 1
7 s1 1 x 2 d7y2 2 2

5 s1 1 x 2 d5y2 1 1
3 s1 1 x 2 d3y2 1 C  Q

EXAMPLE 6  Calculate y tan x dx.

SOLUTION First we write tangent in terms of sine and cosine:

y tan x dx − y 
sin x
cos x

 dx

1

_1

_1 1

©=! ƒ dx

f

FIGURE 1 

  f sxd −  
x

s1 2 4x 2 
 

 tsxd − y f sxd dx − 21
4 s1 2 4x 2 
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This suggests that we should substitute u − cos x, since then du − 2sin x dx and so 
sin x dx − 2du:

  y tan x dx − y 
sin x
cos x

 dx − 2y 
1
u

 du

  − 2ln | u | 1 C − 2ln | cos x | 1 C Q

Since 2ln | cos x | − lns| cos x |21d − lns1y|cos x |d − ln | sec x |, the result of Exam-
ple 6 can also be written as

y tan x dx − ln | sec x | 1 C

Definite Integrals
When evaluating a definite integral by substitution, two methods are possible. One 
method is to evaluate the indefinite integral first and then use the Fundamental Theorem. 
For instance, using the result of Example 2, we have 

 y4

0
 s2x 1 1 dx − y s2x 1 1 dxg 0

4

 − 1
3 s2x 1 1d3y2g 0

4
− 1

3 s9d3y2 2 1
3 s1d3y2

 − 1
3 s27 2 1d − 26

3

Another method, which is usually preferable, is to change the limits of integration when 
the variable is changed.

6This rule says that when using a sub-
stitution in a definite integral, we must 
put everything in terms of the new 
variable u, not only x and dx but also 
the limits of integration. The new limits 
of integration are the values of u that 
correspond to x − a and x − b.

  The Substitution Rule for Definite Integrals If t9 is continuous on fa, bg 
and f  is continuous on the range of u − tsxd, then

yb

a
 f stsxdd t9sxd dx − ytsbd

tsad
 f sud du

PROOF Let F be an antiderivative of f. Then, by (3), Fstsxdd is an antiderivative of 
f stsxdd t9sxd, so by Part 2 of the Fundamental Theorem, we have

yb

a
 f stsxdd t9sxd dx − Fstsxddg b

a
− Fstsbdd 2 Fstsadd

But, applying FTC2 a second time, we also have

 ytsbd

tsad
 f sud du − Fsudgtsad

tsbd
− Fstsbdd 2 Fstsadd Q

EXAMPLE 7  Evaluate y4

0
 s2x 1 1 dx using (6).

SOLUTION Using the substitution from Solution 1 of Example 2, we have u − 2x 1 1 
and dx − 1

2 du. To find the new limits of integration we note that

when x − 0, u − 2s0d 1 1 − 1    and    when x − 4, u − 2s4d 1 1 − 9

5
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Therefore

  y4

0
 s2x 1 1 dx − y9

1
 12 su  du

  − 1
2 ? 2

3 u 3y2g1

9

  − 1
3 s93y2 2 13y2 d − 26

3

Observe that when using (6) we do not return to the variable x after integrating. We 
simply evaluate the expression in u between the appropriate values of u.  Q

EXAMPLE 8  Evaluate y2

1
 

dx
s3 2 5xd2 .

SOLUTION Let u − 3 2 5x. Then du − 25 dx, so dx − 21
5 du. When x − 1, u − 22 

and when x − 2, u − 27. Thus

 y2

1
 

dx
s3 2 5xd2 − 2

1
5

 y27

22
 
du
u 2

 − 2
1
5

 F2
1
uG22

27

−
1

5uG22

27

  −
1
5

 S2
1
7

1
1
2D −

1
14

 Q

EXAMPLE 9  Calculate ye

1
 
ln x

x
 dx.

SOLUTION We let u − ln x because its differential du − dxyx occurs in the integral. 
When x − 1, u − ln 1 − 0; when x − e, u − ln e − 1. Thus

 ye

1
 
ln x

x
 dx − y1

0
 u du −

u 2

2 G0

1

−
1
2

 Q

Symmetry
The next theorem uses the Substitution Rule for Definite Integrals (6) to simplify the 
calculation of integrals of functions that possess symmetry properties.

7   Integrals of Symmetric Functions Suppose f  is continuous on f2a, ag.

(a) If f  is even f f s2xd − f sxdg, then ya

2a
 f sxd dx − 2 ya

0  f sxd dx.

(b) If f  is odd f f s2xd − 2f sxdg, then ya

2a
 f sxd dx − 0.

PROOF We split the integral in two:

ya

2a
 f sxd dx − y0

2a
 f sxd dx 1 ya

0
 f sxd dx − 2y2a

0
 f sxd dx 1 ya

0
 f sxd dx

The integral given in Example 8 is an 
abbreviation for

y2

1
 

1
s3 2 5xd2  dx

Since the function f sxd − sln xdyx 
in Example 9 is positive for x . 1, 
the integral represents the area of the 
shaded region in Figure 2.

x0

y

0.5

1 e

y= ln x
x

8

FIGURE 2
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In the first integral on the far right side we make the substitution u − 2x. Then 
du − 2dx and when x − 2a, u − a. Therefore

2y2a

0
 f sxd dx − 2ya

0
 f s2ud s2dud − ya

0
 f s2ud du

and so Equation 8 becomes

ya

2a
 f sxd dx − ya

0
 f s2ud du 1 ya

0
 f sxd dx

(a) If f  is even, then f s2ud − f sud so Equation 9 gives 

ya

2a
 f sxd dx − ya

0
 f sud du 1 ya

0
 f sxd dx − 2 ya

0
 f sxd dx

(b) If f  is odd, then f s2ud − 2f sud and so Equation 9 gives

 ya

2a
 f sxd dx − 2ya

0
 f sud du 1 ya

0
 f sxd dx − 0 Q

Theorem 7 is illustrated by Figure 3. For the case where f  is positive and even, part 
(a) says that the area under y − f sxd from 2a to a is twice the area from 0 to a because 
of sym metry. Recall that an integral yb

a  f sxd dx can be expressed as the area above the  
x-axis and below y − f sxd minus the area below the axis and above the curve. Thus 
part (b) says the integral is 0 because the areas cancel.

EXAMPLE 10  Since f sxd − x 6 1 1 satisfies f s2xd − f sxd, it is even and so

 y2

22
 sx 6 1 1d dx − 2 y2

0
 sx 6 1 1d dx

  − 2f1
7 x 7 1 xg 0

2
− 2(128

7 1 2) − 284
7  Q

EXAMPLE 11  Since f sxd − stan xdys1 1 x 2 1 x 4 d satisfies f s2xd − 2f sxd, it is odd 
and so

 y1

21
 

tan x
1 1 x 2 1 x 4  dx − 0 Q

9

0

y

x_a a

(a) ƒ even, j    ƒ dx=2 j  ƒ dx
0

a

_a

a

0
x

_a
a

y

(b) ƒ odd, j    ƒ dx=0
_a

a

FIGURE 3 

1–6 Evaluate the integral by making the given substitution.

 1. y cos 2x dx, u − 2x

 2. y xe2x2
 dx,   u − 2x 2

 3. y x 2 sx 3 1 1 dx, u − x 3 1 1

 4. y sin2 ! cos ! d!,    u − sin !

 5. y 
x 3

x4 2 5
 dx ,    u − x4 2 5

 6. y s2t 1 1  dt,    u − 2t 1 1

7–48 Evaluate the indefinite integral.

 7. y xs1 2 x 2 dx 8. y x 2 ex3 
dx

 9. y s1 2 2xd9 dx 10. y sin t s1 1 cost   dt

 11. y coss"ty2d dt 12. y sec2 2! d!
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 55. y1

0
 s3 1 1 7x  dx 56. y3

0
 

dx
5x 1 1

 57. y!y6

0
 

sin t
cos2t

 dt 58. y2!y3

!y3
 csc2 ( 1

2t) dt

 59. y2

1
 
e1yx

x 2  dx 60. y1

0
 xe2x 2

 dx

 61. y!y4

2!y4
 sx 3 1 x 4 tan xd dx 62. y!y2

0
 cos x sinssin xd dx

 63. y13

0
 

dx

s3 s1 1 2xd2 
 64. ya

0
 xsa 2 2 x 2  dx

 65. ya

0
 xsx 2 1 a 2  dx sa . 0d 66. y!y3

2!y3
 x 4 sin x dx

 67. y2

1
 xsx 2 1 dx 68. y4

0
 

x

s1 1 2x 
 dx

 69. ye4

e
 

dx

xsln x 
 70. y 2

0
 sx 2 1desx21d2

 dx

 71. y1

0
 
e z 1 1
e z 1 z

 dz 72. yTy2

0
 sins2! tyT 2 "d dt

 73. y1

0
 

dx

(1 1 sx )4

 74.  Verify that f sxd − sin s3 x  is an odd function and use that fact 
to show that

0 < y3

22
 sin s3 x  dx < 1

75–76 Use a graph to give a rough estimate of the area of the 
region that lies under the given curve. Then find the exact area.

 75. y − s2x 1 1,  0 < x < 1

 76. y − 2 sin x 2 sin 2x,  0 < x < !

 77.  Evaluate y2
22 sx 1 3ds4 2 x 2 dx by writing it as a sum of  

two integrals and interpreting one of those integrals in terms 
of an area.

 78.  Evaluate y1
0 xs1 2 x 4 dx by making a substitution and 

interpreting the resulting integral in terms of an area.

 79.  Which of the following areas are equal? Why?

y=2x´

0 x

y

1

y=esin x sin 2x

0 x

y

π
2

1

y=eœ„x

0 x

y

1

y=2x´

0 x

y

1

y=esin x sin 2x

0 x

y

π
2

1

y=eœ„x

0 x

y

1

;

 13. y 
dx

5 2 3x
 14. y y 2s4 2 y 3d2y3 dy

 15. y cos3# sin # d# 16. y e25r dr

 17. y 
e u

s1 2 e ud2  du 18. y 
sin sx 

sx 
 dx

 19. y 
a 1 bx 2

s3ax 1 bx 3 
 dx 20. y 

z 2

z 3 1 1
 dz

 21. y 
sln xd2

x
 dx 22. y sin x sinscos xd dx

 23. y sec2# tan3# d# 24. y x sx 1 2  dx

 25. y e x s1 1 e x  dx 26. y 
dx

ax 1 b
  sa ± 0d

 27. y sx 2 1 1dsx 3 1 3xd4 dx 28. y ecos t sin t dt

 29. y 5 t sins5 td dt 30. y 
sec 2x
tan2 x

 dx

 31. y 
sarctan xd2

x 2 1 1
 dx 32. y 

x
x 2 1 4

 dx

 33. y cos s1 1 5td dt 34. y 
coss!yxd

x 2  dx

 35. y scot x  csc2x dx 36. y 
2 t

2 t 1 3
 dt

 37. y sinh2x cosh x dx 38. y 
dt

cos2 ts1 1 tan t 

 39. y 
sin 2x

1 1 cos2x
 dx 40. y 

sin x
1 1 cos2x

 dx

 41. y cot x dx 42. y 
cossln td

t
 dt

 43. y 
dx

s1 2 x 2   sin21x
 44. y 

x
1 1 x 4  dx

 45. y 
1 1 x
1 1 x 2  dx 46. y x 2s2 1 x  dx

 47. y xs2x 1 5d8 dx 48. y x 3sx 2 1 1 dx

49–52 Evaluate the indefinite integral. Illustrate and check that 
your answer is reasonable by graphing both the function and its 
antiderivative (take C − 0).

 49. y xsx 2 2 1d3 dx 50. y tan2# sec2# d#

 51. y ecos x sin x dx 52. y sin x cos4x dx

53–73 Evaluate the definite integral.

 53. y1

0
 coss! ty2d dt 54. y1

0
 s3t 2 1d50 dt

;
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420 CHAPTER 5  Integrals

 80.  A model for the basal metabolism rate, in kcalyh, of a young 
man is Rstd − 85 2 0.18 coss" ty12d, where t is the time in 
hours measured from 5:00 am. What is the total basal metab-
olism of this man, y24

0  Rstd dt, over a 24-hour time period?

 81.  An oil storage tank ruptures at time t − 0 and oil leaks from 
the tank at a rate of rstd − 100e20.01t liters per minute. How 
much oil leaks out during the first hour?

 82.  A bacteria population starts with 400 bacteria and grows at a 
rate of rstd − s450.268de1.12567t bacteria per hour. How many 
bacteria will there be after three hours?

 83.  Breathing is cyclic and a full respiratory cycle from the 
beginning of inhalation to the end of exhalation takes 
about 5 s. The maximum rate of air flow into the lungs 
is about 0.5 Lys. This explains, in part, why the function 
f std − 1

2 sins2" ty5d has often been used to model the rate of 
air flow into the lungs. Use this model to find the volume of 
inhaled air in the lungs at time t.

 84.  The rate of growth of a fish population was modeled by the 
equation

Gstd −
60,000e20.6t

s1 1 5e20.6 t d2

where t is measured in years and G in kilograms per year. 
If the biomass was 25,000 kg in the year 2000, what is the 
predicted biomass for the year 2020?

 85.  Dialysis treatment removes urea and other waste products 
from a patient’s blood by diverting some of the bloodflow 
externally through a machine called a dialyzer. The rate at 
which urea is removed from the blood (in mgymin) is often 
well described by the equation

ustd −
 r
V

 C0 e2rtyV

where r is the rate of flow of blood through the dialyzer (in 
mLymin), V is the volume of the patient’s blood (in mL), and 
C0 is the amount of urea in the blood (in mg) at time t − 0. 
Evaluate the integral y30

0  ustd dt and interpret it.

 86.  Alabama Instruments Company has set up a production line 
to manufacture a new calculator. The rate of production of 
these calculators after t weeks is

dx
dt

− 5000S1 2
100

st 1 10d2D calculatorsyweek

(Notice that production approaches 5000 per week as time 
goes on, but the initial production is lower because of the 
workers’ unfamiliarity with the new techniques.) Find the 
number of calculators produced from the beginning of the 
third week to the end of the fourth week.

 87. If f  is continuous and y4

0
 f sxd dx − 10, find y2

0
 f s2xd dx.

 88.  If f  is continuous and y9

0
 f sxd dx − 4, find y3

0
 xf sx 2 d dx.

 89.  If f  is continuous on R, prove that

yb

a
 f s2xd dx − y2a

2b
 f sxd dx

For the case where f sxd > 0 and 0 , a , b, draw a dia gram 
to interpret this equation geometrically as an equality of 
areas.

 90.  If f  is continuous on R, prove that

yb

a
 f sx 1 cd dx − yb1c

a1c
 f sxd dx

For the case where f sxd > 0, draw a diagram to interpret this 
equation geometrically as an equality of areas.

 91. If a and b are positive numbers, show that

y1

0
 x as1 2 xdb dx − y1

0
 x bs1 2 xda dx

 92.  If f  is continuous on f0, "g, use the substitution u − " 2 x to 
show that

y"

0
 xf ssin xd dx −

"

2
 y"

0
 f ssin xd dx

 93. Use Exercise 92 to evaluate the integral

y"

0
 

x sin x
1 1 cos2x

 dx

 94. (a)  If f  is continuous, prove that

y"y2

0
 f scos xd dx − y"y2

0
 f ssin xd dx

 (b)  Use part (a) to evaluate y"y2

0
 cos2x dx and y"y2

0
 sin2x dx.
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 CHAPTER 5  Review  421

CONCEPT CHECK Answers to the Concept Check can be found on the back endpapers.

5 REVIEW

 1. (a)  Write an expression for a Riemann sum of a function f. 
Explain the meaning of the notation that you use.

 (b)  If f sxd > 0, what is the geometric interpretation of a  
Riemann sum? Illustrate with a diagram.

 (c)  If f sxd takes on both positive and negative values, what is 
the geometric interpretation of a Riemann sum? Illustrate 
with a diagram.

 2. (a)  Write the definition of the definite integral of a contin-
uous function from a to b.

 (b)  What is the geometric interpretation of yb
a  f sxd dx if 

f sxd > 0?
 (c)  What is the geometric interpretation of yb

a  f sxd dx if f sxd 
takes on both positive and negative values? Illustrate with 
a diagram.

 3. State the Midpoint Rule.

 4. State both parts of the Fundamental Theorem of Calculus.

 5. (a) State the Net Change Theorem.

 (b)  If rstd is the rate at which water flows into a reservoir, 
what does yt2

t1
 rstd dt represent?

 6.  Suppose a particle moves back and forth along a straight line 
with velocity vstd, measured in feet per second, and accelera-
tion astd.

 (a) What is the meaning of y120
60  vstd dt?

 (b) What is the meaning of y120
60 | vstd | dt?

 (c) What is the meaning of y120
60  astd dt?

 7. (a) Explain the meaning of the indefinite integral y f sxd dx.
 (b)  What is the connection between the definite integral 

yb
a  f sxd dx and the indefinite integral y f sxd dx?

 8.  Explain exactly what is meant by the statement that “differen-
tiation and integration are inverse processes.”

 9.  State the Substitution Rule. In practice, how do you use it?

TRUE–FALSE QUIZ

Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

 1. If f  and t are continuous on fa, bg, then

yb

a
 f f sxd 1 tsxdg dx − yb

a
 f sxd dx 1 yb

a
 tsxd dx

 2. If f  and t are continuous on fa, bg, then 

yb

a
 f f sxdtsxdg dx − Syb

a
 f sxd dxDSyb

a
 tsxd dxD

 3. If f  is continuous on fa, bg, then

yb

a
 5f sxd dx − 5 yb

a
 f sxd dx

 4. If f  is continuous on fa, bg, then

yb

a
 xf sxd dx − x yb

a
 f sxd dx

 5. If f  is continuous on fa, bg and f sxd > 0, then

yb

a
 sf sxd  dx − Îyb

a
 f sxd dx  

 6. If f 9 is continuous on f1, 3g, then y3

1
 f 9svd dv − f s3d 2 f s1d.

 7.  If f  and t are continuous and f sxd > tsxd for a < x < b, then

yb

a
 f sxd dx > yb

a
 tsxd dx

  8.  If f  and t are differentiable and f sxd > tsxd for a , x , b, 
then f 9sxd > t9sxd for a , x , b.

  9. y1

21
Sx 5 2 6x 9 1

sin x
s1 1 x 4 d2D dx − 0

 10. y5

25
 sax 2 1 bx 1 cd dx − 2 y5

0
 sax 2 1 cd dx

 11. All continuous functions have derivatives.

 12. All continuous functions have antiderivatives.

 13. y3

0
 ex 2

 dx − y5

0
 ex 2

 dx 1 y3

5
 ex 2

 dx

 14.  If y1
0 f sxd dx − 0, then f sxd − 0 for 0 < x < 1.

 15.  If f  is continuous on fa, bg, then

d
dx Syb

a
 f sxd dxD − f sxd

 16.  y2
0 sx 2 x 3d dx represents the area under the curve y − x 2 x 3 

from 0 to 2.

 17. y1

22
 

1
x 4  dx − 2

3
8

 18.  If f  has a discontinuity at 0, then y1

21
 f sxd dx does not exist.
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422 CHAPTER 5  Integrals

 7.  The figure shows the graphs of f, f 9, and yx
0 f std dt. Identify 

each graph, and explain your choices.

y

x
a

b

c

 8. Evaluate:

 (a) y1

0
 

d
dx

 searctan xd dx (b) 
d
dx

 y1

0
 earctan x dx

 (c) 
d
dx

 yx

0
 earctan t dt

 9.  The graph of f  consists of the three line segments shown. If 
tsxd − yx

0 f std dt, find ts4d and t9s4d.

y

t0 2

1 f

 10.  If f  is the function in Exercise 9, find t 0s4d.

11–40 Evaluate the integral, if it exists.

 11. y2

1
 s8x 3 1 3x 2 d dx 12. yT

0
 sx 4 2 8x 1 7d dx

 13. y1

0
 s1 2 x 9 d dx 14. y1

0
 s1 2 xd9 dx

 15. y9

1
 
su 2 2u2

u
 du 16. y1

0
 ss4 u 1 1d2 du

 17. y1

0
 ysy2 1 1d5 dy 18. y2

0
 y 2s1 1 y 3  dy

 19. y5

1
 

dt
st 2 4d2  20. y1

0
 sins3"td dt

 21. y1

0
 v2 cossv3d dv 22. y1

21
 

sin x
1 1 x 2  dx

 23. y"y4

2"y4
 

t 4 tan t
2 1 cos t

 dt 24. y1

0
 

e x

1 1 e 2x  dx

 25. y S 1 2 x
x D2

dx 26. y10

1
 

x
x 2 2 4

 dx

 1.  Use the given graph of f  to find the Riemann sum with six 
subintervals. Take the sample points to be (a) left endpoints 
and (b) midpoints. In each case draw a diagram and explain 
what the Riemann sum represents.

2 x

y

2

0 6

y=ƒ

 2. (a) Evaluate the Riemann sum for

f sxd − x 2 2 x    0 < x < 2

   with four subintervals, taking the sample points to be 
right endpoints. Explain, with the aid of a diagram, 
what the Riemann sum represents.

 (b)  Use the definition of a definite integral (with right end-
points) to calculate the value of the integral

y2

0
 sx 2 2 xd dx

 (c)  Use the Fundamental Theorem to check your answer to 
part (b).

 (d)  Draw a diagram to explain the geometric meaning of 
the integral in part (b).

 3. Evaluate

y1

0
 sx 1 s1 2 x 2 d dx

by interpreting it in terms of areas.

 4. Express

lim
n l `

 o
n

i−1
 sin xi Dx

as a definite integral on the interval f0, "g and then evaluate 
the integral.

 5. If y6
0 f sxd dx − 10 and y4

0 f sxd dx − 7, find y6
4 f sxd dx.

 6. (a)  Write y5
1 sx 1 2x 5 d dx as a limit of Riemann sums, 

taking the sample points to be right endpoints. Use a 
computer algebra system to evaluate the sum and to 
compute the limit.

 (b)  Use the Fundamental Theorem to check your answer  
to part (a).

CAS

EXERCISES
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 57.  Use the Midpoint Rule with n − 6 to approximate 
y3

0 sinsx 3d dx.

 58.  A particle moves along a line with velocity function 
vstd − t 2 2 t, where v is measured in meters per second. 
Find (a) the displacement and (b) the distance traveled by  
the particle during the time interval f0, 5g.

 59.  Let rstd be the rate at which the world’s oil is consumed, 
where t is measured in years starting at t − 0 on January 1, 
2000, and rstd is measured in barrels per year. What does 
y8

0 rstd dt represent?

 60.  A radar gun was used to record the speed of a runner at the 
times given in the table. Use the Midpoint Rule to estimate 
the distance the runner covered during those 5 seconds.

t (s) v smysd t (s) v smysd

0  0 3.0  10.51

0.5  4.67 3.5  10.67

1.0  7.34 4.0  10.76

1.5  8.86 4.5  10.81

2.0  9.73  5.0  10.81

2.5 10.22  

 61.  A population of honeybees increased at a rate of rstd bees 
per week, where the graph of r is as shown. Use the Mid-
point Rule with six subintervals to estimate the increase in 
the bee population during the first 24 weeks.

r

0 2420161284
(weeks)

t

4000

8000

12000

 62. Let

f sxd − H2x 2 1
2s1 2 x 2 

if 23 < x < 0
if 0 < x < 1

Evaluate y1
23 f sxd dx by interpreting the integral as a differ-

ence of areas.

 63.  If f  is continuous and y2
0 f sxd dx − 6, evaluate 

y"y2
0

 f s2 sin !d cos ! d!.

 27. y 
x 1 2

sx 2 1 4x 
 dx 28. y 

csc2 x
1 1 cot x

 dx

 29. y sin "t cos "t dt 30. y sin x cosscos xd dx

 31. y 
esx

sx
 dx 32. y 

sinsln xd
x

 dx 

 33. y tan x lnscos xd dx 34. y 
x

s1 2 x 4 
 dx

 35. y 
x 3

1 1 x 4  dx 36. y sinhs1 1 4xd dx

 37. y 
sec ! tan !
1 1 sec !

 d!  38. y"y4

0
 s1 1 tan td3 sec2t dt

 39. y3

0
 | x 2 2 4 | dx 40. y4

0
 | sx  2 1 | dx

41–42 Evaluate the indefinite integral. Illustrate and check 
that your answer is reasonable by graphing both the function 
and its antiderivative (take C − 0).

 41. y 
cos x

s1 1 sin x 
 dx 42. y 

x 3

sx 2 1 1
 dx

 43.  Use a graph to give a rough estimate of the area of the 
region that lies under the curve y − xsx  , 0 < x < 4. 
Then find the exact area.

 44.  Graph the function f sxd − cos2x sin x and use the graph 
to guess the value of the integral y2"

0  f sxd dx. Then evaluate 
the integral to confirm your guess.

45–50 Find the derivative of the function.

 45. Fsxd − yx

0
 

t 2

1 1 t 3  dt 46. Fsxd − y1

x
 st 1 sin t   dt

 47. tsxd − yx4

0
 cosst 2d dt 48. tsxd − ysin x

1
 
1 2 t 2

1 1 t 4  dt

 49. y − yx

sx 
 

e t

t
 dt 50. y − y3x11

2x
 sinst 4 d dt

51–52 Use Property 8 of integrals to estimate the value of the 
integral.

 51. y3

1
 sx 2 1 3  dx 52. y5

3
 

1
x 1 1

 dx

53–56 Use the properties of integrals to verify the inequality.

 53. y1

0
 x 2 cos x dx <

1
3

 54. y"y2

"y4
 
sin x

x
 dx <

s2 

2

 55. y1

0
 e x cos x dx < e 2 1 56. y1

0
 x sin21x dx < "y4

;

;

;
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424 CHAPTER 5  Integrals

 67. If f  is a continuous function such that

y x

1
 f std dt − sx 2 1de 2x 1 y x

1
 e 2t f std dt

for all x, find an explicit formula for f sxd.

 68.  Suppose h is a function such that hs1d − 22, h9s1d − 2, 
h0s1d − 3, hs2d − 6, h9s2d − 5, h0s2d − 13, and h 0 is  
continuous everywhere. Evaluate y2

1  h0sud du.

 69. If f 9 is continuous on fa, bg, show that

2 yb

a
 f sxd f 9sxd dx − f f sbdg2 2 f f sadg2

 70. Find 

lim
h l 0

 
1
h

 y21h

2
 s1 1 t 3  dt

 71. If f  is continuous on f0, 1g, prove that

y1

0
 f sxd dx − y1

0
 f s1 2 xd dx

 72. Evaluate

lim
n l `

 
1
n

 FS 1
nD9

1 S 2
nD9

1 S 3
nD9

1 ∙ ∙ ∙ 1 S n
nD9G

 73.  Suppose f  is continuous, f s0d − 0, f s1d − 1, f 9sxd . 0, 
and y1

0  f sxd dx − 1
3. Find the value of the integral 

y1
0 f

21syd dy.

 64.  The Fresnel function Ssxd − yx
0 sin(1

2" t 2) dt was introduced  
in Section 5.3. Fresnel also used the function

Csxd − yx

0
 cos(1

2  " t 2) dt

in his theory of the diffraction of light waves.
(a) On what intervals is C increasing?
(b) On what intervals is C concave upward?
(c)  Use a graph to solve the following equation correct to 

two decimal places:

y x

0
 cos(1

2 " t 2) dt − 0.7

(d)  Plot the graphs of C and S on the same screen. How are 
these graphs related?

  65.  Estimate the value of the number c such that the area  
under the curve y − sinh cx between x − 0 and x − 1 is 
equal to 1.

 66.  Suppose that the temperature in a long, thin rod placed 
along the x-axis is initially Cys2ad if | x | < a and 0 if 
| x | . a. It can be shown that if the heat diffusivity of the 
rod is k, then the temperature of the rod at the point x at 
time t is

 Tsx, td −
C

as4"kt 
 ya

0
 e 2sx2ud2ys4ktd du

To find the temperature distribution that results from an ini-
tial hot spot concentrated at the origin, we need to compute 
lim a l 0 T sx, td. Use l’Hospital’s Rule to find this limit.

CAS

CAS

;
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Problems Plus Before you look at the solution of the following example, cover it up and first try to solve 
the problem yourself.

EXAMPLE  Evaluate lim
x l3

 S x
x 2 3

 yx

3
 
sin t

t
 dtD.

SOLUTION Let’s start by having a preliminary look at the ingredients of the function. 
What happens to the first factor, xysx 2 3d, when x approaches 3? The numerator 
approaches 3 and the denominator approaches 0, so we have

x
x 2 3

l `  as  x l 31    and    
x

x 2 3
l 2`  as  x l 32

The second factor approaches y3
3 ssin tdyt dt, which is 0. It’s not clear what happens to 

the function as a whole. (One factor is becoming large while the other is becoming 
small.) So how do we proceed?

One of the principles of problem solving is recognizing something familiar. Is there a 
part of the function that reminds us of something we’ve seen before? Well, the integral

yx

3
 
sin t

t
 dt

has x as its upper limit of integration and that type of integral occurs in Part 1 of the 
Fundamental Theorem of Calculus:

d
dx

 y x

a
 f std dt − f sxd

This suggests that differentiation might be involved.
Once we start thinking about differentiation, the denominator sx 2 3d reminds us of 

something else that should be familiar: One of the forms of the definition of the deriva-
tive in Chapter 2 is

F9sad − lim
x l a

 
Fsxd 2 Fsad

x 2 a

and with a − 3 this becomes

F9s3d − lim
x l 3

 
Fsxd 2 Fs3d

x 2 3

So what is the function F in our situation? Notice that if we define

Fsxd − yx

3
 
sin t

t
 dt

then Fs3d − 0. What about the factor x in the numerator? That’s just a red herring, so 
let’s factor it out and put together the calculation:

 lim
x l3

 S x
x 2 3

 yx

3
 
sin t

t
 dtD − lim

x l3
 x ? lim

x l3
 
yx

3
 
sin t

t
 dt

x 2 3
− 3 lim 

x l3
 
Fsxd 2 Fs3d

x 2 3

  − 3F9s3d − 3 
sin 3

3
− sin 3  (FTC1) Q

 1.  If x sin !x − y x2

0
 f std dt, where f  is a continuous function, find f s4d.

 2.  Find the minimum value of the area of the region under the curve y − x 1 1yx from x − a  
to x − a 1 1.5, for all a . 0.

PS  The principles of problem solving 
are discussed on page 71.

Another approach is to use l’Hospital’s 
Rule

Problems
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 3.  If y4
0 e

sx22d4
 dx − k, find the value of y4

0 xesx22d4
 dx.

 4.  (a)  Graph several members of the family of functions f sxd − s2cx 2 x 2 dyc 3 for c . 0 and 
look at the regions enclosed by these curves and the x-axis. Make a conjecture about 
how the areas of these regions are related.

 (b) Prove your conjecture in part (a).
 (c)  Take another look at the graphs in part (a) and use them to sketch the curve traced out 

by the vertices (highest points) of the family of functions. Can you guess what kind of 
curve this is?

 (d) Find an equation of the curve you sketched in part (c).

 5.  If f sxd − ytsxd

0
 

1

s1 1 t 3 
 dt, where tsxd − ycos x

0
 f1 1 sinst 2 dg dt, find f 9s"y2d.

 6.  If f sxd − yx
0 x 2 sinst 2 d dt, find f 9sxd.

 7.  Evaluate lim
x l 0

 
1
x

 yx

0
 s1 2 tan 2td1y t dt.

 8.  The figure shows two regions in the first quadrant: Astd is the area under the curve 
y − sinsx 2 d from 0 to t, and Bstd is the area of the triangle with vertices O, P, and st, 0d. 
Find lim

t l
 

01
 AstdyBstd.

 9.  Find the interval fa, bg for which the value of the integral yb
a  s2 1 x 2 x 2 d dx is a maximum.

 10.  Use an integral to estimate the sum o
10000

i−1
 si .

 11.  (a)  Evaluate yn
0 v xb dx, where n is a positive integer.

 (b) Evaluate yb
a v xb dx, where a and b are real numbers with 0 < a , b.

 12.  Find 
d 2

dx 2  yx

0
 Sysin t

1
 s1 1 u4  duDdt.

 13.  Suppose the coefficients of the cubic polynomial Psxd − a 1 bx 1 cx 2 1 dx 3 satisfy the 
equation

a 1
b
2

1
c
3

1
d
4

− 0

   Show that the equation Psxd − 0 has a root between 0 and 1. Can you generalize this result 
for an nth-degree polynomial?

 14.  A circular disk of radius r is used in an evaporator and is rotated in a vertical plane. If it is 
to be partially submerged in the liquid so as to maximize the exposed wetted area of the 
disk, show that the center of the disk should be positioned at a height rys1 1 " 2  above 
the surface of the liquid.

 15.  Prove that if f  is continuous, then yx

0
 f sudsx 2 ud du − yx

0
 Syu

0
 f std dtD du.

 16.  The figure shows a parabolic segment, that is, a portion of a parabola cut off by a chord 
AB. It also shows a point C on the parabola with the property that the tangent line at C is 
parallel to the chord AB. Archimedes proved that the area of the parabolic segment is 43 
times the area of the inscribed triangle ABC. Verify Archimedes’ result for the parabola 
y − 4 2 x 2 and the line y − x 1 2.

 17.  Given the point sa,bd in the first quadrant, find the downward-opening parabola that passes 
through the point sa,bd and the origin such that the area under the parabola is a minimum.

 18.  The figure shows a region consisting of all points inside a square that are closer to the 
center than to the sides of the square. Find the area of the region.

 19.  Evaluate lim
n l `

 S 1

sn sn 1 1
1

1

sn sn 1 2 
1 ∙ ∙ ∙ 1

1

sn sn 1 n D .

 20.  For any number c, we let fcsxd be the smaller of the two numbers sx 2 cd2 and 
sx 2 c 2 2d2. Then we define tscd − y1

0 fcsxd dx. Find the maximum and minimum values 
of tscd if 22 < c < 2.

;

FIGURE FOR PROBLEM 8 
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FIGURE FOR PROBLEM 16 

FIGURE FOR PROBLEM 18 
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When a bat strikes a baseball, 
the collision lasts only about 
a thousandth of a second. In 

the project on page 464, you 
will use calculus to find the 

average force on the bat when 
this happens. Several other 

applications of calculus to  
the game of baseball are 

explored as well.

Applications of Integration6

© Richard Paul Kane / Shutterstock.com

IN THIS CHAPTER WE EXPLORE some of the applications of the definite integral by using it to 
compute areas between curves, volumes of solids, and the work done by a varying force. The 
common theme is the following general method, which is similar to the one we used to find areas 
under curves: we break up a quantity Q into a large number of small parts. We next approximate 
each small part by a quantity of the form f sxi*d Dx and thus approximate Q by a Riemann sum. 
Then we take the limit and express Q as an integral. Finally we evaluate the integral using the 
Fundamental Theorem of Calculus or the Midpoint Rule.
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428 CHAPTER 6  Applications of Integration

In Chapter 5 we defined and calculated areas of regions that lie under the graphs of func-
tions. Here we use integrals to find areas of regions that lie between the graphs of two 
functions.

Consider the region S that lies between two curves y − f sxd and y − tsxd and 
between the vertical lines x − a and x − b, where f  and t are continuous functions and 
f sxd > tsxd for all x in fa, bg. (See Figure 1.)

Just as we did for areas under curves in Section 5.1, we divide S into n strips of equal 
width and then we approximate the ith strip by a rectangle with base Dx and height 
f sxi*d 2 tsxi*d. (See Figure 2. If we like, we could take all of the sample points to be 
right endpoints, in which case xi* − xi.) The Riemann sum

o
n

i−1
 f f sxi*d 2 tsxi*dg Dx

is therefore an approximation to what we intuitively think of as the area of S.

(a) Typical rectangle

x

y

b0 a

f(x i*)
f(x i*) -g(x i*)

_g(x i*)
x i*

Îx

(b) Approximating rectangles

x

y

b0 a

This approximation appears to become better and better as n l `. Therefore we 
define the area A of the region S as the limiting value of the sum of the areas of these 
approxi mating rectangles.

A − lim
n l `

 o
n

i−1
 f f sxi*d 2 tsxi*dg Dx

We recognize the limit in (1) as the definite integral of f 2 t. Therefore we have the 
fol lowing formula for area.

2   The area A of the region bounded by the curves y − f sxd, y − tsxd, and the 
lines x − a, x − b, where f  and t are continuous and f sxd > tsxd for all x in 
fa, bg, is

A − yb

a
 f f sxd 2 tsxdg dx

Notice that in the special case where tsxd − 0, S is the region under the graph of f  and 
our general definition of area (1) reduces to our previous definition (Definition 5.1.2).

FIGURE 1 
S − hsx, yd | a < x < b, 
tsxd < y < f sxdj

0
y=©

y=ƒ

S

x

y

ba

FIGURE 2 

1
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 SECTION 6.1  Areas Between Curves 429

In the case where both f  and t are positive, you can see from Figure 3 why (2) is true: 

 A − farea under y − f sxdg 2 farea under y − tsxdg

 − yb

a
 f sxd dx 2 yb

a
 tsxd dx − yb

a
 f f sxd 2 tsxdg dx

EXAMPLE 1  Find the area of the region bounded above by y − ex, bounded below by 
y − x, and bounded on the sides by x − 0 and x − 1.

SOLUTION The region is shown in Figure 4. The upper boundary curve is y − ex and 
the lower boundary curve is y − x. So we use the area formula (2) with f sxd − ex, 
tsxd − x, a − 0, and b − 1:

 A − y1

0
 sex 2 xd dx − ex 2 1

2 x 2g1

0

  − e 2 1
2 2 1 − e 2 1.5  Q

In Figure 4 we drew a typical approximating rectangle with width Dx as a reminder of 
the procedure by which the area is defined in (1). In general, when we set up an integral 
for an area, it’s helpful to sketch the region to identify the top curve yT, the bottom curve 
yB, and a typical approximating rectangle as in Figure 5. Then the area of a typical rect-
angle is syT 2 yBd Dx and the equation

A − lim
n l `

 o
n

i−1
 syT 2 yBd Dx − yb

a
 syT 2 yBd dx

summarizes the procedure of adding (in a limiting sense) the areas of all the typical 
rectangles.

Notice that in Figure 5 the left-hand boundary reduces to a point, whereas in Figure 3 
the right-hand boundary reduces to a point. In the next example both of the side boundar-
ies reduce to a point, so the first step is to find a and b.

EXAMPLE 2  Find the area of the region enclosed by the parabolas y − x 2 and 
y − 2x 2 x 2.

SOLUTION We first find the points of intersection of the parabolas by solving 
their equations simultaneously. This gives x 2 − 2x 2 x 2, or 2x 2 2 2x − 0. Thus 
2xsx 2 1d − 0, so x − 0 or 1. The points of intersection are s0, 0d and s1, 1d.

We see from Figure 6 that the top and bottom boundaries are

yT − 2x 2 x 2    and    yB − x 2

The area of a typical rectangle is

syT 2 yBd Dx − s2x 2 x 2 2 x 2 d Dx

and the region lies between x − 0 and x − 1. So the total area is

  A − y1

0
 s2x 2 2x 2 d dx − 2 y1

0
 sx 2 x 2 d dx

  − 2F x 2

2
2

x 3

3 G0

1

− 2S 1
2

2
1
3D −

1
3

  Q

0 x

y

a b

yT

yB

yT-yB

Îx

0 x

y

a b

y=ƒ

y=©
S

0 x

y

1

y=´

y=x Îx

x=1

1

FIGURE 3  

A − yb

a
 f sxddx 2 yb

a
 tsxddx

FIGURE 4 

FIGURE 5 

FIGURE 6 

Îx
(0, 0)

(1, 1)

yT=2x-≈

yB=≈

x

y
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430 CHAPTER 6  Applications of Integration

Sometimes it’s difficult, or even impossible, to find the points of intersection of two 
curves exactly. As shown in the following example, we can use a graphing calculator 
or computer to find approximate values for the intersection points and then proceed as 
before.

EXAMPLE 3  Find the approximate area of the region bounded by the curves
y − xysx 2 1 1 and y − x 4 2 x.

SOLUTION If we were to try to find the exact intersection points, we would have to 
solve the equation

x

sx 2 1 1
− x 4 2 x

This looks like a very difficult equation to solve exactly (in fact, it’s impossible), so 
instead we use a graphing device to draw the graphs of the two curves in Figure 7. One 
intersection point is the origin. We zoom in toward the other point of intersection and 
find that x < 1.18. (If greater accuracy is required, we could use Newton’s method or 
solve numerically on our graphing device.) So an approximation to the area between 
the curves is

A < y1.18

0
 F x

sx 2 1 1
2 sx 4 2 xdG dx

To integrate the first term we use the substitution u − x 2 1 1. Then du − 2x dx, and 
when x − 1.18, we have u < 2.39; when x − 0, u − 1. So

 A < 1
2 y2.39

1
 

du

su 2 y1.18

0
 sx 4 2 xd dx

 − su g
1

2.39

2 F x 5

5
2

x 2

2 G0

1.18

 − s2.39 2 1 2
s1.18d5

5
1

s1.18d2

2

  < 0.785  Q

EXAMPLE 4  Figure 8 shows velocity curves for two cars, A and B, that start side by 
side and move along the same road. What does the area between the curves represent? 
Use the Midpoint Rule to estimate it.

SOLUTION We know from Section 5.4 that the area under the velocity curve A rep-
resents the distance traveled by car A during the first 16 seconds. Similarly, the area 
under curve B is the distance traveled by car B during that time period. So the area 
between these curves, which is the difference of the areas under the curves, is the 
distance between the cars after 16 seconds. We read the velocities from the graph and 
convert them to feet per second s1 miyh − 5280

3600 ftysd.

t 0   2   4   6   8 10 12 14 16

vA 0 34 54 67 76 84 89 92 95

vB 0 21 34 44 51 56 60 63 65

vA 2 vB 0 13 20 23 25 28 29 29 30

1.5

_1

_1 2
y=x$-x

x
œ„„„„„≈+1

y=

FIGURE 7 
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 SECTION 6.1  Areas Between Curves 431

We use the Midpoint Rule with n − 4 intervals, so that Dt − 4. The midpoints of 
the intervals are t1 − 2, t2 − 6, t3 − 10, and t4 − 14. We estimate the distance between 
the cars after 16 seconds as follows:

 y16

0
 svA 2 vBd dt < Dt f13 1 23 1 28 1 29g

  − 4s93d − 372 ft  Q

EXAMPLE 5  Figure 9 is an example of a pathogenesis curve for a measles infection. 
It shows how the disease develops in an individual with no immunity after the measles 
virus spreads to the bloodstream from the respiratory tract.
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The patient becomes infectious to others once the concentration of infected cells 
becomes great enough, and he or she remains infectious until the immune system 
manages to prevent further transmission. However, symptoms don’t develop until the 
“amount of infection” reaches a particular threshold. The amount of infection needed 
to develop symptoms depends on both the concentration of infected cells and time, 
and corresponds to the area under the pathogenesis curve until symptoms appear. (See 
Exercise 5.1.19.)
(a) The pathogenesis curve in Figure 9 has been modeled by f std − 2tst 2 21dst 1 1d. 
If infectiousness begins on day t1 − 10 and ends on day t2 − 18, what are the corre-
sponding concentration levels of infected cells?
(b) The level of infectiousness for an infected person is the area between N − f std and 
the line through the points P1st1, f st1dd and P2st2, f st2dd, measured in (cellsymL) ? days. 
(See Figure 10.) Compute the level of infectiousness for this particular patient.

SOLUTION
(a) Infectiousness begins when the concentration reaches f s10d − 1210 cellsymL and 
ends when the concentration reduces to f s18d − 1026 cellsymL.

FIGURE 9 
Measles pathogenesis curve 

Source: J. M. Heffernan et al., “An In-Host Model 
of Acute Infection: Measles as a Case Study,” 

Theoretical Population Biology  
73 (2008): 134–47.
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432 CHAPTER 6  Applications of Integration

(b) The line through P1 and P2 has slope 1026 2 1210
18 2 10 − 2184

8 − 223 and equation 
N 2 1210 − 223st 2 10d    &?    N − 223t 1 1440. The area between f  and this 
line is

y18

10
 f f std 2 s223t 1 1440dg dt − y18

10
 s2t 3 1 20t 2 1 21t 1 23t 2 1440ddt

 − y18

10
 s2t 3 1 20t 2 1 44t 2 1440ddt

 −F2
t 4

4
1 20 

t 3

3
1 44 

t 2

2
2 1440tG18

10

 − 26156 2 s280331
3 d < 1877

Thus the level of infectiousness for this patient is about 1877 (cellsymL) ? days. Q

If we are asked to find the area between the curves y − f sxd and y − tsxd where 
f sxd > tsxd for some values of x but tsxd > f sxd for other values of x, then we split the 
given region S into several regions S1, S2, . . . with areas A1, A2, . . . as shown in Fig-
ure 11. We then define the area of the region S to be the sum of the areas of the smaller 
regions S1, S2, . . . , that is, A − A1 1 A2 1 ∙ ∙ ∙. Since

| f sxd 2 tsxd | − Hf sxd 2 tsxd
tsxd 2 f sxd

when f sxd > tsxd
when tsxd > f sxd

we have the following expression for A.

3   The area between the curves y − f sxd and y − tsxd and between x − a and 
x − b is

A − yb

a
| f sxd 2 tsxd | dx

When evaluating the integral in (3), however, we must still split it into integrals cor-
responding to A1, A2, . . . .

EXAMPLE 6  Find the area of the region bounded by the curves y − sin x, y − cos x, 
x − 0, and x − !y2.

SOLUTION The points of intersection occur when sin x − cos x, that is, when x − !y4 
(since 0 < x < !y2). The region is sketched in Figure 12. 
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FIGURE 11 

FIGURE 12 
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 SECTION 6.1  Areas Between Curves 433

Observe that cos x > sin x when 0 < x < !y4 but sin x > cos x when 
!y4 < x < !y2. Therefore the required area is

 A − y!y2

0
 | cos x 2 sin x | dx − A1 1 A2

 − y!y4

0
 scos x 2 sin xd dx 1 y!y2

!y4
 ssin x 2 cos xd dx

 − fsin x 1 cos xg0

!y4
1 f2cos x 2 sin xg!y4

!y2

 − S 1

s2
1

1

s2
2 0 2 1D 1 S20 2 1 1

1

s2
1

1

s2D
 − 2s2 2 2

In this particular example we could have saved some work by noticing that the 
region is symmetric about x − !y4 and so

 A − 2A1 − 2 y!y4

0
 scos x 2 sin xd dx Q

Some regions are best treated by regarding x as a function of y. If a region is bounded 
by curves with equations x − f syd, x − tsyd, y − c, and y − d, where f  and t are con-
tinuous and f syd > tsyd for c < y < d (see Figure 13), then its area is

A − yd

c
 f f syd 2 tsydg dy

If we write xR for the right boundary and xL for the left boundary, then, as Fig ure 14 
illustrates, we have

A − yd

c
 sxR 2 xLd dy

Here a typical approximating rectangle has dimensions xR 2 xL and Dy.

EXAMPLE 7  Find the area enclosed by the line y − x 2 1 and the parabola 
y 2 − 2x 1 6.

SOLUTION By solving the two equations we find that the points of intersection are 
s21, 22d and s5, 4d. We solve the equation of the parabola for x and notice from  
Fig ure 15 that the left and right boundary curves are

xL − 1
2 y 2 2 3    and    xR − y 1 1

x
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FIGURE 13 
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434 CHAPTER 6  Applications of Integration

We must integrate between the appropriate y-values, y − 22 and y − 4. Thus

 A − y4

22
 sxR 2 xLd dy − y4

22
 fsy 1 1d 2 (1

2 y 2 2 3)g dy

 − y4

22
 (21

2 y 2 1 y 1 4) dy

 − 2
1
2

 S  y 3

3 D 1
 y 2

2
1 4yG

22

4

 − 21
6 s64d 1 8 1 16 2 (4

3 1 2 2 8) − 18 Q

NOTE We could have found the area in Example 7 by integrating with respect to x  
instead of y, but the calculation is much more involved. Because the bottom boundary 
consists of two different curves, it would have meant splitting the region in two and 
computing the areas labeled A1 and A2 in Figure 16. The method we used in Example 7 
is much easier.FIGURE 16 
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1–4 Find the area of the shaded region.

 1. 2.

x

y

x

y
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y=1/x

x

y=´
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5–12 Sketch the region enclosed by the given curves. Decide 
whether to integrate with respect to x or y. Draw a typical approxi- 
mating rectangle and label its height and width. Then find the area 
of the region.

 5. y − e x, y − x 2 2 1, x − 21, x − 1

 6. y − sin x,  y − x, x − !y2, x − !

 7. y − sx 2 2d2,  y − x

 8. y − x 2 2 4x,   y − 2x

 9. y − 1yx, y − 1yx 2, x − 2

 10. y − sin x,  y − 2xy!,  x > 0

 11. x − 1 2 y 2,  x − y 2 2 1

 12. 4x 1 y 2 − 12,  x − y

13–28 Sketch the region enclosed by the given curves and find 
its area.

 13. y − 12 2 x 2,  y − x 2 2 6

 14. y − x 2,  y − 4x 2 x 2

 15. y − sec2x,  y − 8 cos x,  2!y3 < x < !y3

 16. y − cos x,  y − 2 2 cos x,  0 < x < 2!

 17. x − 2y 2,  x − 4 1 y 2

 18. y − sx 2 1 ,  x 2 y − 1

 19. y − cos !x,  y − 4x2 2 1

 20. x − y 4,  y − s2 2 x ,  y − 0

 21. y − tan x,  y − 2 sin x,  2!y3 < x < !y3

 22. y − x 3,  y − x

 23. y − s3 2x ,  y − 1
8 x 2,  0 < x < 6

 24. y − cos x,  y − 1 2 cos x,  0 < x < !

 25. y − x4,  y − 2 2 | x |
 26. y − sinh x, y − e2x,    x − 0,    x − 2

 27. y − 1yx,  y − x,  y − 1
4 x,  x . 0

 28. y − 1
4 x 2,  y − 2x2,  x 1 y − 3,  x > 0
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 45.  Use a computer algebra system to find the exact area 
enclosed by the curves y − x 5 2 6x 3 1 4x and y − x.

 46.  Sketch the region in the xy-plane defined by the inequali-
ties x 2 2y 2 > 0, 1 2 x 2 | y | > 0 and find its area.

 47.  Racing cars driven by Chris and Kelly are side by side at 
the start of a race. The table shows the velocities of each 
car (in miles per hour) during the first ten seconds of the 
race. Use the Midpoint Rule to estimate how much farther 
Kelly travels than Chris does during the first ten seconds.

t vC vK t vC vK

0 0 0  6 69 80
1 20 22  7 75 86
2 32 37  8 81 93
3 46 52  9 86 98
4 54 61 10 90 102
5 62 71

 48.  The widths (in meters) of a kidney-shaped swimming pool 
were measured at 2-meter intervals as indicated in the fig-
ure. Use the Midpoint Rule to estimate the area of the pool.

6.2

5.0
7.2

6.8 5.6 4.8
4.8

 49.  A cross-section of an airplane wing is shown. Measure-
ments of the thickness of the wing, in centimeters, at 
20-centimeter intervals are 5.8, 20.3, 26.7, 29.0, 27.6,  
27.3, 23.8, 20.5, 15.1, 8.7, and 2.8. Use the Midpoint Rule 
to estimate the area of the wing’s cross-section.

200 cm

 50.  If the birth rate of a population is bstd − 2200e0.024 t people 
per year and the death rate is dstd − 1460e0.018 t people per 
year, find the area between these curves for 0 < t < 10. 
What does this area represent?

 51.  In Example 5, we modeled a measles pathogenesis curve 
by a function f. A patient infected with the measles virus 
who has some immunity to the virus has a pathogenesis 
curve that can be modeled by, for instance, tstd − 0.9 f std.

 (a)  If the same threshold concentration of the virus is 
required for infectiousness to begin as in Example 5, 
on what day does this occur?

CAS

;

 29.  The graphs of two functions are shown with the areas of the 
regions between the curves indicated.

 (a)  What is the total area between the curves for 0 < x < 5?
 (b)  What is the value of y5

0  f f sxd 2 tsxdg dx?

x

y

0 1 2 3 4 5

f

12
27

g

30–32 Sketch the region enclosed by the given curves and find 
its area.

 30. y −
x

s1 1 x 2
,  y −

x

s9 2 x 2
,  x > 0

 31. y −
x

1 1 x 2 ,  y −
x 2

1 1 x 3

 32. y −
ln x

x
,  y −

sln xd2

x

33–34 Use calculus to find the area of the triangle with the given 
vertices.

 33. s0, 0d,  s3, 1d,  s1, 2d

 34. s2, 0d,  s0, 2d,  s21, 1d

35–36 Evaluate the integral and interpret it as the area of a 
region. Sketch the region.

 35. y!y2

0
 | sin x 2 cos 2x | dx 36.   y1

21
 | 3 x 2 2 x | dx

37–40 Use a graph to find approximate x-coordinates of the 
points of intersection of the given curves. Then find (approxi-
mately) the area of the region bounded by the curves.

 37. y − x sinsx 2d,  y − x 4, x > 0

 38. y −
x

sx 2 1 1d2 ,  y − x 5 2 x,  x > 0

 39. y − 3x 2 2 2x,  y − x 3 2 3x 1 4

 40. y − 1.3x,  y − 2sx 

41–44 Graph the region between the curves and use your 
calculator to compute the area correct to five decimal places.

 41. y −
2

1 1 x 4 ,  y − x 2 42. y − e12x2
,  y − x 4

 43. y − tan2 x,  y − sx   44. y − cos x,  y − x 1 2 sin4x

;

;

;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



436 CHAPTER 6  Applications of Integration

How is it possible to measure the distribution of income among the inhabitants of a given 
country? One such measure is the Gini index, named after the Italian economist Corrado Gini, 
who first devised it in 1912.

We first rank all households in a country by income and then we compute the percentage 
of households whose income is at most a given percentage of the country’s total income. We 
define a Lorenz curve y − Lsxd on the interval f0, 1g by plotting the point say100, by100d 
on the curve if the bottom a% of households receive at most b% of the total income. For 
instance, in Figure 1 (on page 437) the point s0.4, 0.12d is on the Lorenz curve for the United 
States in 2010 because the poorest 40% of the population received just 12% of the total 
income. Likewise, the bottom 80% of the population received 50% of the total income, so 
the point s0.8, 0.5d lies on the Lorenz curve. (The Lorenz curve is named after the American 
economist Max Lorenz.)

 (b)  Let P3 be the point on the graph of t where infectious-
ness begins. It has been shown that infectiousness ends 
at a point P4 on the graph of t where the line through 
P3, P4 has the same slope as the line through P1, P2 in 
Example 5(b). On what day does infectiousness end?

 (c)  Compute the level of infectiousness for this patient.

 52.  The rates at which rain fell, in inches per hour, in two 
different locations t hours after the start of a storm 
are given by f std − 0.73t 3 2 2t 2 1 t 1 0.6 and 
tstd − 0.17t 2 2 0.5t 1 1.1. Compute the area between 
the graphs for 0 < t < 2 and interpret your result in this 
context.

 53.  Two cars, A and B, start side by side and accelerate from 
rest. The figure shows the graphs of their velocity functions.

 (a) Which car is ahead after one minute? Explain.
 (b) What is the meaning of the area of the shaded region?
 (c) Which car is ahead after two minutes? Explain.
 (d)  Estimate the time at which the cars are again side by 

side.

0

A

B
 21

√

t (min)

 54.  The figure shows graphs of the marginal revenue function 
R9 and the marginal cost function C9 for a manufacturer. 
[Recall from Section 4.7 that Rsxd and Csxd represent the 
revenue and cost when x units are manufactured. Assume 
that R and C are measured in thousands of dollars.] What 

;

is the meaning of the area of the shaded region? Use the 
Midpoint Rule to estimate the value of this quantity.

Cª(x)

y

x0 10050

1

2

3
Rª(x)

 55.  The curve with equation y 2 − x 2sx 1 3d is called Tschirn-
hausen’s cubic. If you graph this curve you will see that 
part of the curve forms a loop. Find the area enclosed by the 
loop.

 56.  Find the area of the region bounded by the parabola y − x 2, 
the tangent line to this parabola at s1, 1d, and the x-axis.

 57.  Find the number b such that the line y − b divides the 
region bounded by the curves y − x 2 and y − 4 into two 
regions with equal area.

 58. (a)  Find the number a such that the line x − a bisects the 
area under the curve y − 1yx 2, 1 < x < 4.

 (b)  Find the number b such that the line y − b bisects the 
area in part (a).

 59.  Find the values of c such that the area of the region bounded 
by the parabolas y − x 2 2 c 2 and y − c 2 2 x 2 is 576.

 60.  Suppose that 0 , c , !y2. For what value of c is the 
area of the region enclosed by the curves y − cos x, 
y − cossx 2 cd, and x − 0 equal to the area of the region 
enclosed by the curves y − cossx 2 cd, x − !, and y − 0?

 61.  For what values of m do the line y − mx and the curve 
y − xysx 2 1 1d enclose a region? Find the area of the region.

;
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Figure 2 shows some typical Lorenz curves. They all pass through the points s0, 0d and 
s1, 1d and are concave upward. In the extreme case Lsxd − x, society is perfectly egalitarian: the 
poorest a% of the population receives a% of the total income and so everybody receives the 
same income. The area between a Lorenz curve y − Lsxd and the line y − x measures how 
much the income distribution differs from absolute equality. The Gini index (sometimes  
called the Gini coefficient or the coefficient of inequality) is the area between the Lorenz 
curve and the line y − x (shaded in Figure 3) divided by the area under y − x.

1. (a)  Show that the Gini index G is twice the area between the Lorenz curve and the line 
y − x, that is,

G − 2 y1

0
 fx 2 Lsxdg dx

 (b)   What is the value of G for a perfectly egalitarian society (everybody has the same 
income)? What is the value of G for a perfectly totalitarian society (a single person 
receives all the income?)

2.  The following table (derived from data supplied by the US Census Bureau) shows  
values of the Lorenz function for income distribution in the United States for the  
year 2010.

x 0.0 0.2 0.4 0.6 0.8 1.0

Lsxd 0.000 0.034 0.120 0.266 0.498 1.000

 (a)  What percentage of the total US income was received by the richest 20% of the  
population in 2010?

 (b)  Use a calculator or computer to fit a quadratic function to the data in the table. Graph 
the data points and the quadratic function. Is the quadratic model a reasonable fit?

 (c)  Use the quadratic model for the Lorenz function to estimate the Gini index for the 
United States in 2010.

3.  The following table gives values for the Lorenz function in the years 1970, 1980, 1990,  
and 2000. Use the method of Problem 2 to estimate the Gini index for the United States  
for those years and compare with your answer to Problem 2(c). Do you notice a trend?

x 0.0 0.2 0.4 0.6 0.8 1.0

1970 0.000 0.041 0.149 0.323 0.568 1.000

1980 0.000 0.042 0.144 0.312 0.559 1.000

1990 0.000 0.038 0.134 0.293 0.530 1.000

2000 0.000 0.036 0.125 0.273 0.503 1.000

4.  A power model often provides a more accurate fit than a quadratic model for a Lorenz  
function. If you have a computer with Maple or Mathematica, fit a power function 
s y − ax kd to the data in Problem 2 and use it to estimate the Gini index for the United 
States in 2010. Compare with your answer to parts (b) and (c) of Problem 2.

CAS

FIGURE 2
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FIGURE 1  
Lorenz curve for the US in 2010
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438 CHAPTER 6  Applications of Integration

In trying to find the volume of a solid we face the same type of problem as in finding 
areas. We have an intuitive idea of what volume means, but we must make this idea pre-
cise by using calculus to give an exact definition of volume.

We start with a simple type of solid called a cylinder (or, more precisely, a right cyl-
in der). As illustrated in Figure 1(a), a cylinder is bounded by a plane region B1, called the 
base, and a congruent region B2 in a parallel plane. The cylinder consists of all points on 
line segments that are perpendicular to the base and join B1 to B2. If the area of the base 
is A and the height of the cylinder (the distance from B1 to B2) is h, then the volume V  of 
the cylinder is defined as

V − Ah

In particular, if the base is a circle with radius r, then the cylinder is a circular cylinder 
with volume V − !r 2h [see Figure 1(b)], and if the base is a rectangle with length l and 
width w, then the cylinder is a rectangular box (also called a rectangular parallelepiped) 
with volume V − lwh [see Figure 1(c)].

(a) Cylinder V=Ah

h

B¡

B™

(b) Circular cylinder V=πr@h

h

r

(c) Rectangular box V=lwh

h

l

w

For a solid S that isn’t a cylinder we first “cut” S into pieces and approximate each 
piece by a cylinder. We estimate the volume of S by adding the volumes of the cylinders. 
We arrive at the exact volume of S through a limiting process in which the number of 
pieces becomes large.

We start by intersecting S with a plane and obtaining a plane region that is called a 
cross-section of S. Let Asxd be the area of the cross-section of S in a plane Px perpendic-
ular to the x-axis and passing through the point x, where a < x < b. (See Figure 2. 
Think of slicing S with a knife through x and computing the area of this slice.) The cross-
sectional area Asxd will vary as x increases from a to b.

y

x0 a bx

S

A(a)
A(b)

A(x)

Px

FIGURE 1 

FIGURE 2 
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 SECTION 6.2  Volumes 439

Let’s divide S into n “slabs” of equal width Dx by using the planes Px1, Px2 , . . . to slice 
the solid. (Think of slicing a loaf of bread.) If we choose sample points xi* in fxi21, xig, 
we can approximate the ith slab Si (the part of S that lies between the planes Pxi21 and Pxi)  
by a cylinder with base area Asxi*d and “height” Dx. (See Figure 3.)

xi-1 xi

y

0 xx*i

Îx

S

a b

y

0 xx¶=ba=x¸ ⁄ x™ ‹ x¢ x∞ xß

The volume of this cylinder is Asxi*d Dx, so an approximation to our intuitive concep-
tion of the volume of the ith slab Si is

VsSid < Asxi*d Dx

Adding the volumes of these slabs, we get an approximation to the total volume (that is, 
what we think of intuitively as the volume): 

V < o
n

i−1
 Asxi*d Dx

This approximation appears to become better and better as n l `. (Think of the slices 
as becoming thinner and thinner.) Therefore we define the volume as the limit of these 
sums as n l `. But we recognize the limit of Riemann sums as a definite integral and 
so we have the following definition.

 Definition of Volume Let S be a solid that lies between x − a and x − b. If the 
cross-sectional area of S in the plane Px, through x and perpendicular to the x-axis, 
is Asxd, where A is a continuous function, then the volume of S is

V − lim
n l `

 o
n

i−1
 Asxi*d Dx − yb

a
 Asxd dx

When we use the volume formula V − yb
a  Asxd dx, it is important to remember that 

Asxd is the area of a moving cross-section obtained by slicing through x perpendicular 
to the x-axis.

Notice that, for a cylinder, the cross-sectional area is constant: Asxd − A for all x. So 
our definition of volume gives V − yb

a  A dx − Asb 2 ad; this agrees with the formula 
V − Ah.

EXAMPLE 1  Show that the volume of a sphere of radius r is V − 4
3 !r 3.

SOLUTION If we place the sphere so that its center is at the origin, then the plane Px 
intersects the sphere in a circle whose radius (from the Pythagorean Theorem) is 

FIGURE 3 

It can be proved that this definition is 
independent of how S is situated with 
respect to the x-axis. In other words, 
no matter how we slice S with parallel 
planes, we always get the same answer 
for V.
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440 CHAPTER 6  Applications of Integration

y − sr 2 2 x 2 . (See Figure 4.) So the cross-sectional area is

Asxd − !y 2 − !sr 2 2 x 2 d

Using the definition of volume with a − 2r and b − r, we have

 V − yr

2r
 Asxd dx − yr

2r
 !sr 2 2 x 2 d dx

 − 2! yr

0
 sr 2 2 x 2 d dx       (The integrand is even.)

 − 2!Fr 2x 2
x 3

3 G0

r

− 2!Sr 3 2
r 3

3 D
 − 4

3 !r 3  Q

Figure 5 illustrates the definition of volume when the solid is a sphere with radius  
r − 1. From the result of Example 1, we know that the volume of the sphere is 4

3!,  
which is approximately 4.18879. Here the slabs are circular cylinders, or disks, and the 
three parts of Figure 5 show the geometric interpretations of the Riemann sums

o
n

i−1
 Asxid Dx − o

n

i−1
 !s12 2 xi

2d Dx

when n − 5, 10, and 20 if we choose the sample points xi* to be the midpoints xi. Notice  
that as we increase the number of approximating cylinders, the corresponding Riemann 
sums become closer to the true volume.

 (a) Using 5 disks, VÅ4.2726  (b) Using 10 disks, VÅ4.2097  (c) Using 20 disks, VÅ4.1940

EXAMPLE 2  Find the volume of the solid obtained by rotating about the x-axis the 
region under the curve y − sx   from 0 to 1. Illustrate the definition of volume by 
sketching a typical approximating cylinder.

SOLUTION The region is shown in Figure 6(a). If we rotate about the x-axis, we get 
the solid shown in Figure 6(b). When we slice through the point x, we get a disk with 
radius sx . The area of this cross-section is

Asxd − ! (sx )2 − !x

and the volume of the approximating cylinder (a disk with thickness Dx) is

Asxd Dx − !x Dx

FIGURE 4 

y

0_r
x
r

r y

x

FIGURE 5  
Approximating the volume 
of a sphere with radius 1

TEC  Visual 6.2A shows an animation 
of Figure 5.
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The solid lies between x − 0 and x − 1, so its volume is

 V − y1

0
 Asxd dx − y1

0
 !x dx − ! 

x 2

2 G0

1

−
!

2
 Q

(a)

x0 x

y
y=œ„x

1

œ„x

(b)

Îx

0 x

y

1

  

EXAMPLE 3  Find the volume of the solid obtained by rotating the region bounded by 
y − x 3, y − 8, and x − 0 about the y-axis.

SOLUTION The region is shown in Figure 7(a) and the resulting solid is shown in Fig-
ure 7(b). Because the region is rotated about the y-axis, it makes sense to slice the solid 
perpendicular to the y-axis (obtaining circular cross-sections) and therefore to integrate 
with respect to y. If we slice at height y, we get a circular disk with radius x, where 
x − s3 y . So the area of a cross-section through y is

Asyd − !x 2 − !(s3 y )2 − !y 2y3

and the volume of the approximating cylinder pictured in Figure 7(b) is

Asyd Dy − !y 2y3 Dy

Since the solid lies between y − 0 and y − 8, its volume is

 V − y8

0
 Asyd dy − y8

0
 !y 2y3 dy − !f3

5 y 5y3 g0

8 −
96!

5

�

y=8

x=0
y=˛

or

(a)

0

y (x, y)Îy

(b)

x

y

0 x

y

8

x=œ„y3

x
x=œ„y3

� Q

Did we get a reasonable answer in 
Example 2? As a check on our work, 
let’s replace the given region by a 
square with base f0, 1g and height 1. If 
we rotate this square, we get a cylinder 
with radius 1, height 1, and volume 
! ? 12 ? 1 − !. We computed that the 
given solid has half this volume. That 
seems about right.

FIGURE 6 

FIGURE 7
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442 CHAPTER 6  Applications of Integration

EXAMPLE 4  The region 5 enclosed by the curves y − x and y − x 2 is rotated about 
the x-axis. Find the volume of the resulting solid.

SOLUTION The curves y − x and y − x 2 intersect at the points s0, 0d and s1, 1d. The  
region between them, the solid of rotation, and a cross-section perpendicular to the  
x-axis are shown in Figure 8. A cross-section in the plane Px has the shape of a washer  
(an annular ring) with inner radius x 2 and outer radius x, so we find the cross-sectional 
area by subtracting the area of the inner circle from the area of the outer circle:

Asxd − !x 2 2 !sx 2 d2 − !sx 2 2 x 4 d

Therefore we have

 V − y1

0
 Asxd dx − y1

0
 !sx 2 2 x 4 d dx

 − !F x 3

3
2

x 5

5 G0

1

−
2!

15

(1, 1)

y=≈
y=x

(b)(a) (c)

x
≈

A(x)

x

y

(0, 0) x

y

0

  Q

EXAMPLE 5  Find the volume of the solid obtained by rotating the region in Example 4 
about the line y − 2.

SOLUTION The solid and a cross-section are shown in Figure 9. Again the cross-section 
is a washer, but this time the inner radius is 2 2 x and the outer radius is 2 2 x 2.

0

y=2 y=2

4

2

x1x

y=≈y=x

y

xx

2-≈

≈

2-x

x

TEC Visual 6.2B shows how solids 
of revolution are formed.

FIGURE 8 

FIGURE 9
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The cross-sectional area is

Asxd − !s2 2 x 2 d2 2 !s2 2 xd2

and so the volume of S is

 V − y1

0
 Asxd dx

 − ! y1

0
 fs2 2 x 2 d2 2 s2 2 xd2 g dx

 − ! y1

0
 sx 4 2 5x 2 1 4xd dx

 − !F x 5

5
2 5 

x 3

3
1 4 

x 2

2 G0

1

 −
8!

15  Q

The solids in Examples 1–5 are all called solids of revolution because they are 
obtained by revolving a region about a line. In general, we calculate the volume of a 
solid of revo lution by using the basic defining formula

V − yb

a
 Asxd dx or V − yd

c
 Asyd dy

and we find the cross-sectional area Asxd or Asyd in one of the following ways:

�  If the cross-section is a disk (as in Examples 1–3), we find the radius of the 
disk (in terms of x or y) and use

A − !sradiusd2

�  If the cross-section is a washer (as in Examples 4 and 5), we find the inner 
radius r in and outer radius rout from a sketch (as in Figures 8, 9, and 10) and 
compute the area of the washer by subtracting the area of the inner disk from 
the area of the outer disk:

A − ! souter radiusd2 2 ! sinner radiusd2

rin
rout

The next example gives a further illustration of the procedure.

FIGURE 10 
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444 CHAPTER 6  Applications of Integration

EXAMPLE 6  Find the volume of the solid obtained by rotating the region in  
Example 4 about the line x − 21.

SOLUTION Figure 11 shows a horizontal cross-section. It is a washer with inner radius 
1 1 y and outer radius 1 1 sy  , so the cross-sectional area is

 Asyd − !souter radiusd2 2 !sinner radiusd2

 − ! (1 1 sy )2 2 !s1 1 yd2

The volume is

 V − y1

0
 Asyd dy − ! y1

0
 fs1 1 sy d2 2 s1 1 yd2 g dy

− ! y1

0
 s2sy 2 y 2 y 2 d dy − !F 4y 3y2

3
2

 y 2

2
2

 y 3

3 G0

1

−
!

2

 x=_1

y

y

x0

x=œ„y

y

x=y

y

1 y
1+y

1+œ„

 Q

We now find the volumes of three solids that are not solids of revolution.

EXAMPLE 7  Figure 12 shows a solid with a circular base of radius 1. Parallel cross- 
sections perpendicular to the base are equilateral triangles. Find the volume of the solid.

SOLUTION Let’s take the circle to be x 2 1 y 2 − 1. The solid, its base, and a typical 
cross-section at a distance x from the origin are shown in Figure 13.

Since B lies on the circle, we have y − s1 2 x 2  and so the base of the triangle ABC 
is | AB | − 2y − 2s1 2 x 2 . Since the triangle is equilateral, we see from Figure 13(c) 

TEC Visual 6.2C shows how the  
solid in Figure 12 is generated.

FIGURE 12  
Computer-generated picture 
of the solid in Example 7

y

x

FIGURE 13

FIGURE 11

y y
60° 60° BA

C

œ„3y

(c) A cross-section

A

B(x, y)y=œ„„„„„„1-≈

(b) Its base

x

y

0

y

x

(a) The solid

0

A

x

B

1_1 x

y
C
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that its height is s3 y − s3s1 2 x 2 . The cross-sectional area is therefore

Asxd − 1
2 ? 2s1 2 x 2 ? s3 s1 2 x 2 − s3  s1 2 x 2 d

and the volume of the solid is

 V − y1

21
 Asxd dx − y1

21
 s3  s1 2 x 2 d dx

  − 2 y1

0
 s3  s1 2 x 2 d dx − 2s3 Fx 2

x 3

3 G0

1

−
4s3 

3  Q

EXAMPLE 8  Find the volume of a pyramid whose base is a square with side L and 
whose height is h.

SOLUTION We place the origin O at the vertex of the pyramid and the x-axis along its 
central axis as in Figure 14. Any plane Px that passes through x and is perpendicular to 
the x-axis intersects the pyramid in a square with side of length s, say. We can express s 
in terms of x by observing from the similar triangles in Figure 15 that

x
h

−
sy2
Ly2

−
s
L

and so s − Lxyh. [Another method is to observe that the line OP has slope Lys2hd and 
so its equation is y − Lxys2hd.] Therefore the cross-sectional area is

Asxd − s 2 −
L2

h 2  x 2

O
x h s L

O

P

x

y

x

y

x

h

FIGURE 14 FIGURE 15

The pyramid lies between x − 0 and x − h, so its volume is

  V − yh

0
 Asxd dx − yh

0
 
L2

h 2  x 2 dx −
L2

h 2  
x 3

3 G0

h

−
L2h
3

 Q

NOTE We didn’t need to place the vertex of the pyramid at the origin in Example 8. 
We did so merely to make the equations simple. If, instead, we had placed the center of 
the base at the origin and the vertex on the positive y-axis, as in Figure 16, you can verify 
that we would have obtained the integral

V − yh

0
 
L2

h 2  sh 2 yd2 dy −
L2h
3

0

y

h

x

y

FIGURE 16 
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446 CHAPTER 6  Applications of Integration

EXAMPLE 9  A wedge is cut out of a circular cylinder of radius 4 by two planes. One 
plane is perpendicular to the axis of the cylinder. The other intersects the first at an 
angle of 30° along a diameter of the cylinder. Find the volume of the wedge.

SOLUTION If we place the x-axis along the diameter where the planes meet, then the  
base of the solid is a semicircle with equation y − s16 2 x 2 , 24 < x < 4. A cross- 
section perpendicular to the x-axis at a distance x from the origin is a triangle ABC,  
as shown in Figure 17, whose base is y − s16 2 x 2  and whose height is 
| BC | − y tan 308 − s16 2 x 2 ys3 . So the cross-sectional area is

 Asxd − 1
2 s16 2 x 2 ?

1

s3 
 s16 2 x 2 −

16 2 x 2

2s3 

and the volume is

 V − y4

24
 Asxd dx − y4

24
 
16 2 x 2

2s3 
 dx

 −
1

s3 
 y4

0
 s16 2 x 2 d dx −

1

s3 F16x 2
x 3

3 G0

4

 −
128

3s3 

For another method see Exercise 64. Q

y=œ„„„„„„16-≈

x

y0

A B

C

4

A B

C

y
30°

FIGURE 17 

 1–18 Find the volume of the solid obtained by rotating the region 
bounded by the given curves about the specified line. Sketch the 
region, the solid, and a typical disk or washer.

 1. y − x 1 1, y − 0, x − 0, x − 2;  about the x-axis

 2. y − 1yx, y − 0, x − 1, x − 4;  about the x-axis

 3. y − sx 2 1 , y − 0, x − 5;  about the x-axis

 4. y − e x, y − 0, x − 21, x − 1;  about the x-axis

 5. x − 2sy , x − 0, y − 9;  about the y-axis

 6. 2x − y2, x − 0, y − 4;  about the y-axis

 7. y − x 3, y − x, x > 0;  about the x-axis

 8. y − 6 2 x 2, y − 2;  about the x-axis

 9. y 2 − x, x − 2y;  about the y-axis

 10. x − 2 2 y2, x − y4;  about the y-axis

 11. y − x 2, x − y 2;  about y − 1

 12. y − x3, y − 1, x − 2;  about y − 23

 13. y − 1 1 sec x, y − 3;  about y − 1

 14. y − sin x, y − cos x, 0 < x < !y4;  about y − 21

 15. y − x 3, y − 0, x − 1;  about x − 2

 16. xy − 1,  y − 0, x − 1, x − 2;  about x − 21

 17. x − y 2, x − 1 2 y 2;  about x − 3

 18. y − x, y − 0, x − 2, x − 4;  about x − 1

 19–30 Refer to the figure and find the volume generated by 
rotating the given region about the specified line.

O x

y

T™

T£ T¡

B(1, 1)

A(1, 0)

C(0, 1)

y=œ„x$

 19. 51 about OA 20. 51 about OC

 21. 51 about AB 22. 51 about BC
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 SECTION 6.2  Volumes 447

 44.  A log 10 m long is cut at 1-meter intervals and its cross- 
sectional areas A (at a distance x from the end of the log) 
are listed in the table. Use the Midpoint Rule with n − 5 
to estimate the volume of the log.

x  (m) A sm2d x  (m) A sm2d
0 0.68  6 0.53
1 0.65  7 0.55
2 0.64  8 0.52
3 0.61  9 0.50
4 0.58 10 0.48
5 0.59

 45. (a)  If the region shown in the figure is rotated about the 
x-axis to form a solid, use the Midpoint Rule with 
n − 4 to estimate the volume of the solid.

0 4

4

102 86

2

y

x

 (b)  Estimate the volume if the region is rotated about 
the y-axis. Again use the Midpoint Rule with n − 4.

 46. (a)  A model for the shape of a bird’s egg is obtained by 
rotating about the x-axis the region under the graph of 

f sxd − sax 3 1 bx 2 1 cx 1 dds1 2 x 2 

  Use a CAS to find the volume of such an egg.
 (b)  For a red-throated loon, a − 20.06, b − 0.04, 

c − 0.1, and d − 0.54. Graph f  and find the volume 
of an egg of this species.

47–61 Find the volume of the described solid S.

 47. A right circular cone with height h and base radius r

 48.  A frustum of a right circular cone with height h, lower 
base radius R, and top radius r

R

h

r

 49. A cap of a sphere with radius r and height h

r

h

CAS

 23. 52 about OA 24. 52 about OC

 25. 52 about AB 26. 52 about BC

 27. 53 about OA 28. 53 about OC

 29. 53 about AB 30. 53 about BC

 31–34 Set up an integral for the volume of the solid obtained by 
rotating the region bounded by the given curves about the speci-
fi ed line. Then use your calculator to evaluate the integral cor-
rect to five decimal places.

 31. y − e2x 2
, y − 0, x − 21, x − 1

 (a) About the x-axis (b) About y − 21

 32. y − 0, y − cos2 x, 2!y2 < x < !y2
 (a) About the x-axis (b) About y − 1

 33. x 2 1 4y 2 − 4
 (a) About y − 2 (b) About x − 2

 34. y − x 2, x 2 1 y 2 − 1, y > 0
 (a) About the x-axis (b) About the y-axis

35–36 Use a graph to find approximate x-coordinates of the 
points of intersection of the given curves. Then use your calcula-
tor to find (approxi mately) the volume of the solid obtained by 
rotating about the x-axis the region bounded by these curves.

 35. y − lnsx6 1 2d ,  y − s3 2 x 3 

 36. y − 1 1 xe2x3
,   y − arctan x 2

37–38 Use a computer algebra system to find the exact volume 
of the solid obtained by rotating the region bounded by the 
given curves about the specified line.

 37. y − sin2 x, y − 0, 0 < x < !;  about y − 21

 38. y − x, y − xe12xy2;  about y − 3

 39–42 Each integral represents the volume of a solid. Describe 
the solid.

 39. ! y!

0
 sin x dx 40. ! y1

21
 s1 2 y 2d2 dy

 41. ! y1

0
 sy 4 2 y 8 d dy 42. ! y4

1
 f32 2 (3 2 sx  )2g dx

 43.  A CAT scan produces equally spaced cross-sectional views 
of a human organ that provide information about the organ 
otherwise obtained only by surgery. Suppose that a CAT 
scan of a human liver shows cross-sections spaced 1.5 cm 
apart. The liver is 15 cm long and the cross-sectional areas, 
in square centimeters, are 0, 18, 58, 79, 94, 106, 117, 128, 
63, 39, and 0. Use the Midpoint Rule to estimate the volume 
of the liver.

;

CAS
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448 CHAPTER 6  Applications of Integration

 50.  A frustum of a pyramid with square base of side b, square top 
of side a, and height h

a

b

What happens if a − b? What happens if a − 0?

 51.  A pyramid with height h and rectangular base with dimen-
sions b and 2b

 52.  A pyramid with height h and base an equilateral triangle with 
side a (a tetrahedron)

a

a
a

 53.  A tetrahedron with three mutually perpendicular faces and 
three mutually perpendicular edges with lengths 3 cm, 4 cm, 
and 5 cm

 54.  The base of S is a circular disk with radius r. Parallel cross-
sections perpendicular to the base are squares.

 55.  The base of S is an elliptical region with boundary curve 
9x 2 1 4y 2 − 36. Cross-sections perpendicular to the x-axis 
are isosceles right triangles with hypotenuse in the base.

 56.  The base of S is the triangular region with vertices s0, 0d, 
s1, 0d, and s0, 1d. Cross-sections perpendicular to the y-axis 
are equilateral triangles.

 57.  The base of S is the same base as in Exercise 56, but cross-
sections perpendicular to the x-axis are squares.

 58.  The base of S is the region enclosed by the parabola
y − 1 2 x 2 and the x-axis. Cross-sections perpendicular to 
the y-axis are squares.

 59.  The base of S is the same base as in Exercise 58, but cross-
sections perpendicular to the x-axis are isosceles triangles 
with height equal to the base.

 60.  The base of S is the region enclosed by y − 2 2 x 2 and the  
x-axis. Cross-sections perpendicular to the y-axis are 
quarter-circles. 

y

x
y=2-≈

 61.  The solid S is bounded by circles that are perpendicular  
to the x-axis, intersect the x-axis, and have centers on the

   parabola y − 1
2s1 2 x 2d, 21 < x < 1.

x

y

x

y

 62.  The base of S is a circular disk with radius r. Parallel cross-
sections perpendicular to the base are isosceles triangles 
with height h and unequal side in the base.

 (a) Set up an integral for the volume of S.
 (b)  By interpreting the integral as an area, find the volume 

of S.

 63. (a)  Set up an integral for the volume of a solid torus (the 
donut-shaped solid shown in the figure) with radii r  
and R.

 (b)  By interpreting the integral as an area, find the volume 
of the torus.

r
R

 64.  Solve Example 9 taking cross-sections to be parallel to the 
line of intersection of the two planes.

 65. (a)  Cavalieri’s Principle states that if a family of parallel 
planes gives equal cross-sectional areas for two solids  
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 SECTION 6.3  Volumes by Cylindrical Shells 449

S1 and S2, then the volumes of S1 and S2 are equal. Prove 
this principle.

 (b)  Use Cavalieri’s Principle to find the volume of the oblique 
cylinder shown in the figure.

h

r

 66.  Find the volume common to two circular cylinders, each with 
radius r, if the axes of the cylinders intersect at right angles.

 

 67.  Find the volume common to two spheres, each with radius r, if 
the center of each sphere lies on the surface of the other sphere.

 68.  A bowl is shaped like a hemisphere with diameter 30 cm. A 
heavy ball with diameter 10 cm is placed in the bowl and water 

is poured into the bowl to a depth of h centimeters. Find the 
volume of water in the bowl.

 69.  A hole of radius r is bored through the middle of a cylinder of 
radius R . r at right angles to the axis of the cylinder. Set up, 
but do not evaluate, an integral for the volume cut out.

 70.  A hole of radius r is bored through the center of a sphere of 
radius R . r. Find the volume of the remaining portion of 
the sphere.

 71.  Some of the pioneers of calculus, such as Kepler and 
Newton, were inspired by the problem of finding the 
volumes of wine barrels. (In fact Kepler published a book 
Stereometria doliorum in 1615 devoted to methods for 
finding the volumes of barrels.) They often approximated 
the shape of the sides by parabolas.

 (a)  A barrel with height h and maximum radius R is con- 
structed by rotating about the x-axis the parabola 
y − R 2 cx 2, 2hy2 < x < hy2, where c is a positive 
constant. Show that the radius of each end of the barrel 
is r − R 2 d, where d − ch 2y4.

 (b) Show that the volume enclosed by the barrel is

V − 1
3 !hs2R2 1 r 2 2 2

5 d 2 d

 72.  Suppose that a region 5 has area A and lies above the x-axis. 
When 5 is rotated about the x-axis, it sweeps out a solid with 
volume V1. When 5 is rotated about the line y − 2k (where 
k is a positive number), it sweeps out a solid with volume V2. 
Express V2 in terms of V1, k, and A.

Some volume problems are very difficult to handle by the methods of the preceding 
section. For instance, let’s consider the problem of finding the volume of the solid 
obtained by rotating about the y-axis the region bounded by y − 2x 2 2 x 3 and y − 0. 
(See Figure 1.) If we slice perpendicular to the y-axis, we get a washer. But to compute 
the inner radius and the outer radius of the washer, we’d have to solve the cubic equation 
y − 2x 2 2 x 3 for x in terms of y ; that’s not easy.

Fortunately, there is a method, called the method of cylindrical shells, that is easier 
to use in such a case. Figure 2 shows a cylindrical shell with inner radius r1, outer radius 

y

x0 2

1
y=2≈-˛

xL=? xR=?

FIGURE 1 r r¡
r™

Îr

h

FIGURE 2
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450 CHAPTER 6  Applications of Integration

r2, and height h. Its volume V  is calculated by subtracting the volume V1 of the inner 
cylinder from the volume V2 of the outer cylinder:

V − V2 2 V1

 − !r 2
2 h 2 !r 2

1 h − !sr 2
2 2 r 2

1 dh

 − !sr2 1 r1dsr2 2 r1dh

 − 2! 
r2 1 r1

2
 hsr2 2 r1d

If we let Dr − r2 2 r1 (the thickness of the shell) and r − 1
2 sr2 1 r1d (the average radius 

of the shell), then this formula for the volume of a cylindrical shell becomes

V − 2!rh Dr1

and it can be remembered as

V − [circumference][height][thickness]

Now let S be the solid obtained by rotating about the y-axis the region bounded by 
y − f sxd [where f sxd > 0], y − 0, x − a,  and x − b, where b . a > 0. (See Figure 3.)

x

y

a b0

y=ƒ

a b x

y

0

y=ƒ

We divide the interval fa, bg into n subintervals fxi21, xig of equal width Dx and let xi 
be the midpoint of the ith subinterval. If the rectangle with base fxi21, xig and height f sxid 
is rotated about the y-axis, then the result is a cylindrical shell with average radius xi , 
height f sxid, and thickness Dx (see Figure 4). So by Formula 1 its volume is

Vi − s2!xidf f sxidg Dx

x

y

a b0

y=ƒ

xi–
a b0 x

y

xi-1
xi

y=ƒ

x

y

a b0

y=ƒ

Therefore an approximation to the volume V  of S is given by the sum of the volumes of  

FIGURE 3

FIGURE 4
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 SECTION 6.3  Volumes by Cylindrical Shells 451

these shells:

V < o
n

i−1
 Vi − o

n

i−1
 2!xi f sxid Dx

This approximation appears to become better as n l `. But, from the definition of an 
inte gral, we know that

lim
n l `

 o
n

i−1
 2!xi f sxid Dx − yb

a
 2!x f sxd dx

Thus the following appears plausible:

2   The volume of the solid in Figure 3, obtained by rotating about the y-axis the 
region under the curve y − f sxd from a to b, is

V − yb

a
 2!x f sxd dx    where 0 < a , b 

The argument using cylindrical shells makes Formula 2 seem reasonable, but later we 
will be able to prove it (see Exercise 7.1.73).

The best way to remember Formula 2 is to think of a typical shell, cut and flattened 
as in Figure 5, with radius x, circumference 2!x, height f sxd, and thickness Dx or dx:

yb

a
   s2!xd  f f sxdg  dx

circumference height thickness

2πx Îx

ƒ

y

xx

x ƒ

This type of reasoning will be helpful in other situations, such as when we rotate 
about lines other than the y-axis.

EXAMPLE 1  Find the volume of the solid obtained by rotating about the y-axis the 
region bounded by y − 2x 2 2 x 3 and y − 0.

SOLUTION From the sketch in Figure 6 we see that a typical shell has radius x, circum-
ference 2!x, and height f sxd − 2x 2 2 x 3. So, by the shell method, the volume is

 V − y2

0
 s2!xd  s2x 2 2 x 3 d  dx

circumference height thickness

 −2! y2

0
 s2x 3 2 x 4 d dx − 2! f1

2 x 4 2 1
5 x 5 g0

2

 − 2!(8 2 32
5 ) − 16

5 !

It can be verified that the shell method gives the same answer as slicing. Q

FIGURE 5 

y

x

2≈-˛

x
x

2

FIGURE 6 
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452 CHAPTER 6  Applications of Integration

y

x

NOTE Comparing the solution of Example 1 with the remarks at the beginning of 
this section, we see that the method of cylindrical shells is much easier than the washer 
method for this problem. We did not have to find the coordinates of the local maximum 
and we did not have to solve the equation of the curve for x in terms of y. However, in 
other examples the methods of the preceding section may be easier.

EXAMPLE 2  Find the volume of the solid obtained by rotating about the y-axis the 
region between y − x and y − x 2.

SOLUTION The region and a typical shell are shown in Figure 8. We see that the shell 
has radius x, circumference 2!x, and height x 2 x 2. So the volume is

 V − y1

0
 s2!xdsx 2 x 2 d dx − 2! y1

0
 sx 2 2 x 3 d dx

  − 2!F x 3

3
2

x 4

4 G0

1

−
!

6
 Q

As the following example shows, the shell method works just as well if we rotate 
about the x-axis. We simply have to draw a diagram to identify the radius and height of 
a shell.

EXAMPLE 3  Use cylindrical shells to find the volume of the solid obtained by rotating 
about the x-axis the region under the curve y − sx   from 0 to 1.

SOLUTION This problem was solved using disks in Example 6.2.2. To use shells we 
relabel the curve y − sx   (in the figure in that example) as x − y 2 in Figure 9. For rota-
tion about the x -axis we see that a typical shell has radius y, circumference 2!y, and 
height 1 2 y 2. So the volume is

 V − y1

0
 s2!yds1 2 y 2 d dy − 2! y1

0
 sy 2 y 3 d dy

 − 2!F  y 2

2
2

 y 4

4 G0

1

−
!

2

In this problem the disk method was simpler. Q

EXAMPLE 4  Find the volume of the solid obtained by rotating the region bounded by 
y − x 2 x 2 and y − 0 about the line x − 2.

FIGURE 7 

Figure 7 shows a computer-generated 
picture of the solid whose volume we 
computed in Example 1.

0 x

y

y=x
y=≈

x

shell
height=x-≈

FIGURE 8

1
y

y

shell
radius=y

shell height=1-¥

0 x

x=1

1

x=¥

¥

FIGURE 9

TEC Visual 6.3 shows how the solid 
and shells in Example 1 are formed.
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 SECTION 6.3  Volumes by Cylindrical Shells 453

SOLUTION Figure 10 shows the region and a cylindrical shell formed by rotation about 
the line x − 2. It has radius 2 2 x, circumference 2!s2 2 xd, and height x 2 x 2.

0

y

x

y=x-≈

0

y

x

x
1 2 3 4

2-x

x=2

The volume of the given solid is

 V − y1

0
 2!s2 2 xdsx 2 x 2 d dx

 − 2! y1

0
 sx 3 2 3x 2 1 2xd dx

  − 2!F x 4

4
2 x 3 1 x 2G

0

1

−
!

2
 Q

Disks and Washers versus Cylindrical Shells
When computing the volume of a solid of revolution, how do we know whether to use 
disks (or washers) or cylindrical shells? There are several considerations to take into 
account: Is the region more easily described by top and bottom boundary curves of the 
form y − f sxd, or by left and right boundaries x − tsyd? Which choice is easier to work 
with? Are the limits of integration easier to find for one variable versus the other? Does 
the region require two separate integrals when using x as the variable but only one inte-
gral in y? Are we able to evaluate the integral we set up with our choice of variable? 

If we decide that one variable is easier to work with than the other, then this dictates 
which method to use. Draw a sample rectangle in the region, corresponding to a cross-
section of the solid. The thickness of the rectangle, either Dx or Dy, corresponds to the 
integration variable. If you imagine the rectangle revolving, it becomes either a disk 
(washer) or a shell.

FIGURE 10

 1.  Let S be the solid obtained by rotating the region shown in the 
figure about the y-axis. Explain why it is awkward to use slicing 
to find the volume V of S. Sketch a typical approximating shell. 
What are its circumference and height? Use shells to find V.

0 x

y

1

y=x(x-1)@

 2.  Let S be the solid obtained by rotating the region shown in the 
figure about the y-axis. Sketch a typical cylindrical shell and 
find its circumference and height. Use shells to find the volume 
of S. Do you think this method is preferable to slicing? Explain.

0 x

y

œ„π

y=sin{≈}
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3–7 Use the method of cylindrical shells to find the volume 
generated by rotating the region bounded by the given curves 
about the y-axis.

 3. y − s3 x ,  y − 0,  x − 1

 4. y − x 3,  y − 0,  x − 1,  x − 2

 5. y − e2x 2
, y − 0, x − 0, x − 1

 6. y − 4x 2 x 2,  y − x

 7. y − x 2,  y − 6x 2 2x 2

 8.   Let V be the volume of the solid obtained by rotating about 
the y-axis the region bounded by y − sx   and y − x 2. Find 
V both by slicing and by cylindrical shells. In both cases 
draw a diagram to explain your method.

9–14 Use the method of cylindrical shells to find the volume of 
the solid obtained by rotating the region bounded by the given 
curves about the x-axis.

 9. xy − 1,  x − 0,  y − 1,  y − 3

 10. y − sx  ,  x − 0,  y − 2

 11. y − x 3y2,  y − 8,  x − 0

 12. x − 23y 2 1 12y 2 9,  x − 0

 13. x − 1 1 sy 2 2d2,  x − 2

 14. x 1 y − 4, x − y2 2 4y 1 4

15–20 Use the method of cylindrical shells to find the volume  
generated by rotating the region bounded by the given curves  
about the specified axis.

 15. y − x 3, y − 8, x − 0;  about x − 3

 16. y − 4 2 2x , y − 0, x − 0;  about x − 21

 17. y − 4x 2 x 2, y − 3;  about x − 1

 18. y − sx , x − 2y;  about x − 5

 19. x − 2y 2, y > 0, x − 2;  about y − 2

 20. x − 2y 2, x − y2 1 1;  about y − 22

21–26 
(a)  Set up an integral for the volume of the solid obtained by 

rotating the region bounded by the given curve about the 
specified axis.

(b)  Use your calculator to evaluate the integral correct to five 
decimal places.

 21. y − xe2x, y − 0, x − 2;  about the y-axis

 22. y − tan x, y − 0, x − !y4;  about x − !y2

 23. y − cos4x, y − 2cos4x, 2!y2 < x < !y2;  about x − !

 24. y − x, y − 2xys1 1 x3d;  about x − 21

 25. x − ssin y  , 0 < y < !, x − 0;  about y − 4

 26. x 2 2 y 2 − 7, x − 4;  about y − 5

 27.  Use the Midpoint Rule with n − 5 to estimate the volume 
obtained by rotating about the y-axis the region under the 
curve y − s1 1 x 3 , 0 < x < 1.

 28.  If the region shown in the figure is rotated about the y-axis to 
form a solid, use the Midpoint Rule with n − 5 to estimate 
the volume of the solid.

0 x

y

2

4

2 4 6 8 10

29–32 Each integral represents the volume of a solid. Describe 
the solid.

 29. y3

0
 2!x 5 dx 30. y3

1
 2! y ln y dy

 31. 2! y4

1
 
y 1 2

y 2  dy

 32. y1

0
 2! s2 2 xds3x 2 2x d dx

33–34 Use a graph to estimate the x-coordinates of the points of 
intersection of the given curves. Then use this information and 
your calculator to estimate the volume of the solid obtained by 
rotating about the y-axis the region enclosed by these curves.

 33. y − x 2 2 2x,  y −
x

x 2 1 1

 34. y − esin x,  y − x 2 2 4x 1 5

35–36 Use a computer algebra system to find the exact volume 
of the solid obtained by rotating the region bounded by the given 
curves about the specified line.

 35. y − sin2 x, y − sin4 x, 0 < x < !;  about x − !y2

 36. y − x 3 sin x, y − 0, 0 < x < !;  about x − 21

;

CAS
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 SECTION 6.4  Work 455

 46. The solid torus of Exercise 6.2.63

 47. A right circular cone with height h and base radius r

 48.  Suppose you make napkin rings by drilling holes with dif-
ferent diameters through two wooden balls (which also have 
different diameters). You discover that both napkin rings have 
the same height h, as shown in the figure.

 (a) Guess which ring has more wood in it.
 (b)  Check your guess: Use cylindrical shells to compute the 

volume of a napkin ring created by drilling a hole with 
radius r through the center of a sphere of radius R and 
express the answer in terms of h.

h

37–43 The region bounded by the given curves is rotated 
about the specified axis. Find the volume of the resulting solid  
by any method.

 37. y − 2x 2 1 6x 2 8, y − 0;  about the y-axis

 38. y − 2x 2 1 6x 2 8, y − 0;  about the x-axis

 39. y 2 2 x 2 − 1, y − 2;  about  the x-axis

 40. y 2 2 x 2 − 1, y − 2;  about the y-axis

 41. x 2 1 sy 2 1d2 − 1;  about the y-axis

 42. x − sy 2 3d2, x − 4;  about y − 1

 43. x − sy 2 1d2, x 2 y − 1;  about x − 21

 44.  Let T be the triangular region with vertices s0, 0d, s1, 0d, 
and s1, 2d, and let V be the volume of the solid gener-
ated when T is rotated about the line x − a, where a . 1. 
Express a in terms of V.

45–47 Use cylindrical shells to find the volume of the solid.

 45.  A sphere of radius r

The term work is used in everyday language to mean the total amount of effort required 
to perform a task. In physics it has a technical meaning that depends on the idea of a 
force. Intuitively, you can think of a force as describing a push or pull on an object—for 
example, a horizontal push of a book across a table or the downward pull of the earth’s 
gravity on a ball. In general, if an object moves along a straight line with position func-
tion sstd, then the force F on the object (in the same direction) is given by Newton’s 
Second Law of Motion as the product of its mass m and its acceleration a:

F − ma − m 
d 2s
dt 2

In the SI metric system, the mass is measured in kilograms (kg), the displacement in 
meters  (m), the time in seconds (s), and the force in newtons (N − kg∙mys2). Thus 
a force of 1 N acting on a mass of 1 kg produces an acceleration of 1 mys2. In the US 
Customary system the fundamental unit is chosen to be the unit of force, which is the 
pound.

In the case of constant acceleration, the force F is also constant and the work done is 
defined to be the product of the force F and the distance d that the object moves:

W − Fd   work − force 3 distance

If F is measured in newtons and d in meters, then the unit for W  is a newton-meter, which 
is called a joule (J). If F is measured in pounds and d in feet, then the unit for W  is a 
foot-pound (ft-lb), which is about 1.36 J.

1

2
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456 CHAPTER 6  Applications of Integration

EXAMPLE 1 
(a) How much work is done in lifting a 1.2-kg book off the floor to put it on a desk that 
is 0.7 m high? Use the fact that the acceleration due to gravity is t − 9.8 mys2.
(b) How much work is done in lifting a 20-lb weight 6 ft off the ground?

SOLUTION 
(a) The force exerted is equal and opposite to that exerted by gravity, so Equation 1 
gives

F − mt − s1.2ds9.8d − 11.76 N

and then Equation 2 gives the work done as

W − Fd − s11.76 Nds0.7 md < 8.2 J

(b) Here the force is given as F − 20 lb, so the work done is

W − Fd − s20 lbds6 ftd − 120 ft-lb

Notice that in part (b), unlike part (a), we did not have to multiply by t because we 
were given the weight (which is a force) and not the mass of the object. Q

Equation 2 defines work as long as the force is constant, but what happens if the force 
is variable? Let’s suppose that the object moves along the x-axis in the positive direction, 
from x − a to x − b, and at each point x between a and b a force f sxd acts on the object, 
where f  is a continuous function. We divide the interval fa, bg into n subintervals with 
endpoints x0, x1, . . . , xn and equal width Dx. We choose a sample point xi* in the ith 
subinterval fxi21, xig. Then the force at that point is f sxi*d. If n is large, then Dx is small, 
and since f  is continuous, the values of f  don’t change very much over the interval 
fxi21, xig. In other words, f  is almost constant on the interval and so the work Wi that is 
done in moving the particle from xi21 to xi is approximately given by Equation 2:

Wi < f sxi*d Dx

Thus we can approximate the total work by

W < o
n

i−1
 f sxi*d Dx

It seems that this approximation becomes better as we make n larger. Therefore we define 
the work done in moving the object from a to b as the limit of this quantity as n l .̀ 
Since the right side of (3) is a Riemann sum, we recognize its limit as being a definite 
integral and so

W − lim
n l `

 o
n

i−1
 f sxi*d Dx − yb

a
 f sxd dx

EXAMPLE 2  When a particle is located a distance x feet from the origin, a force of 
x 2 1 2x pounds acts on it. How much work is done in moving it from x − 1 to x − 3?

SOLUTION W − y3

1
 sx 2 1 2xd dx −

x 3

3
1 x 2G

1

3

−
50
3

The work done is 162
3 ft-lb. Q

3

4
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 SECTION 6.4  Work 457

In the next example we use a law from physics. Hooke’s Law states that the force 
required to maintain a spring stretched x units beyond its natural length is proportional 
to x:

f sxd − kx

where k is a positive constant called the spring constant (see Figure 1). Hooke’s Law 
holds provided that x is not too large.

EXAMPLE 3  A force of 40 N is required to hold a spring that has been stretched from 
its natural length of 10 cm to a length of 15 cm. How much work is done in stretching 
the spring from 15 cm to 18 cm?

SOLUTION According to Hooke’s Law, the force required to hold the spring stretched 
x meters beyond its natural length is f sxd − kx. When the spring is stretched from 10 cm 
to 15 cm, the amount stretched is 5 cm − 0.05 m. This means that f s0.05d − 40, so

0.05k − 40      k − 40
0.05 − 800

Thus f sxd − 800x and the work done in stretching the spring from 15 cm to 18 cm is

W − y0.08

0.05
 800x dx − 800 

x 2

2 G0.05

0.08

 − 400fs0.08d2 2 s0.05d2g − 1.56 J Q

EXAMPLE 4  A 200-lb cable is 100 ft long and hangs vertically from the top of a tall 
building. How much work is required to lift the cable to the top of the building?

SOLUTION Here we don’t have a formula for the force function, but we can use an 
argument similar to the one that led to Definition 4.

Let’s place the origin at the top of the building and the x-axis pointing downward as 
in Figure 2. We divide the cable into small parts with length Dx. If xi* is a point in the 
ith such interval, then all points in the interval are lifted by approximately the same 
amount, namely xi*. The cable weighs 2 pounds per foot, so the weight of the ith part is 
(2 lbyft)(Dx ft) − 2Dx lb. Thus the work done on the ith part, in foot-pounds, is 

s2Dxd  ?   xi*   − 2xi* Dx
force distance

We get the total work done by adding all these approximations and letting the num-
ber of parts become large (so Dx l 0):

 W − lim
n l `

 o
n

i−1
 2xi*Dx − y100

0
 2x dx

  − x 2g100

0 − 10,000 ft-lb Q

EXAMPLE 5  A tank has the shape of an inverted circular cone with height 10 m and 
base radius 4 m. It is filled with water to a height of 8 m. Find the work required to 
empty the tank by pumping all of the water to the top of the tank. (The density of water 
is 1000 kgym3.)

x0frictionless
surface

x0 x

ƒ=kx

(a) Natural position of spring

(b) Stretched position of spring

FIGURE 1  
Hooke’s Law

0

100

x*i

x

Îx

FIGURE 2 

If we had placed the origin at the 
bottom of the cable and the x-axis 
upward, we would have gotten

W − y100

0
 2s100 2 xd dx

which gives the same answer.
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458 CHAPTER 6  Applications of Integration

SOLUTION Let’s measure depths from the top of the tank by introducing a vertical 
coordi nate line as in Figure 3. The water extends from a depth of 2 m to a depth of 10 m 
and so we divide the interval f2, 10g into n subintervals with endpoints x0, x1, . . . , xn 
and choose xi* in the ith subinterval. This divides the water into n layers. The ith layer 
is approximated by a circular cylinder with radius ri and height Dx. We can compute ri 
from similar triangles, using Figure 4, as follows:

ri

10 2 xi*
−

4
10

      ri − 2
5 s10 2 xi*d

Thus an approximation to the volume of the ith layer of water is

Vi < !r i
2 Dx −

4!

25
 s10 2 xi*d2 Dx

and so its mass is

 mi − density 3 volume

   < 1000 ?
4!

25
 s10 2 xi*d2 Dx − 160!s10 2 xi*d2 Dx

The force required to raise this layer must overcome the force of gravity and so

 Fi − mit < s9.8d160!s10 2 xi*d2 Dx

 − 1568!s10 2 xi*d2 Dx

Each particle in the layer must travel a distance upward of approximately xi*. The work Wi  
done to raise this layer to the top is approximately the product of the force Fi and the 
distance xi*:

Wi < Fi xi* < 1568!xi*s10 2 xi*d2 Dx

To find the total work done in emptying the entire tank, we add the contributions of 
each of the n layers and then take the limit as n l `:

 W − lim
n l `

 o
n

i−1
 1568!xi*s10 2 xi*d2 Dx − y10

2
 1568!xs10 2 xd2 dx

 − 1568! y10

2
 s100x 2 20x 2 1 x 3 d dx − 1568!F50x 2 2

20x 3

3
1

x 4

4 G2

10

  − 1568!(2048
3 ) < 3.4 3 106 J Q

4

10

10-xi*

0

x

2 m

4 m

10 m

xi*

10-xi*
ri

Îx

ri

FIGURE 3

FIGURE 4

 1.  A 360-lb gorilla climbs a tree to a height of 20 ft. Find the 
work done if the gorilla reaches that height in

 (a) 10 seconds   (b) 5 seconds

 2.  How much work is done when a hoist lifts a 200-kg rock 
to a height of 3 m?

 3.  A variable force of 5x 22 pounds moves an object along 

a straight line when it is x feet from the origin. Calculate the 
work done in moving the object from x − 1 ft to x − 10 ft.

 4.  When a particle is located a distance x meters from the origin, 
a force of coss!xy3d newtons acts on it. How much work is 
done in moving the particle from x − 1 to x − 2? Interpret 
your answer by considering the work done from x − 1 to 
x − 1.5 and from x − 1.5 to x − 2.
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 SECTION 6.4  Work 459

 5.  Shown is the graph of a force function (in newtons) that 
increases to its maximum value and then remains constant. 
How much work is done by the force in moving an object a 
distance of 8 m?

0 x (m)

F

10

1

20
30

2 3 4 5 6 7 8

(N)

 6.  The table shows values of a force function f sxd, where x is 
measured in meters and f sxd in newtons. Use the Midpoint 
Rule to estimate the work done by the force in moving an 
object from x − 4 to x − 20.

x 4 6 8 10 12 14 16 18 20

f sxd 5 5.8 7.0 8.8 9.6 8.2 6.7 5.2 4.1

 7.  A force of 10 lb is required to hold a spring stretched 4 in.  
beyond its natural length. How much work is done in stretch-
ing it from its natural length to 6 in. beyond its natural length?

 8.  A spring has a natural length of 40 cm. If a 60-N force is 
required to keep the spring compressed 10 cm, how much 
work is done during this compression? How much work is 
required to compress the spring to a length of 25 cm?

 9.  Suppose that 2 J of work is needed to stretch a spring from its 
natural length of 30 cm to a length of 42 cm.

 (a)  How much work is needed to stretch the spring from  
35 cm to 40 cm?

 (b)   How far beyond its natural length will a force of 30 N 
keep the spring stretched?

 10.  If the work required to stretch a spring 1 ft beyond its natural 
length is 12 ft-lb, how much work is needed to stretch it 9 in. 
beyond its natural length?

 11.  A spring has natural length 20 cm. Compare the work W1  
done in stretching the spring from 20 cm to 30 cm with the 
work W2 done in stretching it from 30 cm to 40 cm. How are 
W2 and W1 related?

 12.  If 6 J of work is needed to stretch a spring from 10 cm to 
12 cm and another 10 J is needed to stretch it from 12 cm  
to 14 cm, what is the natural length of the spring?

13–22 Show how to approximate the required work by a Riemann 
sum. Then express the work as an integral and evaluate it.

 13.  A heavy rope, 50 ft long, weighs 0.5 lbyft and hangs over the 
edge of a building 120 ft high. 

 (a)  How much work is done in pulling the rope to the top of 
the building?

 (b)  How much work is done in pulling half the rope to the top 
of the building?

 14.  A thick cable, 60 ft long and weighing 180 lb, hangs from a 
winch on a crane. Compute in two different ways the work 
done if the winch winds up 25 ft of the cable.

 (a) Follow the method of Example 4.
 (b)  Write a function for the weight of the remaining cable 

after x feet has been wound up by the winch. Estimate 
the amount of work done when the winch pulls up Dx ft 
of cable. 

 15.  A cable that weighs 2 lbyft is used to lift 800 lb of coal up a 
mine shaft 500 ft deep. Find the work done.

 16.  A chain lying on the ground is 10 m long and its mass is  
80 kg.  How much work is required to raise one end of the 
chain to a height of 6 m?

 17.  A leaky 10-kg bucket is lifted from the ground to a height of 
12 m at a constant speed with a rope that weighs 0.8 kgym. 
Initially the bucket contains 36 kg of water, but the water 
leaks at a constant rate and finishes draining just as the 
bucket reaches the 12-m level. How much work is done?

 18.  A bucket that weighs 4 lb and a rope of negligible weight are 
used to draw water from a well that is 80 ft deep. The bucket 
is filled with 40 lb of water and is pulled up at a rate of 2 ftys, 
but water leaks out of a hole in the bucket at a rate of 0.2 lbys. 
Find the work done in pulling the bucket to the top of the well.

 19.  A 10-ft chain weighs 25 lb and hangs from a ceiling. Find 
the work done in lifting the lower end of the chain to the 
ceiling so that it’s level with the upper end.

 20.  A circular swimming pool has a diameter of 24 ft, the sides 
are 5 ft high, and the depth of the water is 4 ft. How much 
work is required to pump all of the water out over the side? 
(Use the fact that water weighs 62.5 lbyft3.)

 21.  An aquarium 2 m long, 1 m wide, and 1 m deep is full of 
water. Find the work needed to pump half of the water out 
of the aquarium. (Use the fact that the density of water is 
1000 kgym3.)

 22.  A spherical water tank, 24 ft in diameter, sits atop a 60 ft 
tower. The tank is filled by a hose attached to the bottom of 
the sphere. If a 1.5 horsepower pump is used to deliver water 
up to the tank, how long will it take to fill the tank? (One 
horsepower − 550 ft-lb of work per second.)

23–26 A tank is full of water. Find the work required to pump 
the water out of the spout. In Exercises 25 and 26 use the fact that 
water weighs 62.5 lbyft3.

 23. 

2 m

3 m

8 m

3 m    24. 

3 m

1 m
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460 CHAPTER 6  Applications of Integration

 25.

 

6 ft

frustum of a cone

3 ft

8 ft

  

26.

 

10 ft

12 ft

6 ft

 27.  Suppose that for the tank in Exercise 23 the pump breaks 
down after 4.7 3 105 J of work has been done. What is  
the depth of the water remaining in the tank?

 28.  Solve Exercise 24 if the tank is half full of oil that has a 
density of 900 kgym3.

 29.  When gas expands in a cylinder with radius r, the pressure 
at any given time is a function of the volume: P − PsV d. 
The force exerted by the gas on the piston (see the figure)  
is the product of the pressure and the area: F − !r 2P.  
Show that the work done by the gas when the volume 
expands from volume V1 to volume V2 is

W − yV2

V1

 P dV

x

V

piston head

 30.  In a steam engine the pressure P and volume V of steam 
satisfy the equation PV 1.4 − k, where k is a constant. (This 
is true for adiabatic expansion, that is, expansion in which 
there is no heat transfer between the cylinder and its sur-
roundings.) Use Exercise 29 to calculate the work done by 
the engine during a cycle when the steam starts at a pressure 
of 160 lbyin2 and a volume of 100 in3 and expands to a vol-
ume of 800 in3.

 31.  The kinetic energy KE of an object of mass m moving with 
velocity v is defined as KE − 1

2 mv 2. If a force f sxd acts 
on the object, moving it along the x-axis from x1 to x2, the 
Work-Energy Theorem states that the net work done is equal 
to the change in kinetic energy: 12 mv 2

2 2 1
2 mv 2

1 , where v1 is 
the velocity at x1 and v2 is the velocity at x2.

 (a)  Let x − sstd be the position function of the object at  
time t and vstd, astd the velocity and acceleration func-
tions. Prove the Work-Energy Theorem by first using 
the Substitution Rule for Definite Integrals (5.5.6) to 
show that 

W − yx2

x1
 f sxd dx − yt2

t1
  f ssstdd vstd dt

;

Then use Newton’s Second Law of Motion  
(force − mass 3 acceleration) and the substitution 
u − vstd to evaluate the integral.

 (b)  How much work (in ft-lb) is required to hurl a 12-lb 
bowling ball at 20 miyh? (Note: Divide the weight  
in pounds by 32 ftys2, the acceleration due to gravity, 
to find the mass, measured in slugs.)

 32.  Suppose that when launching an 800-kg roller coaster car 
an electromagnetic propulsion system exerts a force of 
5.7x 2 1 1.5x newtons on the car at a distance x meters 
along the track. Use Exercise 31(a) to find the speed of 
the car when it has traveled 60 meters.

 33. (a)  Newton’s Law of Gravitation states that two bodies 
with masses m1 and m2 attract each other with a force

F − G 
m1m2

r 2

where r is the distance between the bodies and G 
is the gravitational constant. If one of the bodies is 
fixed, find the work needed to move the other from 
r − a to r − b.

 (b)  Compute the work required to launch a 1000-kg 
satellite vertically to a height of 1000 km. You may 
assume that the earth’s mass is 5.98 3 1024 kg  
and is concentrated at its center. Take the 
radius of the earth to be 6.37 3 106 m and 
G − 6.67 3 10211 N∙m2ykg2.

 34.  The Great Pyramid of King Khufu was built of limestone 
in Egypt over a 20-year time period from 2580 bc to 
2560 bc. Its base is a square with side length 756 ft and 
its height when built was 481 ft. (It was the tallest man-
made structure in the world for more than 3800 years.) 
The density of the limestone is about 150 lbyft3.

 (a)  Estimate the total work done in building the pyramid.
 (b)  If each laborer worked 10 hours a day for 20 years, 

for 340 days a year, and did 200 ft-lbyh of work in 
lifting the lime stone blocks into place, about how 
many laborers were needed to construct the pyramid?
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 SECTION 6.5  Average Value of a Function 461

It is easy to calculate the average value of finitely many numbers y1, y2, . . . , yn :

yave −
 y1 1 y2 1 ∙ ∙ ∙ 1 yn

n

But how do we compute the average temperature during a day if infinitely many tem-
perature readings are possible? Figure 1 shows the graph of a temperature function Tstd, 
where t is measured in hours and T  in °C, and a guess at the average temperature, Tave.

In general, let’s try to compute the average value of a function y − f sxd, a < x < b.  
We start by dividing the interval fa, bg into n equal subintervals, each with length 
Dx − sb 2 adyn. Then we choose points x1*, . . . , xn* in successive subintervals and cal-
culate the average of the numbers f sx1*d, . . . , f sxn*d:

 f sx1*d 1 ∙ ∙ ∙ 1 f sxn*d
n

(For example, if f  represents a temperature function and n − 24, this means that we take 
temperature readings every hour and then average them.) Since Dx − sb 2 adyn, we can 
write n − sb 2 adyDx and the average value becomes

 
 f sx1*d 1 ∙ ∙ ∙ 1 f sxn*d

b 2 a
Dx

−
1

b 2 a
 f f sx1*d 1 ∙ ∙ ∙ 1 f sxn*dg Dx

 −
1

b 2 a
 f f sx1*d Dx 1 ∙ ∙ ∙ 1 f sxn*d Dxg

 −
1

b 2 a
 o

n

i−1
 f sxi*d Dx

If we let n increase, we would be computing the average value of a large number of 
closely spaced values. (For example, we would be averaging temperature readings taken 
every minute or even every second.) The limiting value is

lim
n l `

 
1

b 2 a
 o

n

i−1
 f sx i*d Dx −

1
b 2 a

 yb

a
 f sxd dx

by the definition of a definite integral.
Therefore we define the average value of f  on the interval fa, bg as

fave −
1

b 2 a
 yb

a
 f sxd dx

EXAMPLE 1  Find the average value of the function f sxd − 1 1 x 2 on the  
interval f21, 2g.

SOLUTION With a − 21 and b − 2 we have

   fave −
1

b 2 a
 yb

a
 f sxd dx −

1
2 2 s21d

 y2

21
 s1 1 x 2 d dx −

1
3

 Fx 1
x 3

3 G2

21

− 2 Q

If Tstd is the temperature at time t, we might wonder if there is a specific time when 
the temperature is the same as the average temperature. For the temperature function 

0 t

T

Tave

5

10

15

12

6

18 24

FIGURE 1 

For a positive function, we can think of 
this definition as saying

area
width

− average height
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graphed in Figure 1, we see that there are two such times––just before noon and just 
before midnight. In general, is there a number c at which the value of a function f  is 
exactly equal to the average value of the function, that is, f scd − fave? The following 
theorem says that this is true for continuous functions.

 The Mean Value Theorem for Integrals If f  is continuous on fa, bg , then there 
exists a number c in fa, bg such that

f scd − fave −
1

b 2 a
 yb

a
 f sxd dx

that is, yb

a
 f sxd dx − f scdsb 2 ad

The Mean Value Theorem for Integrals is a consequence of the Mean Value Theorem 
for derivatives and the Fundamental Theorem of Calculus. The proof is outlined in Exer- 
cise 25.

The geometric interpretation of the Mean Value Theorem for Integrals is that, for 
positive functions f, there is a number c such that the rectangle with base fa, bg and 
height f scd has the same area as the region under the graph of f  from a to b. (See 
Figure 2 and the more picturesque interpretation in the margin note.)

EXAMPLE 2  Since f sxd − 1 1 x 2 is continuous on the interval f21, 2g, the Mean 
Value Theorem for Integrals says there is a number c in f21, 2g such that

y2

21
 s1 1 x 2 d dx − f scdf2 2 s21dg

In this particular case we can find c explicitly. From Example 1 we know that fave − 2, 
so the value of c satisfies

f scd − fave − 2

Therefore 1 1 c 2 − 2    so    c 2 − 1

So in this case there happen to be two numbers c − 61 in the interval f21, 2g that 
work in the Mean Value Theorem for Integrals. Q

Examples 1 and 2 are illustrated by Figure 3.

EXAMPLE 3  Show that the average velocity of a car over a time interval ft1, t2 g is the 
same as the average of its velocities during the trip.

SOLUTION If sstd is the displacement of the car at time t, then, by definition, the aver-
age velocity of the car over the interval is 

Ds
Dt

−
sst2 d 2 sst1d

t2 2 t1

On the other hand, the average value of the velocity function on the interval is

  vave −
1

t2 2 t1
 y t2

t1
 vstd dt −

1
t2 2 t1

 y t2

t1
 s9std dt

 −
1

t2 2 t1
 fsst2 d 2 sst1dg  (by the Net Change Theorem)

   −
sst2 d 2 sst1d

t2 2 t1
− average velocity  Q

0 1 2_1

(_1, 2)

(2, 5)
y=1+≈

fave=2

x

y

FIGURE 3

0 x

y

a c b

y=ƒ

f(c)=fave

FIGURE 2 

You can always chop off the top of 
a (two-dimensional) mountain at a 
certain height and use it to fill in  
the valleys so that the mountain 
becomes completely flat.
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1–8 Find the average value of the function on the given interval.

 1. f sxd − 3x 2 1 8x, f21, 2g

 2. f sxd − sx , f0, 4g

 3. tsxd − 3 cos x, f2!y2, !y2g

 4. tstd −
t

s3 1 t 2 
,  f1, 3g

 5. f std − e sin t cos t, f0, !y2g

 6. f s xd − x 2ysx 3 1 3d2, f21, 1g

 7. hsxd − cos4x sin x, f0, !g

 8. hsud − sln udyu,    f1, 5g

9–12 
(a) Find the average value of f  on the given interval.
(b) Find c such that fave − f scd.
(c)  Sketch the graph of f  and a rectangle whose area is the  

same as the area under the graph of f .

 9. f sxd − sx 2 3d2,  f2, 5g

 10. f sxd − 1yx ,  f1, 3g

 11. f sxd − 2 sin x 2 sin 2x ,  f0, !g

 12. f sxd − 2xe2x 2
,  f0, 2g

 13.  If f  is continuous and y3
1  f sxd dx − 8, show that f  takes  

on the value 4 at least once on the interval f1, 3g.

 14.  Find the numbers b such that the average value of 
f sxd − 2 1 6x 2 3x 2 on the interval f0, bg is equal to 3.

 15.  Find the average value of f  on f0, 8g.

x

y

0 2 4 6

1

 16.  The velocity graph of an accelerating car is shown.

4 t (seconds)

20

0 8 12

40

60

√
(km/h)

;
;

 (a)  Use the Midpoint Rule to estimate the average 
velocity of the car during the first 12 seconds.

 (b)  At what time was the instantaneous velocity equal  
to the average velocity?

 17.   In a certain city the temperature (in °F) t hours after  
9 am was modeled by the function

Tstd − 50 1 14 sin 
!t
12

 Find the average temperature during the period from  
9 am to 9 pm.

 18.  The velocity v of blood that flows in a blood vessel 
with radius R and length l at a distance r from the 
central axis is

vsrd −
P

4"l
 sR2 2 r 2 d

 where P is the pressure difference between the ends 
of the ves sel and " is the viscosity of the blood (see 
Example 3.7.7). Find the average velocity (with respect 
to r) over the interval 0 < r < R. Compare the average 
velocity with the maximum velocity.

 19.  The linear density in a rod 8 m long is 12ysx 1 1 kgym,  
where x is measured in meters from one end of the rod. 
Find the average density of the rod.

 20. (a)  A cup of coffee has temperature 95°C and takes  
30 minutes to cool to 61°C in a room with temper-
ature 20°C. Use Newton’s Law of Cooling (Sec- 
tion 3.8) to show that the temperature of the coffee 
after t minutes is

Tstd − 20 1 75e2kt

where k < 0.02.
 (b)  What is the average temperature of the coffee during 

the first half hour?

 21.  In Example 3.8.1 we modeled the world population 
in the second half of the 20th century by the equation 
Pstd − 2560e0.017185t. Use this equation to estimate the 
average world population during this time period.

 22.  If a freely falling body starts from rest, then its displace-
ment is given by s − 1

2 tt 2. Let the velocity after a time 
T be vT. Show that if we compute the average of the 
velocities with respect to t we get vave − 1

2 vT, but if we 
compute the average of the velocities with respect to s 
we get vave − 2

3 vT.

 23.  Use the result of Exercise 5.5.83 to compute the 
average volume of inhaled air in the lungs in one 
respiratory cycle. 
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APPLIED PROJECT CALCULUS AND BASEBALL

In this project we explore three of the many applications of calculus to baseball. The physical inter-
actions of the game, especially the collision of ball and bat, are quite complex and their models are 
discussed in detail in a book by Robert Adair, The Physics of Baseball, 3d ed. (New York, 2002).

1.  It may surprise you to learn that the collision of baseball and bat lasts only about a thou-
sandth of a second. Here we calculate the average force on the bat during this collision by 
first computing the change in the ball’s momentum.

    The momentum p of an object is the product of its mass m and its velocity v, that is, 
p − mv. Suppose an object, moving along a straight line, is acted on by a force F − Fstd 
that is a continuous function of time.

 (a)  Show that the change in momentum over a time interval ft0, t1g is equal to the integral  
of F from t0 to t1; that is, show that

pst1d 2 pst0 d − y t1

t0

 Fstd dt

  This integral is called the impulse of the force over the time interval.
 (b)  A pitcher throws a 90-miyh fastball to a batter, who hits a line drive directly back 

to the pitcher. The ball is in contact with the bat for 0.001 s and leaves the bat with 
velocity 110 miyh. A baseball weighs 5 oz and, in US Customary units, its mass is 
measured in slugs: m − wyt, where t − 32 ftys2.

 (i) Find the change in the ball’s momentum.
 (ii) Find the average force on the bat.

2.  In this problem we calculate the work required for a pitcher to throw a 90-miyh fastball by 
first considering kinetic energy.

    The kinetic energy K of an object of mass m and velocity v is given by K − 1
2 mv2.  

Suppose an object of mass m, moving in a straight line, is acted on by a force F − Fssd 
that depends on its position s. According to Newton’s Second Law

Fssd − ma − m 
dv
dt

 where a and v denote the acceleration and velocity of the object. 
  (a)  Show that the work done in moving the object from a position s0 to a position s1 is 

equal to the change in the object’s kinetic energy; that is, show that

W − ys1

s0

 Fssd ds − 1
2 mv1

22 1
2 mv0

2

 24.  Use the diagram to show that if f  is concave upward on fa, bg, 
then

fave . fS a 1 b
2 D

x

y

0 a ba+b
2

f

 25.  Prove the Mean Value Theorem for Integrals by applying 
the Mean Value Theorem for derivatives (see Section 4.2) 
to the function Fsxd − yx

a f std dt.

 26.  If fave fa, bg denotes the average value of f  on the interval 
fa, bg and a , c , b, show that

fave fa, bg −
c 2 a
b 2 a

  fave fa, cg 1
b 2 c
b 2 a

  fave fc, bg

An overhead view of the position of a  
baseball bat, shown every fiftieth of a 
second during a typical swing.  
(Adapted from The Physics of Baseball)

Batter’s box
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 APPLIED PROJECT  Where To Sit at the Movies  465

   where v0 − vss0 d and v1 − vss1d are the velocities of the object at the positions s0  
and s1. Hint: By the Chain Rule, 

m 
dv
dt

− m 
dv
ds

 
ds
dt

− mv 
dv
ds

 (b)  How many foot-pounds of work does it take to throw a baseball at a speed of  
90 miyh?

3. (a)  An outfielder fields a baseball 280 ft away from home plate and throws it directly 
to the catcher with an initial velocity of 100 ftys. Assume that the velocity vstd of 
the ball after t seconds satisfies the differential equation dvydt − 2 1

10 v because of air 
resistance. How long does it take for the ball to reach home plate? (Ignore any verti- 
cal motion of the ball.)

 (b)  The manager of the team wonders whether the ball will reach home plate sooner if it 
is relayed by an infielder. The shortstop can position himself directly between the out-
fielder and home plate, catch the ball thrown by the outfielder, turn, and throw the ball 
to the catcher with an initial velocity of 105 ftys. The manager clocks the relay time 
of the shortstop (catching, turning, throwing) at half a second. How far from home 
plate should the shortstop position himself to minimize the total time for the ball to 
reach home plate? Should the manager encourage a direct throw or a relayed throw? 
What if the shortstop can throw at 115 ftys?

 (c)  For what throwing velocity of the shortstop does a relayed throw take the same time 
as a direct throw?

;

A movie theater has a screen that is positioned 10 ft off the floor and is 25 ft high. The first 
row of seats is placed 9 ft from the screen and the rows are set 3 ft apart. The floor of the 
seating area is inclined at an angle of ! − 20° above the horizontal and the distance up the 
incline that you sit is x. The theater has 21 rows of seats, so 0 < x < 60. Suppose you decide 
that the best place to sit is in the row where the angle " subtended by the screen at your eyes 
is a maximum. Let’s also suppose that your eyes are 4 ft above the floor, as shown in the 
figure. (In Exercise 4.7.78 we looked at a simpler version of this problem, where the floor is 
horizontal, but this project involves a more complicated situation and requires technology.)

1. Show that

" − arccosS a 2 1 b 2 2 625
2ab D

 where  a 2 − s9 1 x cos !d2 1 s31 2 x sin !d2 

 and  b 2 − s9 1 x cos !d2 1 sx sin ! 2 6d2 

2.  Use a graph of " as a function of x to estimate the value of x that maximizes ". In which 
row should you sit? What is the viewing angle " in this row?

3.  Use your computer algebra system to differentiate " and find a numerical value for the 
root of the equation d"ydx − 0. Does this value confirm your result in Problem 2?

4.  Use the graph of " to estimate the average value of " on the interval 0 < x < 60. Then 
use your CAS to compute the average value. Compare with the maximum and minimum 
values of ".

25 ft

10 ft

9 ft

¨
x

å

4 ft

APPLIED PROJECT   WHERE TO SIT AT THE MOVIESCAS
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CONCEPT CHECK Answers to the Concept Check can be found on the back endpapers.

6 REVIEW

 1. (a)  Draw two typical curves y − f sxd and y − tsxd, where 
f sxd > tsxd for a < x < b. Show how to approximate 
the area between these curves by a Riemann sum and 
sketch the corresponding approximating rectangles. Then 
write an expression for the exact area.

 (b)  Explain how the situation changes if the curves have  
equations x − f syd and x − tsyd, where f syd > tsyd  
for c < y < d.

 2.  Suppose that Sue runs faster than Kathy throughout a 
1500-meter race. What is the physical meaning of the area 
between their velocity curves for the first minute of the race?

 3. (a)  Suppose S is a solid with known cross-sectional areas. 
Explain how to approximate the volume of S by a 
Riemann sum. Then write an expression for the exact 
volume.

 (b)  If S is a solid of revolution, how do you find the cross- 
sectional areas?

 4. (a)  What is the volume of a cylindrical shell?
 (b)  Explain how to use cylindrical shells to find the volume 

of a solid of revolution.
 (c)  Why might you want to use the shell method instead of 

slicing?

 5.  Suppose that you push a book across a 6-meter-long table by 
exerting a force f sxd at each point from x − 0 to x − 6. What 
does y6

0 f sxd dx represent? If f sxd is measured in newtons, 
what are the units for the integral?

 6. (a)  What is the average value of a function f  on an  
interval fa, bg?

 (b)  What does the Mean Value Theorem for Integrals say? 
What is its geometric interpretation?

1–6 Find the area of the region bounded by the given curves.

 1. y − x 2, y − 4x 2 x 2

 2. y − sx ,    y − 2s3 x ,    y − x 2 2

 3. y − 1 2 2x 2,    y − | x |
 4. x 1 y − 0,  x − y 2 1 3y

 5. y − sins!xy2d,  y − x 2 2 2x

 6. y − sx  ,  y − x 2,  x − 2

7–11 Find the volume of the solid obtained by rotating the 
region bounded by the given curves about the specified axis.

 7. y − 2x, y − x 2;  about the x-axis

 8. x − 1 1 y 2, y − x 2 3;  about the y-axis

 9. x − 0, x − 9 2 y 2;  about x − 21

 10. y − x 2 1 1, y − 9 2 x 2;  about y − 21

 11.  x 2 2 y 2 − a2, x − a 1 h (where a . 0, h . 0); 
about the y-axis

12–14 Set up, but do not evaluate, an integral for the volume 
of the solid obtained by rotating the region bounded by the 
given curves about the specified axis.

 12. y − tan x, y − x, x − !y3;  about the y-axis

 13. y − cos2 x, | x | < !y2, y − 1
4;  about x − !y2

 14. y − sx  , y − x 2;  about y − 2

 15.  Find the volumes of the solids obtained by rotating the region 
bounded by the curves y − x and y − x 2 about the following 
lines.

 (a) The x-axis      (b) The y-axis      (c) y − 2

 16.  Let 5 be the region in the first quadrant bounded by the 
curves y − x 3 and y − 2x 2 x 2. Calculate the following 
quantities.

 (a) The area of 5
 (b)  The volume obtained by rotating 5 about the x-axis
 (c) The volume obtained by rotating 5 about the y-axis

 17.  Let 5 be the region bounded by the curves y − tansx 2 d,  
x − 1, and y − 0. Use the Midpoint Rule with n − 4 to 
estimate the following quantities.

 (a) The area of 5
 (b) The volume obtained by rotating 5 about the x-axis

 18.  Let 5 be the region bounded by the curves y − 1 2 x 2 and 
y − x 6 2 x 1 1. Estimate the following quantities.

 (a)  The x-coordinates of the points of intersection of the 
curves

 (b) The area of 5
 (c)  The volume generated when 5 is rotated about the x-axis
 (d)  The volume generated when 5 is rotated about the y-axis

;

EXERCISES

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 CHAPTER 6  Review  467

by rotating a parabola about a vertical axis.
 (a)  If its height is 4 ft and the radius at the top is 4 ft, find 

the work required to pump the water out of the tank.
 (b)  After 4000 ft-lb of work has been done, what is the 

depth of the water remaining in the tank?

4 ft

4 ft

 30.  A steel tank has the shape of a circular cylinder oriented 
vertically with diameter 4 m and height 5 m. The tank 
is currently filled to a level of 3 m with cooking oil that 
has a density of 920 kgym3. Compute the work required 
to pump the oil out through a 1-m spout at the top of the 
tank.

 31.  Find the average value of the function f std − sec2 t on the 
interval f0, !y4g.

 32. (a)  Find the average value of the function f sxd − 1ysx  
on the interval f1, 4g.

 (b)  Find the value c guaranteed by the Mean Value Theo-
rem for Integrals such that fave − f scd.

 (c)  Sketch the graph of f  on f1, 4g and a rectangle whose 
area is the same as the area under the graph of f.

 33.  If f  is a continuous function, what is the limit as h l 0 of 
the average value of f  on the interval fx, x 1 hg?

 34.  Let 51 be the region bounded by y − x 2, y − 0, and 
x − b, where b . 0. Let 52 be the region bounded by 
y − x 2, x − 0, and y − b2.

 (a)  Is there a value of b such that 51 and 52 have the 
same area?

 (b)  Is there a value of b such that 51 sweeps out the same  
volume when rotated about the x-axis and the y-axis?

 (c)  Is there a value of b such that 51 and 52 sweep out 
the same volume when rotated about the x-axis?

 (d)  Is there a value of b such that 51 and 52 sweep out 
the same volume when rotated about the y-axis?

;

19–22 Each integral represents the volume of a solid. 
Describe the solid.

 19. y!y2

0
 2!x cos x dx

 20. y!y2

0
 2! cos2x dx 

 21. y!

0
 ! s2 2 sin xd2 dx

 22. y4

0
 2! s6 2 yds4y 2 y 2d dy

 23.  The base of a solid is a circular disk with radius 3. 
Find the volume of the solid if parallel cross-sections 
perpendicular to the base are isosceles right triangles with 
hypotenuse lying along the base.

 24.  The base of a solid is the region bounded by the parabolas 
y − x 2 and y − 2 2 x 2. Find the volume of the solid if the 
cross-sections perpendicular to the x-axis are squares with 
one side lying along the base.

 25.  The height of a monument is 20 m. A horizontal cross-
section at a distance x meters from the top is an equilateral 
triangle with side 14 x meters. Find the volume of the 
monument.

 26. (a)  The base of a solid is a square with vertices located at 
s1, 0d, s0, 1d, s21, 0d, and s0, 21d. Each cross-section 
perpendicular to the x-axis is a semicircle. Find the 
volume of the solid.

 (b)  Show that by cutting the solid of part (a), we can 
rearrange it to form a cone. Thus compute its volume 
more simply.

 27.  A force of 30 N is required to maintain a spring stretched 
from its natural length of 12 cm to a length of 15 cm. How 
much work is done in stretching the spring from 12 cm  
to 20 cm?

 28.  A 1600-lb elevator is suspended by a 200-ft cable that 
weighs 10 lbyft. How much work is required to raise the 
elevator from the basement to the third floor, a distance  
of 30 ft?

 29.  A tank full of water has the shape of a paraboloid of revo-
lution as shown in the figure; that is, its shape is obtained 
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  1.  (a)  Find a positive continuous function f  such that the area under the graph of f  from 0 to t 
is Astd − t 3 for all t . 0.

  (b)  A solid is generated by rotating about the x-axis the region under the curve y − f sxd, 
where f  is a positive function and x > 0. The volume generated by the part of the 
curve from x − 0 to x − b is b 2 for all b . 0. Find the function f.

 2.  There is a line through the origin that divides the region bounded by the parabola 
y − x 2 x 2 and the x-axis into two regions with equal area. What is the slope of that line?

 3.  The figure shows a horizontal line y − c intersecting the curve y − 8x 2 27x 3. Find the 
number c such that the areas of the shaded regions are equal.

 4.  A cylindrical glass of radius r and height L is filled with water and then tilted until the 
water remaining in the glass exactly covers its base. 

 (a)  Determine a way to “slice” the water into parallel rectangular cross-sections and then 
set up a definite integral for the volume of the water in the glass.

 (b)  Determine a way to “slice” the water into parallel cross-sections that are trapezoids and 
then set up a definite integral for the volume of the water.

 (c)  Find the volume of water in the glass by evaluating one of the integrals in part (a) or 
part (b).

 (d) Find the volume of the water in the glass from purely geometric considerations.
 (e)  Suppose the glass is tilted until the water exactly covers half the base. In what direction 

can you “slice” the water into triangular cross-sections? Rectangular cross-sections? 
Cross-sections that are segments of circles? Find the volume of water in the glass.

r

L L

r

 5. (a)  Show that the volume of a segment of height h of a sphere of radius r is

V − 1
3 !h 2s3r 2 hd

  (See the figure.)
 (b)  Show that if a sphere of radius 1 is sliced by a plane at a distance x from the center  

in such a way that the volume of one segment is twice the volume of the other, then  
x is a solution of the equation

3x 3 2 9x 1 2 − 0

  where 0 , x , 1. Use Newton’s method to find x accurate to four decimal places.
 (c)  Using the formula for the volume of a segment of a sphere, it can be shown that the 

depth x to which a floating sphere of radius r sinks in water is a root of the equation

x 3 2 3rx 2 1 4r 3s − 0

   where s is the specific gravity of the sphere. Suppose a wooden sphere of radius 0.5 m 
has specific gravity 0.75. Calculate, to four-decimal-place accuracy, the depth to which 
the sphere will sink.

 (d)  A hemispherical bowl has radius 5 inches and water is running into the bowl at the rate 
of 0.2 in3ys.

 (i)  How fast is the water level in the bowl rising at the instant the water is 3 inches 
deep?

 (ii)  At a certain instant, the water is 4 inches deep. How long will it take to fill the 
bowl?

 6.  Archimedes’ Principle states that the buoyant force on an object partially or fully sub-
merged in a fluid is equal to the weight of the fluid that the object displaces. Thus, for an 

FIGURE FOR PROBLEM 3 

0 x

y y=8x-27˛

y=c

r

h

FIGURE FOR PROBLEM 5 

Problems Plus
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object of density " 0 floating partly submerged in a fluid of density " f , the buoyant force is 
given by F − " f t y0

2h
 Asyd dy, where t is the acceleration due to gravity and Asyd is the 

area of a typical cross-section of the object (see the figure). The weight of the object is 
given by 

W − " 0 t yL2h

2h
 Asyd dy

 (a)  Show that the percentage of the volume of the object above the surface of the liquid is

100 
" f 2 " 0

" f

 (b)  The density of ice is 917 kgym3 and the density of seawater is 1030 kgym3. What per-
centage of the volume of an iceberg is above water?

 (c)  An ice cube floats in a glass filled to the brim with water. Does the water overflow 
when the ice melts?

 (d)  A sphere of radius 0.4 m and having negligible weight is floating in a large freshwater 
lake. How much work is required to completely submerge the sphere? The density of 
the water is 1000 kgym3.

 7.  Water in an open bowl evaporates at a rate proportional to the area of the surface of the 
water. (This means that the rate of decrease of the volume is proportional to the area of the 
surface.) Show that the depth of the water decreases at a constant rate, regardless of the 
shape of the bowl.

 8.  A sphere of radius 1 overlaps a smaller sphere of radius r in such a way that their inter-
section is a circle of radius r. (In other words, they intersect in a great circle of the small 
sphere.) Find r so that the volume inside the small sphere and outside the large sphere is as 
large as possible.

 9.  The figure shows a curve C with the property that, for every point P on the middle curve 
y − 2x 2, the areas A and B are equal. Find an equation for C.

 10.  A paper drinking cup filled with water has the shape of a cone with height h and semi- 
vertical angle #. (See the figure.) A ball is placed carefully in the cup, thereby displacing 
some of the water and making it overflow. What is the radius of the ball that causes the 
greatest volume of water to spill out of the cup?

h

¨

 11.  A clepsydra, or water clock, is a glass container with a small hole in the bottom through 
which water can flow. The “clock” is calibrated for measuring time by placing markings 
on the container corresponding to water levels at equally spaced times. Let x − f syd be 
continuous on the interval f0, bg and assume that the container is formed by rotating the 
graph of f  about the y-axis. Let V denote the volume of water and h the height of the water 
level at time t.

 (a) Determine V as a function of h.
 (b) Show that

dV
dt

− ! f f shdg2 
dh
dt

FIGURE FOR PROBLEM 6 
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h
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b

FIGURE FOR PROBLEM 11 
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 (c)  Suppose that A is the area of the hole in the bottom of the container. It follows from  
Torricelli’s Law that the rate of change of the volume of the water is given by

dV
dt

− kAsh 

   where k is a negative constant. Determine a formula for the function f  such that dhydt 
is a constant C. What is the advantage in having dhydt − C?

 12.  A cylindrical container of radius r and height L is partially filled with a liquid whose volume 
is V. If the container is rotated about its axis of symmetry with constant angular speed !,  
then the container will induce a rotational motion in the liquid around the same axis. Even-
tually, the liquid will be rotating at the same angular speed as the container. The surface 
of the liquid will be convex, as indicated in the figure, because the centrifugal force on the 
liquid particles increases with the distance from the axis of the container. It can be shown 
that the surface of the liquid is a paraboloid of revolution generated by rotating the parabola

y − h 1
!2x 2

2t

 about the y-axis, where t is the acceleration due to gravity.
 (a) Determine h as a function of !.
 (b)  At what angular speed will the surface of the liquid touch the bottom? At what speed 

will it spill over the top?
 (c)  Suppose the radius of the container is 2 ft, the height is 7 ft, and the container and 

liquid are rotating at the same constant angular speed. The surface of the liquid is 5 ft 
below the top of the tank at the central axis and 4 ft below the top of the tank 1 ft out 
from the central axis.

 (i) Determine the angular speed of the container and the volume of the fluid.
 (ii) How far below the top of the tank is the liquid at the wall of the container?

 13.  Suppose the graph of a cubic polynomial intersects the parabola y − x 2 when x − 0,  
x − a, and x − b, where 0 , a , b. If the two regions between the curves have the same 
area, how is b related to a?

 14.  Suppose we are planning to make a taco from a round tortilla with diameter 8 inches by  
bending the tortilla so that it is shaped as if it is partially wrapped around a circular 
cylinder. We will fill the tortilla to the edge (but no more) with meat, cheese, and other 
ingredients. Our problem is to decide how to curve the tortilla in order to maximize the 
volume of food it can hold.

 (a)  We start by placing a circular cylinder of radius r along a diameter of the tortilla and 
folding the tortilla around the cylinder. Let x represent the distance from the center of 
the tortilla to a point P on the diameter (see the figure). Show that the cross-sectional 
area of the filled taco in the plane through P perpendicular to the axis of the cylinder is

Asxd − rs16 2 x 2 2 1
2 r 2 sinS 2

r
 s16 2 x 2  D

   and write an expression for the volume of the filled taco.
 (b)  Determine (approximately) the value of r that maximizes the volume of the taco. (Use 

a graphical approach with your CAS.)

 15.  If the tangent at a point P on the curve y − x 3 intersects the curve again at Q, let A be the  
area of the region bounded by the curve and the line segment PQ. Let B be the area of 
the region defined in the same way starting with Q instead of P. What is the relationship 
between A and B?

x

y

h

L

r

v

FIGURE FOR PROBLEM 12 
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The photo shows a screw-
worm fly, the first pest 

effectively eliminated from 
a region by the sterile insect 

technique without pesticides. 
The idea is to introduce into 
the population sterile males 

that mate with females 
but produce no offspring. 
In Exercise 7.4.67 you will 
evaluate an integral that 
relates the female insect 

population to time.

Techniques of Integration

BECAUSE OF THE FUNDAMENTAL THEOREM of Calculus, we can integrate a function if we know 
an antiderivative, that is, an indefinite integral. We summarize here the most important integrals 
that we have learned so far.

y xn dx −
xn11

n 1 1
1 C  sn ± 21d y 

1
x

 dx − ln | x | 1 C

y ex dx − ex 1 C y bx dx −
bx

ln b
1 C

y sin x dx − 2cos x 1 C y cos x dx − sin x 1 C

y sec2x dx − tan x 1 C y csc2x dx − 2cot x 1 C

y sec x tan x dx − sec x 1 C y csc x cot x dx − 2csc x 1 C

y sinh x dx − cosh x 1 C y cosh x dx − sinh x 1 C

y tan x dx − ln | sec x | 1 C y cot x dx − ln | sin x | 1 C

y 
1

x 2 1 a 2  dx −
1
a

 tan21S x
aD 1 C y 1

sa 2 2 x 2 
 dx − sin21S x

aD 1 C,  a . 0

 In this chapter we develop techniques for using these basic integration formulas to obtain 
indefinite integrals of more complicated functions. We learned the most important method of inte-
gration, the Substitution Rule, in Section 5.5. The other general technique, integration by parts, is 
presented in Section 7.1. Then we learn methods that are special to particular classes of functions, 
such as trigonometric functions and rational functions.

 Integration is not as straightforward as differentiation; there are no rules that absolutely guar-
antee obtaining an indefinite integral of a function. Therefore we discuss a strategy for integration 
in Section 7.5.

7

USDA
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472 CHAPTER 7  Techniques of Integration

Every differentiation rule has a corresponding integration rule. For instance, the Substi-
tution Rule for integration corresponds to the Chain Rule for differentiation. The rule 
that corresponds to the Product Rule for differentiation is called the rule for integration 
by parts.

The Product Rule states that if f  and t are differentiable functions, then

d
dx

 f f sxdtsxdg − f sxdt9sxd 1 tsxd f 9sxd

In the notation for indefinite integrals this equation becomes

y f f sxdt9sxd 1 tsxd f 9sxdg dx − f sxdtsxd

or  y f sxdt9sxd dx 1 y tsxd f 9sxd dx − f sxdtsxd

We can rearrange this equation as

y f sxdt9sxd dx − f sxdtsxd 2 y tsxd f 9sxd dx

Formula 1 is called the formula for integration by parts. It is perhaps easier to remem-
ber  in the following notation. Let u − f sxd and v − tsxd. Then the differentials are 
du − f 9sxd dx and dv − t9sxd dx, so, by the Substitution Rule, the formula for integra-
tion by parts becomes

y u dv − uv 2 y v du

EXAMPLE 1  Find y x sin x dx.

SOLUTION USING FORMULA 1 Suppose we choose f sxd − x and t9sxd − sin x. Then 
f 9sxd − 1 and tsxd − 2cos x. (For t we can choose any antiderivative of t9.) Thus, 
using Formula 1, we have

 y x sin x dx − f sxdtsxd 2 y tsxd f 9sxd dx

 − xs2cos xd 2 y s2cos xd dx

 − 2x cos x 1 y cos x dx

 − 2x cos x 1 sin x 1 C

1

2
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 SECTION 7.1  Integration by Parts 473

It’s wise to check the answer by differentiating it. If we do so, we get x sin x, as 
expected.

SOLUTION USING FORMULA 2 Let

  u − x  dv − sin x dx

Then  du − dx    v − 2cos x

and so

u d√ u √ √ du

 y x sin x dx − y x  sin x dx − x s2cos xd 2 y s2cos xd dx

 − 2x cos x 1 y cos x dx

  − 2x cos x 1 sin x 1 C  Q

NOTE Our aim in using integration by parts is to obtain a simpler integral than 
the one we started with. Thus in Example 1 we started with y x sin x dx and expressed 
it in terms of the simpler integral y cos x dx. If we had instead chosen u − sin x and 
dv − x dx, then du − cos x dx and v − x 2y2, so integration by parts gives

y x sin x dx − ssin xd 
x 2

2
2

1
2

 y x 2 cos x dx

Although this is true, y x 2 cos x dx is a more difficult integral than the one we started 
with. In general, when deciding on a choice for u and dv, we usually try to choose 
u − f sxd to be a function that becomes simpler when differentiated (or at least not more 
complicated) as long as dv − t9sxd dx can be readily integrated to give v.

EXAMPLE 2  Evaluate y ln x dx.

SOLUTION Here we don’t have much choice for u and dv. Let

 u − ln x dv − dx

Then  du −
1
x

 dx v − x

Integrating by parts, we get

 y ln x dx − x ln x 2 y x 
dx
x

 − x ln x 2 y dx

 − x ln x 2 x 1 C

Integration by parts is effective in this example because the derivative of the func-
tion f sxd − ln x is simpler than f. Q

It is helpful to use the pattern:

 u − !     dv − !

 du − !     v − !

It’s customary to write y 1 dx as y dx.

Check the answer by differentiating it.
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474 CHAPTER 7  Techniques of Integration

EXAMPLE 3  Find y t 2et dt.

SOLUTION Notice that t 2 becomes simpler when differentiated (whereas et is 
unchanged when differentiated or integrated), so we choose

  u − t 2     dv − et dt

Then   du − 2t dt v − et

Integration by parts gives

y t 2et dt − t 2et 2 2 y tet dt

The integral that we obtained, y tet dt, is simpler than the original integral but is still not 
obvious. Therefore we use integration by parts a second time, this time with u − t and 
dv − et dt. Then du − dt, v − et, and

 y tet dt − tet 2 y et dt

 − tet 2 et 1 C

Putting this in Equation 3, we get

  y t 2et dt − t 2et 2 2 y tet dt

  − t 2et 2 2stet 2 et 1 Cd

  − t 2et 2 2tet 1 2et 1 C1    where C1 − 22C Q

EXAMPLE 4  Evaluate y ex sin x dx.

SOLUTION Neither ex nor sin x becomes simpler when differentiated, but we try choos-
ing u − ex and dv − sin x dx anyway. Then du − ex dx and v − 2cos x, so integration  
by parts gives

y ex sin x dx − 2ex cos x 1 y ex cos x dx

The integral that we have obtained, y ex cos x dx, is no simpler than the original one, but 
at least it’s no more difficult. Having had success in the preceding example integrating 
by parts twice, we persevere and integrate by parts again. This time we use u − ex and 
dv − cos x dx. Then du − ex dx, v − sin x, and

y ex cos x dx − ex sin x 2 y ex sin x dx

At first glance, it appears as if we have accomplished nothing because we have arrived 
at y ex sin x dx, which is where we started. However, if we put the expression for 
y ex cos x dx from Equation 5 into Equation 4 we get

y ex sin x dx − 2ex cos x 1 ex sin x 2 y ex sin x dx

3

An easier method, using complex 
numbers, is given in Exercise 50 in 
Appendix H.

4

5
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 SECTION 7.1  Integration by Parts 475

This can be regarded as an equation to be solved for the unknown integral. Adding 
y ex sin x dx to both sides, we obtain

2 y ex sin x dx − 2ex cos x 1 ex sin x

Dividing by 2 and adding the constant of integration, we get

 y ex sin x dx − 1
2 exssin x 2 cos xd 1 C Q�

If we combine the formula for integration by parts with Part 2 of the Fundamental  
Theorem of Calculus, we can evaluate definite integrals by parts. Evaluating both sides 
of Formula 1 between a and b, assuming f 9 and t9 are continuous, and using the Funda-
mental Theorem, we obtain

yb

a
 f sxdt9sxd dx − f sxdtsxdg a

b
2 yb

a

 tsxd f 9sxd dx

EXAMPLE 5  Calculate y1

0
 tan21x dx.

SOLUTION Let
 u − tan21x dv − dx

Then  du −
dx

1 1 x 2              v − x

So Formula 6 gives

 y1

0
 tan21x dx − x tan21xg0

1 2 y1

0
 

x
1 1 x 2

 dx

 − 1 ? tan21 1 2 0 ? tan21 0 2 y1

0
 

x
1 1 x 2  dx

 −
!

4
2 y1

0
 

x
1 1 x 2  dx

To evaluate this integral we use the substitution t − 1 1 x 2 (since u has another mean-
ing in this example). Then dt − 2x dx, so x dx − 1

2 dt. When x − 0, t − 1; when x − 1, 
t − 2; so

 y1

0
 

x
1 1 x 2  dx − 1

2 y2

1
 
dt
t

− 1
2 ln | t |g1

2

 − 1
2 sln 2 2 ln 1d − 1

2 ln 2

Therefore y1

0
 tan21x dx −

!

4
2 y1

0
 

x
1 1 x 2  dx −

!

4
2

ln 2
2

 Q

EXAMPLE 6  Prove the reduction formula

y sinnx dx − 2
1
n

cos x sinn21x 1
n 2 1

n
 y sinn22x dx

where n > 2 is an integer.

Figure 1 illustrates Example 4 by show- 
ing the graphs of f sxd − e x sin x and 
Fsxd − 1

2 e xssin x 2 cos xd. As a visual 
check on our work, notice that f sxd − 0 
when F has a maximum or minimum.

_3

_4

12

6

F
f

FIGURE 1

6

Since tan21x > 0 for x > 0, the integral 
in Example 5 can be interpreted as the 
area of the region shown in Figure 2.

y

0
x1

y=tan–!x

FIGURE 2 

7
Equation 7 is called a reduction for-
mula because the exponent n has been 
reduced to n 2 1 and n 2 2.
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476 CHAPTER 7  Techniques of Integration

SOLUTION Let

  u − sinn21x        dv − sin x dx

Then  du − sn 2 1d sinn22x cos x dx       v − 2cos x

so integration by parts gives

y sinnx dx − 2cos x sinn21x 1 sn 2 1d y sinn22x cos2x dx 

Since cos2x − 1 2 sin2x, we have

y sinnx dx − 2cos x sinn21x 1 sn 2 1d y sinn22x dx 2 sn 2 1d y sinnx dx

As in Example 4, we solve this equation for the desired integral by taking the last term 
on the right side to the left side. Thus we have

 n y sinnx dx − 2cos x sinn21x 1 sn 2 1d y sinn22x dx

or  y sinnx dx − 2
1
n

 cos x sinn21x 1
n 2 1

n
 y sinn22x dx Q

The reduction formula (7) is useful because by using it repeatedly we could eventu-
ally express y sinnx dx in terms of y sin x dx (if n is odd) or y ssin xd0 dx − y dx (if n is 
even).

1–2 Evaluate the integral using integration by parts with the  
indicated choices of u and dv.

 1. y xe 2x dx; u − x, dv − e 2x dx

 2. y sx  ln x dx; u − ln x, dv − sx  dx

3–36 Evaluate the integral.

 3. y x cos 5x dx 4. y ye 0.2y dy

 5. y te 23t dt 6. y sx 2 1d sin !x dx

 7. y sx 2 1 2xd cos x dx 8. y t 2 sin "t dt

 9. y cos21x dx 10. y ln sx  dx

 11. y t 4 ln t dt 12. y tan21 2y dy

 13. y t csc2 t dt 14. y x cosh ax dx

 15. y sln xd2 dx 16. y 
z

10 z  dz

 17. y e 2# sin 3# d# 18. y e2# cos 2# d#

 19. y z 3e z dz 20. y x tan2 x dx

 21. y 
xe 2x

s1 1 2xd2  dx 22. y sarcsin xd2 dx

 23. y1y2

0
 x cos !x dx 24. y1

0
 sx 2 1 1de2x dx

 25. y2

0
 y sinh y dy 26. y2

1
 w 2 ln w dw

 27. y5

1
 
ln R
R2  dR 28. y2!

0
 t 2 sin 2t dt

 29. y!

0
 x sin x cos x dx 30. ys3

1
 arctans1yxd dx
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 SECTION 7.1  Integration by Parts 477

 50.  Prove that, for even powers of sine,

y!y2

0
 sin2nx dx −

1 ? 3 ? 5 ? ∙ ∙ ∙ ? s2n 2 1d
2 ? 4 ? 6 ? ∙ ∙ ∙ ? 2n

 
!

2

51–54 Use integration by parts to prove the reduction formula.

 51.  y sln xdn dx − x sln xdn 2 n y sln xdn21 dx

 52.  y x ne x dx − x ne x 2 n y x n21e x dx

 53.  y tann x dx −
tann21 x
n 2 1

2 y tann22 x dx sn ± 1d

 54.   y secnx dx −
tan x secn22x

n 2 1
1

n 2 2
n 2 1

 y secn22x dx sn ± 1d

 55.  Use Exercise 51 to find y sln xd3 dx.

 56.  Use Exercise 52 to find y x 4e x dx.

57–58 Find the area of the region bounded by the given curves.

 57. y − x 2 ln x, y − 4 ln x 58.  y − x 2e2x, y − xe2x

59–60 Use a graph to find approximate x-coordinates of the 
points of intersection of the given curves. Then find (approxi-
mately) the area of the region bounded by the curves.

 59.  y − arcsins1
2 xd, y − 2 2 x 2

 60.  y − x lnsx 1 1d, y − 3x 2 x 2

61–64 Use the method of cylindrical shells to find the volume 
generated by rotating the region bounded by the curves about the 
given axis.

 61.  y − coss!xy2d, y − 0, 0 < x < 1; about the y-axis

 62.  y − e x, y − e2x, x − 1; about the y-axis

 63.  y − e2x, y − 0, x − 21, x − 0; about x − 1

 64.  y − e x, x − 0, y − 3; about the x-axis

 65.   Calculate the volume generated by rotating the region 
bounded by the curves y − ln x, y − 0, and x − 2 about 
each axis.

 (a) The y-axis (b) The x-axis

 66.   Calculate the average value of f sxd − x sec2x on the  
interval f0, !y4g.

 67.   The Fresnel function Ssxd − yx
0 sin(1

2 !t 2) dt was discussed 
in Example 5.3.3 and is used extensively in the theory of 
optics. Find y  Ssxd dx. [Your answer will involve Ssxd.] 

;

 31. y5

1
 
M
eM  dM 32. y2

1
 
sln xd2

x 3  dx

 33. y!y3

0
 sin x lnscos xd dx 34. y1

0
 

r 3

s4 1 r 2 
 dr

 35. y2

1
 x 4sln xd2 dx 36. y t

0
 e s sinst 2 sd ds

37–42 First make a substitution and then use integration by 
parts to evaluate the integral.

 37. y esx dx 38. y cossln xd dx

 39. ys!

s!y2
 # 3 coss# 2 d d# 40. y!

0
 e cos t sin 2t dt

 41. y x lns1 1 xd dx 42. y 
arcsinsln xd

x
 dx

43–46 Evaluate the indefinite integral. Illustrate, and check 
that your answer is reasonable, by graphing both the function 
and its antiderivative (take C − 0).

 43. y xe22x dx 44. y x 3y2 ln x dx

 45. y x 3s1 1 x 2  dx 46. y x 2 sin 2x dx

 47.  (a) Use the reduction formula in Example 6 to show that

y sin2x dx −
x
2

2
sin 2x

4
1 C

 (b)  Use part (a) and the reduction formula to evaluate 
y sin4x dx.

 48.  (a) Prove the reduction formula

y cosnx dx −
1
n

 cosn21x sin x 1
n 2 1

n
 y cosn22x dx

 (b) Use part (a) to evaluate y cos2x dx.
 (c) Use parts (a) and (b) to evaluate y cos4x dx.

 49.  (a) Use the reduction formula in Example 6 to show that

y!y2

0
 sinnx dx −

n 2 1
n

 y!y2

0
 sinn22x dx

  where n > 2 is an integer.
 (b)  Use part (a) to evaluate y!y2

0  sin3x dx and y!y2
0  sin5x dx.

 (c) Use part (a) to show that, for odd powers of sine,

y!y2

0
 sin2n11x dx −

2 ? 4 ? 6 ? ∙ ∙ ∙ ? 2n
3 ? 5 ? 7 ? ∙ ∙ ∙ ? s2n 1 1d

;
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478 CHAPTER 7  Techniques of Integration

 68.   A rocket accelerates by burning its onboard fuel, so its mass 
decreases with time. Suppose the initial mass of the rocket  
at liftoff (including its fuel) is m, the fuel is consumed at  
rate r, and the exhaust gases are ejected with constant 
velocity ve (rel ative to the rocket). A model for the velocity  
of the rocket at time t is given by the equation

vstd − 2tt 2 ve ln 
m 2 rt

m

where t is the acceleration due to gravity and t is not too  
large. If t − 9.8 mys2, m − 30,000 kg, r − 160 kgys, and 
ve − 3000 mys, find the height of the rocket one minute  
after liftoff.

 69.   A particle that moves along a straight line has velocity 
vstd − t 2e2t meters per second after t seconds. How far will  
it travel during the first t seconds?

 70.  If f s0d − ts0d − 0 and f 0 and t 0 are continuous, show that

ya

0
 f sxdt 0sxd dx − f sadt9sad 2 f 9sadtsad 1 ya

0
 f 0sxdtsxd dx

 71.   Suppose that f s1d − 2, f s4d − 7, f 9s1d − 5, f 9s4d − 3,  
and f 0 is continuous. Find the value of y4

1  xf 0sxd dx.

 72.  (a) Use integration by parts to show that

y f sxd dx − xf sxd 2 y xf 9sxd dx

 (b)  If f  and t are inverse functions and f 9 is continuous, 
prove that

yb

a
 f sxd dx − bf sbd 2 af sad 2 y f sbd

f sad
 tsyd dy

  [Hint: Use part (a) and make the substitution y − f sxd.]
 (c)  In the case where f  and t are positive functions and  

b . a . 0, draw a diagram to give a geometric interpre-
tation of part (b).

 (d) Use part (b) to evaluate ye
1 ln x dx.

 73.   We arrived at Formula 6.3.2, V − yb
a  2!x f sxd dx, by using 

cylindrical shells, but now we can use integration by parts  
to prove it using the slicing method of Section 6.2, at least  

for the case where f  is one-to-one and therefore has an 
inverse function t. Use the figure to show that

V − !b 2d 2 !a 2c 2 yd

c
 ! ftsydg2 dy

 Make the substitution y − f sxd and then use integration by 
parts on the resulting integral to prove that

V − yb

a
 2!x f sxd dx

 74.  Let In − y!y2
0  sinnx dx.

 (a) Show that I2n12 < I2n11 < I2n.
 (b) Use Exercise 50 to show that 

I2n12

I2n
−

2n 1 1
2n 1 2

 (c) Use parts (a) and (b) to show that

2n 1 1
2n 1 2

<
I2n11

I2n
< 1

  and deduce that limn l ` I2n11yI2n − 1.
 (d) Use part (c) and Exercises 49 and 50 to show that

lim
n l `

 
2
1

?
2
3

?
4
3

?
4
5

?
6
5

?
6
7

? ∙ ∙ ∙ ?
2n

2n 2 1
?

2n
2n 1 1

−
!

2

  This formula is usually written as an infinite product:

 
!

2
−

2
1

?
2
3

?
4
3

?
4
5

?
6
5

?
6
7

? ∙ ∙ ∙

  and is called the Wallis product.
 (e)  We construct rectangles as follows. Start with a square of 

area 1 and attach rectangles of area 1 alternately beside or 
on top of the previous rectangle (see the figure). Find the 
limit of the ratios of width to height of these rectangles.

y

0 xa b

c

d

x=a
x=b

y=ƒx=g(y)
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 SECTION 7.2  Trigo no metric Integrals 479

In this section we use trigonometric identities to integrate certain combinations of trigo-
no metric functions. We start with powers of sine and cosine.

EXAMPLE 1  Evaluate y cos3x dx.

SOLUTION Simply substituting u − cos x isn’t helpful, since then du − 2sin x dx. In 
order to integrate powers of cosine, we would need an extra sin x factor. Similarly, a 
power of sine would require an extra cos x factor. Thus here we can separate one cosine 
factor and convert the remaining cos2x factor to an expression involving sine using the 
identity sin2x 1 cos2x − 1:

cos3x − cos2x ? cos x − s1 2 sin2xd cos x 

We can then evaluate the integral by substituting u − sin x, so du − cos x dx and

y cos3x dx − y cos2x ? cos x dx − y s1 2 sin2 xd cos x dx

  − y s1 2 u 2 d du − u 2 1
3 u 3 1 C

 − sin x 2 1
3 sin3x 1 C  Q

In general, we try to write an integrand involving powers of sine and cosine in a form 
where we have only one sine factor (and the remainder of the expression in terms of 
cosine) or only one cosine factor (and the remainder of the expression in terms of sine). 
The iden tity sin2x 1 cos2x − 1 enables us to convert back and forth between even pow-
ers of sine and cosine.

EXAMPLE 2  Find y sin5x cos2x dx.

SOLUTION We could convert cos2x to 1 2 sin2x, but we would be left with an expres-
sion in terms of sin x with no extra cos x factor. Instead, we separate a single sine factor 
and rewrite the remaining sin4x factor in terms of cos x:

sin5x cos2x − ssin2xd2 cos2x sin x − s1 2 cos2xd2 cos2x sin x

Substituting u − cos x, we have du − 2sin x dx and so

 y sin5x cos2x dx − y ssin2xd2 cos2x sin x dx

 − y s1 2 cos2xd2 cos2x sin x dx

 − y s1 2 u 2 d2 u 2 s2dud − 2y su 2 2 2u 4 1 u 6 d du

 − 2S u 3

3
2 2 

u 5

5
1

u 7

7 D 1 C

 − 21
3 cos3x 1 2

5 cos5x 2 1
7 cos7x 1 C Q

Figure 1 shows the graphs of the 
integrand sin5x cos2x in Example 2  
and its indefinite integral (with 
C − 0). Which is which?

FIGURE 1 

_π

_0.2

0.2

π
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480 CHAPTER 7  Techniques of Integration

In the preceding examples, an odd power of sine or cosine enabled us to separate a  
single factor and convert the remaining even power. If the integrand contains even pow-
ers of both sine and cosine, this strategy fails. In this case, we can take advantage of the 
following half-angle identities (see Equations 17b and 17a in Appendix D):

sin2x − 1
2 s1 2 cos 2xd    and    cos2x − 1

2 s1 1 cos 2xd

EXAMPLE 3  Evaluate y!

0
 sin2x dx.

SOLUTION If we write sin2x − 1 2 cos2x, the integral is no simpler to evaluate. Using 
the half-angle formula for sin2x, however, we have

 y!

0
 sin2x dx − 1

2 y!

0
 s1 2 cos 2xd dx

 − f1
2 (x 2 1

2 sin 2x)g0

!

 − 1
2 s! 2 1

2 sin 2!d 2 1
2 s0 2 1

2 sin 0d − 1
2 !

Notice that we mentally made the substitution u − 2x when integrating cos 2x. Another 
method for evaluating this integral was given in Exercise 7.1.47.� Q

EXAMPLE 4  Find y sin4x dx.

SOLUTION We could evaluate this integral using the reduction formula for y sinnx dx 
(Equation 7.1.7) together with Example 3 (as in Exercise 7.1.47), but a better method is 
to write sin4x − ssin2xd2 and use a half-angle formula:

 y sin4x dx − y ssin2xd2 dx

 − y S 1 2 cos 2x
2 D2

 dx

 − 1
4 y s1 2 2 cos 2x 1 cos2 2xd dx

Since cos2 2x occurs, we must use another half-angle formula

cos2 2x − 1
2 s1 1 cos 4xd

This gives

 y sin4x dx − 1
4 y f1 2 2 cos 2x 1 1

2 s1 1 cos 4xdg dx

 − 1
4 y ( 3

2 2 2 cos 2x 1 1
2 cos 4x) dx

 − 1
4 (3

2 x 2 sin 2x 1 1
8 sin 4x) 1 C� Q

To summarize, we list guidelines to follow when evaluating integrals of the form 
y sinmx cosnx dx, where m > 0 and n > 0 are integers.

Example 3 shows that the area of 
the region shown in Figure 2 is !y2.

FIGURE 2 

0

_0.5

1.5

π

y=sin@ x
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 SECTION 7.2  Trigo no metric Integrals  481

Strategy for Evaluating y sinmx cosnx dx

(a)  If the power of cosine is odd sn − 2k 1 1d, save one cosine factor and use 
cos2x − 1 2 sin2x to express the remaining factors in terms of sine:

 y sinmx cos2k11x dx − y sinmx scos2xdk cos x dx

 − y sinmx s1 2 sin2xdk cos x dx

 Then substitute u − sin x.

(b)  If the power of sine is odd sm − 2k 1 1d, save one sine factor and use 
sin2x − 1 2 cos2x to express the remaining factors in terms of cosine:

 y sin2k11x cosnx dx − y ssin2xdk cosnx sin x dx

 − y s1 2 cos2xdk cosnx sin x dx

  Then substitute u − cos x. [Note that if the powers of both sine and cosine 
are odd, either (a) or (b) can be used.]

(c) If the powers of both sine and cosine are even, use the half-angle identities

sin2x − 1
2 s1 2 cos 2xd      cos2x − 1

2 s1 1 cos 2xd

 It is sometimes helpful to use the identity

sin x cos x − 1
2 sin 2x

We can use a similar strategy to evaluate integrals of the form y tanmx secnx dx. Since 
sdydxd tan x − sec2x, we can separate a sec2x factor and convert the remaining (even) 
power of secant to an expression involving tangent using the identity sec2x − 1 1 tan2x. 
Or, since sdydxd sec x − sec x tan x, we can separate a sec x tan x factor and convert the 
remaining (even) power of tangent to secant.

EXAMPLE 5  Evaluate y tan6x sec4x dx.

SOLUTION If we separate one sec2x factor, we can express the remaining sec2x factor in 
terms of tangent using the identity sec2x − 1 1 tan2x. We can then evaluate the integral 
by substituting u − tan x so that du − sec2x dx:

 y tan6x sec4x dx − y tan6x sec2x sec2x dx

 − y tan6x s1 1 tan2xd sec2x dx

 − y u 6s1 1 u 2 d du − y su 6 1 u 8 d du

 −
u 7

7
1

u 9

9
1 C

 − 1
7 tan7x 1 1

9 tan9x 1 C  Q
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482 CHAPTER 7  Techniques of Integration

EXAMPLE 6  Find y tan5# sec7# d#.

SOLUTION If we separate a sec2# factor, as in the preceding example, we are left 
with a sec5# factor, which isn’t easily converted to tangent. However, if we separate 
a sec # tan # factor, we can convert the remaining power of tangent to an expression 
involving only secant using the identity tan2# − sec2# 2 1. We can then evaluate the 
integral by substituting u − sec #, so du − sec # tan # d#:

 y tan5# sec7# d# − y tan4# sec6# sec # tan # d#

 − y ssec2# 2 1d2 sec6# sec # tan # d#

 − y su 2 2 1d2 u 6 du

 − y su 10 2 2u 8 1 u 6 d du

 −
u 11

11
2 2 

u 9

9
1

u 7

7
1 C

   − 1
11 sec11# 2 2

9 sec9# 1 1
7 sec7# 1 C  Q

The preceding examples demonstrate strategies for evaluating integrals of the form 
y tanmx secnx dx for two cases, which we summarize here.

Strategy for Evaluating y tanmx secnx dx

(a)  If the power of secant is even sn − 2k, k > 2d, save a factor of sec2x and 
use sec2x − 1 1 tan2x to express the remaining factors in terms of tan x:

 y tanmx sec2kx dx − y tanmx ssec2xdk21 sec2x dx

 − y tanmx s1 1 tan2xdk21 sec2x dx

 Then substitute u − tan x.

(b)  If the power of tangent is odd sm − 2k 1 1d, save a factor of sec x tan x 
and use tan2x − sec2x 2 1 to express the remaining factors in terms of 
sec x:

 y tan2k11x secnx dx − y stan2xdk  secn21x sec x tan x dx

 − y ssec2x 2 1dk  secn21x sec x tan x dx

 Then substitute u − sec x.

For other cases, the guidelines are not as clear-cut. We may need to use identities, 
integration by parts, and occasionally a little ingenuity. We will sometimes need to be 
able to integrate tan x by using the formula established in (5.5.5):

y tan x dx − ln | sec x | 1 C
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 SECTION 7.2  Trigo no metric Integrals  483

We will also need the indefinite integral of secant:

y sec x dx − ln | sec x 1 tan x | 1 C

We could verify Formula 1 by differentiating the right side, or as follows. First we mult-
iply numerator and denominator by sec x 1 tan x:

 y sec x dx − y sec x 
sec x 1 tan x
sec x 1 tan x

 dx

  − y 
sec2x 1 sec x tan x

sec x 1 tan x
 dx

If we substitute u − sec x 1 tan x, then du − ssec x tan x 1 sec2xd dx, so the integral 
becomes y s1yud du − ln | u | 1 C. Thus we have

y sec x dx − ln | sec x 1 tan x | 1 C

EXAMPLE 7  Find y tan3x dx.

SOLUTION Here only tan x occurs, so we use tan2x − sec2x 2 1 to rewrite a tan2x 
factor in terms of sec2x:

 y tan3x dx − y tan x tan2x dx − y tan x ssec2x 2 1d dx

 − y tan x sec2x dx 2 y tan x dx

 −
tan2x

2
2 ln | sec x | 1 C

In the first integral we mentally substituted u − tan x so that du − sec2x dx. Q

If an even power of tangent appears with an odd power of secant, it is helpful to 
express the integrand completely in terms of sec x. Powers of sec x may require integra-
tion by parts, as shown in the following example.

EXAMPLE 8  Find y sec3x dx.

SOLUTION Here we integrate by parts with

 u − sec x  dv − sec2x dx

 du − sec x tan x dx v − tan x

Then  y sec3x dx − sec x tan x 2 y sec x tan2x dx

 − sec x tan x 2 y sec x ssec2x 2 1d dx

 − sec x tan x 2 y sec3x dx 1 y sec x dx

1Formula 1 was discovered by James 
Gregory in 1668. (See his biography 
on page 198.) Gregory used this for-
mula to solve a problem in construct-
ing nautical tables.
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484 CHAPTER 7  Techniques of Integration

 15. y cot x cos2x dx 16. y tan2x cos3x dx

 17. y sin2x sin 2x dx 18. y sin x cos( 1
2x) dx

 19. y t sin2t dt 20. y x sin3x dx

 21. y tan x sec3x dx 22. y tan2 ! sec4 ! d!

 23. y tan2x dx 24. y stan2 x 1 tan4 xd dx

 25. y tan4x sec6x dx 26. y"y4

0
 sec6! tan6! d!

 27. y tan3x sec x dx 28. y tan5x sec3x dx

 29. y tan3 x sec6x dx 30. y"y4

0
 tan4t dt

1–49 Evaluate the integral.

 1. y sin2x cos3x dx 2. y sin3! cos4 ! d!

 3. y"y2

0
 sin7! cos5! d! 4. y"y2

0
 sin5x dx

 5. y sin5s2td cos2s2td dt 6. y t cos5 st 2d dt

 7. y"y2

0
 cos2 ! d! 8. y2"

0
 sin2 ( 1

3!) d!

 9. y"

0
 cos4s2td dt 10. y"

0
 sin2 t cos4 t dt

 11. y"y2

0
 sin2x cos2x dx 12. y"y2

0
 s2 2 sin !d2 d!

 13. y scos !  sin3 ! d! 14. y 
sin2s1ytd

t 2   dt

Using Formula 1 and solving for the required integral, we get

 y sec3x dx − 1
2 (sec x tan x 1 ln | sec x 1 tan x |) 1 C Q

Integrals such as the one in the preceding example may seem very special but they 
occur frequently in applications of integration, as we will see in Chapter 8. Integrals of  
the form y cotmx cscnx dx can be found by similar methods because of the identity 
1 1 cot2x − csc2x.

Finally, we can make use of another set of trigonometric identities:

2   To evaluate the integrals (a) y sin mx cos nx dx, (b) y sin mx sin nx dx, or
(c) y cos mx cos nx dx, use the corresponding identity:

(a)  sin A cos B − 1
2 fsinsA 2 Bd 1 sinsA 1 Bdg

(b)  sin A sin B − 1
2 fcossA 2 Bd 2 cossA 1 Bdg

(c)  cos A cos B − 1
2 fcossA 2 Bd 1 cossA 1 Bdg

EXAMPLE 9  Evaluate y sin 4x cos 5x dx.

SOLUTION This integral could be evaluated using integration by parts, but it’s easier to 
use the identity in Equation 2(a) as follows:

 y sin 4x cos 5x dx − y 12 fsins2xd 1 sin 9xg dx

 − 1
2 y s2sin x 1 sin 9xd dx

 − 1
2 (cos x 2 1

9 cos 9x) 1 C Q

These product identities are discussed 
in Appendix D.
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 SECTION 7.2  Trigo no metric Integrals 485

59–60 Use a graph of the integrand to guess the value of the 
integral. Then use the methods of this section to prove that your 
guess is correct.

 59. y2!

0
 cos3x dx 60.  y2

0
 sin 2!x cos 5!x dx

61–64 Find the volume obtained by rotating the region bounded 
by the curves about the given axis.

 61.  y − sin x, y − 0, !y2 < x < !;  about the x-axis

 62.  y − sin2 x, y − 0, 0 < x < !;  about the x-axis

 63.  y − sin x, y − cos x, 0 < x < !y4;  about y − 1

 64.  y − sec x, y − cos x, 0 < x < !y3;  about y − 21

 65.   A particle moves on a straight line with velocity function 
vstd − sin "t cos2"t. Find its position function s − f std if 
f s0d − 0.

 66.   Household electricity is supplied in the form of alternating 
current that varies from 155 V to 2155 V with a frequency 
of 60 cycles per second (Hz). The voltage is thus given by 
the equation

Estd − 155 sins120! td

where t  is the time in seconds. Voltmeters read the RMS 
(root-mean-square) voltage, which is the square root of the 
average value of fEstdg2 over one cycle.

 (a) Calculate the RMS voltage of household current.
 (b)  Many electric stoves require an RMS voltage of  

220 V. Find the corresponding amplitude A needed  
for the voltage Estd − A sins120!td.

67–69 Prove the formula, where m and n are positive integers.

 67.  y!

2!
 sin mx cos nx dx − 0

 68.  y!

2!
 sin mx sin nx dx − H0

!

if m ± n
if m − n

 69.  y!

2!
 cos mx cos nx dx − H0

!

if m ± n
if m − n

 70.  A finite Fourier series is given by the sum

 f sxd − o
N

n−1
 an sin nx

 − a1 sin x 1 a2 sin 2x 1 ∙ ∙ ∙ 1 aN sin Nx

 Show that the mth coefficient am is given by the formula

am −
1
!

 y!

2!
 f sxd sin mx dx

; 31. y tan5x dx 32. y tan2x sec x dx

 33. y x sec x tan x dx 34. y 
sin #
cos3 #

 d#

 35. y!y2

!y6
 cot2x dx 36. y!y2

!y4
 cot3x dx

 37. y!y2

!y4
 cot5# csc3# d# 38. y!y2

!y4
 csc4$ cot4$ d$

 39. y csc x dx 40. y!y3

!y6
 csc3x dx

 41. y sin 8x cos 5x dx 42. y sin 2$ sin 6$ d$

 43. y!y2

0
 cos 5t cos 10t dt 44. y sin x sec5x dx

 45. y!y6

0
 s1 1 cos 2x  dx 46. y!y4

0
 s1 2 cos 4$  d $

 47. y 
1 2 tan2x

sec2x
 dx 48. y 

dx
cos x 2 1

 49. y x tan2x dx

 50.   If y!y4
0  tan6x sec x dx − I, express the value of

y!y4
0  tan8x sec x dx in terms of I.

51–54 Evaluate the indefinite integral. Illustrate, and check that 
your answer is reasonable, by graphing both the integrand and its 
antiderivative (taking C − 0d.

 51. y x sin2sx 2d dx 52.  y sin5x cos3x dx

 53. y sin 3x sin 6x dx 54.  y sec4 (1
2 x) dx

 55.   Find the average value of the function f sxd − sin2x cos3x on 
the interval f2!, !g.

 56.   Evaluate y sin x cos x dx by four methods:
 (a) the substitution u − cos x
 (b) the substitution u − sin x
 (c) the identity sin 2x − 2 sin x cos x
 (d) integration by parts

Explain the different appearances of the answers.

57–58 Find the area of the region bounded by the given curves.

 57.  y − sin2 x,  y − sin3 x,  0 < x < !

 58.  y − tan  x,  y − tan2 x,  0 < x < !y4

;
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486 CHAPTER 7  Techniques of Integration

In finding the area of a circle or an ellipse, an integral of the form y sa 2 2 x 2  dx arises, 
where a . 0. If it were y xsa 2 2 x 2  dx, the substitution u − a 2 2 x 2 would be effective 
but, as it stands, y sa 2 2 x 2  dx is more difficult. If we change the variable from x to ! 
by the substitution x − a sin !, then the identity 1 2 sin2! − cos2! allows us to get rid 
of the root sign because

sa 2 2 x 2 − sa 2 2 a 2 sin2!  − sa 2s1 2 sin2!d − sa 2 cos2!  − a | cos ! |
Notice the difference between the substitution u − a 2 2 x 2 (in which the new variable is 
a function of the old one) and the substitution x − a sin ! (the old variable is a function 
of the new one).

In general, we can make a substitution of the form x − tstd by using the Substitution 
Rule in reverse. To make our calculations simpler, we assume that t has an inverse func-
tion; that is, t is one-to-one. In this case, if we replace u by x and x by t in the Substitution 
Rule (Equation 5.5.4), we obtain

y f sxd dx − y f ststddt9std dt

This kind of substitution is called inverse substitution.
We can make the inverse substitution x − a sin ! provided that it defines a one-to-one 

function. This can be accomplished by restricting ! to lie in the interval f2"y2, "y2g.
In the following table we list trigonometric substitutions that are effective for the 

given radical expressions because of the specified trigonometric identities. In each case 
the restriction on ! is imposed to ensure that the function that defines the substitution 
is one-to-one. (These are the same intervals used in Section 1.5 in defining the inverse 
functions.)

Table of Trigonometric Substitutions

Expression  Substitution  Identity

sa 2 2 x 2 

sa 2 1 x 2 

sx 2 2 a 2 

x − a sin !, 2
"

2
< ! <

"

2

x − a tan !, 2
"

2
, ! ,

"

2

x − a sec !, 0 < ! ,
"

2
or " < ! ,

3"

2

1 2 sin2! − cos2!

1 1 tan2! − sec2!

sec2! 2 1 − tan2!

EXAMPLE 1  Evaluate y 
s9 2 x 2 

x 2
 dx.

SOLUTION Let x − 3 sin !, where 2"y2 < ! < "y2. Then dx − 3 cos ! d! and

s9 2 x 2 − s9 2 9 sin2 !  − s9 cos2 !  − 3 | cos ! | − 3 cos !
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 SECTION 7.3  Trigonometric Substitution 487

(Note that cos ! > 0 because 2"y2 < ! < "y2.) Thus the Inverse Substitution Rule 
gives

 y 
s9 2 x 2 

x 2  dx − y 
3 cos !
9 sin2!

 3 cos ! d!

 − y 
cos2!

sin2!
 d! − y cot2! d!

 − y scsc2! 2 1d d!

 − 2cot ! 2 ! 1 C

Since this is an indefinite integral, we must return to the original variable x. This can be 
done either by using trigonometric identities to express cot ! in terms of sin ! − xy3 
or by drawing a diagram, as in Figure 1, where ! is interpreted as an angle of a right 
triangle. Since sin ! − xy3, we label the opposite side and the hypotenuse as having 
lengths x and 3. Then the Pythagorean Theorem gives the length of the adjacent side as 
s9 2 x 2 , so we can simply read the value of cot ! from the figure:

cot ! −
s9 2 x 2 

x

(Although ! . 0 in the diagram, this expression for cot ! is valid even when ! , 0.) 
Since sin ! − xy3, we have ! − sin21sxy3d and so

 y 
s9 2 x 2 

x 2
 dx − 2

s9 2 x 2 

x
2 sin21S x

3D 1 C Q

EXAMPLE 2  Find the area enclosed by the ellipse

x 2

a 2 1
 y 2

b 2 − 1

SOLUTION Solving the equation of the ellipse for y, we get

 y 2

b 2 − 1 2
x 2

a 2 −
a 2 2 x 2

a 2     or    y − 6
b
a

 sa 2 2 x 2 

Because the ellipse is symmetric with respect to both axes, the total area A is four 
times the area in the first quadrant (see Figure 2). The part of the ellipse in the first 
quadrant is given by the function

y −
b
a

 sa 2 2 x 2     0 < x < a

and so 1
4 A − ya

0
 
b
a

 sa 2 2 x 2  dx

To evaluate this integral we substitute x − a sin !. Then dx − a cos ! d!. To change 

3

¨

x

œ„„„„„9-≈

FIGURE 1 

sin ! −
x
3

y

0 x

(0, b)

(a, 0)

FIGURE 2
x 2

a 2 1
 y 2

b 2 − 1
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488 CHAPTER 7  Techniques of Integration

the limits of integration we note that when x − 0, sin ! − 0, so ! − 0; when x − a, 
sin ! − 1, so ! − "y2. Also

sa 2 2 x 2 − sa 2 2 a 2 sin2! − sa 2 cos2! − a | cos ! | − a cos !

since 0 < ! < "y2. Therefore

 A − 4 
b
a

 ya

0
 sa 2 2 x 2  dx − 4 

b
a

 y"y2

0
 a cos ! ? a cos ! d!

 − 4ab y"y2

0
 cos2! d! − 4ab y"y2

0
 12 s1 1 cos 2!d d!

 − 2abf! 1 1
2 sin 2!g0

"y2
− 2abS"

2
1 0 2 0D − "ab

We have shown that the area of an ellipse with semiaxes a and b is "ab. In particular, 
taking a − b − r, we have proved the famous formula that the area of a circle with 
radius r is "r 2. Q

NOTE Since the integral in Example 2 was a definite integral, we changed the limits 
of integration and did not have to convert back to the original variable x.

EXAMPLE 3  Find y 
1

x 2sx 2 1 4 
 dx.

SOLUTION Let x − 2 tan !, 2"y2 , ! , "y2. Then dx − 2 sec2 ! d! and

sx 2 1 4 − s4stan2 ! 1 1d − s4 sec2 ! − 2 | sec ! | − 2 sec !

So we have

y 
dx

x 2sx 2 1 4 
− y 

2 sec2 ! d!

4 tan2 ! ? 2 sec !
−

1
4

 y 
sec !
tan2 !

 d!

To evaluate this trigonometric integral we put everything in terms of sin ! and cos !:

sec !
tan2!

−
1

cos !
?

cos2!

sin2!
−

cos !
sin2!

Therefore, making the substitution u − sin !, we have

 y 
dx

x 2sx 2 1 4 
−

1
4

 y 
cos !
sin2!

 d! −
1
4

 y 
du
u 2

 −
1
4

 S2
1
uD 1 C − 2

1
4 sin !

1 C

 − 2
csc !

4
1 C

We use Figure 3 to determine that csc ! − sx 2 1 4 yx and so

 y 
dx

x 2sx 2 1 4 
− 2

sx 2 1 4 

4x
1 C Q

œ„„„„„≈+4

2
¨

x

FIGURE 3 

tan ! −
x
2
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 SECTION 7.3  Trigonometric Substitution 489

EXAMPLE 4  Find y 
x

sx 2 1 4 
 dx.

SOLUTION It would be possible to use the trigonometric substitution x − 2 tan ! here  
(as in Example 3). But the direct substitution u − x 2 1 4 is simpler, because then 
du − 2x dx and

 y 
x

sx 2 1 4 
 dx −

1
2

 y 
du

su  − su  1 C − sx 2 1 4 1 C Q

NOTE Example 4 illustrates the fact that even when trigonometric substitutions are 
pos sible, they may not give the easiest solution. You should look for a simpler method 
first.

EXAMPLE 5  Evaluate y 
dx

sx 2 2 a 2 
, where a . 0.

SOLUTION 1 We let x − a sec !, where 0 , ! , "y2 or " , ! , 3"y2. Then 
dx − a sec ! tan ! d! and

sx 2 2 a 2 − sa 2 ssec2 ! 2 1d − sa 2 tan2 ! − a | tan ! | − a tan !

Therefore

 y 
dx

sx 2 2 a 2 
− y 

a sec ! tan !
a tan !

 d! − y sec ! d! − ln | sec ! 1 tan ! | 1 C

The triangle in Figure 4 gives tan ! − sx 2 2 a 2 ya, so we have

 y 
dx

sx 2 2 a 2 
− ln Z x

a
1

sx 2 2 a 2 

a Z 1 C

 − ln | x 1 sx 2 2 a 2 | 2 ln a 1 C

Writing C1 − C 2 ln a, we have

y 
dx

sx 2 2 a 2 
− ln | x 1 sx 2 2 a 2 | 1 C1

SOLUTION 2 For x . 0 the hyperbolic substitution x − a cosh t can also be used. 
Using the identity cosh2 y 2 sinh2 y − 1, we have

sx 2 2 a 2 − sa 2 scosh2 t 2 1d − sa 2 sinh2 t − a sinh t

Since dx − a sinh t dt, we obtain

y 
dx

sx 2 2 a 2 
− y 

a sinh t dt
a sinh t

− y dt − t 1 C

Since cosh t − xya, we have t − cosh21sxyad and

y 
dx

sx 2 2 a 2 
− cosh21S x

aD 1 C

Although Formulas 1 and 2 look quite different, they are actually equivalent by  
Formula 3.11.4. Q

œ„„„„„

a
¨

x ≈-a@

FIGURE 4 

sec ! −
x
a

1

2
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490 CHAPTER 7  Techniques of Integration

NOTE As Example 5 illustrates, hyperbolic substitutions can be used in place of trig- 
onometric substitutions and sometimes they lead to simpler answers. But we usually use  
trigonometric substitutions because trigonometric identities are more familiar than hyper- 
bolic identities.

EXAMPLE 6  Find y3s3y2

0
 

x 3

s4x 2 1 9d3y2  dx.

SOLUTION First we note that s4x 2 1 9d3y2 − ss4x 2 1 9 d3 so trigonometric substitu-
tion is appropriate. Although s4x 2 1 9  is not quite one of the expressions in the table 
of trigonometric substitutions, it becomes one of them if we make the preliminary 
substitution u − 2x. When we combine this with the tangent substitution, we have 
x − 3

2 tan !, which gives dx − 3
2 sec2! d! and

s4x 2 1 9 − s9 tan2! 1 9 − 3 sec !

When x − 0, tan ! − 0, so ! − 0; when x − 3s3 y2, tan ! − s3 , so ! − "y3.

 y3s3y2

0
 

x 3

s4x 2 1 9d3y2  dx − y"y3

0
 

27
8 tan3!

 27 sec3!
 3

2 sec2! d!

 − 3
16 y"y3

0
 
tan3!

sec !
 d! − 3

16 y"y3

0
 
sin3!

cos2!
 d!

 − 3
16 y"y3

0
 
1 2 cos2!

cos2!
 sin ! d!

Now we substitute u − cos ! so that du − 2sin ! d!. When ! − 0, u − 1; when 
! − "y3, u − 1

2. Therefore

 y3s3y2

0  
x 3

s4x 2 1 9d3y2  dx − 2 3
16 y1y2

1
 
1 2 u2

u2  du

− 3
16 y1y2

1
 s1 2 u22 d du − 3

16 Fu 1
1
uG1

1y2

  − 3
16 f(1

2 1 2) 2 s1 1 1dg −
3
32

  Q

EXAMPLE 7  Evaluate y 
x

s3 2 2x 2 x 2 
 dx.

SOLUTION We can transform the integrand into a function for which trigonometric 
substitution is appropriate by first completing the square under the root sign:

 3 2 2x 2 x 2 − 3 2 sx 2 1 2xd − 3 1 1 2 sx 2 1 2x 1 1d

 − 4 2 sx 1 1d2

This suggests that we make the substitution u − x 1 1. Then du − dx and x − u 2 1, so

y 
x

s3 2 2x 2 x 2 
 dx − y 

u 2 1

s4 2 u 2 
 du

As Example 6 shows, trigonometric 
substitution is sometimes a good idea 
when sx 2 1 a2dny2 occurs in an integral, 
where n is any integer. The same is 
true when sa2 2 x 2dny2 or sx 2 2 a2dny2 
occur.
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 17. y 
x

sx 2 2 7 
 dx 18. y 

dx
fsaxd2 2 b 2 g3y2

 19. y 
s1 1 x 2 

x
 dx 20. y 

x

s1 1 x 2 
 dx

 21. y0.6

0
 

x 2

s9 2 25x 2 
 dx 22. y1

0
 sx 2 1 1 dx

 23. y 
dx

sx2 1 2x 1 5 
 24. y1

0
 sx 2 x2  dx

 25. y x2 s3 1 2x 2 x2  dx 26. y 
x 2

s3 1 4x 2 4x 2d3y2  dx

 27. y sx 2 1 2x dx 28. y 
x 2 1 1

sx 2 2 2x 1 2d2  dx

 29. y xs1 2 x 4  dx 30. y"y2

0
 

cos t

s1 1 sin2t  
 dt

 31. (a)  Use trigonometric substitution to show that

y 
dx

sx 2 1 a 2 
− ln(x 1 sx 2 1 a 2 ) 1 C

 (b) Use the hyperbolic substitution x − a sinh t to show that

y 
dx

sx 2 1 a 2 
− sinh21S x

aD 1 C

These formulas are connected by Formula 3.11.3.

1–3 Evaluate the integral using the indicated trigonometric 
substitution. Sketch and label the associated right triangle.

 1. y 
dx

x 2s4 2 x 2 
    x − 2 sin !

 2. y 
x 3

sx 2 1 4 
 dx    x − 2 tan !

 3. y 
sx2 2 4 

x
 dx    x − 2 sec !

4–30 Evaluate the integral.

 4. y 
x 2

s9 2 x2 
 dx

 5. y 
sx2 2 1 

x 4  dx 6. y3

0
 

x

s36 2 x 2 
 dx

 7. ya

0
 

dx
sa2 1 x 2d3y2 ,  a . 0 8. y 

dt

t 2st 2 2 16 

 9. y3

2
 

dx
sx2 2 1d3y2  10. y2y3

0
 s4 2 9x 2  dx

 11. y1y2

0
 x s1 2 4x 2  dx 12. y2

0
 

dt

s4 1 t 2 

 13. y 
sx 2 2 9 

x 3  dx 14. y1

0
 

dx
sx 2 1 1d2

 15. ya

0
 x 2sa 2 2 x 2  dx 16. y2y3

s2y3 
dx

x 5s9x 2 2 1
 

We now substitute u − 2 sin !, giving du − 2 cos ! d! and s4 2 u 2 − 2 cos !, so

 y 
x

s3 2 2x 2 x 2 
 dx − y 

2 sin ! 2 1
2 cos !

  2 cos ! d!

 − y s2 sin ! 2 1d d!

 − 22 cos ! 2 ! 1 C

 − 2s4 2 u 2 2 sin21S u
2D 1 C

  − 2s3 2 2x 2 x 2 2 sin21S x 1 1
2 D 1 C Q

Figure 5 shows the graphs of the inte-
grand in Example 7 and its indefinite 
integral (with C − 0). Which is which?

FIGURE 5

_4

_5

3

2
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492 CHAPTER 7  Techniques of Integration

 32. Evaluate

y 
x 2

sx 2 1 a 2 d3y2  dx

 (a) by trigonometric substitution.
 (b) by the hyperbolic substitution x − a sinh t.

 33.  Find the average value of f sxd − sx 2 2 1yx, 1 < x < 7.

 34.  Find the area of the region bounded by the hyperbola 
9x 2 2 4y 2 − 36 and the line x − 3.

 35.  Prove the formula A − 1
2 r 2! for the area of a sector of a 

circle with radius r and central angle !. [Hint: Assume 
0 , ! , "y2 and place the center of the circle at the 
origin so it has the equation x 2 1 y 2 − r 2. Then A is the 
sum of the area of the triangle POQ and the area of the 
region PQR in the figure.] 

O x

y

RQ
¨

P

 36. Evaluate the integral

y 
dx

x 4 sx 2 2 2 

Graph the integrand and its indefinite integral on the 
same screen and check that your answer is reasonable.

 37.  Find the volume of the solid obtained by rotating 
about the x-axis the region enclosed by the curves 
y − 9ysx 2 1 9d, y − 0, x − 0, and x − 3.

 38.  Find the volume of the solid obtained by rotating 
about the line x − 1 the region under the curve 
y − xs1 2 x 2 , 0 < x < 1.

 39. (a)  Use trigonometric substitution to verify that

yx

0
 sa 2 2 t 2  dt − 1

2 a 2 sin21sxyad 1 1
2 x sa 2 2 x 2 

;

 (b)  Use the figure to give trigonometric interpretations  
of both terms on the right side of the equation in part (a).

¨
¨

y=œ„„„„„a@-t@

t0

y

a

x

 40.  The parabola y − 1
2x 2 divides the disk x 2 1 y 2 < 8 into two 

parts. Find the areas of both parts.

 41.  A torus is generated by rotating the circle x 2 1 sy 2 Rd2 − r 2 
about the x-axis. Find the volume enclosed by the torus.

 42.  A charged rod of length L produces an electric field at point 
Psa, bd given by

EsPd − yL2a

2a
 

#b
4"«0sx 2 1 b 2 d3y2  dx

where # is the charge density per unit length on the rod and 
«0 is the free space permittivity (see the figure). Evaluate the 
integral to determine an expression for the electric field EsPd.

0 x

y

L

P (a, b)

 43.  Find the area of the crescent-shaped region (called a lune) 
bounded by arcs of circles with radii r and R. (See the figure.)

R

r

 44.  A water storage tank has the shape of a cylinder with diam-
eter 10 ft. It is mounted so that the circular cross-sections are 
vertical. If the depth of the water is 7 ft, what per cent age of 
the total capacity is being used?
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 SECTION 7.4  Integration of Rational Functions by Partial Fractions 493

In this section we show how to integrate any rational function (a ratio of polynomials) by 
expressing it as a sum of simpler fractions, called partial fractions, that we already know 
how to integrate. To illustrate the method, observe that by taking the fractions 2ysx 2 1d 
and 1ysx 1 2d to a common denominator we obtain

2
x 2 1

2
1

x 1 2
−

2sx 1 2d 2 sx 2 1d
sx 2 1dsx 1 2d

−
x 1 5

x 2 1 x 2 2

If we now reverse the procedure, we see how to integrate the function on the right side 
of this equation:

 y 
x 1 5

x 2 1 x 2 2
 dx − y S 2

x 2 1
2

1
x 1 2D dx

 − 2 ln | x 2 1 | 2 ln | x 1 2 | 1 C

To see how the method of partial fractions works in general, let’s consider a rational 
function

f sxd −
Psxd
Qsxd

where P and Q are polynomials. It’s possible to express f  as a sum of simpler frac-
tions pro vided that the degree of P is less than the degree of Q. Such a rational function 
is called proper. Recall that if

Psxd − an xn 1 an21xn21 1 ∙ ∙ ∙ 1 a1 x 1 a0

where an ± 0, then the degree of P is n and we write degsPd − n.
If f  is improper, that is, degsPd > degsQd, then we must take the preliminary step 

of dividing Q into P (by long division) until a remainder Rsxd is obtained such that 
degsRd , degsQd. The division statement is

f sxd −
Psxd
Qsxd

− Ssxd 1
Rsxd
Qsxd

where S and R are also polynomials.
As the following example illustrates, sometimes this preliminary step is all that is 

required.

EXAMPLE 1  Find y 
x 3 1 x
x 2 1

 dx.

SOLUTION Since the degree of the numerator is greater than the degree of the denomi-
nator, we first perform the long division. This enables us to write

 y 
x 3 1 x
x 2 1

 dx − y Sx 2 1 x 1 2 1
2

x 2 1D dx

  −
x 3

3
1

x 2

2
1 2x 1 2 ln | x 2 1 | 1 C Q

1

x-1
≈+x +2

˛-≈
≈+x
≈-x

2x
2x-2

2

˛ +x)
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494 CHAPTER 7  Techniques of Integration

In the case of an Equation 1 whose denominator is more complicated, the next step 
is to factor the denominator Qsxd as far as possible. It can be shown that any polyno-
mial Q can be factored as a product of linear factors (of the form ax 1 bd and irreduc-
ible quadratic factors (of the form ax 2 1 bx 1 c, where b 2 2 4ac , 0). For instance, if 
Qsxd − x 4 2 16, we could factor it as

Qsxd − sx 2 2 4dsx 2 1 4d − sx 2 2dsx 1 2dsx 2 1 4d

The third step is to express the proper rational function RsxdyQsxd (from Equation 1) 
as a sum of partial fractions of the form

A
sax 1 bdi     or    

Ax 1 B
sax 2 1 bx 1 cd j

A theorem in algebra guarantees that it is always possible to do this. We explain the 
details for the four cases that occur.

CASE I  The denominator Qsxd is a product of distinct linear factors.
This means that we can write

Qsxd − sa1 x 1 b1 dsa2 x 1 b2 d ∙ ∙ ∙ sak x 1 bk d

where no factor is repeated (and no factor is a constant multiple of another). In this case 
the partial fraction theorem states that there exist constants A1, A2, . . . , Ak such that

Rsxd
Qsxd

−
A1

a1 x 1 b1
1

A2

a2 x 1 b2
1 ∙ ∙ ∙ 1

Ak

ak x 1 bk

These constants can be determined as in the following example.

EXAMPLE 2  Evaluate y 
x 2 1 2x 2 1

2x 3 1 3x 2 2 2x
 dx.

SOLUTION Since the degree of the numerator is less than the degree of the denomina-
tor, we don’t need to divide. We factor the denominator as

2x 3 1 3x 2 2 2x − xs2x 2 1 3x 2 2d − xs2x 2 1dsx 1 2d

Since the denominator has three distinct linear factors, the partial fraction decomposi-
tion of the integrand (2) has the form

x 2 1 2x 2 1
xs2x 2 1dsx 1 2d

−
A
x

1
B

2x 2 1
1

C
x 1 2

To determine the values of A, B, and C, we multiply both sides of this equation by the 
product of the denominators, xs2x 2 1dsx 1 2d, obtaining

x 2 1 2x 2 1 − As2x 2 1dsx 1 2d 1 Bxsx 1 2d 1 Cxs2x 2 1d

Expanding the right side of Equation 4 and writing it in the standard form for poly- 
no mials, we get

x 2 1 2x 2 1 − s2A 1 B 1 2Cdx 2 1 s3A 1 2B 2 Cdx 2 2A

2

3

Another method for finding A, B, and C 
is given in the note after this example.

4

5
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 SECTION 7.4  Integration of Rational Functions by Partial Fractions 495

The polynomials in Equation 5 are identical, so their coefficients must be equal. The 
coefficient of x 2 on the right side, 2A 1 B 1 2C, must equal the coefficient of x 2 on the 
left side—namely, 1. Likewise, the coefficients of x are equal and the constant terms 
are equal. This gives the following system of equations for A, B, and C:

 2A 1  B 1  2C − 1

 3A 1  2B 2  C − 2

 22A               − 21

Solving, we get A − 1
2, B − 1

5, and C − 2 1
10, and so

 y 
x 2 1 2x 2 1

2x 3 1 3x 2 2 2x
 dx − y S 1

2
 
1
x

1
1
5

 
1

2x 2 1
2

1
10

 
1

x 1 2D dx

 − 1
2 ln | x | 1 1

10 ln | 2x 2 1 | 2 1
10 ln | x 1 2 | 1 K

In integrating the middle term we have made the mental substitution u − 2x 2 1, 
which gives du − 2 dx and dx − 1

2 du. Q

NOTE We can use an alternative method to find the coefficients A, B, and C in Exam-
ple 2. Equation 4 is an identity; it is true for every value of x. Let’s choose values of x 
that simplify the equation. If we put x − 0 in Equation 4, then the second and third terms 
on the right side vanish and the equation then becomes 22A − 21, or A − 1

2. Likewise,
 x − 1

2 gives 5By4 − 1
4 and x − 22 gives 10C − 21, so B − 1

5 and C − 2 1
10. (You may 

object that Equation 3 is not valid for x − 0, 12, or 22, so why should Equation 4 be valid 
for those values? In fact, Equation 4 is true for all values of x, even x − 0, 12, and 22. See 
Exercise 73 for the reason.)

EXAMPLE 3  Find y 
dx

x 2 2 a 2 , where a ± 0.

SOLUTION The method of partial fractions gives

1
x 2 2 a 2 −

1
sx 2 adsx 1 ad

−
A

x 2 a
1

B
x 1 a

and therefore

Asx 1 ad 1 Bsx 2 ad − 1

Using the method of the preceding note, we put x − a in this equation and get 
As2ad − 1, so A − 1ys2ad. If we put x − 2a, we get Bs22ad − 1, so B − 21ys2ad. 
Thus

 y 
dx

x 2 2 a 2 −
1
2a

 y S 1
x 2 a

2
1

x 1 aD dx

 −
1
2a

 (ln | x 2 a | 2 ln | x 1 a |) 1 C

We could check our work by taking the 
terms to a common denominator and 
adding them.

Figure 1 shows the graphs of the inte-
grand in Example 2 and its indefinite 
integral (with K − 0). Which is which?

FIGURE 1 

_3

_2

2

3
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496 CHAPTER 7  Techniques of Integration

Since ln x 2 ln y − lnsxyyd, we can write the integral as

y 
dx

x 2 2 a 2 −
1
2a

 ln Z x 2 a
x 1 a Z 1 C

See Exercises 57–58 for ways of using Formula 6. Q

CASE II Qsxd is a product of linear factors, some of which are repeated.
Suppose the first linear factor sa1 x 1 b1d is repeated r times; that is, sa1 x 1 b1dr occurs 
in the factorization of Qsxd. Then instead of the single term A1ysa1 x 1 b1d in Equation 
2, we would use

A1

a1 x 1 b1
1

A2

sa1 x 1 b1d2 1 ∙ ∙ ∙ 1
Ar

sa1 x 1 b1dr

By way of illustration, we could write

x 3 2 x 1 1
x 2sx 2 1d3 −

A
x

1
B
x 2 1

C
x 2 1

1
D

sx 2 1d2 1
E

sx 2 1d3

but we prefer to work out in detail a simpler example.

EXAMPLE 4  Find y 
x 4 2 2x 2 1 4x 1 1

x 3 2 x 2 2 x 1 1
 dx.

SOLUTION The first step is to divide. The result of long division is

x 4 2 2x 2 1 4x 1 1
x 3 2 x 2 2 x 1 1

− x 1 1 1
4x

x 3 2 x 2 2 x 1 1

The second step is to factor the denominator Qsxd − x 3 2 x 2 2 x 1 1. Since 
Qs1d − 0, we know that x 2 1 is a factor and we obtain

 x 3 2 x 2 2 x 1 1 − sx 2 1dsx 2 2 1d − sx 2 1dsx 2 1dsx 1 1d

 − sx 2 1d2sx 1 1d

Since the linear factor x 2 1 occurs twice, the partial fraction decomposition is

4x
sx 2 1d2sx 1 1d

−
A

x 2 1
1

B
sx 2 1d2 1

C
x 1 1

Multiplying by the least common denominator, sx 2 1d2sx 1 1d, we get

 4x − Asx 2 1dsx 1 1d 1 Bsx 1 1d 1 Csx 2 1d2

 − sA 1 Cdx 2 1 sB 2 2Cdx 1 s2A 1 B 1 Cd

Now we equate coefficients:

 A 1  C − 0

B 2  2C − 4

 2A 1  B 1  C − 0

6

7

8

Another method for finding the 
coefficients:
Put x − 1 in (8): B − 2.
Put x − 21: C − 21.
Put x − 0: A − B 1 C − 1.
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Solving, we obtain A − 1, B − 2, and C − 21, so

 y 
x 4 2 2x 2 1 4x 1 1

x 3 2 x 2 2 x 1 1
 dx − y Fx 1 1 1

1
x 2 1

1
2

sx 2 1d2 2
1

x 1 1G dx

 −
x 2

2
1 x 1 ln | x 2 1 | 2

2
x 2 1

2 ln | x 1 1 | 1 K

 −
x 2

2
1 x 2

2
x 2 1

1 ln Z x 2 1
x 1 1 Z 1 K Q

CASE III Qsxd contains irreducible quadratic factors, none of which is repeated.
If Qsxd has the factor ax 2 1 bx 1 c, where b 2 2 4ac , 0, then, in addition to the partial 
fractions in Equations 2 and 7, the expression for RsxdyQsxd will have a term of the form

Ax 1 B
ax 2 1 bx 1 c

where A and B are constants to be determined. For instance, the function given by 
f sxd − xyfsx 2 2dsx 2 1 1dsx 2 1 4dg has a partial fraction decomposition of the form

x
sx 2 2dsx 2 1 1dsx 2 1 4d

−
A

x 2 2
1

Bx 1 C
x 2 1 1

1
Dx 1 E
x 2 1 4

The term given in (9) can be integrated by completing the square (if necessary) and using 
the formula

y 
dx

x 2 1 a 2 −
1
a

 tan21S x
aD 1 C

EXAMPLE 5  Evaluate y 
2x 2 2 x 1 4

x 3 1 4x
 dx.

SOLUTION Since x 3 1 4x − xsx 2 1 4d can’t be factored further, we write

2x 2 2 x 1 4
xsx 2 1 4d

−
A
x

1
Bx 1 C
x 2 1 4

Multiplying by xsx 2 1 4d, we have

 2x 2 2 x 1 4 − Asx 2 1 4d 1 sBx 1 Cdx

 − sA 1 Bdx 2 1 Cx 1 4A

Equating coefficients, we obtain

A 1 B − 2      C − 21      4A − 4

Therefore A − 1, B − 1, and C − 21 and so

y 
2x 2 2 x 1 4

x 3 1 4x
 dx − y S 1

x
1

x 2 1
x 2 1 4D dx

9

10
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498 CHAPTER 7  Techniques of Integration

In order to integrate the second term we split it into two parts:

y 
x 2 1
x 2 1 4

 dx − y 
x

x 2 1 4
 dx 2 y 

1
x 2 1 4

 dx

We make the substitution u − x 2 1 4 in the first of these integrals so that du − 2x dx. 
We evaluate the second integral by means of Formula 10 with a − 2:

 y 
2x 2 2 x 1 4

xsx 2 1 4d
 dx − y 

1
x

 dx 1 y 
x

x 2 1 4
 dx 2 y 

1
x 2 1 4

 dx

  − ln | x | 1 1
2 lnsx 2 1 4d 2 1

2 tan21sxy2d 1 K Q

EXAMPLE 6  Evaluate y 
4x 2 2 3x 1 2
4x 2 2 4x 1 3

 dx.

SOLUTION Since the degree of the numerator is not less than the degree of the denomi-
nator, we first divide and obtain

4x 2 2 3x 1 2
4x 2 2 4x 1 3

− 1 1
x 2 1

4x 2 2 4x 1 3

Notice that the quadratic 4x 2 2 4x 1 3 is irreducible because its discriminant is 
b 2 2 4ac − 232 , 0. This means it can’t be factored, so we don’t need to use the 
partial fraction technique.

To integrate the given function we complete the square in the denominator:

4x 2 2 4x 1 3 − s2x 2 1d2 1 2

This suggests that we make the substitution u − 2x 2 1. Then du − 2 dx and 
x − 1

2su 1 1d, so

 y 
4x 2 2 3x 1 2
4x 2 2 4x 1 3

 dx − y S1 1
x 2 1

4x 2 2 4x 1 3D dx

 − x 1 1
2 y 

1
2 su 1 1d 2 1

u 2 1 2
 du − x 1 1

4 y 
u 2 1
u 2 1 2

 du

 − x 1 1
4 y 

u
u 2 1 2

 du 2 1
4 y 

1
u 2 1 2

 du

 − x 1 1
8 lnsu 2 1 2d 2

1
4

?
1

s2  tan21S u

s2 D 1 C

  − x 1 1
8 lns4x 2 2 4x 1 3d 2

1
4s2  tan21S 2x 2 1

s2 D 1 C Q

NOTE Example 6 illustrates the general procedure for integrating a partial fraction 
of the form

Ax 1 B
ax 2 1 bx 1 c

    where b 2 2 4ac , 0
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We complete the square in the denominator and then make a substitution that brings the 
integral into the form

y 
Cu 1 D
u2 1 a2  du − C y 

u
u2 1 a2  du 1 D y 

1
u2 1 a2  du 

Then the first integral is a logarithm and the second is expressed in terms of tan21.

CASE IV Qsx d contains a repeated irreducible quadratic factor.
If Qsxd has the factor sax 2 1 bx 1 cdr, where b 2 2 4ac , 0, then instead of the single 
partial fraction (9), the sum

A1 x 1 B1

ax 2 1 bx 1 c
1

A2 x 1 B2

sax 2 1 bx 1 cd2 1 ∙ ∙ ∙ 1
Arx 1 Br

sax 2 1 bx 1 cdr

occurs in the partial fraction decomposition of RsxdyQsxd. Each of the terms in (11) can 
be integrated by using a substitution or by first completing the square if necessary.

EXAMPLE 7 Write out the form of the partial fraction decomposition of the function

x 3 1 x 2 1 1
xsx 2 1dsx 2 1 x 1 1dsx 2 1 1d3

SOLUTION

x 3 1 x 2 1 1
xsx 2 1dsx 2 1 x 1 1dsx 2 1 1d3

  − 
A
x

1
B

x 2 1
1

Cx 1 D
x 2 1 x 1 1

1
Ex 1 F
x 2 1 1

1
Gx 1 H
sx 2 1 1d2 1

Ix 1 J
sx 2 1 1d3  Q

EXAMPLE 8  Evaluate y 
1 2 x 1 2x 2 2 x 3

xsx 2 1 1d2  dx.

SOLUTION The form of the partial fraction decomposition is

1 2 x 1 2x 2 2 x 3

xsx 2 1 1d2 −
A
x

1
Bx 1 C
x 2 1 1

1
Dx 1 E

sx 2 1 1d2

Multiplying by xsx 2 1 1d2, we have

 2x 3 1 2x 2 2 x 1 1 − Asx 2 1 1d2 1 sBx 1 Cdxsx 2 1 1d 1 sDx 1 Edx

 − Asx 4 1 2x 2 1 1d 1 Bsx 4 1 x 2 d 1 Csx 3 1 xd 1 Dx 2 1 Ex

 − sA 1 Bdx 4 1 Cx 3 1 s2A 1 B 1 Ddx 2 1 sC 1 Edx 1 A

If we equate coefficients, we get the system

A 1 B − 0    C − 21    2A 1 B 1 D − 2    C 1 E − 21    A − 1

11

It would be extremely tedious to work 
out by hand the numerical values of 
the coefficients in Example 7. Most 
computer algebra systems, however, can 
find the numerical values very quickly. 
For instance, the Maple command

convertsf, parfrac, xd
or the Mathematica command

Apart[f]

gives the following values:

 A − 21, B − 1
8, C − D − 21,

E − 15
8 , F − 21

8, G − H − 3
4,

I − 21
2, J − 1

2
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which has the solution A − 1, B − 21, C − 21, D − 1, and E − 0. Thus

 y 
1 2 x 1 2x 2 2 x 3

xsx 2 1 1d2  dx − y S 1
x

2
x 1 1
x 2 1 1

1
x

sx 2 1 1d2D dx

 − y 
dx
x

2 y 
x

x 2 1 1
 dx 2 y 

dx
x 2 1 1

1 y 
x dx

sx 2 1 1d2

  − ln | x | 2 1
2 lnsx 2 1 1d 2 tan21x 2

1
2sx 2 1 1d

1 K Q

NOTE Example 8 worked out rather nicely because the coefficient E turned out to  
be 0. In general, we might get a term of the form 1ysx 2 1 1d2. One way to integrate such 
a term is to make the substitution x − tan !. Another method is to use the formula in 
Exercise 72. 

Sometimes partial fractions can be avoided when integrating a rational function. For 
instance, although the integral

y 
x 2 1 1

xsx 2 1 3d
 dx

could be evaluated by using the method of Case III, it’s much easier to observe that if 
u − xsx 2 1 3d − x 3 1 3x, then du − s3x 2 1 3d dx and so

y 
x 2 1 1

xsx 2 1 3d
 dx − 1

3 ln | x 3 1 3x | 1 C

Rationalizing Substitutions
Some nonrational functions can be changed into rational functions by means of appro-
priate substitutions. In particular, when an integrand contains an expression of the form 
sn tsxd, then the substitution u − sn tsxd may be effective. Other instances appear in the 
exercises.

EXAMPLE 9  Evaluate y 
sx 1 4 

x
 dx .

SOLUTION Let u − sx 1 4 . Then u 2 − x 1 4, so x − u 2 2 4 and dx − 2u du.  
Therefore

 y 
sx 1 4 

x
 dx − y 

u
u 2 2 4

 2u du − 2 y 
u 2

u 2 2 4
 du − 2 y S1 1

4
u 2 2 4D du

We can evaluate this integral either by factoring u 2 2 4 as su 2 2dsu 1 2d and using 
partial fractions or by using Formula 6 with a − 2:

y 
sx 1 4 

x
 dx − 2 y du 1 8 y 

du
u 2 2 4

− 2u 1 8 ?
1

2 ? 2
  ln Z u 2 2

u 1 2 Z 1 C

− 2sx 1 4 1 2 ln Z sx 1 4 2 2

sx 1 4 1 2 Z 1 C Q

In the second and fourth terms we made 
the mental substitution u − x 2 1 1.
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 31. y 
1

x 3 2 1
 dx 32. y1

0
 

x
x 2 1 4x 1 13

 dx

 33. y1

0
 

x 3 1 2x
x 4 1 4x 2 1 3

 dx 34. y 
x 5 1 x 2 1

x 3 1 1
 dx

 35. y 
5x4 1 7x 2 1 x 1 2

xsx 2 1 1d2  dx 36. y 
x 4 1 3x 2 1 1
x 5 1 5x 3 1 5x

 dx

 37. y 
x 2 2 3x 1 7

sx 2 2 4x 1 6d2  dx 38. y 
x 3 1 2x 2 1 3x 2 2

sx 2 1 2x 1 2d2  dx

39–52 Make a substitution to express the integrand as a rational 
function and then evaluate the integral.

 39. y 
dx

xsx 2 1  
 40. y 

dx

2sx 1 3 1 x

 41. y 
dx

x 2 1 xsx  
 42. y1

0
 

1
1 1 s3 x  

 dx

 43. y 
x 3

s3 x 2 1 1
 dx 44. y 

dx
s1 1 sx d2

 45. y 
1

sx  2 s3 x  
 dx  fHint: Substitute u − 6sx  .g

 46. y  
s1 1 sx   

x  dx

 47. y 
e 2x

e 2x 1 3e x 1 2
 dx 48. y 

sin x
cos2 x 2 3 cos x

 dx

 49. y 
sec 2 t

tan2 t 1 3 tan t 1 2
 dt 50. y 

e x

se x 2 2dse 2x 1 1d
 dx

 51. y 
dx

1 1 e x  52. y 
cosh t

sinh2 t 1 sinh4 t
 dt

53–54 Use integration by parts, together with the techniques of 
this section, to evaluate the integral.

 53. y lnsx 2 2 x 1 2d dx 54. y x tan21x dx

 55.  Use a graph of f sxd − 1ysx 2 2 2x 2 3d to decide whether 
y2

0 f sxd dx is positive or negative. Use the graph to give a 
rough estimate of the value of the integral and then use partial 
fractions to find the exact value.

 56. Evaluate

y 
1

x 2 1 k
 dx

by considering several cases for the constant k.

;

1–6 Write out the form of the partial fraction decomposition of 
the function (as in Example 7). Do not determine the numerical 
values of the coefficients.

 1. (a)  
4 1 x

s1 1 2xds3 2 xd
 (b) 

1 2 x
x 3 1 x 4

 2.  (a) 
x 2 6

x 2 1 x 2 6
 (b) 

x 2

x 2 1 x 1 6

 3.  (a) 
1

x 2 1 x 4  (b) 
x 3 1 1

x 3 2 3x 2 1 2x

 4.  (a) 
x4 2 2x3 1 x2 1 2x 2 1

x2 2 2x 1 1
 (b) 

x 2 2 1
x 3 1 x 2 1 x

 5.  (a) 
x 6

x 2 2 4
 (b) 

x 4

sx 2 2 x 1 1dsx 2 1 2d2

 6.  (a) 
t 6 1 1
t 6 1 t 3  (b) 

x5 1 1
sx 2 2 xdsx 4 1 2x 2 1 1d

7–38 Evaluate the integral.

 7. y 
x 4

x 2 1
 dx   8. y 

3t 2 2
t 1 1

 dt

 9. y 
5x 1 1

s2x 1 1dsx 2 1d
 dx 10. y 

y
sy 1 4ds2y 2 1d

 dy

 11. y1

0
 

2
2x2 1 3x 1 1

 dx 12. y1

0
 

x 2 4
x 2 2 5x 1 6

 dx

 13. y 
ax

x 2 2 bx
 dx 14. y 

1
sx 1 adsx 1 bd

 dx

 15. y0

21
 
x 3 2 4x 1 1
x 2 2 3x 1 2

 dx 16. y2

1
 
x 3 1 4x 2 1 x 2 1

x 3 1 x 2  dx

 17. y2

1
 

4y 2 2 7y 2 12
ysy 1 2dsy 2 3d

 dy 18. y2

1
 
3x 2 1 6x 1 2
x 2 1 3x 1 2

 dx

 19. y1

0
 

x 2 1 x 1 1
sx 1 1d2sx 1 2d

 dx 20. y3

2
 

xs3 2 5xd
s3x 2 1dsx 2 1d2  dx

 21. y 
dt

st 2 2 1d2  22. y 
x4 1 9x 2 1 x 1 2

x 2 1 9
 dx

 23. y 
10

sx 2 1dsx 2 1 9d
 dx 24. y 

x 2 2 x 1 6
x 3 1 3x

 dx

 25. y 
4x

x 3 1 x 2 1 x 1 1
 dx 26. y 

x 2 1 x 1 1
sx 2 1 1d2  dx

 27. y 
x 3 1 4x 1 3
x4 1 5x 2 1 4

 dx 28. y 
x 3 1 6x 2 2

x 4 1 6x 2  dx

 29. y 
x 1 4

x 2 1 2x 1 5
 dx 30.  y 

x 3 2 2x 2 1 2x 2 5
x 4 1 4x 2 1 3

 dx
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502 CHAPTER 7  Techniques of Integration

Let P represent the number of female insects in a popula-
tion and S the number of sterile males introduced each 
generation. Let r be the per capita rate of production of 
females by females, provided their chosen mate is not 
sterile. Then the female population is related to time t by

t − y 
P 1 S

Pfsr 2 1dP 2 Sg
  dP

Suppose an insect population with 10,000 females grows 
at a rate of r − 1.1 and 900 sterile males are added 
initially. Evaluate the integral to give an equation relating 
the female population to time. (Note that the resulting 
equation can’t be solved explicitly for P.)

 68.  Factor x 4 1 1 as a difference of squares by first adding 
and subtracting the same quantity. Use this factorization 
to evaluate y 1ysx 4 1 1d dx.

 69. (a)  Use a computer algebra system to find the partial 
fraction decomposition of the function

f sxd −
4x 3 2 27x 2 1 5x 2 32

30x 5 2 13x 4 1 50x 3 2 286x 2 2 299x 2 70

 (b)  Use part (a) to find y f sxd dx (by hand) and com-
pare with the result of using the CAS to integrate f  
directly. Comment on any discrepancy.

 70. (a)  Find the partial fraction decomposition of the 
function

f sxd −
12x 5 2 7x 3 2 13x 2 1 8

100x 6 2 80x 5 1 116x 4 2 80x 3 1 41x 2 2 20x 1 4

 (b)  Use part (a) to find y f sxd dx and graph f  and its 
indefinite integral on the same screen.

 (c)  Use the graph of f  to discover the main features of 
the graph of y f sxd dx.

 71.  The rational number 22
7  has been used as an approxima-

tion to the number ! since the time of Archimedes. Show 
that 

y1

0
 
x4s1 2 xd4

1 1 x 2  dx −
22
7

2 !

 72. (a)  Use integration by parts to show that, for any positive 
integer n,

  y 
dx

sx 2 1 a2dn  dx −
x

2a2sn 2 1dsx 2 1 a2dn21

1
2n 2 3

2a2sn 2 1d
 y 

dx
sx 2 1 a2dn21

 (b)  Use part (a) to evaluate

y 
dx

sx 2 1 1d2   and  y 
dx

sx 2 1 1d3

CAS

57–58 Evaluate the integral by completing the square and using 
Formula 6.

 57. y 
dx

x 2 2 2x
 58. y 

2x 1 1
4x 2 1 12x 2 7

 dx

 59.  The German mathematician Karl Weierstrass (1815–1897) 
noticed that the substitution t − tansxy2d will convert any 
rational function of sin x and cos x into an ordinary rational 
function of t.

 (a)  If t − tansxy2d, 2! , x , !, sketch a right triangle or 
use trigonometric identities to show that

cosS x
2D −

1

s1 1 t 2 
and sinS x

2D −
t

s1 1 t 2 

 (b) Show that

cos x −
1 2 t 2

1 1 t 2 and sin x −
2t

1 1 t 2

 (c) Show that

dx −
2

1 1 t 2  dt

60–63 Use the substitution in Exercise 59 to transform the inte-
grand into a rational function of t and then evaluate the integral.

 60. y 
dx

1 2 cos x

 61. y 
1

3 sin x 2 4 cos x
 dx 62. y!y2

!y3
 

1
1 1 sin x 2 cos x

 dx

 63. y!y2

0
 

sin 2x
2 1 cos x

 dx

64–65 Find the area of the region under the given curve from  
1 to 2.

 64. y −
1

x 3 1 x
 65. y −

x 2 1 1
3x 2 x 2

 66.  Find the volume of the resulting solid if the region under the 
curve y − 1ysx 2 1 3x 1 2d from x − 0 to x − 1 is rotated 
about (a) the x-axis and (b) the y-axis.

 67.  One method of slowing the growth of an insect population 
without using pesticides is to introduce into the population a 
number of sterile males that mate with fertile females but pro-
duce no offspring. (The photo shows a screw-worm fly, the 
first pest effectively eliminated from a region by this method.) 

US
DA
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y 
 f sxd

x 2sx 1 1d3  dx

is a rational function, find the value of f 9s0d.

 75.  If a ± 0 and n is a positive integer, find the partial fraction 
decomposition of

f sxd −
1

x nsx 2 ad
[Hint: First find the coefficient of 1ysx 2 ad. Then sub-
tract the resulting term and simplify what is left.]

 73. Suppose that F, G, and Q are polynomials and

Fsxd
Qsxd

−
Gsxd
Qsxd

for all x except when Qsxd − 0. Prove that Fsxd − Gsxd  
for all x. [Hint: Use continuity.]

 74. If f  is a quadratic function such that f s0d − 1 and

As we have seen, integration is more challenging than differentiation. In finding the 
deriv ative of a function it is obvious which differentiation formula we should apply. But 
it may not be obvious which technique we should use to integrate a given function.

Until now individual techniques have been applied in each section. For instance, we 
usu ally used substitution in Exercises 5.5, integration by parts in Exercises 7.1, and par-
tial frac tions  in Exercises 7.4. But in this section we present a collection of miscella-
neous integrals in random order and the main challenge is to recognize which technique 
or formula to use. No hard and fast rules can be given as to which method applies in a 
given situation, but we give some advice on strategy that you may find useful.

A prerequisite for applying a strategy is a knowledge of the basic integration formu-
las. In the following table we have collected the integrals from our previous list together 
with several additional formulas that we have learned in this chapter. 

Table of Integration Formulas Constants of integration have been omitted.

 1. y xn dx −
xn11

n 1 1
  sn ± 21d  2. y 

1
x

 dx − ln | x |
 3. y ex dx − ex  4. y bx dx −

bx

ln b

 5. y sin x dx − 2cos x  6. y cos x dx − sin x

 7. y sec2x dx − tan x  8. y csc2x dx − 2cot x

 9. y sec x tan x dx − sec x 10. y csc x cot x dx − 2csc x

11. y sec x dx − ln | sec x 1 tan x | 12. y csc x dx − ln | csc x 2 cot x |
13. y tan x dx − ln | sec x | 14. y cot x dx − ln | sin x |
15. y sinh x dx − cosh x 16. y cosh x dx − sinh x

17. y 
dx

x 2 1 a 2 −
1
a

 tan21S x
aD 18. y 

dx

sa 2 2 x 2 
− sin21S x

aD,  a . 0

*19. y 
dx

x 2 2 a2 −
1
2a

 ln Z x 2 a
x 1 a Z  *20. y 

dx

sx 2 6 a2 
− ln | x 1 sx 2 6 a2 |
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504 CHAPTER 7  Techniques of Integration

Most of these formulas should be memorized. It is useful to know them all, but the 
ones marked with an asterisk need not be memorized since they are easily derived. For-
mula 19 can be avoided by using partial fractions, and trigonometric substitutions can be 
used in place of Formula 20.

Once you are armed with these basic integration formulas, if you don’t immediately 
see how to attack a given integral, you might try the following four-step strategy.

1. Simplify the Integrand if Possible Sometimes the use of algebraic manipulation or 
trigonometric identities will simplify the integrand and make the method of integration 
obvious. Here are some examples:

 y sx  (1 1 sx ) dx − y (sx 1 x) dx

 y 
tan !
sec2!

 d! − y 
sin !
cos !

 cos2! d!

 − y sin ! cos ! d! − 1
2 y sin 2! d!

 y ssin x 1 cos xd2 dx − y ssin2x 1 2 sin x cos x 1 cos2xd dx

 − y s1 1 2 sin x cos xd dx

2. Look for an Obvious Substitution Try to find some function u − tsxd in the integrand 
whose differential du − t9sxd dx also occurs, apart from a constant factor. For instance, 
in the integral

y 
x

x 2 2 1
 dx

 we notice that if u − x 2 2 1, then du − 2x dx. Therefore we use the substitution 
u − x 2 2 1 instead of the method of partial fractions.

3. Classify the Integrand According to Its Form If Steps 1 and 2 have not led to the solu-
tion, then we take a look at the form of the integrand f sxd.
(a)  Trigonometric functions. If f sxd is a product of powers of sin x and cos x, of  

tan x and sec x, or of cot x and csc x, then we use the substitutions recommended  
in Section 7.2.

(b)  Rational functions. If f  is a rational function, we use the procedure of Section 7.4 
involving partial fractions.

(c)  Integration by parts. If f sxd is a product of a power of x (or a polynomial) and a 
transcendental function (such as a trigonometric, exponential, or logarithmic func-
tion), then we try integration by parts, choosing u and dv according to the advice 
given in Section 7.1. If you look at the functions in Exercises 7.1, you will see that 
most of them are the type just described.

(d)  Radicals. Particular kinds of substitutions are recommended when certain radicals 
appear.

 (i)  If s6x 2 6 a 2  occurs, we use a trigonometric substitution according to the 
table in Section 7.3.

 (ii)  If sn ax 1 b  occurs, we use the rationalizing substitution u − sn ax 1 b . More 
generally, this sometimes works for sn tsxd .

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 7.5  Strategy for Integration 505

4. Try Again If the first three steps have not produced the answer, remember that there 
are basically only two methods of integration: substitution and parts.
(a)  Try substitution. Even if no substitution is obvious (Step 2), some inspiration or 

ingenuity (or even desperation) may suggest an appropriate substitution.
(b)  Try parts. Although integration by parts is used most of the time on products of the 

form described in Step 3(c), it is sometimes effective on single functions. Look-
ing at Section 7.1, we see that it works on tan21x, sin21x, and ln x, and these are all 
inverse functions.

(c)  Manipulate the integrand. Algebraic manipulations (perhaps rationalizing the 
denominator or using trigonometric identities) may be useful in transforming the 
integral into an easier form. These manipulations may be more substantial than in 
Step 1 and may involve some ingenuity. Here is an example:

 y 
dx

1 2 cos x
− y 

1
1 2 cos x

?
1 1 cos x
1 1 cos x

 dx − y 
1 1 cos x
1 2 cos2x

 dx

 − y 
1 1 cos x

sin2x
 dx − y Scsc2x 1

cos x
sin2xD dx

(d)  Relate the problem to previous problems. When you have built up some expe rience 
in integration, you may be able to use a method on a given integral that is similar to 
a method you have already used on a previous integral. Or you may even be able to 
express the given integral in terms of a previous one. For instance, y tan2x sec x dx 
is a challenging integral, but if we make use of the identity tan2x − sec2x 2 1, we 
can write

y tan2x sec x dx − y sec3x dx 2 y sec x dx

  and if y sec3x dx has previously been evaluated (see Example 7.2.8), then that cal-
culation can be used in the present problem.

(e)  Use several methods. Sometimes two or three methods are required to evaluate an 
integral. The evaluation could involve several successive substitutions of different 
types, or it might combine integration by parts with one or more substitutions.

In the following examples we indicate a method of attack but do not fully work out 
the integral.

EXAMPLE 1  y 
tan3x
cos3x

 dx

In Step 1 we rewrite the integral:

y 
tan3x
cos3x

 dx − y tan3x sec3x dx

The integral is now of the form y tanmx secnx dx with m odd, so we can use the advice 
in Section 7.2.

Alternatively, if in Step 1 we had written

y 
tan3x
cos3x

 dx − y 
sin3x
cos3x

 
1

cos3x
 dx − y 

sin3x
cos6x

 dx
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then we could have continued as follows with the substitution u − cos x:

 y 
sin3x
cos6x

 dx − y 
1 2 cos2x

cos6x
 sin x dx − y 

1 2 u 2

u 6  s2dud

  − y 
u 2 2 1

u 6  du − y su24 2 u26 d du  Q

EXAMPLE 2   y esx  dx

According to (ii) in Step 3(d), we substitute u − sx . Then x − u 2, so dx − 2u du and

y esx  dx − 2 y ueu du

The integrand is now a product of u and the transcendental function eu so it can be 
integrated by parts. Q

EXAMPLE 3   y 
x 5 1 1

x 3 2 3x 2 2 10x
 dx

No algebraic simplification or substitution is obvious, so Steps 1 and 2 don’t apply 
here. The integrand is a rational function so we apply the procedure of Section 7.4, 
remembering that the first step is to divide. Q

EXAMPLE 4    y 
dx

xsln x  

Here Step 2 is all that is needed. We substitute u − ln x because its differential is 
du − dxyx, which occurs in the integral. Q

EXAMPLE 5   y Î1 2 x
1 1 x

  dx

Although the rationalizing substitution

u − Î1 2 x
1 1 x

 

works here [(ii) in Step 3(d)], it leads to a very complicated rational function. An easier 
method is to do some algebraic manipulation [either as Step 1 or as Step 4(c)]. Multi-
plying numerator and denominator by s1 2 x , we have

 yÎ1 2 x
1 1 x

  dx − y 1 2 x

s1 2 x 2 
 dx

 − y 1

s1 2 x 2 
 dx 2 y x

s1 2 x 2 
 dx

  − sin21x 1 s1 2 x 2 1 C  Q

Can We Integrate All Continuous Functions?
The question arises: Will our strategy for integration enable us to find the integral of 
every continuous function? For example, can we use it to evaluate y ex 2

 dx? The answer 
is No, at least not in terms of the functions that we are familiar with.
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1–82 Evaluate the integral.

 1. y 
cos x

1 2 sin x
 dx 2. y1

0
 s3x 1 1ds2

 

 dx

 3. y4

1
 sy  ln y dy 4. y 

sin3x
cos x

 dx

 5. y 
t

t 4 1 2
 dt 6. y1

0
 

x
s2x 1 1d3  dx

 7. y1

21
 

e arctan y

1 1 y 2  dy 8. y t sin t cos t dt

 9. y4

2
  

x 1 2
x 2 1 3x 2 4

 dx 10. y 
coss1yxd

x3  dx

 11. y 
1

x 3sx 2 2 1 
 dx 12. y 

2x 2 3
x3 1 3x

 dx

 13. y sin5t cos4t dt 14. y lns1 1 x 2d dx

 15. y x sec x tan x dx 16. ys2y2

0  
x 2

s1 2 x 2 
 dx

 17. y!

0
 t cos2 t dt 18. y4

1
 
est

st  
 dt

 19. ye x1ex
dx 20. y e 2 dx

 21. y arctan sx   dx 22. y 
ln x

xs1 1 sln xd2 
 dx

The functions that we have been dealing with in this book are called elementary 
functions. These are the polynomials, rational functions, power functions sxnd, exponen-
tial func tions sbx d, logarithmic functions, trigonometric and inverse trigonometric func-
tions, hyperbolic and inverse hyperbolic functions, and all functions that can be obtained 
from these by the five operations of addition, subtraction, multiplication, division, and 
composition. For instance, the function

f sxd − Î x 2 2 1
x 3 1 2x 2 1

1 lnscosh xd 2 xe sin 2x

is an elementary function.
If f  is an elementary function, then f 9 is an elementary function but y f sxd dx need not 

be an elementary function. Consider f sxd − ex 2
. Since f  is continuous, its integral exists, 

and if we define the function F by

Fsxd − yx

0
 et 2

 dt

then we know from Part 1 of the Fundamental Theorem of Calculus that

F9sxd − ex 2

Thus f sxd − ex 2
 has an antiderivative F, but it has been proved that F is not an elementary 

function. This means that no matter how hard we try, we will never succeed in evaluating 
y ex 2

 dx in terms of the functions we know. (In Chapter 11, however, we will see how to  
express y ex 2

 dx as an infinite series.) The same can be said of the following integrals:

 y 
ex

x
 dx   y sinsx 2 d dx y cossex d dx 

 y sx 3 1 1 dx y 
1

ln x
 dx  y 

sin x
x

 dx

In fact, the majority of elementary functions don’t have elementary antiderivatives. You 
may be assured, though, that the integrals in the following exercises are all elementary 
functions.
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 59. y 
dx

x4 2 16
 60. y 

dx

x 2s4x 2 2 1

 61. y 
d!

1 1 cos !
 62. y 

d!

1 1 cos2!

 63. y sx esx dx 64. y 
1

ssx 1 1

 dx

 65. y 
sin 2x

1 1 cos4 x
 dx 66. y"y3

"y4
 

lnstan xd
sin x cos x

 dx

 67. y 
1

sx 1 1 1 sx  
 dx 68. y 

x 2

x 6 1 3x 3 1 2
 dx

 69. ys3

1
 
s1 1 x 2 

x 2  dx 70. y 
1

1 1 2e x 2 e2x  dx

 71. y 
e 2x

1 1 e x  dx 72. y 
lnsx 1 1d

x 2  dx

 73. y 
x 1 arcsin x

s1 2 x 2 
 dx 74. y 

4 x 1 10 x

2 x  dx

 75. y 
dx

x ln x 2 x
 76. y 

x 2

sx2 1 1  
 dx

 77. y 
xe x

s1 1 e x 
 dx 78. y 

1 1 sin x
1 2 sin x

 dx

 79. y x sin2 x cos x dx 80. y 
sec x cos 2x
sin x 1 sec x

 dx

 81. y s1 2 sin x  dx 82. y 
sin x cos x

sin4 x 1 cos4 x
 dx

 83.  The functions y − e x 2
 and y − x 2e x 2

 don’t have elementary 
antiderivatives, but y − s2x 2 1 1de x 2

 does. Evaluate 
y s2x 2 1 1de x 2

 dx.

 84.  We know that Fsxd − yx
0 e

et
 dt is a continuous function by 

FTC1, though it is not an elementary function. The functions

y 
e x

x
 dx    and    y 

1
ln x

 dx

are not elementary either, but they can be expressed in terms  
 of F. Evaluate the following integrals in terms of F.

 (a) y2

1
 
e x

x
 dx  (b) y3

2
 

1
ln x

 dx

 23. y1

0
 s1 1 sx  d8 dx 24. y s1 1 tan xd2 sec x dx

 25. y1

0
 
1 1 12t
1 1 3t

 dt 26. y1

0
 

3x 2 1 1
x 3 1 x 2 1 x 1 1

 dx

 27. y 
dx

1 1 e x  28. y sin sat  dt

 29. y lnsx 1 sx 2 2 1 d dx 30. y2

21
 | e x 2 1 | dx

 31. y Î 1 1 x
1 2 x

  dx 32. y3

1
 
e3yx

x 2  dx

 33. y s3 2 2x 2 x 2  dx 34. y"y2

"y4
 
1 1 4 cot x
4 2 cot x

 dx

 35. y"y2

2"y2
  

x
1 1 cos2 x

 dx 36. y 
1 1 sin x
1 1 cos x

 dx

 37. y"y4

0
 tan3! sec 2! d! 38. y"y3

"y6
 
sin ! cot !

sec !
 d!

 39. y 
sec ! tan !

sec2! 2 sec !
 d! 40. y"

0
 sin 6x cos 3x dx

 41. y ! tan2! d! 42. y 
tan21 x

x 2  dx

 43. y 
sx  

1 1 x 3  dx 44. y s1 1 e x  dx

 45. y x 5e 2x 3
dx 46. y 

sx 2 1de x

x 2  dx

 47. y x 3sx 2 1d24 dx 48. y1

0
 xs2 2 s1 2 x 2  dx

 49. y 
1

xs4x 1 1
 dx 50. y 

1
x 2 s4x 1 1

 dx

 51. y 
1

xs4x 2 1 1
 dx 52. y 

dx
x sx 4 1 1d

 53. y x 2 sinh mx dx 54. y sx 1 sin xd2 dx

 55. y 
dx

x 1 xsx  
 56. y 

dx

sx  1 xsx  

 57. y xs3 x 1 c  dx 58. y 
x ln x

sx 2 2 1
 dx

In this section we describe how to use tables and computer algebra systems to integrate 
functions that have elementary antiderivatives. You should bear in mind, though, that even 
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 SECTION 7.6  Integration Using Tables and Computer Algebra Systems 509

the most powerful computer algebra systems can’t find explicit formulas for the antideriv-
atives of functions like ex 2

 or the other functions described at the end of Section 7.5.

Tables of Integrals
Tables of indefinite integrals are very useful when we are confronted by an integral 
that is difficult to evaluate by hand and we don’t have access to a computer algebra 
system. A relatively brief table of 120 integrals, categorized by form, is provided on 
the Reference Pages at the back of the book. More extensive tables are available in the 
CRC Standard Mathe matical Tables and Formulae, 31st ed. by Daniel Zwillinger (Boca 
Raton, FL, 2002) (709 entries) or in Gradshteyn and Ryzhik’s Table of Integrals, Series, 
and Products, 7e (San Diego, 2007), which contains hundreds of pages of integrals. It 
should be remembered, however, that integrals do not often occur in exactly the form 
listed in a table. Usually we need to use the Substitution Rule or algebraic manipulation 
to transform a given integral into one of the forms in the table.

EXAMPLE 1  The region bounded by the curves y − arctan x, y − 0, and x − 1 is 
rotated about the y-axis. Find the volume of the resulting solid.

SOLUTION Using the method of cylindrical shells, we see that the volume is

V − y1

0
 2"x arctan x dx

In the section of the Table of Integrals titled Inverse Trigonometric Forms we locate 
Formula 92:

y u tan21u du −
u 2 1 1

2
 tan21u 2

u
2

1 C

So the volume is

 V − 2" y1

0
 x tan21x dx − 2"F x 2 1 1

2
tan21x 2

x
2G0

1

 − "fsx 2 1 1d tan21x 2 xg 0

1
− " s2 tan21 1 2 1d

  − " f2s"y4d 2 1g − 1
2 " 2 2 "  Q

EXAMPLE 2  Use the Table of Integrals to find y 
x 2

s5 2 4x 2 
 dx.

SOLUTION If we look at the section of the table titled Forms Involving sa 2 2 u 2 ,  
we see that the closest entry is number 34:

y 
u 2

sa 2 2 u 2 
 du − 2

u
2

 sa 2 2 u 2 1
a 2

2
 sin21S u

aD 1 C

This is not exactly what we have, but we will be able to use it if we first make the sub-
stitution u − 2x:

y 
x 2

s5 2 4x 2 
 dx − y 

suy2d2

s5 2 u 2  
du
2

−
1
8

 y 
u 2

s5 2 u 2 
 du 

The Table of Integrals appears on 
Reference Pages 6–10 at the back 
of the book.
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510 CHAPTER 7  Techniques of Integration

Then we use Formula 34 with a 2 − 5 (so a − s5 ):

 y 
x 2

s5 2 4x 2 
 dx −

1
8

 y 
u 2

s5 2 u 2 
 du −

1
8

 S2
u
2

 s5 2 u 2 1
5
2

 sin21 
u

s5 D 1 C

 − 2
x
8

 s5 2 4x 2 1
5
16

 sin21S 2x

s5 D 1 C  Q

EXAMPLE 3  Use the Table of Integrals to evaluate y x 3 sin x dx.

SOLUTION If we look in the section called Trigonometric Forms, we see that none of 
the entries explicitly includes a u 3 factor. However, we can use the reduction formula in 
entry 84 with n − 3:

y x 3 sin x dx − 2x 3 cos x 1 3 y x 2 cos x dx

We now need to evaluate y x 2 cos x dx. We can use the reduction formula in entry 85 
with n − 2, followed by entry 82:

 y x 2 cos x dx − x 2 sin x 2 2 y x sin x dx

 − x 2 sin x 2 2ssin x 2 x cos xd 1 K

Combining these calculations, we get

y x 3 sin x dx − 2x 3 cos x 1 3x 2 sin x 1 6x cos x 2 6 sin x 1 C

where C − 3K. Q

EXAMPLE 4  Use the Table of Integrals to find y xsx 2 1 2x 1 4  dx.

SOLUTION Since the table gives forms involving sa 2 1 x 2 , sa 2 2 x 2 , and sx 2 2 a 2 , 
but not sax 2 1 bx 1 c , we first complete the square:

x 2 1 2x 1 4 − sx 1 1d2 1 3

If we make the substitution u − x 1 1 (so x − u 2 1), the integrand will involve the 
pattern sa 2 1 u 2 :

 y xsx 2 1 2x 1 4  dx − y su 2 1d su 2 1 3  du

 − y usu 2 1 3  du 2 y su 2 1 3  du

The first integral is evaluated using the substitution t − u 2 1 3:

y usu 2 1 3  du − 1
2 y st  dt − 1

2 ? 2
3 t 3y2 − 1

3 su 2 1 3d3y2

For the second integral we use Formula 21 with a − s3 :

y su 2 1 3  du −
u
2

 su 2 1 3 1 3
2 lnsu 1 su 2 1 3 d

85. y u n cos u du

   − u n sin u 2 n y u n21 sin u du

21. y sa 2 1 u 2  du −
u
2

 sa 2 1 u 2 

1
a 2

2
 lnsu 1 sa 2 1 u 2 d 1 C
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Therefore

y xsx 2 1 2x 1 4  dx

− 1
3sx 2 1 2x 1 4d3y2 2

x 1 1
2

 sx 2 1 2x 1 4 2 3
2 lnsx 1 1 1 sx 2 1 2x 1 4 d 1 C

 Q

Computer Algebra Systems
We have seen that the use of tables involves matching the form of the given integrand with 
the forms of the integrands in the tables. Computers are particularly good at matching 
pat terns. And just as we used substitutions in conjunction with tables, a CAS can perform 
sub stitutions that transform a given integral into one that occurs in its stored formulas. So 
it isn’t surprising that computer algebra systems excel at integration. That doesn’t mean 
that integration by hand is an obsolete skill. We will see that a hand computation sometimes 
produces an indefinite integral in a form that is more convenient than a machine answer.

To begin, let’s see what happens when we ask a machine to integrate the relatively  
simple function y − 1ys3x 2 2d. Using the substitution u − 3x 2 2, an easy calcula-
tion by hand gives

y 
1

3x 2 2
 dx − 1

3 ln | 3x 2 2 | 1 C

whereas Mathematica and Maple both return the answer

1
3 lns3x 2 2d

The first thing to notice is that computer algebra systems omit the constant of integra- 
tion. In other words, they produce a particular antiderivative, not the most general one. 
Therefore, when making use of a machine integration, we might have to add a con-
stant. Second, the absolute value signs are omitted in the machine answer. That is fine if 
our prob lem is concerned only with values of x greater than 23 . But if we are interested in 
other val ues of x, then we need to insert the absolute value symbol.

In the next example we reconsider the integral of Example 4, but this time we ask a  
machine for the answer.

EXAMPLE 5  Use a computer algebra system to find y xsx 2 1 2x 1 4  dx.

SOLUTION Maple responds with the answer

1
3 sx 2 1 2x 1 4d3y2 2 1

4 s2x 1 2dsx 2 1 2x 1 4 2
3
2

 arcsinh 
s3 

3
 s1 1 xd

This looks different from the answer we found in Example 4, but it is equivalent 
because the third term can be rewritten using the identity

arcsinh x − lnsx 1 sx 2 1 1d
Thus

 arcsinh s3
3

 s1 1 xd − lnFs3
3

 s1 1 xd 1 s1
3s1 1 xd2 1 1G

 − ln 
1

s3  f1 1 x 1 ss1 1 xd2 1 3 g

 − ln 
1

s3 1 lnsx 1 1 1 sx 2 1 2x 1 4 d

This is equation 3.11.3.
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The resulting extra term 23
2 ln(1ys3) can be absorbed into the constant of integration.

Mathematica gives the answer

S 5
6

1
x
6

1
x 2

3 D sx 2 1 2x 1 4 2
3
2

 arcsinhS 1 1 x

s3 D
Mathematica combined the first two terms of Example 4 (and the Maple result) into a 
single term by factoring. Q

EXAMPLE 6  Use a CAS to evaluate y xsx 2 1 5d8 dx.

SOLUTION Maple and Mathematica give the same answer:

1
18 x

18 1 5
2 x

16 1 50x 14 1 1750
3  x 12 1 4375x 10 1 21875x 8 1 218750

3  x 6 1 156250x 4 1 390625
2  x

2

It’s clear that both systems must have expanded sx 2 1 5d8 by the Binomial Theorem 
and then integrated each term.

If we integrate by hand instead, using the substitution u − x 2 1 5, we get

y xsx 2 1 5d8 dx − 1
18 sx 2 1 5d9 1 C

For most purposes, this is a more convenient form of the answer. Q

EXAMPLE 7  Use a CAS to find y sin5x cos2x dx.

SOLUTION In Example 7.2.2 we found that

y sin5x cos2x dx − 21
3 cos3x 1 2

5 cos5x 2 1
7 cos7x 1 C

Maple and the TI-89 report the answer

21
7 sin4x cos3x 2 4

35 sin2x cos3x 2 8
105 cos3x

whereas Mathematica produces

2 5
64 cos x 2 1

192 cos 3x 1 3
320 cos 5x 2 1

448 cos 7x

We suspect that there are trigonometric identities which show that these three answers 
are equivalent. Indeed, if we ask Maple and Mathematica to simplify their expressions 
using trigonometric identities, they ultimately produce the same form of the answer as 
in Equation 1. Q

The TI-89 also produces this answer.

1

 3. y2

1
 s4x 2 2 3  dx;  entry 39

 4. y1

0
 tan3s"xy6d dx;  entry 69

1–4 Use the indicated entry in the Table of Integrals on the  
Reference Pages to evaluate the integral.

 1. y"y2

0
 cos 5x cos 2x dx;  entry 80

 2. y1

0
 sx 2 x 2  dx;  entry 113
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 34.  Find the volume of the solid obtained when the region under 
the curve y − arcsin x, x > 0, is rotated about the y-axis.

 35.  Verify Formula 53 in the Table of Integrals (a) by differen-
tia tion and (b) by using the substitution t − a 1 bu.

 36.  Verify Formula 31 (a) by differentiation and (b) by substi- 
tuting u − a sin !.

37–44 Use a computer algebra system to evaluate the integral. 
Compare the answer with the result of using tables. If the 
answers are not the same, show that they are equivalent.

 37. y sec4x dx 38. y  csc5x dx

 39. y x 2sx 2 1 4  dx 40. y 
dx

e xs3e x 1 2d

 41. y cos4 x dx 42. y x 2s1 2 x 2  dx

 43. y tan5x dx 44. y 
1

s1 1 s3 x  
 dx

 45. (a)  Use the table of integrals to evaluate Fsxd − y f sxd dx, 
where

f sxd −
1

xs1 2 x 2 

  What is the domain of f  and F?
 (b)  Use a CAS to evaluate Fsxd. What is the domain of the 

function F that the CAS produces? Is there a discrep-
ancy between this domain and the domain of the func-
tion F that you found in part (a)?

 46.  Computer algebra systems sometimes need a helping hand 
from human beings. Try to evaluate

y s1 1 ln xd s1 1 sx ln xd2  dx

with a computer algebra system. If it doesn’t return an 
answer, make a substitution that changes the integral into 
one that the CAS can evaluate.

CAS

CAS

CAS

5–32 Use the Table of Integrals on Reference Pages 6–10 to 
evaluate the integral.

 5. y"y8

0
 arctan 2x dx  6. y2

0
 x 2s4 2 x 2  dx

 7. y 
cos x

sin2x 2 9
 dx  8. y 

ex

4 2 e2x  dx

 9. y 
s9x 2 1 4 

x 2  dx 10. y 
s2y 2 2 3 

y 2  dy

 11. y"

0
 cos6! d! 12. y x s2 1 x 4  dx

 13. y 
arctan sx 

sx 
 dx 14. y"

0
 x 3 sin x dx

 15. y 
coths1yyd

y2  dy 16. y 
e3 t

se2 t 2 1 
 dt

 17. y ys6 1 4y 2 4y2  dy 18.  y 
dx

2x 3 2 3x 2

 19. y sin2x cos x lnssin xd dx 20. y 
sin 2!

s5 2 sin !  
 d!

 21. y 
e x

3 2 e2x  dx 22. y2

0
 x 3s4x 2 2 x 4  dx

 23. y sec5x dx 24. y x 3 arcsinsx 2d dx

 25. y 
s4 1 sln xd2 

x
 dx 26. y1

0
 x 4e2x dx

 27. y 
cos21sx 22d

x 3  dx 28. y 
dx

s1 2 e2x 

 29. y se 2x 2 1 dx 30. y e t sins#t 2 3d dt

 31. y 
x 4 dx

sx 10 2 2 
 32. y 

sec 2 ! tan 2 !

s9 2 tan 2 !  
 d!

 33.  The region under the curve y − sin2 x from 0 to " is rotated 
about the x-axis. Find the volume of the resulting solid.

DISCOVERY PROJECT CAS  PATTERNS IN INTEGRALS

In this project a computer algebra system is used to investigate indefinite integrals of families of 
functions. By observing the patterns that occur in the integrals of several members of the family, 
you will first guess, and then prove, a general formula for the integral of any member of the family.

1. (a) Use a computer algebra system to evaluate the following integrals.

 (i) y 
1

sx 1 2dsx 1 3d
 dx (ii) y 

1
sx 1 1dsx 1 5d

 dx

 (iii) y 
1

sx 1 2dsx 2 5d
 dx (iv) y 

1
sx 1 2d2  dx

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



514 CHAPTER 7  Techniques of Integration

 (b) Based on the pattern of your responses in part (a), guess the value of the integral

y 
1

sx 1 adsx 1 bd
 dx

  if a ± b. What if a − b?
 (c)  Check your guess by asking your CAS to evaluate the integral in part (b). Then prove it 

using partial fractions.

2. (a)  Use a computer algebra system to evaluate the following integrals.

 (i) y sin x cos 2x dx (ii) y sin 3x cos 7x dx (iii) y sin 8x cos 3x dx

 (b) Based on the pattern of your responses in part (a), guess the value of the integral

y sin ax cos bx dx

 (c)  Check your guess with a CAS. Then prove it using the techniques of Section 7.2.  
For what values of a and b is it valid?

3. (a)  Use a computer algebra system to evaluate the following integrals.

 (i) y ln x dx (ii) y x ln x dx (iii) y x 2 ln x dx

 (iv) y x 3 ln x dx (v) y x7 ln x dx

 (b) Based on the pattern of your responses in part (a), guess the value of

y x n ln x dx

 (c)  Use integration by parts to prove the conjecture that you made in part (b). For what val-
ues of n is it valid?

4. (a) Use a computer algebra system to evaluate the following integrals.

 (i) y xe x dx (ii) y x 2e x dx (iii) y x 3e x dx

 (iv) y x 4e x dx (v) y x 5e x dx

 (b)  Based on the pattern of your responses in part (a), guess the value of y x 6e x dx. Then use 
your CAS to check your guess.

 (c)  Based on the patterns in parts (a) and (b), make a conjecture as to the value of the  
integral

y x ne x dx

  when n is a positive integer.
 (d) Use mathematical induction to prove the conjecture you made in part (c).

There are two situations in which it is impossible to find the exact value of a definite  
integral.

The first situation arises from the fact that in order to evaluate yb
a  f sxd dx using the 

Fun damental Theorem of Calculus we need to know an antiderivative of f. Sometimes, 
however, it is difficult, or even impossible, to find an antiderivative (see Section 7.5). For 
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example, it is impossible to evaluate the following integrals exactly:

y1

0
 ex 2 

dx      y1

21
 s1 1 x 3  dx

The second situation arises when the function is determined from a scientific experi-
ment through instrument readings or collected data. There may be no formula for the 
function (see Example 5).

In both cases we need to find approximate values of definite integrals. We already 
know one such method. Recall that the definite integral is defined as a limit of Riemann 
sums, so any Riemann sum could be used as an approximation to the integral: If we 
divide fa, bg into n subintervals of equal length Dx − sb 2 adyn, then we have

yb

a
 f sxd dx < o

n

i−1
 f sxi*d Dx

where x i* is any point in the ith subinterval fxi21, xig. If x i* is chosen to be the left end-
point of the interval, then x i* − xi21 and we have

yb

a
 f sxd dx < Ln − o

n

i−1
 f sxi21d Dx

If f sxd > 0, then the integral represents an area and (1) represents an approximation of 
this area by the rectangles shown in Figure 1(a). If we choose x i* to be the right endpoint, 
then x i* − xi and we have

yb

a
 f sxd dx < Rn − o

n

i−1
 f sxid Dx

[See Figure 1(b).] The approximations Ln and Rn defined by Equations 1 and 2 are called 
the left endpoint approximation and right endpoint approximation, respectively.

In Section 5.2 we also considered the case where x i* is chosen to be the midpoint xi 
of the subinterval fxi21, xig. Figure 1(c) shows the midpoint approximation Mn, which 
appears to be better than either Ln or Rn.

Midpoint Rule 

yb

a
 f sxd dx < Mn − Dx f f sx1d 1 f sx2 d 1 ∙ ∙ ∙ 1 f sxn dg

where  Dx −
b 2 a

n

and  xi − 1
2 sxi21 1 xid − midpoint of fxi21, xig

Another approximation, called the Trapezoidal Rule, results from averaging the 
approximations in Equations 1 and 2:

 yb

a
 f sxd dx <

1
2

 Fo
n

i−1
 f sxi21 d Dx 1 o

n

i−1
 f sxid DxG −

Dx
2

 Fo
n

i−1
 s f sxi21 d 1 f sxiddG

 −
Dx
2

 fs f sx0 d 1 f sx1dd 1 s f sx1d 1 f sx2 dd 1 ∙ ∙ ∙ 1 s f sxn21d 1 f sxn ddg

 −
Dx
2

 f f sx0 d 1 2 f sx1d 1 2 f sx2 d 1 ∙ ∙ ∙ 1 2 f sxn21d 1 f sxn dg

1

⁄ ¤– – ––

(a) Left endpoint approximation

y

x¸ ⁄ ¤ ‹ x¢

x¸ ⁄ ¤ ‹ x¢

‹ x¢

x0

(b) Right endpoint approximation

y

x0

x

(c) Midpoint approximation

y

0

FIGURE 1 

2
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Trapezoidal Rule 

yb

a
 f sxd dx < Tn −

Dx
2

 f f sx0 d 1 2 f sx1d 1 2 f sx2 d 1 ∙ ∙ ∙ 1 2 f sxn21d 1 f sxn dg

where Dx − sb 2 adyn and xi − a 1 i Dx.

The reason for the name Trapezoidal Rule can be seen from Figure 2, which illustrates 
the case with f sxd > 0 and n − 4. The area of the trapezoid that lies above the ith sub-
interval is

Dx S  f sxi21d 1 f sxid
2 D −

Dx
2

 f f sxi21d 1 f sxidg

and if we add the areas of all these trapezoids, we get the right side of the Trapezoidal 
Rule.

EXAMPLE 1  Use (a) the Trapezoidal Rule and (b) the Midpoint Rule with n − 5 to  
approximate the integral y2

1
 s1yxd dx.

SOLUTION
(a) With n − 5, a − 1, and b − 2, we have Dx − s2 2 1dy5 − 0.2, and so the Trape-
zoidal Rule gives

 y2

1
 
1
x

 dx < T5 −
0.2
2

 f f s1d 1 2 f s1.2d 1 2 f s1.4d 1 2 f s1.6d 1 2 f s1.8d 1 f s2dg

 − 0.1S 1
1

1
2

1.2
1

2
1.4

1
2

1.6
1

2
1.8

1
1
2D

 < 0.695635

This approximation is illustrated in Figure 3.

(b) The midpoints of the five subintervals are 1.1, 1.3, 1.5, 1.7, and 1.9, so the Mid-
point Rule gives

 y2

1
 
1
x

 dx < Dx f f s1.1d 1 f s1.3d 1 f s1.5d 1 f s1.7d 1 f s1.9dg

 −
1
5

 S 1
1.1

1
1

1.3
1

1
1.5

1
1

1.7
1

1
1.9D

 < 0.691908

This approximation is illustrated in Figure 4. Q

In Example 1 we deliberately chose an integral whose value can be computed explic-
itly so that we can see how accurate the Trapezoidal and Midpoint Rules are. By the 
Fundamental Theorem of Calculus,

y2

1
 
1
x

 dx − ln xg 1

2
− ln 2 − 0.693147 . . .

The error in using an approximation is defined to be the amount that needs to be added 
to the approximation to make it exact. From the values in Example 1 we see that the 

0

y

xx¸ ⁄ ¤ ‹ x¢

1 2

1 2

1
xy=

1
xy=

FIGURE 2  
Trapezoidal approximation

FIGURE 3  

FIGURE 4  

yb

a
 f sxd dx − approximation 1 error
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errors in the Trapezoidal and Midpoint Rule approximations for n − 5 are 

ET < 20.002488    and    EM < 0.001239

In general, we have

ET − yb

a
 f sxd dx 2 Tn    and    EM − yb

a
 f sxd dx 2 Mn

The following tables show the results of calculations similar to those in Example 1, 
but for n − 5, 10, and 20 and for the left and right endpoint approximations as well as 
the Trap ezoidal and Midpoint Rules.

n Ln Rn Tn Mn

 5 0.745635 0.645635 0.695635 0.691908

10 0.718771 0.668771 0.693771 0.692835
20 0.705803 0.680803 0.693303 0.693069

n EL ER ET EM

 5 20.052488 0.047512 20.002488 0.001239

10 20.025624 0.024376 20.000624 0.000312
20 20.012656 0.012344 20.000156 0.000078

Corresponding errors

We can make several observations from these tables:

1.  In all of the methods we get more accurate approximations when we increase the 
value of n. (But very large values of n result in so many arithmetic operations that 
we have to beware of accumulated round-off error.)

2.  The errors in the left and right endpoint approximations are opposite in sign and 
appear to decrease by a factor of about 2 when we double the value of n.

3.  The Trapezoidal and Midpoint Rules are much more accurate than the endpoint 
approximations.

4.  The errors in the Trapezoidal and Midpoint Rules are opposite in sign and appear to 
decrease by a factor of about 4 when we double the value of n.

5.  The size of the error in the Midpoint Rule is about half the size of the error in the 
Trapezoidal Rule.

Figure 5 shows why we can usually expect the Midpoint Rule to be more accurate 
than the Trapezoidal Rule. The area of a typical rectangle in the Midpoint Rule is the 
same as the area of the trapezoid ABCD whose upper side is tangent to the graph at P. 
The area of this trapezoid is closer to the area under the graph than is the area of the trap-
ezoid AQRD used in the Trapezoidal Rule. [The midpoint error (shaded red) is smaller 
than the trapezoidal error (shaded blue).]

These observations are corroborated in the following error estimates, which are 
proved in books on numerical analysis. Notice that Observation 4 corresponds to the n2 
in each denominator because s2nd2 − 4n2. The fact that the estimates depend on the size 
of the second derivative is not surprising if you look at Figure 5, because f 0sxd measures 
how much the graph is curved. [Recall that f 0sxd measures how fast the slope of y − f sxd 
changes.]

TEC Module 5.2 / 7.7 allows you to 
compare approximation methods.

Approximations to y2

1
 
1
x

 dx

It turns out that these observations  
are true in most cases.

C

P

DA

B

R

Q

C

P

DA

B

xi-1 xii-1 x–i

FIGURE 5  
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518 CHAPTER 7  Techniques of Integration

3   Error Bounds Suppose | f 0sxd | < K for a < x < b. If ET and EM are the 
errors in the Trapezoidal and Midpoint Rules, then

| ET | <
Ksb 2 ad3

12n2     and    | EM | <
Ksb 2 ad3

24n2

Let’s apply this error estimate to the Trapezoidal Rule approximation in Example 1. 
If f sxd − 1yx, then f 9sxd − 21yx 2 and f 0sxd − 2yx 3. Because 1 < x < 2, we have 
1yx < 1, so

| f 0sxd | − Z 2
x 3 Z <

2
13 − 2

Therefore, taking K − 2, a − 1, b − 2, and n − 5 in the error estimate (3), we see that

| ET | <
2s2 2 1d3

12s5d2 −
1

150
< 0.006667

Comparing this error estimate of 0.006667 with the actual error of about 0.002488, we 
see that it can happen that the actual error is substantially less than the upper bound for 
the error given by (3).

EXAMPLE 2  How large should we take n in order to guarantee that the Trapezoidal 
and Midpoint Rule approximations for y2

1  s1yxd dx are accurate to within 0.0001?

SOLUTION We saw in the preceding calculation that | f 0sxd | < 2 for 1 < x < 2, so we 
can take K − 2, a − 1, and b − 2 in (3). Accuracy to within 0.0001 means that the size 
of the error should be less than 0.0001. Therefore we choose n so that

2s1d3

12n2 , 0.0001

Solving the inequality for n, we get

 n2 .
2

12s0.0001d

or  n .
1

s0.0006 < 40.8

Thus n − 41 will ensure the desired accuracy.
For the same accuracy with the Midpoint Rule we choose n so that

  
2s1d3

24n2 , 0.0001    and so    n .
1

s0.0012 < 29 Q

K can be any number larger than all the 
values of | f 0sxd |, but smaller values of 
K give better error bounds.

It’s quite possible that a lower value 
for n would suffice, but 41 is the 
smallest value for which the error 
bound formula can guarantee us 
accuracy to within 0.0001.
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EXAMPLE 3  
(a) Use the Midpoint Rule with n − 10 to approximate the integral y1

0 e
x 2

dx.
(b) Give an upper bound for the error involved in this approximation.

SOLUTION
(a) Since a − 0, b − 1, and n − 10, the Midpoint Rule gives

 y1

0
 ex 2

dx < Dx f f s0.05d 1 f s0.15d 1 ∙ ∙ ∙ 1 f s0.85d 1 f s0.95dg

 − 0.1fe 0.0025 1 e 0.0225 1 e 0.0625 1 e 0.1225 1 e 0.2025 1 e 0.3025

    1 e 0.4225 1 e 0.5625 1 e 0.7225 1 e 0.9025g

 < 1.460393

Figure 6 illustrates this approximation.

(b) Since f sxd − ex 2
, we have f 9sxd − 2xex 2

 and f 0sxd − s2 1 4x 2dex 2
. Also, since 

0 < x < 1, we have x 2 < 1 and so

0 < f 0sxd − s2 1 4x 2dex 2
< 6e

Taking K − 6e, a − 0, b − 1, and n − 10 in the error estimate (3), we see that an 
upper bound for the error is

 
6es1d3

24s10d2 −
e

400
< 0.007 Q

Simpson’s Rule
Another rule for approximate integration results from using parabolas instead of straight 
line segments to approximate a curve. As before, we divide fa, bg into n subintervals  
of equal length h − Dx − sb 2 adyn, but this time we assume that n is an even number. 
Then on each consecutive pair of intervals we approximate the curve y − f sxd > 0  
by a parabola as shown in Figure 7. If yi − f sxid, then Pisxi, yid is the point on the curve 
lying above xi. A typical parabola passes through three consecutive points Pi, Pi11,  
and Pi12.

0

y

xa=x¸ ⁄ x™ x¢x£ xß=bx∞

P¸ P¡

P™
P¢

P£

PßP∞

0

y

xh_h

P¸(_h, y¸) P¡(0, ›)

P™(h, fi)

To simplify our calculations, we first consider the case where x0 − 2h, x1 − 0, and 
x2 − h. (See Figure 8.) We know that the equation of the parabola through P0, P1, and 

FIGURE 6 

0

y

x1

y=ex2

Error estimates give upper bounds 
for the error. They are theoretical, 
worst-case scenarios. The actual 
error in this case turns out to be 
about 0.0023.

FIGURE 7 FIGURE 8
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520 CHAPTER 7  Techniques of Integration

P2 is of the form y − Ax 2 1 Bx 1 C and so the area under the parabola from x − 2h   
to x − h is

 yh

2h
 sAx 2 1 Bx 1 Cd dx − 2 yh

0
 sAx 2 1 Cd dx − 2FA 

x 3

3
1 CxG

0

h

 − 2SA 
h 3

3
1 ChD −

h
3

 s2Ah 2 1 6Cd

But, since the parabola passes through P0s2h, y0 d, P1s0, y1d, and P2sh, y2 d, we have

 y0 − As2hd2 1 Bs2hd 1 C − Ah 2 2 Bh 1 C

 y1 − C

 y2 − Ah 2 1 Bh 1 C

and therefore y0 1 4y1 1 y2 − 2Ah 2 1 6C

Thus we can rewrite the area under the parabola as

h
3

 sy0 1 4y1 1 y2 d

Now by shifting this parabola horizontally we do not change the area under it. This 
means that the area under the parabola through P0, P1, and P2 from x − x0 to x − x2 in 
Figure 7 is still

h
3

 sy0 1 4y1 1 y2 d

Similarly, the area under the parabola through P2, P3, and P4 from x − x2 to x − x4 is

h
3

 sy2 1 4y3 1 y4 d

If we compute the areas under all the parabolas in this manner and add the results, we get

yb

a
 f sxd dx <

h
3

 sy0 1 4y1 1 y2 d 1
h
3

 sy2 1 4y3 1 y4 d 1 ∙ ∙ ∙ 1
h
3

 syn22 1 4yn21 1 yn d

  −
h
3

 sy0 1 4y1 1 2y2 1 4y3 1 2y4 1 ∙ ∙ ∙ 1 2yn22 1 4yn21 1 yn d

Although we have derived this approximation for the case in which f sxd > 0, it is a 
rea sonable approximation for any continuous function f  and is called Simpson’s Rule 
after the English mathematician Thomas Simpson (1710–1761). Note the pattern of 
coefficients: 1, 4, 2, 4, 2, 4, 2, . . . , 4, 2, 4, 1.

Simpson’s Rule 

 yb

a
 f sxd dx < Sn −

Dx
3

 f f sx0 d 1 4 f sx1d 1 2 f sx2 d 1 4 f sx3 d 1 ∙ ∙ ∙

 1 2 f sxn22 d 1 4 f sxn21d 1 f sxn dg

where n is even and Dx − sb 2 adyn.

Here we have used Theorem 5.5.7.  
Notice that Ax 2 1 C is even and 
Bx is odd.

Simpson
Thomas Simpson was a weaver who 
taught himself mathematics and 
went on to become one of the best 
English mathematicians of the 18th 
century. What we call Simpson’s Rule 
was actually known to Cavalieri and 
Gregory in the 17th century, but 
Simpson popularized it in his book 
Mathematical Dissertations (1743).
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EXAMPLE 4  Use Simpson’s Rule with n − 10 to approximate y2
1  s1yxd dx.

SOLUTION Putting f sxd − 1yx, n − 10, and Dx − 0.1 in Simpson’s Rule, we obtain

 y2

1
 
1
x

 dx < S10

 −
Dx
3

 f f s1d 1 4 f s1.1d 1 2 f s1.2d 1 4 f s1.3d 1 ∙ ∙ ∙ 1 2 f s1.8d 1 4 f s1.9d 1 f s2dg

 −
0.1
3

 S 1
1

1
4

1.1
1

2
1.2

1
4

1.3
1

2
1.4

1
4

1.5
1

2
1.6

1
4

1.7
1

2
1.8

1
4

1.9
1

1
2D

< 0.693150 Q

Notice that, in Example 4, Simpson’s Rule gives us a much better approximation 
sS10 < 0.693150d to the true value of the integral sln 2 < 0.693147. . .d than does the 
Trapezoidal Rule sT10 < 0.693771d or the Midpoint Rule sM10 < 0.692835d. It turns out 
(see Exercise 50) that the approximations in Simpson’s Rule are weighted averages of 
those in the Trapezoidal and Midpoint Rules:

S2n − 1
3 Tn 1 2

3 Mn

(Recall that ET and EM usually have opposite signs and | EM | is about half the size of 
| ET |.)

In many applications of calculus we need to evaluate an integral even if no explicit 
formula is known for y as a function of x. A function may be given graphically or as a 
table of values of collected data. If there is evidence that the values are not changing 
rapidly, then the Trapezoidal Rule or Simpson’s Rule can still be used to find an approxi-
mate value for yb

a  y dx, the integral of y with respect to x. 

EXAMPLE 5  Figure 9 shows data traffic on the link from the United States to 
SWITCH, the Swiss academic and research network, on February 10, 1998. Dstd is the 
data throughput, measured in megabits per second sMbysd. Use Simpson’s Rule to esti-
mate the total amount of data transmitted on the link from midnight to noon on that day.

0

2

4

6

D
8

3 6 9 12 15 18 21 24 t (hours)

SOLUTION Because we want the units to be consistent and Dstd is measured in mega-
bits per second, we convert the units for t from hours to seconds. If we let Astd be the  
amount of data (in megabits) transmitted by time t, where t is measured in seconds, 
then A9std − Dstd. So, by the Net Change Theorem (see Section 5.4), the total amount 

FIGURE 9 
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522 CHAPTER 7  Techniques of Integration

of data transmitted by noon (when t − 12 3 602 − 43,200) is

As43,200d − y43,200

0
 Dstd dt

We estimate the values of Dstd at hourly intervals from the graph and compile them in 
the table.

t (hours) t (seconds) Dstd t (hours) t (seconds) Dstd

0 0 3.2  7 25,200 1.3
1  3,600 2.7  8 28,800 2.8
2  7,200 1.9  9 32,400 5.7
3 10,800 1.7 10 36,000 7.1
4 14,400 1.3 11 39,600 7.7
5 18,000 1.0 12 43,200 7.9
6 21,600 1.1

Then we use Simpson’s Rule with n − 12 and Dt − 3600 to estimate the integral:

y43,200

0
 Astd dt <

Dt
3

 fDs0d 1 4Ds3600d 1 2Ds7200d 1 ∙ ∙ ∙ 1 4Ds39,600d 1 Ds43,200dg

<
3600

3
 f3.2 1 4s2.7d 1 2s1.9d 1 4s1.7d 1 2s1.3d 1 4s1.0d

1 2s1.1d 1 4s1.3d 1 2s2.8d 1 4s5.7d 1 2s7.1d 1 4s7.7d 1 7.9g

− 143,880

Thus the total amount of data transmitted from midnight to noon is about  
144,000 megab its, or 144 gigabits. Q

The table in the margin shows how Simpson’s Rule compares with the Midpoint 
Rule  for the integral y2

1  s1yxd dx, whose value is about 0.69314718. The second table 
shows how the error ES in Simpson’s Rule decreases by a factor of about 16 when n is 
doubled. (In Exercises 27 and 28 you are asked to verify this for two additional inte-
grals.) That is consistent with the appearance of n 4 in the denominator of the following 
error estimate for Simpson’s Rule. It is similar to the estimates given in (3) for the Trap-
ezoidal and Midpoint Rules, but it uses the fourth derivative of f.

4   Error Bound for Simpson’s Rule Suppose that | f s4dsxd | < K for 
a < x < b. If ES is the error involved in using Simpson’s Rule, then

| ES | <
Ksb 2 ad5

180n 4

EXAMPLE 6  How large should we take n in order to guarantee that the Simpson’s 
Rule approximation for y2

1  s1yxd dx is accurate to within 0.0001?

n Mn Sn

4 0.69121989 0.69315453
8 0.69266055 0.69314765

16 0.69302521 0.69314721

n EM ES

4 0.00192729 20.00000735
8 0.00048663 20.00000047

16 0.00012197 20.00000003
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SOLUTION If f sxd − 1yx, then f s4dsxd − 24yx 5. Since x > 1, we have 1yx < 1 and so

| f s4dsxd | − Z 24
x 5 Z < 24

Therefore we can take K − 24 in (4). Thus, for an error less than 0.0001, we should 
choose n so that

 
24s1d5

180n 4 , 0.0001

This gives  n 4 .
24

180s0.0001d

or  n .
1

s4 0.00075 < 6.04

Therefore n − 8 (n must be even) gives the desired accuracy. (Compare this with  
Example 2, where we obtained n − 41 for the Trapezoidal Rule and n − 29 for the 
Midpoint Rule.)  Q

EXAMPLE 7  
(a) Use Simpson’s Rule with n − 10 to approximate the integral y1

0 ex 2 dx.
(b) Estimate the error involved in this approximation.

SOLUTION
(a) If n − 10, then Dx − 0.1 and Simpson’s Rule gives 

 y1

0
 ex 2

dx <
Dx
3

 f f s0d 1 4 f s0.1d 1 2 f s0.2d 1 ∙ ∙ ∙ 1 2 f s0.8d 1 4 f s0.9d 1 f s1dg

 −
0.1
3

 fe 0 1 4e 0.01 1 2e 0.04 1 4e 0.09 1 2e 0.16 1 4e 0.25 1 2e 0.36

 1 4e 0.49 1 2e 0.64 1 4e 0.81 1 e 1 g

 < 1.462681

(b) The fourth derivative of f sxd − ex 2
 is

f s4dsxd − s12 1 48x 2 1 16x 4 dex 2

and so, since 0 < x < 1, we have

0 < f s4dsxd < s12 1 48 1 16de 1 − 76e

Therefore, putting K − 76e, a − 0, b − 1, and n − 10 in (4), we see that the error is at 
most

76es1d5

180s10d4 < 0.000115

(Compare this with Example 3.) Thus, correct to three decimal places, we have

 y1

0
 ex 2 

dx < 1.463 Q

Figure 10 illustrates the calculation in  
Example 7. Notice that the parabolic 
arcs are so close to the graph of y − ex 2

 
that they are practically indistinguish-
able from it.

0

y

x1

y=ex2

FIGURE 10  

Many calculators and computer algebra 
systems have a built-in algorithm that 
computes an approximation of a definite 
integral. Some of these machines use 
Simpson’s Rule; others use more sophis- 
ticated techniques such as adaptive 
numerical integration. This means that if 
a function fluctuates much more on a 
certain part of the interval than it does 
elsewhere, then that part gets divided into 
more sub intervals. This strategy reduces 
the number of calculations required to 
achieve a prescribed accuracy.
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524 CHAPTER 7  Techniques of Integration

answers to six decimal places.) Compare your results to the 
actual value to determine the error in each approximation.

 5.  y2

0
 

x
1 1 x 2  dx,  n − 10  6.  y!

0
 x cos x dx,  n − 4

7–18 Use (a) the Trapezoidal Rule, (b) the Midpoint Rule, and 
(c) Simpson’s Rule to approximate the given integral with the 
specified value of n. (Round your answers to six decimal places.)

 7.  y2

1
 sx 3 2 1  dx,  n − 10  8.  y2

0
 

1
1 1 x 6  dx,  n − 8

 9.  y2

0
 

e x

1 1 x 2  dx,  n − 10

 10.  y!y2

0
 s3 1 1 cos x   dx,  n − 4

 11.  y4

0
 x3 sin x dx,  n − 8 12.  y3

1
 e1yx dx,  n − 8

 13.  y4

0
 sy  cos y dy,  n − 8 14.  y 3

2
 

1
ln t

 dt,  n − 10

 15.  y1

0
 

x2

1 1 x4  dx,  n − 10 16.  y3

1
 
sin t

t
 dt,  n − 4

 17.  y4

0
 lns1 1 exd dx,  n − 8

 18.  y1

0
  sx 1 x3

  dx,  n − 10

 19.  (a)  Find the approximations T8 and M8 for the integral 
y1

0 cos sx 2d dx.
 (b) Estimate the errors in the approximations of part (a).
 (c)  How large do we have to choose n so that the 

approximations Tn and Mn to the integral in part (a) are 
accurate to within 0.0001?

 20.  (a)  Find the approximations T10 and M10 for y2
1  e 1yx dx.

 (b) Estimate the errors in the approximations of part (a).
 (c)  How large do we have to choose n so that the approxi-

mations Tn and Mn to the integral in part (a) are accu-
rate to within 0.0001?

 21.  (a)  Find the approximations T10, M10, and S10 for 
y!

0  sin x dx and the corresponding errors ET, EM, and ES.
 (b)  Compare the actual errors in part (a) with the error 

esti mates given by (3) and (4).
 (c)  How large do we have to choose n so that the approxi-

mations Tn, Mn, and Sn to the integral in part (a) are 
accurate to within 0.00001?

 22.   How large should n be to guarantee that the Simpson’s 
Rule approximation to y1

0 e
x 2

dx is accurate to within 
0.00001?

 1.   Let I − y4
0  f sxd dx, where f  is the function whose graph is 

shown.
 (a) Use the graph to find L2, R2, and M2.
 (b) Are these underestimates or overestimates of I?
 (c) Use the graph to find T2. How does it compare with I?
 (d)  For any value of n, list the numbers Ln, Rn, Mn, Tn, and I 

in increasing order.

f

x

1

y

2

3

10 2 3 4

 2.   The left, right, Trapezoidal, and Midpoint Rule approxi-
mations were used to estimate y2

0  f sxd dx, where f  is the 
function whose graph is shown. The estimates were 0.7811, 
0.8675, 0.8632, and 0.9540, and the same number of sub-
intervals were used in each case.

 (a) Which rule produced which estimate?
 (b)  Between which two approximations does the true value 

of y2
0  f sxd dx lie?

y

x0

1

2

y=ƒ

 3.   Estimate y1
0 cossx 2 d dx using (a) the Trapezoidal Rule and 

(b) the Midpoint Rule, each with n − 4. From a graph of the 
integrand, decide whether your answers are underestimates 
or overestimates. What can you conclude about the true 
value of the integral?

 4.   Draw the graph of f sxd − sin( 1
2 x 2) in the viewing rectangle

f0, 1g by f0, 0.5g and let I − y1
0 f sxd dx.

 (a)  Use the graph to decide whether L2, R2, M2, and T2 
underestimate or overestimate I.

 (b)  For any value of n, list the numbers Ln, Rn, Mn, Tn, and  
I in increasing order.

 (c)  Compute L5, R5, M5, and T5. From the graph, which do 
you think gives the best estimate of I?

5–6 Use (a) the Midpoint Rule and (b) Simpson’s Rule to approxi-
mate the given integral with the specified value of n. (Round your 

;

;
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 SECTION 7.7  Approximate Integration 525

 30.   The widths (in meters) of a kidney-shaped swimming pool 
were measured at 2-meter intervals as indicated in the 
figure. Use Simpson’s Rule to estimate the area of the pool.

6.2

5.0
7.2

6.8 5.6 4.8
4.8

 31.  (a)  Use the Midpoint Rule and the given data to estimate 
the value of the integral y5

1  f sxd dx.

x f sxd x f sxd

1.0 2.4 3.5 4.0
1.5 2.9 4.0 4.1
2.0 3.3 4.5 3.9
2.5 3.6 5.0 3.5
3.0 3.8

 (b)  If it is known that 22 < f 0sxd < 3 for all x, estimate 
the error involved in the approximation in part (a).

 32.  (a)  A table of values of a function t is given. Use 
Simpson’s Rule to estimate y1.6

0
 tsxd dx.

x tsxd x tsxd

0.0 12.1 1.0 12.2
0.2 11.6 1.2 12.6
0.4 11.3 1.4 13.0
0.6 11.1 1.6 13.2
0.8 11.7

 (b)  If 25 < ts4dsxd < 2 for 0 < x < 1.6, estimate the error 
involved in the approximation in part (a).

 33.   A graph of the temperature in Boston on August 11, 2013, 
is shown. Use Simpson’s Rule with n − 12 to estimate the 
average temperature on that day.

0 4

70

80

60

8 4 8 tnoon

(F)T

 34.   A radar gun was used to record the speed of a runner during 
the first 5 seconds of a race (see the table). Use Simpson’s 

 23.  The trouble with the error estimates is that it is often very 
difficult to compute four derivatives and obtain a good 
upper bound K for | f s4dsxd | by hand. But computer algebra 
systems have no problem computing f s4d and graphing it, 
so we can easily find a value for K from a machine graph. 
This exercise deals with approximations to the integral 
I − y 2!

0  f sxd dx, where f sxd − e cos x.
 (a) Use a graph to get a good upper bound for | f 0sxd |.
 (b) Use M10 to approximate I.
 (c) Use part (a) to estimate the error in part (b).
 (d)  Use the built-in numerical integration capability of 

your CAS to approximate I.
 (e)  How does the actual error compare with the error esti-

mate in part (c)?
 (f ) Use a graph to get a good upper bound for | f s4dsxd |.
 (g) Use S10 to approximate I.
 (h) Use part (f) to estimate the error in part (g).
 (i )  How does the actual error compare with the error esti-

mate in part (h)?
 ( j)  How large should n be to guarantee that the size of the 

error in using Sn is less than 0.0001? 

 24.  Repeat Exercise 23 for the integral y1

21
 s4 2 x 3  dx.

25–26 Find the approximations Ln, Rn, Tn, and Mn for n − 5, 
10, and 20. Then compute the corresponding errors EL, ER, ET,  
and EM. (Round your answers to six decimal places. You may 
wish to use the sum command on a computer algebra system.) 
What observations can you make? In particular, what happens 
to the errors when n is doubled?

 25.  y1

0
 xe x dx 26.  y2

1
 

1
x 2  dx

27–28 Find the approximations Tn, Mn, and Sn for n − 6 and 
12. Then compute the corresponding errors ET, EM, and ES. 
(Round your answers to six decimal places. You may wish to 
use the sum command on a computer algebra system.) What 
observations can you make? In particular, what happens to the 
errors when n is doubled?

 27.  y2

0
 x 4 dx 28.  y4

1
 

1

sx  
 dx

 29.   Estimate the area under the graph in the figure by using 
(a) the Trapezoidal Rule, (b) the Midpoint Rule, and 
(c) Simpson’s Rule, each with n − 6.

1

x

y

0 43 6521

CAS

CAS
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526 CHAPTER 7  Techniques of Integration

Rule to estimate the distance the runner covered during those 
5 seconds.

t (s) v (mys) t (s) v (mys)

0 0 3.0 10.51
0.5 4.67 3.5 10.67
1.0 7.34 4.0 10.76
1.5 8.86 4.5 10.81
2.0 9.73 5.0 10.81
2.5 10.22

 35.   The graph of the acceleration astd of a car measured in ftys2 
is shown. Use Simpson’s Rule to estimate the increase in the 
velocity of the car during the 6-second time interval.

a

0 642

4

8

12

t (seconds)

 36.   Water leaked from a tank at a rate of rstd liters per hour, where 
the graph of r is as shown. Use Simpson’s Rule to estimate the 
total amount of water that leaked out during the first 6 hours.

r

0 642

2

4

t (seconds)

 37.   The table (supplied by San Diego Gas and Electric) gives  
the power consumption P in megawatts in San Diego County 
from midnight to 6:00 am on a day in December. Use  
Simpson’s Rule to estimate the energy used during that time 
period. (Use the fact that power is the derivative of energy.)

t P t P

0:00 1814 3:30 1611
0:30 1735 4:00 1621
1:00 1686 4:30 1666
1:30 1646 5:00 1745
2:00 1637 5:30 1886
2:30 1609 6:00 2052
3:00 1604

 38.   Shown is the graph of traffic on an Internet service provider’s 
T1 data line from midnight to 8:00 am. D is the data throughput, 

measured in megabits per second. Use Simpson’s Rule to 
estimate the total amount of data transmitted during that 
time period.

0

0.4

4 6

0.8

2 8

D

t (hours)

 39.   Use Simpson’s Rule with n − 8 to estimate the volume of 
the solid obtained by rotating the region shown in the figure 
about (a) the x-axis and (b) the y-axis.

0 4

4

102 86

2

y

x

 40.   The table shows values of a force function f sxd, where x 
is measured in meters and f sxd in newtons. Use Simpson’s 
Rule to estimate the work done by the force in moving an 
object a distance of 18 m.

x 0 3 6 9 12 15 18

f sxd 9.8 9.1 8.5 8.0 7.7 7.5 7.4

 41.   The region bounded by the curve y − 1ys1 1 e2x d, the x- 
and y-axes, and the line x − 10 is rotated about the x-axis. 
Use Simpson’s Rule with n − 10 to estimate the volume of 
the resulting solid.

 42.  The figure shows a pendulum with length L that makes a 
maximum angle "0 with the vertical. Using Newton’s Sec-
ond Law, it can be shown that the period T (the time for one 
complete swing) is given by

T − 4ÎL
t   y!y2

0
 

dx

s1 2 k 2 sin2x  

where k − sin( 1
2 "0 ) and t is the acceleration due to gravity. 

If L − 1 m and "0 − 42°, use Simpson’s Rule with n − 10 
to find the period.

¨¸

CAS
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 43.   The intensity of light with wavelength # traveling through 
a diffraction grating with N slits at an angle " is given by 
Is"d − N 2 sin2kyk 2, where k − s!Nd sin "dy# and d is 
the distance between adjacent slits. A helium-neon laser 
with wavelength # − 632.8 3 1029 m is emitting a nar-
row band of light, given by 21026 , " , 1026, through 
a grating with 10,000 slits spaced 1024 m apart. Use the 
Midpoint Rule with n − 10 to estimate the total light 
intensity y1026

21026 Is"d d" emerging from the grating.

 44.   Use the Trapezoidal Rule with n − 10 to approximate 
y 20

0  coss!xd dx. Compare your result to the actual value.  
Can you explain the discrepancy?

 45.   Sketch the graph of a continuous function on f0, 2g for 

which the Trapezoidal Rule with n − 2 is more accurate than 
the Midpoint Rule.

 46.   Sketch the graph of a continuous function on f0, 2g for which  
the right endpoint approximation with n − 2 is more accurate 
than Simpson’s Rule.

 47.   If f  is a positive function and f 0sxd , 0 for a < x < b, show that

Tn , yb

a
 f sxd dx , Mn

 48.   Show that if f  is a polynomial of degree 3 or lower, then  
Simpson’s Rule gives the exact value of yb

a  f sxd dx.

 49.  Show that 12 sTn 1 Mn d − T2n.

 50.  Show that 13 Tn 1 2
3 Mn − S2n.

In defining a definite integral yb
a  f sxd dx we dealt with a function f  defined on a finite 

interval fa, bg and we assumed that f  does not have an infinite discontinuity (see Sec-
tion 5.2). In this section we extend the concept of a definite integral to the case where the 
interval is infinite and also to the case where f  has an infinite discontinuity in fa, bg. In 
either case the integral is called an improper integral. One of the most important applica-
tions of this idea, probability distributions, will be studied in Section 8.5.

Type 1: Infinite Intervals
Consider the infinite region S that lies under the curve y − 1yx 2, above the x-axis, and 
to the right of the line x − 1. You might think that, since S is infinite in extent, its area 
must be infinite, but let’s take a closer look. The area of the part of S that lies to the left 
of the line x − t (shaded in Figure 1) is

Astd − y t

1
 

1
x 2  dx − 2

1
x G1

t

− 1 2
1
t

Notice that Astd , 1 no matter how large t is chosen.
We also observe that

lim
t l `

 Astd − lim
t l `

 S1 2
1
t D − 1

The area of the shaded region approaches 1 as t l ` (see Figure 2), so we say that the 
area of the infinite region S is equal to 1 and we write

y`

1
 

1
x 2  dx − lim

t l `
 y t

1
 

1
x 2  dx − 1

0

y

x1 2

area= 1
2

0

y

x1 3

area= 2
3

0

y

x1

area=1

0

y

x1 5

4
5area=

0

y

x1 t

y=

x=1
area=1-=1 1

t

1
≈

FIGURE 1 

FIGURE 2
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528 CHAPTER 7  Techniques of Integration

Using this example as a guide, we define the integral of f  (not necessarily a positive 
function) over an infinite interval as the limit of integrals over finite intervals.

1   Definition of an Improper Integral of Type 1
 (a) If y t

a f sxd dx exists for every number t > a, then

y`

a
 f sxd dx − lim

t l `
 y t

a
 f sxd dx

  provided this limit exists (as a finite number).

 (b) If yb
t  f sxd dx exists for every number t < b, then

yb

2`
 f sxd dx − lim

t l2`
 yb

t
 f sxd dx

  provided this limit exists (as a finite number).

The improper integrals y`
a  f sxd dx and yb

2` f sxd dx are called convergent if the 
corresponding limit exists and divergent if the limit does not exist.

 (c) If both y`
a  f sxd dx and ya

2` f sxd dx are convergent, then we define

y`

2`
 f sxd dx − ya

2`
 f sxd dx 1 y`

a
 f sxd dx

In part (c) any real number a can be used (see Exercise 76).

Any of the improper integrals in Definition 1 can be interpreted as an area provided that 
f  is a positive function. For instance, in case (a) if f sxd > 0 and the integral y`

a  f sxd dx  
is convergent, then we define the area of the region S − hsx, yd | x > a, 0 < y < f sxdj 
in Figure 3 to be

AsSd − y`

a
 f sxd dx

This is appropriate because y`

a  f sxd dx is the limit as t l ` of the area under the graph 
of  f  from a to t.

0

y

xa

S

y=ƒ

EXAMPLE 1 Determine whether the integral y`

1  s1yxd dx is convergent or divergent.

SOLUTION According to part (a) of Definition 1, we have

 y`

1
 
1
x

 dx − lim
t l `

 y t

1
 
1
x

 dx − lim
t l `

 ln | x |g1

t

 − lim
t l `

 sln t 2 ln 1d − lim
t l `

 ln t − `

FIGURE 3
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 SECTION 7.8  Improper Integrals 529

The limit does not exist as a finite number and so the improper integral y`

1  s1yxd dx is  
divergent. Q

Let’s compare the result of Example 1 with the example given at the beginning of this  
section:

y`

1
 

1
x 2  dx converges      y`

1
 
1
x

 dx diverges

Geometrically, this says that although the curves y − 1yx 2 and y − 1yx look very similar 
for x . 0, the region under y − 1yx 2 to the right of x − 1 (the shaded region in Figure 4) 
has finite area whereas the corresponding region under y − 1yx (in Figure 5) has infinite 
area. Note that both 1yx 2 and 1yx approach 0 as x l ` but 1yx 2 approaches 0 faster than 
1yx. The values of 1yx don’t decrease fast enough for its integral to have a finite value.

1
x

infinite area

0

y

x1

y=

0

y

x1

finite area

y= 1
≈

FIGURE 4  
y`

1 s1yx 2 d dx converges
FIGURE 5  
y`

1
s1yxd dx diverges

EXAMPLE 2 Evaluate y0

2`
 xex dx.

SOLUTION Using part (b) of Definition 1, we have

y0

2`
 xex dx − lim

t l2`
 y0

t
 xex dx

We integrate by parts with u − x, dv − ex dx so that du − dx, v − ex:

 y0

t
 xex dx − xexg t

0
2 y0

t
 ex dx

 − 2te t 2 1 1 e t

We know that e t l 0 as t l 2`, and by l’Hospital’s Rule we have

 lim
t l2`

 te t − lim
t l2`

 
t

e2t − lim
t l2`

 
1

2e2t

 − lim 
t l2`

 s2e td − 0

Therefore

 y0

2`
 xex dx − lim

t l2`
 s2te t 2 1 1 e td

  − 20 2 1 1 0 − 21  Q

TEC In Module 7.8 you can investi-
gate visually and numerically whether 
several improper integrals are conver-
gent or divergent.
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530 CHAPTER 7  Techniques of Integration

EXAMPLE 3  Evaluate y`

2`
 

1
1 1 x 2  dx.

SOLUTION It’s convenient to choose a − 0 in Definition 1(c):

y`

2`
 

1
1 1 x 2  dx − y0

2`
 

1
1 1 x 2  dx 1 y`

0
 

1
1 1 x 2  dx

We must now evaluate the integrals on the right side separately:

 y`

0
 

1
1 1 x 2  dx − lim

t l `
 y t

0
 

dx
1 1 x 2 − lim

t l `
 tan21xg 0

t

 − lim
t l `

 stan21t 2 tan21 0d − lim
t l `

 tan21t −
!

2

 y0

2`
 

1
1 1 x 2  dx − lim

t l 2`
 y0

t
 

dx
1 1 x 2 − lim

t l 2`
 tan21xg t

0

  − lim
t l 2`

 stan21 0 2 tan21td − 0 2 S2
!

2 D −
!

2

Since both of these integrals are convergent, the given integral is convergent and

y`

2`
 

1
1 1 x 2  dx −

!

2
1

!

2
− !

Since 1ys1 1 x 2 d . 0, the given improper integral can be interpreted as the area of 
the infinite region that lies under the curve y − 1ys1 1 x 2 d and above the x-axis (see 
Figure 6).  Q

EXAMPLE 4 For what values of p is the integral

y`

1
 

1
x p  dx

convergent?

SOLUTION We know from Example 1 that if p − 1, then the integral is divergent, so 
let’s assume that p ± 1. Then

y`

1
 

1
x p  dx − lim

t l `
 y t

1
 x2p dx − lim

t l `
 

x2p11

2p 1 1Gx−1

x−t

− lim
t l `

 
1

1 2 pF 1
t p21 2 1G

If p . 1, then p 2 1 . 0, so as t l `, t p21 l ` and 1yt p21 l 0. Therefore

y`

1
 

1
x p  dx −

1
p 2 1

    if p . 1

and so the integral converges. But if p , 1, then p 2 1 , 0 and so

1
t p21 − t 12p l `    as t l `

and the integral diverges. Q

0

y

x

y= area=π
1

1+≈

FIGURE 6 
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 SECTION 7.8  Improper Integrals 531

We summarize the result of Example 4 for future reference:

2    y`

1
 

1
x p  dx is convergent if p . 1 and divergent if p < 1.

Type 2: Discontinuous Integrands
Suppose that f  is a positive continuous function defined on a finite interval fa, bd but 
has a vertical asymptote at b. Let S be the unbounded region under the graph of f  and 
above the x-axis between a and b. (For Type 1 integrals, the regions extended indefinitely 
in a horizontal direction. Here the region is infinite in a vertical direction.) The area of the 
part of S between a and t (the shaded region in Figure 7) is

Astd − y t

a
 f sxd dx

If it happens that Astd approaches a definite number A as t l b2, then we say that 
the area of the region S is A and we write

yb

a
 f sxd dx − lim

t l b2
 y t

a
 f sxd dx

We use this equation to define an improper integral of Type 2 even when f  is not a posi-
tive function, no matter what type of discontinuity f  has at b.

3   Definition of an Improper Integral of Type 2
 (a) If f  is continuous on fa, bd and is discontinuous at b, then

yb

a
 f sxd dx − lim

t l b2
 y t

a
 f sxd dx

  if this limit exists (as a finite number).

 (b) If f  is continuous on sa, bg and is discontinuous at a, then

yb

a
 f sxd dx − lim

t l a1
  yb

t
 f sxd dx

  if this limit exists (as a finite number).

The improper integral yb
a f sxd dx is called convergent if the corresponding limit 

exists and divergent if the limit does not exist.

 (c)  If f  has a discontinuity at c, where a , c , b, and both yc

a f sxd dx and 
yb
c  f sxd dx are convergent, then we define

yb

a
 f sxd dx − yc

a
 f sxd dx 1 yb

c
 f sxd dx

EXAMPLE 5  Find y5

2
 

1

sx 2 2  dx.

SOLUTION We note first that the given integral is improper because f sxd − 1ysx 2 2   
has the vertical asymptote x − 2. Since the infinite discontinuity occurs at the left  

0

y

xbta

x=by=ƒ

FIGURE 7 

Parts (b) and (c) of Definition 3 are 
illustrated in Figures 8 and 9 for the 
case where f sxd > 0 and f  has vertical 
asymptotes at a and c, respectively.

FIGURE 9 

0

y

xa t b

0

y

xa c b

FIGURE 8 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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endpoint of f2, 5g, we use part (b) of Definition 3:

y5

2
 

dx

sx 2 2 − lim
t l

 

21
 y5

t
 

dx

sx 2 2 − lim
t l

 

21
 2sx 2 2 g t

5

 − lim
t l

 

21
 2(s3 2 st 2 2 ) − 2s3 

Thus the given improper integral is convergent and, since the integrand is positive, we 
can interpret the value of the integral as the area of the shaded region in Figure 10. Q

EXAMPLE 6  Determine whether y!y2

0
 sec x dx converges or diverges.

SOLUTION Note that the given integral is improper because lim x ls!y2d2  sec x − `. 
Using part (a) of Definition 3 and Formula 14 from the Table of Integrals, we have

 y!y2

0
 sec x dx − lim

t l
 s!y2d2

 y t

0
 sec x dx − lim

t
 
l

 

s!y2d2
 ln | sec x 1 tan x |g 0

t

  − lim
t l

 s!y2d2
 flnssec t 1 tan td 2 ln 1g − `

because sec t l ` and tan t l ` as t l s!y2d2. Thus the given improper integral is 
divergent. Q

EXAMPLE 7  Evaluate y3

0
 

dx
x 2 1

 if possible.

SOLUTION   Observe that the line x − 1 is a vertical asymptote of the integrand. Since 
it occurs in the middle of the interval f0, 3g, we must use part (c) of Definition 3 with 
c − 1:

 y3

0
 

dx
x 2 1

− y1

0
 

dx
x 2 1

1 y3

1
 

dx
x 2 1

where  y1

0
 

dx
x 2 1

− lim
t l

 

12
 y t

0
 

dx
x 2 1

− lim
t l

 

12
 ln | x 2 1 |g0

t

 − lim
t l

 

12
 (ln | t 2 1 | 2 ln | 21 |) − lim

t l
 

12
 lns1 2 td − 2`

because 1 2 t l 01 as t l 12. Thus y1
0 dxysx 2 1d is divergent. This implies that

y 3
0
 dxysx 2 1d is divergent. [We do not need to evaluate y3

1
 dxysx 2 1d.] Q

WARNING If we had not noticed the asymptote x − 1 in Example 7 and had instead 
confused the integral with an ordinary integral, then we might have made the following 
erroneous calculation:

y3

0
 

dx
x 2 1

− ln | x 2 1 |g 3

0
− ln 2 2 ln 1 − ln 2

This is wrong because the integral is improper and must be calculated in terms of limits.
From now on, whenever you meet the symbol yb

a  f sxd dx you must decide, by looking at 
the function f  on fa, bg, whether it is an ordinary definite integral or an improper integral.

EXAMPLE 8  y1

0
 ln x dx.

SOLUTION We know that the function f sxd − ln x has a vertical asymptote at 0 since 

0

y

x1 2 4 53

y= 1
œ„„„„x-2

area=2œ„3

FIGURE 10 
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lim x l 01 ln x − 2`. Thus the given integral is improper and we have

y1

0
 ln x dx − lim

t l
 

01
 y1

t
 ln x dx

Now we integrate by parts with u − ln x, dv − dx, du − dxyx, and v − x:

  y1

t
 ln x dx − x ln xg t

1 2 y1

t
 dx

 − 1 ln 1 2 t ln t 2 s1 2 td − 2t ln t 2 1 1 t

To find the limit of the first term we use l’Hospital’s Rule:

lim
t l

 

01
 t ln t − lim

t l
 

01
 
ln t
1yt

− lim
t l

 

01
 

1yt
21yt 2 − lim

t l
 

01
 s2td − 0

Therefore  y1

0
 ln x dx − lim

t l
 

01
 s2t ln t 2 1 1 td − 20 2 1 1 0 − 21

Figure 11 shows the geometric interpretation of this result. The area of the shaded 
region above y − ln x and below the x-axis is 1. Q

A Comparison Test for Improper Integrals
Sometimes it is impossible to find the exact value of an improper integral and yet it is 
important to know whether it is convergent or divergent. In such cases the following 
theorem is useful. Although we state it for Type 1 integrals, a similar theorem is true for 
Type 2 integrals.

Comparison Theorem  Suppose that f  and t are continuous functions with 
f sxd > tsxd > 0 for x > a.

(a) If y`
a  f sxd dx is convergent, then y`

a  tsxd dx is convergent.

(b) If y`
a  tsxd dx is divergent, then y`

a  f sxd dx is divergent.

We omit the proof of the Comparison Theorem, but Figure 12 makes it seem plau-
sible. If the area under the top curve y − f sxd is finite, then so is the area under the 
bottom curve y − tsxd. And if the area under y − tsxd is infinite, then so is the area 
under y − f sxd. [Note that the reverse is not necessarily true: If y`

a  tsxd dx is convergent, 
y`
a  f sxd dx may or may not be convergent, and if y`

a  f sxd dx is divergent, y`

a  tsxd dx may 
or may not be divergent.]

EXAMPLE 9  Show that y`

0
 e2x 2

dx is convergent.

SOLUTION We can’t evaluate the integral directly because the antiderivative of e2x 2
 is 

not an elementary function (as explained in Section 7.5). We write

y`

0
 e2x 2 

dx − y1

0
 e2x 2 dx 1 y`

1
 e2x 2 dx

and observe that the first integral on the right-hand side is just an ordinary definite inte-
gral. In the second integral we use the fact that for x > 1 we have x 2 > x, so 2x 2 < 2x 
and therefore e2x 2

< e2x. (See Figure 13.) The integral of e2x is easy to evaluate:

y`

1
 e2x dx − lim

t l `
 y t

1
 e2x dx − lim

t l `
 se21 2 e2td − e21

0

y

x1
area=1

y=ln x

FIGURE 11 

0

y

xa

g
f

FIGURE 12 

7et070813
10/13/09
MasterID: 00903

0

y

x1

y=e_x

FIGURE 13

y=e_x2

FIGURE 13 
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534 CHAPTER 7  Techniques of Integration

Therefore, taking f sxd − e2x and tsxd − e2x 2
 in the Comparison Theorem, we see that 

y`
1  e2x 2 dx is convergent. It follows that y`

0  e2x 2 dx is convergent. Q

In Example 9 we showed that y`

0  e2x 2 dx is convergent without computing its value. In 
Exercise 72 we indicate how to show that its value is approximately 0.8862. In probability 
theory it is important to know the exact value of this improper integral, as we will see in  
Section 8.5; using the methods of multivariable calculus it can be shown that the exact 
value is s!  y2. Table 1 illustrates the definition of an improper integral by showing how
the (computer-generated) values of y t

0 e
2x 2

dx approach s!  y2 as t becomes large. In fact,
these values converge quite quickly because e2x 2

l 0 very rapidly as x l `.

EXAMPLE 10  The integral y`

1
 
1 1 e2x

x
 dx is divergent by the Comparison Theorem 

because
1 1 e2x

x
.

1
x

and y`

1  s1yxd dx is divergent by Example 1 [or by (2) with p − 1]. Q

Table 2 illustrates the divergence of the integral in Example 10. It appears that the 
values are not approaching any fixed number.

t y t
0 e

2x 2
 dx

1 0.7468241328
2 0.8820813908
3 0.8862073483
4 0.8862269118
5 0.8862269255
6 0.8862269255

Table 1 

t y t
1 fs1 1 e2x dyxg dx

2 0.8636306042
5 1.8276735512

10 2.5219648704
100 4.8245541204

1000 7.1271392134
10000 9.4297243064

Table 2 

 1. Explain why each of the following integrals is improper.

 (a) y2

1
 

x
x 2 1

 dx (b) y`

0
 

1
1 1 x 3  dx

 (c) y`

2`
 x 2e2x 2

 dx (d) y!y4

0
 cot x dx

 2. Which of the following integrals are improper? Why?

 (a) y!y4

0
 tan x dx (b) y!

0
 tan x dx

 (c) y1

21
 

dx
x 2 2 x 2 2

 (d) y`

0
 e2x 3

 dx

 3.  Find the area under the curve y − 1yx 3 from x − 1 to x − t 
and evaluate it for t − 10, 100, and 1000. Then find the total 
area under this curve for x > 1.

 4. (a)  Graph the functions f sxd − 1yx 1.1 and tsxd − 1yx 0.9 in 
the viewing rectangles f0, 10g by f0, 1g and f0, 100g 
by f0, 1g.

 (b)  Find the areas under the graphs of f  and t from x − 1  
to x − t and evaluate for t − 10, 100, 104, 106, 1010,  
and 1020.

 (c)  Find the total area under each curve for x > 1, if it exists.

5–40 Determine whether each integral is convergent or divergent. 
Evaluate those that are convergent.

 5. y`

3
 

1
sx 2 2d3y2  dx 6. y`

0
 

1

s4 1 1 x 
 dx

 7. y0

2`
 

1
3 2 4x

 dx 8. y`

1
 

1
s2x 1 1d3  dx

;

 9. y`

2
 e25p dp 10. y0

2`
 2 r dr

 11. y`

0
 

x 2

s1 1 x 3 
 dx 12. y`

2`
 sy 3 2 3y 2d dy

 13. y`

2`
 xe2x 2 dx 14. y`

1
 
e21yx

x2  dx

 15. y`

0
 sin2$ d$ 16. y`

0
 sin" ecos" d"

 17. y`

1
 

1
x 2 1 x

 dx 18. y`

2
 

dv
v 2 1 2v 2 3

 19. y0

2`
 ze 2z dz 20. y`

2
 ye23y dy

 21. y`

1
 
ln x

x
 dx 22. y`

1
 
ln x
x 2  dx

 23. y0

2`
 

z
z4 1 4

 dz 24. y`

e
 

1
xsln xd2  dx

 25. y`

0
e2sy 

 dy 26. y`

1
 

dx

sx 1 xsx 
 

 27. y1

0
 
1
x

 dx 28. y5

0
 

1

s3 5 2 x 
 dx

 29. y14

22
 

dx

s4 x 1 2 
 30. y2

21
 

x
sx 1 1d2  dx

 31. y3

22
 

1
x 4  dx 32. y1

0
 

dx

s1 2 x 2 
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 SECTION 7.8  Improper Integrals 535

is improper for two reasons: The interval f0, `d is infinite and 
the integrand has an infinite discontinuity at 0. Evaluate it by 
expressing it as a sum of improper integrals of Type 2 and 
Type 1 as follows: 

y`

0
 

1

sx   s1 1 xd
 dx − y1

0
 

1

sx   s1 1 xd
 dx 1 y`

1
 

1

sx   s1 1 xd
 dx

 56. Evaluate

y`

2
 

1
xsx 2 2 4 

 dx

by the same method as in Exercise 55.

57–59 Find the values of p for which the integral converges and 
evaluate the integral for those values of p.

 57. y1

0
 

1
x p  dx 58. y`

e
 

1
x sln xd p  dx

 59. y1

0
 x p ln x dx

 60. (a)  Evaluate the integral y`
0  x ne2x dx for n − 0, 1, 2, and 3.

 (b)  Guess the value of y`
0  x ne2x dx when n is an arbitrary posi-

tive integer.
 (c) Prove your guess using mathematical induction.

 61.  (a) Show that y`
2`

 x dx is divergent.
 (b) Show that

lim
t l `

 y t

2t
 x dx − 0

  This shows that we can’t define

y`

2`
 f sxd dx − lim

t l `
 y t

2t
 f sxd dx

 62.  The average speed of molecules in an ideal gas is

v −
4

s!  
 S M

2RTD3y2

 y`

0
 v 3e2Mv 2ys2RT d dv

where M is the molecular weight of the gas, R is the gas con-
stant, T is the gas temperature, and v is the molecular speed. 
Show that

v − Î 8RT
!M   

 63.   We know from Example 1 that the region 
5 − hsx, yd | x > 1, 0 < y < 1yxj has infinite area. Show 
that by rotating 5 about the x-axis we obtain a solid with 
finite volume.

 64.   Use the information and data in Exercise 6.4.33 to find the 
work required to propel a 1000-kg space vehicle out of the 
earth’s gravitational field.

 65.   Find the escape velocity v0 that is needed to propel a rocket 
of mass m out of the gravitational field of a planet with mass 
M and radius R. Use Newton’s Law of Gravitation (see Exer-
cise 6.4.33) and the fact that the initial kinetic energy of 12 mv2

0 
supplies the needed work.

 33. y9

0
 

1

s3 x 2 1 

 dx 34. y5

0
 

w
w 2 2

 dw

 35. y!y2

0
 tan2" d" 36. y4

0
 

dx
x 2 2 x 2 2

 37. y1

0
 r ln r dr 38. y!y2

0
 

cos "

ssin " 
 d"

 39. y0

21
 
e1yx

x 3  dx 40. y1

0
 
e1yx

x 3  dx

41–46 Sketch the region and find its area (if the area is finite).

 41. S − hsx, yd | x > 1,  0 < y < e2xj

 42. S − hsx, yd | x < 0,  0 < y < e xj

 43. S − hsx, yd | x > 1,  0 < y < 1ysx 3 1 xdj

 44. S − hsx, yd | x > 0, 0 < y < xe2xj

 45. S − hsx, yd | 0 < x , !y2, 0 < y < sec2xj

 46. S − hsx, yd | 22 , x < 0, 0 < y < 1ysx 1 2 j

 47. (a)  If tsxd − ssin2xdyx 2, use your calculator or computer 
to make a table of approximate values of y t

1 tsxd dx for 
t − 2, 5, 10, 100, 1000, and 10,000. Does it appear 
that y`

1  tsxd dx is convergent?
 (b)  Use the Comparison Theorem with f sxd − 1yx 2 to 

show that y`
1  tsxd dx is convergent.

 (c)  Illustrate part (b) by graphing f  and t on the same 
screen for 1 < x < 10. Use your graph to explain 
intui tively why y`

1  tsxd dx is convergent.

 48. (a)  If tsxd − 1yssx  2 1d, use your calculator or com- 
puter to make a table of approximate values of 
y t
2 tsxd dx for t − 5, 10, 100, 1000, and 10,000. Does it 

appear that y`

2  tsxd dx is convergent or divergent?
 (b)  Use the Comparison Theorem with f sxd − 1ysx   to 

show that y`

2  tsxd dx is divergent.
 (c)  Illustrate part (b) by graphing f  and t on the same 

screen for 2 < x < 20. Use your graph to explain 
intui tively why y`

2  tsxd dx is divergent.

49–54 Use the Comparison Theorem to determine whether the 
integral is convergent or divergent.

 49. y`

0
 

x
x 3 1 1

 dx 50. y`

1
 
1 1 sin2x

sx 
 dx

 51. y`

1
 

x 1 1

sx 4 2 x 
 dx 52. y`

0
 
arctan x
2 1 e x  dx

 53. y1

0
 
sec 2 x

xsx
   
 dx 54. y!

0
 
sin2 x

sx  
 dx

 55. The integral

y`

0
 

1

sx   s1 1 xd
 dx

;
;
;
;

;

;
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536 CHAPTER 7  Techniques of Integration

 66.   Astronomers use a technique called stellar stereography 
to determine the density of stars in a star cluster from the 
observed (two-dimensional) density that can be analyzed from 
a photograph. Suppose that in a spherical cluster of radius R 
the density of stars depends only on the distance r from the 
center of the cluster. If the perceived star density is given by 
yssd, where s is the observed planar distance from the center of 
the cluster, and x srd is the actual density, it can be shown that

yssd − yR

s
 

2r

sr 2 2 s 2 
 x srd dr

If the actual density of stars in a cluster is x srd − 1
2 sR 2 rd2, 

find the perceived density yssd.

 67.   A manufacturer of lightbulbs wants to produce bulbs that last 
about 700 hours but, of course, some bulbs burn out faster than 
others. Let Fstd be the fraction of the company’s bulbs that 
burn out before t hours, so Fstd always lies between 0 and 1.

 (a)  Make a rough sketch of what you think the graph of F 
might look like.

 (b) What is the meaning of the derivative rstd − F9std?
 (c) What is the value of y`

0  rstd dt? Why?

 68.   As we saw in Section 3.8, a radioactive substance decays 
exponentially: The mass at time t is mstd − ms0de kt,  
where ms0d is the initial mass and k is a negative constant.  
The mean life M of an atom in the substance is

M − 2k y`

0
 te kt dt

For the radioactive carbon isotope, 14C, used in radiocarbon 
dating, the value of k is 20.000121. Find the mean life of a 
14C atom.

 69.  In a study of the spread of illicit drug use from an enthusiastic 
user to a population of N users, the authors model the number 
of expected new users by the equation

! − y`

0
 
cNs1 2 e2kt d

k
 e2"t dt

where c, k and " are positive constants. Evaluate this integral 
to express ! in terms of  c, N, k, and ". 
Source: F. Hoppensteadt et al., “Threshold Analysis of a Drug Use Epidemic 
Model,” Mathematical Biosciences 53 (1981): 79–87.

 70.  Dialysis treatment removes urea and other waste products 
from a patient’s blood by diverting some of the bloodflow 
externally through a machine called a dialyzer. The rate at 
which urea is removed from the blood (in mgymin) is often 
well described by the equation

ustd −
r
V

 C0e2rtyV

where r is the rate of flow of blood through the dialyzer (in 
mLymin), V is the volume of the patient’s blood (in mL), and 
C0 is the amount of urea in the blood (in mg) at time t − 0. 
Evaluate the integral y`

0
 ustd and interpret it.

 71.  Determine how large the number a has to be so that

y`

a
 

1
x 2 1 1

 dx , 0.001

 72.   Estimate the numerical value of y`
0  e2x 2 dx by writing it as the 

sum of y4
0 e2x 2 dx and y`

4  e2x 2 dx. Approximate the first integral 
by using Simpson’s Rule with n − 8 and show that the 
second integral is smaller than y`

4  e24x dx, which is less than 
0.0000001.

 73.   If f std is continuous for t > 0, the Laplace transform of f  is 
the function F defined by

Fssd − y`

0
 f stde2st dt

and the domain of F is the set consisting of all numbers s for 
which the integral converges. Find the Laplace transforms of 
the following functions.

 (a) f std − 1      (b) f std − e t      (c) f std − t

 74.   Show that if 0 < f std < Me at for t > 0, where M and a are 
constants, then the Laplace transform Fssd exists for s . a.

 75.   Suppose that 0 < f std < Me at and 0 < f 9std < Ke at for t > 0, 
where f 9 is continuous. If the Laplace transform of f std is 
Fssd and the Laplace transform of f 9std is Gssd, show that

Gssd − sFssd 2 f s0d    s . a

 76.   If y`
2`

 f sxd dx is convergent and a and b are real numbers, 
show that

ya

2`
 f sxd dx 1 y`

a
 f sxd dx − yb

2`
 f sxd dx 1 y`

b
 f sxd dx

 77.  Show that y`
0  x 2e2x 2 dx − 1

2 y`
0  e2x 2 dx.

 78.   Show that y`
0  e2x 2 

dx − y1
0 s2ln y   dy by interpreting the 

integrals as areas.

 79.  Find the value of the constant C for which the integral

y`

0
 S 1

sx 2 1 4 
2

C

x 1 2
D dx

converges. Evaluate the integral for this value of C.

 80.  Find the value of the constant C for which the integral

y`

0
 S x

x 2 1 1
2

C
3x 1 1D dx

converges. Evaluate the integral for this value of C.

 81.   Suppose f  is continuous on f0, `d and limx l
 

` f sxd − 1. Is it 
possible that y`

0  f sxd dx is convergent?

 82.   Show that if a . 21 and b . a 1 1, then the following 
integral is convergent.

y`

0
 

x a

1 1 x b  dx  
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 CHAPTER 7  Review 537

 5.   State the rules for approximating the definite integral yb
a  f sxd dx 

with the Midpoint Rule, the Trapezoidal Rule, and Simpson’s 
Rule. Which would you expect to give the best estimate? How 
do you approximate the error for each rule?

 6.  Define the following improper integrals.

 (a) y`

a
 f sxd dx    (b) yb

2`
 f sxd dx    (c) y`

2`
 f sxd dx

 7.   Define the improper integral yb
a  f sxd dx for each of the following 

cases.
 (a) f  has an infinite discontinuity at a.
 (b) f  has an infinite discontinuity at b.
 (c) f  has an infinite discontinuity at c, where a , c , b.

 8.  State the Comparison Theorem for improper integrals.

 1.   State the rule for integration by parts. In practice, how do 
you use it?

 2.   How do you evaluate y sinmx cosnx dx if m is odd? What if n 
is odd? What if m and n are both even?

 3.   If the expression sa 2 2 x 2  occurs in an integral, what 
   substi tution might you try? What if sa 2 1 x 2  occurs? What 

if sx 2 2 a 2  occurs?

 4.   What is the form of the partial fraction decomposition of a 
rational function PsxdyQsxd if the degree of P is less than the 
degree of Q and Qsxd has only distinct linear factors? What 
if a linear factor is repeated? What if Qsxd has an irreducible 
quadratic factor (not repeated)? What if the quadratic factor 
is repeated?

7 REVIEW

Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

 1.  
x sx 2 1 4d

x 2 2 4
 can be put in the form 

A
x 1 2

1
B

x 2 2
.

 2.  
x 2 1 4

x sx 2 2 4d
 can be put in the form 

A
x

1
B

x 1 2
1

C
x 2 2

.

 3.  
x 2 1 4

x 2sx 2 4d
 can be put in the form 

A
x 2 1

B
x 2 4

.

 4.  
x 2 2 4

x sx 2 1 4d
 can be put in the form 

A
x

1
B

x 2 1 4
.

 5.  y4

0
 

x
x 2 2 1

 dx − 1
2 ln 15

 6.  y`

1
 

1
xs2

 dx is convergent.

 7.  If f  is continuous, then y`

2`
 f sxd dx − lim t l ` y t

2t f sxd dx.

 8.   The Midpoint Rule is always more accurate than the Trape-
zoidal Rule.

 9.  (a)  Every elementary function has an elementary derivative.
 (b)  Every elementary function has an elementary antiderivative.

 10.   If f  is continuous on f0, `d and y`
1  f sxd dx is convergent, then 

y`
0  f sxd dx is convergent.

 11.   If f  is a continuous, decreasing function on f1, `d and 
limx l ` f sxd − 0, then y`

1  f sxd dx is convergent.

 12.   If y`
a  f sxd dx and y`

a  tsxd dx are both convergent, then

 y`
a  f f sxd 1 tsxdg dx is convergent.

 13.   If y`
a  f sxd dx and y`

a  tsxd dx are both divergent, then

y`
a  f f sxd 1 tsxdg dx is divergent.

 14.   If f sxd < tsxd and y`
0  tsxd dx diverges, then y`

0  f sxd dx also 
diverges.

TRUE-FALSE QUIZ

CONCEPT CHECK Answers to the Concept Check can be found on the back endpapers.

EXERCISES

Note: Additional practice in techniques of integration is provided 
in Exercises 7.5.

1–40 Evaluate the integral.

 1. y2

1
 
sx 1 1d2

x
 dx 2. y2

1
 

x
sx 1 1d2  dx

 3. y 
esin x

sec x
 dx 4. y!y6

0
 t sin 2t dt

 5. y 
dt

2t 2 1 3t 1 1
 6. y2

1
 x 5 ln x dx

 7. y!y2

0
 sin3 " cos2" d" 8. y 

dx

se x 2 1
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 49. y`

2`
 

dx
4x 2 1 4x 1 5

 50. y`

1
 
tan21x

x 2  dx

51–52 Evaluate the indefinite integral. Illustrate and check that 
your answer is reasonable by graphing both the function and its 
antiderivative (take C − 0).

 51.  y lnsx 2 1 2x 1 2d dx 52.  y 
x 3

sx 2 1 1
 dx

 53.  Graph the function f sxd − cos2x sin3x and use the graph to 
guess the value of the integral y2!

0  f sxd dx. Then evaluate the 
integral to confirm your guess.

 54.  (a)  How would you evaluate y x 5e22x dx by hand? (Don’t 
actually carry out the integration.)

 (b)  How would you evaluate y x 5e22x dx using tables?  
(Don’t actually do it.)

 (c) Use a CAS to evaluate y x 5e22x dx.
 (d)  Graph the integrand and the indefinite integral on the 

same screen.

55–58  Use the Table of Integrals on the Reference Pages to evalu-
ate the integral.

 55.  y s4x 2 2 4x 2 3  dx 56.  y csc5t dt

 57.  y cos x s4 1 sin2 x  dx 58.  y 
cot x

s1 1 2 sin x 
 dx

 59.   Verify Formula 33 in the Table of Integrals (a) by differen-
tiation and (b) by using a trigonometric substitution.

 60.  Verify Formula 62 in the Table of Integrals.

 61.   Is it possible to find a number n such that y`

0  x n dx is  
convergent?

 62.   For what values of a is y`

0  e ax cos x dx convergent? Evaluate 
the integral for those values of a.

63–64  Use (a) the Trapezoidal Rule, (b) the Midpoint Rule, and 
(c) Simpson’s Rule with n − 10 to approximate the given inte-
gral. Round your answers to six decimal places.

 63.  y4

2
 

1
ln x

 dx 64.  y4

1
sx   cos x dx 

 65.   Estimate the errors involved in Exercise 63, parts (a) and (b). 
How large should n be in each case to guarantee an error of 
less than 0.00001?

 66.   Use Simpson’s Rule with n − 6 to estimate the area under the 
curve y − e xyx from x − 1 to x − 4.

;

;

CAS

 9. y 
sinsln td

t
 dt 10. y1

0
 
sarctan x 

1 1 x 2  dx

 11. y2

1
 
sx 2 2 1

x
 dx 12. y 

e 2x

1 1 e 4x  dx

 13. y e s3 x  dx 14. y 
x 2 1 2
x 1 2

 dx

 15. y 
x 2 1

x 2 1 2x
 dx 16. y 

sec 6 "

tan 2 "
 d"

 17. y x cosh x dx 18. y 
x 2 1 8x 2 3

x 3 1 3x 2  dx

 19. y 
x 1 1

9x 2 1 6x 1 5
 dx 20. y tan5" sec3" d"

 21. y 
dx

sx 2 2 4x  
 22. y cos st  dt

 23. y 
dx

xsx 2 1 1
 24. y e x cos x dx

 25. y 
3x 3 2 x 2 1 6x 2 4
sx 2 1 1dsx 2 1 2d

 dx 26. y x sin x cos x dx

 27. y!y2

0
 cos3x sin 2x dx 28. y 

s3 x  1 1

s3 x  2 1
 dx

 29. y3

23
 

x
1 1 | x |  dx 30. y 

dx

e xs1 2 e22x 

 31. y ln 10

0
  

e xse x 2 1
e x 1 8

 dx 32. y!y4

0
 
x sin x
cos3x

 dx

 33. y 
x 2

s4 2 x 2 d3y2  dx 34. y sarcsin xd2 dx

 35. y 
1

sx 1 x 3y2 
 dx 36. y 

1 2 tan "
1 1 tan "

 d"

 37. y scos x 1 sin xd2 cos 2x dx 38. y 
2sx

sx 

 dx

 39. y1y2

0
 

xe 2x

s1 1 2xd2  dx 40. y!y3

!y4
 
stan "  

sin 2"
 d"

41–50  Evaluate the integral or show that it is divergent.

 41. y`

1
 

1
s2x 1 1d3  dx 42. y`

1
 
ln x
x 4  dx

 43. y`

2
 

dx
x ln x

 44. y6

2
 

 y

sy 2 2 
 dy

 45. y4

0
 
ln x

sx  
 dx 46. y1

0
 

1
2 2 3x

 dx

 47. y1

0
 
x 2 1

sx  
 dx 48. y1

21
 

dx
x 2 2 2x
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 71.   Use the Comparison Theorem to determine whether the inte-
gral is convergent or divergent.

 (a) y`

1
 
2 1 sin x

sx  
 dx (b) y`

1
 

1

s1 1 x 4 
 dx

 72.   Find the area of the region bounded by the hyperbola 
y 2 2 x 2 − 1 and the line y − 3.

 73.   Find the area bounded by the curves y − cos x and y − cos2x 
between x − 0 and x − !.

 74.   Find the area of the region bounded by the curves 
y − 1ys2 1 sx  d, y − 1ys2 2 sx  d, and x − 1.

 75.   The region under the curve y − cos2x, 0 < x < !y2, is  
rotated about the x-axis. Find the volume of the resulting 
solid.

 76.   The region in Exercise 75 is rotated about the y-axis. Find the 
volume of the resulting solid.

 77.   If f 9 is continuous on f0, `d and lim x l ` f sxd − 0, show that

y`

0
 f 9sxd dx − 2f s0d

 78.   We can extend our definition of average value of a continuous 
function to an infinite interval by defining the average value 
of f  on the interval fa, `d to be

lim
t l `

 
1

t 2 a
 y t

a
 f sxd dx

 (a)  Find the average value of y − tan21x on the interval f0, ̀ d.
 (b)  If f sxd > 0 and y`

a  f sxd dx is divergent, show that the 
average value of f  on the interval fa, `d is lim x l ` f sxd, if 
this limit exists.

 (c)  If y`

a  f sxd dx is convergent, what is the average value of f  
on the interval fa, `d?

 (d)  Find the average value of y − sin x on the interval f0, `d.

 79.  Use the substitution u − 1yx to show that

y`

0
 

ln x
1 1 x 2  dx − 0

 80.   The magnitude of the repulsive force between two point 
charges with the same sign, one of size 1 and the other of size 
q, is

F −
q

4!«0r 2

where r is the distance between the charges and «0 is a 
constant. The potential V at a point P due to the charge q is 
defined to be the work expended in bringing a unit charge to 
P from infinity along the straight line that joins q and P. Find 
a formula for V.

 67.   The speedometer reading (v) on a car was observed at 
1-minute intervals and recorded in the chart. Use Simpson’s 
Rule to estimate the distance traveled by the car.

t (min) v (miyh) t (min) v (miyh)

0 40  6 56
1 42  7 57
2 45  8 57
3 49  9 55
4 52 10 56
5 54

 68.   A population of honeybees increased at a rate of rstd bees 
per week, where the graph of r is as shown. Use Simpson’s 
Rule with six subintervals to estimate the increase in the 
bee population during the first 24 weeks.

r

0 2420161284
(weeks)

t

4000

8000

12000

 69.  (a)  If f sxd − sinssin xd, use a graph to find an upper 
bound for | f s4dsxd|.

 (b)  Use Simpson’s Rule with n − 10 to approximate 
y!

0  f sxd dx and use part (a) to estimate the error.
 (c)  How large should n be to guarantee that the size of the 

error in using Sn is less than 0.00001?

 70.   Suppose you are asked to estimate the volume of a foot-
ball. You measure and find that a football is 28 cm long. 
You use a piece of string and measure the circumference 
at its widest point to be 53 cm. The circumference 7 cm 
from each end is 45 cm. Use Simpson’s Rule to make 
your estimate.

7et07rx70
10/14/09
MasterID: 00905

28 cm

CAS
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Problems Plus EXAMPLE
(a) Prove that if f  is a continuous function, then

ya

0
 f sxd dx − ya

0
 f sa 2 xd dx

(b) Use part (a) to show that

 y!y2

0
 

sinnx
sinnx 1 cosnx

 dx −
!

4

for all positive numbers n.

SOLUTION
(a) At first sight, the given equation may appear somewhat baffling. How is it possible 
to connect the left side to the right side? Connections can often be made through one 
of the principles of problem solving: introduce something extra. Here the extra ingredi-
ent is a new variable. We often think of introducing a new variable when we use the 
Substitution Rule to integrate a specific function. But that technique is still useful in the 
present circumstance in which we have a general function f.

Once we think of making a substitution, the form of the right side suggests that it 
should be u − a 2 x. Then du − 2dx. When x − 0, u − a; when x − a, u − 0. So 

 ya

0
 f sa 2 xd dx − 2y0

a
 f sud du − ya

0
 f sud du

But this integral on the right side is just another way of writing ya
0 f sxd dx. So the given 

equation is proved.

(b) If we let the given integral be I and apply part (a) with a − !y2, we get

I − y!y2

0
 

sinnx
sinnx 1 cosnx

 dx − y!y2

0
 

sinns!y2 2 xd
sinns!y2 2 xd 1 cosns!y2 2 xd

 dx

A well-known trigonometric identity tells us that sins!y2 2 xd − cos x and 
coss!y2 2 xd − sin x, so we get

I − y!y2

0
 

cosnx
cosnx 1 sinnx

 dx

Notice that the two expressions for I are very similar. In fact, the integrands have the 
same denominator. This suggests that we should add the two expressions. If we do so, 
we get

2I − y!y2

0
 
sinnx 1 cosnx
sinnx 1 cosnx

 dx − y!y2

0
 1 dx −

!

2

Therefore I − !y4. Q

Cover up the solution to the example 
and try it yourself first.

PS  The principles of problem solving 
are discussed on page 71.

The computer graphs in Figure 1 make 
it seem plausible that all of the integrals 
in the example have the same value. 
The graph of each integrand is labeled 
with the corresponding value of n.

1

0

124
3

π
2

FIGURE 1 
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 1.  Three mathematics students have ordered a 14-inch pizza. Instead of slicing it in the 
traditional way, they decide to slice it by parallel cuts, as shown in the figure. Being 
mathematics majors, they are able to determine where to slice so that each gets the same 
amount of pizza. Where are the cuts made?

 2. Evaluate

y 
1

x 7 2 x
 dx

  The straightforward approach would be to start with partial fractions, but that would be 
brutal. Try a substitution.

 3.  Evaluate y1

0
 (s3 1 2 x7 2 s7 1 2 x 3  ) dx.

 4.  The centers of two disks with radius 1 are one unit apart. Find the area of the union of 
the two disks.

 5.  An ellipse is cut out of a circle with radius a. The major axis of the ellipse coincides  
with a diameter of the circle and the minor axis has length 2b. Prove that the area of  
the remaining part of the circle is the same as the area of an ellipse with semiaxes a  
and a 2 b.

 6.  A man initially standing at the point O walks along a pier pulling a rowboat by a rope 
of length L. The man keeps the rope straight and taut. The path followed by the boat is a 
curve called a tractrix and it has the property that the rope is always tangent to the curve 
(see the figure). 

 (a)  Show that if the path followed by the boat is the graph of the function y − f sxd, then

f 9sxd −
dy
dx

−
2sL 2 2 x 2 

x

 (b) Determine the function y − f sxd.

 7. A function f  is defined by

f sxd − y!

0
 cos t cossx 2 td dt    0 < x < 2!

 Find the minimum value of f.

 8. If n is a positive integer, prove that

y1

0
 sln xdn dx − s21dn n! 

 9. Show that

y1

0
 s1 2 x 2 dn dx −

22nsn!d2

s2n 1 1d!

 Hint: Start by showing that if In denotes the integral, then

Ik11 −
2k 1 2
2k 1 3

 Ik

 10.  Suppose that f  is a positive function such that f 9 is continuous. 
 (a)  How is the graph of y − f sxd sin nx related to the graph of y − f sxd? What happens  

as n l `?

;

14 in

FIGURE FOR PROBLEM 1 

y

xO
(L, 0)

(x, y)Lpi
er

FIGURE FOR PROBLEM 6 

;

Problems
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 (b) Make a guess as to the value of the limit

lim
n l `

 y1

0
 f sxd sin nx dx

  based on graphs of the integrand.
 (c)  Using integration by parts, confirm the guess that you made in part (b). [Use the fact 

that, since f 9 is continuous, there is a constant M such that | f 9sxd | < M for 
0 < x < 1.]

 11. If 0 , a , b, find 

lim
t l 0

 Hy1

0
 fbx 1 as1 2 xdg t dxJ1yt

 12.  Graph f sxd − sinse x d and use the graph to estimate the value of t such that y t11
t  f sxd dx is 

a maximum. Then find the exact value of t that maximizes this integral.

 13.  Evaluate y`

21
S x 4

1 1 x 6D2

 dx.

 14.  Evaluate y stan x  dx.

 15.  The circle with radius 1 shown in the figure touches the curve y − | 2x | twice. Find the 
area of the region that lies between the two curves.

 16.   A rocket is fired straight up, burning fuel at the constant rate of b kilograms per second. 
Let v − vstd be the velocity of the rocket at time t and suppose that the velocity u of the 
exhaust gas is constant. Let M − Mstd be the mass of the rocket at time t and note that 
M decreases as the fuel burns. If we neglect air resistance, it follows from Newton’s 
Second Law that

F − M 
dv
dt

2 ub 

 where the force F − 2Mt. Thus

M 
dv
dt

2 ub − 2Mt

  Let M1 be the mass of the rocket without fuel, M2 the initial mass of the fuel, 
and M0 − M1 1 M2. Then, until the fuel runs out at time t − M2yb, the mass is 
M − M0 2 bt.

 (a)  Substitute M − M0 2 bt into Equation 1 and solve the resulting equation for v. Use 
the initial condition vs0d − 0 to evaluate the constant.

 (b)  Determine the velocity of the rocket at time t − M2yb. This is called the burnout 
velocity.

 (c) Determine the height of the rocket y − ystd at the burnout time.
 (d) Find the height of the rocket at any time t.

;

FIGURE FOR PROBLEM 15 

y=| 2x |

y

0 x

1
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The Gateway Arch in St. Louis, 
Missouri, stands 630 feet 

high and was completed in 
1965. The arch was designed 

by Eero Saarinen using 
an equation involving the 

hyperbolic cosine function.  
In Exercise 8.1.42 you are 

asked to compute the length 
of the curve that he used.

Further Applications of 
Integration

WE LOOKED AT SOME APPLICATIONS of integrals in Chapter 6: areas, volumes, work, and aver-
age values. Here we explore some of the many other geometric applications of integration  — the 
length of a curve, the area of a surface —as well as quantities of interest in physics, engineering, 
biology, economics, and statistics. For instance, we will investigate the center of gravity of a 
plate, the force exerted by water pressure on a dam, the flow of blood from the human heart, and 
the average time spent on hold during a customer support telephone call.

8

© planet5D LLC / Shutterstock.com
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544 CHAPTER 8  Further Applications of Integration

What do we mean by the length of a curve? We might think of fitting a piece of string to 
the curve in Figure 1 and then measuring the string against a ruler. But that might be dif-
ficult to do with much accuracy if we have a complicated curve. We need a precise defini-
tion for the length of an arc of a curve, in the same spirit as the definitions we developed 
for the con cepts of area and volume.

If the curve is a polygon, we can easily find its length; we just add the lengths of the line 
segments that form the polygon. (We can use the distance formula to find the distance  
between the endpoints of each segment.) We are going to define the length of a general 
curve by first approximating it by a polygon and then taking a limit as the number of seg-
ments of the polygon is increased. This process is familiar for the case of a circle, where 
the cir cumference is the limit of lengths of inscribed polygons (see Figure 2).

Now suppose that a curve C is defined by the equation y − f sxd, where f  is continuous 
and a < x < b. We obtain a polygonal approximation to C by dividing the interval fa, bg 
into n subintervals with endpoints x0, x1, . . . , xn and equal width Dx. If yi − f sxid, then  
the point Pisxi, yid lies on C and the polygon with vertices P0, P1, . . . , Pn, illustrated 
in Fig ure 3, is an approximation to C.

y

P¸

P¡
P™

Pi-1 Pi Pn

y=ƒ

0 xi¤ i-1 bx¡a x x

The length L of C is approximately the length of this polygon and the approximation 
gets better as we let n increase. (See Figure 4, where the arc of the curve between Pi21 and 
Pi has been magnified and approximations with successively smaller values of Dx are  
shown.) Therefore we define the length L of the curve C with equation y − f sxd, 
a < x < b, as the limit of the lengths of these inscribed polygons (if the limit exists):

L − lim
n l `

 o
n

i−1
| Pi21 Pi |

Notice that the procedure for defining arc length is very similar to the procedure we 
used for defining area and volume: We divided the curve into a large number of small 
parts. We then found the approximate lengths of the small parts and added them. Finally, 
we took the limit as n l `.

The definition of arc length given by Equation 1 is not very convenient for compu-
tational purposes, but we can derive an integral formula for L in the case where f  has a 
continuous derivative. [Such a function f  is called smooth because a small change in x 
produces a small change in f 9sxd.]

If we let Dyi − yi 2 yi21, then

| Pi21 Pi | − ssxi 2 xi21 d2 1 syi 2 yi21 d2 − ssDxd2 1 sDyid2 

FIGURE 1 

FIGURE 2 

FIGURE 3 

Pi-1

Pi

Pi-1

Pi

Pi-1

Pi

Pi-1

Pi

FIGURE 4 

1

TEC Visual 8.1 shows an animation 
of Figure 2.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 8.1  Arc Length  545

By applying the Mean Value Theorem to f  on the interval fxi21, xig, we find that there is 
a number xi* between xi21 and xi such that

  f sxid 2 f sxi21 d − f 9sxi*dsxi 2 xi21 d

that is,  Dyi − f 9sxi*d Dx

Thus we have

  | Pi21 Pi | − ssDxd2 1 sDyid2 − ssDxd2 1 f f 9sxi*d Dxg2 

 − s1 1 [ f 9sxi*dg2  ssDxd2 − s1 1 f f 9sxi*dg2  Dx    (since Dx . 0)

Therefore, by Definition 1,

L − lim
nl `

o
n

i−1
| Pi21 Pi | − lim

nl `
 o

n

i−1
 s1 1 f f 9sxi*dg 2  Dx

We recognize this expression as being equal to

yb

a
 s1 1 f f 9sxdg2  dx

by the definition of a definite integral. We know that this integral exists because the func-
tion tsxd − s1 1 f f 9sxdg2  is continuous. Thus we have proved the following theorem:

2   The Arc Length Formula If f 9 is continuous on fa, bg, then the length of 
the curve y − f sxd, a < x < b, is

L − yb

a
 s1 1 f f 9sxdg2  dx

If we use Leibniz notation for derivatives, we can write the arc length formula as 
follows:

L − yb

a
 Î1 1 S dy

dxD2 

 dx

EXAMPLE 1  Find the length of the arc of the semicubical parabola y 2 − x 3 between the 
points s1, 1d and s4, 8d. (See Figure 5.)

SOLUTION For the top half of the curve we have

y − x 3y2      
dy
dx

− 3
2 x 1y2

and so the arc length formula gives

L − y4

1
 Î1 1 S dy

dxD2

 dx − y4

1
 s1 1 9

4 x 
 dx

If we substitute u − 1 1 9
4 x, then du − 9

4 dx. When x − 1, u − 13
4 ; when x − 4, u − 10. 

3

(4, 8)

0 x

y

(1, 1)

¥=˛

FIGURE 5 
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546 CHAPTER 8  Further Applications of Integration

Therefore

 L − 4
9 y10

13y4
 su  du − 4

9 ? 2
3 u 3y2g13y4

10

 − 8
27 f103y2 2 (13

4 )3y2 g − 1
27 (80s10 2 13s13 ) Q

If a curve has the equation x − tsyd, c < y < d, and t9syd is continuous, then by 
interchanging the roles of x and y in Formula 2 or Equation 3, we obtain the following 
formula for its length:

L − yd

c
 s1 1 ft9sydg2  dy − yd

c
 Î1 1 S dx

dyD2 
 dy

EXAMPLE 2  Find the length of the arc of the parabola y 2 − x from s0, 0d to s1, 1d.

SOLUTION Since x − y2, we have dxydy − 2y, and Formula 4 gives

L − y1

0
 Î1 1 S dx

dyD2 

 dy − y1

0
 s1 1 4y2  dy

We make the trigonometric substitution y − 1
2 tan !, which gives dy − 1

2 sec2! d! and 
s1 1 4y 2 − s1 1 tan2! − sec !. When y − 0, tan ! − 0, so ! − 0; when y − 1, 
tan ! − 2, so ! − tan21 2 − ", say. Thus

  L − y"

0
 sec ! ? 1

2 sec2! d! − 1
2 y"

0
 sec3! d!

  − 1
2 ? 1

2 fsec ! tan ! 1 ln | sec ! 1 tan ! |g0

"      (from Example 7.2.8)

  − 1
4 ssec " tan " 1 ln | sec " 1 tan " |d

(We could have used Formula 21 in the Table of Integrals.) Since tan " − 2, we have 
sec2" − 1 1 tan2" − 5, so sec " − s5  and

 L −
s5 

2
1

lnss5 1 2d
4

 Q

0 x

y

1

1

x=¥

     

n Ln

 1 1.414
 2 1.445
 4 1.464
 8 1.472
16 1.476
32 1.478
64 1.479

As a check on our answer to Example 1,  
notice from Figure 5 that the arc length 
ought to be slightly larger than the 
distance from s1, 1d to s4, 8d, which is

s58 < 7.615773
According to our calculation in  
Example 1, we have

 L − 1
27 (80 s10 2 13s13 )

 < 7.633705
Sure enough, this is a bit greater than  
the length of the line segment.

4

FIGURE 6 

Figure 6 shows the arc of the parabola 
whose length is computed in Example 2, 
together with polygonal approximations 
having n − 1 and n − 2 line segments, 
respectively. For n − 1 the approximate 
length is L1 − s2 , the diagonal of a 
square. The table shows the approxima-
tions Ln that we get by dividing f0, 1g 
into n equal subintervals. Notice that 
each time we double the number of sides 
of the polygon, we get closer to the 
exact length, which is

L −
s5 

2
1

ln(s5 1 2)
4

< 1.478943
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 SECTION 8.1  Arc Length  547

Because of the presence of the square root sign in Formulas 2 and 4, the calculation of 
an arc length often leads to an integral that is very difficult or even impossible to evaluate 
explicitly. Thus we sometimes have to be content with finding an approximation to the 
length of a curve, as in the following example.

EXAMPLE 3  
(a) Set up an integral for the length of the arc of the hyperbola xy − 1 from the  
point s1, 1d to the point s2, 12 d.
(b) Use Simpson’s Rule with n − 10 to estimate the arc length.

SOLUTION
(a) We have

y −
1
x

       
dy
dx

− 2
1
x 2

and so the arc length is

L − y2

1
 Î1 1 S dy

dxD2 

 dx − y2

1
 Î1 1

1
x 4

  dx − y2

1
 sx 4 1 1

x 2  dx

(b) Using Simpson’s Rule (see Section 7.7) with a − 1, b − 2, n − 10, Dx − 0.1, and 
f sxd − s1 1 1yx 4 , we have

 L − y2

1
 Î1 1

1
x 4

  dx

 <
Dx
3

 f f s1d 1 4 f s1.1d 1 2 f s1.2d 1 4 f s1.3d 1 ∙ ∙ ∙ 1 2 f s1.8d 1 4 f s1.9d 1 f s2dg

 < 1.1321  Q

The Arc Length Function
We will find it useful to have a function that measures the arc length of a curve from a par-
ticular starting point to any other point on the curve. Thus if a smooth curve C has the 
equation y − f sxd, a < x < b, let ssxd be the distance along C from the initial point 
P0sa, f sadd to the point Qsx, f sxdd. Then s is a function, called the arc length function, 
and, by Formula 2,

ssxd − y x

a
 s1 1 f f 9stdg2  dt

(We have replaced the variable of integration by t so that x does not have two meanings.) 
We can use Part 1 of the Fundamental Theorem of Calculus to differentiate Equation 5 
(since the integrand is continuous):

ds
dx

− s1 1 f f 9sxdg2 − Î1 1 S dy
dxD2 

Equation 6 shows that the rate of change of s with respect to x is always at least 1 and is 
equal to 1 when f 9sxd, the slope of the curve, is 0. The differential of arc length is

ds − Î1 1 S dy
dxD2

  dx

Checking the value of the definite inte-
gral with a more accurate approxima-
tion produced by a computing device, 
we see that the approximation using 
Simpson’s Rule is accurate to four 
decimal places.

5

6

7
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548 CHAPTER 8  Further Applications of Integration

and this equation is sometimes written in the symmetric form

sdsd2 − sdxd2 1 sdyd2

The geometric interpretation of Equation 8 is shown in Figure 7. It can be used as a mne-
monic device for remembering both of the Formulas 3 and 4. If we write L − y ds, then 
from Equation 8 either we can solve to get (7), which gives (3), or we can solve to get

ds − Î1 1 S dx
dyD2

  dy

which gives (4).

EXAMPLE 4  Find the arc length function for the curve y − x 2 2 1
8 ln x taking P0s1, 1d 

as the starting point.

SOLUTION If f sxd − x 2 2 1
8 ln x, then

 f 9sxd − 2x 2
1

8x

 1 1 f f 9sxdg2 − 1 1 S2x 2
1

8xD2

− 1 1 4x 2 2
1
2

1
1

64x 2

 − 4x 2 1
1
2

1
1

64x 2 − S2x 1
1

8xD2

  s1 1 f f 9sxdg2 − 2x 1
1

8x
  ssince x . 0d

Thus the arc length function is given by

 ssxd − y x

1
 s1 1 f f 9stdg2  dt

 − yx

1
 S2t 1

1
8tD dt − t 2 1 1

8 ln tg1

x

 − x 2 1 1
8 ln x 2 1

For instance, the arc length along the curve from s1, 1d to s3, f s3dd is

 ss3d − 32 1 1
8 ln 3 2 1 − 8 1

ln 3
8

< 8.1373 Q

8

0 x

y

dx

ds dy
Îs Îy

FIGURE 7 

P¸

1
8

y=≈-   ln x1
8

0 x

y

1

1

0 x

y

1 x

1

s(x)=≈+   ln x-1

s(x)

FIGURE 8 

FIGURE 9 

Figure 8 shows the interpretation of  
the arc length function in Example 4.  
Figure 9 shows the graph of this arc 
length function. Why is ssxd negative 
when x is less than 1?

 1.   Use the arc length formula (3) to find the length of the curve 
y − 2x 2 5, 21 < x < 3. Check your answer by noting that 
the curve is a line segment and calculating its length by the 
distance formula.

 2.   Use the arc length formula to find the length of the curve 
y − s2 2 x 2 , 0 < x < 1. Check your answer by noting that 
the curve is part of a circle.
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 SECTION 8.1  Arc Length  549

3–8 Set up an integral that represents the length of the curve. 
Then use your calculator to find the length correct to four deci-
mal places.

 3.  y − sin x, 0 < x < # 4.  y − xe 2x, 0 < x < 2

 5.  y − x 2 ln x, 1 < x < 4 6.  x − y 2 2 2y, 0 < y < 2

 7.  x − sy  2 y, 1 < y < 4  8.  y 2 − ln x, 21 < y < 1

9–20 Find the exact length of the curve.

 9.  y − 1 1 6x 3y2,  0 < x < 1

 10.  36y 2 − sx 2 2 4d3,  2 < x < 3,  y > 0

 11.  y −
x 3

3
1

1
4x

,  1 < x < 2

 12.  x −
y 4

8
1

1
4y 2 ,  1 < y < 2

 13.  x − 1
3 sy   sy 2 3d,  1 < y < 9

 14.  y − lnscos xd,  0 < x < #y3

 15.  y − lnssec xd,  0 < x < #y4

 16.  y − 3 1 1
2 cosh 2x,  0 < x < 1

 17.  y − 1
4 x 2 2 1

2 ln x,  1 < x < 2

 18.  y − sx 2 x 2 1 sin21ssx d
 19.  y − lns1 2 x 2d,  0 < x < 1

2

 20.  y − 1 2 e 2x,  0 < x < 2

21–22 Find the length of the arc of the curve from point P to 
point Q.

 21.  y − 1
2 x 2,  Ps21, 1

2 d,  Qs1, 1
2 d

 22.  x 2 − sy 2 4d3,  Ps1, 5d,  Qs8, 8d

23–24 Graph the curve and visually estimate its length. Then 
use your calculator to find the length correct to four decimal 
places.

 23.  y − x 2 1 x 3,  1 < x < 2

 24.  y − x 1 cos x,  0 < x < #y2

25–28 Use Simpson’s Rule with n − 10 to estimate the arc 
length of the curve. Compare your answer with the value of the 
integral produced by a calculator.

 25.  y − x sin x, 0 < x < 2# 26.  y − s3 x , 1 < x < 6

 27.  y − lns1 1 x 3d, 0 < x < 5 28.  y − e2x 2
, 0 < x < 2

 29.  (a)  Graph the curve y − x s3 4 2 x , 0 < x < 4.
 (b)  Compute the lengths of inscribed polygons with n − 1,  

2, and 4 sides. (Divide the interval into equal sub-

;

;

;

intervals.) Illustrate by sketching these polygons (as in 
Figure 6).

 (c) Set up an integral for the length of the curve.
 (d)  Use your calculator to find the length of the curve to 

four decimal places. Compare with the approximations 
in part (b).

 30.  Repeat Exercise 29 for the curve

y − x 1 sin x    0 < x < 2#

 31.   Use either a computer algebra system or a table of integrals 
to find the exact length of the arc of the curve y − e x that 
lies between the points s0, 1d and s2, e2d.

 32.   Use either a computer algebra system or a table of integrals 
to find the exact length of the arc of the curve y − x 4y3 that 
lies between the points s0, 0d and s1, 1d. If your CAS has 
trouble evaluating the integral, make a substitution that 
changes the integral into one that the CAS can evaluate.

 33.   Sketch the curve with equation x 2y3 1 y 2y3 − 1 and use 
symmetry to find its length.

 34.  (a) Sketch the curve y 3 − x 2.
 (b)  Use Formulas 3 and 4 to set up two integrals for the arc 

length from s0, 0d to s1, 1d. Observe that one of these is 
an improper integral and evaluate both of them.

 (c)  Find the length of the arc of this curve from s21, 1d  
to s8, 4d.

 35.   Find the arc length function for the curve y − 2x 3y2 with 
starting point P0s1, 2d.

 36.  (a)  Find the arc length function for the curve y − lnssin xd, 
0 , x , #, with starting point s#y2, 0d.

 (b)  Graph both the curve and its arc length function on the 
same screen.

 37.   Find the arc length function for the curve 
y − sin21 x 1 s1 2 x 2  with starting point s0, 1d.

 38.   The arc length function for a curve y − f s xd, where f  is an 
  increasing function, is ssxd − y x

0  s3t 1 5  dt.
 (a) If f  has y-intercept 2, find an equation for f.
 (b)  What point on the graph of f  is 3 units along the curve 

from the y-intercept? State your answer rounded to 3 
decimal places.

 39.   For the function f sxd − 1
4 e x 1 e2x, prove that the arc length 

on any interval has the same value as the area under the 
curve.

 40.   A steady wind blows a kite due west. The kite’s height 
above ground from horizontal position x − 0 to x − 80 ft 
is given by y − 150 2 1

40 sx 2 50d2. Find the distance trav-
eled by the kite.

 41.   A hawk flying at 15 mys at an altitude of 180 m acciden-
tally drops its prey. The parabolic trajectory of the falling 
prey is described by the equation

y − 180 2
x 2

45

;

CAS

CAS

;
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550 CHAPTER 8  Further Applications of Integration

until it hits the ground, where y is its height above the ground 
and x is the horizontal distance traveled in meters. Calculate 
the distance traveled by the prey from the time it is dropped 
until the time it hits the ground. Express your answer correct 
to the nearest tenth of a meter.

 42.   The Gateway Arch in St. Louis (see the photo on page 543) 
was constructed using the equation

y − 211.49 2 20.96 cosh 0.03291765x

for the central curve of the arch, where x and y are measured 
in meters and | x | < 91.20. Set up an integral for the length 
of the arch and use your calculator to estimate the length cor-
rect to the nearest meter.

 43.   A manufacturer of corrugated metal roofing wants to produce 
panels that are 28 in. wide and 2 in. high by processing flat 
sheets of metal as shown in the figure. The profile of the roof-
ing takes the shape of a sine wave. Verify that the sine curve 
has equation y − sins#xy7d and find the width w of a flat 
metal sheet that is needed to make a 28-inch panel. (Use your 
calculator to evaluate the integral correct to four significant 
digits.)

28 in
2 inw

 44.  (a)  The figure shows a telephone wire hanging between  
two poles at x − 2b and x − b. It takes the shape of a 
catenary with equation y − c 1 a coshsxyad. Find the 
length of the wire.

 (b)  Suppose two telephone poles are 50 ft apart and the 
length of the wire between the poles is 51 ft. If the lowest 
point of the wire must be 20 ft above the ground, how 
high up on each pole should the wire be attached?

y

0 x_b b

 45.  Find the length of the curve

y − yx

1
 st 3 2 1 dt    1 < x < 4

 46.   The curves with equations x n 1 y n − 1, n − 4, 6, 8, . . . , are  
called fat circles. Graph the curves with n − 2, 4, 6, 8, and 
10 to see why. Set up an integral for the length L2k of the 
fat circle with n − 2k. Without attempting to evaluate this 
integral, state the value of limk l ` L 2k.

;

;

DISCOVERY PROJECT

The curves shown are all examples of graphs of continuous functions f  that have the following 
properties.

 1. f s0d − 0 and f s1d − 0.

 2. f sxd > 0 for 0 < x < 1.

 3.  The area under the graph of f  from 0 to 1 is equal to 1.

 The lengths L of these curves, however, are different.

LÅ3.249
x

y

0 1

1

LÅ2.919
x

y

0 1

1

LÅ3.152
x

y

0 1

1

LÅ3.213
x

y

0 1

1

Try to discover formulas for two functions that satisfy the given conditions 1, 2, and 3. (Your 
graphs might be similar to the ones shown or could look quite different.) Then calculate the arc 
length of each graph. The winning entry will be the one with the smallest arc length.

ARC LENGTH CONTEST
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 SECTION 8.2  Area of a Surface of Revolution 551

A surface of revolution is formed when a curve is rotated about a line. Such a surface  
is the lateral boundary of a solid of revolution of the type discussed in Sections 6.2  
and 6.3.

We want to define the area of a surface of revolution in such a way that it corresponds 
to our intuition. If the surface area is A, we can imagine that painting the surface would 
require the same amount of paint as does a flat region with area A.

Let’s start with some simple surfaces. The lateral surface area of a circular cylinder 
with radius r and height h is taken to be A − 2#rh because we can imagine cutting the 
cylinder and unrolling it (as in Figure 1) to obtain a rectangle with dimensions 2#r and h.

Likewise, we can take a circular cone with base radius r and slant height l, cut it along 
the dashed line in Figure 2, and flatten it to form a sector of a circle with radius l and 
central angle ! − 2#ryl. We know that, in general, the area of a sector of a circle with 
radius l and angle ! is 12 l 2! (see Exercise 7.3.35) and so in this case the area is

A − 1
2 l 2! − 1

2 l 2S 2#r
l D − #rl

Therefore we define the lateral surface area of a cone to be A − #rl.

l¨

2πr

l

r

cut

What about more complicated surfaces of revolution? If we follow the strategy we 
used with arc length, we can approximate the original curve by a polygon. When this 
polygon is rotated about an axis, it creates a simpler surface whose surface area approxi-
mates the actual surface area. By taking a limit, we can determine the exact surface area.

The approximating surface, then, consists of a number of bands, each formed by 
rota ting a line segment about an axis. To find the surface area, each of these bands can 
be considered a portion of a circular cone, as shown in Figure 3. The area of the band 
(or frustum of a cone) with slant height l and upper and lower radii r1 and r2 is found by 
sub tracting the areas of two cones:

A − #r2sl1 1 ld 2 #r1l1 − #fsr2 2 r1dl1 1 r2lg

From similar triangles we have

l1

r1
−

l1 1 l
r2

which gives

r2l1 − r1l1 1 r1l    or    sr2 2 r1dl1 − r1l

h
r

cut

h

2πr

circumference 2πr 

FIGURE 1 

FIGURE 2 

r¡

r™

l¡

l

FIGURE 3 

1
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552 CHAPTER 8  Further Applications of Integration

Putting this in Equation 1, we get

A − !sr1l 1 r2ld

or

A − 2!rl

where r − 1
2 sr1 1 r2 d is the average radius of the band.

Now we apply this formula to our strategy. Consider the surface shown in Figure 4, 
which is obtained by rotating the curve y − f sxd, a < x < b, about the x-axis, where f  
is positive and has a continuous derivative. In order to define its surface area, we divide 
the interval fa, bg into n subintervals with endpoints x0, x1, . . . , xn and equal width Dx,  
as we did in determining arc length. If yi − f sxid, then the point Pisxi, yid lies on the 
curve. The part of the surface between xi21 and xi is approximated by taking the line 
segment Pi21 Pi and rotating it about the x-axis. The result is a band with slant height 
l − | Pi21 Pi | and average radius r − 1

2 syi21 1 yid so, by Formula 2, its surface area is

2! 
yi21 1 yi

2
 | Pi21 Pi |

As in the proof of Theorem 8.1.2, we have

| Pi21 Pi | − s1 1 f f 9sxi*dg2
 

 Dx

where xi* is some number in fxi21, xig. When Dx is small, we have yi − f sxid < f sxi*d and 
also yi21 − f sxi21d < f sxi*d, since f  is continuous. Therefore

2! 
yi21 1 yi

2
 | Pi21 Pi | < 2! f sxi*d s1 1 f f 9sxi*dg2  Dx

and so an approximation to what we think of as the area of the complete surface of revo-
lution is

o
n

i−1
 2! f sxi*d s1 1 f f 9sxi*dg2  Dx

This approximation appears to become better as n l ` and, recognizing (3) as a Rie-
mann sum for the function tsxd − 2! f sxd s1 1 f f 9sxdg2 , we have

lim
n l `

 o
n

i−1
 2! f sxi*d s1 1 f f 9sxi*dg2  Dx − yb

a
 2! f sxd s1 1 f f 9sxdg2  dx

Therefore, in the case where f  is positive and has a continuous derivative, we define the  
surface area of the surface obtained by rotating the curve y − f sxd, a < x < b, about  
the x-axis as

S − yb

a
 2! f sxd s1 1 f f 9sxdg2  dx

2

(b) Approximating band

x

y y=ƒ

(a) Surface of revolution

P¸
Pi-1

Pi
Pn

yi

0 x

y

a b

0 a b

FIGURE 4 

3

4
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 SECTION 8.2  Area of a Surface of Revolution 553

With the Leibniz notation for derivatives, this formula becomes

S − yb

a
 2#yÎ1 1 S dy

dxD2 

 dx

If the curve is described as x − tsyd, c < y < d, then the formula for surface area 
becomes

S − yd

c
 2#yÎ1 1 S dx

dyD2 

 dy

and both Formulas 5 and 6 can be summarized symbolically, using the notation for arc 
length given in Section 8.1, as

S − y 2#y ds

For rotation about the y-axis, the surface area formula becomes

S − y 2#x ds

where, as before, we can use either

ds − Î1 1 S dy
dxD2 

 dx    or    ds − Î1 1 S dx
dyD2 

 dy

These formulas can be remembered by thinking of 2#y or 2#x as the circumference of a 
circle traced out by the point sx, yd on the curve as it is rotated about the x-axis or y-axis, 
respectively (see Figure 5).

(a) Rotation about x-axis: S=j 2πy ds

(x, y)
y

circumference=2πy

x0

y

(b) Rotation about y-axis: S=j 2πx ds

(x, y)x

circumference=2πx
x0

y

5

6

7

8

FIGURE 5 
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554 CHAPTER 8  Further Applications of Integration

EXAMPLE 1  The curve y − s4 2 x 2 , 21 < x < 1, is an arc of the circle 
x 2 1 y 2 − 4. Find the area of the surface obtained by rotating this arc about the  
x-axis. (The surface is a portion of a sphere of radius 2. See Figure 6.)

SOLUTION  We have

dy
dx

− 1
2 s4 2 x 2 d21y2s22xd −

2x

s4 2 x 2 

and so, by Formula 5, the surface area is

  S − y1

21
 2#y Î1 1 S dy

dxD2 

 dx

  − 2# y1

21
 s4 2 x 2  Î1 1

x 2

4 2 x 2
  dx

 − 2# y1

21
 s4 2 x 2  Î4 2 x 2 1 x 2

4 2 x 2
  dx

  − 2# y1

21
 s4 2 x 2  

2

s4 2 x 2 
 dx − 4# y1

21
 1 dx − 4#s2d − 8# Q

EXAMPLE 2  The arc of the parabola y − x 2 from s1, 1d to s2, 4d is rotated about the  
y-axis. Find the area of the resulting surface.

SOLUTION 1  Using

y − x 2    and    
dy
dx

− 2x

we have, from Formula 8,

 S − y 2#x ds

 − y2

1
 2#x Î1 1 S dy

dxD2 

 dx

 − 2# y2

1
 x s1 1 4x 2  dx

Substituting u − 1 1 4x 2, we have du − 8x dx. Remembering to change the limits of 
integration, we have

S − 2# y17

5
 su ? 1

8 du

−
#

4
 y17

5
 u1y2 du −

#

4
 f 2

3 u 3y2g 5

17

−
#

6
 (17s17 2 5s5 )

SOLUTION 2 Using

x − sy      and    
dx
dy

−
1

2sy  

x

y

1  

FIGURE 6 

Figure 6 shows the portion of the 
sphere whose surface area is computed 
in Example 1.

Figure 7 shows the surface of revolution 
whose area is computed in Example 2.

(2, 4)

(1, 1)

y=≈

x0

y

1 2

FIGURE 7 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 8.2  Area of a Surface of Revolution 555

we have

 S − y 2#x ds − y4

1
 2#x Î1 1 S dx

dyD2 

 dy

 − 2# y4

1
 sy  Î1 1

1
4y

  dy − 2# y4

1
 sy 1 1

4
  dy − # y4

1
 s4y 1 1  dy

 −
#

4
 y17

5
 su  du    (where u − 1 1 4y)

 −
#

6
 s17s17 2 5s5 d    (as in Solution 1) Q

EXAMPLE 3  Find the area of the surface generated by rotating the curve y − ex, 
0 < x < 1, about the x-axis.

SOLUTION  Using Formula 5 with

y − ex    and    
dy
dx

− ex

we have

 S − y1

0
 2#y Î1 1 S dy

dxD2 

 dx − 2# y1

0
 e

x s1 1 e 2x 
 dx

 − 2# ye

1
 s1 1 u2  du    (where u − e x)

 − 2# y"

#y4
 sec3! d!    (where u − tan ! and " − tan21e)

 − 2# ? 1
2 fsec ! tan ! 1 ln | sec ! 1 tan ! |g #y4

"
    (by Example 7.2.8)

 − #fsec " tan " 1 lnssec " 1 tan "d 2 s2 2 ln(s2 
1 1)g

Since tan " − e, we have sec2" − 1 1 tan2" − 1 1 e 2 and

 S − #fes1 1 e 2 1 lnse 1 s1 1 e 2 d 2 s2 2 lnss2 1 1dg Q

As a check on our answer to Example 2,  
notice from Figure 7 that the sur-
face area should be close to that of 
a circular cylinder with the same 
height and radius halfway between the 
upper and lower radius of the surface: 
2# s1.5ds3d < 28.27. We computed that 
the surface area was

#

6
 (17s17 2 5s5 ) < 30.85

which seems reasonable. Alternatively, 
the sur face area should be slightly 
larger than the area of a frustum of a 
cone with the same top and bottom 
edges. From Equation 2, this is 
2# s1.5d(s10 ) < 29.80.

Another method: Use Formula 6  
with x − ln y.

Or use Formula 21 in the Table of 
Integrals.

1–6
(a)  Set up an integral for the area of the surface obtained by  

rotating the curve about (i) the x-axis and (ii) the y-axis.
(b)  Use the numerical integration capability of a calculator to 

evaluate the surface areas correct to four decimal places.

 1.   y − tan x, 0 < x < #y3 2.  y − x22, 1 < x < 2

 3.   y − e2x 2
, 21 < x < 1 4.  x − lns2y 1 1d, 0 < y < 1

 5.   x − y 1 y3, 0 < y < 1 6.  y − tan21 x, 0 < x < 2

7–14 Find the exact area of the surface obtained by rotating the 
curve about the x-axis.

 7.   y − x 3, 0 < x < 2 8.  y − s5 2 x , 3 < x < 5

 9.   y2 − x 1 1, 0 < x < 3 10.  y − s1 1 e x 

, 0 < x < 1

 11.   y − cos( 1
2 x), 0 < x < #  12.  y −

x 3

6
1

1
2x

, 1
2 < x < 1

 13.  x − 1
3 sy 2 1 2d3y2, 1 < y < 2 

 14.  x − 1 1 2y 2, 1 < y < 2
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556 CHAPTER 8  Further Applications of Integration

15–18 The given curve is rotated about the y-axis. Find the area 
of the resulting surface.

 15.  y − 1
3 x 3y2, 0 < x < 12

 16.  x 2y3 1 y2y3 − 1, 0 < y < 1

 17.  x − sa 2 2 y 2 , 0 < y < ay2

 18.  y − 1
4x 2 2 1

2 ln x, 1 < x < 2

19–22 Use Simpson’s Rule with n − 10 to approximate the 
area of the surface obtained by rotating the curve about the  
x-axis. Compare your answer with the value of the integral pro-
duced by a calculator.

 19.  y − 1
5 x 5, 0 < x < 5 20.  y − x 1 x 2, 0 < x < 1

 21.  y − xe x, 0 < x < 1 22.  y − x ln x, 1 < x < 2

23–24 Use either a CAS or a table of integrals to find the exact  
area of the surface obtained by rotating the given curve about 
the x-axis.

 23.  y − 1yx,  1 < x < 2

 24.  y − sx 2 1 1 ,  0 < x < 3

25–26 Use a CAS to find the exact area of the surface obtained 
by rotating the curve about the y-axis. If your CAS has trouble 
evaluating the integral, express the surface area as an integral in 
the other variable.

 25.  y − x 3, 0 < y < 1 26.  y − lnsx 1 1d, 0 < x < 1

 27.   If the region 5 − hsx, yd | x > 1, 0 < y < 1yxj is rotated 
about the x-axis, the volume of the resulting solid is finite 
(see Exercise 7.8.63). Show that the surface area is infi-
nite. (The surface is shown in the figure and is known as 
Gabriel’s horn.)

0 1

1
xy=

y

x

 28.   If the infinite curve y − e2x, x > 0, is rotated about the  
x-axis, find the area of the resulting surface.

 29.  (a)  If a . 0, find the area of the surface generated by rotat-
ing the loop of the curve 3ay 2 − xsa 2 xd2 about the  
x-axis.

 (b)  Find the surface area if the loop is rotated about the  
y-axis.

CAS

CAS

 30.   A group of engineers is building a parabolic satellite dish 
whose shape will be formed by rotating the curve y − ax 2 
about the y-axis. If the dish is to have a 10-ft diameter and 
a maximum depth of 2 ft, find the value of a and the surface 
area of the dish.

 31.  (a)  The ellipse

x 2

a 2 1
 y 2

b 2 − 1    a . b

   is rotated about the x-axis to form a surface called an 
ellipsoid, or prolate spheroid. Find the surface area of 
this ellipsoid.

 (b)  If the ellipse in part (a) is rotated about its minor axis 
(the y-axis), the resulting ellipsoid is called an oblate 
spheroid. Find the surface area of this ellipsoid.

 32.   Find the surface area of the torus in Exercise 6.2.63.

 33.   If the curve y − f sxd, a < x < b, is rotated about the hori-
zontal line y − c, where f sxd < c, find a formula for the 
area of the resulting surface.

 34.   Use the result of Exercise 33 to set up an integral to find the 
area of the surface generated by rotating the curve y − sx  ,  
0 < x < 4, about the line y − 4. Then use a CAS to evalu-
ate the integral.

 35.   Find the area of the surface obtained by rotating the circle 
x 2 1 y 2 − r 2 about the line y − r.

 36.  (a)  Show that the surface area of a zone of a sphere that 
lies between two parallel planes is S − 2#Rh, where R 
is the radius of the sphere and h is the distance between 
the planes. (Notice that S depends only on the distance 
between the planes and not on their location, provided 
that both planes intersect the sphere.)

 (b)  Show that the surface area of a zone of a cylinder with 
radius R and height h is the same as the surface area of 
the zone of a sphere in part (a).

 37.   Show that if we rotate the curve y − exy2 1 e2xy2 about the  
x-axis, the area of the resulting surface is the same value as 
the enclosed volume for any interval a < x < b.

 38.   Let L be the length of the curve y − f sxd, a < x < b,  
where f  is positive and has a continuous derivative. 
Let Sf  be the surface area generated by rotating the 
curve about the x-axis. If c is a positive constant, define 
tsxd − f sxd 1 c and let St be the corresponding surface 
area generated by the curve y − tsxd, a < x < b. Express 
St in terms of Sf  and L.

 39.   Formula 4 is valid only when f sxd > 0. Show that when 
f sxd is not necessarily positive, the formula for surface area 
becomes

S − yb

a
 2# | f sxd |s1 1 f f 9sxdg2  dx

CAS
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 DISCOVERY PROJECT  Rotating on a Slant 557

DISCOVERY PROJECT

We know how to find the volume of a solid of revolution obtained by rotating a region about a 
horizontal or vertical line (see Section 6.2). We also know how to find the surface area of a sur- 
face of revolution if we rotate a curve about a horizontal or vertical line (see Section 8.2). But 
what if we rotate about a slanted line, that is, a line that is neither horizontal nor vertical? In this 
project you are asked to discover formulas for the volume of a solid of revolution and for the area 
of a surface of revolution when the axis of rotation is a slanted line.

Let C be the arc of the curve y − f sxd between the points Psp, f spdd and Qsq, f sqdd and let 5 
be the region bounded by C, by the line y − mx 1 b (which lies entirely below C), and by the 
perpendiculars to the line from P and Q.

P

0 x

y

qp

!

C

Q
y=ƒ

y=mx+b

Îu

1. Show that the area of 5 is

1
1 1 m 2  yq

p
 f f sxd 2 mx 2 bg f1 1 mf 9sxdg dx

   [Hint: This formula can be verified by subtracting areas, but it will be helpful throughout the 
project to derive it by first approximating the area using rectangles perpendicular to the line, 
as shown in the following figure. Use the figure to help express Du in terms of Dx.]

y=mx+b

Îu

å

tangent to C
at { x i, f(xi)}

xi ∫

?

Îx

?

2.  Find the area of the region shown in the figure at the left.

3.  Find a formula (similar to the one in Problem 1) for the volume of the solid obtained by  
rotating 5 about the line y − mx 1 b.

4.  Find the volume of the solid obtained by rotating the region of Problem 2 about the  
line y − x 2 2.

5.  Find a formula for the area of the surface obtained by rotating C about the line y − mx 1 b.

6.  Use a computer algebra system to find the exact area of the surface obtained by rotating the 
curve y − sx , 0 < x < 4, about the line y − 1

2 x. Then approximate your result to three 
decimal places. 

y

x0

(2π, 2π)

y=x+sin x
y=x-2

CAS

ROTATING ON A SLANT
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558 CHAPTER 8  Further Applications of Integration

Among the many applications of integral calculus to physics and engineering, we con-
sider two here: force due to water pressure and centers of mass. As with our previous 
applications to geometry (areas, volumes, and lengths) and to work, our strategy is to 
break up the phys ical quantity into a large number of small parts, approximate each 
small part, add the results (giving a Riemann sum), take the limit, and then evaluate the 
resulting integral.

Hydrostatic Pressure and Force
Deep-sea divers realize that water pressure increases as they dive deeper. This is because 
the weight of the water above them increases.

In general, suppose that a thin horizontal plate with area A square meters is sub-
merged in a fluid of density ! kilograms per cubic meter at a depth d meters below the 
surface of the fluid as in Figure 1. The fluid directly above the plate (think of a column 
of liquid) has volume V − Ad, so its mass is m − !V − !Ad. The force exerted by the 
fluid on the plate is therefore

F − mt − !tAd

where t is the acceleration due to gravity. The pressure P on the plate is defined to be 
the force per unit area:

P −
F
A

− !td

The SI unit for measuring pressure is a newton per square meter, which is called a pascal 
(abbreviation: 1 Nym2 − 1 Pa). Since this is a small unit, the kilopascal (kPa) is often 
used. For instance, because the density of water is ! − 1000 kgym3, the pressure at the 
bottom of a swimming pool 2 m deep is

 P − !td − 1000 kgym3 3 9.8 mys2 3 2 m

 − 19,600 Pa − 19.6 kPa

An important principle of fluid pressure is the experimentally verified fact that at any 
point in a liquid the pressure is the same in all directions. (A diver feels the same pres-
sure on nose and both ears.) Thus the pressure in any direction at a depth d in a fluid with 
mass density ! is given by

P − !td − "d

This helps us determine the hydrostatic force (the force exerted by a fluid at rest) against 
a vertical plate or wall or dam. This is not a straightforward problem because the pres-
sure is not constant but increases as the depth increases.

EXAMPLE 1  A dam has the shape of the trapezoid shown in Figure 2. The height is 
20 m and the width is 50 m at the top and 30 m at the bottom. Find the force on the 
dam due to hydrostatic pressure if the water level is 4 m from the top of the dam.

SOLUTION We choose a vertical x-axis with origin at the surface of the water and 
directed downward as in Figure 3(a). The depth of the water is 16 m, so we divide the 

surface of fluid

d
A

FIGURE 1 

1

50 m

20 m

30 m

FIGURE 2 

When using US Customary units, we 
write P − !td − "d, where " − !t 
is the weight density (as opposed to 
!, which is the mass density). For 
in stance, the weight density of water 
is " − 62.5 lbyft3.
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 SECTION 8.3  Applications to Physics and Engineering 559

interval f0, 16g into sub intervals of equal length with endpoints xi and we choose 
xi* [ fxi21, xig. The ith horizontal strip of the dam is approximated by a rectangle with 
height Dx and width wi, where, from similar triangles in Figure 3(b),

a
16 2 xi*

−
10
20

    or    a −
16 2 xi*

2
− 8 2

xi*
2

and so wi − 2s15 1 ad − 2s15 1 8 2 1
2 xi*d − 46 2 xi*

If Ai is the area of the ith strip, then

Ai < wi Dx − s46 2 xi*d Dx

If Dx is small, then the pressure Pi on the ith strip is almost constant and we can use 
Equation 1 to write

Pi < 1000txi*

The hydrostatic force Fi acting on the ith strip is the product of the pressure and the 
area:

Fi − Pi Ai < 1000txi*s46 2 xi*d Dx

Adding these forces and taking the limit as n l `, we obtain the total hydrostatic force 
on the dam:

 F − lim
nl ̀

 o
n

i−1
1000txi*s46 2 xi*d Dx − y16

0
 1000txs46 2 xd dx

 − 1000s9.8d y16

0
 s46x 2 x 2 d dx − 9800F23x 2 2

x 3

3 G0

16

  < 4.43 3 107 N  Q

EXAMPLE 2  Find the hydrostatic force on one end of a cylindrical drum with radius  
3 ft if the drum is submerged in water 10 ft deep.

SOLUTION In this example it is convenient to choose the axes as in Figure 4 so that 
the origin is placed at the center of the drum. Then the circle has a simple equation, 
x 2 1 y 2 − 9. As in Example 1 we divide the circular region into horizontal strips of 
equal width. From the equation of the circle, we see that the length of the ith strip is  
2s9 2 syi*d2 and so its area is

Ai − 2s9 2 syi*d2  Dy

Because the weight density of water is " − 62.5 lbyft3, the pressure on this strip is 
approximately

"di − 62.5s7 2 yi*d

and so the force on the strip is approximately

"di Ai − 62.5s7 2 yi*d 2s9 2 syi*d2  Dy

œ„„„„„„„œ9-(yi*)@

x0

y

10
7

di

≈+¥=9

yi*
Îy

FIGURE 4 

(b)

a

10

16-xi*
20

(a)
x

16

0
_4 15

15

15

a

10

Îx
xi*

FIGURE 3 
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560 CHAPTER 8  Further Applications of Integration

The total force is obtained by adding the forces on all the strips and taking the limit:

 F − lim
n l`

 o
n

i−1
 62.5s7 2 yi*d 2s9 2 syi*d2  Dy

 − 125 y3

23
 s7 2 yd s9 2 y 2  dy

 − 125 ? 7 y3

23
 s9 2 y 2  dy 2 125 y3

23
 ys9 2 y 2  dy

The second integral is 0 because the integrand is an odd function (see Theorem 5.5.7). 
The first integral can be evaluated using the trigonometric substitution y − 3 sin #, but 
it’s simpler to observe that it is the area of a semicircular disk with radius 3. Thus

 F − 875 y3

23
 s9 2 y 2  dy − 875 ? 1

2 $s3d2

  −
7875$

2
< 12,370 lb  Q

Moments and Centers of Mass
Our main objective here is to find the point P on which a thin plate of any given shape 
bal ances horizontally as in Figure 5. This point is called the center of mass (or center of 
grav ity) of the plate.

We first consider the simpler situation illustrated in Figure 6, where two masses m1 
and m2 are attached to a rod of negligible mass on opposite sides of a fulcrum and at 
distances d1 and d2 from the fulcrum. The rod will balance if

m1 d1 − m2 d2

This is an experimental fact discovered by Archimedes and called the Law of the Lever. 
(Think of a lighter person balancing a heavier one on a seesaw by sitting farther away 
from the center.)

Now suppose that the rod lies along the x-axis with m1 at x1 and m2 at x2 and the center 
of mass at x. If we compare Figures 6 and 7, we see that d1 − x 2 x1 and d2 − x2 2 x 
and so Equation 2 gives

 m1sx 2 x1d − m2sx2 2 xd

 m1 x 1 m2 x − m1 x1 1 m2 x2

 x −
m1 x1 1 m2 x2

m1 1 m2

The numbers m1 x1 and m2 x2 are called the moments of the masses m1 and m2 (with 
respect to the origin), and Equation 3 says that the center of mass x is obtained by adding 
the moments of the masses and dividing by the total mass m − m1 1 m2.

0
⁄ –x ¤

¤-x–m¡ m™ x
–x-⁄

In general, if we have a system of n particles with masses m1, m2, . . . , mn located at 
the points x1, x2, . . . , xn on the x-axis, it can be shown similarly that the center of mass 

P

FIGURE 5 2

m¡ m™

d¡

fulcrum

d™

FIGURE 6 

3

FIGURE 7 
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 SECTION 8.3  Applications to Physics and Engineering 561

of the system is located at

x −
o

n

i−1
 mixi

o
n

i−1
 mi

−
o

n

i−1
 mixi

m

where m − omi is the total mass of the system, and the sum of the individual moments

M − o
n

i−1
 mixi

is called the moment of the system about the origin. Then Equation 4 could be rewrit-
ten as mx − M, which says that if the total mass were considered as being concen- 
trated at the center of mass x, then its moment would be the same as the moment of the 
system.

Now we consider a system of n particles with masses m1, m2, . . . , mn located at the 
points sx1, y1d, sx2, y2 d, . . . , sxn, yn d in the xy-plane as shown in Figure 8. By analogy 
with the one-dimensional case, we define the moment of the system about the y-axis 
to be

My − o
n

i−1
 mixi

and the moment of the system about the x-axis as

Mx − o
n

i−1
 miyi

Then My measures the tendency of the system to rotate about the y-axis and Mx measures 
the tendency to rotate about the x-axis.

As in the one-dimensional case, the coordinates sx, yd of the center of mass are given 
in terms of the moments by the formulas

x −
My

m       y −
Mx

m

where m − omi is the total mass. Since mx − My and my − Mx, the center of mass 
sx, yd is the point where a single particle of mass m would have the same moments as 
the system.

EXAMPLE 3  Find the moments and center of mass of the system of objects that have 
masses 3, 4, and 8 at the points s21, 1d, s2, 21d, and s3, 2d, respectively.

SOLUTION We use Equations 5 and 6 to compute the moments:

 My − 3s21d 1 4s2d 1 8s3d − 29

 Mx − 3s1d 1 4s21d 1 8s2d − 15

Since m − 3 1 4 1 8 − 15, we use Equations 7 to obtain

x −
My

m
−

29
15

      y −
Mx

m
−

15
15

− 1

Thus the center of mass is s114
15 , 1d. (See Figure 9.) Q

4

FIGURE 8 

m£ m¡

m™

y

0 x

‹
y£

⁄

›

x2

fi
5

6

7

y

0 x

8

4

3

center of mass

FIGURE 9 
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562 CHAPTER 8  Further Applications of Integration

Next we consider a flat plate (called a lamina) with uniform density ! that occupies a 
region 5 of the plane. We wish to locate the center of mass of the plate, which is called 
the centroid of 5. In doing so we use the following physical principles: The symmetry 
principle says that if 5 is symmetric about a line l, then the centroid of 5 lies on l. (If 5 
is reflected about l, then 5 remains the same so its centroid remains fixed. But the only 
fixed points lie on l.) Thus the centroid of a rectangle is its center. Moments should be 
defined so that if the entire mass of a region is concentrated at the center of mass, then 
its moments remain unchanged. Also, the moment of the union of two nonoverlapping 
regions should be the sum of the moments of the individual regions.

Suppose that the region 5 is of the type shown in Figure 10(a); that is, 5 lies between 
the lines x − a and x − b, above the x-axis, and beneath the graph of f, where f  is a 
continuous function. We divide the interval fa, bg into n subintervals with endpoints x0, 
x1, . . . , xn and equal width Dx. We choose the sample point xi* to be the midpoint xi of 
the ith subinterval, that is, xi − sxi21 1 xidy2. This determines the polygonal approxima-
tion to 5 shown in Figure 10(b). The centroid of the ith approximating rectangle Ri is its 
center Ci(xi, 12 f sxid). Its area is f sxid Dx, so its mass is

! f sxid Dx

The moment of Ri about the y-axis is the product of its mass and the distance from Ci to 
the y-axis, which is xi. Thus

MysRid − f! f sxid Dxg xi − ! xi f sxid Dx

Adding these moments, we obtain the moment of the polygonal approximation to 5, and 
then by taking the limit as n l ` we obtain the moment of 5 itself about the y-axis:

My − lim
nl `

 o
n

i−1
 !xi f sxid Dx − ! yb

a
 x f sxd dx

In a similar fashion we compute the moment of Ri about the x-axis as the product of 
its mass and the distance from Ci to the x-axis (which is half the height of Ri):

MxsRid − f! f sxid Dxg 12 f sxid − ! ? 1
2 f f sxidg2 Dx

Again we add these moments and take the limit to obtain the moment of 5 about the  
x-axis:

Mx − lim
nl `

 o
n

i−1
 ! ? 1

2 f f sxidg2 Dx − ! yb

a
 12 f f sxdg2 dx

Just as for systems of particles, the center of mass of the plate is defined so that 
mx − My and my − Mx. But the mass of the plate is the product of its density and its 
area:

m − !A − ! yb

a
 f sxd dx

FIGURE 10 

Ci”xi,    f(xi)’

xi

y

0 xa bR¡ R™ R£
xi_1 xi

{xi, f(xi)}
1
2

(b)

y

0 xa b

y=ƒ

!
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and so

 x −
My

m
−

! yb

a

 xf sxd dx

! yb

a
 f sxd dx

−
yb

a

 xf sxd dx

yb

a
 f sxd dx

 y −
Mx

m
−

! yb

a
 1
2 f f sxdg2 dx

! yb

a
 f sxd dx

−
yb

a
 1
2 f f sxdg2 dx

yb

a
 f sxd dx

Notice the cancellation of the !’s. The location of the center of mass is independent of 
the density.

In summary, the center of mass of the plate (or the centroid of 5) is located at the 
point sx, yd, where

x −
1
A

 yb

a
 xf sxd dx      y −

1
A

 yb

a
 12 f f sxdg2 dx

EXAMPLE 4  Find the center of mass of a semicircular plate of radius r.

SOLUTION In order to use (8) we place the semicircle as in Figure 11 so that 
f sxd − sr 2 2 x 2  and a − 2r, b − r. Here there is no need to use the formula to cal-
culate x because, by the symmetry principle, the center of mass must lie on the y-axis, 
so x − 0. The area of the semicircle is A − 1

2$r 2, so

  y −
1
A

 yr

2r
 12 f f sxdg2 dx

  −
1

1
2 $r 2 ? 1

2 yr

2r
 (sr 2 2 x 2 )2 dx

 −
2

$r 2  yr

0
 sr 2 2 x 2 d dx (since the integrand is even)

  −
2

$r 2Fr 2x 2
x 3

3 G0

r

  −
2

$r 2  
2r 3

3
−

4r
3$

The center of mass is located at the point s0, 4rys3$dd. Q

EXAMPLE 5  Find the centroid of the region bounded by the curves y − cos x, y − 0, 
x − 0, and x − $y2.

SOLUTION The area of the region is

A − y$y2

0
 cos x dx − sin xg0

$y2
− 1

8

x

y

r0_r

”0,       ’4r
3π

y=   r@-≈œ„„„„„

FIGURE 11 
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564 CHAPTER 8  Further Applications of Integration

so Formulas 8 give

 x −
1
A

 y$y2

0
 x f sxd dx − y$y2

0
 x cos x dx

 − x sin xg0

$y2
2 y$y2

0
 sin x dx    (by integration by parts)

 −
$

2
2 1

 y −
1
A

 y$y2

0
 12 f f sxdg2 dx − 1

2 y$y2

0
 cos2x dx

 − 1
4 y$y2

0
 s1 1 cos 2xd dx − 1

4 fx 1 1
2 sin 2xg 0

$y2
 −

$

8

The centroid is (1
2 $ 2 1, 18 $) and is shown in Figure 12. Q

If the region 5 lies between two curves y − f sxd and y − tsxd, where f sxd > tsxd, 
as illustrated in Figure 13, then the same sort of argument that led to Formulas 8 can be 
used to show that the centroid of 5 is sx, yd, where

 x −
1
A

 yb

a
 xf f sxd 2 tsxdg dx

 y −
1
A

 yb

a
 12 hf f sxdg2 2 ftsxdg2 j dx

9

(See Exercise 51.)

EXAMPLE 6  Find the centroid of the region bounded by the line y − x and the 
parabola y − x 2.

SOLUTION The region is sketched in Figure 14. We take f sxd − x, tsxd − x 2, a − 0, 
and b − 1 in Formulas 9. First we note that the area of the region is

A − y1

0
 sx 2 x 2 d dx −

x 2

2
2

x 3

3 G0

1

−
1
6

Therefore

 x −
1
A

 y1

0
 xf f sxd 2 tsxdg dx −

1
1
6

 y1

0
 xsx 2 x 2 d dx

 − 6 y1

0
 sx 2 2 x 3 d dx − 6F x 3

3
2

x 4

4 G0

1

−
1
2

 y −
1
A

 y1

0
 12 hf f sxdg2 2 ftsxdg2 j dx −

1
1
6

 y1

0
 12 sx 2 2 x 4 d dx

 − 3F x 3

3
2

x 5

5 G0

1

−
2
5

The centroid is s1
2 , 25 d. Q

FIGURE 12 
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We end this section by showing a surprising connection between centroids and vol-
umes of revolution.

 Theorem of Pappus Let 5 be a plane region that lies entirely on one side of a 
line l in the plane. If 5 is rotated about l, then the volume of the resulting solid is 
the product of the area A of 5 and the distance d traveled by the centroid of 5.

PROOF We give the proof for the special case in which the region lies between 
y − f sxd and y − tsxd as in Figure 13 and the line l is the y-axis. Using the method of 
cylindrical shells (see Section 6.3), we have

 V − yb

a
 2$xf f sxd 2 tsxdg dx

 − 2$ yb

a
 xf f sxd 2 tsxdg dx

 − 2$sxAd    (by Formulas 9)

 − s2$ xdA − Ad

where d − 2$ x is the distance traveled by the centroid during one rotation about the  
y-axis. Q

EXAMPLE 7  A torus is formed by rotating a circle of radius r about a line in the plane 
of the circle that is a distance R s. rd from the center of the circle. Find the volume of 
the torus.

SOLUTION The circle has area A − $r 2. By the symmetry principle, its centroid is its 
center and so the distance traveled by the centroid during a rotation is d − 2$R. There-
fore, by the Theorem of Pappus, the volume of the torus is

 V − Ad − s2$Rds$r 2 d − 2$ 2r 2R Q

The method of Example 7 should be compared with the method of Exercise 6.2.63.

This theorem is named after the Greek  
mathematician Pappus of Alexandria, 
who lived in the fourth century ad.

 1.  An aquarium 5 ft long, 2 ft wide, and 3 ft deep is full of  
 water. Find (a) the hydrostatic pressure on the bottom of the 
aquarium, (b) the hydrostatic force on the bottom, and (c) the 
hydrostatic force on one end of the aquarium.

 2.  A tank is 8 m long, 4 m wide, 2 m high, and contains kerosene 
with density 820 kgym3 to a depth of 1.5 m. Find (a) the hydro-
static pressure on the bottom of the tank, (b) the hydrostatic 
force on the bottom, and (c) the hydrostatic force on one end  
of the tank.

3–11 A vertical plate is submerged (or partially submerged) in 
water and has the indicated shape. Explain how to approximate the 

hydrostatic force against one side of the plate by a Riemann sum. 
Then express the force as an integral and evaluate it.

 3.   
3 ft

8 ft

2 ft

 4. 

5 ft

10 ft

2 ft
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4 ft
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10.
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 11.

 

2a

a

h

 12.   A milk truck carries milk with density 64.6 lbyft3 in a hori-
zontal cylindrical tank with diameter 6 ft.

 (a)  Find the force exerted by the milk on one end of the tank 
when the tank is full.

 (b) What if the tank is half full?

 13.   A trough is filled with a liquid of density 840 kgym3. The 
ends of the trough are equilateral triangles with sides 8 m 
long and vertex at the bottom. Find the hydrostatic force on 
one end of the trough.

 14.   A vertical dam has a semicircular gate as shown in the figure. 
Find the hydrostatic force against the gate.

12 m

2 m

4 m

water level

 15.   A cube with 20-cm-long sides is sitting on the bottom of 
an aquarium in which the water is one meter deep. Find the 
hydrostatic force on (a) the top of the cube and (b) one of the 
sides of the cube.

 16.   A dam is inclined at an angle of 30° from the vertical and has 
the shape of an isosceles trapezoid 100 ft wide at the top and 
50 ft wide at the bottom and with a slant height of 70 ft. Find 
the hydrostatic force on the dam when it is full of water.

 17.   A swimming pool is 20 ft wide and 40 ft long and its bot-
tom is an inclined plane, the shallow end having a depth of 3 
ft and the deep end, 9 ft. If the pool is full of water, find the 
hydro static force on (a) the shallow end, (b) the deep end, (c) 
one of the sides, and (d) the bottom of the pool.

 18.   Suppose that a plate is immersed vertically in a fluid with 
density ! and the width of the plate is wsxd at a depth of 
x meters beneath the surface of the fluid. If the top of the 
plate is at depth a and the bottom is at depth b, show that the 
hydrostatic force on one side of the plate is

F − yb

a
 !txwsxd dx

 19.   A metal plate was found submerged vertically in seawater, 
which has density 64 lbyft3. Measurements of the width of the 
plate were taken at the indicated depths. Use Simpson’s Rule 
to estimate the force of the water against the plate.

Depth (m) 7.0 7.4 7.8 8.2 8.6 9.0 9.4

Plate width (m) 1.2 1.8 2.9 3.8 3.6 4.2 4.4

 20.  (a) Use the formula of Exercise 18 to show that

F − s!tx dA

where x is the x-coordinate of the centroid of the plate 
and A is its area. This equation shows that the hydrostatic 
force against a vertical plane region is the same as if the 
region were horizontal at the depth of the centroid of the 
region.

 (b)  Use the result of part (a) to give another solution to  
Exercise 10.

21–22 Point-masses mi are located on the x-axis as shown. Find 
the moment M of the system about the origin and the center of 
mass x.

 21.   x0 3010
m¡=6 m™=9

 22.  x0 82
m™=15 m£=20

_3
m¡=12
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23–24 The masses mi are located at the points Pi. Find the 
moments Mx and My and the center of mass of the system.

 23.  m1 − 4, m2 − 2, m3 − 4;
  P1s2, 23d, P2s23, 1d, P3s3, 5d

 24.   m1 − 5, m2 − 4, m3 − 3, m4 − 6;
  P1s24, 2d, P2s0, 5d, P3s3, 2d, P4s1, 22d

25–28 Sketch the region bounded by the curves, and visually esti-
mate the location of the centroid. Then find the exact coordi nates 
of the centroid.

 25.  y − 2x,  y − 0,  x − 1

 26.  y − sx  ,  y − 0,  x − 4

 27.  y − e x,  y − 0,  x − 0,  x − 1

 28.  y − sin x,  y − 0,  0 < x < !

29–33 Find the centroid of the region bounded by the given 
curves.

 29.  y − x 2,  x − y 2

 30.  y − 2 2 x 2,  y − x

 31.  y − sin x,  y − cos x,  x − 0,  x − !y4

 32.  y − x 3,  x 1 y − 2,  y − 0

 33.  x 1 y − 2,  x − y 2

34–35 Calculate the moments Mx and My and the center of mass 
of a lamina with the given density and shape.

 34.  " − 4 35.  " − 6

x

y

0 2

3

    

x

y

0
4

4

_2

 36.   Use Simpson’s Rule to estimate the centroid of the region 
shown.

2

4

x

y

0 8642

 37.   Find the centroid of the region bounded by the curves 
y − x 3 2 x and y − x 2 2 1. Sketch the region and plot the 
centroid to see if your answer is reasonable.

 38.   Use a graph to find approximate x-coordinates of the points 
of intersection of the curves y − e x and y − 2 2 x 2. Then 
find (approximately) the centroid of the region bounded by 
these curves.

 39.   Prove that the centroid of any triangle is located at the point  
of intersection of the medians. [Hints: Place the axes so that 
the vertices are sa, 0d, s0, bd, and sc, 0d. Recall that a median 
is a line segment from a vertex to the midpoint of the oppo- 
site side. Recall also that the medians intersect at a point 
two-thirds of the way from each vertex (along the median)  
to the opposite side.]

40–41 Find the centroid of the region shown, not by integration, 
but by locating the centroids of the rectangles and triangles (from 
Exercise 39) and using additivity of moments.

 40. 

x

y

0 1_1 2

1

2

 

41.

x

y

0 1_1

_1

2

1

2

_2

 42.   A rectangle 5 with sides a and b is divided into two parts  
51 and 52 by an arc of a parabola that has its vertex at one 
corner of 5 and passes through the opposite corner. Find the 
centroids of both 51 and 52.

x

y

0 a

5™

!¡
b

 43.   If x is the x-coordinate of the centroid of the region that lies 
under the graph of a continuous function f, where a < x < b, 
show that

yb

a
 scx 1 dd f sxd dx − scx 1 d d yb

a
 f sxd dx

44–46 Use the Theorem of Pappus to find the volume of the 
given solid.

 44.  A sphere of radius r  (Use Example 4.)

 45.  A cone with height h and base radius r

;
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DISCOVERY PROJECT

Suppose you have a choice of two coffee cups of the type shown, one that bends outward and one 
inward, and you notice that they have the same height and their shapes fit together snugly. You 
wonder which cup holds more coffee. Of course you could fill one cup with water and pour it  
into the other one but, being a calculus student, you decide on a more mathematical approach. 
Ignoring the handles, you observe that both cups are surfaces of revolution, so you can think of 
the coffee as a volume of revolution.

Cup A Cup B  

x

y

0

h

k

x=k

A¡

x=f(y)

A™

1.  Suppose the cups have height h, cup A is formed by rotating the curve x − f syd about the  
y-axis, and cup B is formed by rotating the same curve about the line x − k. Find the value  
of k such that the two cups hold the same amount of coffee.

2.  What does your result from Problem 1 say about the areas A1 and A2 shown in the figure?

3.  Use Pappus’s Theorem to explain your result in Problems 1 and 2.

4.  Based on your own measurements and observations, suggest a value for h and an equation for 
x − f syd and calculate the amount of coffee that each cup holds.

COMPLEMENTARY COFFEE CUPS

 46.   The solid obtained by rotating the triangle with vertices  
s2, 3d, s2, 5d, and s5, 4d about the x-axis

 47.   The centroid of a curve can be found by a process similar to  
the one we used for finding the centroid of a region. If C 
is a curve with length L, then the centroid is sx, y d where 
x − s1yLd y x ds and y − s1yLd y y ds. Here we assign appro-
priate limits of integration, and ds is as defined in Sections 8.1 
and 8.2. (The centroid often doesn’t lie on the curve itself. If 
the curve were made of wire and placed on a weightless board, 
the centroid would be the balance point on the board.) Find the 
centroid of the quarter-circle y − s16 2 x 2 , 0 < x < 4.

 48.   The Second Theorem of Pappus is in the same spirit as  
Pappus’s Theorem on page 565, but for surface area rather 
than volume: Let C be a curve that lies entirely on one side of 
a line l in the plane. If C is rotated about l, then the area of the 
resulting surface is the product of the arc length of C and the 
distance traveled by the centroid of C (see Exercise 47).

 (a)  Prove the Second Theorem of Pappus for the case where C 
is given by y − f sxd, f sxd > 0, and C is rotated about the  
x-axis.

 (b)  Use the Second Theorem of Pappus to compute the surface 
area of the half-sphere obtained by rotating the curve from 
Exercise 47 about the x-axis. Does your answer agree with 
the one given by geometric formulas?

 49.   Use the Second Theorem of Pappus described in Exercise 48 to 
find the surface area of the torus in Example 7.

 50.   Let 5 be the region that lies between the curves

y − x m  y − x n  0 < x < 1 

where m and n are integers with 0 < n , m.
 (a) Sketch the region 5.
 (b) Find the coordinates of the centroid of 5.
 (c)  Try to find values of m and n such that the centroid lies 

outside 5.

 51. Prove Formulas 9.
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In this section we consider some applications of integration to economics (consumer 
surplus) and biology (blood flow, cardiac output). Others are described in the exercises.

Consumer Surplus
Recall from Section 4.7 that the demand function psxd is the price that a company has to 
charge in order to sell x units of a commodity. Usually, selling larger quantities requires 
lowering prices, so the demand function is a decreasing function. The graph of a typical 
demand function, called a demand curve, is shown in Figure 1. If X is the amount of the 
commodity that can currently be sold, then P − psXd is the current selling price.

At a given price, some consumers who buy a good would be willing to pay more; they 
benefit by not having to. The difference between what a consumer is willing to pay and 
what the consumer actually pays for a good is called the consumer surplus. By finding 
the total consumer surplus among all purchasers of a good, economists can assess the 
overall benefit of a market to society. 

To determine the total consumer surplus, we look at the demand curve and divide the 
interval f0, Xg into n subintervals, each of length Dx − Xyn, and let xi* − xi be the right 
endpoint of the ith subinterval, as in Figure 2. According to the demand curve, xi21 units 
would be purchased at a price of psxi21d dollars per unit. To increase sales to xi units, 
the price would have to be lowered to psxid dollars. In this case, an additional Dx units 
would be sold (but no more). In general, the consumers who would have paid psxid dol-
lars placed a high value on the product; they would have paid what it was worth to them. 
So in paying only P dollars they have saved an amount of

ssavings per unitdsnumber of unitsd − fpsxid 2 Pg Dx

Considering similar groups of willing consumers for each of the subintervals and adding 
the savings, we get the total savings:

o
n

i−1
 fpsxid 2 Pg Dx

(This sum corresponds to the area enclosed by the rectangles in Figure 2.) If we let 
n l `, this Riemann sum approaches the integral

yX

0
 fpsxd 2 Pg dx

which economists call the consumer surplus for the commodity.
The consumer surplus represents the amount of money saved by consumers in pur-

chasing the commodity at price P, corresponding to an amount demanded of X. Figure 3 
shows the interpretation of the consumer surplus as the area under the demand curve and 
above the line p − P.

EXAMPLE 1  The demand for a product, in dollars, is

p − 1200 2 0.2x 2 0.0001x 2

Find the consumer surplus when the sales level is 500.

SOLUTION  Since the number of products sold is X − 500, the corresponding price is

P − 1200 2 s0.2ds500d 2 s0.0001ds500d2 − 1075

FIGURE 1 
A typical demand curve
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570 CHAPTER 8  Further Applications of Integration

Therefore, from Definition 1, the consumer surplus is

 y500

0
 fpsxd 2 Pg dx − y500

0
 s1200 2 0.2x 2 0.0001x 2 2 1075d dx

 − y500

0
 s125 2 0.2x 2 0.0001x 2 d dx

 − 125x 2 0.1x 2 2 s0.0001dS x 3

3 DG0

500

 − s125ds500d 2 s0.1ds500d2 2
s0.0001ds500d3

3

  − $33,333.33  Q

Blood Flow
In Example 3.7.7 we discussed the law of laminar flow:

vsrd −
P

4%l
 sR2 2 r 2 d

which gives the velocity v of blood that flows along a blood vessel with radius R and 
length l at a distance r from the central axis, where P is the pressure difference between 
the ends of the vessel and % is the viscosity of the blood. Now, in order to compute the 
rate of blood flow, or flux (volume per unit time), we consider smaller, equally spaced 
radii r1, r2, . . . . The approximate area of the ring (or washer) with inner radius ri21 and 
outer radius ri is

 2$ri Dr    where  Dr − ri 2 ri21

(See Figure 4.) If Dr is small, then the velocity is almost constant throughout this ring 
and can be approximated by vsrid. Thus the volume of blood per unit time that flows 
across the ring is approximately

 s2$ri Drd vsrid − 2$ri vsrid Dr

and the total volume of blood that flows across a cross-section per unit time is about

 o
n

i−1
 2$ri vsrid Dr

This approximation is illustrated in Figure 5. Notice that the velocity (and hence the 
volume per unit time) increases toward the center of the blood vessel. The approximation 
gets better as n increases. When we take the limit we get the exact value of the flux (or 
discharge), which is the volume of blood that passes a cross-section per unit time:

 F − lim
nl `

 o
n

i−1
 2$ri vsrid Dr − yR

0
 2$r vsrd dr

 − yR

0
 2$r 

P
4%l

 sR2 2 r 2 d dr

 −
$P
2%l

 yR

0
 sR2r 2 r 3 d dr −

$P
2%l

 FR2 
r 2

2
2

r 4

4 Gr−0

r−R

 −
$P
2%l

 FR4

2
2

R4

4 G −
$PR4

8%l

Îr

ri

FIGURE 4 

FIGURE 5 
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The resulting equation

F −
$PR4

8%l

is called Poiseuille’s Law; it shows that the flux is proportional to the fourth power of 
the radius of the blood vessel.

Cardiac Output
Figure 6 shows the human cardiovascular system. Blood returns from the body through 
the veins, enters the right atrium of the heart, and is pumped to the lungs through the 
pulmonary arteries for oxygenation. It then flows back into the left atrium through the 
pulmo nary veins and then out to the rest of the body through the aorta. The cardiac 
output of the heart is the volume of blood pumped by the heart per unit time, that is, the 
rate of flow into the aorta.

The dye dilution method is used to measure the cardiac output. Dye is injected into the 
right atrium and flows through the heart into the aorta. A probe inserted into the aorta mea-
sures the concentration of the dye leaving the heart at equally spaced times over a time  
interval f0, T g until the dye has cleared. Let cstd be the concentration of the dye at time t. 
If we divide f0, T g into subintervals of equal length Dt, then the amount of dye that flows 
past the measuring point during the subinterval from t − ti21 to t − ti is approximately

sconcentrationdsvolumed − cstidsF Dtd

where F is the rate of flow that we are trying to determine. Thus the total amount of dye 
is approximately

 o
n

i−1
cstidF Dt − F o

n

i−1
cstid Dt

and, letting n l `, we find that the amount of dye is

 A − F yT

0
 cstd dt

Thus the cardiac output is given by

F −
A

yT

0
 cstd dt

where the amount of dye A is known and the integral can be approximated from the 
concentration readings.

EXAMPLE 2 A 5-mg bolus of dye is injected into a right atrium. The concentration 
of the dye (in milligrams per liter) is measured in the aorta at one-second intervals as 
shown in the table. Estimate the cardiac output.

SOLUTION Here A − 5, Dt − 1, and T − 10. We use Simpson’s Rule to approximate 
the integral of the concentration:

 y10

0
 cstd dt < 1

3 f0 1 4s0.4d 1 2s2.8d 1 4s6.5d 1 2s9.8d 1 4s8.9d

1 2s6.1d 1 4s4.0d 1 2s2.3d 1 4s1.1d 1 0g

 < 41.87

2

aorta
vein

right
atrium

pulmonary
arteries

left
atrium

pulmonary
veins

pulmonary
veins

vein

pulmonary
arteries

FIGURE 6 

3

t cstd t cstd

0 0 6 6.1
1 0.4 7 4.0
2 2.8 8 2.3
3 6.5 9 1.1
4 9.8 10 0
5 8.9
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Thus Formula 3 gives the cardiac output to be

  F −
A

y10

0  cstd dt
<

5
41.87

< 0.12 Lys − 7.2 Lymin Q

 1.   The marginal cost function C9sxd was defined to be the deriva-
tive of the cost function. (See Sections 3.7 and 4.7.) The mar-
ginal cost of producing x gallons of orange juice is 

C9sxd − 0.82 2 0.00003x 1 0.000000003x 2 

 (measured in dollars per gallon). The fixed start-up cost is 
Cs0d − $18,000. Use the Net Change Theorem to find the cost 
of producing the first 4000 gallons of juice.

 2.   A company estimates that the marginal revenue (in dollars per 
unit) realized by selling x units of a product is 48 2 0.0012x. 
Assuming the estimate is accurate, find the increase in revenue 
if sales increase from 5000 units to 10,000 units.

 3.   A mining company estimates that the marginal cost of extrac t- 
ing x tons of copper ore from a mine is 0.6 1 0.008x, mea-
sured in thousands of dollars per ton. Start-up costs are 
$100,000. What is the cost of extracting the first 50 tons of  
copper? What about the next 50 tons?

 4.   The demand function for a particular vacation package is 
psxd − 2000 2 46sx . Find the consumer surplus when the 
sales level for the packages is 400. Illustrate by drawing the 
demand curve and identifying the consumer surplus as an area.

 5.   A demand curve is given by p − 450ysx 1 8d. Find the con- 
sumer surplus when the selling price is $10.

 6.   The supply function pSsxd for a commodity gives the relation 
between the selling price and the number of units that manufac-
turers will produce at that price. For a higher price, manufac-
turers will produce more units, so pS is an increasing function 
of x. Let X be the amount of the commodity currently produced 
and let P − pSsX d be the current price. Some pro ducers would 
be willing to make and sell the commodity for a lower selling 
price and are therefore receiving more than their minimal price. 
The excess is called the producer surplus. An argument simi-
lar to that for consumer surplus shows that the surplus is given 
by the integral

yX

0
 fP 2 pSsxdg dx

Calculate the producer surplus for the supply function 
pSsxd − 3 1 0.01x 2 at the sales level X − 10. Illustrate by 
drawing the supply curve and identifying the producer surplus 
as an area.

 7.   If a supply curve is modeled by the equation 
p − 125 1 0.002x 2, find the producer surplus when the 
selling price is $625.

 8.   In a purely competitive market, the price of a good is 
naturally driven to the value where the quantity demanded 
by consumers matches the quantity made by producers, and 
the market is said to be in equilibrium. These values are the 
coordinates of the point of intersection of the supply and 
demand curves.

 (a)  Given the demand curve p − 50 2 1
20 x and the supply 

curve p − 20 1 1
10 x for a good, at what quantity and 

price is the market for the good in equilibrium?
 (b)  Find the consumer surplus and the producer surplus 

when the market is in equilibrium. Illustrate by sketch-
ing the supply and demand curves and identifying the 
surpluses as areas.

 9.   The sum of consumer surplus and producer surplus is called 
the total surplus; it is one measure economists use as an 
indicator of the economic health of a society. Total surplus 
is maximized when the market for a good is in equilibrium.

 (a)  The demand function for an electronics company’s 
car stereos is psxd − 228.4 2 18x and the supply 
function is pS sxd − 27x 1 57.4, where x is measured in 
thousands. At what quantity is the market for the stereos 
in equilibrium?

 (b)  Compute the maximum total surplus for the stereos.

 10.   A camera company estimates that the demand function for 
its new digital camera is psxd − 312e20.14x and the supply 
function is estimated to be pSsxd − 26e0.2x, where x is mea-
sured in thousands. Compute the maximum total surplus.

 11.  A company modeled the demand curve for its product (in 
dollars) by the equation

p −
800,000e2xy5000

x 1 20,000

Use a graph to estimate the sales level when the selling 
price is $16. Then find (approximately) the consumer sur-
plus for this sales level.

 12.   A movie theater has been charging $10.00 per person and 
selling about 500 tickets on a typical weeknight. After sur-
veying their customers, the theater management estimates 
that for every 50 cents that they lower the price, the number 

;
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of movie goers will increase by 50 per night. Find the demand 
function and calculate the consumer surplus when the tickets 
are priced at $8.00.

 13.   If the amount of capital that a company has at time t is f std, 
then the derivative, f 9std, is called the net investment flow. Sup-
pose that the net investment flow is st  

 

 million dollars per year 
(where t is measured in years). Find the increase in capital (the 
capital formation) from the fourth year to the eighth year. 

 14.   If revenue flows into a company at a rate of 
f std − 9000s1 1 2t , where t is measured in years and 
f std is measured in dollars per year, find the total revenue 
obtained in the first four years.

 15.   If income is continuously collected at a rate of f std dollars per 
year and will be invested at a constant interest rate r (com-
pounded continuously) for a period of T years, then the future 
value of the income is given by yT

0  f std ersT2td dt. Compute 
the future value after 6 years for income received at a rate of 
f std − 8000 e0.04 t dollars per year and invested at 6.2% interest.

 16.   The present value of an income stream is the amount that 
would need to be invested now to match the future value as 
described in Exercise 15 and is given by yT

0  f std e2rt dt. Find the 
present value of the income stream in Exercise 15.

 17.   Pareto’s Law of Income states that the number of people with 
incomes between x − a and x − b is N − yb

a  Ax2k dx, where A 
and k are constants with A . 0 and k . 1. The average income 
of these people is

x −
1
N

 yb

a
 Ax 12k dx

Calculate x.

 18.   A hot, wet summer is causing a mosquito population explosion 
in a lake resort area. The number of mosquitoes is increasing at 
an estimated rate of 2200 1 10e0.8 t per week (where t is mea-
sured in weeks). By how much does the mosquito population 
increase between the fifth and ninth weeks of summer?

 19.   Use Poiseuille’s Law to calculate the rate of flow in a small 
human artery where we can take % − 0.027, R − 0.008 cm, 
l − 2 cm, and P − 4000 dynesycm2.

 20.   High blood pressure results from constriction of the arteries. 
To maintain a normal flow rate (flux), the heart has to pump 
harder, thus increasing the blood pressure. Use Poiseuille’s 
Law to show that if R0 and P0 are normal values of the radius 
and pressure in an artery and the constricted values are R and P, 
then for the flux to remain constant, P and R are related by the 
equation

P
P0

− SR0

R D4

Deduce that if the radius of an artery is reduced to three-fourths 
of its former value, then the pressure is more than tripled.

 21.   The dye dilution method is used to measure cardiac output with 
6 mg of dye. The dye concentrations, in mgyL, are modeled by 
cstd − 20te20.6 t, 0 < t < 10, where t is measured in seconds. 
Find the cardiac output.

 22.   After a 5.5-mg injection of dye, the readings of dye concen-
tra tion, in mgyL, at two-second intervals are as shown in the 
table. Use Simpson’s Rule to estimate the cardiac output.

t cstd t cstd
0 0.0 10 4.3
2 4.1 12 2.5
4 8.9 14 1.2
6 8.5 16 0.2
8 6.7

 23.   The graph of the concentration function cs td is shown after 
a 7-mg injection of dye into a heart. Use Simpson’s Rule to 
estimate the cardiac output.

0

y
(mg/L)

t (seconds)

4

6

2

4 102 8 14126

Calculus plays a role in the analysis of random behavior. Suppose we consider the 
choles terol level of a person chosen at random from a certain age group, or the height 
of an adult female chosen at random, or the lifetime of a randomly chosen battery of a 
certain type. Such quantities are called continuous random variables because their 
values actually range over an interval of real numbers, although they might be measured 
or recorded only to the nearest integer. We might want to know the probability that a 
blood cholesterol level is greater than 250, or the probability that the height of an adult 
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574 CHAPTER 8  Further Applications of Integration

female is between 60 and 70 inches, or the probability that the battery we are buying lasts 
between 100 and 200 hours. If X represents the lifetime of that type of battery, we denote 
this last probability as follows:

Ps100 < X < 200d

According to the frequency interpretation of probability, this number is the long-run 
proportion of all batteries of the specified type whose lifetimes are between 100 and 200 
hours. Since it represents a proportion, the probability naturally falls between 0 and 1.

Every continuous random variable X has a probability density function f. This 
means that the probability that X lies between a and b is found by integrating f  from a 
to b:

Psa < X < bd − yb

a
 f sxd dx

For example, Figure 1 shows the graph of a model for the probability density func-
tion f  for a random variable X defined to be the height in inches of an adult female in 
the United States (according to data from the National Health Survey). The probability 
that the height of a woman chosen at random from this population is between 60 and 70 
inches is equal to the area under the graph of f  from 60 to 70.

x

y

0 6560 70

y=ƒ

area=probability that the
height of a woman
is between 60 and
70 inches

In general, the probability density function f  of a random variable X satisfies the con-
di tion f sxd > 0 for all x. Because probabilities are measured on a scale from 0 to 1, it 
follows that

y`

2`
 f sxd dx − 1

EXAMPLE 1  Let f sxd − 0.006xs10 2 xd for 0 < x < 10 and f sxd − 0 for all other  
values of x.
(a) Verify that f  is a probability density function.
(b) Find Ps4 < X < 8d.

SOLUTION
(a) For 0 < x < 10 we have 0.006xs10 2 xd > 0, so f sxd > 0 for all x. We also need 
to check that Equation 2 is satisfied:

 y`

2`
 f sxd dx − y10

0
 0.006xs10 2 xd dx − 0.006 y10

0
 s10x 2 x 2d dx

 − 0.006f5x 2 2 1
3 x 3g0

10
− 0.006(500 2 1000

3 ) − 1

Therefore f  is a probability density function.

Note that we always use intervals of 
values when working with probability 
density functions. We wouldn’t, for 
instance, use a density function to find 
the probability that X equals a. 1

FIGURE 1  
Probability density function for  

the height of an adult female

2
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(b) The probability that X lies between 4 and 8 is 

Ps4 < X < 8d − y8

4
 f sxd dx − 0.006 y8

4
 s10x 2 x 2d dx

  − 0.006f5x 2 2 1
3 x 3g4

8
− 0.544 Q

EXAMPLE 2  Phenomena such as waiting times and equipment failure times are com-
monly modeled by exponentially decreasing probability density functions. Find the 
exact form of such a function.

SOLUTION Think of the random variable as being the time you wait on hold before 
an agent of a company you’re telephoning answers your call. So instead of x, let’s use 
t to represent time, in minutes. If f  is the probability density function and you call at 
time t − 0, then, from Definition 1, y 2

0 f std dt represents the probability that an agent 
answers within the first two minutes and y5

4 f std dt is the probability that your call is 
answered during the fifth minute.

It’s clear that f std − 0 for t , 0 (the agent can’t answer before you place the call). 
For t . 0 we are told to use an exponentially decreasing function, that is, a function of 
the form f std − Ae2ct, where A and c are positive constants. Thus

f std − H0
Ae2ct

if t , 0
if t > 0

We use Equation 2 to determine the value of A:

 1 − y`

2`
 f std dt − y0

2`
 f std dt 1 y`

0
 f std dt

 − y`

0
 Ae2ctdt − lim

x l `
 yx

0
 Ae2ct dt

 − lim
x l `

 F2
A
c

 e2ctG
0

x

− lim
x l `

 A
c

 s1 2 e2cx d

 −
A
c

Therefore Ayc − 1 and so A − c. Thus every exponential density function has the form

f std − H0
ce2ct

if t , 0
if t > 0

A typical graph is shown in Figure 2. Q

Average Values
Suppose you’re waiting for a company to answer your phone call and you wonder how 
long, on average, you can expect to wait. Let f std be the corresponding density function, 
where t is measured in minutes, and think of a sample of N people who have called this 
company. Most likely, none of them had to wait more than an hour, so let’s restrict our 
attention to the interval 0 < t < 60. Let’s divide that interval into n intervals of length 

FIGURE 2  
An exponential density function

0

f(t)= 0
ce_ct

if t<0
if t˘0

t

y

c
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Dt and endpoints 0, t1, t2, . . . , tn − 60. (Think of Dt as lasting a minute, or half a minute, 
or 10 seconds, or even a second.) The probability that somebody’s call gets answered 
during the time period from ti21 to ti is the area under the curve y − f std from ti21 to ti, 
which is approximately equal to f stid Dt. (This is the area of the approximating rectangle 
in Fig ure 3, where ti is the midpoint of the interval.)

Since the long-run proportion of calls that get answered in the time period from ti21 
to ti is f stid Dt, we expect that, out of our sample of N callers, the number whose call 
was answered in that time period is approximately N f s tid Dt and the time that each 
waited is about ti. Therefore the total time they waited is the product of these numbers: 
approximately tifN f stid Dtg. Adding over all such intervals, we get the approximate total 
of everybody’s waiting times:

o
n

i−1
 N ti f stid Dt

If we now divide by the number of callers N, we get the approximate average waiting 
time:

o
n

i−1
 ti f stid Dt

We recognize this as a Riemann sum for the function t f std. As the time interval shrinks 
(that is, Dt l 0 and n l `), this Riemann sum approaches the integral

y60

0
 t f std dt

This integral is called the mean waiting time.
In general, the mean of any probability density function f  is defined to be

! − y`

2`
 x  f sxd dx

The mean can be interpreted as the long-run average value of the random variable X. 
It can also be interpreted as a measure of centrality of the probability density function.

The expression for the mean resembles an integral we have seen before. If 5 is the  
region that lies under the graph of f, we know from Formula 8.3.8 that the x-coordinate 
of the centroid of 5 is

x −
y`

2`
 x  f sxd dx

y`

2`
 f sxd dx

− y`

2`
 x  f sxd dx − !

because of Equation 2. So a thin plate in the shape of 5 balances at a point on the vertical 
line x − !. (See Figure 4.)

EXAMPLE 3  Find the mean of the exponential distribution of Example 2:

f std − H0
ce2ct

if t , 0
if t > 0

SOLUTION According to the definition of a mean, we have

! − y`

2`
 t f std dt − y`

0
 tce2ct dt

FIGURE 3 

0 t ti
ti

y=f(t )

t

y

Ît

ti-1

It is traditional to denote the mean by 
the Greek letter ! (mu).

FIGURE 4  
5 balances at a point on the line x − !

0 m

y=ƒ
x=m

T

t

y
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To evaluate this integral we use integration by parts, with u − t and dv − ce2ct dt, so 
du − dt and v − 2e2ct:

 y`

0
 tce2ct dt − lim

x l `
 y x

0
 tce2ct dt − lim

x l `
 S2te2ctgx

0
1 yx

0
 e2ct dtD

 − lim
x l `

S2xe2cx 1
1
c

2
e2cx

c D −
1
c

The mean is & − 1yc, so we can rewrite the probability density function as

 f std − H0
&21e2ty&

if t , 0
if t > 0

 Q

EXAMPLE 4  Suppose the average waiting time for a customer’s call to be answered  
by a company representative is five minutes.
(a) Find the probability that a call is answered during the first minute, assuming that an 
exponential distribution is appropriate.
(b) Find the probability that a customer waits more than five minutes to be answered.

SOLUTION
(a) We are given that the mean of the exponential distribution is & − 5 min and so, 
from the result of Example 3, we know that the probability density function is 

f std − H0
0.2e2ty5

if t , 0
if t > 0

where t is measured in minutes. Thus the probability that a call is answered during the 
first minute is

 Ps0 < T < 1d − y1

0
 f std dt

 − y1

0
 0.2e2ty5 dt − 0.2s25de2ty5g 0

1

 − 1 2 e21y5 < 0.1813

So about 18% of customers’ calls are answered during the first minute.

(b) The probability that a customer waits more than five minutes is

 PsT . 5d − y`

5
 f std dt − y`

5
 0.2e2ty5 dt

 − lim
x l `

 y x

5
 0.2e2ty5 dt − lim

x  l `
 se21 2 e2xy5 d

 −
1
e

2 0 < 0.368

About 37% of customers wait more than five minutes before their calls are answered. 
 Q

The limit of the first term is 0 by  
l’Hospital’s Rule.
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578 CHAPTER 8  Further Applications of Integration

Notice the result of Example 4(b): Even though the mean waiting time is 5 minutes, 
only 37% of callers wait more than 5 minutes. The reason is that some callers have to 
wait much longer (maybe 10 or 15 minutes), and this brings up the average.

Another measure of centrality of a probability density function is the median. That is 
a number m such that half the callers have a waiting time less than m and the other call-
ers have a waiting time longer than m. In general, the median of a probability density 
function is the number m such that

y`

m
 f sxd dx − 1

2

This means that half the area under the graph of f  lies to the right of m. In Exercise 9 you 
are asked to show that the median waiting time for the company described in Example 4 
is approximately 3.5 minutes.

Normal Distributions
Many important random phenomena—such as test scores on aptitude tests, heights and 
weights of individuals from a homogeneous population, annual rainfall in a given loca-
tion—are modeled by a normal distribution. This means that the probability density 
function of the random variable X is a member of the family of functions

f sxd −
1

's2$   e
2sx2&d2ys2' 2d

You can verify that the mean for this function is &. The positive constant ' is called 
the stan dard deviation; it measures how spread out the values of X are. From the bell-
shaped graphs of members of the family in Figure 5, we see that for small values of ' 
the values of X are clustered about the mean, whereas for larger values of ' the values 
of X are more spread out. Statisticians have methods for using sets of data to estimate 
& and '.

x

y

0 m

1
2

s=2
s=1

s=

The factor 1ys's2$  d is needed to make f  a probability density function. In fact, it 
can be verified using the methods of multivariable calculus that

y`

2`
 

1
's2$   e

2sx2&d2ys2' 2d 

dx − 1

EXAMPLE 5  Intelligence Quotient (IQ) scores are distributed normally with mean  
100 and standard deviation 15. (Figure 6 shows the corresponding probability density 
function.)
(a) What percentage of the population has an IQ score between 85 and 115?
(b) What percentage of the population has an IQ above 140?

3

The standard deviation is denoted by 
the lowercase Greek letter ' (sigma).

FIGURE 5  
Normal distributions

x

y

0 60

0.01

80 100 120 140

0.02

FIGURE 6
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SOLUTION
(a) Since IQ scores are normally distributed, we use the probability density function 
given by Equation 3 with & − 100 and ' − 15:

Ps85 < X < 115d − y115

85
 

1
15s2$   e

2sx2100d 2ys2?15 2d 
dx

Recall from Section 7.5 that the function y − e2x 2
 doesn’t have an elementary anti- 

derivative, so we can’t evaluate the integral exactly. But we can use the numerical  
integration capability of a calculator or computer (or the Midpoint Rule or Simpson’s 
Rule) to estimate the integral. Doing so, we find that

Ps85 < X < 115d < 0.68

So about 68% of the population has an IQ score between 85 and 115, that is, within one 
standard deviation of the mean.

(b) The probability that the IQ score of a person chosen at random is more than 140 is

PsX . 140d − y`

140
 

1
15s2$   e

2sx2100d2y450 dx

To avoid the improper integral we could approximate it by the integral from 140 to 200. 
(It’s quite safe to say that people with an IQ over 200 are extremely rare.) Then

PsX . 140d < y200

140
 

1
15s2$   e

2sx2100d2y450 dx < 0.0038

Therefore about 0.4% of the population has an IQ score over 140. Q

 1.   Let f sxd be the probability density function for the lifetime of a 
manufacturer’s highest quality car tire, where x is measured in 
miles. Explain the meaning of each integral.

 (a) y40,000

30,000
 f sxd dx (b) y`

25,000
 f sxd dx

 2.   Let f std be the probability density function for the time it takes 
you to drive to school in the morning, where t is measured in 
minutes. Express the following probabilities as integrals.

 (a)  The probability that you drive to school in less than  
15 minutes

 (b)  The probability that it takes you more than half an hour to 
get to school

 3.   Let f sxd − 30x 2s1 2 xd2 for 0 < x < 1 and f sxd − 0 for all 
other values of x.

 (a)  Verify that f  is a probability density function.
 (b)  Find P(X < 1

3).

 4.   The density function 

f sxd −
e32x

s1 1 e32xd2

  is an example of a logistic distribution.
 (a)  Verify that f  is a probability density function.
 (b)  Find P(3 < X < 4d.
 (c)  Graph f. What does the mean appear to be? What about 

the median?

 5.   Let f sxd − cys1 1 x 2d.
 (a)  For what value of c is f  a probability density function?
 (b)  For that value of c, find Ps21 , X , 1d.

 6.   Let f sxd − ks3x 2 x 2d if 0 < x < 3 and f sxd − 0 if x , 0  
or x . 3.

 (a)  For what value of k is f  a probability density function?
 (b)  For that value of k, find PsX . 1d.
 (c) Find the mean.

;
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580 CHAPTER 8  Further Applications of Integration

 7.   A spinner from a board game randomly indicates a real number 
between 0 and 10. The spinner is fair in the sense that it indi-
cates a number in a given interval with the same probability as 
it indicates a number in any other interval of the same length.

 (a) Explain why the function

f sxd − H0.1
0

if 0 < x < 10
if x , 0 or x . 10

is a probability density function for the spinner’s values.
 (b)  What does your intuition tell you about the value of the 

mean? Check your guess by evaluating an integral.

 8.  (a)  Explain why the function whose graph is shown is a proba-
bility density function.

 (b) Use the graph to find the following probabilities:
 (i) PsX , 3d (ii) Ps3 < X < 8d

 (c) Calculate the mean.

y=ƒ

4 6 8 10 x

y

0 2

0.1
0.2

 9.   Show that the median waiting time for a phone call to the com-
pany described in Example 4 is about 3.5 minutes.

 10.  (a)  A type of light bulb is labeled as having an average lifetime 
of 1000 hours. It’s reasonable to model the probability of 
failure of these bulbs by an exponential density function 
with mean ! − 1000. Use this model to find the probabil-
ity that a bulb

 (i) fails within the first 200 hours,
 (ii) burns for more than 800 hours.

 (b) What is the median lifetime of these light bulbs?

 11.   An online retailer has determined that the average time for 
credit card transactions to be electronically approved is  
1.6 seconds. 

 (a)  Use an exponential density function to find the probability 
that a customer waits less than a second for credit card 
approval.

 (b)  Find the probability that a customer waits more than  
3 seconds.

 (c)  What is the minimum approval time for the slowest 5% of 
transactions?

 12.   The time between infection and the display of symptoms 
for streptococcal sore throat is a random variable whose 
probabililty density function can be approximated by 
f std − 1

15,676 t 2e20.05 t if 0 < t < 150 and f std − 0 otherwise  
(t measured in hours).

 (a)    What is the probability that an infected patient will display 
symptoms within the first 48 hours?

 (b)  What is the probability that an infected patient will not 
display symptoms until after 36 hours?

Source: Adapted from P. Sartwell, “The Distribution of Incubation Periods of 
Infectious Disease,” American Journal of Epidemiology 141 (1995): 386–94.

 13.   REM sleep is the phase of sleep when most active dreaming 
occurs. In a study, the amount of REM sleep during the first 
four hours of sleep was described by a random variable T with 
probability density function

f std − µ 1
1600 t          if 0 < t < 40
1
20 2 1

1600 t if 40 , t < 80

 0           otherwise

where t is measured in minutes.
 (a)  What is the probability that the amount of REM sleep is 

between 30 and 60 minutes?
 (b)  Find the mean amount of REM sleep.

 14.   According to the National Health Survey, the heights of adult 
males in the United States are normally distributed with mean 
69.0 inches and standard deviation 2.8 inches.

 (a)  What is the probability that an adult male chosen at ran-
dom is between 65 inches and 73 inches tall?

 (b)  What percentage of the adult male population is more than 
6 feet tall?

 15.   The “Garbage Project” at the University of Arizona reports  
that the amount of paper discarded by households per week is 
normally distributed with mean 9.4 lb and standard deviation 
4.2 lb. What percentage of households throw out at least 10 lb 
of paper a week?

 16.   Boxes are labeled as containing 500 g of cereal. The machine 
filling the boxes produces weights that are nor mally distributed 
with standard deviation 12 g.

 (a)  If the target weight is 500 g, what is the probability that the 
machine produces a box with less than 480 g of cereal?

 (b)  Suppose a law states that no more than 5% of a manufac-
turer’s cereal boxes can contain less than the stated weight 
of 500 g. At what target weight should the manufacturer set 
its filling machine?

 17.   The speeds of vehicles on a highway with speed limit 
100 kmyh are normally distributed with mean 112 kmyh and 
standard deviation 8 kmyh.

 (a)  What is the probability that a randomly chosen vehicle is 
traveling at a legal speed?

 (b)  If police are instructed to ticket motorists driving 
125 kmyh or more, what percentage of motorists are 
targeted?

 18.   Show that the probability density function for a normally dis-
tributed random variable has inflection points at x − ! 6 ".

 19.   For any normal distribution, find the probability that the ran-
dom variable lies within two standard deviations of the mean.
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 20.   The standard deviation for a random variable with probability 
density function f  and mean ! is defined by

" − Fy`

2`
 sx 2 !d2 f sxd dxG1y2

Find the standard deviation for an exponential density func-
tion with mean !.

 21.   The hydrogen atom is composed of one proton in the nucleus 
and one electron, which moves about the nucleus. In the 
quantum theory of atomic structure, it is assumed that the 
electron does not move in a well-defined orbit. Instead, it 
occupies a state known as an orbital, which may be thought 
of as a “cloud” of negative charge surrounding the nucleus. 
At the state of lowest energy, called the ground state, or 
1s-orbital, the shape of this cloud is assumed to be a sphere 
centered at the nucleus. This sphere is described in terms of 

 1.  (a) How is the length of a curve defined?
 (b)  Write an expression for the length of a smooth curve 

given by y − f sxd, a < x < b.
 (c)  What if x is given as a function of y?

 2.  (a)  Write an expression for the surface area of the surface 
obtained by rotating the curve y − f sxd, a < x < b, 
about the x-axis.

 (b)  What if x is given as a function of y?
 (c)  What if the curve is rotated about the y-axis?

 3.   Describe how we can find the hydrostatic force against a 
vertical wall submersed in a fluid.

 4.  (a)  What is the physical significance of the center of mass of 
a thin plate?

 (b)  If the plate lies between y − f sxd and y − 0, where 
a < x < b, write expressions for the coordinates of the 
center of mass.

 5.  What does the Theorem of Pappus say?

the probability density function

psrd −   
4
a0

3  r 2e22rya0  r > 0

where a0 is the Bohr radius sa0 < 5.59 3 10211 md. The integral

Psrd − yr

0
 

4
a0

3  s 2e22sya0 ds

gives the probability that the electron will be found within the 
sphere of radius r meters centered at the nucleus.

 (a) Verify that psrd is a probability density function.
 (b)  Find limr l ` psrd. For what value of r does psrd have its 

maximum value?
 (c) Graph the density function.
 (d)  Find the probability that the electron will be within the 

sphere of radius 4a0 centered at the nucleus.
 (e)  Calculate the mean distance of the electron from the 

nucleus in the ground state of the hydrogen atom.

;

 6.   Given a demand function psxd, explain what is meant by the 
consumer surplus when the amount of a commodity currently 
available is X and the current selling price is P. Illustrate with  
a sketch.

 7.  (a) What is the cardiac output of the heart?
 (b)  Explain how the cardiac output can be measured by the dye 

dilution method.

 8.   What is a probability density function? What properties does 
such a function have?

 9.   Suppose f sxd is the probability density function for the weight 
of a female college student, where x is measured in pounds.

 (a) What is the meaning of the integral y130
0  f sxd dx?

 (b)  Write an expression for the mean of this density function.
 (c)  How can we find the median of this density function?

 10.   What is a normal distribution? What is the significance of the 
standard deviation?

8 REVIEW

CONCEPT CHECK Answers to the Concept Check can be found on the back endpapers.

1–3 Find the length of the curve.

 1.  y − 4sx 2 1d3y2,  1 < x < 4

 2.  y − 2 lnssin 1
2 xd,  #y3 < x < #

 3.  12x − 4y3 1 3y21,  1 < y < 3

 4.  (a) Find the length of the curve

y −
x 4

16
1

1
2x 2     1 < x < 2

 (b)  Find the area of the surface obtained by rotating the curve in 
part (a) about the y-axis.

EXERCISES
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582 CHAPTER 8  Further Applications of Integration

15–16 Find the centroid of the region bounded by the given 
curves.

 15.  y − 1
2 x,  y − sx  

 16.  y − sin x,  y − 0,  x − !y4,  x − 3!y4

 17.   Find the volume obtained when the circle of radius 1 with  
center s1, 0d is rotated about the y-axis.

 18.   Use the Theorem of Pappus and the fact that the volume of  
a sphere of radius r is 43!r 3 to find the centroid of the semi - 
circular region bounded by the curve y − sr 2 2 x 2  and  
the x-axis.

 19.   The demand function for a commodity is given by

p − 2000 2 0.1x 2 0.01x 2

Find the consumer surplus when the sales level is 100.

 20.   After a 6-mg injection of dye into a heart, the readings of  
dye concentration at two-second intervals are as shown in  
the table. Use Simpson’s Rule to estimate the cardiac output.

t cstd t cstd

 0 0 14 4.7
 2 1.9 16 3.3
 4 3.3 18 2.1
 6 5.1 20 1.1
 8 7.6 22 0.5
10 7.1 24 0
12 5.8

 21.  (a) Explain why the function

f sxd − H !

20
 sinS!x

10 D  if 0 < x < 10

0  if x , 0 or x . 10

is a probability density function.
 (b) Find PsX , 4d.
 (c)  Calculate the mean. Is the value what you would expect?

 22.   Lengths of human pregnancies are normally distributed with 
mean 268 days and standard deviation 15 days. What per cen t-
age of pregnancies last between 250 days and 280 days?

 23.   The length of time spent waiting in line at a certain bank is  
modeled by an exponential density function with mean  
8 minutes.

 (a)  What is the probability that a customer is served in the 
first 3 minutes?

 (b)  What is the probability that a customer has to wait more 
than 10 minutes?

 (c)  What is the median waiting time?

 5.  Let C be the arc of the curve y − 2ysx 1 1d from the point 
s0, 2d to (3, 12). Use a calculator or other device to find the 
value of each of the following, correct to four decimal places.

 (a)  The length of C
 (b)  The area of the surface obtained by rotating C about the  

x-axis
 (c)  The area of the surface obtained by rotating C about the  

y-axis

 6.  (a)  The curve y − x 2, 0 < x < 1, is rotated about the  
y-axis. Find the area of the resulting surface.

 (b)  Find the area of the surface obtained by rotating the 
curve in part (a) about the x-axis.

 7.   Use Simpson’s Rule with n − 10 to estimate the length of 
the sine curve y − sin x, 0 < x < !.

 8.   Use Simpson’s Rule with n − 10 to estimate the area of the  
surface obtained by rotating the sine curve in Exercise 7 
about the x-axis.

 9.  Find the length of the curve

y − yx

1
 sst  2 1  dt    1 < x < 16

 10.   Find the area of the surface obtained by rotating the curve in 
Exercise 9 about the y-axis.

 11.   A gate in an irrigation canal is constructed in the form of a 
trapezoid 3 ft wide at the bottom, 5 ft wide at the top, and  
2 ft high. It is placed vertically in the canal so that the water 
just covers the gate. Find the hydrostatic force on one side 
of the gate.

 12.   A trough is filled with water and its vertical ends have the 
shape of the parabolic region in the figure. Find the hydro-
static force on one end of the trough.

4 ft

8 ft

13–14 Find the centroid of the region shown.

 13. 
(4, 2)

x

y

0  

14.

 

x

y

0

8

_8

8

 

;
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Problems Plus  1.   Find the area of the region S − hsx, yd | x > 0, y < 1, x 2 1 y 2 < 4yj.

 2.  Find the centroid of the region enclosed by the loop of the curve y 2 − x 3 2 x 4.

 3.   If a sphere of radius r is sliced by a plane whose distance from the center of the sphere is d, 
then the sphere is divided into two pieces called segments of one base (see the first figure). 
The corresponding surfaces are called spherical zones of one base.

 (a) Determine the surface areas of the two spherical zones indicated in the figure.
 (b)  Determine the approximate area of the Arctic Ocean by assuming that it is approxi-

mately circular in shape, with center at the North Pole and “circumference” at 75° 
north latitude. Use r − 3960 mi for the radius of the earth.

 (c)  A sphere of radius r is inscribed in a right circular cylinder of radius r. Two planes 
perpendicular to the central axis of the cylinder and a distance h apart cut off a spheri-
cal zone of two bases on the sphere (see the second figure). Show that the surface area 
of the spherical zone equals the surface area of the region that the two planes cut off on 
the cylinder.

 (d)  The Torrid Zone is the region on the surface of the earth that is between the Tropic 
of Cancer (23.45° north latitude) and the Tropic of Capricorn (23.45° south latitude). 
What is the area of the Torrid Zone?

hr
d

 4.  (a)  Show that an observer at height H above the north pole of a sphere of radius r can see a 
part of the sphere that has area

2!r 2H
r 1 H

 (b)  Two spheres with radii r and R are placed so that the distance between their centers is 
d, where d . r 1 R. Where should a light be placed on the line joining the centers of 
the spheres in order to illuminate the largest total surface?

 5.   Suppose that the density of seawater, " − "szd, varies with the depth z below the surface.
 (a) Show that the hydrostatic pressure is governed by the differential equation

dP
dz

− "szdt

   where t is the acceleration due to gravity. Let P0 and " 0 be the pressure and density at 
z − 0. Express the pressure at depth z as an integral.

 (b)  Suppose the density of seawater at depth z is given by " − " 0 e zyH, where H is a posi-
tive constant. Find the total force, expressed as an integral, exerted on a vertical circu-
lar porthole of radius r whose center is located at a distance L . r below the surface.

 6.   The figure shows a semicircle with radius 1, horizontal diameter PQ, and tangent lines at 
P and Q. At what height above the diameter should the horizontal line be placed so as to 
minimize the shaded area?

 7.   Let P be a pyramid with a square base of side 2b and suppose that S is a sphere with its  
center on the base of P and S is tangent to all eight edges of P. Find the height of P. Then 
find the volume of the intersection of S and P. 

P Q

FIGURE FOR PROBLEM 6 
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 8.   Consider a flat metal plate to be placed vertically underwater with its top 2 m below the 
surface of the water. Determine a shape for the plate so that if the plate is divided into any 
number of horizontal strips of equal height, the hydrostatic force on each strip is the same.

 9.   A uniform disk with radius 1 m is to be cut by a line so that the center of mass of the 
smaller piece lies halfway along a radius. How close to the center of the disk should the cut 
be made?  (Express your answer correct to two decimal places.)

 10.   A triangle with area 30 cm 2 is cut from a corner of a square with side 10 cm, as shown in 
the figure. If the centroid of the remaining region is 4 cm from the right side of the square, 
how far is it from the bottom of the square?

10 cm

 11.   In a famous 18th-century problem, known as Buffon’s needle problem, a needle of length 
h is dropped onto a flat surface (for example, a table) on which parallel lines L units apart, 
L > h, have been drawn. The problem is to determine the probability that the needle will 
come to rest intersecting one of the lines. Assume that the lines run east-west, parallel to 
the x-axis in a rectangular coordinate system (as in the figure). Let y be the distance from 
the “southern” end of the needle to the nearest line to the north. (If the needle’s southern 
end lies on a line, let y − 0. If the needle happens to lie east-west, let the “western” end be 
the “southern” end.) Let # be the angle that the needle makes with a ray extending eastward 
from the “southern” end. Then 0 < y < L and 0 < # < $. Note that the needle intersects 
one of the lines only when y , h sin #. The total set of possibilities for the needle can be 
identified with the rectangular region 0 < y < L, 0 < # < $, and the proportion of times 
that the needle intersects a line is the ratio

area under y − h sin #
area of rectangle

   This ratio is the probability that the needle intersects a line. Find the probability that the 
needle will intersect a line if h − L. What if h − 1

2 L?

 12.   If the needle in Problem 11 has length h . L, it’s possible for the needle to intersect more 
than one line.

 (a)  If L − 4, find the probability that a needle of length 7 will intersect at least one line. 
[Hint: Proceed as in Problem 11. Define y as before; then the total set of possibilities 
for the needle can be identified with the same rectangular region 0 < y < L,  
0 < # < $. What portion of the rectangle corresponds to the needle intersecting a 
line?]

 (b)  If L − 4, find the probability that a needle of length 7 will intersect two lines.
 (c)  If 2L , h < 3L, find a general formula for the probability that the needle intersects  

three lines.

 13.   Find the centroid of the region enclosed by the ellipse x 2 1 sx 1 y 1 1d2 − 1.

y h sin ¨¨
h

L

π
2

π

y

¨

L
h

FIGURE FOR PROBLEM 11 
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In the last section of this 
chapter we use pairs of 

differential equations to 
investigate the relationship 

between populations of 
predators and prey, such as 

jaguars and wart hogs, wolves 
and rabbits, lynx and hares, 

and ladybugs and aphids.

Differential Equations

PERHAPS THE MOST IMPORTANT of all the applications of calculus is to differential equations. 
When physical scientists or social scientists use calculus, more often than not it is to analyze a 
differential equation that has arisen in the process of modeling some phenomenon that they are 
studying. Although it is often impossible to find an explicit formula for the solution of a differen-
tial equation, we will see that graphical and numerical approaches provide the needed information.

9

© Dennis Donohue / Shutterstock.com 
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586 CHAPTER 9  Differential Equations

In describing the process of modeling in Section 1.2, we talked about formulating a 
mathematical model of a real-world problem either through intuitive reasoning about 
the phenomenon or from a physical law based on evidence from experiments. The math-
ematical model often takes the form of a differential equation, that is, an equation that 
contains an unknown function and some of its derivatives. This is not surprising because 
in a real-world problem we often notice that changes occur and we want to predict future 
behavior on the basis of how current values change. Let’s begin by examining several 
examples of how differential equations arise when we model physical phenomena.

Models for Population Growth
One model for the growth of a population is based on the assumption that the population 
grows at a rate proportional to the size of the population. That is a reasonable assumption 
for a population of bacteria or animals under ideal conditions (unlimited environment, 
ade quate nutrition, absence of predators, immunity from disease).

Let’s identify and name the variables in this model:

 t − time sthe independent variabled

 P − the number of individuals in the population sthe dependent variabled

The rate of growth of the population is the derivative dPydt. So our assumption that  
the rate of growth of the population is proportional to the population size is written as 
the equation

dP
dt

− kP

where k is the proportionality constant. Equation 1 is our first model for population  
growth; it is a differential equation because it contains an unknown function P and its  
derivative dPydt.

Having formulated a model, let’s look at its consequences. If we rule out a population  
of 0, then Pstd . 0 for all t. So, if k . 0, then Equation 1 shows that P9std . 0 for all t.  
This means that the population is always increasing. In fact, as Pstd increases, Equa-
tion 1 shows that dPydt becomes larger. In other words, the growth rate increases as the 
population increases.

Let’s try to think of a solution of Equation 1. This equation asks us to find a function  
whose derivative is a constant multiple of itself. We know from Chapter 3 that exponen-
tial functions have that property. In fact, if we let Pstd − Cekt, then

P9std − Cskektd − ksCektd − kPstd

Thus any exponential function of the form Pstd − Cekt is a solution of Equation 1. In 
Section 9.4, we will see that there is no other solution.

Allowing C to vary through all the real numbers, we get the family of solutions 
Pstd − Cekt whose graphs are shown in Figure 1. But populations have only positive 
values and so we are interested only in the solutions with C . 0. And we are probably 

Now is a good time to read (or reread) 
the discussion of mathematical model-
ing on page 23.

1

FIGURE 1  
The family of solutions of dPydt − kP

t

P

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 9.1  Modeling with Differential Equations 587

concerned only with values of t greater than the initial time t − 0. Figure 2 shows the 
physically meaningful solutions. Putting t − 0, we get Ps0d − Ceks0d − C, so the con-
stant C turns out to be the initial population, Ps0d.

Equation 1 is appropriate for modeling population growth under ideal conditions, but 
we have to recognize that a more realistic model must reflect the fact that a given envi-
ronment has limited resources. Many populations start by increasing in an exponential 
manner, but the population levels off when it approaches its carrying capacity M (or 
decreases toward M if it ever exceeds M). For a model to take into account both trends, 
we make two assumptions:

Q 
dP
dt

< kP if P is small (Initially, the growth rate is proportional to P.)

Q 
dP
dt

, 0 if P . M (P decreases if it ever exceeds M.)

A simple expression that incorporates both assumptions is given by the equation 

dP
dt

− kPS1 2
P
MD

Notice that if P is small compared with M, then PyM is close to 0 and so dPydt < kP.  
If P . M, then 1 2 PyM is negative and so dPydt , 0.

Equation 2 is called the logistic differential equation and was proposed by the Dutch 
mathematical biologist Pierre-François Verhulst in the 1840s as a model for world 
popula tion growth. We will develop techniques that enable us to find explicit solutions 
of the  logistic equation in Section 9.4, but for now we can deduce qualitative character-
istics of the solutions directly from Equation 2. We first observe that the constant func-
tions Pstd − 0 and Pstd − M are solutions because, in either case, one of the factors on 
the right side of Equation 2 is zero. (This certainly makes physical sense: If the popula-
tion is ever either 0 or at the carrying capacity, it stays that way.) These two constant 
solutions are called equilibrium solutions.

If the initial population Ps0d lies between 0 and M, then the right side of Equation 2 
is positive, so dPydt . 0 and the population increases. But if the population exceeds the 
carrying capacity sP . Md, then 1 2 PyM is negative, so dPydt , 0 and the population 
decreases. Notice that, in either case, if the population approaches the carrying capacity 
sP l Md, then dPydt l 0, which means the population levels off. So we expect that 
the solutions of the logistic differential equation have graphs that look something like 
the ones in Figure 3. Notice that the graphs move away from the equilibrium solution 
P − 0 and move toward the equilibrium solution P − M.

A Model for the Motion of a Spring
Let’s now look at an example of a model from the physical sciences. We consider the 
motion of an object with mass m at the end of a vertical spring (as in Figure 4). In  
Sec tion 6.4 we discussed Hooke’s Law, which says that if the spring is stretched (or 
compressed) x units from its natural length, then it exerts a force that is proportional  
to x:

restoring force − 2kx

where k is a positive constant (called the spring constant). If we ignore any exter-
nal resisting forces (due to air resistance or friction) then, by Newton’s Second Law  

0 t

P

FIGURE 2  
The family of solutions Pstd − Cekt 
with C . 0 and t > 0

2

FIGURE 3  
Solutions of the logistic equation

t

P

0

P=M

P =0

equilibrium
solutions

m

x

0

x m

equilibrium
position

FIGURE 4 
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588 CHAPTER 9  Differential Equations

(force equals mass times acceleration), we have

m 
d 2x
dt 2 − 2kx

This is an example of what is called a second-order differential equation because it 
involves second derivatives. Let’s see what we can guess about the form of the solution 
directly from the equation. We can rewrite Equation 3 in the form

d 2x
dt 2 − 2

k
m

 x

which says that the second derivative of x is proportional to x but has the opposite sign. 
We know two functions with this property, the sine and cosine functions. In fact, it turns  
out that all solutions of Equation 3 can be written as combinations of certain sine and 
cosine functions (see Exercise 4). This is not surprising; we expect the spring to oscillate 
about its equilibrium position and so it is natural to think that trigonometric functions 
are involved.

General Differential Equations
In general, a differential equation is an equation that contains an unknown function 
and one or more of its derivatives. The order of a differential equation is the order of 
the highest derivative that occurs in the equation. Thus Equations 1 and 2 are first-order 
equations and Equation 3 is a second-order equation. In all three of those equations 
the independent variable is called t and represents time, but in general the independent 
variable doesn’t have to represent time. For example, when we consider the differential 
equation

y9 − xy

it is understood that y is an unknown function of x.
A function f  is called a solution of a differential equation if the equation is satisfied 

when y − f sxd and its derivatives are substituted into the equation. Thus f  is a solution 
of Equation 4 if

f 9sxd − xf sxd

for all values of x in some interval.
When we are asked to solve a differential equation we are expected to find all possible 

solutions of the equation. We have already solved some particularly simple differential 
equations, namely, those of the form

y9 − f sxd

For instance, we know that the general solution of the differential equation

y9 − x 3

is given by

y −
x 4

4
1 C

where C is an arbitrary constant.
But, in general, solving a differential equation is not an easy matter. There is no sys- 

tematic technique that enables us to solve all differential equations. In Section 9.2, how- 

3

4
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 SECTION 9.1  Modeling with Differential Equations 589

ever, we will see how to draw rough graphs of solutions even when we have no explicit 
formula. We will also learn how to find numerical approximations to solutions.

EXAMPLE 1  Show that every member of the family of functions

y −
1 1 ce t

1 2 ce t

is a solution of the differential equation y9 − 1
2 sy 2 2 1d.

SOLUTION We use the Quotient Rule to differentiate the expression for y:

 y9 −
s1 2 ce tdsce td 2 s1 1 ce tds2ce td

s1 2 ce td2

 −
ce t 2 c 2e 2t 1 ce t 1 c 2e 2t

s1 2 ce td2 −
2ce t

s1 2 ce td2

The right side of the differential equation becomes

 12 sy 2 2 1d −
1
2

 FS 1 1 ce t

1 2 ce tD2

2 1G
 −

1
2

 Fs1 1 ce td2 2 s1 2 ce td2

s1 2 ce td2 G
 −

1
2

 
4cet

s1 2 cetd2 −
2cet

s1 2 cetd2

Therefore, for every value of c, the given function is a solution of the differential  
equation. Q

When applying differential equations, we are usually not as interested in finding a 
family of solutions (the general solution) as we are in finding a solution that satisfies 
some additional requirement. In many physical problems we need to find the particular 
solution that satisfies a condition of the form yst0 d − y0. This is called an initial condi-
tion, and the problem of finding a solution of the differential equation that satisfies the 
initial condition is called an initial-value problem.

Geometrically, when we impose an initial condition, we look at the family of solution 
curves and pick the one that passes through the point st0, y0 d. Physically, this corresponds 
to measuring the state of a system at time t0 and using the solution of the initial-value 
problem to predict the future behavior of the system.

EXAMPLE 2  Find a solution of the differential equation y9 − 1
2 sy 2 2 1d that satisfies 

the initial condition ys0d − 2.

SOLUTION Substituting the values t − 0 and y − 2 into the formula

y −
1 1 ce t

1 2 ce t

from Example 1, we get

2 −
1 1 ce 0

1 2 ce 0 −
1 1 c
1 2 c

Figure 5 shows graphs of seven 
members of the family in Example 1. 
The differential equation shows that if 
y < 61, then y9 < 0. That is borne out 
by the flatness of the graphs near y − 1 
and y − 21.

5

_5

_5 5

FIGURE 5 
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590 CHAPTER 9  Differential Equations

Solving this equation for c, we get 2 2 2c − 1 1 c, which gives c − 1
3 . So the solution 

of the initial-value problem is

 y −
1 1 1

3 e t

1 2 1
3 e t −

3 1 e t

3 2 e t  Q

 (b)  Verify that all members of the family y − sc 2 x 2 d21y2 
are solutions of the differential equation y9 − xy 3.

 (c)  Graph several members of the family of solutions on 
a common screen. Do the graphs confirm what you 
predicted in part (a)?

 (d) Find a solution of the initial-value problem

y9 − xy 3      ys0d − 2

 9.  A population is modeled by the differential equation

dP
dt

− 1.2PS1 2
P

4200D
 (a) For what values of P is the population increasing?
 (b) For what values of P is the population decreasing?
 (c) What are the equilibrium solutions?

 10.  The Fitzhugh-Nagumo model for the electrical impulse in 
a neuron states that, in the absence of relaxation effects, the 
electrical potential in a neuron vstd obeys the differential 
equation

dv
dt

− 2v fv2 2 s1 1 adv 1 ag

where a is a positive constant such that 0 , a , 1.
 (a) For what values of v is v unchanging (that is,  
  dvydt − 0)?
 (b) For what values of v is v increasing?
 (c) For what values of v is v decreasing?

 11.   Explain why the functions with the given graphs can’t be 
solutions of the differential equation 

dy
dt

− e tsy 2 1d2

y

t1

1

y

t1

1

(a) (b)

;

 1.   Show that y − 2
3e x 1 e22x is a solution of the differential 

equation y9 1 2y − 2e x.

  2.   Verify that y − 2t cos t 2 t is a solution of the initial-
value problem

t 
dy
dt

− y 1 t 2 sin t      ys!d − 0

 3.  (a)  For what values of r does the function y − e rx satisfy 
the differential equation 2y 0 1 y9 2 y − 0?

 (b)  If r1 and r2 are the values of r that you found in part (a), 
show that every member of the family of functions 
y − ae r1x 1 be r2x is also a solution.

 4.  (a)  For what values of k does the function y − cos kt 
satisfy the differential equation 4y0 − 225y?

 (b)  For those values of k, verify that every member of the 
family of functions y − A sin kt 1 B cos kt is also a  
solution.

 5.   Which of the following functions are solutions of the dif-
ferential equation y0 1 y − sin x?

 (a) y − sin x (b) y − cos x
 (c) y − 1

2 x sin x (d) y − 21
2 x cos x

 6.  (a)  Show that every member of the family of functions 
y − sln x 1 Cdyx is a solution of the differential equa-
tion x 2y9 1 xy − 1.

 (b)  Illustrate part (a) by graphing several members of the 
family of solutions on a common screen.

 (c)  Find a solution of the differential equation that satisfies 
the initial condition ys1d − 2.

 (d)  Find a solution of the differential equation that satisfies 
the initial condition ys2d − 1.

 7.  (a)  What can you say about a solution of the equation 
y9 − 2y 2 just by looking at the differential equation?

 (b)  Verify that all members of the family y − 1ysx 1 C d 
are solutions of the equation in part (a).

 (c)  Can you think of a solution of the differential equation 
y9 − 2y 2 that is not a member of the family in part (b)?

 (d) Find a solution of the initial-value problem

y9 − 2y 2      ys0d − 0.5

 8.  (a)  What can you say about the graph of a solution of the 
equation y9 − xy 3 when x is close to 0? What if x is 
large?

;
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Unfortunately, it’s impossible to solve most differential equations in the sense of obtain-
ing an explicit formula for the solution. In this section we show that, despite the absence 
of an explicit solution, we can still learn a lot about the solution through a graphical 
approach (direction fields) or a numerical approach (Euler’s method).

expresses Newton’s Law of Cooling for this particular 
situation. What is the initial condition? In view of your 
answer to part (a), do you think this differential equation 
is an appropriate model for cooling?

 (c)  Make a rough sketch of the graph of the solution of the 
initial-value problem in part (b).

 15.   Psychologists interested in learning theory study learning 
curves. A learning curve is the graph of a function Pstd, the 
performance of someone learning a skill as a function of the 
training time t. The derivative dPydt represents the rate at 
which performance improves.

 (a)  When do you think P increases most rapidly? What hap-
pens to dPydt as t increases? Explain.

 (b)  If M is the maximum level of performance of which the 
learner is capable, explain why the differential equation

dP
dt

− ksM 2 Pd    k a positive constant

  is a reasonable model for learning.
 (c)  Make a rough sketch of a possible solution of this dif-

ferential equation.

 16.  Von Bertalanffy’s equation states that the rate of growth in 
length of an individual fish is proportional to the difference 
between the current length L and the asymptotic length L`  
(in centimeters).

 (a)  Write a differential equation that expresses this idea.
 (b)  Make a rough sketch of the graph of a solution of a typi-

cal initial-value problem for this differential equation.

 17.  Differential equations have been used extensively in the study 
of drug dissolution for patients given oral medications. One 
such equation is the Weibull equation for the concentration 
cstd of the drug:

dc
dt

−
k
t b  scs 2 cd

  where k and cs are positive constants and 0 , b , 1. Verify 
that

cstd − cs (1 2 e2"t 12b)

  is a solution of the Weibull equation for t . 0, where 
" − kys1 2 bd. What does the differential equation say about 
how drug dissolution occurs?

 12.   The function with the given graph is a solution of one of the 
following differential equations. Decide which is the correct 
equation and justify your answer.

0 x

y

  A.  y9 − 1 1 xy B.  y9 − 22xy C.  y9 − 1 2 2xy

 13.   Match the differential equations with the solution graphs 
labeled I–IV. Give reasons for your choices.

 (a) y9 − 1 1 x 2 1 y 2 (b) y9 − xe2x 22y 2

 (c) y9 −
1

1 1 e x 21y 2  (d) y9 − sinsxyd cossxyd

  y

x
x

yI II

0

0

x

y

x

yIII IV

0 0

 14.   Suppose you have just poured a cup of freshly brewed coffee 
with temperature 95°C in a room where the tempera ture  
is 20°C.

 (a)  When do you think the coffee cools most quickly? What 
happens to the rate of cooling as time goes by? Explain.

 (b)  Newton’s Law of Cooling states that the rate of cooling  
of an object is proportional to the temperature difference 
between the object and its surroundings, provided that this 
difference is not too large. Write a differential equation that 
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Direction Fields
Suppose we are asked to sketch the graph of the solution of the initial-value problem 

y9 − x 1 y      ys0d − 1

We don’t know a formula for the solution, so how can we possibly sketch its graph? 
Let’s think about what the differential equation means. The equation y9 − x 1 y tells 
us that the slope at any point sx, yd on the graph (called the solution curve) is equal to 
the sum of the x- and y-coordinates of the point (see Figure 1). In particular, because 
the curve passes through the point s0, 1d, its slope there must be 0 1 1 − 1. So a small 
portion of the solution curve near the point s0, 1d looks like a short line segment through 
s0, 1d with slope 1. (See Figure 2.)

As a guide to sketching the rest of the curve, let’s draw short line segments at a num- 
ber of points sx, yd with slope x 1 y. The result is called a direction field and is shown 
in Figure 3. For instance, the line segment at the point s1, 2d has slope 1 1 2 − 3. The 
direction field allows us to visualize the general shape of the solution curves by indi-
cating the direction in which the curves proceed at each point.

0 x21

y

      

0 x21

y

(0, 1)

FIGURE 3  
Direction field for y9 − x 1 y 

FIGURE 4  
The solution curve through (0,1)TEC Module 9.2A shows direction 

fields and solution curves for a variety 
of differential equations. Now we can sketch the solution curve through the point s0, 1d by following the direc-

tion field as in Figure 4. Notice that we have drawn the curve so that it is parallel to 
near by line segments.

In general, suppose we have a first-order differential equation of the form

y9 − Fsx, yd

where Fsx, yd is some expression in x and y. The differential equation says that the slope  
of a solution curve at a point sx, yd on the curve is Fsx, yd. If we draw short line segments 
with slope Fsx, yd at several points sx, yd, the result is called a direction field (or slope 
field). These line segments indicate the direction in which a solution curve is heading, so 
the direction field helps us visualize the general shape of these curves.

EXAMPLE 1  
(a) Sketch the direction field for the differential equation y9 − x 2 1 y 2 2 1.
(b) Use part (a) to sketch the solution curve that passes through the origin.

FIGURE 1  
A solution of y9 − x 1 y

Slope at
(¤, fi) is
¤+fi.

Slope at
(⁄, ›) is
⁄+›.

0 x

y

FIGURE 2  
Beginning of the solution curve  
through (0,1)

0 x

y

(0, 1) Slope at (0, 1)
is 0+1=1. 
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SOLUTION
(a) We start by computing the slope at several points in the following chart:

x 22 21 0 1 2 22 21 0 1 2 . . .

y 0 0 0 0 0 1 1 1 1 1 . . .

y9 − x 2 1 y 2 2 1 3 0 21 0 3 4 1 0 1 4 . . .

Now we draw short line segments with these slopes at these points. The result is the 
direction field shown in Figure 5.

(b) We start at the origin and move to the right in the direction of the line segment 
(which has slope 21). We continue to draw the solution curve so that it moves parallel 
to the nearby line segments. The resulting solution curve is shown in Figure 6. Return-
ing to the origin, we draw the solution curve to the left as well. Q

The more line segments we draw in a direction field, the clearer the picture becomes. 
Of course, it’s tedious to compute slopes and draw line segments for a huge number 
of points by hand, but computers are well suited for this task. Figure 7 shows a more 
detailed, computer-drawn direction field for the differential equation in Example 1. It 
enables us to draw, with reasonable accuracy, the solution curves with y-intercepts 22,  
21, 0, 1, and 2.

Now let’s see how direction fields give insight into physical situations. The simple 
electric circuit shown in Figure 8 contains an electromotive force (usually a battery or 
generator) that produces a voltage of Estd volts (V) and a current of Istd amperes (A) at 
time t. The circuit also contains a resistor with a resistance of R ohms (V) and an induc-
tor with an inductance of L henries (H).

Ohm’s Law gives the drop in voltage due to the resistor as RI. The voltage drop due to 
the inductor is LsdIydtd. One of Kirchhoff’s laws says that the sum of the voltage drops 
is equal to the supplied voltage Estd. Thus we have

L 
dI
dt

1 RI − Estd

which is a first-order differential equation that models the current I at time t.

EXAMPLE 2  Suppose that in the simple circuit of Figure 8 the resistance is 12 V, the 
inductance is 4 H, and a battery gives a constant voltage of 60 V.
(a) Draw a direction field for Equation 1 with these values.
(b) What can you say about the limiting value of the current?
(c) Identify any equilibrium solutions.
(d) If the switch is closed when t − 0 so the current starts with Is0d − 0, use the direc-
tion field to sketch the solution curve.

SOLUTION
(a) If we put L − 4, R − 12, and Estd − 60 in Equation 1, we get

4 
dI
dt

1 12I − 60    or    
dI
dt

− 15 2 3I

0 x

y

1_1_2

1

2

-1

_2

2

FIGURE 5 

1

3

_3

_3 3

FIGURE 7   

0 x

y

1 2_1_2

1

2

-1

_2

FIGURE 6 

R

E

switch

L

FIGURE 8 
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594 CHAPTER 9  Differential Equations

The direction field for this differential equation is shown in Figure 9.

0 t1

I

2 3

2

4

6

(b) It appears from the direction field that all solutions approach the value 5 A, that is,

lim
t l `

 Istd − 5

(c) It appears that the constant function Istd − 5 is an equilibrium solution. Indeed, we 
can verify this directly from the differential equation dIydt − 15 2 3I. If Istd − 5, then 
the left side is dIydt − 0 and the right side is 15 2 3s5d − 0.

(d) We use the direction field to sketch the solution curve that passes through s0, 0d, as 
shown in red in Figure 10.

0 t1

I

2 3

2

4

6

 Q

Notice from Figure 9 that the line segments along any horizontal line are parallel.  
That is because the independent variable t does not occur on the right side of the equation 
I9 − 15 2 3I. In general, a differential equation of the form

y9 − f syd

in which the independent variable is missing from the right side, is called autonomous.  
For such an equation, the slopes corresponding to two different points with the same  
y-coordinate must be equal. This means that if we know one solution to an autonomous  
differential equation, then we can obtain infinitely many others just by shifting the graph  
of the known solution to the right or left. In Figure 10 we have shown the solutions that 
result from shifting the solution curve of Example 2 one and two time units (namely, 
seconds) to the right. They correspond to closing the switch when t − 1 or t − 2.

FIGURE 9

FIGURE 10
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Euler’s Method
The basic idea behind direction fields can be used to find numerical approximations to 
solutions of differential equations. We illustrate the method on the initial-value problem 
that we used to introduce direction fields:

y9 − x 1 y      ys0d − 1

The differential equation tells us that y9s0d − 0 1 1 − 1, so the solution curve has slope 1  
at the point s0, 1d. As a first approximation to the solution we could use the linear approx-
imation Lsxd − x 1 1. In other words, we could use the tangent line at s0, 1d as a rough 
approximation to the solution curve (see Figure 11).

Euler’s idea was to improve on this approximation by proceeding only a short distance 
along this tangent line and then making a midcourse correction by changing direction as 
indicated by the direction field. Figure 12 shows what happens if we start out along the  
tangent line but stop when x − 0.5. (This horizontal distance traveled is called the step 
size.) Since Ls0.5d − 1.5, we have ys0.5d < 1.5 and we take s0.5, 1.5d as the starting point 
for a new line segment. The differential equation tells us that y9s0.5d − 0.5 1 1.5 − 2, 
so we use the linear function

y − 1.5 1 2sx 2 0.5d − 2x 1 0.5

as an approximation to the solution for x . 0.5 (the green segment in Figure 12). If we 
decrease the step size from 0.5 to 0.25, we get the better Euler approximation shown in  
Figure 13.

In general, Euler’s method says to start at the point given by the initial value and pro- 
ceed in the direction indicated by the direction field. Stop after a short time, look at the 
slope at the new location, and proceed in that direction. Keep stopping and changing 
direction according to the direction field. Euler’s method does not produce the exact 
solution to an initial-value problem—it gives approximations. But by decreasing the step 
size (and therefore increasing the number of midcourse corrections), we obtain succes-
sively better approximations to the exact solution. (Compare Figures 11, 12, and 13.)

For the general first-order initial-value problem y9 − Fsx, yd, ysx0d − y0, our aim is 
to find approximate values for the solution at equally spaced numbers x0, x1 − x0 1 h, 
x2 − x1 1 h, . . . , where h is the step size. The differential equation tells us that the slope 
at sx0, y0 d is y9 − Fsx0, y0 d, so Figure 14 shows that the approximate value of the solu-
tion when x − x1 is

 y1 − y0 1 hFsx0, y0 d

Similarly,  y2 − y1 1 hFsx1, y1d

In general,  yn − yn21 1 hFsxn21, yn21d

 Euler’s Method Approximate values for the solution of the initial-value problem 
y9 − Fsx, yd, ysx0d − y0, with step size h, at xn − xn21 1 h, are

yn − yn21 1 hFsxn21, yn21d    n − 1, 2, 3, . . .

y

x0 1

1 y=L(x)

solution curve

FIGURE 11  
First Euler approximation

y

x0 1

1

0.5

1.5

FIGURE 12  
Euler approximation with step size 0.5

y

x0 1

1

0.25

FIGURE 13  
Euler approximation with step size 0.25

y

x⁄x¸0

y¸

h
h F(x¸, y¸)
(⁄, ›)

slope=F(x¸, y¸)

FIGURE 14 
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EXAMPLE 3  Use Euler’s method with step size 0.1 to construct a table of approximate 
values for the solution of the initial-value problem

y9 − x 1 y      ys0d − 1

SOLUTION We are given that h − 0.1, x0 − 0, y0 − 1, and Fsx, yd − x 1 y. So we have

 y1 − y0 1 hFsx0, y0 d − 1 1 0.1s0 1 1d − 1.1

 y2 − y1 1 hFsx1, y1d − 1.1 1 0.1s0.1 1 1.1d − 1.22

 y3 − y2 1 hFsx2, y2 d − 1.22 1 0.1s0.2 1 1.22d − 1.362

This means that if ysxd is the exact solution, then ys0.3d < 1.362.
Proceeding with similar calculations, we get the values in the table:

 

n xn yn n xn yn

1 0.1 1.100000  6 0.6 1.943122
2 0.2 1.220000  7 0.7 2.197434
3 0.3 1.362000  8 0.8 2.487178
4 0.4 1.528200  9 0.9 2.815895
5 0.5 1.721020 10 1.0 3.187485  Q

For a more accurate table of values in Example 3 we could decrease the step size. But 
for a large number of small steps the amount of computation is considerable and so we 
need to program a calculator or computer to carry out these calculations. The follow-
ing table shows the results of applying Euler’s method with decreasing step size to the 
initial-value problem of Example 3.

Notice that the Euler estimates in the table below seem to be approaching limits, 
namely, the true values of ys0.5d and ys1d. Figure 15 shows graphs of the Euler approxi-
mations with step sizes 0.5, 0.25, 0.1, 0.05, 0.02, 0.01, and 0.005. They are approaching 
the exact solution curve as the step size h approaches 0.

0 x

y

0.5 1

1

FIGURE 15 Euler approximation approaching the exact solution

TEC Module 9.2B shows how Euler’s 
method works numerically and visu-
ally for a variety of differential equa-
tions and step sizes.

Step size
Euler estimate of

ys0.5d
Euler estimate of

ys1d

0.500 1.500000 2.500000
0.250 1.625000 2.882813
0.100 1.721020 3.187485
0.050 1.757789 3.306595
0.020 1.781212 3.383176
0.010 1.789264 3.409628
0.005 1.793337 3.423034
0.001 1.796619 3.433848

Computer software packages that 
produce numerical approximations to 
solutions of differential equations use 
methods that are refinements of Euler’s 
method. Although Euler’s method is 
simple and not as accurate, it is the 
basic idea on which the more accurate 
methods are based.
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 2.   A direction field for the differential equation y9 − tan( 1
2!y) 

is shown.
 (a)  Sketch the graphs of the solutions that satisfy the given  

initial conditions.
 (i) ys0d − 1 (ii) ys0d − 0.2 

 (iii) ys0d − 2 (iv) ys1d − 3

 (b)  Find all the equilibrium solutions.

x

y

1

2

3

4

_1_2 210

 1.   A direction field for the differential equation y9 − x cos !y is 
shown.

 (a)  Sketch the graphs of the solutions that satisfy the given  
initial conditions.

 (i) ys0d − 0 (ii) ys0d − 0.5

 (iii) ys0d − 1 (iv) ys0d − 1.6

 (b) Find all the equilibrium solutions.

x

y

0.5

1.0

1.5

2.0

_1_2 210

Euler
Leonhard Euler (1707–1783) was the 
leading mathematician of the mid-18th 
century and the most prolific mathe-
matician of all time. He was born in 
Switzerland but spent most of his career 
at the academies of science supported 
by Catherine the Great in St. Petersburg 
and Frederick the Great in Berlin. The 
collected works of Euler (pronounced 
Oiler) fill about 100 large volumes. As 
the French physicist Arago said, “Euler 
calculated without apparent effort, as 
men breathe or as eagles sustain them-
selves in the air.” Euler’s calculations and 
writings were not diminished by raising 
13 children or being totally blind for 
the last 17 years of his life. In fact, when 
blind, he dictated his discoveries to his 
helpers from his prodigious memory 
and imagination. His treatises on cal-
culus and most other mathematical 
subjects became the standard for math-
ematics instruction and the equation 
e i! 1 1 − 0 that he discovered brings 
together the five most famous numbers 
in all of mathematics.

EXAMPLE 4  In Example 2 we discussed a simple electric circuit with resistance  
12 V, inductance 4 H, and a battery with voltage 60 V. If the switch is closed when 
t − 0, we modeled the current I at time t by the initial-value problem

dI
dt

− 15 2 3I      Is0d − 0

Estimate the current in the circuit half a second after the switch is closed.

SOLUTION We use Euler’s method with Fst, Id − 15 2 3I, t0 − 0, I0 − 0, and step size 
h − 0.1 second:

 I1 − 0 1 0.1s15 2 3 ? 0d − 1.5

 I2 − 1.5 1 0.1s15 2 3 ? 1.5d − 2.55

 I3 − 2.55 1 0.1s15 2 3 ? 2.55d − 3.285

 I4 − 3.285 1 0.1s15 2 3 ? 3.285d − 3.7995

 I5 − 3.7995 1 0.1s15 2 3 ? 3.7995d − 4.15965

So the current after 0.5 s is

 Is0.5d < 4.16 A Q
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3–6 Match the differential equation with its direction field 
(labeled I–IV). Give reasons for your answer.

 3. y9 − 2 2 y 4.  y9 − xs2 2 yd
 5. y9 − x 1 y 2 1 6.  y9 − sin x sin y

y

0 x

4

2_2

2

y

0 x2_2

2

_2

y

0 x

4

2_2

2

y

0 x2_2

2

_2

I II

III IV

 7.   Use the direction field labeled I (above) to sketch the graphs 
of the solutions that satisfy the given initial conditions.

 (a) ys0d − 1 (b) ys0d − 2.5 (c) ys0d − 3.5

 8.   Use the direction field labeled III (above) to sketch the 
graphs of the solutions that satisfy the given initial condi-
tions.

 (a) ys0d − 1 (b) ys0d − 2.5 (c) ys0d − 3.5

9–10 Sketch a direction field for the differential equation. Then 
use it to sketch three solution curves.

 9.  y9 − 1
2 y 10.  y9 − x 2 y 1 1

11–14 Sketch the direction field of the differential equa tion. 
Then use it to sketch a solution curve that passes through the 
given point.

 11.   y9 − y 2 2x,  s1, 0d 12.  y9 − xy 2 x 2,  s0, 1d

 13.  y9 − y 1 xy,  s0, 1d 14.  y9 − x 1 y 2,  s0, 0d

15–16 Use a computer algebra system to draw a direction field 
for the given differential equation. Get a printout and sketch on it 
the solution curve that passes through s0, 1d. Then use the CAS 
to draw the solution curve and compare it with your sketch.

 15.  y9 − x 2 y 2 1
2 y

2 16.  y9 − cossx 1 yd

CAS

 17.   Use a computer algebra system to draw a direction field 
for the differential equation y9 − y 3 2 4y. Get a printout 
and sketch on it solutions that satisfy the initial condition 
ys0d − c for various values of c. For what values of c does 
lim t l ` ystd exist? What are the possible values for this 
limit?

 18.   Make a rough sketch of a direction field for the autono-
mous differential equation y9 − f syd, where the graph of 
f  is as shown. How does the limiting behavior of solutions 
depend on the value of ys0d?

0 y21_1_2

f(y)

 19.  (a)  Use Euler’s method with each of the following step 
sizes to estimate the value of ys0.4d, where y is the 
solution of the initial-value problem y9 − y, ys0d − 1.

 (i) h − 0.4 (ii) h − 0.2 (iii) h − 0.1
 (b)  We know that the exact solution of the initial-value  

problem in part (a) is y − e x. Draw, as accurately as 
you can, the graph of y − e x, 0 < x < 0.4, together 
with the Euler approximations using the step sizes 
in part (a). (Your sketches should resemble Figures 
11, 12, and 13.) Use your sketches to decide whether 
your estimates in part (a) are underestimates or over-
estimates.

 (c)  The error in Euler’s method is the difference between  
the exact value and the approximate value. Find the 
errors made in part (a) in using Euler’s method to 
estimate the true value of ys0.4d, namely, e 0.4. What 
happens to the error each time the step size is halved?

 20.   A direction field for a differential equation is shown. Draw, 
with a ruler, the graphs of the Euler approximations to the  
solution curve that passes through the origin. Use step sizes 
h − 1 and h − 0.5. Will the Euler estimates be under-
estimates or overestimates? Explain.

y
2

1

1 2 x0

CAS
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a resistor with a resistance of R ohms (V). The voltage drop 
across the capacitor is QyC, where Q is the charge (in cou-
lombs, C), so in this case Kirchhoff’s Law gives

RI 1
Q
C

− Estd

But I − dQydt, so we have

R 
dQ
dt

1
1
C

 Q − Estd

Suppose the resistance is 5 V, the capacitance is 0.05 F, and a 
battery gives a constant voltage of 60 V.

 (a) Draw a direction field for this differential equation.
 (b) What is the limiting value of the charge?
 (c) Is there an equilibrium solution?
 (d)  If the initial charge is Qs0d − 0 C, use the direction field 

to sketch the solution curve.
 (e)  If the initial charge is Qs0d − 0 C, use Euler’s method 

with step size 0.1 to estimate the charge after half a  
second.

C

E R

 28.   In Exercise 9.1.14 we considered a 958C cup of coffee in a 
208C room. Suppose it is known that the coffee cools at a rate 
of 18C per minute when its temperature is 70°C.

 (a)  What does the differential equation become in this case?
 (b)  Sketch a direction field and use it to sketch the solution 

curve for the initial-value problem. What is the limiting 
value of the temperature?

 (c)  Use Euler’s method with step size h − 2 minutes to 
estimate the temperature of the coffee after 10 minutes.

 21.   Use Euler’s method with step size 0.5 to compute the 
approximate y-values y1, y2, y3, and y4 of the solution of the 
initial-value problem y9 − y 2 2x, ys1d − 0.

 22.   Use Euler’s method with step size 0.2 to estimate ys1d, 
where ysxd is the solution of the initial-value problem 
y9 − x 2 y 2 1

2 y
2, ys0d − 1.

 23.   Use Euler’s method with step size 0.1 to estimate ys0.5d, 
where ysxd is the solution of the initial-value problem 
y9 − y 1 xy, ys0d − 1.

 24.  (a)  Use Euler’s method with step size 0.2 to estimate 
ys0.6d, where ysxd is the solution of the initial-value 
problem y9 − cossx 1 yd, ys0d − 0.

 (b) Repeat part (a) with step size 0.1.

 25.  (a)  Program a calculator or computer to use Euler’s method 
to compute ys1d, where ysxd is the solution of the initial-
value problem

dy
dx

1 3x 2 y − 6x 2      ys0d − 3

 (i) h − 1 (ii) h − 0.1
 (iii) h − 0.01 (iv) h − 0.001
 (b)  Verify that y − 2 1 e2x 3

 is the exact solution of the dif-
ferential equation.

 (c)  Find the errors in using Euler’s method to compute ys1d 
with the step sizes in part (a). What happens to the error 
when the step size is divided by 10?

 26.  (a)  Program your computer algebra system, using Euler’s 
method with step size 0.01, to calculate ys2d, where y  
is the solution of the initial-value problem

y9 − x 3 2 y 3      ys0d − 1

 (b)  Check your work by using the CAS to draw the solution 
curve.

 27.   The figure shows a circuit containing an electromotive 
force, a capacitor with a capacitance of C farads (F), and 

;

CAS

We have looked at first-order differential equations from a geometric point of view 
(direction fields) and from a numerical point of view (Euler’s method). What about the 
symbolic point of view? It would be nice to have an explicit formula for a solution of a 
differential equation. Unfortunately, that is not always possible. But in this section we 
examine a certain type of differential equation that can be solved explicitly.

A separable equation is a first-order differential equation in which the expression 
for dyydx can be factored as a function of x times a function of y. In other words, it can 
be written in the form

dy
dx

− tsxd f syd

The name separable comes from the fact that the expression on the right side can be “sep-

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



600 CHAPTER 9  Differential Equations

arated” into a function of x and a function of y. Equivalently, if f syd ± 0, we could write

dy
dx

−
tsxd
hsyd

where hsyd − 1yf syd. To solve this equation we rewrite it in the differential form

hsyd dy − tsxd dx

so that all y’s are on one side of the equation and all x’s are on the other side. Then we 
inte grate both sides of the equation:

y hsyd dy − y tsxd dx

Equation 2 defines y implicitly as a function of x. In some cases we may be able to solve 
for y in terms of x.

We use the Chain Rule to justify this procedure: If h and t satisfy (2), then

d
dx

 Sy hsyd dyD −
d
dx

 Sy tsxd dxD
so  

d
dy

 Sy hsyd dyD dy
dx

 − tsxd

and hsyd 
dy
dx

− tsxd

Thus Equation 1 is satisfied.

EXAMPLE 1  
(a) Solve the differential equation 

dy
dx

−
x 2

y 2 .

(b) Find the solution of this equation that satisfies the initial condition ys0d − 2.

SOLUTION
(a) We write the equation in terms of differentials and integrate both sides:

y 2 dy − x 2 dx

 y y 2 dy − y x 2 dx

1
3 y 3 − 1

3 x 3 1 C

where C is an arbitrary constant. (We could have used a constant C1 on the left side and 
another constant C2 on the right side. But then we could combine these constants by 
writing C − C2 2 C1.)

Solving for y, we get

y − s3 x 3 1 3C  

We could leave the solution like this or we could write it in the form

y − s3 x 3 1 K  

where K − 3C. (Since C is an arbitrary constant, so is K.)

1

Figure 1 shows graphs of several mem-
bers of the family of solutions of the 
differential equation in Example 1. The 
solution of the initial-value problem in 
part (b) is shown in red.

3

_3

_3 3

FIGURE 1 

2

The technique for solving separable 
differential equations was first used by 
James Bernoulli (in 1690) in solving 
a problem about pendulums and by 
Leibniz (in a letter to Huygens in 1691). 
John Bernoulli explained the general 
method in a paper published in 1694.
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(b) If we put x − 0 in the general solution in part (a), we get ys0d − s3 K  . To satisfy 
the initial condition ys0d − 2, we must have s3 K  − 2 and so K − 8. Thus the solution 
of the initial-value problem is

 y − s3 x 3 1 8  Q

EXAMPLE 2  Solve the differential equation 
dy
dx

−
6x 2

2y 1 cos y
.

SOLUTION Writing the equation in differential form and integrating both sides, we have

 s2y 1 cos yddy − 6x 2 dx

 y s2y 1 cos yddy − y 6x 2 dx

 y 2 1 sin y − 2x 3 1 C

where C is a constant. Equation 3 gives the general solution implicitly. In this case it’s 
impossible to solve the equation to express y explicitly as a function of x. Q

EXAMPLE 3  Solve the equation y9 − x 2 y.

SOLUTION First we rewrite the equation using Leibniz notation: 

dy
dx

− x 2 y

If y ± 0, we can rewrite it in differential notation and integrate:

 
dy
y

− x 2 dx y ± 0

 y 
dy
y

− y x 2 dx

 ln | y | −
x 3

3
1 C

This equation defines y implicitly as a function of x. But in this case we can solve 
explicitly for y as follows:

 | y | − e ln | y | − e sx 3y3d1C − eCex 3y3

so y − 6eCex 3y3

We can easily verify that the function y − 0 is also a solution of the given differential 
equation. So we can write the general solution in the form

y − Aex 3y3

where A is an arbitrary constant (A − eC, or A − 2eC, or A − 0). Q

Some computer software can plot 
curves defined by implicit equations. 
Figure 2 shows the graphs of several 
members of the family of solutions of 
the differential equation in Example 2. 
As we look at the curves from left  
to right, the values of C are 3, 2, 1, 0, 
21, 22, and 23.

4

_4

_2 2

FIGURE 2 

If a solution y is a function that satisfies 
ysxd ± 0 for some x, it follows from 
a uniqueness theorem for solutions of 
differential equations that ysxd ± 0 for 
all x.

3
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2

_4

0 x

y

1 2_1_2
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6

_6
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FIGURE 3  FIGURE 4  

Figure 3 shows a direction field for the 
differential equation in Example 3. 
Compare it with Figure 4, in which we 
use the equation y − Ae x 3y3 to graph 
solutions for several values of A. If 
you use the direction field to sketch  
solution curves with y-intercepts 5, 2, 
1, 21, and 22, they will resemble the 
curves in Figure 4.

EXAMPLE 4  In Section 9.2 we modeled the current Istd in the electric circuit shown in 
Figure 5 by the differential equation

L 
dI
dt

1 RI − Estd

Find an expression for the current in a circuit where the resistance is 12 V, the induc-
tance is 4 H, a battery gives a constant voltage of 60 V, and the switch is turned on 
when t − 0. What is the limiting value of the current?

SOLUTION With L − 4, R − 12, and Estd − 60, the equation becomes

 4 
dI
dt

1 12I − 60    or    
dI
dt

− 15 2 3I

and the initial-value problem is

dI
dt

− 15 2 3I      Is0d − 0

We recognize this equation as being separable, and we solve it as follows:

 y 
dI

15 2 3I
− y dt    s15 2 3I ± 0d

  21
3 ln | 15 2 3I | − t 1 C

  | 15 2 3I | − e23st1Cd

  15 2 3I − 6e23Ce23 t − Ae23 t

  I − 5 2 1
3 Ae23 t

Since Is0d − 0, we have 5 2 1
3 A − 0, so A − 15 and the solution is

Istd − 5 2 5e23 t

The limiting current, in amperes, is

  lim
t l `

 Istd − lim
t l `

 s5 2 5e23 td − 5 2 5 lim
t l `

 e23 t − 5 2 0 − 5 Q

R

E

switch

L

FIGURE 5 

Figure 6 shows how the solution in 
Example 4 (the current) approaches 
its limiting value. Comparison with 
Figure 9.2.10 shows that we were able 
to draw a fairly accurate solution curve 
from the direction field.

6

0 2.5

y=5

FIGURE 6 
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Orthogonal Trajectories
An orthogonal trajectory of a family of curves is a curve that intersects each curve of 
the family orthogonally, that is, at right angles (see Figure 7). For instance, each mem-
ber of the family y − mx of straight lines through the origin is an orthogonal trajectory 
of the family x 2 1 y 2 − r 2 of concentric circles with center the origin (see Figure 8). We 
say that the two families are orthogonal trajectories of each other.

EXAMPLE 5  Find the orthogonal trajectories of the family of curves x − ky 2, where k 
is an arbitrary constant.

SOLUTION The curves x − ky 2 form a family of parabolas whose axis of symmetry is  
the x-axis. The first step is to find a single differential equation that is satisfied by all 
members of the family. If we differentiate x − ky 2, we get

1 − 2ky 
dy
dx

    or    
dy
dx

−
1

2ky

This differential equation depends on k, but we need an equation that is valid for all 
values of k simultaneously. To eliminate k we note that, from the equation of the given 
general parabola x − ky 2, we have k − xyy 2 and so the differential equation can be  
written as

dy
dx

−
1

2ky
−

1

2 
x
y 2  y

  or  
dy
dx

−
 y
2x

This means that the slope of the tangent line at any point sx, yd on one of the parabolas 
is y9 − yys2xd. On an orthogonal trajectory the slope of the tangent line must be the 
negative reciprocal of this slope. Therefore the orthogonal trajectories must satisfy the 
differ ential equation

dy
dx

− 2
2x
 y

This differential equation is separable, and we solve it as follows:

 y y dy − 2y 2x dx

 
 y 2

2
− 2x 2 1 C

 x 2 1
y 2

2
− C

where C is an arbitrary positive constant. Thus the orthogonal trajectories are the  
family of ellipses given by Equation 4 and sketched in Figure 9. Q

Orthogonal trajectories occur in various branches of physics. For example, in an elec-
trostatic field the lines of force are orthogonal to the lines of constant potential. Also, 
the streamlines in aerodynamics are orthogonal trajectories of the velocity-equipotential 
curves.

x

y

orthogonal
trajectory

FIGURE 7 

x

y

orthogonal
trajectory

FIGURE 8 

4

x

y

FIGURE 9 
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Mixing Problems
A typical mixing problem involves a tank of fixed capacity filled with a thoroughly 
mixed solution of some substance, such as salt. A solution of a given concentration enters 
the tank at a fixed rate and the mixture, thoroughly stirred, leaves at a fixed rate, which 
may differ from the entering rate. If ystd denotes the amount of substance in the tank at 
time t, then y9std is the rate at which the substance is being added minus the rate at which 
it is being removed. The mathematical description of this situation often leads to a first-
order sepa rable differential equation. We can use the same type of reasoning to model a 
variety of phenomena: chemical reactions, discharge of pollutants into a lake, injection 
of a drug into the bloodstream.

EXAMPLE 6  A tank contains 20 kg of salt dissolved in 5000 L of water. Brine that 
contains 0.03 kg of salt per liter of water enters the tank at a rate of 25 Lymin. The 
solution is kept thoroughly mixed and drains from the tank at the same rate. How much 
salt remains in the tank after half an hour?

SOLUTION Let ystd be the amount of salt (in kilograms) after t minutes. We are given 
that ys0d − 20 and we want to find ys30d. We do this by finding a differential equation 
satisfied by ystd. Note that dyydt is the rate of change of the amount of salt, so

dy
dt

− srate ind 2 srate outd

where (rate in) is the rate at which salt enters the tank and (rate out) is the rate at which 
salt leaves the tank. We have

rate in − S0.03 
kg
L DS25 

L
minD − 0.75 

kg
min

The tank always contains 5000 L of liquid, so the concentration at time t is ystdy5000 
(measured in kilograms per liter). Since the brine flows out at a rate of 25 Lymin, we 
have

rate out − S  ystd
5000

 
kg
L DS25 

L
minD −

ystd
200

 
kg

min

Thus, from Equation 5, we get

dy
dt

− 0.75 2
 ystd
200

−
150 2 ystd

200

Solving this separable differential equation, we obtain

 y 
dy

150 2 y
− y 

dt
200

 2ln | 150 2 y | −
t

200
1 C

Since ys0d − 20, we have 2ln 130 − C, so

2ln | 150 2 y | −
t

200
2 ln 130

5

Figure 10 shows the graph of the 
function ystd of Example 6. Notice 
that, as time goes by, the amount of 
salt approaches 150 kg.

t

y

0 200 400

50

100

150

FIGURE 10 
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 21.   Solve the differential equation y9 − x 1 y by making the 
change of variable u − x 1 y.

 22.   Solve the differential equation xy9 − y 1 xe yyx by making 
the change of variable v − yyx.

 23.  (a)  Solve the differential equation y9 − 2xs1 2 y 2  .
 (b)  Solve the initial-value problem y9 − 2xs1 2 y 2  , 

ys0d − 0, and graph the solution.
 (c)  Does the initial-value problem y9 − 2xs1 2 y 2  , 

ys0d − 2, have a solution? Explain.

 24.   Solve the equation e2yy9 1 cos x − 0 and graph several 
members of the family of solutions. How does the solution 
curve change as the constant C varies?

 25.   Solve the initial-value problem y9 − ssin xdysin y, 
ys0d − !y2, and graph the solution (if your CAS does 
implicit plots).

 26.   Solve the equation y9 − xsx 2 1 1ysye y d and graph several 
members of the family of solutions (if your CAS does 
implicit plots). How does the solution curve change as the 
constant C varies?

 27–28 
(a)  Use a computer algebra system to draw a direction field  

for the differential equation. Get a printout and use it to 
sketch some solution curves without solving the differential 
equation.

(b) Solve the differential equation.
(c)  Use the CAS to draw several members of the family of 

solu tions obtained in part (b). Compare with the curves from 
part (a).

 27. y9 − y 2 28.  y9 − xy

29–32 Find the orthogonal trajectories of the family of curves. 
Use a graphing device to draw several members of each family 
on a common screen.

 29. x 2 1 2y 2 − k 2 30.  y 2 − kx 3

;

;

CAS

CAS

CAS

;

1–10 Solve the differential equation.

 1. 
dy
dx

− 3x 2y 2 2.  
dy
dx

− xsy

 3. xyy9 − x 2 1 1 4.  y9 1 xe y − 0

 5. se y 2 1dy9 − 2 1 cosx 6.  
du
dt

−
1 1 t 4

ut 2 1 u4t 2

 7. 
d#

dt
−

t sec#

#et 2  8.  
dH
dR

−
RH 2 s1 1 R2 

ln H

 9.  
dp
dt

− t 2p 2 p 1 t 2 2 1 10.  
dz
dt

1 e t1z − 0

11–18 Find the solution of the differential equation that satisfies 
the given initial condition.

 11.  
dy
dx

− xe y,  ys0d − 0 12.  
dy
dx

−
x sin x

y
,  ys0d − 21

 13.  
du
dt

−
2t 1 sec2t

2u
,  us0d − 25

 14.  x 1 3y2sx 2 1 1   
dy
dx

− 0,  ys0d − 1

 15.  x ln x − y(1 1 s3 1 y 2 ) y9,  ys1d − 1

 16.  
dP
dt

− sPt  ,  Ps1d − 2

 17.  y9 tan x − a 1 y, ys!y3d − a,  0 , x , !y2

 18.  
dL
dt

− kL2 ln t, Ls1d − 21

 19.   Find an equation of the curve that passes through the point 
s0, 2d and whose slope at sx, yd is xyy.

 20.   Find the function f   such that f 9sxd − x f sxd 2 x and f s0d − 2.

Therefore | 150 2 y | − 130e2ty200

Since ystd is continuous and ys0d − 20 and the right side is never 0, we deduce that 
150 2 ystd is always positive. Thus | 150 2 y | − 150 2 y and so

ystd − 150 2 130e2ty200

The amount of salt after 30 min is

 ys30d − 150 2 130e230y200 < 38.1 kg Q
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 41.   In contrast to the situation of Exercise 40, experiments show 
that the reaction H2 1 Br2  l  2HBr satisfies the rate law

d fHBrg
dt

− k fH 2g fBr2g1y2

and so for this reaction the differential equation becomes

dx
dt

− ksa 2 xdsb 2 xd1y2

where x − fHBrg and a and b are the initial concentrations of 
hydrogen and bromine.

 (a)  Find x as a function of t in the case where a − b. Use the 
fact that xs0d − 0.

 (b)  If a . b, find t as a function of x. fHint: In performing the 
  integration, make the substitution u − sb 2 x.g
 42.   A sphere with radius 1 m has temperature 15 8C. It lies inside a 

concentric sphere with radius 2 m and temperature 25 8C. The 
temperature T srd at a distance r from the common center of 
the spheres satisfies the differential equation

d 2T
dr 2 1

2
r

 
dT
dr

− 0

If we let S − dTydr, then S satisfies a first-order differential 
equation. Solve it to find an expression for the temperature  
T srd between the spheres.

 43.   A glucose solution is administered intravenously into the 
bloodstream at a constant rate r. As the glucose is added, it 
is converted into other substances and removed from the 
bloodstream at a rate that is proportional to the concentration 
at that time. Thus a model for the concentration C − Cstd of 
the glucose solution in the bloodstream is

dC
dt

− r 2 kC

where k is a positive constant.
 (a)  Suppose that the concentration at time t − 0 is C0. Deter-

mine the concentration at any time t by solving the differ-
ential equation.

 (b)  Assuming that C0 , ryk, find lim t l ` Cstd and interpret 
your answer.

 44.   A certain small country has $10 billion in paper currency in 
circulation, and each day $50 million comes into the country’s 
banks. The government decides to introduce new currency by 
having the banks replace old bills with new ones whenever 
old currency comes into the banks. Let x − x std denote the 
amount of new currency in circulation at time t, with xs0d − 0.

 (a)  Formulate a mathematical model in the form of an initial-
value problem that represents the “flow” of the new cur-
rency into circulation.

 (b) Solve the initial-value problem found in part (a).
 (c)  How long will it take for the new bills to account for 90% 

of the currency in circulation?

 45.   A tank contains 1000 L of brine with 15 kg of dissolved salt. 
Pure water enters the tank at a rate of 10 Lymin. The solution  

 31. y −
k
x

 32.  y −
1

x 1 k

33–35 An integral equation is an equation that contains an 
unknown function ysxd and an integral that involves ysxd. Solve the 
given integral equation. [Hint: Use an initial condition obtained 
from the integral equation.]

 33.  ysxd − 2 1 yx

2
 ft 2 tystdg dt

 34.  ysxd − 2 1 yx

1
 

dt
ty std

,  x . 0

 35.  ysxd − 4 1 yx

0
 2tsy std dt

 36.   Find a function f  such that f s3d − 2 and 

st 2 1 1d f 9std 1 f f stdg 2 1 1 − 0    t ± 1

[Hint: Use the addition formula for tansx 1 yd on Reference 
Page 2.]

 37.   Solve the initial-value problem in Exercise 9.2.27 to find an 
expression for the charge at time t. Find the limiting value of 
the charge.

 38.   In Exercise 9.2.28 we discussed a differential equation that 
models the temperature of a 95°C cup of coffee in a 20°C 
room. Solve the differential equation to find an expression for 
the temperature of the coffee at time t.

 39.   In Exercise 9.1.15 we formulated a model for learning in the 
form of the differential equation

dP
dt

− ksM 2 Pd

where Pstd measures the performance of someone learning a 
skill after a training time t, M is the maximum level of per-
formance, and k is a positive constant. Solve this differential 
equation to find an expression for Pstd. What is the limit of this 
expression?

 40.   In an elementary chemical reaction, single molecules of 
two reactants A and B form a molecule of the product C: 
A 1 B l C. The law of mass action states that the rate of 
reaction is proportional to the product of the concentrations of 
A and B: 

d fCg
dt

− k fAg fBg

(See Example 3.7.4.) Thus, if the initial concentrations are 
fAg − a molesyL and fBg − b molesyL and we write x − fCg,  
then we have

dx
dt

− ksa 2 xdsb 2 xd

 (a)  Assuming that a ± b, find x as a function of t. Use the fact 
that the initial concentration of C is 0.

 (b)  Find x std assuming that a − b. How does this expres- 
 sion for x std simplify if it is known that fCg − 1

2 a after  
20 seconds?
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their specific growth rates are proportional:

1
L1

 
dL1

dt
− k 

1
L2

 
dL2

dt

where k is a constant.
 (a)  Use the allometric law to write a differential equation 

relating L1 and L2 and solve it to express L1 as a func-
tion of L2.

 (b)  In a study of several species of unicellular algae, the 
proportionality constant in the allometric law relating 
B (cell biomass) and V (cell volume) was found to be 
k − 0.0794. Write B as a function of V.

 52.   A model for tumor growth is given by the Gompertz  
equation

dV
dt

− asln b 2 ln V dV

where a and b are positive constants and V is the volume of 
the tumor measured in mm3.
 (a)  Find a family of solutions for tumor volume as a func-

tion of time.
 (b)  Find the solution that has an initial tumor volume of 

Vs0d − 1 mm3.

 53.   Let Astd be the area of a tissue culture at time t and let M 
be the final area of the tissue when growth is complete. 
Most cell divisions occur on the periphery of the tissue 
and the number of cells on the periphery is proportional to 
sAstd. So a reasonable model for the growth of tissue is 
obtained by assuming that the rate of growth of the area is 
jointly proportional to sAstd and M 2 Astd.

 (a)  Formulate a differential equation and use it to show 
that the tissue grows fastest when Astd − 1

3 M.
 (b)  Solve the differential equation to find an expression for 

Astd. Use a computer algebra system to perform the 
integration.

 54.   According to Newton’s Law of Universal Gravitation, the 
gravitational force on an object of mass m that has been 
projected vertically upward from the earth’s surface is 

F −
mtR 2

sx 1 Rd2

where x − xstd is the object’s distance above the sur-
face at time t, R is the earth’s radius, and t is the accel-
eration due to gravity. Also, by Newton’s Second Law, 
F − ma − m sdvydtd and so

m 
dv
dt

− 2
mtR 2

sx 1 Rd2

 (a)  Suppose a rocket is fired vertically upward with an 
initial velocity v0. Let h be the maximum height above 

CAS

is kept thoroughly mixed and drains from the tank at the  
same rate. How much salt is in the tank (a) after t minutes  
and (b) after 20 minutes?

 46.   The air in a room with volume 180 m3 contains 0.15% carbon 
dioxide initially. Fresher air with only 0.05% carbon dioxide 
flows into the room at a rate of 2 m3ymin and the mixed air flows 
out at the same rate. Find the percentage of carbon dioxide in 
the room as a function of time. What happens in the long run?

 47.   A vat with 500 gallons of beer contains 4% alcohol (by vol-
ume). Beer with 6% alcohol is pumped into the vat at a rate of 
5 galymin and the mixture is pumped out at the same rate. What 
is the percentage of alcohol after an hour?

 48.   A tank contains 1000 L of pure water. Brine that contains 
0.05 kg of salt per liter of water enters the tank at a rate of  
5 Lymin. Brine that contains 0.04 kg of salt per liter of water 
enters the tank at a rate of 10 Lymin. The solution is kept 
thoroughly mixed and drains from the tank at a rate of  
15 Lymin. How much salt is in the tank (a) after t minutes  
and (b) after one hour?

 49.   When a raindrop falls, it increases in size and so its mass at 
time t is a function of t, namely, mstd. The rate of growth of the 
mass is kmstd for some positive constant k. When we apply 
New ton’s Law of Motion to the raindrop, we get smvd9 − tm, 
where v is the velocity of the raindrop (directed downward) and 
t is the acceleration due to gravity. The terminal velocity of the 
raindrop is lim t l ` vstd. Find an expression for the terminal 
velocity in terms of t and k.

 50.   An object of mass m is moving horizontally through a medium 
which resists the motion with a force that is a function of the 
velocity; that is,

m 
d 2s
dt 2 − m 

dv
dt

− f svd

where v − vstd and s − sstd represent the velocity and position 
of the object at time t, respectively. For example, think of a 
boat moving through the water.

 (a)  Suppose that the resisting force is proportional to the 
velocity, that is, f svd − 2kv, k a positive constant. (This 
model is appropriate for small values of v.) Let vs0d − v0 
and ss0d − s0 be the initial values of v and s. Determine v 
and s at any time t. What is the total distance that the object 
travels from time t − 0?

 (b)  For larger values of v a better model is obtained by sup-
posing that the resisting force is proportional to the square 
of the velocity, that is, f svd − 2kv2, k . 0. (This model 
was first proposed by Newton.) Let v0 and s0 be the initial 
values of v and s. Determine v and s at any time t. What is 
the total distance that the object travels in this case?

 51.   Allometric growth in biology refers to relationships between 
sizes of parts of an organism (skull length and body length, for 
instance). If L1std and L2std are the sizes of two organs in an 
organism of age t, then L1 and L2 satisfy an allometric law if 
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APPLIED PROJECT

If water (or other liquid) drains from a tank, we expect that the flow will be greatest at first (when 
the water depth is greatest) and will gradually decrease as the water level decreases. But we need 
a more precise mathematical description of how the flow decreases in order to answer the kinds 
of questions that engineers ask: How long does it take for a tank to drain completely? How much 
water should a tank hold in order to guarantee a certain minimum water pressure for a sprinkler 
system?

Let hstd and Vstd be the height and volume of water in a tank at time t. If water drains through 
a hole with area a at the bottom of the tank, then Torricelli’s Law says that

dV
dt

− 2as2th 

where t is the acceleration due to gravity. So the rate at which water flows from the tank is pro-
portional to the square root of the water height.

1. (a)  Suppose the tank is cylindrical with height 6 ft and radius 2 ft and the hole is circular with 
radius 1 inch. If we take t − 32 ftys2, show that h satisfies the differential equation

dh
dt

− 2
1

72
 sh 

 (b)  Solve this equation to find the height of the water at time t, assuming the tank is full at 
time t − 0.

 (c) How long will it take for the water to drain completely?

2.  Because of the rotation and viscosity of the liquid, the theoretical model given by Equation 1 
isn’t quite accurate. Instead, the model

dh
dt

− ksh 

   is often used and the constant k (which depends on the physical properties of the liquid) is 
determined from data concerning the draining of the tank.

 (a)  Suppose that a hole is drilled in the side of a cylindrical bottle and the height h of the 
water (above the hole) decreases from 10 cm to 3 cm in 68 seconds. Use Equation 2 to 
find an expression for hstd. Evaluate hstd for t − 10, 20, 30, 40, 50, 60.

 (b)  Drill a 4-mm hole near the bottom of the cylindrical part of a two-liter plastic soft-drink 
bottle. Attach a strip of masking tape marked in centimeters from 0 to 10, with  corre-
sponding to the top of the hole. With one finger over the hole, fill the bottle with water  
to the 10-cm mark. Then take your finger off the hole and record the values of hstd for 
t − 10, 20, 30, 40, 50, 60 seconds. (You will probably find that it takes 68 seconds for  
the level to decrease to h − 3 cm.) Compare your data with the values of hstd from 
part (a). How well did the model predict the actual values?

3.  In many parts of the world, the water for sprinkler systems in large hotels and hospitals is 
supplied by gravity from cylindrical tanks on or near the roofs of the buildings. Suppose such 
a tank has radius 10 ft and the diameter of the outlet is 2.5 inches. An engineer has to guaran-

1

2

© Richard Le Borne, Dept. Mathematics, 
Tennessee Technological University

Problem 2(b) is best done as a 
classroom demonstration or as a 
group project with three students  
in each group: a timekeeper to call 
out seconds, a bottle keeper to  
estimate the height every 10 sec-
onds, and a record keeper to record 
these values.

HOW FAST DOES A TANK DRAIN?

 (b)  Calculate ve − lim h l ` v0. This limit is called the escape 
velocity for the earth.

 (c)  Use R − 3960 mi and t − 32 ftys2 to calculate ve in feet 
per second and in miles per second. 

the surface reached by the object. Show that

v0 − Î 2tRh
R 1 h

 

  [Hint: By the Chain Rule, m sdvydtd − mv sdvydxd.]
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 APPLIED PROJECT  Which Is Faster, Going Up or Coming Down? 609

tee that the water pressure will be at least 2160 lbyft 2 for a period of 10 minutes. (When  
a fire happens, the electrical system might fail and it could take up to 10 minutes for the  
emergency generator and fire pump to be activated.) What height should the engineer  
specify for the tank in order to make such a guarantee? (Use the fact that the water pressure  
at a depth of d feet is P − 62.5d. See Section 8.3.)

4.  Not all water tanks are shaped like cylinders. Suppose a tank has cross-sectional area Ashd  
at height h. Then the volume of water up to height h is V − yh

0
 Asud du and so the Funda - 

mental Theorem of Calculus gives dVydh − Ashd. It follows that

dV
dt

−
dV
dh

 
dh
dt

− Ashd 
dh
dt

 and so Torricelli’s Law becomes

Ashd 
dh
dt

− 2as2th 

 (a)  Suppose the tank has the shape of a sphere with radius 2 m and is initially half full of 
water. If the radius of the circular hole is 1 cm and we take t − 10 mys2, show that h  
satisfies the differential equation

s4h 2 h2 d 
dh
dt

− 20.0001s20h 

 (b) How long will it take for the water to drain completely?

APPLIED PROJECT

Suppose you throw a ball into the air. Do you think it takes longer to reach its maximum height  
or to fall back to earth from its maximum height? We will solve the problem in this project,  
but before getting started, think about that situation and make a guess based on your physical  
intuition.

1.  A ball with mass m is projected vertically upward from the earth’s surface with a positive 
initial velocity v0. We assume the forces acting on the ball are the force of gravity and a 
retarding force of air resistance with direction opposite to the direction of motion and with 
magnitude p| vstd |, where p is a positive constant and vstd is the velocity of the ball at time t. 
In both the ascent and the descent, the total force acting on the ball is 2pv 2 mt. [During 
ascent, vstd is positive and the resistance acts downward; during descent, vstd is negative and 
the resistance acts upward.] So, by Newton’s Second Law, the equation of motion is

mv9 − 2pv 2 mt

 Solve this differential equation to show that the velocity is

vstd − Sv0 1
mt
p De2ptym 2

mt
p

2. Show that the height of the ball, until it hits the ground, is

ystd − Sv0 1
mt
p D 

m
p

 s1 2 e2ptym d 2
mtt

p

WHICH IS FASTER, GOING UP OR COMING DOWN?

In modeling force due to air resis-
tance, various functions have been 
used, depending on the physical 
characteristics and speed of the ball. 
Here we use a linear model, 2pv, 
but a quadratic model (2pv 2 on the 
way up and pv2 on the way down) 
is another possibility for higher 
speeds (see Exercise 9.3.50). For a 
golf ball, experiments have shown 
that a good model is 2pv 1.3 going 
up and p| v |1.3 coming down. But no 
matter which force func tion 2f svd 
is used [where f svd . 0 for v . 0 
and f svd , 0 for v , 0], the answer 
to the question remains the same. 
See F. Brauer, “What Goes Up Must 
Come Down, Eventually,” American 
Mathematical Monthly 108 (2001), 
pp. 437–440.
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610 CHAPTER 9  Differential Equations

3. Let t1 be the time that the ball takes to reach its maximum height. Show that

t1 −
m
p

  lnSmt 1 pv0

mt D
  Find this time for a ball with mass 1 kg and initial velocity 20 mys. Assume the air resistance 

is 1
10 of the speed.

4.  Let t2 be the time at which the ball falls back to earth. For the particular ball in Prob lem 3, 
estimate t2 by using a graph of the height function ystd. Which is faster, going up or coming 
down?

5.  In general, it’s not easy to find t2 because it’s impossible to solve the equation ystd − 0 
explicitly. We can, however, use an indirect method to determine whether ascent or descent is 
faster: we determine whether ys2t1d is positive or negative. Show that

ys2t1d −
m 2t
p 2  Sx 2

1
x

2 2 ln xD
 where x − e pt1ym. Then show that x . 1 and the function

f sxd − x 2
1
x

2 2 ln x

  is increasing for x . 1. Use this result to decide whether ys2t1d is positive or negative.  
What can you conclude? Is ascent or descent faster?

;

In this section we investigate differential equations that are used to model population 
growth: the law of natural growth, the logistic equation, and several others.

The Law of Natural Growth
One of the models for population growth that we considered in Section 9.1 was based  
on the assumption that the population grows at a rate proportional to the size of the  
population:

dP
dt

− kP

Is that a reasonable assumption? Suppose we have a population (of bacteria, for instance) 
with size P − 1000 and at a certain time it is growing at a rate of P9 − 300 bacteria per 
hour. Now let’s take another 1000 bacteria of the same type and put them with the first 
pop ulation. Each half of the combined population was previously growing at a rate of  
300 bac teria per hour. We would expect the total population of 2000 to increase at a rate 
of 600 bacteria per hour initially (provided there’s enough room and nutrition). So if 
we double the size, we double the growth rate. It seems reasonable that the growth rate 
should be proportional to the size.

In general, if Pstd is the value of a quantity y at time t and if the rate of change of P 
with respect to t is proportional to its size Pstd at any time, then

dP
dt

− kP1
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 SECTION 9.4  Models for Population Growth 611

where k is a constant. Equation 1 is sometimes called the law of natural growth. If k is 
positive, then the population increases; if k is negative, it decreases.

Because Equation 1 is a separable differential equation, we can solve it by the meth-
ods of Section 9.3:

 y 
dP
P

− y k dt

 ln | P | − kt 1 C

 | P | − ekt1C − eCekt

 P − Aekt

where A (− 6eC or 0) is an arbitrary constant. To see the significance of the constant A,  
we observe that

Ps0d − Aek ? 0 − A

Therefore A is the initial value of the function.

2   The solution of the initial-value problem

dP
dt

− kP      Ps0d − P0

is Pstd − P0ekt

Examples and exercises on the use  
of (2) are given in Section 3.8.

Another way of writing Equation 1 is

1
P

 
dP
dt

− k

which says that the relative growth rate (the growth rate divided by the population size) 
is constant. Then (2) says that a population with constant relative growth rate must grow 
exponentially.

We can account for emigration (or “harvesting”) from a population by modifying 
Equation 1: if the rate of emigration is a constant m, then the rate of change of the popu-
lation is modeled by the differential equation

dP
dt

− kP 2 m

See Exercise 17 for the solution and consequences of Equation 3.

The Logistic Model
As we discussed in Section 9.1, a population often increases exponentially in its early 
stages but levels off eventually and approaches its carrying capacity because of limited 
resources. If Pstd is the size of the population at time t, we assume that

dP
dt

< kP    if P is small

3
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612 CHAPTER 9  Differential Equations

This says that the growth rate is initially close to being proportional to size. In other 
words, the relative growth rate is almost constant when the population is small. But 
we also want to reflect the fact that the relative growth rate decreases as the popula-
tion P increases and becomes negative if P ever exceeds its carrying capacity M, the 
maximum population that the environment is capable of sustaining in the long run. The 
simplest expression for the relative growth rate that incorporates these assumptions is

1
P

 
dP
dt

− kS1 2
P
MD

Multiplying by P, we obtain the model for population growth known as the logistic dif-
fer ential equation:

dP
dt

− kPS1 2
P
MD

Notice from Equation 4 that if P is small compared with M, then PyM is close to 0 and so 
dPydt < kP. However, if P l M (the population approaches its carrying capacity), then 
PyM l 1, so dPydt l 0. We can deduce information about whether solutions increase 
or decrease directly from Equation 4. If the population P lies between 0 and M, then the 
right side of the equation is positive, so dPydt . 0 and the population increases. But if 
the pop ulation exceeds the carrying capacity sP . Md, then 1 2 PyM is negative, so 
dPydt , 0 and the population decreases.

Let’s start our more detailed analysis of the logistic differential equation by looking 
at a direction field.

EXAMPLE 1  Draw a direction field for the logistic equation with k − 0.08 and carry-
ing capacity M − 1000. What can you deduce about the solutions?

SOLUTION In this case the logistic differential equation is

dP
dt

− 0.08PS1 2
P

1000D
A direction field for this equation is shown in Figure 1. We show only the first quadrant 
because negative populations aren’t meaningful and we are interested only in what hap-
pens after t − 0.

0 t

P

80

1400

604020

1200
1000
800
600
400
200

4

FIGURE 1  
Direction field for the logistic  

equation in Example 1
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The logistic equation is autonomous (dPydt depends only on P, not on t), so the 
slopes are the same along any horizontal line. As expected, the slopes are positive for 
0 , P , 1000 and negative for P . 1000.

The slopes are small when P is close to 0 or 1000 (the carrying capacity). Notice 
that the solutions move away from the equilibrium solution P − 0 and move toward the 
equilibrium solution P − 1000.

In Figure 2 we use the direction field to sketch solution curves with initial popula-
tions Ps0d − 100, Ps0d − 400, and Ps0d − 1300. Notice that solution curves that start 
below P − 1000 are increasing and those that start above P − 1000 are decreasing. 
The slopes are greatest when P < 500 and therefore the solution curves that start below 
P − 1000 have inflection points when P < 500. In fact we can prove that all solution 
curves that start below P − 500 have an inflection point when P is exactly 500. (See 
Exercise 13.)

 
0 t

P

80

1400

604020

1200
1000
800
600
400
200

 Q

The logistic equation (4) is separable and so we can solve it explicitly using the method 
of Section 9.3. Since

dP
dt

− kPS1 2
P
MD

we have

y 
dP

Ps1 2 PyMd
− y k dt

To evaluate the integral on the left side, we write

1
Ps1 2 PyMd

−
M

PsM 2 Pd

Using partial fractions (see Section 7.4), we get

M
PsM 2 Pd

−
1
P

1
1

M 2 P

This enables us to rewrite Equation 5:

 y S 1
P

1
1

M 2 PD dP − y k dt

 ln | P | 2 ln | M 2 P | − kt 1 C

FIGURE 2  
Solution curves for the logistic  

equation in Example 1

5
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614 CHAPTER 9  Differential Equations

 ln Z M 2 P
P Z − 2kt 2 C

 Z M 2 P
P Z − e2kt2C − e2Ce2kt

 
M 2 P

P
− Ae2kt

where A − 6e2C. Solving Equation 6 for P, we get

M
P

2 1 − Ae2kt    ?    
P
M

−
1

1 1 Ae2kt

so P −
M

1 1 Ae2kt  

We find the value of A by putting t − 0 in Equation 6. If t − 0, then P − P0 (the initial 
population), so

M 2 P0

P0
− Ae 0 − A

Thus the solution to the logistic equation is

Pstd −
M

1 1 Ae2kt     where A −
M 2 P0

P0

Using the expression for Pstd in Equation 7, we see that

lim
t l `

 Pstd − M

which is to be expected.

EXAMPLE 2  Write the solution of the initial-value problem

dP
dt

− 0.08PS1 2
P

1000D  Ps0d − 100

and use it to find the population sizes Ps40d and Ps80d. At what time does the popula-
tion reach 900?

SOLUTION The differential equation is a logistic equation with k − 0.08, carrying 
capacity M − 1000, and initial population P0 − 100. So Equation 7 gives the popula-
tion at time t as

Pstd −
1000

1 1 Ae20.08t     where A −
1000 2 100

100
− 9

Thus Pstd −
1000

1 1 9e20.08t

6

7
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 SECTION 9.4  Models for Population Growth 615

So the population sizes when t − 40 and 80 are

Ps40d −
1000

1 1 9e23.2 < 731.6      Ps80d −
1000

1 1 9e26.4 < 985.3

The population reaches 900 when

1000
1 1 9e20.08t − 900

Solving this equation for t, we get

 1 1 9e20.08t − 10
9

 e20.08t − 1
81

 20.08t − ln 1
81 − 2ln 81

 t −
ln 81
0.08

< 54.9

So the population reaches 900 when t is approximately 55. As a check on our work, we 
graph the population curve in Figure 3 and observe where it intersects the line P − 900.  
The cursor indicates that t < 55. Q

Comparison of the Natural Growth and Logistic Models
In the 1930s the biologist G. F. Gause conducted an experiment with the protozoan Para-
mecium and used a logistic equation to model his data. The table gives his daily count of 
the population of protozoa. He estimated the initial relative growth rate to be 0.7944 and 
the car rying capacity to be 64.

t (days) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P (observed) 2 3 22 16 39 52 54 47 50 76 69 51 57 70 53 59 57

EXAMPLE 3  Find the exponential and logistic models for Gause’s data. Compare the 
predicted values with the observed values and comment on the fit.

SOLUTION Given the relative growth rate k − 0.7944 and the initial population P0 − 2, 
the exponential model is

Pstd − P0 ekt − 2e 0.7944 t

Gause used the same value of k for his logistic model. [This is reasonable because 
P0 − 2 is small compared with the carrying capacity (M − 64). The equation

1
P0

 
dP
dt Z

t−0

− kS1 2
2
64D < k

shows that the value of k for the logistic model is very close to the value for the expo-
nential model.]

Then the solution of the logistic equation in Equation 7 gives

Pstd −
M

1 1 Ae2kt −
64

1 1 Ae20.7944 t

Compare the solution curve in Figure 3 
with the lowest solution curve we drew 
from the direction field in Figure 2.

1000

0 80

P= 1000
1+9e_0.08t

P=900

FIGURE 3 
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where A −
M 2 P0

P0
−

64 2 2
2

− 31

So Pstd −
64

1 1 31e20.7944 t

We use these equations to calculate the predicted values (rounded to the nearest integer) 
and compare them in the following table.

t (days) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P (observed) 2 3 22 16 39 52 54 47 50 76 69 51 57 70 53 59 57

P (logistic model) 2 4 9 17 28 40 51 57 61 62 63 64 64 64 64 64 64

P (exponential model) 2 4 10 22 48 106 . . .

We notice from the table and from the graph in Figure 4 that for the first three or 
four days the exponential model gives results comparable to those of the more sophisti-
cated logistic model. For t > 5, however, the exponential model is hopelessly inaccu-
rate, but the logistic model fits the observations reasonably well.

 
0 t

P

161284

60

40

20
P= 64

1+31e_0.7944t

P=2e0.7944t

 Q

Many countries that formerly experienced exponential growth are now finding that 
their rates of population growth are declining and the logistic model provides a bet-
ter model. The table in the margin shows midyear values of Bstd, the population of 
Belgium, in thou sands, at time t, from 1980 to 2012. Figure 5 shows these data points 
together with a shifted logistic function obtained from a calculator with the ability to fit 
a logistic function to these points by regression. We see that the logistic model provides 
a very good fit.

0 t

P

1980 1984 1988 1992 1996 2000 2004 2008 2012

P=9800+ 647
1+21.65e_0.2(t-1980)10,000

10,200

9,800

10,400

FIGURE 4  
The exponential and logistic  

models for the Paramecium data

t Bstd t Bstd

1980 9,847 1998 10,217
1982 9,856 2000 10,264
1984 9,855 2002 10,312
1986 9,862 2004 10,348
1988 9,884 2006 10,379
1990 9,969 2008 10,404
1992 10,046 2010 10,423
1994 10,123 2012 10,438
1996 10,179

FIGURE 5  
Logistic model for the  
population of Belgium
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0 t

P

604020

150

100

50

 (c)  Use the direction field to sketch solutions for initial pop-
ulations of 20, 40, 60, 80, 120, and 140. What do these 
solutions have in common? How do they differ? Which 
solutions have inflection points? At what population levels 
do they occur?

 (d)  What are the equilibrium solutions? How are the other 
solutions related to these solutions?

 4.   Suppose that a population grows according to a logistic model 
with carrying capacity 6000 and k − 0.0015 per year.

 (a) Write the logistic differential equation for these data.

;

1–2 A population grows according to the given logistic 
equation, where t is measured in weeks.
(a)  What is the carrying capacity? What is the value of k?
(b) Write the solution of the equation.
(c) What is the population after 10 weeks?

 1.   
dP
dt

− 0.04PS1 2
P

1200D, Ps0d − 60

 2.   
dP
dt

− 0.02P 2 0.0004P 2, Ps0d − 40

 3.   Suppose that a population develops according to the logistic 
equation

dP
dt

− 0.05P 2 0.0005P 2

where t is measured in weeks.
 (a) What is the carrying capacity? What is the value of k?
 (b)  A direction field for this equation is shown. Where  

are the slopes close to 0? Where are they largest?  
Which solutions are increasing? Which solutions are 
decreasing?

;

Other Models for Population Growth
The Law of Natural Growth and the logistic differential equation are not the only equa-
tions that have been proposed to model population growth. In Exercise 22 we look at the 
Gompertz growth function and in Exercises 23 and 24 we investigate seasonal-growth 
models.

Two of the other models are modifications of the logistic model. The differential 
equation

dP
dt

− kPS1 2
P
MD 2 c

has been used to model populations that are subject to harvesting of one sort or another. 
(Think of a population of fish being caught at a constant rate.) This equation is explored 
in Exercises 19 and 20.

For some species there is a minimum population level m below which the species 
tends to become extinct. (Adults may not be able to find suitable mates.) Such popula-
tions have been modeled by the differential equation

dP
dt

− kPS1 2
P
MDS1 2

m
PD

where the extra factor, 1 2 myP, takes into account the consequences of a sparse popula-
tion (see Exercise 21).
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618 CHAPTER 9  Differential Equations

 (c)  Find both an exponential model and a logistic model for 
these data.

 (d)  Compare the predicted values with the observed values, 
both in a table and with graphs. Comment on how well 
your models fit the data.

 (e)  Use your logistic model to estimate the number of yeast 
cells after 7 hours.

 9.   The population of the world was about 6.1 billion in 2000. 
Birth rates around that time ranged from 35 to 40 million 
per year and death rates ranged from 15 to 20 million per 
year. Let’s assume that the carrying capacity for world 
population is 20 billion.

 (a)  Write the logistic differential equation for these data. 
(Because the initial population is small compared to the 
carrying capacity, you can take k to be an estimate of  
the initial relative growth rate.)

 (b)  Use the logistic model to estimate the world population  
in the year 2010 and compare with the actual popula-
tion of 6.9 billion.

 (c)  Use the logistic model to predict the world population 
in the years 2100 and 2500.

 10.  (a)  Assume that the carrying capacity for the US popula-
tion is 800 million. Use it and the fact that the popula-
tion was 282 million in 2000 to formulate a logistic 
model for the US population.

 (b)  Determine the value of k in your model by using the  
fact that the population in 2010 was 309 million.

 (c)  Use your model to predict the US population in the 
years 2100 and 2200.

 (d)  Use your model to predict the year in which the US  
population will exceed 500 million.

 11.   One model for the spread of a rumor is that the rate of 
spread is proportional to the product of the fraction y of the 
popula tion who have heard the rumor and the fraction who 
have not heard the rumor.

 (a) Write a differential equation that is satisfied by y.
 (b) Solve the differential equation.
 (c)  A small town has 1000 inhabitants. At 8 am, 80 people 

have heard a rumor. By noon half the town has heard it. 
At what time will 90% of the population have heard the 
rumor?

 12.   Biologists stocked a lake with 400 fish and estimated the  
carrying capacity (the maximal population for the fish of 
that species in that lake) to be 10,000. The number of fish 
tripled in the first year.

 (a)  Assuming that the size of the fish population satisfies 
the logistic equation, find an expression for the size of 
the population after t years.

 (b)  How long will it take for the population to increase  
to 5000?

 13.  (a) Show that if P satisfies the logistic equation (4), then

d 2P
dt 2 − k 2PS1 2

P
MDS1 2

2P
M D

 (b)  Draw a direction field (either by hand or with a com-
puter algebra system). What does it tell you about the 
solution curves?

 (c)  Use the direction field to sketch the solution curves for  
initial populations of 1000, 2000, 4000, and 8000. What 
can you say about the concavity of these curves? What 
is the significance of the inflection points?

 (d)  Program a calculator or computer to use Euler’s method 
with step size h − 1 to estimate the population after 
50 years if the initial population is 1000.

 (e)  If the initial population is 1000, write a formula for the 
population after t years. Use it to find the population 
after 50 years and compare with your estimate in  
part (d).

 (f )  Graph the solution in part (e) and compare with the 
solution curve you sketched in part (c).

 5.   The Pacific halibut fishery has been modeled by the differ-
ential equation

dy
dt

− kyS1 2
y
MD 

where ystd is the biomass (the total mass of the members of  
the population) in kilograms at time t (measured in years),  
the carrying capacity is estimated to be M − 8 3 107 kg, 
and k − 0.71 per year.

 (a) If ys0d − 2 3 107 kg, find the biomass a year later.
 (b)  How long will it take for the biomass to reach 

4 3 107 kg?

 6.   Suppose a population Pstd satisfies

dP
dt

− 0.4P 2 0.001P 2      Ps0d − 50

where t is measured in years.
 (a)  What is the carrying capacity?
 (b)  What is P9s0d?
 (c)  When will the population reach 50% of the carrying 

capacity?

 7.   Suppose a population grows according to a logistic model 
with initial population 1000 and carrying capacity 10,000. 
If the population grows to 2500 after one year, what will the 
population be after another three years?

 8.   The table gives the number of yeast cells in a new labora-
tory culture.

Time (hours) Yeast cells Time (hours) Yeast cells

0  18 10 509
2  39 12 597
4  80 14 640
6 171 16 664
8 336 18 672

 (a)  Plot the data and use the plot to estimate the carrying 
capacity for the yeast population.

 (b) Use the data to estimate the initial relative growth rate.
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 (b)  Deduce that a population grows fastest when it reaches 
half its carrying capacity.

 14.   For a fixed value of M (say M − 10), the family of logistic 
functions given by Equation 7 depends on the initial value  
P0 and the proportionality constant k. Graph several mem-
bers of this family. How does the graph change when P0 
varies? How does it change when k varies?

 15.   The table gives the midyear population of Japan, in thou-
sands, from 1960 to 2010.

Year Population Year Population

1960 94,092 1990 123,537
1965 98,883 1995 125,327
1970 104,345 2000 126,776
1975 111,573 2005 127,715
1980 116,807 2010 127,579
1985 120,754

Use a calculator to fit both an exponential function and 
a logistic function to these data. Graph the data points 
and both functions, and comment on the accuracy of the 
models. [Hint: Subtract 94,000 from each of the population 
figures. Then, after obtaining a model from your calculator, 
add 94,000 to get your final model. It might be helpful to 
choose t − 0 to correspond to 1960 or 1980.]

 16.   The table gives the midyear population of Norway, in thou-
sands, from 1960 to 2010.

Year Population Year Population

1960 3581 1990 4242
1965 3723 1995 4359
1970 3877 2000 4492
1975 4007 2005 4625
1980 4086 2010 4891
1985 4152

Use a calculator to fit both an exponential function and 
a logistic function to these data. Graph the data points 
and both functions, and comment on the accuracy of the 
models. [Hint: Subtract 3500 from each of the population 
figures. Then, after obtaining a model from your calcula-
tor, add 3500 to get your final model. It might be helpful to 
choose t − 0 to correspond to 1960.]

 17.   Consider a population P − Pstd with constant relative 
birth and death rates ! and ", respectively, and a constant 
emigra tion rate m, where !, ", and m are positive con-
stants. Assume that ! . ". Then the rate of change of the 
population at time t is modeled by the differential equation

dP
dt

− kP 2 m    where k − ! 2 "

 (a)  Find the solution of this equation that satisfies the 
initial condition Ps0d − P0.

;

;

;

 (b)  What condition on m will lead to an exponential 
expansion of the population?

 (c)  What condition on m will result in a constant popula-
tion? A population decline?

 (d)  In 1847, the population of Ireland was about 8 mil-
lion and the difference between the relative birth and 
death rates was 1.6% of the population. Because of the 
potato famine in the 1840s and 1850s, about 210,000 
inhabi tants per year emigrated from Ireland. Was the 
population expanding or declining at that time?

 18.   Let c be a positive number. A differential equation of the 
form

dy
dt

− ky 11c

where k is a positive constant, is called a doomsday equa-
tion because the exponent in the expression ky 11c is larger 
than the exponent 1 for natural growth.

 (a)  Determine the solution that satisfies the initial condi-
tion ys0d − y0.

 (b)  Show that there is a finite time t − T (doomsday) such 
that lim t l T 2 ystd − `.

 (c)  An especially prolific breed of rabbits has the growth 
term ky 1.01. If 2 such rabbits breed initially and the 
warren has 16 rabbits after three months, then when is 
doomsday?

 19.   Let’s modify the logistic differential equation of  
Example 1 as follows:

dP
dt

− 0.08PS1 2
P

1000D 2 15

 (a)  Suppose Pstd represents a fish population at time t,  
where t is measured in weeks. Explain the meaning of 
the final term in the equation s215d.

 (b) Draw a direction field for this differential equation.
 (c) What are the equilibrium solutions?
 (d)  Use the direction field to sketch several solution 

curves. Describe what happens to the fish population 
for various initial populations.

 (e)  Solve this differential equation explicitly, either by 
using partial fractions or with a computer algebra 
system. Use the initial populations 200 and 300.  
Graph the solutions and compare with your sketches 
in part (d).

 20.  Consider the differential equation

dP
dt

− 0.08PS1 2
P

1000D 2 c

as a model for a fish population, where t is measured in 
weeks and c is a constant.

 (a)  Use a CAS to draw direction fields for various values  
of c.

CAS

CAS
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620 CHAPTER 9  Differential Equations

 (b) Compute lim t l ` Pstd.
 (c)  Graph the Gompertz growth function for M − 1000, 

P0 − 100, and c − 0.05, and compare it with the logistic 
function in Example 2. What are the similarities? What 
are the differences?

 (d)  We know from Exercise 13 that the logistic function 
grows fastest when P − My2. Use the Gompertz differ-
ential equation to show that the Gompertz function grows 
fastest when P − Mye.

 23.   In a seasonal-growth model, a periodic function of time is 
introduced to account for seasonal variations in the rate of 
growth. Such variations could, for example, be caused by 
seasonal changes in the availability of food.

 (a) Find the solution of the seasonal-growth model

dP
dt

− kP cossrt 2 #d      Ps0d − P0

  where k, r, and # are positive constants.
 (b)  By graphing the solution for several values of k, r, and  

#, explain how the values of k, r, and # affect the solu-
tion. What can you say about lim t l ` Pstd?

 24.   Suppose we alter the differential equation in Exercise 23 as  
follows:

dP
dt

− kP cos2srt 2 #d      Ps0d − P0

 (a)  Solve this differential equation with the help of a table of 
integrals or a CAS.

 (b)  Graph the solution for several values of k, r, and #.  
How do the values of k, r, and # affect the solution? 
What can you say about lim t l ` Pstd in this case?

 25.   Graphs of logistic functions (Figures 2 and 3) look suspi-
ciously similar to the graph of the hyperbolic tangent function 
(Figure 3.11.3). Explain the similarity by showing that the 
logistic function given by Equation 7 can be written as 

Pstd − 1
2 M f1 1 tanh( 1

2 ks t 2 cd)g

where c − sln Adyk.  Thus the logistic function is really just a 
shifted hyperbolic tangent.

;

;

A first-order linear differential equation is one that can be put into the form

dy
dx

1 Psxdy − Qsxd

where P and Q are continuous functions on a given interval. This type of equation occurs 
frequently in various sciences, as we will see.

1 

 (b)  From your direction fields in part (a), determine the  
values of c for which there is at least one equilibrium  
sol ution. For what values of c does the fish population 
always die out?

 (c)  Use the differential equation to prove what you discov-
ered graphically in part (b).  

 (d)  What would you recommend for a limit to the weekly 
catch of this fish population?

 21.   There is considerable evidence to support the theory that 
for some species there is a minimum population m such that 
the species will become extinct if the size of the population 
falls below m. This condition can be incorporated into the 
logistic equation by introducing the factor s1 2 myPd.  
Thus the mod ified logistic model is given by the differential 
equation

dP
dt

− kPS1 2
P
MDS1 2

m
P D

 (a)  Use the differential equation to show that any solu-
tion is increasing if m , P , M and decreasing if 
0 , P , m.

 (b)  For the case where k − 0.08, M − 1000, and m − 200, 
draw a direction field and use it to sketch several solu- 
tion curves. Describe what happens to the population 
for various initial populations. What are the equilibrium  
solutions?

 (c)  Solve the differential equation explicitly, either by using 
partial fractions or with a computer algebra system. Use 
the initial population P0.

 (d)  Use the solution in part (c) to show that if P0 , m, then 
the species will become extinct. [Hint: Show that the 
numerator in your expression for Pstd is 0 for some 
value of t.]

 22.   Another model for a growth function for a limited popu-
lation is given by the Gompertz function, which is a solu-
tion of the differential equation 

dP
dt

− c lnSM
P DP

where c is a constant and M is the carrying capacity.
 (a) Solve this differential equation.
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 SECTION 9.5  Linear Equations  621

An example of a linear equation is xy9 1 y − 2x because, for x ± 0, it can be written 
in the form

y9 1
1
x

 y − 2

Notice that this differential equation is not separable because it’s impossible to factor the 
expression for y9 as a function of x times a function of y. But we can still solve the equa-
tion by noticing, by the Product Rule, that

xy9 1 y − sxyd9

and so we can rewrite the equation as

sxyd9 − 2x

If we now integrate both sides of this equation, we get

xy − x 2 1 C    or    y − x 1
C
x

If we had been given the differential equation in the form of Equation 2, we would have 
had to take the preliminary step of multiplying each side of the equation by x.

It turns out that every first-order linear differential equation can be solved in a similar 
fashion by multiplying both sides of Equation 1 by a suitable function Isxd called an  
integrating factor. We try to find I so that the left side of Equation 1, when multiplied by 
Isxd, becomes the derivative of the product Isxdy:

Isxd(y9 1 Psxdy) − (Isxdy)9

If we can find such a function I, then Equation 1 becomes

(Isxdy)9 − Isxd Qsxd

Integrating both sides, we would have

Isxdy − y Isxd Qsxd dx 1 C

so the solution would be

ysxd −
1

Isxd
 Fy Isxd Qsxd dx 1 CG

To find such an I, we expand Equation 3 and cancel terms:

 Isxdy9 1 Isxd Psxdy − sIsxdyd9 − I9sxdy 1 Isxdy9

 Isxd Psxd − I9sxd

This is a separable differential equation for I, which we solve as follows:

 y 
dI
I

− y Psxd dx

 ln | I | − y Psxd dx

 I − Ae y Psxd dx

2

3

4 
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622 CHAPTER 9  Differential Equations

where A − 6eC. We are looking for a particular integrating factor, not the most general 
one, so we take A − 1 and use

Isxd − e y Psxd dx

Thus a formula for the general solution to Equation 1 is provided by Equation 4, where I 
is given by Equation 5. Instead of memorizing this formula, however, we just remember 
the form of the integrating factor.

To solve the linear differential equation y9 1 Psxdy − Qsxd, multiply both sides by 
the integrating factor Isxd − e y Psxd dx and integrate both sides.

EXAMPLE 1  Solve the differential equation 
dy
dx

1 3x 2 y − 6x 2.

SOLUTION The given equation is linear since it has the form of Equation 1 with 
Psxd − 3x 2 and Qsxd − 6x 2. An integrating factor is

Isxd − e y 3x 2 dx − ex 3

Multiplying both sides of the differential equation by ex 3
, we get

 ex 3 
dy
dx

1 3x 2ex 3y − 6x 2ex 3

or  
d
dx

 sex 3yd − 6x 2ex 3

Integrating both sides, we have

 ex 3
y − y 6x 2ex 3 dx − 2ex 3

1 C

  y − 2 1 Ce2x 3
 Q

EXAMPLE 2  Find the solution of the initial-value problem

x 2 y9 1 xy − 1      x . 0      ys1d − 2

SOLUTION We must first divide both sides by the coefficient of y9 to put the differential 
equation into standard form:

y9 1
1
x

 y −
1
x 2     x . 0

The integrating factor is

Isxd − e y s1yxd dx − e ln x − x

Multiplication of Equation 6 by x gives

xy9 1 y −
1
x

    or    sxyd9 −
1
x

5

6

_3

_1.5 1.8

C=2
C=1

C=_2

C=_1
C=0

Figure 1 shows the graphs of several 
members of the family of solutions 
in Example 1. Notice that they all 
approach 2 as x l `.

FIGURE 1 

6
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 SECTION 9.5  Linear Equations 623

Then xy − y 
1
x

 dx − ln x 1 C

and so y −
ln x 1 C

x

Since ys1d − 2, we have

2 −
ln 1 1 C

1
− C

Therefore the solution to the initial-value problem is

 y −
ln x 1 2

x
 Q

EXAMPLE 3  Solve y9 1 2xy − 1.

SOLUTION The given equation is in the standard form for a linear equation. Multiply-
ing by the integrating factor

 e y 2x dx − ex 2

we get  ex 2
y9 1 2xex 2

y − ex 2
 

or  (ex 2
y)9 − ex 2

 

Therefore  ex 2
y − y ex 2

 dx 1 C 

Recall from Section 7.5 that y ex 2 dx can’t be expressed in terms of elementary func-
tions. Nonetheless, it’s a perfectly good function and we can leave the answer as 

y − e2x 2
 y ex 2 dx 1 Ce2x 2

Another way of writing the solution is

y − e2x 2
 y x

0
 e t 2 dt 1 Ce2x 2

(Any number can be chosen for the lower limit of integration.) Q

Application to Electric Circuits
In Section 9.2 we considered the simple electric circuit shown in Figure 4: An electro -
motive force (usually a battery or generator) produces a voltage of Estd volts (V) and a 
current of Istd amperes (A) at time t. The circuit also contains a resistor with a resistance 
of R ohms (V) and an inductor with an inductance of L henries (H).

Ohm’s Law gives the drop in voltage due to the resistor as RI. The voltage drop due to 
the inductor is LsdIydtd. One of Kirchhoff’s laws says that the sum of the voltage drops 
is equal to the supplied voltage Estd. Thus we have

L 
dI
dt

1 RI − Estd

(1, 2)

5

_5

0 4

The solution of the initial-value prob-
lem in Example 2 is shown in Figure 2.

FIGURE 2 

C=2

C=_2

2.5

_2.5

_2.5 2.5

Even though the solutions of the dif-
ferential equation in Example 3 are 
expressed in terms of an integral, they 
can still be graphed by a computer 
algebra system (Figure 3).

FIGURE 3 

FIGURE 4 

R

E

switch

L

7
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624 CHAPTER 9  Differential Equations

which is a first-order linear differential equation. The solution gives the current I at 
time t.

EXAMPLE 4  Suppose that in the simple circuit of Figure 4 the resistance is 12 V and 
the inductance is 4 H. If a battery gives a constant voltage of 60 V and the switch is 
closed when t − 0 so the current starts with Is0d − 0, find (a) Istd, (b) the current after 
1 second, and (c) the limiting value of the current.

SOLUTION
(a) If we put L − 4, R − 12, and Estd − 60 in Equation 7, we obtain the initial-value 
problem

 4 
dI
dt

1 12I − 60      Is0d − 0

or  
dI
dt

1 3I − 15      Is0d − 0

Multiplying by the integrating factor e y 3 dt − e 3 t, we get

 e 3 t 
dI
dt

1 3e 3 tI − 15e 3 t

 
d
dt

 se 3 tI d − 15e 3 t

 e 3 tI − y 15e 3 t dt − 5e 3 t 1 C

 Istd − 5 1 Ce23 t

Since Is0d − 0, we have 5 1 C − 0, so C − 25 and

Istd − 5s1 2 e23 td

(b) After 1 second the current is

Is1d − 5s1 2 e23 d < 4.75 A

(c) The limiting value of the current is given by

 lim
t l `

 Istd − lim
t l `

 5s1 2 e23 td − 5 2 5 lim
t l `

 e23 t − 5 2 0 − 5 Q

EXAMPLE 5  Suppose that the resistance and inductance remain as in Example 4  
but, instead of the battery, we use a generator that produces a variable voltage of 
Estd − 60 sin 30t volts. Find Istd.

SOLUTION This time the differential equation becomes

4 
dI
dt

1 12I − 60 sin 30t    or    
dI
dt

1 3I − 15 sin 30t

The same integrating factor e 3 t gives

d
dt

 se 3 tI d − e 3 t 
dI
dt

1 3e 3 tI − 15e 3 t sin 30t

The differential equation in Exam ple 
4 is both linear and separable, so an 
alternative method is to solve it as a 
separable equation (Example 9.3.4). If 
we replace the battery by a generator, 
however, we get an equation that is lin-
ear but not separable (Example 5).

Figure 5 shows how the current in 
Example 4 approaches its limiting 
value.

FIGURE 5 

6

0 2.5

y=5

Figure 6 shows the graph of the cur-
rent when the battery is replaced by a 
generator.

FIGURE 6 

2

_2

2.50
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 SECTION 9.5  Linear Equations  625

 23.   A Bernoulli differential equation (named after James 
Bernoulli) is of the form

dy
dx

1 Psxdy − Qsxdy n

Observe that, if n − 0 or 1, the Bernoulli equation is linear.  
For other values of n, show that the substitution u − y 12n 
transforms the Bernoulli equation into the linear equation

du
dx

1 s1 2 ndPsxdu − s1 2 ndQsxd

24–25 Use the method of Exercise 23 to solve the differential 
equation.

 24.  xy9 1 y − 2xy 2

 25.  y9 1
2
x

 y −
 y 3

x 2

 26.   Solve the second-order equation xy0 1 2y9 − 12x 2 by  
making the substitution u − y9.

 27.   In the circuit shown in Figure 4, a battery supplies a con-
stant voltage of 40 V, the inductance is 2 H, the resistance is 
10 V, and Is0d − 0.

 (a) Find Istd.
 (b) Find the current after 0.1 seconds.

 28.   In the circuit shown in Figure 4, a generator supplies a volt-
age of Estd − 40 sin 60t volts, the inductance is 1 H, the 
resistance is 20 V, and Is0d − 1 A.

 (a) Find Istd.
 (b) Find the current after 0.1 seconds.
 (c)  Use a graphing device to draw the graph of the current 

function.

 29.   The figure shows a circuit containing an electromotive 
force, a capacitor with a capacitance of C farads (F), and 
a resistor with a resistance of R ohms (V). The voltage 

;

1–4 Determine whether the differential equation is linear.

 1.  y9 1 xsy − x 2 2.  y9 2 x − y tan x

 3.  uet − t 1 st  
du
dt

 4.  
dR
dt

1 t cos R − e2t

 5–14 Solve the differential equation.

 5.  y9 1 y − 1 6.  y9 2 y − e x

 7.  y9 − x 2 y 8.  4x 3y 1 x 4y9 − sin3x

 9.  xy9 1 y − sx  10.  2xy9 1 y − 2sx 

 11.  xy9 2 2y − x 2 , x . 0 12.  y9 1 2xy − 1

 13.  t 2 
dy
dt

1 3t y − s1 1 t 2  , t . 0

 14.  t ln t 
dr
dt

1 r − te t

15–20 Solve the initial-value problem.

 15.  x 2y9 1 2xy − ln x,  ys1d − 2

 16.  t 3 
dy
dt

1 3t 2y − cos t,  ys!d − 0

 17.  t 
du
dt

− t 2 1 3u,  t . 0,  us2d − 4

 18.  xy9 1 y − x ln x,  ys1d − 0

 19.  xy9 − y 1 x 2 sin x,  ys!d − 0

 20.  sx 2 1 1d 
dy
dx

1 3xsy 2 1d − 0,  ys0d − 2

 21–22 Solve the differential equation and use a calcula tor to 
graph several members of the family of solutions. How does  
the solution curve change as C varies?

 21.  xy9 1 2y − e x 22.  xy9 − x 2 1 2y

;

Using Formula 98 in the Table of Integrals, we have

 e 3 tI − y 15e 3 t sin 30t dt − 15 
e 3t

909
 s3 sin 30t 2 30 cos 30td 1 C

 I − 5
101 ssin 30t 2 10 cos 30td 1 Ce23 t

Since Is0d − 0, we get

2 50
101 1 C − 0

so Istd − 5
101 ssin 30t 2 10 cos 30td 1 50

101 e23 t Q
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626 CHAPTER 9  Differential Equations

 34.   A tank with a capacity of 400 L is full of a mixture of water 
and chlorine with a concentration of 0.05 g of chlorine per liter. 
In order to reduce the concentration of chlorine, fresh water 
is pumped into the tank at a rate of 4 Lys. The mixture is kept 
stirred and is pumped out at a rate of 10 Lys. Find the amount 
of chlorine in the tank as a function of time.

 35.   An object with mass m is dropped from rest and we assume 
that the air resistance is proportional to the speed of the object. 
If sstd is the distance dropped after t seconds, then the speed is 
v − s9std and the acceleration is a − v9std. If t is the accelera-
tion due to gravity, then the downward force on the object is 
mt 2 cv, where c is a positive constant, and Newton’s Second 
Law gives

m 
dv
dt

− mt 2 cv

 (a) Solve this as a linear equation to show that

v −
mt
c

 s1 2 e2ctym d

 (b) What is the limiting velocity?
 (c) Find the distance the object has fallen after t seconds.

 36.   If we ignore air resistance, we can conclude that heavier 
objects fall no faster than lighter objects. But if we take air 
resistance into account, our conclusion changes. Use the 
expression for the velocity of a falling object in Exercise 35(a) 
to find dvydm and show that heavier objects do fall faster than 
lighter ones.

 37.  (a)  Show that the substitution z − 1yP transforms the logistic 
differential equation P9 − kPs1 2 PyMd into the linear  
differential equation

z9 1 kz −
k
M

 (b)  Solve the linear differential equation in part (a) and  
thus obtain an expression for Pstd. Compare with Equa-
tion 9.4.7.

 38.   To account for seasonal variation in the logistic differential 
equation, we could allow k and M to be functions of t:

dP
dt

− kstdPS1 2
P

MstdD
 (a)  Verify that the substitution z − 1yP transforms this equa-

tion into the linear equation

dz
dt

1 kstdz −
kstd
Mstd

 (b)  Write an expression for the solution of the linear equation 
in part (a) and use it to show that if the carrying capacity M 

drop across the capacitor is QyC, where Q is the charge (in 
coulombs), so in this case Kirchhoff’s Law gives

RI 1
Q
C

− Estd

But I − dQydt (see Example 3.7.3), so we have

R 
dQ
dt

1
1
C

 Q − Estd

Suppose the resistance is 5 V, the capacitance is 0.05 F, a  
battery gives a constant voltage of 60 V, and the initial charge is 
Qs0d − 0 C. Find the charge and the current at time t.

7et0905x29
01/19/10
MasterID: 00942

C

E R

 30.   In the circuit of Exercise 29, R − 2 V, C − 0.01 F, Qs0d − 0, 
and Estd − 10 sin 60t. Find the charge and the current at time t.

 31.   Let Pstd be the performance level of someone learning a skill 
as a function of the training time t. The graph of P is called a 
learning curve. In Exercise 9.1.15 we proposed the differential 
equation

dP
dt

− kfM 2 Pstdg

as a reasonable model for learning, where k is a positive con-
stant. Solve it as a linear differential equation and use your 
solution to graph the learning curve.

 32.   Two new workers were hired for an assembly line. Jim pro-
cessed 25 units during the first hour and 45 units during the 
second hour. Mark processed 35 units during the first hour and 
50 units the second hour. Using the model of Exercise 31 and 
assuming that Ps0d − 0, estimate the maximum number of 
units per hour that each worker is capable of processing.

 33.   In Section 9.3 we looked at mixing problems in which the 
volume of fluid remained constant and saw that such problems 
give rise to separable differentiable equations. (See Example 6 
in that section.) If the rates of flow into and out of the system 
are different, then the volume is not constant and the resulting 
differential equation is linear but not separable.

A tank contains 100 L of water. A solution with a salt con-
centration of 0.4 kgyL is added at a rate of 5 Lymin. The  
solution is kept mixed and is drained from the tank at a rate  
of 3 Lymin. If ystd is the amount of salt (in kilograms) after  
t minutes, show that y satisfies the differential equation

dy
dt

− 2 2
3y

100 1 2t

Solve this equation and find the concentration after  
20 minutes.
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We have looked at a variety of models for the growth of a single species that lives alone in 
an environment. In this section we consider more realistic models that take into account 
the interaction of two species in the same habitat. We will see that these models take the 
form of a pair of linked differential equations.

We first consider the situation in which one species, called the prey, has an ample food 
supply and the second species, called the predators, feeds on the prey. Examples of prey  
and predators include rabbits and wolves in an isolated forest, food-fish and sharks, 
aphids and ladybugs, and bacteria and amoebas. Our model will have two dependent 
variables and both are functions of time. We let Rstd be the number of prey (using R for 
rabbits) and Wstd be the number of predators (with W  for wolves) at time t.

In the absence of predators, the ample food supply would support exponential growth  
of the prey, that is,

dR
dt

− kR    where k is a positive constant

In the absence of prey, we assume that the predator population would decline through 
mortality at a rate proportional to itself, that is,

dW
dt

− 2rW     where r is a positive constant

With both species present, however, we assume that the principal cause of death among 
the prey is being eaten by a predator, and the birth and survival rates of the predators 
depend on their available food supply, namely, the prey. We also assume that the two 
species encounter each other at a rate that is proportional to both populations and is 
therefore proportional to the product RW. (The more there are of either population, the 
more encoun ters there are likely to be.) A system of two differential equations that incor-
porates these assumptions is as follows:

 
dR
dt

− kR 2 aRW        
dW
dt

− 2rW 1 bRW

where k, r, a, and b are positive constants. Notice that the term 2aRW  decreases the 
natural growth rate of the prey and the term bRW  increases the natural growth rate of the 
predators.

The equations in (1) are known as the predator-prey equations, or the Lotka-Volterra 
equations. A solution of this system of equations is a pair of functions Rstd and Wstd that 
describe the populations of prey and predators as functions of time. Because the system 
is coupled (R and W  occur in both equations), we can’t solve one equation and then the 
other; we have to solve them simultaneously. Unfortunately, it is usually impossible to 
find explicit formulas for R and W  as functions of t. We can, however, use graphical 
methods to analyze the equations.

1
W represents the predators.
R represents the prey.

is constant, then

Pstd −
M

1 1 CMe2y kstd dt

Deduce that if y`
0  kstd dt − `, then lim t l ` Pstd − M. [This 

will be true if kstd − k0 1 a cos bt with k0 . 0, which 
describes a positive intrinsic growth rate with a periodic 
seasonal variation.]

 (c)  If k is constant but M varies, show that

zstd − e2kt y t

0
 

ke ks

Mssd
 ds 1 Ce2kt

and use l’Hospital’s Rule to deduce that if Mstd has a limit 
as tl`, then Pstd has the same limit.

The Lotka-Volterra equations were 
proposed as a model to explain the 
variations in the shark and food-fish 
populations in the Adriatic Sea by the 
Italian mathematician Vito Volterra 
(1860–1940).
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628 CHAPTER 9  Differential Equations

EXAMPLE 1  Suppose that populations of rabbits and wolves are described by the 
Lotka-Volterra equations (1) with k − 0.08, a − 0.001, r − 0.02, and b − 0.00002. 
The time t is measured in months.
(a) Find the constant solutions (called the equilibrium solutions) and interpret  
the answer.
(b) Use the system of differential equations to find an expression for dWydR.
(c) Draw a direction field for the resulting differential equation in the RW-plane. Then 
use that direction field to sketch some solution curves.
(d) Suppose that, at some point in time, there are 1000 rabbits and 40 wolves. Draw 
the corresponding solution curve and use it to describe the changes in both population 
levels.
(e) Use part (d) to make sketches of R and W  as functions of t.

SOLUTION
(a) With the given values of k, a, r, and b, the Lotka-Volterra equations become

 
dR
dt

− 0.08R 2 0.001RW

 
dW
dt

− 20.02W 1 0.00002RW

Both R and W  will be constant if both derivatives are 0, that is,

 R9 − Rs0.08 2 0.001Wd − 0

 W9 − Ws20.02 1 0.00002Rd − 0

One solution is given by R − 0 and W − 0. (This makes sense: If there are no rabbits or
wolves, the populations are certainly not going to increase.) The other constant solution is

 W −
0.08
0.001

− 80

 R −
0.02

0.00002
− 1000

So the equilibrium populations consist of 80 wolves and 1000 rabbits. This means that 
1000 rabbits are just enough to support a constant wolf population of 80. There are nei-
ther too many wolves (which would result in fewer rabbits) nor too few wolves (which 
would result in more rabbits).

(b) We use the Chain Rule to eliminate t :

dW
dt

−
dW
dR

 
dR
dt

so 
dW
dR

−

dW
dt
dR
dt

−
20.02W 1 0.00002RW

0.08R 2 0.001RW

©
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 SECTION 9.6  Predator-Prey Systems 629

(c) If we think of W  as a function of R, we have the differential equation

dW
dR

−
20.02W 1 0.00002RW

0.08R 2 0.001RW

We draw the direction field for this differential equation in Figure 1 and we use it 
to sketch several solution curves in Figure 2. If we move along a solution curve, we 
observe how the relationship between R and W  changes as time passes. Notice that the 
curves appear to be closed in the sense that if we travel along a curve, we always return 
to the same point. Notice also that the point (1000, 80) is inside all the solution curves. 
That point is called an equilibrium point because it corresponds to the equilibrium solu-
tion R − 1000, W − 80. 

0 R

W

1000

150

100

50

2000 3000 0 R

W

1000

150

100

50

2000 3000

FIGURE 1  
Direction field for the predator-prey system  

FIGURE 2  
Phase portrait of the system

When we represent solutions of a system of differential equations as in Figure 2, 
we refer to the RW-plane as the phase plane, and we call the solution curves phase 
trajectories. So a phase trajectory is a path traced out by solutions sR, Wd as time goes 
by. A phase portrait consists of equilibrium points and typical phase trajectories, as 
shown in Figure 2.

(d) Starting with 1000 rabbits and 40 wolves corresponds to drawing the solution curve 
through the point P0s1000, 40d. Figure 3 shows this phase trajectory with the direction 
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P¸ (1000, 40)

P¡

P™

P£

FIGURE 3  
Phase trajectory through (1000, 40)
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630 CHAPTER 9  Differential Equations

field removed. Starting at the point P0 at time t − 0 and letting t  increase, do we move 
clockwise or counterclockwise around the phase trajectory? If we put R − 1000 and 
W − 40 in the first differential equation, we get

dR
dt

− 0.08s1000d 2 0.001s1000ds40d − 80 2 40 − 40

Since dRydt . 0, we conclude that R is increasing at P0 and so we move counter- 
clockwise around the phase trajectory.

We see that at  P0 there aren’t enough wolves to maintain a balance between the 
populations, so the rabbit population increases. That results in more wolves and eventu-
ally there are so many wolves that the rabbits have a hard time avoiding them. So the 
number of rabbits begins to decline (at P1, where we estimate that R reaches its maxi-
mum population of about 2800). This means that at some later time the wolf population 
starts to fall (at P2, where R − 1000 and W < 140). But this benefits the rabbits, so 
their population later starts to increase (at P3, where W − 80 and R < 210). As a con-
sequence, the wolf population eventually starts to increase as well. This happens when 
the populations return to their initial values of R − 1000 and W − 40, and the entire 
cycle begins again.

(e) From the description in part (d) of how the rabbit and wolf populations rise and 
fall, we can sketch the graphs of Rstd and Wstd. Suppose the points P1, P2, and P3 in 
Figure 3 are reached at times t1, t2, and t3. Then we can sketch graphs of R and W  as in 
Figure 4.

0 t

R
2500

t¡ t£t™

2000

1500

1000

500

0 t

W
140

t¡ t£

120
100
80
60
40
20

t™

FIGURE 4 Graphs of the rabbit and wolf populations as functions of time

To make the graphs easier to compare, we draw the graphs on the same axes but 
with different scales for R and W, as in Figure 5 on page 631. Notice that the rabbits 
reach their maximum populations about a quarter of a cycle before the wolves. Q

An important part of the modeling process, as we discussed in Section 1.2, is to inter-
pret our mathematical conclusions as real-world predictions and to test the predictions 
against real data. The Hudson’s Bay Company, which started trading in animal furs in 
Canada in 1670, has kept records that date back to the 1840s. Figure 6 shows graphs of 
the number of pelts of the snowshoe hare and its predator, the Canada lynx, traded by the 
company over a 90-year period. You can see that the coupled oscillations in the hare and 
lynx populations predicted by the Lotka-Volterra model do actually occur and the period 
of these cycles is roughly 10 years.
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Although the relatively simple Lotka-Volterra model has had some success in explain-
ing and predicting coupled populations, more sophisticated models have also been pro-
posed. One way to modify the Lotka-Volterra equations is to assume that, in the absence 
of predators, the prey grow according to a logistic model with carrying capacity M. Then 
the Lotka-Volterra equations (1) are replaced by the system of differential equations

 
dR
dt

− kRS1 2
R
MD 2 aRW        

dW
dt

− 2rW 1 bRW

This model is investigated in Exercises 11 and 12.
Models have also been proposed to describe and predict population levels of two or 

more species that compete for the same resources or cooperate for mutual benefit. Such 
models are explored in Exercises 2–4.

FIGURE 6  
Relative abundance of hare and lynx 

from Hudson’s Bay Company records
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 (b)  
dx
dt

− 0.2x 2 0.0002x 2 2 0.006xy

 
dy
dt

− 20.015y 1 0.00008xy

 2.   Each system of differential equations is a model for two spe-
cies that either compete for the same resources or cooperate  
for mutual benefit (flowering plants and insect pollinators, 
for instance). Decide whether each system describes com- 
petition or cooperation and explain why it is a reasonable 

 1.   For each predator-prey system, determine which of the 
vari ables, x or y, represents the prey population and which 
represents the predator population. Is the growth of the prey 
restricted just by the predators or by other factors as well? Do 
the predators feed only on the prey or do they have additional 
food sources? Explain.

 (a)  
dx
dt

− 20.05x 1 0.0001xy

 
dy
dt

− 0.1y 2 0.005xy
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FIGURE 5  
Comparison of the rabbit  

and wolf populations

TEC In Module 9.6 you can change 
the coefficients in the Lotka-Volterra 
equations and observe the resulting 
changes in the phase trajectory  
and graphs of the rabbit and wolf 
populations.
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632 CHAPTER 9  Differential Equations

   model. (Ask yourself what effect an increase in one species has 
on the growth rate of the other.)

 (a)  
dx
dt

− 0.12x 2 0.0006x 2 1 0.00001xy

 
dy
dt

− 0.08x 1 0.00004xy

 (b)  
dx
dt

− 0.15x 2 0.0002x 2 2 0.0006xy

 
dy
dt

− 0.2y 2 0.00008y 2 2 0.0002xy

 3.   The system of differential equations

 
dx
dt

− 0.5x 2 0.004x 2 2 0.001xy

 
dy
dt

− 0.4y 2 0.001y 2 2 0.002xy

is a model for the populations of two species.
 (a)  Does the model describe cooperation, or competition,  

or a predator-prey relationship?
 (b)  Find the equilibrium solutions and explain their  

significance.

 4.   Lynx eat snowshoe hares and snowshoe hares eat woody plants 
like willows. Suppose that, in the absence of hares, the willow 
population will grow exponentially and the lynx population 
will decay exponentially. In the absence of lynx and willow, 
the hare population will decay exponentially. If Lstd, Hstd, and 
Wstd represent the populations of these three species at time t,  
write a system of differential equations as a model for their 
dynamics. If the constants in your equation are all positive, 
explain why you have used plus or minus signs.

5–6  A phase trajectory is shown for populations of rabbits sRd and 
foxes sFd.
(a) Describe how each population changes as time goes by.
(b)  Use your description to make a rough sketch of the graphs of R 

and F as functions of time.
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7–8 Graphs of populations of two species are shown. Use them to 
sketch the corresponding phase trajectory.
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 9.   In Example 1(b) we showed that the rabbit and wolf popula-
tions satisfy the differential equation

dW
dR

−
20.02W 1 0.00002RW

0.08R 2 0.001RW
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By solving this separable differential equation, show that

R0.02W 0.08

e 0.00002Re 0.001W − C

where C is a constant.
It is impossible to solve this equation for W as an explicit 

function of R (or vice versa). If you have a computer algebra 
system that graphs implicitly defined curves, use this equation 
and your CAS to draw the solution curve that passes through 
the point s1000, 40d and compare with Figure 3.

 10.   Populations of aphids and ladybugs are modeled by the  
equations

 
dA
dt

− 2A 2 0.01AL

 
dL
dt

− 20.5L 1 0.0001AL

 (a)  Find the equilibrium solutions and explain their  
significance.

 (b) Find an expression for dLydA.
 (c)  The direction field for the differential equation in part (b) 

is shown. Use it to sketch a phase portrait. What do the 
phase trajectories have in common?
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 (d)  Suppose that at time t − 0 there are 1000 aphids and 
200 ladybugs. Draw the corresponding phase trajectory 
and use it to describe how both populations change.

 (e)  Use part (d) to make rough sketches of the aphid and 
lady bug populations as functions of t. How are the graphs 
related to each other?

 11.   In Example 1 we used Lotka-Volterra equations to model 
popu lations of rabbits and wolves. Let’s modify those equa-
tions as follows:

 
dR
dt

− 0.08Rs1 2 0.0002Rd 2 0.001RW

 
dW
dt

− 20.02W 1 0.00002RW

 (a)  According to these equations, what happens to the  
rabbit population in the absence of wolves?

 (b)  Find all the equilibrium solutions and explain their  
significance.

 (c)  The figure shows the phase trajectory that starts at the 
point s1000, 40d. Describe what eventually happens to 
the rabbit and wolf populations.
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 (d)  Sketch graphs of the rabbit and wolf populations as 
functions of time.

 12.   In Exercise 10 we modeled populations of aphids and 
ladybugs with a Lotka-Volterra system. Suppose we modify 
those equations as follows:

 
dA
dt

− 2As1 2 0.0001Ad 2 0.01AL

 
dL
dt

− 20.5L 1 0.0001AL

 (a)  In the absence of ladybugs, what does the model predict 
about the aphids?

 (b) Find the equilibrium solutions.
 (c) Find an expression for dLydA.
 (d)  Use a computer algebra system to draw a direction field 

for the differential equation in part (c). Then use the 
direction field to sketch a phase portrait. What do the 
phase trajectories have in common?

 (e)  Suppose that at time t − 0 there are 1000 aphids and 
200 ladybugs. Draw the corresponding phase trajectory 
and use it to describe how both populations change.

 (f )  Use part (e) to make rough sketches of the aphid and  
ladybug populations as functions of t. How are the 
graphs related to each other?

CAS
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634 CHAPTER 9  Differential Equations

 1.  (a)  A direction field for the differential equation 
y9 − ysy 2 2dsy 2 4d is shown. Sketch the graphs of the 
solutions that satisfy the given initial conditions.

 (i) ys0d − 20.3 (ii) ys0d − 1
 (iii) ys0d − 3 (iv) ys0d − 4.3
 (b)  If the initial condition is ys0d − c, for what values of  

c is lim t l ` ystd finite? What are the equilibrium solutions?

0 x

y

1 2

2

4

6

EXERCISES

Determine whether the statement is true or false. If it is true, explain 
why. If it is false, explain why or give an example that disproves the 
statement.

 1.  All solutions of the differential equation y9 − 21 2 y 4 are 
decreasing functions.

 2.  The function f sxd − sln xdyx is a solution of the differential 
equation x 2 y9 1 xy − 1.

 3. The equation y9 − x 1 y is separable.

 4. The equation y9 − 3y 2 2x 1 6xy 2 1 is separable.

 5. The equation e xy9 − y is linear.

 6. The equation y9 1 xy − e y is linear.

 7. If y is the solution of the initial-value problem

dy
dt

− 2yS1 2
y
5D      ys0d − 1

then lim t l ` y − 5.

TRUE-FALSE QUIZ

 1.  (a) What is a differential equation?
 (b) What is the order of a differential equation?
 (c) What is an initial condition?

 2.   What can you say about the solutions of the equation 
y9 − x 2 1 y 2 just by looking at the differential equation?

 3.   What is a direction field for the differential equation 
y9 − Fsx, yd?

 4.  Explain how Euler’s method works.

 5.   What is a separable differential equation? How do you solve 
it?

 6.   What is a first-order linear differential equation? How do you 
solve it?

 7.  (a)  Write a differential equation that expresses the law of 
natural growth. What does it say in terms of relative growth 
rate?

 (b)  Under what circumstances is this an appropriate model for 
population growth?

 (c) What are the solutions of this equation?

 8.  (a) Write the logistic differential equation.
 (b)  Under what circumstances is this an appropriate model for 

population growth?

 9.  (a)  Write Lotka-Volterra equations to model populations of 
food-fish sFd and sharks sSd.

 (b)  What do these equations say about each population in the 
absence of the other?

9 REVIEW

CONCEPT CHECK Answers to the Concept Check can be found on the back endpapers.
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 CHAPTER 9  Review 635

 2.  (a)  Sketch a direction field for the differential equation 
y9 − xyy. Then use it to sketch the four solutions that  
satisfy the initial conditions ys0d − 1, ys0d − 21,  
ys2d − 1, and ys22d − 1.

 (b)  Check your work in part (a) by solving the differential 
equation explicitly. What type of curve is each solution 
curve?

 3.  (a)  A direction field for the differential equation  
y9 − x 2 2 y 2 is shown. Sketch the solution of the  
initial-value problem

y9 − x 2 2 y 2      ys0d − 1

  Use your graph to estimate the value of ys0.3d.
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 (b)  Use Euler’s method with step size 0.1 to estimate 
ys0.3d, where ysxd is the solution of the initial-value 
problem in part (a). Compare with your estimate from 
part (a).

 (c)  On what lines are the centers of the horizontal line 
segments of the direction field in part (a) located? What 
happens when a solution curve crosses these lines?

 4.  (a)  Use Euler’s method with step size 0.2 to estimate  
ys0.4d, where ysxd is the solution of the initial-value 
problem

y9 − 2xy 2      ys0d − 1

 (b) Repeat part (a) with step size 0.1.
 (c)  Find the exact solution of the differential equation and 

compare the value at 0.4 with the approximations in 
parts (a) and (b).

5–8 Solve the differential equation.

 5.  y9 − xe2sin x 2 y cos x 6.  
dx
dt

− 1 2 t 1 x 2 tx

 7.  2ye y 2
y9 − 2x 1 3sx   8.  x 2y9 2 y − 2x 3e21yx

9–11 Solve the initial-value problem.

 9.  
dr
dt

1 2tr − r,  rs0d − 5

 10.  s1 1 cos xdy9 − s1 1 e2ydsin x,  ys0d − 0

 11.  xy9 2 y − x ln x,  ys1d − 2

 12.  Solve the initial-value problem y9 − 3x 2e y, ys0d − 1, and 
graph the solution.

13–14 Find the orthogonal trajectories of the family of curves.

 13.  y − ke x 14.  y − e kx

 15.  (a)  Write the solution of the initial-value problem

dP
dt

− 0.1PS1 2
P

2000D    Ps0d − 100

  and use it to find the population when t − 20.
 (b)  When does the population reach 1200?

 16.  (a)  The population of the world was 6.1 billion in 2000 and  
6.9 billion in 2010. Find an exponential model for these 
data and use the model to predict the world population  
in the year 2020.

 (b)  According to the model in part (a), when will the world 
population exceed 10 billion?

 (c)  Use the data in part (a) to find a logistic model for the 
population. Assume a carrying capacity of 20 billion. Then 
use the logistic model to predict the population in 2020. 
Compare with your prediction from the exponential model.

 (d)  According to the logistic model, when will the world popu-
lation exceed 10 billion? Compare with your prediction in 
part (b).

 17.   The von Bertalanffy growth model is used to predict the length 
Lstd of a fish over a period of time. If L` is the largest length 
for a species, then the hypothesis is that the rate of growth in 
length is proportional to L` 2 L, the length yet to be achieved.

 (a)  Formulate and solve a differential equation to find an 
expression for Lstd.

 (b)  For the North Sea haddock it has been determined that 
L` − 53 cm, Ls0d − 10 cm, and the constant of propor-
tionality is 0.2. What does the expression for Lstd become 
with these data?

 18.   A tank contains 100 L of pure water. Brine that contains 0.1 kg 
of salt per liter enters the tank at a rate of 10 Lymin. The solu-
tion is kept thoroughly mixed and drains from the tank at the 
same rate. How much salt is in the tank after 6 minutes?

 19.   One model for the spread of an epidemic is that the rate of 
spread is jointly proportional to the number of infected people 

;
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636 CHAPTER 9  Differential Equations

ing to initial populations of 100 birds and 40,000 insects. 
Then use the phase trajectory to describe how both popula-
tions change.

 (e)  Use part (d) to make rough sketches of the bird and insect 
populations as functions of time. How are these graphs 
related to each other?

 23.   Suppose the model of Exercise 22 is replaced by the equations

 
dx
dt

− 0.4x s1 2 0.000005xd 2 0.002xy

 
dy
dt

− 20.2y 1 0.000008xy

 (a)  According to these equations, what happens to the insect 
population in the absence of birds?

 (b)  Find the equilibrium solutions and explain their  
significance.

 (c)  The figure shows the phase trajectory that starts with 
100 birds and 40,000 insects. Describe what eventually hap-
pens to the bird and insect populations.

x

y

15000

100

4500025000 35000

120
140
160
180
200
220
240
260

 (d)  Sketch graphs of the bird and insect populations as func-
tions of time.

 24.   Barbara weighs 60 kg and is on a diet of 1600 calories per day, 
of which 850 are used automatically by basal metabolism. She 
spends about 15 calykgyday times her weight doing exercise. If 
1 kg of fat contains 10,000 cal and we assume that the storage of 
calories in the form of fat is 100% efficient, formulate a differen-
tial equation and solve it to find her weight as a function of time. 
Does her weight ultimately approach an equilibrium weight?

and the number of uninfected people. In an isolated town of 
5000 inhabitants, 160 people have a disease at the beginning 
of the week and 1200 have it at the end of the week. How long 
does it take for 80% of the population to become infected?

 20.   The Brentano-Stevens Law in psychology models the way that 
a subject reacts to a stimulus. It states that if R represents the 
reaction to an amount S of stimulus, then the relative rates of 
increase are proportional:

1
R

 
dR
dt

−
k
S

 
dS
dt

where k is a positive constant. Find R as a function of S.

 21.   The transport of a substance across a capillary wall in lung 
physiology has been modeled by the differential equation

dh
dt

− 2
R
V

 S h
k 1 hD

where h is the hormone concentration in the bloodstream, t is 
time, R is the maximum transport rate, V is the volume of the 
capillary, and k is a positive constant that measures the affinity 
between the hormones and the enzymes that assist the process. 
Solve this differential equation to find a rela tionship between  
h and t.

 22.   Populations of birds and insects are modeled by the equations

 
dx
dt

− 0.4x 2 0.002xy

 
dy
dt

− 20.2y 1 0.000008xy

 (a)  Which of the variables, x or y, represents the bird popula-
tion and which represents the insect population? Explain.

 (b)  Find the equilibrium solutions and explain their  
significance.

 (c) Find an expression for dyydx.
 (d)  The direction field for the differential equation in part (c) 

is shown. Use it to sketch the phase trajectory correspond-

0 x

y

20000 40000

100

200
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60000
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Problems Plus  1.  Find all functions f  such that f 9 is continuous and

[ f sxd]2 − 100 1 yx

0
 h[ f std]2 1 [ f 9std]2 j dt    for all real x

 2.   A student forgot the Product Rule for differentiation and made the mistake of thinking  
that s ftd9 − f 9t9. However, he was lucky and got the correct answer. The function f  that 
he used was f sxd − e x 2

 and the domain of his problem was the interval s 1
2 , `d. What was 

the function t?

 3.   Let f  be a function with the property that f s0d − 1, f 9s0d − 1, and f sa 1 bd − f sad f sbd 
for all real numbers a and b. Show that f 9sxd − f sxd for all x and deduce that f sxd − e x.

 4.  Find all functions f  that satisfy the equation

Sy f sxd dxDSy 
1

 f sxd
 dxD − 21

 5.   Find the curve y − f sxd such that f sxd > 0, f s0d − 0, f s1d − 1, and the area under the 
graph of f  from 0 to x is proportional to the sn 1 1dst power of f sxd.

 6.   A subtangent is a portion of the x-axis that lies directly beneath the segment of a tangent 
line from the point of contact to the x-axis. Find the curves that pass through the point 
sc, 1d and whose subtangents all have length c.

 7.   A peach pie is taken out of the oven at 5:00 pm. At that time it is piping hot, 100 8C. At  
5:10 pm its temperature is 80 8C; at 5:20 pm it is 65 8C. What is the temperature of the 
room?

 8.   Snow began to fall during the morning of February 2 and continued steadily into the after-
noon. At noon a snowplow began removing snow from a road at a constant rate. The plow 
traveled 6 km from noon to 1 pm but only 3 km from 1 pm to 2 pm. When did the snow 
begin to fall? [Hints: To get started, let t be the time measured in hours after noon; let x std 
be the distance traveled by the plow at time t ; then the speed of the plow is dxydt. Let b be 
the number of hours before noon that it began to snow. Find an expression for the height of 
the snow at time t. Then use the given information that the rate of removal R (in m3yh) is 
constant.]

 9.   A dog sees a rabbit running in a straight line across an open field and gives chase. In a rect-
angular coordinate system (as shown in the figure), assume:

 (i)  The rabbit is at the origin and the dog is at the point sL, 0d at the instant the dog 
first sees the rabbit.

 (ii)  The rabbit runs up the y-axis and the dog always runs straight for the rabbit.
 (iii) The dog runs at the same speed as the rabbit.

 (a)  Show that the dog’s path is the graph of the function y − f sxd, where y satisfies the 
differential equation 

x 
d 2y
dx 2 − Î1 1 S dy

dxD2 

 (b)  Determine the solution of the equation in part (a) that satisfies the initial conditions 
y − y9 − 0 when x − L. [Hint: Let z − dyydx in the differential equation and solve 
the resulting first-order equation to find z; then integrate z to find y.]

 (c) Does the dog ever catch the rabbit?

(L, 0)

(x, y)

x0

y

FIGURE FOR PROBLEM 9 
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 10.  (a)  Suppose that the dog in Problem 9 runs twice as fast as the rabbit. Find a differential 
equation for the path of the dog. Then solve it to find the point where the dog catches 
the rabbit.

 (b)  Suppose the dog runs half as fast as the rabbit. How close does the dog get to the  
rabbit? What are their positions when they are closest?

 11.   A planning engineer for a new alum plant must present some estimates to his company 
regarding the capacity of a silo designed to contain bauxite ore until it is processed into 
alum. The ore resembles pink talcum powder and is poured from a conveyor at the top of 
the silo. The silo is a cylinder 100 ft high with a radius of 200 ft. The conveyor carries ore 
at a rate of 60,000! ft3yh and the ore maintains a conical shape whose radius is 1.5 times 
its height.

 (a)  If, at a certain time t, the pile is 60 ft high, how long will it take for the pile to reach the 
top of the silo?

 (b)  Management wants to know how much room will be left in the floor area of the silo 
when the pile is 60 ft high. How fast is the floor area of the pile growing at that height?

 (c)  Suppose a loader starts removing the ore at the rate of 20,000! ft3yh when the height 
of the pile reaches 90 ft. Suppose, also, that the pile continues to maintain its shape. 
How long will it take for the pile to reach the top of the silo under these conditions?

 12.   Find the curve that passes through the point s3, 2d and has the property that if the tan-
gent line is drawn at any point P on the curve, then the part of the tangent line that lies in 
the first quadrant is bisected at P.

 13.   Recall that the normal line to a curve at a point P on the curve is the line that passes 
through P and is perpendicular to the tangent line at P. Find the curve that passes through 
the point s3, 2d and has the property that if the normal line is drawn at any point on the 
curve, then the y-intercept of the normal line is always 6.

 14.   Find all curves with the property that if the normal line is drawn at any point P on the 
curve, then the part of the normal line between P and the x-axis is bisected by the y-axis.

 15.   Find all curves with the property that if a line is drawn from the origin to any point sx, yd 
on the curve, and then a tangent is drawn to the curve at that point and extended to meet 
the x-axis, the result is an isosceles triangle with equal sides meeting at sx, yd.
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The photo shows Halley’s 
comet as it passed Earth in 

1986. Due to return in 2061, 
it was named after Edmond 

Halley (1656–1742), the 
English scientist who first 

recognized its periodicity. In 
Section 10.6 you will see how 

polar coordinates provide a 
convenient equation for the 

elliptical path of its orbit.

Parametric Equations and 
Polar Coordinates

SO FAR WE HAVE DESCRIBED plane curves by giving y as a function of x fy − f sxdg or x as a 
function of y fx − tsydg or by giving a relation between x and y that defines y implicitly as a func-
tion of x f f sx, yd − 0g. In this chapter we discuss two new methods for describing curves.

 Some curves, such as the cycloid, are best handled when both x and y are given in terms of a 
third variable t called a parameter fx − f std, y − tstdg. Other curves, such as the cardioid, have 
their most convenient description when we use a new coordinate system, called the polar coordi-
nate system.

10

Stocktrek / Stockbyte / Getty Images
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640 CHAPTER 10  Parametric Equations and Polar Coordinates

Imagine that a particle moves along the curve C shown in Figure 1. It is impossible to 
describe C by an equation of the form y − f sxd because C fails the Vertical Line Test. 
But the x- and y-coordinates of the particle are functions of time and so we can write 
x − f std and y − tstd. Such a pair of equations is often a convenient way of describing a 
curve and gives rise to the following definition.

Suppose that x and y are both given as functions of a third variable t (called a param-
eter) by the equations

x − f std    y − tstd

(called parametric equations). Each value of t determines a point sx, yd, which we can 
plot in a coordinate plane. As t varies, the point sx, yd − s f std, tstdd varies and traces out 
a curve C, which we call a parametric curve. The parameter t does not necessarily rep-
resent time and, in fact, we could use a letter other than t for the parameter. But in many 
applications of parametric curves, t does denote time and therefore we can interpret 
sx, yd − s f std, tstdd as the position of a particle at time t.

EXAMPLE 1  Sketch and identify the curve defined by the parametric equations

x − t 2 2 2t    y − t 1 1

SOLUTION Each value of t gives a point on the curve, as shown in the table. For 
instance, if t − 0, then x − 0, y − 1 and so the corresponding point is s0, 1d. In Fig- 
ure 2 we plot the points sx, yd determined by several values of the parameter and we 
join them to produce a curve.

t x y

22 8 21
21 3 0

0 0 1
1 21 2
2 0 3
3 3 4
4 8 5

     

0
t=0

t=1

t=2
t=3

t=4

t=_1
t=_2

(0, 1)

y

x
8

FIGURE 2

A particle whose position is given by the parametric equations moves along the 
curve in the direction of the arrows as t increases. Notice that the consecutive points 
marked on the curve appear at equal time intervals but not at equal distances. That is 
because the particle slows down and then speeds up as t increases.

It appears from Figure 2 that the curve traced out by the particle may be a parab ola. 
This can be confirmed by eliminating the parameter t as follows. We obtain t − y 2 1 
from the second equation and substitute into the first equation. This gives

x − t 2 2 2t − sy 2 1d2 2 2sy 2 1d − y 2 2 4y 1 3

and so the curve represented by the given parametric equations is the parabola 
x − y 2 2 4y 1 3. Q

FIGURE 1 

C

0

(x, y)={f(t), g(t)}

y

x

This equation in x and y describes 
where the particle has been, but it 
doesn’t tell us when the particle was 
at a particular point. The parametric 
equations have an advantage––they 
tell us when the particle was at a point. 
They also indicate the direction of the 
motion.
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 SECTION 10.1  Curves Defined by Parametric Equations 641

No restriction was placed on the parameter t in Example 1, so we assumed that t could 
be any real number. But sometimes we restrict t to lie in a finite interval. For instance, 
the parametric curve

x − t 2 2 2t    y − t 1 1    0 < t < 4

shown in Figure 3 is the part of the parabola in Example 1 that starts at the point s0, 1d 
and ends at the point s8, 5d. The arrowhead indicates the direction in which the curve is 
traced as t increases from 0 to 4.

In general, the curve with parametric equations

x − f std    y − tstd    a < t < b

has initial point s f sad, tsadd and terminal point s f sbd, tsbdd.

EXAMPLE 2  What curve is represented by the following parametric equations?

x − cos t    y − sin t    0 < t < 2!

SOLUTION If we plot points, it appears that the curve is a circle. We can confirm this 
impression by eliminating t. Observe that

x 2 1 y 2 − cos2t 1 sin2t − 1

Thus the point sx, yd moves on the unit circle x 2 1 y 2 − 1. Notice that in this example 
the parameter t can be interpreted as the angle (in radians) shown in Figure 4. As t 
increases from 0 to 2!, the point sx, yd − scos t, sin td moves once around the circle in 
the counterclockwise direction starting from the point s1, 0d. Q

EXAMPLE 3  What curve is represented by the given parametric equations?

x − sin 2t    y − cos 2t    0 < t < 2!

SOLUTION Again we have

x 2 1 y 2 − sin2 2t 1 cos2 2t − 1

so the parametric equations again represent the unit circle x 2 1 y 2 − 1. But as t 
increases from 0 to 2!, the point sx, yd − ssin 2t, cos 2td starts at s0, 1d and moves 
twice around the circle in the clockwise direction as indicated in Figure 5. Q

Examples 2 and 3 show that different sets of parametric equations can represent the 
same curve. Thus we distinguish between a curve, which is a set of points, and a para-
metric curve, in which the points are traced in a particular way.

EXAMPLE 4  Find parametric equations for the circle with center sh, kd and radius r.

SOLUTION If we take the equations of the unit circle in Example 2 and multiply the 
expressions for x and y by r, we get x − r cos t, y − r sin t. You can verify that these 
equations represent a circle with radius r and center the origin traced counterclockwise. 
We now shift h units in the x-direction and k units in the y-direction and obtain para-

0

(8, 5)

(0, 1)

y

x

FIGURE 3 

3π
2t=

π
2t=

0
t

t=0

(1, 0)

(cos t, sin t)

t=2π

t=π
x

y

FIGURE 4 

0

t=0, π, 2π

x

y

(0, 1)

FIGURE 5 
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642 CHAPTER 10  Parametric Equations and Polar Coordinates

metric equations of the circle (Figure 6) with center sh, kd and radius r:

 x − h 1 r cos t    y − k 1 r sin t    0 < t < 2!

 0

(h, k)
r

x

y

 Q

EXAMPLE 5  Sketch the curve with parametric equations x − sin t, y − sin2t.

SOLUTION Observe that y − ssin td2 − x 2 and so the point sx, yd moves on the parabola 
y − x 2. But note also that, since 21 < sin t < 1, we have 21 < x < 1, so the para-
metric equations represent only the part of the parabola for which 21 < x < 1. Since 
sin t is periodic, the point sx, yd − ssin t, sin2td moves back and forth infinitely often 
along the parabola from s21, 1d to s1, 1d. (See Figure 7.) Q

y=sin 2tx=cos t     y=sin 2t

x=
cos t

t

x

y

t

y

x

Graphing Devices
Most graphing calculators and other graphing devices can be used to graph curves  
defined by parametric equations. In fact, it’s instructive to watch a parametric curve 
being drawn by a graphing calculator because the points are plotted in order as the cor-
responding parameter values increase.

FIGURE 6  
x − h 1 r cos t, y − k 1 r sin t

0

(1, 1)(_1, 1)

x

y

FIGURE 7 

TEC Module 10.1A gives an ani -
ma tion of the relationship between 
motion along a parametric curve 
x − f std, y − tstd and motion along 
the graphs of f  and t as functions  
of t. Clicking on TRIG gives you the 
family of parametric curves

x − a cos bt   y − c sin dt

 If you choose a − b − c − d − 1 
and click on animate, you will see 
how the graphs of x − cos t and 
y − sin t relate to the circle in Exam-
ple 2. If you choose a − b − c − 1, 
d − 2, you will see graphs as in 
Figure 8. By clicking on animate or 
moving the t-slider to the right, you 
can see from the color coding how 
motion along the graphs of x − cos t 
and y − sin 2t corresponds to motion 
along the parametric curve, which is 
called a Lissajous figure.

FIGURE 8
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 SECTION 10.1  Curves Defined by Parametric Equations 643

EXAMPLE 6  Use a graphing device to graph the curve x − y 4 2 3y 2.

SOLUTION If we let the parameter be t − y, then we have the equations

x − t 4 2 3t 2    y − t

Using these parametric equations to graph the curve, we obtain Figure 9. It would be 
possible to solve the given equation sx − y 4 2 3y 2 d for y as four functions of x and 
graph them individually, but the parametric equations provide a much easier method. Q

In general, if we need to graph an equation of the form x − tsyd, we can use the 
parametric equations

x − tstd    y − t

Notice also that curves with equations y − f sxd (the ones we are most familiar with—
graphs of functions) can also be regarded as curves with parametric equations

x − t    y − f std

Graphing devices are particularly useful for sketching complicated parametric curves. 
For instance, the curves shown in Figures 10, 11, and 12 would be virtually impossible to  
produce by hand.

13

0

1

_1

_1 1

3.5

_3.5

_3.5 3.5

13

FIGURE 10  
x − t 1 sin 5t 
y − t 1 sin 6t 

  FIGURE 11  
  x − sin 9t 
  y − sin 10 t 

FIGURE 12  
x − 2.3 cos  10t 1 cos 23t 
y − 2.3 sin 10t 2 sin 23t 

One of the most important uses of parametric curves is in computer-aided design 
(CAD). In the Laboratory Project after Section 10.2 we will investigate special paramet-
ric curves, called Bézier curves, that are used extensively in manufacturing, especially 
in the auto motive industry. These curves are also employed in specifying the shapes of 
letters and other symbols in laser printers and in documents viewed electronically.

The Cycloid

EXAMPLE 7  The curve traced out by a point P on the circumference of a circle as 
the circle rolls along a straight line is called a cycloid (see Figure 13). If the circle has 
radius r and rolls along the x-axis and if one position of P is the origin, find parametric 
equations for the cycloid.

P

P
P

TEC An animation in Module 10.1B 
shows how the cycloid is formed as 
the circle moves.

FIGURE 13 

FIGURE 9 

3

_3

_3 3
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644 CHAPTER 10  Parametric Equations and Polar Coordinates

SOLUTION We choose as parameter the angle of rotation " of the circle s" − 0 when 
P is at the origin). Suppose the circle has rotated through " radians. Because the circle 
has been in contact with the line, we see from Figure 14 that the distance it has rolled 
from the origin is

| OT | − arc PT − r"

Therefore the center of the circle is Csr", rd. Let the coordinates of P be sx, yd. Then 
from Figure 14 we see that

 x − | OT | 2 | PQ | − r" 2 r sin " − rs" 2 sin "d

 y − | TC | 2 | QC | − r 2 r cos " − r s1 2 cos "d

Therefore parametric equations of the cycloid are

x − r s" 2 sin "d    y − r s1 2 cos "d    " [ R

One arch of the cycloid comes from one rotation of the circle and so is described by 
0 < " < 2!. Although Equations 1 were derived from Figure 14, which illustrates the 
case where 0 , " , !y2, it can be seen that these equations are still valid for other 
values of " (see Exercise 39).

Although it is possible to eliminate the parameter " from Equations 1, the resulting 
Cartesian equation in x and y is very complicated and not as convenient to work with as 
the parametric equations. Q

One of the first people to study the cycloid was Galileo, who proposed that bridges be 
built in the shape of cycloids and who tried to find the area under one arch of a cycloid. 
Later this curve arose in connection with the brachistochrone problem: Find the curve 
along which a particle will slide in the shortest time (under the influence of gravity) 
from a point A to a lower point B not directly beneath A. The Swiss mathematician John 
Bernoulli, who posed this problem in 1696, showed that among all possible curves that 
join A to B, as in Figure 15, the particle will take the least time sliding from A to B if the 
curve is part of an inverted arch of a cycloid.

The Dutch physicist Huygens had already shown that the cycloid is also the solution 
to the tautochrone problem; that is, no matter where a particle P is placed on an inverted 
cycloid, it takes the same time to slide to the bottom (see Figure 16). Huygens proposed 
that pendulum clocks (which he invented) should swing in cycloidal arcs because then 
the pendulum would take the same time to make a complete oscillation whether it swings 
through a wide or a small arc.

Families of Parametric Curves

EXAMPLE 8  Investigate the family of curves with parametric equations

x − a 1 cos t      y − a tan t 1 sin t

What do these curves have in common? How does the shape change as a increases?

SOLUTION We use a graphing device to produce the graphs for the cases a − 22, 21, 
20.5, 20.2, 0, 0.5, 1, and 2 shown in Figure 17. Notice that all of these curves (except 
the case a − 0) have two branches, and both branches approach the vertical asymptote 
x − a as x approaches a from the left or right.

xO

y

T

C(r¨, r )r ¨

x
y

r¨

P Q

FIGURE 14 

1

A

B

cycloid

FIGURE 15 

P
P

P
P
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FIGURE 16 
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a=_2 a=_1 a=_0.5 a=_0.2

a=2a=1a=0.5a=0

When a , 21, both branches are smooth; but when a reaches 21, the right branch 
acquires a sharp point, called a cusp. For a between 21 and 0 the cusp turns into a 
loop, which becomes larger as a approaches 0. When a − 0, both branches come 
together and form a circle (see Example 2). For a between 0 and 1, the left branch has 
a loop, which shrinks to become a cusp when a − 1. For a . 1, the branches become 
smooth again, and as a increases further, they become less curved. Notice that the 
curves with a positive are reflections about the y-axis of the corresponding curves with 
a negative.

These curves are called conchoids of Nicomedes after the ancient Greek scholar 
Nicomedes. He called them conchoids because the shape of their outer branches 
resembles that of a conch shell or mussel shell. Q

FIGURE 17  
Members of the family x − a 1 cos t,
y − a tan t 1 sin t, all graphed in the 
viewing rectangle f24, 4g by f24, 4g

 9.  x − st  ,  y − 1 2 t

 10.  x − t 2,  y − t 3

11–18
(a)  Eliminate the parameter to find a Cartesian equation of the 

curve.
(b)  Sketch the curve and indicate with an arrow the direction in 

which the curve is traced as the parameter increases.

 11.  x − sin 12 ",  y − cos 12 ",  2! < " < !

 12.  x − 1
2 cos ",  y − 2 sin ",  0 < " < !

 13.  x − sin t,  y − csc t,  0 , t , !y2

 14.  x − e t,  y − e22 t

 15.  x − t 2,  y − ln t

 16.  x − st 1 1,  y − st 2 1

 17.  x − sinh t,  y − cosh t

 18.  x − tan2",  y − sec ",  2!y2 , " , !y2

1–4 Sketch the curve by using the parametric equations to plot 
points. Indicate with an arrow the direction in which the curve is 
traced as t increases.

 1.  x − 1 2 t 2,  y − 2t 2 t 2,  21 < t < 2

 2.  x − t 3 1 t,  y − t 2 1 2,  22 < t < 2

 3.  x − t 1 sin t,  y − cos t,  2! < t < !

 4.  x − e2t 1 t,  y − e t 2 t,  22 < t < 2

5–10
(a)  Sketch the curve by using the parametric equations to plot 

points. Indicate with an arrow the direction in which the 
curve is traced as t increases.

(b)  Eliminate the parameter to find a Cartesian equation of the 
curve.

 5.  x − 2t 2 1,  y − 1
2 t 1 1

 6.  x − 3t 1 2,  y − 2t 1 3

 7.  x − t 2 2 3,  y − t 1 2,  23 < t < 3

 8.  x − sin t,  y − 1 2 cos t,  0 < t < 2!
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646 CHAPTER 10  Parametric Equations and Polar Coordinates

25–27 Use the graphs of x − f std and y − tstd to sketch the 
parametric curve x − f std, y − tstd. Indicate with arrows the 
direction in which the curve is traced as t increases.

 

25.
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x
1

1 t

y
1

1

 26.
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1
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27.
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x
1

0 1 t

y
1

1

 28.   Match the parametric equations with the graphs labeled I–VI. 
Give reasons for your choices. (Do not use a graphing device.)

 (a) x − t 4 2 t 1 1,  y − t 2

 (b) x − t 2 2 2t,  y − st  

 (c) x − sin 2t,  y − sinst 1 sin 2td
 (d) x − cos 5t,  y − sin 2t

 (e) x − t 1 sin 4t,  y − t 2 1 cos 3t

 (f ) x −
sin 2t
4 1 t 2 ,  y −  

cos 2t
4 1 t 2

x

y

x

y

x

y

x

y

x

y

x

y
I II III

IV V VI

 19–22 Describe the motion of a particle with position sx, yd as t 
varies in the given interval.

 19.  x − 5 1 2 cos !t,  y − 3 1 2 sin !t,  1 < t < 2

 20.  x − 2 1 sin t,  y − 1 1 3 cos t,  !y2 < t < 2!

 21.  x − 5 sin t,  y − 2 cos t,  2! < t < 5!

 22.  x − sin t,  y − cos2t,  22! < t < 2!

 23.   Suppose a curve is given by the parametric equations 
x − f std, y − tstd, where the range of f  is f1, 4g and the 
range of t is f2, 3g. What can you say about the curve?

 24.   Match the graphs of the parametric equations x − f std and 
y − tstd in (a)–(d) with the parametric curves labeled I–IV. 
Give reasons for your choices.
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that parametric equations of the trochoid are

 x − r" 2 d sin "     y − r 2 d cos "

 Sketch the trochoid for the cases d , r and d . r.

 41.   If a and b are fixed numbers, find parametric equations for the 
curve that consists of all possible positions of the point P in 
the figure, using the angle " as the parameter. Then eliminate 
the param eter and identify the curve.

O

y

x
¨

a b P

 42.   If a and b are fixed numbers, find parametric equations for 
the curve that consists of all possible positions of the point P 
in the figure, using the angle " as the parameter. The line seg-
ment AB is tangent to the larger circle.

O x

y

¨
a b

A

B

P

 43.   A curve, called a witch of Maria Agnesi, consists of all 
possible positions of the point P in the figure. Show that para-
metric equations for this curve can be written as 

x − 2a cot "    y − 2a sin2"

 Sketch the curve.

O x

a
A P

y=2a

¨

y
C

 29.  Graph the curve x − y 2 2 sin !y.

 30.  Graph the curves y − x 3 2 4x and x − y 3 2 4y and find 
their points of intersection correct to one decimal place.

 31.  (a) Show that the parametric equations

x − x1 1 sx 2 2 x1dt    y − y1 1 sy2 2 y1dt

     where 0 < t < 1, describe the line segment that joins 
the points P1sx1, y1d and P2sx 2, y2 d.

 (b)  Find parametric equations to represent the line segment 
from s22, 7d to s3, 21d.

 32.  Use a graphing device and the result of Exercise 31(a) to 
draw the triangle with vertices As1, 1d, Bs4, 2d, and Cs1, 5d.

 33.   Find parametric equations for the path of a particle that 
moves along the circle x 2 1 sy 2 1d2 − 4 in the manner 
described.

 (a) Once around clockwise, starting at s2, 1d
 (b) Three times around counterclockwise, starting at s2, 1d
 (c) Halfway around counterclockwise, starting at s0, 3d

 34. (a)  Find parametric equations for the ellipse 
x 2ya 2 1 y 2yb 2 − 1. [Hint: Modify the equations of the 
circle in Example 2.]

 (b)  Use these parametric equations to graph the ellipse 
when a − 3 and b − 1, 2, 4, and 8.

 (c) How does the shape of the ellipse change as b varies?

 35–36 Use a graphing calculator or computer to reproduce the 
picture.

 35.  36.  

0

y

x

2

3 8

4

0

2

y

x2

37–38 Compare the curves represented by the parametric 
equations. How do they differ?

 37.  (a) x − t 3,  y − t 2 (b) x − t 6,  y − t 4

 (c) x − e23 t,  y − e22 t

 38.  (a) x − t,  y − t 22 (b) x − cos t,  y − sec2t
 (c) x − e t,  y − e22 t

 39.  Derive Equations 1 for the case !y2 , " , !.

 40.   Let P be a point at a distance d from the center of a circle of 
radius r. The curve traced out by P as the circle rolls along 
a straight line is called a trochoid. (Think of the motion 
of a point on a spoke of a bicycle wheel.) The cycloid is 
the special case of a trochoid with d − r. Using the same 
parameter " as for the cycloid, and assuming the line is the 
x-axis and " − 0 when P is at one of its lowest points, show 

;
;

;

;

;
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648 CHAPTER 10  Parametric Equations and Polar Coordinates

t seconds is given by the parametric equations

x − sv0 cos !dt    y − sv0 sin !dt 2 1
2 tt 2

 where t is the acceleration due to gravity (9.8 mys2).
 (a)  If a gun is fired with ! − 30° and v0 − 500 mys, when 

will the bullet hit the ground? How far from the gun 
will it hit the ground? What is the maximum height 
reached by the bullet?

 (b)  Use a graphing device to check your answers to part (a). 
Then graph the path of the projectile for several other 
values of the angle ! to see where it hits the ground. 
Summarize your findings.

 (c)  Show that the path is parabolic by eliminating the 
parameter.

 47.  Investigate the family of curves defined by the parametric 
equations x − t 2, y − t 3 2 ct. How does the shape change 
as c increases? Illustrate by graphing several members of 
the family.

 48.  The swallowtail catastrophe curves are defined by the 
parametric equations x − 2ct 2 4t 3, y − 2ct 2 1 3t 4. 
Graph several of these curves. What features do the curves 
have in common? How do they change when c increases?

 49.  Graph several members of the family of curves with para-
metric equations x − t 1 a cos t, y − t 1 a sin t, where 
a . 0. How does the shape change as a increases? For what 
values of a does the curve have a loop?

 50.  Graph several members of the family of curves 
x − sin t 1 sin nt, y − cos t 1 cos nt, where n is a positive 
integer. What features do the curves have in common? What 
happens as n increases?

 51.  The curves with equations x − a sin nt, y − b cos t are 
called Lissajous figures. Investigate how these curves vary 
when a, b, and n vary. (Take n to be a positive integer.)

 52.  Investigate the family of curves defined by the parametric 
equations x − cos t, y − sin t 2 sin ct, where c . 0. Start 
by letting c be a positive integer and see what happens to 
the shape as c increases. Then explore some of the possibili-
ties that occur when c is a fraction.

;

;

;

;

;

;

;

 44.  (a)  Find parametric equations for the set of all points P 
as shown in the figure such that | OP | − | AB |. (This 
curve is called the cissoid of Diocles after the Greek 
scholar Diocles, who introduced the cissoid as a graphi-
cal method for constructing the edge of a cube whose 
volume is twice that of a given cube.)

 (b)  Use the geometric description of the curve to draw a 
rough sketch of the curve by hand. Check your work by 
using the parametric equations to graph the curve.

xO

y
A

P
x=2a

B

a

 45.  Suppose that the position of one particle at time t is given by

x1 − 3 sin t    y1 − 2 cos t    0 < t < 2"

 and the position of a second particle is given by

x 2 − 23 1 cos t    y2 − 1 1 sin t    0 < t < 2"

 (a)  Graph the paths of both particles. How many points of 
intersection are there?

 (b)  Are any of these points of intersection collision points? 
In other words, are the particles ever at the same place 
at the same time? If so, find the collision points.

 (c)  Describe what happens if the path of the second particle 
is given by

x 2 − 3 1 cos t y2 − 1 1 sin t 0 < t < 2"

 46.   If a projectile is fired with an initial velocity of v0 meters 
per second at an angle ! above the horizontal and air resis-
tance is assumed to be negligible, then its position after  

;

LABORATORY PROJECT

In this project we investigate families of curves, called hypocycloids and epicycloids, that are  
generated by the motion of a point on a circle that rolls inside or outside another circle.

1.  A hypocycloid is a curve traced out by a fixed point P on a circle C of radius b as C rolls on 
the inside of a circle with center O and radius a. Show that if the initial position of P is sa, 0d 
and the parameter # is chosen as in the figure, then parametric equations of the hypocycloid 
are

x − sa 2 bd cos # 1 b cosS a 2 b
b

 #D      y − sa 2 bd sin # 2 b sinS a 2 b
b

 #D
2.  Use a graphing device (or the interactive graphic in TEC Module 10.1B) to draw the graphs 

of hypocycloids with a a positive integer and b − 1. How does the value of a affect the 

xO

y

a

C

Pb
(a, 0)¨
A

RUNNING CIRCLES AROUND CIRCLES;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 10.2  Calculus with Parametric Curves 649

  graph? Show that if we take a − 4, then the parametric equations of the hypocycloid  
reduce to

x − 4 cos3!    y − 4 sin3!

 This curve is called a hypocycloid of four cusps, or an astroid.

3.  Now try b − 1 and a − nyd, a fraction where n and d have no common factor. First let  
n − 1 and try to determine graphically the effect of the denominator d on the shape of the 
graph. Then let n vary while keeping d constant. What happens when n − d 1 1?

4.  What happens if b − 1 and a is irrational? Experiment with an irrational number like s2   
or e 2 2. Take larger and larger values for ! and speculate on what would happen if we  
were to graph the hypocycloid for all real values of !.

5.  If the circle C rolls on the outside of the fixed circle, the curve traced out by P is called an 
epicycloid. Find parametric equations for the epicycloid.

6. Investigate the possible shapes for epicycloids. Use methods similar to Problems 2–4.

Having seen how to represent curves by parametric equations, we now apply the methods 
of calculus to these parametric curves. In particular, we solve problems involving tan-
gents, areas, arc length, and surface area.

Tangents
Suppose f  and t are differentiable functions and we want to find the tangent line at a 
point on the parametric curve x − f std, y − tstd, where y is also a differentiable function 
of x. Then the Chain Rule gives

dy
dt

−
dy
dx

?
dx
dt

If dxydt ± 0, we can solve for dyydx:

dy
dx

−

dy
dt
dx
dt

              if    
dx
dt

± 0

Equation 1 (which you can remember by thinking of canceling the dt’s) enables us 
to find the slope dyydx of the tangent to a parametric curve without having to eliminate 
the parameter t. We see from (1) that the curve has a horizontal tangent when dyydt − 0 
(provided that dxydt ± 0) and it has a vertical tangent when dxydt − 0 (provided that 
dyydt ± 0). This information is useful for sketching parametric curves.

As we know from Chapter 4, it is also useful to consider d 2 yydx 2. This can be found 
by replacing y by dyydx in Equation 1:

d 2 y
dx 2 −

d
dx

 S dy
dxD −

d
dt

 S dy
dxD

dx
dt

If we think of the curve as being 
traced out by a moving particle, then 
dyydt and dxydt are the vertical and 
horizontal velocities of the particle and 
Formula 1 says that the slope of the 
tangent is the ratio of these velocities.

1

Note that  
d 2y
dx 2 Þ

d 2y
dt 2

d 2x
dt 2

TEC Look at Module 10.1B to see 
how hypocycloids and epicycloids 
are formed by the motion of rolling 
circles.
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650 CHAPTER 10  Parametric Equations and Polar Coordinates

EXAMPLE 1  A curve C is defined by the parametric equations x − t 2, y − t 3 2 3t.
(a) Show that C has two tangents at the point (3, 0) and find their equations.
(b) Find the points on C where the tangent is horizontal or vertical.
(c) Determine where the curve is concave upward or downward.
(d) Sketch the curve.

SOLUTION
(a) Notice that y − t 3 2 3t − tst 2 2 3d − 0 when t − 0 or t − 6s3 . Therefore the 
point s3, 0d on C arises from two values of the parameter, t − s3  and t − 2s3 . This 
indicates that C crosses itself at s3, 0d. Since

dy
dx

−
dyydt
dxydt

−
3t 2 2 3

2t
−

3
2

 St 2
1
t D

 the slope of the tangent when t − 6s3  is dyydx − 66ys2s3 d − 6s3 , so the equa-
tions of the tangents at s3, 0d are

y − s3  sx 2 3d    and    y − 2s3  sx 2 3d

(b) C has a horizontal tangent when dyydx − 0, that is, when dyydt − 0 and 
dxydt ± 0. Since dyydt − 3t 2 2 3, this happens when t 2 − 1, that is, t − 61. The 
corresponding points on C are s1, 22d and (1, 2). C has a vertical tangent when 
dxydt − 2t − 0, that is, t − 0. (Note that dyydt ± 0 there.) The corresponding point 
on C is (0, 0).

(c) To determine concavity we calculate the second derivative:

d 2 y
dx 2 −

d
dt

 S dy
dxD

dx
dt

−

3
2

 S1 1
1
t 2D

2t
−

3st 2 1 1d
4t 3

Thus the curve is concave upward when t . 0 and concave downward when t , 0.

(d) Using the information from parts (b) and (c), we sketch C in Figure 1. Q

EXAMPLE 2  
(a) Find the tangent to the cycloid x − r s" 2 sin "d, y − r s1 2 cos "d at the point 
where " − !y3.  (See Example 10.1.7.)
(b) At what points is the tangent horizontal? When is it vertical?

SOLUTION
(a) The slope of the tangent line is

dy
dx

−
dyyd"

dxyd"
−

r sin "
r s1 2 cos "d

−
sin "

1 2 cos "

When " − !y3, we have

x − rS!

3
2 sin 

!

3 D − rS!

3
2

s3 

2 D      y − rS1 2 cos 
!

3 D −
r
2

and 
dy
dx

−
sins!y3d

1 2 coss!y3d
−

s3 y2
1 2 1

2
− s3 

0

y

x
(3, 0)

(1, _2)

(1, 2)

t=1

t=_1
y=œ„3(x-3)

y=_ œ„3(x-3)

FIGURE 1 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 10.2  Calculus with Parametric Curves 651

Therefore the slope of the tangent is s3  and its equation is

y 2
r
2

− s3  Sx 2
r!

3
1

rs3 

2 D    or    s3  x 2 y − rS !

s3 2 2D
The tangent is sketched in Figure 2.

0

y

x2πr 4πr

(πr, 2r)(_πr, 2r) (3πr, 2r) (5πr, 2r)

π
3¨=

(b) The tangent is horizontal when dyydx − 0, which occurs when sin " − 0 and 
1 2 cos " ± 0, that is, " − s2n 2 1d!, n an integer. The corresponding point on the 
cycloid is ss2n 2 1d!r, 2rd.

When " − 2n!, both dxyd" and dyyd" are 0. It appears from the graph that there  
are vertical tangents at those points. We can verify this by using l’Hospital’s Rule as 
follows:

lim
" l

 

2n!1
 
dy
dx

− lim
" l

 

2n!1
 

sin "
1 2 cos " −  lim

" l
 

2n!1
 
cos "
sin " − `

A similar computation shows that dyydx l 2` as " l 2n!2, so indeed there are 
vertical tangents when " − 2n!, that is, when x − 2n!r. Q

Areas
We know that the area under a curve y − Fsxd from a to b is A − yb

a Fsxd dx, where 
Fsxd > 0. If the curve is traced out once by the parametric equations x − f std and 
y − tstd, # < t < $, then we can calculate an area formula by using the Sub stitution 
Rule for Definite Integrals as follows:

 A − yb

a
 y dx − y$

#
 tstd f 9std dt    For y#

$
 tstd f 9std dtG

EXAMPLE 3  Find the area under one arch of the cycloid

x − rs" 2 sin "d    y − rs1 2 cos "d

(See Figure 3.)

SOLUTION One arch of the cycloid is given by 0 < " < 2!. Using the Substitution 
Rule with y − rs1 2 cos "d and dx − rs1 2 cos "d d", we have

 A − y2!r

0
 y dx − y2!

0
 rs1 2 cos "d rs1 2 cos "d d"

 − r 2 y2!

0
 s1 2 cos "d2 d" − r 2 y2!

0
 s1 2 2 cos " 1 cos2"d d"

 − r 2 y2!

0
 f1 2 2 cos " 1 1

2 s1 1 cos 2"dg d"

 − r 2 f 3
2 " 2 2 sin " 1 1

4 sin 2"g0

2!

  − r 2 (3
2 ? 2!) − 3!r 2 Q

FIGURE 2

The limits of integration for t are found  
as usual with the Substitution Rule. 
When x − a, t is either # or $. When 
x − b, t is the remaining value.

0

y

x2πr

FIGURE 3 

The result of Example 3 says that the 
area under one arch of the cycloid 
is three times the area of the rolling 
circle that generates the cycloid (see 
Example 10.1.7). Galileo guessed this 
result but it was first proved by the 
French mathematician Roberval and 
the Italian mathematician Torricelli.
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Arc Length
We already know how to find the length L of a curve C given in the form y − Fsxd,  
a < x < b. Formula 8.1.3 says that if F9 is continuous, then

L − yb

a
Î1 1 S dy

dxD2  

 dx

Suppose that C can also be described by the parametric equations x − f std and y − tstd,  
! < t < ", where dxydt − f 9s td . 0. This means that C is traversed once, from left to 
right, as t increases from ! to " and f s!d − a, f s"d − b. Putting Formula 1 into Formula 
2 and using the Substitution Rule, we obtain

L − yb

a
 Î1 1 S dy

dxD2  

 dx − y"

!
 Î1 1 S dyydt

dxydtD2  

 
dx
dt  dt

Since dxydt . 0, we have

L − y"

!
ÎS dx

dt D2

1 S dy
dt D2  

 dt

Even if C can’t be expressed in the form y − Fsxd, Formula 3 is still valid but we 
obtain it by polygonal approximations. We divide the parameter interval f!, "g into n 
subintervals of equal width Dt. If t0, t1, t2, . . . , tn are the endpoints of these subintervals, 
then xi − f stid and yi − tstid are the coordinates of points Pisxi, yid that lie on C and the 
polygon with vertices P0, P1, . . . , Pn approximates C. (See Figure 4.)

As in Section 8.1, we define the length L of C to be the limit of the lengths of these 
approximating polygons as n l `:

L − lim
nl `

  o
n

i−1
 | Pi21 Pi |

The Mean Value Theorem, when applied to f  on the interval fti21, tig, gives a number ti* 
in sti21, tid such that

f stid 2 f sti21d − f 9sti*dsti 2 ti21d

If we let Dxi − xi 2 xi21 and Dyi − yi 2 yi21, this equation becomes

Dxi − f 9sti*d Dt

Similarly, when applied to t, the Mean Value Theorem gives a number ti** in sti21, tid 
such that

Dyi − t9sti**d Dt

Therefore

| Pi21Pi | − ssDxid2 1 sDyid2  − sf f 9sti*dDtg2 1 ft9sti**dDtg2 

 − sf f 9sti*dg2 1 ft9sti**dg2  Dt
and so

L − lim
n l `

 o
n

i−1
 sf f 9sti*dg2 1 ft9sti**dg2  Dt

2

3

0

y

x
P¸

P¡

P™ Pi _1

Pi

Pn

C

FIGURE 4 
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 SECTION 10.2  Calculus with Parametric Curves 653

The sum in (4) resembles a Riemann sum for the function sf f 9stdg2 1 ft9stdg2  but it is 
not exactly a Riemann sum because ti* ± ti** in general. Nevertheless, if f 9 and t9 are 
contin uous, it can be shown that the limit in (4) is the same as if ti* and ti** were equal, 
namely,

L − y$

#
 sf f 9stdg2 1 ft9stdg2  dt

Thus, using Leibniz notation, we have the following result, which has the same form as 
Formula 3.

5   Theorem If a curve C is described by the parametric equations x − f std, 
y − tstd, # < t < $, where f 9 and t9 are continuous on f#, $g and C is traversed 
exactly once as t increases from # to $, then the length of C is

L − y$

#
 ÎS dx

dt D2

1 S dy
dt D2 

 dt

Notice that the formula in Theorem 5 is consistent with the general formulas L − y ds 
and sdsd2 − sdxd2 1 sdyd2 of Section 8.1.

EXAMPLE 4  If we use the representation of the unit circle given in Example 10.1.2,

x − cos t    y − sin t    0 < t < 2!

then dxydt − 2sin t and dyydt − cos t, so Theorem 5 gives

L − y2!

0
ÎS dx

dt D2

1 S dy
dt D2  

 dt − y2!

0
ssin2t 1 cos2t dt − y2!

0
 dt − 2!

as expected. If, on the other hand, we use the representation given in Example 10.1.3,

x − sin 2t    y − cos 2t    0 < t < 2!

then dxydt − 2 cos 2t, dyydt − 22 sin 2t, and the integral in Theorem 5 gives

y2!

0
 ÎS dx

dt D2

1 S dy
dt D2  

dt − y2!

0
 s4 cos2 2t 1 4 sin2 2t  dt − y2!

0
 2 dt − 4!

Notice that the integral gives twice the arc length of the circle because as t increases 
from 0 to 2!, the point ssin 2t, cos 2td traverses the circle twice. In general, when find-
ing the length of a curve C from a parametric representation, we have to be careful to 
ensure that C is traversed only once as t increases from # to $. Q

EXAMPLE 5  Find the length of one arch of the cycloid x − r s" 2 sin "d, 
y − rs1 2 cos "d.
SOLUTION From Example 3 we see that one arch is described by the parameter interval 
0 < " < 2!. Since

dx
d"

− rs1 2 cos "d    and    
dy
d"

− r sin "
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654 CHAPTER 10  Parametric Equations and Polar Coordinates

we have
L − y2!

0
 ÎS dx

d"D2

1 S dy
d"D2  

 d"

 −  y2!

0
 sr 2s1 2 cos "d2 1 r 2 sin2"   d"

 − y2!

0
 sr 2s1 2 2 cos " 1 cos2" 1 sin2"d  d" 

 − r y2!

0
 s2s1 2 cos "d  d"

To evaluate this integral we use the identity sin2x − 1
2 s1 2 cos 2xd with " − 2x, which 

gives 1 2 cos " − 2 sin2s"y2d. Since 0 < " < 2!, we have 0 < "y2 < ! and so 
sins"y2d > 0. Therefore

s2s1 2 cos "d − s4 sin2s"y2d − 2 | sins"y2d | − 2 sins"y2d

and so L − 2r y2!

0
 sins"y2d d" − 2r f22 coss"y2dg 2!

0

 − 2r f2 1 2g − 8r Q

Surface Area
In the same way as for arc length, we can adapt Formula 8.2.5 to obtain a formula for surface 
area. Suppose the curve c given by the parametric equations x − f std, y − tstd, # < t < $,  
where f 9, t9 are continuous, tstd > 0, is rotated about the x-axis. If C is traversed exactly 
once as t increases from # to $, then the area of the resulting surface is given by

S − y$

#
 2!yÎS dx

dt D2

1 S dy
dt D2 

 dt 

The general symbolic formulas S − y 2!y ds and S − y 2!x ds (Formulas 8.2.7 and 
8.2.8) are still valid, but for parametric curves we use

ds − ÎS dx
dt D2

1 S dy
dt D2 

 dt 

EXAMPLE 6  Show that the surface area of a sphere of radius r is 4!r 2.

SOLUTION The sphere is obtained by rotating the semicircle

x − r cos t    y − r sin t    0 < t < !

about the x-axis. Therefore, from Formula 6, we get

S − y!

0
 2!r sin t ss2r sin td2 1 sr cos td2 dt

− 2! y!

0
 r sin t sr 2ssin2t 1 cos2td dt − 2! y!

0
 r sin t ? r dt

 − 2!r 2 y!

0
 sin t dt − 2!r 2s2cos tdg 0

!

− 4!r 2 Q

The result of Example 5 says that the 
length of one arch of a cycloid is eight 
times the radius of the gener ating circle 
(see Figure 5). This was first proved 
in 1658 by Sir Christopher Wren, who 
later became the architect of St. Paul’s 
Cathedral in London.

0

y

x2πr

r

L=8r

FIGURE 5 
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 SECTION 10.2  Calculus with Parametric Curves 655

23–24 Graph the curve in a viewing rectangle that displays all 
the important aspects of the curve.

 23.  x − t 4 2 2t 3 2 2t 2,  y − t 3 2 t

 24.  x − t 4 1 4t 3 2 8t 2,  y − 2t 2 2 t

 25.   Show that the curve x − cos t, y − sin t cos t has two  
tangents at s0, 0d and find their equations. Sketch the curve.

 26.   Graph the curve x − 22 cos t, y − sin t 1 sin 2t to 
discover where it crosses itself. Then find equations of both 
tangents at that point.

 27.  (a)  Find the slope of the tangent line to the trochoid 
x − r! 2 d sin !, y − r 2 d cos ! in terms of !. (See 
Exercise 10.1.40.)

 (b)  Show that if d , r, then the trochoid does not have a  
vertical tangent.

 28.  (a)  Find the slope of the tangent to the astroid x − a cos3!,  
y − a sin3! in terms of !. (Astroids are explored in the 
Laboratory Project on page 649.)

 (b) At what points is the tangent horizontal or vertical?
 (c) At what points does the tangent have slope 1 or 21?

 29.   At what point(s) on the curve x − 3t 2 1 1, y − t 3 2 1 does 
the tangent line have slope 12 ?

 30.   Find equations of the tangents to the curve x − 3t 2 1 1, 
y − 2t 3 1 1 that pass through the point s4, 3d.

 31.   Use the parametric equations of an ellipse, x − a cos !, 
y − b sin !, 0 < ! < 2", to find the area that it encloses.

 32.   Find the area enclosed by the curve x − t 2 2 2t, y − st   
and the y-axis.

 33.   Find the area enclosed by the x-axis and the curve  
x − t 3 1 1, y − 2t 2 t 2.

 34.   Find the area of the region enclosed by the astroid 
x − a cos3!, y − a sin3!. (Astroids are explored in the 
Laboratory Project on page 649.)

y

x0 a_a

_a

a

 35.   Find the area under one arch of the trochoid of Exer- 
cise 10.1.40 for the case d , r.

;

;

1–2 Find dyydx.

 1.  x −
t

1 1 t
,  y − s1 1 t  

 2.  x − tet,  y − t 1 sin t

 3–6 Find an equation of the tangent to the curve at the point 
corresponding to the given value of the parameter.

  3.  x − t 3 1 1,  y − t 4 1 t;  t − 21

  4.  x − st  ,  y − t 2 2 2t;  t − 4

 5.  x − t cos t,  y − t sin t;  t − "

  6.  x − et sin " t,  y − e2 t;  t − 0

 7–8 Find an equation of the tangent to the curve at the given 
point by two methods: (a) without eliminating the parameter and 
(b) by first eliminating the parameter.

 7.  x − 1 1 ln t,  y − t 2 1 2;  s1, 3d

 8.  x − 1 1 st  ,  y − et 2
;  s2, ed

9–10 Find an equation of the tangent to the curve at the given 
point. Then graph the curve and the tangent.

 9.  x − t 2 2 t,  y − t 2 1 t 1 1;  s0, 3d

 10.  x − sin "t,  y − t 2 1 t;  s0, 2d

 11–16 Find dyydx and d 2 yydx 2. For which values of t is the 
curve concave upward?

 11.  x − t 2 1 1,  y − t 2 1 t 12.  x − t 3 1 1,  y − t 2 2 t

 13.  x − e t,  y − te2 t 14.  x − t 2 1 1,  y − e t 2 1

 15.  x − t 2 ln t,  y − t 1 ln t

 16.  x − cos t,  y − sin 2t,  0 , t , "

 17–20 Find the points on the curve where the tangent is hori-
zontal or vertical. If you have a graphing device, graph the curve 
to check your work.

 17.  x − t 3 2 3t,  y − t 2 2 3

 18.  x − t 3 2 3t,  y − t 3 2 3t 2

 19.  x − cos !,  y − cos 3! 20.  x − e sin !,  y − e cos !

 21.   Use a graph to estimate the coordinates of the rightmost 
point on the curve x − t 2 t 6, y − e t. Then use calculus to 
find the exact coordinates.

 22.   Use a graph to estimate the coordinates of the lowest point 
and the leftmost point on the curve x − t 4 2 2t, y − t 1 t 4.  
Then find the exact coordinates.

;

;

;
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656 CHAPTER 10  Parametric Equations and Polar Coordinates

where e is the eccentricity of the ellipse se − cya, where 
c − sa 2 2 b2  ).

 54.   Find the total length of the astroid x − a cos3!,  
y − a sin3!, where a . 0.

 55.  (a) Graph the epitrochoid with equations

 x − 11 cos t 2 4 coss11ty2d
 y − 11 sin t 2 4 sins11ty2d

What parameter interval gives the complete curve?
 (b)  Use your CAS to find the approximate length of this 

curve.

 56.   A curve called Cornu’s spiral is defined by the parametric 
equations

 x − Cstd − y t

0
 coss"u 2y2d du

 y − Sstd − y t

0
 sins"u 2y2d du

  where C and S are the Fresnel functions that were intro-
duced in Chapter 5.

 (a)  Graph this curve. What happens as t l ` and as  
t l 2`?

 (b)  Find the length of Cornu’s spiral from the origin to the 
point with parameter value t.

 57–60 Set up an integral that represents the area of the surface 
obtained by rotating the given curve about the x-axis. Then use 
your calculator to find the surface area correct to four decimal 
places.

 57.  x − t sin t,  y − t cos t,  0 < t < "y2

 58.  x − sin t,  y − sin 2t,  0 < t < "y2

 59.  x − t 1 et,  y − e2t,  0 < t < 1

 60.  x − t 2 2 t 3,  y − t 1 t 4,  0 < t < 1

 61–63 Find the exact area of the surface obtained by rotating 
the given curve about the x-axis.

 61.  x − t 3,  y − t 2,  0 < t < 1

 62.  x − 2t 2 1 1yt,  y − 8st  ,  1 < t < 3

 63.  x − a cos3!,  y − a sin3!,  0 < ! < "y2

 64.  Graph the curve

x − 2 cos ! 2 cos 2!    y − 2 sin ! 2 sin 2!

If this curve is rotated about the x-axis, find the exact area 
of the resulting surface. (Use your graph to help find the 
correct parameter interval.)

 65–66 Find the surface area generated by rotating the given 
curve about the y-axis.

 65.  x − 3t 2,  y − 2t 3,  0 < t < 5

CAS

CAS

;

 36.   Let 5 be the region enclosed by the loop of the curve in 
Example 1.

 (a) Find the area of 5.
 (b)  If 5 is rotated about the x-axis, find the volume of the 

resulting solid.
 (c) Find the centroid of 5.

 37–40 Set up an integral that represents the length of the curve. 
Then use your calculator to find the length correct to four deci-
mal places.

 37.  x − t 1 e2t,  y − t 2 e2t,  0 < t < 2

 38.  x − t 2 2 t,  y − t 4,  1 < t < 4

 39.  x − t 2 2 sin t,  y − 1 2 2 cos t,  0 < t < 4"

 40.  x − t 1 st  ,  y − t 2 st  ,  0 < t < 1

41–44 Find the exact length of the curve.

 41.  x − 1 1 3t 2,  y − 4 1 2t 3,  0 < t < 1

 42.   x − et 2 t,  y − 4ety2,  0 < t < 2

 43.  x − t sin t,  y − t cos t,  0 < t < 1

 44.  x − 3 cos t 2 cos 3t,  y − 3 sin t 2 sin 3t,  0 < t < "

45–46 Graph the curve and find its exact length.

 45.  x − e t cos t,  y − e t sin t,  0 < t < "

 46.  x − cos t 1 lnstan 1
2 td,  y − sin t,  "y4 < t < 3"y4

 47.   Graph the curve x − sin t 1 sin 1.5t, y − cos t and find its 
length correct to four decimal places.

 48.   Find the length of the loop of the curve x − 3t 2 t 3,  
y − 3t 2.

 49.   Use Simpson’s Rule with n − 6 to estimate the length of  
the curve x − t 2 e t, y − t 1 e t, 26 < t < 6.

 50.   In Exercise 10.1.43 you were asked to derive the parametric 
equations x − 2a cot !, y − 2a sin2! for the curve called 
the witch of Maria Agnesi. Use Simpson’s Rule with n − 4 
to estimate the length of the arc of this curve given by 
"y4 < ! < "y2.

 51–52 Find the distance traveled by a particle with position 
sx, yd as t varies in the given time interval. Compare with the 
length of the curve.

 51.  x − sin2t,  y − cos2t,  0 < t < 3"

 52.  x − cos2t,  y − cos t,  0 < t < 4"

 53.   Show that the total length of the ellipse x − a sin !, 
y − b cos !, a . b . 0, is

L − 4a y"y2

0
 s1 2 e 2 sin2!   d!

;

;
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 LABORATORY PROJECT  Bézier Curves 657

 70.  (a)  Use the formula in Exercise 69(b) to find the curvature of 
the parabola y − x 2 at the point s1, 1d.

 (b)  At what point does this parabola have maximum curvature?

 71.   Use the formula in Exercise 69(a) to find the curvature of the 
cycloid x − ! 2 sin !, y − 1 2 cos ! at the top of one of its 
arches.

 72.  (a)  Show that the curvature at each point of a straight line  
is # − 0.

 (b)  Show that the curvature at each point of a circle of  
radius r is # − 1yr.

 73.   A string is wound around a circle and then unwound while 
being held taut. The curve traced by the point P at the end of 
the string is called the involute of the circle. If the circle has 
radius r and center O and the initial position of P is sr, 0d, and 
if the parameter ! is chosen as in the figure, show that para-
metric equations of the involute are

x − r scos ! 1 ! sin !d    y − r ssin ! 2 ! cos !d

xO

y

r
¨ P

T

 74.  A cow is tied to a silo with radius r by a rope just long enough 
to reach the opposite side of the silo. Find the grazing area 
available for the cow.

 66.  x − e t 2 t,  y − 4e ty2,  0 < t < 1

 67.   If f 9 is continuous and f 9std ± 0 for a < t < b, show that the 
parametric curve x − f std, y − tstd, a < t < b, can be put in 
the form y − Fsxd. [Hint: Show that f 21 exists.]

 68.   Use Formula 1 to derive Formula 6 from Formula 8.2.5 for 
the case in which the curve can be represented in the form 
y − Fsxd, a < x < b.

 69.  The curvature at a point P of a curve is defined as

# − Z d$

ds Z
  where $ is the angle of inclination of the tangent line at P, as 
shown in the figure. Thus the curvature is the absolute value 
of the rate of change of $ with respect to arc length. It can be 
regarded as a measure of the rate of change of direction of the 
curve at P and will be studied in greater detail in Chapter 13.

 (a)  For a parametric curve x − xstd, y − ystd, derive the  
formula

# − |x. ÿ 2 ẍy. |
fx. 2 1 y. 2 g3y2

where the dots indicate derivatives with respect to t, so 
x. − dxydt. [Hint: Use $ − tan21sdyydxd and Formula 2 
to find d$ydt. Then use the Chain Rule to find d$yds.]

 (b)  By regarding a curve y − f sxd as the parametric curve 
x − x, y − f sxd, with parameter x, show that the formula 
in part (a) becomes

# − | d 2 yydx 2 |
f1 1 sdyydxd2 g3y2

0 x

y

P

˙

LABORATORY PROJECT

Bézier curves are used in computer-aided design and are named after the French mathematician 
Pierre Bézier (1910–1999), who worked in the automotive industry. A cubic Bézier curve is 
determined by four control points, P0sx0, y0 d, P1sx1, y1d, P2sx2, y2 d, and P3sx3, y3 d, and is defined 
by the parametric equations

 x − x0s1 2 td3 1 3x1ts1 2 td2 1 3x2t 2s1 2 td 1 x3t 3

 y − y0s1 2 td3 1 3y1ts1 2 td2 1 3y2t 2s1 2 td 1 y3t 3

BÉZIER CURVES;
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658 CHAPTER 10  Parametric Equations and Polar Coordinates

A coordinate system represents a point in the plane by an ordered pair of numbers called 
coordinates. Usually we use Cartesian coordinates, which are directed distances from 
two perpendicular axes. Here we describe a coordinate system introduced by Newton, 
called the polar coordinate system, which is more convenient for many purposes.

We choose a point in the plane that is called the pole (or origin) and is labeled O. Then 
we draw a ray (half-line) starting at O called the polar axis. This axis is usually drawn 
hor izontally to the right and corresponds to the positive x-axis in Cartesian coordinates.

If P is any other point in the plane, let r be the distance from O to P and let ! be the 
angle (usually measured in radians) between the polar axis and the line OP as in Fig- 
 ure 1. Then the point P is represented by the ordered pair sr, !d and r, ! are called polar 
coordinates of P. We use the convention that an angle is positive if measured in the 
counterclockwise direction from the polar axis and negative in the clockwise direction. 
If P − O, then r − 0 and we agree that s0, !d represents the pole for any value of !.

We extend the meaning of polar coordinates sr, !d to the case in which r is negative by 
agreeing that, as in Figure 2, the points s2r, !d and sr, !d lie on the same line through O 
and at the same distance | r | from O, but on opposite sides of O. If r . 0, the point sr, !d 
lies in the same quadrant as !; if r , 0, it lies in the quadrant on the opposite side of the 
pole. Notice that s2r, !d represents the same point as sr, ! 1 "d.

EXAMPLE 1  Plot the points whose polar coordinates are given. 
(a) s1, 5"y4d      (b) s2, 3"d      (c) s2, 22"y3d      (d) s23, 3"y4d

FIGURE 1 

xO ¨

r

polar axis

P(r, ̈ )

FIGURE 2 

(_r, ̈ )

O
¨

(r, ̈ )

¨+π

where 0 < t < 1. Notice that when t − 0 we have sx, yd − sx0, y0 d and when t − 1 we have 
sx, yd − sx3, y3d, so the curve starts at P0 and ends at P3.

1.  Graph the Bézier curve with control points P0s4, 1d, P1s28, 48d, P2s50, 42d, and P3s40, 5d. 
Then, on the same screen, graph the line segments P0P1, P1P2, and P2P3. (Exercise 10.1.31 
shows how to do this.) Notice that the middle control points P1 and P2 don’t lie on the  
curve; the curve starts at P0, heads toward P1 and P2 without reaching them, and ends at P3.

2.  From the graph in Problem 1, it appears that the tangent at P0 passes through P1 and the  
tangent at P3 passes through P2. Prove it.

3.  Try to produce a Bézier curve with a loop by changing the second control point in  
Problem 1.

4.  Some laser printers use Bézier curves to represent letters and other symbols. Experiment with 
control points until you find a Bézier curve that gives a reasonable representation of the  
letter C.

5.  More complicated shapes can be represented by piecing together two or more Bézier  
curves. Suppose the first Bézier curve has control points P0, P1, P2, P3 and the second one  
has control points P3, P4, P5, P6. If we want these two pieces to join together smoothly, then 
the tangents at P3 should match and so the points P2, P3, and P4 all have to lie on this com- 
mon tangent line. Using this principle, find control points for a pair of Bézier curves that 
represent the letter S.
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 SECTION 10.3  Polar Coordinates 659

SOLUTION The points are plotted in Figure 3. In part (d) the point s23, 3"y4d is located 
three units from the pole in the fourth quadrant because the angle 3"y4 is in the second 
quadrant and r − 23 is negative.

FIGURE 3 
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In the Cartesian coordinate system every point has only one representation, but in 
the polar coordinate system each point has many representations. For instance, the point 
s1, 5"y4d in Example 1(a) could be written as s1, 23"y4d or s1, 13"y4d or s21, "y4d. 
(See Figure 4.)

O
13π

4

”1,        ’ ’13π
4

O

_ 3π
4

”1, _      ’3π
4

O
5π
4 O

”_1,     π
4

π
4

”1, 5π
4 ’

FIGURE 4
In fact, since a complete counterclockwise rotation is given by an angle 2", the point 

rep resented by polar coordinates sr, !d is also represented by

sr, ! 1 2n"d    and    s2r, ! 1 s2n 1 1d"d

where n is any integer.
The connection between polar and Cartesian coordinates can be seen from Figure 5, 

in which the pole corresponds to the origin and the polar axis coincides with the positive    
x-axis. If the point P has Cartesian coordinates sx, yd and polar coordinates sr, !d, then, 
from the figure, we have

cos ! −
x
r

      sin ! −
y
r

and so

x − r cos !      y − r sin !

Although Equations 1 were deduced from Figure 5, which illustrates the case where 
r . 0 and 0 , ! , "y2, these equations are valid for all values of r and !. (See the gen-
eral definition of sin ! and cos ! in Appendix D.)

Equations 1 allow us to find the Cartesian coordinates of a point when the polar coor-
dinates are known. To find r and ! when x and y are known, we use the equations

O

y

x
¨

x

yr

P (r, ̈ )=P(x, y)

FIGURE 5 

1
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r 2 − x 2 1 y 2      tan ! −
y
x

which can be deduced from Equations 1 or simply read from Figure 5.

EXAMPLE 2  Convert the point s2, "y3d from polar to Cartesian coordinates.

SOLUTION Since r − 2 and ! − "y3, Equations 1 give

  x − r cos ! − 2 cos 
"

3
− 2 ?

1
2

− 1

 y − r sin ! − 2 sin 
"

3
− 2 ?

s3 

2
− s3 

Therefore the point is s1, s3 d in Cartesian coordinates. Q

EXAMPLE 3  Represent the point with Cartesian coordinates s1, 21d in terms of polar 
coordinates.

SOLUTION If we choose r to be positive, then Equations 2 give

 r − sx 2 1 y 2 − s12 1 s21d2 − s2 

 tan ! −
y
x

− 21

Since the point s1, 21d lies in the fourth quadrant, we can choose ! − 2"y4 or 
! − 7"y4. Thus one possible answer is ss2 , 2"y4d; another is ss2 , 7"y4d. Q

NOTE Equations 2 do not uniquely determine ! when x and y are given because, as ! 
increases through the interval 0 < ! , 2", each value of tan ! occurs twice. Therefore, 
in converting from Cartesian to polar coordinates, it’s not good enough just to find r and 
! that satisfy Equations 2. As in Example 3, we must choose ! so that the point sr, !d lies 
in the correct quadrant.

Polar Curves
The graph of a polar equation r − f s!d, or more generally Fsr, !d − 0, consists of all 
points P that have at least one polar representation sr, !d whose coordinates satisfy the 
equation.

EXAMPLE 4  What curve is represented by the polar equation r − 2?

SOLUTION The curve consists of all points sr, !d with r − 2. Since r represents the 
distance from the point to the pole, the curve r − 2 represents the circle with center O 
and radius 2. In general, the equation r − a represents a circle with center O and radius 
| a |. (See Figure 6.) Q

2

FIGURE 6

x

r= 1
2

r=1
r=2

r=4
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 SECTION 10.3  Polar Coordinates 661

EXAMPLE 5  Sketch the polar curve ! − 1.

SOLUTION This curve consists of all points sr, !d such that the polar angle ! is  
1 radian. It is the straight line that passes through O and makes an angle of 1 radian 
with the polar axis (see Figure 7). Notice that the points sr, 1d on the line with r . 0 
are in the first quadrant, whereas those with r , 0 are in the third quadrant. Q

EXAMPLE 6  
(a) Sketch the curve with polar equation r − 2 cos !.
(b) Find a Cartesian equation for this curve.

SOLUTION
(a) In Figure 8 we find the values of r for some convenient values of ! and plot the cor-
responding points sr, !d. Then we join these points to sketch the curve, which appears 
to be a circle. We have used only values of ! between 0 and ", since if we let ! increase 
beyond ", we obtain the same points again.

(2, 0)

2

”_1,      ’2π
3

”0,     ’π
2

”1,     ’π
3

”œ„,     ’π
4 ”œ„,     ’π

63

”_ œ„,       ’5π
63

”_ œ„,       ’3π
42

(b) To convert the given equation to a Cartesian equation we use Equations 1 and 2. 
From x − r cos ! we have cos ! − xyr, so the equation r − 2 cos ! becomes r − 2xyr,  
which gives

2x − r 2 − x 2 1 y 2    or    x 2 1 y 2 2 2x − 0

Completing the square, we obtain

sx 2 1d2 1 y 2 − 1

which is an equation of a circle with center s1, 0d and radius 1. Q

 

O

y

x2
¨

r
P

Q

 

O x
1

(_1, 1)

(_2, 1)

(1, 1)

(2, 1)

(3, 1)

¨=1

FIGURE 7 

FIGURE 8  
Table of values and  

graph of r − 2 cos !

! r − 2 cos !

0  2
"y6  s3 

"y4  s2 

"y3  1
"y2  0
2"y3  21
3"y4  2s2 

5"y6  2s3 

"  22

Figure 9 shows a geometrical illustra-
tion that the circle in Example 6 has the 
equation r − 2 cos !. The angle OPQ is 
a right angle (Why?) and so ry2 − cos !.

FIGURE 9 
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662 CHAPTER 10  Parametric Equations and Polar Coordinates

EXAMPLE 7  Sketch the curve r − 1 1 sin !.

SOLUTION Instead of plotting points as in Example 6, we first sketch the graph of 
r − 1 1 sin ! in Cartesian coordinates in Figure 10 by shifting the sine curve up one 
unit. This enables us to read at a glance the values of r that correspond to increasing 
values of !. For instance, we see that as ! increases from 0 to "y2, r (the distance from 
O) increases from 1 to 2, so we sketch the corresponding part of the polar curve in 
Figure 11(a). As ! increases from "y2 to ", Figure 10 shows that r decreases from 2 to 
1, so we sketch the next part of the curve as in Figure 11(b). As ! increases from " to 
3"y2, r decreases from 1 to 0 as shown in part (c). Finally, as ! increases from 3"y2 
to 2", r increases from 0 to 1 as shown in part (d). If we let ! increase beyond 2" or 
decrease beyond 0, we would simply re trace our path. Putting together the parts of the 
curve from Figure 11(a)–(d), we sketch the complete curve in part (e). It is called a 
cardioid because it’s shaped like a heart.

(a) (b) (c) (d) (e)

O¨=π

¨=π
2

O
¨=π

¨= 3π
2

O
¨=2π

¨= 3π
2

O
O ¨=0

¨=π
2

1

2

FIGURE 11 Stages in sketching the cardioid r − 1 1 sin ! Q

EXAMPLE 8  Sketch the curve r − cos 2!.

SOLUTION As in Example 7, we first sketch r − cos 2!, 0 < ! < 2", in Cartesian 
coordinates in Figure 12. As ! increases from 0 to "y4, Figure 12 shows that r 
decreases from 1 to 0 and so we draw the corresponding portion of the polar curve in 
Figure 13 (indicated by ). As ! increases from "y4 to "y2, r goes from 0 to 21. This 
means that the distance from O increases from 0 to 1, but instead of being in the first 
quadrant this portion of the polar curve (indicated by ) lies on the opposite side of the 
pole in the third quadrant. The remainder of the curve is drawn in a similar fashion, 
with the arrows and numbers indicating the order in which the portions are traced out. 
The resulting curve has four loops and is called a four-leaved rose.

¨=0
¨=π

¨=3π
4

¨=π
2

¨=π
4

r

1

¨2ππ 5π
4

π
2

π
4

3π
4

3π
2

7π
4

!

@ # ^ &

% *$
!

@ #

$

%

& ^

*

FIGURE 12  
r − cos 2! in Cartesian coordinates  

FIGURE 13  
Four-leaved rose r − cos 2! Q

0

r

1

2

¨π 2π3π
2

π
2

FIGURE 10  
r − 1 1 sin ! in Cartesian coordinates, 
0 < ! < 2"

TEC Module 10.3 helps you see how  
polar curves are traced out by showing  
 animations similar to Figures 10–13.
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 SECTION 10.3  Polar Coordinates 663

Symmetry
When we sketch polar curves it is sometimes helpful to take advantage of symmetry. The 
following three rules are explained by Figure 14.

(a)  If a polar equation is unchanged when ! is replaced by 2!, the curve is sym metric 
about the polar axis.

(b)  If the equation is unchanged when r is replaced by 2r, or when ! is replaced by 
! 1 ", the curve is symmetric about the pole. (This means that the curve remains 
unchanged if we rotate it through 180° about the origin.)

(c)  If the equation is unchanged when ! is replaced by " 2 !, the curve is sym metric 
about the vertical line ! − "y2.

The curves sketched in Examples 6 and 8 are symmetric about the polar axis, since 
coss2!d − cos !. The curves in Examples 7 and 8 are symmetric about ! − "y2 because 
sins" 2 !d − sin ! and cos 2s" 2 !d − cos 2!. The four-leaved rose is also symmetric 
about the pole. These symmetry properties could have been used in sketching the curves. 
For instance, in Example 6 we need only have plotted points for 0 < ! < "y2 and then 
reflected about the polar axis to obtain the complete circle.

Tangents to Polar Curves
To find a tangent line to a polar curve r − f s!d, we regard ! as a parameter and write its 
parametric equations as

x − r cos ! − f s!d cos !      y − r sin ! − f s!d sin !

Then, using the method for finding slopes of parametric curves (Equation 10.2.1) and the 
Product Rule, we have

dy
dx

−

dy
d!

dx
d!

−

dr
d!

 sin ! 1 r cos !

dr
d!

 cos ! 2 r sin !

We locate horizontal tangents by finding the points where dyyd! − 0 (provided that 
dxyd! ± 0). Likewise, we locate vertical tangents at the points where dxyd! − 0 (pro-
vided that dyyd! ± 0).

Notice that if we are looking for tangent lines at the pole, then r − 0 and Equation 3 
simplifies to

dy
dx

− tan !    if 
dr
d!

± 0

O

(r, ̈ )

(_r, ̈ )
O

(r, ̈ )

(r, _¨)

_¨
¨

(a) (b) (c)

O

(r, ̈ )(r, π-¨)

π-¨
¨

FIGURE 14 

3
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664 CHAPTER 10  Parametric Equations and Polar Coordinates

For instance, in Example 8 we found that r − cos 2! − 0 when ! − "y4 or 3"y4. This 
means that the lines ! − "y4 and ! − 3"y4 (or y − x and y − 2x) are tangent lines to 
r − cos 2! at the origin.

EXAMPLE 9 
(a) For the cardioid r − 1 1 sin ! of Example 7, find the slope of the tangent line 
when ! − "y3.
(b) Find the points on the cardioid where the tangent line is horizontal or vertical.

SOLUTION Using Equation 3 with r − 1 1 sin !, we have

 
dy
dx

−

dr
d!

 sin ! 1 r cos !

dr
d!

 cos ! 2 r sin !
−

cos ! sin ! 1 s1 1 sin !d cos !
cos ! cos ! 2 s1 1 sin !d sin !

 −
cos ! s1 1 2 sin !d

1 2 2 sin2! 2 sin !
−

cos ! s1 1 2 sin !d
s1 1 sin !ds1 2 2 sin !d

(a) The slope of the tangent at the point where ! − "y3 is

 
dy
dx Z

!−"y3
−

coss"y3ds1 1 2 sins"y3dd
s1 1 sins"y3dds1 2 2 sins"y3dd

 −
1
2 (1 1 s3 )

(1 1 s3 y2)(1 2 s3 )

−
1 1 s3 

(2 1 s3 )(1 2 s3 ) −
1 1 s3 

21 2 s3 − 21

(b) Observe that

 
dy
d!

− cos ! s1 1 2 sin !d − 0   when ! −
"

2
, 

3"

2
, 

7"

6
, 

11"

6

 
dx
d!

− s1 1 sin !ds1 2 2 sin !d − 0  when ! −
3"

2
, 

"

6
, 

5"

6

Therefore there are horizontal tangents at the points s2, "y2d, ( 1
2, 7"y6), ( 1

2, 11"y6) 
and vertical tangents at ( 3

2 , "y6) and ( 3
2 , 5"y6). When ! − 3"y2, both dyyd! and 

dxyd! are 0, so we must be careful. Using l’Hospital’s Rule, we have

 lim
!ls3"y2d2

dy
dx

− S lim
!l s3"y2d2

1 1 2 sin !
1 2 2 sin !DS lim

!l s3"y2d2

cos !
1 1 sin !D

− 2
1
3

 lim
!l s3"y2d2

cos!

1 1 sin !
− 2

1
3

 lim
!l s3"y2d2

2sin !
cos !

− `

By symmetry, lim
! l

 s3"y2d1
 
dy
dx

− 2`

Thus there is a vertical tangent line at the pole (see Figure 15). Q

”   ,     ’

”   ,   ’”   ,     ’5π
6

3
2

7π
6

1
2 ”   ,      ’11π

6
1
2

3
2

π
6

(0, 0)

m=_1
”1+      ,    ’π

3
œ„3
2

”2,    ’π
2

FIGURE 15  
Tangent lines for r − 1 1 sin !

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 10.3  Polar Coordinates  665

NOTE Instead of having to remember Equation 3, we could employ the method used 
to derive it. For instance, in Example 9 we could have written

 x − r cos ! − s1 1 sin !d cos ! − cos ! 1 1
2 sin 2!

 y − r sin ! − s1 1 sin !d sin ! − sin ! 1 sin2!

Then we have

 
dy
dx

−
dyyd!

dxyd!
−

cos ! 1 2 sin ! cos !
2sin ! 1 cos 2!

−
cos ! 1 sin 2!

2sin ! 1 cos 2!

which is equivalent to our previous expression.

Graphing Polar Curves with Graphing Devices
Although it’s useful to be able to sketch simple polar curves by hand, we need to use a 
graphing calculator or computer when we are faced with a curve as complicated as the 
ones shown in Figures 16 and 17.

Some graphing devices have commands that enable us to graph polar curves directly. 
With other machines we need to convert to parametric equations first. In this case we take 
the polar equation r − f s!d and write its parametric equations as

x − r cos ! − f s!d cos !      y − r sin ! − f s!d sin !

Some machines require that the parameter be called t rather than !.

EXAMPLE 10  Graph the curve r − sins8!y5d.

SOLUTION Let’s assume that our graphing device doesn’t have a built-in polar graphing 
command. In this case we need to work with the corresponding parametric equations, 
which are

x − r cos ! − sins8!y5d cos !      y − r sin ! − sins8!y5d sin !

In any case we need to determine the domain for !. So we ask ourselves: How many 
complete rotations are required until the curve starts to repeat itself? If the answer is n, 
then

sin 
8s! 1 2n"d

5
− sinS 8!

5
1

16n"

5 D − sin 
8!

5

and so we require that 16n"y5 be an even multiple of ". This will first occur when 
n − 5. Therefore we will graph the entire curve if we specify that 0 < ! < 10". 
Switching from ! to t, we have the equations

x − sins8ty5d cos t    y − sins8ty5d sin t    0 < t < 10"

and Figure 18 shows the resulting curve. Notice that this rose has 16 loops. Q

EXAMPLE 11  Investigate the family of polar curves given by r − 1 1 c sin !.  
How does the shape change as c changes? (These curves are called limaçons, after a 
French word for snail, because of the shape of the curves for certain values of c.)

SOLUTION Figure 19 on page 666 shows computer-drawn graphs for various values  
of c. For c . 1 there is a loop that decreases in size as c decreases. When c − 1 the 
loop disappears and the curve becomes the cardioid that we sketched in Example 7. For 
c between 1 and 12 the cardioid’s cusp is smoothed out and becomes a “dimple.” When c 

1

_1

_1 1

FIGURE 16  
r − sin3s2.5!d 1 cos3s2.5!d

3

_3

_3 3

FIGURE 17  
r − 2 1 sin3s2.4!d

1

_1

_1 1

FIGURE 18  
r − sins8!y5d
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666 CHAPTER 10  Parametric Equations and Polar Coordinates

7–12 Sketch the region in the plane consisting of points whose 
polar coordinates satisfy the given conditions.

 7.  r > 1

 8.  0 < r , 2,  ! < " < 3!y2

 9.  r > 0,  !y4 < " < 3!y4

 10.  1 < r < 3,  !y6 , " , 5!y6

 11.  2 , r , 3,  5!y3 < " < 7!y3

 12.  r > 1,  ! < " < 2!

 13.   Find the distance between the points with polar coordinates 
s4, 4!y3d and s6, 5!y3d.

 14.   Find a formula for the distance between the points with polar 
coordinates sr1, "1d and sr2, "2 d.

15–20 Identify the curve by finding a Cartesian equation for the 
curve.

 15.  r 2 − 5 16.  r − 4 sec "

 17.  r − 5 cos " 18.  " − !y3

 19.  r 2 cos 2" − 1 20.  r 2 sin 2 " − 1

1–2 Plot the point whose polar coordinates are given. Then find 
two other pairs of polar coordinates of this point, one with r . 0 
and one with r , 0.

 1.  (a) s1, !y4d (b) s22, 3!y2d (c) s3, 2!y3d

 2.  (a) s2, 5!y6d (b) s1, 22!y3d (c) s21, 5!y4d

3–4 Plot the point whose polar coordinates are given. Then find 
the Cartesian coordinates of the point.

 3.  (a) s2, 3!y2d (b) (s2 , !y4) (c) s21, 2!y6d

 4.  (a) (4, 4!y3) (b) s22, 3!y4d (c) s23, 2!y3d

5–6 The Cartesian coordinates of a point are given.
 (i)  Find polar coordinates sr, "d of the point, where r . 0   

and 0 < " , 2!.
 (ii)  Find polar coordinates sr, "d of the point, where r , 0   

and 0 < " , 2!.

 5.  (a) s24, 4d (b) (3, 3s3 )
 6.  (a) (s3 , 21) (b) s26, 0d

de creases from 12 to 0, the limaçon is shaped like an oval. This oval becomes more 
circular as c l 0, and when c − 0 the curve is just the circle r − 1.

c=2.5

c=0 c=_0.2 c=_0.5 c=_0.8 c=_1

c=_2

c=1.7 c=1 c=0.7 c=0.5 c=0.2

The remaining parts of Figure 19 show that as c becomes negative, the shapes 
change in reverse order. In fact, these curves are reflections about the horizontal axis of 
the corresponding curves with positive c. Q

Limaçons arise in the study of planetary motion. In particular, the trajectory of Mars, 
as viewed from the planet Earth, has been modeled by a limaçon with a loop, as in the 
parts of Figure 19 with | c | . 1.

In Exercise 53 you are asked to prove 
analytically what we have discovered 
from the graphs in Figure 19.

FIGURE 19  
Members of the family of 
limaçons r − 1 1 c sin "
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 SECTION 10.3  Polar Coordinates  667

 49.   Show that the polar curve r − 4 1 2 sec ! (called a conchoid) 
has the line x − 2 as a vertical asymptote by showing that 
lim r l6` x − 2. Use this fact to help sketch the conchoid.

 50.   Show that the curve r − 2 2 csc ! (also a conchoid) has the 
line y − 21 as a horizontal asymptote by showing that 
lim r l6` y − 21. Use this fact to help sketch the conchoid.

 51.   Show that the curve r − sin ! tan ! (called a cissoid of  
Diocles) has the line x − 1 as a vertical asymptote. Show also 
that the curve lies entirely within the vertical strip 0 < x , 1. 
Use these facts to help sketch the cissoid.

 52.  Sketch the curve sx 2 1 y 2 d3 − 4x 2 y 2.

 53.  (a)  In Example 11 the graphs suggest that the limaçon 
r − 1 1 c sin ! has an inner loop when | c | . 1. Prove 
that this is true, and find the values of ! that correspond to 
the inner loop.

 (b)  From Figure 19 it appears that the limaçon loses its dimple 
when c − 1

2. Prove this.

 54.   Match the polar equations with the graphs labeled I–VI. Give 
reasons for your choices. (Don’t use a graphing device.)

 (a) r − ln !,    1 < ! < 6"  (b) r − ! 2,   0 < ! < 8"

 (c) r − cos 3! (d) r − 2 1 cos 3!

 (e) r − coss!y2d (f ) r − 2 1 coss3!y2d

I II III

IV V VI

55–60 Find the slope of the tangent line to the given polar curve at 
the point specified by the value of !.

 55. r − 2 cos !,  ! − "y3 56.  r − 2 1 sin 3 !,  ! − "y4

 57.  r − 1y!,  ! − " 58.  r − coss!y3d,  ! − "

 59.  r − cos 2!,  ! − "y4 60.  r − 1 1 2 cos !,  ! − "y3

61–64 Find the points on the given curve where the tangent line is 
horizontal or vertical.

 61.  r − 3 cos ! 62.  r − 1 2 sin !

 63.  r − 1 1 cos ! 64.  r − e !

21–26 Find a polar equation for the curve represented by the given 
Cartesian equation.

 21.  y − 2 22.  y − x

 23.  y − 1 1 3x 24.  4y 2 − x

 25.  x 2 1 y 2 − 2cx 26.  x 2 2 y 2 − 4

27–28 For each of the described curves, decide if the curve would 
be more easily given by a polar equation or a Cartesian equation. 
Then write an equation for the curve.

 27.  (a)  A line through the origin that makes an angle of "y6 with 
the positive x-axis

 (b)  A vertical line through the point s3, 3d

 28.  (a)  A circle with radius 5 and center s2, 3d
 (b)  A circle centered at the origin with radius 4

29–46 Sketch the curve with the given polar equation by first 
sketching the graph of r as a function of ! in Cartesian coordinates.

 29.  r − 22 sin ! 30.  r − 1 2 cos !

 31.  r − 2s1 1 cos !d 32.  r − 1 1 2 cos !

 33.  r − !, ! > 0

 34.  r − !2, 22" < ! < 2"

 35.  r − 3 cos 3! 36.  r −  2sin 5!

 37.  r − 2 cos 4! 38.  r − 2 sin 6!

 39.  r − 1 1 3 cos ! 40.  r − 1 1 5 sin !

 41.  r 2 − 9 sin 2! 42.  r 2 − cos 4!

 43.  r − 2 1 sin 3! 44.  r 2! − 1

 45.  r − sin s!y2d 46.  r − coss!y3d

47–48 The figure shows a graph of r as a function of ! in 
Cartesian coordinates. Use it to sketch the corresponding polar 
curve.
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r

0 π 2π

1
2
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668 CHAPTER 10  Parametric Equations and Polar Coordinates

  where n is a positive integer. How does the shape change as 
n increases? What happens as n becomes large? Explain the 
shape for large n by considering the graph of r as a function  
of ! in Cartesian coordinates.

 77.   Let P be any point (except the origin) on the curve r − f s!d. 
If " is the angle between the tangent line at P and the radial 
line OP, show that

tan " −
r

dryd!

 [Hint: Observe that " − # 2 ! in the figure.]

O

P

ÿ

¨ ˙

r=f(¨ )

 78.  (a)  Use Exercise 77 to show that the angle between the tan-
gent line and the radial line is " − $y4 at every point 
on the curve r − e!.

 (b)  Illustrate part (a) by graphing the curve and the tangent 
lines at the points where ! − 0 and $y2.

 (c)  Prove that any polar curve r − f s!d with the property 
that the angle " between the radial line and the tangent 
line is a constant must be of the form r − Ce k!, where C 
and k are constants.

;

 65.   Show that the polar equation r − a sin ! 1 b cos !, where 
ab ± 0, represents a circle, and find its center and radius.

 66.   Show that the curves r − a sin ! and r − a cos ! intersect 
at right angles.

67–72 Use a graphing device to graph the polar curve. Choose 
the parameter interval to make sure that you produce the entire 
curve.

 67.  r − 1 1 2 sins!y2d  (nephroid of Freeth)

 68.  r − s1 2 0.8 sin 2 !    (hippopede)

 69.  r − e sin ! 2 2 coss4!d  (butterfly curve)

 70.  r − | tan ! || cot ! |  (valentine curve)

 71.  r − 1 1 cos999!  (Pac-Man curve)

 72.  r − 2 1 coss9!y4d

 73.   How are the graphs of r − 1 1 sins! 2 $y6d 
and r − 1 1 sins! 2 $y3d related to the graph of 
r − 1 1 sin !? In general, how is the graph of r − f s! 2 %d 
related to the graph of r − f s!d?

 74.   Use a graph to estimate the y-coordinate of the highest 
points on the curve r − sin 2!. Then use calculus to find  
the exact value.

 75.   Investigate the family of curves with polar equations 
r − 1 1 c cos !, where c is a real number. How does the 
shape change as c changes?

 76.   Investigate the family of polar curves

r − 1 1 cosn !

;

;

;

;

;

LABORATORY PROJECT

In this project you will discover the interesting and beautiful shapes that members of families of 
polar curves can take. You will also see how the shape of the curve changes when you vary the 
constants.

1. (a)  Investigate the family of curves defined by the polar equations r − sin n!, where n is a 
positive integer. How is the number of loops related to n?

 (b) What happens if the equation in part (a) is replaced by r − | sin n! |?
2.  A family of curves is given by the equations r − 1 1 c sin n!, where c is a real number and 

n is a positive integer. How does the graph change as n increases? How does it change as c 
changes? Illustrate by graphing enough members of the family to support your conclusions.

3. A family of curves has polar equations

r −
1 2 a cos !
1 1 a cos !

FAMILIES OF POLAR CURVES;
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In this section we develop the formula for the area of a region whose boundary is given 
by a polar equation. We need to use the formula for the area of a sector of a circle:

A − 1
2 r 2!

where, as in Figure 1, r is the radius and ! is the radian measure of the central angle. 
Formula 1 follows from the fact that the area of a sector is proportional to its central 
angle: A − s!y2"d"r 2 − 1

2 r 2! . (See also Exercise 7.3.35.)
Let 5 be the region, illustrated in Figure 2, bounded by the polar curve r − f s!d 

and by the rays ! − a and ! − b, where f  is a positive continuous function and where 
0 , b 2 a < 2". We divide the interval fa, bg into subintervals with endpoints !0, !1, 
!2, . . . , !n and equal width D!. The rays ! − !i then divide 5 into n smaller regions 
with central angle D! − !i 2 !i21. If we choose !i* in the i th subinterval f!i21, !ig, 
then the area DAi of the ith region is approximated by the area of the sector of a circle 
with central angle D! and radius f s!i*d. (See Figure 3.)

Thus from Formula 1 we have

DAi < 1
2 f f s!i*dg2 D!

and so an approximation to the total area A of 5 is

A < o
n

i−1
 12 f f s!i*dg2 D!

It appears from Figure 3 that the approximation in (2) improves as n l `. But the sums 
in (2) are Riemann sums for the function ts!d − 1

2 f f s!dg2, so

lim
n l `

o
n

i−1
 12 f f s!i*dg2 D! − yb

a
 12 f f s!dg2 d!

1
¨

r

FIGURE 1 

2

O

¨=b

¨=a

¨=¨i-1

¨=¨i

Î¨

f(̈ i*)

FIGURE 3 

O

¨=b
b ¨=a

r=f(¨)

a

!

FIGURE 2 

  Investigate how the graph changes as the number a changes. In particular, you should  
identify the transitional values of a for which the basic shape of the curve changes.

4.  The astronomer Giovanni Cassini (1625–1712) studied the family of curves with polar  
equations

r 4 2 2c2r 2 cos 2! 1 c 4 2 a 4 − 0 

  where a and c are positive real numbers. These curves are called the ovals of Cassini  
even though they are oval shaped only for certain values of a and c. (Cassini thought that 
these curves might represent planetary orbits better than Kepler’s ellipses.) Investigate the 
variety of shapes that these curves may have. In particular, how are a and c related to each 
other when the curve splits into two parts?
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670 CHAPTER 10  Parametric Equations and Polar Coordinates

It therefore appears plausible (and can in fact be proved) that the formula for the area A 
of the polar region 5 is

A − yb

a
 12 f f s!dg2 d!

Formula 3 is often written as

A − yb

a
 12 r 2 d!

with the understanding that r − f s!d. Note the similarity between Formulas 1 and 4.
When we apply Formula 3 or 4, it is helpful to think of the area as being swept out by 

a rotating ray through O that starts with angle a and ends with angle b.

EXAMPLE 1  Find the area enclosed by one loop of the four-leaved rose r − cos 2!.

SOLUTION The curve r − cos 2! was sketched in Example 10.3.8. Notice from Fig-
ure 4 that the region enclosed by the right loop is swept out by a ray that rotates from 
! − 2"y4 to ! − "y4. Therefore Formula 4 gives

A − y"y4

2"y4
 12 r 2 d! − 1

2 y"y4

2"y4
 cos2 2! d! − y"y4

0
 cos2 2! d!

 − y"y4

0
 12 s1 1 cos 4!d d! − 1

2 f! 1 1
4 sin 4!g0

"y4
−

"

8
 Q

EXAMPLE 2  Find the area of the region that lies inside the circle r − 3 sin ! and out-
side the cardioid r − 1 1 sin !.

SOLUTION The cardioid (see Example 10.3.7) and the circle are sketched in Fig- 
ure 5 and the desired region is shaded. The values of a and b in Formula 4 are deter-
mined by finding the points of intersection of the two curves. They intersect when 
3 sin ! − 1 1 sin !, which gives sin ! − 1

2, so ! − "y6, 5"y6. The desired area can be 
found by subtracting the area inside the cardioid between ! − "y6 and ! − 5"y6 from 
the area inside the circle from "y6 to 5"y6. Thus

A − 1
2 y5"y6

"y6
 s3 sin !d2 d! 2 1

2 y5"y6

"y6
 s1 1 sin !d2 d!

Since the region is symmetric about the vertical axis ! − "y2, we can write

  A − 2F1
2 y"y2

"y6
 9 sin2! d! 2 1

2 y"y2

"y6
 s1 1 2 sin ! 1 sin2!d d!G

  − y"y2

"y6
 s8 sin2! 2 1 2 2 sin !d d!

 − y"y2

"y6
 s3 2 4 cos 2! 2 2 sin !d d!    fbecause sin2! − 1

2 s1 2 cos 2!dg

 − 3! 2 2 sin 2! 1 2 cos !g"y6

"y2
− " Q

3

4

r=cos 2¨ ¨=π
4

¨=_π
4

FIGURE 4 

O

¨=5π
6

¨=π
6

r=3 sin ̈

r=1+sin ¨

FIGURE 5 
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Example 2 illustrates the procedure for finding the area of the region bounded by  
two polar curves. In general, let 5 be a region, as illustrated in Figure 6, that is 
bounded by curves with polar equations r − f s"d, r − ts"d, " − a, and " − b, where 
f s"d > ts"d > 0 and 0 , b 2 a < 2!. The area A of 5 is found by subtracting the  
area inside r − ts"d from the area inside r − f s"d, so using Formula 3 we have

 A − yb

a
 12 f f s"dg2 d" 2 yb

a
 12 fts"dg2 d"

 − 1
2 yb

a
 sf f s"dg2 2 fts"dg2d d"

CAUTION The fact that a single point has many representations in polar coordinates 
sometimes makes it difficult to find all the points of intersection of two polar curves. 
For instance, it is obvious from Figure 5 that the circle and the cardioid have three 
points of intersection; however, in Example 2 we solved the equations r − 3 sin " and 
r − 1 1 sin " and found only two such points, ( 3

2, !y6) and ( 3
2, 5!y6). The origin is also 

a point of intersection, but we can’t find it by solving the equations of the curves because 
the origin has no single representation in polar coordinates that satisfies both equations. 
Notice that, when represented as s0, 0d or s0, !d, the origin satisfies r − 3 sin " and so it 
lies on the circle; when represented as s0, 3!y2d, it satisfies r − 1 1 sin " and so it lies 
on the cardioid. Think of two points moving along the curves as the parameter value " 
increases from 0 to 2!. On one curve the origin is reached at " − 0 and " − !; on the 
other curve it is reached at " − 3!y2. The points don’t collide at the origin because they 
reach the origin at differ ent times, but the curves intersect there nonetheless.

Thus, to find all points of intersection of two polar curves, it is recommended that you 
draw the graphs of both curves. It is especially convenient to use a graphing calculator or 
computer to help with this task.

EXAMPLE 3 Find all points of intersection of the curves r − cos 2" and r − 1
2.

SOLUTION If we solve the equations r − cos 2" and r − 1
2, we get cos 2" − 1

2 and, 
therefore, 2" − !y3, 5!y3, 7!y3, 11!y3. Thus the values of " between 0 and 2! that 
satisfy both equations are " − !y6, 5!y6, 7!y6, 11!y6. We have found four points of 
 inter section: (1

2, !y6), (1
2, 5!y6), (1

2, 7!y6), and (1
2, 11!y6).

However, you can see from Figure 7 that the curves have four other points of inter-
section—namely, (1

2, !y3), (1
2, 2!y3), (1

2, 4!y3), and (1
2, 5!y3). These can be found 

using symmetry or by noticing that another equation of the circle is r − 21
2 and then 

solving the equations r − cos 2" and r − 21
2. Q

Arc Length
To find the length of a polar curve r − f s"d, a < " < b, we regard " as a parameter and 
write the parametric equations of the curve as

x − r cos " − f s"d cos "      y − r sin " − f s"d sin "

Using the Product Rule and differentiating with respect to ", we obtain

dx
d"

−
dr
d"

 cos " 2 r sin "      
dy
d"

−
dr
d"

 sin " 1 r cos "

O

¨=b

¨=a

r=f(¨)

!

r=g(¨)

FIGURE 6 

FIGURE 7 

r=cos 2¨

1
2r=

”   ,     ’1
2

π
3

”   ,     ’1
2

π
6
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672 CHAPTER 10  Parametric Equations and Polar Coordinates

so, using cos2! 1 sin2! − 1, we have

 S dx
d!D2

1 S dy
d!D2

− S dr
d!D2

cos2! 2 2r 
dr
d!

 cos ! sin ! 1 r 2 sin2!

 1 S dr
d!D2

 sin2! 1 2r 
dr
d!

 sin ! cos ! 1 r 2 cos2!

 − S dr
d!D2

1 r 2

Assuming that f 9 is continuous, we can use Theorem 10.2.5 to write the arc length as

L − yb

a
 ÎS dx

d!D2

1 S dy
d!D2 

 d!

Therefore the length of a curve with polar equation r − f s!d, a < ! < b, is

L − yb

a
 Îr 2 1 S dr

d!D2 

 d!

EXAMPLE 4  Find the length of the cardioid r − 1 1 sin !.

SOLUTION The cardioid is shown in Figure 8. (We sketched it in Example 10.3.7.) Its 
full length is given by the parameter interval 0 < ! < 2", so Formula 5 gives 

L − y2"

0
 Îr 2 1 Sdr

d!D2  

 d! − y2"

0
 ss1 1 sin !d2 1 cos2!  d! − y2"

0
 s2 1 2 sin !  d!

We could evaluate this integral by multiplying and dividing the integrand by 
s2 2 2 sin !  , or we could use a computer algebra system. In any event, we find that 
the length of the cardioid is L − 8. Q

5

O

FIGURE 8  
r − 1 1 sin !

1–4 Find the area of the region that is bounded by the given 
curve and lies in the specified sector.

 1.   r − e2!y4,  "y2 < ! < "

 2.  r − cos !,  0 < ! < "y6

 3.   r − sin ! 1 cos !,  0 < ! < "

 4.  r − 1y!,  "y2 < ! < 2"

5–8 Find the area of the shaded region.

 5.

 r@= sin  2¨    

6.

 r=2+cos ¨  
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 35.   Find the area inside the larger loop and outside the smaller 
loop of the limaçon r − 1

2 1 cos !.

 36.   Find the area between a large loop and the enclosed small 
loop of the curve r − 1 1 2 cos 3!.

37–42 Find all points of intersection of the given curves.

 37.  r − sin !,  r − 1 2 sin !

 38.  r − 1 1 cos !,  r − 1 2 sin !

 39.  r − 2 sin 2!,  r − 1

 40.  r − cos 3!,  r − sin 3!

 41.  r − sin !,  r − sin 2!

 42.  r 2 − sin 2!,  r 2 − cos 2!

 43.  The points of intersection of the cardioid r − 1 1 sin ! and 
the spiral loop r − 2!, 2"y2 < ! < "y2, can’t be found 
exactly. Use a graphing device to find the approximate 
values of ! at which they intersect. Then use these values to 
estimate the area that lies inside both curves.

 44.   When recording live performances, sound engineers often 
use a microphone with a cardioid pickup pattern because it 
suppresses noise from the audience. Suppose the micro-
phone is placed 4 m from the front of the stage (as in the 
figure) and the boundary of the optimal pickup region is 
given by the cardioid r − 8 1 8 sin !, where r is measured 
in meters and the microphone is at the pole. The musicians 
want to know the area they will have on stage within the 
optimal pickup range of the microphone. Answer their  
question.

 

stage

audience
microphone

12 m

4 m

45–48 Find the exact length of the polar curve.

 45.  r − 2 cos !,  0 < ! < "

 46.  r − 5!,  0 < ! < 2"

 47.  r − ! 2,  0 < ! < 2"

 48.  r − 2s1 1 cos !d

49–50 Find the exact length of the curve. Use a graph to 
determine the parameter interval.

 49.  r − cos4s!y4d 50.  r − cos2s!y2d

;

;

 

7.

 r=4+3 sin ¨    

8.

 r= œ„„„ln ¨, 1¯¨¯2π  

9–12 Sketch the curve and find the area that it encloses.

 9.  r − 2 sin ! 10.  r − 1 2 sin !

 11.  r − 3 1 2 cos ! 12.  r − 2 2 cos !

13–16 Graph the curve and find the area that it encloses.

 13.  r − 2 1 sin 4! 14.  r − 3 2 2 cos 4!

 15.  r − s1 1 cos2s5!d  16.  r − 1 1 5 sin 6!

17–21 Find the area of the region enclosed by one loop of  
the curve.

 17.  r − 4 cos 3! 18.  r 2 − 4 cos 2!

 19.  r − sin 4! 20.  r − 2 sin 5!

 21.  r − 1 1 2 sin ! (inner loop)

 22.   Find the area enclosed by the loop of the strophoid 
r − 2 cos ! 2 sec !.

23–28 Find the area of the region that lies inside the first curve 
and outside the second curve.

 23.  r − 4 sin !,  r − 2

 24.  r − 1 2 sin !,  r − 1

 25.  r 2 − 8 cos 2!,  r − 2

 26.  r − 1 1 cos !,  r − 2 2 cos !

 27.  r − 3 cos !,  r − 1 1 cos !

 28.  r − 3 sin !,  r − 2 2 sin !

29–34 Find the area of the region that lies inside both curves.

 29.  r − 3 sin !,  r − 3 cos !

 30.  r − 1 1 cos !,  r − 1 2 cos !

 31.  r − sin 2!,  r − cos 2!

 32.  r − 3 1 2 cos !,  r − 3 1 2 sin !

 33.  r 2 − 2 sin 2!,  r − 1

 34.  r − a sin !,  r − b cos !,  a . 0, b . 0

;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



674 CHAPTER 10  Parametric Equations and Polar Coordinates

In this section we give geometric definitions of parabolas, ellipses, and hyperbolas and 
derive their standard equations. They are called conic sections, or conics, because they 
result from intersecting a cone with a plane as shown in Figure 1.

ellipse hyperbolaparabola

Parabolas
A parabola is the set of points in a plane that are equidistant from a fixed point F (called 
the focus) and a fixed line (called the directrix). This definition is illustrated by Figure 2. 
Notice that the point halfway between the focus and the directrix lies on the parabola; 
it is called the vertex. The line through the focus perpendicular to the directrix is called 
the axis of the parabola.

In the 16th century Galileo showed that the path of a projectile that is shot into the 
air at an angle to the ground is a parabola. Since then, parabolic shapes have been used 
in designing automobile headlights, reflecting telescopes, and suspension bridges. (See 
Problem 22 on page 273 for the reflection property of parabolas that makes them so 
useful.)

We obtain a particularly simple equation for a parabola if we place its vertex at the 
origin O and its directrix parallel to the x-axis as in Figure 3. If the focus is the point 
s0, pd, then the directrix has the equation y − 2p. If Psx, yd is any point on the parabola, 

axis

F
focus

parabola

vertex directrix

FIGURE 2 

51–54 Use a calculator to find the length of the curve correct to 
four decimal places. If necessary, graph the curve to determine the 
parameter interval.

 51.  One loop of the curve r − cos 2!

 52.  r − tan !,  "y6 < ! < "y3

 53.  r − sins6 sin !d

 54.  r − sins!y4d

 55.  (a)  Use Formula 10.2.6 to show that the area of the surface 
generated by rotating the polar curve

r − f s!d    a < ! < b

   (where f 9 is continuous and 0 < a , b < ") about the 
polar axis is

S − yb

a
 2"r sin ! Îr 2 1 S dr

d!D2

 d!

 (b)  Use the formula in part (a) to find the surface area gener-
ated by rotating the lemniscate r 2 − cos 2! about the  
polar axis.

 56.  (a)  Find a formula for the area of the surface generated by 
rotating the polar curve r − f s!d, a < ! < b (where f 9 is 
continuous and 0 < a , b < "), about the line ! − "y2.

 (b)  Find the surface area generated by rotating the lemniscate 
r 2 − cos 2! about the line ! − "y2.

FIGURE 1  
Conics
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x

y

O

F(0, p)

y=_p

P(x, y)

y

p

FIGURE 3 

then the distance from P to the focus is

| PF | − sx 2 1 sy 2 pd2 

and the distance from P to the directrix is | y 1 p |. (Figure 3 illustrates the case where 
p . 0.) The defining property of a parabola is that these distances are equal:

sx 2 1 sy 2 pd2 − | y 1 p |
We get an equivalent equation by squaring and simplifying:

 x 2 1 sy 2 pd2 − | y 1 p |2 − sy 1 pd2

 x 2 1 y 2 2 2py 1 p 2 − y 2 1 2py 1 p 2

 x 2 − 4py

1   An equation of the parabola with focus s0, pd and directrix y − 2p is

x 2 − 4py

If we write a − 1ys4pd, then the standard equation of a parabola (1) becomes y − ax 2. 
It opens upward if p . 0 and downward if p , 0 [see Figure 4, parts (a) and (b)]. The 
graph is symmetric with respect to the y-axis because (1) is unchanged when x is replaced 
by 2x.

0 x

y

( p, 0)

x=_p

(d) ¥=4px, p<0

0 x

y

( p, 0)

x=_p

(c) ¥=4px, p>0

0
x

y

(0, p)

y=_p

(b) ≈=4py, p<0

0 x

y

(0, p)

y=_p

(a) ≈=4py, p>0

If we interchange x and y in (1), we obtain

y 2 − 4px

which is an equation of the parabola with focus sp, 0d and directrix x − 2p. (Inter-
changing x and y amounts to reflecting about the diagonal line y − x.) The parabola 
opens to the right if p . 0 and to the left if p , 0 [see Figure 4, parts (c) and (d)]. In both 
cases the graph is symmetric with respect to the x-axis, which is the axis of the parabola.

EXAMPLE 1  Find the focus and directrix of the parabola y 2 1 10x − 0 and sketch  
the graph.

SOLUTION If we write the equation as y 2 − 210x and compare it with Equation 2, we 
 see that 4p − 210, so p − 25

2. Thus the focus is s p, 0d − s25
2, 0d and the directrix is 

x − 5
2 . The sketch is shown in Figure 5. Q

FIGURE 4 

2

FIGURE 5 

0 x

y

x=5
2

¥+10x=0

”_   , 0’5
2
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676 CHAPTER 10  Parametric Equations and Polar Coordinates

Ellipses
An ellipse is the set of points in a plane the sum of whose distances from two fixed points 
F1 and F2 is a constant (see Figure 6). These two fixed points are called the foci (plural 
of focus). One of Kepler’s laws is that the orbits of the planets in the solar system are 
ellipses with the sun at one focus.

F¡ F™

P

      

F¡(_c, 0) F™(c, 0)0 x

y
P(x, y)

FIGURE 6 FIGURE 7

In order to obtain the simplest equation for an ellipse, we place the foci on the x-axis 
at the points s2c, 0d and sc, 0d as in Figure 7 so that the origin is halfway between the 
foci. Let the sum of the distances from a point on the ellipse to the foci be 2a . 0. Then 
Psx, yd is a point on the ellipse when

| PF1 | 1 | PF2 | − 2a

that is, ssx 1 cd2 1 y 2 1 ssx 2 cd2 1 y 2 − 2a

or ssx 2 cd2 1 y 2 − 2a 2 ssx 1 cd2 1 y 2 

Squaring both sides, we have

x 2 2 2cx 1 c 2 1 y 2 − 4a 2 2 4assx 1 cd2 1 y 2 1 x 2 1 2cx 1 c 2 1 y 2

which simplifies to assx 1 cd2 1 y 2 − a 2 1 cx

We square again:

 a 2sx 2 1 2cx 1 c 2 1 y 2 d − a 4 1 2a 2cx 1 c 2x 2

which becomes  sa 2 2 c 2 dx 2 1 a 2 y 2 − a 2sa 2 2 c 2 d

From triangle F1F2P in Figure 7 we can see that 2c , 2a, so c , a and therefore 
a 2 2 c 2 . 0. For convenience, let b 2 − a 2 2 c 2. Then the equation of the ellipse 
becomes b 2x 2 1 a 2 y 2 − a 2b 2 or, if both sides are divided by a 2b 2, 

x 2

a 2 1
 y 2

b 2 − 1

Since b 2 − a 2 2 c 2 , a 2, it follows that b , a. The x-intercepts are found by setting 
y − 0. Then x 2ya 2 − 1, or x 2 − a 2, so x − 6a. The corresponding points sa, 0d and 
s2a, 0d are called the vertices of the ellipse and the line segment joining the vertices is 
called the major axis. To find the y-intercepts we set x − 0 and obtain y 2 − b 2, so 
y − 6b. The line segment joining s0, bd and s0, 2bd is the minor axis. Equation 3 is 
unchanged if x is replaced by 2x or y is replaced by 2y, so the ellipse is symmetric  
about both axes. Notice that if the foci coincide, then c − 0, so a − b and the ellipse 
becomes a circle with radius r − a − b.

We summarize this discussion as follows (see also Figure 8).

3

FIGURE 8 
x 2

a 2 1
 y 2

b 2 − 1, a > b

(c, 0)0 x

y

ab
c

(0, b)

(_c, 0)

(0, _b)

(a, 0)
(_a, 0)
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4   The ellipse
x 2

a 2 1
 y 2

b 2 − 1    a > b . 0

has foci s6c, 0d, where c 2 − a 2 2 b 2, and vertices s6a, 0d.

If the foci of an ellipse are located on the y-axis at s0, 6cd, then we can find its equa-
tion by interchanging x and y in (4). (See Figure 9.)

5   The ellipse
x 2

b 2 1
 y 2

a 2 − 1    a > b . 0

has foci s0, 6cd, where c 2 − a 2 2 b 2, and vertices s0, 6ad.

EXAMPLE 2  Sketch the graph of 9x 2 1 16y 2 − 144 and locate the foci.

SOLUTION Divide both sides of the equation by 144:

x 2

16
1

 y 2

9
− 1

The equation is now in the standard form for an ellipse, so we have a 2 − 16, b 2 − 9,  
a − 4, and b − 3. The x-intercepts are 64 and the y-intercepts are 63. Also, 
c 2 − a 2 2 b 2 − 7, so c − s7  and the foci are s6s7 , 0d. The graph is sketched in 
Figure 10. Q

EXAMPLE 3  Find an equation of the ellipse with foci s0, 62d and vertices s0, 63d.

SOLUTION Using the notation of (5), we have c − 2 and a − 3. Then we obtain 
b 2 − a 2 2 c 2 − 9 2 4 − 5, so an equation of the ellipse is

x 2

5
1

 y 2

9
− 1

Another way of writing the equation is 9x 2 1 5y 2 − 45. Q

Like parabolas, ellipses have an interesting reflection property that has practical con-
se quences. If a source of light or sound is placed at one focus of a surface with elliptical 
cross-sections, then all the light or sound is reflected off the surface to the other focus 
(see Exercise 65). This principle is used in lithotripsy, a treatment for kidney stones. 
A reflector with elliptical cross-section is placed in such a way that the kidney stone is 
at one focus. High-intensity sound waves generated at the other focus are reflected to 
the stone and destroy it without damaging surrounding tissue. The patient is spared the 
trauma of surgery and recovers within a few days.

Hyperbolas
A hyperbola is the set of all points in a plane the difference of whose distances from two 
fixed points F1 and F2 (the foci) is a constant. This definition is illustrated in Figure 11.

Hyperbolas occur frequently as graphs of equations in chemistry, physics, biology, 
and economics (Boyle’s Law, Ohm’s Law, supply and demand curves). A particularly 

FIGURE 9 
x 2

b 2 1
 y 2

a 2 − 1, a > b

0 x

y
(0, a)

(0, c)

(b, 0)

(0, _c)

(_b, 0)

(0, _a)

FIGURE 10 
9x 2 1 16y 2 − 144

0 x

y

(0, 3)

{œ„7, 0}

(4, 0)(_4, 0)

(0, _3)

{_œ„7, 0}

F™(c, 0)F¡(_c, 0) 0 x

y

P(x, y)

FIGURE 11  
P is on the hyperbola when
| PF1 | 2 | PF2 | − 62a.
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678 CHAPTER 10  Parametric Equations and Polar Coordinates

significant application of hyperbolas was found in the navigation systems developed in 
World Wars I and II (see Exercise 51).

Notice that the definition of a hyperbola is similar to that of an ellipse; the only change 
is that the sum of distances has become a difference of distances. In fact, the derivation of 
the equation of a hyperbola is also similar to the one given earlier for an ellipse. It is left 
as Exercise 52 to show that when the foci are on the x-axis at s6c, 0d and the difference 
of dis tances is | PF1 | 2 | PF2 | − 62a, then the equation of the hyperbola is

x 2

a 2 2
y 2

b 2 − 1

where c 2 − a 2 1 b 2. Notice that the x-intercepts are again 6a and the points sa, 0d and 
s2a, 0d are the vertices of the hyperbola. But if we put x − 0 in Equation 6 we get 
y 2 − 2b 2, which is impossible, so there is no y-intercept. The hyperbola is symmetric 
with respect to both axes.

To analyze the hyperbola further, we look at Equation 6 and obtain

x 2

a 2 − 1 1
y 2

b 2 > 1

This shows that x 2 > a 2, so | x | − sx 2 > a. Therefore we have x > a or x < 2a. This 
means that the hyperbola consists of two parts, called its branches.

When we draw a hyperbola it is useful to first draw its asymptotes, which are the 
dashed lines y − sbyadx and y − 2sbyadx shown in Figure 12. Both branches of the 
hyperbola approach the asymptotes; that is, they come arbitrarily close to the asymp-
totes. (See Exercise 4.5.73, where these lines are shown to be slant asymptotes.)

7   The hyperbola
x 2

a 2 2
 y 2

b 2 − 1

has foci s6c, 0d, where c 2 − a 2 1 b 2, vertices s6a, 0d, and asymptotes 
y − 6sbyadx.

If the foci of a hyperbola are on the y-axis, then by reversing the roles of x and y we 
obtain the following information, which is illustrated in Figure 13.

8   The hyperbola
y 2

a 2 2
x 2

b 2 − 1

has foci s0, 6cd, where c 2 − a 2 1 b 2, vertices s0, 6ad, and asymptotes 
y − 6saybdx.

EXAMPLE 4  Find the foci and asymptotes of the hyperbola 9x 2 2 16y 2 − 144 and 
sketch its graph.

6

(a, 0)

(c, 0)0 x

y

(_c, 0)

(_a, 0)

y=_   xb
a y=   xb

a

FIGURE 12  
x 2

a 2 2
y 2

b 2 − 1

0 x

y
(0, c)

(0, _c)

(0, a)
(0, _a)

y=_   xa
b

a
by=   x

FIGURE 13  
y 2

a 2 2
x 2

b 2 − 1
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 SECTION 10.5  Conic Sections 679

SOLUTION If we divide both sides of the equation by 144, it becomes

x 2

16
2

y 2

9
− 1

which is of the form given in (7) with a − 4 and b − 3. Since c 2 − 16 1 9 − 25, 
the foci are s65, 0d. The asymptotes are the lines y − 3

4 x and y − 23
4 x. The graph is 

shown in Figure 14. Q

EXAMPLE 5  Find the foci and equation of the hyperbola with vertices s0, 61d and 
asymptote y − 2x.

SOLUTION From (8) and the given information, we see that a − 1 and ayb − 2. Thus 
b − ay2 − 1

2 and c 2 − a 2 1 b 2 − 5
4. The foci are s0, 6s5 y2d and the equation of the 

hyperbola is

 y 2 2 4x 2 − 1 Q

Shifted Conics
As discussed in Appendix C, we shift conics by taking the standard equations (1), (2), 
(4), (5), (7), and (8) and replacing x and y by x 2 h and y 2 k.

EXAMPLE 6  Find an equation of the ellipse with foci s2, 22d, s4, 22d and vertices 
s1, 22d, s5, 22d. 

SOLUTION The major axis is the line segment that joins the vertices s1, 22d, s5, 22d 
and has length 4, so a − 2. The distance between the foci is 2, so c − 1. Thus 
b 2 − a 2 2 c 2 − 3. Since the center of the ellipse is s3, 22d, we replace x and y in (4) 
by x 2 3 and y 1 2 to obtain

sx 2 3d2

4
1

sy 1 2d2

3
− 1

as the equation of the ellipse. Q

EXAMPLE 7  Sketch the conic 9x 2 2 4y 2 2 72x 1 8y 1 176 − 0 and find its foci.

SOLUTION We complete the squares as follows:

 4sy 2 2 2yd 2 9sx 2 2 8xd − 176

 4sy 2 2 2y 1 1d 2 9sx 2 2 8x 1 16d − 176 1 4 2 144

 4sy 2 1d2 2 9sx 2 4d2 − 36

 
sy 2 1d2

9
2

sx 2 4d2

4
− 1

This is in the form (8) except that x and y are replaced by x 2 4 and y 2 1. Thus 
a 2 − 9, b 2 − 4, and c 2 − 13. The hyperbola is shifted four units to the right and one
unit upward. The foci are (4, 1 1 s13 ) and (4, 1 2 s13 ) and the vertices are s4, 4d 
and s4, 22d. The asymptotes are y 2 1 − 63

2 sx 2 4d. The hyperbola is sketched in 
Figure 15. Q

FIGURE 14 
9x 2 2 16y 2 − 144

0 x

y

(5, 0)(_5, 0)
(4, 0)(_4, 0)

y=_   x3
4 y=   x3

4

FIGURE 15  
9x 2 2 4y 2 2 72x 1 8y 1 176 − 0

0 x

y
y-1=_   (x-4)3

2

y-1=   (x-4)3
2

(4, 4)

(4, _2)

(4, 1)
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1–8 Find the vertex, focus, and directrix of the parabola and 
sketch its graph.

 1.  x 2 − 6y 2.  2y 2 − 5x

 3.  2x − 2y 2 4.  3x 2 1 8y − 0

 5.  sx 1 2d2 − 8sy 2 3d

 6.  sy 2 2d2 − 2x 1 1

 7.  y 2 1 6y 1 2x 1 1 − 0

 8.  2x 2 2 16x 2 3y 1 38 − 0

9–10 Find an equation of the parabola. Then find the focus and 
directrix.

 

9.

 

y

x

1

_2

 

10.

 

y

x

1

20

11–16 Find the vertices and foci of the ellipse and sketch  
its graph.

 11.  
x 2

2
1

 y 2

4
− 1 12.   

x 2

36
1

y 2

8
− 1

 13.  x 2 1 9y 2 − 9

 14.   100x 2 1 36y 2 − 225

 15.  9x 2 2 18x 1 4y 2 − 27

 16.  x 2 1 3y2 1 2x 2 12y 1 10 − 0

17–18 Find an equation of the ellipse. Then find its foci.

 17.

 

y

x

1

10

 

18.

 

y

x

1

2

 

19–24 Find the vertices, foci, and asymptotes of the hyperbola 
and sketch its graph.

 19.  
y 2

25
2

 x 2

9
− 1 20.  

x 2

36
2

y 2

64
− 1

 21.  x 2 2 y 2 − 100 22.  y 2 2 16x 2 − 16

 23.  x 2 2 y 2 1 2y − 2

 24.  9y 2 2 4x 2 2 36y 2 8x − 4

25–30 Identify the type of conic section whose equation is given 
and find the vertices and foci.

 25.  4x 2 − y 2 1 4 26.  4x 2 − y 1 4

 27.  x 2 − 4y 2 2y 2 28.  y 2 2 2 − x 2 2 2x

 29.  3x 2 2 6x 2 2y − 1

 30.  x 2 2 2x 1 2y 2 2 8y 1 7 − 0

31–48 Find an equation for the conic that satisfies the given  
conditions.

 31.  Parabola,  vertex s0, 0d,  focus s1, 0d

 32.  Parabola,  focus s0, 0d,  directrix y − 6

 33.  Parabola,  focus s24, 0d,  directrix x − 2

 34.  Parabola,  focus s2, 21d,  vertex s2, 3d

 35.   Parabola,  vertex s3, 21d,  horizontal axis, 
passing through s215, 2d

 36.   Parabola,  vertical axis,   
passing through s0, 4d, s1, 3d, and s22, 26d

 37.  Ellipse,  foci s62, 0d,  vertices s65, 0d

 38.  Ellipse,  foci (0, 6s2 ),  vertices s0, 62d

 39.  Ellipse,  foci s0, 2d, s0, 6d,  vertices s0, 0d, s0, 8d

 40.  Ellipse,  foci s0, 21d, s8, 21d,  vertex s9, 21d

 41.  Ellipse,  center s21, 4d,  vertex s21, 0d,  focus  s21, 6d

 42.  Ellipse,  foci s64, 0d,  passing through s24, 1.8d

 43.  Hyperbola,  vertices s63, 0d,  foci s65, 0d

 44.  Hyperbola,  vertices s0, 62d,  foci s0, 65d

 45.   Hyperbola,  vertices s23, 24d, s23, 6d,   
foci s23, 27d, s23, 9d

 46.   Hyperbola,  vertices s21, 2d, s7, 2d,  foci s22, 2d, s8, 2d

 47.  Hyperbola,  vertices s63, 0d,  asymptotes y − 62x

 48.   Hyperbola,  foci s2, 0d, s2, 8d, 
 asymptotes y − 3 1 1

2 x and y − 5 2 1
2 x
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 SECTION 10.5  Conic Sections 681

 49.   The point in a lunar orbit nearest the surface of the moon is 
called perilune and the point farthest from the surface is called 
apolune. The Apollo 11 spacecraft was placed in an elliptical 
lunar orbit with perilune altitude 110 km and apolune altitude 
314 km (above the moon). Find an equation of this ellipse if 
the radius of the moon is 1728 km and the center of the moon 
is at one focus.

 50.   A cross-section of a parabolic reflector is shown in the figure. 
The bulb is located at the focus and the opening at the focus  
is 10 cm.

 (a) Find an equation of the parabola.
 (b)  Find the diameter of the opening | CD |, 11 cm from  

the vertex.

5 cm

5 cm

A

B

C

D

V F
11 cm

 51.   The LORAN (LOng RAnge Navigation) radio navigation  
system was widely used until the 1990s when it was super-
seded by the GPS system. In the LORAN system, two radio 
stations located at A and B transmit simul ta neous signals to a 
ship or an aircraft located at P. The onboard computer converts 
the time difference in receiving these signals into a distance 
difference | PA | 2 | PB |, and this, according to the definition 
of a hyperbola, locates the ship or aircraft on one branch  
of a hyperbola (see the figure). Suppose that station B is  
located 400 mi due east of station A on a coastline. A ship 
received the signal from B 1200 micro seconds (ms) before it 
received the signal from A.

 (a)  Assuming that radio signals travel at a speed of 980 ftyms, 
find an equation of the hyperbola on which the ship lies.

 (b)  If the ship is due north of B, how far off the coastline is  
the ship?

400 mi
transmitting stations

coastlineA B

P

 52.   Use the definition of a hyperbola to derive Equation 6 for a 
hyperbola with foci s6c, 0d and vertices s6a, 0d.

 53.   Show that the function defined by the upper branch of the 
hyperbola y 2ya 2 2 x 2yb 2 − 1 is concave upward.

 54.   Find an equation for the ellipse with foci s1, 1d and s21, 21d 
and major axis of length 4.

 55.  Determine the type of curve represented by the equation

x 2

k
1

 y 2

k 2 16
− 1

  in each of the following cases:
 (a) k . 16  (b) 0 , k , 16  (c) k , 0
 (d)  Show that all the curves in parts (a) and (b) have the same 

foci, no matter what the value of k is.

 56.  (a)  Show that the equation of the tangent line to the parabola  
y 2 − 4px at the point sx0, y0d can be written as

y0y − 2psx 1 x 0d

 (b)  What is the x-intercept of this tangent line? Use this fact 
to draw the tangent line.

 57.   Show that the tangent lines to the parabola x 2 − 4py drawn 
from any point on the directrix are perpendicular.

 58.   Show that if an ellipse and a hyperbola have the same foci, 
then their tangent lines at each point of intersection are  
perpendicular.

 59.   Use parametric equations and Simpson’s Rule with n − 8 to 
estimate the circumference of the ellipse 9x 2 1 4y 2 − 36.

 60.   The dwarf planet Pluto travels in an elliptical orbit 
around the sun (at one focus). The length of the major 
axis is 1.18 3 1010 km and the length of the minor axis is 
1.14 3 1010 km. Use Simpson’s Rule with n − 10 to estimate 
the distance traveled by the planet during one complete orbit 
around the sun.

 61.   Find the area of the region enclosed by the hyperbola 
x 2ya 2 2 y 2yb 2 − 1 and the vertical line through a focus.

 62.  (a)  If an ellipse is rotated about its major axis, find the vol-
ume of the resulting solid.

 (b)  If it is rotated about its minor axis, find the resulting volume.

 63.   Find the centroid of the region enclosed by the x-axis and the 
top half of the ellipse 9x 2 1 4y 2 − 36.

 64.  (a)  Calculate the surface area of the ellipsoid that is generated 
by rotating an ellipse about its major axis.

 (b)  What is the surface area if the ellipse is rotated about its 
minor axis?

 65.   Let Psx1, y1d be a point on the ellipse x 2ya 2 1 y 2yb 2 − 1 with 
foci F1 and F2 and let ! and " be the angles between the lines 
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682 CHAPTER 10  Parametric Equations and Polar Coordinates

  PF1, PF2 and the ellipse as shown in the figure. Prove that 
! − ". This explains how whispering galleries and litho tripsy 
work. Sound coming from one focus is reflected and passes 
through the other focus. [Hint: Use the formula in Problem 21 
on page 273 to show that tan ! − tan ".]

F¡ F™0 x

y

∫
å

+    =1≈
a@

¥
b@

P(⁄, ›)

 66.   Let Psx1, y1d be a point on the hyperbola x 2ya 2 2 y 2yb 2 − 1 
with foci F1 and F2 and let ! and " be the angles between  
the lines PF1, PF2 and the hyperbola as shown in the figure. 
Prove that ! − ". (This is the reflection property of the hyper-

bola. It shows that light aimed at a focus F2 of a hyperbolic 
mirror is reflected toward the other focus F1.)

0 x

y

å
∫

F™F¡

P

F™F¡

P

In the preceding section we defined the parabola in terms of a focus and directrix, but 
we defined the ellipse and hyperbola in terms of two foci. In this section we give a more 
unified treatment of all three types of conic sections in terms of a focus and directrix. 
Further more, if we place the focus at the origin, then a conic section has a simple polar 
equation, which provides a convenient description of the motion of planets, satellites, 
and comets.

1   Theorem Let F be a fixed point (called the focus) and l be a fixed line  
(called the directrix) in a plane. Let e be a fixed positive number (called the  
eccentricity). The set of all points P in the plane such that

| PF |
| Pl | − e

(that is, the ratio of the distance from F to the distance from l is the constant e)  
is a conic section. The conic is

(a)  an ellipse if e , 1

(b)  a parabola if e − 1

(c)  a hyperbola if e . 1

PROOF Notice that if the eccentricity is e − 1, then | PF | − | Pl | and so the given 
condition simply becomes the definition of a parabola as given in Section 10.5.

Let us place the focus F at the origin and the directrix parallel to the y-axis and  
d units to the right. Thus the directrix has equation x − d and is perpendicular to the 
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 SECTION 10.6  Conic Sections in Polar Coordinates 683

polar axis. If the point P has polar coordinates sr, #d, we see from Figure 1 that

| PF | − r      | Pl | − d 2 r cos #

Thus the condition | PF |y| Pl | − e, or | PF | − e | Pl |, becomes

r − esd 2 r cos #d

If we square both sides of this polar equation and convert to rectangular coordinates,  
we get

x 2 1 y 2 − e 2sd 2 xd2 − e 2sd 2 2 2dx 1 x 2 d

or s1 2 e 2 dx 2 1 2de 2x 1 y 2 − e 2d 2

After completing the square, we have

Sx 1
e 2d

1 2 e 2D2

1
 y 2

1 2 e 2 −
e 2d 2

s1 2 e 2 d2

If e , 1, we recognize Equation 3 as the equation of an ellipse. In fact, it is of the form

sx 2 hd2

a 2 1
 y 2

b 2 − 1

where

h − 2
e 2d

1 2 e 2       a 2 −
e 2d 2

s1 2 e 2 d2       b 2 −
e 2d 2

1 2 e 2

In Section 10.5 we found that the foci of an ellipse are at a distance c from the center, 
where

c 2 − a 2 2 b 2 −
e 4d 2

s1 2 e 2 d2

This shows that c −
e 2d

1 2 e 2 − 2h

and confirms that the focus as defined in Theorem 1 means the same as the focus defined 
in Section 10.5. It also follows from Equations 4 and 5 that the eccentricity is given by

e −
c
a

If e . 1, then 1 2 e 2 , 0 and we see that Equation 3 represents a hyperbola. Just as we 
did before, we could rewrite Equation 3 in the form

sx 2 hd2

a 2 2
 y 2

b 2 − 1

and see that

 e −
c
a

    where c 2 − a 2 1 b 2 Q

y

xF

l (directrix)

x=d

r cos ¨

P

¨
r

d

C

FIGURE 1 

2

3

4

5
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684 CHAPTER 10  Parametric Equations and Polar Coordinates

By solving Equation 2 for r, we see that the polar equation of the conic shown in Fig-
ure 1 can be written as

r −
ed

1 1 e cos !

If the directrix is chosen to be to the left of the focus as x − 2d, or if the directrix is 
cho sen to be parallel to the polar axis as y − 6d, then the polar equation of the conic is 
given by the following theorem, which is illustrated by Figure 2. (See Exercises 21–23.)

(a) r= ed
1+e cos ¨

y

xF

x=d
directrix

(b) r= ed
1-e cos ¨

xF

y

x=_d
directrix

(c) r= ed
1+e sin ¨

y

F x

y=d         directrix

(d) r= ed
1-e sin ¨

x

y

y=_d         directrix

F

6   Theorem A polar equation of the form

r −
ed

1 6 e cos !
    or    r −

ed
1 6 e sin !

represents a conic section with eccentricity e. The conic is an ellipse if e , 1,  
a parabola if e − 1, or a hyperbola if e . 1.

EXAMPLE 1  Find a polar equation for a parabola that has its focus at the origin and 
whose directrix is the line y − 26.

SOLUTION Using Theorem 6 with e − 1 and d − 6, and using part (d) of Figure 2, we 
see that the equation of the parabola is

 r −
6

1 2 sin !
 Q

EXAMPLE 2  A conic is given by the polar equation

r −
10

3 2 2 cos !

Find the eccentricity, identify the conic, locate the directrix, and sketch the conic.

SOLUTION Dividing numerator and denominator by 3, we write the equation as

r −
10
3

1 2 2
3 cos !

FIGURE 2  
Polar equations of conics
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From Theorem 6 we see that this represents an ellipse with e − 2
3. Since ed − 10

3 ,  
we have

d −
10
3

e
−

10
3
2
3

− 5

so the directrix has Cartesian equation x − 25. When # − 0, r − 10; when # − $, 
r − 2. So the vertices have polar coordinates s10, 0d and s2, $d. The ellipse is sketched 
in Figure 3. Q

EXAMPLE 3  Sketch the conic r −
12

2 1 4 sin #
.

SOLUTION Writing the equation in the form

r −
6

1 1 2 sin #

we see that the eccentricity is e − 2 and the equation therefore represents a hyperbola. 
Since ed − 6, d − 3 and the directrix has equation y − 3. The vertices occur when 
# − $y2 and 3$y2, so they are s2, $y2d and s26, 3$y2d − s6, $y2d. It is also useful 
to plot the x-intercepts. These occur when # − 0, $; in both cases r − 6. For additional 
accuracy we could draw the asymptotes. Note that r l 6` when 1 1 2 sin # l 01 or 
02 and 1 1 2 sin # − 0 when sin # − 21

2 . Thus the asymptotes are parallel to the rays 
# − 7$y6 and # − 11$y6. The hyperbola is sketched in Figure 4.

 

x0

y

(6, π) (6, 0)

y=3 (directrix)

focus

”2,    ’π
2

”6,    ’π
2

 Q

When rotating conic sections, we find it much more convenient to use polar equations 
than Cartesian equations. We just use the fact (see Exercise 10.3.73) that the graph of 
r − f s# 2 !d is the graph of r − f s#d rotated counterclockwise about the origin through 
an angle !.

EXAMPLE 4  If the ellipse of Example 2 is rotated through an angle $y4 about the 
origin, find a polar equation and graph the resulting ellipse.

SOLUTION We get the equation of the rotated ellipse by replacing # with # 2 $y4 in 
the equation given in Example 2. So the new equation is

r −
10

3 2 2 coss# 2 $y4d

We use this equation to graph the rotated ellipse in Figure 5. Notice that the ellipse has 
been rotated about its left focus. Q

FIGURE 3 

y

0 x

r= 10
3-2 cos ̈x=_5

(directrix)

(10, 0)
(2, π)

focus

FIGURE 5 

11

_6

_5 15

r= 10
3-2 cos(¨-π/4)

r= 10
3-2 cos ̈

FIGURE 4 

r −
12

2 1 4 sin #
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In Figure 6 we use a computer to sketch a number of conics to demonstrate the effect 
of varying the eccentricity e. Notice that when e is close to 0 the ellipse is nearly circular, 
whereas it becomes more elongated as e l 12. When e − 1, of course, the conic is a 
parabola.

e=1 e=1.1 e=1.4 e=4

e=0.96e=0.86e=0.68e=0.1 e=0.5

Kepler’s Laws
In 1609 the German mathematician and astronomer Johannes Kepler, on the basis of huge 
amounts of astronomical data, published the following three laws of planetary motion.

Kepler’s Laws
1.  A planet revolves around the sun in an elliptical orbit with the sun at one focus.

2. The line joining the sun to a planet sweeps out equal areas in equal times.

3.  The square of the period of revolution of a planet is proportional to the cube of 
the length of the major axis of its orbit.

Although Kepler formulated his laws in terms of the motion of planets around the sun, 
they apply equally well to the motion of moons, comets, satellites, and other bodies that 
orbit subject to a single gravitational force. In Section 13.4 we will show how to deduce 
Kepler’s Laws from Newton’s Laws. Here we use Kepler’s First Law, together with the 
polar equation of an ellipse, to calculate quantities of interest in astronomy.

For purposes of astronomical calculations, it’s useful to express the equation of an 
ellipse in terms of its eccentricity e and its semimajor axis a. We can write the distance d 
from the focus to the directrix in terms of a if we use (4):

a2 −
e2d 2

s1 2 e 2d2         ?        d 2 −
a 2s1 2 e2d2

e2         ?        d −
as1 2 e2d

e

So ed − as1 2 e2d. If the directrix is x − d, then the polar equation is

r −
ed

1 1 e cos #
−

as1 2 e2d
1 1 e cos #

FIGURE 6
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7   The polar equation of an ellipse with focus at the origin, semimajor axis a, 
eccentricity e, and directrix x − d can be written in the form

r −
as1 2 e2d

1 1 e cos !

The positions of a planet that are closest to and farthest from the sun are called its 
peri helion and aphelion, respectively, and correspond to the vertices of the ellipse 
(see Figure 7). The distances from the sun to the perihelion and aphelion are called the  
perihelion distance and aphelion distance, respectively. In Figure 1 on page 683 the 
sun is at the focus F, so at perihelion we have ! − 0 and, from Equation 7,

r −
as1 2 e2d

1 1 e cos 0
−

as1 2 eds1 1 ed
1 1 e

− as1 2 ed

Similarly, at aphelion ! − " and r − as1 1 ed.

8   The perihelion distance from a planet to the sun is as1 2 ed and the aphelion 
distance is as1 1 ed.

EXAMPLE 5  
(a) Find an approximate polar equation for the elliptical orbit of the earth around the 
sun (at one focus) given that the eccentricity is about 0.017 and the length of the major 
axis is about 2.99 3 108 km.
(b) Find the distance from the earth to the sun at perihelion and at aphelion.

SOLUTION
(a) The length of the major axis is 2a − 2.99 3 108, so a − 1.495 3 108. We are 
given that e − 0.017 and so, from Equation 7, an equation of the earth’s orbit around 
the sun is

r −
as1 2 e2d

1 1 e cos !
−

s1.495 3 108d f1 2 s0.017d2g
1 1 0.017 cos !

or, approximately,

r −
1.49 3 108

1 1 0.017 cos !

(b) From (8), the perihelion distance from the earth to the sun is

as1 2 ed < s1.495 3 108ds1 2 0.017d < 1.47 3 108 km

and the aphelion distance is

 as1 1 ed < s1.495 3 108ds1 1 0.017d < 1.52 3 108 km Q

FIGURE 7 

perihelionaphelion
sun

planet

¨
r
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1–8 Write a polar equation of a conic with the focus at the 
origin and the given data.

 1.  Ellipse,  eccentricity 12,  directrix x − 4

 2.  Parabola,  directrix x − 23

 3.  Hyperbola,  eccentricity 1.5,  directrix y − 2

 4.  Hyperbola,  eccentricity 3,  directrix x − 3

 5.  Ellipse,  eccentricity 23 ,  vertex s2, !d

 6.  Ellipse,  eccentricity 0.6,   directrix r − 4 csc "

 7.  Parabola,  vertex s3, !y2d 

 8.  Hyperbola,  eccentricity 2,  directrix r − 22 sec "

9–16 (a) Find the eccentricity, (b) identify the conic, (c) give an 
equation of the directrix, and (d) sketch the conic.

 9.  r −
4

5 2 4 sin "
 10.  r −

1
2 1 sin "

 11.  r −
2

3 1 3 sin "
 12.  r −

5
2 2 4 cos "

 13.  r −
9

6 1 2 cos "
 14.  r −

1
3 2 3 sin "

 15.  r −
3

4 2 8 cos "
 16.  r −

4
2 1 3 cos "

 17.  (a)  Find the eccentricity and directrix of the conic 
r − 1ys1 2 2 sin "d and graph the conic and its direc-
trix.

 (b)  If this conic is rotated counterclockwise about the ori-
gin through an angle 3!y4, write the resulting equation 
and graph its curve.

 18.   Graph the conic r − 4ys5 1 6 cos "d and its directrix. Also 
graph the conic obtained by rotating this curve about the 
origin through an angle !y3.

 19.  Graph the conics r − eys1 2 e cos " d with e − 0.4, 0.6,  
0.8, and 1.0 on a common screen. How does the value of e 
affect the shape of the curve?

 20.  (a)  Graph the conics r − edys1 1 e sin "d for e − 1 and 
var ious values of d. How does the value of d affect the 
shape of the conic?

 (b)  Graph these conics for d − 1 and various values of e. 
How does the value of e affect the shape of the conic?

 21.   Show that a conic with focus at the origin, eccentricity e, 
and directrix x − 2d has polar equation

r −
ed

1 2 e cos "

;

;

;

;

 22.   Show that a conic with focus at the origin, eccentricity e, 
and directrix y − d has polar equation

r −
ed

1 1 e sin "

 23.   Show that a conic with focus at the origin, eccentricity e, 
and directrix y − 2d has polar equation

r −
ed

1 2 e sin "

 24.   Show that the parabolas r − cys1 1 cos "d and 
r − dys1 2 cos "d intersect at right angles.

 25.   The orbit of Mars around the sun is an ellipse with eccen-
tricity 0.093 and semimajor axis 2.28 3 108 km. Find a 
polar equation for the orbit.

 26.   Jupiter’s orbit has eccentricity 0.048 and the length of the 
major axis is 1.56 3 109 km. Find a polar equation for the 
orbit.

 27.   The orbit of Halley’s comet, last seen in 1986 and due to  
return in 2061, is an ellipse with eccentricity 0.97 and one 
focus at the sun. The length of its major axis is 36.18 AU.  
[An astronomical unit (AU) is the mean distance between 
the earth and the sun, about 93 million miles.] Find a polar 
equation for the orbit of Halley’s comet. What is the maxi-
mum distance from the comet to the sun?

 28.   Comet Hale-Bopp, discovered in 1995, has an elliptical 
orbit with eccentricity 0.9951. The length of the orbit’s 
major axis is 356.5 AU. Find a polar equation for the orbit 
of this comet. How close to the sun does it come?

 29.    The planet Mercury travels in an elliptical orbit with eccen-
tricity 0.206. Its minimum distance from the sun is   
4.6 3 107 km. Find its maximum distance from the sun.

 30.   The distance from the dwarf planet Pluto to the sun is  
4.43 3 109 km at perihelion and 7.37 3 109 km at aph-
elion. Find the eccentricity of Pluto’s orbit.

 31.   Using the data from Exercise 29, find the distance traveled  
by the planet Mercury during one complete orbit around 
the sun. (If your calculator or computer algebra system 
evaluates definite integrals, use it. Otherwise, use Simpson’s 
Rule.)

©
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10 REVIEW

 1.  (a) What is a parametric curve?
 (b) How do you sketch a parametric curve?

 2.  (a)  How do you find the slope of a tangent to a parametric 
curve?

 (b)  How do you find the area under a parametric curve?

 3.   Write an expression for each of the following:
 (a)  The length of a parametric curve
 (b)  The area of the surface obtained by rotating a parametric 

curve about the x-axis

 4.  (a)  Use a diagram to explain the meaning of the polar coordi-
nates sr, !d of a point.

 (b)  Write equations that express the Cartesian coordinates  
sx, yd of a point in terms of the polar coordinates.

 (c)  What equations would you use to find the polar coordi nates 
of a point if you knew the Cartesian coordinates?

 5.  (a)  How do you find the slope of a tangent line to a polar curve?
 (b)  How do you find the area of a region bounded by a polar 

curve?
 (c)  How do you find the length of a polar curve?

 6.  (a)  Give a geometric definition of a parabola.
 (b)  Write an equation of a parabola with focus s0, pd and 

directrix y − 2p. What if the focus is sp, 0d and the direc-
trix is x − 2p?

 7.  (a)  Give a definition of an ellipse in terms of foci.
 (b)  Write an equation for the ellipse with foci s6c, 0d and  

vertices s6a, 0d.

 8.  (a)  Give a definition of a hyperbola in terms of foci.
 (b)  Write an equation for the hyperbola with foci s6c, 0d and 

vertices s6a, 0d.
 (c)  Write equations for the asymptotes of the hyperbola in 

part (b).

 9.  (a)  What is the eccentricity of a conic section?
 (b)  What can you say about the eccentricity if the conic sec-

tion is an ellipse? A hyperbola? A parabola?
 (c)  Write a polar equation for a conic section with eccentric-

ity e and directrix x − d. What if the directrix is x − 2d? 
y − d? y − 2d?

CONCEPT CHECK Answers to the Concept Check can be found on the back endpapers.

Determine whether the statement is true or false. If it is true,  
explain why. If it is false, explain why or give an example that 
disproves the statement.

 1.   If the parametric curve x − f std, y − tstd satisfies t9s1d − 0, 
then it has a horizontal tangent when t − 1.

 2.   If x − f std and y − tstd are twice differentiable, then

d 2y
dx 2 −

d 2yydt 2

d 2xydt 2

 3.   The length of the curve x − f std, y − tstd, a < t < b, is
yb
a  sf f 9stdg 2 1 ft9stdg 2 dt.

 4.   If a point is represented by sx, yd in Cartesian coordi-
nates (where x ± 0) and sr, !d in polar coordinates, then 
! − tan 21s yyxd.

 5.   The polar curves

r − 1 2 sin 2!  r − sin 2! 2 1

   have the same graph.

 6.   The equations r − 2, x 2 1 y 2 − 4, and x − 2 sin 3t, 
y − 2 cos 3t s0 < t < 2"d all have the same graph.

 7.   The parametric equations x − t 2, y − t 4 have the same graph as 
x − t 3, y − t 6.

 8.   The graph of y 2 − 2y 1 3x is a parabola.

 9.   A tangent line to a parabola intersects the parabola only once.

 10.   A hyperbola never intersects its directrix.

TRUE-FALSE QUIZ
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1–4 Sketch the parametric curve and eliminate the parameter to 
find the Cartesian equation of the curve.

 1.  x − t 2 1 4t,  y − 2 2 t,  24 < t < 1

 2.  x − 1 1 e 2 t,  y − e t

 3.  x − cos !,  y − sec !,  0 < ! , "y2

 4.  x − 2 cos !,  y − 1 1 sin !

 5.   Write three different sets of parametric equations for the  
curve y − sx  .

 6.   Use the graphs of  x − f std and y − tstd to sketch the para-
metric curve x − f std, y − tstd. Indicate with arrows the  
direction in which the curve is traced as t increases.

t

x

_1
1

x=f(t)

t

y

1

1

y=g(t)

 7.  (a)  Plot the point with polar coordinates s4, 2"y3d. Then 
find its Cartesian coordinates.

 (b)  The Cartesian coordinates of a point are s23, 3d. Find 
two sets of polar coordinates for the point.

 8.   Sketch the region consisting of points whose polar coor-
dinates satisfy 1 < r , 2 and "y6 < ! < 5"y6.

9–16 Sketch the polar curve.

 9.  r − 1 1 sin ! 10.  r − sin 4!

 11.  r − cos 3 ! 12.  r − 3 1 cos 3!

 13.  r − 1 1 cos 2! 14.  r − 2 coss!y2d

 15.  r −
3

1 1 2 sin !
 16.  r −

3
2 2 2 cos !

17–18 Find a polar equation for the curve represented by the 
given Cartesian equation.

 17.  x 1 y − 2 18.  x 2 1 y 2 − 2

 19.   The curve with polar equation r − ssin !dy! is called a 
cochleoid. Use a graph of r as a function of ! in Cartesian 
coordinates to sketch the cochleoid by hand. Then graph it 
with a machine to check your sketch.

 20.   Graph the ellipse r − 2ys4 2 3 cos !d and its directrix. 
Also graph the ellipse obtained by rotation about the origin 
through an angle 2"y3.

;

;

21–24 Find the slope of the tangent line to the given curve at 
the point corresponding to the specified value of the parameter.

 21.  x − ln t, y − 1 1 t 2;  t − 1

 22.  x − t 3 1 6t 1 1,  y − 2t 2 t 2;  t − 21

 23.  r − e 2! ;  ! − "

 24.  r − 3 1 cos 3!;  ! − "y2

25–26 Find dyydx and d 2 yydx 2.

 25.  x − t 1 sin t,  y − t 2 cos t

 26.  x − 1 1 t 2,  y − t 2 t 3

 27.   Use a graph to estimate the coordinates of the lowest point 
on the curve x − t 3 2 3t, y − t 2 1 t 1 1.  Then use calcu-
lus to find the exact coordinates.

 28.   Find the area enclosed by the loop of the curve in  
Exercise 27.

 29.   At what points does the curve

x − 2a cos t 2 a cos 2t    y − 2a sin t 2 a sin 2t

have vertical or horizontal tangents? Use this information to 
help sketch the curve.

 30.  Find the area enclosed by the curve in Exercise 29.

 31.  Find the area enclosed by the curve r 2 − 9 cos 5!.

 32.   Find the area enclosed by the inner loop of the curve 
r − 1 2 3 sin !.

 33.   Find the points of intersection of the curves r − 2 and 
r − 4 cos !.

 34.   Find the points of intersection of the curves r − cot ! and 
r − 2 cos !.

 35.   Find the area of the region that lies inside both of the circles 
r − 2 sin ! and r − sin ! 1 cos !.

 36.   Find the area of the region that lies inside the curve 
r − 2 1 cos 2! but outside the curve r − 2 1 sin !.

37–40 Find the length of the curve.

 37.  x − 3t 2,  y − 2t 3,  0 < t < 2

 38.  x − 2 1 3t,  y − cosh 3t,  0 < t < 1

 39.  r − 1y!,  " < ! < 2"

 40.  r − sin3s!y3d,  0 < ! < "

;

EXERCISES
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41–42 Find the area of the surface obtained by rotating the 
given curve about the x-axis.

 41.  x − 4st  ,  y −
t 3

3
1

1
2t 2 ,  1 < t < 4

 42.  x − 2 1 3t,  y − cosh 3t,  0 < t < 1

 43.   The curves defined by the parametric equations

x −
t 2 2 c
t 2 1 1

    y −
tst 2 2 cd
t 2 1 1

are called strophoids (from a Greek word meaning “to turn 
or twist”). Investigate how these curves vary as c varies.

 44.   A family of curves has polar equations r a − | sin 2" | where 
a is a positive number. Investigate how the curves change as 
a changes.

45–48 Find the foci and vertices and sketch the graph.

 45.  
x 2

9
1

 y 2

8
− 1 46.  4x 2 2 y 2 − 16

 47.  6y 2 1 x 2 36y 1 55 − 0

 48.  25x 2 1 4y 2 1 50x 2 16y − 59

 49.   Find an equation of the ellipse with foci s64, 0d and  
vertices s65, 0d.

 50.   Find an equation of the parabola with focus s2, 1d and  
directrix x − 24.

 51.   Find an equation of the hyperbola with foci s0, 64d and 
asymptotes y − 63x.

 52.   Find an equation of the ellipse with foci s3, 62d and major 
axis with length 8.

 53.   Find an equation for the ellipse that shares a vertex and a 
focus with the parabola x 2 1 y − 100 and that has its other 
focus at the origin.

 54.   Show that if m is any real number, then there are exactly  
two lines of slope m that are tangent to the ellipse 
x 2ya 2 1 y 2yb 2 − 1 and their equations are

y − mx 6 sa 2m 2 1 b 2 

;

;

 55.   Find a polar equation for the ellipse with focus at the origin, 
eccentricity 13, and directrix with equation r − 4 sec ".

 56.   Show that the angles between the polar axis and the  
asymptotes of the hyperbola r − edys1 2 e cos "d, e . 1,  
are given by cos21s61yed.

 57.   In the figure the circle of radius a is stationary, and for 
every ", the point P is the midpoint of the segment QR.  
The curve traced out by P for 0 , " , ! is called the long-
bow curve. Find parametric equations for this curve.

0

y
2a

a

x

y=2a

¨

R

P

Q

 58.  A curve called the folium of Descartes is defined by the 
parametric equations

x −
3t

1 1 t 3 y −
3t 2

1 1 t 3

(a)  Show that if sa, bd lies on the curve, then so does sb, ad; 
that is, the curve is symmetric with respect to the line  
y − x. Where does the curve intersect this line?

(b)  Find the points on the curve where the tangent lines are 
horizontal or vertical.

(c) Show that the line y − 2x 2 1 is a slant asymptote.
(d) Sketch the curve.
(e)  Show that a Cartesian equation of this curve is 

x 3 1 y 3 − 3xy.
(f)  Show that the polar equation can be written in the form

r −
3 sec " tan "
1 1 tan3"

(g) Find the area enclosed by the loop of this curve.
(h)  Show that the area of the loop is the same as the 

area that lies between the asymptote and the infinite 
branches of the curve. (Use a computer algebra system 
to evaluate the integral.)

CAS
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Problems Plus  1.   The outer circle in the figure has radius 1 and the centers of the interior circular arcs lie on 
the outer circle. Find the area of the shaded region.

 2. (a)  Find the highest and lowest points on the curve x 4 1 y 4 − x 2 1 y 2.
 (b)  Sketch the curve. (Notice that it is symmetric with respect to both axes and both of the 

lines y − 6x, so it suffices to consider y > x > 0 initially.)
 (c)  Use polar coordinates and a computer algebra system to find the area enclosed by the 

curve.

 3.  What is the smallest viewing rectangle that contains every member of the family of polar 
curves r − 1 1 c sin ", where 0 < c < 1? Illustrate your answer by graphing several 
members of the family in this viewing rectangle.

 4.  Four bugs are placed at the four corners of a square with side length a. The bugs crawl 
counterclockwise at the same speed and each bug crawls directly toward the next bug at all 
times. They approach the center of the square along spiral paths.

 (a)  Find the polar equation of a bug’s path assuming the pole is at the center of the square. 
(Use the fact that the line joining one bug to the next is tangent to the bug’s path.)

 (b) Find the distance traveled by a bug by the time it meets the other bugs at the center.

 5.  Show that any tangent line to a hyperbola touches the hyperbola halfway between the 
points of intersection of the tangent and the asymptotes.

 6.  A circle C of radius 2r has its center at the origin. A circle of radius r rolls without slipping 
in the counterclockwise direction around C. A point P is located on a fixed radius of the 
rolling circle at a distance b from its center, 0 , b , r. [See parts (i) and (ii) of the figure.] 
Let L be the line from the center of C to the center of the rolling circle and let " be the 
angle that L makes with the positive x-axis.

 (a) Using " as a parameter, show that parametric equations of the path traced out by P are

x − b cos 3" 1 3r cos " y − b sin 3" 1 3r sin "

   Note: If b − 0, the path is a circle of radius 3r ; if b − r, the path is an epicycloid. The 
path traced out by P for 0 , b , r is called an epitrochoid.

 (b)  Graph the curve for various values of b between 0 and r.
 (c)  Show that an equilateral triangle can be inscribed in the epitrochoid and that its cen-

troid is on the circle of radius b centered at the origin.
   Note: This is the principle of the Wankel rotary engine. When the equilateral triangle 

rotates with its vertices on the epitrochoid, its centroid sweeps out a circle whose cen-
ter is at the center of the curve.

 (d)  In most rotary engines the sides of the equilateral triangles are replaced by arcs of cir-
cles centered at the opposite vertices as in part (iii) of the figure. (Then the diameter of 
the rotor is constant.) Show that the rotor will fit in the epitrochoid if b < 3

2 s2 2 s3 dr.

(ii)

y

xP¸
¨

P
y

x

r
b

P=P¸

2r

(i) (iii)

FIGURE FOR PROBLEM 1 
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Betelgeuse is a red supergiant 
star, one of the largest and 

brightest of the observable 
stars. In the project on  

page 783 you are asked to 
compare the radiation 

emitted by Betelgeuse with 
that of other stars. 

Infinite Sequences and Series

INFINITE SEQUENCES AND SERIES WERE introduced briefly in A Preview of Calculus in con-
nection with Zeno’s paradoxes and the decimal representation of numbers. Their importance 
in calculus stems from Newton’s idea of representing functions as sums of infinite series. For 
instance, in finding areas he often integrated a function by first expressing it as a series and then 
integrating each term of the series. We will pursue his idea in Section 11.10 in order to integrate 
such functions as e2x 2

. (Recall that we have previously been unable to do this.) Many of the func-
tions that arise in mathematical physics and chemistry, such as Bessel functions, are defined as 
sums of series, so it is important to be familiar with the basic concepts of convergence of infinite 
sequences and series.

 Physicists also use series in another way, as we will see in Section 11.11. In studying fields as 
diverse as optics, special relativity, and electromagnetism, they analyze phenomena by replacing 
a function with the first few terms in the series that represents it.

11
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A sequence can be thought of as a list of numbers written in a definite order:

a1, a2, a3, a4, . . . , an, . . .

The number a1 is called the first term, a2 is the second term, and in general an is the nth 
term. We will deal exclusively with infinite sequences and so each term an will have a 
successor an11.

Notice that for every positive integer n there is a corresponding number an and so a 
sequence can be defined as a function whose domain is the set of positive integers. But 
we usually write an instead of the function notation f snd for the value of the function at 
the number n.

NOTATION The sequence {a1, a2, a3, . . .} is also denoted by

han j    or    han j n−1
`

EXAMPLE 1  Some sequences can be defined by giving a formula for the nth term. In 
the following examples we give three descriptions of the sequence: one by using the 
preceding notation, another by using the defining formula, and a third by writing out 
the terms of the sequence. Notice that n doesn’t have to start at 1.

(a) H n
n 1 1Jn−1

`

 an −
n

n 1 1
 H 1

2
, 

2
3

, 
3
4

, 
4
5

, . . . , 
n

n 1 1
, . . .J

(b) Hs21dnsn 1 1d
3n J an −

s21dnsn 1 1d
3n  H2

2
3

, 
3
9

, 2
4

27
, 

5
81

, . . . , 
s21dnsn 1 1d

3n , . . .J
(c) hsn 2 3 jn−3

`
 an − sn 2 3 , n > 3 h0, 1, s2 , s3 , . . . , sn 2 3 , . . .j

(d) Hcos 
n!

6 Jn−0

`

 an − cos 
n!

6
, n > 0 H1, 

s3 

2
, 

1
2

, 0, . . . , cos 
n!

6
, . . .J Q

EXAMPLE 2 Find a formula for the general term an of the sequence

H 3
5

, 2
4

25
, 

5
125

, 2
6

625
, 

7
3125

, . . .J
assuming that the pattern of the first few terms continues.

SOLUTION We are given that

a 1 −
3
5

    a 2 − 2
4

25
    a 3 −

5
125

    a 4 − 2
6

625
    a 5 −

7
3125

Notice that the numerators of these fractions start with 3 and increase by 1 whenever 
we go to the next term. The second term has numerator 4, the third term has numer- 
ator 5; in general, the nth term will have numerator n 1 2. The denominators are the 
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powers of 5, so an has denominator 5 n. The signs of the terms are alternately positive 
and negative, so we need to multiply by a power of 21. In Example 1(b) the factor 
s21d n meant we started with a negative term. Here we want to start with a positive term 
and so we use s21d n21 or s21d n11. Therefore

 an − s21d n21 n 1 2
5 n  Q

EXAMPLE 3  Here are some sequences that don’t have a simple defining equation.
(a) The sequence hpn j, where pn is the population of the world as of January 1 in the 
year n.

(b) If we let an be the digit in the nth decimal place of the number e, then han j is a 
well-defined sequence whose first few terms are

h7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, . . .j

(c) The Fibonacci sequence h fn j is defined recursively by the conditions

f1 − 1    f2 − 1    fn − fn21 1 fn22    n > 3

Each term is the sum of the two preceding terms. The first few terms are

h1, 1, 2, 3, 5, 8, 13, 21, . . .j

This sequence arose when the 13th-century Italian mathematician known as Fibonacci 
solved a problem concerning the breeding of rabbits (see Exercise 83). Q

A sequence such as the one in Example 1(a), an − nysn 1 1d, can be pictured either 
by plotting its terms on a number line, as in Figure 1, or by plotting its graph, as in Fig- 
ure 2. Note that, since a sequence is a function whose domain is the set of positive inte-
gers, its graph consists of isolated points with coordinates

s1, a1d    s2, a2 d    s3, a3 d    . . .    sn, an d    . . .

From Figure 1 or Figure 2 it appears that the terms of the sequence an − nysn 1 1d 
are approaching 1 as n becomes large. In fact, the difference

1 2
n

n 1 1
−

1
n 1 1

can be made as small as we like by taking n sufficiently large. We indicate this by writing

lim
n l `

 
n

n 1 1
− 1

In general, the notation

lim
n l `

 an − L

means that the terms of the sequence han j approach L as n becomes large. Notice that the 
following definition of the limit of a sequence is very similar to the definition of a limit 
of a function at infinity given in Section 2.6.

0 11
2

a¡ a™ a£ a¢

FIGURE 1 

0 n

an

1

1

2 3 4 5 6 7

7
8a¶=

FIGURE 2 
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1   Definition A sequence han j has the limit L and we write

lim
n l `

 an − L    or    an l L as n l `

if we can make the terms an as close to L as we like by taking n sufficiently large. 
If limn l ` an exists, we say the sequence converges (or is convergent). Otherwise, 
we say the sequence diverges (or is divergent).

Figure 3 illustrates Definition 1 by showing the graphs of two sequences that have 
the limit L.

0 n

an

L

0 n

an

L

A more precise version of Definition 1 is as follows.

2   Definition A sequence han j has the limit L and we write

lim
n l `

 an − L    or    an l L as n l `

if for every « . 0 there is a corresponding integer N such that

if    n . N    then    | an 2 L | , «

Definition 2 is illustrated by Figure 4, in which the terms a1, a2, a3, . . . are plotted on 
a number line. No matter how small an interval sL 2 «, L 1 «d is chosen, there exists an 
N such that all terms of the sequence from aN11 onward must lie in that interval.

0 L-∑ L L+∑

a¡ a£ a¢a™ a∞aß a¶aˆ a˜aN+1 aN+2

Another illustration of Definition 2 is given in Figure 5. The points on the graph of 
han j must lie between the horizontal lines y − L 1 « and y − L 2 « if n . N. This 
picture must be valid no matter how small « is chosen, but usually a smaller « requires 
a larger N.

20 n

y

1 3 4

L
y=L+∑

N

y=L-∑

FIGURE 3  
Graphs of two 
sequences with 
lim
n l `

 an − L

FIGURE 4 

FIGURE 5 

Compare this definition with  
Definition 2.6.7.
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If you compare Definition 2 with Definition 2.6.7, you will see that the only differ-
ence between limn l ` an − L and limx l ` f sxd − L is that n is required to be an integer. 
Thus we have the following theorem, which is illustrated by Figure 6.

3   Theorem If limx l ` f sxd − L and f snd − an when n is an integer, then 
limn l ` an − L.

20 x

y

1 3 4

L

y=ƒ

In particular, since we know that limx l ` s1yxrd − 0 when r . 0 (Theorem 2.6.5), 
we have

lim
n l `

 
1
nr − 0    if r . 0

If an becomes large as n becomes large, we use the notation lim n l ` an − `. The fol-
lowing precise definition is similar to Definition 2.6.9.

5   Definition lim n l ` an − ` means that for every positive number M there is an 
integer N such that

if    n . N    then    an . M

If lim n l ` an − `, then the sequence han j is divergent but in a special way. We say 
that han j diverges to `.

The Limit Laws given in Section 2.3 also hold for the limits of sequences and their 
proofs are similar.

If han j and hbn j are convergent sequences and c is a constant, then

 lim
n l `

 san 1 bn d − lim
n l `

 an 1 lim
n l `

 bn

 lim
n l `

 san 2 bn d − lim
n l `

 an 2 lim
n l `

 bn

 lim
n l `

 can − c lim
n l `

 an   lim
n l `

 c − c                                     

lim
n l `

 san bn d − lim
n l `

 an ? lim
n l `

 bn       

lim
n l `

 
an

bn
−

lim
n l ` 

an

lim
n l `

 bn
    if lim

n l ` 
bn ± 0

 lim
n l `

an
p − F lim

n l `
anG p

   if  p . 0 and an . 0

Limit Laws for Sequences

FIGURE 6 

4
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The Squeeze Theorem can also be adapted for sequences as follows (see Figure 7).

If an < bn < cn for n > n0 and lim
n l `

an − lim
n l `

cn − L, then lim
n l `

bn − L.Squeeze Theorem for Sequences

Another useful fact about limits of sequences is given by the following theorem, 
whose proof is left as Exercise 87.

6   Theorem If lim
n l `

| an | − 0, then lim
n l `

 an − 0.

EXAMPLE 4  Find lim
n l `

 
n

n 1 1
.

SOLUTION The method is similar to the one we used in Section 2.6: Divide numerator 
and denominator by the highest power of n that occurs in the denominator and then use 
the Limit Laws.

lim
nl `

  
n

n 1 1
− lim

nl `
 

1

1 1
1
n

−
lim
nl ` 

1

lim
nl `

 1 1 lim
nl `

 1
n

 −
1

1 1 0
− 1

Here we used Equation 4 with r − 1. Q

EXAMPLE 5  Is the sequence an −
n

s10 1 n  convergent or divergent?

SOLUTION As in Example 4, we divide numerator and denominator by n:

lim
nl `

 
n

s10 1 n
 −  lim

nl `
 

1

Î10
n 2 1

1
n

− `

because the numerator is constant and the denominator approaches 0. So hanj is  
divergent. Q

EXAMPLE 6  Calculate lim 
n l `

 
ln n

n
.

SOLUTION Notice that both numerator and denominator approach infinity as n l `.  
We can’t apply l’Hospital’s Rule directly because it applies not to sequences but to 
functions of a real variable. However, we can apply l’Hospital’s Rule to the related 
function f sxd − sln xdyx and obtain

lim 
x l `

 
ln x

x
− lim 

x l `
 
1yx
1

− 0

Therefore, by Theorem 3, we have

 lim 
n l `

 
ln n

n
− 0 Q

0 n

cn

an

bn

FIGURE 7  
The sequence hbn j is squeezed  
between the sequences han j  
and hcn j .

This shows that the guess we made ear-
lier from Figures 1 and 2 was correct.
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EXAMPLE 7  Determine whether the sequence an − s21dn is convergent or divergent.

SOLUTION If we write out the terms of the sequence, we obtain

h21, 1, 21, 1, 21, 1, 21, . . .j

The graph of this sequence is shown in Figure 8. Since the terms oscillate between 1 
and 21 infinitely often, an does not approach any number. Thus lim n l ` s21dn does not 
exist; that is, the sequence hs21dn j is divergent. Q

EXAMPLE 8  Evaluate lim 
n l `

 
s21dn

n
 if it exists.

SOLUTION We first calculate the limit of the absolute value:

lim 
n l `

 Z s21dn

n Z − lim 
n l `

 
1
n

− 0

Therefore, by Theorem 6,

 lim 
n l `

 
s21dn

n
− 0 Q

The following theorem says that if we apply a continuous function to the terms of a 
convergent sequence, the result is also convergent. The proof is left as Exercise 88.

7   Theorem If lim
n l `

 an − L and the function f  is continuous at L, then

lim
n l `

  f sand − f sLd

EXAMPLE 9  Find lim
n l `

 sins!ynd.

SOLUTION Because the sine function is continuous at 0, Theorem 7 enables us to write

 lim
n l `

 sins!ynd − sinS lim
n l `

 s!yndD − sin 0 − 0 Q

EXAMPLE 10  Discuss the convergence of the sequence an − n!ynn, where 
n! − 1 ? 2 ? 3 ? ∙ ∙ ∙ ? n.

SOLUTION Both numerator and denominator approach infinity as n l ` but here we 
have no corresponding function for use with l’Hospital’s Rule (x! is not defined when x 
is not an integer). Let’s write out a few terms to get a feeling for what happens to an as 
n gets large:

a1 − 1      a2 −
1 ? 2
2 ? 2

      a3 −
1 ? 2 ? 3
3 ? 3 ? 3

an −
1 ? 2 ? 3 ? ∙ ∙ ∙ ? n
n ? n ? n ? ∙ ∙ ∙ ? n

It appears from these expressions and the graph in Figure 10 that the terms are decreas-
ing and perhaps approach 0. To confirm this, observe from Equation 8 that

an −
1
n

 S 2 ? 3 ? ∙ ∙ ∙ ? n
n ? n ? ∙ ∙ ∙ ? nD

0 n

an

1

1

2 3 4
_1

FIGURE 8 

The graph of the sequence in Example 8  
is shown in Figure 9 and supports our 
answer.

0 n

an

1

1

_1

FIGURE 9 

8

1

0 10

FIGURE 10 

Creating Graphs of Sequences
Some computer algebra systems have 
special commands that enable us to cre-
ate sequences and graph them directly. 
With most graphing calcula tors, how-
ever, sequences can be graphed by using 
parametric equations. For instance, the 
sequence in Example 10 can be graphed 
by entering the parametric equations

x − t y − t!yt t

and graphing in dot mode, starting with 
t − 1 and setting the t-step equal to 1. 
The result is shown in Figure 10.
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Notice that the expression in parentheses is at most 1 because the numerator is less  
than (or equal to) the denominator. So

0 , an <
1
n

We know that 1yn l 0 as n l `. Therefore an l 0 as n l ` by the Squeeze Theorem.
  Q

EXAMPLE 11  For what values of r is the sequence hr n j convergent?

SOLUTION We know from Section 2.6 and the graphs of the exponential functions in 
Section 1.4 that lim x l ` ax − ` for a . 1 and lim x l ` ax − 0 for 0 , a , 1. There-
fore, putting a − r and using Theorem 3, we have

lim 
n l `

 r n − H`

0
if r . 1
if 0 , r , 1

It is obvious that

lim
n l `

 1n − 1    and    lim
n l `

 0 n − 0

If 21 , r , 0, then 0 , | r | , 1, so

lim 
n l `

 | r n | − lim 
n l `

 | r |n − 0

and therefore lim n l ` r n − 0 by Theorem 6. If r < 21, then hr n j diverges as in 
Example 7. Figure 11 shows the graphs for various values of r. (The case r − 21 is 
shown in Figure 8.)

 

r>1

r=1

0<r<1

0

r<_1

_1<r<0

0 n

an

1

1
n

an

11

 Q

The results of Example 11 are summarized for future use as follows.

9   The sequence hr n j is convergent if 21 , r < 1 and divergent for all other 
values of r.

lim 
n l `

 r n − H0
1

if 21 , r , 1
if r − 1

10   Definition A sequence han j is called increasing if an , an11 for all n > 1,  
that is, a1 , a2 , a3 , ∙ ∙ ∙ . It is called decreasing if an . an11 for all n > 1.  
A sequence is monotonic if it is either increasing or decreasing.

FIGURE 11  
The sequence an − r n
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EXAMPLE 12  The sequence H 3
n 1 5J is decreasing because

3
n 1 5

.
3

sn 1 1d 1 5
−

3
n 1 6

and so an . an11 for all n > 1. Q

EXAMPLE 13  Show that the sequence an −
n

n2 1 1
 is decreasing.

SOLUTION 1  We must show that an11 , an, that is,

n 1 1
sn 1 1d2 1 1

,
n

n2 1 1

This inequality is equivalent to the one we get by cross-multiplication:

n 1 1
sn 1 1d2 1 1

,
n

n2 1 1
  &?  sn 1 1dsn2 1 1d , nfsn 1 1d2 1 1g

 &? n3 1 n2 1 n 1 1 , n3 1 2n2 1 2n

 &? 1 , n2 1 n

Since n > 1, we know that the inequality n2 1 n . 1 is true. Therefore an11 , an and 
so han j is decreasing.

SOLUTION 2 Consider the function f sxd −
x

x 2 1 1
:

f 9sxd −
x 2 1 1 2 2x 2

sx 2 1 1d2 −
1 2 x 2

sx 2 1 1d2 , 0    whenever x 2 . 1

Thus f  is decreasing on s1, `d and so f snd . f sn 1 1d. Therefore han j is decreasing. Q

11   Definition A sequence han j is bounded above if there is a number M  
such that

an < M    for all n > 1

It is bounded below if there is a number m such that

m < an    for all n > 1

If it is bounded above and below, then han j is a bounded sequence.

For instance, the sequence an − n is bounded below san . 0d but not above. The 
sequence an − nysn 1 1d is bounded because 0 , an , 1 for all n.

We know that not every bounded sequence is convergent [for instance, the sequence 
an − s21dn satisfies 21 < an < 1 but is divergent from Example 7] and not every 

The right side is smaller because it has 
a larger denominator.
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monotonic sequence is convergent san − n l `d. But if a sequence is both bounded and 
monotonic, then it must be convergent. This fact is proved as Theorem 12, but intuitively 
you can understand why it is true by looking at Figure 12. If han j is increasing and 
an < M for all n, then the terms are forced to crowd together and approach some num-
ber L.

20 n

an

1 3

L

M

The proof of Theorem 12 is based on the Completeness Axiom for the set R of real 
numbers, which says that if S is a nonempty set of real numbers that has an upper bound 
M (x < M for all x in S), then S has a least upper bound b. (This means that b is an 
upper bound for S, but if M is any other upper bound, then b < M.) The Completeness 
Axiom is an expression of the fact that there is no gap or hole in the real number line.

12   Monotonic Sequence Theorem Every bounded, monotonic sequence is  
convergent.

PROOF Suppose han j is an increasing sequence. Since han j is bounded, the set 
S − han | n > 1j has an upper bound. By the Completeness Axiom it has a least upper 
bound L. Given « . 0, L 2 « is not an upper bound for S (since L is the least upper 
bound). Therefore

aN . L 2 «    for some integer N

But the sequence is increasing so an > aN for every n . N. Thus if n . N, we have

 an . L 2 «

so  0 < L 2 an , «

since an < L. Thus

| L 2 an | , «    whenever n . N

so lim n l ` an − L.
A similar proof (using the greatest lower bound) works if han j is decreasing. Q

The proof of Theorem 12 shows that a sequence that is increasing and bounded above 
is convergent. (Likewise, a decreasing sequence that is bounded below is convergent.) 
This fact is used many times in dealing with infinite series.

FIGURE 12 
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EXAMPLE 14  Investigate the sequence han j defined by the recurrence relation

a1 − 2    an11 − 1
2 san 1 6d    for n − 1, 2, 3, . . .

SOLUTION We begin by computing the first several terms:

  a1 − 2   a2 − 1
2 s2 1 6d − 4   a3 − 1

2 s4 1 6d − 5

  a4 − 1
2 s5 1 6d − 5.5  a5 − 5.75   a6 − 5.875

  a7 − 5.9375   a8 − 5.96875   a9 − 5.984375

These initial terms suggest that the sequence is increasing and the terms are approach-
ing 6. To confirm that the sequence is increasing, we use mathematical induction to 
show that an11 . an for all n > 1. This is true for n − 1 because a2 − 4 . a1. If we 
assume that it is true for n − k, then we have

 ak11 . ak

so  ak11 1 6 . ak 1 6

and  12 sak11 1 6d . 1
2 sak 1 6d

Thus  ak12 . ak11

We have deduced that an11 . an is true for n − k 1 1. Therefore the inequality is true 
for all n by induction.

Next we verify that han j is bounded by showing that an , 6 for all n. (Since the 
sequence is increasing, we already know that it has a lower bound: an > a1 − 2 for  
all n.) We know that a1 , 6, so the assertion is true for n − 1. Suppose it is true for 
n − k. Then

 ak , 6

so  ak 1 6 , 12

and  12 sak 1 6d , 1
2 s12d − 6

Thus  ak11 , 6

This shows, by mathematical induction, that an , 6 for all n.
Since the sequence han j is increasing and bounded, Theorem 12 guarantees that it 

has a limit. The theorem doesn’t tell us what the value of the limit is. But now that we 
know L − limn l ` an exists, we can use the given recurrence relation to write

lim
n l `

an11 − lim
n l `

 12 san 1 6d − 1
2 a lim

n l `
 an 1 6b − 1

2 sL 1 6d

Since an l L, it follows that an11 l L too (as n l `, n 1 1 l ` also). So we have

L − 1
2 sL 1 6d

Solving this equation for L, we get L − 6, as we predicted. Q 

Mathematical induction is often used in 
dealing with recursive sequences. See 
page 72 for a discussion of the Principle 
of Mathematical Induction.

A proof of this fact is requested in 
Exercise 70.
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23–56 Determine whether the sequence converges or diverges.  
If it converges, find the limit.

 23.  an −
3 1 5n2

n 1 n2  24.  an −
3 1 5n2

1 1 n

 25.  an −
n4

n3 2 2n
 26.  an − 2 1 s0.86dn

 27.  an − 3n 72n 28.  an −
3sn 

sn 1 2

 29.  an − e21ysn 

 30.  an −
4n

1 1 9n

 31.  an − Î 1 1 4n2

1 1 n2   32.  an − cosS n!

n 1 1D
 33.  an −

n2

sn3 1 4n 
 34.  an − e2nysn12d

 35.  an −
s21dn

2sn
  

 36.  an −
s21dn11n

n 1 sn
  

 37.  Hs2n 2  1 d!
s2n 1  1d!J 38.  H ln n

ln 2nJ
 39.  {sin n} 40.  an −

tan21n
n

 41.  hn2e 2nj 42.  an − lnsn 1 1d 2 ln n

 43.  an −
cos2n

2n  44.  an − sn 2113n 

 45.  an − n sins1ynd 46.  an − 22n cos n!

 47.  an − S1 1
2
nD

n

 48.  an − sn n 

 49.  an − lns2n2 1 1d 2 lnsn2 1 1d

 50.  an −
sln nd2

n

 51.  an − arctansln nd

 52.  an − n 2 sn 1 1 sn 1 3 

 53.  h0, 1, 0, 0, 1, 0, 0, 0, 1, . . . j

 54.  51
1, 13, 12, 14, 13, 15, 14, 16, . . .6

 1.  (a) What is a sequence?
 (b) What does it mean to say that limn l ` an − 8?
 (c) What does it mean to say that limn l ` an − `?

 2.  (a) What is a convergent sequence? Give two examples.
 (b) What is a divergent sequence? Give two examples.

3–12 List the first five terms of the sequence.

 3.  an −
2 n

2n 1 1
 4.  an −

n2 2 1
n2 1 1

 5.  an −
s21dn21

5n  6.  an − cos 
n!

2

 7.  an −
1

sn 1 1d!
 8.  an −

s21dnn
n! 1 1

 9.  a1 − 1,  an11 − 5an 2 3

 10.  a1 − 6,  an11 −
an

n

 11.  a1 − 2,  an11 −
an

1 1 an

 12.  a1 − 2,  a2 − 1,  an11 − an 2 an21

13–18 Find a formula for the general term an of the sequence, 
assuming that the pattern of the first few terms continues.

 13.  51
2,  14,  16, 18,  1

10, . . .6
 14.  54, 21, 14, 2 1

16, 1
64, . . .6

 15.  523, 2, 24
3 , 89, 216

27 , . . .6
 16.  h5, 8, 11, 14, 17, . . .j

 17.  5 1
2 , 24

3 , 94, 216
5 , 25

6 , . . .6
 18.  h1, 0, 21, 0, 1, 0, 21, 0, . . .j

19–22 Calculate, to four decimal places, the first ten terms of the 
sequence and use them to plot the graph of the sequence by hand. 
Does the sequence appear to have a limit? If so, calculate it. If not, 
explain why.

 19.  an −
3n

1 1 6n
 20.  an − 2 1

s21dn

n

 21.  an − 1 1 (21
2 )n

 22.  an − 1 1
10 n

9 n
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 68.   Find the first 40 terms of the sequence defined by

an11 − H1
2 an

3an 1 1
if an is an even number
if an is an odd number

and a1 − 11. Do the same if a1 − 25. Make a conjecture 
about this type of sequence.

 69.  For what values of r is the sequence hnr n j convergent?

 70.  (a) If han j is convergent, show that

lim 
n l `

 an11 − lim 
n l `

 an

 (b)  A sequence han j is defined by a1 − 1 and 
an11 − 1ys1 1 an d for n > 1. Assuming that han j is  
convergent, find its limit.

 71.  Suppose you know that han j is a decreasing sequence and 
all its terms lie between the numbers 5 and 8. Explain why 
the sequence has a limit. What can you say about the value 
of the limit?

72–78 Determine whether the sequence is increasing, decreasing, 
or not monotonic. Is the sequence bounded?

 72.  an − cos n

 73.  an −
1

2n 1 3
 74.  an −

1 2 n
2 1 n

 75.  an − ns21dn 76.  an − 2 1
s21dn

n

 77.  an − 3 2 2ne2n 78.  an − n3 2 3n 1 3

 79.  Find the limit of the sequence

5s2 , s2s2 , s2s2s2 , . . .6
 80.   A sequence han j is given by a1 − s2 , an11 − s2 1 an

   .
 (a)  By induction or otherwise, show that han j is increasing  

and bounded above by 3. Apply the Monotonic Sequence 
Theorem to show that limn l ` an exists.

 (b) Find limn l ` an .

 81.   Show that the sequence defined by

a1 − 1      an11 − 3 2
1
an

is increasing and an , 3 for all n. Deduce that han j is conver-
gent and find its limit.

 82.   Show that the sequence defined by

a1 − 2      an11 −
1

3 2 an

satisfies 0 , an < 2 and is decreasing. Deduce that the 
sequence is convergent and find its limit.

 55.  an −
n!
2n  56.  an −

s23dn

n!

57–63 Use a graph of the sequence to decide whether the 
sequence is convergent or divergent. If the sequence is conver-
gent, guess the value of the limit from the graph and then prove 
your guess. (See the margin note on page 699 for advice on 
graphing sequences.)

 57.  an − s21dn 
n

n 1 1
 58.  an −

sin n
n

 59.  an − arctanS n2

n2 1 4D 60.  an − sn 3n 1 5n 

 61.  an −
n2 cos n
1 1 n2

 62.  an −
1 ? 3 ? 5 ? ∙ ∙ ∙ ? s2n 2 1d

n!

 63.  an −
1 ? 3 ? 5 ? ∙ ∙ ∙ ? s2n 2 1d

s2ndn

 64.  (a)  Determine whether the sequence defined as follows is 
convergent or divergent:

a1 − 1        an11 − 4 2 an        for n > 1

 (b)  What happens if the first term is a1 − 2?

 65.   If $1000 is invested at 6% interest, compounded annually, 
then after n years the investment is worth an − 1000s1.06dn 
dollars.

 (a) Find the first five terms of the sequence han j.
 (b) Is the sequence convergent or divergent? Explain.

 66.   If you deposit $100 at the end of every month into an 
account that pays 3% interest per year compounded 
monthly, the amount of interest accumulated after n months 
is given by the sequence

In − 100S 1.0025n 2 1
0.0025

2 nD
 (a) Find the first six terms of the sequence.
 (b) How much interest will you have earned after two years?

 67.   A fish farmer has 5000 catfish in his pond. The number of 
catfish increases by 8% per month and the farmer harvests 
300 catfish per month.

 (a)  Show that the catfish population Pn after n months is 
given recursively by

Pn − 1.08Pn21 2 300    P0 − 5000

 (b) How many catfish are in the pond after six months?

;
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706 CHAPTER 11  Infinite Sequences and Series

 91.   Let a and b be positive numbers with a . b. Let a1 be their 
arithmetic mean and b1 their geometric mean:

a1 −
a 1 b

2
      b1 − sab 

Repeat this process so that, in general,

an11 −
an 1 bn

2
      bn11 − san bn

 

 (a) Use mathematical induction to show that

an . an11 . bn11 . bn

 (b) Deduce that both han j and hbn j are convergent.
 (c)  Show that limn l ` an − limn l ` bn. Gauss called the  

common value of these limits the arithmetic-geometric 
mean of the numbers a and b.

 92.  (a)  Show that if lim n l ` a2n − L and lim n l ` a2n11 − L,  
then han j is convergent and lim n l ` an − L.

 (b) If a1 − 1 and

an11 − 1 1
1

1 1 an

find the first eight terms of the sequence han j. Then use  
part (a) to show that lim n l ` an − s2 . This gives the  
continued fraction expansion

s2 − 1 1
1

2 1
1

2 1 ∙ ∙ ∙

 93.   The size of an undisturbed fish population has been modeled by 
the formula

pn11 −
bpn

a 1 pn

where pn is the fish population after n years and a and b are 
positive constants that depend on the species and its environ-
ment. Suppose that the population in year 0 is p0 . 0.

 (a)  Show that if h pnj is convergent, then the only possible  
values for its limit are 0 and b 2 a.

 (b)  Show that pn11 , sbyadpn.
 (c)  Use part (b) to show that if a . b, then limn l ` pn − 0;  

in other words, the population dies out.
 (d)  Now assume that a , b. Show that if p 0 , b 2 a, then 

h pnj is increasing and 0 , pn , b 2 a. Show also that  
if p 0 . b 2 a, then h pnj is decreasing and pn . b 2 a. 
Deduce that if a , b, then limn l ` pn − b 2 a.

 83.  (a)  Fibonacci posed the following problem: Suppose that 
rabbits live forever and that every month each pair 
produces a new pair which becomes productive at 
age 2 months. If we start with one newborn pair, how 
many pairs of rabbits will we have in the nth month? 
Show that the answer is fn, where h fn j is the Fibonacci 
sequence defined in Example 3(c).

 (b)  Let an − fn11yfn and show that an21 − 1 1 1yan22 . 
Assuming that han j is convergent, find its limit.

 84.  (a)  Let a1 − a, a2 − f sad, a3 − f sa2d − f s f sadd, . . . , 
an11 − f san d, where f  is a continuous function. If 
limn l ` an − L, show that f sLd − L .

 (b)  Illustrate part (a) by taking f sxd − cos x, a − 1, and  
estimating the value of L to five decimal places.

 85.  (a) Use a graph to guess the value of the limit

lim
n l `

 
n5

n!

 (b)  Use a graph of the sequence in part (a) to find the  
smallest values of N that correspond to « − 0.1 and 
« − 0.001 in Definition 2.

 86.   Use Definition 2 directly to prove that lim n l ` r n − 0  
when | r | , 1.

 87.   Prove Theorem 6. 
[Hint: Use either Definition 2 or the Squeeze Theorem.]

 88.   Prove Theorem 7.

 89.   Prove that if limn l ` an − 0 and hbnj is bounded, then 
limn l ` san bnd − 0.

 90.   Let an − S1 1
1
nDn

.

 (a)  Show that if 0 < a , b, then

b n11 2 a n11

b 2 a
, sn 1 1db n

 (b) Deduce that b n fsn 1 1da 2 nbg , a n11.
 (c)  Use a − 1 1 1ysn 1 1d and b − 1 1 1yn in part (b) to 

show that han j is increasing.
 (d)  Use a − 1 and b − 1 1 1ys2nd in part (b) to show  

that a2n , 4.
 (e) Use parts (c) and (d) to show that an , 4 for all n.
 (f)  Use Theorem 12 to show that lim n l ` s1 1 1yndn exists. 

(The limit is e. See Equation 3.6.6.)

;
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LOGISTIC SEQUENCESCASLABORATORY PROJECT

A sequence that arises in ecology as a model for population growth is defined by the logistic  
difference equation

pn11 − kpns1 2 pn d

where pn measures the size of the population of the nth generation of a single species. To keep 
the numbers manageable, pn is a fraction of the maximal size of the population, so 0 < pn < 1. 
Notice that the form of this equation is similar to the logistic differential equation in Section 9.4. 
The discrete model—with sequences instead of continuous functions—is preferable for modeling 
insect populations, where mating and death occur in a periodic fashion.

An ecologist is interested in predicting the size of the population as time goes on, and asks  
these questions: Will it stabilize at a limiting value? Will it change in a cyclical fashion? Or will  
it exhibit random behavior?

Write a program to compute the first n terms of this sequence starting with an initial pop-
ulation p0, where 0 , p0 , 1. Use this program to do the following.

1.  Calculate 20 or 30 terms of the sequence for p0 − 1
2 and for two values of k such that 

1 , k , 3. Graph each sequence. Do the sequences appear to converge? Repeat for a differ-
ent value of p0 between 0 and 1. Does the limit depend on the choice of p0? Does it depend on 
the choice of k?

2.  Calculate terms of the sequence for a value of k between 3 and 3.4 and plot them. What do 
you notice about the behavior of the terms?

3. Experiment with values of k between 3.4 and 3.5. What happens to the terms?

4.  For values of k between 3.6 and 4, compute and plot at least 100 terms and comment on the 
behavior of the sequence. What happens if you change p0 by 0.001? This type of behavior is 
called chaotic and is exhibited by insect populations under certain conditions.

What do we mean when we express a number as an infinite decimal? For instance, what 
does it mean to write

! − 3.14159 26535 89793 23846 26433 83279 50288 . . .

The convention behind our decimal notation is that any number can be written as an infi-
nite sum. Here it means that

! − 3 1
1
10

1
4

102 1
1

103 1
5

104 1
9

105 1
2

106 1
6

107 1
5

108 1 ∙ ∙ ∙

where the three dots s∙ ∙ ∙d indicate that the sum continues forever, and the more terms we 
add, the closer we get to the actual value of !.

In general, if we try to add the terms of an infinite sequence han jn−1
`  we get an expres-

sion of the form

a1 1 a2 1 a3 1 ∙  ∙  ∙ 1 an 1 ∙  ∙  ∙

which is called an infinite series (or just a series) and is denoted, for short, by the symbol

o
`

n−1
 an     or    o  an

Does it make sense to talk about the sum of infinitely many terms?

The current record for computing a 
decimal approximation for ! was 
obtained by Shigeru Kondo and Alex-
ander Yee in 2011 and contains more 
than 10 trillion decimal places.

1
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708 CHAPTER 11  Infinite Sequences and Series

It would be impossible to find a finite sum for the series

1 1 2 1 3 1 4 1 5 1 ∙ ∙ ∙ 1 n 1 ∙ ∙ ∙

because if we start adding the terms we get the cumulative sums 1, 3, 6, 10, 15, 21, . . . 
and, after the nth term, we get nsn 1 1dy2, which becomes very large as n increases.

However, if we start to add the terms of the series

1
2

1
1
4

1
1
8

1
1
16

1
1
32

1
1
64

1 ∙ ∙ ∙ 1
1
2n 1 ∙ ∙ ∙

we get 12, 3
4, 7

8, 15
16, 31

32, 63
64, . . . , 1 2 1y2n, . . . . The table shows that as we add more and 

more terms, these partial sums become closer and closer to 1. (See also Figure 11 in  
A Preview of Calculus, page 6.) In fact, by adding sufficiently many terms of the series 
we can make the partial sums as close as we like to 1. So it seems reasonable to say that 
the sum of this infinite series is 1 and to write

o
`

n−1
 

1
2n −

1
2

1
1
4

1
1
8

1
1
16

1 ∙ ∙ ∙ 1
1
2n 1 ∙ ∙ ∙ − 1

We use a similar idea to determine whether or not a general series (1) has a sum. We  
consider the partial sums

 s1 − a1

 s2 − a1 1 a2

 s3 − a1 1 a2 1 a3

 s4 − a1 1 a2 1 a3 1 a4

and, in general,

sn − a1 1 a2 1 a3 1 ∙ ∙ ∙ 1 an − o
n

i−1
 ai

These partial sums form a new sequence hsn j , which may or may not have a limit. If 
lim n l ` sn − s exists (as a finite number), then, as in the preceding example, we call it 
the sum of the infinite series o an .

2   Definition Given a series o`
n−1 an − a1 1  a2 1  a3 1 ∙  ∙  ∙, let sn denote its  

nth partial sum:

sn − o
n

i−1
 ai − a1 1 a2 1 ∙ ∙ ∙ 1 an

If the sequence hsn j is convergent and lim n l ` sn − s exists as a real number, then 
the series o an  is called convergent and we write

a1 1 a2 1 ∙ ∙ ∙ 1 an 1 ∙ ∙ ∙ −  s     or    o
`

n−1
 an − s

The number s is called the sum of the series. If the sequence hsn j is divergent, 
then the series is called divergent.

n Sum of first n terms

1 0.50000000
2 0.75000000
3 0.87500000
4 0.93750000
5 0.96875000
6 0.98437500
7 0.99218750

10 0.99902344
15 0.99996948
20 0.99999905
25 0.99999997
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Thus the sum of a series is the limit of the sequence of partial sums. So when we write 
o`

n−1 an − s, we mean that by adding sufficiently many terms of the series we can get as 
close as we like to the number s. Notice that

o
`

n−1
 an − lim

n l `
o

n

i−1
 ai

EXAMPLE 1  Suppose we know that the sum of the first n terms of the series o`
n−1 an is

sn − a1 1 a2 1 ∙ ∙ ∙ 1 an −
2n

3n 1 5

Then the sum of the series is the limit of the sequence hsn j:

 o
`

n−1
 an − lim

n l `
 sn − lim

n l `
 

2n
3n 1 5

− lim
n l `

 
2

3 1
5
n

−
2
3

 Q

In Example 1 we were given an expression for the sum of the first n terms, but it’s 
usually not easy to find such an expression. In Example 2, however, we look at a famous 
series for which we can find an explicit formula for sn.

EXAMPLE 2  An important example of an infinite series is the geometric series

a 1 ar 1 ar 2 1 ar 3 1 ∙ ∙ ∙ 1 ar n21 1 ∙ ∙ ∙ − o
`

n−1
 ar n21    a ± 0

Each term is obtained from the preceding one by multiplying it by the common ratio r. 
(We have already considered the special case where a − 1

2 and r − 1
2 on page 708.)

If r − 1, then sn − a 1 a 1 ∙ ∙ ∙ 1 a − na l 6`. Since lim n l ` sn doesn’t exist, 
the geometric series diverges in this case.

If r ± 1, we have

 sn −  a 1 ar 1 ar 2 1 ∙ ∙ ∙ 1 ar n21

and  rsn −    ar 1 ar 2 1 ∙ ∙ ∙ 1 ar n21 1 ar n

Subtracting these equations, we get

 sn 2 rsn − a 2 ar n

 sn −
as1 2 r n d

1 2 r

If 21 , r , 1, we know from (11.1.9) that r n l 0 as n l `, so

lim
n l `

 sn − lim
n l `

 
as1 2 r n d

1 2 r
−

a
1 2 r

2
a

1 2 r
 lim
n l `

 r n −
a

1 2 r

Thus when | r | , 1 the geometric series is convergent and its sum is ays1 2 rd.
If r < 21 or r . 1, the sequence hr n j is divergent by (11.1.9) and so, by Equation 3, 

lim n l ` sn does not exist. Therefore the geometric series diverges in those cases. Q

Compare with the improper integral

y`

1
 f sxd dx − lim

t l `
 y t

1
 f sxd dx

To find this integral we integrate from 1 
to t and then let t l `. For a series, we 
sum from 1 to n and then let n l `.

Figure 1 provides a geometric demon-
stration of the result in Example 2. If 
the triangles are constructed as shown 
and s is the sum of the series, then, by 
similar triangles,

s
a

−
a

a 2 ar
so s −

a
1 2 r

aa

a

ara-ar
ar

ar@
ar#

ar@

s

FIGURE 1 

3
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We summarize the results of Example 2 as follows.

4   The geometric series

o
`

n−1
 ar n21 − a 1 ar 1 ar 2 1 ∙ ∙ ∙

is convergent if | r | , 1 and its sum is

o
`

n−1
 ar n21 −

a
1 2 r

    | r | , 1

If | r | > 1, the geometric series is divergent.

In words: The sum of a convergent 
geometric series is

first term
1 2 common ratio

EXAMPLE 3  Find the sum of the geometric series

5 2 10
3 1 20

9 2 40
27 1 ∙ ∙ ∙

SOLUTION The first term is a − 5 and the common ratio is r − 22
3. Since  

| r | − 2
3 , 1, the series is convergent by (4) and its sum is

 5 2
10
3

1
20
9

2
40
27

1 ∙ ∙ ∙ −
5

1 2 (22
3) −

5
5
3

− 3 Q

n sn

1 5.000000
2 1.666667
3 3.888889
4 2.407407
5 3.395062
6 2.736626
7 3.175583
8 2.882945
9 3.078037

10 2.947975     

0 n

sn

20

3

EXAMPLE 4  Is the series o
`

n−1
 22n312n convergent or divergent?

SOLUTION Let’s rewrite the nth term of the series in the form ar n21:

o
`

n−1
 22n312n − o

`

n−1
 s22dn 32sn21d − o

`

n−1
 

4n

3n21 − o
`

n−1
 4(4

3)n21

We recognize this series as a geometric series with a − 4 and r − 4
3. Since r . 1, the 

series diverges by (4). Q

EXAMPLE 5  A drug is administered to a patient at the same time every day. Suppose 
the concentration of the drug is Cn (measured in mgymL) after the injection on the nth 
day. Before the injection the next day, only 30% of the drug remains in the bloodstream 
and the daily dose raises the concentration by 0.2 mgymL.
(a) Find the concentration after three days.

What do we really mean when we say 
that the sum of the series in Example 3 
is 3? Of course, we can’t literally add 
an infinite number of terms, one by 
one. But, according to Defi  ni tion 2,  
the total sum is the limit of the sequence 
of partial sums. So, by taking the sum 
of sufficiently many terms, we can get 
as close as we like to the number 3.  
The table shows the first ten partial 
sums sn and the graph in Figure 2 
shows how the sequence of partial  
sums approaches 3. FIGURE 2 

Another way to identify a and r is to 
write out the first few terms:

4 1 16
3 1 64

9 1 ∙ ∙ ∙
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(b) What is the concentration after the nth dose?
(c) What is the limiting concentration?

SOLUTION
(a) Just before the daily dose of medication is administered, the concentration is 
reduced to 30% of the preceding day’s concentration, that is, 0.3Cn. With the new dose, 
the concentration is increased by 0.2 mgymL and so

Cn11 − 0.2 1 0.3Cn

Starting with C0 − 0 and putting n − 0, 1, 2 into this equation, we get

C1 − 0.2 1 0.3C0 − 0.2

C2 − 0.2 1 0.3C1 − 0.2 1 0.2s0.3d − 0.26

C3 − 0.2 1 0.3C2 − 0.2 1 0.2s0.3d 1 0.2s0.3d2 − 0.278

The concentration after three days is 0.278 mgymL.

(b) After the nth dose the concentration is

Cn − 0.2 1 0.2s0.3d 1 0.2s0.3d2 1 . . . 1 0.2s0.3dn21

This is a finite geometric series with a − 0.2 and r − 0.3, so by Formula 3 we have

Cn −
0.2 f1 2 s0.3dn g

1 2 0.3
−

2
7

 f1 2 s0.3dn g mgymL

(c)  Because 0.3 , 1, we know that lim nl` s0.3dn − 0. So the limiting concentration is

 lim
nl`

 Cn − lim
nl`

 
2
7

 f1 2 s0.3dn g −
2
7

 s1 2 0d −
2
7

 mgymL Q

EXAMPLE 6  Write the number 2.317 − 2.3171717. . . as a ratio of integers.

SOLUTION

2.3171717. . . − 2.3 1
17
103 1

17
105 1

17
107 1 ∙ ∙ ∙

After the first term we have a geometric series with a − 17y103 and r − 1y102.  
Therefore

  2.317 − 2.3 1

17
103

1 2
1

102

− 2.3 1

17
1000
99
100

  −
23
10

1
17
990

−
1147
495

 Q

EXAMPLE 7  Find the sum of the series o
`

n−0
 xn, where | x | , 1.

SOLUTION Notice that this series starts with n − 0 and so the first term is x 0 − 1. 
(With series, we adopt the convention that x 0 − 1 even when x − 0.) 
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 Thus

o
`

n−0
 xn − 1 1 x 1 x 2 1 x 3 1 x 4 1 ∙ ∙ ∙

This is a geometric series with a − 1 and r − x. Since | r | − | x | , 1, it converges  
and (4) gives

 o
`

n−0
 xn −

1
1 2 x

 Q

EXAMPLE 8 Show that the series o
`

n−1
 

1
nsn 1 1d

 is convergent, and find its sum.

SOLUTION This is not a geometric series, so we go back to the definition of a conver-
gent series and compute the partial sums.

sn − o
n

i−1
 

1
isi 1 1d

−
1

1 ? 2
1

1
2 ? 3

1
1

3 ? 4
1 ∙ ∙ ∙ 1

1
nsn 1 1d

We can simplify this expression if we use the partial fraction decomposition

1
isi 1 1d

−
1
i

2
1

i 1 1

(see Section 7.4). Thus we have

 sn − o
n

i−1
 

1
isi 1 1d

− o
n

i−1
 S 1

i
2

1
i 1 1D

 − S1 2
1
2D 1 S 1

2
2

1
3D 1 S 1

3
2

1
4D 1 ∙ ∙ ∙ 1 S 1

n
2

1
n 1 1D

 − 1 2
1

n 1 1

and so lim
nl`

 sn − lim
nl`

 S1 2
1

n 1 1D − 1 2 0 − 1

Therefore the given series is convergent and

 o
`

n−1
 

1
nsn 1 1d

− 1 Q

 
0

1

!an"

n

!sn"

 

5

Notice that the terms cancel in pairs.  
This is an example of a telescoping 
sum: Because of all the cancellations, 
the sum collapses (like a pirate’s col-
lapsing telescope) into just two terms.

FIGURE 3

Figure 3 illustrates Example 8 by show- 
ing the graphs of the sequence of terms 
an − 1y[nsn 1 1d] and the sequence 
hsn j of partial sums. Notice that an l 0 
and sn l 1. See Exer cises 78 and 79 
for two geometric interpretations of 
Example 8.

TEC Module 11.2 explores a series 
that depends on an angle ! in a tri-
angle and enables you to see how 
rapidly the series converges when ! 
varies.
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EXAMPLE 9  Show that the harmonic series

o
`

n−1
 
1
n

− 1 1
1
2

1
1
3

1
1
4

1 ∙ ∙ ∙

is divergent.

SOLUTION For this particular series it’s convenient to consider the partial sums s2, s4, 
s8, s16, s32, . . . and show that they become large.

 s2 − 1 1 1
2

 s4 − 1 1 1
2 1 s1

3 1 1
4 d . 1 1 1

2 1 s1
4 1 1

4 d − 1 1 2
2

 s8 − 1 1 1
2 1 s1

3 1 1
4 d 1 s1

5 1 1
6 1 1

7 1 1
8 d

 . 1 1 1
2 1 s1

4 1 1
4 d 1 s1

8 1 1
8 1 1

8 1 1
8 d

 − 1 1 1
2 1 1

2 1 1
2 − 1 1 3

2

 s16 − 1 1 1
2 1 s1

3 1 1
4 d 1 s1

5 1 ∙ ∙ ∙ 1 1
8 d 1 s1

9 1 ∙ ∙ ∙ 1 1
16 d

 . 1 1 1
2 1 s1

4 1 1
4 d 1 s1

8 1 ∙ ∙ ∙ 1 1
8 d 1 s 1

16 1 ∙ ∙ ∙ 1 1
16 d

 − 1 1 1
2 1 1

2 1 1
2 1 1

2 − 1 1 4
2

Similarly, s32 . 1 1 5
2 , s64 . 1 1 6

2 , and in general

s2n . 1 1
n
2

This shows that s2n l ` as n l ` and so hsn j is divergent. Therefore the harmonic 
series diverges. Q

6   Theorem If the series o
`

n−1
 an is convergent, then lim 

n l `
 an − 0.

PROOF Let sn − a1 1 a2 1 ∙ ∙ ∙ 1 an. Then an − sn 2 sn21. Since o an  is conver-
gent, the sequence hsn j is convergent. Let lim n l ` sn − s. Since n 2 1 l ` as n l `, 
we also have lim n l ` sn21 − s. Therefore

  lim
n l `

 an − lim
n l `

ssn 2 sn21d − lim
n l `

 sn 2 lim
n l `

 sn21 − s 2 s − 0 Q

NOTE 1 With any series o an  we associate two sequences: the sequence hsn j of 
its partial sums and the sequence han j of its terms. If o an  is convergent, then the limit of 
the sequence hsn j is s (the sum of the series) and, as Theorem 6 asserts, the limit of the 
sequence han j is 0.

NOTE 2 The converse of Theorem 6 is not true in general. If lim n l ` an − 0, we can-
not conclude that o an  is convergent. Observe that for the harmonic series o1yn  we have 
an − 1yn l 0 as n l `, but we showed in Example 9 that o1yn  is divergent.

7   Test for Divergence If lim
nl`

 an does not exist or if lim
nl`

 an ± 0, then the

series o
`

n−1
 an is divergent.

The method used in Example 9 for 
showing that the harmonic series 
diverges is due to the French scholar 
Nicole Oresme (1323–1382).
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The Test for Divergence follows from Theorem 6 because, if the series is not diver-
gent, then it is convergent, and so lim n l ` an − 0.

EXAMPLE 10  Show that the series o
`

n−1
 

n 2

5n 2 1 4
 diverges.

SOLUTION

lim
nl`

 an − lim
nl`

 
n 2

5n 2 1 4
− lim

nl`
 

1
5 1 4yn 2 −

1
5

± 0

So the series diverges by the Test for Divergence. Q

NOTE 3 If we find that lim n l ` an ± 0, we know that o an is divergent. If we find  
that lim n l ` an − 0, we know nothing about the convergence or divergence of o an. 
Remember the warning in Note 2: if lim n l ` an − 0, the series o an might converge or it 
might diverge.

8   Theorem If o an and o bn are convergent series, then so are the series o can

(where c is a constant), osan 1 bn d, and osan 2 bn d, and

 (i) o
`

n−1
 can − c o

`

n−1
 an

 (ii) o
`

n−1
 san 1 bn d − o

`

n−1
 an 1 o

`

n−1
 bn

 (iii) o
`

n−1
 san 2 bn d − o

`

n−1
 an 2 o

`

n−1
 bn

These properties of convergent series follow from the corresponding Limit Laws for 
Sequences in Section 11.1. For instance, here is how part (ii) of Theorem 8 is proved:

Let

sn − o
n

i−1
 ai      s − o

`

n−1
 an      tn − o

n

i−1
 bi      t − o

`

n−1
 bn

The nth partial sum for the series osan 1 bn d is

un − o
n

i−1
 sai 1 bid

and, using Equation 5.2.10, we have

 lim
n l `

 un − lim
n l `

 o
n

i−1
 sai 1 bid − lim

n l `
 So

n

i−1
 ai 1 o

n

i−1
 biD

 − lim
n l `

 o
n

i−1
 ai 1 lim

n l `
 o

n

i−1
 bi

 − lim
n l `

 sn 1 lim
n l `

 tn − s 1 t

Therefore o  san 1 bn d is convergent and its sum is

 o
`

n−1
 san 1 bn d − s 1 t − o

`

n−1
 an 1 o

`

n−1
 bn Q
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EXAMPLE 11  Find the sum of the series o
`

n−1
 S 3

nsn 1 1d
1

1
2nD.

SOLUTION The series o1y2n is a geometric series with a − 1
2 and r − 1

2, so

o
`

n−1
 

1
2n −

1
2

1 2 1
2

− 1

In Example 8 we found that

o
`

n−1
 

1
nsn 1 1d

− 1 

So, by Theorem 8, the given series is convergent and

 o
`

n−1
 S 3

nsn 1 1d
1

1
2nD − 3 o

`

n−1
 

1
nsn 1 1d

1 o
`

n−1
 

1
2n

  − 3 ? 1 1 1 − 4  Q

NOTE 4 A finite number of terms doesn’t affect the convergence or divergence of a 
series. For instance, suppose that we were able to show that the series

o
`

n−4
 

n
n3 1 1

is convergent. Since

o
`

n−1
 

n
n3 1 1

−
1
2

1
2
9

1
3
28

1 o
`

n−4
 

n
n3 1 1

it follows that the entire series o`
n−1 nysn3 1 1d is convergent. Similarly, if it is known 

that the series o`
n−N11 an converges, then the full series

o
`

n−1
 an − o

N

n−1
 an 1 o

`

n−N11
 an

is also convergent.

 1.  (a) What is the difference between a sequence and a series?
 (b) What is a convergent series? What is a divergent series?

 2.  Explain what it means to say that o`
n−1 an − 5.

3–4 Calculate the sum of the series o`
n−1 an whose partial sums 

are given.

 3.  sn − 2 2 3s0.8dn 4.  sn −
n 2 2 1

4n 2 1 1

5–8 Calculate the first eight terms of the sequence of partial 
sums correct to four decimal places. Does it appear that the 
series is convergent or divergent?

 5.  o
`

n−1
 

1
n4 1 n2  6.  o

`

n−1
 

1

s3 n 

 7.  o
`

n−1
 sin n 8. o

`

n−1
 
s21dn21

n!

9–14 Find at least 10 partial sums of the series. Graph both the 
sequence of terms and the sequence of partial sums on the same 
screen. Does it appear that the series is convergent or divergent?  
If it is convergent, find the sum. If it is divergent, explain why.

 9.  o
`

n−1
 

12
s25dn  10.  o

`

n−1
 cos n

 11.  o
`

n−1
 

n

sn 2 1 4 
 12.  o

`

n−1
 
7 n11

10 n

;
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 39.  o
`

n−1
 arctan n 40.  o

`

n−1
 S 3

5 n 1
2
nD

 41.  o
`

n−1
 S 1

en
 1

1
nsn 1 1dD 42.  o

`

n−1
 
en

n2

43–48 Determine whether the series is convergent or divergent 
by expressing sn as a telescoping sum (as in Ex am ple 8). If it is 
convergent, find its sum.

 43.  o
`

n−2
 

2
n2 2 1

 44.  o
`

n−1
 ln 

n
n 1 1

 45.  o
`

n−1
 

3
nsn 1 3d

 46.  o
`

n−4
 S 1

sn 
 2  

1

sn 1 1 D
 47.  o

`

n−1
 se 1yn 2 e1ysn11dd 48.  o

`

n−2
 

1
n3 2 n

 49.  Let x − 0.99999 . . . .
 (a)  Do you think that x , 1 or x − 1?
 (b)  Sum a geometric series to find the value of x.
 (c)  How many decimal representations does the number 1 

have?
 (d)  Which numbers have more than one decimal  

representation?

 50.  A sequence of terms is defined by

a1 − 1    an − s5 2 ndan21

Calculate o `
n−1 an.

51–56 Express the number as a ratio of integers.

 51.  0.8 − 0.8888 . . . 52.  0.46 − 0.46464646 . . .

 53.  2.516 − 2.516516516 . . .

 54.  10.135 − 10.135353535 . . .

 55.  1.234567 56.  5.71358

57–63 Find the values of x for which the series converges. Find 
the sum of the series for those values of x.

 57.  o
`

n−1
 s25dnx n 58.  o

`

n−1
 sx 1 2dn

 59.  o
`

n−0
 
sx 2 2dn

3n  60.  o
`

n−0
 s24dnsx 2 5dn

 61.  o
`

n−0
 
2n

x n  62.  o
`

n−0
 
sin nx

3n

 63.  o
`

n−0
 e nx

 13.  o
`

n−1
 

1
n2 1 1

 14. o
`

n−1
 Ssin 

1
n

2 sin 
1

n 1 1D
 15.  Let an −

2n
3n 1 1

.

 (a) Determine whether han j is convergent.
 (b) Determine whether o`

n−1 an is convergent.

 16.  (a) Explain the difference between

o
n

i−1
 ai    and    o

n

j−1
 aj

 (b) Explain the difference between

o
n

i−1
 ai    and    o

n

i−1
 aj

17–26 Determine whether the geometric series is convergent or 
divergent. If it is convergent, find its sum.

 17.  3 2 4 1 16
3 2 64

9 1 ∙ ∙ ∙ 18.  4 1 3 1 9
4 1 27

16 1 ∙ ∙ ∙

 19.  10 2 2 1 0.4 2 0.08 1 ∙ ∙ ∙

 20.  2 1 0.5 1 0.125 1 0.03125 1 ∙ ∙ ∙

 21.  o
`

n−1
 12s0.73dn21 22.  o

`

n−1
 

5
" n

 23.  o
`

n−1
 
s23dn21

4 n  24.  o
`

n−0
 

3n11

s22dn

 25.  o
`

n−1
 

e 2n

6 n21  26.  o
`

n−1
 
6 ? 2 2n21

3n

27–42 Determine whether the series is convergent or divergent. If 
it is convergent, find its sum.

 27.  
1
3

1
1
6

1
1
9

1
1
12

1
1
15

1 ∙ ∙ ∙

 28.  
1
3

1
2
9

1
1
27

1
2
81

1
1

243
1

2
729

1 ∙ ∙ ∙

 29.  o
`

n−1
 

2 1 n
1 2 2n

 30.  o
`

k−1
 

k2

k 2 2 2k 1 5

 31.  o
`

n−1
 3n11 42n 32.  o

`

n−1
 fs20.2dn 1 s0.6dn21g

 33.  o
`

n−1
 

1
4 1 e2n  34.  o

`

n−1
 
2 n 1 4 n

e n

 35.  o
`

k−1
 ssin 100dk 36.  o

`

n−1
 

1
1 1 ( 2

3)n

 37. o
`

n−1
 lnS n2 1 1

2n2 1 1D  38.  o
`

k−0
 (s2 )2k
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 (b)  Determine the limiting pre-injection concentration.
 (c)  If the concentration of insulin must always remain at or 

above a critical value C, determine a minimal dosage D 
in terms of C, a, and T.

 73.   When money is spent on goods and services, those who 
receive the money also spend some of it. The people receiv-
ing some of the twice-spent money will spend some of that, 
and so on. Economists call this chain reaction the multiplier 
effect. In a hypothetical isolated community, the local govern-
ment begins the process by spending D dollars. Suppose 
that each recipient of spent money spends 100c% and saves 
100s% of the money that he or she receives. The val ues c 
and s are called the marginal propensity to consume and the 
marginal propensity to save and, of course, c 1 s − 1.

 (a)  Let Sn be the total spending that has been generated after 
n transactions. Find an equation for Sn.

 (b)  Show that limn l ` Sn − kD, where k − 1ys. The number 
k is called the multiplier. What is the multiplier if the 
marginal propensity to consume is 80%?

Note: The federal government uses this principle to justify 
deficit spending. Banks use this principle to justify lend ing a 
large percentage of the money that they receive in deposits.

 74.  A certain ball has the property that each time it falls from a 
height h onto a hard, level surface, it rebounds to a height rh,  
where 0 , r , 1. Suppose that the ball is dropped from an 
initial height of H meters.

 (a)  Assuming that the ball continues to bounce indefinitely, 
find the total distance that it travels.

 (b)  Calculate the total time that the ball travels. (Use the fact 
that the ball falls 12 tt 2 meters in t seconds.)

 (c)  Suppose that each time the ball strikes the surface with 
velocity v it rebounds with velocity 2kv, where 
0 , k , 1. How long will it take for the ball to come  
to rest?

 75.  Find the value of c if

o
`

n−2
 s1 1 cd2n − 2

 76.  Find the value of c such that

o
`

n−0
 e nc − 10 

 77.  In Example 9 we showed that the harmonic series is diver-
gent. Here we outline another method, making use of the fact 
that e x . 1 1 x for any x . 0. (See Exercise 4.3.84.)
  If sn is the nth partial sum of the harmonic series, show that 
 e sn . n 1 1. Why does this imply that the harmonic series is 
divergent?

 78.  Graph the curves y − x n, 0 < x < 1, for n − 0, 1, 2, 3, 4, . . . 
on a common screen. By finding the areas between successive 
curves, give a geometric demonstration of the fact, shown in 
Example 8, that

o
`

n−1
 

1
nsn 1 1d

− 1

;

 64.  We have seen that the harmonic series is a divergent series 
whose terms approach 0. Show that

o
`

n−1
 lnS1 1

1
nD

is another series with this property.

65–66 Use the partial fraction command on your CAS to find 
a convenient expression for the partial sum, and then use this 
expression to find the sum of the series. Check your answer by 
using the CAS to sum the series directly.

 65.  o
`

n−1
 
3n2 1 3n 1 1

sn2 1 nd3  66.  o
`

n−3
 

1
n5 2 5n3 1 4n

 67.  If the nth partial sum of a series o `
n−1 an is

sn −
n 2 1
n 1 1

find an and o `
n−1 an.

 68.  If the nth partial sum of a series o `
n−1 an is sn − 3 2 n22n, 

find an and o `
n−1 an.

 69.  A doctor prescribes a 100-mg antibiotic tablet to be taken 
every eight hours. Just before each tablet is taken, 20% of 
the drug remains in the body.

 (a)  How much of the drug is in the body just after the sec-
ond tablet is taken? After the third tablet?

 (b)  If Qn is the quantity of the antibiotic in the body just 
after the nth tablet is taken, find an equation that 
expresses Qn11 in terms of Qn.

 (c)  What quantity of the antibiotic remains in the body in 
the long run?

 70.  A patient is injected with a drug every 12 hours. Immedi-
ately before each injection the concentration of the drug 
has been reduced by 90% and the new dose increases the 
concentration by 1.5 mgyL.

 (a)  What is the concentration after three doses?
 (b)  If Cn is the concentration after the nth dose, find a 

formula for Cn as a function of n.
 (c)  What is the limiting value of the concentration?

 71.  A patient takes 150 mg of a drug at the same time every 
day. Just before each tablet is taken, 5% of the drug remains 
in the body.

 (a)  What quantity of the drug is in the body after the third 
tablet? After the nth tablet?

 (b)  What quantity of the drug remains in the body in the 
long run?

 72.  After injection of a dose D of insulin, the concentration of 
insulin in a patient’s system decays exponentially and so 
it can be written as De2at, where t represents time in hours 
and a is a positive constant.

 (a)  If a dose D is injected every T hours, write an expres-
sion for the sum of the residual concentrations just 
before the sn 1 1dst injection.

CAS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



718 CHAPTER 11  Infinite Sequences and Series

 84.  If o  an is divergent and c ± 0, show that o  can is divergent.

 85.  If o  an is convergent and o  bn is divergent, show that the series 
o  san 1 bnd is divergent. [Hint: Argue by contradiction.]

 86.  If o  an and o  bn are both divergent, is o  san 1 bnd necessarily 
divergent?

 87.  Suppose that a series o  an has positive terms and its partial 
sums sn satisfy the inequality sn < 1000 for all n. Explain why 
o  an must be convergent.

 88.  The Fibonacci sequence was defined in Section 11.1 by the 
equations

f1 − 1,  f2 − 1,  fn − fn21 1 fn22    n > 3

Show that each of the following statements is true.

 (a) 
1

fn21 fn11
−

1
fn21 fn

2
1

fn fn11

 (b) o
`

n−2
 

1
fn21 fn11

− 1 (c) o
`

n−2
 

 fn

fn21 fn11
− 2

 89.  The Cantor set, named after the German mathematician 
Georg Cantor (1845–1918), is constructed as follows. We start 
with the closed interval [0, 1] and remove the open interval 

   ( 1
3,  23 ). That leaves the two intervals f0, 13 g and f 2

3, 1g and we 
remove the open middle third of each. Four intervals remain 
and again we remove the open middle third of each of them. 
We continue this procedure indefinitely, at each step removing 
the open middle third of every interval that remains from the 
preceding step. The Cantor set consists of the numbers that 
remain in [0, 1] after all those intervals have been removed.

 (a)  Show that the total length of all the intervals that are 
removed is 1. Despite that, the Cantor set contains infi-
nitely many numbers. Give examples of some numbers in 
the Cantor set.

 (b)  The Sierpinski carpet is a two-dimensional counterpart 
of the Cantor set. It is constructed by removing the center 
one-ninth of a square of side 1, then removing the centers 
of the eight smaller remaining squares, and so on. (The 
figure shows the first three steps of the construction.) 
Show that the sum of the areas of the removed squares  
is 1. This implies that the Sierpinski carpet has area 0.

 90.  (a)  A sequence han j is defined recursively by the equation 
an − 1

2 san21 1 an22 d for n > 3, where a1 and a2 can be 
any real numbers. Experiment with various values of a1 
and a2 and use your calculator to guess the limit of the 
sequence.

 79.  The figure shows two circles C and D of radius 1 that touch 
at P. The line T is a common tangent line; C1 is the circle that 
touches C, D, and T; C2 is the circle that touches C, D, and C1;  
C3 is the circle that touches C, D, and C2. This procedure can 
be continued indefinitely and produces an infinite sequence of 
circles hCn j. Find an expression for the diameter of Cn and thus 
provide another geometric demonstration of Example 8.

1 1

P

C£
C™

C¡ D

T

C

 80.  A right triangle ABC is given with /A − ! and | AC | − b.  
CD is drawn perpendicular to AB, DE is drawn perpendicular 
to BC, EF! AB, and this process is continued indefi nitely,  
as shown in the figure. Find the total length of all the  
perpendiculars

| CD | 1 | DE | 1 | EF | 1 | FG | 1 ∙ ∙ ∙ 

in terms of b and !.

A

CEGB

F
H

D ¨

b

 81.  What is wrong with the following calculation?

 0 − 0 1 0 1 0 1 ∙ ∙ ∙

 − s1 2 1d 1 s1 2 1d 1 s1 2 1d 1 ∙ ∙ ∙

 − 1 2 1 1 1 2 1 1 1 2 1 1 ∙ ∙ ∙

 − 1 1 s21 1 1d 1 s21 1 1d 1 s21 1 1d 1 ∙ ∙ ∙

 − 1 1 0 1 0 1 0 1 ∙ ∙ ∙ − 1

(Guido Ubaldus thought that this proved the existence of God 
because “something has been created out of nothing.”)

 82.  Suppose that o `
n−1 an san ± 0d is known to be a convergent 

series. Prove that o `
n−1 1yan is a divergent series.

 83.  Prove part (i) of Theorem 8.
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 (b)  Find limn l ` an in terms of a1 and a2 by expressing 
an11 2 an in terms of a2 2 a1 and summing a series.

 91.  Consider the series  o `
n−1 nysn 1 1d! .

 (a)  Find the partial sums s1, s2, s3, and s4. Do you recognize the 
denominators? Use the pattern to guess a formula for sn.

 (b) Use mathematical induction to prove your guess.
 (c)  Show that the given infinite series is convergent, and find 

its sum.

 92.  In the figure at the right there are infinitely many circles 
approaching the vertices of an equilateral triangle, each circle 
touching other circles and sides of the triangle. If the triangle 
has sides of length 1, find the total area occupied by the circles.

In general, it is difficult to find the exact sum of a series. We were able to accomplish 
this for geometric series and the series o  1yfnsn 1 1dg because in each of those cases we 
could find a simple formula for the nth partial sum sn. But usually it isn’t easy to discover 
such a formula. Therefore, in the next few sections, we develop several tests that enable 
us to determine whether a series is convergent or divergent without explicitly finding its 
sum. (In some cases, however, our methods will enable us to find good esti  mates of the 
sum.) Our first test involves improper integrals.

We begin by investigating the series whose terms are the reciprocals of the squares of 
the positive integers:

o
`

n−1
 

1
n 2 −

1
12 1

1
22 1

1
32 1

1
42 1

1
52 1 ∙ ∙ ∙

There’s no simple formula for the sum sn of the first n terms, but the computer-generated 
table of approximate values given in the margin suggests that the partial sums are 
approaching a number near 1.64 as n l ` and so it looks as if the series is convergent.

We can confirm this impression with a geometric argument. Figure 1 shows the curve 
y − 1yx 2 and rectangles that lie below the curve. The base of each rectangle is an interval 
of length 1; the height is equal to the value of the function y − 1yx 2 at the right endpoint 
of the interval. 

x

y

0 21 3 4 5

y= 1
≈

area= 1
1@

area= 1
2@ area= 1

3@ area= 1
4@ area= 1

5@

n sn − o
n

i−1
 
1
i 2

5 1.4636
10 1.5498
50 1.6251

100 1.6350
500 1.6429

1000 1.6439
5000 1.6447

FIGURE 1
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So the sum of the areas of the rectangles is

1
12 1

1
22 1

1
32 1

1
42 1

1
52 1 ∙ ∙ ∙ − o

`

n−1
 

1
n 2

If we exclude the first rectangle, the total area of the remaining rectangles is smaller 
than the area under the curve y − 1yx 2 for x > 1, which is the value of the integral 
y`
1  s1yx 2 d dx. In Section 7.8 we discovered that this improper integral is convergent and 

has value 1. So the picture shows that all the partial sums are less than

1
12 1 y`

1
 

1
x 2  dx − 2

Thus the partial sums are bounded. We also know that the partial sums are increasing 
(because all the terms are positive). Therefore the partial sums converge (by the Mono-
tonic Sequence Theorem) and so the series is convergent. The sum of the series (the  
limit of the partial sums) is also less than 2:

o
`

n−1
 

1
n 2 −

1
12 1

1
22 1

1
32 1

1
42 1 ∙ ∙ ∙ , 2

[The exact sum of this series was found by the Swiss mathematician Leonhard Euler 
(1707–1783) to be " 2y6, but the proof of this fact is quite difficult. (See Problem 6 in the 
Problems Plus following Chapter 15.)]

Now let’s look at the series

o
`

n−1
 

1

sn −
1

s1 1
1

s2 1
1

s3 1
1

s4 1
1

s5 1 ∙ ∙ ∙

The table of values of sn suggests that the partial sums aren’t approaching a finite num-
ber, so we suspect that the given series may be divergent. Again we use a picture for 
confirmation. Figure 2 shows the curve y − 1ysx , but this time we use rectangles whose 
tops lie above the curve.

x

y

0 21 3 4 5
area= 1

œ„
1

œ„
1

œ„
1

œ„1

y= 1
œ„x

area=
2

area=
3

area=
4

The base of each rectangle is an interval of length 1. The height is equal to the value 
of the function y − 1ysx  at the left endpoint of the interval. So the sum of the areas of 
all the rectangles is

1

s1 1
1

s2 1
1

s3 1
1

s4 1
1

s5 1 ∙ ∙ ∙ − o
`

n−1
 

1

sn 

This total area is greater than the area under the curve y − 1ysx  for x > 1, which is 

n sn − o
n

i−1
 

1

si 

5 3.2317
10 5.0210
50 12.7524

100 18.5896
500 43.2834

1000 61.8010
5000 139.9681

FIGURE 2
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 SECTION 11.3  The Integral Test and Estimates of Sums 721

equal to the integral y`
1  (1ysx ) dx. But we know from Section 7.8 that this improper 

integral is divergent. In other words, the area under the curve is infinite. So the sum of 
the series must be infinite; that is, the series is divergent.

The same sort of geometric reasoning that we used for these two series can be used to 
prove the following test. (The proof is given at the end of this section.)

The Integral Test Suppose f  is a continuous, positive, decreasing function on 
f1, `d and let an − f snd. Then the series o `

n−1 an is convergent if and only if the 
improper integral y`

1  f sxd dx is convergent. In other words:

 (i) If y`

1
 f sxd dx is convergent, then o

`

n−1
 an is convergent.

 (ii) If y`

1
 f sxd dx is divergent, then o

`

n−1
 an is divergent.

NOTE When we use the Integral Test, it is not necessary to start the series or the 
integral at n − 1. For instance, in testing the series

o
`

n−4
 

1
sn 2 3d2     we use    y`

4
 

1
sx 2 3d2  dx

Also, it is not necessary that f  be always decreasing. What is important is that f  be 
ultimately decreasing, that is, decreasing for x larger than some number N. Then o `

n−N an 
is convergent, so o `

n−1 an is convergent by Note 4 of Section 11.2.

EXAMPLE 1  Test the series o
`

n−1
 

1
n2 1 1

 for convergence or divergence.

SOLUTION The function f sxd − 1ysx 2 1 1d is continuous, positive, and decreasing on 
f1, `d so we use the Integral Test:

 y`

1
 

1
x 2 1 1

 dx − lim
t l `

 y t

1
 

1
x 2 1 1

 dx − lim
t l `

 tan21xg1

t  

 − lim
t l `

 Stan21t 2
"

4 D −
"

2
2

"

4
−

"

4

Thus y`
1  1ysx 2 1 1d dx is a convergent integral and so, by the Integral Test, the series

o  1ysn2 1 1d is convergent. Q

EXAMPLE 2  For what values of p is the series o
`

n−1
 

1
np  convergent?

SOLUTION If p , 0, then limn l ` s1ynp d − `. If p − 0, then limn l ` s1ynp d − 1. In 
either case limn l ` s1ynp d ± 0, so the given series diverges by the Test for Divergence 
(11.2.7).

If p . 0, then the function f sxd − 1yxp is clearly continuous, positive, and decreas-
ing on f1, `d. We found in Chapter 7 [see (7.8.2)] that

y`

1
 

1
xp  dx  converges if p . 1 and diverges if p < 1

In order to use the Integral Test we 
need to be able to evaluate y`

1  f sxd dx 
and therefore we have to be able to find 
an antiderivative of f . Frequently this 
is difficult or impossible, so we need 
other tests for convergence too.
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722 CHAPTER 11  Infinite Sequences and Series

It follows from the Integral Test that the series o  1ynp converges if p . 1 and diverges 
if 0 , p < 1. (For p − 1, this series is the harmonic series discussed in Example 
11.2.9.) Q

The series in Example 2 is called the p-series. It is important in the rest of this chapter, 
so we summarize the results of Example 2 for future reference as follows.

1   The p-series o
`

n−1
 

1
np  is convergent if p . 1 and divergent if p < 1.

EXAMPLE 3   
(a) The series

o
`

n−1
 

1
n 3 −

1
13 1

1
23 1

1
33 1

1
43 1 ∙ ∙ ∙

is convergent because it is a p-series with p − 3 . 1.

(b) The series

o
`

n−1
 

1
n 1y3 − o

`

n−1
 

1

s3 n − 1 1
1

s3 2 1
1

s3 3 1
1

s3 4 1 ∙ ∙ ∙

is divergent because it is a p-series with p − 1
3 , 1. Q

NOTE We should not infer from the Integral Test that the sum of the series is equal to 
the value of the integral. In fact,

o
`

n−1
 

1
n2 −

" 2

6
    whereas    y`

1
 

1
x 2  dx − 1

Therefore, in general,

o
`

n−1
 an ± y`

1
 f sxd dx

EXAMPLE 4  Determine whether the series o
`

n−1
 
ln n

n
 converges or diverges.

SOLUTION The function f sxd − sln xdyx is positive and continuous for x . 1 because 
the logarithm function is continuous. But it is not obvious whether or not f  is decreas-
ing, so we compute its derivative:

f 9sxd −
s1yxdx 2 ln x

x 2 −
1 2 ln x

x 2

Thus f 9sxd , 0 when ln x . 1, that is, when x . e. It follows that f  is decreasing 
when x . e and so we can apply the Integral Test:

 y`

1
 
ln x

x
 dx − lim

t l `
 y t

1
 
ln x

x
 dx − lim

t l `
 
sln xd2

2 G
1

t

  − lim
t l `

 
sln td2

2
− `

Since this improper integral is divergent, the series o  sln ndyn is also divergent by the 
Integral Test. Q
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Estimating the Sum of a Series
Suppose we have been able to use the Integral Test to show that a series o  an is conver-
gent and we now want to find an approximation to the sum s of the series. Of course, any 
partial sum sn is an approximation to s because limn l ` sn − s. But how good is such an 
approximation? To find out, we need to estimate the size of the remainder

Rn − s 2 sn − an11 1 an12 1 an13 1 ∙ ∙ ∙

The remainder Rn is the error made when sn, the sum of the first n terms, is used as an 
approximation to the total sum.

We use the same notation and ideas as in the Integral Test, assuming that f  is decreas-
ing on fn, ̀ d . Comparing the areas of the rectangles with the area under y − f sxd for 
x . n in Figure 3, we see that

Rn − a n11 1 a n12 1 ∙ ∙ ∙ < y`

n
 f sxd dx

Similarly, we see from Figure 4 that

Rn − an11 1 an12 1 ∙  ∙ ∙ >  y`

n11
 f sxd d x

So we have proved the following error estimate.

2   Remainder Estimate for the Integral Test Suppose f skd − ak, where f  is 
a continuous, positive, decreasing function for x > n and o an is convergent. If 
Rn − s 2 sn, then

y`

n11
  f sxd dx < Rn < y`

n
 f sxd dx

EXAMPLE 5
(a) Approximate the sum of the series o1yn3 by using the sum of the first 10 terms. 
Estimate the error involved in this approximation. 
(b) How many terms are required to ensure that the sum is accurate to within 0.0005?

SOLUTION In both parts (a) and (b) we need to know y`
n  f sxd dx. With f sxd − 1yx 3, 

which satisfies the conditions of the Integral Test, we have

y`

n
 

1
x 3  dx − lim

t l `
 F2

1
2x 2G

n

t

− lim
t l `

 S2
1

2t 2 1
1

2n2D −
1

2n2

(a) Approximating the sum of the series by the 10th partial sum, we have

o
`

n−1
 

1
n3 < s10 −

1
13 1

1
23 1

1
33 1 ∙ ∙ ∙ 1

1
103 < 1.1975

According to the remainder estimate in (2), we have

R10 < y`

10
 

1
x 3  dx −

1
2s10d2 −

1
200

So the size of the error is at most 0.005.

FIGURE 3 

0 x

y

n

. . .

y=ƒ

an+1 an+2

FIGURE 4 

0 x

y

an+1 an+2

n+1

. . .

y=ƒ
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724 CHAPTER 11  Infinite Sequences and Series

(b) Accuracy to within 0.0005 means that we have to find a value of n such that 
Rn < 0.0005. Since

Rn < y`

n
 

1
x 3  dx −

1
2n2

we want 
1

2n2 , 0.0005 

Solving this inequality, we get

n2 .
1

0.001
− 1000    or    n . s1000 < 31.6

We need 32 terms to ensure accuracy to within 0.0005. Q

If we add sn to each side of the inequalities in (2), we get

sn 1 y`

n11
 f sxd dx < s < sn 1 y`

n
 f sxd dx3

because sn 1 Rn − s. The inequalities in (3) give a lower bound and an upper bound  
for s. They provide a more accurate approximation to the sum of the series than the par-
tial sum sn  does.

EXAMPLE 6  Use (3) with n − 10 to estimate the sum of the series o
`

n−1
 

1
n3 .

SOLUTION The inequalities in (3) become

s10 1 y`

11
 

1
x 3  dx < s < s10 1 y`

10
 

1
x 3  dx 

From Example 5 we know that

y`

n
 

1
x 3  dx −

1
2n 2

so s10 1
1

2s11d2 < s < s10 1
1

2s10d2

Using s10 < 1.197532, we get

1.201664 < s < 1.202532 

If we approximate s by the midpoint of this interval, then the error is at most half the 
length of the interval. So

 o
`

n−1
 

1
n3 < 1.2021    with error , 0.0005 Q

If we compare Example 6 with Example 5, we see that the improved estimate in (3) 
can be much better than the estimate s < sn. To make the error smaller than 0.0005 we 
had to use 32 terms in Example 5 but only 10 terms in Example 6.

Although Euler was able to calculate 
the exact sum of the p-series for p − 2,  
nobody has been able to find the exact 
sum for p − 3. In Example 6, however, 
we show how to estimate this sum.
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 SECTION 11.3  The Integral Test and Estimates of Sums 725

Proof of the Integral Test
We have already seen the basic idea behind the proof of the Integral Test in Figures 1 and 
2 for the series o  1yn2 and o  1ysn . For the general series o  an, look at Figures 5 and 6. 
The area of the first shaded rectangle in Figure 5 is the value of f  at the right endpoint of 
f1, 2g, that is, f s2d − a2. So, comparing the areas of the shaded rectangles with the area 
under y − f sxd from 1 to n, we see that

a2 1 a3 1 ∙ ∙ ∙ 1 an < yn

1
 f sxd dx

(Notice that this inequality depends on the fact that f  is decreasing.) Likewise, Figure 6 
shows that

yn

1
 f sxd dx < a1 1 a2 1 ∙ ∙ ∙ 1 an21

(i) If y`

1
 f sxd dx is convergent, then (4) gives

o
n

i−2
 ai < yn

1
 f sxd dx < y`

1
 f sxd dx

since f sxd > 0. Therefore

sn − a1 1 o
n

i−2
 ai < a1 1 y`

1
 f sxd dx − M, say

Since sn < M for all n, the sequence hsn j is bounded above. Also

sn11 − sn 1 an11 > sn

since an11 − f sn 1 1d > 0. Thus hsn j is an increasing bounded sequence and so it is 
con vergent by the Monotonic Sequence Theorem (11.1.12). This means that o  an is  
convergent.

(ii) If y`
1  f sxd dx is divergent, then yn

1  f sxd dx l ` as n l ` because f sxd > 0. But  
(5) gives

yn

1
 f sxd dx < o

n21

i−1
 ai − sn21

and so sn21 l `. This implies that sn l ` and so o  an diverges. Q

0 x

y

1 2 3 4 5 . . . n

y=ƒ

ana™ a£ a¢ a∞

FIGURE 5 
4

0 x

y

1 2 3 4 5 . . . n

y=ƒ

a™ a£ a¢a¡

an-1

FIGURE 6 

5

 1. Draw a picture to show that

o
`

n−2
 

1
n 1.3 , y`

1
 

1
x 1.3  dx

 What can you conclude about the series?

 2.   Suppose f  is a continuous positive decreasing function for 
x > 1 and an − f snd. By drawing a picture, rank the following 
three quantities in increasing order:

y6

1
 f sxd dx   o

5

i−1
 ai   o

6

i−2
 ai

3–8 Use the Integral Test to determine whether the series is  
convergent or divergent.

 3. o
`

n−1
 n23 4. o

`

n−1
 n20.3

 5. o
`

n−1
 

2
5n 2 1

 6. o
`

n−1
 

1
s3n 2 1d4

 7. o
`

n−1
 

n
n2 1 1

 8. o
`

n−1
 n2e2n3
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726 CHAPTER 11  Infinite Sequences and Series

 34.   Leonhard Euler was able to calculate the exact sum of the  
p-series with p − 2:

!s2d − o
`

n−1
 

1
n2 −

" 2

6

 (See page 720.) Use this fact to find the sum of each series.

 (a) o
`

n−2
 

1
n2  (b) o

`

n−3
 

1
sn 1 1d2

 (c) o
`

n−1
 

1
s2nd2

 35.   Euler also found the sum of the p-series with p − 4:

!s4d − o
`

n−1
 

1
n 4 −

" 4

90

 Use Euler’s result to find the sum of the series.

 (a) o
`

n−1
 S3

nD4

 (b) o
`

k−5
 

1
sk 2 2d4

 36.  (a)  Find the partial sum s10 of the series o `
n−1 1yn4. Esti-

mate the error in using s10 as an approximation to the 
sum of the series.

 (b)  Use (3) with n − 10 to give an improved estimate of the 
sum.

 (c)  Compare your estimate in part (b) with the exact value 
given in Exercise 35.

 (d)  Find a value of n so that sn is within 0.00001 of the sum.

 37.  (a)  Use the sum of the first 10 terms to estimate the sum of 
the series o `

n−1 1yn2. How good is this estimate?
 (b) Improve this estimate using (3) with n − 10.
 (c)  Compare your estimate in part (b) with the exact value 

given in Exercise 34.
 (d)  Find a value of n that will ensure that the error in the 

approximation s < sn is less than 0.001.

 38.   Find the sum of the series o `
n−1 ne22n correct to four decimal 

places.

 39.   Estimate o `
n−1 s2n 1 1d26 correct to five decimal places.

 40.   How many terms of the series o `
n−2  1yfnsln nd2g would you 

need to add to find its sum to within 0.01?

 41.   Show that if we want to approximate the sum of the series 
o `

n−1 n21.001 so that the error is less than 5 in the ninth deci-
mal place, then we need to add more than 1011,301 terms!

 42.  (a) Show that the serieso `
n−1 sln nd2yn2 is convergent.

 (b)  Find an upper bound for the error in the approximation 
s < sn.

 (c)  What is the smallest value of n such that this upper 
bound is less than 0.05?

 (d) Find sn for this value of n.

CAS

9–26 Determine whether the series is convergent or divergent.

 9. o
`

n−1
 

1

n s2  10. o
`

n−3
 n20.9999

 11. 1 1
1
8

1
1
27

1
1
64

1
1

125
1 ∙ ∙ ∙

 12. 
1
5

1
1
7

1
1
9

1
1
11

1
1
13

1 ∙ ∙ ∙

 13. 
1
3

1
1
7

1
1
11

1
1
15

1
1
19

1 ∙ ∙ ∙

 14. 1 1
1

2s2
1

1

3s3
1

1

4s4
 1

1

5s5 
1 ∙ ∙ ∙

 15. o
`

n−1
 
sn 1 4

n2  16. o
`

n−1
 

sn 

1 1 n3y2

 17. o
`

n−1
 

1
n2 1 4

 18. o
`

n−1
 

1
n2 1 2n 1 2

 19. o
`

n−1
 

n 3

n 4 1 4
 20. o

`

n−3
 

3n 2 4
n2 2 2n

 21. o
`

n−2
 

1
n ln n

 22. o
`

n−2
 
ln n
n2

 23. o
`

k−1
 ke2k 24. o

`

k−1
 ke2k 2

 25. o
`

n−1
 

1
n2 1 n3  26. o

`

n−1
 

n
n4 1 1

27–28 Explain why the Integral Test can’t be used to determine 
whether the series is convergent.

 27.  o
`

n−1
 
cos "n

sn  
 28.  o

`

n−1
 

cos2 n
1 1 n2

29–32 Find the values of p for which the series is convergent.

 29.  o
`

n−2
 

1
nsln nd p  30.  o

`

n−3
 

1
n ln n flnsln ndg p

 31.  o
`

n−1
 ns1 1 n2 d p 32.  o

`

n−1
 
ln n
n p

 33.  The Riemann zeta-function ! is defined by

!sxd − o
`

n−1
 

1
n x

  and is used in number theory to study the distribution of 
prime numbers. What is the domain of !?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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 43.  (a)  Use (4) to show that if sn is the nth partial sum of the 
harmonic series, then

sn < 1 1 ln n

 (b)  The harmonic series diverges, but very slowly. Use  
part (a) to show that the sum of the first million terms is 
less than 15 and the sum of the first billion terms is less 
than 22.

 44.   Use the following steps to show that the sequence

tn − 1 1
1
2

1
1
3

1 ∙ ∙ ∙ 1
1
n

2 ln n

has a limit. (The value of the limit is denoted by # and is 
called Euler’s constant.)

 (a)  Draw a picture like Figure 6 with f sxd − 1yx and inter-
pret tn as an area [or use (5)] to show that tn . 0 for all n.

 (b) Interpret

tn 2 tn11 − flnsn 1 1d 2 ln ng 2
1

n 1 1

as a difference of areas to show that tn 2 tn11 . 0. There-
fore htnj is a decreasing sequence.

 (c)  Use the Monotonic Sequence Theorem to show that htnj 
is convergent.

 45.   Find all positive values of b  for which the series o `
n−1 b ln n  

converges.

 46.   Find all values of c for which the following series converges. 

o
`

n−1
S c

n
2

1
n 1 1D

In the comparison tests the idea is to compare a given series with a series that is known 
to be convergent or divergent. For instance, the series

o
`

n−1
 

1
2n 1 1

reminds us of the series o`
n−1 1y2n, which is a geometric series with a − 1

2 and r − 1
2 and 

is therefore convergent. Because the series (1) is so similar to a convergent series, we 
have the feeling that it too must be convergent. Indeed, it is. The inequality

1
2n 1 1

,
1
2n

shows that our given series (1) has smaller terms than those of the geometric series and 
therefore all its partial sums are also smaller than 1 (the sum of the geometric series). 
This means that its partial sums form a bounded increasing sequence, which is conver-
gent. It also follows that the sum of the series is less than the sum of the geometric series:

o
`

n−1
 

1
2n 1 1

, 1

Similar reasoning can be used to prove the following test, which applies only to series 
whose terms are positive. The first part says that if we have a series whose terms are  
smaller than those of a known convergent series, then our series is also convergent. The  
second part says that if we start with a series whose terms are larger than those of a 
known divergent series, then it too is divergent.

The Comparison Test Suppose that o  an and o  bn are series with positive terms.

 (i) If o  bn is convergent and an < bn for all n, then o  an is also convergent.

 (ii) If o  bn is divergent and an > bn for all n, then o  an is also divergent.

1
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PROOF 

(i) Let sn − o
n

i−1
 ai       tn − o

n

i−1
 bi      t − o

`

n−1
 bn

Since both series have positive terms, the sequences hsnj and htnj are increasing 
ssn11 − sn 1 an11 > snd. Also tn  l  t, so tn < t for all n. Since ai < bi, we have sn <  tn.  
Thus sn < t for all n. This means that hsnj is increasing and bounded above and there-
fore converges by the Monotonic Sequence Theorem. Thus o an converges.

(ii) If o  bn is divergent, then tn  l  ` (since htnj is increasing). But ai > bi so sn > tn. 
Thus sn  l  `. Therefore o an diverges. Q

In using the Comparison Test we must, of course, have some known series o  bn for 
the purpose of comparison. Most of the time we use one of these series: 

A p -series 3o 1ynp con verges if p . 1 and diverges if p < 1; see (11.3.1)4

 A geometric series 3o ar n21 converges if | r | , 1 and diverges if | r | > 1;  
see (11.2.4)4

EXAMPLE 1 Determine whether the series o
`

n−1
 

5
2n2 1 4n 1 3

 converges or diverges.

SOLUTION For large n the dominant term in the denominator is 2n2, so we compare the 
given series with the series o 5ys2n2d. Observe that

5
2n2 1 4n 1 3

,
5

2n2

because the left side has a bigger denominator. (In the notation of the Comparison Test, 
an is the left side and bn is the right side.) We know that

o
`

n−1
 

5
2n2 −

5
2

 o
`

n−1
 

1
n2

is convergent because it’s a constant times a p-series with p − 2 . 1. Therefore

o
`

n−1
 

5
2n2 1 4n 1 3

is convergent by part (i) of the Comparison Test. Q

NOTE 1 Although the condition an < bn or an > bn in the Comparison Test is given 
for all n, we need verify only that it holds for n > N, where N is some fixed integer, 
because the convergence of a series is not affected by a finite number of terms. This is 
illustrated in the next example.

EXAMPLE 2  Test the series o
`

k−1
 
ln k

k
 for convergence or divergence.

SOLUTION We used the Integral Test to test this series in Example 11.3.4, but we can 
also test it by comparing it with the harmonic series. Observe that ln k . 1 for k > 3 
and so

ln k
k

.
1
k

    k > 3

It is important to keep in mind the 
distinction between a sequence and a 
series. A sequence is a list of numbers, 
whereas a series is a sum. With every 
series o  an there are associated two 
sequences: the sequence hanj of terms 
and the sequence hsnj of partial sums.

Standard Series for Use  
with the Comparison Test
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 SECTION 11.4  The Comparison Tests 729

We know that o  1yk is divergent (p-series with p − 1). Thus the given series is diver-
gent by the Comparison Test. Q

NOTE 2 The terms of the series being tested must be smaller than those of a conver-
gent series or larger than those of a divergent series. If the terms are larger than the terms 
of a convergent series or smaller than those of a divergent series, then the Comparison 
Test doesn’t apply. Consider, for instance, the series

o
`

n−1
 

1
2n 2 1

The inequality

1
2n 2 1

.
1
2n

is useless as far as the Comparison Test is concerned because o  bn − o  ( 1
2)n

 is convergent 
and an . bn. Nonetheless, we have the feeling that o 1ys2n 2 1d ought to be convergent
because it is very similar to the convergent geometric series o  ( 1

2 )n
. In such cases the 

following test can be used.

The Limit Comparison Test Suppose that o  an and o  bn are series with positive  
terms. If

lim
n l `

 
an

bn
− c

where c is a finite number and c . 0, then either both series converge or both 
diverge.

PROOF Let m and M be positive numbers such that m , c , M. Because anybn is 
close to c for large n, there is an integer N such that

 m ,
an

bn
, M  when n . N

and so  mbn , an , Mbn when n . N

If o  bn converges, so does o  Mbn. Thus o  an converges by part (i) of the Comparison 
Test. If o  bn diverges, so does o  mbn and part (ii) of the Comparison Test shows that 
o  an diverges. Q

EXAMPLE 3 Test the series o
`

n−1
 

1
2n 2 1

 for convergence or divergence.

SOLUTION We use the Limit Comparison Test with

an −
1

2n 2 1
      bn −

1
2n

and obtain

lim
n l `

 
an

bn
− lim

n l `
 
1ys2n 2 1d

1y2n − lim
n l `

 
2n

2n 2 1
− lim

n l `
 

1
1 2 1y2n − 1 . 0

Exercises 40 and 41 deal with the 
cases c − 0 and c − `.
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730 CHAPTER 11  Infinite Sequences and Series

Since this limit exists and o  1y2n is a convergent geometric series, the given series 
converges by the Limit Comparison Test. Q

EXAMPLE 4  Determine whether the series o
`

n−1
 
2n2 1 3n

s5 1 n 5 
 converges or diverges.

SOLUTION The dominant part of the numerator is 2n2 and the dominant part of the 
denominator is sn5 − n 5y2. This suggests taking

an −
2n2 1 3n

s5 1 n 5 
  bn −

2n2

n 5y2 −
2

n 1y2

 lim
n l `

 
an

bn
− lim

n l `
 
2n2 1 3n

s5 1 n 5 ?
n1y2

2
− lim

n l `
 
2n5y2 1 3n3y2

2s5 1 n 5 

 − lim
n l `

 
2 1

3
n

2Î 5
n5 1 1 

−
2 1 0

2s0 1 1 − 1

Since o  bn − 2 o 1yn1y2 is divergent (p-series with p − 1
2 , 1), the given series 

diverges by the Limit Comparison Test. Q

Notice that in testing many series we find a suitable comparison series o  bn by keep-
ing only the highest powers in the numerator and denominator.

Estimating Sums
If we have used the Comparison Test to show that a series o  an converges by comparison 
with a series o  bn, then we may be able to estimate the sum o  an by comparing remain-
ders. As in Section 11.3, we consider the remainder

Rn − s 2 sn − an11 1 an12 1 ∙ ∙ ∙

For the comparison series o  bn we consider the corresponding remainder

Tn − t 2 tn − bn11 1 bn12 1 ∙ ∙ ∙

Since an < bn for all n, we have Rn < Tn. If o  bn is a p-series, we can estimate its remain-
der Tn as in Section 11.3. If o  bn is a geometric series, then Tn is the sum of a geometric 
series and we can sum it exactly (see Exercises 35 and 36). In either case we know that 
Rn is smaller than Tn.

EXAMPLE 5  Use the sum of the first 100 terms to approximate the sum of the series 
o  1ysn3 1 1d. Estimate the error involved in this approximation.

SOLUTION Since
1

n3 1 1
,

1
n3

the given series is convergent by the Comparison Test. The remainder Tn for the 
compar ison series o 1yn3 was estimated in Example 11.3.5 using the Remainder Esti-
mate for the Integral Test. There we found that

Tn < y`

n
 

1
x 3  dx −

1
2n2
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Therefore the remainder Rn for the given series satisfies

Rn < Tn <
1

2n2

With n − 100 we have

R100 <
1

2s100d2 − 0.00005

Using a programmable calculator or a computer, we find that

o
`

n−1
 

1
n3 1 1

< o
100

n−1
 

1
n3 1 1

< 0.6864538

with error less than 0.00005. Q

 1.   Suppose o  an and o  bn are series with positive terms and o  bn  
is known to be convergent.

 (a) If an . bn for all n, what can you say about o  an? Why?
 (b) If an , bn for all n, what can you say about o  an? Why?

 2.   Suppose o  an and o  bn are series with positive terms and o  bn  
is known to be divergent.

 (a) If an . bn for all n, what can you say about o  an? Why?
 (b)  If an , bn for all n, what can you say about o  an? Why?

3–32 Determine whether the series converges or diverges.

 3.  o
`

n−1
 

1
n3 1 8

 4. o
`

n−2
 

1

sn 2 1

 5. o
`

n−1
 
n 1 1
nsn 

 6. o
`

n−1
 

n 2 1
n3 1 1

 7. o
`

n−1
 

9n

3 1 10 n  8. o
`

n−1
 

6n

5n 2 1

 9. o
`

k−1
 
ln k

k
 10. o

`

k−1
 
k sin2k
1 1 k 3

 11. o
`

k−1
 

s3 k 

sk 3 1 4k 1 3 
 12. o

`

k−1
 
s2k 2 1dsk 2 2 1d
sk 1 1dsk 2 1 4d2

 13. o
`

n−1
 
1 1 cos n

e n  14. o
`

n−1
 

1

s3 3n 4 1 1 

 15. o
`

n−1
 

4n11

3n 2 2
 16. o

`

n−1
 

1
n n

 17. o
`

n−1
 

1

sn 2 1 1 
 18. o

`

n−1
 

2

sn 1 2

 19. o
`

n−1
 

n 1 1
n3 1 n

 20. o
`

n−1
 
n2 1 n 1 1

n4 1 n2

 21. o
`

n−1
 

s1 1 n 

2 1 n
 22. o

`

n−3
 

n 1 2
sn 1 1d 3

 23. o
`

n−1
 

5 1 2n
s1 1 n2d2  24. o

`

n−1
 
n 1 3n

n 1 2n

 25. o
`

n−1
 

e n 1 1
ne n 1 1

 26. o
`

n−2
 

1
nsn2 2 1 

 27. o
`

n−1
 S1 1

1
nD2

 e2n 28. o
`

n−1
 
e 1yn

n

 29. o
`

n−1
 

1
n!

 30. o
`

n−1
 
n!
n n

 31. o
`

n−1
 sinS 1

nD 32. o
`

n−1
 

1
n 111yn

33–36 Use the sum of the first 10 terms to approximate the sum of 
the series. Estimate the error.

 33. o
`

n−1
 

1
5 1 n5  34. o

`

n−1
 
e1yn 

n4

 35. o
`

n−1
 52n cos2n 36. o

`

n−1
 

1
3n 1 4n

 37.   The meaning of the decimal representation of a number 
0.d1d2d3 . . . (where the digit di is one of the numbers 0, 1,  
2, . . . , 9) is that

0.d1d2d3d4 . . . −
d1

10
1

d2

102 1
d3

103 1
d4

104 1 ∙ ∙ ∙

 Show that this series always converges.
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732 CHAPTER 11  Infinite Sequences and Series

 38.  For what values of p does the series o `
n−2 1y sn p ln nd  

converge?

 39.   Prove that if an > 0 and o  an converges, then o  an
2 also  

converges.

 40.  (a)  Suppose that o  an and o  bn are series with positive terms 
and o  bn is convergent. Prove that if

lim 
n l `

 
an

bn
− 0

 then o  an is also convergent.
 (b)  Use part (a) to show that the series converges.

 (i) o
`

n−1
 
ln n
n3  (ii) o

`

n−1
 

ln n

sn e n

 41.  (a)  Suppose that o  an and o  bn are series with positive terms 
and o  bn is divergent. Prove that if

lim 
n l `

 
an

bn
− `

   then o  an is also divergent.

 (b)  Use part (a) to show that the series diverges.

 (i) o
`

n−2
 

1
ln n

 (ii) o
`

n−1
 
ln n

n

 42.   Give an example of a pair of series o  an and o  bn with positive 
terms where lim n l ` sanybnd − 0 and o  bn diverges, but o  an 
converges. (Compare with Exercise 40.)

 43.   Show that if an . 0 and lim n l ` nan ± 0, then o  an is  
divergent.

 44.   Show that if an . 0 and o  an is convergent, then o  lns1 1 an d 
is convergent.

 45.   If o  an is a convergent series with positive terms, is it true that 
o  sinsand is also convergent?

 46.   If o  an and o  bn are both convergent series with positive terms, 
is it true that o  an bn is also convergent?

The convergence tests that we have looked at so far apply only to series with positive 
terms. In this section and the next we learn how to deal with series whose terms are not 
necessarily positive. Of particular importance are alternating series, whose terms alter-
nate in sign.

An  is a series whose terms are alternately positive and negative. 
Here are two examples:

 1 2
1
2

1
1
3

2
1
4

1
1
5

2
1
6

1 ∙ ∙ ∙ − o
`

n−1
 s21dn21 

1
n

 2
1
2

1
2
3

2
3
4

1
4
5

2
5
6

1
6
7

2 ∙ ∙ ∙ − o
`

n−1
 s21dn 

n
n 1 1

We see from these examples that the nth term of an alternating series is of the form

an − s21dn21bn    or    an − s21dnbn

where bn is a positive number. (In fact, bn − | an |.)
The following test says that if the terms of an alternating series decrease toward 0 in 

absolute value, then the series converges.

Alternating Series Test If the alternating series

o
`

n−1
 s21dn21bn − b1 2 b2 1 b3 2 b4 1 b5 2 b6 1 ∙ ∙ ∙    bn . 0

satisfies
 (i) bn11 < bn    for all n

 (ii) lim
n l `

bn − 0

then the series is convergent.
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 SECTION 11.5  Alternating Series 733

Before giving the proof let’s look at Figure 1, which gives a picture of the idea behind 
the proof. We first plot s1 − b1 on a number line. To find s2 we subtract b2, so s2 is to 
the left of s1. Then to find s3 we add b3, so s3 is to the right of s2. But, since b3 , b2, s3 
is to the left of s1. Continuing in this manner, we see that the partial sums oscillate back 
and forth. Since bn l 0, the successive steps are becoming smaller and smaller. The 
even partial sums s2, s4, s6, . . . are increasing and the odd partial sums s1, s3, s5, . . . are 
decreasing. Thus it seems plausible that both are converging to some number s, which is 
the sum of the series. Therefore we consider the even and odd partial sums separately in 
the following proof.

0 s¡s™ s£s¢ s∞sß s

b¡
-b™

+b£
-b¢

+b∞
-bß

PROOF OF THE ALTERNATING SERIES TEST We first consider the even partial sums:

 s2 − b1 2 b2 > 0 since b2 < b1

 s4 − s2 1 sb3 2 b4 d > s2 since b4 < b3

In general s2n − s2n22 1 sb2n21 2 b2n d > s2n22    since b2n < b2n21

Thus 0 < s2 < s4 < s6 < ∙ ∙ ∙ < s2n < ∙ ∙ ∙

But we can also write

s2n − b1 2 sb2 2 b3 d 2 sb4 2 b5 d 2 ∙ ∙ ∙ 2 sb2n22 2 b2n21d 2 b2n

Every term in parentheses is positive, so s2n < b1 for all n. Therefore the sequence hs2n j  
of even partial sums is increasing and bounded above. It is therefore convergent by the 
Monotonic Sequence Theorem. Let’s call its limit s, that is,

lim 
n l `

 s2n − s

Now we compute the limit of the odd partial sums:

 lim
nl`

 s2n11 − lim
nl`

 ss2n 1 b2n11d

 − lim
nl`

 s2n 1 lim
nl`

 b2n11

 − s 1 0

 − s

Since both the even and odd partial sums converge to s, we have lim n l ` sn − s  
[see Exercise 11.1.92(a)] and so the series is convergent. Q

FIGURE 1

[by condition (ii)]
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EXAMPLE 1  The alternating harmonic series

1 2
1
2

1
1
3

2
1
4

1 ∙ ∙ ∙ − o
`

n−1
 
s21dn21

n

satisfies

 (i) bn11 , bn    because    
1

n 1 1
,

1
n

 (ii) lim
nl`

 bn − lim
nl`

 
1
n

− 0

so the series is convergent by the Alternating Series Test. Q

EXAMPLE 2  The series o
`

n−1
 
s21dn 3n
4n 2 1

 is alternating, but

lim
n l `

 bn − lim
n l `

 
3n

4n 2 1
− lim

nl`
 

3

4 2
1
n

−
3
4

so condition (ii) is not satisfied. Instead, we look at the limit of the nth term of the series:

lim
n l `

 an − lim
n l `

 
s21dn 3n
4n 2 1

This limit does not exist, so the series diverges by the Test for Divergence. Q

EXAMPLE 3  Test the series o
`

n−1
 s21dn11 

n2

n3 1 1
 for convergence or divergence.

SOLUTION The given series is alternating so we try to verify conditions (i) and (ii) of 
the Alternating Series Test.

Unlike the situation in Example 1, it is not obvious that the sequence given by 
bn − n2ysn3 1 1d is decreasing. However, if we consider the related function 
f sxd − x 2ysx 3 1 1d, we find that

f 9sxd −
xs2 2 x 3 d
sx 3 1 1d2

Since we are considering only positive x, we see that f 9sxd , 0 if 2 2 x 3 , 0, that is, 
x . s3 2 . Thus f  is decreasing on the interval ss3 2 , `d. This means that f sn 1 1d , f snd 
and therefore bn11 , bn when n > 2. (The inequality b2 , b1 can be verified directly 
but all that really matters is that the sequence hbn j is eventually decreasing.)

Condition (ii) is readily verified:

lim
n l `

 bn − lim
n l `

 
n2

n3 1 1
− lim

n l `
 

1
n

1 1
1
n3

− 0

Thus the given series is convergent by the Alternating Series Test. Q

Figure 2 illustrates Example 1 by 
show  ing the graphs of the terms 
an − s21dn21yn and the partial sums  
sn. Notice how the values of sn zigzag 
across the limiting value, which appears 
to be about 0.7. In fact, it can be proved 
that the exact sum of the series is 
ln 2 < 0.693 (see Exercise 36).

0 n

1

!an"

!sn"

FIGURE 2 

Instead of verifying condition (i) of 
the Alternating Series Test by com-
puting a derivative, we could verify that 
bn11 , bn directly by using the tech ni-
que of Solution 1 of Example 11.1.13.
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Estimating Sums
A partial sum sn of any convergent series can be used as an approximation to the total 
sum s, but this is not of much use unless we can estimate the accuracy of the approxima-
tion. The error involved in using s < sn is the remainder Rn − s 2 sn. The next theorem 
says that for series that satisfy the conditions of the Alternating Series Test, the size of the 
error is smaller than bn11, which is the absolute value of the first neglected term.

Alternating Series Estimation Theorem If s − o s21dn21bn, where bn . 0, is 
the sum of an alter nating series that satisfies

(i) bn11 < bn    and    (ii) lim
n l `

 bn − 0

then | Rn | − | s 2 sn | < bn11

You can see geometrically why the 
Alternating Series Estimation Theo-
rem is true by looking at Figure 1 (on 
page 733). Notice that s 2 s4 , b5, 
| s 2 s5 | , b6, and so on. Notice also 
that s lies between any two consecutive 
partial sums.

PROOF We know from the proof of the Alternating Series Test that s lies between 
any two consecutive partial sums sn and sn11. (There we showed that s is larger than 
all the even partial sums. A similar argument shows that s is smaller than all the odd 
sums.) It follows that

 | s 2 sn | < | sn11 2 sn | − bn11 Q

EXAMPLE 4  Find the sum of the series o
`

n−0
 
s21dn

n!
 correct to three decimal places.

SOLUTION We first observe that the series is convergent by the Alternating Series Test 
because

  (i) 
1

sn 1 1d!
−

1
n! sn 1 1d

,
1
n!

 (ii) 0 ,
1
n!

,
1
n

l 0  so 
1
n!

l 0 as n l `

To get a feel for how many terms we need to use in our approximation, let’s write out 
the first few terms of the series:

 s −
1
0!

2
1
1!

1
1
2!

2
1
3!

1
1
4!

2
1
5!

1
1
6!

2
1
7!

1 ∙ ∙ ∙

 − 1 2 1 1 1
2 2 1

6 1 1
24 2 1

120 1 1
720 2 1

5040 1 ∙ ∙ ∙

Notice that b7 − 1
5040 , 1

5000 − 0.0002

and s6 − 1 2 1 1 1
2 2 1

6 1 1
24 2 1

120 1 1
720 < 0.368056

By the Alternating Series Estimation Theorem we know that

| s 2 s6 | < b7 , 0.0002

This error of less than 0.0002 does not affect the third decimal place, so we have 
s < 0.368 correct to three decimal places. Q

In Section 11.10 we will prove that 
ex −o `

n−0 xnyn! for all x, so what we  
have obtained in Example 4 is actually 
an approximation to the number e21.

By definition, 0! − 1.
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 1. (a) What is an alternating series?
 (b)  Under what conditions does an alternating series  

converge?
 (c)  If these conditions are satisfied, what can you say  

about the remainder after n terms?

2–20 Test the series for convergence or divergence.

 2. 2
3 2 2

5 1 2
7 2 2

9 1 2
11 2 ∙ ∙ ∙

 3. 22
5 1 4

6 2 6
7 1 8

8 2 10
9 1 ∙ ∙ ∙

 4. 
1

ln 3
2

1
ln 4

1
1

ln 5
2

1
ln 6

1
1

ln 7
2 ∙ ∙ ∙

 5. o
`

n−1
 
s21dn21

3 1 5n
 6. o

`

n−0
 
s21dn11 

sn 1 1

 7. o
`

n−1
 s21dn 3n 2 1

2n 1 1
 8. o

`

n−1
 s21d n 

n2

n2 1 n 1 1

 9. o
`

n−1
 s21dn e2n 10. o

`

n−1
 s21dn 

sn 

2n 1 3

 11. o
`

n−1
 s21dn11 n2

n3 1 4
 12. o

`

n−1
 s21dn11ne2n

 13. o
`

n−1
 s21dn21e 2yn 14. o

`

n−1
 s21dn21 arctan n

 15. o
`

n−0

 sinsn 1 1
2d"

1 1 sn 
 16. o

`

n−1

 n cos n"

2n

 17. o
`

n−1
 s21dn sinS"

n D 18. o
`

n−1
 s21dn cosS"

n D
 19. o

`

n−1
 s21dn 

n n

n!
 20. o

`

n−1
 s21dn (sn 1 1 2 sn )

21–22 Graph both the sequence of terms and the sequence of 
partial sums on the same screen. Use the graph to make a rough 
estimate of the sum of the series. Then use the Alternating 

;

Series Estimation Theorem to estimate the sum correct to four 
decimal places.

 21. o
`

n−1
 
s20.8dn

n!
 22. o

`

n−1
 s21dn21 n

8n

23–26 Show that the series is convergent. How many terms 
of the series do we need to add in order to find the sum to the 
indicated accuracy?

 23. o
`

n−1
 
s21dn11

n6   s| error | , 0.00005d

 24. o
`

n−1

 (21
3)n

n
  (| error | , 0.0005)

 25. o
`

n−1
 
s21dn21

n2 2n   (| error | , 0.0005)

 26. o
`

n−1
 S2 1

nDn

  (| error | , 0.00005)

27–30 Approximate the sum of the series correct to four decimal 
places.

 27. o
`

n−1
 
s21dn

s2nd!
 28. o

`

n−1
 
s21dn11

n6

 29. o
`

n−1
 s21dn ne22n 30. o

`

n−1
 
s21dn21

n 4 n

 31.  Is the 50th partial sum s50 of the alternating series 
o `

n−1 s21dn21yn an overestimate or an underestimate of the 
total sum? Explain.

32–34 For what values of p is each series convergent?

 32. o
`

n−1
 
s21dn21

n p

 33.  o
`

n−1
 
s21dn

n 1 p
 34. o

`

n−2
 s21dn21 

sln nd p

n

NOTE The rule that the error (in using sn to approximate s) is smaller than the first  
neglected term is, in general, valid only for alternating series that satisfy the conditions 
of the Alternating Series Estimation Theorem. The rule does not apply to other types of 
series.
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 35.  Show that the series o  s21dn21bn, where bn − 1yn if n is odd 
and bn − 1yn2 if n is even, is divergent. Why does the Alter-
nating Series Test not apply?

 36. Use the following steps to show that

o
`

n−1
 
s21dn21

n
− ln 2

Let hn and sn be the partial sums of the harmonic and alter-
nating harmonic series.

 (a) Show that s2n − h2n 2 hn.

 (b) From Exercise 11.3.44 we have

hn 2 ln n l #    as n l `

and therefore

h2n 2 lns2nd l #    as n l `

Use these facts together with part (a) to show that 
s2n l ln 2 as n l `.

Given any series o  an, we can consider the corresponding series

o
`

n−1
 | an | − | a1 | 1 | a2 | 1 | a3 | 1 ∙ ∙ ∙

whose terms are the absolute values of the terms of the original series.

1   Definition A series o  an is called if the series of 
absolute values o  | an | is convergent.

We have convergence tests for series 
with positive terms and for alternating 
series. But what if the signs of the 
terms switch back and forth irregularly? 
We will see in Example 3 that the idea 
of absolute convergence sometimes 
helps in such cases.

Notice that if o  an is a series with positive terms, then | an | − an and so absolute con-
vergence is the same as convergence in this case.

EXAMPLE 1  The series

o
`

n−1
 
s21dn21

n2 − 1 2
1
22 1

1
32 2

1
42 1 ∙ ∙ ∙

is absolutely convergent because

o
`

n−1
 Z s21dn21

n2 Z − o
`

n−1
 

1
n2 − 1 1

1
22 1

1
32 1

1
42 1 ∙ ∙ ∙

is a convergent p-series (p − 2). Q

EXAMPLE 2  We know that the alternating harmonic series

o
`

n−1
 
s21dn21

n
− 1 2

1
2

1
1
3

2
1
4

1 ∙ ∙ ∙

is convergent (see Example 11.5.1), but it is not absolutely convergent because the  
corresponding series of absolute values is

o
`

n−1
 Z s21dn21

n Z − o
`

n−1
 
1
n

− 1 1
1
2

1
1
3

1
1
4

1 ∙ ∙ ∙

which is the harmonic series (p-series with p − 1) and is therefore divergent. Q
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738 CHAPTER 11  Infinite Sequences and Series

2   Definition A series o  an is called  if it is convergent 
but not absolutely convergent.

Example 2 shows that the alternating harmonic series is conditionally convergent. 
Thus it is possible for a series to be convergent but not absolutely convergent. However, 
the next theorem shows that absolute convergence implies convergence.

3   Theorem If a series o  an is absolutely convergent, then it is convergent.

PROOF Observe that the inequality

0 < an 1 | an | < 2 | an |
is true because | an | is either an or 2an. If o  an is absolutely convergent, then o  | an | is
convergent, so o  2 | an | is convergent. Therefore, by the Comparison Test, o  (an 1 | an |) 
is convergent. Then

o  an − o (an 1 | an |) 2 o  | an |

is the difference of two convergent series and is therefore convergent. Q

EXAMPLE 3  Determine whether the series

o
`

n−1
 
cos n

n2 −
cos 1

12 1
cos 2

22 1
cos 3

32 1 ∙ ∙ ∙

is convergent or divergent.

SOLUTION This series has both positive and negative terms, but it is not alternating.  
(The first term is positive, the next three are negative, and the following three are posi-
tive: the signs change irregularly.) We can apply the Comparison Test to the series of 
absolute values

o
`

n−1
 Z cos n

n2 Z − o
`

n−1
 | cos n |

n2

Since | cos n | < 1 for all n, we have

| cos n |
n2 <

1
n2

We know that o  1yn2 is convergent (p-series with p − 2) and therefore o  | cos n |yn2 
is convergent by the Comparison Test. Thus the given series o  scos ndyn2 is absolutely 
convergent and therefore convergent by Theorem 3. Q

The following test is very useful in determining whether a given series is absolutely  
convergent.

0 n

0.5

!an"

!sn"

FIGURE 1 

Figure 1 shows the graphs of the 
terms an and partial sums sn of the 
series in Example 3. Notice that 
the series is not alternating but has 
positive and negative terms.
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The Ratio Test

 (i)  If lim
nl`

 Z an11

an
Z − L , 1, then the series o

`

n−1
 an is absolutely convergent 

  (and therefore convergent).

 (ii) If lim
nl`

 Z an11

an
Z − L . 1 or lim

nl`
 Z an11

an
Z − `, then the series o

`

n−1
 an is

  divergent.

(iii)  If lim
nl`

 Z an11

an
Z − 1, the Ratio Test is inconclusive; that is, no conclusion

 can be drawn about the convergence or divergence of o an.

PROOF
(i) The idea is to compare the given series with a convergent geometric series. Since 

L , 1, we can choose a number r such that L , r , 1. Since

lim
nl`

 Z an11

an
Z − L    and    L , r

the ratio | an11yan | will eventually be less than r; that is, there exists an integer N  
such that

Z an11

an
Z , r whenever n > N 

or, equivalently,

| an11 | , | an | r whenever n > N

Putting n successively equal to N, N 1 1, N 1 2, . . . in (4), we obtain

 | aN11 | , | aN | r

 | aN12 | , | aN11 | r , | aN | r 2

 | aN13 | , | aN12 | r , | aN | r 3

and, in general,

| aN1k | , | aN | r k    for all k > 1

Now the series

o
`

k−1
 | aN | r k − | aN | r 1 | aN | r 2 1 | aN | r 3 1 ∙ ∙ ∙

is convergent because it is a geometric series with 0 , r , 1. So the inequality (5),  
together with the Comparison Test, shows that the series

o
`

n−N11
 | an | − o

`

k−1
 | aN1k | − | aN11 | 1 | aN12 | 1 | aN13 | 1 ∙ ∙ ∙

4

5
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740 CHAPTER 11  Infinite Sequences and Series

is also convergent. It follows that the series o`
n−1 | an | is convergent. (Recall that a finite 

number of terms doesn’t affect convergence.) Therefore o  an is absolutely convergent.
(ii) If | an11yan |l L . 1 or | an11yan |l `, then the ratio | an11yan | will eventually 

be greater than 1; that is, there exists an integer N such that

Z an11

an
Z . 1    whenever n > N

This means that | an11 | . | an | whenever n > N and so

lim
nl`

 an ± 0

Therefore o  an diverges by the Test for Divergence. Q

NOTE Part (iii) of the Ratio Test says that if limn l ` | an11yan | − 1, the test gives no 
information. For instance, for the convergent series o  1yn 2 we have

Z an11

an
Z −

1
sn 1 1d2

1
n2

−
n2

sn 1 1d2 −
1

S1 1
1
nD2

l 1    as n l `

whereas for the divergent series o  1yn we have

Z an11

an
Z −

1
n 1 1

1
n

−
n

n 1 1
−

1

1 1
1
n

l 1    as n l `

Therefore, if limn l ` | an11yan | − 1, the series o an might converge or it might diverge. 
In this case the Ratio Test fails and we must use some other test.

EXAMPLE 4  Test the series o
`

n−1
 s21dn 

n3

3n  for absolute convergence.

SOLUTION We use the Ratio Test with an − s21dnn3y3n :

 Z an11

an
Z −

s21dn11sn 1 1d3

3n11

s21dnn3

3n

 −
sn 1 1d3

3n11 ?
3n

n3

 −
1
3

 S n 1 1
n D3

−
1
3

 S1 1
1
nD3

l 
1
3

, 1

Thus, by the Ratio Test, the given series is absolutely convergent. Q

The Ratio Test is usually conclusive if 
the nth  term of the series contains an 
exponential or a factorial, as we will 
see in Examples 4 and 5.

Estimating Sums
In the last three sections we used 
various methods for estimating the sum 
of a series—the method depended on 
which test was used to prove conver-
gence. What about series for which the 
Ratio Test works? There are two possi- 
bilities: If the series happens to be an 
alternating series, as in Example 4, 
then it is best to use the methods of 
Section 11.5. If the terms are all 
positive, then use the special methods 
explained in Exercise 46.
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EXAMPLE 5  Test the convergence of the series o
`

n−1
 
nn

n!
.

SOLUTION Since the terms an − nnyn! are positive, we don’t need the absolute value 
signs.

 
an11

an
−

sn 1 1dn11

sn 1 1d!
?

n!
nn −

sn 1 1dsn 1 1dn

sn 1 1dn!
?

n!
nn

 − S n 1 1
n Dn

− S1 1
1
nDn

l e as n l `

(see Equation 3.6.6). Since e . 1, the given series is divergent by the Ratio Test. Q

NOTE Although the Ratio Test works in Example 5, an easier method is to use the 
Test for Divergence. Since

an −
nn

n!
−

n ? n ? n ? ∙ ∙ ∙ ? n
1 ? 2 ? 3 ? ∙ ∙ ∙ ? n

> n

it follows that an does not approach 0 as n l `. Therefore the given series is divergent 
by the Test for Divergence.

The following test is convenient to apply when nth powers occur. Its proof is similar 
to the proof of the Ratio Test and is left as Exercise 49.

The Root Test 
 (i)  If lim

nl `
sn |an | − L , 1, then the series o

`

n−1
 an is absolutely convergent 

  (and therefore convergent).

 (ii) If lim
n l `

 sn | an | − L . 1 or lim
n l `

 sn | an | − `, then the series o
`

n−1
 an is

  divergent.

(iii) If lim
n l `

 sn | an | − 1, the Root Test is inconclusive.

If lim n l ` sn | an | − 1, then part (iii) of the Root Test says that the test gives no infor-
mation. The series o an could converge or diverge. (If L − 1 in the Ratio Test, don’t try 
the Root Test because L will again be 1. And if L − 1 in the Root Test, don’t try the Ratio 
Test because it will fail too.)

EXAMPLE 6 Test the convergence of the series o
`

n−1
 S 2n 1 3

3n 1 2Dn

.

SOLUTION

 an − S 2n 1 3
3n 1 2Dn

 sn | an | −
2n 1 3
3n 1 2

−
2 1

3
n

3 1
2
n

l 
2
3

, 1

Thus the given series is absolutely convergent (and therefore convergent) by the Root 
Test. Q
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742 CHAPTER 11  Infinite Sequences and Series

Rearrangements
The question of whether a given convergent series is absolutely convergent or condi-
tionally convergent has a bearing on the question of whether infinite sums behave like 
finite sums.

If we rearrange the order of the terms in a finite sum, then of course the value of the 
sum remains unchanged. But this is not always the case for an infinite series. By a rear-

of an infinite series o  an we mean a series obtained by simply changing the 
order of the terms. For instance, a rearrangement of o  an could start as follows:

a1 1 a2 1 a5 1 a3 1 a4 1 a15 1 a6 1 a7 1 a20 1 ∙ ∙ ∙

It turns out that

 if o  an is an absolutely convergent series with sum s,
 then any rearrangement of o  an has the same sum s.

However, any conditionally convergent series can be rearranged to give a different sum. 
To illustrate this fact let’s consider the alternating harmonic series

1 2 1
2 1 1

3 2 1
4 1 1

5 2 1
6 1 1

7 2 1
8 1 ∙ ∙ ∙ − ln 2

(See Exercise 11.5.36.) If we multiply this series by 12, we get

1
2 2 1

4 1 1
6 2 1

8 1 ∙ ∙ ∙ − 1
2 ln 2

Inserting zeros between the terms of this series, we have

0 1 1
2 1 0 2 1

4 1 0 1 1
6 1 0 2 1

8 1 ∙ ∙ ∙ − 1
2 ln 2

Now we add the series in Equations 6 and 7 using Theorem 11.2.8:

1 1 1
3 2 1

2 1 1
5 1 1

7 2 1
4 1 ∙ ∙ ∙ − 3

2 ln 2

Notice that the series in (8) contains the same terms as in (6) but rearranged so that one 
neg ative term occurs after each pair of positive terms. The sums of these series, however, 
are different. In fact, Riemann proved that

if o  an is a conditionally convergent series and r is any real number what- 
soever, then there is a rearrangement of o  an that has a sum equal to r.

A proof of this fact is outlined in Exercise 52.

6

Adding these zeros does not affect 
the sum of the series; each term in the 
sequence of partial sums is repeated,  
but the limit is the same.

7

8

 1.  What can you say about the series o  an in each of the following 
cases?

 (a) lim
nl`

 Z an11

an
Z − 8 (b) lim

n l `
 Z an11

an
Z − 0.8

 (c) lim
n l `

 Z  an11

an
Z − 1

2–6 Determine whether the series is absolutely convergent or 
conditionally convergent.

 2. o
`

n−1
 
s21dn21

sn 

 3. o
`

n−0
 

s21dn

5n 1 1
 4. o

`

n−1
 

s21dn

n3 1 1
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 33. o
`

n−1
 

s29dn

n10 n11  34. o
`

n−1
 

n52n

10 n11

 35. o
`

n−2
 S n

ln nDn

 36. o
`

n−1
 
sinsn!y6d
1 1 nsn 

 37. o
`

n−1
 

s21dn arctan n
n2  38. o

`

n−2
 
s21dn

n ln n

 39.   The terms of a series are defined recursively by the equations

a1 − 2      an11 −
5n 1 1
4n 1 3

 an

 Determine whether o an converges or diverges.

 40.  A series o an is defined by the equations

a1 − 1      an11 −
2 1 cos n

sn 
 an

 Determine whether o an converges or diverges.

41–42 Let hbnj be a sequence of positive numbers that converges  
to 12 . Determine whether the given series is absolutely convergent.

 41.  o
`

n−1
 
bn

n cos n!

n
 42.  o

`

n−1
 

s21dn n!
nnb1b2 b3 ∙ ∙ ∙ bn

 43.   For which of the following series is the Ratio Test inconclu-
sive (that is, it fails to give a definite answer)?

 (a) o
`

n−1
 

1
n3  (b) o

`

n−1
 

n
2n

 (c) o
`

n−1
 
s23dn21

sn 
 (d) o

`

n−1
 

sn 

1 1 n2

 44.   For which positive integers k is the following series  
convergent?

o
`

n−1
 
sn!d2

sknd!

 45.  (a) Show that o `
n−0 x nyn! converges for all x.

 (b) Deduce that limn l ` x nyn! − 0 for all x.

 46.   Let o an be a series with positive terms and let rn − an11yan .  
Suppose that limn l ` rn − L , 1, so o an converges by the 
Ratio Test. As usual, we let Rn be the remainder after n terms, 
that is,

Rn − an11 1 an12 1 an13 1 ∙ ∙ ∙

 (a)  If hrn j is a decreasing sequence and rn11 , 1, show, by 
summing a geometric series, that

Rn <
an11

1 2 rn11

 (b) If hrn j is an increasing sequence, show that

Rn <
an11

1 2 L

 5. o
`

n−1
 
sin n

2n  6. o
`

n−1
 s21dn21 

n
n2 1 4

7–24 Use the Ratio Test to determine whether the series is 
convergent or divergent.

 7. o
`

n−1
 

n
5n  8. o

`

n−1
 
s22dn

n2

 9. o
`

n−1
 s21dn21  3n

2nn3  10. o
`

n−0
 

s23dn

s2n 1 1d!

 11. o
`

k−1
 

1
k!

 12. o
`

k−1
 ke2k

 13. o
`

n−1
 

10n

sn 1 1d42n11  14. o
`

n−1
 

n!
100 n

 15. o
`

n−1
 

n! n

s23dn21  16. o
`

n−1
 

n10

s210d n11

 17. o
`

n−1
 
cossn!y3d

n!
 18. o

`

n−1
 
n!
n n

 19. o
`

n−1
 
n100100 n

n!
 20. o

`

n−1
 
s2nd!
sn!d2

 21. 1 2
2!

1 ? 3
1

3!
1 ? 3 ? 5

2
4!

1 ? 3 ? 5 ? 7
1 ∙ ∙ ∙

    1 s21dn21 n!
1 ? 3 ? 5 ? ∙ ∙ ∙ ? s2n 2 1d

1 ∙ ∙ ∙

 22. 
2
3

1
2 ? 5
3 ? 5

1
2 ? 5 ? 8
3 ? 5 ? 7

1
2 ? 5 ? 8 ? 11
3 ? 5 ? 7 ? 9

1 ∙ ∙ ∙

 23. o
`

n−1
 
2 ? 4 ? 6 ? ∙ ∙ ∙ ? s2nd

n!

 24. o
`

n−1
 s21dn 

2n n!
5 ? 8 ? 11 ? ∙ ∙ ∙ ? s3n 1 2d

25–30 Use the Root Test to determine whether the series is 
convergent or divergent.

 25. o
`

n−1
 S n2 1 1

2n2 1 1Dn

 26. o
`

n−1
 
s22dn

n n

 27. o
`

n−2
 
s21dn21

sln ndn  28. o
`

n−1
 S 22n

n 1 1D5n

 29. o
`

n−1
 S1 1

1
nDn2

 30. o
`

n−0
 sarctan ndn

31–38 Use any test to determine whether the series is absolutely 
convergent, conditionally convergent, or divergent.

 31. o
`

n−2
 
s21dn

ln n
 32. o

`

n−1
 S 1 2 n

2 1 3nDn
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744 CHAPTER 11  Infinite Sequences and Series

  51.   Given any series o an, we define a series o an
1 whose terms are 

all the positive terms of o an and a series o an2 whose terms  
are all the negative terms of o an. To be specific, we let

an1 −
an 1 | an |

2
an2 −

an 2 | an |
2

 Notice that if an . 0, then an
1− an and an2 − 0, whereas if 

an , 0, then an2− an and an
1 − 0.

 (a)  If o an is absolutely convergent, show that both of the 
series o an

1 and o an2 are convergent.
 (b)  If o an is conditionally convergent, show that both of the 

series o an
1 and o an2 are divergent.

 52.   Prove that if o an is a conditionally convergent series and  
r is any real number, then there is a rearrangement of o an  
whose sum is r. [Hints: Use the notation of Exercise 51.
  Take just enough positive terms an1 so that their sum is greater 
than r. Then add just enough negative terms an2 so that the 
cumulative sum is less than r. Continue in this manner and use 
Theorem 11.2.6.]

 53.  Suppose the series o an is conditionally convergent.
 (a) Prove that the series o n2an is divergent.
 (b)  Conditional convergence of o an is not enough to deter-

mine whether o nan is convergent. Show this by giving an 
example of a conditionally convergent series such that 
o nan converges and an example where o nan diverges.

 47.  (a)  Find the partial sum s5 of the series o `
n−1 1ysn2nd. Use Exer-

cise 46 to estimate the error in using s5 as an approximation 
to the sum of the series.

 (b)  Find a value of n so that sn is within 0.00005 of the sum. 
Use this value of n to approximate the sum of the series.

 48.   Use the sum of the first 10 terms to approximate the sum of  
the series

o
`

n−1
 

n
2n

 Use Exercise 46 to estimate the error.

 49.   Prove the Root Test. [Hint for part (i): Take any number r such 
that L , r , 1 and use the fact that there is an integer N such 
that sn | an | , r whenever n > N.]

 50.   Around 1910, the Indian mathematician Srinivasa Ramanujan 
discovered the formula

1
"

−
2s2 

9801
 o

`

n−0
 
s4nd!s1103 1 26390nd

sn!d4 3964n

  William Gosper used this series in 1985 to compute the first 
17 million digits of ".

 (a)  Verify that the series is convergent.
 (b)  How many correct decimal places of " do you get if you 

use just the first term of the series? What if you use two 
terms?

We now have several ways of testing a series for convergence or divergence; the problem 
is  to decide which test to use on which series. In this respect, testing series is similar 
to integrating functions. Again there are no hard and fast rules about which test to apply 
to a given series, but you may find the following advice of some use.

It is not wise to apply a list of the tests in a specific order until one finally works. That 
would be a waste of time and effort. Instead, as with integration, the main strategy is to 
classify the series according to its form.

 If the series is of the form o1ynp, it is a p-series, which we know to be conver-
gent if p . 1 and divergent if p < 1.

If the series has the form o  ar n21 or o  ar n, it is a geometric series, which con-
verges if | r | , 1 and diverges if | r | > 1. Some preliminary algebraic manipula-
tion may be required to bring the series into this form.

If the series has a form that is similar to a p-series or a geometric series, then 
one of the comparison tests should be considered. In particular, if an is a rational 
function or an algebraic function of n (involving roots of polynomials), then the 
series should be compared with a p-series. Notice that most of the series  
in Exercises 11.4 have this form. (The value of p should be chosen as in Sec- 
 tion 11.4 by keeping only the highest powers of n in the numerator and denomi-
nator.) The comparison tests apply only to series with positive terms, but if o  an 
has some negative terms, then we can apply the Comparison Test to o| an | and 
test for absolute convergence.
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If you can see at a glance that lim n l ` an ± 0, then the Test for Divergence 
should be used.

 If the series is of the form o  s21dn21bn or o  s21dnbn, then the Alternating Series 
Test is an obvious possibility.

Series that involve factorials or other products (including a constant raised to the 
nth power) are often conveniently tested using the Ratio Test. Bear in mind that 
| an11yan |l 1 as n l ` for all p-series and therefore all rational or algebraic 
functions of n. Thus the Ratio Test should not be used for such series.

If an is of the form sbn dn, then the Root Test may be useful.

If an − f snd, where y`
1  f sxd dx is easily evaluated, then the Integral Test is effec-

tive (assuming the hypotheses of this test are satisfied).

In the following examples we don’t work out all the details but simply indicate which 
tests should be used.

EXAMPLE 1  o
`

n−1
 

n 2 1
2n 1 1

Since an l 12 ± 0 as n l `, we should use the Test for Divergence. Q

EXAMPLE 2  o
`

n−1
 

sn3 1 1 

3n3 1 4n2 1 2

Since an is an algebraic function of n, we compare the given series with a p-series. The 
comparison series for the Limit Comparison Test is o  bn, where

 bn −
sn3 

3n3
−

n3y2

3n3
−

1
3n3y2

 Q

EXAMPLE 3  o
`

n−1
 ne2n2

Since the integral y`
1  xe2x2 dx is easily evaluated, we use the Integral Test. The Ratio 

Test also works. Q

EXAMPLE 4  o
`

n−1
 s21dn 

n3

n4 1 1

Since the series is alternating, we use the Alternating Series Test. Q

EXAMPLE 5  o
`

k−1
 
2k

k!

Since the series involves k!, we use the Ratio Test. Q

EXAMPLE 6 o
`

n−1
 

1
2 1 3n

Since the series is closely related to the geometric series o  1y3n, we use the Com- 
parison Test. Q
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746 CHAPTER 11  Infinite Sequences and Series

A power series is a series of the form

o
`

n−0
 cn xn − c0 1 c1 x 1 c2 x 2 1 c3 x 3 1 ∙ ∙ ∙

where x is a variable and the cn’s are constants called the coefficients of the series. For each 
fixed x, the series (1) is a series of constants that we can test for convergence or divergence.  
A power series may converge for some values of x and diverge for other values of x. The 
sum of the series is a function

f sxd − c0 1 c1 x 1 c2 x 2 1 ∙ ∙ ∙ 1 cn xn 1 ∙ ∙ ∙

whose domain is the set of all x for which the series converges. Notice that f  resembles 
a polynomial. The only difference is that f  has infinitely many terms.

For instance, if we take cn − 1 for all n, the power series becomes the geometric series

o
`

n−0
 xn − 1 1 x 1 x 2 1 ∙ ∙ ∙ 1 xn 1 ∙ ∙ ∙

which converges when 21 , x , 1 and diverges when | x | > 1. (See Equation 11.2.5.)

1

Trigonometric Series
A power series is a series in which 
each term is a power function. A 
trigonometric series

o
`

n−0
 san cos nx 1 bn sin nxd

is a series whose terms are trigono-
metric functions. This type of series 
is discussed on the website

www.stewartcalculus.com
Click on Additional Topics and then 
on Fourier Series.

2

1–38 Test the series for convergence or divergence.

 1. o
`

n−1
 
n2 2 1
n3 1 1

 2. o
`

n−1
 

n 2 1
n3 1 1

 3. o
`

n−1
 s21dn 

n2 2 1
n3 1 1

 4. o
`

n−1
 s21dn 

n2 2 1
n2 1 1

 5. o
`

n−1
 
en

n2  6. o
`

n−1
 

n2n

s1 1 nd3n

 7. o
`

n−2
 

1
nsln n 

 8. o
`

n−1
 s21dn21 

n4

4n

  9. o
`

n−0
 s21dn 

! 2n

s2nd!
 10. o

`

n−1
 n2e2n3

 11. o
`

n−1
 S 1

n3 1
1
3nD 12. o

`

k−1
 

1
ksk 2 1 1 

 13. o
`

n−1
 
3n n2

n!
 14. o

`

n−1
 

sin 2n
1 1 2n

 15. o
`

k−1
 
2 k213k11

k k
 16. o

`

n−1
 
sn4 1 1 

n3 1 n

 17. o
`

n−1
 
1 ? 3 ? 5 ? ∙ ∙ ∙ ? s2n 2 1d
2 ? 5 ? 8 ? ∙ ∙ ∙ ? s3n 2 1d

 18. o
`

n−2
 
s21dn21

sn 2 1

 19. o
`

n−1
 s21dn 

ln n

sn 
 20. o

`

k−1
 

s3 k 2 1

k (sk 1 1)

 21. o
`

n−1
 s21dn coss1yn2d 22. o

`

k−1
 

1
2 1 sin k

 23. o
`

n−1
 tans1ynd 24. o

`

n−1
 n sins1ynd

 25. o
`

n−1
 

n!
e n2  26. o

`

n−1
 
n2 1 1

5n

 27. o
`

k−1
 

k ln k
sk 1 1d3  28. o

`

n−1
 
e 1yn

n2

 29. o
`

n−1
 

s21dn

cosh n
 30. o

`

j−1
 s21d j 

sj  

j 1 5

 31. o
`

k−1
 

5 k

3 k 1 4 k  32. o
`

n−1
 
sn!dn

n4n

 33. o
`

n−1
 S n

n 1 1Dn2

 34. o
`

n−1
 

1
n 1 n cos2n

 35. o
`

n−1
 

1
n111yn  36. o

`

n−2
 

1
sln ndln n

 37. o
`

n−1
 ssn 2 2 1dn

 38. o
`

n−1
 ssn 2 2 1d
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 SECTION 11.8  Power Series 747

In fact if we put x − 1
2 in the geometric series (2) we get the convergent series

o
`

n−0
 S 1

2Dn

− 1 1
1
2

1
1
4

1
1
8

1
1
16

1 ∙ ∙ ∙

but if we put x − 2 in (2) we get the divergent series

o
`

n−0
 2n − 1 1 2 1 4 1 8 1 16 1 ∙ ∙ ∙

More generally, a series of the form

o
`

n−0
 cnsx 2 adn − c0 1 c1sx 2 ad 1 c2sx 2 ad2 1 ∙ ∙ ∙

is called a power series in sx 2 ad or a power series centered at a or a power series 
about a. Notice that in writing out the term corresponding to n − 0 in Equations 1 and 3 
we have adopted the convention that sx 2 ad0 − 1 even when x − a. Notice also that 
when x − a, all of the terms are 0 for n > 1 and so the power series (3) always converges 
when x − a.

EXAMPLE 1 For what values of x is the series o
`

n−0
 n!xn convergent?

SOLUTION We use the Ratio Test. If we let an, as usual, denote the nth term of the 
series, then an − n!xn. If x ± 0, we have

 lim
nl`

 Z an11

an
Z − lim

nl`
 Z sn 1 1d!xn11

n!xn Z − lim
nl`

 sn 1 1d | x | − `

By the Ratio Test, the series diverges when x ± 0. Thus the given series converges only 
when x − 0. Q

EXAMPLE 2  For what values of x does the series o
`

n−1
 
sx 2 3dn

n
 converge?

SOLUTION Let an − sx 2 3dnyn. Then

 Z an11

an
Z − Z sx 2 3dn11

n 1 1
?

n
sx 2 3dn Z

 −
1

1 1
1
n

| x 2 3 | l | x 2 3 | as n l `

By the Ratio Test, the given series is absolutely convergent, and therefore convergent, 
when | x 2 3 | , 1 and divergent when | x 2 3 | . 1. Now

| x 2 3 | , 1  &?  21 , x 2 3 , 1  &?  2 , x , 4

so the series converges when 2 , x , 4 and diverges when x , 2 or x . 4.
The Ratio Test gives no information when | x 2 3 | − 1 so we must consider x − 2 

and x − 4 separately. If we put x − 4 in the series, it becomes o  1yn, the harmonic 
series, which is divergent. If x − 2, the series is o  s21dnyn, which converges by the 
Alternating Series Test. Thus the given power series converges for 2 < x , 4. Q

3

Notice that

sn 1 1d! − sn 1 1dnsn 2 1d ?  . . . ? 3 ? 2 ? 1

 − sn 1 1dn!
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748 CHAPTER 11  Infinite Sequences and Series

We will see that the main use of a power series is that it provides a way to represent 
some of the most important functions that arise in mathematics, physics, and chemistry. 
In particular, the sum of the power series in the next example is called a Bessel function, 
after the German astronomer Friedrich Bessel (1784–1846), and the function given in 
Exercise 35 is another example of a Bessel function. In fact, these functions first arose 
when Bessel solved Kepler’s equation for describing planetary motion. Since that time, 
these functions have been applied in many different physical situations, including the 
temperature distri bution in a circular plate and the shape of a vibrating drumhead.

EXAMPLE 3 Find the domain of the Bessel function of order 0 defined by

J0sxd − o
`

n−0
 
s21dnx 2n

22nsn!d2

SOLUTION Let an − s21dnx 2nyf22nsn!d2g. Then

 Z an11

an
Z − Z s21dn11x 2sn11d

22sn11dfsn 1 1d!g2 ?
22nsn!d2

s21dnx 2n Z
 −

x 2n12

22n12sn 1 1d2sn!d2 ?
22nsn!d2

x 2n

 −
x 2

4sn 1 1d2 l 0 , 1 for all x

Thus, by the Ratio Test, the given series converges for all values of x. In other words, 
the domain of the Bessel function J0 is s2`, `d − R. Q

Recall that the sum of a series is equal to the limit of the sequence of partial sums. So 
when we define the Bessel function in Example 3 as the sum of a series we mean that, 
for every real number x,

J0sxd − lim
nl`

 snsxd    where    snsxd − o
n

i−0
 
s21dix 2i

22isi!d2

The first few partial sums are

 s0sxd − 1

 s1sxd − 1 2
x 2

4

 s2sxd − 1 2
x 2

4
1

x 4

64

 s3sxd − 1 2
x 2

4
1

x 4

64
2

x 6

2304

 s4sxd − 1 2
x 2

4
1

x 4

64
2

x 6

2304
1

x 8

147,456

Figure 1 shows the graphs of these partial sums, which are polynomials. They are all 
approximations to the function J0, but notice that the approximations become better when 
more terms are included. Figure 2 shows a more complete graph of the Bessel function.

s¢

0 x

1

y

1

s¡

s™

s£

s¸

J¸

FIGURE 1  
Partial sums of the Bessel function J0

Membrane courtesy of National Film Board of Canada

Na
tio
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an
ad

a

Notice how closely the computer-
generated model (which involves 
Bessel functions and cosine functions) 
matches the photograph of a vibrating 
rubber membrane.
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 SECTION 11.8  Power Series 749

For the power series that we have looked at so far, the set of values of x for which 
the series is convergent has always turned out to be an interval [a finite interval for the 
geometric series and the series in Example 2, the infinite interval s2`, `d in Example 3, 
and a collapsed interval f0, 0g − h0j in Example 1]. The following theorem, proved in 
Appendix F, says that this is true in general.

4   Theorem For a given power series o
`

n−0
 cnsx 2 adn, there are only three  

possibilities:

 (i) The series converges only when x − a.

 (ii) The series converges for all x.

(iii)  There is a positive number R such that the series converges if | x 2 a | , R 
and diverges if | x 2 a | . R.

The number R in case (iii) is called the radius of convergence of the power series. 
By convention, the radius of convergence is R − 0 in case (i) and R − ` in case (ii). The 
interval of convergence of a power series is the interval that consists of all values of x 
for which the series converges. In case (i) the interval consists of just a single point a. 
In case (ii) the interval is s2`, `d. In case (iii) note that the inequality | x 2 a | , R 
can be rewritten as a 2 R , x , a 1 R. When x is an endpoint of the interval, that is, 
x − a 6 R, anything can happen—the series might converge at one or both endpoints 
or it might diverge at both endpoints. Thus in case (iii) there are four possibilities for the 
interval of convergence:

sa 2 R, a 1 Rd sa 2 R, a 1 Rg fa 2 R, a 1 Rd fa 2 R, a 1 Rg

The situation is illustrated in Figure 3.

a-R a a+R

convergence for |x-a|<R

divergence for |x-a|>R

We summarize here the radius and interval of convergence for each of the examples 
already considered in this section.

Series Radius of convergence Interval of convergence

Geometric series o
`

n−0
 x n R − 1 s21, 1d

Example 1 o
`

n−0
 n! x n R − 0 h0j

Example 2 o
`

n−1
 
sx 2 3dn

n
R − 1 f2, 4d

Example 3 o
`

n−0
 
s21dn x 2n

22nsn!d2 R − ` s2`, `d

0 x

1

y

10_10

y=J¸(x)

FIGURE 2

FIGURE 3
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750 CHAPTER 11  Infinite Sequences and Series

In general, the Ratio Test (or sometimes the Root Test) should be used to determine 
the radius of convergence R. The Ratio and Root Tests always fail when x is an endpoint 
of the interval of convergence, so the endpoints must be checked with some other test.

EXAMPLE 4  Find the radius of convergence and interval of convergence of the series

o
`

n−0
 
s23dnxn

sn 1 1

SOLUTION Let an − s23dnxnysn 1 1. Then

 Z an11

an
Z − Z s23dn11xn11

sn 1 2 
?

sn 1 1 

s23dnxn Z − Z 23xÎn 1 1
n 1 2 Z

 − 3Î 1 1 s1ynd
1 1 s2ynd  | x | l 3 | x | as n l `

By the Ratio Test, the given series converges if 3 | x | , 1 and diverges if 3 | x | . 1.
Thus it converges if | x | , 1

3 and diverges if | x | . 1
3. This means that the radius of 

convergence is R − 1
3.

We know the series converges in the interval s21
3 , 13 d, but we must now test for con-

vergence at the endpoints of this interval. If x − 21
3, the series becomes

o
`

n−0
 
s23dn (21

3)n

sn 1 1 − o
`

n−0
 

1

sn 1 1 −
1

s1 1
1

s2 1
1

s3 1
1

s4 1 ∙ ∙ ∙

which diverges. (Use the Integral Test or simply observe that it is a p-series with 
p − 1

2 , 1.) If x − 1
3, the series is

o
`

n−0
 
s23dn (1

3)n

sn 1 1 − o
`

n−0
 

s21dn

sn 1 1 

which converges by the Alternating Series Test. Therefore the given power series con-
verges when 21

3 , x < 1
3, so the interval of convergence is s21

3, 13 g. Q

EXAMPLE 5  Find the radius of convergence and interval of convergence of the series

o
`

n−0
 
nsx 1 2dn

3n11

SOLUTION If an − nsx 1 2dny3n11, then

 Z an11

an
Z − Z sn 1 1dsx 1 2dn11

3n12 ?
3n11

nsx 1 2dn Z
 − S1 1

1
nD | x 1 2 |

3
l | x 1 2 |

3
as n l `

Using the Ratio Test, we see that the series converges if | x 1 2 |y3 , 1 and it diverges 
if | x 1 2 |y3 . 1. So it converges if | x 1 2 | , 3 and diverges if | x 1 2 | . 3. Thus 
the radius of convergence is R − 3.
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 SECTION 11.8  Power Series 751

The inequality | x 1 2 | , 3 can be written as 25 , x , 1, so we test the series at 
the endpoints 25 and 1. When x − 25, the series is

o
`

n−0
 
ns23dn

3n11 − 1
3 o

`

n−0
 s21dnn

which diverges by the Test for Divergence [s21dnn doesn’t converge to 0]. When  
x − 1, the series is

o
`

n−0
 
ns3dn

3n11 − 1
3 o

`

n−0
 n

which also diverges by the Test for Divergence. Thus the series converges only when 
25 , x , 1, so the interval of convergence is s25, 1d. Q

 1. What is a power series?

 2. (a)  What is the radius of convergence of a power series?  
How do you find it?

 (b)  What is the interval of convergence of a power series?  
How do you find it?

3–28 Find the radius of convergence and interval of convergence 
of the series.

 3. o
`

n−1
 s21dnnx n 4. o

`

n−1
 
s21dnx n

s3 n 

 5. o
`

n−1
 

x n

2n 2 1
 6. o

`

n−1
 
s21dnx n

n2

 7. o
`

n−0
 
x n

n!
 8. o

`

n−1
 n nx n

 9. o
`

n−1
 

x n

n4 4 n  10. o
`

n−1
 2n n2 x n

 11. o
`

n−1
 
s21dn 4n

sn 
 x n 12. o

`

n−1
 
s21dn21

n5n  x n

 13. o
`

n−1
 

n
2nsn2 1 1d

 x n 14. o
`

n−1
 
x 2n

n!

 15. o
`

n−0
 
sx 2 2dn

n2 1 1
 16. o

`

n−1
 

s21d n

s2n 2 1d2n  sx 2 1dn

 17. o
`

n−2
 
sx 1 2dn

2n ln n
 18. o

`

n−1
 
sn 

8n  sx 1 6dn

 19. o
`

n−1
 
sx 2 2dn

n n  20. o
`

n−1
 
s2x 2 1dn

5nsn 

 21. o
`

n−1
 

n
b n  sx 2 adn,  b . 0

 22. o
`

n−2
 

b n

ln n
sx 2 adn,  b . 0

 23. o
`

n−1
 n!s2x 2 1dn 24. o

`

n−1
 

n 2 x n

2 ? 4 ? 6 ? ∙ ∙ ∙ ? s2nd

 25. o
`

n−1
 
s5x 2 4dn

n3  26. o
`

n−2
 

x 2n

nsln nd2

 27. o
`

n−1
 

x n

1 ? 3 ? 5 ? ∙ ∙ ∙ ? s2n 2 1d

 28. o
`

n−1
 

n!x n

1 ? 3 ? 5 ? ∙ ∙ ∙ ? s2n 2 1d

 29.   If o `
n−0 cn 4n is convergent, can we conclude that each of the 

following series is convergent?

 (a) o
`

n−0
 cns22dn (b) o

`

n−0
 cns24dn

 30.   Suppose that o `
n−0 cn x n converges when x − 24 and diverges 

when x − 6. What can be said about the convergence or diver-
gence of the following series?

 (a) o
`

n−0
 cn (b) o

`

n−0
 cn 8n

 (c) o
`

n−0
 cns23dn (d) o

`

n−0
 s21dncn 9n

 31.   If k is a positive integer, find the radius of convergence of  
the series

o
`

n−0
 
sn!dk

sknd!
 x n
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752 CHAPTER 11  Infinite Sequences and Series

In this section we learn how to represent certain types of functions as sums of power 
series by manipulating geometric series or by differentiating or integrating such a series. 
You might wonder why we would ever want to express a known function as a sum of 
infinitely many terms. We will see later that this strategy is useful for integrating func-
tions that don’t have elementary antiderivatives, for solving differential equations, and 
for approximating functions by polynomials. (Scientists do this to simplify the expres-
sions they deal with; computer scientists do this to represent functions on calculators and 
computers.)

We start with an equation that we have seen before:

1
1 2 x

− 1 1 x 1 x 2 1 x 3 1 ∙ ∙ ∙ − o
`

n−0
 xn    | x | , 1

We first encountered this equation in Example 11.2.7, where we obtained it by observing 
that the series is a geometric series with a − 1 and r − x. But here our point of view is 
different. We now regard Equation 1 as expressing the function f sxd − 1ys1 2 xd as a 
sum of a power series.

1

 32.   Let p and q be real numbers with p , q. Find a power  
series whose interval of convergence is 

 (a) sp, qd (b) sp, qg (c) fp, qd (d) fp, qg

 33.   Is it possible to find a power series whose interval of  
convergence is f0, `d? Explain.

 34.   Graph the first several partial sums snsxd of the series  
o `

n−0 x n, together with the sum function f sxd − 1ys1 2 xd, 
on a common screen. On what interval do these partial sums 
appear to be converging to f sxd?

 35.  The function J1 defined by

J1sxd − o
`

n−0
 

s21dnx 2n11

n!sn 1 1d!22n11

is called the Bessel function of order 1.
 (a) Find its domain.
 (b)  Graph the first several partial sums on a common screen.
 (c)  If your CAS has built-in Bessel functions, graph J1 

on the same screen as the partial sums in part (b) and 
observe how the partial sums approximate J1.

 36.  The function A defined by

Asxd − 1 1
x 3

2 ∙ 3
1

x 6

2  ∙  3  ∙  5  ∙  6
1

x 9

2 ∙ 3 ∙ 5 ∙ 6 ∙ 8 ∙ 9
1 ∙ ∙ ∙

is called an Airy function after the English mathematician  
and astronomer Sir George Airy (1801–1892).

 (a) Find the domain of the Airy function.
 (b)  Graph the first several partial sums on a common screen.

;

;
CAS

;

 (c)  If your CAS has built-in Airy functions, graph A on the 
same screen as the partial sums in part (b) and observe 
how the partial sums approximate A.

 37.  A function f  is defined by

f sxd − 1 1 2x 1 x 2 1 2x 3 1 x 4 1 ∙ ∙ ∙

that is, its coefficients are c2n − 1 and c2n11 − 2 for all  
n > 0. Find the interval of convergence of the series and 
find an explicit formula for f sxd.

 38.   If f sxd − o `
n−0 cn x n, where cn14 − cn for all n > 0, find the 

interval of convergence of the series and a formula for f sxd.

 39.   Show that if lim n l ` sn | cn | − c, where c ± 0, then 
the radius of convergence of the power series o  cn x n is 
R − 1yc.

 40.   Suppose that the power series o  cnsx 2 ad n satisfies 
cn ± 0 for all n. Show that if lim n l ` | cnycn11 | exists, then 
it is equal to the radius of convergence of the power series.

 41.   Suppose the series o  cn x n has radius of convergence 2 and 
the series o  dn x n has radius of convergence 3. What is the 
radius of convergence of the series o  scn 1 dndx n?

 42.   Suppose that the radius of convergence of the power series 
o  cn x n is R. What is the radius of convergence of the power 
series o  cn x 2n?

CAS
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EXAMPLE 1  Express 1ys1 1 x 2 d as the sum of a power series and find the interval of 
convergence.

SOLUTION Replacing x by 2x 2 in Equation 1, we have

 
1

1 1 x 2 −
1

1 2 s2x 2 d
− o

`

n−0
 s2x 2 dn

 − o
`

n−0
 s21dnx 2n − 1 2 x 2 1 x 4 2 x 6 1 x 8 2 ∙ ∙ ∙

Because this is a geometric series, it converges when | 2x 2 | , 1, that is, x 2 , 1, or 
| x | , 1. Therefore the interval of convergence is s21, 1d. (Of course, we could have 
determined the radius of convergence by applying the Ratio Test, but that much work is 
unnecessary here.) Q

EXAMPLE 2  Find a power series representation for 1ysx 1 2d.

SOLUTION In order to put this function in the form of the left side of Equation 1, we 
first factor a 2 from the denominator:

 
1

2 1 x
−

1

2S1 1
x
2D

−
1

2F1 2 S2
x
2DG

 −
1
2

 o
`

n−0
 S2

x
2D

n

− o
`

n−0
 
s21dn

2n11  xn

This series converges when | 2xy2 | , 1, that is, | x | , 2. So the interval of conver-
gence is s22, 2d. Q

EXAMPLE 3  Find a power series representation of x 3ysx 1 2d.

SOLUTION Since this function is just x 3 times the function in Example 2, all we have to 
do is to multiply that series by x 3:

 
x 3

x 1 2
− x 3 ?

1
x 1 2

− x 3 o
`

n−0
 
s21dn

2n11  xn − o
`

n−0
 
s21dn

2n11  xn13

 − 1
2 x 3 2 1

4 x 4 1 1
8 x 5 2 1

16 x 6 1 ∙ ∙ ∙

A geometric illustration of Equation 1 
is shown in Figure 1. Because the sum 
of a series is the limit of the sequence 
of partial sums, we have

1
1 2 x

− lim
n l `

 snsxd

where

snsxd − 1 1 x 1 x 2 1 ∙ ∙ ∙ 1 x n

is the n th partial sum. Notice that as n  
increases, snsxd becomes a better approx-
imation to f sxd for 21 , x , 1.

It’s legitimate to move x 3 across the 
sigma sign because it doesn’t depend 
on n. [Use Theorem 11.2.8(i) with 
c − x 3.]

FIGURE 1 f sxd −
1

1 2 x
 and some partial sums
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754 CHAPTER 11  Infinite Sequences and Series

Another way of writing this series is as follows:

x 3

x 1 2
− o

`

n−3
 
s21dn21

2n22  xn 

As in Example 2, the interval of convergence is s22, 2d. Q

Differentiation and Integration of Power Series
The sum of a power series is a function f sxd − o`

n−0 cnsx 2 adn whose domain is the 
interval of convergence of the series. We would like to be able to differentiate and inte-
grate such functions, and the following theorem (which we won’t prove) says that we 
can do so by dif ferentiating or integrating each individual term in the series, just as we 
would for a polynomial. This is called term-by-term differentiation and integration.

2   Theorem If the power series o  cnsx 2 adn has radius of convergence  
R . 0, then the function f  defined by

f sxd − c0 1 c1sx 2 ad 1 c2sx 2 ad2 1 ∙ ∙ ∙ − o
`

n−0
 cnsx 2 adn

is differentiable (and therefore continuous) on the interval sa 2 R, a 1 Rd and

 (i) f 9sxd − c1 1 2c2sx 2 ad 1 3c3sx 2 ad2 1 ∙ ∙ ∙ − o
`

n−1
 ncnsx 2 adn21

 (ii) y f sxd dx − C 1 c0sx 2 ad 1 c1 
sx 2 ad2

2
1 c2 

sx 2 ad3

3
1 ∙ ∙ ∙

− C 1 o
`

n−0
 cn 

sx 2 adn11

n 1 1

The radii of convergence of the power series in Equations (i) and (ii) are both R.

In part (ii), y c0 dx − c0 x 1 C1 is 
written as c0sx 2 ad 1 C, where 
C − C1 1 ac0, so all the terms of the 
series have the same form.

NOTE 1 Equations (i) and (ii) in Theorem 2 can be rewritten in the form

(iii) 
d

dxFo
`

n−0
 cnsx 2 adnG − o

`

n−0
 

d
dx

 fcnsx 2 adn g

(iv) y Fo
`

n−0
 cnsx 2 adnGdx − o

`

n−0
 y cnsx 2 adn dx

We know that, for finite sums, the derivative of a sum is the sum of the derivatives and the 
integral of a sum is the sum of the integrals. Equations (iii) and (iv) assert that the same 
is true for infinite sums, provided we are dealing with power series. (For other types of 
series of functions the situation is not as simple; see Exercise 38.)

NOTE 2 Although Theorem 2 says that the radius of convergence remains the same 
when a power series is differentiated or integrated, this does not mean that the interval of 
convergence remains the same. It may happen that the original series converges at an 
endpoint, whereas the differentiated series diverges there. (See Exercise 39.)
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 SECTION 11.9  Representations of Functions as Power Series 755

NOTE 3 The idea of differentiating a power series term by term is the basis for a  
powerful method for solving differential equations. We will discuss this method in Chap-
ter 17.

EXAMPLE 4  In Example 11.8.3 we saw that the Bessel function

J0sxd − o
`

n−0
 
s21dnx 2n

22nsn!d2

is defined for all x. Thus, by Theorem 2, J0 is differentiable for all x and its derivative is 
found by term-by-term differentiation as follows:

 J09sxd − o
`

n−0
 

d
dx

 
s21dnx 2n

22nsn!d2 − o
`

n−1
 
s21dn 2nx 2n21

22nsn!d2  Q

EXAMPLE 5  Express 1ys1 2 xd2 as a power series by differentiating Equation 1. What 
is the radius of convergence?

SOLUTION Differentiating each side of the equation

 
1

1 2 x
− 1 1 x 1 x 2 1 x 3 1 ∙ ∙ ∙ − o

`

n−0
 xn

we get  
1

s1 2 xd2 − 1 1 2x 1 3x 2 1 ∙ ∙ ∙ − o
`

n−1
 nxn21

If we wish, we can replace n by n 1 1 and write the answer as

1
s1 2 xd2 − o

`

n−0
 sn 1 1dxn

According to Theorem 2, the radius of convergence of the differentiated series is the 
same as the radius of convergence of the original series, namely, R − 1. Q

EXAMPLE 6  Find a power series representation for lns1 1 xd and its radius of  
convergence.

SOLUTION We notice that the derivative of this function is 1ys1 1 xd. From Equation 1 
we have

1
1 1 x

−
1

1 2 s2xd
− 1 2 x 1 x 2 2 x 3 1 ∙ ∙ ∙ .    | x | , 1

Integrating both sides of this equation, we get

 lns1 1 xd − y 
1

1 1 x
 dx − y s1 2 x 1 x 2 2 x 3 1 ∙ ∙ ∙d dx

 − x 2
x 2

2
1

x 3

3
2

x 4

4
1 ∙ ∙ ∙ 1 C

   − o
`

n−1
 s21dn21 

xn

n
1 C | x | , 1

To determine the value of C we put x − 0 in this equation and obtain lns1 1 0d − C. 
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Thus C − 0 and

lns1 1 xd − x 2
x 2

2
1

x 3

3
2

x 4

4
1 ∙ ∙ ∙ − o

`

n−1
 s21dn21 x

n

n
    | x | , 1

The radius of convergence is the same as for the original series: R − 1. Q

EXAMPLE 7  Find a power series representation for f sxd − tan21x.

SOLUTION We observe that f 9sxd − 1ys1 1 x 2 d and find the required series by inte-
grating the power series for 1ys1 1 x 2 d found in Example 1.

 tan21x − y 
1

1 1 x 2  dx − y s1 2 x 2 1 x 4 2 x 6 1 ∙ ∙ ∙d dx

 − C 1 x 2
x 3

3
1

x 5

5
2

x 7

7
1 ∙ ∙ ∙

To find C we put x − 0 and obtain C − tan21 0 − 0. Therefore

tan21x − x 2
x 3

3
1

x 5

5
2

x 7

7
1 ∙ ∙ ∙

− o
`

n−0
 s21dn 

x 2n11

2n 1 1

Since the radius of convergence of the series for 1ys1 1 x 2 d is 1, the radius of conver-
gence of this series for tan21x is also 1. Q

EXAMPLE 8  
(a) Evaluate y f1ys1 1 x 7 dg dx as a power series.

(b) Use part (a) to approximate y0.5
0  f1ys1 1 x 7 d g dx correct to within 1027.

SOLUTION
(a) The first step is to express the integrand, 1ys1 1 x 7 d, as the sum of a power series. 
As in Example 1, we start with Equation 1 and replace x by 2x 7:

 
1

1 1 x 7 −
1

1 2 s2x 7 d
− o

`

n−0
 s2x 7 dn

 − o
`

n−0
 s21dnx 7n − 1 2 x 7 1 x 14 2 ∙ ∙ ∙

Now we integrate term by term:

 y 
1

1 1 x 7  dx − y o
`

n−0
 s21dnx 7n dx − C 1 o

`

n−0
 s21dn 

x 7n11

7n 1 1

 − C 1 x 2
x 8

8
1

x 15

15
2

x 22

22
1 ∙ ∙ ∙

This series converges for | 2x 7 | , 1, that is, for | x | , 1.

The power series for tan21x obtained in 
Example 7 is called Gregory’s series 
after the Scottish mathematician James 
Gregory (1638–1675), who had antici-
pated some of Newton’s discoveries. 
We have shown that Gregory’s series 
is valid when 21 , x , 1, but it turns 
out (although it isn’t easy to prove) that 
it is also valid when x − 61. Notice 
that when x − 1 the series becomes

!

4
− 1 2

1
3

1
1
5

2
1
7

1 ∙ ∙ ∙

This beautiful result is known as the 
Leibniz formula for !.

This example demonstrates one way in  
which power series representations 
are useful. Integrating 1ys1 1 x 7 d by 
hand is incredibly difficult. Different 
computer algebra systems return differ-
ent forms of the answer, but they are all 
extremely complicated. (If you have a 
CAS, try it yourself.) The infinite series 
answer that we obtain in Exam ple 8(a) 
is actually much easier to deal with 
than the finite answer provided by a 
CAS.
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(b) In applying the Fundamental Theorem of Calculus, it doesn’t matter which anti-
derivative we use, so let’s use the antiderivative from part (a) with C − 0:

 y0.5

0
 

1
1 1 x 7  dx − Fx 2

x 8

8
1

x 15

15
2

x 22

22
1 ∙ ∙ ∙G

0

1y2

 −
1
2

2
1

8 ∙ 28 1
1

15 ∙ 215 2
1

22 ∙ 222 1 ∙ ∙ ∙ 1
s21dn

s7n 1 1d27n11 1 ∙ ∙ ∙

This infinite series is the exact value of the definite integral, but since it is an alternating 
series, we can approximate the sum using the Alternating Series Estimation Theorem. 
If we stop adding after the term with n − 3, the error is smaller than the term with 
n − 4:

1
29 ∙ 229 < 6.4 3 10211

So we have

 y0.5

0
 

1
1 1 x 7  dx <

1
2

2
1

8 ? 28 1
1

15 ? 215 2
1

22 ? 222 < 0.49951374 Q

 1.  If the radius of convergence of the power series o `
n−0 cn x n  

is 10, what is the radius of convergence of the series 
o `

n−1 ncn x n21? Why?

 2.   Suppose you know that the series o `
n−0 bn x n converges for 

| x | , 2. What can you say about the following series? Why?

o
`

n−0
 

bn

n 1 1
 x n11

3–10 Find a power series representation for the function and 
determine the interval of convergence.

 3. f sxd −
1

1 1 x
 4. f sxd −

5
1 2 4x 2

 5. f sxd −
2

3 2 x
 6. f sxd −

4
2x 1 3

 7. f sxd −
x 2

x 4 1 16
 8. f sxd −

x
2x 2 1 1

 9. f sxd −
x 2 1
x 1 2

 10. f sxd −
x 1 a

x 2 1 a 2 ,  a . 0

11–12 Express the function as the sum of a power series by first 
using partial fractions. Find the interval of convergence.

 11. f sxd −
2x 2 4

x 2 2 4x 1 3
 12. f sxd −

2x 1 3
x 2 1 3x 1 2

 13. (a)  Use differentiation to find a power series representation for

f sxd −
1

s1 1 xd2

What is the radius of convergence?
 (b)  Use part (a) to find a power series for

f sxd −
1

s1 1 xd3

 (c)  Use part (b) to find a power series for

f sxd −
x 2

s1 1 xd3

 14. (a)  Use Equation 1 to find a power series representation for 
f sxd − lns1 2 xd. What is the radius of convergence?

 (b)  Use part (a) to find a power series for f sxd − x lns1 2 xd.
 (c)  By putting x − 1

2 in your result from part (a), express ln 2 
as the sum of an infinite series.

15–20 Find a power series representation for the function and 
determine the radius of convergence.

 15. f sxd − lns5 2 xd 16. f sxd − x 2 tan21sx 3d

 17. f sxd −
x

s1 1 4xd2  18. f sxd − S x
2 2 xD3

 19. f sxd −
1 1 x

s1 2 xd2  20. f sxd −
x 2 1 x

s1 2 xd3
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21–24 Find a power series representation for f , and graph f  and 
several partial sums snsxd on the same screen. What happens as n 
increases?

 21. f sxd −
x 2

x 2 1 1
 22. f sxd − lns1 1 x 4d

 23. f sxd − lnS 1 1 x
1 2 xD 24. f sxd − tan21s2xd

25–28 Evaluate the indefinite integral as a power series. What is 
the radius of convergence?

 25. y 
t

1 2 t 8  dt 26. y 
t

1 1 t 3  dt

 27. y  
 x 2 lns1 1 xd dx 28. y 

tan21x
x

 dx

29–32 Use a power series to approximate the definite integral to 
six decimal places.

 29. y0.3

0
 

x
1 1 x 3  dx 30. y1y2

0
 arctansxy2d dx

 31. y0.2

0
 x lns1 1 x 2d dx 32. y0.3

0
 

x 2

1 1 x 4  dx

 33.  Use the result of Example 7 to compute arctan 0.2 correct to 
five decimal places.

 34. Show that the function

f sxd − o
`

n−0
 
s21dnx 2n

s2nd!

 is a solution of the differential equation

f 0sxd 1 f sxd − 0

 35. (a)  Show that J0 (the Bessel function of order 0 given in  
Example 4) satisfies the differential equation

x 2J00sxd 1 x J09sxd 1 x 2J0sxd − 0

 (b) Evaluate y1
0 J0sxd dx correct to three decimal places.

 36. The Bessel function of order 1 is defined by

J1sxd − o
`

n−0
 

s21dn x 2n11

n! sn 1 1d!22n11

 (a) Show that J1 satisfies the differential equation

x 2J10sxd 1 x J19sxd 1 sx 2 2 1dJ1sxd − 0

 (b) Show that J09sxd − 2J1sxd.

;   37. (a)  Show that the function

f sxd − o
`

n−0
 
x n

n!

   is a solution of the differential equation

f 9sxd − f sxd

 (b) Show that f sxd − e x.

 38.  Let fnsxd − ssin nxdyn2. Show that the series o  fnsxd con-
verges for all values of x but the series of derivatives o fn9sxd 
diverges when x − 2n!, n an integer. For what values of x 
does the series o  fn0sxd converge?

 39. Let

f sxd − o
`

n−1
 
x n

n2

 Find the intervals of convergence for f , f 9, and f 0.

 40. (a)  Starting with the geometric series o `
n−0 x n, find the sum 

of the series

o
`

n−1
 nx n21    | x | , 1 

 (b) Find the sum of each of the following series.

 (i) o
`

n−1
 nx n,  | x | , 1 (ii) o

`

n−1
 

n
2n

 (c) Find the sum of each of the following series.

 (i) o
`

n−2
 nsn 2 1dx n,  | x | , 1

 (ii) o
`

n−2
 
n2 2 n

2n  (iii) o
`

n−1
 
n2

2n

 41.  Use the power series for tan 21x to prove the following expres-
sion for ! as the sum of an infinite series:

! − 2s3  o
`

n−0
 

s21dn

s2n 1 1d3n

 42. (a)  By completing the square, show that 

y1y2

0
 

dx
x 2 2 x 1 1

−
!

3s3 

 (b)  By factoring x 3 1 1 as a sum of cubes, rewrite the inte- 
gral in part (a). Then express 1ysx 3 1 1d as the sum of a 
power series and use it to prove the following formula  
for !:

! −
3s3 

4
 o

`

n−0
 
s21dn

8 n S 2
3n 1 1

1
1

3n 1 2D 
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In the preceding section we were able to find power series representations for a certain 
restricted class of functions. Here we investigate more general problems: Which func-
tions have power series representations? How can we find such representations?

We start by supposing that f  is any function that can be represented by a power series

f sxd − c0 1 c1sx 2 ad 1 c2sx 2 ad2 1 c3sx 2 ad3 1 c4sx 2 ad4 1 ∙ ∙ ∙ | x 2 a | , R

Let’s try to determine what the coefficients cn must be in terms of f . To begin, notice that 
if we put x − a in Equation 1, then all terms after the first one are 0 and we get

f sad − c0

By Theorem 11.9.2, we can differentiate the series in Equation 1 term by term:

f 9sxd − c1 1 2c2sx 2 ad 1 3c3sx 2 ad2 1 4c4sx 2 ad3 1 ∙ ∙ ∙   | x 2 a | , R

and substitution of x − a in Equation 2 gives

f 9sad − c1

Now we differentiate both sides of Equation 2 and obtain

f 0sxd − 2c2 1 2 ? 3c3sx 2 ad 1 3 ? 4c4sx 2 ad2 1 ∙ ∙ ∙   | x 2 a | , R

Again we put x − a in Equation 3. The result is

f 0sad − 2c2

Let’s apply the procedure one more time. Differentiation of the series in Equation 3 gives

f -sxd − 2 ? 3c3 1 2 ? 3 ? 4c4sx 2 ad 1 3 ? 4 ? 5c5sx 2 ad2 1 ∙ ∙ ∙   | x 2 a | , R

and substitution of x − a in Equation 4 gives

f -  sad − 2 ? 3c3 − 3!c3

By now you can see the pattern. If we continue to differentiate and substitute x − a, we 
obtain

f sndsad − 2 ? 3 ? 4 ? ∙ ∙ ∙ ? ncn − n!cn

Solving this equation for the nth coefficient cn, we get

cn −
 f sndsad

n!

This formula remains valid even for n − 0 if we adopt the conventions that 0! − 1 and 
f s0d − f.  Thus we have proved the following theorem.

1

2

3

4
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5   Theorem If f  has a power series representation (expansion) at a, that is, if

f sxd − o
`

n−0
cnsx 2 adn    | x 2 a | , R

then its coefficients are given by the formula

cn −
 f sndsad

n!

Substituting this formula for cn back into the series, we see that if f  has a power series 
expansion at a, then it must be of the following form.

6     f sxd − o
`

n−0
 
 f sndsad

n!
 sx 2 adn

 − f sad 1
 f 9sad

1!
 sx 2 ad 1

 f 0sad
2!

 sx 2 ad2 1
 f - sad

3!
 sx 2 ad3 1 ∙ ∙ ∙

The series in Equation 6 is called the Taylor series of the function f  at a (or about 
a or centered at a). For the special case a − 0 the Taylor series becomes

7    f sxd − o
`

n−0
 
 f snds0d

n!
 xn − f s0d 1

 f 9s0d
1!

 x 1
 f 0s0d

2!
 x 2 1 ∙ ∙ ∙

This case arises frequently enough that it is given the special name Maclaurin series.

NOTE We have shown that if f  can be represented as a power series about a, then f  
is equal to the sum of its Taylor series. But there exist functions that are not equal to the 
sum of their Taylor series. An example of such a function is given in Exercise 84.

EXAMPLE 1  Find the Maclaurin series of the function f sxd − ex and its radius of  
convergence.

SOLUTION If f sxd − ex, then f sndsxd − ex, so f snds0d − e 0 − 1 for all n. Therefore the 
Taylor series for f  at 0 (that is, the Maclaurin series) is

o
`

n−0
 
 f snds0d

n!
 xn − o

`

n−0
 
xn

n!
− 1 1

x
1!

1
x 2

2!
1

x 3

3!
1 ∙ ∙ ∙

To find the radius of convergence we let an − xnyn!. Then

Z an11

an
Z − Z xn11

sn 1 1d!
?

n!
xn Z − | x |

n 1 1
l 0 , 1

so, by the Ratio Test, the series converges for all x and the radius of convergence  
is R − `. Q

Taylor and Maclaurin
The Taylor series is named after the 
English mathematician Brook Taylor 
(1685–1731) and the Maclaurin series is 
named in honor of the Scottish math-
ematician Colin Maclaurin (1698–1746) 
despite the fact that the Maclaurin series 
is really just a special case of the Taylor 
series. But the idea of representing par-
ticular functions as sums of power series 
goes back to Newton, and the general 
Taylor series was known to the Scottish 
mathematician James Gregory in 1668 
and to the Swiss mathematician John 
Bernoulli in the 1690s. Taylor was appar-
ently unaware of the work of Gregory 
and Bernoulli when he published his dis-
coveries on series in 1715 in his book  
Methodus incrementorum directa et 
inversa. Maclaurin series are named after 
Colin Maclaurin because he popularized 
them in his calculus textbook Treatise of 
Fluxions published in 1742.
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The conclusion we can draw from Theorem 5 and Example 1 is that if ex has a power 
series expansion at 0, then

ex − o
`

n−0
 
xn

n!

So how can we determine whether ex does have a power series representation?
Let’s investigate the more general question: under what circumstances is a function 

equal to the sum of its Taylor series? In other words, if f  has derivatives of all orders, 
when is it true that

f sxd − o
`

n−0
 
 f sndsad

n!
 sx 2 adn

As with any convergent series, this means that f sxd is the limit of the sequence of partial 
sums. In the case of the Taylor series, the partial sums are

 Tnsxd − o
n

i−0
 
 f sidsad

i!
 sx 2 adi

 − f sad 1
 f 9sad

1!
 sx 2 ad 1

 f 0sad
2!

 sx 2 ad2 1 ∙ ∙ ∙ 1
 f sndsad

n!
 sx 2 adn

Notice that Tn is a polynomial of degree n called the nth-degree Taylor polynomial of  
f  at a. For instance, for the exponential function f sxd − ex, the result of Example 1 shows 
that the Taylor polynomials at 0 (or Maclaurin polynomials) with n − 1, 2, and 3 are

T1sxd − 1 1 x      T2sxd − 1 1 x 1
x 2

2!
      T3sxd − 1 1 x 1

x 2

2!
1

x 3

3!

The graphs of the exponential function and these three Taylor polynomials are drawn in 
Figure 1.

In general, f sxd is the sum of its Taylor series if

f sxd − lim
nl`

 Tnsxd

If we let

Rnsxd − f sxd 2 Tnsxd    so that    f sxd − Tnsxd 1 Rnsxd

then Rnsxd is called the remainder of the Taylor series. If we can somehow show that 
lim n l ` Rnsxd − 0, then it follows that

lim
nl`

 Tnsxd − lim
nl`

 f f sxd 2 Rnsxdg − f sxd 2 lim
nl`

 Rnsxd − f sxd

We have therefore proved the following theorem.

8   Theorem If f sxd − Tnsxd 1 Rnsxd, where Tn is the n th-degree Taylor polyno-
mial of f  at a and

lim
nl`

 Rnsxd − 0

for | x 2 a | , R, then f  is equal to the sum of its Taylor series on the interval 
| x 2 a | , R.

0 x

y
y=´
y=T£(x)

(0, 1)

y=T™(x)

y=T¡(x)

y=T™(x)

y=T£(x)

FIGURE 1 

As n increases, Tnsxd appears to 
approach e x in Figure 1. This suggests 
that e x is equal to the sum of its Taylor 
series.
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762 CHAPTER 11  Infinite Sequences and Series

In trying to show that lim n l ` Rnsxd − 0 for a specific function f, we usually use the 
following theorem.

9   Taylor’s Inequality If | f sn11dsxd | < M for | x 2 a | < d, then the remainder
Rnsxd of the Taylor series satisfies the inequality

| Rnsxd | <
M

sn 1 1d!
 | x 2 a |n11    for | x 2 a | < d

To see why this is true for n − 1, we assume that | f 0sxd | < M. In particular, we have 
f 0sxd < M, so for  a < x < a 1 d we have

y x

a
 f 0std dt < y x

a
 M dt

An antiderivative of f 0 is f 9, so by Part 2 of the Fundamental Theorem of Calculus, we 
have

f 9sxd 2 f 9sad < Msx 2 ad    or    f 9sxd < f 9sad 1 Msx 2 ad

Thus  y x

a
 f 9std dt < y x

a
 f f 9sad 1 Mst 2 adg dt

 f sxd 2 f sad < f 9sadsx 2 ad 1 M 
sx 2 ad2

2

 f sxd 2 f sad 2 f 9sadsx 2 ad <
M
2

 sx 2 ad2

But R1sxd − f sxd 2 T1sxd − f sxd 2 f sad 2 f 9sadsx 2 ad. So

R1sxd <
M
2

 sx 2 ad2

A similar argument, using f 0sxd > 2M, shows that

 R1sxd > 2
M
2

 sx 2 ad2

So  |R1sxd | <
M
2

 |x 2 a |2

Although we have assumed that x . a, similar calculations show that this inequality is 
also true for x , a.

This proves Taylor’s Inequality for the case where n − 1. The result for any n is 
proved in a similar way by integrating n 1 1 times. (See Exercise 83 for the case n − 2.)

NOTE In Section 11.11 we will explore the use of Taylor’s Inequality in approxi-
mating functions. Our immediate use of it is in conjunction with Theorem 8.

In applying Theorems 8 and 9 it is often helpful to make use of the following fact.

lim
nl`

 
xn

n!
− 0    for every real number x

Formulas for the  
Taylor Remainder Term
As alternatives to Taylor’s Inequality, 
we have the following formulas for the 
remainder term. If f sn11d is continuous 
on an interval I and x [ I, then

Rnsxd −
1
n!

 yx

a
 sx 2 tdn f sn11dstd dt

This is called the integral form of the 
remainder term. Another formula, 
called Lagrange’s form of the remain-
der term, states that there is a number z 
between x and a such that

Rnsxd −
f sn11dszd
sn 1 1d!

 sx 2 adn11

This version is an extension of the 
Mean Value Theorem (which is the  
case n − 0).

Proofs of these formulas, together 
with discussions of how to use them to 
solve the examples of Sections 11.10 
and 11.11, are given on the website

www.stewartcalculus.com

Click on Additional Topics and then on 
Formulas for the Remainder Term in 
Taylor series.

10
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 SECTION 11.10  Taylor and Maclaurin Series 763

This is true because we know from Example 1 that the series o xnyn! converges for all x 
and so its nth term approaches 0.

EXAMPLE 2  Prove that ex is equal to the sum of its Maclaurin series.

SOLUTION If f sxd − ex, then f sn11dsxd − ex for all n. If d is any positive number and 
| x | < d, then | f sn11dsxd | − ex < ed. So Taylor’s Inequality, with a − 0 and M − ed, 
says that

| Rnsxd | <
ed

sn 1 1d!
 | x |n11    for | x | < d

Notice that the same constant M − ed works for every value of n. But, from Equa-
tion 10, we have

lim
nl`

 
e d

sn 1 1d!
 | x |n11 − e d lim

nl`
 | x |n11

sn 1 1d!
− 0

It follows from the Squeeze Theorem that lim n l ` | Rnsxd | − 0 and therefore 
lim n l ` Rnsxd − 0 for all values of x. By Theorem 8, ex is equal to the sum of its  
Maclaurin series, that is,

 

ex − o
`

n−0
 
xn

n!
    for all x11

 

Q

In particular, if we put x − 1 in Equation 11, we obtain the following expression for 
the number e as a sum of an infinite series:

e − o
`

n−0
 

1
n!

− 1 1
1
1!

1
1
2!

1
1
3!

1 ∙ ∙ ∙12

EXAMPLE 3  Find the Taylor series for f sxd − ex at a − 2.

SOLUTION We have f snds2d − e 2 and so, putting a − 2 in the definition of a Taylor 
series (6), we get

o
`

n−0
 
 f snds2d

n!
 sx 2 2dn − o

`

n−0
 
e 2

n!
 sx 2 2dn

Again it can be verified, as in Example 1, that the radius of convergence is R − `. As 
in Example 2 we can verify that lim n l ` Rnsxd − 0, so

 ex − o
`

n−0
 
e 2

n!
 sx 2 2dn    for all x Q

We have two power series expansions for ex, the Maclaurin series in Equation 11 and 
the Taylor series in Equation 13. The first is better if we are interested in values of x near 
0 and the second is better if x is near 2.

In 1748 Leonhard Euler used Equa-
tion 12 to find the value of e correct to 
23 digits. In 2010 Shigeru Kondo, again 
using the series in (12), computed e to 
more than one trillion decimal places. 
The special techniques employed to 
speed up the computation are explained 
on the website

numbers.computation.free.fr

13
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764 CHAPTER 11  Infinite Sequences and Series

EXAMPLE 4  Find the Maclaurin series for sin x and prove that it represents sin x for 
all x.

SOLUTION We arrange our computation in two columns as follows:

 f sxd − sin x  f s0d − 0

 f 9sxd − cos x  f 9s0d − 1

 f 0sxd − 2sin x  f 0s0d − 0

 f -sxd − 2cos x f -s0d − 21

 f s4dsxd − sin x  f s4ds0d − 0

Since the derivatives repeat in a cycle of four, we can write the Maclaurin series as  
follows:

f s0d 1
 f 9s0d

1!
 x 1

 f 0s0d
2!

 x 2 1
 f -s0d

3!
 x 3 1 ∙ ∙ ∙

− x 2
x 3

3!
1

x 5

5!
2

x 7

7!
1 ∙ ∙ ∙ − o

`

n−0
s21dn 

x 2n11

s2n 1 1d!

Since f sn11dsxd is 6sin x or 6cos x, we know that | f sn11dsxd | < 1 for all x. So we can  
take M − 1 in Taylor’s Inequality:

| Rnsxd | <
M

sn 1 1d! | xn11 | − | x |n11

sn 1 1d!

By Equation 10 the right side of this inequality approaches 0 as n l `, so 
| Rnsxd |l 0 by the Squeeze Theorem. It follows that Rnsxd l 0 as n l `, so sin x is 
equal to the sum of its Maclaurin series by Theorem 8. Q

We state the result of Example 4 for future reference.

 sin x − x 2
x 3

3!
1

x 5

5!
2

x 7

7!
1 ∙ ∙ ∙

 − o
`

n−0
s21dn 

x 2n11

s2n 1 1d!
        for all x

15

EXAMPLE 5  Find the Maclaurin series for cos x.

SOLUTION We could proceed directly as in Example 4, but it’s easier to differentiate 
the Maclaurin series for sin x given by Equation 15:

 cos x −
d

dx
 ssin xd −

d
dx

 Sx 2
x 3

3!
1

x 5

5!
2

x 7

7!
1 ∙ ∙ ∙D

 − 1 2
3x 2

3!
1

5x 4

5!
2

7x 6

7!
1 ∙ ∙ ∙ − 1 2

x 2

2!
1

x 4

4!
2

x 6

6!
1 ∙ ∙ ∙

0 x

y

1

1

y=sin x
T∞

T£

T¡

FIGURE 2 

Figure 2 shows the graph of sin x 
together with its Taylor (or Maclaurin) 
polynomials

 T1sxd − x

 T3sxd − x 2
x 3

3!

 T5sxd − x 2
x 3

3!
1

x 5

5!

Notice that, as n increases, Tnsxd 
becomes a better approximation to  
sin x.

14
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 SECTION 11.10  Taylor and Maclaurin Series 765

Since the Maclaurin series for sin x converges for all x, Theorem 11.9.2 tells us that the 
differentiated series for cos x also converges for all x. Thus

 

 cos x − 1 2
x 2

2!
1

x 4

4!
2

x 6

6!
1 ∙ ∙ ∙

 − o
`

n−0
s21dn 

x 2n

s2nd!
    for all x

16

 Q

EXAMPLE 6  Find the Maclaurin series for the function f sxd − x cos x.

SOLUTION Instead of computing derivatives and substituting in Equation 7, it’s easier 
to multiply the series for cos x (Equation 16) by x:

 x cos x − x o
`

n−0
s21dn 

x 2n

s2nd!
− o

`

n−0
s21dn 

x 2n11

s2nd!
 Q

EXAMPLE 7  Represent f sxd − sin x as the sum of its Taylor series centered at !y3.

SOLUTION Arranging our work in columns, we have

 f sxd − sin x   fS!

3 D −
s3 

2

 f 9sxd − cos x   f 9S!

3 D −
1
2

 f 0sxd − 2sin x    f 0S!

3 D − 2
s3 

2

 f -sxd − 2cos x  f -S!

3 D − 2
1
2

and this pattern repeats indefinitely. Therefore the Taylor series at !y3 is

fS!

3 D 1

 f 9S!

3 D
1!

 Sx 2
!

3 D 1

 f 0S!

3 D
2!

 Sx 2
!

3 D2

1

 f -S!

3 D
3!

 Sx 2
!

3 D3

1 ∙ ∙ ∙

−
s3 

2
1

1
2 ? 1!

 Sx 2
!

3 D 2
s3 

2 ? 2!
 Sx 2

!

3 D2

2
1

2 ? 3!
 Sx 2

!

3 D3

1 ∙ ∙ ∙

The proof that this series represents sin x for all x is very similar to that in Example 4. 
[Just replace x by x 2 !y3 in (14).] We can write the series in sigma notation if we 
separate the terms that contain s3 :

 sin x − o
`

n−0
 
s21dns3 

2s2nd! Sx 2
!

3 D2n

1 o
`

n−0
 

s21dn

2s2n 1 1d!Sx 2
!

3 D2n11

 Q

The Maclaurin series for e x, sin x, and 
cos x that we found in Examples 2, 4, 
and 5 were discovered, using different 
methods, by Newton. These equations 
are remarkable because they say we 
know everything about each of these 
functions if we know all its derivatives 
at the single number 0.

0 x

y

π
3

y=sin x

T£

FIGURE 3 

We have obtained two different series 
representations for sin x, the Maclaurin 
series in Example 4 and the Taylor 
series in Example 7. It is best to use the 
Maclaurin series for values of x near 0 
and the Taylor series for x near !y3. 
Notice that the third Taylor polynomial 
T3 in Figure 3 is a good approxima-
tion to sin x near !y3 but not as good 
near 0. Compare it with the third 
Maclaurin polynomial T3 in Fig  ure 2, 
where the opposite is true.
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The power series that we obtained by indirect methods in Examples 5 and 6 and in 
Section 11.9 are indeed the Taylor or Maclaurin series of the given functions because 
Theorem 5 asserts that, no matter how a power series representation f sxd − o  cnsx 2 adn 
is obtained, it is always true that cn − f sndsadyn!. In other words, the coefficients are 
uniquely determined.

EXAMPLE 8 Find the Maclaurin series for f sxd − s1 1 xdk, where k is any real number.

SOLUTION  Arranging our work in columns, we have

 f sxd − s1 1 xdk  f s0d − 1

 f 9sxd − ks1 1 xdk21  f 9s0d − k

 f 0sxd − ksk 2 1ds1 1 xdk22  f 0s0d − ksk 2 1d

 f -sxd − ksk 2 1dsk 2 2ds1 1 xdk23  f -s0d − ksk 2 1dsk 2 2d
 . .
 . .
 . .

  f sndsxd − ksk 2 1d ∙ ∙ ∙ sk 2 n 1 1ds1 1 xdk2n f snds0d − ksk 2 1d ∙ ∙ ∙ sk 2 n 1 1d

Therefore the Maclaurin series of f sxd − s1 1 xdk is

o
`

n−0
 
 f snds0d

n!
 xn − o

`

n−0
 
ksk 2 1d ∙ ∙ ∙ sk 2 n 1 1d

n!
 xn

This series is called the binomial series. Notice that if k is a nonnegative integer, then 
the terms are eventually 0 and so the series is finite. For other values of k none of the 
terms is 0 and so we can try the Ratio Test. If the nth term is an, then

 Z an11

an
Z − Z ksk 2 1d ∙ ∙ ∙ sk 2 n 1 1dsk 2 ndxn11

sn 1 1d!
?

n!
ksk 2 1d ∙ ∙ ∙ sk 2 n 1 1dxn Z

 − | k 2 n |
n 1 1

 | x | −
Z 1 2

k
n

Z
1 1

1
n

 | x | l | x | as n l `

Thus, by the Ratio Test, the binomial series converges if | x | , 1 and diverges  
if | x | . 1. Q

The traditional notation for the coefficients in the binomial series is

S k
nD −

ksk 2 1dsk 2 2d ∙ ∙ ∙ sk 2 n 1 1d
n!

and these numbers are called the binomial coefficients.
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The following theorem states that s1 1 xdk is equal to the sum of its Maclaurin series. 
It is possible to prove this by showing that the remainder term Rnsxd approaches 0, but 
that turns out to be quite difficult. The proof outlined in Exercise 85 is much easier.

17   The Binomial Series If k is any real number and | x | , 1, then

s1 1 xdk − o
`

n−0
 Sk

nDxn − 1 1 kx 1
ksk 2 1d

2!
x 2 1

ksk 2 1dsk 2 2d
3!

x 3 1 ∙ ∙ ∙

Although the binomial series always converges when | x | , 1, the question of whether 
or not it converges at the endpoints, 61, depends on the value of k. It turns out that the 
series converges at 1 if 21 , k < 0 and at both endpoints if k > 0. Notice that if k is a pos-  
itive integer and n . k, then the expression for ( kn ) contains a factor sk 2 kd, so ( kn )− 0 
for n . k. This means that the series terminates and reduces to the ordinary Binomial 
Theorem when k is a positive integer. (See Reference Page 1.)

EXAMPLE 9  Find the Maclaurin series for the function f sxd −
1

s4 2 x  and its radius 
of convergence.

SOLUTION  We rewrite f sxd in a form where we can use the binomial series:

1

s4 2 x −
1

Î4S1 2
x
4D

−
1

2Î1 2
x
4

 

−
1
2  S1 2

x
4D21y2

Using the binomial series with k − 21
2 and with x replaced by 2xy4, we have

 
1

s4 2 x 
−

1
2

 S1 2
x
4D21y2

−
1
2

 o
`

n−0
 S21

2

n DS2
x
4Dn

 − 
1
2

 F1 1 S2
1
2DS2

x
4D 1

(21
2)(23

2)
2!

 S2
x
4D2

1
(21

2)(23
2)(25

2)
3!

 S2
x
4D3

1 ∙ ∙ ∙ 1
(21

2)(23
2)(25

2) ∙ ∙ ∙ (21
2 2 n 1 1)

n!
 S2

x
4Dn

1 ∙ ∙ ∙G
−

1
2

 F1 1
1
8

 x 1
1 ? 3
2!82  x 2 1

1 ? 3 ? 5
3!83  x 3 1 ∙ ∙ ∙ 1

1 ? 3 ? 5 ? ∙ ∙ ∙ ? s2n 2 1d
n!8n  xn 1 ∙ ∙ ∙G

We know from (17) that this series converges when | 2xy4 | , 1, that is, | x | , 4, so 
the radius of convergence is R − 4. Q

We collect in the following table, for future reference, some important Maclaurin 
series that we have derived in this section and the preceding one.
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1
1 2 x

− o
`

n−0
 xn − 1 1 x 1 x 2 1 x 3 1 ∙ ∙ ∙ R − 1

ex − o
`

n−0
 
xn

n!
− 1 1

x
1!

1
x 2

2!
1

x 3

3!
1 ∙ ∙ ∙ R − `

sin x − o
`

n−0
s21dn 

x 2n11

s2n 1 1d!
− x 2

x 3

3!
1

x 5

5!
2

x 7

7!
1 ∙ ∙ ∙ R − `

cos x − o
`

n−0
s21dn 

x 2n

s2nd!
− 1 2

x 2

2!
1

x 4

4!
2

x 6

6!
1 ∙ ∙ ∙ R − `

tan21x − o
`

n−0
s21dn 

x 2n11

2n 1 1
− x 2

x 3

3
1

x 5

5
2

x 7

7
1 ∙ ∙ ∙ R − 1

lns1 1 xd − o
`

n−1
s21dn21 

x n

n
− x 2

x 2

2
1

x 3

3
2

x 4

4
1 ∙ ∙ ∙ R − 1

s1 1 xdk − o
`

n−0
S k

nDxn − 1 1 kx 1
ksk 2 1d

2!
x 2 1

ksk 2 1dsk 2 2d
3!

x 3 1 ∙ ∙ ∙ R − 1

EXAMPLE 10  Find the sum of the series 
1

1 ? 2
2

1
2 ? 22 1

1
3 ? 23 2

1
4 ? 24 1 ∙ ∙ ∙ .

SOLUTION With sigma notation we can write the given series as

o
`

n−1
s21dn21 

1
n ? 2n − o

`

n−1
s21dn21 

(1
2)n

n

Then from Table 1 we see that this series matches the entry for lns1 1 xd with x − 1
2. So

 o
`

n−1
s21dn21 

1
n ? 2n − lns1 1 1

2d − ln 32 Q

One reason that Taylor series are important is that they enable us to integrate functions 
that we couldn’t previously handle. In fact, in the introduction to this chapter we mentioned 
that Newton often integrated functions by first expressing them as power series and then 
integrating the series term by term. The function f sxd − e2x 2 can’t be integrated by tech-
niques discussed so far because its antiderivative is not an elementary function (see Sec- 
tion 7.5). In the following example we use Newton’s idea to integrate this function.

EXAMPLE 11
(a) Evaluate y e2x 2 dx as an infinite series.
(b) Evaluate y1

0 e2x 2 dx correct to within an error of 0.001.

SOLUTION
(a) First we find the Maclaurin series for f sxd − e2x 2. Although it’s possible to use the 
direct method, let’s find it simply by replacing x with 2x 2 in the series for ex given in

TEC Module 11.10/11.11 enables you 
to see how successive Taylor polyno-
mials approach the original function.

Table 1 
Important Maclaurin  

Series and Their Radii  
of Convergence
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Table 1. Thus, for all values of x,

e2x 2 − o
`

n−0
 
s2x 2 dn

n!
− o

`

n−0
 s21dn 

x 2n

n!
− 1 2

x 2

1!
1

x 4

2!
2

x 6

3!
1 ∙ ∙ ∙

Now we integrate term by term:

 y e2x 2 dx − y S1 2
x 2

1!
1

x 4

2!
2

x 6

3!
1 ∙ ∙ ∙ 1 s21dn 

x 2n

n!
1 ∙ ∙ ∙D dx

 − C 1 x 2
x 3

3 ? 1!
1

x 5

5 ? 2!
2

x 7

7 ? 3!
1 ∙ ∙ ∙ 1 s21dn 

x 2n11

s2n 1 1dn!
1 ∙ ∙ ∙

This series converges for all x because the original series for e2x 2 converges for all x.

(b) The Fundamental Theorem of Calculus gives

 y1

0
 e2x 2 dx − Fx 2

x 3

3 ? 1!
1

x 5

5 ? 2!
2

x 7

7 ? 3!
1

x 9

9 ? 4!
2 ∙ ∙ ∙G

0

1

 − 1 2 1
3 1 1

10 2 1
42 1 1

216 2 ∙ ∙ ∙

 < 1 2 1
3 1 1

10 2 1
42 1 1

216 < 0.7475

The Alternating Series Estimation Theorem shows that the error involved in this 
approximation is less than

 
1

11 ? 5!
−

1
1320

, 0.001 Q

Another use of Taylor series is illustrated in the next example. The limit could be 
found with l’Hospital’s Rule, but instead we use a series.

EXAMPLE 12  Evaluate lim
x l 0

 
ex 2 1 2 x

x 2 .

SOLUTION Using the Maclaurin series for ex, we have

 lim
x l 0

 
ex 2 1 2 x

x 2 − lim
x l 0

 
S1 1

x
1!

1
x 2

2!
1

x 3

3!
1 ∙ ∙ ∙D 2 1 2 x

x 2

    − lim
x l 0

 

x 2

2!
1

x 3

3!
1

x 4

4!
1 ∙ ∙ ∙

x 2

 − lim
x l 0

 S 1
2

1
x
3!

1
x 2

4!
1

x 3

5!
1 ∙ ∙ ∙D −

1
2

because power series are continuous functions. Q

We can take C − 0 in the anti derivative  
in part (a).

Some computer algebra systems  
compute limits in this way.
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Multiplication and Division of Power Series
If power series are added or subtracted, they behave like polynomials (Theorem 11.2.8 
shows this). In fact, as the following example illustrates, they can also be multiplied and 
divided like polynomials. We find only the first few terms because the calculations for 
the later terms become tedious and the initial terms are the most important ones.

EXAMPLE 13  Find the first three nonzero terms in the Maclaurin series for (a) ex sin x 
and (b) tan x.

SOLUTION
(a) Using the Maclaurin series for ex and sin x in Table 1, we have

ex sin x − S1 1
x
1!

1
x 2

2!
1

x 3

3!
1 ∙ ∙ ∙DSx 2

x 3

3!
1 ∙ ∙ ∙D

We multiply these expressions, collecting like terms just as for polynomials:

1 1 x 1 1
2 x 2 1 1

6 x 3 1 ∙ ∙ ∙

 3  x 2 1
6 x 3 1 ∙ ∙ ∙

x 1  x 2 1 1
2 x 3 1 1

6 x 4 1 ∙ ∙ ∙

 1  2 1
6 x 3 2 1

6 x 4 2 ∙ ∙ ∙

x 1  x 2 1 1
3 x 3 1 ∙ ∙ ∙

Thus ex sin x − x 1 x 2 1 1
3 x 3 1 ∙ ∙ ∙

(b) Using the Maclaurin series in Table 1, we have

tan x −
sin x
cos x

−
x 2

x 3

3!
1

x 5

5!
2 ∙ ∙ ∙

1 2
x 2

2!
1

x 4

4!
2 ∙ ∙ ∙

We use a procedure like long division:

 x 1 1
3 x 3 1 2

15 x 5 1 ∙ ∙ ∙

 1 2 1
2 x 2 1 1

24 x 4 2 ∙ ∙ ∙dx 2 1
6 x 3 1  1

120 x 5 2 ∙ ∙ ∙ 

 x 2 1
2 x 3 1 1

24 x 5 2 ∙ ∙ ∙

   1
3 x 3 2 1

30 x 5 1 ∙ ∙ ∙

   1
3 x 3 2 1

6 x 5 1 ∙ ∙ ∙

      2
15 x 5 1 ∙ ∙ ∙

Thus tan x − x 1 1
3 x 3 1 2

15 x 5 1 ∙ ∙ ∙ Q

Although we have not attempted to justify the formal manipulations used in Exam-
ple 13, they are legitimate. There is a theorem which states that if both f sxd − o  cn xn 
and tsxd − o  bn xn converge for | x | , R and the series are multiplied as if they were 
polyno mials, then the resulting series also converges for | x | , R and represents f sxdtsxd.  
For divi sion we require b0 ± 0; the resulting series converges for sufficiently small | x |.
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 SECTION 11.10  Taylor and Maclaurin Series 771

 1.  If f sxd − o `
n−0 bnsx 2 5dn for all x, write a formula for b8.

 2.  The graph of f  is shown.

y

0 x

f

1

1

 (a) Explain why the series

 1.6 2 0.8sx 2 1d 1 0.4sx 2 1d2 2 0.1sx 2 1d3 1 ∙ ∙ ∙

   is not the Taylor series of f  centered at 1.
 (b) Explain why the series

 2.8 1 0.5sx 2 2d 1 1.5sx 2 2d2 2 0.1sx 2 2d3 1 ∙ ∙ ∙

   is not the Taylor series of f  centered at 2.

 3.   If f snds0d − sn 1 1d! for n − 0, 1, 2, . . . , find the Maclaurin 
series for f  and its radius of convergence.

 4.   Find the Taylor series for f  centered at 4 if

f snds4d −
s21dn n!

3nsn 1 1d

 What is the radius of convergence of the Taylor series?

5–10 Use the definition of a Taylor series to find the first four 
nonzero terms of the series for f sxd centered at the given value of a.

 5. f sxd − xe x,  a − 0 6. f sxd −
1

1 1 x
,  a − 2

 7. f sxd − s3 x  ,  a − 8 8. f sxd − ln x,  a − 1

 9. f sxd − sin x,  a − !y6 10. f sxd − cos2 x,  a − 0

11–18 Find the Maclaurin series for f sxd using the definition of 
a Maclaurin series. [Assume that f  has a power series expan sion. 
Do not show that Rnsxd l 0.] Also find the associated radius of 
convergence.

 11. f sxd − s1 2 xd22 12. f sxd − lns1 1 xd

 13. f sxd − cos x 14. f sxd − e22x

 15. f sxd − 2x 16. f sxd − x cos x

 17. f sxd − sinh x 18. f sxd − cosh x

19–26 Find the Taylor series for f sxd centered at the given value 
of a. [Assume that f  has a power series expansion. Do not show 
that Rnsxd l 0.] Also find the associated radius of convergence.

 19. f sxd − x 5 1 2x 3 1 x,  a − 2

 20. f sxd − x 6 2 x 4 1 2,  a − 22

 21. f sxd − ln x,  a − 2 22. f sxd − 1yx,  a − 23

 23. f sxd − e 2x,  a − 3 24. f sxd − cos x,  a − !y2

 25. f sxd − sin x,  a − ! 26. f sxd − sx  ,  a − 16

 27.   Prove that the series obtained in Exercise 13 represents cos x 
for all x.

 28.   Prove that the series obtained in Exercise 25 represents sin x 
for all x.

 29.    Prove that the series obtained in Exercise 17 represents sinh x 
for all x.

 30.    Prove that the series obtained in Exercise 18 represents cosh x 
for all x.

31–34 Use the binomial series to expand the function as a power 
series. State the radius of convergence.

 31. s4 1 2 x   32. s3 8 1 x  

 33. 
1

s2 1 xd3  34. s1 2 xd3y4

35–44 Use a Maclaurin series in Table 1 to obtain the Maclaurin 
series for the given function.

 35. f sxd − arctansx 2d 36. f sxd − sins!xy4d

 37. f sxd − x cos 2x 38. f sxd − e3x 2 e2x

 39. f sxd − x coss 1
2 x 2d 40. f sxd − x 2 lns1 1 x 3d

 41. f sxd −
x

s4 1 x 2 
 42. f sxd −

x 2

s2 1 x  

 43. f sxd − sin2x  fHint: Use sin2x − 1
2 s1 2 cos 2xd.g

 44. f sxd − H x 2 sin x
x 3 if x ± 0

1
6 if x − 0

45–48 Find the Maclaurin series of f  (by any method) and its  
radius of convergence. Graph f  and its first few Taylor polynomials 
on the same screen. What do you notice about the relation  ship 
between these polynomials and f ?

 45. f sxd − cossx 2 d 46. f sxd − lns1 1 x 2 d

 47.  f sxd − xe2x 48.  f sxd − tan21sx 3d

 49.   Use the Maclaurin series for cos x to compute cos 58 correct 
to five decimal places.

;
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772 CHAPTER 11  Infinite Sequences and Series

 50.   Use the Maclaurin series for e x to calculate 1ys10 e  correct to 
five decimal places.

 51.  (a) Use the binomial series to expand 1ys1 2 x 2 .
 (b) Use part (a) to find the Maclaurin series for sin21x.

 52.  (a) Expand 1ys4 1 1 x   as a power series.
 (b)  Use part (a) to estimate 1ys4 1.1 correct to three decimal 

places.

53–56 Evaluate the indefinite integral as an infinite series.

 53. y s1 1 x 3  dx 54. y x 2 sinsx 2 d dx

 55. y 
cos x 2 1

x
 dx 56. y arctansx 2d dx

57–60 Use series to approximate the definite integral to within 
the indicated accuracy.

 57. y1y2

0
 x 3 arctan x dx  (four decimal places)

 58. y1

0
 sinsx 4d dx  (four decimal places)

 59. y0.4

0
 s1 1 x 4  dx  s| error | , 5 3 1026d

 60. y0.5

0
 x 2e2x 2 dx  s| error | , 0.001d

61–65 Use series to evaluate the limit.

 61. lim
x l 0

 
x 2 lns1 1 xd

x 2  62. lim
x l 0

 
1 2 cos x

1 1 x 2 e x

 63. lim
x l 0

 
sin x 2 x 1 1

6 x 3

x 5

 64. lim
x l 0

 
s1 1 x  2 1 2 1

2 x
x 2

 65. lim
x l 0

 
x 3 2 3x 1 3 tan21x

x 5

 66. Use the series in Example 13(b) to evaluate

lim
x l 0

 
tan x 2 x

x 3

We found this limit in Example 4.4.4 using l’Hospital’s Rule 
three times. Which method do you prefer?

67–72 Use multiplication or division of power series to find the 
first three nonzero terms in the Maclaurin series for each function.

 67. y − e2x2 cos x 68. y − sec x

 69. y −
x

sin x
 70. y − e x lns1 1 xd

 71. y − sarctan xd2 72. y − e x sin2 x

73–80 Find the sum of the series.

 73. o
`

n−0
s21dn 

x 4n

n!
 74. o

`

n−0
 
s21dn ! 2n

62ns2nd!

 75. o
`

n−1
 s21dn21 

3n

n 5n  76. o
`

n−0
 

3n

5n n!

 77. o
`

n−0
 

s21dn ! 2n11

42n11s2n 1 1d!

 78. 1 2 ln 2 1
sln 2d2

2!
2

sln 2d3

3!
1 ∙ ∙ ∙

 79. 3 1
9
2!

1
27
3!

1
81
4!

1 ∙ ∙ ∙

 80. 
1

1 ? 2
2

1
3 ? 23 1

1
?5 ? 25 2

1
7 ? 27 1 ∙ ∙ ∙

 81.  Show that if p is an nth-degree polynomial, then

psx 1 1d − o
n

i−0
 
p sidsxd

i!

 82. If f sxd − s1 1 x 3d30, what is f s58ds0d?

 83.  Prove Taylor’s Inequality for n − 2, that is, prove that if 
| f -sxd | < M for | x 2 a | < d, then

| R2sxd | <
M
6

 | x 2 a |3 for | x 2 a | < d

 84. (a)  Show that the function defined by

f sxd − He21yx 2

0
if x ± 0
if x − 0

 is not equal to its Maclaurin series.
 (b)  Graph the function in part (a) and comment on its behav-

ior near the origin.

 85.  Use the following steps to prove (17) .

 (a)  Let tsxd − o `
n−0 (n

k)x n. Differentiate this series to show 
that

t9sxd −
ktsxd
1 1 x

    21 , x , 1

 (b) Let hsxd − s1 1 xd2ktsxd and show that h9sxd − 0.
 (c) Deduce that tsxd − s1 1 xdk.

 86.  In Exercise 10.2.53 it was shown that the length of the ellipse 
x − a sin ", y − b cos ", where a . b . 0, is

L − 4a y!y2

0
 s1 2 e 2 sin2 "   d"

where e − sa 2 2 b 2  ya is the eccentricity of the ellipse.
Expand the integrand as a binomial series and use the 

result of Exercise 7.1.50 to express L as a series in powers of 
the eccentricity up to the term in e 6.

;
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 WRITING PROJECT  How Newton Discovered the Binomial Series 773

LABORATORY PROJECT

This project deals with the function

f sxd −
sinstan xd 2 tanssin xd

arcsinsarctan xd 2 arctansarcsin xd

1.  Use your computer algebra system to evaluate f sxd for x − 1, 0.1, 0.01, 0.001, and 0.0001. 
Does it appear that f  has a limit as x l 0?

2.  Use the CAS to graph f  near x − 0. Does it appear that f  has a limit as x l 0?

3.  Try to evaluate limx  l  0 f sxd with l’Hospital’s Rule, using the CAS to find derivatives of the 
numerator and denominator. What do you discover? How many applications of l’Hospital’s 
Rule are required?

4.  Evaluate limx  l  0 f sxd by using the CAS to find sufficiently many terms in the Taylor series  
of the numerator and denominator. (Use the command taylor in Maple or Series in  
Mathematica.)

5.  Use the limit command on your CAS to find limx  l  0 f sxd directly. (Most computer algebra 
systems use the method of Problem 4 to compute limits.)

6.  In view of the answers to Problems 4 and 5, how do you explain the results of Problems 1  
and 2?

AN ELUSIVE LIMITCAS

WRITING PROJECT
The Binomial Theorem, which gives the expansion of sa 1 bdk, was known to Chinese mathe-
maticians many centuries before the time of Newton for the case where the exponent k is a 
positive integer. In 1665, when he was 22, Newton was the first to discover the infinite series 
expansion of sa 1 bdk when k is a fractional exponent (positive or negative). He didn’t publish 
his discovery, but he stated it and gave examples of how to use it in a letter (now called the epis-
tola prior) dated June 13, 1676, that he sent to Henry Oldenburg, secretary of the Royal Society 
of London, to transmit to Leibniz. When Leibniz replied, he asked how Newton had discovered 
the binomial series. Newton wrote a second letter, the epistola posterior of October 24, 1676, 
in which he explained in great detail how he arrived at his discovery by a very indirect route. 
He was investigating the areas under the curves y − s1 2 x 2 dny2 from 0 to x for n − 0, 1, 2, 3, 
4, . . . . These are easy to calculate if n is even. By observing patterns and interpolating, Newton 
was able to guess the answers for odd values of n. Then he realized he could get the same 
answers by expressing s1 2 x 2 dny2 as an infinite series.

Write a report on Newton’s discovery of the binomial series. Start by giving the statement 
of the binomial series in Newton’s notation (see the epistola prior on page 285 of [4] or page 
402 of [2]). Explain why Newton’s version is equivalent to Theorem 17 on page 767. Then 
read Newton’s epistola posterior (page 287 in [4] or page 404 in [2]) and explain the patterns 
that Newton discovered in the areas under the curves y − s1 2 x 2 dny2. Show how he was able 
to guess the areas under the remaining curves and how he verified his answers. Finally, explain 
how these discoveries led to the binomial series. The books by Edwards [1] and Katz [3] contain 
commentaries on Newton’s letters.

1.  C. H. Edwards, The Historical Development of the Calculus (New York: Springer-Verlag, 
1979), pp. 178–187.

2.  John Fauvel and Jeremy Gray, eds., The History of Mathematics: A Reader (London:  
MacMillan Press, 1987).

3.  Victor Katz, A History of Mathematics: An Introduction (New York: HarperCollins, 1993),  
pp. 463–466.

4.  D. J. Struik, ed., A Sourcebook in Mathematics, 1200–1800 (Princeton, NJ: Princeton  
University Press, 1969).

HOW NEWTON DISCOVERED THE BINOMIAL SERIES
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774 CHAPTER 11  Infinite Sequences and Series

In this section we explore two types of applications of Taylor polynomials. First we look 
at how they are used to approximate functions––computer scientists like them because 
polynomials are the simplest of functions. Then we investigate how physicists and engi-
neers use them in such fields as relativity, optics, blackbody radiation, electric dipoles, 
the velocity of water waves, and building highways across a desert.

Approximating Functions by Polynomials
Suppose that f sxd is equal to the sum of its Taylor series at a:

f sxd − o
`

n−0
 
 f sndsad

n!
 sx 2 adn

In Section 11.10 we introduced the notation Tnsxd for the nth partial sum of this series 
and called it the nth-degree Taylor polynomial of f  at a. Thus

 Tnsxd − o
n

i−0

 f sidsad
i!

 sx 2 adi

 − f sad 1
 f9sad

1!
sx 2 ad 1

 f 0sad
2!

 sx 2 ad2 1 ∙ ∙ ∙ 1
 f sndsad

n!
 sx 2 adn

Since f  is the sum of its Taylor series, we know that Tnsxd l f sxd as n l ` and so Tn 
can be used as an approximation to f : f sxd < Tnsxd.

Notice that the first-degree Taylor polynomial

T1sxd − f sad 1 f 9sadsx 2 ad

is the same as the linearization of f  at a that we discussed in Section 3.10. Notice also 
that T1 and its derivative have the same values at a that f  and f 9 have. In general, it can 
be shown that the derivatives of Tn at a agree with those of f  up to and including deriva-
tives of order n.

To illustrate these ideas let’s take another look at the graphs of y − ex and its first 
few Taylor polynomials, as shown in Figure 1. The graph of T1 is the tangent line to 
y − ex at s0, 1d; this tangent line is the best linear approximation to ex near s0, 1d. The 
graph of T2 is the parabola y − 1 1 x 1 x 2y2, and the graph of T3 is the cubic curve 
y − 1 1 x 1 x 2y2 1 x 3y6, which is a closer fit to the exponential curve y − ex than T2. 
The next Taylor polynomial T4 would be an even better approximation, and so on.

The values in the table give a numerical demonstration of the convergence of the Tay-
lor polynomials Tnsxd to the function y − ex. We see that when x − 0.2 the convergence 
is very rapid, but when x − 3 it is somewhat slower. In fact, the farther x is from 0, the 
more slowly Tnsxd converges to ex.

When using a Taylor polynomial Tn to approximate a function f, we have to ask the 
ques tions: How good an approximation is it? How large should we take n to be in order 
to achieve a desired accuracy? To answer these questions we need to look at the absolute 
value of the remainder:

| Rnsxd | − | f sxd 2 Tnsxd |

0 x

y
y=´ y=T£(x)

(0, 1)

y=T™(x)

y=T¡(x)

FIGURE 1 

x − 0.2 x − 3.0

T2sxd 1.220000  8.500000

T4sxd 1.221400 16.375000

T6sxd 1.221403 19.412500

T8sxd 1.221403 20.009152

T10sxd 1.221403 20.079665

e x 1.221403 20.085537
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 SECTION 11.11  Applications of Taylor Polynomials 775

There are three possible methods for estimating the size of the error:

1.  If a graphing device is available, we can use it to graph | Rnsxd | and thereby 
estimate the error.

2.  If the series happens to be an alternating series, we can use the Alternating 
Series Estimation Theorem.

3.  In all cases we can use Taylor’s Inequality (Theorem 11.10.9), which says that if 
| f sn11dsxd | < M, then

| Rnsxd | <
M

sn 1 1d!
 | x 2 a |n11

EXAMPLE 1  
(a) Approximate the function f sxd − s3 x  by a Taylor polynomial of degree 2 at a − 8.
(b) How accurate is this approximation when 7 < x < 9?

SOLUTION
(a)  f sxd − s3 x − x 1y3 f s8d − 2

 f 9sxd − 1
3 x22y3  f 9s8d − 1

12

  f 0sxd − 22
9 x25y3  f 0s8d − 21

144

 f -sxd − 10
27 x28y3

Thus the second-degree Taylor polynomial is

 T2sxd − f s8d 1
 f 9s8d

1!
 sx 2 8d 1

 f 0s8d
2!

 sx 2 8d2

 − 2 1 1
12 sx 2 8d 2 1

288 sx 2 8d2

The desired approximation is

s3 x < T2sxd − 2 1 1
12 sx 2 8d 2 1

288 sx 2 8d2

(b) The Taylor series is not alternating when x , 8, so we can’t use the Alternating 
Series Estimation Theorem in this example. But we can use Taylor’s Inequality with 
n − 2 and a − 8:

| R2sxd | <
M
3! | x 2 8 |3

where | f -sxd | < M . Because x > 7, we have x 8y3 > 78y3 and so

f -sxd −
10
27

?
1

x 8y3 <
10
27

?
1

78y3 , 0.0021

Therefore we can take M − 0.0021. Also 7 < x < 9, so 21 < x 2 8 < 1 and 
| x 2 8 | < 1. Then Taylor’s Inequality gives

| R2sxd | <
0.0021

3!
? 13 −

0.0021
6

, 0.0004

Thus, if 7 < x < 9, the approximation in part (a) is accurate to within 0.0004. Q
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Let’s use a graphing device to check the calculation in Example 1. Figure 2 shows 
that the graphs of y − s3 x  and y − T2sxd are very close to each other when x is near 8. 
Fig ure 3 shows the graph of | R2sxd | computed from the expression

| R2sxd | − | s3 x 2 T2sxd |
We see from the graph that

| R2sxd | , 0.0003

when 7 < x < 9. Thus the error estimate from graphical methods is slightly better than 
the error estimate from Taylor’s Inequality in this case.

EXAMPLE 2  
(a) What is the maximum error possible in using the approximation 

sin x < x 2
x 3

3!
1

x 5

5!

when 20.3 < x < 0.3? Use this approximation to find sin 12° correct to six decimal 
places.
(b) For what values of x is this approximation accurate to within 0.00005?

SOLUTION
(a) Notice that the Maclaurin series

sin x − x 2
x 3

3!
1

x 5

5!
2

x 7

7!
1 ∙ ∙ ∙

is alternating for all nonzero values of x, and the successive terms decrease in size 
because | x | , 1, so we can use the Alternating Series Estimation Theorem. The error 
in approximating sin x by the first three terms of its Maclaurin series is at most

Z x 7

7! Z − | x |7

5040

If 20.3 < x < 0.3, then | x | < 0.3, so the error is smaller than

s0.3d7

5040
< 4.3 3 1028

To find sin 12° we first convert to radian measure:

sin 12° − sinS 12!

180 D − sinS !

15D
 <

!

15
2 S !

15D3 1
3!

1 S !

15D5 1
5!

< 0.20791169

Thus, correct to six decimal places, sin 12° < 0.207912.

(b) The error will be smaller than 0.00005 if

| x |7

5040
, 0.00005

2.5

0 15

T™

y=#œ„x

FIGURE 2 

0.0003

7 9

y=|R™(x)|

0

FIGURE 3 
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Solving this inequality for x, we get

| x |7 , 0.252    or    | x | , s0.252d1y7 < 0.821

So the given approximation is accurate to within 0.00005 when | x | , 0.82. Q

What if we use Taylor’s Inequality to solve Example 2? Since f s7dsxd − 2cos x, we 
have | f s7dsxd | < 1 and so

| R6sxd | <
1
7!

 | x |7

So we get the same estimates as with the Alternating Series Estimation Theorem.
What about graphical methods? Figure 4 shows the graph of

| R6sxd | − | sin x 2 (x 2 1
6 x 3 1 1

120 x 5 ) |
and we see from it that | R6sxd | , 4.3 3 1028 when | x | < 0.3. This is the same estimate 
that we obtained in Example 2. For part (b) we want | R6sxd | , 0.00005, so we graph 
both y − | R6sxd | and y − 0.00005 in Figure 5. By placing the cursor on the right inter-
section point we find that the inequality is satisfied when | x | , 0.82. Again this is the 
same estimate that we obtained in the solution to Example 2.

If we had been asked to approximate sin 72° instead of sin 12° in Example 2, it would 
have been wise to use the Taylor polynomials at a − !y3 (instead of a − 0) because 
they are better approximations to sin x for values of x close to !y3. Notice that 72° is 
close to 60° (or !y3 radians) and the derivatives of sin x are easy to compute at !y3.

Figure 6 shows the graphs of the Maclaurin polynomial approximations

 T1sxd − x  T3sxd − x 2
x 3

3!

 T5sxd − x 2
x 3

3!
1

x 5

5!
 T7sxd − x 2

x 3

3!
1

x 5

5!
2

x 7

7!

to the sine curve. You can see that as n increases, Tnsxd is a good approximation to sin x 
on a larger and larger interval.

0 x

y

T¶

T∞

T£
y=sin x

T¡

One use of the type of calculation done in Examples 1 and 2 occurs in calculators and 
computers. For instance, when you press the sin or ex key on your calculator, or when 
a computer programmer uses a subroutine for a trigonometric or exponential or Bessel 
function, in many machines a polynomial approximation is calculated. The polynomial 
is often a Taylor polynomial that has been modified so that the error is spread more 
evenly throughout an interval.

TEC Module 11.10/11.11 graphically  
shows the remainders in Taylor poly-
nomial approximations.

4.3 ! 10–*

_0.3 0.3
0

y=|Rß(x)|

FIGURE 4 

0.00006

_1 1

y=|Rß(x)|

0

y=0.00005

FIGURE 5 

FIGURE 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



778 CHAPTER 11  Infinite Sequences and Series

Applications to Physics
Taylor polynomials are also used frequently in physics. In order to gain insight into an 
equa tion, a physicist often simplifies a function by considering only the first two or three 
terms in its Taylor series. In other words, the physicist uses a Taylor polynomial as an 
approximation to the function. Taylor’s Inequality can then be used to gauge the accu-
racy of the approximation. The following example shows one way in which this idea is 
used in special relativity.

EXAMPLE 3 In Einstein’s theory of special relativity the mass of an object moving 
with velocity v is

m −
m0

s1 2 v 2yc 2 

where m0 is the mass of the object when at rest and c is the speed of light. The kinetic 
energy of the object is the difference between its total energy and its energy at rest:

K − mc2 2 m0c2

(a) Show that when v is very small compared with c, this expression for K agrees  
with classical Newtonian physics: K − 1

2 m0v2.
(b) Use Taylor’s Inequality to estimate the difference in these expressions for K  
when | v | < 100 mys.

SOLUTION
(a) Using the expressions given for K and m, we get 

 K − mc2 2 m0 c2 −
m0c2

s1 2 v 2yc 2 2 m0c2 − m0 c2FS1 2
v2

c2D21y2

2 1G
With x − 2v2yc2, the Maclaurin series for s1 1 xd21y2 is most easily computed as a 
binomial series with k − 21

2. (Notice that | x | , 1 because v , c.) Therefore we have

 s1 1 xd21y2 − 1 2 1
2 x 1

(21
2)(23

2)
2!

 x 2 1
(21

2)(23
2)(25

2)
3!

 x 3 1 ∙ ∙ ∙

 − 1 2 1
2 x 1 3

8 x 2 2 5
16 x 3 1 ∙ ∙ ∙

and  K − m0 c2FS1 1
1
2

 
v2

c2 1
3
8

 
v4

c 4 1
5
16

 
v6

c 6 1 ∙ ∙ ∙D 2 1G
 − m0 c2S 1

2
 
v2

c2 1
3
8

 
v4

c 4 1
5
16

 
v6

c 6 1 ∙ ∙ ∙D
If v is much smaller than c, then all terms after the first are very small when compared 
with the first term. If we omit them, we get

K < m0 c2S 1
2

 
v2

c2D − 1
2 m0 v2

√

K

0

K=mc@-m¸c@

K =   m¸ √ @1
2

c

FIGURE 7 

The upper curve in Figure 7 is the 
graph of the expression for the kinetic 
energy K of an object with velocity v 
in special relativity. The lower curve 
shows the function used for K in classi-
cal Newtonian physics. When v is much 
smaller than the speed of light, the 
curves are practically identical.
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 SECTION 11.11  Applications of Taylor Polynomials 779

(b) If x − 2v 2yc2, f sxd − m0 c2 fs1 1 xd21y2 2 1g , and M is a number such that 
| f 0sxd | < M, then we can use Taylor’s Inequality to write

| R1sxd | <
M
2!

 x 2

We have f 0sxd − 3
4 m0 c2s1 1 xd25y2 and we are given that | v | < 100 mys, so

| f 0sxd | −
3m0 c2

4s1 2 v 2yc2 d5y2 <
3m0 c2

4s1 2 1002yc2 d5y2 s−Md

Thus, with c − 3 3 108 mys,

| R1sxd | <
1
2

?
3m0 c2

4s1 2 1002yc2 d5y2 ?
1004

c 4 , s4.17 3 10210 dm0

So when | v | < 100 mys, the magnitude of the error in using the Newtonian expression 
for kinetic energy is at most s4.2 3 10210 dm0. Q

Another application to physics occurs in optics. Figure 8 is adapted from Optics, 
4th ed., by Eugene Hecht (San Francisco, 2002), page 153. It depicts a wave from the 
point source S meeting a spherical interface of radius R centered at C. The ray SA is 
refracted toward P.

A

V
h

C P

R

S

¨t

¨r

¨i

˙
Lo

so si

Li

n¡ n™

Using Fermat’s principle that light travels so as to minimize the time taken, Hecht 
derives the equation

n1

,o
1

n2

,i
−

1
R

 S n2si

,i
2

n1so

,o
D

where n1 and n2 are indexes of refraction and ,o, ,i, so, and si are the distances indicated 
in Figure 8. By the Law of Cosines, applied to triangles ACS and ACP, we have

 ,o − sR 2 1 sso 1 Rd2 2 2Rsso 1 Rd cos ! 

 ,i − sR 2 1 ssi 2 Rd2 1 2Rssi 2 Rd cos ! 

FIGURE 8  
Refraction at a spherical interface

Source: Adapted from E. Hecht, Optics, 4e (Upper  
Saddle River, NJ: Pearson Education, 2002).  

1

2
Here we use the identity

coss" 2 !d − 2cos !
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 1.  (a)  Find the Taylor polynomials up to degree 5 for 
f sxd − sin x centered at a − 0. Graph f  and these  
polynomials on a common screen.

 (b)  Evaluate f  and these polynomials at x − !y4, !y2,  
and !.

 (c)  Comment on how the Taylor polynomials converge  
to f sxd .

 2.  (a)  Find the Taylor polynomials up to degree 3 for 
f sxd − tan x centered at a − 0. Graph f  and these  
polynomials on a common screen.

 (b)  Evaluate f  and these polynomials at x − !y6, !y4, 
and !y3.

 (c)  Comment on how the Taylor polynomials converge  
to f sxd.

3–10 Find the Taylor polynomial T3sxd for the function f  
centered at the number a. Graph f  and T3 on the same screen.

 3.  f sxd − e x,  a − 1

 4.  f sxd − sin x,  a − !y6

 5.  f sxd − cos x,  a − !y2

 6.  f sxd − e2x sin x,  a − 0

 7.  f sxd − ln x,  a − 1

;

;

;

 8.  f sxd − x cos x,  a − 0

 9.  f sxd − xe 22x,  a − 0

 10.  f sxd − tan21x,  a − 1

11–12 Use a computer algebra system to find the Taylor poly-
nomials Tn centered at a for n − 2, 3, 4, 5. Then graph these 
polynomials and f  on the same screen.

 11.  f sxd − cot x,  a − !y4

 12.  f sxd − s3 1 1 x 2 ,  a − 0

13–22
(a)  Approximate f  by a Taylor polynomial with degree n at the 

number a.
(b)  Use Taylor’s Inequality to estimate the accuracy of the approx i-

ma tion f sxd < Tnsxd when x lies in the given interval.
(c) Check your result in part (b) by graphing | Rnsxd |.
 13.  f sxd − 1yx,  a − 1,  n − 2,  0.7 < x < 1.3

 14.  f sxd − x21y2,  a − 4,  n − 2,  3.5 < x < 4.5

CAS

;

Because Equation 1 is cumbersome to work with, Gauss, in 1841, simplified it by using 
the linear approximation cos # < 1 for small values of #. (This amounts to using the 
Taylor polynomial of degree 1.) Then Equation 1 becomes the following simpler equa-
tion [as you are asked to show in Exercise 34(a)]:

n1

so
1

n2

si
−

n2 2 n1

R

The resulting optical theory is known as Gaussian optics, or first-order optics, and has 
become the basic theoretical tool used to design lenses.

A more accurate theory is obtained by approximating cos # by its Taylor polynomial 
of degree 3 (which is the same as the Taylor polynomial of degree 2). This takes into 
account rays for which # is not so small, that is, rays that strike the surface at greater 
distances h above the axis. In Exercise 34(b) you are asked to use this approximation to 
derive the more accurate equation

n1

so
1

n2

si
−

n2 2 n1

R
1 h 2F n1

2so
 S 1

so
1

1
RD2

1
n2

2si
 S 1

R
2

1
si
D2G

The resulting optical theory is known as third-order optics.
Other applications of Taylor polynomials to physics and engineering are explored in 

Exercises 32, 33, 35, 36, 37, and 38, and in the Applied Project on page 783.

3

4
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 15.  f sxd − x 2y3,  a − 1,  n − 3,  0.8 < x < 1.2

 16.  f sxd − sin x,  a − !y6,  n − 4,  0 < x < !y3

 17.  f sxd − sec x,  a − 0,  n − 2,  20.2 < x < 0.2

 18.  f sxd − lns1 1 2xd,  a − 1,  n − 3,  0.5 < x < 1.5

 19.  f sxd − e x 2
,  a − 0,  n − 3,  0 < x < 0.1

 20.  f sxd − x ln x,  a − 1,  n − 3,  0.5 < x < 1.5

 21.  f sxd − x sin x,  a − 0,  n − 4,  21 < x < 1

 22.  f sxd − sinh 2x,  a − 0,  n − 5,  21 < x < 1

 23.   Use the information from Exercise 5 to estimate cos 80° 
correct to five decimal places.

 24.   Use the information from Exercise 16 to estimate sin 38°  
correct to five decimal places.

 25.   Use Taylor’s Inequality to determine the number of terms 
of the Maclaurin series for e x that should be used to esti-
mate e 0.1 to within 0.00001.

 26.    How many terms of the Maclaurin series for lns1 1 xd do 
you need to use to estimate ln 1.4 to within 0.001?

27–29 Use the Alternating Series Estimation Theorem or  
Taylor’s Inequality to estimate the range of values of x for 
which the given approximation is accurate to within the stated 
error. Check your answer graphically.

 27.  sin x < x 2
x 3

6
  (| error | , 0.01)

 28.  cos x < 1 2
x 2

2
1

x 4

24
  (| error | , 0.005)

 29.   arctan x < x 2
x 3

3
1

x 5

5
  (| error | , 0.05)

 30.   Suppose you know that

f snds4d −
s21dn n!

3nsn 1 1d

and the Taylor series of f  centered at 4 converges to f sxd  
for all x in the interval of convergence. Show that the fifth-
degree Taylor polynomial approximates f s5d with error 
less than 0.0002.

 31.   A car is moving with speed 20 mys and acceleration  
2 mys2 at a given instant. Using a second-degree Taylor 
polyno mial, estimate how far the car moves in the next 
second. Would it be reasonable to use this polynomial to 
estimate the distance traveled during the next minute?

;

 32.   The resistivity $ of a conducting wire is the reciprocal of the 
conductivity and is measured in units of ohm-meters (V-m). 
The resistivity of a given metal depends on the temperature 
according to the equation

$std − $ 20 e %st220d

where t is the temperature in °C. There are tables that list the 
values of % (called the temperature coefficient) and $ 20 (the 
resistivity at 20°C) for various metals. Except at very low 
temperatures, the resis tivity varies almost linearly with tem-
perature and so it is common to approximate the expression 
for $std by its first- or second-degree Taylor polynomial  
at t − 20.

 (a)  Find expressions for these linear and quadratic  
approximations.

 (b)  For copper, the tables give % − 0.0039y°C and 
$ 20 − 1.7 3 1028 V-m. Graph the resistivity of copper  
and the linear and quadratic approximations for  
2250°C < t < 1000°C.

 (c)  For what values of t does the linear approximation agree 
with the exponential expression to within one percent?

 33.   An electric dipole consists of two electric charges of equal 
magnitude and opposite sign. If the charges are q and 2q and 
are located at a distance d from each other, then the electric 
field E at the point P in the figure is

E −
q

D2 2
q

sD 1 dd2

By expanding this expression for E as a series in powers of 
dyD, show that E is approximately proportional to 1yD 3  
when P is far away from the dipole.

P
D d

q -q

 34.  (a)  Derive Equation 3 for Gaussian optics from Equation 1  
by approximating cos # in Equation 2 by its first-degree 
Taylor polynomial.

 (b)  Show that if cos # is replaced by its third-degree Taylor 
polynomial in Equation 2, then Equation 1 becomes 
Equation 4 for third-order optics. [Hint: Use the first two 
terms in the binomial series for ,o

21 and ,i
21. Also, use 

# < sin #.]

 35.   If a water wave with length L moves with velocity v across a 
body of water with depth d, as in the figure on page 782, then

v 2 −
tL
2!

 tanh 
2!d

L

 (a) If the water is deep, show that v < stLys2!d .
 (b)  If the water is shallow, use the Maclaurin series for tanh 

to show that v < std  . (Thus in shallow water the 

;

;
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782 CHAPTER 11  Infinite Sequences and Series

   velocity of a wave tends to be independent of the length of 
the wave.)

 (c)  Use the Alternating Series Estimation Theorem to show 
that if L . 10d, then the estimate v 2 < td is accurate to 
within 0.014tL.

L
d

 36.   A uniformly charged disk has radius R and surface charge den-
sity & as in the figure. The electric potential V at a point P at a 
distance d along the perpendicular central axis of the disk is

V − 2!ke& (sd 2 1 R2 2 d)

where ke is a constant (called Coulomb’s constant). Show that

V <
!keR2&

d
    for large d

R
d P

 37.   If a surveyor measures differences in elevation when making 
plans for a highway across a desert, corrections must be made 
for the curvature of the earth.

 (a)  If R is the radius of the earth and L is the length of the 
highway, show that the correction is

C − R secsLyRd 2 R

 (b)  Use a Taylor polynomial to show that

C <
L 2

2R
1

5L 4

24R 3

 (c)  Compare the corrections given by the formulas in parts (a) 
and (b) for a highway that is 100 km long. (Take the radius 
of the earth to be 6370 km.)

R
L C

R

 38.   The period of a pendulum with length L that makes a maxi-
mum angle "0 with the vertical is

T − 4ÎL
t   y!y2

0
 

dx

s1 2 k2 sin2x

 where k − sins 1
2 "0 d and t is the acceleration due to gravity.  

(In Exercise 7.7.42 we approximated this integral using  
Simpson’s Rule.)

 (a)  Expand the integrand as a binomial series and use the 
result of Exercise 7.1.50 to show that

T − 2!ÎL
t  F1 1

12

22  k 2 1
1232

2242  k 4 1
123252

224262  k 6 1 ∙ ∙ ∙G
If "0 is not too large, the approximation T < 2!sLyt , 
obtained by using only the first term in the series, is often 
used. A better approximation is obtained by using two 
terms:

T < 2!ÎL
t  s1 1 1

4 k 2 d

 (b)  Notice that all the terms in the series after the first one have 
coefficients that are at most 14 . Use this fact to compare this 
series with a geometric series and show that

2!ÎL
t   s1 1 1

4 k 2 d < T < 2!ÎL
t  

4 2 3k 2

4 2 4k 2

 (c)  Use the inequalities in part (b) to estimate the period of  
a pendulum with L − 1 meter and "0 − 10°. How does  
it compare with the estimate T < 2!sLyt ? What if  
"0 − 42°?

 39.   In Section 4.8 we considered Newton’s method for approxi-
mating a root r of the equation f sxd − 0, and from an initial 
approximation x1 we obtained successive approximations  
x2, x3, . . . , where

xn11 − xn 2
 f sxnd
f 9sxnd

Use Taylor’s Inequality with n − 1, a − xn, and x − r to show 
that if f 0sxd exists on an interval I containing r, xn, and xn11, 
and | f 0sxd | < M, | f 9sxd | > K for all x [ I, then

| xn11 2 r | <
M
2K | xn 2 r |2

[This means that if xn is accurate to d decimal places, then xn11 
is accurate to about 2d decimal places. More precisely, if the 
error at stage n is at most 102m, then the error at stage n 1 1 is 
at most sMy2K d1022m.]
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APPLIED PROJECT
Any object emits radiation when heated. A blackbody is a system that absorbs all the radiation 
that falls on it. For instance, a matte black surface or a large cavity with a small hole in its wall 
(like a blast furnace) is a blackbody and emits blackbody radiation. Even the radiation from the 
sun is close to being blackbody radiation.

Proposed in the late 19th century, the Rayleigh-Jeans Law expresses the energy density of 
blackbody radiation of wavelength ! as

f s!d −
8"kT

!4

where ! is measured in meters, T is the temperature in kelvins (K), and k is Boltzmann’s con- 
stant. The Rayleigh-Jeans Law agrees with experimental measurements for long wavelengths  
but disagrees drastically for short wavelengths. [The law predicts that f s!d l ` as ! l 01 but 
experiments have shown that f s!d l 0.] This fact is known as the ultraviolet catastrophe.

In 1900 Max Planck found a better model (known now as Planck’s Law) for blackbody  
radiation:

f s!d −
8"hc!25

e hcys!kT d 2 1

where ! is measured in meters, T is the temperature (in kelvins), and

 h − Planck>s constant − 6.6262 3 10234 J ∙s

 c − speed of light − 2.997925 3 108 mys

 k − Boltzmann>s constant − 1.3807 3 10223 JyK

1. Use l’Hospital’s Rule to show that

lim
! l 01

 f s!d − 0 and  lim
! l `

 f s!d − 0

  for Planck’s Law. So this law models blackbody radiation better than the Rayleigh-Jeans 
Law for short wavelengths.

2.  Use a Taylor polynomial to show that, for large wavelengths, Planck’s Law gives approxi-
mately the same values as the Rayleigh-Jeans Law.

3.  Graph f  as given by both laws on the same screen and comment on the similarities and 
differences. Use T − 5700 K (the temperature of the sun). (You may want to change from 
meters to the more convenient unit of micrometers: 1 mm − 1026 m.)

4.  Use your graph in Problem 3 to estimate the value of ! for which f s!d is a maximum under 
Planck’s Law.

5.  Investigate how the graph of f  changes as T varies. (Use Planck’s Law.) In particular,  
graph f  for the stars Betelgeuse (T − 3400 K), Procyon (T − 6400 K), and Sirius  
(T − 9200 K), as well as the sun. How does the total radiation emitted (the area under  
the curve) vary with T? Use the graph to comment on why Sirius is known as a blue star and 
Betelgeuse as a red star.

Lu
ke

 D
od

d 
/ S

cie
nc

e 
So

ur
ce

;

;

RADIATION FROM THE STARS
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784 CHAPTER 11  Infinite Sequences and Series

 (b)  If a series is convergent by the Comparison Test, how do 
you estimate its sum?

 (c)  If a series is convergent by the Alternating Series Test, how 
do you estimate its sum?

 8.  (a) Write the general form of a power series.
 (b) What is the radius of convergence of a power series?
 (c)  What is the interval of convergence of a power series?

 9.   Suppose f sxd is the sum of a power series with radius of  
convergence R.

 (a)  How do you differentiate f ? What is the radius of conver-
gence of the series for f 9?

 (b)  How do you integrate f ? What is the radius of convergence 
of the series for y f sxd dx?

 10.  (a)  Write an expression for the nth-degree Taylor polyno mial of 
f  centered at a.

 (b)  Write an expression for the Taylor series of f  centered at a.
 (c) Write an expression for the Maclaurin series of f .
 (d)  How do you show that f sxd is equal to the sum of its  

Taylor series?
 (e)  State Taylor’s Inequality.

 11.   Write the Maclaurin series and the interval of convergence for 
each of the following functions.

 (a) 1ys1 2 xd (b) e x (c) sin x
 (d) cos x (e) tan21x (f) lns1 1 xd

 12.   Write the binomial series expansion of s1 1 xdk. What is the 
radius of convergence of this series?

CONCEPT CHECK Answers to the Concept Check can be found on the back endpapers.

 1.  (a) What is a convergent sequence?
 (b) What is a convergent series?
 (c) What does limn l ` an − 3 mean?
 (d) What does o `

n−1 an − 3 mean?

 2.  (a) What is a bounded sequence?
 (b) What is a monotonic sequence?
 (c)  What can you say about a bounded monotonic sequence?

 3.  (a)  What is a geometric series? Under what circumstances is  
it convergent? What is its sum?

 (b)  What is a p-series? Under what circumstances is it  
convergent?

 4.   Suppose o an − 3 and sn is the nth partial sum of the series. 
What is limn l ` an? What is limn l ` sn?

 5.  State the following.
 (a) The Test for Divergence
 (b) The Integral Test
 (c) The Comparison Test
 (d) The Limit Comparison Test
 (e) The Alternating Series Test
 (f) The Ratio Test
 (g) The Root Test

 6.  (a) What is an absolutely convergent series?
 (b) What can you say about such a series?
 (c) What is a conditionally convergent series?

 7.  (a)  If a series is convergent by the Integral Test, how do you 
estimate its sum?

11 REVIEW

TRUE-FALSE QUIZ

 10.  o
`

n−0
 
s21dn

n!
−

1
e

 11.  If 21 , % , 1, then limn l ` % n − 0.

 12.  If o an is divergent, then o | an | is divergent.

 13.   If f sxd − 2x 2 x 2 1 1
3 x 3 2 ∙ ∙ ∙ converges for all x,  

then   f -s0d − 2.

 14.  If han j and hbn j are divergent, then han 1 bn j is divergent.

 15.  If han j and hbn j are divergent, then han bn j is divergent.

 16.   If han j is decreasing and an . 0 for all n, then han j is  
convergent.

 17.  If an . 0 and o an converges, then o s21dnan converges.

Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

 1.  If limn l ` an − 0, then o an is convergent.

 2.  The series o `
n−1 n 2sin 1 is convergent.

 3.  If limn l ` an − L, then limn l ` a2n11 − L.

 4.  If o cn6n is convergent, then o cns22dn is convergent.

 5.  If o cn6n is convergent, then o cns26dn is convergent.

 6.   If o cn x n diverges when x − 6, then it diverges when x − 10.

 7.   The Ratio Test can be used to determine whether o 1yn 3  
converges.

 8.   The Ratio Test can be used to determine whether o 1yn!  
converges.

 9.  If 0 < an < bn and o bn diverges, then o an diverges.
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EXERCISES

 21.   If a finite number of terms are added to a convergent series, 
then the new series is still convergent.

 22.  If o
`

n−1
 an − A and o

`

n−1
 bn − B, then o

`

n−1
 an bn − AB.

23–26 Determine whether the series is conditionally conver- 
gent, absolutely convergent, or divergent.

 23. o
`

n−1
 s21dn21n 21y3 24. o

`

n−1
 s21dn21n 23

 25. o
`

n−1
 
s21dnsn 1 1d3n

22n11  26. o
`

n−2
 
s21dnsn 

ln n

27–31 Find the sum of the series.

 27. o
`

n−1
 
s23dn21

23n  28. o
`

n−1
 

1
nsn 1 3d

 29. o
`

n−1
 ftan21sn 1 1d 2 tan21ng 30. o

`

n−0
 
s21dn ! n

32ns2nd!

 31. 1 2 e 1
e 2

2!
2

e 3

3!
1

e 4

4!
2 ∙ ∙ ∙

 32.  Express the repeating decimal 4.17326326326 . . . as a  
fraction.

 33.   Show that cosh x > 1 1 1
2 x 2 for all x.

 34.  For what values of x does the series o `
n−1 sln xdn converge?

 35.   Find the sum of the series o
`

n−1
 
s21dn11

n 5  correct to four deci mal 
places.

 36.  (a)  Find the partial sum s5 of the series o `
n−1 1yn6 and esti-

mate the error in using it as an approximation to the sum 
of the series.

 (b)  Find the sum of this series correct to five decimal places.

 37.   Use the sum of the first eight terms to approximate the sum of 
the series o `

n−1 s2 1 5nd21. Estimate the error involved in this 
approximation.

 38.  (a) Show that the series o
`

n−1
 

n n

s2nd!
 is convergent.

 (b) Deduce that lim
n l `

 
n n

s2nd!
− 0.

 39.   Prove that if the series o `
n−1 an is absolutely convergent, then 

the series

o
`

n−1
 S n 1 1

n Dan

is also absolutely convergent.

 18.  If an . 0 and limn l ` san11yand , 1, then limn l ` an − 0.

 19.  0.99999 . . . − 1

 20.  If lim
n l `

 an − 2, then lim
n l `

 san13 2 and − 0.

1–8 Determine whether the sequence is convergent or divergent.  
If it is convergent, find its limit.

 1. an −
2 1 n3

1 1 2n3  2. an −
9n11

10n

 3. an −
n3

1 1 n2  4. an − cossn!y2d

 5. an −
n sin n
n2 1 1

 6. an −
ln n

sn 

 7. hs1 1 3ynd4n j 8. hs210dnyn!j

 9.  A sequence is defined recursively by the equations a1 − 1,  
an11 − 1

3 san 1 4d. Show that han j is increasing and an , 2 
for all n. Deduce that han j is convergent and find its limit.

 10.  Show that lim n l ` n 4e 2n − 0 and use a graph to find the 
smallest value of N that corresponds to « − 0.1 in the pre-
cise definition of a limit.

11–22 Determine whether the series is convergent or divergent.

 11. o
`

n−1
 

n
n3 1 1

 12. o
`

n−1
 
n2 1 1
n3 1 1

 13. o
`

n−1
 
n3

5n  14. o
`

n−1
 

s21dn

sn 1 1

 15. o
`

n−2
 

1

nsln n 
 16. o

`

n−1
 lnS n

3n 1 1D
 17. o

`

n−1
 

cos 3n
1 1 s1.2dn  18. o

`

n−1
 

n2n

s1 1 2n2dn

 19. o
`

n−1
 
1 ? 3 ? 5 ? ∙ ∙ ∙ ? s2n 2 1d

5n n!

 20. o
`

n−1
 
s25d2n

n2 9n

 21. o
`

n−1
 s21dn21 

sn 

n 1 1

 22. o
`

n−1
 
sn 1 1 2 sn 2 1

n

;
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786 CHAPTER 11  Infinite Sequences and Series

57–58
(a)  Approximate f  by a Taylor polynomial with degree n at the 

number a.
(b) Graph f  and Tn on a common screen.
(c)  Use Taylor’s Inequality to estimate the accuracy of the 

approximation f sxd < Tnsxd when x lies in the given interval.
(d) Check your result in part (c) by graphing | Rnsxd |.
 57. f sxd − sx ,  a − 1,  n − 3,  0.9 < x < 1.1

 58. f sxd − sec x,  a − 0,  n − 2,  0 < x < !y6

 59. Use series to evaluate the following limit.

lim
xl 0

 
sin x 2 x

x 3

 60.  The force due to gravity on an object with mass m at a  
height h above the surface of the earth is

F −
mtR2

sR 1 hd2

where R is the radius of the earth and t is the acceleration due 
to gravity for an object on the surface of the earth.

 (a) Express F as a series in powers of hyR.
 (b)  Observe that if we approximate F by the first term in the 

series, we get the expression F < mt that is usually used 
when h is much smaller than R. Use the Alter nating 
Series Estimation Theorem to estimate the range of val-
ues of h for which the approximation F < mt is accurate 
to within one percent. (Use R − 6400 km.)

 61. Suppose that f sxd − o `
n−0 cn x n for all x.

 (a) If f  is an odd function, show that

c0 − c2 − c4 − ∙ ∙ ∙ − 0

 (b) If f  is an even function, show that

c1 − c3 − c5 − ∙ ∙ ∙ − 0

 62. If f sxd − e x 2
, show that f s2nds0d −

s2nd!
n!

.

;

;

;

40–43 Find the radius of convergence and interval of conver-
gence of the series.

 40. o
`

n−1
 s21dn 

x n

n2 5n  41. o
`

n−1
 
sx 1 2dn

n 4n

 42. o
`

n−1
 
2nsx 2 2dn

sn 1 2d!
 43. o

`

n−0
 
2nsx 2 3dn

sn 1 3 

 44.  Find the radius of convergence of the series

o
`

n−1
 
s2nd!
sn!d2  x n

 45.  Find the Taylor series of f sxd − sin x at a − !y6.

 46.  Find the Taylor series of f sxd − cos x at a − !y3.

47–54 Find the Maclaurin series for f  and its radius of conver-
gence. You may use either the direct method (definition of a 
Maclaurin series) or known series such as geometric series,  
binomial series, or the Maclaurin series for e x, sin x, tan21x,  
and lns1 1 xd.

 47. f sxd −
x 2

1 1 x
 48. f sxd − tan21sx 2 d

 49. f sxd − lns4 2 xd 50. f sxd − xe 2x

 51. f sxd − sinsx 4 d 52. f sxd − 10 x

 53. f sxd − 1ys4 16 2 x  54. f sxd − s1 2 3xd25

 55. Evaluate y 
e x

x
 dx as an infinite series.

 56.  Use series to approximate y1
0 s1 1 x 4  dx correct to two deci-

mal places.
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Problems Plus
EXAMPLE  Find the sum of the series o

`

n−0
 
sx 1 2dn

sn 1 3d!
.

SOLUTION The problem-solving principle that is relevant here is recognizing some-
thing familiar. Does the given series look anything like a series that we already know? 
Well, it does have some ingredients in common with the Maclaurin series for the expo-
nential function:

ex − o
`

n−0
 
xn

n!
− 1 1 x 1

x 2

2!
1

x 3

3!
1 ∙ ∙ ∙

We can make this series look more like our given series by replacing x by x 1 2:

ex12 − o
`

n−0
 
sx 1 2dn

n!
− 1 1 sx 1 2d 1

sx 1 2d2

2!
1

sx 1 2d3

3!
1 ∙ ∙ ∙

But here the exponent in the numerator matches the number in the denominator  
whose factorial is taken. To make that happen in the given series, let’s multiply and 
divide by sx 1 2d3:

 o
`

n−0
 
sx 1 2dn

sn 1 3d!
−

1
sx 1 2d3  o

`

n−0
 
sx 1 2dn13

sn 1 3d!

 − sx 1 2d23Fsx 1 2d3

3!
1

sx 1 2d4

4!
1 ∙ ∙ ∙G

We see that the series between brackets is just the series for ex12 with the first three 
terms missing. So

 o
`

n−0
 
sx 1 2dn

sn 1 3d!
− sx 1 2d23Fex12 2 1 2 sx 1 2d 2

sx 1 2d2

2! G Q

 1. If f sxd − sinsx 3 d, find f s15ds0d.

 2. A function f  is defined by

f sxd − lim
n l `

 
x 2n 2 1
x 2n 1 1

  Where is f  continuous?

 3. (a) Show that tan 12 x − cot 12 x 2 2 cot x.
 (b) Find the sum of the series

o
`

n−1
 

1
2n  tan 

x
2n

 4.   Let hPn j be a sequence of points determined as in the figure. Thus| AP1 | − 1, 
| Pn Pn11 | − 2n21, and angle APn Pn11 is a right angle. Find limn l ` /Pn APn11.

Before you look at the solution of the 
example, cover it up and first try to 
solve the problem yourself.

Problems

FIGURE FOR PROBLEM 4 

P∞

8

P¢ P£

P™

P¡A

4
2

1
1
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 5.  To construct the snowflake curve, start with an equilateral triangle with sides of length 1.  
Step 1 in the construction is to divide each side into three equal parts, construct an equi-
lateral triangle on the middle part, and then delete the middle part (see the figure). Step 2 
is to repeat step 1 for each side of the resulting polygon. This process is repeated at each 
succeeding step. The snowflake curve is the curve that results from repeating this process 
indefinitely.

 (a)  Let sn, ln, and pn represent the number of sides, the length of a side, and the total length 
of the nth approximating curve (the curve obtained after step n of the construction), 
respectively. Find formulas for sn, ln, and pn.

 (b) Show that pn l ` as n l `.
 (c)  Sum an infinite series to find the area enclosed by the snowflake curve. 

  Note: Parts (b) and (c) show that the snowflake curve is infinitely long but encloses only a 
finite area.

 6. Find the sum of the series

1 1
1
2

1
1
3

1
1
4

1
1
6

1
1
8

1
1
9

1
1
12

1 ∙ ∙ ∙

  where the terms are the reciprocals of the positive integers whose only prime factors are 2s 
and 3s.

 7. (a)  Show that for xy ± 21,

arctan x 2 arctan y − arctan 
x 2 y

1 1 xy

  if the left side lies between 2!y2 and !y2.

 (b) Show that arctan 120
119 2 arctan 1

239 − !y4.

 (c) Deduce the following formula of John Machin (1680–1751):

4 arctan 15 2 arctan 1
239 −

!

4

 (d) Use the Maclaurin series for arctan to show that

0.1973955597 , arctan 15 , 0.1973955616

 (e) Show that

0.004184075 , arctan 1
239 , 0.004184077 

 (f ) Deduce that, correct to seven decimal places, ! < 3.1415927.

  Machin used this method in 1706 to find ! correct to 100 decimal places. Recently, with  
the aid of computers, the value of ! has been computed to increasingly greater accuracy.  
In 2013 Shigeru Kondo and Alexander Yee computed the value of ! to more than 12 trillion 
decimal places!

 8. (a)  Prove a formula similar to the one in Problem 7(a) but involving arccot instead of  
arctan.

 (b) Find the sum of the series o `
n−0 arccotsn 2 1 n 1 1d.

 9. Use the result of Problem 7(a) to find the sum of the series g`
n−1 arctans2yn2d.

 10. If a0 1 a1 1 a2 1 ∙ ∙ ∙ 1 ak − 0, show that

lim
n l `

 sa0 sn 1 a1 sn 1 1 1 a2 sn 1 2 1 ∙ ∙ ∙ 1 ak sn 1 k d − 0

  If you don’t see how to prove this, try the problem-solving strategy of using analogy (see 
page 71). Try the special cases k − 1 and k − 2 first. If you can see how to prove the asser-
tion for these cases, then you will probably see how to prove it in general.

2

1

3

FIGURE FOR PROBLEM 5 
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 11. Find the interval of convergence of o `
n−1 n3x n and find its sum.

 12.  Suppose you have a large supply of books, all the same size, and you stack them at the edge 
of a table, with each book extending farther beyond the edge of the table than the one 
beneath it. Show that it is possible to do this so that the top book extends entirely beyond 
the table. In fact, show that the top book can extend any distance at all beyond the edge of 
the table if the stack is high enough. Use the following method of stacking: The top book 
extends half its length beyond the second book. The second book extends a quarter of its 
length beyond the third. The third extends one-sixth of its length beyond the fourth, and so 
on. (Try it yourself with a deck of cards.) Consider centers of mass.

 13. Find the sum of the series  o
`

n−2
 lnS1 2

1
n 2D.

 14. If p . 1, evaluate the expression

1 1
1
2 p 1

1
3p 1

1
4 p 1 ∙ ∙ ∙

1 2
1
2 p 1

1
3p 2

1
4 p 1 ∙ ∙ ∙

 15.  Suppose that circles of equal diameter are packed tightly in n rows inside an equilateral tri- 
angle. (The figure illustrates the case n − 4.) If A is the area of the triangle and An is the 
total area occupied by the n rows of circles, show that

lim
n l `

 
An

A
−

!

2s3 

 16. A sequence han j is defined recursively by the equations

a0 − a1 − 1    nsn 2 1dan − sn 2 1dsn 2 2dan21 2 sn 2 3dan22

 Find the sum of the series o `
n−0 an.

 17.  If the curve y − e 2xy10 sin x, x > 0, is rotated about the x-axis, the resulting solid looks like 
an infinite decreasing string of beads.

 (a)  Find the exact volume of the nth bead. (Use either a table of integrals or a computer  
algebra system.)

 (b) Find the total volume of the beads.

 18.  Starting with the vertices P1s0, 1d, P2s1, 1d, P3s1, 0d, P4s0, 0d of a square, we construct 
further points as shown in the figure: P5 is the midpoint of P1P2, P6 is the midpoint of 
P2P3, P7 is the midpoint of P3P4, and so on. The polygonal spiral path P1P2P3P4 P5P6 P7 . . .  
approaches a point P inside the square.

 (a)  If the coordinates of Pn are sxn, yn d, show that 12 xn 1 xn11 1 xn12 1 xn13 − 2 and find a 
similar equation for the y-coordinates.

 (b) Find the coordinates of P.

 19. Find the sum of the series  o
`

n−1
 

s21dn

s2n 1 1d3n .

 20.  Carry out the following steps to show that

1
1 ? 2

1
1

3 ? 4
1

1
5 ? 6

1
1

7 ? 8
1 ∙ ∙ ∙ − ln 2

 (a)  Use the formula for the sum of a finite geometric series (11.2.3) to get an expression for

1 2 x 1 x 2 2 x 3 1 ∙ ∙ ∙ 1 x 2n22 2 x 2n21

FIGURE FOR PROBLEM 12 
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 (b) Integrate the result of part (a) from 0 to 1 to get an expression for

1 2
1
2

1
1
3

2
1
4

1 ∙ ∙ ∙ 1
1

2n 2 1
2

1
2n

 as an integral.
 (c)  Deduce from part (b) that

Z 1
1 ? 2

1
1

3 ? 4
1

1
5 ? 6

1 ∙ ∙ ∙ 1
1

s2n 2 1ds2nd
2 y1

0
 

dx
1 1 x

 Z , y1

0
 x 2n dx

 (d)  Use part (c) to show that the sum of the given series is ln 2.

 21. Find all the solutions of the equation

1 1
x
2!

1
x 2

4!
1

x 3

6!
1

x 4

8!
1 ∙ ∙ ∙ − 0

 [Hint: Consider the cases x > 0 and x , 0 separately.]

 22.  Right-angled triangles are constructed as in the figure. Each triangle has height 1 and its 
base is the hypotenuse of the preceding triangle. Show that this sequence of triangles makes 
indefinitely many turns around P by showing that g  "n is a divergent series.

 23.  Consider the series whose terms are the reciprocals of the positive integers that can be writ-
ten in base 10 notation without using the digit 0. Show that this series is convergent and the 
sum is less than 90.

 24. (a)  Show that the Maclaurin series of the function 

f sxd −
x

1 2 x 2 x 2         is        o
`

n−1
 fn x n

  where fn is the nth Fibonacci number, that is, f1 − 1, f2 − 1, and fn − fn21 1 fn22  
for n > 3. [Hint: Write xys1 2 x 2 x 2d − c0 1 c1x 1 c2 x 2 1 . . .  and multiply both 
sides of this equation by 1 2 x 2 x 2.]

 (b)  By writing f sxd as a sum of partial fractions and thereby obtaining the Maclaurin series 
in a different way, find an explicit formula for the nth Fibonacci number.

 25. Let   u − 1 1
x 3

3!
1

x 6

6!
1

x 9

9!
1 ∙ ∙ ∙

 v − x 1
x 4

4!
1

x 7

7!
1

x 10

10!
1 ∙ ∙ ∙

 w −
x 2

2!
1

x 5

5!
1

x 8

8!
1 ∙ ∙ ∙

 Show that u 3 1 v3 1 w3 2 3uvw − 1.

 26.  Prove that if n . 1, the nth partial sum of the harmonic series is not an integer.

  Hint: Let 2k be the largest power of 2 that is less than or equal to n and let M be the product 
of all odd integers that are less than or equal to n. Suppose that sn − m, an integer. Then 
M2ksn − M2km. The right side of this equation is even. Prove that the left side is odd by 
showing that each of its terms is an even integer, except for the last one.

¨¡
¨™¨£

P

1

1

11

1

1

FIGURE FOR PROBLEM 22 
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Each of these gears has the 
shape of a hyperboloid, a type 

of surface we will study in 
Section 12.6. The shape allows 

the gears to transmit motion 
between skew (neither 

parallel nor intersecting) axes.

IN THIS CHAPTER WE INTRODUCE vectors and coordinate systems for three-dimensional space. 
This will be the setting for our study of the calculus of functions of two variables in Chapter 14 
because the graph of such a function is a surface in space. In this chapter we will see that vectors 
provide particularly simple descriptions of lines and planes in space.

12 Vectors and the  
Geometry of Space
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792 CHAPTER 12  Vectors and the Geometry of Space

3D Space
To locate a point in a plane, we need two numbers. We know that any point in the plane 
can be represented as an ordered pair sa, bd of real numbers, where a is the x-coordinate 
and b is the y-coordinate. For this reason, a plane is called two-dimensional. To locate a 
point in space, three numbers are required. We represent any point in space by an ordered 
triple sa, b, cd of real numbers.

In order to represent points in space, we first choose a fixed point O (the origin) and  
three directed lines through O that are perpendicular to each other, called the coordinate 
axes and labeled the x-axis, y-axis, and z-axis. Usually we think of the x- and y-axes as 
being horizontal and the z-axis as being vertical, and we draw the orientation of the axes  
as in Figure 1. The direction of the z-axis is determined by the right-hand rule as illus- 
trated in Figure 2: If you curl the fingers of your right hand around the z-axis in the direc-
tion of a 90° counterclockwise rotation from the positive x-axis to the positive y-axis, 
then your thumb points in the positive direction of the z-axis.

The three coordinate axes determine the three coordinate planes illustrated in Fig- 
ure 3(a). The xy-plane is the plane that contains the x- and y-axes; the yz-plane contains  
the y- and z-axes; the xz-plane contains the x- and z-axes. These three coordinate planes 
divide space into eight parts, called octants. The first octant, in the foreground, is deter-
mined by the positive axes.

(a) Coordinate planes

y

z

x

O

yz-plane

xy-plane

xz-plane

(b)

z

O
right wall

left w
all

y
x floor

Because many people have some difficulty visualizing diagrams of three-dimensional 
figures, you may find it helpful to do the following [see Figure 3(b)]. Look at any bottom 
corner of a room and call the corner the origin. The wall on your left is in the xz-plane, 
the wall on your right is in the yz-plane, and the floor is in the xy-plane. The x-axis runs 
along the intersection of the floor and the left wall. The y-axis runs along the intersection 
of the floor and the right wall. The z-axis runs up from the floor toward the ceiling along 
the intersection of the two walls. You are situated in the first octant, and you can now 
imagine seven other rooms situated in the other seven octants (three on the same floor 
and four on the floor below), all connected by the common corner point O.

Now if P is any point in space, let a be the (directed) distance from the yz-plane to P,  
let b be the distance from the xz-plane to P, and let c be the distance from the xy-plane to  
P. We represent the point P by the ordered triple sa, b, cd of real numbers and we call  
a, b, and c the coordinates of P; a is the x-coordinate, b is the y-coordinate, and c is the  
z-coordinate. Thus, to locate the point sa, b, cd, we can start at the origin O and move  
a units along the x-axis, then b units parallel to the y-axis, and then c units parallel to the  
z-axis as in Figure 4.

O

z

y
x

FIGURE 1  
Coordinate axes

x

z

y

FIGURE 2  
Right-hand rule

FIGURE 3

z

y
x

O

b

a
c

P(a, b, c)

FIGURE 4
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 SECTION 12.1  Three-Dimensional Coordinate Systems  793

The point Psa, b, cd determines a rectangular box as in Figure 5. If we drop a perpen-
dicular from P to the xy-plane, we get a point Q with coordinates sa, b, 0d called the pro-
jection of P onto the xy-plane. Similarly, Rs0, b, cd and Ssa, 0, cd are the projections of 
P onto the yz-plane and xz-plane, respectively.

As numerical illustrations, the points s24, 3, 25d and s3, 22, 26d are plotted in Fig-
ure 6.

(3, _2, _6)

y

z

x

0

_6

3_2_5
y

z

x

0

(_4, 3, _5)

3
_4

(0, 0, c)
R(0, b, c)

P(a, b, c)

(0, b, 0)

z

y
x

0

S(a, 0, c)

Q(a, b, 0)

(a, 0, 0)

FIGURE 5 FIGURE 6

The Cartesian product R 3 R 3 R − hsx, y, zd | x, y, z [ Rj is the set of all ordered 
triples of real numbers and is denoted by R 3. We have given a one-to-one correspon- 
dence between points P in space and ordered triples sa, b, cd in R 3. It is called a three-
dimensional rectangular coordinate system. Notice that, in terms of coordinates, the  
first octant can be described as the set of points whose coordinates are all positive.

Surfaces
In two-dimensional analytic geometry, the graph of an equation involving x and y is a 
curve in R 2. In three-dimensional analytic geometry, an equation in x, y, and z represents  
a surface in R 3.

EXAMPLE 1 What surfaces in R 3 are represented by the following equations?
(a) z − 3 (b) y − 5

SOLUTION
(a) The equation z − 3 represents the set hsx, y, zd | z − 3j, which is the set of all 
points in R 3 whose z-coordinate is 3 (x and y can each be any value). This is the 
horizontal plane that is parallel to the xy-plane and three units above it as in Figure 7(a).

(c) y=5, a line in R@

0

y

5

x

(b) y=5, a plane in R#(a) z=3, a plane in R#

y

0

z

x 50

z

yx

3

(b) The equation y − 5 represents the set of all points in R 3 whose y-coordinate is 5. 
This is the vertical plane that is parallel to the xz-plane and five units to the right of it as 
in Figure 7(b). Q

FIGURE 7
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794 CHAPTER 12  Vectors and the Geometry of Space

NOTE When an equation is given, we must understand from the context whether it rep-
resents a curve in R 2 or a surface in R 3. In Example 1, y − 5 represents a plane in R 3, but  
of course y − 5 can also represent a line in R 2 if we are dealing with two-dimensional 
analytic geometry. See Figure 7(b) and (c).

In general, if k is a constant, then x − k represents a plane parallel to the yz-plane,  
y − k is a plane parallel to the xz-plane, and z − k is a plane parallel to the xy-plane. In  
Figure 5, the faces of the rectangular box are formed by the three coordinate planes 
x − 0 (the yz-plane), y − 0 (the xz-plane), and z − 0 (the xy-plane), and the planes 
x − a, y − b, and z − c.

EXAMPLE 2 
(a) Which points sx, y, zd satisfy the equations

x 2 1 y 2 − 1    and    z − 3

(b) What does the equation x 2 1 y 2 − 1 represent as a surface in R 3?

SOLUTION
(a) Because z − 3, the points lie in the horizontal plane z − 3 from Example 1(a). 
Because x 2 1 y 2 − 1, the points lie on the circle with radius 1 and center on the z-axis. 
See Figure 8.

(b) Given that x 2 1 y 2 − 1, with no restrictions on z, we see that the point sx, y, zd 
could lie on a circle in any horizontal plane z − k. So the surface x 2 1 y 2 − 1 in R 3 
consists of all possible horizontal circles x 2 1 y 2 − 1, z − k, and is therefore the circu-
lar cylinder with radius 1 whose axis is the z-axis. See Figure 9.

0

3

z

x y

0

z

x y

FIGURE 8  
The circle x 2 1 y 2 − 1, z − 3

FIGURE 9  
The cylinder x 2 1 y 2 − 1  Q

EXAMPLE 3 Describe and sketch the surface in R 3 represented by the equation y − x.

SOLUTION The equation represents the set of all points in R 3 whose x- and y-coordi-
nates are equal, that is, hsx, x, zd | x [ R, z [ Rj. This is a vertical plane that intersects 
the xy-plane in the line y − x, z − 0. The portion of this plane that lies in the first 
octant is sketched in Figure 10. Q

Distance and Spheres
The familiar formula for the distance between two points in a plane is easily extended to 
the following three-dimensional formula.

0
y

z

x

FIGURE 10  
The plane y − x
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Distance Formula in Three Dimensions The distance | P1P2 | between the points 
P1sx1, y1, z1d and P2sx2, y2, z2 d is

| P1P2 | − ssx2 2 x1d2 1 sy2 2 y1d2 1 sz2 2 z1d2 

To see why this formula is true, we construct a rectangular box as in Figure 11, where 
P1 and P2 are opposite vertices and the faces of the box are parallel to the coordinate  
planes. If Asx2, y1, z1d and Bsx2, y2, z1d are the vertices of the box indicated in the figure, 
then

| P1A | − | x2 2 x1 |      | AB | − | y2 2 y1 |      | BP2 | − | z2 2 z1 |
Because triangles P1BP2 and P1AB are both right-angled, two applications of the Pythago-
rean Theorem give

 | P1P2 |2 − | P1B |2 1 | BP2 |2

and  | P1B |2 − | P1A |2 1 | AB |2 

Combining these equations, we get

 | P1P2 |2 − | P1A |2 1 | AB |2 1 | BP2 |2

 − | x2 2 x1 |2 1 | y2 2 y1 |2 1 | z2 2 z1 |2

 − sx2 2 x1d2 1 sy2 2 y1d2 1 sz2 2 z1d2

Therefore  | P1P2 | − ssx2 2 x1d2 1 sy2 2 y1d2 1 sz2 2 z1d2 

EXAMPLE 4 The distance from the point Ps2, 21, 7d to the point Qs1, 23, 5d is

  | PQ | − ss1 2 2d2 1 s23 1 1d2 1 s5 2 7d2 − s1 1 4 1 4 − 3 Q

EXAMPLE 5 Find an equation of a sphere with radius r and center Csh, k, ld.

SOLUTION By definition, a sphere is the set of all points Psx, y, zd whose distance from  
C is r. (See Figure 12.) Thus P is on the sphere if and only if | PC | − r. Squaring both 
sides, we have | PC |2 − r 2 or

 sx 2 hd2 1 sy 2 kd2 1 sz 2 ld2 − r 2  Q

The result of Example 5 is worth remembering.

Equation of a Sphere  An equation of a sphere with center Csh, k, ld and radius r 
is

sx 2 hd2 1 sy 2 kd2 1 sz 2 ld2 − r 2

In particular, if the center is the origin O, then an equation of the sphere is

x 2 1 y 2 1 z2 − r 2

7et120111
09/18/08
MasterID: 01380

FIGURE 11
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FIGURE 11
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FIGURE 12
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EXAMPLE 6 Show that x 2 1 y 2 1 z2 1 4x 2 6y 1 2z 1 6 − 0 is the equation of a 
sphere, and find its center and radius.

SOLUTION We can rewrite the given equation in the form of an equation of a sphere if 
we complete squares:

 sx 2 1 4x 1 4d 1 sy 2 2 6y 1 9d 1 sz2 1 2z 1 1d − 26 1 4 1 9 1 1

 sx 1 2d2 1 sy 2 3d2 1 sz 1 1d2 − 8

Comparing this equation with the standard form, we see that it is the equation of a 
sphere with center s22, 3, 21d and radius s8 − 2s2 . Q

EXAMPLE 7 What region in R 3 is represented by the following inequalities?

1 < x 2 1 y 2 1 z2 < 4    z < 0

SOLUTION  The inequalities

1 < x 2 1 y 2 1 z2 < 4

can be rewritten as

 1 < sx 2 1 y 2 1 z 2 < 2

so they represent the points sx, y, zd whose distance from the origin is at least 1 and at 
most 2. But we are also given that z < 0, so the points lie on or below the xy-plane.  
Thus the given inequalities represent the region that lies between (or on) the spheres 
x 2 1 y 2 1 z2 − 1 and x 2 1 y 2 1 z2 − 4 and beneath (or on) the xy-plane. It is 
sketched in Figure 13. Q

0 
1 

2 

z 

y x 

FIGURE 13

 1.  Suppose you start at the origin, move along the x-axis a 
distance of 4 units in the positive direction, and then move 
downward a distance of 3 units. What are the coordinates  
of your position?

 2.  Sketch the points s1, 5, 3d, s0, 2, 23d, s23, 0, 2d, and 
s2, 22, 21d on a single set of coordinate axes.

 3.  Which of the points As24, 0, 21d, Bs3, 1, 25d, and Cs2, 4, 6d 
is closest to the yz-plane? Which point lies in the xz-plane?

 4.  What are the projections of the point (2, 3, 5) on the xy-, yz-,  
and xz-planes? Draw a rectangular box with the origin and 
s2, 3, 5d as opposite vertices and with its faces parallel to the 
coordinate planes. Label all vertices of the box. Find the length 
of the diagonal of the box.

 5.  What does the equation x − 4 represent in R2? What does it 
represent in R3? Illustrate with sketches.

 6.  What does the equation y − 3 represent in R3? What does 
z − 5 represent? What does the pair of equations y − 3, z − 5 
represent? In other words, describe the set of points sx, y, zd 
such that y − 3 and z − 5. Illustrate with a sketch.

 7.  Describe and sketch the surface in R3 represented by the equa-
tion x 1 y − 2.

 8.  Describe and sketch the surface in R3 represented by the equa-
tion x 2 1 z 2 − 9.

9–10 Find the lengths of the sides of the triangle PQR. Is it a right 
triangle? Is it an isosceles triangle?

 9. Ps3, 22, 23d,  Qs7, 0, 1d,  Rs1, 2, 1d

 10. Ps2, 21, 0d,  Qs4, 1, 1d,  Rs4, 25, 4d

 11.  Determine whether the points lie on a straight line.
 (a) As2, 4, 2d,  Bs3, 7, 22d,  Cs1, 3, 3d
 (b) Ds0, 25, 5d,  Es1, 22, 4d,  Fs3, 4, 2d

 12. Find the distance from s4, 22, 6d to each of the following.
 (a) The xy-plane (b) The yz-plane
 (c) The xz-plane (d) The x-axis
 (e) The y-axis (f) The z-axis
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 40.  The solid cylinder that lies on or below the plane z − 8 and on 
or above the disk in the xy-plane with center the origin and 
radius 2

 41.  The region consisting of all points between (but not on) the 
spheres of radius r and R centered at the origin, where r , R

 42.  The solid upper hemisphere of the sphere of radius 2 centered 
at the origin

 43.  The figure shows a line L1 in space and a second line L2,  
which is the projection of L1 onto the xy-plane. (In other words, 
the points on L2 are directly beneath, or above, the points  
on L1.)

 (a) Find the coordinates of the point P on the line L1.
 (b)  Locate on the diagram the points A, B, and C, where  

the line L1 intersects the xy-plane, the yz-plane, and the  
xz-plane, respectively.

x

0

z

y

1

1 1

L¡

L™

P

 44.  Consider the points P such that the distance from P to 
As21, 5, 3d is twice the distance from P to Bs6, 2, 22d. Show 
that the set of all such points is a sphere, and find its center and 
radius.

 45.  Find an equation of the set of all points equidistant from the 
points As21, 5, 3d and Bs6, 2, 22d. Describe the set.

 46.  Find the volume of the solid that lies inside both of the spheres

x 2 1 y 2 1 z2 1 4x 2 2y 1 4z 1 5 − 0

   and x 2 1 y 2 1 z2 − 4

 47.  Find the distance between the spheres x 2 1 y 2 1 z 2 − 4 and 
x 2 1 y 2 1 z 2 − 4x 1 4y 1 4z 2 11.

 48.  Describe and sketch a solid with the following properties. 
When illuminated by rays parallel to the z-axis, its shadow is a 
circular disk. If the rays are parallel to the y-axis, its shadow is 
a square. If the rays are parallel to the x-axis, its shadow is an 
isosceles triangle.

 13.  Find an equation of the sphere with center s23, 2, 5d and 
radius 4. What is the intersection of this sphere with the  
yz-plane?

 14.  Find an equation of the sphere with center s2, 26, 4d and 
radius 5. Describe its intersection with each of the coordinate 
planes.

 15.  Find an equation of the sphere that passes through the point  
s4, 3, 21d and has center s3, 8, 1d.

 16.  Find an equation of the sphere that passes through the origin 
and whose center is s1, 2, 3d.

17–20 Show that the equation represents a sphere, and find its  
center and radius.

 17. x 2 1 y 2 1 z2 2 2x 2 4y 1 8z − 15

 18. x 2 1 y 2 1 z 2 1 8x 2 6y 1 2z 1 17 − 0

 19. 2x 2 1 2y 2 1 2z 2 − 8x 2 24z 1 1

 20. 3x 2 1 3y 2 1 3z 2 − 10 1 6y 1 12z

 21. (a)  Prove that the midpoint of the line segment from 
P1sx1, y1, z1d to P2sx2, y2, z2 d is

S x1 1 x2

2
, 

 y1 1 y2

2
, 

z1 1 z2

2 D
 (b)  Find the lengths of the medians of the triangle with ver-

tices As1, 2, 3d, Bs22, 0, 5d, and Cs4, 1, 5d. (A median of a 
triangle is a line segment that joins a vertex to the midpoint 
of the opposite side.)

 22.  Find an equation of a sphere if one of its diameters has end-
points s5, 4, 3d and s1, 6, 29d.

 23.  Find equations of the spheres with center s2, 23, 6d that touch 
(a) the xy-plane, (b) the yz-plane, (c) the xz-plane.

 24.  Find an equation of the largest sphere with center s5, 4, 9d that 
is contained in the first octant.

25–38 Describe in words the region of R 3 represented by the 
equation(s) or inequality.

 25. x − 5 26. y − 22

 27. y , 8 28. z > 21

 29. 0 < z < 6 30. y 2 − 4

 31. x 2 1 y 2 − 4,  z − 21 32. x 2 1 y 2 − 4

 33. x 2 1 y 2 1 z 2 − 4 34. x 2 1 y 2 1 z 2 < 4

 35. 1 < x 2 1 y 2 1 z 2 < 5 36. x − z

 37. x 2 1 z 2 < 9 38. x 2 1 y 2 1 z 2 . 2z

39–42 Write inequalities to describe the region.

 39. The region between the yz-plane and the vertical plane x − 5
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The term vector is used by scientists to indicate a quantity (such as displacement or 
velocity or force) that has both magnitude and direction. A vector is often represented by 
an arrow or a directed line segment. The length of the arrow represents the magnitude of 
the vector and the arrow points in the direction of the vector. We denote a vector by print-
ing a letter in boldface svd or by putting an arrow above the letter svld.

For instance, suppose a particle moves along a line segment from point A to point B. The 
corresponding displacement vector v, shown in Figure 1, has initial point A (the tail)

and terminal point B (the tip) and we indicate this by writing v − AB
l

. Notice that the 

vector u − CD
l

 has the same length and the same direction as v even though it is in a 
different position. We say that u and v are equivalent (or equal) and we write u − v. 
The zero vector, denoted by 0, has length 0. It is the only vector with no specific direction.

Combining Vectors
Suppose a particle moves from A to B, so its displacement vector is AB

l
. Then the particle 

changes direction and moves from B to C, with displacement vector BC
l

 as in Figure 2. 
The combined effect of these displacements is that the particle has moved from A to C. 
The resulting displacement vector AC

l
 is called the sum of AB

l
 and BC

l
 and we write

AC
l

− AB
l

1 BC
l

In general, if we start with vectors u and v, we first move v so that its tail coincides 
with the tip of u and define the sum of u and v as follows.

Definition of Vector Addition  If u and v are vectors positioned so the initial 
point of v is at the terminal point of u, then the sum u 1 v is the vector from the 
initial point of u to the terminal point of v.

The definition of vector addition is illustrated in Figure 3. You can see why this defi-
nition is sometimes called the Triangle Law.

vu+v

u

FIGURE 3  
The Triangle Law     

v
v+u

u

u

v

u+v

FIGURE 4  
The Parallelogram Law

In Figure 4 we start with the same vectors u and v as in Figure 3 and draw another  
copy of v with the same initial point as u. Completing the parallelogram, we see that 
u 1 v − v 1 u. This also gives another way to construct the sum: if we place u and v so 
they start at the same point, then u 1 v lies along the diagonal of the parallelogram with 
u and v as sides. (This is called the Parallelogram Law.)

EXAMPLE 1 Draw the sum of the vectors a and b shown in Figure 5.

SOLUTION First we move b and place its tail at the tip of a, being careful to draw a 
copy of b that has the same length and direction. Then we draw the vector a 1 b [see 

A

B

v

C

D

u

FIGURE 1  
Equivalent vectors

C

B

A

FIGURE 2

a b

FIGURE 5
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 SECTION 12.2  Vectors 799

Figure 6(a)] starting at the initial point of a and ending at the terminal point of the copy 
of b.

Alternatively, we could place b so it starts where a starts and construct a 1 b by the 
Parallelogram Law as in Figure 6(b).

 

a

b

a+b

(a)

a

a+b
b

(b)  Q

It is possible to multiply a vector by a real number c. (In this context we call the real num-
ber c a scalar to distinguish it from a vector.) For instance, we want 2v to be the same  
vector as v 1 v, which has the same direction as v but is twice as long. In general, we mul- 
tiply a vector by a scalar as follows.

Definition of Scalar Multiplication  If c is a scalar and v is a vector, then the 
scalar multiple cv is the vector whose length is | c | times the length of v and 
whose direction is the same as v if c . 0 and is opposite to v if c , 0. If c − 0 or 
v − 0, then cv − 0.

This definition is illustrated in Figure 7. We see that real numbers work like scaling fac- 
tors here; that’s why we call them scalars. Notice that two nonzero vectors are parallel 
if they are scalar multiples of one another. In particular, the vector 2v − s21dv has the 
same length as v but points in the opposite direction. We call it the negative of v.

_1.5vv 2v _vv1
2

By the difference u 2 v of two vectors we mean

u 2 v − u 1 s2vd

So we can construct u 2 v by first drawing the negative of v, 2v, and then adding it to 
u by the Parallelogram Law as in Figure 8(a). Alternatively, since v 1 su 2 vd − u, 
the vector u 2 v, when added to v, gives u. So we could construct u 2 v as in Fig ure 
8(b) by means of the Triangle Law. Notice that if u and v both start from the same initial 
point, then u 2 v connects the tip of v to the tip of u.

(a)

uv

u-v

_v

(b)

v

u-v

u

TEC Visual 12.2 shows how the Tri-
angle and Parallelogram Laws work 
for various vectors a and b.

FIGURE 6

FIGURE 7  
Scalar multiples of v

FIGURE 8  
Drawing u 2 v

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



800 CHAPTER 12  Vectors and the Geometry of Space

EXAMPLE 2 If a and b are the vectors shown in Figure 9, draw a 2 2b.

SOLUTION We first draw the vector 22b pointing in the direction opposite to b and 
twice as long. We place it with its tail at the tip of a and then use the Triangle Law to 
draw a 1 s22bd as in Figure 10. Q

Components
For some purposes it’s best to introduce a coordinate system and treat vectors algebra- 
ically. If we place the initial point of a vector a at the origin of a rectangular coordinate  
system, then the terminal point of a has coordinates of the form sa1, a2d or sa1, a2, a3d, 
depending on whether our coordinate system is two- or three-dimensional (see Figure 11). 
These coordinates are called the components of a and we write

a − ka1, a2 l       or      a − ka1, a2, a3 l

We use the notation ka1, a2l for the ordered pair that refers to a vector so as not to confuse 
it with the ordered pair sa1, a2d that refers to a point in the plane.

a=ka¡, a™l a=ka¡, a™, a£l

(a¡, a™)

O

y

x

a

z

x y

a
O

(a¡, a™, a£)

For instance, the vectors shown in Figure 12 are all equivalent to the vector OP
l

− k3, 2l 
whose terminal point is Ps3, 2d. What they have in common is that the terminal point 
is reached from the initial point by a displacement of three units to the right and two 
upward. We can think of all these geometric vectors as representations of the algebraic 
vector a − k3,  2l. The particular representation OP

l
 from the origin to the point Ps3, 2d 

is called the position vector of the point P.
In three dimensions, the vector a − OP

l
− ka1, a2, a3l is the position vector of the  

point Psa1, a2, a3d. (See Figure 13.) Let’s consider any other representation AB
l

 of a, 
where the initial point is Asx1, y1, z1d and the terminal point is Bsx2, y2, z2 d. Then we must 
have x1 1 a1 − x2, y1 1 a2 − y2, and z1 1 a3 − z2 and so a1 − x2 2 x1, a2 − y2 2 y1, 
and a3 − z2 2 z1. Thus we have the following result.

1  Given the points Asx1, y1, z1d and Bsx2, y2, z2 d, the vector a with represen-

tation AB
l

 is

a − kx2 2 x1, y2 2 y1, z2 2 z1l

EXAMPLE 3 Find the vector represented by the directed line segment with initial  
point As2, 23, 4) and terminal point Bs22, 1, 1d.

SOLUTION By (1), the vector corresponding to AB
l

 is

 a −  k22 2 2, 1 2 s23d, 1 2 4l −  k24, 4, 23l Q

a

b

a_2b

a-2b

FIGURE 9

a

b

a_2b

a-2b

FIGURE 10

FIGURE 11

(1, 3)

(4, 5)

x

y

0

P(3, 2)

FIGURE 12  
Representations of a − k3,  2l

O

z

y
x

position
vector of P

P(a¡, a™, a£)

A(x, y, z) B(x+a¡, y+a™, z+a£)

FIGURE 13  
Representations of a − ka1, a2, a3l
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The magnitude or length of the vector v is the length of any of its representations and 
is denoted by the symbol | v | or i v i. By using the distance formula to compute the length 
of a segment OP, we obtain the following formulas.

The length of the two-dimensional vector a − k a1, a2 l is

|a | − sa 2
1 1 a 2

2
  

The length of the three-dimensional vector a − ka1, a2, a3l is

| a | − sa 2
1  1 a 2

2  1 a 2
3

 

0

y

xb¡a¡

b¡

b™b
a+b

a

(a¡+b¡, a™+b™)

a™ a™

FIGURE 14

How do we add vectors algebraically? Figure 14 shows that if a − ka1, a2l and 
b − kb1, b2l, then the sum is a 1 b − ka1 1 b1, a2 1 b2l, at least for the case where the 
components are positive. In other words, to add algebraic vectors we add corresponding 
components. Similarly, to subtract vectors we subtract corresponding components. From 
the similar triangles in Figure 15 we see that the components of ca are ca1 and ca2. So to 
multiply a vector by a scalar we multiply each component by that scalar.

If a − k a1,  a2 l and b − kb1,  b2l, then

a 1 b − ka1 1 b1, a2 1 b2l    a 2 b − ka1 2 b1, a2 2 b2l

ca − k ca1, ca2 l

Similarly, for three-dimensional vectors,

 k a1, a2, a3 l 1 k b1, b2, b3 l − k a1 1 b1, a2 1 b2, a3 1 b3 l

 k a1, a2, a3 l 2 k b1, b2, b3 l − k a1 2 b1, a2 2 b2, a3 2 b3 l

 ck a1, a2, a3 l − k ca1, ca2, ca3 l

EXAMPLE 4 If a − k 4, 0, 3 l and b − k 22, 1, 5 l, find | a | and the vectors a 1 b, 
a 2 b, 3b, and 2a 1 5b.

SOLUTION  | a | − s42 1 02 1 32 − s25 − 5

 a 1 b − k4, 0, 3l 1 k22, 1, 5l

 − k4 1 s22d, 0 1 1, 3 1 5l − k2, 1, 8l

 a 2 b − k4, 0, 3l 2 k22, 1, 5l

 − k4 2 s22d, 0 2 1, 3 2 5l − k6, 21, 22l

 3b − 3k22, 1, 5l − k3s22d, 3s1d, 3s5dl − k26, 3, 15l

 2a 1 5b − 2k4, 0, 3l 1 5k22, 1, 5l

  − k8, 0, 6l 1 k210, 5, 25l − k22, 5, 31l  Q

ca™

ca¡

ca
a™

a¡

a

FIGURE 15
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We denote by V2 the set of all two-dimensional vectors and by V3 the set of all three-
dimensional vectors. More generally, we will later need to consider the set Vn of all  
n-dimensional vectors. An n-dimensional vector is an ordered n-tuple:

a − k a1, a2, . . . , an l

where a1, a2, . . . , an are real numbers that are called the components of a. Addition and 
scalar multiplication are defined in terms of components just as for the cases n − 2 and 
n − 3.

Properties of Vectors If a, b, and c are vectors in Vn and c and d are scalars, then

1. a 1 b − b 1 a 2. a 1 sb 1 cd − sa 1 bd 1 c

3. a 1 0 − a 4. a 1 s2ad − 0

5. csa 1 bd − ca 1 cb 6. sc 1 dda − ca 1 da

7. scdda − csdad 8. 1a − a

These eight properties of vectors can be readily verified either geometrically or alge-
braically. For instance, Property 1 can be seen from Figure 4 (it’s equivalent to the Paral-
lelogram Law) or as follows for the case n − 2:

 a 1 b − ka1, a2 l 1 kb1, b2 l − ka1 1 b1, a2 1 b2 l

 − kb1 1 a1, b2 1 a2 l − kb1, b2 l 1 ka1, a2 l

 − b 1 a

We can see why Property 2 (the associative law) is true by looking at Figure 16 and 
applying the Triangle Law several times: the vector PQ

l
 is obtained either by first con-

structing a 1 b and then adding c or by adding a to the vector b 1 c.
Three vectors in V3 play a special role. Let

i − k1, 0, 0l       j − k0, 1, 0l      k − k0, 0, 1l

These vectors i, j, and k are called the standard basis vectors. They have length 1 and 
point in the directions of the positive x-, y-, and z-axes. Similarly, in two dimensions we 
define i − k1, 0l and j − k 0, 1l. (See Figure 17.)

(a)

0

y

x

j

(1, 0)
i

(0, 1)

(b)

z

x y

j

i

k

Vectors in n dimensions are used to list 
various quantities in an organized way. 
For instance, the components of a six-
dimensional vector

p − k p1, p2, p3, p4, p5, p6 l
might represent the prices of six dif-
ferent ingredients required to make a 
particular product. Four-dimensional 
vectors k x, y, z, t l are used in relativity 
theory, where the first three compo-
nents specify a position in space and the 
fourth represents time.

b

c

a

(a+b)+c

P

Q

=a+(b+c)
a+b

b+c

FIGURE 16

FIGURE 17  
Standard basis vectors in V2 and V3
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If a − ka1, a2, a3l, then we can write

 a − ka1, a2, a3 l − ka1, 0, 0 l 1 k0, a2, 0 l 1 k0, 0, a3 l

 − a1k1, 0, 0 l 1 a2k0, 1, 0 l 1 a3k0, 0, 1 l

2    a − a1 i 1 a2 j 1 a3 k  

Thus any vector in V3 can be expressed in terms of i, j, and k. For instance,

k1, 22, 6l − i 2 2j 1 6k

Similarly, in two dimensions, we can write

3   a − ka1, a2 l − a1 i 1 a2 j 

See Figure 18 for the geometric interpretation of Equations 3 and 2 and compare with  
Figure 17.

EXAMPLE 5 If a − i 1 2j 2 3k and b − 4 i 1 7 k, express the vector 2a 1 3b in 
terms of i, j, and k.

SOLUTION Using Properties 1, 2, 5, 6, and 7 of vectors, we have

 2a 1 3b − 2si 1 2j 2 3kd 1 3s4 i 1 7kd

  − 2 i 1 4j 2 6k 1 12 i 1 21k − 14 i 1 4j 1 15k Q

A unit vector is a vector whose length is 1. For instance, i, j, and k are all unit vec-
tors. In general, if a ± 0, then the unit vector that has the same direction as a is

4   u −
1

| a |  a −
a

| a |   

In order to verify this, we let c − 1y| a |. Then u − ca and c is a positive scalar, so u has 
the same direction as a. Also

| u | − | ca | − | c | | a | −
1

| a |  | a | − 1

EXAMPLE 6 Find the unit vector in the direction of the vector 2 i 2 j 2 2k.

SOLUTION The given vector has length

| 2 i 2 j 2 2k | − s22 1 s21d2 1 s22d2 − s9 − 3

so, by Equation 4, the unit vector with the same direction is

 1
3 s2 i 2 j 2 2kd − 2

3 i 2 1
3 j 2 2

3 k Q

Applications
Vectors are useful in many aspects of physics and engineering. In Chapter 13 we will see 
how they describe the velocity and acceleration of objects moving in space. Here we look 
at forces.

A force is represented by a vector because it has both a magnitude (measured in 
pounds or newtons) and a direction. If several forces are acting on an object, the resul-
tant force experienced by the object is the vector sum of these forces.

Gibbs
Josiah Willard Gibbs (1839–1903), a 
professor of mathematical physics 
at Yale College, published the first 
book on vectors, Vector Analysis, in 
1881. More complicated objects, 
called quaternions, had earlier been 
invented by Hamilton as mathemati-
cal tools for describing space, but 
they weren’t easy for scientists to use. 
Quaternions have a scalar part and 
a vector part. Gibb’s idea was to use 
the vector part separately. Maxwell 
and Heaviside had similar ideas, but 
Gibb’s approach has proved to be the 
most convenient way to study space.

(b) a=a¡i+a™ j+a£k

(a) a=a¡i+a™ j

0

a

a¡i

a™ j

(a¡, a™)

a™ j

a£k

(a¡, a™, a£)

a¡i

a

y

x

z

x
y

FIGURE 18
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804 CHAPTER 12  Vectors and the Geometry of Space

EXAMPLE 7 A 100-lb weight hangs from two wires as shown in Figure 19. Find the 
tensions (forces) T1 and T2 in both wires and the magnitudes of the tensions.

50°

w

T¡
50° 32°

32°

T™

100

T¡

50° 32°

T™

SOLUTION We first express T1 and T2 in terms of their horizontal and vertical compo-
nents. From Figure 20 we see that

5    T1 − 2| T1 | cos 50° i 1 | T1 | sin 50° j

6    T2 − | T2 | cos 32° i 1 | T2 | sin 32° j

The resultant T1 1 T2 of the tensions counterbalances the weight w − 2100 j and so 
we must have

T1 1 T2 − 2w − 100 j

Thus

(2| T1 | cos 50° 1 | T2 | cos 32°) i 1 (| T1 | sin 50° 1 | T2 | sin 32°) j − 100 j

Equating components, we get

 2| T1 | cos 50° 1 | T2 | cos 32° − 0

 | T1 | sin 50° 1 | T2 | sin 32° − 100

Solving the first of these equations for | T2 | and substituting into the second, we get

 | T1 | sin 50° 1 | T1| cos 50°
cos 32°

 sin 32° − 100

 | T1 | Ssin 50° 1 cos 50° 
sin 32°
cos 32°

 D − 100

So the magnitudes of the tensions are

 | T1 | −
100

sin 50° 1 tan 32° cos 50°
< 85.64 lb

and  | T2 | − | T1 | cos 50°
cos 32°

< 64.91 lb

Substituting these values in (5) and (6), we obtain the tension vectors

  T1 < 255.05 i 1 65.60 j

  T2 < 55.05 i 1 34.40 j  Q

FIGURE 19

50°

w

T¡
50° 32°

32°

T™

100

T¡

50° 32°

T™

FIGURE 20
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 1. Are the following quantities vectors or scalars? Explain.
 (a) The cost of a theater ticket
 (b) The current in a river
 (c) The initial flight path from Houston to Dallas
 (d) The population of the world

 2.  What is the relationship between the point (4, 7) and the  
vector k4, 7 l? Illustrate with a sketch.

 3.  Name all the equal vectors in the parallelogram shown.

B

E

A

D C

 4.  Write each combination of vectors as a single vector.

 (a) AB
l

1 BC
l

 (b) CD
l

1 DB
l

 (c) DB
l

2 AB
l

 (d) DC
l

1 CA
l

1 AB
l

A

D
C

B

 5.  Copy the vectors in the figure and use them to draw the  
following vectors.

 (a) u 1 v (b) u 1 w
 (c) v 1 w (d) u 2 v
 (e) v 1 u 1 w (f) u 2 w 2 v

wvu

 6.  Copy the vectors in the figure and use them to draw the  
following vectors.

 (a) a 1 b (b) a 2 b
 (c) 1

2 a (d) 23b
 (e) a 1 2b (f) 2b 2 a

b a

 7.  In the figure, the tip of c and the tail of d are both the midpoint 
of QR. Express c and d in terms of a and b.

b
a c

d

P

Q

R

 8.  If the vectors in the figure satisfy |u | − |v | − 1 and 
u 1 v 1 w − 0, what is |w |?

u

v

w

9–14 Find a vector a with representation given by the directed line
  segment AB

l
. Draw AB

l
 and the equivalent representation starting at 

the origin.

 9. As22, 1d, Bs1, 2d 10. As25, 21d, Bs23, 3d

 11. As3, 21d, Bs2, 3d 12. As3, 2d, Bs1, 0d

 13. As0, 3, 1d,  Bs2, 3, 21d 14. As0, 6, 21d, Bs3, 4, 4d

15–18 Find the sum of the given vectors and illustrate geometrically.

 15. k21, 4l, k6, 22l 16. k3, 21l, k21, 5l

 17. k3, 0, 1l, k0, 8, 0l 18. k1, 3, 22l, k0, 0, 6l

19–22 Find a 1 b, 4a 1 2b, | a |, and | a 2 b |.
 19. a − k23, 4l, b − k9, 21l

 20. a − 5 i 1 3 j, b − 2i 2 2 j

 21. a − 4 i 2 3 j 1 2k, b − 2 i 2 4k

 22. a − k8, 1, 24l, b − k5, 22, 1l

23–25 Find a unit vector that has the same direction as the given 
vector.

 23. k6, 22l 24. 25 i 1 3 j 2 k

 25. 8 i 2 j 1 4k

 26.   Find the vector that has the same direction as k6, 2, 23l but has 
length 4.

27–28 What is the angle between the given vector and the positive 
direction of the x-axis?

 27. i 1 s3
 

 j 28. 8 i 1 6 j

 29.  If v lies in the first quadrant and makes an angle !y3 with the 
positive x-axis and | v | − 4, find v in component form.

 30.  If a child pulls a sled through the snow on a level path with a 
force of 50 N exerted at an angle of 38 8 above the horizontal, 
find the horizontal and vertical components of the force.

 31.  A quarterback throws a football with angle of elevation 40° and 
speed 60 ftys. Find the horizontal and vertical components of 
the velocity vector.
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806 CHAPTER 12  Vectors and the Geometry of Space

 38.  The tension T at each end of a chain has magnitude 25 N (see 
the figure). What is the weight of the chain?

37° 37°

 39.  A boatman wants to cross a canal that is 3 km wide and wants 
to land at a point 2 km upstream from his starting point. The 
current in the canal flows at 3.5 kmyh and the speed of his boat 
is 13 kmyh.

 (a)  In what direction should he steer?
 (b) How long will the trip take?

 40.  Three forces act on an object. Two of the forces are at an angle 
of 100° to each other and have magnitudes 25 N and 12 N. The 
third is perpendicular to the plane of these two forces and has 
magnitude 4 N. Calculate the magnitude of the force that would 
exactly counterbalance these three forces.

 41.  Find the unit vectors that are parallel to the tangent line to the 
parabola y − x 2 at the point s2, 4d.

 42. (a)  Find the unit vectors that are parallel to the tangent line to 
the curve y − 2 sin x at the point s!y6, 1d.

 (b)  Find the unit vectors that are perpendicular to the tangent 
line.

 (c)  Sketch the curve y − 2 sin x and the vectors in parts (a)  
and (b), all starting at s!y6, 1d.

 43.  If A, B, and C are the vertices of a triangle, find 

AB
l

1 BC
l

1 CA
l

 44.  Let C be the point on the line segment AB that is twice as far 
  from B as it is from A. If a − OA

l
, b − OB

l
, and c − OC

l
, show 

  that c − 2
3 a 1 1

3 b.

 45. (a)  Draw the vectors a − k3, 2l, b − k2, 21l, and c − k7, 1l.
 (b)  Show, by means of a sketch, that there are scalars s and t 

such that c − sa 1 tb.
 (c) Use the sketch to estimate the values of s and t.
 (d) Find the exact values of s and t.

 46.  Suppose that a and b are nonzero vectors that are not parallel 
and c is any vector in the plane determined by a and b. Give  
a geometric argument to show that c can be written as 
c − sa 1 tb for suitable scalars s and t. Then give an argu-
ment using components.

 47.  If r − kx, y, zl and r0 − kx0, y0, z0l, describe the set of all 
points sx, y, zd such that | r 2 r0 | − 1.

 48.  If r − kx, yl, r1 − kx1, y1l, and r2 − kx2, y2l, describe the  
set of all points sx, yd such that | r 2 r1 | 1 | r 2 r2 | − k, 
where k . | r1 2 r2 |.

 49.  Figure 16 gives a geometric demonstration of Property 2 of  
vectors. Use components to give an algebraic proof of this  
fact for the case n − 2.

32–33 Find the magnitude of the resultant force and the angle it 
makes with the positive x-axis.

 32. 
20 lb

16 lb

45°
0

y

x30°

 33. 

300 N

200 N

60°
0

y

x

 34.  The magnitude of a velocity vector is called speed. Suppose 
that a wind is blowing from the direction N45°W at a speed  
of 50 kmyh. (This means that the direction from which the 
wind blows is 45° west of the northerly direction.) A pilot is 
steering a plane in the direction N60°E at an airspeed (speed in 
still air) of 250 kmyh. The true course, or track, of the plane is 
the direction of the resul tant of the velocity vectors of the plane 
and the wind. The ground speed of the plane is the magnitude 
of the resultant. Find the true course and the ground speed of 
the plane.

 35.  A woman walks due west on the deck of a ship at 3 miyh. The 
ship is moving north at a speed of 22 miyh. Find the speed and 
direction of the woman relative to the surface of the water.

 36.  A crane suspends a 500-lb steel beam horizontally by support 
cables (with negligible weight) attached from a hook to each 
end of the beam. The support cables each make an angle of 60° 
with the beam. Find the tension vector in each support cable 
and the magnitude of each tension.

60° 60°

 37.  A block-and-tackle pulley hoist is suspended in a warehouse 
by ropes of lengths 2 m and 3 m. The hoist weighs 350 N. The 
ropes, fastened at different heights, make angles of 50° and 
38° with the horizontal. Find the tension in each rope and the 
magnitude of each tension.

50°
38°

2 m 3 m
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So far we have added two vectors and multiplied a vector by a scalar. The question arises: 
is it possible to multiply two vectors so that their product is a useful quantity? One such 
product is the dot product, whose definition follows. Another is the cross product, which 
is discussed in the next section.

1  Definition If a − ka1, a2, a3l and b − kb1, b2, b3l, then the dot product of a 
and b is the number a ? b given by

a ? b − a1b1 1 a2b2 1 a3b3

Thus, to find the dot product of a and b, we multiply corresponding components and 
add. The result is not a vector. It is a real number, that is, a scalar. For this reason, the dot 
product is sometimes called the scalar product (or inner product). Although Defini-
tion 1 is given for three-dimensional vectors, the dot product of two-dimensional vectors 
is defined in a similar fashion:

ka1, a2l ? kb1, b2l − a1b1 1 a2b2

EXAMPLE 1
k2, 4l ? k3, 21l − 2s3d 1 4s21d − 2

 k21, 7, 4l ? k6, 2, 21
2 l − s21ds6d 1 7s2d 1 4(21

2 ) − 6

  si 1 2j 2 3kd ? s2j 2 kd − 1s0d 1 2s2d 1 s23ds21d − 7 Q

The dot product obeys many of the laws that hold for ordinary products of real num-
bers. These are stated in the following theorem.

2  Properties of the Dot Product If a, b, and c are vectors in V3 and c is a 
scalar, then

1. a ? a − | a |2 2. a ? b − b ? a
3. a ? sb 1 cd − a ? b 1 a ? c 4. scad ? b − csa ? bd − a ? scbd
5. 0 ? a − 0

   and an array of corner mirrors on the moon, to calculate very 
precisely the distance from the earth to the moon.)

b
a

z

x
y

 50.  Prove Property 5 of vectors algebraically for the case n − 3. 
Then use similar triangles to give a geometric proof.

 51.  Use vectors to prove that the line joining the midpoints of  
two sides of a triangle is parallel to the third side and half  
its length.

 52.  Suppose the three coordinate planes are all mirrored and a  
light ray given by the vector a − ka1, a2, a3l first strikes the  
xz-plane, as shown in the figure. Use the fact that the angle of 
incidence equals the angle of reflection to show that the direc-
tion of the reflected ray is given by b − ka1, 2a2, a3l. Deduce 
that, after being reflected by all three mutually perpendicular 
mirrors, the resulting ray is parallel to the initial ray. (American 
space scientists used this principle, together with laser beams 
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808 CHAPTER 12  Vectors and the Geometry of Space

These properties are easily proved using Definition 1. For instance, here are the proofs 
of Properties 1 and 3:

1. a ? a − a 2
1 1 a 2

2 1 a 2
3 − | a |2

3.  a ? sb 1 cd − ka1, a2, a3l ? kb1 1 c1, b2 1 c2, b3 1 c3l

  − a1sb1 1 c1d 1 a2sb2 1 c2d 1 a3sb3 1 c3d

  − a1b1 1 a1c1 1 a2b2 1 a2c2 1 a3b3 1 a3c3

  − sa1b1 1 a2b2 1 a3b3d 1 sa1c1 1 a2c2 1 a3c3 d

  − a ? b 1 a ? c

The proofs of the remaining properties are left as exercises. Q

The dot product a ? b can be given a geometric interpretation in terms of the angle " 
between a and b, which is defined to be the angle between the representations of a and  
b that start at the origin, where 0 < " < !. In other words, " is the angle between the 
line segments OA

l
 and OB

l
 in Figure 1. Note that if a and b are parallel vectors, then 

" − 0 or " − !.
The formula in the following theorem is used by physicists as the definition of the dot 

product.

3  Theorem If " is the angle between the vectors a and b, then

a ? b − | a | | b | cos "

PROOF If we apply the Law of Cosines to triangle OAB in Figure 1, we get

4  | AB |2 − | OA |2 1 | OB |2 2 2 | OA | | OB | cos "

(Observe that the Law of Cosines still applies in the limiting cases when " − 0 or !, or 
a − 0 or b − 0.) But | OA | − | a |, | OB | − | b |, and | AB | − | a 2 b |, so Equation 4 
becomes

5  | a 2 b |2 − | a |2 1 | b |2 2 2 | a | | b | cos "

Using Properties 1, 2, and 3 of the dot product, we can rewrite the left side of this 
equation as follows:

 | a 2 b |2 − sa 2 bd ? sa 2 bd

 − a ? a 2 a ? b 2 b ? a 1 b ? b

 − | a |2 2 2a ? b 1 | b |2

Therefore Equation 5 gives

 | a |2 2 2a ? b 1 | b |2 − | a |2 1 | b |2 2 2 | a | | b | cos "

Thus  22a ? b − 22 | a | | b | cos "

or  a ? b − | a | | b | cos "  Q

z

x y

a
¨
b

a-b
B

O
A

FIGURE 1
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 SECTION 12.3  The Dot Product 809

EXAMPLE 2 If the vectors a and b have lengths 4 and 6, and the angle between them is 
!y3, find a ? b.

SOLUTION Using Theorem 3, we have

 a ? b − | a | | b | coss!y3d − 4 ? 6 ? 1
2 − 12 Q

The formula in Theorem 3 also enables us to find the angle between two vectors.

6  Corollary If " is the angle between the nonzero vectors a and b, then

cos " −
a ? b

| a | | b |

EXAMPLE 3 Find the angle between the vectors a − k2, 2, 21l  and b − k5, 23, 2 l.

SOLUTION Since

| a | − s22 1 22 1 s21d2 − 3    and    | b | − s52 1 s23d2 1 22 − s38 

and since

a ? b − 2s5d 1 2s23d 1 s21ds2d − 2

we have, from Corollary 6,

cos " −
a ? b

| a | | b | −
2

3s38 

So the angle between a and b is

 " − cos21S 2

3s38 D < 1.46  sor 84°d Q

Two nonzero vectors a and b are called perpendicular or orthogonal if the angle 
between them is " − !y2. Then Theorem 3 gives

a ? b − | a | | b | coss!y2d − 0

and conversely if a ? b − 0, then cos " − 0, so " − !y2. The zero vector 0 is considered 
to be perpendicular to all vectors. Therefore we have the following method for determin-
ing whether two vectors are orthogonal.

7  Two vectors a and b are orthogonal if and only if a ? b − 0.

EXAMPLE 4 Show that 2 i 1 2j 2 k is perpendicular to 5 i 2 4j 1 2k.

SOLUTION Since

s2 i 1 2j 2 kd ? s5 i 2 4j 1 2kd − 2s5d 1 2s24d 1 s21ds2d − 0

these vectors are perpendicular by (7). Q
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810 CHAPTER 12  Vectors and the Geometry of Space

Because cos " . 0 if 0 < " , !y2 and cos " , 0 if !y2 , " < !, we see that 
a ? b is positive for " , !y2 and negative for " . !y2. We can think of a ? b as mea-
suring the extent to which a and b point in the same direction. The dot product a ? b is 
positive if a and b point in the same general direction, 0 if they are perpendicular, and 
negative if they point in generally opposite directions (see Figure 2). In the extreme case 
where a and b point in exactly the same direction, we have " − 0, so cos " − 1 and

a ? b − | a | | b |
If a and b point in exactly opposite directions, then we have " − ! and so cos " − 21 
and a ? b − 2| a | | b |.

Direction Angles and Direction Cosines
The direction angles of a nonzero vector a are the angles #, $, and % (in the interval 
f0, !gd that a makes with the positive x-, y-, and z-axes, respectively. (See Figure 3.)

The cosines of these direction angles, cos #, cos $, and cos %, are called the direction 
cosines of the vector a. Using Corollary 6 with b replaced by i, we obtain

8  cos # −
a ? i

| a | | i | −
a1

| a |
(This can also be seen directly from Figure 3.)

Similarly, we also have

9  cos $ −
a2

| a |       cos % −
a3

| a |
By squaring the expressions in Equations 8 and 9 and adding, we see that

10  cos2# 1 cos2$ 1 cos2% − 1

We can also use Equations 8 and 9 to write

 a − k a1, a2, a3 l − k | a | cos #, |a | cos $, |a | cos % l

 − | a |kcos #, cos $, cos %l

Therefore

11  
1

| a |  a − k cos #, cos $, cos % l

which says that the direction cosines of a are the components of the unit vector in the 
direction of a.

EXAMPLE 5 Find the direction angles of the vector a − k 1, 2, 3 l.

SOLUTION Since | a | − s12 1 22 1 32 − s14 , Equations 8 and 9 give

cos # −
1

s14       cos $ −
2

s14       cos % −
3

s14 

and so

# − cos21S 1

s14 D < 74°   $ − cos21S 2

s14 D < 58°    % − cos21S 3

s14 D < 37°

� Q

a
b

a · b>0¨

a b
a · b=0

a
b

a · b<0
¨

¨ acute

¨ obtuse

¨=π/2

FIGURE 2

TEC Visual 12.3A shows an anima-
tion of Figure 2.

x
y

z

a¡

a

å
∫

ç

FIGURE 3
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Projections
Figure 4 shows representations PQ

l
 and PR

l
 of two vectors a and b with the same initial 

point P. If S is the foot of the perpendicular from R to the line containing PQ
l

, then the 
vector with representation PS

l
 is called the vector projection of b onto a and is denoted 

by proja b. (You can think of it as a shadow of b).
The scalar projection of b onto a (also called the component of b along a) is defined 

to be the signed magnitude of the vector projection, which is the number | b | cos ", 
where " is the angle between a and b. (See Figure 5.) This is denoted by compa b. 
Observe that it is negative if !y2 , " < !. The equation

a ? b − | a || b | cos " − | a |(| b | cos ")
shows that the dot product of a and b can be interpreted as the length of a times the sca-
lar projection of b onto a. Since

| b | cos " −
a ? b

| a | −
a

| a | ? b

the component of b along a can be computed by taking the dot product of b with the unit 
vector in the direction of a. We summarize these ideas as follows.

Scalar projection of b onto a: compa b −
a ? b

| a |

Vector projection of b onto a: proja b − S a ? b

| a | D 
a

| a | −
a ? b

| a |2  a

Notice that the vector projection is the scalar projection times the unit vector in the direc-
tion of a.

EXAMPLE 6 Find the scalar projection and vector projection of b − k 1, 1, 2 l  
onto a − k 22, 3, 1 l.

SOLUTION Since | a | − ss22d2 1 32 1 12 − s14 , the scalar projection of b onto a 
is

compa b −
a ? b

| a | −
s22ds1d 1 3s1d 1 1s2d

s14 
−

3

s14 

The vector projection is this scalar projection times the unit vector in the direction of a:

 proja b −
3

s14  
a

| a | −
3
14

 a − K2
3
7

, 
9
14

, 
3
14L Q

One use of projections occurs in physics in calculating work. In Section 6.4 we 
defined the work done by a constant force F in moving an object through a distance d as 
W − Fd, but this applies only when the force is directed along the line of motion of the 
object. Suppose, however, that the constant force is a vector F − PR

l
 pointing in some 

other direction, as in Figure 6. If the force moves the object from P to Q, then the dis-
placement vector is D − PQ

l
. The work done by this force is defined to be the product 

of the component of the force along D and the distance moved:

W − s| F | cos "d | D |

TEC Visual 12.3B shows how Fig- 
ure 4 changes when we vary a and b.

Q

F

R

S
P

¨

D

FIGURE 6

Q

R

PS

b
a

proja b

R

SP
Q

a

proja b

b

FIGURE 4  
Vector projections

!b ! cos ¨ =

b

a

R

S Q¨
P compa b

FIGURE 5  
Scalar projection
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812 CHAPTER 12  Vectors and the Geometry of Space

But then, from Theorem 3, we have

12  W − | F | | D | cos ! − F ? D

Thus the work done by a constant force F is the dot product F ? D, where D is the dis-
placement vector.

EXAMPLE 7 A wagon is pulled a distance of 100 m along a horizontal path by a 
constant force of 70 N. The handle of the wagon is held at an angle of 358 above the 
horizontal. Find the work done by the force.

SOLUTION If F and D are the force and displacement vectors, as pictured in Figure 7, 
then the work done is

 W − F ? D − | F | | D | cos 35°

  − s70ds100d cos 35° < 5734 N ∙m − 5734 J Q

EXAMPLE 8 A force is given by a vector F − 3 i 1 4j 1 5k and moves a particle from 
the point Ps2, 1, 0d to the point Qs4, 6, 2d. Find the work done.

SOLUTION The displacement vector is D − PQ
l

− k 2, 5, 2 l, so by Equation 12, the 
work done is

 W − F ? D − k 3, 4, 5 l ?  k 2, 5, 2 l

  − 6 1 20 1 10 − 36

If the unit of length is meters and the magnitude of the force is measured in newtons,  
then the work done is 36 J. Q

D

F

35°

35°

FIGURE 7

 1.  Which of the following expressions are meaningful? Which are 
meaningless? Explain.

 (a) sa ? bd ? c (b) sa ? bdc
 (c) | a | sb ? cd (d) a ? sb 1 cd
 (e) a ? b 1 c (f) | a | ? sb 1 cd

2–10 Find a ? b.

 2. a − k5, 22l, b − k3, 4l

 3. a − k1.5, 0.4l, b − k24, 6l

 4. a − k 6, 22, 3 l,  b − k 2, 5, 21 l

 5. a − k4, 1, 14 l ,  b − k 6, 23, 28 l

 6. a − k p, 2p, 2p l,  b − k 2q, q, 2q l

 7. a − 2 i 1 j,  b − i 2 j 1 k

 8. a − 3 i 1 2 j 2 k,  b − 4 i 1 5k

 9.  | a | − 7, | b | − 4, the angle between a and b is 30°

 10. | a | − 80, | b | − 50, the angle between a and b is 3"y4

11–12 If u is a unit vector, find u ? v and u ? w.

 11. 

w

u v

 12. 

w

u

v

 13. (a) Show that i ? j − j ? k − k ? i − 0.
 (b) Show that i ? i − j ? j − k ? k − 1.

 14.  A street vendor sells a hamburgers, b hot dogs, and c soft 
drinks on a given day. He charges $4 for a hamburger, $2.50 
for a hot dog, and $1 for a soft drink. If A − k a, b, c l and 
P − k 4, 2.5, 1 l, what is the meaning of the dot product A ? P ?

15–20 Find the angle between the vectors. (First find an exact 
expression and then approximate to the nearest degree.)

 15. a − k 4, 3 l,  b − k 2, 21 l

 16. a − k 22, 5 l,  b − k 5, 12 l
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 38.  If a vector has direction angles # − "y4 and $ − "y3, find the 
third direction angle %.

39–44 Find the scalar and vector projections of b onto a.

 39. a − k 25, 12 l,  b − k 4, 6 l

 40. a − k 1, 4 l,  b − k 2, 3 l

 41. a − k4, 7, 24l, b − k3, 21, 1l

 42. a − k21, 4, 8l, b − k12, 1, 2l

 43. a − 3 i 2 3 j 1 k, b − 2 i 1 4 j 2 k

 44. a − i 1 2 j 1 3k, b − 5 i 2 k

 45.  Show that the vector ortha b − b 2 proja b is orthogonal to a. 
(It is called an orthogonal projection of b.)

 46.  For the vectors in Exercise 40, find ortha b and illustrate by 
drawing the vectors a, b, proja b, and ortha b.

 47. If a − k 3, 0, 21 l, find a vector b such that compa b − 2.

 48. Suppose that a and b are nonzero vectors.
 (a) Under what circumstances is compa b − compb a?
 (b) Under what circumstances is proja b − projb a?

 49.  Find the work done by a force F − 8 i 2 6 j 1 9k that moves 
an object from the point s0, 10, 8d to the point s6, 12, 20d along 
a straight line. The distance is measured in meters and the force 
in newtons.

 50.  A tow truck drags a stalled car along a road. The chain makes 
an angle of 30° with the road and the tension in the chain is 
1500 N. How much work is done by the truck in pulling the  
car 1 km?

 51.  A sled is pulled along a level path through snow by a rope.  
A 30-lb force acting at an angle of 40° above the horizontal 
moves the sled 80 ft. Find the work done by the force.

 52.  A boat sails south with the help of a wind blowing in the direc-
tion S36°E with magnitude 400 lb. Find the work done by the 
wind as the boat moves 120 ft.

 53.  Use a scalar projection to show that the distance from a point 
P1sx1, y1d to the line ax 1 by 1 c − 0 is

| ax1 1 by1 1 c |
sa 2 1 b 2 

   Use this formula to find the distance from the point s22, 3d to 
the line 3x 2 4y 1 5 − 0.

 54.  If r − kx, y, z l, a − ka1,  a2,  a3 l, and b − kb1, b2, b3l, show 
that the vector equation sr 2 ad ? sr 2 bd − 0 represents a 
sphere, and find its center and radius.

 55.  Find the angle between a diagonal of a cube and one of its 
edges.

 17. a − k1, 24, 1l, b − k0, 2, 22l

 18. a − k21, 3, 4l, b − k5, 2, 1l

 19. a − 4i 2 3j 1 k,  b − 2i 2 k

 20. a − 8 i 2 j 1 4k, b − 4 j 1 2k

21–22 Find, correct to the nearest degree, the three angles of the 
triangle with the given vertices.

 21. Ps2, 0d,  Qs0, 3d,  Rs3, 4d

 22. As1, 0, 21d,  Bs3, 22, 0d,  Cs1, 3, 3d

23–24 Determine whether the given vectors are orthogonal,  
parallel, or neither.

 23. (a) a − k9, 3l, b − k22, 6l
 (b) a − k4, 5, 22l, b − k3, 21, 5l
 (c) a − 28 i 1 12 j 1 4k, b − 6 i 2 9 j 2 3k
 (d) a − 3 i 2 j 1 3k, b − 5 i 1 9 j 2 2k

 24. (a) u − k25, 4, 22l, v − k3, 4, 21l
 (b) u − 9 i 2 6 j 1 3k, v − 26 i 1 4 j 2 2k
 (c) u − kc, c, cl, v − kc, 0, 2cl

 25.  Use vectors to decide whether the triangle with vertices 
Ps1, 23, 22d, Qs2, 0, 24d, and Rs6, 22, 25d is right-angled.

 26.  Find the values of x such that the angle between the vectors 
k 2, 1, 21 l, and k 1, x, 0 l is 458.

 27. Find a unit vector that is orthogonal to both i 1 j and i 1 k.

 28.  Find two unit vectors that make an angle of 608 with  
v − k 3, 4 l.

29–30 Find the acute angle between the lines.

 29. 2x 2 y − 3,  3x 1 y − 7

 30. x 1 2y − 7,  5x 2 y − 2

31–32 Find the acute angles between the curves at their points of 
intersection. (The angle between two curves is the angle between 
their tangent lines at the point of intersection.)

 31. y − x 2,  y − x 3

 32. y − sin x,  y − cos x,  0 < x < "y2

33–37 Find the direction cosines and direction angles of the vector. 
(Give the direction angles correct to the nearest degree.)

 33. k 2, 1, 2 l 34. k 6, 3, 22 l

 35. i 2 2 j 2 3k 36. 1
2 i 1 j 1 k

 37. k c, c, c l,  where c . 0

 SECTION 12.3  The Dot Product  
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814 CHAPTER 12  Vectors and the Geometry of Space

Given two nonzero vectors a − ka1, a2, a3 l and b − kb1, b2, b3 l, it is very useful to be 
able to find a nonzero vector c that is perpendicular to both a and b, as we will see in the 
next section and in Chapters 13 and 14. If c − kc1, c2, c3 l is such a vector, then a ? c − 0 
and b ? c − 0 and so

1  a1c1 1 a2c2 1 a3c3 − 0

2  b1c1 1 b2c2 1 b3c3 − 0

To eliminate c3 we multiply (1) by b3 and (2) by a3 and subtract:

3  sa1b3 2 a3b1dc1 1 sa2b3 2 a3b2dc2 − 0

Equation 3 has the form  pc1 1 qc2 − 0, for which an obvious solution is c1 − q and 
c2 − 2p. So a solution of (3) is

c1 − a2b3 2 a3b2        c2 − a3b1 2 a1b3

Substituting these values into (1) and (2), we then get

c3 − a1b2 2 a2b1

This means that a vector perpendicular to both a and b is

kc1, c2, c3 l − ka2b3 2 a3b2, a3b1 2 a1b3, a1b2 2 a2b1 l

The resulting vector is called the cross product of a and b and is denoted by a 3 b.

 60.  Suppose that all sides of a quadrilateral are equal in length and 
opposite sides are parallel. Use vector methods to show that the 
diagonals are perpendicular.

 61. Use Theorem 3 to prove the Cauchy-Schwarz Inequality:

| a ? b | < | a | | b |
 62. The Triangle Inequality for vectors is

| a 1 b | < | a | 1 | b |
 (a)  Give a geometric interpretation of the Triangle Inequality.
 (b)  Use the Cauchy-Schwarz Inequality from Exercise 61 to 

prove the Triangle Inequality. [Hint: Use the fact that 

| a 1 b |2 − sa 1 bd ∙ sa 1 bd and use Property 3 of the 
dot product.]

 63. The Parallelogram Law states that 

| a 1 b |2 1 | a 2 b |2 − 2 | a |2 1 2 | b |2

 (a)  Give a geometric interpretation of the Parallelogram Law.
 (b)  Prove the Parallelogram Law. (See the hint in Exercise 62.)

 64.  Show that if u 1 v and u 2 v are orthogonal, then the vectors 
u and v must have the same length.

 65.  If ! is the angle between vectors a and b, show that

proja b ? projb a − sa ? bd cos2 !

 56.  Find the angle between a diagonal of a cube and a diagonal of 
one of its faces.

 57.   A molecule of methane, CH4, is structured with the four hydro-
gen atoms at the vertices of a regular tetrahedron and the car-
bon atom at the centroid. The bond angle is the angle formed 
by the H—C—H combination; it is the angle between the lines 
that join the carbon atom to two of the hydrogen atoms. Show 
that the bond angle is about 109.5°. fHint: Take the vertices of 
the tetrahedron to be the points s1, 0, 0d, s0, 1, 0d, s0, 0, 1d, and 
s1, 1, 1d, as shown in the figure. Then the centroid is ( 1

2 , 12 , 12 ).g

H

H
H

H

C

x

y

z

 58.  If c − | a | b 1 | b | a, where a, b, and c are all nonzero vectors, 
show that c bisects the angle between a and b.

 59.  Prove Properties 2, 4, and 5 of the dot product (Theorem 2).
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 SECTION 12.4  The Cross Product 815

4  Definition If a − ka1, a2, a3 l and b − kb1, b2, b3 l, then the cross product 
of a and b is the vector

a 3 b − ka2b3 2 a3b2, a3b1 2 a1b3,  a1b2 2 a2b1l

Hamilton
The cross product was invented by 
the Irish mathematician Sir William 
Rowan Hamilton (1805–1865), who 
had created a precursor of vectors, 
called quaternions. When he was five 
years old Hamilton could read Latin, 
Greek, and Hebrew. At age eight he 
added French and Italian and when 
ten he could read Arabic and Sanskrit. 
At the age of 21, while still an under-
graduate at Trinity College in Dublin, 
Hamilton was appointed Professor 
of Astronomy at the university and 
Royal Astronomer of Ireland!

Notice that the cross product a 3 b of two vectors a and b, unlike the dot product, is 
a vector. For this reason it is also called the vector product. Note that a 3 b is defined 
only when a and b are three-dimensional vectors.

In order to make Definition 4 easier to remember, we use the notation of determinants. 
A determinant of order 2 is defined by

Z a
c

b
d Z − ad 2 bc

(Multiply across the diagonals and subtract.) For example,

Z 2
26

1
4 Z − 2s4d 2 1s26d − 14

A determinant of order 3 can be defined in terms of second-order determinants as  
follows:

5
 Z a1

 b1

 c1

a2

b2

c2

a3

b3

c3

  Z − a1 Z b2

c2

b3

c3
Z 2 a2 Z b1

c1

b3

c3
Z 1 a3 Z b1

c1

b2

c2
Z

Observe that each term on the right side of Equation 5 involves a number ai in the first 
row of the determinant, and ai is multiplied by the second-order determinant obtained 
from the left side by deleting the row and column in which ai appears. Notice also the 
minus sign in the second term. For example,

 Z 1
3

25

2
0
4

21
1
2

Z − 1 Z 0
4

1
2
 Z 2 2 Z 3

25
1
2
 Z 1 s21d Z 3

25
0
4
 Z

 − 1s0 2 4d 2 2s6 1 5d 1 s21ds12 2 0d − 238

If we now rewrite Definition 4 using second-order determinants and the standard basis 
vectors i, j, and k, we see that the cross product of the vectors a − a1 i 1 a2 j 1 a3 k and 
b − b1 i 1 b2 j 1 b3 k is

6   a 3 b − Z a2

b2

a3

b3
 Z  i 2 Z a1

b1

a3

b3
 Z  j 1 Z a1

b1

a2

b2
 Z  k

In view of the similarity between Equations 5 and 6, we often write

7  
 

a 3 b − Z i
 a1

 b1

j
a2

b2

k
a3

b3

Z
Although the first row of the symbolic determinant in Equation 7 consists of vectors, if 
we expand it as if it were an ordinary determinant using the rule in Equation 5, we obtain 
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816 CHAPTER 12  Vectors and the Geometry of Space

Equation 6. The symbolic formula in Equation 7 is probably the easiest way of remem-
bering and computing cross products.

EXAMPLE 1 If a − k1, 3, 4l and b − k2, 7,  25l, then

 
a 3 b − Z i

1
2

j
3
7

k
4

25
Z

 − Z 3
7

4
25

 Z  i 2 Z 1
2

4
25 Z  j 1 Z 1

2
3
7 Z  k

  − s215 2 28d i 2 s25 2 8d j 1 s7 2 6d k − 243 i 1 13j 1 k Q

EXAMPLE 2 Show that a 3 a − 0 for any vector a in V3.

SOLUTION If a − k a1, a2, a3 l, then

 a 3 a − Z i
a1

a1

j
a2

a2

k
a3

a3

Z
 − sa2a3 2 a3a2d i 2 sa1a3 2 a3a1d j 1 sa1a2 2 a2a1d k

  − 0 i 2 0 j 1 0 k − 0  Q

We constructed the cross product a 3 b so that it would be perpendicular to both a 
and b. This is one of the most important properties of a cross product, so let’s emphasize 
and verify it in the following theorem and give a formal proof.

8  Theorem The vector a 3 b is orthogonal to both a and b.

PROOF In order to show that a 3 b is orthogonal to a, we compute their dot product as 
follows:

 sa 3 bd ? a − Z a2

b2

a3

b3
Z  a1 2 Z a1

b1

a3

b3
Z  a2 1 Z a1

b1

a2

b2
Z  a3

 − a1sa2b3 2 a3b2 d 2 a2sa1b3 2 a3b1d 1 a3sa1b2 2 a2b1d

 − a1a2b3 2 a1b2a3 2 a1a2b3 1 b1a2a3 1 a1b2a3 2 b1a2a3

 − 0

A similar computation shows that sa 3 bd ? b − 0. Therefore a 3 b is orthogonal to 
both a and b. Q

If a and b are represented by directed line segments with the same initial point (as 
in Figure 1), then Theorem 8 says that the cross product a 3 b points in a direction 
perpendicu lar to the plane through a and b. It turns out that the direction of a 3 b is 
given by the right-hand rule: if the fingers of your right hand curl in the direction of 

a b

axb

n

¨

FIGURE 1  
The right-hand rule gives the direction 
of a 3 b.
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 SECTION 12.4  The Cross Product 817

a rotation (through an angle less than 180°) from a to b, then your thumb points in the 
direction of a 3 b.

Now that we know the direction of the vector a 3 b, the remaining thing we need to 
complete its geometric description is its length | a 3 b |. This is given by the following  
theorem.

9  Theorem If ! is the angle between a and b (so 0 < ! < "), then

| a 3 b | − | a | | b | sin !

PROOF From the definitions of the cross product and length of a vector, we have

  | a 3 b |2 − sa2b3 2 a3b2d2 1 sa3b1 2 a1b3d2 1 sa1b2 2 a2b1d2

  − a 2
2 b 2

3 2 2a2a3b2b3 1 a 2
3 b 2

2 1 a 2
3 b 2

1 2 2a1a3b1b3 1 a 2
1 b 2

3

 1 a 2
1 b 2

2 2 2a1 a2 b1b2 1 a 2
2 b 2

1

  − sa 2
1 1 a 2

2 1 a 2
3 dsb 2

1 1 b 2
2 1 b 2

3 d 2 sa1b1 1 a2b2 1 a3b3d2

  − | a |2 | b |2 2 sa ? bd2

 − | a |2 | b |2 2 | a |2 | b |2 cos2!    (by Theorem 12.3.3)

  − | a |2 | b |2 s1 2 cos2!d

  − | a |2 | b |2 sin2!

Taking square roots and observing that ssin2! − sin ! because sin ! > 0 when 
0 < ! < ", we have

 | a 3 b | − | a | | b | sin ! Q

Since a vector is completely determined by its magnitude and direction, we can now 
say that a 3 b is the vector that is perpendicular to both a and b, whose orientation is 
determined by the right-hand rule, and whose length is | a | | b | sin !. In fact, that is 
exactly how physicists define a 3 b.

10  Corollary Two nonzero vectors a and b are parallel if and only if

a 3 b − 0

PROOF Two nonzero vectors a and b are parallel if and only if ! − 0 or ". In either 
case sin ! − 0, so | a 3 b | − 0 and therefore a 3 b − 0. Q

The geometric interpretation of Theorem 9 can be seen by looking at Figure 2. If a 
and b are represented by directed line segments with the same initial point, then they 
determine a parallelogram with base | a |, altitude | b | sin !, and area

A − | a | ( | b | sin !) − | a 3 b |
Thus we have the following way of interpreting the magnitude of a cross product.

TEC Visual 12.4 shows how a 3 b 
changes as b changes.

Geometric characterization of a 3 b

a

b

¨

!b ! sin ¨

FIGURE 2
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The length of the cross product a 3 b is equal to the area of the parallelogram 
determined by a and b.

EXAMPLE 3 Find a vector perpendicular to the plane that passes through the points 
Ps1, 4, 6d, Qs22, 5, 21d, and Rs1, 21, 1d.

SOLUTION The vector PQ
l

3 PR
l

 is perpendicular to both PQ
l

 and PR
l

 and is therefore 
perpendicular to the plane through P, Q, and R. We know from (12.2.1) that

 PQ
l

− s22 2 1d i 1 s5 2 4d j 1 s21 2 6d k − 23 i 1 j 2 7k

 PR
l

− s1 2 1d i 1 s21 2 4d j 1 s1 2 6dk − 25 j 2 5k

We compute the cross product of these vectors:

 PQ
l

3 PR
l

− Z i j k
23 1 27

0 25 25
Z

 − s25 2 35d i 2 s15 2 0d j 1 s15 2 0d k − 240 i 2 15 j 1 15k

So the vector k240, 215, 15 l is perpendicular to the given plane. Any nonzero scalar 
multiple of this vector, such as k28, 23, 3 l, is also perpendicular to the plane. Q

EXAMPLE 4 Find the area of the triangle with vertices Ps1, 4, 6d, Qs22, 5, 21d,  
and Rs1, 21, 1d.

SOLUTION In Example 3 we computed that PQ
l

3 PR
l

− k240, 215, 15 l. The area of 
the parallelogram with adjacent sides PQ and PR is the length of this cross product:

| PQ
l

3 PR
l | − ss240d2 1 s215d2 1 152 

− 5s82 

The area A of the triangle PQR is half the area of this parallelogram, that is, 52 s82 . Q

If we apply Theorems 8 and 9 to the standard basis vectors i, j, and k using ! − "y2,  
we obtain

 i 3 j − k      j 3 k − i      k 3 i − j

 j 3 i − 2k     k 3 j − 2i      i 3 k − 2j

Observe that
i 3 j ± j 3 i

Thus the cross product is not commutative. Also

 i 3 si 3 jd − i 3 k − 2j

whereas

 si 3 id 3 j − 0 3 j − 0
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 SECTION 12.4  The Cross Product 819

So the associative law for multiplication does not usually hold; that is, in general,

sa 3 bd 3 c ± a 3 sb 3 cd

However, some of the usual laws of algebra do hold for cross products. The following 
the orem summarizes the properties of vector products.

11  Properties of the Cross Product If a, b, and c are vectors and c is a  
scalar, then

1. a 3 b − 2b 3 a
2. scad 3 b − csa 3 bd − a 3 scbd
3. a 3 sb 1 cd − a 3 b 1 a 3 c
4. sa 1 bd 3 c − a 3 c 1 b 3 c
5. a ? sb 3 cd − sa 3 bd ? c
6. a 3 sb 3 cd − sa ? cdb 2 sa ? bdc

These properties can be proved by writing the vectors in terms of their components  
and using the definition of a cross product. We give the proof of Property 5 and leave the 
remaining proofs as exercises.

PROOF OF PROPERTY 5 If a − k a1, a2, a3 l, b − kb1, b2, b3 l, and c − k c1, c2, c3 l, then

12   a ? sb 3 cd − a1sb2c3 2 b3c2d 1 a2sb3c1 2 b1c3d 1 a3sb1c2 2 b2c1d

 − a1b2c3 2 a1b3c2 1 a2b3c1 2 a2b1c3 1 a3b1c2 2 a3b2c1

 − sa2b3 2 a3b2 dc1 1 sa3b1 2 a1b3 dc2 1 sa1b2 2 a2b1dc3

  − sa 3 bd ? c  Q

Triple Products
The product a ? sb 3 cd that occurs in Property 5 is called the scalar triple product of 
the vectors a, b, and c. Notice from Equation 12 that we can write the scalar triple prod-
uct as a determinant:

13
 

a ? sb 3 cd − Z a1

 b1

 c1

a2

b2

c2

a3

b3

c3

Z
The geometric significance of the scalar triple product can be seen by considering the 

par allelepiped determined by the vectors a, b, and c. (See Figure 3.) The area of the base  
parallelogram is A − | b 3 c |. If ! is the angle between a and b 3 c, then the height h  
of the parallelepiped is h − | a | | cos ! |. (We must use | cos ! | instead of cos ! in case 
! . "y2.) Therefore the volume of the parallelepiped is

V − Ah − | b 3 c | | a | | cos ! | − | a ? sb 3 cd |
Thus we have proved the following formula.

a

b

¨

bxc

c
h

FIGURE 3
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820 CHAPTER 12  Vectors and the Geometry of Space

14   The volume of the parallelepiped determined by the vectors a, b, and c is the 
magnitude of their scalar triple product:

V − | a ? sb 3 cd |

If we use the formula in (14) and discover that the volume of the parallelepiped  
determined by a, b, and c is 0, then the vectors must lie in the same plane; that is, they 
are coplanar.

EXAMPLE 5 Use the scalar triple product to show that the vectors a − k1, 4, 27 l, 
b − k2, 21, 4l, and c − k0, 29, 18l are coplanar.

SOLUTION We use Equation 13 to compute their scalar triple product:

 
a ? sb 3 cd − Z 1

2
0

4
21
29

27
4

18
Z

 − 1 Z21
29

4
18

 Z 2 4 Z 20 4
18

 Z 2 7 Z 20 21
29

 Z
 − 1s18d 2 4s36d 2 7s218d − 0

Therefore, by (14), the volume of the parallelepiped determined by a, b, and c is 0.  
This means that a, b, and c are coplanar. Q

The product a 3 sb 3 cd that occurs in Property 6 is called the vector triple product 
of a, b, and c. Property 6 will be used to derive Kepler’s First Law of planetary motion 
in Chapter 13. Its proof is left as Exercise 50.

Torque
The idea of a cross product occurs often in physics. In particular, we consider a force F 
acting on a rigid body at a point given by a position vector r. (For instance, if we tighten 
a bolt by applying a force to a wrench as in Figure 4, we produce a turning effect.) The 
torque t (relative to the origin) is defined to be the cross product of the position and 
force vectors

t − r 3 F

and measures the tendency of the body to rotate about the origin. The direction of the 
torque vector indicates the axis of rotation. According to Theorem 9, the magnitude of 
the torque vector is

| t | − | r 3 F | − | r | | F | sin !

where ! is the angle between the position and force vectors. Observe that the only com-
ponent of F that can cause a rotation is the one perpendicular to r, that is, | F | sin !. The 
magnitude of the torque is equal to the area of the parallelogram determined by r and F.

EXAMPLE 6 A bolt is tightened by applying a 40-N force to a 0.25-m wrench as 
shown in Figure 5. Find the magnitude of the torque about the center of the bolt.

r

F

!

¨

FIGURE 4

75°

40 N0.25 m

FIGURE 5
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 SECTION 12.4  The Cross Product 821

SOLUTION The magnitude of the torque vector is

 | t | − | r 3 F | − | r | | F | sin 75° − s0.25ds40d sin 75°

 − 10 sin 75° < 9.66 N ∙m

If the bolt is right-threaded, then the torque vector itself is

t − | t | n < 9.66 n

where n is a unit vector directed down into the page (by the right-hand rule). Q

1–7 Find the cross product a 3 b and verify that it is orthogonal to 
both a and b.

 1. a − k2, 3, 0l, b − k1, 0, 5l

 2. a − k4, 3, 22l, b − k2, 21, 1l

 3. a − 2 j 2 4k, b − 2i 1 3 j 1 k

 4. a − 3 i 1 3 j 2 3k, b − 3 i 2 3 j 1 3k

 5. a − 1
2 i 1 1

3 j 1 1
4 k, b − i 1 2 j 2 3 k

 6. a − t i 1 cos t j 1 sin tk,  b − i 2 sin t j 1 cos tk

 7. a − k t, 1, 1yt l,  b − k t 2, t 2, 1 l

 8.  If a − i 2 2k and b − j 1 k, find a 3 b. Sketch a, b, and  
a 3 b as vectors starting at the origin.

9–12 Find the vector, not with determinants, but by using 
properties of cross products.

 9. si 3 jd 3 k 10. k 3 si 2 2 jd

 11. s j 2 kd 3 sk 2 id 12. si 1 jd 3 si 2 jd

 13.  State whether each expression is meaningful. If not, explain 
why. If so, state whether it is a vector or a scalar.

 (a) a ? sb 3 cd (b) a 3 sb ? cd
 (c) a 3 sb 3 cd (d) a ? sb ? cd
 (e) sa ? bd 3 sc ? dd (f) sa 3 bd ? sc 3 dd

14–15 Find | u 3 v | and determine whether u 3 v is directed into 
the page or out of the page.

 14. 
45°

|u |=4

|v |=5  15. |v |=16

120°|u |=12

 16.  The figure shows a vector a in the xy-plane and a vector b in 
the direction of k. Their lengths are | a | − 3 and | b | − 2.

 (a) Find | a 3 b |.

 (b)  Use the right-hand rule to decide whether the com ponents 
of a 3 b are positive, negative, or 0.

x

z

y

b

a

 17. If a − k2, 21, 3 l and b − k4, 2, 1 l, find a 3 b and b 3 a.

 18.  If a − k1, 0, 1 l, b − k2, 1, 21 l , and c − k0, 1, 3 l, show that 
a 3 sb 3 cd ± sa 3 bd 3 c.

 19.  Find two unit vectors orthogonal to both k3, 2, 1 l and  
k21, 1, 0 l.

 20.  Find two unit vectors orthogonal to both j 2 k and i 1 j.

 21. Show that 0 3 a − 0 − a 3 0 for any vector a in V3.

 22. Show that sa 3 bd ? b − 0 for all vectors a and b in V3.

23–26 Prove the property of cross products (Theorem 11).

 23. Property 1: a 3 b − 2b 3 a

 24. Property 2: scad 3 b − csa 3 bd − a 3 scbd

 25. Property 3: a 3 sb 1 cd − a 3 b 1 a 3 c

 26. Property 4: sa 1 bd 3 c − a 3 c 1 b 3 c

 27.  Find the area of the parallelogram with vertices As23, 0d, 
Bs21, 3d, Cs5, 2d, and Ds3, 21d.

 28.  Find the area of the parallelogram with vertices Ps1, 0, 2d, 
Qs3, 3, 3d, Rs7, 5, 8d, and Ss5, 2, 7d.

29–32 (a) Find a nonzero vector orthogonal to the plane through 
the points P, Q, and R, and (b) find the area of triangle PQR.

 29. Ps1, 0, 1d,  Qs22, 1, 3d,  Rs4, 2, 5d

 30. Ps0, 0, 23d,  Qs4, 2, 0d,  Rs3, 3, 1d

 31. Ps0, 22, 0d,  Qs4, 1, 22d,  Rs5, 3, 1d
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822 CHAPTER 12  Vectors and the Geometry of Space

 41.  A wrench 30 cm long lies along the positive y-axis and grips a 
bolt at the origin. A force is applied in the direction k0, 3, 24 l 
at the end of the wrench. Find the magnitude of the force 
needed to supply 100 N ∙m of torque to the bolt.

 42.  Let v − 5 j and let u be a vector with length 3 that starts at  
the origin and rotates in the xy -plane. Find the maximum and 
minimum values of the length of the vector u 3 v. In what 
direction does u 3 v point?

 43.  If a ? b − s3  and a 3 b − k1, 2, 2 l, find the angle between a 
and b.

 44. (a)  Find all vectors v such that

k1, 2, 1 l 3 v − k3, 1, 25 l

 (b)  Explain why there is no vector v such that

k1, 2, 1 l 3 v − k3, 1, 5 l

 45. (a)  Let P be a point not on the line L that passes through the 
points Q and R. Show that the distance d from the point P  
to the line L is

d − | a 3 b |
| a |

  where a − QR
l

 and b − QP
l

.
 (b)  Use the formula in part (a) to find the distance from  

the point Ps1, 1, 1d to the line through Qs0, 6, 8d and 
Rs21, 4, 7d.

 46. (a)  Let P be a point not on the plane that passes through the 
points Q, R, and S. Show that the distance d from P to the 
plane is

d − | a ? sb 3 cd |
| a 3 b |

  where a − QR
l

, b − QS
l

, and c − QP
l

.
 (b)  Use the formula in part (a) to find the distance from the 

point Ps2, 1, 4d to the plane through the points Qs1, 0, 0d, 
Rs0, 2, 0d, and Ss0, 0, 3d.

 47.  Show that | a 3 b |2 − | a |2 | b |2 2 sa ? bd2.

 48.  If a 1 b 1 c − 0, show that

a 3 b − b 3 c − c 3 a

 49. Prove that sa 2 bd 3 sa 1 bd − 2sa 3 bd.

 50.  Prove Property 6 of cross products, that is,

a 3 sb 3 cd − sa ? cdb 2 sa ? bdc

 51. Use Exercise 50 to prove that

a 3 sb 3 cd 1 b 3 sc 3 ad 1 c 3 sa 3 bd − 0

 52. Prove that

sa 3 bd ? sc 3 dd − Z a ? c
a ? d

b ? c
b ? d Z

 32. Ps2, 23, 4d, Qs21, 22, 2d, Rs3, 1, 23d

33–34 Find the volume of the parallelepiped determined by the  
vectors a, b, and c.

 33. a − k1, 2, 3 l,  b − k21, 1, 2 l,  c − k2, 1, 4 l

 34. a − i 1 j ,  b − j 1 k,  c − i 1 j 1 k

35–36 Find the volume of the parallelepiped with adjacent edges  
PQ, PR, and PS.

 35. Ps22, 1, 0d,  Qs2, 3, 2d,  Rs1, 4, 21d,  Ss3, 6, 1d

 36. Ps3, 0, 1d,  Qs21, 2, 5d,  Rs5, 1, 21d,  Ss0, 4, 2d

 37.  Use the scalar triple product to verify that the vectors 
u − i 1 5 j 2 2 k, v − 3 i 2 j, and w − 5 i 1 9 j 2 4 k  
are coplanar.

 38.  Use the scalar triple product to determine whether the points 
As1, 3, 2d, Bs3, 21, 6d, Cs5, 2, 0d, and Ds3, 6, 24d lie in the 
same plane.

 39.  A bicycle pedal is pushed by a foot with a 60-N force as 
shown. The shaft of the pedal is 18 cm long. Find the magni-
tude of the torque about P.

10°

70°
60 N

P

 40. (a)  A horizontal force of 20 lb is applied to the handle of a 
gearshift lever as shown. Find the magnitude of the torque 
about the pivot point P.

 (b)  Find the magnitude of the torque about P if the same force 
is applied at the elbow Q of the lever.

0.6 ft

1 ft

2 ft

P

Q

0.6 ft

20 lb
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 SECTION 12.5  Equations of Lines and Planes 823

DISCOVERY PROJECT

A tetrahedron is a solid with four vertices, P, Q, R, and S, and four triangular faces, as shown in 
the figure.

1.  Let v1, v2, v3, and v4 be vectors with lengths equal to the areas of the faces opposite the  
vertices P, Q, R, and S, respectively, and directions perpendicular to the respective faces and 
pointing outward. Show that

v1 1 v2 1 v3 1 v4 − 0

2.  The volume V of a tetrahedron is one-third the distance from a vertex to the opposite face, 
times the area of that face.

 (a)  Find a formula for the volume of a tetrahedron in terms of the coordinates of its vertices 
P, Q, R, and S.

 (b)   Find the volume of the tetrahedron whose vertices are Ps1, 1, 1d, Qs1, 2, 3d, Rs1, 1, 2d, 
and Ss3, 21, 2d.

3.  Suppose the tetrahedron in the figure has a trirectangular vertex S. (This means that the three 
angles at S are all right angles.) Let A, B, and C be the areas of the three faces that meet at S,  
and let D be the area of the opposite face PQR. Using the result of Problem 1, or otherwise, 
show that

D 2 − A2 1 B 2 1 C 2

 (This is a three-dimensional version of the Pythagorean Theorem.)

P

RQ
S

THE GEOMETRY OF A TETRAHEDRON

 53. Suppose that a ± 0.
 (a) If a ? b − a ? c, does it follow that b − c?
 (b) If a 3 b − a 3 c, does it follow that b − c?
 (c)  If a ? b − a ? c and a 3 b − a 3 c, does it follow  

that b − c?

 54. If v1, v2, and v3 are noncoplanar vectors, let

k1 −
v2 3 v3

v1 ? sv2 3 v3 d
    k2 −

v3 3 v1

v1 ? sv2 3 v3 d

k3 −
v1 3 v2

v1 ? sv2 3 v3 d

   (These vectors occur in the study of crystallography. Vectors  
of the form n1 v1 1 n2 v2 1 n3 v3 , where each ni is an integer, 
form a lattice for a crystal. Vectors written similarly in terms of 
k1, k2, and k3 form the reciprocal lattice.)

 (a) Show that k i is perpendicular to vj if i ± j.
 (b) Show that k i ? vi − 1 for i − 1, 2, 3.

 (c) Show that k1 ? sk2 3 k3 d −
1

v1 ? sv2 3 v3 d
.

Lines
A line in the xy-plane is determined when a point on the line and the direction of the line 
(its slope or angle of inclination) are given. The equation of the line can then be written 
using the point-slope form.

Likewise, a line L in three-dimensional space is determined when we know a point 
P0sx0, y0, z0d on L and the direction of L. In three dimensions the direction of a line is 
con veniently described by a vector, so we let v be a vector parallel to L. Let Psx, y, zd be 
an arbi trary point on L and let r0 and r be the position vectors of P0 and P (that is, they
have representations OPA̧ and OP

l
). If a is the vector with representation P¸PA, as in Fig-

ure 1, then the Triangle Law for vector addition gives r − r0 1 a. But, since a and v are 
parallel vectors, there is a scalar t such that a − tv. Thus 

x

O

z

y

a

v
rr¸L

P¸(x¸, y¸, z¸)

P(x, y, z)

FIGURE 1
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824 CHAPTER 12  Vectors and the Geometry of Space

1   r − r0 1 tv 

which is a vector equation of L. Each value of the parameter t gives the position vector r 
of a point on L. In other words, as t varies, the line is traced out by the tip of the vector r. As  
Figure 2 indicates, positive values of t correspond to points on L that lie on one side  
of P0, whereas negative values of t correspond to points that lie on the other side of P0.

If the vector v that gives the direction of the line L is written in component form as 
v − ka, b, c l, then we have tv − kta, tb, tcl . We can also write r − k x, y, z l and 
r0 − k x0, y0, z0 l , so the vector equation (1) becomes

k x, y, z l − k x0 1 ta, y0 1 tb, z0 1 tc l

Two vectors are equal if and only if corresponding components are equal. Therefore we 
have the three scalar equations:

x − x0 1 at    y − y0 1 bt    z − z0 1 ct

where t [ R. These equations are called parametric equations of the line L through the 
point P0sx0, y0, z0d and parallel to the vector v − ka, b, cl. Each value of the parameter t 
gives a point sx, y, zd on L.

2   Parametric equations for a line through the point sx0, y0, z0d and parallel to the 
direction vector ka, b, cl are

x − x0 1 at    y − y0 1 bt    z − z0 1 ct

EXAMPLE 1 
(a) Find a vector equation and parametric equations for the line that passes through the 
point s5, 1, 3d and is parallel to the vector i 1 4 j 2 2k.
(b) Find two other points on the line.

SOLUTION

(a) Here r0 − k5, 1, 3 l − 5 i 1 j 1 3k and v − i 1 4 j 2 2k, so the vector equa- 
 tion (1) becomes

  r − s5 i 1 j 1 3kd 1 tsi 1 4 j 2 2kd

or  r − s5 1 td i 1 s1 1 4td j 1 s3 2 2td k 

Parametric equations are

x − 5 1 t    y − 1 1 4t    z − 3 2 2t

(b) Choosing the parameter value t − 1 gives x − 6, y − 5, and z − 1,  so s6, 5, 1d is 
a point on the line. Similarly, t − 21 gives the point s4, 23, 5d. Q

The vector equation and parametric equations of a line are not unique. If we change 
the point or the parameter or choose a different parallel vector, then the equations change. 
For instance, if, instead of s5, 1, 3d, we choose the point s6, 5, 1d in Example 1, then the 
parametric equations of the line become

x − 6 1 t    y − 5 1 4t    z − 1 2 2t

x

z

y

L
t=0 t>0

t<0
r¸

FIGURE 2

Figure 3 shows the line L in Exam ple 1 
and its relation to the given point and to 
the vector that gives its direction.

(5, 1, 3)
r¸

v=i+4j-2k

x

z

y

L

FIGURE 3
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 SECTION 12.5  Equations of Lines and Planes 825

Or, if we stay with the point s5, 1, 3d but choose the parallel vector 2 i 1 8j 2 4k, we 
arrive at the equations

x − 5 1 2t    y − 1 1 8t    z − 3 2 4t

In general, if a vector v − ka, b, c l is used to describe the direction of a line L, then 
the numbers a, b, and c are called direction numbers of L. Since any vector parallel to 
v could also be used, we see that any three numbers proportional to a, b, and c could also 
be used as a set of direction numbers for L.

Another way of describing a line L is to eliminate the parameter t from Equations 2. 
If none of a, b, or c is 0, we can solve each of these equations for t:

t −
x 2 x0

a
  t −

y 2 y0

b
  t −

z 2 z0

c

Equating the results, we obtain

3   
x 2 x0

a
−

y 2 y0

b
−

z 2 z0

c

These equations are called symmetric equations of L. Notice that the numbers a, b, and  
c that appear in the denominators of Equations 3 are direction numbers of L, that is, 
com ponents of a vector parallel to L. If one of a, b, or c is 0, we can still eliminate t. For 
instance, if a − 0, we could write the equations of L as

x − x0      
y 2 y0

b
−

z 2 z0

c

This means that L lies in the vertical plane x − x0.

EXAMPLE 2 
(a) Find parametric equations and symmetric equations of the line that passes through 
the points As2, 4, 23d and Bs3, 21, 1d.
(b) At what point does this line intersect the xy-plane?

SOLUTION

(a) We are not explicitly given a vector parallel to the line, but observe that the vector v
with representation AB

l
 is parallel to the line and

v − k3 2 2, 21 2 4, 1 2 s23d l − k1, 25, 4 l

Thus direction numbers are a − 1, b − 25, and c − 4. Taking the point s2, 4, 23d as  
P0, we see that parametric equations (2) are

x − 2 1 t    y − 4 2 5t    z − 23 1 4t

and symmetric equations (3) are

x 2 2
1

−
y 2 4

25
−

z 1 3
4

(b) The line intersects the xy-plane when z − 0, so we put z − 0 in the symmetric 
equations and obtain

x 2 2
1

−
y 2 4

25
−

3
4

This gives x − 11
4  and y − 1

4, so the line intersects the xy-plane at the point (11
4 , 14 , 0). Q

Figure 4 shows the line L in Example 2 
and the point P where it intersects the  
xy-plane.

x

z

y

L

A

P

B 2 4

1

1
_1

FIGURE 4
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826 CHAPTER 12  Vectors and the Geometry of Space

In general, the procedure of Example 2 shows that direction numbers of the line L 
through the points P0sx0, y0, z0 d and P1sx1, y1, z1d are x1 2 x0, y1 2 y0, and z1 2 z0 and so 
symmet ric equations of L are

x 2 x0

x1 2 x0
−

y 2 y0

y1 2 y0
−

z 2 z0

z1 2 z0

Often, we need a description, not of an entire line, but of just a line segment. How, for 
instance, could we describe the line segment AB in Example 2? If we put t − 0 in the 
parametric equations in Example 2(a), we get the point s2, 4, 23d and if we put t − 1 we 
get s3, 21, 1d. So the line segment AB is described by the parametric equations

x − 2 1 t y − 4 2 5t z − 23 1 4t      0 < t < 1

or by the corresponding vector equation

rstd − k2 1 t, 4 2 5t, 23 1 4 tl    0 < t < 1

In general, we know from Equation 1 that the vector equation of a line through the (tip 
of the) vector r0 in the direction of a vector v is r − r0 1 tv. If the line also passes 
through (the tip of) r1, then we can take v − r1 2 r0 and so its vector equation is

r − r0 1 tsr1 2 r0d − s1 2 tdr0 1 tr1

The line segment from r0 to r1 is given by the parameter interval 0 < t < 1.

4   The line segment from r0 to r1 is given by the vector equation

rstd − s1 2 tdr0 1 t r1    0 < t < 1

EXAMPLE 3 Show that the lines L1 and L 2 with parametric equations

L1:  x − 1 1 t y − 22 1 3t z − 4 2 t

L2:  x − 2s  y − 3 1 s  z − 23 1 4s

are skew lines; that is, they do not intersect and are not parallel (and therefore do not 
lie in the same plane).

SOLUTION The lines are not parallel because the corresponding direction vectors 
k1, 3, 21 l and k2, 1, 4 l are not parallel. (Their components are not proportional.) If L1 
and L 2 had a point of intersection, there would be values of t and s such that

 1 1  t − 2s

 22 1  3t − 3 1 s

 4 2   t − 23 1 4s

But if we solve the first two equations, we get t − 11
5  and s − 8

5, and these values don’t 
satisfy the third equation. Therefore there are no values of t and s that satisfy the three 
equations, so L1 and L 2 do not intersect. Thus L1 and L 2 are skew lines. Q

Planes
Although a line in space is determined by a point and a direction, a plane in space is  
more difficult to describe. A single vector parallel to a plane is not enough to convey the 

The lines L1 and L 2 in Example 3, 
shown in Figure 5, are skew lines.

x

z

y

L¡ L™
5

_5

5
105

FIGURE 5
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 SECTION 12.5  Equations of Lines and Planes 827

“direction” of the plane, but a vector perpendicular to the plane does completely specify 
its direction. Thus a plane in space is determined by a point P0sx0, y0, z0d in the plane and 
a vector n that is orthogonal to the plane. This orthogonal vector n is called a normal  
vector. Let Psx, y, zd be an arbitrary point in the plane, and let r0 and r be the position
vectors of P0 and P. Then the vector r 2 r0 is represented by P¸PA. (See Figure 6.) The 
normal vector n is orthogonal to every vector in the given plane. In particular, n is 
orthogonal to r 2 r0 and so we have

5   n ? sr 2 r0 d − 0

which can be rewritten as

6   n ? r − n ? r0

Either Equation 5 or Equation 6 is called a vector equation of the plane.
To obtain a scalar equation for the plane, we write n − ka, b,  c l, r − k x, y, z l, and 

r0 − kx0, y0, z0 l . Then the vector equation (5) becomes

 ka, b, c l ? kx 2 x0, y 2 y0, z 2 z0 l − 0

or
 asx 2 x0 d 1 bsy 2 y0 d 1 csz 2 z0 d − 0

7   A scalar equation of the plane through point P0sx0, y0, z0 d with normal 
vector n − ka, b, c l is

asx 2 x0 d 1 bsy 2 y0 d 1 csz 2 z0 d − 0

EXAMPLE 4 Find an equation of the plane through the point s2, 4, 21d with normal 
vector n − k2, 3, 4 l . Find the intercepts and sketch the plane.

SOLUTION Putting a − 2, b − 3, c − 4, x0 − 2, y0 − 4, and z0 − 21 in Equation 7, 
we see that an equation of the plane is

 2sx 2 2d 1 3sy 2 4d 1 4sz 1 1d − 0

or  2x 1 3y 1 4z − 12

To find the x-intercept we set y − z − 0 in this equation and obtain x − 6. Similarly, the 
y-intercept is 4 and the z-intercept is 3. This enables us to sketch the portion of the plane 
that lies in the first octant (see Figure 7). Q

By collecting terms in Equation 7 as we did in Example 4, we can rewrite the equation 
of a plane as

8   ax 1 by 1 cz 1 d − 0

where d − 2sax0 1 by0 1 cz0 d. Equation 8 is called a linear equation in x, y, and z. 
Conversely, it can be shown that if a, b, and c are not all 0, then the linear equation (8) 
represents a plane with normal vector ka, b, c l . (See Exercise 83.)
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828 CHAPTER 12  Vectors and the Geometry of Space

EXAMPLE 5 Find an equation of the plane that passes through the points Ps1, 3, 2d, 
Qs3, 21, 6d, and Rs5, 2, 0d.

SOLUTION The vectors a and b corresponding to PQ
l

 and PR
l

 are

a − k 2, 24, 4 l      b − k4, 21, 22 l

Since both a and b lie in the plane, their cross product a 3 b is orthogonal to the plane 
and can be taken as the normal vector. Thus

n − a 3 b − Z i
2
4

j
24
21

k
4

22
Z − 12 i 1 20 j 1 14 k

With the point Ps1, 3, 2d and the normal vector n, an equation of the plane is

 12sx 2 1d 1 20sy 2 3d 1 14sz 2 2d − 0

or  6x 1 10y 1 7z − 50 Q

EXAMPLE 6 Find the point at which the line with parametric equations x − 2 1 3t, 
y − 24t, z − 5 1 t intersects the plane 4x 1 5y 2 2z − 18.

SOLUTION We substitute the expressions for x, y, and z from the parametric equations 
into the equation of the plane:

4s2 1 3td 1 5s24td 2 2s5 1 td − 18

This simplifies to 210t − 20, so t − 22. Therefore the point of intersection occurs 
when the parameter value is t − 22. Then x − 2 1 3s22d − 24, y − 24s22d − 8, 
z − 5 2 2 − 3 and so the point of intersection is s24, 8, 3d. Q

Two planes are parallel if their normal vectors are parallel. For instance, the planes 
x 1 2y 2 3z − 4 and 2x 1 4y 2 6z − 3 are parallel because their normal vectors are 
n1 − k1, 2, 23 l  and n2 − k2, 4, 26 l and n2 − 2n1. If two planes are not parallel, then 
they intersect in a straight line and the angle between the two planes is defined as the 
acute angle between their normal vectors (see angle ! in Figure 9).

EXAMPLE 7 
(a) Find the angle between the planes x 1 y 1 z − 1 and x 2 2y 1 3z − 1.
(b) Find symmetric equations for the line of intersection L of these two planes.

SOLUTION

(a) The normal vectors of these planes are

n1 − k1, 1, 1 l       n2 − k1, 22, 3 l

and so, if ! is the angle between the planes, Corollary 12.3.6 gives

 cos ! −
n1 ? n2

| n1 || n2 | −
1s1d 1 1s22d 1 1s3d

s1 1 1 1 1  s1 1 4 1 9 
−

2

s42 

 ! − cos21S 2

s42 D < 72°

(b) We first need to find a point on L. For instance, we can find the point where the line 
intersects the xy-plane by setting z − 0 in the equations of both planes. This gives the 

Figure 8 shows the portion of the 
plane in Example 5 that is enclosed by 
triangle PQR.

x
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y

R(5, 2, 0)

P(1, 3, 2)
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Figure 10 shows the planes in Example 
7 and their line of intersection L.
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 SECTION 12.5  Equations of Lines and Planes 829

equations x 1 y − 1 and x 2 2y − 1, whose solution is x − 1, y − 0. So the point 
s1, 0, 0d lies on L.

Now we observe that, since L lies in both planes, it is perpendicular to both of the 
normal vectors. Thus a vector v parallel to L is given by the cross product

v − n1 3 n2 − Z i
1
1

j
1

22

k
1
3

Z − 5 i 2 2 j 2 3 k

and so the symmetric equations of L can be written as

 
x 2 1

5
−

 y
22

−
z

23
 Q

NOTE Since a linear equation in x, y, and z represents a plane and two nonparallel 
planes intersect in a line, it follows that two linear equations can represent a line. The points 
sx, y, zd that satisfy both a1 x 1 b1 y 1 c1z 1 d1 − 0 and a2 x 1 b2 y 1 c2 z 1 d2 − 0 lie 
on both of these planes, and so the pair of linear equations represents the line of inter-
section of the planes (if they are not parallel). For instance, in Example 7 the line L was 
given as the line of intersection of the planes x 1 y 1 z − 1 and x 2 2y 1 3z − 1. The 
symmetric equations that we found for L could be written as

x 2 1
5

−
y

22
    and    

y
22

−
z

23

which is again a pair of linear equations. They exhibit L as the line of intersection of the 
planes sx 2 1dy5 − yys22d and yys22d − zys23d. (See Figure 11.)

In general, when we write the equations of a line in the symmetric form

x 2 x0

a
−

y 2 y0

b
−

z 2 z0

c

we can regard the line as the line of intersection of the two planes

x 2 x0

a
−

y 2 y0

b
    and    

y 2 y0

b
−

z 2 z0

c

Distances
EXAMPLE 8 Find a formula for the distance D from a point P1sx1, y1, z1d to the  
plane ax 1 by 1 cz 1 d − 0.

SOLUTION Let P0sx0, y0, z0 d be any point in the given plane and let b be the vector

corresponding to P¸P¡A. Then

b − k x1 2 x0, y1 2 y0, z1 2 z0l

From Figure 12 you can see that the distance D from P1 to the plane is equal to the 
absolute value of the scalar projection of b onto the normal vector n − ka, b, c l . (See 
Section 12.3.) Thus

 D − | compn b | − | n ? b |
| n |

 − | asx1 2 x0 d 1 bsy1 2 y0 d 1 csz1 2 z0 d |
sa 2 1 b 2 1 c 2 

 − | sax1 1 by1 1 cz1d 2 sax0 1 by0 1 cz0 d |
sa 2 1 b 2 1 c 2 

Another way to find the line of inter-
section is to solve the equations of the 
planes for two of the variables in terms 
of the third, which can be taken as the 
parameter.

y
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z
3=

x-1
5

y
_2=

z

0
y x

2

0

0

1

_2
_1

_1
1 2 1

_1 _2

L

FIGURE 11

Figure 11 shows how the line L in 
Example 7 can also be regarded as the 
line of intersection of planes derived 
from its symmetric equations.

D
n
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830 CHAPTER 12  Vectors and the Geometry of Space

Since P0 lies in the plane, its coordinates satisfy the equation of the plane and so we 
have ax0 1 by0 1 cz0 1 d − 0. Thus the formula for D can be written as

9   D − | ax1 1 by1 1 cz1 1 d |
sa 2 1 b 2 1 c 2 

 Q

EXAMPLE 9 Find the distance between the parallel planes 10x 1 2y 2 2z − 5 and 
5x 1 y 2 z − 1.

SOLUTION First we note that the planes are parallel because their normal vectors 
k10, 2, 22 l  and k5, 1, 21 l are parallel. To find the distance D between the planes, we 
choose any point on one plane and calculate its distance to the other plane. In par-
ticular, if we put y − z − 0 in the equation of the first plane, we get 10x − 5 and so 
(1

2, 0, 0) is a point in this plane. By Formula 9, the distance between (1
2, 0, 0) and the 

plane 5x 1 y 2 z 2 1 − 0 is

D − | 5(1
2 ) 1 1s0d 2 1s0d 2 1 |
s52 1 12 1 s21d2 

−
3
2

3s3 
−

s3 

6

So the distance between the planes is s3 y6. Q

EXAMPLE 10 In Example 3 we showed that the lines

 L1: x − 1 1 t y − 22 1 3t z − 4 2 t

 L2: x − 2s  y − 3 1 s  z − 23 1 4s

are skew. Find the distance between them.

SOLUTION Since the two lines L1 and L2 are skew, they can be viewed as lying on two 
parallel planes P1 and P2. The distance between L1 and L2 is the same as the distance 
between P1 and P2, which can be computed as in Example 9. The common normal vec-
tor to both planes must be orthogonal to both v1 − k1, 3, 21 l  (the direction of L1) and 
v2 − k2, 1, 4 l  (the direction of L2). So a normal vector is

n − v1 3 v2 − Z i
1
2

j
3
1

k
21

4
Z − 13 i 2 6 j 2 5k

If we put s − 0 in the equations of L2, we get the point s0, 3, 23d on L2 and so an 
equation for P2 is

13sx 2 0d 2 6sy 2 3d 2 5sz 1 3d − 0    or    13x 2 6y 2 5z 1 3 − 0

If we now set t − 0 in the equations for L1, we get the point s1, 22, 4d on P1. So  
the distance between L1 and L2 is the same as the distance from s1, 22, 4d to 
13x 2 6y 2 5z 1 3 − 0. By Formula 9, this distance is

 D − | 13s1d 2 6s22d 2 5s4d 1 3 |
s132 1 s26d2 1 s25d2 

−
8

s230 
< 0.53 Q

FIGURE 13  
Skew lines, like those in Example 10, 
always lie on (nonidentical) parallel 
planes.
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 SECTION 12.5  Equations of Lines and Planes 831

 (b)  In what points does this line intersect the coordinate 
planes?

 17.  Find a vector equation for the line segment from s6, 21, 9d  
to s7, 6, 0d.

 18.  Find parametric equations for the line segment from 
s22, 18, 31d to s11, 24, 48d.

19–22 Determine whether the lines L1 and L2 are parallel, skew, or 
intersecting. If they intersect, find the point of intersection.

 19. L1: x − 3 1 2t,  y − 4 2 t,  z − 1 1 3t

  L2: x − 1 1 4s,  y − 3 2 2s,  z − 4 1 5s

 20. L1: x − 5 2 12t,  y − 3 1 9t,  z − 1 2 3t

  L2: x − 3 1 8s,  y − 26s,  z − 7 1 2s

 21. L1: 
x 2 2

1
−

y 2 3
22

−
z 2 1
23

  L2: 
x 2 3

1
−

y 1 4
3

−
z 2 2
27

 22. L1: 
x
1

−
y 2 1

21
−

z 2 2
3

  L2: 
x 2 2

2
−

y 2 3
22

−
z
7

23–40 Find an equation of the plane.

 23.  The plane through the origin and perpendicular to the  
vector k1, 22, 5 l

 24.  The plane through the point s5, 3, 5d and with normal  
vector 2 i 1 j 2 k

 25.  The plane through the point s21, 12, 3d and with normal  
vector i 1 4 j 1 k

 26.  The plane through the point s2, 0, 1d and perpendicular to the 
line x − 3t, y − 2 2 t, z − 3 1 4t

 27.  The plane through the point s1, 21, 21d and parallel to the 
plane 5x 2 y 2 z − 6

 28.  The plane through the point s3, 22, 8d and parallel to the  
plane z − x 1 y

 29.  The plane through the point s1, 12, 13d and parallel to the plane 
x 1 y 1 z − 0

 30.  The plane that contains the line x − 1 1 t, y − 2 2 t, 
z − 4 2 3t and is parallel to the plane 5x 1 2y 1 z − 1

 31.  The plane through the points s0, 1, 1d, s1, 0, 1d, and s1, 1, 0d

 32.  The plane through the origin and the points s3, 22, 1d  
and s1, 1, 1d

 33.  The plane through the points s2, 1, 2d, s3, 28, 6d, and 
s22, 23, 1d

 1. Determine whether each statement is true or false in R3.
 (a) Two lines parallel to a third line are parallel.
 (b) Two lines perpendicular to a third line are parallel.
 (c) Two planes parallel to a third plane are parallel.
 (d) Two planes perpendicular to a third plane are parallel.
 (e) Two lines parallel to a plane are parallel.
 (f) Two lines perpendicular to a plane are parallel.
 (g) Two planes parallel to a line are parallel.
 (h) Two planes perpendicular to a line are parallel.
 (i) Two planes either intersect or are parallel.
 ( j) Two lines either intersect or are parallel.
 (k) A plane and a line either intersect or are parallel.

2–5 Find a vector equation and parametric equations for the line.

 2.  The line through the point s6, 25, 2d and parallel to the  
vector k1, 3, 22

3 l
 3.  The line through the point s2, 2.4, 3.5d and parallel to the  

vector 3 i 1 2 j 2 k

 4.  The line through the point s0, 14, 210d and parallel to the line 
x − 21 1 2t, y − 6 2 3t, z − 3 1 9t

 5.  The line through the point (1, 0, 6) and perpendicular to the 
plane x 1 3y 1 z − 5

6–12 Find parametric equations and symmetric equations for the 
line.

 6. The line through the origin and the point s4, 3, 21d

 7. The line through the points s0, 12, 1d and s2, 1, 23d

 8.  The line through the points s1, 2.4, 4.6d and s2.6, 1.2, 0.3d

 9. The line through the points s28, 1, 4d and s3, 22, 4d

 10.  The line through s2, 1, 0d and perpendicular to both i 1 j  
and j 1 k

 11.  The line through s26, 2, 3d and parallel to the line 
1
2 x − 1

3 y − z 1 1

 12.  The line of intersection of the planes x 1 2y 1 3z − 1  
and x 2 y 1 z − 1

 13.  Is the line through s24, 26, 1d and s22, 0, 23d parallel to the 
line through s10, 18, 4d and s5, 3, 14d?

 14.  Is the line through s22, 4, 0d and s1, 1, 1d perpendicular to the 
line through s2, 3, 4d and s3, 21, 28d?

 15. (a)  Find symmetric equations for the line that passes  
through the point s1, 25, 6d and is parallel to the vector 
k21, 2, 23 l.

 (b)  Find the points in which the required line in part (a) inter-
sects the coordinate planes.

 16. (a)  Find parametric equations for the line through s2, 4, 6d that 
is perpendicular to the plane x 2 y 1 3z − 7.
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832 CHAPTER 12  Vectors and the Geometry of Space

57–58 (a) Find parametric equations for the line of intersection of 
the planes and (b) find the angle between the planes.

 57. x 1 y 1 z − 1,  x 1 2y 1 2z − 1

 58. 3x 2 2y 1 z − 1,  2x 1 y 2 3z − 3

59–60 Find symmetric equations for the line of intersection of the 
planes.

 59. 5x 2 2y 2 2z − 1,  4x 1 y 1 z − 6

 60. z − 2x 2 y 2 5,  z − 4x 1 3y 2 5

 61.  Find an equation for the plane consisting of all points that are 
equidistant from the points s1, 0, 22d and s3, 4, 0d.

 62.  Find an equation for the plane consisting of all points that are 
equidistant from the points s2, 5, 5d and s26, 3, 1d.

 63.  Find an equation of the plane with x-intercept a, y-intercept b, 
and z-intercept c.

 64. (a)  Find the point at which the given lines intersect:

 r − k1, 1, 0 l 1 t k1, 21, 2 l

 r − k2, 0, 2 l 1 sk21, 1, 0 l

 (b) Find an equation of the plane that contains these lines.

 65.  Find parametric equations for the line through the point 
s0, 1, 2d that is parallel to the plane x 1 y 1 z − 2 and  
perpendicular to the line x − 1 1 t, y − 1 2 t, z − 2t.

 66.  Find parametric equations for the line through the point 
s0, 1, 2d that is perpendicular to the line x − 1 1 t,  
y − 1 2 t, z − 2t and intersects this line.

 67.  Which of the following four planes are parallel? Are any of 
them identical?

 P1: 3x 1 6y 2 3z − 6 P2: 4x 2 12y 1 8z − 5

 P3:  9y − 1 1 3x 1 6z P4: z − x 1 2y 2 2

 68.  Which of the following four lines are parallel? Are any of them 
identical?

L1: x − 1 1 6t,  y − 1 2 3t,  z − 12t 1 5

L2: x − 1 1 2t,  y − t,  z − 1 1 4t

L3:  2x 2 2 − 4 2 4y − z 1 1

L4: r − k3, 1, 5 l 1 t k4, 2, 8 l

69–70 Use the formula in Exercise 12.4.45 to find the distance 
from the point to the given line.

 69. s4, 1, 22d;  x − 1 1 t, y − 3 2 2t, z − 4 2 3t

 70. s0, 1, 3d;  x − 2t, y − 6 2 2t, z − 3 1 t

 34.  The plane through the points s3, 0, 21d, s22, 22, 3d, and 
s7, 1, 24d

 35.  The plane that passes through the point s3, 5, 21d and con- 
tains the line x − 4 2 t, y − 2t 2 1, z − 23t

 36.  The plane that passes through the point s6, 21, 3d and  
contains the line with symmetric equations 
xy3 − y 1 4 − zy2

 37.  The plane that passes through the point s3, 1, 4d and contains 
the line of intersection of the planes x 1 2y 1 3z − 1 and 
2x 2 y 1 z − 23

 38.  The plane that passes through the points s0, 22, 5d and 
s21, 3, 1d and is perpendicular to the plane 2z − 5x 1 4y

 39.  The plane that passes through the point s1, 5, 1d and is perpen-
dicular to the planes 2x 1 y 2 2z − 2 and x 1 3z − 4

 40.  The plane that passes through the line of intersection of the 
planes x 2 z − 1 and y 1 2z − 3 and is perpendicular to the 
plane x 1 y 2 2z − 1

41–44 Use intercepts to help sketch the plane.

 41. 2x 1 5y 1 z − 10 42. 3x 1 y 1 2z − 6

 43. 6x 2 3y 1 4z − 6 44. 6x 1 5y 2 3z − 15

45–47 Find the point at which the line intersects the given plane.

 45. x − 2 2 2t, y − 3t, z − 1 1 t; x 1 2y 2 z − 7

 46. x − t 2 1, y − 1 1 2t, z − 3 2 t; 3x 2 y 1 2z − 5

 47. 5x − yy2 − z 1 2; 10x 2 7y 1 3z 1 24 − 0

 48.  Where does the line through s23, 1, 0d and s21, 5, 6d intersect 
the plane 2x 1 y 2 z − 22?

 49.  Find direction numbers for the line of intersection of the planes 
x 1 y 1 z − 1 and x 1 z − 0.

 50.  Find the cosine of the angle between the planes x 1 y 1 z − 0 
and x 1 2y 1 3z − 1.

51–56 Determine whether the planes are parallel, perpendicular, 
or neither. If neither, find the angle between them. (Round to one 
decimal place.)

 51. x 1 4y 2 3z − 1,  23x 1 6y 1 7z − 0

 52. 9x 2 3y 1 6z − 2, 2y − 6x 1 4z

 53. x 1 2y 2 z − 2, 2x 2 2y 1 z − 1

 54. x 2 y 1 3z − 1, 3x 1 y 2 z − 2

 55. 2x 2 3y − z, 4x − 3 1 6y 1 2z

 56. 5x 1 2y 1 3z − 2, y − 4x 2 6z
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through the points s3, 2, 21d, s0, 0, 1d, and s1, 2, 1d. Calculate 
the distance between L1 and L2.

 81.  Two tanks are participating in a battle simulation. Tank A 
is at point s325, 810, 561d and tank B is positioned at point 
s765, 675, 599d.

 (a)  Find parametric equations for the line of sight between the 
tanks.

 (b)  If we divide the line of sight into 5 equal segments, the  
elevations of the terrain at the four intermediate points 
from tank A to tank B are 549, 566, 586, and 589. Can the 
tanks see each other?

 82. Give a geometric description of each family of planes.
 (a) x 1 y 1 z − c (b) x 1 y 1 cz − 1
 (c) y cos ! 1 z sin ! − 1

 83.  If a, b, and c are not all 0, show that the equation 
ax 1 by 1 cz 1 d − 0 represents a plane and ka, b, c l is  
a normal vector to the plane. 
  Hint: Suppose a ± 0 and rewrite the equation in the form

aSx 1
d
aD 1 bsy 2 0d 1 csz 2 0d − 0

71–72 Find the distance from the point to the given plane.

 71. s1, 22, 4d,  3x 1 2y 1 6z − 5

 72. s26, 3, 5d,  x 2 2y 2 4z − 8

73–74 Find the distance between the given parallel planes.

 73. 2x 2 3y 1 z − 4,  4x 2 6y 1 2z − 3

 74. 6z − 4y 2 2x,  9z − 1 2 3x 1 6y

 75.  Show that the distance between the parallel planes 
ax 1 by 1 cz 1 d1 − 0 and ax 1 by 1 cz 1 d2 − 0 is

D − | d1 2 d2 |
sa 2 1 b 2 1 c 2 

 76.  Find equations of the planes that are parallel to the plane 
x 1 2y 2 2z − 1 and two units away from it.

 77.  Show that the lines with symmetric equations x − y − z and 
x 1 1 − yy2 − zy3 are skew, and find the distance between 
these lines.

 78.  Find the distance between the skew lines with parametric  
equations x − 1 1 t, y − 1 1 6t, z − 2t, and x − 1 1 2s, 
y − 5 1 15s, z − 22 1 6s.

 79.  Let L1 be the line through the origin and the point s2, 0, 21d.  
Let L2 be the line through the points s1, 21, 1d and s4, 1, 3d. 
Find the distance between L1 and L2.

 80.  Let L1 be the line through the points s1, 2, 6d and s2, 4, 8d.  
Let L2 be the line of intersection of the planes P1 and P2,  
where P1 is the plane x 2 y 1 2z 1 1 − 0 and P2 is the plane 

LABORATORY PROJECT

Computer graphics programmers face the same challenge as the great painters of the past: how  
to represent a three-dimensional scene as a flat image on a two-dimensional plane (a screen or a 
canvas). To create the illusion of perspective, in which closer objects appear larger than those far-
ther away, three-dimensional objects in the computer’s memory are projected onto a rectangular 
screen window from a viewpoint where the eye, or camera, is located. The viewing volume––the 
portion of space that will be visible––is the region contained by the four planes that pass through 
the viewpoint and an edge of the screen window. If objects in the scene extend beyond these four 
planes, they must be truncated before pixel data are sent to the screen. These planes are therefore 
called clipping planes.

1.  Suppose the screen is represented by a rectangle in the yz-plane with vertices s0, 6400, 0d 
and s0, 6400, 600d, and the camera is placed at s1000, 0, 0d. A line L in the scene passes 
through the points s230, 2285, 102d and s860, 105, 264d. At what points should L be clipped 
by the clipping planes?

2.  If the clipped line segment is projected onto the screen window, identify the resulting line  
segment.

PUTTING 3D IN PERSPECTIVE
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3.  Use parametric equations to plot the edges of the screen window, the clipped line segment, 
and its projection onto the screen window. Then add sight lines connecting the viewpoint to 
each end of the clipped segments to verify that the projection is correct.

4.  A rectangle with vertices s621, 2147, 206d, s563, 31, 242d, s657, 2111, 86d, and 
s599, 67, 122d is added to the scene. The line L intersects this rectangle. To make the rect-
angle appear opaque, a programmer can use hidden line rendering, which removes portions of 
objects that are behind other objects. Identify the portion of L that should be removed.

We have already looked at two special types of surfaces: planes (in Section 12.5) and 
spheres (in Section 12.1). Here we investigate two other types of surfaces: cylinders and 
quadric surfaces.

In order to sketch the graph of a surface, it is useful to determine the curves of inter-
section of the surface with planes parallel to the coordinate planes. These curves are 
called traces (or cross-sections) of the surface.

Cylinders
A cylinder is a surface that consists of all lines (called rulings) that are parallel to a 
given line and pass through a given plane curve.

EXAMPLE 1 Sketch the graph of the surface z − x 2.

SOLUTION Notice that the equation of the graph, z − x 2, doesn’t involve y. This means 
that any vertical plane with equation y − k (parallel to the xz-plane) intersects the 
graph in a curve with equation z − x 2. So these vertical traces are parabolas. Figure 1 
shows how the graph is formed by taking the parabola z − x 2 in the xz-plane and mov-
ing it in the direction of the y-axis. The graph is a surface, called a parabolic cylinder, 
made up of infinitely many shifted copies of the same parabola. Here the rulings of the 
cylinder are parallel to the y-axis.

 x y
0

z

 Q

We noticed that the variable y is missing from the equation of the cylinder in Exam-
ple 1. This is typical of a surface whose rulings are parallel to one of the coordinate axes. 
If one of the variables x, y, or z is missing from the equation of a surface, then the surface 
is a cylinder.

EXAMPLE 2 Identify and sketch the surfaces.
(a) x 2 1 y 2 − 1 (b) y 2 1 z 2 − 1

FIGURE 1  
The surface z − x 2 is a  

parabolic cylinder.
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SOLUTION
(a) Since z is missing and the equations x 2 1 y 2 − 1, z − k represent a circle with 
radius 1 in the plane z − k, the surface x 2 1 y 2 − 1 is a circular cylinder whose axis is 
the z-axis. (See Figure 2.) Here the rulings are vertical lines.

(b) In this case x is missing and the surface is a circular cylinder whose axis is the  
x-axis. (See Figure 3.) It is obtained by taking the circle y 2 1 z2 − 1, x − 0 in the  
yz-plane and moving it parallel to the x-axis. Q

NOTE When you are dealing with surfaces, it is important to recognize that an equa-
tion like x 2 1 y 2 − 1 represents a cylinder and not a circle. The trace of the cylinder  
x 2 1 y 2 − 1 in the xy-plane is the circle with equations x 2 1 y 2 − 1, z − 0.

Quadric Surfaces
A quadric surface is the graph of a second-degree equation in three variables x, y, and 
z. The most general such equation is

Ax 2 1 By 2 1 Cz2 1 Dxy 1 Eyz 1 Fxz 1 Gx 1 Hy 1 Iz 1 J − 0

where A, B, C, . . . , J are constants, but by translation and rotation it can be brought into 
one of the two standard forms

Ax 2 1 By 2 1 Cz2 1 J − 0    or    Ax 2 1 By 2 1 Iz − 0

Quadric surfaces are the counterparts in three dimensions of the conic sections in the 
plane. (See Section 10.5 for a review of conic sections.)

EXAMPLE 3 Use traces to sketch the quadric surface with equation

x 2 1
y 2

9
1

z2

4
− 1

SOLUTION By substituting z − 0, we find that the trace in the xy-plane is 
x 2 1 y 2y9 − 1, which we recognize as an equation of an ellipse. In general, the hori-
zontal trace in the plane z − k is

x 2 1
y 2

9
− 1 2

k 2

4
    z − k

which is an ellipse, provided that k 2 , 4, that is, 22 , k , 2.
Similarly, vertical traces parallel to the yz- and xz-planes are also ellipses:

 
y 2

9
1

z2

4
− 1 2 k 2  x − k sif 21 , k , 1d

 x 2 1
z2

4
− 1 2

k 2

9
 y − k sif 23 , k , 3d

Figure 4 shows how drawing some traces indicates the shape of the surface. It’s called an 
ellipsoid because all of its traces are ellipses. Notice that it is symmetric with respect to 
each coordinate plane; this is a reflection of the fact that its equation involves only even 
powers of x, y, and z. Q

EXAMPLE 4 Use traces to sketch the surface z − 4x 2 1 y 2.

SOLUTION If we put x − 0, we get z − y 2, so the yz-plane intersects the surface in a 
parabola. If we put x − k (a constant), we get z − y 2 1 4k 2. This means that if we  

0

z

y
x

FIGURE 2  
x 2 1 y 2 − 1

z

y

x

FIGURE 3  
y 2 1 z2 − 1

(0, 3, 0)
0

(0, 0, 2)

(1, 0, 0)

x
y

z

FIGURE 4 

The ellipsoid x 2 1
y 2

9
1

z2

4
− 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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slice the graph with any plane parallel to the yz-plane, we obtain a parabola that opens 
upward. Similarly, if y − k, the trace is z − 4x 2 1 k 2, which is again a parabola that 
opens upward. If we put z − k, we get the horizontal traces 4x 2 1 y 2 − k, which we  
recognize as a family of ellipses. Knowing the shapes of the traces, we can sketch the 
graph in Figure 5. Because of the elliptical and parabolic traces, the quadric surface 
z − 4x 2 1 y 2 is called an elliptic paraboloid. Q

EXAMPLE 5 Sketch the surface z − y 2 2 x 2.

SOLUTION The traces in the vertical planes x − k are the parabolas z − y 2 2 k 2, 
which open upward. The traces in y − k are the parabolas z − 2x 2 1 k 2, which open 
downward. The horizontal traces are y 2 2 x 2 − k, a family of hyperbolas. We draw the 
families of traces in Figure 6, and we show how the traces appear when placed in their  
correct planes in Figure 7.

Traces in x=k are z=¥-k@.

0

!1

!2

Traces in z=k are ¥-≈=k.

_1

1

1

0

_1

Traces in x=k

x
y

z

1
0

_1

Traces in y=k are z=_≈+k@.

0

!1

!2

Traces in y=k
1

x
y

z

_1 0

Traces in z=k

x
y

z
1

0

_1

z

y

y

x

z

x

In Figure 8 we fit together the traces from Figure 7 to form the surface z − y 2 2 x 2,  
a hyperbolic paraboloid. Notice that the shape of the surface near the origin resembles 
that of a saddle. This surface will be investigated further in Section 14.7 when we 
discuss saddle points.

 

x
y

0

z

x
y

0

z

 Q

x y
0

z

FIGURE 5  
The surface z − 4x 2 1 y 2 is an elliptic 
paraboloid. Horizontal traces are 
ellipses; vertical traces are parabolas.

FIGURE 6  
Vertical traces are parabolas; 
horizontal traces are hyperbolas. 
All traces are labeled with the 
value of k.

FIGURE 7  
Traces moved to their 
correct planes

TEC In Module 12.6A you can inves-
tigate how traces determine the shape 
of a surface.

FIGURE 8  
Two views of the surface z − y 2 2 x 2, 

a hyperbolic paraboloid
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EXAMPLE 6 Sketch the surface 
x 2

4
1 y 2 2

z 2

4
− 1.

SOLUTION The trace in any horizontal plane z − k is the ellipse

x 2

4
1 y 2 − 1 1

k 2

4
z − k

but the traces in the xz- and yz-planes are the hyperbolas

x 2

4
2

z2

4
− 1 y − 0 and y2 2

z2

4
− 1 x − 0

This surface is called a hyperboloid of one sheet and is sketched in Figure 9. Q

The idea of using traces to draw a surface is employed in three-dimensional graphing 
software. In most such software, traces in the vertical planes x − k and y − k are drawn 
for equally spaced values of k, and parts of the graph are eliminated using hidden line 
removal. Table 1 shows computer-drawn graphs of the six basic types of quadric surfaces 
in standard form. All surfaces are symmetric with respect to the z-axis. If a quadric sur-
face is symmetric about a different axis, its equation changes accordingly.

(0, 1, 0)(2, 0, 0)
yx

z

FIGURE 9

Surface Equation Surface Equation

Ellipsoid

z

y

x

z

yx

z

yx

x 2

a 2 1
y 2

b 2 1
z 2

c 2 − 1

All traces are ellipses.

If a − b − c, the ellipsoid is 
a sphere.

Cone
z

yx

z

yx

z

yx

z 2

c 2 −
x 2

a 2 1
y 2

b 2

Horizontal traces are ellipses.

Vertical traces in the planes 
x − k and y − k are hyper-
bolas if k ± 0 but are pairs of 
lines if k − 0.

Elliptic Paraboloid

z

y

x

z

yx

z

yx

z
c

−
x 2

a 2 1
y 2

b 2

Horizontal traces are ellipses.

Vertical traces are parabolas.

The variable raised to the first 
power indicates the axis of the 
paraboloid.

Hyperboloid of One Sheet

z

yx

z

yx

z

yx

x 2

a 2 1
y 2

b 2 2
z 2

c 2 − 1

Horizontal traces are ellipses.

Vertical traces are hyperbolas.

The axis of symmetry corre-
sponds to the variable whose 
coefficient is negative.

Hyperbolic Paraboloid

z

y

x

z

yx

z

yx

z
c

−
x 2

a 2 2
y 2

b 2

Horizontal traces are hyper-
bolas.

Vertical traces are parabolas.

The case where c , 0 is 
illustrated.

Hyperboloid of Two Sheets

z

yx

z

yx

z

yx

2
x 2

a 2 2
y 2

b 2 1
z 2

c 2 − 1

Horizontal traces in z − k are 
ellipses if k . c or k , 2c.

Vertical traces are hyperbolas.

The two minus signs indicate 
two sheets.

Table 1 Graphs of Quadric Surfaces
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EXAMPLE 7 Identify and sketch the surface 4x 2 2 y 2 1 2z2 1 4 − 0.

SOLUTION Dividing by 24, we first put the equation in standard form:

2x 2 1
y 2

4
2

z2

2
− 1

Comparing this equation with Table 1, we see that it represents a hyperboloid of two 
sheets, the only difference being that in this case the axis of the hyperboloid is the  
y-axis. The traces in the xy- and yz-planes are the hyperbolas

2x 2 1
 y 2

4
− 1     z − 0      and      

y 2

4
2

z2

2
− 1     x − 0

The surface has no trace in the xz-plane, but traces in the vertical planes y − k for 
| k | . 2 are the ellipses

x 2 1
z2

2
−

k 2

4
2 1    y − k

which can be written as

x 2

k 2

4
2 1

1
z 2

2S k 2

4
2 1D − 1    y − k

These traces are used to make the sketch in Figure 10. Q

EXAMPLE 8 Classify the quadric surface x 2 1 2z2 2 6x 2 y 1 10 − 0.

SOLUTION By completing the square we rewrite the equation as

y 2 1 − sx 2 3d2 1 2z2

Comparing this equation with Table 1, we see that it represents an elliptic paraboloid. 
Here, however, the axis of the paraboloid is parallel to the y-axis, and it has been 
shifted so that its vertex is the point s3, 1, 0d. The traces in the plane y − k sk . 1d are 
the ellipses

sx 2 3d2 1 2z2 − k 2 1    y − k

The trace in the xy-plane is the parabola with equation y − 1 1 sx 2 3d2, z − 0. The 
paraboloid is sketched in Figure 11. 

 

(3, 1, 0)

0
y

x

z

 Q

0

z

y
x (0, 2, 0)

(0, _2, 0)

FIGURE 10  
4x 2 2 y 2 1 2z2 1 4 − 0

FIGURE 11  
x 2 1 2z2 2 6x 2 y 1 10 − 0

TEC  In Module 12.6B you can see 
how changing a, b, and c in Table 1 
affects the shape of the quadric  
surface.
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Applications of Quadric Surfaces
Examples of quadric surfaces can be found in the world around us. In fact, the world 
itself is a good example. Although the earth is commonly modeled as a sphere, a more 
accurate model is an ellipsoid because the earth’s rotation has caused a flattening at the 
poles. (See Exercise 49.)

Circular paraboloids, obtained by rotating a parabola about its axis, are used to collect 
and reflect light, sound, and radio and television signals. In a radio telescope, for instance, 
signals from distant stars that strike the bowl are all reflected to the receiver at the focus 
and are therefore amplified. (The idea is explained in Problem 22 on page 273.) The 
same principle applies to microphones and satellite dishes in the shape of paraboloids.

Cooling towers for nuclear reactors are usually designed in the shape of hyperboloids 
of one sheet for reasons of structural stability. Pairs of hyperboloids are used to transmit 
rotational motion between skew axes. (The cogs of the gears are the generating lines of 
the hyperboloids. See Exercise 51.)
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A satellite dish reflects signals to the 
focus of a paraboloid.

Nuclear reactors have cooling towers in 
the shape of hyperboloids.

Hperboloids produce gear transmission.

 1. (a)  What does the equation y − x 2 represent as a curve  
in R2?

 (b) What does it represent as a surface in R3?
 (c) What does the equation z − y 2 represent?

 2. (a) Sketch the graph of y − e x as a curve in R2.
 (b) Sketch the graph of y − e x as a surface in R3.
 (c) Describe and sketch the surface z − e y.

3–8 Describe and sketch the surface.

 3. x 2 1 z 2 − 1 4. 4x 2 1 y 2 − 4

 5. z − 1 2 y 2 6. y − z 2

 7. xy − 1 8. z − sin y

 9. (a)  Find and identify the traces of the quadric surface 
x 2 1 y2 2 z2 − 1 and explain why the graph looks like  
the graph of the hyperboloid of one sheet in Table 1.

 (b)  If we change the equation in part (a) to x 2 2 y2 1 z2 − 1, 
how is the graph affected?

 (c)  What if we change the equation in part (a) to 
x 2 1 y2 1 2y 2 z2 − 0?
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29–30 Sketch and identify a quadric surface that could have the 
traces shown.

 29. Traces in x − k Traces in y − k

z

x

k=_2
k=_1

k=1

k=0
k=!2

k=!1
k=0

z

y

 30. Traces in x − k Traces in z − k

y

x

k=!1

z

y

k=0
k=0

k=0

k=1 k=2k=2

k=!2

31–38 Reduce the equation to one of the standard forms, classify 
the surface, and sketch it.

 31. y 2 − x 2 1 1
9 z 2 32. 4x 2 2 y 1 2z 2 − 0

 33. x 2 1 2y 2 2z2 − 0 34. y 2 − x 2 1 4z 2 1 4

 35. x 2 1 y 2 2 2x 2 6y 2 z 1 10 − 0

 36. x 2 2 y 2 2 z 2 2 4x 2 2z 1 3 − 0

 37. x 2 2 y 2 1 z 2 2 4x 2 2z − 0

 38. 4x 2 1 y 2 1 z 2 2 24x 2 8y 1 4z 1 55 − 0

39–42 Use a computer with three-dimensional graphing soft-
ware to graph the surface. Experiment with viewpoints and with 
domains for the variables until you get a good view of the surface.

 39. 24x 2 2 y 2 1 z2 − 1 40. x 2 2 y 2 2 z − 0

 41. 24x 2 2 y 2 1 z2 − 0 42. x 2 2 6x 1 4y 2 2 z − 0

 43.  Sketch the region bounded by the surfaces z − sx 2 1 y 2   
and x 2 1 y 2 − 1 for 1 < z < 2.

 44.  Sketch the region bounded by the paraboloids z − x 2 1 y 2  
and z − 2 2 x 2 2 y 2.

;

 10. (a)  Find and identify the traces of the quadric surface 
2x 2 2 y2 1 z2 − 1 and explain why the graph looks like 
the graph of the hyperboloid of two sheets in Table 1.

 (b)  If the equation in part (a) is changed to x 2 2 y2 2 z2 − 1, 
what happens to the graph? Sketch the new graph.

11–20 Use traces to sketch and identify the surface.

 11. x − y 2 1 4z2 12. 4x 2 1 9y 2 1 9z 2 − 36

 13. x 2 − 4y 2 1 z 2 14. z 2 2 4x 2 2 y 2 − 4

 15. 9y 2 1 4z 2 − x 2 1 36 16. 3x 2 1 y 1 3z 2 − 0

 17. 
x 2

9
1

y 2

25
1

z 2

4
− 1 18. 3x 2 2 y 2 1 3z 2 − 0

 19. y − z2 2 x 2 20. x − y 2 2 z2

21–28 Match the equation with its graph (labeled I–VIII). Give  
reasons for your choice.

 21. x 2 1 4y 2 1 9z2 − 1 22. 9x 2 1 4y 2 1 z2 − 1

 23. x 2 2 y 2 1 z2 − 1 24. 2x 2 1 y 2 2 z2 − 1

 25. y − 2x 2 1 z2 26. y 2 − x 2 1 2z2

 27. x 2 1 2z2 − 1 28. y − x 2 2 z2

I

III

V

z

yx

z

yx

z

y
x

z

y
x

z

yx

z

y
x

z

yx

z

II

IV

VI

VII VIII
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 50.  A cooling tower for a nuclear reactor is to be constructed in  
the shape of a hyperboloid of one sheet (see the photo on  
page 839). The diameter at the base is 280 m and the mini-
mum diameter, 500 m above the base, is 200 m. Find an equa-
tion for the tower.

 51.  Show that if the point sa, b, cd lies on the hyperbolic parabo-
loid z − y 2 2 x 2, then the lines with parametric equations 
x − a 1 t, y − b 1 t, z − c 1 2sb 2 adt and x − a 1 t,  
y − b 2 t, z − c 2 2sb 1 adt both lie entirely on this 
paraboloid. (This shows that the hyperbolic paraboloid is 
what is called a ruled surface; that is, it can be generated by 
the motion of a straight line. In fact, this exercise shows that 
through each point on the hyperbolic paraboloid there are 
two generating lines. The only other quadric surfaces that are 
ruled surfaces are cylinders, cones, and hyperbo loids of one 
sheet.)

 52.  Show that the curve of intersection of the surfaces 
x 2 1 2y 2 2 z2 1 3x − 1 and 2x 2 1 4y 2 2 2z2 2 5y − 0  
lies in a plane.

 53.  Graph the surfaces z − x 2 1 y 2 and z − 1 2 y 2 on a com-
mon screen using the domain | x | < 1.2, | y | < 1.2 and 
observe the curve of intersection of these surfaces. Show that 
the projection of this curve onto the xy-plane is an ellipse.

;

 45.  Find an equation for the surface obtained by rotating the 
curve y − sx  about the x-axis.

 46.  Find an equation for the surface obtained by rotating the line 
z − 2y about the z-axis.

 47.  Find an equation for the surface consisting of all points that  
are equidistant from the point s21, 0, 0d and the plane x − 1. 
Identify the surface.

 48.  Find an equation for the surface consisting of all points P for 
which the distance from P to the x-axis is twice the distance 
from P to the yz-plane. Identify the surface.

 49.  Traditionally, the earth’s surface has been modeled as a 
sphere, but the World Geodetic System of 1984 (WGS-84) 
uses an ellipsoid as a more accurate model. It places the cen-
ter of the earth at the origin and the north pole on the positive 
z-axis. The distance from the center to the poles is 6356.523 km 
and the distance to a point on the equator is 6378.137 km.

 (a)  Find an equation of the earth’s surface as used by  
WGS-84.

 (b)  Curves of equal latitude are traces in the planes z − k. 
What is the shape of these curves?

 (c)  Meridians (curves of equal longitude) are traces in  
planes of the form y − mx. What is the shape of these 
meridians?

CONCEPT CHECK Answers to the Concept Check can be found on the back endpapers.

12 REVIEW

 1. What is the difference between a vector and a scalar?

 2.  How do you add two vectors geometrically? How do you add 
them algebraically?

 3.  If a is a vector and c is a scalar, how is ca related to a  
geo metrically? How do you find ca algebraically?

 4. How do you find the vector from one point to another?

 5.  How do you find the dot product a ? b of two vectors if you 
know their lengths and the angle between them? What if you 
know their components?

 6. How are dot products useful?

 7.  Write expressions for the scalar and vector projections of b  
onto a. Illustrate with diagrams.

 8.  How do you find the cross product a 3 b of two vectors if you 
know their lengths and the angle between them? What if you 
know their components?

 9. How are cross products useful?

 10. (a)  How do you find the area of the parallelogram deter mined 
by a and b?

 (b)  How do you find the volume of the parallelepiped  
determined by a, b, and c?

 11. How do you find a vector perpendicular to a plane?

 12.  How do you find the angle between two intersecting planes?

 13.  Write a vector equation, parametric equations, and sym metric 
equations for a line.

 14. Write a vector equation and a scalar equation for a plane.

 15. (a)  How do you tell if two vectors are parallel?
 (b)  How do you tell if two vectors are perpendicular?
 (c)  How do you tell if two planes are parallel?

 16. (a)  Describe a method for determining whether three points  
P, Q, and R lie on the same line.

 (b)  Describe a method for determining whether four points  
P, Q, R, and S lie in the same plane.

 17. (a) How do you find the distance from a point to a line?
 (b) How do you find the distance from a point to a plane?
 (c) How do you find the distance between two lines?

 18. What are the traces of a surface? How do you find them?

 19.  Write equations in standard form of the six types of quadric 
surfaces.
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TRUE-FALSE QUIZ

 11.  For any vectors u, v, and w in V3, 

u ? sv 3 wd − su 3 vd ? w

 12.  For any vectors u, v, and w in V3, 

u 3 sv 3 wd − su 3 vd 3 w

 13. For any vectors u and v in V3, su 3 vd ? u − 0.

 14. For any vectors u and v in V3, su 1 vd 3 v − u 3 v.

 15.  The vector k3, 21, 2 l is parallel to the plane 

6x 2 2y 1 4z − 1

 16.  A linear equation Ax 1 By 1 Cz 1 D − 0 represents a line  
in space.

 17. The set of points h sx, y, zd |  x 2 1 y 2 − 1j  is a circle.

 18. In R3 the graph of y − x 2 is a paraboloid.

 19. If u ? v − 0, then u − 0 or v − 0.

 20. If u 3 v − 0, then u − 0 or v − 0.

 21. If u ? v − 0 and u 3 v − 0, then u − 0 or v − 0.

 22. If u and v are in V3, then | u ? v | < | u | | v |.

Determine whether the statement is true or false. If it is true, explain 
why. If it is false, explain why or give an example that disproves the 
statement.

 1.  If u − ku1, u2 l  and v − kv1, v2 l , then u ? v − ku1v1, u2v2 l.

 2. For any vectors u and v in V3, | u 1 v | − | u | 1 | v |.
 3. For any vectors u and v in V3, | u ? v | − | u | | v |.
 4. For any vectors u and v in V3, | u 3 v | − | u | | v |.
 5. For any vectors u and v in V3, u ? v − v ? u.

 6. For any vectors u and v in V3, u 3 v − v 3 u.

 7. For any vectors u and v in V3, | u 3 v | − | v 3 u |.
 8.  For any vectors u and v in V3 and any scalar k, 

ksu ? vd − skud ? v

 9.  For any vectors u and v in V3 and any scalar k, 

ksu 3 vd − skud 3 v

 10.  For any vectors u, v, and w in V3, 

su 1 vd 3 w − u 3 w 1 v 3 w

EXERCISES

 4. Calculate the given quantity if

 a − i 1 j 2 2k

 b − 3 i 2 2 j 1 k

 c − j 2 5k

 (a) 2a 1 3b (b) | b |
 (c) a ? b (d) a 3 b
 (e) | b 3 c | (f ) a ? sb 3 cd
 (g) c 3 c (h) a 3 sb 3 cd
 (i) compa b (j) proja b
 (k)  The angle between a and b (correct to the nearest degree)

 5.  Find the values of x such that the vectors k3, 2, x l  and k2x, 4, x l  
are orthogonal.

 6.  Find two unit vectors that are orthogonal to both j 1 2k  
and i 2 2 j 1 3k.

 7. Suppose that u ? sv 3 wd − 2. Find
 (a) su 3 vd ? w (b) u ? sw 3 vd
 (c) v ? su 3 wd (d) su 3 vd ? v

 8. Show that if a, b, and c are in V3, then

sa 3 bd ? fsb 3 cd 3 sc 3 adg − fa ? sb 3 cdg 2

 9. Find the acute angle between two diagonals of a cube.

 1. (a)  Find an equation of the sphere that passes through the point 
s6, 22, 3d and has center s21, 2, 1d.

 (b)  Find the curve in which this sphere intersects the yz-plane.
 (c)  Find the center and radius of the sphere

x 2 1 y2 1 z2 2 8x 1 2y 1 6z 1 1 − 0

 2.  Copy the vectors in the figure and use them to draw each of the 
following vectors.

 (a) a 1 b (b) a 2 b (c) 21
2 a (d) 2a 1 b

a
b

 3.  If u and v are the vectors shown in the figure, find u ? v and 
| u 3 v |. Is u 3 v directed into the page or out of it?

45°

|v |=3

|u |=2
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 21.  Find the point in which the line with parametric equa-
tions x − 2 2 t, y − 1 1 3t, z − 4t intersects the plane 
2x 2 y 1 z − 2.

 22.  Find the distance from the origin to the line  
x − 1 1 t, y − 2 2 t, z − 21 1 2t.

 23.  Determine whether the lines given by the symmetric  
equations

 
x 2 1

2
−

y 2 2
3

−
z 2 3

4

  and  
x 1 1

6
−

y 2 3
21

−
z 1 5

2

  are parallel, skew, or intersecting.

 24. (a)  Show that the planes x 1 y 2 z − 1 and 
2x 2 3y 1 4z − 5 are neither parallel nor perpendicular.

 (b)  Find, correct to the nearest degree, the angle between these 
planes.

 25.  Find an equation of the plane through the line of intersection of 
the planes x 2 z − 1 and y 1 2z − 3 and perpendicular to the 
plane x 1 y 2 2z − 1.

 26. (a)  Find an equation of the plane that passes through the points 
As2, 1, 1d, Bs21, 21, 10d, and Cs1, 3, 24d.

 (b)  Find symmetric equations for the line through B that is  
perpendicular to the plane in part (a).

 (c)  A second plane passes through s2, 0, 4d and has normal 
vector k2,  24,  23 l. Show that the acute angle between the 
planes is approximately 438.

 (d)  Find parametric equations for the line of intersection of the 
two planes.

 27.  Find the distance between the planes 3x 1 y 2 4z − 2  
and 3x 1 y 2 4z − 24.

28–36 Identify and sketch the graph of each surface.

 28. x − 3 29. x − z

 30. y − z2 31. x 2 − y 2 1 4z2

 32. 4x 2 y 1 2z − 4 33. 24x 2 1 y 2 2 4z2 − 4

 34. y 2 1 z2 − 1 1 x 2

 35. 4x 2 1 4y 2 2 8y 1 z2 − 0

 36. x − y2 1 z2 2 2y 2 4z 1 5

 37.  An ellipsoid is created by rotating the ellipse 4x 2 1 y 2 − 16 
about the x-axis. Find an equation of the ellipsoid.

 38.  A surface consists of all points P such that the distance from P  
to the plane y − 1 is twice the distance from P to the point 
s0, 21, 0d. Find an equation for this surface and identify it.

 10.  Given the points As1, 0, 1d, Bs2, 3, 0d, Cs21, 1, 4d, and 
Ds0, 3, 2d, find the volume of the parallelepiped with adjacent 
edges AB, AC, and AD.

 11. (a)  Find a vector perpendicular to the plane through the points 
As1, 0, 0d, Bs2, 0, 21d, and Cs1, 4, 3d.

 (b) Find the area of triangle ABC.

 12.  A constant force F − 3 i 1 5 j 1 10k moves an object along 
the line segment from s1, 0, 2d to s5, 3, 8d. Find the work done 
if the distance is measured in meters and the force in newtons.

 13.  A boat is pulled onto shore using two ropes, as shown in the 
diagram. If a force of 255 N is needed, find the magnitude of 
the force in each rope.

20°
30°

255 N

 14.  Find the magnitude of the torque about P if a 50-N force is 
applied as shown.

P

40 cm

50 N
30°

15–17 Find parametric equations for the line.

 15.  The line through s4, 21, 2d and s1, 1, 5d

 16.  The line through s1, 0, 21d and parallel to the line 
1
3sx 2 4d − 1

2 y − z 1 2

 17.  The line through s22, 2, 4d and perpendicular to the  
plane 2x 2 y 1 5z − 12

18–20 Find an equation of the plane.

 18.  The plane through s2, 1, 0d and parallel to x 1 4y 2 3z − 1

 19.  The plane through s3, 21, 1d, s4, 0, 2d, and s6, 3, 1d

 20.  The plane through s1, 2, 22d that contains the line  
x − 2t, y − 3 2 t, z − 1 1 3t
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Problems Plus  1.  Each edge of a cubical box has length 1 m. The box contains nine spherical balls with the 
same radius r. The center of one ball is at the center of the cube and it touches the other 
eight balls. Each of the other eight balls touches three sides of the box. Thus the balls are 
tightly packed in the box (see the figure). Find r. (If you have trouble with this problem, 
read about the problem-solving strategy entitled Use Analogy on page 71.)

 2.  Let B be a solid box with length L , width W, and height H. Let S be the set of all points that 
are a distance at most 1 from some point of B. Express the volume of S in terms of L, W, 
and H.

 3.  Let L be the line of intersection of the planes cx 1 y 1 z − c and x 2 cy 1 cz − 21,  
where c is a real number.

 (a) Find symmetric equations for L.
 (b)  As the number c varies, the line L sweeps out a surface S. Find an equation for the 

curve of intersection of S with the horizontal plane z − t (the trace of S in the plane 
z − t).

 (c) Find the volume of the solid bounded by S and the planes z − 0 and z − 1.

 4.  A plane is capable of flying at a speed of 180 kmyh in still air. The pilot takes off from an 
airfield and heads due north according to the plane’s compass. After 30 minutes of flight 
time, the pilot notices that, due to the wind, the plane has actually traveled 80 km at an 
angle 5° east of north.

 (a) What is the wind velocity?
 (b) In what direction should the pilot have headed to reach the intended destination?

 5.  Suppose v1 and v2 are vectors with | v1 | − 2, | v2 | − 3, and v1 ? v2 − 5. Let v3 − projv1v2,
   v4 − projv2v3, v5 − projv3v4, and so on. Compute o `

n−1| vn |.
 6.  Find an equation of the largest sphere that passes through the point s21, 1, 4d and is such 

that each of the points sx, y, zd inside the sphere satisfies the condition

x 2 1 y 2 1 z 2 , 136 1 2sx 1 2y 1 3zd

 7.  Suppose a block of mass m is placed on an inclined plane, as shown in the figure. The 
block’s descent down the plane is slowed by friction; if ! is not too large, friction will pre-
vent the block from moving at all. The forces acting on the block are the weight W, where 
| W | − mt (t is the acceleration due to gravity); the normal force N (the normal compo-
nent of the reac tionary force of the plane on the block), where | N | − n; and the force F 
due to friction, which acts parallel to the inclined plane, opposing the direction of motion. 
If the block is at rest and ! is increased, | F | must also increase until ultimately | F | reaches 
its maximum, beyond which the block begins to slide. At this angle !s, it has been observed 
that | F | is proportional to n. Thus, when | F | is maximal, we can say that | F | − "s n, 
where "s is called the coefficient of static friction and depends on the materials that are in 
contact.

 (a) Observe that N 1 F 1 W − 0 and deduce that "s − tans!sd.
 (b)  Suppose that, for ! . !s, an additional outside force H is applied to the block, horizon-

tally from the left, and let | H | − h. If h is small, the block may still slide down the 
plane; if h is large enough, the block will move up the plane. Let hmin be the smallest 
value of h that allows the block to remain motionless (so that | F | is maximal).

     By choosing the coordinate axes so that F lies along the x-axis, resolve each force 
into components parallel and perpendicular to the inclined plane and show that

hmin sin ! 1 mt cos ! − n    and    hmin cos ! 1 "s n − mt sin !

 (c) Show that hmin − mt tans! 2 !sd

   Does this equation seem reasonable? Does it make sense for  ! − !s? Does it make 
sense as ! l 908? Explain.

1 m

1 m
1 m1 m

FIGURE FOR PROBLEM 1 

N F

W

¨

FIGURE FOR PROBLEM 7 
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 (d)  Let hmax be the largest value of h that allows the block to remain motionless. (In which 
direction is F heading?) Show that

hmax − mt tans! 1 !sd

  Does this equation seem reasonable? Explain.

 8.  A solid has the following properties. When illuminated by rays parallel to the z-axis, its 
shadow is a circular disk. If the rays are parallel to the y-axis, its shadow is a square. If 
the rays are parallel to the x-axis, its shadow is an isosceles triangle. (In Exercise 12.1.48 
you were asked to describe and sketch an example of such a solid, but there are many such 
solids.) Assume that the projection onto the xz-plane is a square whose sides have length 1.

 (a) What is the volume of the largest such solid?
 (b) Is there a smallest volume?
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The paths of objects moving 
through space like the jet 
planes pictured here can 

be described by vector 
functions. In Section 13.1 

we will see how to use these 
vector functions to determine 

whether or not two such 
objects will collide.

THE FUNCTIONS THAT WE HAVE been using so far have been real-valued functions. We now 
study functions whose values are vectors because such functions are needed to describe curves 
and surfaces in space. We will also use vector-valued functions to describe the motion of objects 
through space. In particular, we will use them to derive Kepler’s laws of planetary motion.

13

© Natalia Davydenko / Shutterstock.com

Vector Functions
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848 CHAPTER 13  Vector Functions

In general, a function is a rule that assigns to each element in the domain an element in 
the range. A vector-valued function, or vector function, is simply a function whose 
domain is a set of real numbers and whose range is a set of vectors. We are most inter-
ested in vector functions r whose values are three-dimensional vectors. This means that 
for every number t in the domain of r there is a unique vector in V3 denoted by rstd. If  
f std, tstd, and hstd are the components of the vector rstd, then f , t, and h are real-valued 
functions called the component functions of r and we can write

rstd − k f std, tstd, hstdl − f std i 1 tstd j 1 hstd k

We use the letter t to denote the independent variable because it represents time in most 
applications of vector functions.

EXAMPLE 1 If

rstd − k t 3, lns3 2 td, st l

then the component functions are

f std − t 3      tstd − lns3 2 td      hstd − st 

By our usual convention, the domain of r consists of all values of t for which the expres-
sion for rstd is defined. The expressions t 3, lns3 2 td, and st  are all defined when 
3 2 t . 0 and t > 0. Therefore the domain of r is the interval f0, 3d. Q

Limits and Continuity
The limit of a vector function r is defined by taking the limits of its component functions 
as follows.

1   If rstd − k f std, tstd, hstdl, then

lim
t l a

 rstd − k lim
t l a

 f std, lim
t l a

 tstd, lim
t l a

 hstdl
provided the limits of the component functions exist.

Equivalently, we could have used an «-! definition (see Exercise 54). Limits of vector 
functions obey the same rules as limits of real-valued functions (see Exercise 53).

EXAMPLE 2 Find lim
t l 0

 rstd, where rstd − s1 1 t 3 d i 1 te2t j 1
sin t

t
 k.

SOLUTION According to Definition 1, the limit of r is the vector whose components are 
the limits of the component functions of r:

 lim
t l 0

 rstd − f lim
t l 0

 s1 1 t 3 dg i 1 f lim
t l 0

 te2t g j 1 Flim
t l 0

 
sin t

t G k

  − i 1 k    (by Equation 3.3.2) Q

If lim t la rstd − L, this definition is 
equivalent to saying that the length and 
direction of the vector rstd approach the 
length and direction of the vector L.
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 SECTION 13.1  Vector Functions and Space Curves 849

A vector function r is continuous at a if

lim
t l a

 rstd − rsad

In view of Definition 1, we see that r is continuous at a if and only if its component func-
tions f , t, and h are continuous at a.

Space Curves
There is a close connection between continuous vector functions and space curves. Sup-
pose that f , t, and h are continuous real-valued functions on an interval I. Then the set 
C of all points sx, y, zd in space, where

2   x − f std    y − tstd    z − hstd 

and t varies throughout the interval I, is called a space curve. The equations in (2) are 
called parametric equations of C and t is called a parameter. We can think of C as 
being traced out by a moving particle whose position at time t is s f std, tstd, hstdd. If we 
now consider the vector function  rstd − k f std, tstd, hstdl, then rstd is the position vector 
of the point Ps f std, tstd, hstdd on C. Thus any continuous vector function r defines a space 
curve C that is traced out by the tip of the moving vector rstd, as shown in Figure 1.

EXAMPLE 3 Describe the curve defined by the vector function

rstd − k1 1 t, 2 1 5t, 21 1 6t l

SOLUTION The corresponding parametric equations are

x − 1 1 t    y − 2 1 5t    z − 21 1 6t

which we recognize from Equations 12.5.2 as parametric equations of a line passing 
through the point s1, 2, 21d and parallel to the vector k1, 5, 6l. Alternatively, we could 
observe that the function can be written as r − r0 1 tv, where r0 − k1, 2, 21l and 
v − k1, 5, 6l, and this is the vector equation of a line as given by Equation 12.5.1. Q

Plane curves can also be represented in vector notation. For instance, the curve given 
by the parametric equations x − t 2 2 2t and y − t 1 1 (see Example 10.1.1) could also 
be described by the vector equation

rstd − k t 2 2 2t, t 1 1l − st 2 2 2td i 1 st 1 1d j

where i − k1, 0l and j − k0, 1l.

EXAMPLE 4 Sketch the curve whose vector equation is

rstd − cos t i 1 sin t j 1 t k

SOLUTION The parametric equations for this curve are

x − cos t    y − sin t    z − t

Since x 2 1 y 2 − cos2t 1 sin2t − 1 for all values of t, the curve must lie on the circular 
cylinder x 2 1 y 2 − 1. The point sx, y, zd lies directly above the point sx, y, 0d, which 
moves counterclockwise around the circle x 2 1 y 2 − 1 in the xy-plane. (The projection 
of the curve onto the xy-plane has vector equation rstd − kcos t, sin t, 0l. See Example 
10.1.2.) Since z − t, the curve spirals upward around the cylinder as t increases. The 
curve, shown in Figure 2, is called a helix. Q

C

0

z

x y

P{f(t), g(t), h(t)}

r(t)=kf(t), g(t), h(t)l

FIGURE 1  
C is traced out by the tip of a moving 
position vector rstd.

TEC Visual 13.1A shows several 
curves being traced out by position 
vectors, including those in Figures 1 
and 2.

 ”0, 1,    ’π
2

(1, 0, 0)

z

x
y

FIGURE 2
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850 CHAPTER 13  Vector Functions

The corkscrew shape of the helix in Example 4 is familiar from its occurrence in 
coiled springs. It also occurs in the model of DNA (deoxyribonucleic acid, the genetic 
material of living cells). In 1953 James Watson and Francis Crick showed that the struc-
ture of the DNA molecule is that of two linked, parallel helixes that are intertwined as in 
Figure 3.

In Examples 3 and 4 we were given vector equations of curves and asked for a geo- 
metric description or sketch. In the next two examples we are given a geometric descrip- 
tion of a curve and are asked to find parametric equations for the curve.

EXAMPLE 5 Find a vector equation and parametric equations for the line segment that 
joins the point Ps1, 3, 22d to the point Qs2, 21, 3d.

SOLUTION In Section 12.5 we found a vector equation for the line segment that joins 
the tip of the vector r 0 to the tip of the vector r1:

rstd − s1 2 tdr 0 1 tr1      0 < t < 1

(See Equation 12.5.4.) Here we take r 0 − k1, 3, 22l and r1 − k2, 21, 3l to obtain a 
vector equation of the line segment from P to Q:

rstd − s1 2 td k1, 3, 22l 1 tk2, 21, 3l  0 < t < 1

or rstd − k1 1 t, 3 2 4t, 22 1 5tl 0 < t < 1

The corresponding parametric equations are

 x − 1 1 t      y − 3 2 4t      z − 22 1 5t      0 < t < 1 Q

EXAMPLE 6 Find a vector function that represents the curve of intersection of the 
cylinder x 2 1 y 2 − 1 and the plane y 1 z − 2.

SOLUTION Figure 5 shows how the plane and the cylinder intersect, and Figure 6 
shows the curve of intersection C, which is an ellipse.

C

(0, _1, 3)

(1, 0, 2)

(_1, 0, 2)

(0, 1, 1)

y+z=2

≈+¥=1

z

y

0

x

z

yx

FIGURE 5 FIGURE 6

FIGURE 3  
A double helix

FIGURE 4

Q(2, _1, 3)

P(1, 3, _2)

z

x y

Figure 4 shows the line segment PQ in  
Example 5.
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The projection of C onto the xy-plane is the circle x 2 1 y 2 − 1, z − 0. So we know 
from Example 10.1.2 that we can write

x − cos t    y − sin t    0 < t < 2"

From the equation of the plane, we have

z − 2 2 y − 2 2 sin t

So we can write parametric equations for C as

x − cos t    y − sin t    z − 2 2 sin t    0 < t < 2"

The corresponding vector equation is

rstd − cos t i 1 sin t j 1 s2 2 sin td k    0 < t < 2"

This equation is called a parametrization of the curve C. The arrows in Figure 6 indi- 
cate the direction in which C is traced as the parameter t increases. Q

Using Computers to Draw Space Curves
Space curves are inherently more difficult to draw by hand than plane curves; for  
an accurate representation we need to use technology. For instance, Figure 7 shows a 
computer-generated graph of the curve with parametric equations

x − s4 1 sin 20td cos t    y − s4 1 sin 20td sin t    z − cos 20t

It’s called a toroidal spiral because it lies on a torus. Another interesting curve, the tre-
foil knot, with equations

x − s2 1 cos 1.5td cos t    y − s2 1 cos 1.5td sin t    z − sin 1.5t

is graphed in Figure 8. It wouldn’t be easy to plot either of these curves by hand.

z

x
y

z

x y

FIGURE 7 FIGURE 8
  A toroidal spiral A trefoil knot

Even when a computer is used to draw a space curve, optical illusions make it difficult 
to get a good impression of what the curve really looks like. (This is especially true in 
Figure 8. See Exercise 52.) The next example shows how to cope with this problem.

EXAMPLE 7 Use a computer to draw the curve with vector equation rstd − kt, t 2, t 3l. 
This curve is called a twisted cubic.

SOLUTION We start by using the computer to plot the curve with parametric equations 
x − t, y − t 2, z − t 3 for 22 < t < 2. The result is shown in Figure 9(a), but it’s hard 
to see the true nature of the curve from that graph alone. Most three-dimensional 
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852 CHAPTER 13  Vector Functions

computer graphing programs allow the user to enclose a curve or surface in a box 
instead of displaying the coordinate axes. When we look at the same curve in a box 
in Figure 9(b), we have a much clearer picture of the curve. We can see that it climbs 
from a lower corner of the box to the upper corner nearest us, and it twists as it climbs.

x

z

y

2

_2

2
4

6

_6

4
2

0

2
0

_6
_2

6
0

y

z

x
_6

6

0z

420 2
0

_2

y
x

2

_2

0 x

_1

1

0 1 2 3 4
y

_8

8

0z

4

_4

2 1 0 _1 _2
x

_8

8

0z

4

_4

0 1 2 3 4
y

(a) (b) (c)

(e)(d) (f)

We get an even better idea of the curve when we view it from different vantage 
points. Part (c) shows the result of rotating the box to give another viewpoint. Parts (d), 
(e), and (f ) show the views we get when we look directly at a face of the box. In par - 
ticular, part (d) shows the view from directly above the box. It is the projection of the 
curve onto the xy-plane, namely, the parabola y − x 2. Part (e) shows the projection 
onto the xz-plane, the cubic curve z − x 3. It’s now obvious why the given curve is 
called a twisted cubic. Q

Another method of visualizing a space curve is to draw it on a surface. For instance, 
the twisted cubic in Example 7 lies on the parabolic cylinder y − x 2. (Eliminate the 
parameter from the first two parametric equations, x − t and y − t 2.) Figure 10 shows 
both the cylin der and the twisted cubic, and we see that the curve moves upward from the 
origin along the surface of the cylinder. We also used this method in Example 4 to visual-
ize the helix lying on the circular cylinder (see Figure 2). 

z

x
y

FIGURE 9 Views of the twisted cubic

TEC  In Visual 13.1B you can rotate 
the box in Figure 9 to see the curve 
from any viewpoint.

FIGURE 10
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 SECTION 13.1  Vector Functions and Space Curves 853

A third method for visualizing the twisted cubic is to realize that it also lies on the 
cylin der z − x 3. So it can be viewed as the curve of intersection of the cylinders y − x 2 
and z − x 3. (See Figure 11.)

8

4

0z

0x 1 0 2y
4

_4

_8
_1

We have seen that an interesting space curve, the helix, occurs in the model of DNA.  
Another notable example of a space curve in science is the trajectory of a positively 
charged particle in orthogonally oriented electric and magnetic fields E and B. Depend-
ing on the initial velocity given the particle at the origin, the path of the particle is either 
a space curve whose projection onto the horizontal plane is the cycloid we studied in 
Section 10.1 [Figure 12(a)] or a curve whose projection is the trochoid investigated in 
Exercise 10.1.40 [Figure 12(b)].

(a)  r(t) = kt-sin t, 1-cos t, tl

B

E

t

B

E

t
(b)  r(t) = kt-    sin t, 1-    cos t, tl3

2
3
2

 FIGURE 13

For further details concerning the physics involved and animations of the trajectories 
of the particles, see the following websites:

 ■ www.physics.ucla.edu/plasma-exp/Beam/

■ www.phy.ntnu.edu.tw/ntnujava/index.php?topic=36

TEC Visual 13.1C shows how curves 
arise as intersections of surfaces.

FIGURE 11

Some computer algebra systems pro-
vide us with a clearer picture of a space 
curve by enclosing it in a tube. Such  
a plot enables us to see whether one 
part of a curve passes in front of or 
behind another part of the curve. For 
example, Figure 13 shows the curve  
of Figure 12(b) as rendered by the 
tubeplot command in Maple.

FIGURE 12  
Motion of a charged particle in 
orthogonally oriented electric and 
magnetic fields 

1–2 Find the domain of the vector function.

 1. rstd − Klnst 1 1d, 
t

s9 2 t 2
, 2 tL

 2. rstd − cos t i 1 ln t j 1
1

t 2 2
 k

3–6 Find the limit.

 3. lim
t l 0

 Se23 t i 1
t 2

sin2t
j 1 cos 2t kD

 4. lim
t l 1

 S t 2 2 t
t 2 1

 i 1 st 1 8  j 1
sin " t

ln t
 kD
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854 CHAPTER 13  Vector Functions

 21. x − t cos t,  y − t,  z − t sin t,  t > 0

 22. x − cos t,  y − sin t,  z − 1ys1 1 t 2d

 23. x − t,  y − 1ys1 1 t 2 d,  z − t 2

 24. x − cos t,  y − sin t,  z − cos 2t

 25. x − cos 8t,  y − sin 8t,  z − e 0.8 t,  t > 0

 26. x − cos2 t,  y − sin2 t,  z − t

 27.  Show that the curve with parametric equations x − t cos t, 
y − t sin t, z − t lies on the cone z2 − x 2 1 y 2, and use this 
fact to help sketch the curve.

 28.  Show that the curve with parametric equations x − sin t, 
y − cos t, z − sin2t is the curve of intersection of the surfaces 
z − x 2 and x 2 1 y 2 − 1. Use this fact to help sketch the curve.

 29.  Find three different surfaces that contain the curve 
rstd − 2t i 1 e t j 1 e 2 t k.

 30.  Find three different surfaces that contain the curve 
rstd − t 2 i 1 ln t j 1 s1ytd k.

31.   At what points does the curve rstd − t i 1 s2t 2 t 2d k inter-
sect the paraboloid z − x 2 1 y 2?

 32.  At what points does the helix rstd − ksin t, cos t, tl intersect 
the sphere x 2 1 y 2 1 z2 − 5?

33–37 Use a computer to graph the curve with the given vector 
equation. Make sure you choose a parameter domain and view-
points that reveal the true nature of the curve.

 33. rstd − kcos t sin 2t, sin t sin 2t, cos 2tl

 34. rstd − k te t, e2t, tl

 35. rstd − ksin 3t cos t, 14 t, sin 3t sin tl
 36. rstd − kcoss8 cos td sin t, sins8 cos td sin t, cos tl

 37. rstd − kcos 2t, cos 3t, cos 4tl

 38.  Graph the curve with parametric equations x − sin t,  
y − sin 2t, z − cos 4 t. Explain its shape by graphing its 
projections onto the three coordinate planes.

 39.  Graph the curve with parametric equations

x − s1 1 cos 16td cos t

y − s1 1 cos 16td sin t

z − 1 1 cos 16t

   Explain the appearance of the graph by showing that it lies on 
a cone.

 40. Graph the curve with parametric equations

 x − s1 2 0.25 cos 2 10t  cos t

 y − s1 2 0.25 cos 2 10t  sin t

 z − 0.5 cos 10t

;

;

;

;

 5. lim
tl `

 K 1 1 t 2

1 2 t 2 , tan21 t, 
1 2 e22 t

t L
 6. lim

tl `
 Kte2t, 

t 3 1 t
2t 3 2 1

, t sin 
1
t L

7–14 Sketch the curve with the given vector equation. Indicate 
with an arrow the direction in which t increases.

 7. rstd − ksin t, t l 8. rstd − kt 2 2 1, tl
 9. rstd − kt, 2 2 t, 2tl 10. rstd − ksin " t, t, cos " tl
 11. rstd − k3, t, 2 2 t 2l
 12. rstd − 2 cos t i 1 2 sin t j 1 k

 13. rstd − t 2 i 1 t 4 j 1 t 6 k

 14. rstd − cos t i 2 cos t j 1 sin t k

15–16 Draw the projections of the curve on the three coordinate 
planes. Use these projections to help sketch the curve.

 15. rstd − kt, sin t, 2 cos tl 16. rstd − kt, t, t 2l

17–20 Find a vector equation and parametric equations for the 
line segment that joins P to Q.

 17. Ps2, 0, 0d,  Qs6, 2, 22d 18. Ps21, 2, 22d,  Qs23, 5, 1d

 19. Ps0, 21, 1d,  Q(1
2,  13,  14) 20. Psa, b, cd,  Qsu, v, wd

21–26 Match the parametric equations with the graphs  
(labeled I–VI). Give reasons for your choices.

III IV

II

V VIz

x y
y

z

x

z

x y

yx

z

x y

z

I

x
y

z
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 SECTION 13.2  Derivatives and Integrals of Vector Functions 855

 51. (a)  Graph the curve with parametric equations

 x − 27
26 sin 8t 2 8

39 sin 18t

 y − 227
26 cos 8t 1 8

39 cos 18t

 z − 144
65  sin 5t

 (b)  Show that the curve lies on the hyperboloid of one sheet 
144x 2 1 144y 2 2 25z 2 − 100.

 52.  The view of the trefoil knot shown in Figure 8 is accurate, 
but it doesn’t reveal the whole story. Use the parametric 
equations

x − s2 1 cos 1.5td cos t

y − s2 1 cos 1.5td sin t

z − sin 1.5t

   to sketch the curve by hand as viewed from above, with 
gaps indicating where the curve passes over itself. Start by 
showing that the projection of the curve onto the xy-plane 
has polar coordinates r − 2 1 cos 1.5t and # − t, so r 
varies between 1 and 3. Then show that z has maximum and 
minimum values when the projection is halfway between 
r − 1 and r − 3.

     When you have finished your sketch, use a computer to 
draw the curve with viewpoint directly above and compare 
with your sketch. Then use the computer to draw the curve 
from several other viewpoints. You can get a better impres-
sion of the curve if you plot a tube with radius 0.2 around  
the curve. (Use the tubeplot command in Maple or the 
tubecurve or Tube command in Mathematica.)

 53.  Suppose u and v are vector functions that possess limits as 
t l a and let c be a constant. Prove the following prop erties 
of limits.

 (a) lim
t la

 fustd 1 vstdg − lim
t la

 ustd 1 lim
t la

 vstd

 (b) lim
t l a

 custd − c lim
t l a

 ustd

 (c) lim
t l a

 fustd ? vstdg − lim
t l a

 ustd ? lim
t l a

 vstd

 (d) lim
t l a

 fustd 3 vstdg − lim
t l a

 ustd 3 lim
t l a

 vstd

 54.  Show that lim t l a rstd − b if and only if for every « . 0  
there is a number ! . 0 such that 

if 0 , | t 2 a | , !  then  | rstd 2 b | , «

;

;

   Explain the appearance of the graph by showing that it lies 
on a sphere.

 41.  Show that the curve with parametric equations x − t 2, 
y − 1 2 3t, z − 1 1 t 3 passes through the points s1, 4, 0d 
and s9, 28, 28d but not through the point s4, 7, 26d.

42–46 Find a vector function that represents the curve of 
intersection of the two surfaces.

 42.  The cylinder x 2 1 y 2 − 4 and the surface z − xy

 43. The cone z − sx 2 1 y 2  and the plane z − 1 1 y

 44.  The paraboloid z − 4x 2 1 y 2 and the parabolic  
cylinder y − x 2

 45. The hyperboloid z − x 2 2 y 2 and the cylinder x 2 1 y 2 − 1

 46.  The semiellipsoid x 2 1 y 2 1 4z 2 − 4, y > 0, and the  
cylinder x 2 1 z 2 − 1

 47.  Try to sketch by hand the curve of intersection of the circu-
lar cylinder x 2 1 y 2 − 4 and the parabolic cylinder z − x 2.  
Then find parametric equations for this curve and use these 
equations and a computer to graph the curve.

 48.  Try to sketch by hand the curve of intersection of the  
parabolic cylinder y − x 2 and the top half of the ellipsoid 
x 2 1 4y 2 1 4z2 − 16. Then find parametric equations for  
this curve and use these equations and a computer to graph  
the curve.

 49.  If two objects travel through space along two different 
curves, it’s often important to know whether they will col-
lide. (Will a missile hit its moving target? Will two aircraft 
collide?) The curves might intersect, but we need to know 
whether the objects are in the same position at the same 
time. Suppose the trajectories of two particles are given by 
the vector functions

r1 std − kt 2, 7t 2 12, t 2l    r2 std − k4t 2 3, t 2, 5t 2 6l

  for t > 0. Do the particles collide?

 50.  Two particles travel along the space curves

r1 std − kt, t 2, t 3l    r2 std − k1 1 2t, 1 1 6t, 1 1 14tl

  Do the particles collide? Do their paths intersect?

;

;

Later in this chapter we are going to use vector functions to describe the motion of plan-
ets and other objects through space. Here we prepare the way by developing the calculus 
of vec tor functions.

Derivatives
The derivative r9 of a vector function r is defined in much the same way as for real- 
valued functions:
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856 CHAPTER 13  Vector Functions

1
 

if this limit exists. The geometric significance of this definition is shown in Figure 1. 
If the points P and Q have position vectors rstd and rst 1 hd, then PQ

l
 represents the vec-

tor rst 1 hd 2 rstd, which can therefore be regarded as a secant vector. If h . 0, the 
scalar multiple s1yhdsrst 1 hd 2 rstdd has the same direction as rst 1 hd 2 rstd. As 
h l 0, it appears that this vector approaches a vector that lies on the tangent line. For 
this reason, the vector r9std is called the tangent vector to the curve defined by r at the 
point P, provided that r9std exists and r9std ± 0. The tangent line to C at P is defined to 
be the line through P parallel to the tangent vector r9std. We will also have occasion to 
consider the unit tangent vector, which is

Tstd −
r9std

| r9std|

(b) The tangent vector rª(t)(a) The secant vector PQ

0

P

C

Q
r(t+h)-r(t)

r(t)
r(t+h)

0
C

P Q

r(t+h)
r(t)

rª(t)

y

z

x x

z

y

r(t+h)-r(t)
h

The following theorem gives us a convenient method for computing the derivative of 
a vector function r: just differentiate each component of r.

2   Theorem If rstd − k f std, tstd, hstdl − f std i 1 tstd j 1 hstd k, where f , t, 
and h are differentiable functions, then

r9std − k f 9std, t9std, h9stdl − f 9std i 1 t9std j 1 h9std k

PROOF

 r9std − lim
Dt l 0

 
1
Dt

 frst 1 Dtd 2 rstdg

  − lim
Dt l 0

 
1
Dt

 fk f st 1 Dtd, tst 1 Dtd, hst 1 Dtdl 2 k f std, tstd, hstdlg

 − lim
Dt l 0

 K  f st 1 Dtd 2 f std
Dt

, 
tst 1 Dtd 2 tstd

Dt
, 

hst 1 Dtd 2 hstd
Dt L

 − K lim
Dt l 0

 
f st 1 Dtd 2 f std

Dt
, lim

Dt l 0
 
tst 1 Dtd 2 tstd

Dt
, lim

Dt l 0
 
hst 1 Dtd 2 hstd

Dt L
  − k f 9std, t9std, h9stdl Q

dr
dt

− r9std − lim
h l 0

 
rst 1 hd 2 rstd

h

Notice that when 0 , h , 1, 
multiplying the secant vector by 1yh 
stretches the vector, as shown  
in Figure 1(b).

FIGURE 1

TEC Visual 13.2 shows an animation 
of Figure 1.
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 SECTION 13.2  Derivatives and Integrals of Vector functions 857

EXAMPLE 1 
(a) Find the derivative of rstd − s1 1 t 3 d 

i 1 te2t j 1 sin 2t k.
(b) Find the unit tangent vector at the point where t − 0.

SOLUTION

(a) According to Theorem 2, we differentiate each component of r:

r9std − 3t 2 i 1 s1 2 tde2t j 1 2 cos 2t k

(b) Since rs0d − i and r9s0d − j 1 2k, the unit tangent vector at the point s1, 0, 0d is

 Ts0d −
r9s0d

| r9s0d | −
j 1 2k

s1 1 4 
−

1

s5 
 j 1

2

s5 
 k Q

EXAMPLE 2 For the curve rstd − st  i 1 s2 2 td j, find r9std and sketch the position  
vector rs1d and the tangent vector r9s1d.

SOLUTION We have

r9std −
1

2st  i 2 j    and    r9s1d −
1
2

 i 2 j

The curve is a plane curve and elimination of the parameter from the equations  
x − st , y − 2 2 t gives y − 2 2 x 2, x > 0. In Figure 2 we draw the position vector 
rs1d − i 1 j starting at the origin and the tangent vector r9s1d starting at the correspond-
ing point s1, 1d. Q

EXAMPLE 3 Find parametric equations for the tangent line to the helix with para- 
metric equations

x − 2 cos t    y − sin t    z − t

at the point s0, 1, "y2d.

SOLUTION The vector equation of the helix is rstd − k2 cos t, sin t, tl, so

r9std − k22 sin t, cos t, 1l

The parameter value corresponding to the point s0, 1, "y2d is t − "y2, so the tangent 
vector there is r9s"y2d − k22, 0, 1l. The tangent line is the line through s0, 1, "y2d 
parallel to the vector k22, 0, 1l, so by Equations 12.5.2 its parametric equations are

 x − 22t    y − 1    z −
"

2
1 t Q

z

0

12

10_1 2
0

_2

y
x

8

4

_0.5 0.5

FIGURE 2

Notice from Figure 2 that the tangent 
vector points in the direction of 
increasing t. (See Exercise 58.)

r(1) rª(1)
(1, 1)

0

y
2

x1

FIGURE 3

The helix and the tangent line in 
Example 3 are shown in Figure 3.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



858 CHAPTER 13  Vector Functions

Just as for real-valued functions, the second derivative of a vector function r is the  
derivative of r9, that is, r0 − sr9d9. For instance, the second derivative of the function in 
Example 3 is

r0std − k22 cos t, 2sin t, 0l

Differentiation Rules
The next theorem shows that the differentiation formulas for real-valued functions have 
their counterparts for vector-valued functions.

3   Theorem Suppose u and v are differentiable vector functions, c is a scalar,  
and  f  is a real-valued function. Then

1. 
d
dt

 fustd 1 vstdg − u9std 1 v9std

2. 
d
dt

 fcustdg − cu9std

3. 
d
dt

 f f std ustdg − f 9std ustd 1 f std u9std

4. 
d
dt

 fustd ? vstdg − u9std ? vstd 1 ustd ? v9std

5. 
d
dt

 fustd 3 vstdg − u9std 3 vstd 1 ustd 3 v9std

6. 
d
dt

 fus f stddg − f 9stdu9s f stdd    (Chain Rule)

This theorem can be proved either directly from Definition 1 or by using Theorem 2 
and the corresponding differentiation formulas for real-valued functions. The proof of 
Formula 4 follows; the remaining formulas are left as exercises.

PROOF OF FORMULA 4 Let

ustd − k f1std, f2std, f3stdl       vstd − kt1std, t2std, t3stdl

Then ustd ? vstd − f1std t1std 1 f2std t2std 1 f3std t3std − o
3

i−1
fistd tistd

so the ordinary Product Rule gives

 
d
dt

 fustd ? vstdg −
d
dt

 o
3

i−1
fistd tistd − o

3

i−1

d
dt

 f fistd tistdg

 − o
3

i−1
f f 9i std tistd 1 fistd t9istdg

 − o
3

i−1
 f 9i std tistd 1 o

3

i−1
fistd t9istd

   − u9std ? vstd 1 ustd ? v9std  Q

EXAMPLE 4 Show that if | rstd | − c (a constant), then r9std is orthogonal to rstd for  
all t.

In Section 13.4 we will see how r9std 
and r0std can be interpreted as the 
velocity and acceleration vectors of 
a particle moving through space with 
position vector rstd at time t.
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SOLUTION Since

rstd ? rstd − | rstd |2 − c 2

and c 2 is a constant, Formula 4 of Theorem 3 gives

0 −
d
dt

 frstd ? rstdg − r9std ? rstd 1 rstd ? r9std − 2r9std ? rstd

Thus r9std ? rstd − 0, which says that r9std is orthogonal to rstd.
Geometrically, this result says that if a curve lies on a sphere with center the origin, 

then the tangent vector r9std is always perpendicular to the position vector rstd. (See 
Figure 4.) Q

Integrals
The definite integral of a continuous vector function rstd can be defined in much the 
same way as for real-valued functions except that the integral is a vector. But then we can 
express the integral of r in terms of the integrals of its component functions f , t, and h 
as follows. (We use the notation of Chapter 5.)

 yb

a
 rstd dt − lim

nl `
 o

n

i−1
rst*i d Dt

 − lim
nl `

 FSo
n

i−1
f st*i d DtD i 1 So

n

i−1
tst*i d DtD j 1 So

n

i−1
hst*i d DtD kG

and so

yb

a
 rstd dt − Syb

a
 f std dtD i 1 Syb

a
 tstd dtD j 1 Syb

a
 hstd dtD k

This means that we can evaluate an integral of a vector function by integrating each 
component function.

We can extend the Fundamental Theorem of Calculus to continuous vector functions 
as follows:

yb

a
 rstd dt − Rstdgb

a
− Rsbd 2 Rsad

where R is an antiderivative of r, that is, R9std − rstd. We use the notation y rstd dt for 
indefinite integrals (antiderivatives).

EXAMPLE 5 If rstd − 2 cos t i 1 sin t j 1 2t k, then

 y rstd dt − Sy 2 cos t dtD i 1 Sy sin t dtD j 1 Sy 2t dtD k

 − 2 sin t i 2 cos t j 1 t 2 k 1 C

where C is a vector constant of integration, and

 y!y2

0
 rstd dt − f2 sin t i 2 cos t j 1 t 2 kg0

!y2
− 2 i 1 j 1

! 2

4
 k Q

z

x
y

r(t) rª(t)

FIGURE 4
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 1. The figure shows a curve C given by a vector function rstd.
 (a) Draw the vectors rs4.5d 2 rs4d and rs4.2d 2 rs4d.
 (b) Draw the vectors

rs4.5d 2 rs4d
0.5

    and    
rs4.2d 2 rs4d

0.2

 (c)  Write expressions for r9s4d and the unit tangent  
vector Ts4d.

 (d)  Draw the vector Ts4d.

x0 1

1

y
RC

Q

P

r(4.5)

r(4.2)

r(4)

 2. (a)  Make a large sketch of the curve described by the vector 
function rstd − kt 2, t l, 0 < t < 2, and draw the vectors 
rs1d, rs1.1d, and rs1.1d 2 rs1d.

 (b)  Draw the vector r9s1d starting at (1, 1), and compare it 
with the vector

rs1.1d 2 rs1d
0.1

   Explain why these vectors are so close to each other in 
length and direction.

3–8 
(a) Sketch the plane curve with the given vector equation.
(b) Find r9std.
(c)  Sketch the position vector rstd and the tangent vector r9std for 

the given value of t.

 3. rstd − kt 2 2, t 2 1 1l,  t − 21

 4. rstd − kt 2, t 3l,  t − 1

 5. rstd − e2 t i 1 et j,  t − 0

 6. rstd − e t i 1 2t j, t − 0

 7. rstd − 4 sin t i 2 2 cos t j, t − 3!y4

 8. rstd − scos t 1 1d i 1 ssin t 2 1d j, t − 2!y3

9–16 Find the derivative of the vector function.

 9. rstd − kst 2 2 , 3, 1yt 2l
 10. rstd − ke2t, t 2 t 3, ln tl

 11. rstd − t 2 i 1 cosst 2d j 1 sin2t k

 12. rstd −
1

1 1 t
 i 1

t
1 1 t

 j 1
t 2

1 1 t
 k

 13. rstd − t sin t i 1 e t cos t j 1 sin t cos t k

 14. rstd − sin2 at i 1 te bt j 1 cos2ct k

 15. rstd − a 1 t b 1 t 2 c

 16. rstd − t a 3 sb 1 t cd

17–20 Find the unit tangent vector Tstd at the point with the 
given value of the parameter t.

 17. rstd − k t 2 2 2t, 1 1 3t, 13t 3 1 1
2t 2l  , t − 2

 18. rstd − ktan21 t, 2e 2 t, 8te t l, t − 0

 19. rstd − cos t i 1 3t j 1 2 sin 2t k,  t − 0

 20. rstd − sin2 t i 1 cos2 t j 1 tan2 t k,  t − !y4

 21. If rstd − kt, t 2, t 3 l, find r9std, Ts1d, r0std, and r9std 3 r0std.

 22. If rstd − ke 2 t, e22 t, te 2 t l, find Ts0d, r0s0d, and r9std ? r0std.

23–26 Find parametric equations for the tangent line to the curve 
with the given parametric equations at the specified point.

 23. x − t 2 1 1, y − 4st , z − e t 22t; s2, 4, 1d

 24. x − lnst 1 1d, y − t cos 2t, z − 2 t; s0, 0, 1d

 25. x − e2t cos t,  y − e2t sin t,  z − e2t;  s1, 0, 1d

 26. x − st 2 1 3 ,  y − lnst 2 1 3d,  z − t;  s2, ln 4, 1d

 27.  Find a vector equation for the tangent line to the curve of 
intersection of the cylinders x 2 1 y 2 − 25 and y 2 1 z 2 − 20 
at the point s3, 4, 2d.

 28.  Find the point on the curve rstd − k2 cos t, 2 sin t, e t l,  
0 < t < !, where the tangent line is parallel to the plane 
s3 x 1 y − 1.

29–31 Find parametric equations for the tangent line to the curve 
with the given parametric equations at the specified point. Illus-
trate by graphing both the curve and the tangent line on a common 
screen.

 29.  x − t, y − e2t, z − 2t 2 t 2;  s0, 1, 0d

 30. x − 2 cos t, y − 2 sin t, z − 4 cos 2t;  ss3 , 1, 2d
 31. x − t cos t, y − t, z − t sin t;  s2!, !, 0d

 32. (a)  Find the point of intersection of the tangent lines to the 
curve rstd − ksin ! t, 2 sin ! t, cos ! tl at the points 
where t − 0 and t − 0.5.

 (b) Illustrate by graphing the curve and both tangent lines.

 33.  The curves r1std − kt, t 2, t 3l and r2std − ksin t, sin 2t, tl 
intersect at the origin. Find their angle of intersection correct 
to the nearest degree.

CAS

;
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 SECTION 13.3  Arc Length and Curvature 861

 34.  At what point do the curves r1std − kt, 1 2 t, 3 1 t 2l and 
r2ssd − k3 2 s, s 2 2, s 2 l intersect? Find their angle of 
intersection correct to the nearest degree.

35–40 Evaluate the integral.

 35. y2

0
 st i 2 t 3 j 1 3t 5 kd dt

 36. y4

1
 (2t 3y2 i 1 st 1 1dst  k) dt

 37. y1

0
 S 1

t 1 1
 i 1

1
t 2 1 1

 j 1
t

t 2 1 1
 kD dt

 38. y!y4

0
 ssec t tan t i 1 t cos 2t j 1 sin2  2t cos 2t kd dt

 39. y ssec2 t i 1 tst 2 1 1d3 j 1 t 2 ln t kd dt

 40. y Ste 2t i 1
t

1 2 t
 j 1

1

s1 2 t 2  kD dt

 41. Find rstd if r9std − 2t i 1 3t 2 j 1 st  k and rs1d − i 1 j.

 42.  Find rstd if r9std − t i 1 e t j 1 te t k and rs0d − i 1 j 1 k.

 43. Prove Formula 1 of Theorem 3.

 44. Prove Formula 3 of Theorem 3.

 45. Prove Formula 5 of Theorem 3.

 46. Prove Formula 6 of Theorem 3.

 47.  If ustd − ksin t, cos t, tl and vstd − kt, cos t, sin tl, use  
Formula 4 of Theorem 3 to find 

d
dt

fustd ? vstdg

 48.  If u and v are the vector functions in Exercise 47, use For- 
mula 5 of Theorem 3 to find 

d
dt

fustd 3 vstdg

 49.  Find f 9s2d, where f std − ustd ? vstd, us2d − k1, 2, 21l, 
u9s2d − k3, 0, 4l, and vstd − kt, t 2, t 3l.

 50.  If rstd − ustd 3 vstd, where u and v are the vector functions 
in Exercise 49, find r9s2d.

 51.  If rstd − a cos "t 1 b sin "t, where a and b are constant 
vectors, show that rstd 3 r9std − "a 3 b.

 52.  If r is the vector function in Exercise 51, show that 
r 0std 1 "2rstd − 0.

 53. Show that if r is a vector function such that r0 exists, then

d
dt

 frstd 3 r9stdg − rstd 3 r0std

 54. Find an expression for 
d
dt

 fustd ? svstd 3 wstddg.

 55. If rstd ± 0, show that 
d
dt

 | rstd | −
1

| rstd |  rstd ? r9std.

  [Hint: | rstd |2 − rstd ? rstd]

 56.  If a curve has the property that the position vector rstd is 
always perpendicular to the tangent vector r9std, show that  
the curve lies on a sphere with center the origin.

 57. If ustd − rstd ? fr9std 3 r0stdg, show that

u9std − rstd ? fr9std 3 r-stdg

 58.  Show that the tangent vector to a curve defined by a vector 
function rstd points in the direction of increasing t.  
[Hint: Refer to Figure 1 and consider the cases h . 0 and 
h , 0 separately.]

Length of a Curve
In Section 10.2 we defined the length of a plane curve with parametric equations x − f std, 
y − tstd, a < t < b, as the limit of lengths of inscribed polygons and, for the case where 
f 9 and t9 are continuous, we arrived at the formula

1   L − yb

a
 sf f 9stdg2 1 ft9stdg2  dt − yb

a
 ÎS dx

dt D2

1 S dy
dt D2 

 dt 

The length of a space curve is defined in exactly the same way (see Figure 1). Suppose 
that the curve has the vector equation rstd − k f std, tstd, hstdl, a < t < b, or, equivalently, 
the parametric equations x − f std, y − tstd, z − hstd, where f 9, t9, and h9 are continu-
ous. If the curve is traversed exactly once as t increases from a to b, then it can be shown 

0

z

x
y

FIGURE 1  
The length of a space curve is the limit 
of lengths of inscribed polygons.
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that its length is

2    L − yb

a
 sf f 9stdg2 1 ft9stdg2 1 fh9stdg2  dt  

 − yb

a
 ÎS dx

dt D2

1 S dy
dt D2

1 S dz
dtD2 

 dt

Notice that both of the arc length formulas (1) and (2) can be put into the more com-
pact form

3   L − yb

a
 | r9std | dt 

because, for plane curves rstd − f std i 1 tstd j,

| r9std | − | f 9std i 1 t9std j | − sf f 9stdg2 1 ft9stdg2 

and for space curves rstd − f std i 1 tstd j 1 hstd k,

| r9std | − | f 9std i 1 t9std j 1 h9std k | − sf f 9stdg2 1 ft9stdg2 1 fh9stdg2 

EXAMPLE 1 Find the length of the arc of the circular helix with vector equation 
rstd − cos t i 1 sin t j 1 t k from the point s1, 0, 0d to the point s1, 0, 2!d.

SOLUTION Since r9std − 2sin t i 1 cos t j 1 k, we have

| r9std | − ss2sin td2 1 cos2t 1 1 − s2 

The arc from s1, 0, 0d to s1, 0, 2!d is described by the parameter interval 0 < t < 2! 
and so, from Formula 3, we have

 L − y2!

0
 | r9std | dt − y2!

0
 s2  dt − 2s2 ! Q

A single curve C can be represented by more than one vector function. For instance, 
the twisted cubic

4   r1std − kt, t 2, t 3l     1 < t < 2 

could also be represented by the function

5   r2sud − keu, e 2u, e 3ul    0 < u < ln 2 

where the connection between the parameters t and u is given by t − eu. We say that 
Equations 4 and 5 are parametrizations of the curve C. If we were to use Equation 3 to 
com pute  the length of C using Equations 4 and 5, we would get the same answer. In 
general, it can be shown that when Equation 3 is used to compute arc length, the answer 
is independent of the parametrization that is used.

The Arc Length Function
Now we suppose that C is a curve given by a vector function

rstd − f std i 1 tstd j 1 hstdk    a < t < b

In the next section we will see that if 
rstd is the position vector of a moving 
object at time t, then r9std is the velocity 
vector and | r9std | is the speed. Thus 
Equation 3 says that to compute dis-
tance traveled, we integrate speed.

(1, 0, 2π)

z

x y

(1, 0, 0)

Figure 2 shows the arc of the helix 
whose length is computed in  
Example 1.

FIGURE 2
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where r9 is continuous and C is traversed exactly once as t increases from a to b. We 
define its arc length function s by

6   sstd − y t

a
 |r9sud| du − yt

a
 ÎS dx

duD2

1 S dy
duD2

1 S dz
duD2 

 du 

Thus sstd is the length of the part of C between rsad and rstd. (See Figure 3.) If we dif-
ferentiate both sides of Equation 6 using Part 1 of the Fundamental Theorem of Cal cu lus, 
we obtain

7   
ds
dt

− | r9std | 

It is often useful to parametrize a curve with respect to arc length because arc 
length arises naturally from the shape of the curve and does not depend on a particular 
coordinate system. If a curve rstd is already given in terms of a parameter t and sstd is the 
arc length function given by Equation 6, then we may be able to solve for t as a function 
of s: t − tssd. Then the curve can be reparametrized in terms of s by substituting for t: 
r − rstssdd. Thus, if s − 3 for instance, rsts3dd is the position vector of the point 3 units 
of length along the curve from its starting point.

EXAMPLE 2 Reparametrize the helix rstd − cos t i 1 sin t j 1 t k with respect to arc 
length measured from s1, 0, 0d in the direction of increasing t.

SOLUTION The initial point s1, 0, 0d corresponds to the parameter value t − 0. From  
Example 1 we have

ds
dt

− | r9std | − s2 

and so s − sstd − y t

0
 | r9sud | du − y t

0
 s2  du − s2 t

Therefore t − sys2  and the required reparametrization is obtained by substituting for t:

 rstssdd − cosssys2 d i 1 sinssys2 d j 1 ssys2 d k Q

Curvature
A parametrization rstd is called smooth on an interval I if r9 is continuous and r9std ± 0  
on I. A curve is called smooth if it has a smooth parametrization. A smooth curve has no 
sharp corners or cusps; when the tangent vector turns, it does so continuously.

If C is a smooth curve defined by the vector function r, recall that the unit tangent 
vec tor Tstd is given by

Tstd −
r9std

| r9std |  

and indicates the direction of the curve. From Figure 4 you can see that Tstd changes 
direction very slowly when C is fairly straight, but it changes direction more quickly 
when C bends or twists more sharply.

The curvature of C at a given point is a measure of how quickly the curve changes 
direction at that point. Specifically, we define it to be the magnitude of the rate of change 
of the unit tangent vector with respect to arc length. (We use arc length so that the curva-
ture will be independent of the parametrization.) Because the unit tangent vector has 
constant length, only changes in direction contribute to the rate of change of T.

z

0

x y

C
r(t)

r(a)

s(t)

FIGURE 3

TEC Visual 13.3A shows animated 
unit tangent vectors, like those in 
Figure 4, for a variety of plane curves 
and space curves.

z

0
x yC

FIGURE 4  
Unit tangent vectors at equally spaced 
points on C
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864 CHAPTER 13  Vector Functions

8   Definition The curvature of a curve is

# − Z dT
ds Z

where T is the unit tangent vector.

The curvature is easier to compute if it is expressed in terms of the parameter t instead 
of s, so we use the Chain Rule (Theorem 13.2.3, Formula 6) to write

dT
dt

−
dT
ds

 
ds
dt

    and    # − Z dT
ds Z − Z dTydt

dsydt Z
But dsydt − | r9std | from Equation 7, so

9   #std − | T9std |
| r9std |  

EXAMPLE 3 Show that the curvature of a circle of radius a is 1ya.

SOLUTION We can take the circle to have center the origin, and then a parametrization 
is

rstd − a cos t i 1 a sin t j

Therefore r9std − 2a sin t i 1 a cos t j    and    | r9std | − a

so Tstd −
r9std

| r9std | − 2sin t i 1 cos t j

and T9std − 2cos t i 2 sin t j

This gives | T9std | − 1, so using Formula 9, we have

 #std − | T9std |
| r9std | −

1
a

 Q

The result of Example 3 shows that small circles have large curvature and large circles 
have small curvature, in accordance with our intuition. We can see directly from the defi-
nition of curvature that the curvature of a straight line is always 0 because the tangent 
vec tor is constant.

Although Formula 9 can be used in all cases to compute the curvature, the formula 
given by the following theorem is often more convenient to apply.

10  Theorem The curvature of the curve given by the vector function r is

#std − | r9std 3 r0std |
| r9std |3
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PROOF Since T − r9y| r9| and | r9| − dsydt, we have

r9 − | r9|T −
ds
dt

 T

so the Product Rule (Theorem 13.2.3, Formula 3) gives

r0 −
d 2s
dt 2  T 1

ds
dt

 T9

Using the fact that T 3 T − 0 (see Example 12.4.2), we have

r9 3 r0 − S ds
dtD2

sT 3 T9d

Now | Tstd | − 1 for all t, so T and T9 are orthogonal by Example 13.2.4. Therefore, by 
Theorem 12.4.9,

| r9 3 r0 | − S ds
dtD2

| T 3 T9 | − S ds
dtD2

| T | | T9 | − S ds
dtD2

| T9 |

Thus | T9 | − | r9 3 r0 |
sdsydtd2 − | r9 3 r0 |

| r9 |2

and # − | T9 |
| r9 | − | r9 3 r0 |

| r9 |3  Q

EXAMPLE 4 Find the curvature of the twisted cubic rstd − kt, t 2, t 3l at a general point 
and at s0, 0, 0d.

SOLUTION We first compute the required ingredients:

 r9std − k1, 2t, 3t 2l       r0std − k0, 2, 6tl

 | r9std | − s1 1 4t 2 1 9t 4 

 r9std 3 r0std − Z i
1
0

j
2t
2

k
3t 2

6t
Z − 6t 2 i 2 6t j 1 2 k

 | r9std 3 r0std | − s36t 4 1 36t 2 1 4 − 2s9t 4 1 9t 2 1 1

Theorem 10 then gives

#std − | r9std 3 r0std |
| r9std |3 −

2s1 1 9t 2 1 9t 4 

s1 1 4t 2 1 9t 4 d3y2

At the origin, where t − 0, the curvature is #s0d − 2. Q

For the special case of a plane curve with equation y − f sxd, we choose x as the  
parameter and write rsxd − x i 1 f sxd j. Then r9sxd − i 1 f 9sxd j and r0sxd − f 0sxd j.  
Since i 3 j − k and j 3 j − 0, it follows that r9sxd 3 r0sxd − f 0sxd k. We also have 
| r9sxd | − s1 1 f f 9sxdg2  and so, by Theorem 10,

11   #sxd − | f 0sxd |
f1 1 s f 9sxdd2 g3y2  
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866 CHAPTER 13  Vector Functions

EXAMPLE 5 Find the curvature of the parabola y − x 2 at the points s0, 0d, s1, 1d,  
and s2, 4d.

SOLUTION Since y9 − 2x and y0 − 2, Formula 11 gives

#sxd − | y0 |
f1 1 sy9d2 g3y2 −

2
s1 1 4x 2 d3y2

The curvature at s0, 0d is #s0d − 2. At s1, 1d it is #s1d − 2y53y2 < 0.18. At s2, 4d it is 
#s2d − 2y173y2 < 0.03. Observe from the expression for #sxd or the graph of # in 
Figure 5 that #sxd l 0 as x l 6`. This corresponds to the fact that the parabola 
appears to become flatter as x l 6`. Q

The Normal and Binormal Vectors
At a given point on a smooth space curve rstd, there are many vectors that are orthogonal 
to the unit tangent vector Tstd. We single out one by observing that, because | Tstd | − 1 
for all t, we have Tstd ? T9std − 0 by Example 13.2.4, so T9std is orthogonal to Tstd. Note 
that, typically, T9std is itself not a unit vector. But at any point where # ± 0 we can define 
the principal unit normal vector Nstd (or simply unit normal) as

Nstd −
T9std

| T9std |
We can think of the unit normal vector as indicating the direction in which the curve is 
turning at each point. The vector Bstd − Tstd 3 Nstd is called the binormal vector. It is 
perpendicular to both T and N and is also a unit vector. (See Figure 6.)

EXAMPLE 6 Find the unit normal and binormal vectors for the circular helix

rstd − cos t i 1 sin t j 1 t k

SOLUTION We first compute the ingredients needed for the unit normal vector:

  r9std − 2sin t i 1 cos t j 1 k      | r9std | − s2 

  Tstd −
r9std

| r9std | −
1

s2 
 s2sin t i 1 cos t j 1 kd

  T9std −
1

s2 
 s2cos t i 2 sin t jd      | T9std | −

1

s2 

 Nstd −
T9std

| T9std | − 2cos t i 2 sin t j − k2cos t, 2sin t, 0l

This shows that the normal vector at any point on the helix is horizontal and points 
toward the z-axis. The binormal vector is

Bstd − Tstd 3 Nstd −
1

s2
 F i

2sin t
2cos t

j
cos t

2sin t

k
1
0
G

 −
1

s2  ksin t, 2cos t, 1l Q

2

1 x0

y
y=≈

y=k(x)

FIGURE 5  
The parabola y − x 2 and its curvature 
function

N(t)

T(t)
B(t)

FIGURE 6

Figure 7 illustrates Example 6 by 
showing the vectors T, N, and B at 
two locations on the helix. In general, 
the vectors T, N, and B, start  ing at 
the various points on a curve, form a 
set of orthogonal vectors, called the 
TNB frame, that moves along the 
curve as t varies. This TNB frame 
plays an important role in the branch 
of mathematics known as differential 
geometry and in its applications to the 
motion of spacecraft.

N

N

B

T

TB

x
y

z

FIGURE 7
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The plane determined by the normal and binormal vectors N and B at a point P on a 
curve C is called the normal plane of C at P. It consists of all lines that are orthogonal  
to the tangent vector T. The plane determined by the vectors T and N is called the oscu-
lating plane of C at P. The name comes from the Latin osculum, meaning “kiss.” It is the 
plane that comes closest to containing the part of the curve near P. (For a plane curve, the 
oscu lating plane is simply the plane that contains the curve.)

The circle that lies in the osculating plane of C at P, has the same tangent as C at P, 
lies on the concave side of C (toward which N points), and has radius $ − 1y# (the recip-
rocal of the curvature) is called the osculating circle (or the circle of curvature) of C at 
P. It is the circle that best describes how C behaves near P; it shares the same tangent, 
normal, and curvature at P.

EXAMPLE 7 Find equations of the normal plane and osculating plane of the helix in 
Example 6 at the point Ps0, 1, !y2d.

SOLUTION The point P corresponds to t − !y2 and the normal plane there has normal 
vector r9s!y2d − k21, 0, 1l, so an equa tion is

21sx 2 0d 1 0sy 2 1d 1 1Sz 2
!

2 D − 0    or    z − x 1
!

2

The osculating plane at P contains the vectors T and N, so its normal vector is 
T 3 N − B. From Example 6 we have

Bstd −
1

s2  ksin t,  2cos t, 1 l      BS!

2 D − K 1

s2 , 0, 
1

s2 L
A simpler normal vector is k1, 0, 1 l, so an equation of the osculating plane is

 1sx 2 0d 1 0sy 2 1d 1 1Sz 2
!

2 D − 0    or    z − 2x 1
!

2
 Q

EXAMPLE 8 Find and graph the osculating circle of the parabola y − x 2 at the origin.

SOLUTION From Example 5, the curvature of the parabola at the origin is #s0d − 2. 
 So the radius of the osculating circle at the origin is 1y# − 1

2 and its center is s0, 12 d. Its 
equation is therefore

x 2 1 sy 2 1
2 d2 − 1

4

For the graph in Figure 9 we use parametric equations of this circle:

 x − 1
2 cos t    y − 1

2 1 1
2 sin t Q

We summarize here the formulas for unit tangent, unit normal and binormal vectors, 
and curvature.

Tstd −
r9std

| r9std |       Nstd −
T9std

| T9std |       Bstd − Tstd 3 Nstd

# − Z dT
ds Z − | T9std |

| r9std | − | r9std 3 r0std |
| r9std |3

TEC Visual 13.3C shows how the 
osculating circle changes as a point 
moves along a curve.

TEC Visual 13.3B shows how the 
TNB frame moves along several 
curves.

Figure 8 shows the helix and the 
osculating plane in Example 7.

y

P

x

z=_x+π
2

z

FIGURE 8

y

x0

1
2

1

y=≈osculating
circle

FIGURE 9  
Notice that the circle and the parabola 
appear to bend similarly at the origin.
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1–6 Find the length of the curve.

 1. rstd − k t, 3 cos t, 3 sin t l,  25 < t < 5

 2. rstd − k2t, t 2, 13 t 3l ,  0 < t < 1

 3. rstd − s2 t i 1 e t j 1 e2t k,  0 < t < 1

 4. rstd − cos t i 1 sin t j 1 ln cos t k,  0 < t < !y4

 5. rstd −  i 1 t 2 j 1 t 3 k,  0 < t < 1

 6. rstd − t 2 i 1 9t j 1 4t 3y2 k, 1 < t < 4

7–9 Find the length of the curve correct to four decimal places. 
(Use a calculator to approximate the integral.)

 7. rstd − k t 2, t 3, t 4 l,  0 < t < 2

 8. rstd − k t, e2t, te2t l,  1 < t < 3

 9. rstd − kcos ! t, 2t, sin 2!tl, from s1, 0, 0d to s1, 4, 0d

 10.  Graph the curve with parametric equations x − sin t, 
y − sin 2t, z − sin 3t. Find the total length of this curve  
correct to four decimal places.

 11.  Let C be the curve of intersection of the parabolic cylinder 
x 2 − 2y and the surface 3z − xy. Find the exact length of C 
from the origin to the point s6, 18, 36d.

 12.  Find, correct to four decimal places, the length of the curve  
of intersection of the cylinder 4x 2 1 y 2 − 4 and the plane 
x 1 y 1 z − 2.

13–14 (a) Find the arc length function for the curve measured 
from the point P in the direction of increasing t and then 
reparametrize the curve with respect to arc length starting from 
P, and (b) find the point 4 units along the curve (in the direction 
of increasing t) from P.

 13. rstd − s5 2 td i 1 s4t 2 3d j 1 3t k, Ps4, 1, 3d

 14. rstd − e t sin t i 1 e t cos t j 1 s2 e t k, P(0, 1, s2 )

 15.  Suppose you start at the point s0, 0, 3d and move 5 units 
along the curve x − 3 sin t, y − 4t, z − 3 cos t in the posi-
tive direction. Where are you now?

 16. Reparametrize the curve

rstd − S 2
t 2 1 1

2 1D i 1
2t

t 2 1 1
 j

   with respect to arc length measured from the point (1, 0) 
in the direction of increasing t. Express the reparametriza-
tion in its simplest form. What can you conclude about the 
curve?

;

17–20 
(a) Find the unit tangent and unit normal vectors Tstd and Nstd.
(b) Use Formula 9 to find the curvature.

 17. rstd − k t, 3 cos t, 3 sin t l

 18. rstd − kt 2, sin t 2 t cos t, cos t 1 t sin t l,  t . 0

 19. rstd − k s2 t, e t, e2t l
 20. rstd − k t, 12 t 2, t 2l

21–23 Use Theorem 10 to find the curvature.

 21. rstd − t 3 j 1 t 2 k

 22. rstd − t i 1 t 2 j 1 e t k

 23. rstd − s6 t 2 i 1 2t j 1 2t 3 k

 24.  Find the curvature of rstd − k t 2, ln t, t ln t l at the  
point s1, 0, 0d.

 25.  Find the curvature of rstd − k t, t 2, t 3 l at the point (1, 1, 1).

 26.  Graph the curve with parametric equations x − cos t, 
y − sin t, z − sin 5t and find the curvature at the  
point s1, 0, 0d.

27–29 Use Formula 11 to find the curvature.

 27. y − x 4 28. y − tan x 29. y − xe x

30–31 At what point does the curve have maximum curvature? 
What happens to the curvature as x l `?

 30. y − ln x 31. y − e x

 32.  Find an equation of a parabola that has curvature 4 at the  
origin.

 33. (a)  Is the curvature of the curve C shown in the figure 
greater at P or at Q? Explain.

 (b)  Estimate the curvature at P and at Q by sketching the  
osculating circles at those points.

1

1 x0

y P

Q

C

;
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34–35 Use a graphing calculator or computer to graph both the 
curve and its curvature function "sxd on the same screen. Is the 
graph of " what you would expect?

 34. y − x 4 2 2x 2 35. y − x22

36–37 Plot the space curve and its curvature function "std.  
Comment on how the curvature reflects the shape of the curve.

 36. rstd − k t 2 sin t, 1 2 cos t, 4 cossty2d l,  0 < t < 8!

 37. rstd − k tet, e2t, s2 tl ,  25 < t < 5

38–39 Two graphs, a and b, are shown. One is a curve y − f sxd 
and the other is the graph of its curvature function y − "sxd. 
Identify each curve and explain your choices.

 38.   39. 
y

x

a
b

 

y

x

a
b

 40. (a)  Graph the curve rstd − ksin 3t, sin 2t, sin 3t l. At how 
many points on the curve does it appear that the curva-
ture has a local or absolute maximum?

 (b)  Use a CAS to find and graph the curvature function. 
Does this graph confirm your conclusion from part (a)?

 41.  The graph of rstd − k t 2 3
2 sin t, 1 2 3

2 cos t, tl  is shown 
in Figure 13.1.12(b). Where do you think the curvature is 
largest? Use a CAS to find and graph the curvature function. 
For which values of t is the curvature largest?

 42.  Use Theorem 10 to show that the curvature of a plane para-
metric curve x − f std, y − tstd is

" − | x? y?? 2 y? x?? |
fx? 2 1 y? 2 g3y2

  where the dots indicate derivatives with respect to t.

43–45 Use the formula in Exercise 42 to find the curvature.

 43. x − t 2,  y − t 3

 44. x − a cos #t,  y − b sin #t

 45. x − e t cos t,  y − e t sin t

 46.  Consider the curvature at x − 0 for each member of the 
family of functions f sxd − e cx. For which members is "s0d 
largest?

;

CAS

CAS

CAS

47–48 Find the vectors T, N, and B at the given point.

 47. rstd − k t 2, 23 t 3, tl , s1, 23, 1d
 48. rstd − kcos t, sin t, ln cos t l,   s1, 0, 0d

49–50 Find equations of the normal plane and osculating plane 
of the curve at the given point.

 49. x − sin 2t, y − 2cos 2t, z − 4t; s0, 1, 2!d

 50. x − ln t, y − 2t, z − t 2; s0, 2, 1d

 51.  Find equations of the osculating circles of the ellipse 
9x 2 1 4y 2 − 36 at the points s2, 0d and s0, 3d. Use a graph-
ing calculator or computer to graph the ellipse and both 
osculating circles on the same screen.

 52.  Find equations of the osculating circles of the parabola 
y − 1

2 x 2 at the points s0, 0d and s1, 12 d. Graph both oscu-
lating circles and the parabola on the same screen.

 53.  At what point on the curve x − t 3, y − 3t, z − t 4 is the  
normal plane parallel to the plane 6x 1 6y 2 8z − 1?

 54.  Is there a point on the curve in Exercise 53 where the  
oscu lating plane is parallel to the plane x 1 y 1 z − 1?  
[Note: You will need a CAS for differentiating, for simplify-
ing, and for computing a cross product.]

 55.  Find equations of the normal and osculating planes of the 
curve of intersection of the parabolic cylinders x − y 2 and 
z − x 2 at the point s1, 1, 1d.

 56.  Show that the osculating plane at every point on the curve
   rstd − k t 1 2, 1 2 t, 12t 2l  is the same plane. What can you 

conclude about the curve?

 57.  Show that at every point on the curve

rstd − ke t cos t, e t sin t, e t l

   the angle between the unit tangent vector and the z-axis is 
the same. Then show that the same result holds true for the 
unit normal and binormal vectors.

 58.  The rectifying plane of a curve at a point is the plane that 
contains the vectors T and B at that point. Find the recti- 
fying plane of the curve rstd − sin t i 1 cos t j 1 tan t k at 
the point (s2 y2, s2 y2, 1).

 59.  Show that the curvature " is related to the tangent and  
normal vectors by the equation

dT
ds

− "N

 60.  Show that the curvature of a plane curve is " − | d$yds |, 
where $ is the angle between T and i; that is, $ is the angle 
of inclination of the tangent line. (This shows that the  
definition of curvature is consistent with the definition for 
plane curves given in Exercise 10.2.69.)

;

;

CAS
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870 CHAPTER 13  Vector Functions

 64.  Show that the circular helix rstd − ka cos t, a sin t, bt l,  
where a and b are positive constants, has constant curvature 
and constant torsion. [Use the result of Exercise 63(d).]

 65.  Use the formula in Exercise 63(d) to find the torsion of the 
curve rstd − k t, 12t 2, 13t 3l .

 66.  Find the curvature and torsion of the curve x − sinh t, 
y − cosh t, z − t at the point s0, 1, 0d.

 67.  The DNA molecule has the shape of a double helix (see  
Figure 3 on page 850). The radius of each helix is about 
10 angstroms (1 Å − 1028 cm). Each helix rises about 34 Å 

  during each complete turn, and there are about 2.9 3 108  
complete turns. Estimate the length of each helix.

 68.  Let’s consider the problem of designing a railroad track to 
make a smooth transition between sections of straight track. 
Existing track along the negative x-axis is to be joined 
smoothly to a track along the line y − 1 for x > 1.

 (a)  Find a polynomial P − Psxd of degree 5 such that the 
function F defined by

Fsxd − H0
Psxd
1

if x < 0
if 0 , x , 1
if x > 1

   is continuous and has continuous slope and continuous  
curvature.

 (b)  Graph F.;

 61. (a)  Show that dByds is perpendicular to B.
 (b) Show that dByds is perpendicular to T.
 (c)  Deduce from parts (a) and (b) that dByds − 2%ssdN  

for some number %ssd called the torsion of the curve.  
(The torsion measures the degree of twisting of a curve.)

 (d) Show that for a plane curve the torsion is % ssd − 0.

 62.  The following formulas, called the Frenet-Serret formulas,  
are of fundamental importance in differential geometry:

   1. dTyds − "N

   2. dNyds − 2"T 1 %B

   3. dByds − 2%N

  (Formula 1 comes from Exercise 59 and Formula 3 comes 
from Exercise 61.) Use the fact that N − B 3 T to  
deduce For mula 2 from Formulas 1 and 3.

 63.  Use the Frenet-Serret formulas to prove each of the follow- 
ing. (Primes denote derivatives with respect to t. Start as in  
the proof of Theorem 10.)

 (a) r0 − s0T 1 "ss9d2 N

 (b) r9 3 r0 − "ss9d3 B

 (c) r- − f s- 2 "2ss9d3 g T 1 f 3"s9s0 1 "9ss9d2  g N 1 "%ss9d3 B

 (d) % −
s r9 3 r0 d ? r-

| r9 3 r0 |2

In this section we show how the ideas of tangent and normal vectors and curvature can 
be used in physics to study the motion of an object, including its velocity and accelera-
tion, along a space curve. In particular, we follow in the footsteps of Newton by using 
these methods to derive Kepler’s First Law of planetary motion.

Suppose a particle moves through space so that its position vector at time t is rstd. 
Notice from Figure 1 that, for small values of h, the vector

1   
rst 1 hd 2 rstd

h
 

approximates the direction of the particle moving along the curve rstd. Its magnitude mea- 
sures the size of the displacement vector per unit time. The vector (1) gives the average 
velocity over a time interval of length h and its limit is the velocity vector vstd at time t:

2   vstd − lim 
h l 0

 
rst 1 hd 2 rstd

h
− r9std 

Thus the velocity vector is also the tangent vector and points in the direction of the tan-
gent line.

The speed of the particle at time t is the magnitude of the velocity vector, that is, 
| vstd |. This is appropriate because, from (2) and from Equation 13.3.7, we have

| vstd | − | r9std | −
ds
dt

− rate of change of distance with respect to time

r(t+h)-r(t)
h

O
C

P
Qrª(t)

r(t+h)
r(t)

x

z

y

FIGURE 1
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 SECTION 13.4  Motion in Space: Velocity and Acceleration  871

As in the case of one-dimensional motion, the acceleration of the particle is defined as 
the derivative of the velocity:

astd − v9std − r0std

EXAMPLE 1 The position vector of an object moving in a plane is given by 
rstd − t 3 i 1 t 2 j. Find its velocity, speed, and acceleration when t − 1 and illustrate  
geometrically.

SOLUTION The velocity and acceleration at time t are

 vstd − r9std − 3t 2 i 1 2t j

 astd − r0std − 6t i 1 2 j

and the speed is

| vstd | − ss3t 2 d2 1 s2td2 − s9t 4 1 4t 2 

When t − 1, we have

vs1d − 3 i 1 2 j      as1d − 6 i 1 2 j      | vs1d | − s13 

These velocity and acceleration vectors are shown in Figure 2. Q

EXAMPLE 2 Find the velocity, acceleration, and speed of a particle with position  
vector rstd − k t 2, e t, te t  l.

SOLUTION

 vstd − r9std − k2t, e t, s1 1 tde t l

 astd − v9std − k2, e t, s2 1 tde t l

  | vstd | − s4t 2 1 e 2 t 1 s1 1 td2e 2 t  Q

The vector integrals that were introduced in Section 13.2 can be used to find position 
vectors when velocity or acceleration vectors are known, as in the next example.

EXAMPLE 3 A moving particle starts at an initial position rs0d − k1, 0, 0 l with initial 
velocity vs0d − i 2 j 1 k. Its acceleration is astd − 4t i 1 6t j 1 k. Find its velocity 
and position at time t.

SOLUTION Since astd − v9std, we have

 vstd − y astd dt − y s4t i 1 6t j 1 kd dt

 − 2t 2 i 1 3t 2 j 1 t k 1 C

To determine the value of the constant vector C, we use the fact that vs0d − i 2 j 1 k. 
The preceding equation gives vs0d − C, so C − i 2 j 1 k and

 vstd − 2t 2 i 1 3t 2 j 1 t k 1 i 2 j 1 k

 − s2t 2 1 1d i 1 s3t 2 2 1d j 1 st 1 1d k

0

y

x
(1, 1)

a(1)

v(1)

FIGURE 2

TEC Visual 13.4 shows animated 
velocity and acceleration vectors for 
objects moving along various curves.

z

y
x

1

a(1)

v(1)

FIGURE 3

Figure 3 shows the path of the par ticle 
in Example 2 with the velocity and 
acceleration vectors when t − 1.
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872 CHAPTER 13  Vector Functions

Since vstd − r9std, we have

 rstd − y vstd dt

 − y fs2t 2 1 1d i 1 s3t 2 2 1d j 1 st 1 1d kg dt

 − (2
3 t 3 1 t) i 1 st 3 2 td j 1 (1

2 t 2 1 t) k 1 D

Putting t − 0, we find that D − rs0d − i, so the position at time t is given by

 rstd − (2
3 t 3 1 t 1 1) i 1 st 3 2 td j 1 (1

2 t 2 1 t) k Q

In general, vector integrals allow us to recover velocity when acceleration is known 
and position when velocity is known:

vstd − vst0d 1 y t

t0

 asud du      rstd − rst0d 1 y t

t0

 vsud du

If the force that acts on a particle is known, then the acceleration can be found from 
Newton’s Second Law of Motion. The vector version of this law states that if, at any 
time t, a force Fstd acts on an object of mass m producing an acceleration astd, then

Fstd − mastd

EXAMPLE 4 An object with mass m that moves in a circular path with constant angular 
speed # has position vector rstd − a cos #t i 1 a sin #t j. Find the force acting on the 
object and show that it is directed toward the origin.

SOLUTION To find the force, we first need to know the acceleration:

 vstd − r9std − 2a# sin #t i 1 a# cos #t j

 astd − v9std − 2a#2 cos #t i 2 a#2 sin #t j

Therefore Newton’s Second Law gives the force as

Fstd − mastd − 2m#2sa cos #t i 1 a sin #t jd

Notice that Fstd − 2m#2 rstd. This shows that the force acts in the direction opposite  
to the radius vector rstd and therefore points toward the origin (see Figure 5). Such a 
force is called a centripetal (center-seeking) force. Q

Projectile Motion

EXAMPLE 5 A projectile is fired with angle of elevation & and initial velocity v0. (See 
Figure 6.) Assuming that air resistance is negligible and the only external force is due to 
gravity, find the position function rstd of the projectile. What value of & maximizes the 
range (the horizontal distance traveled)?

SOLUTION We set up the axes so that the projectile starts at the origin. Since the force 
due to gravity acts downward, we have

F − ma − 2mt j

The expression for rstd that we obtained 
in Example 3 was used to plot the path 
of the particle in Figure 4 for 0 < t < 3.

(1, 0, 0) 0

20 x0 20y
0

4z

6

2

5 10 15

FIGURE 4

0

y

x
a

d

v¸

FIGURE 6

The object moving with position P has 
angular speed # − d'ydt, where ' is 
the angle shown in Figure 5.

P

¨
0

y

x

 FIGURE 5
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 SECTION 13.4  Motion in Space: Velocity and Acceleration  873

where t − | a | < 9.8 mys 2. Thus

a − 2t j
Since v9std − a, we have

vstd − 2tt j 1 C

where C − vs0d − v0. Therefore

r9std − vstd − 2tt j 1 v0

Integrating again, we obtain

rstd − 21
2 tt 2 j 1 t v0 1 D

But D − rs0d − 0, so the position vector of the projectile is given by

3  rstd − 21
2 tt 2 j 1 t v0 

If we write | v0 | − v0 (the initial speed of the projectile), then

v0 − v0 cos & i 1 v0 sin & j
and Equation 3 becomes

rstd − sv0 cos &dt i 1 fsv0 sin &dt 2 1
2 tt 2 g j

The parametric equations of the trajectory are therefore 

4  x − sv0 cos &dt    y − sv0  sin &dt 2 1
2 tt 2 

The horizontal distance d is the value of x when y − 0. Setting y − 0, we obtain t − 0 
or t − s2v0 sin &dyt. This second value of t then gives

d − x − sv0 cos &d 
2v0 sin &

t −
v 2

0 s2 sin & cos &d
t −

v 2
0  sin 2&

t

Clearly, d has its maximum value when sin 2& − 1, that is, & − 45°. Q

EXAMPLE 6 A projectile is fired with muzzle speed 150 mys and angle of elevation 45° 
from a position 10 m above ground level. Where does the projectile hit the ground, and 
with what speed?

SOLUTION If we place the origin at ground level, then the initial position of the projec-
tile is (0, 10) and so we need to adjust Equations 4 by adding 10 to the expression for y. 
With v0 − 150 mys, & − 45°, and t − 9.8 mys2, we have

 x − 150 coss45°dt − 75s2
 

t

 y − 10 1 150 sins45°d t 2 1
2 s9.8dt 2 − 10 1 75s2

 

t 2 4.9t 2

Impact occurs when y − 0, that is, 4.9t 2 2 75s2 t 2 10 − 0. Using the quadratic 
formula to solve this equation (and taking only the positive value of t), we get

t −
75s2 1 s11,250 1 196  

9.8
< 21.74

Then x < 75s2 s21.74d < 2306, so the projectile hits the ground about 2306 m away.

If you eliminate t from Equations 4, you 
will see that y is a quadratic function  
of x. So the path of the projectile is part 
of a parabola.
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874 CHAPTER 13  Vector Functions

The velocity of the projectile is

vstd − r9std − 75s2  i 1 s75s2 2 9.8td j
So its speed at impact is

 |vs21.74d| − s(75s2 )2 1 (75s2 2 9.8 ? 21.74)2 < 151 mys Q

Tangential and Normal Components of Acceleration
When we study the motion of a particle, it is often useful to resolve the acceleration into 
two components, one in the direction of the tangent and the other in the direction of the 
normal. If we write v − | v | for the speed of the particle, then

Tstd −
r9std

| r9std | −
vstd

| vstd | −
v
v

and so v − vT

If we differentiate both sides of this equation with respect to t, we get

5  a − v9 − v9T 1 vT9 

If we use the expression for the curvature given by Equation 13.3.9, then we have

6  " − | T9|
| r9| − | T9|

v
    so    | T9| − "v 

The unit normal vector was defined in the preceding section as N − T9y| T9|, so (6) gives

T9 − | T9|N − "vN

and Equation 5 becomes

7  a − v9T 1 "v2 N 

Writing aT and aN for the tangential and normal components of acceleration, we have

a − aT T 1 aN N
where

8  aT − v9    and    aN − "v2 

This resolution is illustrated in Figure 7.
Let’s look at what Formula 7 says. The first thing to notice is that the binormal vector 

B is absent. No matter how an object moves through space, its acceleration always lies in 
the plane of T and N (the osculating plane). (Recall that T gives the direction of motion 
and N points in the direction the curve is turning.) Next we notice that the tangential 
component of acceleration is v9, the rate of change of speed, and the normal component 
of acceleration is "v2, the curvature times the square of the speed. This makes sense if we 
think of a passenger in a car—a sharp turn in a road means a large value of the curvature 
", so the component of the acceleration perpendicular to the motion is large and the pas-
senger is thrown against a car door. High speed around the turn has the same effect; in 
fact, if you double your speed, aN is increased by a factor of 4.

aT

aN

N
a

T

FIGURE 7
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Although we have expressions for the tangential and normal components of accelera-
tion in Equations 8, it’s desirable to have expressions that depend only on r, r9, and r0. 
To this end we take the dot product of v − vT with a as given by Equation 7:

  v ? a − vT ? sv9T 1 "v2 Nd

  − vv9T ? T 1 "v3 T ? N

 − vv9     (since T ? T − 1 and T ? N − 0)

Therefore

9  aT − v9 −
v ? a

v
−

r9std ? r0std
| r9std |   

Using the formula for curvature given by Theorem 13.3.10, we have

10   aN − "v2 − | r9std 3 r99std |
| r9std | 3 | r9std | 2 − | r9std 3 r99std |

| r9std |  

EXAMPLE 7 A particle moves with position function rstd − kt 2, t 2, t 3 l . Find the 
tangential and normal components of acceleration.

SOLUTION  rstd − t 2 i 1 t 2 j 1 t 3 k

 r9std − 2t i 1 2t j 1 3t 2 k

 r0std − 2 i 1 2 j 1 6t k

 | r9std | − s8t 2 1 9t 4 

Therefore Equation 9 gives the tangential component as

aT −
r9std ? r0std

| r9std | −
8t 1 18t 3

s8t 2 1 9t 4 

Since r9std 3 r0std − Z i
2t
2

j
2t
2

k
3t 2

6t
Z − 6t 2 i 2 6t 2 j

Equation 10 gives the normal component as

 aN − | r9std 3 r0std |
| r9std | −

6s2 t 2

s8t 2 1 9t 4 
 Q

Kepler’s Laws of Planetary Motion
We now describe one of the great accomplishments of calculus by showing how the 
material of this chapter can be used to prove Kepler’s laws of planetary motion. After 20 
years of studying the astronomical observations of the Danish astronomer Tycho Brahe, 
the German mathematician and astronomer Johannes Kepler (1571–1630) formulated 
the following three laws.
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Kepler’s Laws
1. A planet revolves around the sun in an elliptical orbit with the sun at one focus.

2. The line joining the sun to a planet sweeps out equal areas in equal times.

3.  The square of the period of revolution of a planet is proportional to the cube of 
the length of the major axis of its orbit.

In his book Principia Mathematica of 1687, Sir Isaac Newton was able to show that 
these three laws are consequences of two of his own laws, the Second Law of Motion and 
the Law of Universal Gravitation. In what follows we prove Kepler’s First Law. The 
remaining laws are left as exercises (with hints).

Since the gravitational force of the sun on a planet is so much larger than the forces 
exerted by other celestial bodies, we can safely ignore all bodies in the universe except the 
sun and one planet revolving about it. We use a coordinate system with the sun at the 
ori gin and we let r − rstd be the position vector of the planet. (Equally well, r could be 
the position vector of the moon or a satellite moving around the earth or a comet moving 
around a star.) The velocity vector is v − r9 and the acceleration vector is a − r0. We use 
the following laws of Newton:

 Second Law of Motion: F − ma

 Law of Gravitation:  F − 2
GMm

r 3  r − 2
GMm

r 2  u

where F is the gravitational force on the planet, m and M are the masses of the planet and 
the sun, G is the gravitational constant, r − | r |, and u − s1yrdr is the unit vector in the 
direction of r.

We first show that the planet moves in one plane. By equating the expressions for F in 
Newton’s two laws, we find that

a − 2
GM
r 3  r

and so a is parallel to r. It follows that r 3 a − 0. We use Formula 5 in Theorem 13.2.3 to 
write

 
d
dt

 sr 3 vd − r9 3 v 1 r 3 v9

 − v 3 v 1 r 3 a − 0 1 0 − 0

Therefore r 3 v − h

where h is a constant vector. (We may assume that h ± 0; that is, r and v are not paral-
lel.) This means that the vector r − rstd is perpendicular to h for all values of t, so the 
planet always lies in the plane through the origin perpendicular to h. Thus the orbit of the 
planet is a plane curve.

To prove Kepler’s First Law we rewrite the vector h as follows:

 h − r 3 v − r 3 r9 − r u 3 sr ud9

 − r u 3 sr u9 1 r9ud − r 2su 3 u9d 1 rr9su 3 ud

 − r 2su 3 u9d
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Then

  a 3 h −
2GM

r 2  u 3 sr 2 u 3 u9d − 2GM u 3 su 3 u9d

 − 2GM fsu ? u9du 2 su ? udu9g    (by Theorem 12.4.11, Property 6)

But u ? u − | u |2 − 1 and, since | ustd | − 1, it follows from Example 13.2.4 that 

u ? u9 − 0

Therefore  a 3 h − GM u9 

and so  sv 3 hd9 − v9 3 h − a 3 h − GM u9

Integrating both sides of this equation, we get

11  v 3 h − GM u 1 c 

where c is a constant vector.
At this point it is convenient to choose the coordinate axes so that the standard 

basis  vector k points in the direction of the vector h. Then the planet moves in the  
xy-plane. Since both v 3 h and u are perpendicular to h, Equation 11 shows that c lies 
in the xy-plane. This means that we can choose the x- and y-axes so that the vector i lies 
in the direction of c, as shown in Figure 8.

If ' is the angle between c and r, then sr, 'd are polar coordinates of the planet. From 
Equation 11 we have

 r ? sv 3 hd − r ? sGM u 1 cd − GM r ? u 1 r ? c

 − GMr u ? u 1 | r | | c | cos ' − GMr 1 rc cos '

where c − | c |. Then

r −
r ? sv 3 hd

GM 1 c cos '
−

1
GM

 
r ? sv 3 hd
1 1 e cos '

where e − cysGMd. But

r ? sv 3 hd − sr 3 vd ? h − h ? h − | h | 2 − h 2

where h − | h |. So

r −
h 2ysGMd

1 1 e cos '
−

eh 2yc
1 1 e cos '

Writing d − h 2yc, we obtain the equation

12  r −
ed

1 1 e cos '
 

Comparing with Theorem 10.6.6, we see that Equation 12 is the polar equation of a conic 
section with focus at the origin and eccentricity e. We know that the orbit of a planet is a 
closed curve and so the conic must be an ellipse.

This completes the derivation of Kepler’s First Law. We will guide you through 
the der ivation of the Second and Third Laws in the Applied Project on page 880. The 
proofs of these three laws show that the methods of this chapter provide a powerful tool 
for describing some of the laws of nature.

y

z

x u

v
r

c

h

¨

FIGURE 8
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 1.  The table gives coordinates of a particle moving through  
space along a smooth curve.

 (a)  Find the average velocities over the time intervals  
[0, 1], [0.5, 1], [1, 2], and [1, 1.5].

 (b) Estimate the velocity and speed of the particle at t − 1.

t x y z

0 2.7 9.8 3.7
0.5 3.5 7.2 3.3
1.0 4.5 6.0 3.0
1.5 5.9 6.4 2.8
2.0 7.3 7.8 2.7

 2.  The figure shows the path of a particle that moves with  
position vector rstd at time t.

 (a)  Draw a vector that represents the average velocity of  
the particle over the time interval 2 < t < 2.4.

 (b)  Draw a vector that represents the average velocity over  
the time interval 1.5 < t < 2.

 (c) Write an expression for the velocity vector vs2d.
 (d)  Draw an approximation to the vector vs2d and estimate  

the speed of the particle at t − 2.

y

x0 21

2

1

r(2.4)
r(2)

r(1.5)

3–8 Find the velocity, acceleration, and speed of a particle with  
the given position function. Sketch the path of the particle and  
draw the velocity and acceleration vectors for the specified value  
of t.

 3. rstd − k21
2 t 2, tl ,  t − 2

 4. rstd − kt 2, 1yt 2l,  t − 1

 5. rstd − 3 cos t i 1 2 sin t j,  t − !y3

 6. rstd − e t i 1 e 2 t j,  t − 0

 7. rstd − t i 1 t 2 j 1 2 k,  t − 1

 8. rstd − t i 1 2 cos t j 1 sin t k,  t − 0

 9–14 Find the velocity, acceleration, and speed of a particle with 
the given position function.

 9. rstd − k t 2 1 t, t 2 2 t, t 3l

 10. rstd − k2 cos t, 3t, 2 sin t l

 11. rstd − s2
  t i 1 e t j 1 e2t k

 12. rstd − t 2 i 1 2t j 1 ln t k

 13. rstd − e tscos t i 1 sin t j 1 t kd

 14. rstd − k t 2, sin t 2 t cos t, cos t 1 t sin t l ,  t > 0

15–16 Find the velocity and position vectors of a particle that has  
the given acceleration and the given initial velocity and position.

 15. astd − 2 i 1 2t k,  vs0d − 3 i 2 j,  rs0d − j 1 k

 16. astd − sin t i 1 2 cos t j 1 6t k,  
  vs0d − 2k,  rs0d − j 2 4 k

17–18
 (a)  Find the position vector of a particle that has the given 

acceler ation and the specified initial velocity and position.
 (b) Use a computer to graph the path of the particle.

 17. astd − 2t i 1 sin t j 1 cos 2t k,  vs0d − i,  rs0d − j

 18. astd − t i 1 e t j 1 e2t k,  vs0d − k,  rs0d − j 1 k

 19.  The position function of a particle is given by 
rstd − k t 2, 5t, t 2 2 16t l . When is the speed a minimum?

 20.  What force is required so that a particle of mass m has the 
position function rstd − t 3 i 1 t 2 j 1 t 3 k?

 21.  A force with magnitude 20 N acts directly upward from the  
xy-plane on an object with mass 4 kg. The object starts at the 
origin with initial velocity vs0d − i 2 j. Find its position  
function and its speed at time t.

 22.  Show that if a particle moves with constant speed, then the 
velocity and acceleration vectors are orthogonal.

 23.  A projectile is fired with an initial speed of 200 mys and  
angle of elevation 60°. Find (a) the range of the projectile,  
(b) the maximum height reached, and (c) the speed at impact.

 24.  Rework Exercise 23 if the projectile is fired from a position 
100 m above the ground.

 25.  A ball is thrown at an angle of 45° to the ground. If the ball 
lands 90 m away, what was the initial speed of the ball?

 26.  A projectile is fired from a tank with initial speed 400 mys.  
Find two angles of elevation that can be used to hit a target 
3000 m away.

 27.  A rifle is fired with angle of elevation 36°. What is the muzzle 
speed if the maximum height of the bullet is 1600 ft?

 28.  A batter hits a baseball 3 ft above the ground toward the  
center field fence, which is 10 ft high and 400 ft from home 
plate. The ball leaves the bat with speed 115 ftys at an  
angle 508 above the horizontal. Is it a home run? (In other 
words, does the ball clear the fence?)

;
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 29.  A medieval city has the shape of a square and is protected  
by walls with length 500 m and height 15 m. You are the 
commander of an attacking army and the closest you can 
get to the wall is 100 m. Your plan is to set fire to the city by 
cat apulting heated rocks over the wall (with an initial speed 
of 80 mys). At what range of angles should you tell your 
men to set the catapult? (Assume the path of the rocks is 
perpendicular to the wall.)

 30.  Show that a projectile reaches three-quarters of its maxi-
mum height in half the time needed to reach its maximum 
height.

 31.  A ball is thrown eastward into the air from the origin (in  
the direction of the positive x-axis). The initial velocity is 
50 i 1 80 k, with speed measured in feet per second. The 
spin of the ball results in a southward acceleration of  
4 ftys2, so the acceleration vector is a − 24 j 2 32 k. 
Where does the ball land and with what speed?

 32.  A ball with mass 0.8 kg is thrown southward into the air 
with a speed of 30 mys at an angle of 30° to the ground. 
A west wind applies a steady force of 4 N to the ball in an 
easterly direction. Where does the ball land and with what 
speed?

 33.  Water traveling along a straight portion of a river normally 
flows fastest in the middle, and the speed slows to almost 
zero at the banks. Consider a long straight stretch of river 
flowing north, with parallel banks 40 m apart. If the maxi-
mum water speed is 3 mys, we can use a quadratic function 
as a basic model for the rate of water flow x units from the 
west bank: f sxd − 3

400 xs40 2 xd.
 (a)  A boat proceeds at a constant speed of 5 mys from a 

point A on the west bank while maintaining a heading 
perpendicular to the bank. How far down the river on 
the opposite bank will the boat touch shore? Graph the 
path of the boat.

 (b)  Suppose we would like to pilot the boat to land at the 
point B on the east bank directly opposite A. If we 
maintain a constant speed of 5 mys and a constant head-
ing, find the angle at which the boat should head. Then 
graph the actual path the boat follows. Does the path 
seem realistic?

 34.  Another reasonable model for the water speed of the river 
in Exercise 33 is a sine function: f sxd − 3 sins!xy40d. If 
a boater would like to cross the river from A to B with con-
stant heading and a constant speed of 5 mys, determine the 
angle at which the boat should head.

 35.  A particle has position function rstd. If r9std − c 3 rstd,  
where c is a constant vector, describe the path of the  
particle.

 36. (a)  If a particle moves along a straight line, what can you 
say about its acceleration vector?

 (b)  If a particle moves with constant speed along a curve, 
what can you say about its acceleration vector?

;

 37–40 Find the tangential and normal components of the 
acceler ation vector.

 37. rstd − st 2 1 1d i 1 t 3 j,  t > 0

 38. rstd − 2t 2 i 1 (2
3t 3 2 2t) j

 39. rstd − cos t i 1 sin t j 1 t k

 40. rstd − t i 1 2e t j 1 e 2 t k

 41–42 Find the tangential and normal components of the 
acceleration vector at the given point.

 41. rstd − ln t i 1 st 2 1 3td j 1 4st
  

 k,  s0, 4, 4d

 42. rstd −
1
t

 i 1
1
t 2  j 1

1
t 3  k,  s1, 1, 1d

 43.  The magnitude of the acceleration vector a is 10 cmys2. Use 
the figure to estimate the tangential and normal components 
of a.

y

x0

a

 44.  If a particle with mass m moves with position vector  
rstd, then its angular momentum is defined as 
Lstd − mrstd 3 vstd and its torque as t std − mrstd 3 astd.  
Show that L9std − tstd. Deduce that if t std − 0 for all t,  
then Lstd is constant. (This is the law of conservation of 
angular momentum.)

 45. The position function of a spaceship is

rstd − s3 1 td i 1 s2 1 ln td j 1 S7 2
4

t 2 1 1D k

   and the coordinates of a space station are s6, 4, 9d. The 
captain wants the spaceship to coast into the space station. 
When should the engines be turned off?

 46.  A rocket burning its onboard fuel while moving through 
space has velocity vstd and mass mstd at time t. If the 
exhaust gases escape with velocity ve relative to the rocket, 
it can be deduced from Newton’s Second Law of Motion 
that

m 
dv
dt

−
dm
dt

 ve 

 (a) Show that vstd − vs0d 2 ln 
ms0d
mstd

 ve.

 (b)  For the rocket to accelerate in a straight line from rest to 
twice the speed of its own exhaust gases, what fraction 
of its initial mass would the rocket have to burn as fuel?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



880 CHAPTER 13  Vector Functions

Johannes Kepler stated the following three laws of planetary motion on the basis of massive 
amounts of data on the positions of the planets at various times.

Kepler’s Laws
1. A planet revolves around the sun in an elliptical orbit with the sun at one focus.

2. The line joining the sun to a planet sweeps out equal areas in equal times.

3.  The square of the period of revolution of a planet is proportional to the cube of the 
length of the major axis of its orbit.

 Kepler formulated these laws because they fitted the astronomical data. He wasn’t able to see 
why they were true or how they related to each other. But Sir Isaac Newton, in his Principia 
Mathemat ica of 1687, showed how to deduce Kepler’s three laws from two of Newton’s own 
laws, the Sec ond Law of Motion and the Law of Universal Gravitation. In Section 13.4 we 
proved Kepler’s First Law using the calculus of vector functions. In this project we guide you 
through the proofs of Kepler’s Second and Third Laws and explore some of their consequences.

1.  Use the following steps to prove Kepler’s Second Law. The notation is the same as in  
the proof of the First Law in Section 13.4. In particular, use polar coordinates so that 
r − sr cos "d i 1 sr sin "d j.

 (a) Show that h − r 2 
d"

dt
 k.

 (b) Deduce that r 2 
d"

dt
− h.

 (c)  If A − Astd is the area swept out by the radius vector r − rstd in the time interval ft0, tg as 
in the figure, show that

dA
dt

− 1
2 r 2 

d"

dt

 (d) Deduce that

dA
dt

− 1
2 h − constant

   This says that the rate at which A is swept out is constant and proves Kepler’s Second 
Law.

2.  Let T be the period of a planet about the sun; that is, T is the time required for it to travel once 
around its elliptical orbit. Suppose that the lengths of the major and minor axes of the ellipse 
are 2a and 2b.

 (a) Use part (d) of Problem 1 to show that T − 2!abyh.

 (b) Show that 
h 2

GM
− ed −

b 2

a
.

 (c) Use parts (a) and (b) to show that T 2 −
4! 2

GM
 a 3.

  This proves Kepler’s Third Law. [Notice that the proportionality constant 4! 2ysGMd is inde-
pendent of the planet.]

KEPLER’S LAWSAPPLIED PROJECT

0

r(t)
r(t¸)A(t)

x

y
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 CHAPTER 13  Review 881

3.  The period of the earth’s orbit is approximately 365.25 days. Use this fact and Kepler’s Third 
Law to find the length of the major axis of the earth’s orbit. You will need the mass of the sun, 
M − 1.99 3 1030 kg, and the gravitational constant, G − 6.67 3 10211 N ∙m2ykg 2.

4.  It’s possible to place a satellite into orbit about the earth so that it remains fixed above a given 
location on the equator. Compute the altitude that is needed for such a satellite. The earth’s 
mass is 5.98 3 1024 kg; its radius is 6.37 3 106 m. (This orbit is called the Clarke Geosyn-
chronous Orbit after Arthur C. Clarke, who first proposed the idea in 1945. The first such 
satellite, Syncom II, was launched in July 1963.)

CONCEPT CHECK Answers to the Concept Check can be found on the back endpapers.

13 REVIEW

 1.  What is a vector function? How do you find its derivative and 
its integral?

 2.  What is the connection between vector functions and space 
curves?

 3.  How do you find the tangent vector to a smooth curve at a 
point? How do you find the tangent line? The unit tangent  
vector?

 4.  If u and v are differentiable vector functions, c is a scalar, and 
f  is a real-valued function, write the rules for differentiating 
the following vector functions.

 (a) ustd 1 vstd (b) custd (c) f std ustd
 (d) ustd ? vstd (e) ustd 3 vstd (f) us f stdd

 5.  How do you find the length of a space curve given by a vector 
function rstd?

 6. (a) What is the definition of curvature?
 (b) Write a formula for curvature in terms of r9std and T9std.
 (c) Write a formula for curvature in terms of r9std and r0std.
 (d)  Write a formula for the curvature of a plane curve with 

equation y − f sxd.

 7. (a)  Write formulas for the unit normal and binormal vectors of 
a smooth space curve rstd.

 (b)  What is the normal plane of a curve at a point? What is the 
osculating plane? What is the osculating circle?

 8. (a)  How do you find the velocity, speed, and acceleration of a 
particle that moves along a space curve?

 (b)  Write the acceleration in terms of its tangential and normal 
components.

 9. State Kepler’s Laws.

TRUE-FALSE QUIZ

 7.  If Tstd is the unit tangent vector of a smooth curve, then the 
curvature is # − | dTydt |.

 8. The binormal vector is Bstd − Nstd 3 Tstd.

 9.  Suppose f  is twice continuously differentiable. At an inflection 
point of the curve y − f sxd, the curvature is 0.

 10.  If #std − 0 for all t, the curve is a straight line.

 11.  If | rstd | − 1 for all t, then | r9std | is a constant.

 12.  If | rstd | − 1 for all t, then r9std is orthogonal to rstd for all t.

 13.  The osculating circle of a curve C at a point has the same tan-
gent vector, normal vector, and curvature as C at that point.

 14.  Different parametrizations of the same curve result in identical 
tangent vectors at a given point on the curve.

Determine whether the statement is true or false. If it is true, explain 
why. If it is false, explain why or give an example that disproves the 
statement.

 1.  The curve with vector equation rstd − t 3 i 1 2t 3 j 1 3t 3 k is  
a line.

 2.  The curve rstd − k0, t 2, 4t l is a parabola.

 3.  The curve rstd − k2t, 3 2 t, 0 l is a line that passes through the 
origin.

 4.  The derivative of a vector function is obtained by differen- 
ti ating each component function.

 5. If ustd and vstd are differentiable vector functions, then

d
dt

 fustd 3 vstdg − u9std 3 v9std

 6. If rstd is a differentiable vector function, then

d
dt | rstd | − | r9std |
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EXERCISES

 16.  The figure shows the curve C traced by a particle with posi-
tion vector rstd at time t.

 (a)  Draw a vector that represents the average velocity of the 
particle over the time interval 3 < t < 3.2.

 (b) Write an expression for the velocity vs3d.
 (c)  Write an expression for the unit tangent vector Ts3d and 

draw it.

y

x0

C

r(3.2)

r(3)

1

1

 17.  A particle moves with position function 
rstd − t ln t i 1 t  j 1 e2t k. Find the velocity, speed, and  
acceleration of the particle.

 18.  Find the velocity, speed, and acceleration of a particle mov-
ing with position function rstd − s2t 2 2 3d i 1 2t j. Sketch 
the path of the particle and draw the position, velocity, and 
acceleration vectors for t − 1.

 19.  A particle starts at the origin with initial velocity 
i 2 j 1 3k. Its acceleration is astd − 6t i 1 12t 2 j 2 6t k. 
Find its position function.

 20.  An athlete throws a shot at an angle of 458 to the horizontal  
at an initial speed of 43 ftys. It leaves his hand 7 ft above 
the ground.

 (a) Where is the shot 2 seconds later?
 (b) How high does the shot go?
 (c) Where does the shot land?

 21.  A projectile is launched with an initial speed of 40 mys 
from the floor of a tunnel whose height is 30 m. What 
angle of elevation should be used to achieve the maximum 
possible horizontal range of the projectile? What is the 
maximum range?

 22.   Find the tangential and normal components of the accelera-
tion vector of a particle with position function

rstd − t i 1 2t j 1 t 2 k

 23.  A disk of radius 1 is rotating in the counterclockwise  
direction at a constant angular speed $. A particle starts at 
the center of the disk and moves toward the edge along a 
fixed radius so that its position at time t, t > 0, is given by 

 1. (a)  Sketch the curve with vector function

rstd − t i 1 cos ! t j 1 sin !t k     t > 0

 (b)  Find r9std and r0std.

 2.  Let rstd − ks2 2 t , set 2 1dyt, lnst 1 1dl .
 (a) Find the domain of r.
 (b) Find lim t l 0 rstd.
 (c) Find r9std.

 3.  Find a vector function that represents the curve of intersec-
tion of the cylinder x 2 1 y 2 − 16 and the plane x 1 z − 5.

 4.  Find parametric equations for the tangent line to the curve 
x − 2 sin t, y − 2 sin 2t , z − 2 sin 3t at the point 

   s1, s3 , 2d. Graph the curve and the tangent line on a com-
mon screen.

 5.  If rstd − t 2 i 1 t cos ! t j 1 sin ! t k, evaluate y1
0 rstd dt.

 6.  Let C be the curve with equations x − 2 2 t 3, y − 2t 2 1, 
z − ln t. Find (a) the point where C intersects the xz-plane, 
(b) parametric equations of the tangent line at s1, 1, 0d, and 
(c) an equation of the normal plane to C at s1, 1, 0d.

 7.  Use Simpson’s Rule with n − 6 to estimate the length of  
the arc of the curve with equations x − t 2, y − t 3, z − t 4, 
0 < t < 3.

 8.  Find the length of the curve rstd − k2t 3y2, cos 2t, sin 2t l, 
0 < t < 1.

 9.  The helix r1std − cos t i 1 sin t j 1 t k intersects the curve 
r2std − s1 1 td i 1 t 2 j 1 t 3 k at the point s1, 0, 0d. Find the 
angle of intersection of these curves.

 10.  Reparametrize the curve rstd − e t i 1 e t sin t j 1 e t cos t k 
with respect to arc length measured from the point s1, 0, 1d 
in the direction of increasing t.

 11.  For the curve given by rstd − ksin 3t, cos 3t, sin 2tl, 
0 < t < !y2, find

 (a) the unit tangent vector,
 (b) the unit normal vector,
 (c) the unit binormal vector, and
 (d) the curvature.

 12.  Find the curvature of the ellipse x − 3 cos t, y − 4 sin t at 
the points s3, 0d and s0, 4d.

 13. Find the curvature of the curve y − x 4 at the point s1, 1d.

 14.  Find an equation of the osculating circle of the curve 
y − x 4 2 x 2 at the origin. Graph both the curve and its  
osculating circle.

 15.  Find an equation of the osculating plane of the curve 
x − sin 2t, y − t, z − cos 2t at the point s0, !, 1d.

;

;
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shown in the figure. It looks reasonable at first glance. 
Show that the function

Fsxd − H1
s1 2 x 2 

s2 2 x

if x < 0
if 0 , x , 1ys2 

if x > 1ys2 

   is continuous and has continuous slope, but does not 
have continuous curvature. Therefore f  is not an appro-
priate transfer curve.

y

x0

y=x

y=0 transfer curve

1

y

x0

y=F(x)
1

1
œ„2

 (b)  Find a fifth-degree polynomial to serve as a transfer 
curve between the following straight line segments: 
y − 0 for x < 0 and y − x for x > 1. Could this be 
done with a fourth-degree polynomial? Use a graphing 
calculator or computer to sketch the graph of the “con-
nected” function and check to see that it looks like the 
one in the figure.

y

x0

y=x

y=0 transfer curve

1

y

x0

y=F(x)
1

1
œ„2

;

  rstd − tRstd, where

Rstd − cos $t i 1 sin $t j

 (a) Show that the velocity v of the particle is

v − cos $t i 1 sin $t j 1 tvd

   where vd − R9std is the velocity of a point on the edge 
of the disk.

 (b) Show that the acceleration a of the particle is

a − 2vd 1 t ad

   where ad − R0std is the acceleration of a point on 
the edge of the disk. The extra term 2vd is called the 
Coriolis acceleration; it is the result of the interaction 
of the rotation of the disk and the motion of the particle. 
One can obtain a physical demonstration of this accel-
eration by walking toward the edge of a moving  
merry-go-round.

 (c)  Determine the Coriolis acceleration of a particle that 
moves on a rotating disk according to the equation

rstd − e2t cos $t i 1 e2t sin $t j

 24.  In designing transfer curves to connect sections of straight 
railroad tracks, it’s important to realize that the accelera-
tion of the train should be continuous so that the reactive 
force exerted by the train on the track is also continuous. 
Because of the formulas for the components of acceleration 
in Section 13.4, this will be the case if the curvature varies 
continuously.

 (a)  A logical candidate for a transfer curve to join existing 
tracks given by y − 1 for x < 0 and y − s2 2 x for 

   x > 1ys2  might be the function f sxd − s1 2 x 2 , 
   0 , x , 1ys2 , whose graph is the arc of the circle 
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Problems Plus  1.  A particle P moves with constant angular speed $ around a circle whose center is at the 
origin and whose radius is R. The particle is said to be in uniform circular motion. Assume 
that the motion is counterclockwise and that the particle is at the point sR, 0d when t − 0. 
The position vector at time t > 0 is rstd − R cos $t i 1 R sin $t j.

 (a)  Find the velocity vector v and show that v ? r − 0. Conclude that v is tangent to the 
circle and points in the direction of the motion.

 (b)  Show that the speed | v | of the particle is the constant $R. The period T of the particle 
is the time required for one complete revolution. Conclude that

T −
2!R

| v | −
2!

$

 (c)  Find the acceleration vector a. Show that it is proportional to r and that it points toward 
the origin. An acceleration with this property is called a centripetal acceleration. Show 
that the magnitude of the acceleration vector is | a | − R$2.

 (d)  Suppose that the particle has mass m. Show that the magnitude of the force F that is 
required to produce this motion, called a centripetal force, is

| F | −
m| v |2

R

 2.  A circular curve of radius R on a highway is banked at an angle " so that a car can safely 
traverse the curve without skidding when there is no friction between the road and the tires. 
The loss of friction could occur, for example, if the road is covered with a film of water 
or ice. The rated speed vR of the curve is the maximum speed that a car can attain without 
skidding. Suppose a car of mass m is traversing the curve at the rated speed vR. Two forces 
are acting on the car: the vertical force, mt, due to the weight of the car, and a force F 
exerted by, and normal to, the road (see the figure).

     The vertical component of F balances the weight of the car, so that | F | cos " − mt. The 
horizontal component of F produces a centripetal force on the car so that, by Newton’s 
Second Law and part (d) of Problem 1,

| F | sin " −
mv 2

R

R

 (a) Show that v 2
R  − Rt tan ".

 (b)  Find the rated speed of a circular curve with radius 400 ft that is banked at an angle  
of 128.

 (c)  Suppose the design engineers want to keep the banking at 128, but wish to increase the 
rated speed by 50%. What should the radius of the curve be?

 3.  A projectile is fired from the origin with angle of elevation % and initial speed v0. Assum-
ing that air resistance is negligible and that the only force acting on the projectile is gravity, 
t, we showed in Example 13.4.5 that the position vector of the projectile is 

   rstd − sv0 cos %dt i 1 fsv0 sin %dt 2 1
2 tt 2 g j

   We also showed that the maximum horizontal distance of the projectile is achieved when 
% − 45° and in this case the range is R − v 2

0yt.
 (a)  At what angle should the projectile be fired to achieve maximum height and what is the 

maximum height?
 (b)  Fix the initial speed v0 and consider the parabola x 2 1 2Ry 2 R2 − 0, whose graph is 

shown in the figure at the left. Show that the projectile can hit any target inside or on 
the boundary of the region bounded by the parabola and the x-axis, and that it can’t hit 
any target outside this region.

r
v v t

y

x

FIGURE FOR PROBLEM 1 
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F
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FIGURE FOR PROBLEM 2 
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FIGURE FOR PROBLEM 3 
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 (c)  Suppose that the gun is elevated to an angle of inclination % in order to aim at a target 
that is suspended at a height h directly over a point D units downrange (see the figure 
below). The target is released at the instant the gun is fired. Show that the projectile 
always hits the target, regardless of the value v0, provided the projectile does not hit the 
ground “before” D.

0 D

y

x

h

 4. (a)  A projectile is fired from the origin down an inclined plane that makes an angle " with 
the horizontal. The angle of elevation of the gun and the initial speed of the projectile 
are % and v0, respectively. Find the position vector of the projectile and the parametric 
equations of the path of the projectile as functions of the time t. (Ignore air resistance.)

 (b)  Show that the angle of elevation % that will maximize the downhill range is the angle 
halfway between the plane and the vertical.

 (c)  Suppose the projectile is fired up an inclined plane whose angle of inclination is ". 
Show that, in order to maximize the (uphill) range, the projectile should be fired in the 
direction halfway between the plane and the vertical.

 (d)  In a paper presented in 1686, Edmond Halley summarized the laws of gravity and 
projectile motion and applied them to gunnery. One problem he posed involved firing 
a projectile to hit a target a distance R up an inclined plane. Show that the angle at 
which the projectile should be fired to hit the target but use the least amount of energy 
is the same as the angle in part (c). (Use the fact that the energy needed to fire the 
projectile is proportional to the square of the initial speed, so minimizing the energy is 
equivalent to minimizing the initial speed.)

 5. A ball rolls off a table with a speed of 2 ftys. The table is 3.5 ft high.
 (a)  Determine the point at which the ball hits the floor and find its speed at the instant of 

impact.
 (b)  Find the angle  " between the path of the ball and the vertical line drawn through the 

point of impact (see the figure).
 (c)  Suppose the ball rebounds from the floor at the same angle with which it hits the floor, 

but loses 20% of its speed due to energy absorbed by the ball on impact. Where does 
the ball strike the floor on the second bounce?

 6.  Find the curvature of the curve with parametric equations 

x − y t

0
 sins1

2 !" 2d d"    y − y t

0
 coss1

2 !" 2d d"

 7.  If a projectile is fired with angle of elevation % and initial speed v, then parametric equa-
   tions for its trajectory are

x − sv cos %dt  y − sv sin %dt 2 1
2 tt 2

   (See Example 13.4.5.) We know that the range (horizontal distance traveled) is maximized 
when % − 45°. What value of % maximizes the total distance traveled by the projectile? 
(State your answer correct to the nearest degree.)

 8.  A cable has radius r and length L and is wound around a spool with radius R without over -
lapping. What is the shortest length along the spool that is covered by the cable?

 9.  Show that the curve with vector equation 

rstd − ka1t 2 1 b1t 1 c1, a2t 2 1 b2t 1 c2, a3t 2 1 b3t 1 c3 l

   lies in a plane and find an equation of the plane.

a
¨

v¸

x

y

FIGURE FOR PROBLEM 4 

¨ ¨3.5 ft

FIGURE FOR PROBLEM 5 
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Courtesy Speedo and ANSYS, Inc.

In 2008 Speedo introduced 
the LZR Racer and, because 

it reduced drag in the water, 
many swimming records 

were broken. In the project 
on page 936 you are asked 

to use partial derivatives to 
explain why a small decrease 

in drag can have a big effect 
on performance. 

SO FAR WE HAVE DEALT with the calculus of functions of a single variable. But, in the real world, 
physical quantities often depend on two or more variables, so in this chapter we turn our atten-
tion to functions of several variables and extend the basic ideas of differential calculus to such 
functions.

Partial Derivatives14
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888 CHAPTER 14  Partial Derivatives

In this section we study functions of two or more variables from four points of view:
● verbally (by a description in words)
● numerically (by a table of values)
● algebraically  (by an explicit formula)
● visually (by a graph or level curves)

Functions of Two Variables
The temperature T  at a point on the surface of the earth at any given time depends on the 
longitude x and latitude y of the point. We can think of T  as being a function of the 
two  variables x and y, or as a function of the pair sx, yd. We indicate this functional 
dependence by writing T − f sx, yd.

The volume V  of a circular cylinder depends on its radius r and its height h. In fact, 
we know that V − !r 2h. We say that V  is a function of r and h, and we write 
Vsr, hd − !r 2h.

Definition A function f  of two variables is a rule that assigns to each ordered 
pair of real numbers sx, yd in a set D a unique real number denoted by f sx, yd.  
The set D is the domain of f  and its range is the set of values that f  takes on, 
that is, h f sx, yd | sx, yd [ Dj.

We often write z − f sx, yd to make explicit the value taken on by f  at the general 
point sx, yd. The variables x and y are independent variables and z is the dependent 
variable. [Compare this with the notation y − f sxd for functions of a single variable.]

A function of two variables is just a function whose domain is a subset of R2 and 
whose range is a subset of R. One way of visualizing such a function is by means of an 
arrow diagram (see Figure 1), where the domain D is represented as a subset of the  
xy-plane and the range is a set of numbers on a real line, shown as a z-axis. For instance, 
if f sx, yd represents the temperature at a point sx, yd in a flat metal plate with the shape 
of D, we can think of the z-axis as a thermometer displaying the recorded temperatures.

If a function f  is given by a formula and no domain is specified, then the domain of f  
is understood to be the set of all pairs sx, yd for which the given expression is a well-
defined real number.

EXAMPLE 1 For each of the following functions, evaluate f s3, 2d and find and sketch 
the domain.

(a) f sx, yd −
sx 1 y 1 1

x 2 1
 (b) f sx, yd − x lnsy 2 2 xd

SOLUTION

(a) f s3, 2d −
s3 1 2 1 1

3 2 1
−

s6 

2

The expression for f  makes sense if the denominator is not 0 and the quantity under the 
square root sign is nonnegative. So the domain of f  is

D − hsx, yd | x 1 y 1 1 > 0,  x ± 1j

The inequality x 1 y 1 1 > 0, or y > 2x 2 1, describes the points that lie on or 

y

x0

z

D f(a, b)

f(x, y)
(x, y)

(a, b)

0

FIGURE 1
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 SECTION 14.1  Functions of Several Variables 889

above the line y − 2x 2 1, while x ± 1 means that the points on the line x − 1 must 
be excluded from the domain. (See Figure 2.)

(b) f s3, 2d − 3 lns22 2 3d − 3 ln 1 − 0

Since lnsy 2 2 xd is defined only when y 2 2 x . 0, that is, x , y 2, the domain of f  is 
D − hsx, yd | x , y 2 j. This is the set of points to the left of the parabola x − y 2. 
(See Figure 3.) Q

Not all functions can be represented by explicit formulas. The function in the next 
example is described verbally and by numerical estimates of its values.

EXAMPLE 2 In regions with severe winter weather, the wind-chill index is often used 
to describe the apparent severity of the cold. This index W is a subjective temperature 
that depends on the actual temperature T and the wind speed v. So W is a function of  
T and v, and we can write W − f sT, vd.  Table 1 records values of W compiled by the  
US National Weather Service and the Meteorological Service of Canada.

Table 1 Wind-chill index as a function of air temperature and wind speed
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For instance, the table shows that if the temperature is 258C and the wind speed is 
50 kmyh, then subjectively it would feel as cold as a temperature of about 2158C with 
no wind. So

 f s25, 50d − 215 Q

EXAMPLE 3 In 1928 Charles Cobb and Paul Douglas published a study in which they 
modeled the growth of the American economy during the period 1899–1922. They 
considered a simplified view of the economy in which production output is determined 
by the amount of labor involved and the amount of capital invested. While there are 
many other factors affecting economic performance, their model proved to be remark-
ably accurate. The function they used to model production was of the form

1   PsL, Kd − bL"K 12" 

where P is the total production (the monetary value of all goods produced in a year),  
L is the amount of labor (the total number of person-hours worked in a year), and K is  

FIGURE 2
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FIGURE 3   
Domain of f sx, yd − x lnsy 2 2 xd

The Wind-Chill Index
The wind-chill index measures how 
cold it feels when it’s windy. It is based 
on a model of how fast a human face 
loses heat. It was developed through 
clinical trials in which volunteers were 
exposed to a variety of temper atures 
and wind speeds in a refrigerated wind 
tunnel.
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890 CHAPTER 14  Partial Derivatives

the amount of capital invested (the monetary worth of all machinery, equipment, and 
buildings). In Section 14.3 we will show how the form of Equation 1 follows from 
certain economic assumptions.

Cobb and Douglas used economic data published by the government to obtain 
Table 2. They took the year 1899 as a baseline and P, L, and K for 1899 were each 
assigned the value 100. The values for other years were expressed as percentages of the 
1899 figures.

Cobb and Douglas used the method of least squares to fit the data of Table 2 to the 
function

2   PsL, Kd − 1.01L0.75K 0.25 

(See Exercise 81 for the details.)
If we use the model given by the function in Equation 2 to compute the production 

in the years 1910 and 1920, we get the values

 Ps147, 208d − 1.01s147d0.75s208d0.25 < 161.9

 Ps194, 407d − 1.01s194d0.75s407d0.25 < 235.8

which are quite close to the actual values, 159 and 231.
The production function (1) has subsequently been used in many settings, ranging 

from individual firms to global economics. It has become known as the Cobb-Douglas 
production function. Its domain is hsL, Kd | L > 0, K > 0j because L and K represent 
labor and capital and are therefore never negative. Q

EXAMPLE 4 Find the domain and range of tsx, yd − s9 2 x 2 2 y 2 .

SOLUTION The domain of t is

D − hsx, yd | 9 2 x 2 2 y 2 > 0j − hsx, yd | x 2 1 y 2 < 9j

which is the disk with center s0, 0d and radius 3. (See Figure 4.) The range of t is5z | z − s9 2 x 2 2 y 2 , sx, yd [ D6
Since z is a positive square root, z > 0. Also, because 9 2 x 2 2 y 2 < 9, we have

s9 2 x 2 2 y 2 < 3

So the range is

 hz | 0 < z < 3j − f0, 3g Q

Graphs
Another way of visualizing the behavior of a function of two variables is to consider its 
graph.

Definition If f  is a function of two variables with domain D, then the graph of 
f  is the set of all points sx, y, zd in R3 such that z − f sx, yd and sx, yd is in D.

Just as the graph of a function f  of one variable is a curve C with equation y − f sxd, 
so the graph of a function f  of two variables is a surface S with equation z − f sx, yd.  
We can visualize the graph S of f  as lying directly above or below its domain D in the  
xy-plane (see Figure 5).

Table 2

Year P L K 

1899 100 100 100
1900 101 105 107
1901 112 110 114
1902 122 117 122
1903 124 122 131
1904 122 121 138
1905 143 125 149
1906 152 134 163
1907 151 140 176
1908 126 123 185
1909 155 143 198
1910 159 147 208
1911 153 148 216
1912 177 155 226
1913 184 156 236
1914 169 152 244
1915 189 156 266
1916 225 183 298
1917 227 198 335
1918 223 201 366
1919 218 196 387
1920 231 194 407
1921 179 146 417
1922 240 161 431

FIGURE 5
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Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 14.1  Functions of Several Variables 893

ferent vantage points. In parts (a) and (b) the graph of f  is very flat and close to the  
xy-plane except near the origin; this is because e2x 22y 2

 is very small when x or y is large.

Level Curves
So far we have two methods for visualizing functions: arrow diagrams and graphs. A 
third method, borrowed from mapmakers, is a contour map on which points of constant 
elevation are joined to form contour curves, or level curves.

Definition The level curves of a function f  of two variables are the curves 
with equations f sx, yd − k, where k is a constant (in the range of f  ).

A level curve f sx, yd − k is the set of all points in the domain of f  at which f  takes 
on a given value k. In other words, it shows where the graph of f  has height k.

You can see from Figure 11 the relation between level curves and horizontal traces. The 
level curves f sx, yd − k are just the traces of the graph of f  in the horizontal plane  
z − k projected down to the xy-plane. So if you draw the level curves of a function and 
visualize them being lifted up to the surface at the indicated height, then you can men-
tally piece together a picture of the graph. The surface is steep where the level curves are 
close together. It is somewhat flatter where they are farther apart.
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One common example of level curves occurs in topographic maps of mountainous 
regions, such as the map in Figure 12. The level curves are curves of constant elevation 
above sea level. If you walk along one of these contour lines, you neither ascend nor 
descend. Another common example is the temperature function introduced in the open-
ing paragraph of this section. Here the level curves are called isothermals and join loca-

TEC Visual 14.1A animates Figure 11 
by showing level curves being lifted 
up to graphs of functions.
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 SECTION 14.1  Functions of Several Variables 891

EXAMPLE 5 Sketch the graph of the function f sx, yd − 6 2 3x 2 2y.

SOLUTION The graph of f  has the equation z − 6 2 3x 2 2y, or 3x 1 2y 1 z − 6,  
which represents a plane. To graph the plane we first find the intercepts. Putting 
y − z − 0 in the equation, we get x − 2 as the x-intercept. Similarly, the y-intercept  
is 3 and the z-intercept is 6. This helps us sketch the portion of the graph that lies in the 
first octant in Figure 6. Q

The function in Example 5 is a special case of the function

f sx, yd − ax 1 by 1 c

which is called a linear function. The graph of such a function has the equation

z − ax 1 by 1 c    or    ax 1 by 2 z 1 c − 0

so it is a plane. In much the same way that linear functions of one variable are important 
in single-variable calculus, we will see that linear functions of two variables play a cen-
tral role in multivariable calculus.

EXAMPLE 6 Sketch the graph of tsx, yd − s9 2 x 2 2 y 2 .

SOLUTION The graph has equation z − s9 2 x 2 2 y 2 . We square both sides of this 
equation to obtain z2 − 9 2 x 2 2 y 2, or x 2 1 y 2 1 z2 − 9, which we recognize as an 
equation of the sphere with center the origin and radius 3. But, since z > 0, the graph 
of t is just the top half of this sphere (see Figure 7). Q

NOTE An entire sphere can’t be represented by a single function of x and y. As we 
saw in Example 6, the upper hemisphere of the sphere x 2 1 y 2 1 z2 − 9 is represented 
 by the function tsx, yd − s9 2 x 2 2 y 2 . The lower hemisphere is represented by the 
 function hsx, yd − 2s9 2 x 2 2 y 2 .

EXAMPLE 7 Use a computer to draw the graph of the Cobb-Douglas production 
function PsL, Kd − 1.01L0.75K 0.25.

SOLUTION Figure 8 shows the graph of P for values of the labor L and capital K that 
lie between 0 and 300. The computer has drawn the surface by plotting vertical traces.
We see from these traces that the value of the production P increases as either L or K 
increases, as is to be expected.

 0 100 200 300
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100 0
200300
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FIGURE 8
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EXAMPLE 8 Find the domain and range and sketch the graph of hsx, yd − 4x 2 1 y 2.

SOLUTION Notice that hsx, yd is defined for all possible ordered pairs of real numbers 
sx, yd, so the domain is R2, the entire xy-plane. The range of h is the set f0, `d of all 
nonnegative real numbers. [Notice that x 2 > 0 and y 2 > 0, so hsx, yd > 0 for all x  
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Graph of tsx, yd − s9 2 x 2 2 y 2 

FIGURE 8
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892 CHAPTER 14  Partial Derivatives

and y.] The graph of h has the equation z − 4x 2 1 y 2, which is the elliptic paraboloid 
that we sketched in Example 12.6.4. Horizontal traces are ellipses and vertical traces 
are parabolas (see Figure 9).
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 Q

Computer programs are readily available for graphing functions of two variables. 
In  most such programs, traces in the vertical planes x − k and y − k are drawn for 
equally spaced values of k and parts of the graph are eliminated using hidden line 
removal.

Fig ure 10 shows computer-generated graphs of several functions. Notice that we get 
an especially good picture of a function when rotation is used to give views from dif- 
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Graph of hsx, yd − 4x 2 1 y 2
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FIGURE 13 Average air temperature near sea level in July (°F)

© 2016 Cengage Learning®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 14.1  Functions of Several Variables 895

tions with the same temperature. Figure 13 shows a weather map of the world indicating 
the average July temperatures. The isothermals are the curves that separate the colored 
bands.

In weather maps of atmospheric pressure at a given time as a function of longitude 
and latitude, the level curves are called isobars and join locations with the same pres-
sure. (See Exercise 34.) Surface winds tend to flow from areas of high pressure across the 
isobars toward areas of low pressure, and are strongest where the isobars are tightly 
packed.

A contour map of world-wide precipitation is shown in Figure 14. Here the level 
curves are not labeled but they separate the colored regions and the amount of precipita-
tion in each region is indicated in the color key.

EXAMPLE 9 A contour map for a function f  is shown in Figure 15. Use it to estimate 
the values of f s1, 3d and f s4, 5d.

SOLUTION The point (1, 3) lies partway between the level curves with z-values 70 
and 80. We estimate that

f s1, 3d < 73

Similarly, we estimate that f s4, 5d < 56  Q

EXAMPLE 10 Sketch the level curves of the function f sx, yd − 6 2 3x 2 2y for the  
values k − 26, 0, 6, 12.

SOLUTION The level curves are

6 2 3x 2 2y − k    or    3x 1 2y 1 sk 2 6d − 0

This is a family of lines with slope 2 3
2. The four particular level curves with  

k − 26, 0, 6, and 12 are 3x 1 2y 2 12 − 0, 3x 1 2y 2 6 − 0, 3x 1 2y − 0, and 
3x 1 2y 1 6 − 0. They are sketched in Figure 16. The level curves are equally spaced 
parallel lines because the graph of f  is a plane (see Figure 6).
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EXAMPLE 11 Sketch the level curves of the function

tsx, yd − s9 2 x 2 2 y 2     for  k − 0, 1, 2, 3

SOLUTION The level curves are

s9 2 x 2 2 y 2 − k    or    x 2 1 y 2 − 9 2 k 2

This is a family of concentric circles with center s0, 0d and radius s9 2 k 2 . The cases 
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FIGURE 14

FIGURE 15
Contour map of  
f(x, y)=6-3x-2y
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FIGURE 16 
Contour map of  

f sx, yd − 6 2 3x 2 2y
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896 CHAPTER 14  Partial Derivatives

k − 0, 1, 2, 3 are shown in Figure 17. Try to visualize these level curves lifted up to  
form a surface and compare with the graph of t (a hemisphere) in Figure 7. (See TEC 
Visual 14.1A.)
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FIGURE 16
Contour map of g(x, y)=œ„„„„„„„„„9-≈-¥  Q

EXAMPLE 12 Sketch some level curves of the function hsx, yd − 4x 2 1 y 2 1 1.

SOLUTION The level curves are

4x 2 1 y 2 1 1 − k    or    
x 2

1
4sk 2 1d

1
 y 2

k 2 1
− 1

which, for k . 1, describes a family of ellipses with semiaxes 12 sk 2 1  and sk 2 1 . 
Figure 18(a) shows a contour map of h drawn by a computer. Figure 18(b) shows these 
level curves lifted up to the graph of h (an elliptic paraboloid) where they become 
horizontal traces. We see from Figure 18 how the graph of h is put together from the 
level curves.
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FIGURE 17
The graph of h(x, y)=4≈+¥+1

is formed by lifting the level curves.

x

y
z

x
y

(a) Contour map (b) Horizontal traces are raised level curves Q

EXAMPLE 13 Plot level curves for the Cobb-Douglas production function of Example 3.

SOLUTION In Figure 19 we use a computer to draw a contour plot for the Cobb- 
Douglas production function

PsL, Kd − 1.01L0.75K 0.25

FIGURE 17 
Contour map of 

tsx, yd − s9 2 x 2 2 y 2 

TEC Visual 14.1B demonstrates the  
connection between surfaces and their  
contour maps.

FIGURE 18 
The graph of hsx, yd − 4x 2 1 y 2 1 1  

is formed by lifting the level curves.
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 SECTION 14.1  Functions of Several Variables 897

Level curves are labeled with the value of the production P. For instance, the level 
curve labeled 140 shows all values of the labor L and capital investment K that result  
in a production of P − 140. We see that, for a fixed value of P, as L increases K 
decreases, and vice versa. Q

For some purposes, a contour map is more useful than a graph. That is certainly 
true in Example 13. (Compare Figure 19 with Figure 8.) It is also true in estimating func-
tion values, as in Example 9.

Figure 20 shows some computer-generated level curves together with the corre-
sponding computer-generated graphs. Notice that the level curves in part (c) crowd 
together near the origin. That corresponds to the fact that the graph in part (d) is very 
steep near the origin.

(a) Level curves of f(x, y)=_xye_≈_¥

x

y

(c) Level curves of f(x, y)= _3y
≈+¥+1

y

x

(d) f(x, y)= _3y
≈+¥+1

z

y
x

(b) Two views of f(x, y)=_xye_≈_¥

z

yx

z

Functions of Three or More Variables
A function of three variables, f , is a rule that assigns to each ordered triple sx, y, zd in a 
domain D ! R 3 a unique real number denoted by f sx, y, zd. For instance, the tempera-
ture T  at a point on the surface of the earth depends on the longitude x and latitude y of 
the point and on the time t, so we could write T − f sx, y, td.

FIGURE 20

FIGURE 18
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FIGURE 19
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898 CHAPTER 14  Partial Derivatives

EXAMPLE 14 Find the domain of f  if

f sx, y, zd − lnsz 2 yd 1 xy sin z

SOLUTION The expression for f sx, y, zd is defined as long as z 2 y . 0, so the domain 
of f  is

D − hsx, y, zd [ R 3 | z . yj

This is a half-space consisting of all points that lie above the plane z − y. Q

It’s very difficult to visualize a function f  of three variables by its graph, since that 
would lie in a four-dimensional space. However, we do gain some insight into f  by 
examining its level surfaces, which are the surfaces with equations f sx, y, zd − k, where 
k is a constant. If the point sx, y, zd moves along a level surface, the value of f sx, y, zd 
remains fixed.

EXAMPLE 15 Find the level surfaces of the function

f sx, y, zd − x 2 1 y 2 1 z2

SOLUTION The level surfaces are x 2 1 y 2 1 z2 − k, where k > 0. These form a family 
of concentric spheres with radius sk . (See Figure 21.) Thus, as sx, y, zd varies over any 
sphere with center O, the value of f sx, y, zd remains fixed. Q

Functions of any number of variables can be considered. A function of n vari-
ables is a rule that assigns a number z − f sx1, x2, . . . , xn d to an n-tuple sx1, x2, . . . , xn d 
of real numbers. We denote by Rn the set of all such n-tuples. For example, if a company 
uses n different ingredients in making a food product, ci is the cost per unit of the ith 
ingredient, and xi units of the ith ingredient are used, then the total cost C of the ingredi-
ents is a function of the n variables x1, x2, . . . , xn:

3   C − f sx1, x2, . . . , xn d − c1 x1 1 c2 x2 1 ∙ ∙ ∙ 1 cn xn 

The function f  is a real-valued function whose domain is a subset of R n. Some times we 
will use vector notation to write such functions more compactly: If x − kx1, x2, . . . , xn l, 
we often write f sxd in place of f sx1, x2, . . . , xn d. With this notation we can rewrite the 
function defined in Equation 3 as

f sxd − c ? x

where c − kc1, c2, . . . , cn l and c ? x denotes the dot product of the vectors c and x in Vn.
In view of the one-to-one correspondence between points sx1, x2, . . . , xnd in R n and 

their position vectors x − kx1, x2, . . . , xn l in Vn, we have three ways of looking at a func-
tion f  defined on a subset of Rn:

1. As a function of n real variables x1, x2, . . . , xn

2. As a function of a single point variable sx1, x2, . . . , xn d
3. As a function of a single vector variable x − kx1, x2, . . . , xn l

We will see that all three points of view are useful.

FIGURE 20
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FIGURE 21
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899 SECTION 14.1  Functions of Several Variables 899

  discussed in Example 3 that the production will be doubled  
if both the amount of labor and the amount of capital are  
doubled. Determine whether this is also true for the general 
production function

PsL, K d − bL!K 12!

 5.  A model for the surface area of a human body is given by the 
function

S − f sw, hd − 0.1091w 0.425h 0.725

  where w is the weight (in pounds), h is the height (in inches), 
and S is measured in square feet.

 (a)  Find f s160, 70d and interpret it.
 (b)  What is your own surface area?

 6.  The wind-chill index W discussed in Example 2 has been  
modeled by the following function:

WsT, vd − 13.12 1 0.6215T 2 11.37v 0.16 1 0.3965Tv 0.16

  Check to see how closely this model agrees with the values in 
Table 1 for a few values of T and v.

 7.  The wave heights h in the open sea depend on the speed v  
of the wind and the length of time t that the wind has been 
blowing at that speed. Values of the function h − f sv, td are 
recorded in feet in Table 4.

 (a)  What is the value of f s40, 15d? What is its meaning?
 (b)  What is the meaning of the function h − f s30, td?  

Describe the behavior of this function.
 (c)  What is the meaning of the function h − f sv, 30d?  

Describe the behavior of this function.

Table 4
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 8.  A company makes three sizes of cardboard boxes: small, 
medium, and large. It costs $2.50 to make a small box,  

 1.  In Example 2 we considered the function W − f sT, vd, where  
W is the wind-chill index, T is the actual temperature, and v is  
the wind speed. A numerical representation is given in Table 1 
on page 889.

 (a)  What is the value of f s215, 40d? What is its meaning?
 (b)  Describe in words the meaning of the question “For what 

value of v is f s220, vd − 230?” Then answer the question.
 (c)  Describe in words the meaning of the question “For what 

value of T is f sT, 20d − 249?” Then answer the question.
 (d)  What is the meaning of the function W − f s25, vd?  

Describe the behavior of this function.
 (e)  What is the meaning of the function W − f sT, 50d?  

Describe the behavior of this function.

 2.  The temperature-humidity index I (or humidex, for short) is the 
perceived air temperature when the actual temperature is T and 
the relative humidity is h, so we can write I − f sT, hd. The fol-
lowing table of values of I is an excerpt from a table compiled 
by the National Oceanic & Atmospheric Administration.

Table 3  Apparent temperature as a function  
 of temperature and humidity
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 (a) What is the value of f s95, 70d? What is its meaning?
 (b) For what value of h is f s90, hd − 100?
 (c) For what value of T is f sT, 50d − 88?
 (d)  What are the meanings of the functions I − f s80, hd  

and I − f s100, hd? Compare the behavior of these two 
functions of h.

 3.  A manufacturer has modeled its yearly production function P 
(the monetary value of its entire production in millions of  
dollars) as a Cobb-Douglas function

PsL, Kd − 1.47L 0.65K 0.35

  where L is the number of labor hours (in thousands) and K is 
the invested capital (in millions of dollars). Find Ps120, 20d  
and interpret it.

 4. Verify for the Cobb-Douglas production function

PsL, K d − 1.01L 0.75K 0.25
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 33.  A contour map for a function f  is shown. Use it to esti mate the 

values of f s23, 3d and f s3, 22d. What can you say about the 
shape of the graph?
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 34.  Shown is a contour map of atmospheric pressure in North 
America on August 12, 2008. On the level curves (called  
isobars) the pressure is indicated in millibars (mb).

 (a)  Estimate the pressure at C (Chicago), N (Nashville),  
S (San Francisco), and V (Vancouver).

 (b)  At which of these locations were the winds strongest?

   

C

N

V

S
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1004

1008

1012

1016

1012
1008

1016

$4.00 for a medium box, and $4.50 for a large box. Fixed costs  
are $8000.

 (a)  Express the cost of making x small boxes, y medium  
boxes, and z large boxes as a function of three variables: 
C − f sx, y, zd.

 (b)  Find f s3000, 5000, 4000d and interpret it.
 (c) What is the domain of f ?

 9. Let tsx, yd − cossx 1 2yd.
 (a) Evaluate ts2, 21d.
 (b) Find the domain of t.
 (c) Find the range of t.

 10. Let Fsx, yd − 1 1 s4 2 y2.
 (a) Evaluate F s3, 1d.
 (b) Find and sketch the domain of F.
 (c) Find the range of F.

 11. Let  f sx, y, zd − sx 1 sy 1 sz 1 lns4 2 x 2 2 y 2 2 z 2d.
 (a) Evaluate f s1, 1, 1d.
 (b) Find and describe the domain of f.

 12. Let tsx, y, zd − x 3y 2zs10 2 x 2 y 2 z .
 (a) Evaluate ts1, 2, 3d.
 (b) Find and describe the domain of t.

 13–22  Find and sketch the domain of the function.

 13. f sx, yd − sx 2 2 1 sy 2 1

 14. f sx, yd − s4 x 2 3y 

 15. f sx, yd − lns9 2 x 2 2 9y2 d 16. f sx, yd − sx 2 1 y2 2 4 

 17. tsx, yd −
x 2 y
x 1 y

 18. tsx, yd −
lns2 2 xd

1 2 x 2 2 y2

 19. f sx, yd −
sy 2 x 2 

1 2 x 2

 20. f sx, yd − sin21sx 1 yd

 21. f sx, y, zd − s4 2 x 2 1 s9 2 y2 1 s1 2 z 2 

 22. f sx, y, zd − lns16 2 4x 2 2 4y2 2 z2 d

23–31  Sketch the graph of the function.

 23. f sx, yd − y 24. f sx, yd − x 2

 25. f sx, yd − 10 2 4x 2 5y 26. f sx, yd − cos y

 27. f sx, yd − sin x 28. f sx, yd − 2 2 x 2 2 y 2

 29. f sx, yd − x 2 1 4y 2 1 1 30. f sx, yd − s4x 2 1 y 2 

 31. f sx, yd − s4 2 4x 2 2 y 2 

 32.  Match the function with its graph (labeled I–VI). Give reasons 
for your choices.

 (a) f sx, yd −
1

1 1 x 2 1 y 2  (b) f sx, yd −
1

1 1 x 2y 2

 (c) f sx, yd − lnsx 2 1 y2d (d) f sx, yd − cos sx 2 1 y2 

 (e) f sx, yd − | xy | (f ) f sx, yd − cossxyd
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 SECTION 14.1  Functions of Several Variables 901

18.5; optimal if the BMI lies between 18.5 and 25; overweight 
if the BMI lies between 25 and 30; and obese if the BMI 
exceeds 30. Shade the region corresponding to optimal BMI. 
Does someone who weighs 62 kg and is 152 cm tall fall into 
this category?

 40.  The body mass index is defined in Exercise 39. Draw the level 
curve of this function corresponding to someone who is 200 cm 
tall and weighs 80 kg. Find the weights and heights of two 
other people with that same level curve.

 41–44 A contour map of a function is shown. Use it to make a 
rough sketch of the graph of f .

 41. 
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 45–52 Draw a contour map of the function showing several level 
curves.

 45. f sx, yd − x 2 2 y2 46. f sx, yd − xy

 47. f sx, yd − sx 1 y 48. f sx, yd − lnsx 2 1 4y 2d

 49. f sx, yd − ye x 50. f sx, yd − y 2 arctan x

 51. f sx, yd − s3 x 2 1 y2  52. f sx, yd − yysx 2 1 y2d

 53–54 Sketch both a contour map and a graph of the function and 
compare them.

 53. f sx, yd − x 2 1 9y 2 54. f sx, yd − s36 2 9x 2 2 4y 2 

 55.  A thin metal plate, located in the xy-plane, has temperature 
Tsx, yd at the point sx, yd. Sketch some level curves (isother-
mals) if the temperature function is given by

Tsx, yd −
100

1 1 x 2 1 2y 2

 35.  Level curves (isothermals) are shown for the typical water 
temperature sin 8Cd in Long Lake (Minnesota) as a function of 
depth and time of year. Estimate the temperature in the lake on 
June 9 (day 160) at a depth of 10 m and on June 29 (day 180) 
at a depth of 5 m.
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 36.  Two contour maps are shown. One is for a function f  whose 
graph is a cone. The other is for a function t whose graph is a 
paraboloid. Which is which, and why?
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 37.  Locate the points A and B on the map of Lonesome Mountain 
(Figure 12). How would you describe the terrain near A?  
Near B?

 38.  Make a rough sketch of a contour map for the function whose 
graph is shown.
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 39.  The body mass index (BMI) of a person is defined by

Bsm, hd −
m
h2

  where m is the person’s mass (in kilograms) and h is the 
height (in meters). Draw the level curves Bsm, hd − 18.5,
Bsm, hd − 25, Bsm, hd − 30, and Bsm, hd − 40. A rough 
guideline is that a person is underweight if the BMI is less than 
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902 CHAPTER 14  Partial Derivatives

 59. f sx, yd − e2sx 21y 2dy3ssinsx 2d 1 cossy 2dd

 60. f sx, yd − cos x cos y

 61–66 Match the function (a) with its graph (labeled A–F below) 
and (b) with its contour map (labeled I–VI). Give reasons for your 
choices.

 61. z − sinsxyd 62. z − e x cos y

 63. z − sinsx 2 yd 64. z − sin x 2 sin y

 65. z − s1 2 x 2ds1 2 y 2d 66. z −
x 2 y

1 1 x 2 1 y 2

 56.  If Vsx, yd is the electric potential at a point sx, yd in the  
xy-plane, then the level curves of V are called equipotential 
curves because at all points on such a curve the electric 
potential is the same. Sketch some equipotential curves if 
Vsx, yd − cysr 2 2 x 2 2 y 2 , where c is a positive constant.

 57–60 Use a computer to graph the function using various 
domains and viewpoints. Get a printout of one that, in your 
opinion, gives a good view. If your software also produces level 
curves, then plot some contour lines of the same function and 
compare with the graph.

 57. f sx, yd − xy 2 2 x 3  (monkey saddle)

 58. f sx, yd − xy 3 2 yx 3  (dog saddle)

;
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Graphs and Contour Maps for Exercises 35–40
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 SECTION 14.2  Limits and Continuity 903

  78.  Use a computer to investigate the family of surfaces

z − sax 2 1 by 2de2x 22y 2

  How does the shape of the graph depend on the numbers a 
and b?

  79.  Use a computer to investigate the family of surfaces 
z − x 2 1 y 2 1 cxy. In particular, you should determine the 
transitional values of c for which the surface changes from 
one type of quadric surface to another.

  80.  Graph the functions

 f sx, yd − sx 2 1 y 2 

 f sx, yd − esx 21y 2 

 f sx, yd − lnsx 2 1 y 2 

 f sx, yd − sinssx 2 1 y 2 d

 and f sx, yd −
1

sx 2 1 y 2 

  In general, if t is a function of one variable, how is the 
graph of 

 f sx, yd − tssx 2 1 y 2 d

  obtained from the graph of t?

  81. (a)  Show that, by taking logarithms, the general Cobb-
Douglas function P − bL!K 12! can be expressed as

ln 
P
K

− ln b 1 ! ln 
L
K

 (b)  If we let x − lnsLyK d and y − lnsPyK d, the equation  
in part (a) becomes the linear equation y − !x 1 ln b.  
Use Table 2 (in Example 3) to make a table of values 
of lnsLyKd and lnsPyKd for the years 1899–1922. 
Then use a graphing calculator or computer to find 
the least squares regression line through the points 
slnsLyKd, lnsPyKdd.

 (c)  Deduce that the Cobb-Douglas production function is 
P − 1.01L0.75K 0.25.

;

;

;

;

67–70 Describe the level surfaces of the function.

 67. f sx, y, zd − x 1 3y 1 5z

 68. f sx, y, zd − x 2 1 3y 2 1 5z2

 69. f sx, y, zd − y 2 1 z2

 70. f sx, y, zd − x 2 2 y 2 2 z2

 71–72 Describe how the graph of t is obtained from the graph 
of f .

 71.  (a) tsx, yd − f sx, yd 1 2
 (b) tsx, yd − 2 f sx, yd
 (c) tsx, yd − 2f sx, yd
 (d) tsx, yd − 2 2 f sx, yd

 72. (a) tsx, yd − f sx 2 2, yd
 (b) tsx, yd − f sx, y 1 2d
 (c) tsx, yd − f sx 1 3, y 2 4d

 73–74 Use a computer to graph the function using various 
domains and viewpoints. Get a printout that gives a good view 
of the “peaks and valleys.” Would you say the function has a 
maxi mum value? Can you identify any points on the graph that 
you might consider to be “local maximum points”? What about 
“local minimum points”?

 73. f sx, yd − 3x 2 x 4 2 4y 2 2 10xy

 74. f sx, yd − xye2x 22y 2

 75–76 Graph the function using various domains and view-
points. Comment on the limiting behavior of the function. What 
happens as both x and y become large? What happens as sx, yd 
approaches the origin?

 75. f sx, yd −
x 1 y

x 2 1 y 2  76. f sx, yd −
xy

x 2 1 y 2

  77.  Investigate the family of functions f sx, yd − e cx 21y 2
 . How 

does the shape of the graph depend on c?

;

;

;

Let’s compare the behavior of the functions

f sx, yd −
sinsx 2 1 y 2 d

x 2 1 y 2     and    tsx, yd −
x 2 2 y 2

x 2 1 y 2

as x and y both approach 0 [and therefore the point sx, yd approaches the origin].
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904 CHAPTER 14  Partial Derivatives

Tables 1 and 2 show values of f sx, yd and tsx, yd, correct to three decimal places, for 
points sx, yd near the origin. (Notice that neither function is defined at the origin.) 
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 Table 1 Values of f sx, yd Table 2 Values of tsx, yd

It appears that as sx, yd approaches (0, 0), the values of f sx, yd are approaching 1 
whereas the values of tsx, yd aren’t approaching any number. It turns out that these 
guesses based on numerical evidence are correct, and we write

lim
s x, yd l s 0, 0d 

 
sinsx 2 1 y 2 d

x 2 1 y 2 − 1    and    lim
s x, yd l s 0, 0d 

 
x 2 2 y 2

x 2 1 y 2   does not exist

In general, we use the notation

lim
s x, yd l s a, bd 

 f sx, yd − L

to indicate that the values of f sx, yd approach the number L as the point sx, yd approaches 
the point sa, bd along any path that stays within the domain of f. In other words, we can 
make the values of f sx, yd as close to L as we like by taking the point sx, yd sufficiently 
close to the point sa, bd, but not equal to sa, bd. A more precise definition follows.

1    Definition Let f  be a function of two variables whose domain D includes 
points arbitrarily close to sa, bd. Then we say that the limit of f sx, yd as sx, yd 
approaches sa, bd is L and we write

lim 
sx, yd l sa, bd

 f sx, yd − L

if for every number « . 0 there is a corresponding number " . 0 such that

if  sx, yd [ D  and  0 , ssx 2 ad2 1 sy 2 bd2 , "  then  | f sx, yd 2 L | , «

Other notations for the limit in Definition 1 are

lim 
x l a
y l b

 f sx, yd − L    and    f sx, yd l L  as  sx, yd l sa, bd

Notice that | f sx, yd 2 L | is the distance between the numbers f sx, yd and L, and 
ssx 2 ad 2 1 sy 2 bd 2  is the distance between the point sx, yd and the point sa, bd. Thus 
Definition 1 says that the distance between f sx, yd and L can be made arbitrarily small by 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 14.2  Limits and Continuity 905

making the distance from sx, yd to sa, bd sufficiently small (but not 0). Figure 1 illustrates 
Definition 1 by means of an arrow diagram. If any small interval sL 2 «, L 1 «d is given 
around L, then we can find a disk D" with center sa, bd and radius " . 0 such that f  maps 
all the points in D" [except possibly sa, bd] into the interval sL 2 «, L 1 «d.
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Another illustration of Definition 1 is given in Figure 2 where the surface S is the 
graph of f. If « . 0 is given, we can find " . 0 such that if sx, yd is restricted to lie in the 
disk D" and sx, yd ± sa, bd, then the corresponding part of S lies between the horizontal 
planes z − L 2 « and z − L 1 «.

For functions of a single variable, when we let x approach a, there are only two pos-
sible directions of approach, from the left or from the right. We recall from Chap ter 2 that 
if limx l a2 f sxd ± limx l a1 f sxd, then limx l a f sxd 

 does not exist.
For functions of two variables the situation is not as simple because we can let sx, yd 

approach sa, bd from an infinite number of directions in any manner whatsoever (see 
Figure 3) as long as sx, yd stays within the domain of f.

Definition 1 says that the distance between f sx, yd and L can be made arbitrarily small 
by making the distance from sx, yd to sa, bd sufficiently small (but not 0). The definition 
refers only to the distance between sx, yd and sa, bd. It does not refer to the direction of 
approach. Therefore, if the limit exists, then f sx, yd must approach the same limit no 
matter how sx, yd approaches sa, bd. Thus, if we can find two different paths of approach 
along which the function f sx, yd has different limits, then it follows that limsx, yd l sa, bd f sx, yd 
does not exist.

If f sx, yd l L1 as sx, yd l sa, bd along a path C1 and f sx, yd l L2 as 
sx, yd l sa, bd along a path C2, where L1 ± L2, then limsx, yd l sa, bd f sx, yd does  
not exist.

EXAMPLE 1  Show that lim
s x, yd l s0, 0d

 
x 2 2 y 2

x 2 1 y 2  does not exist.

SOLUTION Let f sx, yd − sx 2 2 y 2 dysx 2 1 y 2 d. First let’s approach s0, 0d along the  
x-axis. Then y − 0 gives f sx, 0d − x 2yx 2 − 1 for all x ± 0, so

f sx, yd l 1    as    sx, yd l s0, 0d along the x-axis

We now approach along the y-axis by putting x − 0. Then f s0, yd −
2y 2

y 2 − 21 for all 
y ± 0, so

f sx, yd l 21    as    sx, yd l s0, 0d along the y-axis

(See Figure 4.) Since f  has two different limits along two different lines, the given limit 
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906 CHAPTER 14  Partial Derivatives

does not exist. (This confirms the conjecture we made on the basis of numerical evi- 
dence at the beginning of this section.) Q

EXAMPLE 2 If f sx, yd − xyysx 2 1 y 2 d, does lim 
sx, ydl s0, 0d

 f sx, yd exist?

SOLUTION If y − 0, then f sx, 0d − 0yx 2 − 0. Therefore

f sx, yd l 0    as    sx, yd l s0, 0d along the x-axis

If x − 0, then f s0, yd − 0yy 2 − 0, so

f sx, yd l 0    as    sx, yd l s0, 0d along the y-axis

Although we have obtained identical limits along the axes, that does not show that the 
given limit is 0. Let’s now approach s0, 0d along another line, say y − x. For all x ± 0,

f sx, xd −
x 2

x 2 1 x 2 −
1
2

Therefore f sx, yd l 1
2    as    sx, yd l s0, 0d along y − x

(See Figure 5.) Since we have obtained different limits along different paths, the given 
limit does not exist. Q

Figure 6 sheds some light on Example 2. The ridge that occurs above the line y − x
corresponds to the fact that f sx, yd − 1

2 for all points sx, yd on that line except the origin.

FIGURE 6

f(x, y)= xy
≈+¥

z y

x
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EXAMPLE 3 If f sx, yd −
xy 2

x 2 1 y 4 , does lim
s x, yd l s0, 0d 

 f sx, yd exist?

SOLUTION With the solution of Example 2 in mind, let’s try to save time by letting 
sx, yd l s0, 0d along any line through the origin. If the line is not the y-axis, then 
y − mx, where m is the slope, and

f sx, yd − f sx, mxd −
xsmxd2

x 2 1 smxd4 −
m 2x 3

x 2 1 m 4x 4 −
m 2x

1 1 m 4x 2

So f sx, yd l 0    as    sx, yd l s0, 0d along y − mx

We get the same result as sx, yd l s0, 0d along the line x − 0. Thus f  has the same 
limiting value along every line through the origin. But that does not show that the given 
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FIGURE 5
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FIGURE 5

TEC In Visual 14.2 a rotating line on 
the surface in Figure 6 shows differ-
ent limits at the origin from different 
directions.

FIGURE 6

f sx, yd −
xy

x 2 1 y 2
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 SECTION 14.2  Limits and Continuity 907

limit is 0, for if we now let sx, yd l s0, 0d along the parabola x − y 2, we have

f sx, yd − f sy 2, yd −
y 2 ? y 2

sy 2 d2 1 y 4 −
y 4

2y 4 −
1
2

so f sx, yd l 12    as    sx, yd l s0, 0d along x − y 2

Since different paths lead to different limiting values, the given limit does not exist. Q

Now let’s look at limits that do exist. Just as for functions of one variable, the calcula-
tion of limits for functions of two variables can be greatly simplified by the use of prop-
erties of limits. The Limit Laws listed in Section 2.3 can be extended to functions of two 
variables: the limit of a sum is the sum of the limits, the limit of a product is the product 
of the limits, and so on. In particular, the following equations are true.

2  lim
sx, yd l sa, bd

 x − a      lim
sx, yd l sa, bd

 y − b      lim
sx, yd l sa, bd

 c − c

The Squeeze Theorem also holds.

EXAMPLE 4 Find lim
sx, yd l s0, 0d

 
3x 2 y

x 2 1 y 2  if it exists. 

SOLUTION As in Example 3, we could show that the limit along any line through the 
origin is 0. This doesn’t prove that the given limit is 0, but the limits along the parabo-
las y − x 2 and x − y 2 also turn out to be 0, so we begin to suspect that the limit does 
exist and is equal to 0.

Let « . 0. We want to find " . 0 such that

if   0 , sx 2 1 y 2 , "  then  Z 3x 2 y
x 2 1 y 2 2 0 Z , «

that is, if   0 , sx 2 1 y 2 , "  then  
3x 2| y |
x 2 1 y 2 , «

But x 2 < x 2 1 y 2 since y 2 > 0, so x 2ysx 2 1 y 2 d < 1 and therefore

3  
3x 2| y |
x 2 1 y 2 < 3 | y | − 3sy 2 < 3sx 2 1 y 2  

Thus if we choose " − «y3 and let 0 , sx 2 1 y 2 , ", then

Z 3x 2 y
x 2 1 y 2 2 0 Z < 3sx 2 1 y 2 , 3" − 3S «

3D − «

Hence, by Definition 1,

 lim
sx, yd l s0, 0d

 
3x 2 y

x 2 1 y 2 − 0 Q

Continuity
Recall that evaluating limits of continuous functions of a single variable is easy. It can  
be accomplished by direct substitution because the defining property of a continuous

_202
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z
_202 y_0.5

0

0.5

FIGURE 7
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FIGURE 7

Figure 7 shows the graph of the func- 
tion in Example 3. Notice the ridge 
above the parabola x − y 2.

Another way to do Example 4 is to 
use the Squeeze Theorem instead of 
Definition 1. From (2) it follows that

lim 
sx, yd l s0, 0d

 3| y | − 0

and so the first inequality in (3) shows 
that the given limit is 0.
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908 CHAPTER 14  Partial Derivatives

function is limx l a f sxd − f sad. Continuous functions of two variables are also defined 
by the direct substitution property.

4  Definition A function f  of two variables is called continuous at sa, bd if

lim
sx, yd l sa, bd 

 f sx, yd − f sa, bd

We say f  is continuous on D if f  is continuous at every point sa, bd in D.

The intuitive meaning of continuity is that if the point sx, yd changes by a small 
amount, then the value of f sx, yd changes by a small amount. This means that a surface 
that is the graph of a continuous function has no hole or break.

Using the properties of limits, you can see that sums, differences, products, and quo-
tients of continuous functions are continuous on their domains. Let’s use this fact to give 
examples of continuous functions.

A polynomial function of two variables (or polynomial, for short) is a sum of 
terms of the form cxmyn, where c is a constant and m and n are nonnegative integers. A 
rational function is a ratio of polynomials. For instance,

f sx, yd − x 4 1 5x 3y 2 1 6xy 4 2 7y 1 6

is a polynomial, whereas

tsx, yd −
2xy 1 1
x 2 1 y 2

is a rational function.
The limits in (2) show that the functions f sx, yd − x, tsx, yd − y, and hsx, yd − c are 

continuous. Since any polynomial can be built up out of the simple functions f , t, and h 
by multiplication and addition, it follows that all polynomials are continuous on R 2. 
Likewise, any rational function is continuous on its domain because it is a quotient of 
continuous functions.

EXAMPLE 5 Evaluate lim
sx, yd l s1, 2d 

 sx 2y 3 2 x 3y 2 1 3x 1 2yd.

SOLUTION Since f sx, yd − x 2 y 3 2 x 3y 2 1 3x 1 2y is a polynomial, it is continuous 
everywhere, so we can find the limit by direct substitution:

 lim
sx, yd l s1, 2d 

 sx 2y 3 2 x 3y 2 1 3x 1 2yd − 12 ? 23 2 13 ? 22 1 3 ? 1 1 2 ? 2 − 11 Q

EXAMPLE 6 Where is the function f sx, yd −
x 2 2 y 2

x 2 1 y 2  continuous?

SOLUTION The function f  is discontinuous at s0, 0d because it is not defined there.  
Since f  is a rational function, it is continuous on its domain, which is the set 
D − hsx, yd | sx, yd ± s0, 0dj. Q

EXAMPLE 7 Let

tsx, yd−H
0

x 2 2 y 2

x 2 1 y 2
if

if

sx, yd ± s0, 0d

sx, yd − s0, 0d

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 14.2  Limits and Continuity 909

Here t is defined at s0, 0d but t is still discontinuous there because limsx, yd l s0, 0d tsx, yd 
does not exist (see Example 1). Q

EXAMPLE 8 Let

f sx, yd − H 3x 2 y
x 2 1 y 2 if sx, yd ± s0, 0d

0 if sx, yd − s0, 0d

We know f  is continuous for sx, yd ± s0, 0d since it is equal to a rational function there. 
Also, from Example 4, we have

lim
sx, yd l s0, 0d

  fsx, yd − lim
sx, yd l s0, 0d

 
3x 2 y

x 2 1 y 2 − 0 − f s0, 0d

Therefore f  is continuous at s0, 0d, and so it is continuous on R 2. Q

Just as for functions of one variable, composition is another way of combining two 
continuous functions to get a third. In fact, it can be shown that if f  is a continuous func-
tion of two variables and t is a continuous function of a single variable that is defined on 
the range of f , then the composite function h − t 8 f  defined by hsx, yd − ts f sx, ydd is 
also a contin uous function.

EXAMPLE 9 Where is the function hsx, yd − arctansyyxd continuous?

SOLUTION The function f sx, yd − yyx is a rational function and therefore continuous 
except on the line x − 0. The function tstd − arctan t is continuous everywhere. So the 
composite function

ts f sx, ydd − arctansyyxd − hsx, yd

is continuous except where x − 0. The graph in Figure 9 shows the break in the graph 
of h above the y-axis. Q

Functions of Three or More Variables
Everything that we have done in this section can be extended to functions of three or 
more variables. The notation

lim
sx, y, zd l sa, b, cd 

 f sx, y, zd − L

means that the values of f sx, y, zd approach the number L as the point sx, y, zd approaches 
the point sa, b, cd along any path in the domain of f. Because the distance between two 
points sx, y, zd and sa, b, cd in R 3 is given by ssx 2 ad 2 1 sy 2 bd 2 1 sz 2 cd 2 , we can 
write the precise definition as follows: for every number « . 0 there is a corresponding 
number ! . 0 such that

if sx, y, zd is in the domain of f  and 0 , ssx 2 ad 2 1 sy 2 bd 2 1 sz 2 cd 2 , !

then  | f sx, y, zd 2 L | , «

The function f  is continuous at sa, b, cd if

lim
sx, y, zd l sa, b, cd 

 f sx, y, zd − f sa, b, cd
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Figure 8 shows the graph of the 
continuous function in Example 8.
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FIGURE 9
The function h(x, y)=arctan(y/x)
is discontinuous where x=0.

FIGURE 9  
The function hsx, yd − arctansyyxd  
is discontinuous where x − 0.
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910 CHAPTER 14  Partial Derivatives

 7. lim
sx, yd l s", "y2d

 y sinsx 2 yd 8. lim
sx, yd l s3, 2d

 e s2x2y 

 9. lim
sx, yd l s0, 0d

 
x 4 2 4y 2

x 2 1 2 y 2  10. lim
sx, yd l s0, 0d

 
5y 4 cos2x
x 4 1 y 4

 11. lim
sx, ydls0, 0d

 
y 2 sin2x
x 4 1 y 4  12. lim

sx, yd l s1, 0d
 

x y 2 y
sx 2 1d2 1 y 2

 13. lim
sx, ydl s0, 0d

 
xy

sx 2 1 y 2
 14. lim

sx, yd l s0, 0d
 

x 3 2 y 3

x 2 1 xy 1 y 2

 15. lim
sx, ydl s0, 0d

 
xy 2 cos y
x 2 1 y 4  16. lim

sx, yd l s0, 0d
 

xy 4

x 4 1 y 4

 17. lim
sx, ydl s0, 0d

 
x 2 1 y 2

sx 2 1 y 2 1 1 2 1

 18. lim
sx, yd l s0, 0d

 
xy 4

x 2 1 y 8

 19. lim
sx, y, zd l s", 0, 1y3d

 e y 2

tansxzd 20. lim
sx, y, zdls0, 0, 0d

 
xy 1 yz

x 2 1 y 2 1 z2

 1.  Suppose that limsx, yd l s3, 1d f sx, yd − 6. What can you say  
about the value of f s3, 1d? What if f  is continuous?

 2.  Explain why each function is continuous or discontinuous.
 (a)  The outdoor temperature as a function of longitude,  

latitude, and time
 (b)  Elevation (height above sea level) as a function of  

longitude, latitude, and time
 (c)  The cost of a taxi ride as a function of distance traveled  

and time

 3–4 Use a table of numerical values of f sx, yd for sx, yd near the 
origin to make a conjecture about the value of the limit of f sx, yd  
as sx, yd l s0, 0d. Then explain why your guess is correct.

 3. f sx, yd −
x 2y 3 1 x 3y 2 2 5

2 2 xy
 4. f sx, yd −

2xy
x 2 1 2y 2

 5–22  Find the limit, if it exists, or show that the limit does  
not exist.

 5. lim
sx, ydls3, 2d

 sx 2 y 3 2 4y 2d 6. lim
sx, yd l s2, 21d

 
x 2y 1 xy 2

x 2 2 y 2

For instance, the function

f sx, y, zd −
1

x 2 1 y 2 1 z2 2 1

is a rational function of three variables and so is continuous at every point in R 3 except 
where x 2 1 y 2 1 z2 − 1. In other words, it is discontinuous on the sphere with center 
the origin and radius 1.

If we use the vector notation introduced at the end of Section 14.1, then we can write 
the definitions of a limit for functions of two or three variables in a single compact form 
as follows.

5    If f  is defined on a subset D of Rn, then lim x l a f sxd − L means that for every  
number « . 0 there is a corresponding number ! . 0 such that

if  x [ D  and  0 , | x 2 a | , !  then  | f sxd 2 L | , «

Notice that if n − 1, then x − x and a − a, and (5)  is just the definition of a limit for 
functions of a single variable. For the case n − 2, we have x − kx, y l, a − ka, b l,
and |x 2 a | − ssx 2 ad 2 1 sy 2 bd 2 , so (5) becomes Definition 1. If n − 3, then 
x − kx, y, z l, a − ka, b, c l, and (5) becomes the definition of a limit of a function of 
three variables. In each case the definition of continuity can be written as

 lim 
x l a

 f sxd − f sad
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 SECTION 14.3  Partial Derivatives 911

 38. f sx, yd − H
0

xy
x 2 1 xy 1 y 2 if

if

sx, yd ± s0, 0d

sx, yd − s0, 0d

 39–41 Use polar coordinates to find the limit. [If sr, #d are 
polar coordinates of the point sx, yd with r > 0, note that 
r l 01 as sx, yd l s0, 0d.]

 39. lim
sx, yd l s0, 0d 

 
x3 1 y3

x2 1 y2

 40. lim
sx, yd l s0, 0d 

 sx2 1 y2 d lnsx2 1 y2 d

 41. lim
sx, yd l s0, 0d 

 
e2x 22y 2

2 1
x 2 1 y 2

 42. At the beginning of this section we considered the function

f sx, yd −
sinsx 2 1 y 2 d

x 2 1 y 2

  and guessed on the basis of numerical evidence that 
f sx, yd l 1 as sx, yd l s0, 0d. Use polar coordinates to 
confirm the value of the limit. Then graph the function.

 43.  Graph and discuss the continuity of the function

f sx, yd − H
1

sin xy
xy

if

if

xy ± 0

xy − 0

 44.  Let

f sx, yd − H0  if y < 0  or  y > x 4

1  if 0 , y , x 4

 (a)  Show that f sx, yd l 0 as sx, yd l s0, 0d along any path 
through s0, 0d of the form y − mx a with 0 , a , 4.

 (b)  Despite part (a), show that f  is discontinuous at s0, 0d.
 (c)  Show that f  is discontinuous on two entire curves.

 45.  Show that the function f  given by f sxd − | x | is continuous 
on R n.  [Hint: Consider | x 2 a |2 − sx 2 ad ? sx 2 ad.]

 46.  If c [ Vn, show that the function f  given by f sxd − c ? x is 
continuous on R n.

;

;

 21. lim
sx, y, zd l s0, 0, 0d

 
xy 1 yz 2 1 xz 2

x 2 1 y 2 1 z 4

 22. lim
sx, y, zd l s0, 0, 0d

 
x 2 y 2z 2

x 2 1 y 2 1 z2

 23–24 Use a computer graph of the function to explain why the 
limit does not exist.

 23. lim
sx, yd l s0, 0d

 
2x 2 1 3xy 1 4y 2

3x 2 1 5y 2  24. lim
sx, yd l s0, 0d

 
xy 3

x 2 1 y6

 25–26 Find hsx, yd − ts f sx, ydd and the set of points at which h 
is continuous.

 25. tstd − t 2 1 st  ,  f sx, yd − 2x 1 3y 2 6

 26. tstd − t 1 ln t,   f sx, yd −
1 2 xy

1 1 x 2 y 2

 27–28 Graph the function and observe where it is discontinu-
ous. Then use the formula to explain what you have observed.

 27. f sx, yd − e 1ysx2yd 28. f sx, yd −
1

1 2 x 2 2 y 2

 29–38 Determine the set of points at which the function is 
continuous.

 29. Fsx, yd −
xy

1 1 e x2y  30. Fsx, yd − coss1 1 x 2 y 

 31. Fsx, yd −
1 1 x 2 1 y 2

1 2 x 2 2 y 2  32. Hsx, yd −
e x 1 e y

e xy 2 1

 33. Gsx, yd − sx 1 s1 2 x 2 2 y 2 

 34. Gsx, yd − lns1 1 x 2 yd

 35. f sx, y, zd − arcsinsx 2 1 y 2 1 z 2d

 36. f sx, y, zd − sy 2 x 2  ln z

 37. f sx, yd − H
1

x 2 y 3

2x 2 1 y 2 if

if

sx, yd ± s0, 0d

sx, yd − s0, 0d

;

;

On a hot day, extreme humidity makes us think the temperature is higher than it really  
is, whereas in very dry air we perceive the temperature to be lower than the thermom- 
eter indicates. The National Weather Service has devised the heat index (also called the 
temperature-humidity index, or humidex, in some countries) to describe the combined 
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912 CHAPTER 14  Partial Derivatives

effects of temperature and humidity. The heat index I is the perceived air tempera-
ture when the actual temperature is T  and the relative humidity is H. So I is a function of 
T  and H and we can write I − f sT, H d. The following table of values of I is an excerpt 
from a table compiled by the National Weather Service.

Table 1 Heat index I as a function of temperature and humidity

7et1403t01
04/28/10
MasterID: 01568

T H
Relative humidity (%)

Actual
temperature

(°F)

90

92

94

96

98

100

50 55 60 65 70 75 80 85 90

96

100

104

109

114

119

98

103

107

113

118

124

100

105

111

116

123

129

103

108

114

121

127

135

106

112

118

125

133

141

109

115

122

130

138

147

112

119

127

135

144

154

115

123

132

141

150

161

119

128

137

146

157

168

If we concentrate on the highlighted column of the table, which corresponds to a rela-
tive humidity of H − 70%, we are considering the heat index as a function of the single 
variable T  for a fixed value of H. Let’s write tsT d − f sT, 70d. Then tsT d de scribes how 
the heat index I increases as the actual temperature T  increases when the relative humid-
ity is 70%. The derivative of t when T − 968F is the rate of change of I with respect to 
T  when T − 968F:

t9s96d − lim
h l 0

 
ts96 1 hd 2 ts96d

h
− lim

h l 0
 
 f s96 1 h, 70d 2 f s96, 70d

h

We can approximate t9s96d using the values in Table 1 by taking h − 2 and 22:

 t9s96d <
ts98d 2 ts96d

2
−

 f s98, 70d 2 f s96, 70d
2

−
133 2 125

2
− 4

 t9s96d <
ts94d 2 ts96d

22
−

 f s94, 70d 2 f s96, 70d
22

−
118 2 125

22
− 3.5

Averaging these values, we can say that the derivative t9s96d is approximately 3.75. This 
means that, when the actual temperature is 968F and the relative humidity is 70%, the 
apparent temperature (heat index) rises by about 3.758F for every degree that the actual 
temperature rises!

Now let’s look at the highlighted row in Table 1, which corresponds to a fixed temper-
a ture of T − 968F. The numbers in this row are values of the function GsH d − f s96, H d, 
which describes how the heat index increases as the relative humidity H increases when 
the actual temperature is T − 968F. The derivative of this function when H − 70% is  
the rate of change of I with respect to H when H − 70%:

G9s70d − lim
h l 0

 
Gs70 1 hd 2 Gs70d

h
− lim

h l 0
 
 f s96, 70 1 hd 2 f s96, 70d

h
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 SECTION 14.3  Partial Derivatives 913

By taking h − 5 and 25, we approximate G9s70d using the tabular values:

 G9s70d <
Gs75d 2 Gs70d

5
−

 f s96, 75d 2 f s96, 70d
5

−
130 2 125

5
− 1

 G9s70d <
Gs65d 2 Gs70d

25
−

 f s96, 65d 2 f s96, 70d
25

−
121 2 125

25
− 0.8

By averaging these values we get the estimate G9s70d < 0.9. This says that, when the 
temperature is 968F and the relative humidity is 70%, the heat index rises about 0.98F for 
every percent that the relative humidity rises.

In general, if f  is a function of two variables x and y, suppose we let only x vary while 
keeping y fixed, say y − b, where b is a constant. Then we are really considering a func-
tion of a single variable x, namely, tsxd − f sx, bd. If t has a derivative at a, then we call 
it the partial derivative of f  with respect to x at sa, bd and denote it by fxsa, bd. Thus

1   fxsa, bd − t9sad    where    tsxd − f sx, bd 

By the definition of a derivative, we have

t9sad − lim
h l 0

 
tsa 1 hd 2 tsad

h

and so Equation 1 becomes

2   fxsa, bd − lim
h l 0

 
 f sa 1 h, bd 2 f sa, bd

h
 

Similarly, the partial derivative of f  with respect to y at sa, bd, denoted by fysa, bd, is 
obtained by keeping x fixed sx − ad and finding the ordinary derivative at b of the func-
tion Gsyd − f sa, yd:

3   fysa, bd − lim
h l 0

 
 f sa, b 1 hd 2 f sa, bd

h
 

With this notation for partial derivatives, we can write the rates of change of the heat 
index I with respect to the actual temperature T  and relative humidity H when T − 968F 
and H − 70% as follows:

fTs96, 70d < 3.75      fHs96, 70d < 0.9

If we now let the point sa, bd vary in Equations 2 and 3, fx and fy become functions of 
two variables.
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914 CHAPTER 14  Partial Derivatives

4    If f  is a function of two variables, its partial derivatives are the functions fx 
and fy defined by

 fxsx, yd − lim
h l 0

 
 f sx 1 h, yd 2 f sx, yd

h

 fysx, yd − lim
h l 0

 
 f sx, y 1 hd 2 f sx, yd

h

There are many alternative notations for partial derivatives. For instance, instead of  
fx we can write f1 or D1 f  (to indicate differentiation with respect to the first variable) or 
−fy−x. But here −fy−x can’t be interpreted as a ratio of differentials.

Notations for Partial Derivatives If z − f sx, yd, we write

  fxsx, yd − fx −
−f
−x

−
−

−x
 f sx, yd −

−z
−x

− f1 − D1 f − Dx f

  fysx, yd − fy −
−f
−y

−
−

−y
 f sx, yd −

−z
−y

− f2 − D2 f − Dy f

To compute partial derivatives, all we have to do is remember from Equation 1 that  
the partial derivative with respect to x is just the ordinary derivative of the function t of 
a single variable that we get by keeping y fixed. Thus we have the following rule.

Rule for Finding Partial Derivatives of  z − f sx, yd

1.  To find fx, regard y as a constant and differentiate f sx, yd with respect to x.

2. To find fy, regard x as a constant and differentiate f sx, yd with respect to y.

EXAMPLE 1 If f sx, yd − x 3 1 x 2 y 3 2 2y 2, find fxs2, 1d and fys2, 1d.

SOLUTION Holding y constant and differentiating with respect to x, we get

fxsx, yd − 3x 2 1 2xy 3

and so

fxs2, 1d − 3 ? 22 1 2 ? 2 ? 13 − 16

Holding x constant and differentiating with respect to y, we get

 fysx, yd − 3x 2 y 2 2 4y

 fys2, 1d − 3 ? 22 ? 12 2 4 ? 1 − 8 Q
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 SECTION 14.3  Partial Derivatives 915

Interpretations of Partial Derivatives
To give a geometric interpretation of partial derivatives, we recall that the equation 
z − f sx, yd represents a surface S (the graph of f ). If f sa, bd − c, then the point Psa, b, cd 
lies on S. By fixing y − b, we are restricting our attention to the curve C1 in which the 
ver tical plane y − b intersects S. (In other words, C1 is the trace of S in the plane y − b.d 
Likewise, the vertical plane x − a intersects S in a curve C2. Both of the curves C1 and 
C2 pass through the point P. (See Figure 1.)

Note that the curve C1 is the graph of the function tsxd − f sx, bd, so the slope of its tan- 
gent T1 at P is t9sad − fxsa, bd. The curve C2 is the graph of the function Gsyd − f sa, yd, 
so the slope of its tangent T2 at P is G9sbd − fysa, bd.

Thus the partial derivatives fxsa, bd and fy sa, bd can be interpreted geometrically as 
the slopes of the tangent lines at Psa, b, cd to the traces C1 and C2 of S in the planes y − b 
and x − a.

As we have seen in the case of the heat index function, partial derivatives can also be 
interpreted as rates of change. If z − f sx, yd, then −zy−x represents the rate of change of 
z with respect to x when y is fixed. Similarly, −zy−y represents the rate of change of z with 
respect to y when x is fixed.

EXAMPLE 2 If f sx, yd − 4 2 x 2 2 2y 2, find fxs1, 1d and fys1, 1d and interpret these 
numbers as slopes.

SOLUTION We have

 fxsx, yd − 22x       fysx, yd − 24y

  fxs1, 1d − 22        fys1, 1d − 24

The graph of f  is the paraboloid z − 4 2 x 2 2 2y 2 and the vertical plane y − 1 inter- 
sects it in the parabola z − 2 2 x 2, y − 1. (As in the preceding discussion, we label it 
C1 in Figure 2.) The slope of the tangent line to this parabola at the point s1, 1, 1d is 
fxs1, 1d − 22. Similarly, the curve C2 in which the plane x − 1 intersects the parabo-
loid is the parabola z − 3 2 2y 2, x − 1, and the slope of the tangent line at s1, 1, 1d is 
fys1, 1d − 24. (See Figure 3.) 
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FIGURE 1
The partial derivatives of f at (a, b) are
the slopes of the tangents to C¡  and C™.
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FIGURE 1  
The partial derivatives of f  at sa, bd are 
the slopes of the tangents to C1 and C2.
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916 CHAPTER 14  Partial Derivatives

Figure 4 is a computer-drawn counterpart to Figure 2. Part (a) shows the plane y − 1 
intersecting the surface to form the curve C1 and part (b) shows C1 and T1. [We have used 
the vector equations rstd − k t, 1, 2 2 t 2 l for C1 and rstd − k1 1 t, 1, 1 2 2t l for T1.] 
Similarly, Figure 5 corresponds to Figure 3.

FIGURE 4

FIGURE 5
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EXAMPLE 3 In Exercise 14.1.39 we defined the body mass index of a person as

Bsm, hd −
m
h2

Calculate the partial derivatives of B for a young man with m − 64 kg and h − 1.68 m 
and interpret them.

SOLUTION Regarding h as a constant, we see that the partial derivative with respect to 
m is

−B
−m

 sm, hd −
−

−m
 Sm

h2D −
1
h2

so  
−B
−m

 s64, 1.68d −
1

s1.68d2  < 0.35 skgym2dykg 

This is the rate at which the man’s BMI increases with respect to his weight when he 
weighs 64 kg and his height is 1.68 m. So if his weight increases by a small amount, 
one kilogram for instance, and his height remains unchanged, then his BMI will 
increase by about 0.35.

FIGURE 4

FIGURE 5
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 SECTION 14.3  Partial Derivatives 917

Now we regard m as a constant. The partial derivative with respect to h is

−B
−h

 sm, hd −
−

−h
 Sm

h2D − mS2
2
h3D − 2

2m
h3

so  
−B
−h

 s64, 1.68d − 2
2 ? 64
s1.68d3  < 227 skgym2dym 

This is the rate at which the man’s BMI increases with respect to his height when he 
weighs 64 kg and his height is 1.68 m. So if the man is still growing and his weight 
stays unchanged while his height increases by a small amount, say 1 cm, then his BMI 
will decrease by about 27s0.01d − 0.27. Q

EXAMPLE 4 If f sx, yd − sinS x
1 1 yD, calculate 

−f
−x

 and 
−f
−y

.

SOLUTION Using the Chain Rule for functions of one variable, we have

 
−f
−x

− cosS x
1 1 yD ?

−

−x
 S x

1 1 yD − cosS x
1 1 yD ?

1
1 1 y

  
−f
−y

− cosS x
1 1 yD ?

−

−y
 S x

1 1 yD − 2cosS x
1 1 yD ?

x
s1 1 yd2  Q

EXAMPLE 5 Find −zy−x and −zy−y if z is defined implicitly as a function of x and y by 
the equation

x 3 1 y 3 1 z3 1 6xyz − 1

SOLUTION To find −zy−x, we differentiate implicitly with respect to x, being careful to 
treat y as a constant:

3x 2 1 3z2 
−z
−x

1 6yz 1 6xy 
−z
−x

− 0

Solving this equation for −zy−x, we obtain

−z
−x

− 2
x 2 1 2yz
z 2 1 2xy

Similarly, implicit differentiation with respect to y gives

 
−z
−y

− 2
y 2 1 2xz
z 2 1 2xy

 Q

Functions of More Than Two Variables
Partial derivatives can also be defined for functions of three or more variables. For  
example, if f  is a function of three variables x, y, and z, then its partial derivative with 
respect to x is defined as

fxsx, y, zd − lim
h l 0

 
 f sx 1 h, y, zd 2 f sx, y, zd

h

and it is found by regarding y and z as constants and differentiating f sx, y, zd with respect 
to x. If w − f sx, y, zd, then fx − −wy−x can be interpreted as the rate of change of w with

Some computer software can plot 
surfaces defined by implicit equations 
in three variables. Figure 6 shows such 
a plot of the surface defined by the 
equation in Example 5.

FIGURE 6
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918 CHAPTER 14  Partial Derivatives

respect to x when y and z are held fixed. But we can’t interpret it geometrically because 
the graph of f  lies in four-dimensional space.

In general, if u is a function of n variables, u − f sx1, x2, . . . , xn d, its partial deriva tive 
with respect to the ith variable xi is

−u
−xi

− lim
h l 0

 f sx1, . . . , xi21, xi 1 h, xi11, . . . , xn d 2 f sx1, . . . , xi , . . . , xnd
h

and we also write
−u
−xi

−
−f
−xi

− fxi − fi − Di f

EXAMPLE 6 Find fx, fy, and fz if f sx, y, zd − ex y ln z.

SOLUTION Holding y and z constant and differentiating with respect to x, we have

fx − yex y ln z

Similarly, fy − xex y ln z    and    fz −
exy

z
 Q

Higher Derivatives
If f  is a function of two variables, then its partial derivatives fx and fy are also functions 
of two variables, so we can consider their partial derivatives s fx dx, s fx dy, s fy dx, and s fy dy, 
which are called the second partial derivatives of f. If z − f sx, yd, we use the following 
notation:

 s fx dx − fxx − f11 −
−

−x
 S −f

−xD −
−2f
−x 2 −

−2z
−x 2

 s fx dy − fxy − f12 −
−

−y
 S −f

−xD −
−2f

−y −x
−

−2z
−y −x

 s fy dx − fyx − f21 −
−

−x
 S −f

−yD −
−2f

−x −y
−

−2z
−x −y

 s fy dy − fyy − f22 −
−

−y
 S −f

−yD −
−2f
−y 2 −

−2z
−y 2

Thus the notation fx y (or −2fy−y −x) means that we first differentiate with respect to x and 
then with respect to y, whereas in computing fyx the order is reversed.

EXAMPLE 7 Find the second partial derivatives of

f sx, yd − x 3 1 x 2 y 3 2 2y 2

SOLUTION In Example 1 we found that

fxsx, yd − 3x 2 1 2xy 3      fysx, yd − 3x 2 y 2 2 4y

Therefore

   fxx −
−

−x
 s3x 2 1 2xy 3 d − 6x 1 2y 3       fxy −

−

−y
 s3x 2 1 2xy 3 d − 6xy 2

   fyx −
−

−x
 s3x 2 y 2 2 4yd − 6xy 2        fyy −

−

−y
 s3x 2 y 2 2 4yd − 6x 2 y 2 4 Q
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Notice that fx y − fyx in Example 7. This is not just a coincidence. It turns out that the 
mixed partial derivatives fx y and fyx are equal for most functions that one meets in prac-
tice. The following theorem, which was discovered by the French mathematician Alexis 
Clairaut (1713–1765), gives conditions under which we can assert that fx y − fyx. The 
proof is given in Appendix F.

Clairaut’s Theorem Suppose f  is defined on a disk D that contains the point 
sa, bd. If the functions fx y and fyx are both continuous on D, then

fx ysa, bd − fyxsa, bd

Clairaut
Alexis Clairaut was a child prodigy in 
mathematics: he read l’Hospital’s text-
book on calculus when he was ten 
and presented a paper on geometry 
to the French Academy of Sciences 
when he was 13. At the age of 18, 
Clairaut published Recherches sur les 
courbes à double courbure, which was 
the first systematic treatise on three-
dimensional analytic geometry and 
included the calculus of space curves.

Partial derivatives of order 3 or higher can also be defined. For instance,

fx yy − s fx y dy −
−

−y
 S −2f

−y −xD −
−3f

−y 2 −x

Figure 7 shows the graph of the 
function f  in Example 7 and the 
graphs of its first- and second-order 
partial derivatives for 22 < x < 2, 
22 < y < 2. Notice that these graphs 
are consistent with our interpreta-
tions of fx and fy as slopes of tangent 
lines to traces of the graph of f. For 
in stance, the graph of f  decreases if 
we start at s0, 22d and move in the 
positive x-direction. This is reflected 
in the negative values of fx. You should 
compare the graphs of fyx and fyy with 
the graph of fy to see the relationships.

FIGURE 7
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920 CHAPTER 14  Partial Derivatives

and using Clairaut’s Theorem it can be shown that fx yy − fyx y − fyyx if these functions are 
continuous.

EXAMPLE 8 Calculate fxx yz if f sx, y, zd − sins3x 1 yzd.

SOLUTION  fx − 3 coss3x 1 yzd

 fxx − 29 sins3x 1 yzd

 fxx y − 29z coss3x 1 yzd

   fxx yz − 29 coss3x 1 yzd 1 9yz sins3x 1 yzd Q

Partial Differential Equations
Partial derivatives occur in partial differential equations that express certain physical 
laws. For instance, the partial differential equation

−2u
−x 2 1

−2u
−y 2 − 0

is called Laplace’s equation after Pierre Laplace (1749–1827). Solutions of this equa -
tion are called harmonic functions; they play a role in problems of heat conduction, 
fluid flow, and electric potential.

EXAMPLE 9 Show that the function usx, yd − ex sin y is a solution of Laplace’s equation. 

SOLUTION We first compute the needed second-order partial derivatives:

 ux − ex sin y        uy − ex cos y

 uxx − ex sin y        uyy − 2ex sin y

So  uxx 1 uyy − ex sin y 2 ex sin y − 0 

Therefore u satisfies Laplace’s equation. Q

The wave equation

−2u
−t 2 − a2 

−2u
−x 2

describes the motion of a waveform, which could be an ocean wave, a sound wave, a 
light wave, or a wave traveling along a vibrating string. For instance, if usx, td represents 
the displacement of a vibrating violin string at time t and at a distance x from one end of 
the string (as in Figure 8), then usx, td satisfies the wave equation. Here the constant a 
depends on the density of the string and on the tension in the string.

EXAMPLE 10 Verify that the function usx, td − sinsx 2 atd satisfies the wave equation.

SOLUTION  ux − cossx 2 atd  ut − 2a cossx 2 atd

 uxx − 2sinsx 2 atd        utt − 2a 2 sinsx 2 atd − a 2uxx

So u satisfies the wave equation. Q

7et140308
04/29/10
MasterID: 01576

FIGURE 8

u(x, t)
x

FIGURE 8
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 SECTION 14.3  Partial Derivatives 921

Partial differential equations involving functions of three variables are also very 
important in science and engineering. The three-dimensional Laplace equation is

5   
−2u
−x 2 1

−2u
−y 2 1

−2u
−z 2 − 0 

and one place it occurs is in geophysics. If usx, y, zd represents magnetic field strength at 
position sx, y, zd, then it satisfies Equation 5. The strength of the magnetic field indicates 
the distribution of iron-rich minerals and reflects different rock types and the location of 
faults. Figure 9 shows a contour map of the earth’s magnetic field as recorded from an 
aircraft carrying a magnetometer and flying 200 m above the surface of the ground. The 
contour map is enhanced by color-coding of the regions between the level curves.
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Figure 10 shows a contour map for the second-order partial derivative of u in the ver-
tical direction, that is, uzz. It turns out that the values of the partial derivatives uxx and uyy 
are relatively easily measured from a map of the magnetic field. Then values of uzz can 
be calculated from Laplace’s equation (5).
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FIGURE 9 
Magnetic field strength of the earth

FIGURE 10 
Second vertical derivative  

of the magnetic field
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922 CHAPTER 14  Partial Derivatives

The Cobb-Douglas Production Function
In Example 14.1.3 we described the work of Cobb and Douglas in modeling the total 
production P of an economic system as a function of the amount of labor L and the 
capital investment K. Here we use partial derivatives to show how the particular form of 
their model follows from certain assumptions they made about the economy.

If the production function is denoted by P − PsL, Kd, then the partial derivative 
−Py−L is the rate at which production changes with respect to the amount of labor. Econ-
omists call it the marginal production with respect to labor or the marginal productivity 
of labor. Likewise, the partial derivative −Py−K is the rate of change of production with 
respect to capital and is called the marginal productivity of capital. In these terms, the 
assumptions made by Cobb and Douglas can be stated as follows.

 (i) If either labor or capital vanishes, then so will production.

 (ii)  The marginal productivity of labor is proportional to the amount of production 
per unit of labor.

 (iii)  The marginal productivity of capital is proportional to the amount of produc-
tion per unit of capital.

Because the production per unit of labor is PyL, assumption (ii) says that

−P
−L

− ! 
P
L

for some constant !. If we keep K constant sK − K0 d, then this partial differential equa-
tion becomes an ordinary differential equation:

6   
dP
dL

− ! 
P
L

 

If we solve this separable differential equation by the methods of Section 9.3 (see also 
Exercise 85), we get

7   PsL, K0 d − C1sK0 dL! 

Notice that we have written the constant C1 as a function of K0 because it could depend 
on the value of K0.

Similarly, assumption (iii) says that

−P
−K

− " 
P
K

and we can solve this differential equation to get

8   PsL0, Kd − C2sL0 dK" 

Comparing Equations 7 and 8, we have

9   PsL, Kd − bL!K" 
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 SECTION 14.3  Partial Derivatives 923

 1.  The temperature T (in 8Cd at a location in the Northern Hemi-
sphere depends on the longitude x, latitude y, and time t, so we 
can write T − f sx, y, td. Let’s measure time in hours from the 
beginning of January.

 (a)  What are the meanings of the partial derivatives −Ty−x,
−Ty−y, and −Ty−t?

 (b)  Honolulu has longitude 158°W and latitude 21°N. Sup-
pose that at 9:00 am on January 1 the wind is blowing hot 
air to the northeast, so the air to the west and south is warm 
and the air to the north and east is cooler. Would you expect 
fxs158, 21, 9d, fys158, 21, 9d, and fts158, 21, 9d to be posi-
tive or negative? Explain.

 2.  At the beginning of this section we discussed the function 
I − f sT, H d, where I is the heat index, T is the temperature,  
and H is the relative humidity. Use Table 1 to estimate 
fT s92, 60d and fH s92, 60d. What are the practical interpretations 
of these values?

 3.  The wind-chill index W is the perceived temperature when the 
actual temperature is T and the wind speed is v, so we can write 
W − f sT, vd. The following table of values is an excerpt from 
Table 1 in Section 14.1.
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tu

re
 (
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) 70
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30

37

44

Wind speed (km /h)

 (a)  Estimate the values of fT s215, 30d and fvs215, 30d. What 
are the practical interpretations of these values?

 (b)  In general, what can you say about the signs of −Wy−T  
and −Wy−v?

 (c) What appears to be the value of the following limit?

lim
v l `

 
−W
−v

 4.  The wave heights h in the open sea depend on the speed v  
of the wind and the length of time t that the wind has been 
blowing at that speed. Values of the function h − f sv, td are 
recorded in feet in the following table.
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2
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2

5

9
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 (a)  What are the meanings of the partial derivatives −hy−v  
and −hy−t?

 (b)  Estimate the values of fvs40, 15d and fts40, 15d. What are 
the practical interpretations of these values?

 (c) What appears to be the value of the following limit?

lim
t l `

 
−h
−t

where b is a constant that is independent of both L and K. Assumption (i) shows that 
! . 0 and " . 0.

Notice from Equation 9 that if labor and capital are both increased by a factor m, then

PsmL, mKd − bsmLd!smKd" − m!1"bL!K" − m!1"PsL, Kd

If ! 1 " − 1, then PsmL, mKd − mPsL, Kd, which means that production is also 
increased by a factor of m. That is why Cobb and Douglas assumed that ! 1 " − 1 and 
therefore

PsL, Kd − bL!K 12!

This is the Cobb-Douglas production function that we discussed in Section 14.1.
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924 CHAPTER 14  Partial Derivatives

 10.  A contour map is given for a function f. Use it to estimate 
fxs2, 1d and fys2, 1d.
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 11.  If f sx, yd − 16 2 4x 2 2 y 2, find fxs1, 2d and fys1, 2d and 
interpret these numbers as slopes. Illustrate with either hand-
drawn sketches or computer plots.

 12.  If f sx, yd − s4 2 x 2 2 4y 2 , find fxs1, 0d and fys1, 0d and 
inter pret these numbers as slopes. Illustrate with either hand-
drawn sketches or computer plots.

 13–14 Find fx and fy and graph f , fx, and fy with domains and  
viewpoints that enable you to see the relationships between them.

 13. f sx, yd − x 2y3 14. f sx, yd −
y

1 1 x 2y2

 15–40 Find the first partial derivatives of the function.

 15. f sx, yd − x 4 1 5xy 3 16. f sx, yd − x 2y 2 3y 4

 17. f sx, td − t 2e2x  18. f sx, td − s3x 1 4t   

 19. z − lnsx 1 t 2d 20. z − x sinsxyd

 21. f sx, yd −
x
y

 22. f sx, yd −
x

sx 1 yd2

 23. f sx, yd −
ax 1 by
cx 1 dy

 24. w −
ev

u 1 v 2

 25. tsu, vd − su 2v 2 v 3d5 26. usr, #d − sinsr cos #d

 27. Rsp, qd − tan21spq 2d 28. f sx, yd − x y

 29. Fsx, yd − yx

y
 cosse td dt 30. Fs!, "d − y"

!
 st 3 1 1

 
 dt

 31. f sx, y, zd − x 3 yz 2 1 2yz 32. f sx, y, zd − xy 2e2xz

 33. w − lnsx 1 2y 1 3zd 34. w − y tansx 1 2zd

 35. p − st 4 1 u 2 cos v  36. u − x yyz

 37. hsx, y, z, td − x 2y cosszytd 38. $sx, y, z, td −
!x 1 "y 2

%z 1 &t 2

 39. u − sx 2
1 1 x 2

2 1 ∙ ∙ ∙ 1 x 2
n 

 40. u − sinsx1 1 2x2 1 ∙ ∙ ∙ 1 nxn d

 41–44 Find the indicated partial derivative.

 41. Rss, td − te syt;   Rt s0, 1d

;

 5  –8 Determine the signs of the partial derivatives for the  
function f  whose graph is shown.
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1x
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z
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 5.  (a) fxs1, 2d (b) fys1, 2d

 6. (a) fxs21, 2d (b) fys21, 2d

 7. (a) fxxs21, 2d (b) fyys21, 2d

 8. (a) fxys1, 2d (b) fxys21, 2d

 9.  The following surfaces, labeled a, b, and c, are graphs of a 
function f  and its partial derivatives fx and fy . Identify each 
surface and give reasons for your choices.
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 SECTION 14.3  Partial Derivatives 925

 70. u − x a y bz c;  
−6u

−x −y 2 −z 3

 71.  If f sx, y, zd − xy 2z3 1 arcsinsxsz
 
d, find fxzy.  

[Hint: Which order of differentiation is easiest?]

 72.  If tsx, y, zd − s1 1 xz 1 s1 2 xy , find txyz. [Hint: Use a 
different order of differentiation for each term.]

 73.  Use the table of values of f sx, yd to estimate the values of 
fxs3, 2d, fxs3, 2.2d, and fxys3, 2d.
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 74.  Level curves are shown for a function f. Determine whether  
the following partial derivatives are positive or negative at the 
point P.

 (a) fx (b) fy (c) fxx

 (d) fxy (e) fyy
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 75.  Verify that the function u − e2!2k 2 t sin kx is a solution of the 
heat conduction equation ut − !2uxx.

 76.  Determine whether each of the following functions is a  
solution of Laplace’s equation uxx 1 uyy − 0.

 (a) u − x 2 1 y 2 (b) u − x 2 2 y 2

 (c) u − x 3 1 3xy 2 (d) u − ln sx 2 1 y 2 

 (e) u − sin x cosh y 1 cos x sinh y
 (f) u − e2x cos y 2 e2y cos x

 77.  Verify that the function u − 1ysx 2 1 y 2 1 z 2  is a solution of 
the three-dimensional Laplace equation uxx 1 u yy 1 uzz − 0.

 78.  Show that each of the following functions is a solution of the 
wave equation ut t − a 2uxx.

 (a) u − sinskxd sinsaktd (b) u − tysa 2t 2 2 x 2 d
 (c) u − sx 2 atd6 1 sx 1 atd6

 (d) u − sinsx 2 atd 1 lnsx 1 atd

 79.  If f  and t are twice differentiable functions of a single vari-
able, show that the function

usx, td − f sx 1 atd 1 tsx 2 atd

 is a solution of the wave equation given in Exercise 78.

 42. f sx, yd − y sin21sxyd;   fy (1, 12)

 43. f sx, y, zd − ln 
1 2 sx 2 1 y 2 1 z 2 

1 1 sx 2 1 y 2 1 z 2 
 ;   fy s1, 2, 2d

 44. f sx, y, zd − x yz;  fz se, 1, 0d

 45–46 Use the definition of partial derivatives as limits (4) to find 
fxsx, yd and fysx, yd.

 45. f sx, yd − xy 2 2 x 3y 46. f sx, yd −
x

x 1 y 2

 47–50 Use implicit differentiation to find −zy−x and −zy−y.

 47. x 2 1 2y 2 1 3z2 − 1 48. x 2 2 y 2 1 z 2 2 2z − 4

 49. e z − xyz 50. yz 1 x ln y − z2

51–52 Find −zy−x and −zy−y.

 51. (a) z − f sxd 1 tsyd (b) z − f sx 1 yd

 52.  (a) z − f sxdtsyd (b) z − f sxyd
 (c) z − f sxyyd

53–58 Find all the second partial derivatives.

 53. f sx, yd − x 4y 2 2x 3y 2 54. f sx, yd − lnsax 1 byd

 55. z −
y

2x 1 3y
 56. T − e22r cos #

 57. v − sinss 2 2 t 2d 58. w − s1 1 uv 2 

 59–62 Verify that the conclusion of Clairaut’s Theorem holds, that 
is, ux y − uyx.

 59. u − x 4y 3 2 y 4 60. u − e xy sin y

 61. u − cossx 2yd 62. u − lnsx 1 2yd

63–70 Find the indicated partial derivative(s).

 63. f sx, yd − x 4y 2 2 x 3y;   fxxx,   fxyx

 64. f sx, yd − sins2x 1 5yd;  fyxy

 65. f sx, y, zd − exyz 2
;   fxyz

 66. tsr, s, td − e r sinsstd;  trst

 67. W − su 1 v 2 ;   
− 3W

−u 2 −v

 68. V − lnsr 1 s 2 1 t 3d;  
− 3V

−r −s −t

 69. w −
x

y 1 2z
;  

− 3w
−z −y −x

,  
− 3w

−x 2 −y
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 87.  The van der Waals equation for n moles of a gas is

SP 1
n 2a
V 2  DsV 2 nbd − nRT

  where P is the pressure, V is the volume, and T is the tempera-
ture of the gas. The constant R is the universal gas constant  
and a and b are positive constants that are characteristic of a 
particular gas. Calculate −Ty−P and −Py−V.

 88.  The gas law for a fixed mass m of an ideal gas at absolute 
temperature T, pressure P, and volume V is PV − mRT, where 
R is the gas constant. Show that

−P
−V

 
−V
−T

 
−T
−P

− 21

 89. For the ideal gas of Exercise 88, show that

T
−P
−T

 
−V
−T

− mR

 90.  The wind-chill index is modeled by the function

W − 13.12 1 0.6215T 2 11.37v 0.16 1 0.3965Tv 0.16 

  where T is the temperature s°Cd and v is the wind speed 
skmyhd. When T − 215°C and v − 30 kmyh, by how much 
would you expect the apparent temperature W to drop if the  
actual temperature decreases by 1°C? What if the wind speed 
increases by 1 kmyh?

 91.  A model for the surface area of a human body is given by the 
function

S − f sw, hd − 0.1091w0.425h0.725

  where w is the weight (in pounds), h is the height (in inches), 
and S is measured in square feet. Calculate and interpret the 
partial derivatives.

 (a) 
−S
−w

 s160, 70d  (b) 
−S
−h

 s160, 70d

 92.  One of Poiseuille’s laws states that the resistance of blood flow-
ing through an artery is

R − C 
L
r 4

  where L and r are the length and radius of the artery and C is 
a positive constant determined by the viscosity of the blood. 
Calculate −Ry−L and −Ry−r and interpret them.

 93.  In the project on page 344 we expressed the power needed by a 
bird during its flapping mode as

Psv, x, md − Av 3 1
Bsmtyxd2

v

  where A and B are constants specific to a species of bird, v is 
the velocity of the bird, m is the mass of the bird, and x is the 
fraction of the flying time spent in flapping mode. Calculate 
−Py−v, −Py−x, and −Py−m and interpret them.

 80.  If u − e a1x11a2 x21 ∙ ∙ ∙1an xn, where a 2
1 1 a 2

2 1 ∙ ∙ ∙ 1 a 2
n − 1,  

show that

−2u
−x 2

1
1

−2u
−x 2

2
1 ∙ ∙ ∙ 1

−2u
−x 2

n
− u

 81.  The diffusion equation

−c
−t

− D 
−2c
−x 2

  where D is a positive constant, describes the diffusion of heat 
through a solid, or the concentration of a pollutant at time t at 
a distance x from the source of the pollution, or the invasion of 
alien species into a new habitat. Verify that the function

csx, td −
1

s4'Dt 
 e2x 2ys4Dtd

 is a solution of the diffusion equation.

 82.  The temperature at a point sx, yd on a flat metal plate is given 
by Tsx, yd − 60ys1 1 x 2 1 y 2 d, where T is measured in 8C 
and x, y in meters. Find the rate of change of temper ature with 
respect to distance at the point s2, 1d in (a) the x-direction and 
(b) the y-direction.

 83.  The total resistance R produced by three conductors with resis-
tances R1, R2, R3 connected in a parallel electrical circuit is 
given by the formula

1
R

−
1
R1

1
1
R2

1
1
R3

 Find −Ry−R1.

 84.  Show that the Cobb-Douglas production function P − bL!K " 
satisfies the equation

L 
−P
−L

1 K 
−P
−K

− s! 1 "dP

 85.  Show that the Cobb-Douglas production function satisfies 
PsL, K0 d − C1sK0 dL! by solving the differential equation

dP
dL

− ! 
P
L

 (See Equation 6.)

 86.  Cobb and Douglas used the equation PsL, Kd − 1.01L 0.75K 0.25 
to model the American economy from 1899 to 1922, where L  
is the amount of labor and K is the amount of capital. (See 
Example 14.1.3.)

 (a) Calculate PL and PK.
 (b)  Find the marginal productivity of labor and the marginal 

productivity of capital in the year 1920, when L − 194 and 
K − 407 (compared with the assigned values L − 100 and 
K − 100 in 1899). Interpret the results.

 (c)  In the year 1920, which would have benefited production 
more, an increase in capital investment or an increase in 
spending on labor?
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 (b) Find −Ty−t. What is its physical significance?
 (c)  Show that T satisfies the heat equation Tt − kTxx for a 

certain constant k.
 (d)  If ( − 0.2, T0 − 0, and T1 − 10, use a computer to  

graph Tsx, td.
 (e)  What is the physical significance of the term 2(x in 

the expression sins)t 2 (xd?

 101.  Use Clairaut’s Theorem to show that if the third-order 
partial derivatives of f  are continuous, then

fx yy − fyx y − fyyx

 102. (a)  How many nth-order partial derivatives does a func-
tion of two variables have?

 (b)  If these partial derivatives are all continuous, how 
many of them can be distinct?

 (c)  Answer the question in part (a) for a function of three  
variables.

 103.  If

 f sx, yd − xsx 2 1 y 2 d23y2e sinsx 2 yd 

   find fxs1, 0d. [Hint: Instead of finding fxsx, yd first, note 
that it’s easier to use Equation 1 or Equation 2.]

 104. If f sx, yd − s3 x 3 1 y 3 , find fxs0, 0d.

 105. Let

f sx, yd − H
0

x 3y 2 xy 3

x 2 1 y 2
if

if

sx, yd ± s0, 0d

sx, yd − s0, 0d

 (a)  Use a computer to graph f.
 (b) Find fxsx, yd and fysx, yd when sx, yd ± s0, 0d.
 (c) Find fxs0, 0d and fys0, 0d using Equations 2 and 3.
 (d) Show that fxys0, 0d − 21 and fyxs0, 0d − 1.
 (e)  Does the result of part (d) contradict Clairaut’s 

Theorem? Use graphs of fxy and fyx to illustrate your 
answer.

;

;

CAS

 94.  The average energy E (in kcal) needed for a lizard to  
walk or run a distance of 1 km has been modeled by  
the equation 

Esm, vd − 2.65m0.66 1
3.5m0.75

v

   where m is the body mass of the lizard (in grams) and v is 
its speed (in kmyh). Calculate Ems400, 8d and Evs400, 8d 
and interpret your answers.

  Source: C. Robbins, Wildlife Feeding and Nutrition, 2d ed. (San Diego: 
Academic Press, 1993).

 95.  The kinetic energy of a body with mass m and velocity v is 
K − 1

2 mv2. Show that

−K
−m

 
−2K
−v2 − K

 96.   If a, b, c are the sides of a triangle and A, B, C are the 
opposite angles, find −Ay−a, −Ay−b, −Ay−c by implicit 
differentiation of the Law of Cosines.

 97.  You are told that there is a function f  whose partial deriva- 
tives are fxsx, yd − x 1 4y and fysx, yd − 3x 2 y. Should 
you believe it?

 98.  The paraboloid z − 6 2 x 2 x 2 2 2y 2 intersects the plane 
x − 1 in a parabola. Find parametric equations for the 
tangent line to this parabola at the point s1, 2, 24d. Use a 
computer to graph the paraboloid, the parabola, and the 
tangent line on the same screen.

 99.  The ellipsoid 4x 2 1 2y 2 1 z2 − 16 intersects the plane 
y − 2 in an ellipse. Find parametric equations for the tan-
gent line to this ellipse at the point s1, 2, 2d.

 100.  In a study of frost penetration it was found that the temper-
ature T at time t (measured in days) at a depth x (measured 
in feet) can be modeled by the function

Tsx, td − T0 1 T1e2(x sins)t 2 (xd

   where ) − 2'y365 and ( is a positive constant.
 (a) Find −Ty−x. What is its physical significance?

;

One of the most important ideas in single-variable calculus is that as we zoom in toward  
a point on the graph of a differentiable function, the graph becomes indistinguishable  
from its tangent line and we can approximate the function by a linear function. (See Sec- 
t ion 3.10.) Here we develop similar ideas in three dimensions. As we zoom in toward a 
point on a surface that is the graph of a differentiable func tion of two variables, the sur-
face looks more and more like a plane (its tangent plane) and we can approximate the 
function by a linear function of two variables. We also extend the idea of a differential to 
functions of two or more variables.
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928 CHAPTER 14  Partial Derivatives

Tangent Planes
Suppose a surface S has equation z − f sx, yd, where f  has continuous first partial deriva-
tives, and let Psx0, y0, z0 d be a point on S. As in the preceding section, let C1 and C2 be  
the curves obtained by intersecting the vertical planes y − y0 and x − x0 with the sur-
face S. Then the point P lies on both C1 and C2. Let T1 and T2 be the tangent lines to the 
curves C1 and C2 at the point P. Then the tangent plane to the surface S at the point P is 
defined to be the plane that contains both tangent lines T1 and T2. (See Figure 1.)

We will see in Section 14.6 that if C is any other curve that lies on the surface S and 
passes through P, then its tangent line at P also lies in the tangent plane. Therefore you 
can think of the tangent plane to S at P as consisting of all possible tangent lines at P to 
curves that lie on S and pass through P. The tangent plane at P is the plane that most 
closely approx imates the surface S near the point P.

We know from Equation 12.5.7 that any plane passing through the point Psx0, y0, z0 d 
has an equation of the form

Asx 2 x0 d 1 Bsy 2 y0 d 1 Csz 2 z0 d − 0

By dividing this equation by C and letting a − 2AyC and b − 2ByC, we can write it in 
the form

1   z 2 z0 − asx 2 x0d 1 bsy 2 y0 d 

If Equation 1 represents the tangent plane at P, then its intersection with the plane y − y0 
must be the tangent line T1. Setting y − y0 in Equation 1 gives

z 2 z0 − asx 2 x0 d      where y − y0

and we recognize this as the equation (in point-slope form) of a line with slope a. But 
from Section 14.3 we know that the slope of the tangent T1 is fxsx0, y0 d. Therefore 
a − fxsx0, y0 d.

Similarly, putting x − x0 in Equation 1, we get z 2 z0 − bsy 2 y0 d, which must rep-
resent the tangent line T2, so b − fysx0, y0 d.

2   Suppose f  has continuous partial derivatives. An equation of the tangent 
plane to the surface z − f sx, yd at the point Psx0, y0, z0 d is

z 2 z0 − fxsx0, y0 dsx 2 x0 d 1 fysx0, y0 dsy 2 y0 d

EXAMPLE 1 Find the tangent plane to the elliptic paraboloid z − 2x 2 1 y 2 at the  
point s1, 1, 3d.

SOLUTION Let f sx, yd − 2x 2 1 y 2. Then

  fxsx, yd − 4x fysx, yd − 2y

  fxs1, 1d − 4  fys1, 1d − 2

Then (2) gives the equation of the tangent plane at s1, 1, 3d as

 z 2 3 − 4sx 2 1d 1 2sy 2 1d

or  z − 4x 1 2y 2 3  Q

Figure 2(a) shows the elliptic paraboloid and its tangent plane at (1, 1, 3) that we 
found in Example 1. In parts (b) and (c) we zoom in toward the point (1, 1, 3) by restrict-

Note the similarity between the equa-
tion of a tangent plane and the equation 
of a tangent line:

y 2 y0 − f 9sx0 dsx 2 x0 d

FIGURE 1  
The tangent plane contains the  
tangent lines T1 and T2.
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 SECTION 14.4  Tangent Planes and Linear Approximations 929

ing the domain of the function f sx, yd − 2x 2 1 y 2. Notice that the more we zoom in, the 
flatter the graph appears and the more it resembles its tangent plane.

(c)

2
1

0

2
1

0

40

20

0

_20

y

z

x

(b)

2
0

_2

2
0

_2

40

20

0

_20

y

z

x

(a)

40

20

0

_20
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z

4
2

0
_2

_4

x4
2

0
_2

_4

FIGURE 2 The elliptic paraboloid z − 2x 2 1 y 2 appears to coincide with its tangent plane as we zoom in toward s1, 1, 3d.

In Figure 3 we corroborate this impression by zooming in toward the point (1, 1) on a 
contour map of the function f sx, yd − 2x 2 1 y 2. Notice that the more we zoom in, the 
more the level curves look like equally spaced parallel lines, which is characteristic of a 
plane.
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FIGURE 3
Zooming in toward (1, 1)
on a contour map of
f(x, y)=2≈+¥ 0.95 1.05

1.05

0.8 1.2

1.2

0.5 1.5

1.5

Linear Approximations
In Example 1 we found that an equation of the tangent plane to the graph of the function 
f sx, yd − 2x 2 1 y 2 at the point s1, 1, 3d is z − 4x 1 2y 2 3. Therefore, in view of the 
visual evidence in Figures 2 and 3, the linear function of two variables

Lsx, yd − 4x 1 2y 2 3

is a good approximation to f sx, yd when sx, yd is near s1, 1d. The function L is called the 
linearization of f  at s1, 1d and the approximation

f sx, yd < 4x 1 2y 2 3

is called the linear approximation or tangent plane approximation of f  at s1, 1d.
For instance, at the point s1.1, 0.95d the linear approximation gives

f s1.1, 0.95d < 4s1.1d 1 2s0.95d 2 3 − 3.3

which is quite close to the true value of f s1.1, 0.95d − 2s1.1d2 1 s0.95d2 − 3.3225. But 
if we take a point farther away from s1, 1d, such as s2, 3d, we no longer get a good 
approxi mation. In fact, Ls2, 3d − 11 whereas f s2, 3d − 17.

TEC Visual 14.4 shows an animation  
of Figures 2 and 3.

FIGURE 3  
Zooming in toward (1, 1)  
on a contour map of  
f sx, yd − 2x 2 1 y 2
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930 CHAPTER 14  Partial Derivatives

In general, we know from (2) that an equation of the tangent plane to the graph of 
a function f  of two variables at the point sa, b, f sa, bdd is

z − f sa, bd 1 fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd

The linear function whose graph is this tangent plane, namely

3   Lsx, yd − f sa, bd 1 fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd 

is called the linearization of f  at sa, bd and the approximation

4   f sx, yd < f sa, bd 1 fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd 

is called the linear approximation or the tangent plane approximation of f  at sa, bd.
We have defined tangent planes for surfaces z − f sx, yd, where f  has continuous first 

partial derivatives. What happens if fx and fy are not continuous? Figure 4 pictures such 
a function; its equation is

f sx, yd − H
0

xy
x 2 1 y 2 if

if

sx, yd ± s0, 0d

sx, yd − s0, 0d

You can verify (see Exercise 46) that its partial derivatives exist at the origin and, in fact, 
fxs0, 0d − 0 and fys0, 0d − 0, but fx and fy are not continuous. The linear approximation 
would be f sx, yd < 0, but f sx, yd − 1

2 at all points on the line y − x. So a function of two 
variables can behave badly even though both of its partial derivatives exist. To rule out 
such behavior, we formulate the idea of a differentiable function of two variables.

Recall that for a function of one variable, y − f sxd, if x changes from a to a 1 Dx, we 
defined the increment of y as

Dy − f sa 1 Dxd 2 f sad

In Chapter 3 we showed that if f  is differentiable at a, then

5   Dy − f 9sad Dx 1 « Dx    where  « l 0  as  Dx l 0 

Now consider a function of two variables, z − f sx, yd, and suppose x changes from a 
to a 1 Dx and y changes from b to b 1 Dy. Then the corresponding increment of z is

6   Dz − f sa 1 Dx, b 1 Dyd 2 f sa, bd 

Thus the increment Dz represents the change in the value of f  when sx, yd changes from 
sa, bd to sa 1 Dx, b 1 Dyd. By analogy with (5) we define the differentiability of a func-
tion of two variables as follows.

7   Definition If z − f sx, yd, then f  is differentiable at sa, bd if Dz can be 
expressed in the form

Dz − fxsa, bd Dx 1 fysa, bd Dy 1 «1 Dx 1 «2 Dy

where «1 and «2 l 0 as sDx, Dyd l s0, 0d.

Definition 7 says that a differentiable function is one for which the linear approxima-
tion (4) is a good approximation when sx, yd is near sa, bd. In other words, the tangent 
plane approximates the graph of f  well near the point of tangency.

z y

x

f(x, y)= xy
≈+¥  if (x, y)≠(0, 0),

f(0, 0)=0
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FIGURE 4FIGURE 4  

f sx, yd −
xy

x 2 1 y 2   if sx, yd ± s0, 0d,

f s0, 0d − 0

This is Equation 3.4.7.
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It’s sometimes hard to use Definition 7 directly to check the differentiability of a func-
tion, but the next theorem provides a convenient sufficient condition for differentiability.

8   Theorem If the partial derivatives fx and fy exist near sa, bd and are continuous 
at sa, bd, then f  is differentiable at sa, bd.Theorem 8 is proved in Appendix F.

EXAMPLE 2 Show that f sx, yd − xexy is differentiable at (1, 0) and find its lineariza-
tion there. Then use it to approximate f s1.1, 20.1d.

SOLUTION The partial derivatives are

  fxsx, yd − exy 1 xyexy        fysx, yd − x 2exy

  fxs1, 0d − 1         fys1, 0d − 1

Both fx and fy are continuous functions, so f  is differentiable by Theorem 8. The 
lin earization is

 Lsx, yd − f s1, 0d 1 fxs1, 0dsx 2 1d 1 fys1, 0dsy 2 0d

 − 1 1 1sx 2 1d 1 1 ? y − x 1 y

The corresponding linear approximation is

 xexy < x 1 y

so    f s1.1, 20.1d < 1.1 2 0.1 − 1 

Compare this with the actual value of f s1.1, 20.1d − 1.1e20.11 < 0.98542. Q

EXAMPLE 3 At the beginning of Section 14.3 we discussed the heat index (perceived 
temperature) I as a function of the actual temperature T  and the relative humidity H 
and gave the following table of values from the National Weather Service.

96

100

104

109

114

119

98

103

107

113

118

124

100

105

111

116

123

129

103

108

114

121

127

135

106

112

118

125

133

141

109

115

122

130

138

147

112

119

127

135

144

154

115

123

132

141

150

161

119

128

137

146

157

168

T H
Relative humidity (%)

Actual
temperature

(°F)

90

92

94

96

98

100

50 55 60 65 70 75 80 85 90

Find a linear approximation for the heat index I − f sT, H d when T  is near 968F and H 
is near 70%. Use it to estimate the heat index when the temperature is 978F and the 
relative humidity is 72%.

SOLUTION We read from the table that f s96, 70d − 125. In Section 14.3 we used the tabu- 
lar values to estimate that fTs96, 70d < 3.75 and fHs96, 70d < 0.9. (See pages 912–13.) 
So the linear approximation is

  f sT, H d < f s96, 70d 1 fTs96, 70dsT 2 96d 1 fHs96, 70dsH 2 70d

 < 125 1 3.75sT 2 96d 1 0.9sH 2 70d
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Figure 5 shows the graphs of the 
function f  and its linearization L in 
Example 2.

FIGURE 5
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932 CHAPTER 14  Partial Derivatives

In particular,
f s97, 72d < 125 1 3.75s1d 1 0.9s2d − 130.55

Therefore, when T − 97°F and H − 72%, the heat index is

 I < 1318F Q

Differentials
For a differentiable function of one variable, y − f sxd, we define the differential dx to be 
an independent variable; that is, dx can be given the value of any real number. The dif-
ferential of y is then defined as

9   dy − f 9sxd dx 

(See Section 3.10.) Figure 6 shows the relationship between the increment Dy and the 
differential dy : Dy represents the change in height of the curve y − f sxd and dy repre-
sents the change in height of the tangent line when x changes by an amount dx − Dx.

For a differentiable function of two variables, z − f sx, yd, we define the differentials  
dx and dy to be independent variables; that is, they can be given any values. Then the  
differential dz, also called the total differential, is defined by

10  dz − fxsx, yd dx 1 fysx, yd dy −
−z
−x

 dx 1
−z
−y

 dy 

(Compare with Equation 9.) Sometimes the notation df  is used in place of dz.
If we take dx − Dx − x 2 a and dy − Dy − y 2 b in Equation 10, then the differen-

tial of z is
dz − fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd

So, in the notation of differentials, the linear approximation (4) can be written as

f sx, yd < f sa, bd 1 dz

Figure 7 is the three-dimensional counterpart of Figure 6 and shows the geometric inter-
pretation of the differential dz and the increment Dz: dz represents the change in height 
of the tangent plane, whereas Dz represents the change in height of the surface z − f sx, yd 
when sx, yd changes from sa, bd to sa 1 Dx, b 1 Dyd.

y

x

z

Îx=dx
0

{a, b, f(a, b)}

(a, b, 0)

(a+Îx, b+Îy, 0)

{a+Îx, b+Îy, f (a+Îx, b+Îy)}

f(a, b)

f(a,　b)

Îy=dy
tangent plane

z-f(a, b)=fx(a, b)(x-a)+fy(a, b)(y-b)

surface z=f(x, y)

dz
Îz

7et140406
05/03/10
MasterID: 01590

xa a+Îx

y

0

dx=Îx

y=ƒ

dy
Îy

y=f(a)+fª(a)(x-a)
tangent line

FIGURE 6FIGURE 6

FIGURE 7
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EXAMPLE 4 
(a) If z − f sx, yd − x 2 1 3xy 2 y 2, find the differential dz.
(b) If x changes from 2 to 2.05 and y changes from 3 to 2.96, compare the values  
of Dz and dz.

SOLUTION
(a) Definition 10 gives

dz −
−z
−x

 dx 1
−z
−y

 dy − s2x 1 3yd dx 1 s3x 2 2yd dy

(b) Putting x − 2, dx − Dx − 0.05, y − 3, and dy − Dy − 20.04, we get

 dz − f2s2d 1 3s3dg0.05 1 f3s2d 2 2s3dgs20.04d − 0.65

The increment of z is

 Dz − f s2.05, 2.96d 2 f s2, 3d

 − fs2.05d2 1 3s2.05ds2.96d 2 s2.96d2 g 2 f22 1 3s2ds3d 2 32 g

 − 0.6449

Notice that Dz < dz but dz is easier to compute. Q

EXAMPLE 5 The base radius and height of a right circular cone are measured as 
10 cm and 25 cm, respectively, with a possible error in measurement of as much as 
0.1 cm in each. Use differentials to estimate the maximum error in the calculated 
volume of the cone.

SOLUTION The volume V  of a cone with base radius r and height h is V − !r 2hy3.  
So the differential of V  is

dV −
−V
−r

 dr 1
−V
−h

 dh −
2!rh

3
 dr 1

!r 2

3
 dh

Since each error is at most 0.1 cm, we have | Dr | < 0.1, | Dh | < 0.1. To estimate the 
largest error in the volume we take the largest error in the measurement of r and of h. 
Therefore we take dr − 0.1 and dh − 0.1 along with r − 10, h − 25. This gives

dV −
500!

3
 s0.1d 1

100!

3
 s0.1d − 20!

Thus the maximum error in the calculated volume is about 20! cm3 < 63 cm3. Q

Functions of Three or More Variables
Linear approximations, differentiability, and differentials can be defined in a similar 
manner for functions of more than two variables. A differentiable function is defined by 
an expression similar to the one in Definition 7. For such functions the linear approxi-
mation is

f sx, y, zd < f sa, b, cd 1 fxsa, b, cdsx 2 ad 1 fysa, b, cdsy 2 bd 1 fzsa, b, cdsz 2 cd

and the linearization Lsx, y, zd is the right side of this expression.
If w − f sx, y, zd, then the increment of w is

Dw − f sx 1 Dx, y 1 Dy, z 1 Dzd 2 f sx, y, zd
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In Example 4, dz is close to Dz because  
the tangent plane is a good approxima-
tion to the surface z − x 2 1 3xy 2 y 2 
near s2, 3, 13d. (See Figure 8.)

FIGURE 8
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934 CHAPTER 14  Partial Derivatives

 1–6 Find an equation of the tangent plane to the given surface at 
the specified point.

 1. z − 2x 2 1 y 2 2 5y,  s1, 2, 24d

 2. z − sx 1 2d2 2 2sy 2 1d2 2 5,  s2, 3, 3d

 3. z − e x2y,  s2, 2, 1d

 4. z − xyy 2,  s24, 2, 21d

 5. z − x sinsx 1 yd,  s21, 1, 0d

 6. z − lnsx 2 2yd,  s3, 1, 0d

 7–8 Graph the surface and the tangent plane at the given point. 
(Choose the domain and viewpoint so that you get a good view 
of both the surface and the tangent plane.) Then zoom in until 
the surface and the tangent plane become indistinguishable.

 7. z − x 2 1 xy 1 3y 2,  s1, 1, 5d

 8. z − s9 1 x 2 y 2 ,  s2, 2, 5d

9–10 Draw the graph of f  and its tangent plane at the given 
point. (Use your computer algebra system both to compute the 
partial derivatives and to graph the surface and its tangent plane.) 

;

CAS

Then zoom in until the surface and the tangent plane become  
indistinguishable.

 9. f sx, yd −
1 1 cos2sx 2 yd
1 1 cos2sx 1 yd

,  S!

3
, 

!

6
, 

7
4D

 10. f sx, yd − e2xyy10 ssx 1 sy 1 sxy d,  s1, 1, 3e20.1d

 11–16 Explain why the function is differentiable at the given 
point. Then find the linearization Lsx, yd of the function at  
that point.

 11. f sx, yd − 1 1 x lnsxy 2 5d,  s2, 3d

 12. f sx, yd − sxy ,  s1, 4d

 13. f sx, yd − x 2e y,  s1, 0d

 14. f sx, yd −
1 1 y
1 1 x

,  s1, 3d

 15. f sx, yd − 4 arctansxyd,  s1, 1d

 16. f sx, yd − y 1 sinsxyyd,  s0, 3d

17–18 Verify the linear approximation at s0, 0d.

 17. e x cossxyd < x 1 1 18. 
y 2 1
x 1 1

< x 1 y 2 1

The differential dw is defined in terms of the differentials dx, dy, and dz of the independ-
ent variables by

dw −
−w
−x

 dx 1
−w
−y

 dy 1
−w
−z

 dz

EXAMPLE 6 The dimensions of a rectangular box are measured to be 75 cm, 60 cm, 
and 40 cm, and each measurement is correct to within 0.2 cm. Use differentials to esti- 
mate the largest possible error when the volume of the box is calculated from these 
measurements.

SOLUTION If the dimensions of the box are x, y, and z, its volume is V − xyz and so

dV −
−V
−x

 dx 1
−V
−y

 dy 1
−V
−z

 dz − yz dx 1 xz dy 1 xy dz

We are given that | Dx | < 0.2, | Dy | < 0.2, and | Dz | < 0.2. To estimate the largest 
error in the volume, we therefore use dx − 0.2, dy − 0.2, and dz − 0.2 together with 
x − 75, y − 60, and z − 40:

 DV < dV − s60ds40ds0.2d 1 s75ds40ds0.2d 1 s75ds60ds0.2d − 1980

Thus an error of only 0.2 cm in measuring each dimension could lead to an error of 
approximately 1980 cm3 in the calculated volume! This may seem like a large error, but 
it’s only about 1% of the volume of the box. Q
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 25–30 Find the differential of the function.

 25. z − e22x cos 2!t 26. u − sx 2 1 3y 2 

 27. m − p5q3 28. T −
v

1 1 uvw

 29. R − "# 2 cos $ 30. L − xze2y 22z 2

 31.  If z − 5x 2 1 y 2 and sx, yd changes from s1, 2d to s1.05, 2.1d, 
compare the values of Dz and dz.

 32.  If z − x 2 2 xy 1 3y 2 and sx, yd changes from s3, 21d to 
s2.96, 20.95d, compare the values of Dz and dz.

 33.  The length and width of a rectangle are measured as 30 cm 
and 24 cm, respectively, with an error in measurement of at 
most 0.1 cm in each. Use differentials to estimate the maxi-
mum error in the calculated area of the rectangle.

 34.  Use differentials to estimate the amount of metal in a closed 
cylindrical can that is 10 cm high and 4 cm in diameter if the 
metal in the top and bottom is 0.1 cm thick and the metal in 
the sides is 0.05 cm thick.

 35.  Use differentials to estimate the amount of tin in a closed tin 
can with diameter 8 cm and height 12 cm if the tin is 0.04 cm 
thick.

 36.  The wind-chill index is modeled by the function

W − 13.12 1 0.6215T 2 11.37v 0.16 1 0.3965Tv 0.16

  where T is the temperature sin 8Cd and v is the wind speed 
sin kmyhd. The wind speed is measured as 26 kmyh, with a 
possible error of 62 kmyh, and the temperature is measured  
as 2118C, with a possible error of 618C. Use differentials to 
estimate the maximum error in the calculated value of W due  
to the measurement errors in T and v.

 37.  The tension T in the string of the yo-yo in the figure is

T −
mtR

2r 2 1 R 2

  where m is the mass of the yo-yo and t is acceleration due to 
gravity. Use differentials to estimate the change in the tension  
if R is increased from 3 cm to 3.1 cm and r is increased from 
0.7 cm to 0.8 cm. Does the tension increase or decrease?
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 38.  The pressure, volume, and temperature of a mole of an ideal 
gas are related by the equation PV − 8.31T, where P is mea-
sured in kilopascals, V in liters, and T in kelvins. Use differ- 
entials to find the approximate change in the pressure if the 
volume increases from 12 L to 12.3 L and the temperature 
decreases from 310 K to 305 K.

 19.  Given that f  is a differentiable function with f s2, 5d − 6, 
fx s2, 5d − 1, and fy s2, 5d − 21, use a linear approximation  
to estimate f s2.2, 4.9d.

 20.  Find the linear approximation of the function 
f sx, yd − 1 2 xy cos !y at s1, 1d and use it to approximate 
f s1.02, 0.97d. Illustrate by graphing f  and the tangent plane.

 21.  Find the linear approximation of the function
   f sx, y, zd − sx 2 1 y 2 1 z 2  at s3, 2, 6d and use it to  

approximate the number ss3.02d 2 1 s1.97d 2 1 s5.99d 2 .

 22.  The wave heights h in the open sea depend on the speed v 
of the wind and the length of time t that the wind has been 
blowing at that speed. Values of the function h − f sv, td are 
recorded in feet in the following table. Use the table to find 
a linear approximation to the wave height function when v 
is near 40 knots and t is near 20 hours. Then estimate the 
wave heights when the wind has been blowing for 24 hours 
at 43 knots.
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 23.  Use the table in Example 3 to find a linear approximation to 
the heat index function when the temperature is near 948F 
and the relative humidity is near 80%. Then estimate the heat 
index when the temperature is 958F and the relative humidity 
is 78%.

 24.  The wind-chill index W is the perceived temperature when 
the actual temperature is T and the wind speed is v, so we can 
write W − f sT, vd. The following table of values is an excerpt 
from Table 1 in Section 14.1. Use the table to find a linear 
approximation to the wind-chill index function when T is 
near 215°C and v is near 50 kmyh. Then estimate the wind-
chill index when the temperature is 217°C and the wind 
speed is 55 kmyh.
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936 CHAPTER 14  Partial Derivatives

for S but you know that the curves

 r1std − k2 1 3t, 1 2 t 2, 3 2 4t 1 t 2 l

 r2sud − k1 1 u2, 2u3 2 1, 2u 1 1 l

  both lie on S. Find an equation of the tangent plane at P.

 43–44 Show that the function is differentiable by finding values  
of «1 and «2 that satisfy Definition 7.

 43. f sx, yd − x 2 1 y 2 44. f sx, yd − xy 2 5y 2

 45.  Prove that if f  is a function of two variables that is differen-
tiable at sa, bd, then f  is continuous at sa, bd.  

 Hint: Show that

lim
sDx, Dyd l s0, 0d 

 f sa 1 Dx, b 1 Dyd − f sa, bd

 46. (a) The function

f sx, yd − H
0

xy
x 2 1 y 2 if

if

sx, yd ± s0, 0d

sx, yd − s0, 0d

   was graphed in Figure 4. Show that fxs0, 0d and fys0, 0d 
both exist but f  is not differentiable at s0, 0d. [Hint: Use  
the result of Exercise 45.]

 (b)  Explain why fx and fy are not continuous at s0, 0d.

 39.  If R is the total resistance of three resistors, connected in par- 
al lel, with resistances R1, R2, R3, then

1
R

−
1
R1

1
1
R2

1
1
R3

  If the resistances are measured in ohms as R1 − 25 V, 
R2 − 40 V, and R3 − 50 V, with a possible error of 0.5% in 
each case, estimate the maximum error in the calculated value 
of R.

 40.  A model for the surface area of a human body is given by 
S − 0.1091w 0.425h 0.725, where w is the weight (in pounds), h is 
the height (in inches), and S is measured in square feet. If the 
errors in measurement of w and h are at most 2%, use differ- 
entials to estimate the maximum percentage error in the calcu-
lated surface area.

 41.  In Exercise 14.1.39 and Example 14.3.3, the body mass index 
of a person was defined as Bsm, hd − myh2, where m is the 
mass in kilograms and h is the height in meters.

 (a)  What is the linear approximation of Bsm, hd for a child 
with mass 23 kg and height 1.10 m?

 (b)  If the child’s mass increases by 1 kg and height by 3 cm, 
use the linear approximation to estimate the new BMI. 
Compare with the actual new BMI.

 42.  Suppose you need to know an equation of the tangent plane to 
a surface S at the point Ps2, 1, 3d. You don’t have an equation 

Many technological advances have occurred in sports that have contributed to increased athletic 
performance. One of the best known is the introduction, in 2008, of the Speedo LZR racer. It was 
claimed that this full-body swimsuit reduced a swimmer’s drag in the water. Figure 1 shows the 
number of world records broken in men’s and women’s long-course freestyle swimming events 
from 1990 to 2011.1 The dramatic increase in 2008 when the suit was introduced led people 
to claim that such suits are a form of technological doping. As a result all full-body suits were 
banned from competition starting in 2010.
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FIGURE 1 Number of world records set in long-course men’s and women’s freestyle swimming event 1990–2011

It might be surprising that a simple reduction in drag could have such a big effect on 
performance. We can gain some insight into this using a simple mathematical model.2

APPLIED PROJECT THE SPEEDO LZR RACER

1. L. Foster et al., “Influence of Full Body Swimsuits on Competitive Performance,” Procedia Engineering 
34 (2012): 712–17.
2. Adapted from http://plus.maths.org/content/swimming.
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 SECTION 14.5  The Chain Rule 937

The speed v of an object being propelled through water is given by

vsP, Cd − S 2P
kCD

1y3

where P is the power being used to propel the object, C is the drag coefficient, and k is a positive 
constant. Athletes can therefore increase their swimming speeds by increasing their power or 
reducing their drag coefficients. But how effective is each of these?

To compare the effect of increasing power versus reducing drag, we need to somehow com- 
pare the two in common units. The most common approach is to determine the percentage 
change in speed that results from a given percentage change in power and in drag.

If we work with percentages as fractions, then when power is changed by a fraction x swith x 
corresponding to 100x percent), P changes from P to P 1 xP. Likewise, if the drag coefficient is 
changed by a fraction y, this means that it has changed from C to C 1 yC. Finally, the fractional 
change in speed resulting from both effects is

1   
vsP 1 xP, C 1 yC d 2 vsP, C d

vsP, C d
 

1.   Expression 1 gives the fractional change in speed that results from a change x in power and a 
change y in drag. Show that this reduces to the function

f sx, yd − S 1 1 x
1 1 yD

1y3

2 1

  Given the context, what is the domain of f ?

2.  Suppose that the possible changes in power x and drag y are small. Find the linear approxima-
tion to the function f sx, yd. What does this approximation tell you about the effect of a small 
increase in power versus a small decrease in drag?

3.  Calculate fxxsx, yd and fyysx, yd. Based on the signs of these derivatives, does the linear 
approximation in Problem 2 result in an overestimate or an underestimate for an increase in 
power? What about for a decrease in drag? Use your answer to explain why, for changes in 
power or drag that are not very small, a decrease in drag is more effective.

4.  Graph the level curves of f sx, yd. Explain how the shapes of these curves relate to your 
answers to Problems 2 and 3.
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Recall that the Chain Rule for functions of a single variable gives the rule for differentiat-
ing a composite function: If y − f sxd and x − tstd, where f  and t are differentiable func-
tions, then y is indirectly a differentiable function of t and

1   
dy
dt

−
dy
dx

 
dx
dt

 

For functions of more than one variable, the Chain Rule has several versions, each of 
them giving a rule for differentiating a composite function. The first version (Theorem 2) 
deals with the case where z − f sx, yd and each of the variables x and y is, in turn, a func-
tion of a variable t. This means that z is indirectly a function of t, z − f ststd, hstdd, and 
the Chain Rule gives a formula for differentiating z as a function of t. We assume that f  
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938 CHAPTER 14  Partial Derivatives

is differentiable (Definition 14.4.7). Recall that this is the case when fx and fy are con-
tinuous (Theorem 14.4.8).

2   The Chain Rule (Case 1) Suppose that z − f sx, yd is a differentiable func-
tion of x and y, where x − tstd and y − hstd are both differentiable functions of t. 
Then z is a differentiable function of t and

dz
dt

−
−f
−x

 
dx
dt

1
−f
−y

 
dy
dt

PROOF A change of Dt in t produces changes of Dx in x and Dy in y. These, in turn, 
produce a change of Dz in z, and from Definition 14.4.7 we have

Dz −
−f
−x

Dx 1
−f
−y

Dy 1 «1 Dx 1 «2 Dy

where «1 l 0 and «2 l 0 as sDx, Dyd l s0, 0d. [If the functions «1 and «2 are not 
defined at s0, 0d, we can define them to be 0 there.] Dividing both sides of this equation 
by Dt, we have

Dz
Dt

−
−f
−x

 
Dx
Dt

1
−f
−y

 
Dy
Dt

1 «1 
Dx
Dt

1 «2 
Dy
Dt

If we now let Dt l 0, then Dx − tst 1 Dtd 2 tstd l 0 because t is differentiable and 
therefore continuous. Similarly, Dy l 0. This, in turn, means that «1 l 0 and «2 l 0, so

 
dz
dt

− lim
Dt l 0

Dz
Dt

 −
−f
−x

 lim
Dt l 0

 
Dx
Dt

1
−f
−y

 lim
Dt l 0

 
Dy
Dt

1 a lim
Dt l 0

«1b  lim
Dt l 0

 
Dx
Dt

1 a lim
Dt l 0

 «2b  lim
Dt l 0

 
Dy
Dt

 −
−f
−x

 
dx
dt

1
−f
−y

 
dy
dt

1 0 ?
dx
dt

1 0 ?
dy
dt

  −
−f
−x

 
dx
dt

1
−f
−y

 
dy
dt

 Q

Since we often write −zy−x in place of −fy−x, we can rewrite the Chain Rule in the form

dz
dt

−
−z
−x

 
dx
dt

1
−z
−y

 
dy
dt

EXAMPLE 1 If z − x 2 y 1 3xy4, where x − sin 2t and y − cos t, find dzydt when 
t − 0.

SOLUTION The Chain Rule gives

 
dz
dt

−
−z
−x

 
dx
dt

1
−z
−y

 
dy
dt

 − s2xy 1 3y 4 ds2 cos 2td 1 sx 2 1 12xy 3 ds2sin td

Notice the similarity to the definition of 
the differential:

dz −
−z
−x

 dx 1
−z
−y

 dy
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 SECTION 14.5  The Chain Rule 939

It’s not necessary to substitute the expressions for x and y in terms of t. We simply 
observe that when t − 0, we have x − sin 0 − 0 and y − cos 0 − 1. Therefore

 
dz
dt Z

t−0
− s0 1 3ds2 cos 0d 1 s0 1 0ds2sin 0d − 6 Q

The derivative in Example 1 can be interpreted as the rate of change of z with respect  
to t as the point sx, yd moves along the curve C with parametric equations x − sin 2t, 
y − cos t. (See Figure 1.) In particular, when t − 0, the point sx, yd is s0, 1d and dzydt − 6 
is the rate of increase as we move along the curve C through s0, 1d. If, for instance, 
z − Tsx, yd − x 2 y 1 3xy 4 represents the temperature at the point sx, yd, then the com-
posite function z − T ssin 2t, cos td represents the temperature at points on C and the 
derivative dzydt represents the rate at which the temper ature changes along C.

EXAMPLE 2 The pressure P (in kilopascals), volume V  (in liters), and temperature T  
(in kelvins) of a mole of an ideal gas are related by the equation PV − 8.31T . Find the 
rate at which the pressure is changing when the temperature is 300 K and increas ing at 
a rate of 0.1 Kys and the volume is 100 L and increasing at a rate of 0.2 Lys.

SOLUTION If t represents the time elapsed in seconds, then at the given instant we have 
T − 300, dTydt − 0.1, V − 100, dVydt − 0.2. Since

P − 8.31
T
V

the Chain Rule gives

 
dP
dt

−
−P
−T

 
dT
dt

1
−P
−V

 
dV
dt

−
8.31

V
 
dT
dt

2
8.31T

V 2  
dV
dt

 −
8.31
100

 s0.1d 2
8.31s300d

1002  s0.2d − 20.04155

The pressure is decreasing at a rate of about 0.042 kPays. Q

We now consider the situation where z − f sx, yd but each of x and y is a function of 
two variables s and t: x − tss, td, y − hss, td. Then z is indirectly a function of s and t and 
we wish to find −zy−s and −zy−t. Recall that in computing −zy−t we hold s fixed and 
compute the ordinary derivative of z with respect to t. Therefore we can apply Theorem 2 
to obtain

−z
−t

−
−z
−x

 
−x
−t

1
−z
−y

 
−y
−t

A similar argument holds for −zy−s and so we have proved the following version of the 
Chain Rule.

3   The Chain Rule (Case 2) Suppose that z − f sx, yd is a differentiable func-
tion of x and y, where x − tss, td and y − hss, td are differentiable functions of s 
and t. Then

 
−z
−s

−
−z
−x

 
−x
−s

1
−z
−y

 
−y
−s

       
−z
−t

−
−z
−x

 
−x
−t

1
−z
−y

 
−y
−t
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FIGURE 1
The curve x=sin 2t, y=cos t
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C

FIGURE 1  
The curve x − sin 2t, y − cos t
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940 CHAPTER 14  Partial Derivatives

EXAMPLE 3 If z − ex sin y, where x − st 2 and y − s 2t, find −zy−s and −zy−t.

SOLUTION Applying Case 2 of the Chain Rule, we get

 
−z
−s

−
−z
−x

 
−x
−s

1
−z
−y

 
−y
−s

− sex sin ydst 2 d 1 sex cos yds2std

 − t 2est 2
sin ss 2td 1 2ste st 2

cosss 2td

 
−z
−t

−
−z
−x

 
−x
−t

1
−z
−y

 
−y
−t

− sex sin yds2std 1 sex cos ydss 2 d

  − 2ste st 2
sin ss 2td 1 s 2est 2

cosss 2td  Q

Case 2 of the Chain Rule contains three types of variables: s and t are independent 
variables, x and y are called intermediate variables, and z is the dependent variable. 
Notice that Theorem 3 has one term for each intermediate variable and each of these 
terms resembles the one-dimensional Chain Rule in Equation 1.

To remember the Chain Rule, it’s helpful to draw the tree diagram in Figure 2. We 
draw branches from the dependent variable z to the intermediate variables x and y to 
indicate that z is a function of x and y. Then we draw branches from x and y to the inde-
pendent variables s and t. On each branch we write the corresponding partial derivative. 
To find −zy−s, we find the product of the partial derivatives along each path from z to s 
and then add these products:

−z
−s

−
−z
−x

 
−x
−s

1
−z
−y

 
−y
−s

Similarly, we find −zy−t by using the paths from z to t.
Now we consider the general situation in which a dependent variable u is a function 

of n intermediate variables x1, . . . , xn, each of which is, in turn, a function of m indepen-
dent variables t1, . . . , tm. Notice that there are n terms, one for each intermediate variable. 
The proof is similar to that of Case 1.

4   The Chain Rule (General Version) Suppose that u is a differentiable func-
tion of the n variables x1, x2, . . . , xn and each xj is a differentiable function of 
the m variables t1, t2, . . . , tm. Then u is a function of t1, t2, . . . , tm and

−u
−ti

−
−u
−x1

 
−x1

−ti
1

−u
−x2

 
−x2

−ti
1 ∙ ∙ ∙ 1

−u
−xn

 
−xn

−ti

for each i − 1, 2, . . . , m.

EXAMPLE 4 Write out the Chain Rule for the case where w − f sx, y, z, td and 
x − xsu, vd, y − ysu, vd, z − zsu, vd, and t − tsu, vd.

SOLUTION We apply Theorem 4 with n − 4 and m − 2. Figure 3 shows the tree dia-
gram. Although we haven’t written the derivatives on the branches, it’s understood that 
if a branch leads from y to u, then the partial derivative for that branch is −yy−u. With 
the aid of the tree diagram, we can now write the required expressions:

 
−w
−u

−
−w
−x

 
−x
−u

1
−w
−y

 
−y
−u

1
−w
−z

 
−z
−u

1
−w
−t

 
−t
−u

  
−w
−v

−
−w
−x

 
−x
−v

1
−w
−y

 
−y
−v

1
−w
−z

 
−z
−v

1
−w
−t

 
−t
−v

 
Q
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 SECTION 14.5  The Chain Rule 941

EXAMPLE 5 If u − x 4y 1 y 2z3, where x − rse t, y − rs 2e2t, and z − r 2s sin t, find the 
value of −uy−s when r − 2, s − 1, t − 0.

SOLUTION With the help of the tree diagram in Figure 4, we have

 
−u
−s

−
−u
−x

 
−x
−s

1
−u
−y

 
−y
−s

1
−u
−z

 
−z
−s

 − s4x 3ydsre td 1 sx 4 1 2yz3 ds2rse2td 1 s3y 2z2 dsr 2 sin td

When r − 2, s − 1, and t − 0, we have x − 2, y − 2, and z − 0, so

 
−u
−s

− s64ds2d 1 s16ds4d 1 s0ds0d − 192 Q

EXAMPLE 6 If tss, td − f ss 2 2 t 2, t 2 2 s 2 d and f  is differentiable, show that t 
satisfies the equation

t 
−t
−s

1 s 
−t
−t

− 0

SOLUTION Let x − s 2 2 t 2 and y − t 2 2 s 2. Then tss, td − f sx, yd and the Chain Rule 
gives

 
−t
−s

−
−f
−x

 
−x
−s

1
−f
−y

 
−y
−s

−
−f
−x

 s2sd 1
−f
−y

 s22sd

 
−t
−t

−
−f
−x

 
−x
−t

1
−f
−y

 
−y
−t

−
−f
−x

 s22td 1
−f
−y

 s2td

Therefore

 t 
−t
−s

1 s 
−t
−t

− S2st 
−f
−x

2 2st 
−f
−yD 1 S22st 

−f
−x

1 2st 
−f
−yD − 0 Q

EXAMPLE 7 If z − f sx, yd has continuous second-order partial derivatives and 
x − r 2 1 s 2 and y − 2rs, find (a) −zy−r and (b) −2zy−r 2.

SOLUTION
(a) The Chain Rule gives

−z
−r

−
−z
−x

 
−x
−r

1
−z
−y

 
−y
−r

−
−z
−x

 s2rd 1
−z
−y

 s2sd

(b) Applying the Product Rule to the expression in part (a), we get

5

     
−2z
−r 2 −

−

−rS2r 
−z
−x

1 2s 
−z
−yD  

 − 2 
−z
−x

1 2r 
−

−r
 S −z

−xD 1 2s 
−

−r
 S −z

−yD
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942 CHAPTER 14  Partial Derivatives

 But, using the Chain Rule again (see Figure 5), we have

 
−

−r
 S −z

−xD −
−

−x
 S −z

−xD 
−x
−r

1
−

−y
 S −z

−xD 
−y
−r

−
−2z
−x 2  s2rd 1

−2z
−y −x

 s2sd

 
−

−r
 S −z

−yD −
−

−x
 S −z

−yD 
−x
−r

1
−

−y
 S −z

−yD 
−y
−r

−
−2z

−x −y
 s2rd 1

−2z
−y 2  s2sd

  Putting these expressions into Equation 5 and using the equality of the mixed 
second-order derivatives, we obtain

 
−2z
−r 2 − 2 

−z
−x

1 2rS2r 
−2z
−x 2 1 2s 

−2z
−y −xD 1 2sS2r 

−2z
−x −y

1 2s 
−2z
−y 2D

  − 2 
−z
−x

1 4r 2 
−2z
−x 2 1 8rs 

−2z
−x −y

1 4s 2 
−2z
−y 2  Q

Implicit Differentiation
The Chain Rule can be used to give a more complete description of the process of implicit 
differentiation that was introduced in Sections 3.5 and 14.3. We suppose that an equa- 
tion of the form Fsx, yd − 0 defines y implicitly as a differentiable function of x, that is, 
y − f sxd, where Fsx, f sxdd − 0 for all x in the domain of f . If F is differentiable, we can 
apply Case 1 of the Chain Rule to differentiate both sides of the equation Fsx, yd − 0 
with respect to x. Since both x and y are functions of x, we obtain

−F
−x

 
dx
dx

1
−F
−y

 
dy
dx

− 0

But dxydx − 1, so if −Fy−y ± 0 we solve for dyydx and obtain

6  
dy
dx

− 2 

−F
−x
−F
−y

− 2 
Fx

Fy
 

To derive this equation we assumed that Fsx, yd − 0 defines y implicitly as a function 
of x. The Implicit Function Theorem, proved in advanced calculus, gives conditions 
under which this assumption is valid: it states that if F is defined on a disk containing 
sa, bd, where Fsa, bd − 0, Fysa, bd ± 0, and Fx and Fy are continuous on the disk, then 
the equation Fsx, yd − 0 defines y as a function of x near the point sa, bd and the deriva-
tive of this function is given by Equation 6.

EXAMPLE 8 Find y9 if x 3 1 y 3 − 6xy.

SOLUTION The given equation can be written as

Fsx, yd − x 3 1 y 3 2 6xy − 0

so Equation 6 gives

 
dy
dx

− 2 
Fx

Fy
− 2 

3x 2 2 6y
3y 2 2 6x

− 2 
x 2 2 2y
y 2 2 2x

 Q
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The solution to Example 8 should be  
compared to the one in Example 3.5.2.
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 SECTION 14.5  The Chain Rule 943

Now we suppose that z is given implicitly as a function z − f sx, yd by an equation of 
the form Fsx, y, zd − 0. This means that Fsx, y, f sx, ydd − 0 for all sx, yd in the domain  
of f . If F and f  are differentiable, then we can use the Chain Rule to differentiate the 
equation Fsx, y, zd − 0 as follows:

−F
−x

 
−x
−x

1
−F
−y

 
−y
−x

1
−F
−z

 
−z
−x

− 0

But 
−

−x
 sxd − 1    and    

−

−x
 syd − 0 

so this equation becomes

−F
−x

1
−F
−z

 
−z
−x

− 0

If −Fy−z ± 0, we solve for −zy−x and obtain the first formula in Equations 7. The for-
mula for −zy−y is obtained in a similar manner.

7  
−z
−x

− 2 

−F
−x
−F
−z

      
−z
−y

− 2 

−F
−y
−F
−z

 

Again, a version of the Implicit Function Theorem stipulates conditions under which  
our assumption is valid: if F is defined within a sphere containing sa, b, cd, where 
Fsa, b, cd − 0, Fzsa, b, cd ± 0, and Fx, Fy , and Fz are continuous inside the sphere, then 
the equation Fsx, y, zd − 0 defines z as a function of x and y near the point sa, b, cd and 
this function is differentiable, with partial derivatives given by (7).

EXAMPLE 9 Find 
−z
−x

 and 
−z
−y

 if x 3 1 y 3 1 z3 1 6xyz − 1.

SOLUTION Let Fsx, y, zd − x 3 1 y 3 1 z3 1 6xyz 2 1. Then, from Equations 7, we 
have

 
−z
−x

− 2
Fx

Fz
− 2

3x 2 1 6yz
3z2 1 6xy

− 2
x 2 1 2yz
z2 1 2xy

  
−z
−y

− 2
Fy

Fz
− 2

3y 2 1 6xz
3z2 1 6xy

− 2
y 2 1 2xz
z2 1 2xy

 Q
The solution to Example 9 should be 
compared to the one in Example 14.3.5.

1–6 Use the Chain Rule to find dzydt or dwydt.

 1. z − xy 3 2 x 2y,  x − t 2 1 1,  y − t 2 2 1

 2. z −
x 2 y

x 1 2y
,  x − e! t,  y − e2! t

 3. z − sin x cos y,  x − st  ,  y − 1yt

 4. z − s1 1 xy ,  x − tan t,  y − arctan t

 5. w − xe yyz,  x − t 2,  y − 1 2 t,  z − 1 1 2t

 6. w − lnsx 2 1 y 2 1 z2 ,  x − sin t,  y − cos t,  z − tan t

7–12 Use the Chain Rule to find −zy−s and −zy−t.

 7. z − sx 2 yd5,  x − s 2t,  y − st 2

 8. z − tan21sx 2 1 y 2d,  x − s ln t,  y − tes
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944 CHAPTER 14  Partial Derivatives

 25.  N −
p 1 q
p 1 r

,  p − u 1 vw,  q − v 1 uw,  r − w 1 uv;

  
−N
−u

, 
−N
−v

, 
−N
−w

  when u − 2, v − 3, w − 4

 26.  u − xe ty,  x − " 2#,  y − # 2$,  t − $ 2";

  
−u
−"

, 
−u
−#

, 
−u
−$

  when " − 21, # − 2, $ − 1

27–30 Use Equation 6 to find dyydx.

 27. y cos x − x 2 1 y 2 28. cossxyd − 1 1 sin y

 29. tan21sx 2yd − x 1 xy 2 30. e y sin x − x 1 xy

31–34 Use Equations 7 to find −zy−x and −zy−y.

 31. x 2 1 2y 2 1 3z2 − 1 32. x 2 2 y 2 1 z2 2 2z − 4

 33. e z − xyz 34. yz 1 x ln y − z2

 35.  The temperature at a point sx, yd is Tsx, yd, measured in degrees 
Celsius. A bug crawls so that its position after t seconds is 

   given by x − s1 1 t  , y − 2 1 1
3 t, where x and y are mea-

sured in centimeters. The temperature func tion satisfies 
Txs2, 3d − 4 and Tys2, 3d − 3. How fast is the temperature 
rising on the bug’s path after 3 seconds?

 36.  Wheat production W in a given year depends on the average 
temperature T and the annual rainfall R. Scientists estimate 
that the average temperature is rising at a rate of 0.15°Cyyear 
and rainfall is decreasing at a rate of 0.1 cmyyear. They also 
estimate that at current production levels, −Wy−T − 22  
and −Wy−R − 8.

 (a)  What is the significance of the signs of these partial  
derivatives?

 (b)  Estimate the current rate of change of wheat production, 
dWydt.

 37.  The speed of sound traveling through ocean water with salinity 
35 parts per thousand has been modeled by the equation

  C − 1449.2 1 4.6T 2 0.055T 2 1 0.00029T 3 1 0.016D

  where C is the speed of sound (in meters per second), T is the 
temperature (in degrees Celsius), and D is the depth below the 
ocean surface (in meters). A scuba diver began a leisurely dive 
into the ocean water; the diver’s depth and the surrounding 
water temperature over time are recorded in the following 
graphs. Estimate the rate of change (with respect to time) of  
the speed of sound through the ocean water experienced by the 
diver 20 minutes into the dive. What are the units?
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t
(min)

T

10
12

10 20 30 40

14
16

8

t
(min)

D

5
10

10 20 30 40

15
20

 9. z − lns3x 1 2yd,  x − s sin t,  y − t cos s

 10. z − sx e xy,  x − 1 1 st,  y − s 2 2 t 2

 11. z − e r cos %,  r − st,  % − ss 2 1 t 2 

 12. z − tansuyvd,  u − 2s 1 3t,  v − 3s 2 2t

 13.  Let pstd − f ststd, hstdd, where f  is differentiable, ts2d − 4, 
t9s2d − 23, hs2d − 5, h9s2d − 6, fx s4, 5d − 2, fy s4, 5d − 8. 
Find p9s2d.

 14.  Let Rss, td − Gsuss, td, vss, tdd, where G, u, and v are differen-
tiable, us1, 2d − 5, uss1, 2d − 4, uts1, 2d − 23, vs1, 2d − 7, 
vss1, 2d − 2, v ts1, 2d − 6, Gus5, 7d − 9, Gvs5, 7d − 22. Find 
Rss1, 2d and Rts1, 2d.

 15.  Suppose f  is a differentiable function of x and y, and 
tsu, vd − f se u 1 sin v, e u 1 cos vd. Use the table of values to 
calculate tus0, 0d and tvs0, 0d.

f t fx fy

s0, 0d 3 6 4 8

s1, 2d 6 3 2 5

 16.  Suppose f  is a differentiable function of x and y, and 
tsr, sd − f s2r 2 s, s 2 2 4rd. Use the table of values in  
Exercise 15 to calculate trs1, 2d and tss1, 2d.

17–20 Use a tree diagram to write out the Chain Rule for the given 
case. Assume all functions are differentiable.

 17. u − f sx, yd,  where x − xsr, s, td, y − ysr, s, td

 18.  w − f sx, y, zd,  where x − xsu, vd, y − ysu, vd, z − zsu, vd

 19.  T − Fsp, q, rd,  where p − psx, y, zd, q − qsx, y, zd, 
r − r sx, y, zd

 20.  R − Fst, ud  where t − t sw, x, y, zd, u − usw, x, y, zd

 21–26 Use the Chain Rule to find the indicated partial derivatives.

 21.  z − x 4 1 x 2y,  x − s 1 2t 2 u,  y − stu2;

  
−z
−s

, 
−z
−t

, 
−z
−u

  when s − 4, t − 2, u − 1

 22.  T −
v

2u 1 v
,  u − pqsr  ,  v − psq  r;

  
−T
−p

, 
−T
−q

, 
−T
−r

  when p − 2, q − 1, r − 4

 23.  w − xy 1 yz 1 zx,  x − r cos %,  y − r sin %,  z − r%;

  
−w
−r

, 
−w
−%

  when r − 2, % − !y2

 24.  P − su 2 1 v2 1 w 2 ,  u − xe y,  v − ye x,  w − e xy;

  
−P
−x

, 
−P
−y

  when x − 0, y − 2
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 SECTION 14.5  The Chain Rule 945

45–48 Assume that all the given functions are differentiable.

 45.  If z − f sx, yd, where x − r cos % and y − r sin %, (a) find −zy−r 
and −zy−% and (b) show that

S −z
−xD2

1 S −z
−yD2

− S −z
−rD2

1
1
r 2  S −z

−%D2

 46.  If u − f sx, yd, where x − e s cos t and y − e s sin t, show that

S −u
−xD2

1 S −u
−yD2

− e22sFS −u
−sD2

1 S −u
−t D2G

 47. If z −
1
x

 f f sx 2 yd 1 tsx 1 ydg, show that 

−

−x
 Sx 2 

−z
−xD − x 2 

−2z
−y 2

 48. If z −
1
y

 f f sax 1 yd 1 tsax 2 ydg, show that 

−2z
−x 2 −

a 2

y 2  
−

−y
 1y 2 

−z
−yD

49–54 Assume that all the given functions have continuous  
second-order partial derivatives.

 49.  Show that any function of the form

z − f sx 1 atd 1 tsx 2 atd

 is a solution of the wave equation

−2z
−t 2 − a 2 

−2z
−x 2

 [Hint: Let u − x 1 at, v − x 2 at.]

 50.  If u − f sx, yd, where x − e s cos t and y − e s sin t, show that

−2u
−x 2 1

−2u
−y 2 − e22sF −2u

−s 2 1
−2u
−t 2G

 51.  If z − f sx, yd, where x − r 2 1 s 2 and y − 2rs, find −2zy−r −s. 
(Compare with Example 7.)

 52.  If z − f sx, yd, where x − r cos % and y − r sin %, find  
(a) −zy−r, (b) −zy−%, and (c) −2zy−r −%.

 53. If z − f sx, yd, where x − r cos % and y − r sin %, show that 

−2z
−x 2 1

−2z
−y 2 −

−2z
−r 2 1

1
r 2  

−2z
−% 2 1

1
r

 
−z
−r

 54. Suppose z − f sx, yd, where x − tss, td and y − hss, td.
 (a) Show that

 
−2z
−t 2 −

−2z
−x 2  S −x

−t D2

1 2 
−2z

−x −y
 
−x
−t

 
−y
−t

1
−2z
−y 2  S −y

−t D2

     1
−z
−x

 
−2x
−t 2 1

−z
−y

 
−2 y
−t 2

 (b) Find a similar formula for −2zy−s −t.

 38.  The radius of a right circular cone is increasing at a rate of  
1.8 inys while its height is decreasing at a rate of 2.5 inys. At 
what rate is the volume of the cone changing when the radius  
is 120 in. and the height is 140 in.?

 39.  The length ,, width w, and height h of a box change with  
time. At a certain instant the dimensions are , − 1 m and  
w − h − 2 m, and , and w are increasing at a rate of 2 mys 
while h is decreasing at a rate of 3 mys. At that instant find the 
rates at which the following quantities are changing.

 (a) The volume
 (b) The surface area
 (c) The length of a diagonal

 40.  The voltage V in a simple electrical circuit is slowly decreasing 
as the battery wears out. The resistance R is slowly increas-
ing as the resistor heats up. Use Ohm’s Law, V − IR, to find 
how the current I is changing at the moment when R − 400 V, 
I − 0.08 A, dVydt − 20.01 Vys, and dRydt − 0.03 Vys.

 41.  The pressure of 1 mole of an ideal gas is increasing at a rate  
of 0.05 kPays and the temperature is increasing at a rate of  
0.15 Kys. Use the equation PV − 8.31T in Example 2 to find 
the rate of change of the volume when the pressure is 20 kPa 
and the temperature is 320 K.

 42.   A manufacturer has modeled its yearly production function P 
(the value of its entire production, in millions of dollars) as a 
Cobb-Douglas function

PsL, Kd − 1.47L0.65K 0.35

  where L is the number of labor hours (in thousands) and K is 
the invested capital (in millions of dollars). Suppose that when 
L − 30 and K − 8, the labor force is decreasing at a rate of 
2000 labor hours per year and capital is increasing at a rate of 
$500,000 per year. Find the rate of change of production.

 43.  One side of a triangle is increasing at a rate of 3 cmys and a 
second side is decreasing at a rate of 2 cmys. If the area of the 
triangle remains constant, at what rate does the angle between 
the sides change when the first side is 20 cm long, the second 
side is 30 cm, and the angle is !y6?

 44.  A sound with frequency fs is produced by a source traveling 
along a line with speed vs. If an observer is traveling with  
speed vo along the same line from the opposite direction toward 
the source, then the frequency of the sound heard by the 
observer is

fo − S c 1 vo

c 2 vs
D fs

  where c is the speed of sound, about 332 mys. (This is the  
Doppler effect.) Suppose that, at a particular moment, you  
are in a train traveling at 34 mys and accelerating at 1.2 mys2.  
A train is approaching you from the opposite direction on the 
other track at 40 mys, accelerating at 1.4 mys2, and sounds its 
whistle, which has a frequency of 460 Hz. At that instant, what 
is the perceived frequency that you hear and how fast is it 
changing?
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946 CHAPTER 14  Partial Derivatives

 57.  If f  is homogeneous of degree n, show that 

fxst x, t yd − t n21fxsx, yd

 58.  Suppose that the equation Fsx, y, zd − 0 implicitly defines each 
of the three variables x, y, and z as functions of the other two: 
z − f sx, yd, y − tsx, zd, x − hsy, zd. If F is differentiable and 
Fx, Fy, and Fz are all nonzero, show that

−z
−x

 
−x
−y

 
−y
−z

− 21

 59.  Equation 6 is a formula for the derivative dyydx of a function 
defined implicitly by an equation F sx, yd − 0, provided that F  
is differentiable and Fy ± 0. Prove that if F has continuous sec-
ond derivatives, then a formula for the second derivative of y is

d 2 y
dx 2 − 2

FxxFy
2 2 2FxyFxFy 1 FyyFx

2

Fy
3  

 55.  A function f  is called homogeneous of degree n if it satisfies 
the equation 

f st x, t yd − t nf sx, yd 

   for all t, where n is a positive integer and f  has continuous 
second-order partial derivatives.

 (a)  Verify that f sx, yd − x 2y 1 2xy 2 1 5y 3 is homogeneous  
of degree 3.

 (b)  Show that if f  is homogeneous of degree n, then

x 
−f
−x

1 y 
−f
−y

− n f sx, yd

   [Hint: Use the Chain Rule to differentiate f stx, t yd with 
respect to t.]

 56. If f  is homogeneous of degree n, show that

x2 
−2f
−x 2 1 2xy 

−2f
−x −y

1 y 2 
−2f
−y 2 − nsn 2 1d f sx, yd

The weather map in Figure 1 shows a contour map of the temperature function Tsx, yd for 
the states of California and Nevada at 3:00 pm on a day in October. The level curves, or 
isothermals, join locations with the same temperature. The partial derivative Tx at a loca-
tion such as Reno is the rate of change of temperature with respect to distance if we travel 
east from Reno; Ty is the rate of change of temperature if we travel north. But what if we 
want to know the rate of change of temperature when we travel southeast (toward Las 
Vegas), or in some other direction? In this section we introduce a type of derivative, 
called a directional derivative, that enables us to find the rate of change of a function of 
two or more variables in any direction.

Directional Derivatives
Recall that if z − f sx, yd, then the partial derivatives fx and fy are defined as

1  

  fxsx0, y0 d − lim
h l 0

 
 f sx0 1 h, y0 d 2 f sx0, y0 d

h
 

 fysx0, y0 d − lim
h l 0

 
 f sx0, y0 1 hd 2 f sx0, y0 d

h

and represent the rates of change of z in the x- and y-directions, that is, in the directions 
of the unit vectors i and j.

Suppose that we now wish to find the rate of change of z at sx0, y0 d in the direction of 
an arbitrary unit vector u − ka, bl. (See Figure 2.) To do this we consider the surface S 
with the equation z − f sx, yd (the graph of f ) and we let z0 − f sx0, y0 d. Then the point 
Psx0, y0, z0 d lies on S. The vertical plane that passes through P in the direction of u inter-
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FIGURE 2 
A unit vector  
u − ka, bl − kcos u, sin ul
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 SECTION 14.6  Directional Derivatives and the Gradient Vector 947

sects S in a curve C. (See Figure 3.) The slope of the tangent line T  to C at the point P is 
the rate of change of z in the direction of u.

Q(x, y, z) 

P(x¸, y¸, z¸) 

Pª (x ̧ , y ̧ , 0) 

Qª (x, y , 0 ) 
hb 

ha 
h 

u 

C 

T 

S 

y 

x 

z 

If Qsx, y, zd is another point on C and P9, Q9 are the projections of P, Q onto the 

xy-plane, then the vector P9Q9B is parallel to u and so

P9Q9B − hu − kha, hb l

for some scalar h. Therefore x 2 x0 − ha, y 2 y0 − hb, so x − x0 1 ha, y − y0 1 hb, 
and

Dz
h

−
z 2 z0

h
−

 f sx0 1 ha, y0 1 hbd 2 f sx0, y0 d
h

If we take the limit as h l 0, we obtain the rate of change of z (with respect to distance) 
in the direction of u, which is called the directional derivative of f  in the direction of u.

2    Definition The directional derivative of f  at sx0, y0 d in the direction of a 
unit vector u − ka, bl is

Du f sx0, y0 d − lim
h l 0

 
 f sx0 1 ha, y0 1 hbd 2 f sx0, y0 d

h

if this limit exists.

By comparing Definition 2 with Equations 1, we see that if u − i − k1, 0 l, then 
Di f − fx and if u − j − k0, 1 l, then Dj f − fy. In other words, the partial derivatives of f  
with respect to x and y are just special cases of the directional derivative.

FIGURE 3 

TEC Visual 14.6A animates Figure 3 
by rotating u and therefore T.
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948 CHAPTER 14  Partial Derivatives

EXAMPLE 1 Use the weather map in Figure 1 to estimate the value of the directional 
derivative of the temperature function at Reno in the southeasterly direction.

SOLUTION The unit vector directed toward the southeast is u − si 2 jdys2 , but we 
won’t need to use this expression. We start by drawing a line through Reno toward the 
southeast (see Figure 4).
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We approximate the directional derivative Du T  by the average rate of change of the 
temperature between the points where this line intersects the isothermals T − 50 and 
T − 60. The temperature at the point southeast of Reno is T − 60 8F and the tempera-
ture at the point northwest of Reno is T − 50 8F. The distance between these points 
looks to be about 75 miles. So the rate of change of the temperature in the southeasterly 
direction is

 Du T <
60 2 50

75
−

10
75

< 0.138Fymi Q

When we compute the directional derivative of a function defined by a formula, we 
generally use the following theorem.

3    Theorem If f  is a differentiable function of x and y, then f  has a directional 
derivative in the direction of any unit vector u − ka, bl and

Du f sx, yd − fxsx, yd a 1 fysx, yd b

PROOF If we define a function t of the single variable h by

tshd − f sx0 1 ha, y0 1 hbd

then, by the definition of a derivative, we have

4   t9s0d − lim
h l 0

 
tshd 2 ts0d

h
− lim

h l 0
 
 f sx0 1 ha, y0 1 hbd 2 f sx0, y0 d

h
 

 − Du f sx0, y0 d

FIGURE 4
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On the other hand, we can write tshd − f sx, yd, where x − x0 1 ha, y − y0 1 hb, so 
the Chain Rule (Theorem 14.5.2) gives

 t9shd −
−f
−x

 
dx
dh

1
−f
−y

 
dy
dh

− fxsx, yd a 1 fysx, yd b

If we now put h − 0, then x − x0, y − y0, and

5  t9s0d − fxsx0, y0 d a 1 fysx0, y0 d b 

Comparing Equations 4 and 5, we see that

 Du f sx0, y0 d − fxsx0, y0 d a 1 fysx0, y0 d b Q

If the unit vector u makes an angle ! with the positive x-axis (as in Figure 2), then we 
can write u − kcos !, sin ! l  and the formula in Theorem 3 becomes

6  Du f sx, yd − fxsx, yd cos ! 1 fysx, yd sin ! 

EXAMPLE 2 Find the directional derivative Du f sx, yd if

f sx, yd − x 3 2 3xy 1 4y 2

and u is the unit vector given by angle ! − "y6. What is Du f s1, 2d?

SOLUTION Formula 6 gives

 Du f sx, yd − fxsx, yd cos 
"

6
1 fysx, yd sin 

"

6

 − s3x 2 2 3yd 
s3
2

1 s23x 1 8yd1
2

 − 1
2 f3 s3 x 2 2 3x 1 s8 2 3s3 dyg

Therefore

 Du f s1, 2d − 1
2 f3s3 s1d2 2 3s1d 1 s8 2 3s3 ds2dg −

13 2 3s3 

2
 Q

The Gradient Vector
Notice from Theorem 3 that the directional derivative of a differentiable function can be 
written as the dot product of two vectors:

7   Du f sx, yd − fxsx, yd a 1 fysx, yd b  

 − k fxsx, yd, fysx, yd l ? ka, b l

 − k fxsx, yd, fysx, yd l ? u

The first vector in this dot product occurs not only in computing directional deriv atives 
but in many other contexts as well. So we give it a special name (the gradient of f ) and 
a special notation (grad f  or = f , which is read “del f ”).
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The directional derivative Du f s1, 2d 
in Example 2 represents the rate of 
change of z in the direction of u. This 
is the slope of the tangent line to the 
curve of intersection of the surface 
z − x 3 2 3xy 1 4y2 and the vertical 
plane through s1, 2, 0d in the direction 
of u shown in Figure 5.
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950 CHAPTER 14  Partial Derivatives

8   Definition If f  is a function of two variables x and y, then the gradient of f   
is the vector function = f  defined by

= f sx, yd − k fxsx, yd, fysx, yd l −
−f
−x

 i 1
−f
−y

 j

EXAMPLE 3 If f sx, yd − sin x 1 ex y, then

 = f sx, yd − k fx , fy l − kcos x 1 yex y, xex y l

and  = f s0, 1d − k2, 0 l  Q

With this notation for the gradient vector, we can rewrite Equation 7 for the direc-
tional derivative of a differentiable function as

9  Du f sx, yd − = f sx, yd ? u 

This expresses the directional derivative in the direction of a unit vector u as the scalar  
projection of the gradient vector onto u.

EXAMPLE 4 Find the directional derivative of the function f sx, yd − x 2 y 3 2 4y at the 
point s2, 21d in the direction of the vector v − 2 i 1 5j.

SOLUTION We first compute the gradient vector at s2, 21d:

 = f sx, yd − 2xy 3 i 1 s3x 2y 2 2 4d j

 = f s2, 21d − 24 i 1 8 j

Note that v is not a unit vector, but since | v | − s29 , the unit vector in the direction  
of v is

u −
v

| v | −
2

s29 
 i 1

5

s29 
 j

Therefore, by Equation 9, we have

 Du f s2, 21d − = f s2, 21d ? u − s24 i 1 8 jd ? S 2

s29 
 i 1

5

s29
   jD

  −
24 ? 2 1 8 ? 5

s29 
−

32

s29 
 Q

Functions of Three Variables
For functions of three variables we can define directional derivatives in a similar manner. 
Again Du f sx, y, zd can be interpreted as the rate of change of the function in the direction 
of a unit vector u.
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The gradient vector =f s2, 21d in 
Example 4 is shown in Figure 6 with 
initial point s2, 21d. Also shown is the 
vector v that gives the direction of the 
directional derivative. Both of these 
vectors are superimposed on a contour 
plot of the graph of f .
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10   Definition The directional derivative of f  at sx0, y0, z0 d in the direction of 
a unit vector u − ka, b, c l is

Du f sx0, y0, z0 d − lim
h l 0

 
 f sx0 1 ha, y0 1 hb, z0 1 hcd 2 f sx0, y0, z0 d

h

if this limit exists.

If we use vector notation, then we can write both definitions (2 and 10) of the direc-
tional derivative in the compact form

11  Du f sx0 d − lim
h l 0

 
 f sx0 1 hud 2 f sx0 d

h
 

where x0 − kx0, y0 l if n − 2 and x0 − kx0, y0, z0 l if n − 3. This is reasonable because  
the vector equation of the line through x0 in the direction of the vector u is given by 
x − x0 1 tu (Equation 12.5.1) and so f sx0 1 hud represents the value of f  at a point on 
this line.

If f sx, y, zd is differentiable and u − ka, b, c l, then the same method that was used to 
prove Theorem 3 can be used to show that

12  Du f sx, y, zd − fxsx, y, zd a 1 fysx, y, zd b 1 fzsx, y, zd c 

For a function f  of three variables, the gradient vector, denoted by = f  or grad f , is

= f sx, y, zd − k fxsx, y, zd, fysx, y, zd, fzsx, y, zd l

or, for short,

13  = f − k fx, fy, fz l −
−f
−x

 i 1
−f
−y

 j 1
−f
−z

 k 

Then, just as with functions of two variables, Formula 12 for the directional derivative 
can be rewritten as

14  Du f sx, y, zd − = f sx, y, zd ? u 

EXAMPLE 5  If f sx, y, zd − x sin yz, (a) find the gradient of f  and (b) find the direc- 
tional derivative of f  at s1, 3, 0d in the direction of v − i 1 2 j 2 k.

SOLUTION
(a) The gradient of f  is 

 = f sx, y, zd − k fxsx, y, zd, fysx, y, zd, fzsx, y, zd l

 − ksin yz, xz cos yz, xy cos yz l
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952 CHAPTER 14  Partial Derivatives

(b) At s1, 3, 0d we have = f s1, 3, 0d − k0, 0, 3 l . The unit vector in the direction of 
v − i 1 2 j 2 k is

u −
1

s6  i 1
2

s6  j 2
1

s6  k

Therefore Equation 14 gives

 Du f s1, 3, 0d − = f s1, 3, 0d ? u

 − 3k ? S 1

s6 
 i 1

2

s6 
 j 2

1

s6 
 kD

  − 3S2 
1

s6 D − 2Î3
2

 Q

Maximizing the Directional Derivative
Suppose we have a function f  of two or three variables and we consider all possible 
directional derivatives of f  at a given point. These give the rates of change of f  in all 
possible directions. We can then ask the questions: in which of these directions does f  
change fastest and what is the maximum rate of change? The answers are provided by the 
following theorem.

15
TEC Visual 14.6B provides visual  
confirmation of Theorem 15.

  Theorem Suppose f  is a differentiable function of two or three variables. 
The maximum value of the directional derivative Du f sxd is | = f sxd | and it 
occurs when u has the same direction as the gradient vector = f sxd.

PROOF From Equation 9 or 14 we have

Du f − = f ? u − | = f || u | cos ! − | = f | cos !

where ! is the angle between = f  and u. The maximum value of cos ! is 1 and this 
occurs when ! − 0. Therefore the maximum value of Du f  is | = f | and it occurs when 
! − 0, that is, when u has the same direction as = f . Q

EXAMPLE 6 
(a) If f sx, yd − xey, find the rate of change of f  at the point Ps2, 0d in the direction 
from P to Qs1

2, 2d.
(b) In what direction does f  have the maximum rate of change? What is this maximum 
rate of change?

SOLUTION
(a) We first compute the gradient vector:

 = f sx, yd − k fx, fy l − key, xey l

 = f s2, 0d − k1, 2 l
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The unit vector in the direction of PQ
l

− k23
2, 2l  is u − k23

5 , 45 l , so the rate of change 
of f  in the direction from P to Q is

 Du f s2, 0d − = f s2, 0d ? u − k1, 2l ? k23
5 , 45 l

 − 1(23
5) 1 2( 4

5) − 1

(b) According to Theorem 15, f  increases fastest in the direction of the gradient vector 
= f s2, 0d − k1, 2 l. The maximum rate of change is

 | = f s2, 0d | − | k1, 2l | − s5  Q
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EXAMPLE 7 Suppose that the temperature at a point sx, y, zd in space is given by 
Tsx, y, zd − 80ys1 1 x 2 1 2y 2 1 3z2 d, where T  is measured in degrees Celsius and  
x, y, z in meters. In which direction does the temperature increase fastest at the point 
s1, 1, 22d? What is the maximum rate of increase?

SOLUTION The gradient of T  is

 =T −
−T
−x

 i 1
−T
−y

 j 1
−T
−z

 k

 − 2
160x

s1 1 x 2 1 2y 2 1 3z2 d2  i 2
320y

s1 1 x 2 1 2y 2 1 3z2 d2  j 2
480z

s1 1 x 2 1 2y 2 1 3z2 d2  k

 − 
160

s1 1 x 2 1 2y 2 1 3z2 d2  s2x i 2 2y j 2 3z kd

At the point s1, 1, 22d the gradient vector is

=Ts1, 1, 22d − 160
256 s2i 2 2 j 1 6 kd − 5

8 s2i 2 2 j 1 6 kd

By Theorem 15 the temperature increases fastest in the direction of the gradient vector 
=T s1, 1, 22d − 5

8 s2i 2 2 j 1 6 kd or, equivalently, in the direction of 2i 2 2 j 1 6 k 
or the unit vector s2i 2 2 j 1 6 kdys41. The maximum rate of increase is the length of 
the gradient vector:

 | =T s1, 1, 22d | − 5
8 | 2i 2 2 j 1 6 k | − 5

8 s41

Therefore the maximum rate of increase of temperature is  58 s41 < 48Cym. Q

At s2, 0d the function in Example 6 
increases fastest in the direction of the 
gradient vector = f s2, 0d − k1, 2 l.  
Notice from Figure 7 that this vector 
appears to be perpendicular to the level 
curve through s2, 0d. Figure 8 shows the 
graph of f  and the gradient vector.
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Tangent Planes to Level Surfaces
Suppose S is a surface with equation Fsx, y, zd − k, that is, it is a level surface of a func-
tion F of three variables, and let Psx0, y0, z0 d be a point on S. Let C be any curve that lies 
on the surface S and passes through the point P. Recall from Section 13.1 that the  
curve C is described by a continuous vector function rstd − kxstd, ystd, zstd l. Let t0 be the 
parameter value corresponding to P; that is, rst0d − kx0, y0, z0 l. Since C lies on S, any 
point sxstd, ystd, zstdd must satisfy the equation of S, that is,

16  Fsxstd, ystd, zstdd − k 

If x, y, and z are differentiable functions of t and F is also differentiable, then we can use 
the Chain Rule to differentiate both sides of Equation 16 as follows:

17  
−F
−x

 
dx
dt

1
−F
−y

 
dy
dt

1
−F
−z

 
dz
dt

− 0 

But, since =F − kFx , Fy , Fz l and r9std − kx9std, y9std, z9std l, Equation 17 can be written in 
terms of a dot product as

=F ? r9std − 0

In particular, when t − t0 we have rst0d − kx0, y0, z0 l, so

18  =Fsx0, y0, z0 d ? r9st0 d − 0 

Equation 18 says that the gradient vector at P, =Fsx0, y0, z0 d, is perpendicular to the  
tangent vector r9st0 d to any curve C on S that passes through P. (See Figure 9.) If 
=Fsx0, y0, z0 d ± 0, it is therefore natural to define the tangent plane to the level surface 
Fsx, y, zd − k at Psx0, y0, z0 d as the plane that passes through P and has normal vector 
=Fsx0, y0, z0 d. Using the standard equation of a plane (Equation 12.5.7), we can write the 
equation of this tangent plane as

19  Fxsx0, y0, z0 dsx 2 x0 d 1 Fysx0, y0, z0 dsy 2 y0 d 1 Fzsx0, y0, z0 dsz 2 z0 d − 0

The normal line to S at P is the line passing through P and perpendicular to the tan- 
gent plane. The direction of the normal line is therefore given by the gradient vector 
=Fsx0, y0, z0 d and so, by Equation 12.5.3, its symmetric equations are

20  
x 2 x0

Fxsx0, y0, z0 d
−

y 2 y0

Fysx0, y0, z0 d
−

z 2 z0

Fzsx0, y0, z0 d
 

In the special case in which the equation of a surface S is of the form z − f sx, yd 
(that is, S is the graph of a function f  of two variables), we can rewrite the equation as

Fsx, y, zd − f sx, yd 2 z − 0

and regard S as a level surface (with k − 0) of F. Then

 Fxsx0, y0, z0 d − fxsx0, y0 d

 Fysx0, y0, z0 d − fysx0, y0 d

 Fzsx0, y0, z0 d − 21 

0 
S C 

±F (x ̧ , y ̧,  z¸) 
tangent plane 

P r ª(t¸ ) 

x 

z 

y 

FIGURE 9
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so Equation 19 becomes

fxsx0, y0 dsx 2 x0 d 1 fysx0, y0 dsy 2 y0 d 2 sz 2 z0 d − 0

which is equivalent to Equation 14.4.2. Thus our new, more general, definition of a tangent 
plane is consistent with the definition that was given for the special case of Section 14.4.

EXAMPLE 8 Find the equations of the tangent plane and normal line at the point 
s22, 1, 23d to the ellipsoid

x 2

4
1 y 2 1

z2

9
− 3

SOLUTION The ellipsoid is the level surface (with k − 3) of the function

Fsx, y, zd −
x 2

4
1 y 2 1

z2

9

Therefore we have

 Fxsx, y, zd −
x
2

       Fysx, y, zd − 2y        Fzsx, y, zd −
2z
9

 Fxs22, 1, 23d − 21       Fys22, 1, 23d − 2        Fzs22, 1, 23d − 22
3

Then Equation 19 gives the equation of the tangent plane at s22, 1, 23d as

21sx 1 2d 1 2sy 2 1d 2 2
3 sz 1 3d − 0

which simplifies to 3x 2 6y 1 2z 1 18 − 0.
By Equation 20, symmetric equations of the normal line are

 
x 1 2

21
−

y 2 1
2

−
z 1 3

22
3

 Q

Significance of the Gradient Vector
We now summarize the ways in which the gradient vector is significant. We first consider 
a function f  of three variables and a point Psx0, y0, z0 d in its domain. On the one hand, 
we know from Theorem 15 that the gradient vector = f sx0, y0, z0 d gives the direction of 
fastest increase of f. On the other hand, we know that = f sx0, y0, z0 d is orthogonal to the 
level surface S of f  through P. (Refer to Figure 9.) These two properties are quite com-
patible intu itively because as we move away from P on the level surface S, the value of 
f  does not change at all. So it seems reasonable that if we move in the perpendicular 
direction, we get the maximum increase.

In like manner we consider a function f  of two variables and a point Psx0, y0 d in its 
domain. Again the gradient vector = f sx0, y0 d gives the direction of fastest increase of f. 
Also, by considerations similar to our discussion of tangent planes, it can be shown that 
= f sx0, y0 d is perpendicular to the level curve f sx, yd − k that passes through P. Again 
this is intuitively plausible because the values of f  remain constant as we move along the 
curve. (See Figure 11.)

If we consider a topographical map of a hill and let f sx, yd represent the height above 
sea level at a point with coordinates sx, yd, then a curve of steepest ascent can be drawn 
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Figure 10 shows the ellipsoid, tangent 
plane, and normal line in Example 8.
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956 CHAPTER 14  Partial Derivatives

as in Figure 12 by making it perpendicular to all of the contour lines. This phenomenon 
can also be noticed in Figure 14.1.12, where Lonesome Creek follows a curve of steep est 
descent.

Computer algebra systems have commands that plot sample gradient vectors. Each 
gradient vector = f sa, bd is plotted starting at the point sa, bd. Figure 13 shows such a plot 
(called a gradient vector field) for the function f sx, yd − x 2 2 y 2 superimposed on a 
contour map of f. As expected, the gradient vectors point “uphill” and are perpendicular 
to the level curves.

x
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300
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100

curve of
steepest
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FIGURE 12

FIGURE 13

 1.   Level curves for barometric pressure (in millibars) are shown 
for 6:00 am on a day in November. A deep low with pressure 
972 mb is moving over northeast Iowa. The distance along the 
red line from K (Kearney, Nebraska) to S (Sioux City, Iowa) is 
300 km. Estimate the value of the directional derivative of the 
pressure function at Kearney in the direction of Sioux City. 
What are the units of the directional derivative?
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 2.  The contour map shows the average maximum temperature for 
November 2004 (in 8C ). Estimate the value of the directional 

derivative of this temperature function at Dubbo, New South 
Wales, in the direction of Sydney. What are the units?

©
 2

01
6 

Ce
ng

ag
e 

Le
ar

ni
ng

 ®

Sydney

Dubbo

30

27 24

24

21
18

0 100 200 300
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 3.  A table of values for the wind-chill index W − f sT, vd is given 
in Exercise 14.3.3 on page 923. Use the table to estimate the 
value of Du f s220, 30d, where u − si 1 jdys2 .

 4–6 Find the directional derivative of f  at the given point in the 
direction indicated by the angle !.

 4. f sx, yd − xy 3 2 x 2,  s1, 2d,  ! − "y3
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 25. f sx, y, zd − xysy 1 zd,  s8, 1, 3d

 26. f sp, q, rd − arctanspqrd,  s1, 2, 1d

 27.  (a)  Show that a differentiable function f  decreases most rap-
idly at x in the direction opposite to the gradient vector, 
that is, in the direction of 2= f sxd.

 (b)  Use the result of part (a) to find the direction in which the 
function f sx, yd − x 4y 2 x 2 y 3 decreases fastest at the  
point s2, 23d.

 28.  Find the directions in which the directional derivative of 
f sx, yd − x 2 1 xy 3 at the point s2, 1d has the value 2.

 29.   Find all points at which the direction of fastest change of the 
function f sx, yd − x 2 1 y 2 2 2x 2 4y is i 1 j.

 30.  Near a buoy, the depth of a lake at the point with coordi nates 
sx, yd is z − 200 1 0.02x 2 2 0.001y 3, where x, y, and z are 
measured in meters. A fisherman in a small boat starts at the 
point s80, 60d and moves toward the buoy, which is located at 
s0, 0d. Is the water under the boat getting deeper or shallower 
when he departs? Explain.

 31.  The temperature T in a metal ball is inversely proportional to 
the distance from the center of the ball, which we take to be 
the origin. The temperature at the point s1, 2, 2d is 1208.

 (a)  Find the rate of change of T at s1, 2, 2d in the direction 
toward the point s2, 1, 3d.

 (b)  Show that at any point in the ball the direction of greatest 
increase in temperature is given by a vector that points 
toward the origin.

 32. The temperature at a point sx, y, zd is given by 

Tsx, y, zd − 200e2x 223y 229z 2

 where T is measured in 8C and x, y, z in meters.
 (a)  Find the rate of change of temperature at the point 

Ps2, 21, 2d in the direction toward the point s3, 23, 3d.
 (b)  In which direction does the temperature increase fastest  

at P?
 (c) Find the maximum rate of increase at P.

 33.  Suppose that over a certain region of space the electrical 
potential V is given by Vsx, y, zd − 5x 2 2 3xy 1 xyz.

 (a)  Find the rate of change of the potential at Ps3, 4, 5d in the 
direction of the vector v − i 1 j 2 k.

 (b) In which direction does V change most rapidly at P?
 (c) What is the maximum rate of change at P?

 34.  Suppose you are climbing a hill whose shape is given by the 
equation z − 1000 2 0.005x 2 2 0.01y 2, where x, y, and z 
are measured in meters, and you are standing at a point with 
coordinates s60, 40, 966d. The positive x-axis points east and 
the positive y-axis points north.

 (a)  If you walk due south, will you start to ascend or descend? 
At what rate?

 5. f sx, yd − y cossxyd,  s0, 1d,  ! − "y4

 6. f sx, yd − s2x 1 3y ,  s3, 1d,  ! − 2"y6

7–10
 (a) Find the gradient of f .
 (b) Evaluate the gradient at the point P.
 (c)  Find the rate of change of f  at P in the direction of the  

vector u.

 7. f sx, yd − xyy,  Ps2, 1d,  u − 3
5 i 1 4

5 j

 8. f sx, yd − x 2 ln y,  Ps3, 1d,  u − 2 5
13 i 1 12

13 j

 9. f sx, y, zd − x 2yz 2 xyz 3,  Ps2, 21, 1d,  u − k0, 4
5 , 23

5 l
 10. f sx, y, zd − y 2e xyz,  Ps0, 1, 21d,  u − k 3

13, 4
13, 12

13 l

 11–17 Find the directional derivative of the function at the given 
point in the direction of the vector v.

 11. f sx, yd − e x sin y,  s0, "y3d,  v − k26, 8 l

 12. f sx, yd −
x

x 2 1 y 2 ,  s1, 2d,  v − k3, 5 l

 13. tss, td − s st  ,  s2, 4d,  v − 2 i 2 j

 14. tsu, vd − u 2e2v,  s3, 0d,  v − 3 i 1 4 j

 15. f sx, y, zd − x 2y 1 y 2z,  s1, 2, 3d,  v − k2, 21, 2 l

 16. f sx, y, zd − xy 2 tan21z,  s2, 1, 1d,  v − k1, 1, 1 l

 17.  hsr, s, td − lns3r 1 6s 1 9td,  s1, 1, 1d,  
v − 4 i 1 12 j 1 6k

 18.  Use the figure to estimate Du f s2, 2d.
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 19.  Find the directional derivative of f sx, yd − sxy  at Ps2, 8d in 
the direction of Qs5, 4d.

 20.  Find the directional derivative of f sx, y, zd − xy 2z 3 at 
Ps2, 1, 1d in the direction of Qs0, 23, 5d.

 21–26 Find the maximum rate of change of f  at the given point 
and the direction in which it occurs.

 21. f sx, yd − 4ysx ,  s4, 1d

 22. f ss, td − te st,  s0, 2d

 23. f sx, yd − sinsxyd,  s1, 0d

 24. f sx, y, zd − x lnsyzd,  (1, 2, 12)
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958 CHAPTER 14  Partial Derivatives

 39.  The second directional derivative of f sx, yd is

Du
2 f sx, yd − DufDu f sx, ydg

  If f sx, yd − x 3 1 5x 2y 1 y 3 and u − k3
5, 45 l , calculate 

Du
2 f s2, 1d.

 40. (a)  If u − ka, bl is a unit vector and f  has continuous  
second partial derivatives, show that

Du
2 f − fxx a 2 1 2 fxy ab 1 fyy b2

 (b)  Find the second directional derivative of f sx, yd − xe 2y in 
the direction of v − k4, 6 l.

 41–46 Find equations of (a) the tangent plane and (b) the normal 
line to the given surface at the specified point.

 41. 2sx 2 2d2 1 sy 2 1d2 1 sz 2 3d2 − 10,  s3, 3, 5d

 42. x − y 2 1 z 2 1 1,  s3, 1, 21d

 43. xy 2z 3 − 8,  s2, 2, 1d

 44. xy 1 yz 1 zx − 5,  s1, 2, 1d

 45. x 1 y 1 z − e xyz,  s0, 0, 1d

 46.  x 4 1 y 4 1 z 4 − 3x 2y 2z 2,  s1, 1, 1d

 47–48 Use a computer to graph the surface, the tangent plane, 
and the normal line on the same screen. Choose the domain 
carefully so that you avoid extraneous vertical planes. Choose the 
viewpoint so that you get a good view of all three objects.

 47. xy 1 yz 1 zx − 3,  s1, 1, 1d 48. xyz − 6,  s1, 2, 3d

 49.  If f sx, yd − xy, find the gradient vector = f s3, 2d and use it  
to find the tangent line to the level curve f sx, yd − 6 at the 
point s3, 2d. Sketch the level curve, the tangent line, and the 
gradient vector.

 50.  If tsx, yd − x 2 1 y 2 2 4x, find the gradient vector =ts1, 2d  
and use it to find the tangent line to the level curve 
tsx, yd − 1 at the point s1, 2d. Sketch the level curve, the 
tangent line, and the gradient vector.

 51.  Show that the equation of the tangent plane to the ellipsoid 
x 2ya 2 1 y 2yb 2 1 z2yc 2 − 1 at the point sx0, y0, z0 d can be 
written as

xx0

a 2 1
 yy0

b 2 1
zz0

c 2 − 1

 52.  Find the equation of the tangent plane to the hyperboloid 
x 2ya 2 1 y 2yb 2 2 z2yc 2 − 1 at sx0, y0, z0 d and express it in a 
form similar to the one in Exercise 51.

 53.  Show that the equation of the tangent plane to the elliptic 
paraboloid zyc − x 2ya 2 1 y 2yb 2 at the point sx0, y0, z0 d can 
be written as

2xx0

a 2 1
2yy0

b 2 −
z 1 z0

c

;

 (b)  If you walk northwest, will you start to ascend or 
descend? At what rate?

 (c)  In which direction is the slope largest? What is the rate of 
ascent in that direction? At what angle above the horizon-
tal does the path in that direction begin?

 35.  Let f  be a function of two variables that has continuous 
partial derivatives and consider the points As1, 3d, Bs3, 3d, 
Cs1, 7d, and Ds6, 15d. The directional derivative of f  at A in 
the direction of the vector AB

l
 is 3 and the directional deriva-

tive at A in the direction of AC
l

 is 26. Find the directional 
derivative of f  at A in the direction of the vector AD

l
.

 36.  Shown is a topographic map of Blue River Pine Provincial 
Park in British Columbia. Draw curves of steepest descent 
from point A (descending to Mud Lake) and from point B.
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 37.  Show that the operation of taking the gradient of a function 
has the given property. Assume that u and v are differen tiable 
functions of x and y and that a, b are constants.

 (a) =sau 1 bvd − a =u 1 b =v 

 (b) =suvd − u =v 1 v =u

 (c) =S u
vD −

v =u 2 u =v
v 2   (d) =un − nu n21 =u

 38.  Sketch the gradient vector = f s4, 6d for the function f  whose 
level curves are shown. Explain how you chose the direction 
and length of this vector.
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 SECTION 14.7  Maximum and Minimum Values 959

 65.  Where does the helix rstd − kcos !t, sin !t, tl intersect the 
paraboloid z − x 2 1 y 2? What is the angle of intersection 
between the helix and the paraboloid? (This is the angle 
between the tangent vector to the curve and the tangent 
plane to the paraboloid.)

 66.  The helix rstd − kcoss!ty2d, sins!ty2d, t l intersects the 
sphere x 2 1 y 2 1 z 2 − 2 in two points. Find the angle of 
intersection at each point.

 67. (a)  Two surfaces are called orthogonal at a point of inter-
section if their normal lines are perpendicular at that 
point. Show that surfaces with equations Fsx, y, zd − 0 
and Gsx, y, zd − 0 are orthogonal at a point P where 
=F ± 0 and =G ± 0 if and only if

 Fx Gx 1 FyGy 1 Fz Gz − 0  at P

 (b)  Use part (a) to show that the surfaces z2 − x 2 1 y 2 and 
x 2 1 y 2 1 z2 − r 2 are orthogonal at every point of  
intersection. Can you see why this is true without using  
calculus?

 68. (a)  Show that the function f sx, yd − s3 xy  is continuous 
and the partial derivatives fx and fy exist at the origin 
but the directional derivatives in all other directions do 
not exist.

 (b)  Graph f  near the origin and comment on how the graph 
confirms part (a).

 69.  Suppose that the directional derivatives of f sx, yd are known 
at a given point in two nonparallel directions given by unit 
vectors u and v. Is it possible to find = f  at this point? If so, 
how would you do it?

 70.  Show that if z − f sx, yd is differentiable at x0 − kx0, y0 l, 
then

lim 
x l x0

 
 f sxd 2 f sx0 d 2 = f sx0 d ? sx 2 x0 d

| x 2 x0 | − 0

 [Hint: Use Definition 14.4.7 directly.]

;

 54.  At what point on the ellipsoid x 2 1 y 2 1 2z2 − 1 is the 
tangent plane parallel to the plane x 1 2y 1 z − 1?

 55.  Are there any points on the hyperboloid x 2 2 y 2 2 z2 − 1 
where the tangent plane is parallel to the plane z − x 1 y?

 56.  Show that the ellipsoid 3x 2 1 2y 2 1 z2 − 9 and the sphere 
x 2 1 y 2 1 z2 2 8x 2 6y 2 8z 1 24 − 0 are tangent to 
each other at the point s1, 1, 2d. (This means that they have 
a common tangent plane at the point.)

 57.  Show that every plane that is tangent to the cone 
x 2 1 y 2 − z2 passes through the origin.

 58.  Show that every normal line to the sphere x 2 1 y 2 1 z2 − r 2 
passes through the center of the sphere.

 59.  Where does the normal line to the paraboloid z − x 2 1 y 2 
at the point s1, 1, 2d intersect the paraboloid a second time?

 60.  At what points does the normal line through the point 
s1, 2, 1d on the ellipsoid 4x 2 1 y 2 1 4z 2 − 12 intersect the 
sphere x 2 1 y 2 1 z 2 − 102?

 61.  Show that the sum of the x-, y-, and z-intercepts of any 
tangent plane to the surface sx 1 sy 1 sz − sc  is a 
constant.

 62.  Show that the pyramids cut off from the first octant by any 
tangent planes to the surface xyz − 1 at points in the first 
octant must all have the same volume.

 63.  Find parametric equations for the tangent line to the curve 
of intersection of the paraboloid z − x 2 1 y 2 and the ellip-
soid 4x 2 1 y 2 1 z2 − 9 at the point s21, 1, 2d.

 64. (a)  The plane y 1 z − 3 intersects the cylinder x 2 1 y 2 − 5 
in an ellipse. Find parametric equations for the tangent 
line to this ellipse at the point s1, 2, 1d.

   (b)  Graph the cylinder, the plane, and the tangent line on 
the same screen.

;

As we saw in Chapter 4, one of the main uses of ordinary derivatives is in finding maxi-
mum and minimum values (extreme values). In this section we see how to use partial 
derivatives to locate maxima and minima of functions of two variables. In particular, in 
Example 6 we will see how to maximize the volume of a box without a lid if we have a 
fixed amount of cardboard to work with.

Look at the hills and valleys in the graph of f  shown in Figure 1. There are two points 
sa, bd where f  has a local maximum, that is, where f sa, bd is larger than nearby values of 
f sx, yd. The larger of these two values is the absolute maximum. Likewise, f  has two 
local minima, where f sa, bd is smaller than nearby values. The smaller of these two val-
ues is the absolute minimum.

x

z

y

absolute
maximum

absolute
minimum

local
minimum

local
maximum

FIGURE 1 
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960 CHAPTER 14  Partial Derivatives

1   Definition A function of two variables has a local maximum at sa, bd if 
f sx, yd < f sa, bd when sx, yd is near sa, bd. [This means that f sx, yd < f sa, bd for 
all points sx, yd in some disk with center sa, bd.] The number f sa, bd is called a 
local maximum value. If f sx, yd > f sa, bd when sx, yd is near sa, bd, then f  has 
a local minimum at sa, bd and f sa, bd is a local minimum value.

If the inequalities in Definition 1 hold for all points sx, yd in the domain of f , then f  
has an absolute maximum (or absolute minimum) at sa, bd.

2  Theorem If f  has a local maximum or minimum at sa, bd and the first-order 
partial derivatives of f  exist there, then fxsa, bd − 0 and fysa, bd − 0.

PROOF Let tsxd − f sx, bd. If f  has a local maximum (or minimum) at sa, bd, then t has 
a local maximum (or minimum) at a, so t9sad − 0 by Fermat’s Theorem (see Theo-
rem 4.1.4). But t9sad − fxsa, bd (see Equation 14.3.1) and so fxsa, bd − 0. Similarly, by 
applying Fermat’s Theorem to the function Gsyd − f sa, yd, we obtain fysa, bd − 0. Q

If we put fxsa, bd − 0 and fysa, bd − 0 in the equation of a tangent plane (Equation 
14.4.2), we get z − z0. Thus the geometric interpretation of Theorem 2 is that if the graph 
of f  has a tangent plane at a local maximum or minimum, then the tangent plane must be 
horizontal.

A point sa, bd is called a critical point (or stationary point) of f  if fxsa, bd − 0 and 
fysa, bd − 0, or if one of these partial derivatives does not exist. Theorem 2 says that if f  
has a local maximum or minimum at sa, bd, then sa, bd is a critical point of f. However, 
as in single-variable calculus, not all critical points give rise to maxima or minima. At a 
critical point, a function could have a local maximum or a local minimum or neither.

EXAMPLE 1 Let f sx, yd − x 2 1 y 2 2 2x 2 6y 1 14. Then

fxsx, yd − 2x 2 2      fysx, yd − 2y 2 6

These partial derivatives are equal to 0 when x − 1 and y − 3, so the only critical point 
is s1, 3d. By completing the square, we find that

f sx, yd − 4 1 sx 2 1d2 1 sy 2 3d2

Since sx 2 1d2 > 0 and sy 2 3d2 > 0, we have f sx, yd > 4 for all values of x and y. 
Therefore f s1, 3d − 4 is a local minimum, and in fact it is the absolute minimum of f. 
This can be confirmed geometrically from the graph of f, which is the elliptic parabo-
loid with vertex s1, 3, 4d shown in Figure 2. Q

EXAMPLE 2 Find the extreme values of f sx, yd − y 2 2 x 2.

SOLUTION Since fx − 22x and fy − 2y, the only critical point is s0, 0d. Notice that  
for points on the x-axis we have y − 0, so f sx, yd − 2x 2 , 0 (if x ± 0). However, for 
points on the y-axis we have x − 0, so f sx, yd − y 2 . 0 (if y ± 0). Thus every disk  
with center s0, 0d contains points where f  takes positive values as well as points where  
f  takes negative values. Therefore f s0, 0d − 0 can’t be an extreme value for f , so f  has 
no extreme value. Q

Notice that the conclusion of Theorem 2 
can be stated in the notation of gradient 
vectors as =f sa, bd − 0.
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 SECTION 14.7  Maximum and Minimum Values 961

Example 2 illustrates the fact that a function need not have a maximum or minimum 
value at a critical point. Figure 3 shows how this is possible. The graph of f  is the hyper-
bolic paraboloid z − y 2 2 x 2, which has a horizontal tangent plane (z − 0) at the origin. 
You can see that f s0, 0d − 0 is a maximum in the direction of the x-axis but a minimum 
in the direction of the y-axis. Near the origin the graph has the shape of a saddle and so 
s0, 0d is called a saddle point of f.

A mountain pass also has the shape of a saddle. As the photograph of the geologi-
cal formation illustrates, for people hiking in one direction the saddle point is the lowest 
point on their route, while for those traveling in a different direction the saddle point is 
the highest point.

We need to be able to determine whether or not a function has an extreme value at a 
crit ical point. The following test, which is proved at the end of this section, is analogous 
to the Second Derivative Test for functions of one variable.

3  Second Derivatives Test Suppose the second partial derivatives of f  
are con tinuous on a disk with center sa, bd, and suppose that fxsa, bd − 0 and 
fysa, bd − 0 [that is, sa, bd is a critical point of f ]. Let

D − Dsa, bd − fxxsa, bd fyy sa, bd 2 f fx y sa, bdg2

(a) If D . 0 and fxxsa, bd . 0, then f sa, bd is a local minimum.

(b) If D . 0 and fxxsa, bd , 0, then f sa, bd is a local maximum.

(c) If D , 0, then f sa, bd is not a local maximum or minimum.

NOTE 1 In case (c) the point sa, bd is called a saddle point of f  and the graph of f   
crosses its tangent plane at sa, bd.

NOTE 2 If D − 0, the test gives no information: f  could have a local maximum or 
local minimum at sa, bd, or sa, bd could be a saddle point of f.

NOTE 3 To remember the formula for D, it’s helpful to write it as a determinant:

D − Z fxx

fyx

fx y

fyy
Z − fxx fyy 2 s fx y d2

EXAMPLE 3 Find the local maximum and minimum values and saddle points of 
f sx, yd − x 4 1 y 4 2 4xy 1 1.

SOLUTION We first locate the critical points:

fx − 4x 3 2 4y      fy − 4y 3 2 4x

Setting these partial derivatives equal to 0, we obtain the equations

x 3 2 y − 0    and    y 3 2 x − 0

To solve these equations we substitute y − x 3 from the first equation into the second 
one. This gives

0 − x 9 2 x − xsx 8 2 1d − xsx 4 2 1dsx 4 1 1d − xsx 2 2 1dsx 2 1 1dsx 4 1 1d

so there are three real roots: x − 0, 1, 21. The three critical points are s0, 0d, s1, 1d,  
and s21, 21d.
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962 CHAPTER 14  Partial Derivatives

Next we calculate the second partial derivatives and Dsx, yd:

fxx − 12x 2      fx y − 24      fyy − 12y 2

Dsx, yd − fxx fyy 2 s fx yd2 − 144x 2 y 2 2 16

Since Ds0, 0d − 216 , 0, it follows from case (c) of the Second Derivatives Test that 
the origin is a saddle point; that is, f  has no local maximum or minimum at s0, 0d.  
Since Ds1, 1d − 128 . 0 and fxx s1, 1d − 12 . 0, we see from case (a) of the test that 
f s1, 1d − 21 is a local minimum. Similarly, we have Ds21, 21d − 128 . 0 and 
fxx s21, 21d − 12 . 0, so f s21, 21d − 21 is also a local minimum.

The graph of f  is shown in Figure 4. Q
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EXAMPLE 4 Find and classify the critical points of the function

f sx, yd − 10x 2 y 2 5x 2 2 4y 2 2 x 4 2 2y 4

Also find the highest point on the graph of f.

SOLUTION The first-order partial derivatives are

fx − 20xy 2 10x 2 4x 3      fy − 10x 2 2 8y 2 8y 3

So to find the critical points we need to solve the equations

4   2xs10y 2 5 2 2x 2 d − 0 

5    5x 2 2 4y 2 4y 3 − 0 

From Equation 4 we see that either

x − 0    or    10y 2 5 2 2x 2 − 0

In the first case (x − 0), Equation 5 becomes 24ys1 1 y 2 d − 0, so y − 0 and we 
have the critical point s0, 0d.
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A contour map of the function f  in 
Example 3 is shown in Figure 5. The 
level curves near s1, 1d and s21, 21d 
are oval in shape and indicate that as 
we move away from s1, 1d or s21, 21d 
in any direction the values of f  are 
increasing. The level curves near s0, 0d, 
on the other hand, resemble hyper bolas. 
They reveal that as we move away from 
the origin (where the value of f  is 1), the 
values of f  decrease in some directions 
but increase in other directions. Thus 
the contour map suggests the presence 
of the minima and saddle point that we 
found in Example 3.

FIGURE 5

TEC In Module 14.7 you can use 
contour maps to estimate the locations 
of critical points.
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 SECTION 14.7  Maximum and Minimum Values 963

In the second case s10y 2 5 2 2x 2 − 0d, we get

6  x 2 − 5y 2 2.5 

and, putting this in Equation 5, we have 25y 2 12.5 2 4y 2 4y 3 − 0. So we have to 
solve the cubic equation

7  4y 3 2 21y 1 12.5 − 0 

Using a graphing calculator or computer to graph the function

tsyd − 4y 3 2 21y 1 12.5

as in Figure 6, we see that Equation 7 has three real roots. By zooming in, we can find 
the roots to four decimal places:

 y < 22.5452       y < 0.6468       y < 1.8984

(Alternatively, we could have used Newton’s method or solved numerically using a 
calculator or computer to locate these roots.) From Equation 6, the corresponding  
x-values are given by

x − 6s5y 2 2.5 

If y < 22.5452, then x has no corresponding real values. If y < 0.6468, then 
x < 60.8567. If y < 1.8984, then x < 62.6442. So we have a total of five critical 
points, which are analyzed in the following chart. All quantities are rounded to two  
decimal places.

Critical point Value of f fxx D Conclusion

s0, 0d 0.00 210.00 80.00 local maximum
s62.64, 1.90d 8.50 255.93 2488.72 local maximum

s60.86, 0.65d 21.48 25.87 2187.64 saddle point

Figures 7 and 8 give two views of the graph of f  and we see that the surface opens 
downward. [This can also be seen from the expression for f sx, yd: the dominant terms 
are 2x 4 2 2y 4 when | x | and | y | are large.] Comparing the values of f  at its local maxi- 
mum points, we see that the absolute maximum value of f  is f s62.64, 1.90d < 8.50. In 
other words, the highest points on the graph of f  are s62.64, 1.90, 8.50d.

7et140707–08
05/05/1
MasterID: 01625-26

FIGURE 7 FIGURE 8

yx

z

y

z

x

FIGURE 7  FIGURE 8  Q

7et140706
05/05/10
MasterID: 01624

FIGURE 6

_3 2.7

FIGURE 6

TEC Visual 14.7 shows several 
families of surfaces. The surface in 
Figures 7 and 8 is a member of one  
of these families.
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EXAMPLE 5 Find the shortest distance from the point s1, 0, 22d to the plane 
x 1 2y 1 z − 4.

SOLUTION The distance from any point sx, y, zd to the point s1, 0, 22d is

d − ssx 2 1d2 1 y 2 1 sz 1 2d2 

but if sx, y, zd lies on the plane x 1 2y 1 z − 4, then z − 4 2 x 2 2y and so we have 
d − ssx 2 1d2 1 y 2 1 s6 2 x 2 2yd2 . We can minimize d by minimizing the simpler 
expression

d 2 − f sx, yd − sx 2 1d2 1 y 2 1 s6 2 x 2 2yd2

By solving the equations

  fx − 2sx 2 1d 2 2s6 2 x 2 2yd − 4x 1 4y 2 14 − 0

  fy − 2y 2 4s6 2 x 2 2yd − 4x 1 10y 2 24 − 0

we find that the only critical point is (11
6 ,  53 ). Since fxx − 4, fx y − 4, and fyy − 10, we 

have Dsx, yd − fxx fy y 2 s fx yd2 − 24 . 0 and fxx . 0, so by the Second Derivatives Test

f  has a local minimum at (11
6 ,  53 ). Intuitively, we can see that this local minimum is 

actually an absolute minimum because there must be a point on the given plane that is 
closest to s1, 0, 22d. If x − 11

6  and y − 5
3, then

d − ssx 2 1d2 1 y 2 1 s6 2 x 2 2yd2 − s(5
6)2 1 (5

3)2 1 (5
6)2  

− 5
6 s6 

The shortest distance from s1, 0, 22d to the plane x 1 2y 1 z − 4 is 56 s6 . Q

EXAMPLE 6 A rectangular box without a lid is to be made from 12 m2 of cardboard. 
Find the maximum volume of such a box.

SOLUTION Let the length, width, and height of the box (in meters) be x, y, and z, as 
shown in Figure 10. Then the volume of the box is

V − xyz

We can express V  as a function of just two variables x and y by using the fact that the 
area of the four sides and the bottom of the box is

2xz 1 2yz 1 xy − 12

The five critical points of the function 
f  in Example 4 are shown in red in the 
contour map of f  in Figure 9.

FIGURE 9

Example 5 could also be solved using  
vectors. Compare with the methods of  
Section 12.5.
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 SECTION 14.7  Maximum and Minimum Values 965

Solving this equation for z, we get z − s12 2 xydyf2sx 1 ydg, so the expression for V  
becomes

V − xy 
12 2 xy
2sx 1 yd

−
12xy 2 x 2 y 2

2sx 1 yd

We compute the partial derivatives:

−V
−x

−
y 2s12 2 2xy 2 x 2 d

2sx 1 yd2       
−V
−y

−
x 2s12 2 2xy 2 y 2 d

2sx 1 yd2

If V  is a maximum, then −Vy−x − −Vy−y − 0, but x − 0 or y − 0 gives V − 0, so we 
must solve the equations

12 2 2xy 2 x 2 − 0      12 2 2xy 2 y 2 − 0

These imply that x 2 − y 2 and so x − y. (Note that x and y must both be positive in this 
problem.) If we put x − y in either equation we get 12 2 3x 2 − 0, which gives x − 2, 
y − 2, and z − s12 2 2 ? 2dyf2s2 1 2dg − 1.

We could use the Second Derivatives Test to show that this gives a local maximum  
of V, or we could simply argue from the physical nature of this problem that there must 
be an absolute maximum volume, which has to occur at a critical point of V, so it must 
occur when x − 2, y − 2, z − 1. Then V − 2 ? 2 ? 1 − 4, so the maximum volume of 
the box is 4 m3. Q

Absolute Maximum and Minimum Values
For a function f  of one variable, the Extreme Value Theorem says that if f  is continuous 
on a closed interval fa, bg, then f  has an absolute minimum value and an absolute maxi-
mum value. According to the Closed Interval Method in Section 4.1, we found these by 
evaluating f  not only at the critical numbers but also at the endpoints a and b.

There is a similar situation for functions of two variables. Just as a closed interval 
contains its endpoints, a closed set in R 2 is one that contains all its boundary points. [A 
boundary point of D is a point sa, bd such that every disk with center sa, bd contains 
points in D and also points not in D.] For instance, the disk

D − hsx, yd | x 2 1 y 2 < 1j

which consists of all points on or inside the circle x 2 1 y 2 − 1, is a closed set because  
it contains all of its boundary points (which are the points on the circle x 2 1 y 2 − 1). 
But if even one point on the boundary curve were omitted, the set would not be closed. 
(See Figure 11.)

A bounded set in R 2 is one that is contained within some disk. In other words, it is 
finite in extent. Then, in terms of closed and bounded sets, we can state the following 
counterpart of the Extreme Value Theorem in two dimensions.

8  Extreme Value Theorem for Functions of Two Variables If f  is continu-
ous on a closed, bounded set D in R 2, then f  attains an absolute maximum value 
f sx1, y1d and an absolute minimum value f sx2, y2 d at some points sx1, y1d and 
sx2, y2d in D.
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(a) Closed sets

(b) Sets that are not closed
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966 CHAPTER 14  Partial Derivatives

To find the extreme values guaranteed by Theorem 8, we note that, by Theorem 2, if 
f  has an extreme value at sx1, y1d, then sx1, y1d is either a critical point of f  or a boundary 
point of D. Thus we have the following extension of the Closed Interval Method.

9  To find the absolute maximum and minimum values of a continuous func-
tion f  on a closed, bounded set D:

1. Find the values of f  at the critical points of f  in D.

2. Find the extreme values of f  on the boundary of D.

3.  The largest of the values from steps 1 and 2 is the absolute maximum value;  
the smallest of these values is the absolute minimum value.

EXAMPLE 7 Find the absolute maximum and minimum values of the function 
f sx, yd − x 2 2 2xy 1 2y on the rectangle D − hsx, yd | 0 < x < 3, 0 < y < 2j.

SOLUTION Since f  is a polynomial, it is continuous on the closed, bounded rectangle 
D, so Theorem 8 tells us there is both an absolute maximum and an absolute minimum. 
According to step 1 in (9), we first find the critical points. These occur when

fx − 2x 2 2y − 0      fy − 22x 1 2 − 0

so the only critical point is s1, 1d, and the value of f  there is f s1, 1d − 1.
In step 2 we look at the values of f  on the boundary of D, which consists of the four 

line segments L1, L 2, L3, L 4 shown in Figure 12. On L1 we have y − 0 and

f sx, 0d − x 2      0 < x < 3

This is an increasing function of x, so its minimum value is f s0, 0d − 0 and its maxi-
mum value is f s3, 0d − 9. On L 2 we have x − 3 and

f s3, yd − 9 2 4y      0 < y < 2

This is a decreasing function of y, so its maximum value is f s3, 0d − 9 and its mini-
mum value is f s3, 2d − 1. On L3 we have y − 2 and

f sx, 2d − x 2 2 4x 1 4      0 < x < 3

By the methods of Chapter 4, or simply by observing that f sx, 2d − sx 2 2d2, we see 
that the minimum value of this function is f s2, 2d − 0 and the maximum value is 
f s0, 2d − 4. Finally, on L4 we have x − 0 and

f s0, yd − 2y      0 < y < 2

with maximum value f s0, 2d − 4 and minimum value f s0, 0d − 0. Thus, on the 
boundary, the minimum value of f  is 0 and the maximum is 9.

In step 3 we compare these values with the value f s1, 1d − 1 at the critical point and 
conclude that the absolute maximum value of f  on D is f s3, 0d − 9 and the absolute 
minimum value is f s0, 0d − f s2, 2d − 0. Figure 13 shows the graph of f . Q
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FIGURE 13 
f sx, yd − x 2 2 2xy 1 2y
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 SECTION 14.7  Maximum and Minimum Values 967

We close this section by giving a proof of the first part of the Second Derivatives Test.  
Part (b) has a similar proof.

PROOF OF THEOREM 3, PART (a) We compute the second-order directional derivative of 
f  in the direction of u − kh, kl. The first-order derivative is given by Theorem 14.6.3:

Du f − fx h 1 fy k

Applying this theorem a second time, we have

  D 2
u  f − DusDu f d −

−

−x
 sDu f dh 1

−

−y
 sDu f dk

  − s fxx h 1 fyx kdh 1 s fxy h 1 fyy kdk

  − fxx h2 1 2 fxy hk 1 fyy k 2     (by Clairaut’s Theorem)

If we complete the square in this expression, we obtain

10  D 2
u f − fxxSh 1

 fxy

fxx
 kD2

1
k 2

fxx
 s fxx fyy 2 f 2

xyd 

We are given that fxxsa, bd . 0 and Dsa, bd . 0. But fxx and D − fxx fyy 2 fxy
2  are con- 

tinuous functions, so there is a disk B with center sa, bd and radius " . 0 such that 
fxxsx, yd . 0 and Dsx, yd . 0 whenever sx, yd is in B. Therefore, by looking at Equa-
tion 10, we see that Du

2 fsx, yd . 0 whenever sx, yd is in B. This means that if C is  
the curve obtained by intersecting the graph of f  with the vertical plane through 
Psa, b, f sa, bdd in the direction of u, then C is concave upward on an interval of length 
2". This is true in the direction of every vector u, so if we restrict sx, yd to lie in B, the 
graph of f  lies above its horizontal tangent plane at P. Thus f sx, yd > f sa, bd whenever 
sx, yd is in B. This shows that f sa, bd is a local minimum. Q

 1.   Suppose s1, 1d is a critical point of a function f  with contin-
uous second derivatives. In each case, what can you say  
about f ?

 (a) fxxs1, 1d − 4,   fx ys1, 1d − 1,   fyys1, 1d − 2

 (b) fxxs1, 1d − 4,   fx ys1, 1d − 3,   fyys1, 1d − 2

 2.  Suppose (0, 2) is a critical point of a function t with contin-
uous second derivatives. In each case, what can you say  
about t?

 (a) txxs0, 2d − 21,   tx ys0, 2d − 6,   tyys0, 2d − 1

 (b) txxs0, 2d − 21,   tx ys0, 2d − 2,   tyys0, 2d − 28

 (c) txxs0, 2d − 4,     tx ys0, 2d − 6,   tyys0, 2d − 9

 3–4 Use the level curves in the figure to predict the location of  
the critical points of f  and whether f  has a saddle point or a local 
maximum or minimum at each critical point. Explain your 

 reasoning. Then use the Second Derivatives Test to confirm your 
predictions.

 3. f sx, yd − 4 1 x 3 1 y 3 2 3xy

x

y

4
4.2

5 6

1

1

3.7

3.7

3.2

3.2
210

_1

_1
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968 CHAPTER 14  Partial Derivatives

 23–26 Use a graph or level curves or both to estimate the local  
maximum and minimum values and saddle point(s) of the 
function. Then use calculus to find these values precisely.

 23. f sx, yd − x 2 1 y 2 1 x22y22

 24. f sx, yd − sx 2 yde2x22y2

 25.  f sx, yd − sin x 1 sin y 1 sinsx 1 yd, 
0 < x < 2!, 0 < y < 2!

 26.  f sx, yd − sin x 1 sin y 1 cossx 1 yd, 
0 < x < !y4, 0 < y < !y4

27–30 Use a graphing device as in Example 4 (or Newton’s 
method or solve numerically using a calculator or computer) to 
find the critical points of f  correct to three decimal places. Then 
classify the critical points and find the highest or lowest points on 
the graph, if any.

 27. f sx, yd − x 4 1 y 4 2 4x 2y 1 2y

 28. f sx, yd − y 6 2 2y 4 1 x 2 2 y 2 1 y

 29. f sx, yd − x 4 1 y 3 2 3x 2 1 y 2 1 x 2 2y 1 1

 30. f sx, yd − 20e2x22y2
 sin 3x cos 3y,  | x | < 1,  | y | < 1

31–38 Find the absolute maximum and minimum values of f  on 
the set D.

 31.  f sx, yd − x 2 1 y 2 2 2x,  D is the closed triangular region 
with vertices s2, 0d, s0, 2d, and s0, 22d

 32.  f sx, yd − x 1 y 2 xy,  D is the closed triangular region 
with vertices s0, 0d, s0, 2d, and s4, 0d

 33.  f sx, yd − x 2 1 y 2 1 x 2 y 1 4, 
D − hsx, yd | | x | < 1, | y | < 1j

 34.  f sx, yd − x 2 1 xy 1 y 2 2 6y, 
D − hsx, yd | 23 < x < 3, 0 < y < 5j

 35.  f sx, yd − x 2 1 2y 2 2 2x 2 4y 1 1, 
D − hsx, yd | 0 < x < 2, 0 < y < 3j

 36.  f sx, yd − xy 2,  D − hsx, yd | x > 0, y > 0, x 2 1 y 2 < 3j

 37. f sx, yd − 2x 3 1 y 4,  D − hsx, yd | x 2 1 y 2 < 1j

 38.  f sx, yd − x 3 2 3x 2 y 3 1 12y,  D is the quadrilateral 
whose vertices are s22, 3d, s2, 3d, s2, 2d, and s22, 22d

 39.  For functions of one variable it is impossible for a con tinuous 
function to have two local maxima and no local minimum. 
But for functions of two variables such functions exist. Show 
that the function

f sx, yd − 2sx 2 2 1d2 2 sx 2 y 2 x 2 1d2

  has only two critical points, but has local maxima at both of 
them. Then use a computer to produce a graph with a care-
fully chosen domain and viewpoint to see how this is  
possible.

;

;

;

 4. f sx, yd − 3x 2 x 3 2 2y 2 1 y 4
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 5–20 Find the local maximum and minimum values and saddle 
point(s) of the function. If you have three-dimensional graphing 
software, graph the function with a domain and viewpoint that 
reveal all the important aspects of the function.

 5. f sx, yd − x 2 1 xy 1 y 2 1 y

 6. f sx, yd − xy 2 2x 2 2y 2 x 2 2 y 2

 7. f sx, yd − sx 2 yds1 2 xyd

 8. f sx, yd − yse x 2 1d

 9. f sx, yd − x 2 1 y 4 1 2xy

 10. f sx, yd − 2 2 x 4 1 2x 2 2 y 2

 11. f sx, yd − x 3 2 3x 1 3xy 2

 12. f sx, yd − x 3 1 y 3 2 3x 2 2 3y 2 2 9x

 13. f sx, yd − x 4 2 2x 2 1 y 3 2 3y

 14. f sx, yd − y cos x

 15. f sx, yd − e x cos y

 16. f sx, yd − xye2sx21y2dy2

 17. f sx, yd − xy 1 e2xy

 18. f sx, yd − sx 2 1 y 2de2x

19.  f sx, yd − y 2 2 2y cos x,  21 < x < 7

 20. f sx, yd − sin x sin y,  2! , x , !,  2! , y , !

 21.  Show that f sx, yd − x 2 1 4y 2 2 4xy 1 2 has an infinite 
number of critical points and that D − 0 at each one. Then 
show that f  has a local (and absolute) minimum at each 
critical point.

 22.  Show that f sx, yd − x 2ye2x22y2
 has maximum values at 

   (61, 1ys2 ) and minimum values at (61, 21ys2 ). Show 
also that f  has infinitely many other critical points and 
D − 0 at each of them. Which of them give rise to maximum 
values? Minimum values? Saddle points?
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 SECTION 14.7  Maximum and Minimum Values 969

 (b)  Find the dimensions that minimize heat loss. (Check both 
the critical points and the points on the boundary of the 
domain.)

 (c)  Could you design a building with even less heat loss if 
the restrictions on the lengths of the walls were removed?

 55.  If the length of the diagonal of a rectangular box must be L, 
what is the largest possible volume?

 56.  A model for the yield Y of an agricultural crop as a function 
of the nitrogen level N and phosphorus level P in the soil 
(measured in appropriate units) is

YsN, Pd − kNPe2N2P

  where k is a positive constant. What levels of nitrogen and 
phosphorus result in the best yield?

 57.  The Shannon index (sometimes called the Shannon-Wiener 
index or Shannon-Weaver index) is a measure of diversity in 
an ecosystem. For the case of three species, it is defined as

H − 2p1 ln p1 2 p2 ln p2 2 p3 ln p3

  where pi is the proportion of species i in the ecosystem.
 (a)  Express H as a function of two variables using the fact 

that p1 1 p2 1 p3 − 1.
 (b) What is the domain of H?
 (c)  Find the maximum value of H. For what values of  

p1, p2, p3 does it occur?

 58.  Three alleles (alternative versions of a gene) A, B, and O  
determine the four blood types A (AA or AO), B (BB or 
BO), O (OO), and AB. The Hardy-Weinberg Law states that 
the proportion of individuals in a population who carry two 
different alleles is

P − 2pq 1 2pr 1 2rq

  where p, q, and r are the proportions of A, B, and O in the  
population. Use the fact that p 1 q 1 r − 1 to show that P is 
at most 23.

 59.  Suppose that a scientist has reason to believe that two 
quan ti ties x and y are related linearly, that is, y − mx 1 b, 
at least approximately, for some values of m and b. The 
scientist performs an experiment and collects data in the 
form of points sx1, y1d, sx2, y2 d, . . . , sxn, yn d, and then plots 
these points. The points don’t lie exactly on a straight line, 
so the scientist wants to find constants m and b so that the 
line y − mx 1 b “fits” the points as well as possible (see the 
figure).
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 40.  If a function of one variable is continuous on an interval and 
has only one critical number, then a local maximum has to 
be an absolute maximum. But this is not true for functions of 
two variables. Show that the function

f sx, yd − 3xe y 2 x 3 2 e 3y

  has exactly one critical point, and that f  has a local maxi mum 
there that is not an absolute maximum. Then use a computer 
to produce a graph with a carefully chosen domain and view-
point to see how this is possible.

 41.  Find the shortest distance from the point s2, 0, 23d to the 
plane x 1 y 1 z − 1.

 42.  Find the point on the plane x 2 2y 1 3z − 6 that is closest 
to the point s0, 1, 1d.

 43.  Find the points on the cone z 2 − x 2 1 y 2 that are closest to 
the point s4, 2, 0d.

 44.  Find the points on the surface y 2 − 9 1 xz that are closest to 
the origin.

 45.  Find three positive numbers whose sum is 100 and whose  
product is a maximum.

 46.  Find three positive numbers whose sum is 12 and the sum of 
whose squares is as small as possible.

 47.  Find the maximum volume of a rectangular box that is 
inscribed in a sphere of radius r.

 48.  Find the dimensions of the box with volume 1000 cm3 that 
has minimal surface area.

 49.  Find the volume of the largest rectangular box in the first 
octant with three faces in the coordinate planes and one  
vertex in the plane x 1 2y 1 3z − 6.

 50.  Find the dimensions of the rectangular box with largest  
volume if the total surface area is given as 64 cm2.

 51.  Find the dimensions of a rectangular box of maximum 
volume such that the sum of the lengths of its 12 edges  
is a constant c.

 52.  The base of an aquarium with given volume V is made of 
slate and the sides are made of glass. If slate costs five times 
as much (per unit area) as glass, find the dimensions of the 
aquarium that minimize the cost of the materials.

 53.  A cardboard box without a lid is to have a volume of 
32,000 cm3. Find the dimensions that minimize the amount  
of cardboard used.

 54.  A rectangular building is being designed to minimize  
heat loss. The east and west walls lose heat at a rate of 
10 unitsym2 per day, the north and south walls at a rate of 
8 unitsym2 per day, the floor at a rate of 1 unitym2 per day, 
and the roof at a rate of 5 unitsym2 per day. Each wall must 
be at least 30 m long, the height must be at least 4 m, and the 
volume must be exactly 4000 m3.

 (a)  Find and sketch the domain of the heat loss as a function 
of the lengths of the sides.

;
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  and  m o
n

i−1
 xi

2 1 b o
n

i−1
 xi − o

n

i−1
 xi yi

  Thus the line is found by solving these two equations in the 
two unknowns m and b. (See Section 1.2 for a further discus-
sion and applications of the method of least squares.)

 60.  Find an equation of the plane that passes through the point 
s1, 2, 3d and cuts off the smallest volume in the first octant.

    Let di − yi 2 smxi 1 bd be the vertical deviation of the point 
sxi, yid from the line. The method of least squares determines 
m and b so as to minimize o n

i−1 d 2
i , the sum of the squares of 

these deviations. Show that, according to this method, the line 
of best fit is obtained when

m o
n

i−1
 xi 1 bn − o

n

i−1
 yi

For this project we locate a rectangular trash Dumpster in order to study its shape and construc-
tion. We then attempt to determine the dimensions of a container of similar design that minimize  
con struction cost.

1.  First locate a trash Dumpster in your area. Carefully study and describe all details of its con-
struction, and determine its volume. Include a sketch of the container.

2.  While maintaining the general shape and method of construction, determine the dimensions 
such a container of the same volume should have in order to minimize the cost of construc-
tion. Use the following assumptions in your analysis:

●  The sides, back, and front are to be made from 12-gauge (0.1046 inch thick) steel sheets, 
which cost $0.70 per square foot (including any required cuts or bends).

●  The base is to be made from a 10-gauge (0.1345 inch thick) steel sheet, which costs $0.90 
per square foot.

●  Lids cost approximately $50.00 each, regardless of dimensions.

●  Welding costs approximately $0.18 per foot for material and labor combined.

  Give justification of any further assumptions or simplifications made of the details of  
construction.

3. Describe how any of your assumptions or simplifications may affect the final result.

4.  If you were hired as a consultant on this investigation, what would your conclusions be? 
Would you recommend altering the design of the Dumpster? If so, describe the savings that 
would result.

APPLIED PROJECT DESIGNING A DUMPSTER

The Taylor polynomial approximation to functions of one variable that we discussed in 
Chapter 11 can be extended to functions of two or more variables. Here we investigate qua-
dratic approximations to functions of two variables and use them to give insight into the Second 
Derivatives Test for classifying critical points.

In Section 14.4 we discussed the linearization of a function f  of two variables at a point sa, bd:

Lsx, yd − f sa, bd 1 fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd

Recall that the graph of L is the tangent plane to the surface z − f sx, yd at sa, b, f sa, bdd and the 
corresponding linear approximation is f sx, yd < Lsx, yd. The linearization L is also called the 
first-degree Taylor polynomial of f  at sa, bd.

DISCOVERY PROJECT QUADRATIC APPROXIMATIONS AND CRITICAL POINTS
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 SECTION 14.8  Lagrange Multipliers 971

In Example 14.7.6 we maximized a volume function V − xyz subject to the constraint 
2xz 1 2yz 1 xy − 12, which expressed the side condition that the surface area was 
12 m2. In this section we present Lagrange’s method for maximizing or minimizing a 
general function f sx, y, zd subject to a constraint (or side condition) of the form 
tsx, y, zd − k.

It’s easier to explain the geometric basis of Lagrange’s method for functions of two 
variables. So we start by trying to find the extreme values of f sx, yd subject to a con-
straint of the form tsx, yd − k. In other words, we seek the extreme values of f sx, yd 
when the point sx, yd is restricted to lie on the level curve tsx, yd − k. Figure 1 shows this 
curve together with several level curves of f . These have the equations f sx, yd − c, 
where c − 7, 8, 9, 10, 11. To maximize f sx, yd subject to tsx, yd − k is to find the largest 
value of c such that the level curve f sx, yd − c intersects tsx, yd − k. It appears from 
Figure 1 that this happens when these curves just touch each other, that is, when they 
have a common tangent line. (Otherwise, the value of c could be increased further.) This 

f(x, y)=11
f(x, y)=10
f(x, y)=9
f(x, y)=8
f(x, y)=7

x

y

0

g(x, y)=k

FIGURE 1

1.  If f  has continuous second-order partial derivatives at sa, bd, then the second-degree  
Taylor polynomial of f  at sa, bd is

 Qsx, yd − f sa, bd 1 fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd

 1 12 fxxsa, bdsx 2 ad2 1 fx ysa, bdsx 2 adsy 2 bd 1 1
2 fyysa, bdsy 2 bd2

  and the approximation f sx, yd < Qsx, yd is called the quadratic approximation to f  at  
sa, bd. Verify that Q has the same first- and second-order partial derivatives as f  at sa, bd.

2. (a)  Find the first- and second-degree Taylor polynomials L and Q of f sx, yd − e2x22y2
  

at (0, 0).
  (b) Graph f , L, and Q. Comment on how well L and Q approximate f.

3. (a)  Find the first- and second-degree Taylor polynomials L and Q for f sx, yd − xe y  
at (1, 0).

 (b) Compare the values of L, Q, and f  at (0.9, 0.1).
 (c) Graph f , L, and Q. Comment on how well L and Q approximate f.

4.  In this problem we analyze the behavior of the polynomial f sx, yd − ax 2 1 bxy 1 cy 2  
(without using the Second Derivatives Test) by identifying the graph as a paraboloid.

 (a) By completing the square, show that if a ± 0, then

f sx, yd − ax 2 1 bxy 1 cy 2 − aFSx 1
b
2a

 yD2

1 S 4ac 2 b 2

4a 2 Dy 2G
 (b)  Let D − 4ac 2 b 2. Show that if D . 0 and a . 0, then f  has a local minimum  

at (0, 0).
 (c) Show that if D . 0 and a , 0, then f  has a local maximum at (0, 0).
 (d) Show that if D , 0, then (0, 0) is a saddle point.

5. (a)  Suppose f  is any function with continuous second-order partial derivatives such that 
f s0, 0d − 0 and (0, 0) is a critical point of f. Write an expression for the second- 
degree Taylor polynomial, Q, of f  at (0, 0).

 (b) What can you conclude about Q from Problem 4?
 (c)  In view of the quadratic approximation f sx, yd < Qsx, yd, what does part (b) suggest  

about f ?

;

;

TEC Visual 14.8 animates Figure 1 for 
both level curves and level surfaces.
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972 CHAPTER 14  Partial Derivatives

means that the normal lines at the point sx0, y0 d where they touch are identical. So the 
gradient vectors are parallel; that is, = f sx0, y0 d − " =tsx0, y0 d for some scalar ".

This kind of argument also applies to the problem of finding the extreme values of 
f sx, y, zd subject to the constraint tsx, y, zd − k. Thus the point sx, y, zd is restricted to lie 
on the level surface S with equation tsx, y, zd − k. Instead of the level curves in Figure 1, 
we consider the level surfaces f sx, y, zd − c and argue that if the maximum value of f   
is f sx0, y0, z0 d − c, then the level surface f sx, y, zd − c is tangent to the level surface 
tsx, y, zd − k and so the corresponding gradient vectors are parallel.

This intuitive argument can be made precise as follows. Suppose that a function f  has 
an extreme value at a point Psx0, y0, z0 d on the surface S and let C be a curve with vector 
equation rstd − kxstd, ystd, zstdl that lies on S and passes through P. If t0 is the parameter 
value corresponding to the point P, then rst0d − kx0, y0, z0 l. The composite function 
hstd − f sxstd, ystd, zstdd represents the values that f  takes on the curve C. Since f  has an 
extreme value at sx0, y0, z0 d, it follows that h has an extreme value at t0, so h9st0d − 0. But 
if f  is differentiable, we can use the Chain Rule to write

 0 − h9st0d

 − fxsx0, y0, z0 dx9st0 d 1 fysx0, y0, z0 dy9st0 d 1 fzsx0, y0, z0 dz9st0 d

 − = f sx0, y0, z0 d ? r9st0 d

This shows that the gradient vector = f sx0, y0, z0 d is orthogonal to the tangent vector r9st0 d 
to every such curve C. But we already know from Section 14.6 that the gradient vector of 
t, =tsx0, y0, z0 d, is also orthogonal to r9st0 d for every such curve. (See Equation 14.6.18.) 
This means that the gradient vectors = f sx0, y0, z0 d and =tsx0, y0, z0 d must be parallel. 
There  fore, if =tsx0, y0, z0 d ± 0, there is a number " such that

1  = f sx0, y0, z0 d − " =tsx0, y0, z0 d 

The number " in Equation 1 is called a Lagrange multiplier. The procedure based on 
Equation 1 is as follows.

Method of Lagrange Multipliers To find the maximum and minimum values 
of f sx, y, zd subject to the constraint tsx, y, zd − k [assuming that these extreme 
values exist and =t ± 0 on the surface tsx, y, zd − k]:

(a) Find all values of x, y, z, and " such that

 = f sx, y, zd − " =tsx, y, zd

 and  tsx, y, zd − k

(b)  Evaluate f  at all the points sx, y, zd that result from step (a). The largest of 
these values is the maximum value of f ; the smallest is the minimum value  
of f .

In deriving Lagrange’s method we 
assumed that =t ± 0. In each of our 
examples you can check that =t ± 0 
at all points where tsx, y, zd − k. See 
Exercise 25 for what can go wrong if 
=t − 0.

If we write the vector equation = f − " =t in terms of components, then the equations 
in step (a) become

fx − "tx      fy − "ty      fz − "tz      tsx, y, zd − k

Lagrange multipliers are named after 
the French-Italian mathematician 
Joseph-Louis Lagrange (1736–1813). 
See page 289 for a biographical sketch 
of Lagrange.
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 SECTION 14.8  Lagrange Multipliers 973

This is a system of four equations in the four unknowns x, y, z, and ", but it is not neces-
 sary to find explicit values for ".

For functions of two variables the method of Lagrange multipliers is similar to the 
method just described. To find the extreme values of f sx, yd subject to the constraint 
tsx, yd − k, we look for values of x, y, and " such that

= f sx, yd − " =tsx, yd    and    tsx, yd − k

This amounts to solving three equations in three unknowns:

fx − "tx      fy − "ty      tsx, yd − k

Our first illustration of Lagrange’s method is to reconsider the problem given in 
Example 14.7.6.

EXAMPLE 1 A rectangular box without a lid is to be made from 12 m2 of cardboard. 
Find the maximum volume of such a box.

SOLUTION As in Example 14.7.6, we let x, y, and z be the length, width, and height, 
respectively, of the box in meters. Then we wish to maximize

V − xyz

subject to the constraint

tsx, y, zd − 2xz 1 2yz 1 xy − 12

Using the method of Lagrange multipliers, we look for values of x, y, z, and " such that 
=V − " =t and tsx, y, zd − 12. This gives the equations

Vx − "tx

Vy − "ty

Vz − "tz

2xz 1 2yz 1 xy − 12

which become

2   yz − "s2z 1 yd  

3   xz − "s2z 1 xd  

4   xy − "s2x 1 2yd 

5  2xz 1 2yz 1 xy − 12 

There are no general rules for solving systems of equations. Sometimes some ingenuity 
is required. In the present example you might notice that if we multiply (2) by x, (3) by y, 
and (4) by z, then the left sides of these equations will be identical. Doing this, we have

6   xyz − "s2xz 1 xyd  

7   xyz − "s2yz 1 xyd  

8   xyz − "s2xz 1 2yzd 

We observe that " ± 0 because " − 0 would imply yz − xz − xy − 0 from (2), (3), 

Another method for solving the system 
of equations (2 –5) is to solve each of 
Equations 2, 3, and 4 for " and then to 
equate the resulting expressions.
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974 CHAPTER 14  Partial Derivatives

and (4) and this would contradict (5). Therefore, from (6) and (7), we have

2xz 1 xy − 2yz 1 xy

which gives xz − yz. But z ± 0 (since z − 0 would give V − 0), so x − y. From (7) 
and (8) we have

2yz 1 xy − 2xz 1 2yz

which gives 2xz − xy and so (since x ± 0) y − 2z. If we now put x − y − 2z in (5), 
we get

4z2 1 4z2 1 4z2 − 12

Since x, y, and z are all positive, we therefore have z − 1 and so x − 2 and y − 2. This 
agrees with our answer in Section 14.7. Q

EXAMPLE 2 Find the extreme values of the function f sx, yd − x 2 1 2y 2 on the  
circle x 2 1 y 2 − 1.

SOLUTION We are asked for the extreme values of f  subject to the constraint 
tsx, yd − x 2 1 y 2 − 1. Using Lagrange multipliers, we solve the equations = f − " =t 
and tsx, yd − 1, which can be written as

fx − "tx      fy − "ty      tsx, yd − 1

or as

9   2x − 2x" 

10   4y − 2y" 

11  x 2 1 y 2 − 1 

From (9) we have x − 0 or " − 1. If x − 0, then (11)  gives y − 61. If " − 1, then 
y − 0 from (10), so then (11)  gives x − 61. Therefore f  has possible extreme values  
at the points s0, 1d, s0, 21d, s1, 0d, and s21, 0d. Evaluating f  at these four points, we 
find that

f s0, 1d − 2      f s0, 21d − 2      f s1, 0d − 1      f s21, 0d − 1

Therefore the maximum value of f  on the circle x 2 1 y 2 − 1 is f s0, 61d − 2 and the 
minimum value is f s61, 0d − 1. In geometric terms, these correspond to the highest 
and lowest points on the curve C in Figure 2, where C consists of those points on the 
paraboloid z − x2 1 2y2 that are directly above the constraint circle x2 1 y2 − 1. Q

EXAMPLE 3 Find the extreme values of f sx, yd − x 2 1 2y 2 on the disk x 2 1 y 2 < 1.

SOLUTION According to the procedure in (14.7.9), we compare the values of f  at the 
critical points with values at the points on the boundary. Since fx − 2x and fy − 4y, the 
only critical point is s0, 0d. We compare the value of f  at that point with the extreme 
values on the boundary from Example 2:

f s0, 0d − 0      f s61, 0d − 1      f s0, 61d − 2

Therefore the maximum value of f  on the disk x 2 1 y 2 < 1 is f s0, 61d − 2 and the 
minimum value is f s0, 0d − 0. Q

The geometry behind the use of 
Lagrange multipliers in Example 2 is 
shown in Figure 3. The extreme values 
of f sx, yd − x 2 1 2y 2 correspond to 
the level curves that touch the circle 
x 2 1 y 2 − 1.
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 SECTION 14.8  Lagrange Multipliers 975

EXAMPLE 4 Find the points on the sphere x 2 1 y 2 1 z2 − 4 that are closest to and  
farthest from the point s3, 1, 21d.

SOLUTION The distance from a point sx, y, zd to the point s3, 1, 21d is

d − ssx 2 3d2 1 sy 2 1d2 1 sz 1 1d2 

but the algebra is simpler if we instead maximize and minimize the square of the  
distance:

d 2 − f sx, y, zd − sx 2 3d2 1 sy 2 1d2 1 sz 1 1d2

The constraint is that the point sx, y, zd lies on the sphere, that is,

tsx, y, zd − x 2 1 y 2 1 z2 − 4

According to the method of Lagrange multipliers, we solve = f − " =t, t − 4. This gives

12   2sx 2 3d − 2x" 

13   2sy 2 1d − 2y" 

14   2sz 1 1d − 2z" 

15  x 2 1 y 2 1 z2 − 4 

The simplest way to solve these equations is to solve for x, y, and z in terms of " from 
(12), (13), and (14), and then substitute these values into (15). From (12) we have

x 2 3 − x"    or    xs1 2 "d − 3    or    x −
3

1 2 "

[Note that 1 2 " ± 0 because " − 1 is impossible from (12).] Similarly, (13) and (14) 
give

y −
1

1 2 "
      z − 2

1
1 2 "

Therefore, from (15), we have

32

s1 2 "d2 1
12

s1 2 "d2 1
s21d2

s1 2 "d2 − 4

which gives s1 2 "d2 − 11
4 , 1 2 " − 6s11y2, so

" − 1 6
s11

2

These values of " then give the corresponding points sx, y, zd:

S 6

s11
 , 

2

s11
 , 2

2

s11
 D    and    S2

6

s11
 , 2

2

s11
 , 

2

s11
 D

It’s easy to see that f  has a smaller value at the first of these points, so the closest point 
is s6ys11, 2ys11, 22ys11d and the farthest is s26ys11, 22ys11, 2ys11d. QFIGURE 4

Figure 4 shows the sphere and the 
nearest point P in Example 4. Can you 
see how to find the coordinates of P 
without using calculus?

7et140804
05/12/10
MasterID: 01638

FIGURE 4

z

y
x

(3, 1, _1)

P

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



976 CHAPTER 14  Partial Derivatives

Two Constraints
Suppose now that we want to find the maximum and minimum values of a function 
f sx, y, zd subject to two constraints (side conditions) of the form tsx, y, zd − k and 
hsx, y, zd − c. Geometrically, this means that we are looking for the extreme values of f  
when sx, y, zd  is restricted to lie on the curve of intersection C of the level surfaces 
tsx, y, zd − k and hsx, y, zd − c. (See Figure 5.) Suppose f  has such an extreme value at 
a point Psx0, y0, z0d. We know from the beginning of this section that = f  is orthogonal to 
C at P. But we also know that =t is orthogonal to tsx, y, zd − k and =h is orthogonal  
to hsx, y, zd − c, so =t and =h are both orthogonal to C. This means that the gradient 
vector = f sx0, y0, z0 d is in the plane determined by =tsx0, y0, z0 d and =hsx0, y0, z0 d. (We 
assume that these gradient vectors are not zero and not parallel.) So there are numbers " 
and # (called Lagrange multi pliers) such that

16  = f sx0, y0, z0 d − " =tsx0, y0, z0 d 1 # =hsx0, y0, z0 d 

In this case Lagrange’s method is to look for extreme values by solving five equations in 
the five unknowns x, y, z, ", and #. These equations are obtained by writing Equa tion 16 
in terms of its components and using the constraint equations:

 fx − "tx 1 #hx

 fy − "ty 1 #hy

 fz − "tz 1 #hz

 tsx, y, zd − k

 hsx, y, zd − c

EXAMPLE 5 Find the maximum value of the function f sx, y, zd − x 1 2y 1 3z on the 
curve of intersection of the plane x 2 y 1 z − 1 and the cylinder x 2 1 y 2 − 1.

SOLUTION We maximize the function f sx, y, zd − x 1 2y 1 3z subject to the con-
straints tsx, y, zd − x 2 y 1 z − 1 and hsx, y, zd − x 2 1 y 2 − 1. The Lagrange condi-
tion is = f − " =t 1 # =h, so we solve the equations

17   1 − " 1 2x#  

18   2 − 2" 1 2y# 

19   3 − "  

20   x 2 y 1 z − 1  

21   x 2 1 y 2 − 1  

Putting " − 3 [from (19) ] in (17), we get 2x# − 22, so x − 21y#. Similarly, (18) 
gives y − 5ys2#d. Substitution in (21) then gives

1
#2 1

25
4#2 − 1
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The cylinder x 2 1 y 2 − 1 intersects 
the plane x 2 y 1 z − 1 in an ellipse 
(Figure 6). Example 5 asks for the 
maximum value of f  when sx, y, zd is 
restricted to lie on the ellipse.
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and so #2 − 29
4 , # − 6s29 y2. Then x − 72ys29 , y − 65ys29 , and, from (20), 

z − 1 2 x 1 y − 1 6 7ys29 . The corresponding values of f  are

7
2

s29 
1 2S6

5

s29 D 1 3S1 6
7

s29 D − 3 6 s29 

Therefore the maximum value of f  on the given curve is 3 1 s29 . Q

 1.  Pictured are a contour map of f  and a curve with equation 
tsx, yd − 8. Estimate the maximum and minimum values  
of f  subject to the constraint that tsx, yd − 8. Explain your 
reasoning.

  

y

x0

70
60

50
40

30
20
10

g(x, y)=8

 2. (a)  Use a graphing calculator or computer to graph the 
circle x 2 1 y 2 − 1. On the same screen, graph several 
curves of the form x 2 1 y − c until you find two that 
just touch the circle. What is the significance of the 
values of c for these two curves?

 (b)  Use Lagrange multipliers to find the extreme values of 
f sx, yd − x 2 1 y subject to the constraint x 2 1 y 2 − 1. 
Compare your answers with those in part (a).

 3–14 Each of these extreme value problems has a solution with 
both a maximum value and a minimum value. Use Lagrange 
multipliers to find the extreme values of the function subject to 
the given constraint.

 3. f sx, yd − x 2 2 y 2;  x 2 1 y 2 − 1

 4. f sx, yd − 3x 1 y;  x 2 1 y 2 − 10

 5. f sx, yd − xy;  4x 2 1 y 2 − 8

 6. f sx, yd − xe y;  x 2 1 y 2 − 2

 7. f sx, y, zd − 2x 1 2y 1 z;  x 2 1 y 2 1 z 2 − 9

 8. f sx, y, zd − exyz;  2x 2 1 y 2 1 z 2 − 24

 9. f sx, y, zd − xy 2z;  x 2 1 y 2 1 z2 − 4

 10.  f sx, y, zd − lnsx2 1 1d 1 lnsy 2 1 1d 1 lnsz 2 1 1d;  
x 2 1 y 2 1 z2 − 12

;

 11. f sx, y, zd − x 2 1 y 2 1 z2;  x 4 1 y 4 1 z4 − 1

 12. f sx, y, zd − x 4 1 y 4 1 z4;  x 2 1 y 2 1 z2 − 1

 13. f sx, y, z, td − x 1 y 1 z 1 t;  x 2 1 y 2 1 z2 1 t 2 − 1

 14. f sx1, x2, . . . , xnd − x1 1 x2 1 ∙ ∙ ∙ 1 xn;
  x 2

1 1 x 2
2 1 ∙ ∙ ∙ 1 x 2

n − 1

 15.  The method of Lagrange multipliers assumes that the 
extreme values exist, but that is not always the case. 
Show that the problem of finding the minimum value of 
f sx, yd − x 2 1 y 2 subject to the constraint xy − 1 can be 
solved using Lagrange multipliers, but f  does not have a 
maximum value with that constraint.

 16.  Find the minimum value of f sx, y, zd − x 2 1 2y 2 1 3z2

subject to the constraint x 1 2y 1 3z − 10. Show that f  
has no maximum value with this constraint.

 17–20 Find the extreme values of f  subject to both constraints.

 17. f sx, y, zd − x 1 y 1 z;  x 2 1 z 2 − 2,  x 1 y − 1

 18. f sx, y, zd − z;  x 2 1 y 2 − z 2,  x 1 y 1 z − 24

 19. f sx, y, zd − yz 1 xy;  xy − 1,  y 2 1 z2 − 1

 20. f sx, y, zd − x 2 1 y 2 1 z 2;  x 2 y − 1,  y 2 2 z 2 − 1

 21–23 Find the extreme values of f  on the region described by 
the inequality.

 21. f sx, yd − x 2 1 y 2 1 4x 2 4y,  x 2 1 y 2 < 9

 22. f sx, yd − 2x 2 1 3y 2 2 4x 2 5,  x 2 1 y 2 < 16

 23. f sx, yd − e 2xy,  x 2 1 4y 2 < 1

 24.  Consider the problem of maximizing the function 
f sx, yd − 2x 1 3y subject to the constraint sx 1 sy − 5.

 (a)  Try using Lagrange multipliers to solve the problem.
 (b)  Does f s25, 0d give a larger value than the one in part (a)?
 (c)  Solve the problem by graphing the constraint equation 

and several level curves of f.
 (d)  Explain why the method of Lagrange multipliers fails to 

solve the problem.
 (e)  What is the significance of f s9, 4d?

;
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978 CHAPTER 14  Partial Derivatives

 41. Exercise 51 42. Exercise 52

 43. Exercise 55

 44.  Find the maximum and minimum volumes of a rectangular 
box whose surface area is 1500 cm2 and whose total edge 
length is 200 cm.

 45.  The plane x 1 y 1 2z − 2 intersects the paraboloid 
z − x 2 1 y 2 in an ellipse. Find the points on this ellipse  
that are nearest to and farthest from the origin.

 46.   The plane 4x 2 3y 1 8z − 5 intersects the cone 
z2 − x 2 1 y 2 in an ellipse.

 (a)  Graph the cone and the plane, and observe the elliptical 
intersection.

 (b)  Use Lagrange multipliers to find the highest and lowest 
points on the ellipse.

 47 –48 Find the maximum and minimum values of f  subject to 
the given constraints. Use a computer algebra system to solve  
the system of equations that arises in using Lagrange multipliers. 
(If your CAS finds only one solution, you may need to use addi-
tional commands.)

 47. f sx, y, zd − ye x2z;  9x 2 1 4y 2 1 36z2 − 36, xy 1 yz − 1

 48. f sx, y, zd − x 1 y 1 z;  x 2 2 y 2 − z, x 2 1 z2 − 4

 49.  (a)  Find the maximum value of 

f sx1, x2, . . . , xn d − sn x1 x2 ∙ ∙ ∙ xn
   

   given that x1, x2, . . . , xn are positive numbers and 
x1 1 x2 1 ∙ ∙ ∙ 1 xn − c, where c is a constant.

 (b)  Deduce from part (a) that if x1, x2, . . . , xn are positive 
numbers, then

sn x1 x2 ∙ ∙ ∙ xn
 <

x1 1 x2 1 ∙ ∙ ∙ 1 xn

n

   This inequality says that the geometric mean of n num-
bers is no larger than the arithmetic mean of the  
numbers. Under what circumstances are these two 
means equal?

 50. (a)   Maximize o n
i−1 xi yi subject to the constraints 

o n
i−1 x 2

i − 1 and o n
i−1 yi

2 − 1.
 (b) Put

xi −
ai

so  a 2
j

    and    yi −
bi

so  b 2
j

 
  to show that

o  aibi < so  a 2
j  so  b 2

j

   for any numbers a1, . . . , an, b1, . . . , bn. This inequality 
is known as the Cauchy-Schwarz Inequality.

;

CAS

 25.  Consider the problem of minimizing the function 
f sx, yd − x on the curve y 2 1 x 4 2 x 3 − 0 (a piriform).

 (a)  Try using Lagrange multipliers to solve the problem.
 (b)  Show that the minimum value is f s0, 0d − 0 but the 

Lagrange condition = f s0, 0d − !=ts0, 0d is not satis-
fied for any value of !.

 (c)  Explain why Lagrange multipliers fail to find the mini-
mum value in this case.

 26. (a)  If your computer algebra system plots implicitly defined 
curves, use it to estimate the minimum and maximum 
values of f sx, yd − x 3 1 y 3 1 3xy subject to the con-
straint sx 2 3d2 1 sy 2 3d2 − 9 by graphical methods.

 (b)  Solve the problem in part (a) with the aid of Lagrange  
multipliers. Use your CAS to solve the equations numer-
ically. Compare your answers with those in part (a).

 27.  The total production P of a certain product depends on 
the amount L of labor used and the amount K of capital 
investment. In Sections 14.1 and 14.3 we discussed how the 
Cobb-Douglas model P − bL"K 12" follows from certain 
economic assumptions, where b and " are positive constants 
and " , 1. If the cost of a unit of labor is m and the cost  
of a unit of capital is n, and the company can spend only  
p dollars as its total budget, then maximizing the produc-
tion P is subject to the constraint mL 1 nK − p. Show  
that the maximum production occurs when

L −
"p
m

    and    K −
s1 2 "dp

n

 28.  Referring to Exercise 27, we now suppose that the pro- 
duction is fixed at bL"K 12" − Q, where Q is a constant. 
What values of L and K minimize the cost function 
CsL, K d − mL 1 nK?

 29.  Use Lagrange multipliers to prove that the rectangle with 
maximum area that has a given perimeter p is a square.

 30.  Use Lagrange multipliers to prove that the triangle with  
maximum area that has a given perimeter p is equilateral. 
  Hint: Use Heron’s formula for the area:

A − ssss 2 xdss 2 ydss 2 zd

 where s − py2 and x, y, z are the lengths of the sides.

31–43 Use Lagrange multipliers to give an alternate solution to 
the indicated exercise in Section 14.7.

 31. Exercise 41 32. Exercise 42

 33. Exercise 43 34. Exercise 44

 35. Exercise 45 36. Exercise 46

 37. Exercise 47 38. Exercise 48

 39. Exercise 49 40. Exercise 50

CAS
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Many rockets, such as the Pegasus XL currently used to launch satellites and the Saturn V that 
first put men on the moon, are designed to use three stages in their ascent into space. A large first 
stage initially propels the rocket until its fuel is consumed, at which point the stage is jettisoned 
to reduce the mass of the rocket. The smaller second and third stages function similarly in order 
to place the rocket’s payload into orbit about the earth. (With this design, at least two stages are 
required in order to reach the necessary velocities, and using three stages has proven to be a good 
compromise between cost and performance.) Our goal here is to determine the individual masses 
of the three stages, which are to be designed to minimize the total mass of the rocket while 
enabling it to reach a desired velocity.

For a single-stage rocket consuming fuel at a constant rate, the change in velocity resulting 
from the acceleration of the rocket vehicle has been modeled by

DV − 2c lnS1 2
s1 2 SdMr

P 1 Mr
D

where Mr is the mass of the rocket engine including initial fuel, P is the mass of the payload,  
S is a structural factor determined by the design of the rocket (specifically, it is the ratio of the 
mass of the rocket vehicle without fuel to the total mass of the rocket with payload), and c is the 
(constant) speed of exhaust relative to the rocket.

Now consider a rocket with three stages and a payload of mass A. Assume that outside forces 
are negligible and that c and S remain constant for each stage. If Mi is the mass of the ith stage,  
we can initially consider the rocket engine to have mass M1 and its payload to have mass 
M2 1 M3 1 A; the second and third stages can be handled similarly.

1. Show that the velocity attained after all three stages have been jettisoned is given by

vf − cFlnS M1 1 M2 1 M3 1 A
SM1 1 M2 1 M3 1 AD 1 lnS M2 1 M3 1 A

SM2 1 M3 1 AD 1 lnS M3 1 A
SM3 1 ADG

2.  We wish to minimize the total mass M − M1 1 M2 1 M3 of the rocket engine subject  
to the constraint that the desired velocity vf  from Problem 1 is attained. The method of 
Lagrange multipliers is appropriate here, but difficult to implement using the current expres-
sions. To simplify, we define variables Ni so that the constraint equation may be expressed as 
vf − csln N1 1 ln N2 1 ln N3 d. Since M is now difficult to express in terms of the Ni’s, we 
wish to use a simpler function that will be minimized at the same place as M. Show that

 
M1 1 M2 1 M3 1 A

M2 1 M3 1 A
−

s1 2 S dN1

1 2 SN1

 
M2 1 M3 1 A

M3 1 A
−

s1 2 S dN2

1 2 SN2

 
M3 1 A

A
−

s1 2 S dN3

1 2 SN3

 and conclude that

M 1 A
A

−
s1 2 S d3N1N2N3

s1 2 SN1ds1 2 SN2 ds1 2 SN3 d

3.  Verify that lnssM 1 AdyAd is minimized at the same location as M; use Lagrange multipli-
ers and the results of Problem 2 to find expressions for the values of Ni where the minimum 
occurs subject to the constraint vf − csln N1 1 ln N2 1 ln N3 d. [Hint: Use properties of  
logarithms to help simplify the expressions.]
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4. Find an expression for the minimum value of M as a function of vf .

5.  If we want to put a three-stage rocket into orbit 100 miles above the earth’s surface, a final 
velocity of approximately 17,500 miyh is required. Suppose that each stage is built with a 
structural factor S − 0.2 and an exhaust speed of c − 6000 miyh.

  (a) Find the minimum total mass M of the rocket engines as a function of A.
  (b)  Find the mass of each individual stage as a function of A. (They are not equally sized!)

6.  The same rocket would require a final velocity of approximately 24,700 miyh in order to 
escape earth’s gravity. Find the mass of each individual stage that would minimize the total 
mass of the rocket engines and allow the rocket to propel a 500-pound probe into deep space.

At a hydroelectric generating station (once operated by the Katahdin Paper Company) in 
Millinocket, Maine, water is piped from a dam to the power station. The rate at which the water 
flows through the pipe varies, depending on external conditions.

The power station has three different hydroelectric turbines, each with a known (and unique) 
power function that gives the amount of electric power generated as a function of the water 
flow arriving at the turbine. The incoming water can be apportioned in different volumes to 
each turbine, so the goal is to determine how to distribute water among the turbines to give the 
maximum total energy production for any rate of flow.

Using experimental evidence and Bernoulli’s equation, the following quadratic models were 
determined for the power output of each turbine, along with the allowable flows of operation:

 KW1 − s218.89 1 0.1277Q1 2 4.08 ? 1025Q 2
1 ds170 2 1.6 ? 1026Q 2

T d

 KW2 − s224.51 1 0.1358Q2 2 4.69 ? 1025Q 2
2 ds170 2 1.6 ? 1026Q 2

T d

 KW3 − s227.02 1 0.1380Q3 2 3.84 ? 1025Q 2
3 ds170 2 1.6 ? 1026Q 2

T d

250 < Q1 < 1110,  250 < Q2 < 1110,  250 < Q3 < 1225

where

 Qi − flow through turbine i in cubic feet per second

 KWi − power generated by turbine i in kilowatts

 QT − total flow through the station in cubic feet per second

1.  If all three turbines are being used, we wish to determine the flow Qi to each turbine that will 
give the maximum total energy production. Our limitations are that the flows must sum to  
the total incoming flow and the given domain restrictions must be observed. Consequently, 
use Lagrange multipliers to find the values for the individual flows (as functions of QT)  
that maximize the total energy production KW1 1 KW2 1 KW3 subject to the constraints 
Q1 1 Q2 1 Q3 − QT and the domain restrictions on each Qi.

2. For which values of QT is your result valid?

3.  For an incoming flow of 2500 ft3ys, determine the distribution to the turbines and verify  
(by trying some nearby distributions) that your result is indeed a maximum.

4.  Until now we have assumed that all three turbines are operating; is it possible in some situa-
tions that more power could be produced by using only one turbine? Make a graph of the 
three power functions and use it to help decide if an incoming flow of 1000 ft3ys should be 

APPLIED PROJECT HYDRO-TURBINE OPTIMIZATION
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distributed to all three turbines or routed to just one. (If you determine that only one turbine 
should be used, which one would it be?) What if the flow is only 600 ft3ys?

5.  Perhaps for some flow levels it would be advantageous to use two turbines. If the incoming 
flow is 1500 ft3ys, which two turbines would you recommend using? Use Lagrange multi-
pliers to determine how the flow should be distributed between the two turbines to maximize 
the energy produced. For this flow, is using two turbines more efficient than using all three?

6. If the incoming flow is 3400 ft3ys, what would you recommend to the station management?

CONCEPT CHECK Answers to the Concept Check can be found on the back endpapers.

14 REVIEW

 1. (a) What is a function of two variables?
 (b)  Describe three methods for visualizing a function of two 

variables.

 2.  What is a function of three variables? How can you visualize 
such a function?

 3. What does

lim
sx, yd l sa, bd 

 f sx, yd − L

 mean? How can you show that such a limit does not exist?

 4. (a) What does it mean to say that f  is continuous at sa, bd?
 (b)  If f  is continuous on R2, what can you say about its graph?

 5. (a)  Write expressions for the partial derivatives fxsa, bd and 
fysa, bd as limits.

 (b)  How do you interpret fxsa, bd and fysa, bd geometrically? 
How do you interpret them as rates of change?

 (c)  If f sx, yd is given by a formula, how do you calculate fx 
and fy ?

 6. What does Clairaut’s Theorem say?

 7.  How do you find a tangent plane to each of the following types 
of surfaces?

 (a) A graph of a function of two variables, z − f sx, yd
 (b)  A level surface of a function of three variables, 

Fsx, y, zd − k

 8.  Define the linearization of f  at sa, bd. What is the corre spond-
ing linear approximation? What is the geometric interpretation 
of the linear approximation?

 9. (a)  What does it mean to say that f  is differentiable at sa, bd?
 (b) How do you usually verify that f  is differentiable?

 10. If z − f sx, yd, what are the differentials dx, dy, and dz?

 11.  State the Chain Rule for the case where z − f sx, yd and x and y 
are functions of one variable. What if x and y are functions of 
two variables?

 12.  If z is defined implicitly as a function of x and y by an equation 
of the form Fsx, y, zd − 0, how do you find −zy−x and −zy−y?

 13. (a)  Write an expression as a limit for the directional derivative 
of f  at sx0, y0 d in the direction of a unit vector u − k a, b l.  
How do you interpret it as a rate? How do you interpret it 
geometrically?

 (b)  If f  is differentiable, write an expression for Du f sx0, y0 d in 
terms of fx and fy.

 14. (a)  Define the gradient vector = f  for a function f  of two or 
three variables.

 (b) Express Du f  in terms of = f .
 (c) Explain the geometric significance of the gradient.

 15. What do the following statements mean?
 (a) f  has a local maximum at sa, bd.
 (b) f  has an absolute maximum at sa, bd.
 (c) f  has a local minimum at sa, bd.
 (d) f  has an absolute minimum at sa, bd.
 (e) f  has a saddle point at sa, bd.

 16. (a)  If f  has a local maximum at sa, bd, what can you say about 
its partial derivatives at sa, bd?

 (b) What is a critical point of f ?

 17. State the Second Derivatives Test.

 18. (a) What is a closed set in R 2? What is a bounded set?
 (b)  State the Extreme Value Theorem for functions of two  

variables.
 (c)  How do you find the values that the Extreme Value  

Theorem guarantees?

 19.  Explain how the method of Lagrange multipliers works  
in finding the extreme values of f sx, y, zd subject to the 
constraint tsx, y, zd − k. What if there is a second constraint 
hsx, y, zd − c?
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EXERCISES

TRUE-FALSE QUIZ

 7.  If f  has a local minimum at sa, bd and f  is differentiable at 
sa, bd, then = f sa, bd − 0.

 8. If f  is a function, then

lim 
sx, yd l s2, 5d

  f sx, yd − f s2, 5d 

 9. If f sx, yd − ln y, then = f sx, yd − 1yy.

 10.  If s2, 1d is a critical point of f  and 

fxxs2, 1d fyys2, 1d , f fx ys2, 1dg 2

 then f  has a saddle point at s2, 1d.

 11. If f sx, yd − sin x 1 sin y, then 2s2 < Du f sx, yd < s2 .

 12.  If f sx, yd has two local maxima, then f  must have a local  
minimum.

 (b) Is fx s3, 2d positive or negative? Explain.
 (c) Which is greater, fy s2, 1d or fy s2, 2d? Explain.
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9–10 Evaluate the limit or show that it does not exist.

 9. lim
sx, yd l s1, 1d 

 
2xy

x 2 1 2y 2  10. lim
sx, yd l s0, 0d 

 
2xy

x 2 1 2y 2

 11.  A metal plate is situated in the xy-plane and occupies the  
rectangle 0 < x < 10, 0 < y < 8, where x and y are measured 
in meters. The temperature at the point sx, yd in the plate is 
T sx, yd, where T is measured in degrees Celsius. Temperatures 
at equally spaced points were measured and recorded in the 
table.

 (a)  Estimate the values of the partial derivatives Txs6, 4d  
and Tys6, 4d. What are the units?

  Determine whether the statement is true or false. If it is true, explain 
why. If it is false, explain why or give an example that disproves the 
statement.

 1. fysa, bd − lim
y l b

 
 f sa, yd 2 f sa, bd

y 2 b

 2.  There exists a function f  with continuous second-order  
partial derivatives such that fxsx, yd − x 1 y 2 and 
fysx, yd − x 2 y 2.

 3. fxy −
−2f

−x −y

 4. Dk f sx, y, zd − fzsx, y, zd

 5.  If f sx, yd l L as sx, yd l sa, bd along every straight line 
through sa, bd, then limsx, yd l sa, bd f sx, yd − L.

 6.  If fxsa, bd and fysa, bd both exist, then f  is differentiable  
at sa, bd.

1–2 Find and sketch the domain of the function.

 1. f sx, yd − lnsx 1 y 1 1d

 2. f sx, yd − s4 2 x 2 2 y 2 1 s1 2 x 2 

3–4 Sketch the graph of the function.

 3. f sx, yd − 1 2 y 2

 4. f sx, yd − x 2 1 sy 2 2d2

5–6 Sketch several level curves of the function.

 5. f sx, yd − s4x 2 1 y 2  

 6. f sx, yd − e x 1 y

 7.  Make a rough sketch of a contour map for the function whose 
graph is shown.

  

7et14rx07
05/12/10
MasterID: 01645

2x

z

2 y

 8.  The contour map of a function f  is shown.
 (a) Estimate the value of f s3, 2d.
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 25–29 Find equations of (a) the tangent plane and (b) the normal 
line to the given surface at the specified point.

 25. z − 3x 2 2 y 2 1 2x,  s1, 22, 1d

 26. z − e x cos y,  s0, 0, 1d

 27. x 2 1 2y 2 2 3z 2 − 3,  s2, 21, 1d

 28. xy 1 yz 1 zx − 3,  s1, 1, 1d

 29. sinsxyzd − x 1 2y 1 3z,  s2, 21, 0d

 30.  Use a computer to graph the surface z − x 2 1 y 4 and its  
tangent plane and normal line at s1, 1, 2d on the same screen. 
Choose the domain and viewpoint so that you get a good 
view of all three objects.

 31.  Find the points on the hyperboloid x 2 1 4y 2 2 z2 − 4 where 
the tangent plane is parallel to the plane 2x 1 2y 1 z − 5.

 32. Find du if u − lns1 1 se 2 t d.

 33.  Find the linear approximation of the function 
   f sx, y, zd − x 3sy 2 1 z 2  at the point (2, 3, 4) and use it  

to estimate the number s1.98d3ss3.01d 2 1 s3.97d 2 .

 34.  The two legs of a right triangle are measured as 5 m and 
12 m with a possible error in measurement of at most 0.2 cm 
in each. Use differentials to estimate the maximum error in 
the calculated value of (a) the area of the triangle and (b) the 
length of the hypotenuse.

 35.  If u − x 2y3 1 z4, where x − p 1 3p2, y − pe p, and 
z − p sin p, use the Chain Rule to find duydp.

 36.  If v − x 2 sin y 1 ye xy, where x − s 1 2t and y − st, use the 
Chain Rule to find −vy−s and −vy−t when s − 0 and t − 1.

 37.  Suppose z − f sx, yd, where x − tss, td, y − hss, td,  
ts1, 2d − 3, tss1, 2d − 21, tts1, 2d − 4, hs1, 2d − 6, 
hss1, 2d − 25, hts1, 2d − 10, fxs3, 6d − 7, and fys3, 6d − 8. 
Find −zy−s and −zy−t when s − 1 and t − 2.

 38.  Use a tree diagram to write out the Chain Rule for the case 
where w − f st, u, vd, t − ts p, q, r, sd, u − us p, q, r, sd, and 
v − vs p, q, r, sd are all differentiable functions.

 39. If z − y 1 f sx 2 2 y 2 d, where f  is differentiable, show that

y 
−z
−x

1 x 
−z
−y

− x

 40.  The length x of a side of a triangle is increasing at a rate of 
3 inys, the length y of another side is decreasing at a rate of 
2 inys, and the contained angle # is increasing at a rate of  
0.05 radianys. How fast is the area of the triangle changing 
when x − 40 in, y − 50 in, and # − $y6?

 41.  If z − f su, vd, where u − xy, v − yyx, and f  has continuous 
second partial derivatives, show that

x 2 
−2z
−x 2 2 y 2 

−2z
−y 2 − 24uv 

−2z
−u −v

1 2v 
−z
−v

;

 (b)  Estimate the value of Du T s6, 4d, where u − si 1 jdys2 . 
Interpret your result.

 (c) Estimate the value of Txys6, 4d.
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 12.  Find a linear approximation to the temperature function 
T sx, yd in Exercise 11 near the point (6, 4). Then use it to 
estimate the temperature at the point (5, 3.8).

13–17 Find the first partial derivatives.

 13. f sx, yd − s5y 3 1 2x 2yd8 14. tsu, vd −
u 1 2v
u 2 1 v 2

 15. F s", %d − " 2 lns" 2 1 % 2d 16. Gsx, y, zd − e xz sinsyyzd

 17. Ssu, v, wd − u arctan(vsw )

 18.  The speed of sound traveling through ocean water is a func-
tion of temperature, salinity, and pressure. It has been mod-
eled by the function

 C − 1449.2 1 4.6T 2 0.055T 2 1 0.00029T 3

        1 s1.34 2 0.01T dsS 2 35d 1 0.016D

  where C is the speed of sound (in meters per second), T is 
the temperature (in degrees Celsius), S is the salinity (the 
concentration of salts in parts per thousand, which means the 
number of grams of dissolved solids per 1000 g of water), and 
D is the depth below the ocean surface (in meters). Compute 
−Cy−T, −Cy−S, and −Cy−D when T − 108C, S − 35 parts 
per thousand, and D − 100 m. Explain the physical signifi-
cance of these partial derivatives.

19–22 Find all second partial derivatives of f .

 19. f sx, yd − 4x 3 2 xy 2 20. z − xe22y

 21. f sx, y, zd − x k y lz m 22. v − r cosss 1 2td

 23. If z − xy 1 xe yyx, show that x 
−z
−x

1 y 
−z
−y

− xy 1 z.

 24. If z − sinsx 1 sin td, show that

−z
−x

 
−2z

−x −t
−

−z
−t

 
−2z
−x 2
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984 CHAPTER 14  Partial Derivatives

 52. f sx, yd − x 3 2 6xy 1 8y 3

 53. f sx, yd − 3xy 2 x 2 y 2 xy 2

 54. f sx, yd − sx 2 1 yde yy2

55–56 Find the absolute maximum and minimum values of f  on 
the set D.

 55.  f sx, yd − 4xy 2 2 x 2 y 2 2 xy 3;  D is the closed triangular 
region in the xy-plane with vertices s0, 0d, s0, 6d, and s6, 0d

 56.  f sx, yd − e2x 22y 2sx 2 1 2y 2 d;  D is the disk x 2 1 y 2 < 4

 57.  Use a graph or level curves or both to estimate the local  
maximum and minimum values and saddle points of 
f sx, yd − x 3 2 3x 1 y 4 2 2y 2. Then use calculus to find  
these values precisely.

 58.  Use a graphing calculator or computer (or Newton’s method 
or a computer algebra system) to find the critical points of 
f sx, yd − 12 1 10y 2 2x 2 2 8xy 2 y 4 correct to three  
decimal places. Then classify the critical points and find  
the highest point on the graph.

 59–62 Use Lagrange multipliers to find the maximum and 
minimum values of f  subject to the given constraint(s).

 59. f sx, yd − x 2 y;  x 2 1 y 2 − 1

 60. f sx, yd −
1
x

1
1
y

;  
1
x 2 1

1
y 2 − 1

 61. f sx, y, zd − xyz;  x 2 1 y 2 1 z 2 − 3

 62. f sx, y, zd − x 2 1 2y 2 1 3z2;

  x 1 y 1 z − 1,  x 2 y 1 2z − 2

 63.  Find the points on the surface xy 2z3 − 2 that are closest to  
the origin.

 64.  A package in the shape of a rectangular box can be mailed by 
the US Postal Service if the sum of its length and girth (the 
perimeter of a cross-section perpendicular to the length) is at 
most 108 in. Find the dimensions of the package with largest 
volume that can be mailed.

 65.  A pentagon is formed by placing an isosceles triangle on a 
rectangle, as shown in the figure. If the pentagon has fixed 
perimeter P, find the lengths of the sides of the pentagon that 
maximize the area of the pentagon.

   

=

=

¨

;

;

 42. If cossxyzd − 1 1 x 2y 2 1 z 2, find 
−z
−x

 and 
−z
−y

.

 43. Find the gradient of the function f sx, y, zd − x 2e yz 2
.

 44. (a) When is the directional derivative of f  a maximum?
 (b) When is it a minimum?
 (c) When is it 0?
 (d) When is it half of its maximum value?

 45–46 Find the directional derivative of f  at the given point in 
the indicated direction.

 45.  f sx, yd − x 2e2y,  s22, 0d,  
in the direction toward the point s2, 23d

 46.  f sx, y, zd − x 2 y 1 xs1 1 z ,  s1, 2, 3d,  
in the direction of v − 2 i 1 j 2 2k

 47.  Find the maximum rate of change of f sx, yd − x 2 y 1 sy   
at the point s2, 1d. In which direction does it occur?

 48.  Find the direction in which f sx, y, zd − ze x y increases most 
rapidly at the point s0, 1, 2d. What is the maximum rate of 
increase?

 49.  The contour map shows wind speed in knots during Hurri-
cane Andrew on August 24, 1992. Use it to estimate the value 
of the directional derivative of the wind speed at Homestead, 
Florida, in the direction of the eye of the hurricane.
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 50.  Find parametric equations of the tangent line at the point 
s22, 2, 4d to the curve of intersection of the surface 
z − 2x 2 2 y 2 and the plane z − 4.

 51–54 Find the local maximum and minimum values and saddle 
points of the function. If you have three-dimensional graphing 
software, graph the function with a domain and viewpoint that 
reveal all the important aspects of the function.

 51. f sx, yd − x 2 2 xy 1 y 2 1 9x 2 6y 1 10
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Problems Plus  1.  A rectangle with length L and width W is cut into four smaller rectangles by two lines 
parallel to the sides. Find the maximum and minimum values of the sum of the squares of 
the areas of the smaller rectangles.

 2.  Marine biologists have determined that when a shark detects the presence of blood in the 
water, it will swim in the direction in which the concentration of the blood increases most 
rapidly. Based on certain tests, the concentration of blood (in parts per million) at a point 
Psx, yd on the surface of seawater is approximated by

Csx, yd − e2sx 212y 2dy10 4

  where x and y are measured in meters in a rectangular coordinate system with the blood 
source at the origin.

 (a)  Identify the level curves of the concentration function and sketch several members of 
this family together with a path that a shark will follow to the source.

 (b)  Suppose a shark is at the point sx0, y0d when it first detects the presence of blood in  
the water. Find an equation of the shark’s path by setting up and solving a differential 
equation.

 3.  A long piece of galvanized sheet metal with width w is to be bent into a symmetric form 
with three straight sides to make a rain gutter. A cross-section is shown in the figure.

 (a)  Determine the dimensions that allow the maximum possible flow; that is, find the 
dimensions that give the maximum possible cross-sectional area.

 (b)  Would it be better to bend the metal into a gutter with a semicircular cross-section?

  

¨¨x x

w-2x

 4. For what values of the number r is the function

f sx, y, zd − H sx 1 y 1 zdr

x 2 1 y 2 1 z 2 if sx, y, zd ± s0, 0, 0d

0 if sx, y, zd − s0, 0, 0d

 continuous on R 3?

 5.  Suppose f  is a differentiable function of one variable. Show that all tangent planes to the 
surface z − x f syyxd intersect in a common point.

 6. (a)  Newton’s method for approximating a root of an equation f sxd − 0 (see Section 4.8) 
can be adapted to approximating a solution of a system of equations f sx, yd − 0 and 
tsx, yd − 0. The surfaces z − f sx, yd and z − tsx, yd intersect in a curve that intersects 
the xy-plane at the point sr, sd, which is the solution of the system. If an initial approxi-
mation sx1, y1d is close to this point, then the tangent planes to the surfaces at sx1, y1d 
intersect in a straight line that intersects the xy-plane in a point sx2, y2 d, which should 
be closer to sr, sd. (Compare with Figure 4.8.2.) Show that

x2 − x1 2
 fty 2 fy t
fx ty 2 fy tx

    and    y2 − y1 2
 fx t 2 ftx

fx ty 2 fy tx

   where f , t, and their partial derivatives are evaluated at sx1, y1d. If we continue this pro-
cedure, we obtain successive approximations sxn, yn d.

 (b)  It was Thomas Simpson (1710–1761) who formulated Newton’s method as we know it 
today and who extended it to functions of two variables as in part (a). (See the biogra-
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phy of Simpson on page 520.) The example that he gave to illustrate the method was to 
solve the system of equations

x x 1 y y − 1000      x y 1 y x − 100

   In other words, he found the points of intersection of the curves in the figure. Use the 
method of part (a) to find the coordinates of the points of intersection correct to six 
decimal places.

  

y

4

2

0 2 4 x

xx+yy=1000

xy+yx=100x

 7.  If the ellipse x 2ya 2 1 y 2yb 2 − 1 is to enclose the circle x 2 1 y 2 − 2y, what values of a 
and b minimize the area of the ellipse?

 8.  Show that the maximum value of the function 

f sx, yd −
sax 1 by 1 cd2

x 2 1 y 2 1 1

 is a 2 1 b 2 1 c 2.
  Hint: One method for attacking this problem is to use the Cauchy-Schwarz Inequality: 

| a ? b | < | a | | b |
 (See Exercise 12.3.61.)
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Tumors, like the one shown, 
have been modeled as 

“bumpy spheres.” In Exer- 
cise 47 in Section 15.8 you are 
asked to compute the volume 

enclosed by such a surface.

IN THIS CHAPTER WE EXTEND the idea of a definite integral to double and triple integrals of 
functions of two or three variables. These ideas are then used to compute volumes, masses, and 
centroids of more general regions than we were able to consider in Chapters 6 and 8. We also use 
double integrals to calculate probabilities when two random variables are involved.

 We will see that polar coordinates are useful in computing double integrals over some types 
of regions. In a similar way, we will introduce two new coordinate systems in three-dimensional 
space––cylindrical coordinates and spherical coordinates––that greatly simplify the computation 
of triple integrals over certain commonly occurring solid regions.

15 Multiple Integrals

© Juan Gaertner / Shutterstock.com
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988 CHAPTER 15  Multiple Integrals

In much the same way that our attempt to solve the area problem led to the definition of 
a definite integral, we now seek to find the volume of a solid and in the process we arrive 
at the definition of a double integral.

Review of the Definite Integral
First let’s recall the basic facts concerning definite integrals of functions of a single vari-
able. If f sxd is defined for a < x < b, we start by dividing the interval fa, bg into n sub-
intervals fxi21, xig of equal width Dx − sb 2 adyn and we choose sample points xi* in 
these subintervals. Then we form the Riemann sum

1  o
n

i−1
 f sxi*d Dx 

and take the limit of such sums as n l ` to obtain the definite integral of f  from a to b:

2  yb

a
 f sxd dx − lim 

n l `
 o

n

i−1
 f sxi*d Dx 

In the special case where f sxd > 0, the Riemann sum can be interpreted as the sum of 
the areas of the approximating rectangles in Figure 1, and yb

a  f sxd dx represents the area 
under the curve y − f sxd from a to b.

xixi-10

y

xa b¤⁄ ‹ xn-1

x¡* x™* x£* xn*xi*

Îx

f(xi*)

Volumes and Double Integrals
In a similar manner we consider a function f  of two variables defined on a closed rectangle

R − fa, bg 3 fc, dg − hsx, yd [ R2  |  a < x < b, c < y < dj

and we first suppose that f sx, yd > 0. The graph of f  is a surface with equation z − f sx, yd. 
Let S be the solid that lies above R and under the graph of f , that is,

S − hsx, y, zd [ R3 | 0 < z < f sx, yd, sx, yd [ Rj

(See Figure 2.) Our goal is to find the volume of S.
The first step is to divide the rectangle R into subrectangles. We accomplish this by 

dividing the interval fa, bg into m subintervals fxi21, xig of equal width Dx − sb 2 adym 
and dividing fc, dg into n subintervals fyj21, yjg of equal width Dy − sd 2 cdyn. By 
drawing lines parallel to the coordinate axes through the endpoints of these subintervals, 

FIGURE 1

0 

R 

z=f(x, y ) 

c d a 

b 
x 

z 

y 

FIGURE 2
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 SECTION 15.1  Double Integrals over Rectangles 989

as in Figure 3, we form the subrectangles

Rij − fxi21, xig 3 fyj21, yjg − hsx, yd | xi21 < x < xi, yj21 < y < yjj

each with area DA − Dx Dy.

yj-1

(x*£™, y*£™)

y
yj

y

x

d

c
›

0 ⁄ ¤

Rij

a b

(x*ij , y*ij)

(xi, yj)

Îx

Îy

xi-1 xi

If we choose a sample point sxij*, yij*d in each Rij, then we can approximate the part of 
S that lies above each Rij by a thin rectangular box (or “column”) with base Rij and height 
f sxij*, yij*d as shown in Figure 4. (Compare with Figure 1.) The volume of this box is the 
height of the box times the area of the base rectangle:

f sxij*, yij*d DA

If we follow this procedure for all the rectangles and add the volumes of the correspond-
ing boxes, we get an approximation to the total volume of S:

3  V < o
m

i−1
 o

n

j−1
 f sxij*, yij*d DA 

(See Figure 5.) This double sum means that for each subrectangle we evaluate f  at the 
chosen point and multiply by the area of the subrectangle, and then we add the results.

0 

FIGURE 4
 

FIGURE 5

z 

y 

c 
d a 

b 
x 

f(x*ij y*ij ) 

x 

y 

0 

z 

,

Rij

FIGURE 3  
Dividing R into subrectangles
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990 CHAPTER 15  Multiple Integrals

Our intuition tells us that the approximation given in (3) becomes better as m and n 
become larger and so we would expect that

4  V − lim 
m, n l `

 o
m

i−1
o

n

j−1
 f sxij*, yij*d DA 

We use the expression in Equation 4 to define the volume of the solid S that lies under 
the graph of f  and above the rectangle R. (It can be shown that this definition is consis-
tent with our formula for volume in Section 6.2.)

Limits of the type that appear in Equation 4 occur frequently, not just in finding vol-
umes but in a variety of other situations as well—as we will see in Section 15.4—even 
when f  is not a positive function. So we make the following definition.

5  Definition The double integral of f  over the rectangle R is

y
R

y f sx, yd dA − lim 
m, n l `

 o
m

i−1
o

n

j−1
 f sxij*, yij*d DA

if this limit exists.

Notice the similarity between 
Definition 5 and the definition of a 
single integral in Equation 2.

The precise meaning of the limit in Definition 5 is that for every number « . 0 there 
is an integer N such that

Z y
R

y f sx, yd dA 2 o
m

i−1
 o

n

j−1
 f sxij*, yij*d DA Z , «

for all integers m and n greater than N and for any choice of sample points sxij*, yij*d in Rij.
A function f  is called integrable if the limit in Definition 5 exists. It is shown in 

courses on advanced calculus that all continuous functions are integrable. In fact, the 
double integral of f  exists provided that f  is “not too discontinuous.” In particular, if f  
is bounded on R, [that is, there is a constant M such that | f sx, yd | < M for all sx, yd in R], 
and f  is con tinuous there, except on a finite number of smooth curves, then f  is integrable 
over R.

The sample point sxij*, yij*d can be chosen to be any point in the subrectangle Rij, but if 
we choose it to be the upper right-hand corner of Rij [namely sxi, yjd, see Fig  ure 3], then 
the expression for the double integral looks simpler:

6  y
R

y f sx, yd dA − lim 
m, n l `

 o
m

i−1
 o

n

j−1
 f sxi, yjd DA 

By comparing Definitions 4 and 5, we see that a volume can be written as a double  
integral:

If f sx, yd > 0, then the volume V  of the solid that lies above the rectangle R and 
below the surface z − f sx, yd is

V − y
R

y  f sx, yd dA

The meaning of the double limit in 
Equation 4 is that we can make the 
double sum as close as we like to the 
number V [for any choice of sxij*, yij*d in 
Rij ] by taking m and n sufficiently large.

Although we have defined the double 
integral by dividing R into equal-sized 
subrectangles, we could have used 
subrectangles Rij  of unequal size. But 
then we would have to ensure that all 
of their dimensions approach 0 in the 
limiting process.
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 SECTION 15.1  Double Integrals over Rectangles 991

The sum in Definition 5,

o
m

i−1
 o

n

j−1
 f sxij*, yij*d DA

is called a double Riemann sum and is used as an approximation to the value of the  
double integral. [Notice how similar it is to the Riemann sum in (1) for a function of a  
single variable.] If f  happens to be a positive function, then the double Riemann sum  
represents the sum of volumes of columns, as in Figure 5, and is an approximation to the 
volume under the graph of f.

EXAMPLE 1 Estimate the volume of the solid that lies above the square 
R − f0, 2g 3 f0, 2g and below the elliptic paraboloid z − 16 2 x 2 2 2y 2. Divide R into 
four equal squares and choose the sample point to be the upper right corner of each 
square Rij. Sketch the solid and the approximating rectangular boxes.

SOLUTION The squares are shown in Figure 6. The paraboloid is the graph of 
f sx, yd − 16 2 x 2 2 2y 2 and the area of each square is DA − 1. Approximating the 
volume by the Riemann sum with m − n − 2, we have

 V < o
2

i−1
 o

2

j−1
 f sxi, yjd DA

 − f s1, 1d DA 1 f s1, 2d DA 1 f s2, 1d DA 1 f s2, 2d DA

 − 13s1d 1 7s1d 1 10s1d 1 4s1d − 34

This is the volume of the approximating rectangular boxes shown in Figure 7. Q

We get better approximations to the volume in Example 1 if we increase the num-
ber of squares. Figure 8 shows how the columns start to look more like the actual solid 
and the corresponding approximations become more accurate when we use 16, 64, and 
256 squares. In Example 7 we will be able to show that the exact volume is 48.

(c) m=n=16, VÅ46.46875(b) m=n=8, VÅ44.875(a) m=n=4, VÅ41.5

EXAMPLE 2 If R − hsx, yd  |  21 < x < 1, 22 < y < 2j, evaluate the integral

y
R

y  s1 2 x 2  dA

0

y

1

2

x1 2

(2, 2)

R¡™ R™™

R¡¡ R™¡

(2, 1)
(1, 1)

(1, 2)

FIGURE 6

16

2

2

z=16-≈-2¥

x

y

z

FIGURE 7

FIGURE 8  
The Riemann sum approximations to 

the volume under z − 16 2 x 2 2 2y 2 
become more accurate as  

m and n increase.
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992 CHAPTER 15  Multiple Integrals

SOLUTION It would be very difficult to evaluate this integral directly from Defini-
 tion 5 but, because s1 2 x 2 > 0, we can compute the integral by interpreting it as a 
 volume. If z − s1 2 x 2 , then x 2 1 z2 − 1 and z > 0, so the given double integral 
represents the volume of the solid S that lies below the circular cylinder x 2 1 z2 − 1 
and above the rectangle R. (See Figure 9.) The volume of S is the area of a semicircle 
with radius 1 times the length of the cylinder. Thus

 y
R

y s1 2 x 2  dA − 1
2 !s1d2 3 4 − 2! Q

The Midpoint Rule
The methods that we used for approximating single integrals (the Midpoint Rule, the 
Trapezoidal Rule, Simpson’s Rule) all have counterparts for double integrals. Here we 
consider only the Midpoint Rule for double integrals. This means that we use a double 
Rie mann sum to approximate the double integral, where the sample point sxij*, yij*d in Rij 
is chosen to be the center sxi, yjd of Rij. In other words, xi is the midpoint of fxi21, xig and 
yj is the midpoint of fyj21, yjg.

Midpoint Rule for Double Integrals 

y
R

y  f sx, yd dA < o
m

i−1

 o
n

j−1
 f sxi, yjd DA

where xi is the midpoint of fxi21, xig and yj is the midpoint of fyj21, yjg.

EXAMPLE 3 Use the Midpoint Rule with m − n − 2 to estimate the value of the  
integral yyR sx 2 3y 2 d dA, where R − hsx, yd  |  0 < x < 2, 1 < y < 2j.

SOLUTION In using the Midpoint Rule with m − n − 2, we evaluate f sx, yd − x 2 3y 2 
at the centers of the four subrectangles shown in Figure 10. So x1 − 1

2, x2 − 3
2, y1 − 5

4, 
and y2 − 7

4. The area of each subrectangle is DA − 1
2. Thus

 y
R

ysx 2 3y 2 d dA < o
2

i−1
 o

2

j−1
 f sxi, yjd DA

 − f sx1, y1d DA 1 f sx1, y2 d DA 1 f sx2, y1 d DA 1 f sx2, y2 d DA

 − f (1
2, 54 ) DA 1 f (1

2, 74 ) DA 1 f (3
2, 54 ) DA 1 f (3

2, 74 ) DA

 − (267
16 )1

2 1 (2139
16 )1

2 1 (251
16)1

2 1 (2123
16 )1

2

 − 295
8 − 211.875

Thus we have y
R

y  sx 2 3y 2 d dA < 211.875 Q

NOTE In Example 5 we will see that the exact value of the double integral in Exam-
ple 3 is 212. (Remember that the interpretation of a double integral as a volume is valid 
only when the integrand f  is a positive function. The integrand in Example 3 is not a 
positive function, so its integral is not a volume. In Examples 5 and 6 we will discuss 
how to interpret integrals of functions that are not always positive in terms of volumes.) 
If we keep dividing each subrectangle in Figure 10 into four smaller ones with similar 
shape, we get the Midpoint Rule approximations displayed in the chart in the margin. 
Notice how these approximations approach the exact value of the double integral, 212.

S 

x y

z 

(1, 0, 0) (0, 2, 0)

(0, 0, 1)

FIGURE 9

0

y

1

2

x1 2

3
2

(2, 2)
R¡™ R™™
R¡¡ R™¡

FIGURE 10

Number of 
subrectangles

Midpoint Rule 
approximation

1 211.5000
4 211.8750

16 211.9687
64 211.9922

256 211.9980
1024 211.9995
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Iterated Integrals
Recall that it is usually difficult to evaluate single integrals directly from the definition of 
an integral, but the Fundamental Theorem of Calculus provides a much easier method. 
The evaluation of double integrals from first principles is even more difficult, but here we 
see how to express a double integral as an iterated integral, which can then be eval uated 
by calculating two single integrals.

Suppose that f  is a function of two variables that is integrable on the rectangle 
R − fa, bg 3 fc, dg. We use the notation yd

c  f sx, yd dy to mean that x is held fixed and 
f sx, yd is integrated with respect to y from y − c to y − d. This procedure is called par-
tial integration with respect to y. (Notice its similarity to partial differentiation.) Now 
yd
c  f sx, yd dy is a number that depends on the value of x, so it defines a function of x:

Asxd − yd

c
 f sx, yd dy

If we now integrate the function A with respect to x from x − a to x − b, we get

7  yb

a
 Asxd dx − yb

a
 Fyd

c
 f sx, yd dyG dx 

The integral on the right side of Equation 7 is called an iterated integral. Usually the 
brackets are omitted. Thus

8  yb

a
 yd

c
 f sx, yd dy dx − yb

a
 Fyd

c
 f sx, yd dyG dx 

means that we first integrate with respect to y from c to d and then with respect to x from 
a to b.

Similarly, the iterated integral

9  yd

c
 yb

a
 f sx, yd dx dy − yd

c
 Fyb

a
 f sx, yd dxG dy 

means that we first integrate with respect to x (holding y fixed) from x − a to x − b and 
then we integrate the resulting function of y with respect to y from y − c to y − d. 
Notice that in both Equations 8 and 9 we work from the inside out.

EXAMPLE 4 Evaluate the iterated integrals.

(a) y3

0
 y2

1
 x 2y dy dx (b) y2

1
 y3

0
 x 2 y dx dy

SOLUTION
(a) Regarding x as a constant, we obtain

y2

1
 x 2 y dy − Fx 2 

y 2

2 Gy−1

y−2

− x 2S 22

2 D 2 x 2S 12

2 D − 3
2 x 2

Thus the function A in the preceding discussion is given by Asxd − 3
2 x 2 in this  

example. We now integrate this function of x from 0 to 3:

 y3

0
 y2

1
 x 2 y dy dx − y3

0
 Fy2

1
 x 2 y dyG dx

 − y3

0
 32 x 2 dx −

x 3

2 G0

3

−
27
2
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994 CHAPTER 15  Multiple Integrals

(b) Here we first integrate with respect to x:

 y2

1
 y3

0
 x 2 y dx dy − y2

1
 Fy3

0
 x 2 y dxG dy − y2

1
 F x 3

3
 yG

x−0

x−3
 

     dy

  − y2

1
 9y dy − 9 

y 2

2 G1

2

−
27
2

 Q

Notice that in Example 4 we obtained the same answer whether we integrated with 
respect to y or x first. In general, it turns out (see Theorem 10) that the two iterated  
integrals in Equations 8 and 9 are always equal; that is, the order of integration does  
not matter. (This is similar to Clairaut’s Theorem on the equality of the mixed partial 
derivatives.)

The following theorem gives a practical method for evaluating a double integral by 
expressing it as an iterated integral (in either order).

10  Fubini’s Theorem If f  is continuous on the rectangle 
R − hsx, yd  |  a < x < b, c < y < d j, then

y
R

y f sx, yd dA − yb

a
 yd

c
 f sx, yd dy dx − yd

c
 yb

a
 f sx, yd dx dy

More generally, this is true if we assume that f  is bounded on R, f  is discontin-
uous only on a finite number of smooth curves, and the iterated integrals exist.

Theorem 10 is named after the  
Italian mathematician Guido Fubini 
(1879–1943), who proved a very gen-
eral version of this theorem in 1907. 
But the version for continuous functions 
was known to the French mathematician 
Augustin-Louis Cauchy almost a cen-
tury earlier.

The proof of Fubini’s Theorem is too difficult to include in this book, but we can at 
least give an intuitive indication of why it is true for the case where f sx, yd > 0. Recall 
that if f  is positive, then we can interpret the double integral yyR f sx, yd dA as the volume 
V  of the solid S that lies above R and under the surface z − f sx, yd. But we have another 
formula that we used for volume in Chapter 6, namely,

V − yb

a
 Asxd dx

where Asxd is the area of a cross-section of S in the plane through x perpendicular to the  
x-axis. From Figure 11 you can see that Asxd is the area under the curve C whose equa-
tion is z − f sx, yd, where x is held constant and c < y < d. Therefore

Asxd − yd

c
 f sx, yd dy

and we have

y
R

y f sx, yd dA − V − yb

a
 Asxd dx − yb

a
 yd

c
 f sx, yd dy dx

A similar argument, using cross-sections perpendicular to the y-axis as in Figure 12, 
shows that

y
R

y f sx, yd dA − yd

c
 yb

a
 f sx, yd dx dy

a 

x 

0 

z 

x 
b 

y 

A(x) 

C 

FIGURE 11

TEC Visual 15.1 illustrates Fubini’s  
Theorem by showing an animation of  
Figures 11 and 12.

0 y c 

x 

z 

y
d 

FIGURE 12
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EXAMPLE 5 Evaluate the double integral yyR sx 2 3y 2 d dA, where 
R − hsx, yd  |  0 < x < 2, 1 < y < 2j. (Compare with Example 3.)

SOLUTION 1 Fubini’s Theorem gives

 y
R

y sx 2 3y 2 d dA − y2

0
 y2

1
 sx 2 3y 2 d dy dx − y2

0
 fxy 2 y 3g y−1

y−2
 dx

  − y2

0
 sx 2 7d dx −

x 2

2
2 7xG

0

2

− 212

SOLUTION 2 Again applying Fubini’s Theorem, but this time integrating with respect  
to x first, we have

 y
R

y sx 2 3y 2 d dA − y2

1
 y2

0
 sx 2 3y 2 d dx dy

 − y2

1
 F x 2

2
2 3xy 2G

x−0

x−2

     dy

  − y2

1
 s2 2 6y 2 d dy − 2y 2 2y 3g1

2
− 212 Q

R0

_120 0.5 1 1.5 2 2 1 0

y
x

z
_4

_8 z=x-3¥

EXAMPLE 6 Evaluate yy
R
 y sinsxyd dA, where R − f1, 2g 3 f0, !g.

SOLUTION If we first integrate with respect to x, we get

  y
R

y y sinsxyd dA − y!

0
 y2

1
 y sinsxyd dx dy

 − y!

0
 f2cossxydgx−1

x−2
 dy

  − y!

0
 s2cos 2y 1 cos yd dy

  − 21
2 sin 2y 1 sin yg0

!

− 0 Q

NOTE  If we reverse the order of integration and first integrate with respect to y in 
Example 6, we get

y
R

y y sinsxyd dA − y2

1
 y!

0
 y sinsxyd dy dx

but this order of integration is much more difficult than the method given in the example 
because it involves integration by parts twice. Therefore, when we evaluate double inte-
grals it is wise to choose the order of integration that gives simpler integrals.

FIGURE 13

For a function f  that takes on 
both positive and negative values, 
yyR f sx, yd dA is a difference of volumes: 
V1 2 V2, where V1 is the volume above 
R and below the graph of f , and V2 
is the volume below R and above the 
graph. The fact that the integral in 
Example 6 is 0 means that these two 
volumes V1 and V2 are equal. (See 
Figure 14.)

z=y sin(xy)

1
0

_1

y10 32 2

1
x

z

FIGURE 14

Notice the negative answer in  
Example 5; nothing is wrong with 
that. The function f  is not a positive 
function, so its integral doesn’t repre-
sent a volume. From Figure 13 we see 
that f  is always negative on R, so the 
value of the integral is the negative of 
the volume that lies above the graph of 
f  and below R.
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996 CHAPTER 15  Multiple Integrals

EXAMPLE 7 Find the volume of the solid S that is bounded by the elliptic paraboloid 
x 2 1 2y 2 1 z − 16, the planes x − 2 and y − 2, and the three coordinate planes.

SOLUTION We first observe that S is the solid that lies under the surface 
z − 16 2 x 2 2 2y 2 and above the square R − f0, 2g 3 f0, 2g. (See Figure 15.) This 
solid was considered in Example 1, but we are now in a position to evaluate the double 
integral using Fubini’s Theorem. Therefore

 V − y
R

y s16 2 x 2 2 2y 2 d dA − y2

0
 y2

0
 s16 2 x 2 2 2y 2 d dx dy

 − y2

0
 f16x 2 1

3 x 3 2 2y 2xgx−0

x−2
 dy

  − y2

0
 (88

3 2 4y 2 ) dy − f88
3 y 2 4

3 y3 g0

2
− 48  Q

In the special case where f sx, yd can be factored as the product of a function of x only 
and a function of y only, the double integral of f  can be written in a particularly simple 
form. To be specific, suppose that f sx, yd − tsxdhsyd and R − fa, bg 3 fc, dg. Then  
Fubini’s Theorem gives

y
R

y f sx, yd dA − yd

c
 yb

a
 tsxdhsyd dx dy − yd

c
 Fyb

a
 tsxdhsyd dxG dy

In the inner integral, y is a constant, so hsyd is a constant and we can write

 yd

c
 Fyb

a
 tsxdhsyd dxG dy − yd

c
 FhsydSyb

a
 tsxd dxDG dy − yb

a
 tsxd dx yd

c
 hsyd dy

since yb
a tsxd dx is a constant. Therefore, in this case the double integral of f  can be writ-

ten as the product of two single integrals:

11  y
R

y tsxd hsyd dA − yb

a
 tsxd dx yd

c
 hsyd dy   where R − fa, bg 3 fc, dg

EXAMPLE 8 If R − f0, !y2g 3 f0, !y2g, then, by Equation 11,

 y
R

y sin x cos y dA − y!y2

0
 sin x dx y!y2

0
 cos y dy

  − f2cos xg0

!y2
 fsin yg0

!y2
− 1 ? 1 − 1 Q

y
x

z

0

0 1 2 2
1

0

y x

z

16

12

8

4

0

FIGURE 15

The function f sx, yd − sin x cos y in  
Example 8 is positive on R, so the 
integral represents the volume of the 
solid that lies above R and below the 
graph of f  shown in Figure 16.

FIGURE 16
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Average Value
Recall from Section 6.5 that the average value of a function f  of one variable defined on 
an interval fa, bg is

fave −
1

b 2 a
 yb

a
 f sxd dx

In a similar fashion we define the average value of a function f  of two variables defined 
on a rectangle R to be

fave −
1

AsRd
 yy

R

  f sx, yd dA

where AsRd is the area of R.
If f sx, yd > 0, the equation

AsRd 3 fave − y
R

y  f sx, yd dA

says that the box with base R and height fave has the same volume as the solid that lies 
under the graph of f . [If z − f sx, yd describes a mountainous region and you chop off the 
tops of the mountains at height fave, then you can use them to fill in the valleys so that the 
region becomes completely flat. See Figure 17.]

EXAMPLE 9 The contour map in Figure 18 shows the snowfall, in inches, that fell on the 
state of Colorado on December 20 and 21, 2006. (The state is in the shape of a rectangle 
that measures 388 mi west to east and 276 mi south to north.) Use the contour map to 
estimate the average snowfall for the entire state of Colorado on those days.

12

12

8

0 4 8 12

16
12

16

16

20

20

24

24

24

28

28

28

32

32

32

36

36

40

40

44

SOLUTION Let’s place the origin at the southwest corner of the state. Then 0 < x < 388, 
0 < y < 276, and f sx, yd is the snowfall, in inches, at a location x miles to the east and 
y miles to the north of the origin. If R is the rectangle that represents Colorado, then the 
average snowfall for the state on December 20–21 was

fave −
1

AsRd
 y

R

y f sx, yd dA  

FIGURE 17

FIGURE 18
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998 CHAPTER 15  Multiple Integrals

where AsRd − 388 ? 276. To estimate the value of this double integral, let’s use the 
Midpoint Rule with m − n − 4. In other words, we divide R into 16 subrectangles of 
equal size, as in Figure 19. The area of each subrectangle is

DA − 1
16s388ds276d − 6693 mi2

12

12

8
0

4 8 12

16
12

16

16

20

20

24

24

24

28

28

28

32

32

32

36

36

40

40

44

276

3880

y

x

Using the contour map to estimate the value of f  at the center of each subrect angle, 
we get

  y
R

y  f sx, yd dA < o
4

i−1
 o

4

j−1
 f sxi, yjd DA

 < DAf0 1 15 1 8 1 7 1 2 1 25 1 18.5 1 11

     1 4.5 1 28 1 17 1 13.5 1 12 1 15 1 17.5 1 13g

 − s6693ds207d

Therefore fave <
s6693ds207d
s388ds276d

< 12.9 

On December 20–21, 2006, Colorado received an average of approximately 13 inches 
of snow. Q

FIGURE 19
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0

2

4

2 4
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10

10 20

20

30

300 0

y

x

 8.  The contour map shows the temperature, in degrees Fahrenheit, 
at 4:00 pm on February 26, 2007, in Colorado. (The state mea-
sures 388 mi west to east and 276 mi south to north.) Use  
the Midpoint Rule with m − n − 4 to estimate the average 
temperature in Colorado at that time.

16

16

20

28
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24
28

24
32

28

32

323640

44

44

44
403632

48

48
5256

52
56

44

9–11 Evaluate the double integral by first identifying it as the  
volume of a solid.

 9. yyR s2  dA, R − hsx, yd | 2 < x < 6, 21 < y < 5j

 10. yyR s2x 1 1d dA, R − hsx, yd | 0 < x < 2, 0 < y < 4j

 11. yyR s4 2 2yd dA, R − f0, 1g 3 f0, 1g

 12.  The integral yyR s9 2 y 2  dA, where R − f0, 4g 3 f0, 2g,  
represents the volume of a solid. Sketch the solid.

13–14 Find y2
0  f sx, yd dx and y3

0  f sx, yd dy

 13. f sx, yd − x 1 3x 2y 2 14. f sx, yd − ysx 1 2 

15–26 Calculate the iterated integral.

 15. y4

1
 y2

0
 s6x 2y 2 2xd  dy dx 16. y1

0
y1

0
 sx 1 yd2 dx dy

 1. (a)  Estimate the volume of the solid that lies below the surface 
z − xy and above the rectangle

R − hsx, yd  |  0 < x < 6, 0 < y < 4j
    Use a Riemann sum with m − 3, n − 2, and take the  

sample point to be the upper right corner of each square.
 (b)  Use the Midpoint Rule to estimate the volume of the solid 

in part (a).

 2.  If R − f0, 4g 3 f21, 2g, use a Riemann sum with m − 2, 
n − 3 to estimate the value of yyR s1 2 xy 2d dA. Take the  
sample points to be (a) the lower right corners and (b) the upper 
left corners of the rectangles.

 3. (a)  Use a Riemann sum with m − n − 2 to estimate the value 
of yyR xe2xy dA, where R − f0, 2g 3 f0, 1g. Take the sample 
points to be upper right corners.

 (b)  Use the Midpoint Rule to estimate the integral in part (a).

 4. (a)  Estimate the volume of the solid that lies below the 
surface z − 1 1 x 2 1 3y and above the rectangle 
R − f1, 2g 3 f0, 3g. Use a Riemann sum with m − n − 2 
and choose the sample points to be lower left corners.

 (b)  Use the Midpoint Rule to estimate the volume in part (a).

 5.  Let V be the volume of the solid that lies under the graph 
of f sx, yd − s52 2 x 2 2 y 2 

 and above the rectangle given 
by 2 < x < 4, 2 < y < 6. Use the lines x − 3 and y − 4 to 
divide R into subrectangles. Let L and U be the Riemann sums 
computed using lower left corners and upper right corners, 
respectively. Without calculating the numbers V, L, and U, 
arrange them in increasing order and explain your reasoning.

 6.  A 20-ft-by-30-ft swimming pool is filled with water. The depth 
is measured at 5-ft intervals, starting at one corner of the pool, 
and the values are recorded in the table. Estimate the volume of 
water in the pool.

2

2

2

4

3

2

42

432

4

2

6

7

86

5

2

7 8 83

8 10 8

10 12 10

6

3

8

4

7

4

0 5 10 15 20  25 30 

0

5

10

15

20

 7.  A contour map is shown for a function f  on the square 
R − f0, 4g 3 f0, 4g.

 (a)  Use the Midpoint Rule with m − n − 2 to estimate the 
value of yyR f sx, yd dA.

 (b)  Estimate the average value of f .
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1000 CHAPTER 15  Multiple Integrals

 39.  Find the volume of the solid lying under the elliptic  
paraboloid x 2y4 1 y 2y9 1 z − 1 and above the rectangle 
R − f21, 1g 3 f22, 2g.

 40.  Find the volume of the solid enclosed by the surface 
z − x 2 1 xy 2 and the planes z − 0, x − 0, x − 5,  
and y − 62.

 41.  Find the volume of the solid enclosed by the surface 
z − 1 1 x 2ye y and the planes z − 0, x − 61, y − 0,  
and y − 1.

 42.  Find the volume of the solid in the first octant bounded by  
the cylinder z − 16 2 x 2 and the plane y − 5.

 43.  Find the volume of the solid enclosed by the paraboloid 
z − 2 1 x 2 1 sy 2 2d2 and the planes z − 1, x − 1, 
x − 21, y − 0, and y − 4.

 44.  Graph the solid that lies between the surface 
z − 2xyysx 2 1 1d and the plane z − x 1 2y and is bounded 
by the planes x − 0, x − 2, y − 0, and y − 4. Then find its 
volume.

 45.  Use a computer algebra system to find the exact value of the 
integral  yyR x

5y 3e xy dA, where R − f0, 1g 3 f0, 1g. Then use  
the CAS to draw the solid whose volume is given by the  
integral.

 46.  Graph the solid that lies between the surfaces 
z − e2x 2

 cossx 2 1 y 2d and z − 2 2 x 2 2 y 2 for | x | < 1, 
| y | < 1. Use a computer algebra system to approximate the 
volume of this solid correct to four decimal places.

47–48 Find the average value of f  over the given rectangle.

 47.  f sx, yd − x 2 y,   
R has vertices s21, 0d, s21, 5d, s1, 5d, s1, 0d

 48.  f sx, yd − e ysx 1 e y ,  R − f0, 4g 3 f0, 1g

49–50 Use symmetry to evaluate the double integral.

 49.  y
R

y 
xy

1 1 x 4  dA,  R − hsx, yd  |  21 < x < 1, 0 < y < 1j

 50. y
R

y s1 1 x 2 sin y 1 y 2 sin xd dA,  R − f2!, !g 3 f2!, !g

 51. Use a CAS to compute the iterated integrals 

y1

0
 y1

0
 

x 2 y
sx 1 yd3  dy dx    and    y1

0
 y1

0
 

x 2 y
sx 1 yd3  dx dy

   Do the answers contradict Fubini’s Theorem? Explain what  
is happening.

 52. (a)  In what way are the theorems of Fubini and Clairaut  
similar?

 (b) If f sx, yd is continuous on fa, bg 3 fc, d g and 

tsx, yd − y x

a
 yy

c
  f ss, td dt ds

   for a , x , b, c , y , d, show that txy − tyx − f sx, yd.

;

CAS

CAS

CAS

 17. y1

0
y2

1
 sx 1 e2yd dx dy

 18. y!y6

0
y!y2

0
 ssin x 1 sin yd dy dx

 19. y3

23
 y!y2

0
 sy 1 y 2 cos xd dx dy 20. y3

1
 y5

1
 
ln y
xy

 dy dx

 21. y4

1
 y2

1
 S x

y
1

y
xD dy dx 22. y1

0
y2

0
 ye x2y dx dy

 23. y3

0
y!y2

0
 t 2 sin3 " d" dt

 24. y1

0
 y1

0
 xysx 2 1 y 2  dy dx

 25. y1

0
 y1

0
 vsu 1 v2d4 du dv 26. y1

0
 y1

0
 ss 1 t  ds dt

27–34 Calculate the double integral.

 27. y
R

y x sec2 y dA,  R − hsx, yd  |  0 < x < 2, 0 < y < !y4j

 28. y
R

y sy 1 xy22d dA,  R − hsx, yd  |  0 < x < 2, 1 < y < 2j

 29. y
R

y 
xy 2

x 2 1 1
 dA,  R − hsx, yd  |  0 < x < 1, 23 < y < 3j

 30. y
R

y 
tan #

s1 2 t 2   dA,  R − hs#, td  |  0 < # < !y3, 0 < t < 1
2 j

 31. y
R

y x sinsx 1 yd dA,  R − f0, !y6g 3 f0, !y3g

 32. y
R

y 
x

1 1 xy
 dA,  R − f0, 1g 3 f0, 1g

 33. y
R

y ye2xy dA,  R − f0, 2g 3 f0, 3g

 34. y
R

y 
1

1 1 x 1 y
 dA,  R − f1, 3g 3 f1, 2g

35–36 Sketch the solid whose volume is given by the iterated  
integral.

 35. y1

0
 y1

0
 s4 2 x 2 2yd dx dy

 36. y1

0
 y1

0
 s2 2 x 2 2 y 2 d dy dx

 37.  Find the volume of the solid that lies under the plane 
 4x 1 6y 2 2z 1 15 − 0 and above the rectangle 
R − hsx, yd | 21 < x < 2, 21 < y < 1j.

 38.  Find the volume of the solid that lies under the hyperbolic 
paraboloid z − 3y 2 2 x 2 1 2 and above the rectangle 
R − f21, 1g 3 f1, 2g.
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 SECTION 15.2  Double Integrals over General Regions  1001

For single integrals, the region over which we integrate is always an interval. But for  
double integrals, we want to be able to integrate a function f  not just over rectangles but 
also over regions D of more general shape, such as the one illustrated in Figure 1. We sup-
pose that D is a bounded region, which means that D can be enclosed in a rectangular 
region R as in Figure 2. Then we define a new function F with domain R by

1  Fsx, yd − H0
f sx, yd if

if

sx, yd is in D

sx, yd is in R but not in D
 

0

y

x

D

y

0 x

D
R

FIGURE 2FIGURE 1

If F is integrable over R, then we define the double integral of f  over D by

2   y
D

y f sx, yd dA − y
R

y Fsx, yd dA    where F is given by Equation 1

Definition 2 makes sense because R is a rectangle and so yyR Fsx, yd dA has been previ-
ously defined in Section 15.1. The procedure that we have used is reasonable because the 
values of Fsx, yd are 0 when sx, yd lies outside D and so they contribute nothing to 
the integral. This means that it doesn’t matter what rectangle R we use as long as it con-
tains D.

In the case where f sx, yd > 0, we can still interpret yyD  f sx, yd dA as the volume of the 
solid that lies above D and under the surface z − f sx, yd (the graph of f ). You can see that 
this is reasonable by comparing the graphs of f  and F in Figures 3 and 4 and remember-
ing that yyR Fsx, yd dA is the volume under the graph of F.

y 
0 

z 

x 
D 

graph of f 

FIGURE 4

y
0

z

x
D

graph of F

FIGURE 3

Figure 4 also shows that F is likely to have discontinuities at the boundary points  
of D. Nonetheless, if f  is continuous on D and the boundary curve of D is “well behaved”  
(in a sense outside the scope of this book), then it can be shown that yyR Fsx, yd dA exists
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1002 CHAPTER 15  Multiple Integrals

and therefore yyD f sx, yd dA exists. In particular, this is the case for the following two 
types of regions.

A plane region D is said to be of type I if it lies between the graphs of two continuous 
functions of x, that is,

D − hsx, yd | a < x < b, t1sxd < y < t2sxdj

where t1 and t2 are continuous on fa, bg. Some examples of type I regions are shown in 
Figure 5.

 

0

y

xba

D

y=g™(x)

y=g¡(x)
0

y

xba

D

y=g™(x)

y=g¡(x)

0

y

xba

D

y=g™(x)

y=g¡(x)

In order to evaluate yyD f sx, yd dA when D is a region of type I, we choose a rect- 
angle R − fa, bg 3 fc, dg that contains D, as in Figure 6, and we let F be the function 
given by Equation 1; that is, F agrees with f  on D and F is 0 outside D. Then, by Fubini’s 
Theorem,

y
D

y f sx, yd dA − y
R

y Fsx, yd dA − yb

a
 yd

c
 Fsx, yd dy dx

Observe that Fsx, yd − 0 if y , t1sxd or y . t2sxd because sx, yd then lies outside D. 
Therefore

yd

c
 Fsx, yd dy − yt2sxd

t1sxd
 Fsx, yd dy − yt2sxd

t1sxd
 f sx, yd dy

because Fsx, yd − f sx, yd when t1sxd < y < t2sxd. Thus we have the following formula 
that enables us to evaluate the double integral as an iterated integral.

3   If f  is continuous on a type I region D such that

D − hsx, yd | a < x < b, t1sxd < y < t2sxdj

then y
D

y f sx, yd dA − yb

a
 yt2sxd

t1sxd
  f sx, yd dy dx

The integral on the right side of (3) is an iterated integral that is similar to the ones we 
considered in the preceding section, except that in the inner integral we regard x as being 
constant not only in f sx, yd but also in the limits of integration, t1sxd and t2sxd.

We also consider plane regions of type II, which can be expressed as 

4   D − hsx, yd | c < y < d, h1syd < x < h2sydj 
where h1 and h2 are continuous. Two such regions are illustrated in Figure 7.

FIGURE 5  
Some type I regions

d

0 x

y

bxa

c
y=g¡(x)

D

y=g™(x)

FIGURE 6

d

0 x

y

c

x=h¡(y)

x=h¡(y)

D x=h™(y)
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d

0 x

y

c

D

FIGURE 7  
 Some type II regions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 15.2  Double Integrals over General Regions 1003

Using the same methods that were used in establishing (3), we can show that

5    y
D

y f sx, yd dA − yd

c
 yh2syd

h1syd
  f sx, yd dx dy

where D is a type II region given by Equation 4.

EXAMPLE 1 Evaluate yyD sx 1 2yd dA, where D is the region bounded by the 
parabolas y − 2x 2 and y − 1 1 x 2.

SOLUTION The parabolas intersect when 2x 2 − 1 1 x 2, that is, x 2 − 1, so x − 61. We 
note that the region D, sketched in Figure 8, is a type I region but not a type II region 
and we can write

D − hsx, yd | 21 < x < 1, 2x 2 < y < 1 1 x 2j

Since the lower boundary is y − 2x 2 and the upper boundary is y − 1 1 x 2, Equa- 
tion 3 gives

  y
D

y sx 1 2yd dA − y1

21
 y11x2

2x2
 sx 1 2yd dy dx

 − y1

21
 fxy 1 y 2g y−2x2

y−11x2

 dx

  − y1

21
 fxs1 1 x 2 d 1 s1 1 x 2 d2 2 xs2x 2 d 2 s2x 2 d2 g  dx

 − y1

21
 s23x 4 2 x 3 1 2x 2 1 x 1 1d dx

  − 23 
x 5

5
2

x 4

4
1 2 

x 3

3
1

x 2

2
1 xG

21

1

−
32
15

 Q

NOTE When we set up a double integral as in Example 1, it is essential to draw a  
diagram. Often it is helpful to draw a vertical arrow as in Figure 8. Then the limits of  
integration for the inner integral can be read from the diagram as follows: The arrow  
starts at the lower boundary y − t1sxd, which gives the lower limit in the integral, and  
the arrow ends at the upper boundary y − t2sxd, which gives the upper limit of integra-
tion. For a type II region the arrow is drawn horizontally from the left boundary to the 
right boundary.

EXAMPLE 2 Find the volume of the solid that lies under the paraboloid z − x 2 1 y 2 and 
above the region D in the xy-plane bounded by the line y − 2x and the parabola y − x 2.

SOLUTION 1 From Figure 9 we see that D is a type I region and

D − hsx, yd |  0 < x < 2, x 2 < y < 2xj

x1_1

y

(_1, 2) (1, 2)

D
y=2≈

y=1+≈

FIGURE 8

FIGURE 9  
D as a type I region

y

0 x1 2

(2, 4)

D

y=≈

y=2x
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1004 CHAPTER 15  Multiple Integrals

Therefore the volume under z − x 2 1 y 2 and above D is

 V − y
D

y sx 2 1 y 2 d dA − y2

0
 y2x

x2  sx 2 1 y 2 d dy dx

 − y2

0
 Fx 2 y 1

 y 3

3 Gy−x2

y−2x
      

dx

 − y2

0
 Fx 2s2xd 1

s2xd3

3
2 x 2x 2 2

sx 2 d3

3 G dx

 − y2

0
 S2

x 6

3
2 x 4 1

14x 3

3 D dx

 − 2
x 7

21
2

x 5

5
1

7x 4

6 G
0

2

−
216
35

SOLUTION 2 From Figure 11 we see that D can also be written as a type II region:

D − hsx, yd |  0 < y < 4, 12 y < x < sy j
Therefore another expression for V  is

 V − y
D

y sx 2 1 y 2 d dA − y4

0
 ysy

1
2
y

sx 2 1 y 2 d dx dy

 − y4

0
 F x 3

3
1 y 2xG

x− 1
2 y

x−sy

 dy − y4

0
 S y 3y2

3
1 y 5y2 2

y 3

24
2

y 3

2 D dy

�  − 2
15 y 5y2 1 2

7 y 7y2 2 13
96 y 4g 0

4
− 216

35  Q

EXAMPLE 3 Evaluate yyD xy dA, where D is the region bounded by the line y − x 2 1 
and the parabola y 2 − 2x 1 6.

SOLUTION The region D is shown in Figure 12. Again D is both type I and type II, but 
the description of D as a type I region is more complicated because the lower boundary 
consists of two parts. Therefore we prefer to express D as a type II region:

D − hsx, yd | 22 < y < 4, 12 y2 2 3 < x < y 1 1j

(5, 4)

0

y

x_3

y=x-1

(_1, _2)
y=_œ„„„„„2x+6

(a) D as a type I region (b) D as a type II region

(5, 4)

x=y+1

(_1, _2)

0

y

x

_2

y=œ„„„„„2x+6 1
2x=   y@-3

FIGURE 12

x=œ„y

1
2x=   y

y
4

0 x

D

(2, 4)

FIGURE 11  
D as a type II region

Figure 10 shows the solid whose 
volume is calculated in Example 2. 
It lies above the xy-plane, below the 
paraboloid z − x 2 1 y 2, and between  
the plane y − 2x and the parabolic 
cylinder y − x 2.

yx

z

z=≈+¥

y=2x

y=≈

FIGURE 10
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 SECTION 15.2  Double Integrals over General Regions 1005

Then (5) gives

 y
D

y xy dA − y4

22
 yy11

1
2
y223

 
xy dx dy − y4

22
 F x 2

2
 yG

x−1
2 y223

x−y11

dy

 − 1
2 y4

22
 yfsy 1 1d2 2 (1

2 y2 2 3)2 g dy

 − 1
2 y4

22
 S2

y 5

4
1 4y 3 1 2y 2 2 8yD dy

 −
1
2 F2

y 6

24
1 y 4 1 2 

y 3

3
2 4y 2G

22

4

− 36

If we had expressed D as a type I region using Figure 12(a), then we would have 
obtained

y
D

y xy dA − y21

23
 ys2x16

2s2x16
  xy dy dx 1 y5

21
 ys2x16

x21
 xy dy dx

but this would have involved more work than the other method. Q

EXAMPLE 4 Find the volume of the tetrahedron bounded by the planes 
x 1 2y 1 z − 2, x − 2y, x − 0, and z − 0.

SOLUTION In a question such as this, it’s wise to draw two diagrams: one of the three-
dimensional solid and another of the plane region D over which it lies. Figure 13 shows 
the tetrahedron T  bounded by the coordinate planes x − 0, z − 0, the vertical plane 
x − 2y, and the plane x 1 2y 1 z − 2. Since the plane x 1 2y 1 z − 2 intersects the  
xy-plane (whose equation is z − 0) in the line x 1 2y − 2, we see that T  lies above 
the triangular region D in the xy-plane bounded by the lines x − 2y, x 1 2y − 2, and 
x − 0. (See Figure 14.)

The plane x 1 2y 1 z − 2 can be written as z − 2 2 x 2 2y, so the required 
volume lies under the graph of the function z − 2 2 x 2 2y and above

D − hsx, yd | 0 < x < 1, xy2 < y < 1 2 xy2j
Therefore

 V − y
D

y s2 2 x 2 2yd dA

 − y1

0
 y12xy2

xy2
 s2 2 x 2 2yd dy dx

 − y1

0
 f2y 2 xy 2 y 2g y−xy2

y−12xy2

 dx

 − y1

0
 F2 2 x 2 xS1 2

x
2D 2 S1 2

x
2D2

2 x 1
x 2

2
1

x 2

4 G dx

  − y1

0
 sx 2 2 2x 1 1d dx −

x 3

3
2 x 2 1 xG

0

1

−
1
3

 Q

FIGURE 14

FIGURE 13

 y=x/2

”1,    ’1
2D

y

0

1

x1

(0, 1, 0)

(0, 0, 2)

y

x

0

z

x+2y+z=2x=2y

”1,    , 0’1
2

T

(or y=1-x/2)  
x+2y=2
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1006 CHAPTER 15  Multiple Integrals

EXAMPLE 5 Evaluate the iterated integral y1
0 y1

x  sinsy 2 d dy dx.

SOLUTION If we try to evaluate the integral as it stands, we are faced with the task 
of first evaluating y sinsy 2 d dy. But it’s impossible to do so in finite terms since 
y sinsy 2 d dy is not an elementary function. (See the end of Section 7.5.) So we must 
change the order of integration. This is accomplished by first expressing the given iter-
ated integral as a double integral. Using (3) backward, we have

y1

0
 y1

x
 sinsy 2 d dy dx − y

D

y sinsy 2 d dA

where D − hsx, yd | 0 < x < 1, x < y < 1j
We sketch this region D in Figure 15. Then from Figure 16 we see that an alternative 
description of D is

D − hsx, yd | 0 < y < 1, 0 < x < yj
This enables us to use (5) to express the double integral as an iterated integral in the 
reverse order:

y1

0
 y1

x
 sinsy 2 d dy dx − y

D

y sinsy 2 d dA

 − y1

0
 yy

0
 sinsy 2 d dx dy − y1

0
 fx sinsy 2 dgx−0

x−y
  dy

  − y1

0
 y sinsy 2 d dy − 21

2 cossy 2 dg0

1
− 1

2s1 2 cos 1d Q

Properties of Double Integrals
We assume that all of the following integrals exist. For rectangular regions D the first 
three properties can be proved in the same manner as in Section 5.2. And then for general 
regions the properties follow from Definition 2.

6  y
D

y f f sx, yd 1 tsx, ydg dA − y
D

y f sx, yd dA 1 y
D

y tsx, yd dA 

7  y
D

y c f sx, yd dA − c y
D

y f sx, yd dA  where c is a constant 

If f sx, yd > tsx, yd for all sx, yd in D, then 

8  y
D

y f sx, yd dA > y
D

y tsx, yd dA 

The next property of double integrals is similar to the property of single integrals 
given by the equation yb

a  f sxd dx − yc
a f sxd dx 1 yb

c  f sxd dx.
If D − D1 ø D2, where D1 and D2 don’t overlap except perhaps on their boundaries 

(see Figure 17), then

9  yy
D

 f sx, yd dA − yy
D1

 f sx, yd dA 1 yy
D2

 f sx, yd dA 

1 x0

y

D

y=1

y=x

x0

y

1

Dx=0
x=y

FIGURE 16
D as a type II region

FIGURE 15
D as a type I region

0

y

x

D

D¡ D™

FIGURE 17
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 SECTION 15.2  Double Integrals over General Regions 1007

Property 9 can be used to evaluate double integrals over regions D that are neither 
type I nor type II but can be expressed as a union of regions of type I or type II. Figure 18 
illustrates this procedure. (See Exercises 57 and 58.)

x0

y

D

(a) D is neither type I nor type II.

x0

y

D¡

D™

(b) D=D¡ ! D™, D¡ is type I, D™ is type II.

 

The next property of integrals says that if we integrate the constant function f sx, yd − 1 
over a region D, we get the area of D:

10  y
D

y 1 dA − AsDd 

Figure 19 illustrates why Equation 10 is true: A solid cylinder whose base is D and 
whose height is 1 has volume AsDd " 1 − AsDd, but we know that we can also write its 
volume as yyD 1 dA.

Finally, we can combine Properties 7, 8, and 10 to prove the following property. (See 
Exercise 63.)

11   If m < f sx, yd < M for all sx, yd in D, then

mAsDd < y
D

y f sx, yd dA < MAsDd

EXAMPLE 6 Use Property 11 to estimate the integral yyD e sin x cos y dA, where D is the 
disk with center the origin and radius 2.

SOLUTION Since 21 < sin x < 1 and 21 < cos y < 1, we have 
21 < sin x cos y < 1 and therefore

e21 < e sin x cos y < e 1 − e

Thus, using m − e21 − 1ye, M − e, and AsDd − !s2d2 in Property 11, we obtain

 
4!

e
< y

D

y e sin x cos y dA < 4!e  Q

FIGURE 18

D y 

0 

z 

x 

z=1 

FIGURE 19   
Cylinder with base D and height 1
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1008 CHAPTER 15  Multiple Integrals

17–22 Evaluate the double integral.

 17. y
D

y x cos y dA,  D is bounded by y − 0, y − x 2, x − 1

 18. y
D

y sx 2 1 2yd dA,  D is bounded by y − x, y − x 3, x > 0

 19. y
D

y y 2 dA,  

  D is the triangular region with vertices (0, 1), (1, 2), s4, 1d

 20. y
D

y xy dA,  D is enclosed by the quarter-circle 

  y − s1 2 x 2 , x > 0, and the axes

 21. y
D

y s2x 2 yd dA,

  D is bounded by the circle with center the origin and radius 2

 22. y
D

y y dA,  D is the triangular region with vertices s0, 0d, 

  s1, 1d, and s4, 0d

23–32 Find the volume of the given solid.

 23.  Under the plane 3x 1 2y 2 z − 0 and above the region 
enclosed by the parabolas y − x 2 and x − y 2

 24.  Under the surface z − 1 1 x 2y2 and above the region 
enclosed by x − y 2 and x − 4

 25.  Under the surface z − xy and above the triangle with  
vertices s1, 1d, s4, 1d, and s1, 2d

 26.  Enclosed by the paraboloid z − x 2 1 y 2 1 1 and the planes 
x − 0, y − 0, z − 0, and x 1 y − 2

 27.  The tetrahedron enclosed by the coordinate planes and the 
plane 2x 1 y 1 z − 4

 28.  Bounded by the planes z − x, y − x, x 1 y − 2, and z − 0

 29.  Enclosed by the cylinders z − x 2, y − x 2 and the planes  
z − 0, y − 4

 30.  Bounded by the cylinder y 2 1 z2 − 4 and the planes x − 2y, 
x − 0, z − 0 in the first octant

 31.  Bounded by the cylinder x 2 1 y 2 − 1 and the planes y − z, 
x − 0, z − 0 in the first octant

 32. Bounded by the cylinders x 2 1 y 2 − r 2 and y 2 1 z2 − r 2

 33.  Use a graphing calculator or computer to estimate the  
x-coordinates of the points of intersection of the curves 
y − x 4 and y − 3x 2 x 2. If D is the region bounded by these 
curves, estimate yyD x dA.

;

1–6 Evaluate the iterated integral.

 1. y5

1
yx

0
 s8x 2 2yd dy dx 2. y2

0
yy2

0
 x 2y dx dy

 3. y1

0
yy

0
 xe y3 

dx dy 4. y!y2

0
yx

0
 x sin y dy dx

 5. y1

0
 ys2

0
 cosss 3d dt ds 6. y1

0
yev

0
  s1 1 ev 

 dw dv

7–10 Evaluate the double integral.

 7. y
D

y 
y

x 2 1 1
 dA, D − hsx, yd  |  0 < x < 4, 0 < y < sx j

 8. y
D

y s2x 1 yd dA, D − hsx, yd  |  1 < y < 2, y 2 1 < x < 1j

 9. y
D

y e2y 2
 dA, D − hsx, yd  |  0 < y < 3, 0 < x < yj

 10. y
D

y ysx 2 2 y 2  dA, D − hsx, yd  |  0 < x < 2, 0 < y < xj

 11. Draw an example of a region that is
 (a)  type I but not type II
 (b) type II but not type I

 12. Draw an example of a region that is
 (a)  both type I and type II
 (b) neither type I nor type II

13–14 Express D as a region of type I and also as a region of  
type II. Then evaluate the double integral in two ways.

 13. y
D

y x dA, D is enclosed by the lines y − x, y − 0, x − 1

 14. y
D

y xy dA,  D is enclosed by the curves y − x 2, y − 3x

15–16 Set up iterated integrals for both orders of integration. 
Then evaluate the double integral using the easier order and 
explain why it’s easier.

 15. y
D

y y dA,  D is bounded by y − x 2 2, x − y 2

 16. y
D

y y 2e xy dA,  D is bounded by y − x, y − 4, x − 0
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 SECTION 15.2  Double Integrals over General Regions 1009

 53. y1

0
y1

sx 
 sy 3 1 1

 

 dy dx

 54. y2

0
y1

yy2
 y cossx 3 2 1d dx dy

 55. y1

0
 y!y2

arcsin y
 cos x s1 1 cos2x  dx dy

 56. y8

0
 y2

s3 y 
 ex 4

 dx dy

57–58 Express D as a union of regions of type I or type II and 
evaluate the integral.

 57. y
D

y x 2 dA 58. y
D

y y dA

0

1

_1

_1 1

D
(1, 1)

x

y

      

0

_1

1

_1

x=y-Á
y=(x+1)@

y

x

59–60 Use Property 11 to estimate the value of the integral.

 59.  y
S

y s4 2 x 2 y 2  dA,  S − hsx, yd | x 2 1 y 2 < 1, x > 0j

 60.  y
T

y sin4sx 1 yd dA,  T is the triangle enclosed by the lines 

  y − 0, y − 2x, and x − 1

61–62 Find the averge value of f  over the region D.

 61.  f sx, yd − xy,  D is the triangle with vertices s0, 0d, s1, 0d,  
and s1, 3d

 62.  f sx, yd − x sin y,  D is enclosed by the curves y − 0,  
y − x 2, and x − 1

 63. Prove Property 11.

 64.  In evaluating a double integral over a region D, a sum of  
iterated integrals was obtained as follows:

y
D

y f sx, yd dA − y1

0
 y2y

0
 f sx, yd dx dy 1 y3

1
 y32y

0
 f sx, yd dx dy

   Sketch the region D and express the double integral as an  
iterated integral with reversed order of integration.

 34.  Find the approximate volume of the solid in the first octant  
that is bounded by the planes y − x, z − 0, and z − x and 
the cylinder y − cos x. (Use a graphing device to estimate 
the points of intersection.)

35–38 Find the volume of the solid by subtracting two volumes.

 35.  The solid enclosed by the parabolic cylinders y − 1 2 x 2,  
y − x 2 2 1 and the planes x 1 y 1 z − 2, 
2x 1 2y 2 z 1 10 − 0

 36.  The solid enclosed by the parabolic cylinder y − x 2 and the 
planes z − 3y, z − 2 1 y

 37.  The solid under the plane z − 3, above the plane z − y, and 
between the parabolic cylinders y − x 2 and y − 1 2 x 2

 38.  The solid in the first octant under the plane z − x 1 y, above 
the surface z − xy, and enclosed by the surfaces x − 0, 
y − 0, and x 2 1 y 2 − 4

39–40 Sketch the solid whose volume is given by the iterated  
integral.

 39. y1

0
 y12x

0
 s1 2 x 2 yd dy dx 40. y1

0
 y12x2

0
 s1 2 xd dy dx

41–44 Use a computer algebra system to find the exact volume 
of the solid.

 41.  Under the surface z − x 3y 4 1 xy 2 and above the region 
bounded by the curves y − x 3 2 x and y − x 2 1 x  
for x > 0

 42.  Between the paraboloids z − 2x 2 1 y 2 and 
z − 8 2 x 2 2 2y 2 and inside the cylinder x 2 1 y 2 − 1

 43. Enclosed by z − 1 2 x 2 2 y 2 and z − 0

 44. Enclosed by z − x 2 1 y 2 and z − 2y

45–50 Sketch the region of integration and change the order of 
integration.

 45. y1

0
 yy

0
 f sx, yd dx dy 46. y2

0
 y4

x2
 f sx, yd dy dx

 47. y!y2

0
 ycos x

0
 f sx, yd dy dx 48. y2

22
 ys42y2

0
 f sx, yd dx dy

 49. y2

1
 y ln

 
x

0
 f sx, yd dy dx 50. y1

0
 y!y4

arctan x
 f sx, yd dy dx

51–56 Evaluate the integral by reversing the order of integration.

 51. y1

0
 y3

3y
 e x 2 

dx dy 52. y1

0
y1

x2
 sy  sin y dy dx

;

CAS
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1010 CHAPTER 15  Multiple Integrals

Suppose that we want to evaluate a double integral yyR f sx, yd dA, where R is one of the 
regions shown in Figure 1. In either case the description of R in terms of rectangular 
coordinates is rather complicated, but R is easily described using polar coordinates.

x0

y

R
≈+¥=1

(a) R=s(r, ¨) | 0¯r¯1, 0¯¨¯2πd

x0

y

R

≈+¥=4

≈+¥=1

(b) R=s(r, ¨) | 1¯r¯2, 0¯¨¯πd

Recall from Figure 2 that the polar coordinates sr, "d of a point are related to the rect-
angular coordinates sx, yd by the equations

r 2 − x 2 1 y 2      x − r cos "      y − r sin "

(See Section 10.3.)
The regions in Figure 1 are special cases of a polar rectangle

R − hsr, "d  | a < r < b, # < " < $j

which is shown in Figure 3. In order to compute the double integral yyR f sx, yd dA, where 
R is a polar rectangle, we divide the interval fa, bg into m subintervals fri21, rig of equal 
width Dr − sb 2 adym and we divide the interval f#, $g into n subintervals f"j21, "jg  
of equal width D" − s$ 2 #dyn. Then the circles r − ri and the rays " − "j divide the 
polar rectangle R into the small polar rectangles Rij shown in Figure 4.

FIGURE 1

O

y

x
¨

x

yr

P(r, ¨)=P(x, y)

FIGURE 2

65–69 Use geometry or symmetry, or both, to evaluate the  
double integral.

 65.  y
D

y sx 1 2d dA,  

  D − hsx, yd  |  0 < y < s9 2 x 2 j

 66.  y
D

y sR 2 2 x 2 2 y 2  dA,  

  D is the disk with center the origin and radius R

 67.  y
D

y s2x 1 3yd dA,  

  D is the rectangle 0 < x < a, 0 < y < b

 68.  y
D

y s2 1 x 2y 3 2 y 2 sin xd dA,  

  D − hsx, yd | | x | 1 | y | < 1j

 69.  y
D

y sax 3 1 by 3 1 sa 2 2 x 2 d dA,  

  D − f2a, ag 3 f2b, bg

 70.  Graph the solid bounded by the plane x 1 y 1 z − 1 and  
the paraboloid z − 4 2 x 2 2 y 2 and find its exact volume. 
(Use your CAS to do the graphing, to find the equations of  
the boundary curves of the region of integration, and to 
evaluate the double integral.)

CAS
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 SECTION 15.3  Double Integrals in Polar Coordinates 1011

r=ri-1

O

∫
å

r=a ¨=å

¨=∫
r=b

R
Î¨

¨=¨j

(ri*, ̈ j*)

r=ri

Rij

O

¨=¨j-1

FIGURE 3 Polar rectangle FIGURE 4 Dividing R into polar subrectangles

The “center” of the polar subrectangle

Rij − hsr, "d | ri21 < r < ri, "j21 < " < "jj
has polar coordinates

ri* − 1
2 sri21 1 rid      "j* − 1

2 s"j21 1 "jd

We compute the area of Rij using the fact that the area of a sector of a circle with radius 
r and central angle " is 1

2 r 2". Subtracting the areas of two such sectors, each of which 
has central angle D" − "j 2 "j21, we find that the area of Rij is

 DAi − 1
2 ri

2 D" 2 1
2 ri21

2 D" − 1
2 sri

2 2 ri21
2 d D"

 − 1
2 sri 1 ri21 dsri 2 ri21 d D" − ri* Dr D"

Although we have defined the double integral yyR f sx, yd dA in terms of ordinary rect-
angles, it can be shown that, for continuous functions f, we always obtain the same  
answer using polar rectangles. The rectangular coordinates of the center of Rij are 
sri* cos "j*, ri* sin "j*d, so a typical Riemann sum is

1  o
m

i−1
 o

n

j−1
 f sri* cos "j*, ri* sin "j*d DAi − o

m

i−1
 o

n

j−1
 f sri* cos "j*, ri* sin "j*d ri* Dr D"

If we write tsr, "d − r f sr cos ", r sin "d, then the Riemann sum in Equation 1 can be 
written as

o
m

i−1
 o

n

j−1
 tsri*, "j*d Dr D"

which is a Riemann sum for the double integral

y$

#
 yb

a
 tsr, "d dr d"

Therefore we have

 y
R

y f sx, yd dA − lim
m, nl `

 o
m

i−1
 o

n

j−1
 f sri* cos "j*, ri* sin "j*d DAi

 − lim
m, nl `

 o
m

i−1
 o

n

j−1
 tsri*, "j*d Dr D" − y$

#
yb

a
 tsr, "d dr d"

 − y$

#
 yb

a
 f sr cos ", r sin "d r dr d"
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1012 CHAPTER 15  Multiple Integrals

2  Change to Polar Coodinates in a Double Integral If f  is continuous on a 
polar rectangle R given by 0 < a < r < b, ! < " < #, where 0 < # 2 ! < 2$,  
then

y
R

y f sx, yd dA − y#

!
 yb

a
 f sr cos ", r sin "d r dr d"

The formula in (2) says that we convert from rectangular to polar coordinates in a 
double integral by writing x − r cos " and y − r sin ", using the appropriate limits of 
integration for r and ", and replacing dA by r dr d". Be careful not to forget the addi-
tional factor r on the right side of Formula 2. A classical method for remembering this 
is shown in Figure 5, where the “infinitesimal” polar rectangle can be thought of as an 
ordinary rectangle with dimensions r d" and dr and therefore has “area” dA − r dr d".

EXAMPLE 1 Evaluate yyR s3x 1 4y 2 d dA, where R is the region in the upper half-plane 
bounded by the circles x 2 1 y 2 − 1 and x 2 1 y 2 − 4.

SOLUTION The region R can be described as

R − hsx, yd | y > 0, 1 < x 2 1 y 2 < 4j
It is the half-ring shown in Figure 1(b), and in polar coordinates it is given by 
1 < r < 2, 0 < " < $. Therefore, by Formula 2,

 y
R

y s3x 1 4y 2 d dA − y$

0
 y2

1
 s3r cos " 1 4r 2 sin2"d r dr d"

 − y$

0
 y2

1
 s3r 2 cos " 1 4r 3 sin2"d dr d"

 − y$

0
 fr 3 cos " 1 r 4 sin2"gr−1

r−2
 d" − y$

0
 s7 cos " 1 15 sin2"d d"

 − y$

0
 f7 cos " 1 15

2 s1 2 cos 2"dg d"

  − 7 sin " 1
15"

2
2

15
4

 sin 2"G
0

$

−
15$

2
 Q

EXAMPLE 2 Find the volume of the solid bounded by the plane z − 0 and the parabo-
loid z − 1 2 x 2 2 y 2.

SOLUTION If we put z − 0 in the equation of the paraboloid, we get x 2 1 y 2 − 1. This 
means that the plane intersects the paraboloid in the circle x 2 1 y 2 − 1, so the solid  
lies under the paraboloid and above the circular disk D given by x 2 1 y 2 < 1 [see Fig-
ures 6 and 1(a)]. In polar coordinates D is given by 0 < r < 1, 0 < " < 2$. Since 
1 2 x 2 2 y 2 − 1 2 r 2, the volume is

 V − y
D

y s1 2 x 2 2 y 2 d dA − y2$

0
 y1

0
 s1 2 r 2 d r dr d"

 − y2$

0
 d" y1

0
 sr 2 r 3 d dr − 2$F r 2

2
2

r 4

4 G0

1

−
$

2

O

d¨

r d¨
dr

dA

r

FIGURE 5

Here we use the trigonometric identity

sin2" − 1
2s1 2 cos 2"d

See Section 7.2 for advice on inte-
grating trigonometric functions.

0 

D 
y 

(0, 0, 1) 

x 

z 

FIGURE 6
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 SECTION 15.3  Double Integrals in Polar Coordinates 1013

If we had used rectangular coordinates instead of polar coordinates, then we would 
have obtained

V − y
D

y s1 2 x 2 2 y 2 d dA − y1

21
 ys12x2

2s12x2
 s1 2 x 2 2 y 2 d dy dx

which is not easy to evaluate because it involves finding y s1 2 x 2 d3y2 dx. Q

What we have done so far can be extended to the more complicated type of region  
shown in Figure 7. It’s similar to the type II rectangular regions considered in Sec-
tion 15.2. In fact, by combining Formula 2 in this section with Formula 15.2.5, we obtain 
the following formula.

3   If f  is continuous on a polar region of the form

D − hsr, "d | # < " < $, h1s"d < r < h2s"dj

then y
D

y f sx, yd dA − y$

#
 yh2s"d

h
1
s"d

 f sr cos ", r sin "d r dr d"

In particular, taking f sx, yd − 1, h1s"d − 0, and h2s"d − hs"d in this formula, we see 
that the area of the region D bounded by " − #, " − $, and r − hs"d is

 AsDd − y
D

y 1 dA − y$

#
 yhs"d

0
 r dr d"

 − y$

#
 F r 2

2 G0

hs"d

d" − y$

#
 12 fhs"dg2 d"

and this agrees with Formula 10.4.3.

EXAMPLE 3 Use a double integral to find the area enclosed by one loop of the four-
leaved rose r − cos 2".

SOLUTION From the sketch of the curve in Figure 8, we see that a loop is given by the 
region

D − hsr, "d |  2!y4 < " < !y4, 0 < r < cos 2"j
So the area is

 AsDd − y
D

y dA − y!y4

2!y4
 ycos

 
2"

0
 r dr d"

 − y!y4

2!y4
 f1

2 r 2g0

cos 2"
 d" − 1

2 y!y4

2!y4
 cos2 2" d"

  − 1
4 y!y4

2!y4
 s1 1 cos 4"d d" − 1

4 f" 1 1
4 sin 4"g2!y4

!y4
−

!

8
 Q

O

∫
å

r=h¡(¨)

¨=å

¨=∫ r=h™(¨)

D

FIGURE 7
D=s(r, ¨) | å¯¨¯∫, h¡(¨)¯r¯h™(¨)d

¨=π
4

¨=_π
4

FIGURE 8
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1014 CHAPTER 15  Multiple Integrals

EXAMPLE 4 Find the volume of the solid that lies under the paraboloid z − x 2 1 y 2, 
above the xy-plane, and inside the cylinder x 2 1 y 2 − 2x.

SOLUTION The solid lies above the disk D whose boundary circle has equation 
x 2 1 y 2 − 2x or, after completing the square,

sx 2 1d2 1 y 2 − 1

(See Figures 9 and 10.)
In polar coordinates we have x 2 1 y 2 − r 2 and x − r cos !, so the boundary circle 

becomes r 2 − 2r cos !, or r − 2 cos !. Thus the disk D is given by

D − hsr, !d | 2"y2 < ! < "y2, 0 < r < 2 cos ! j

and, by Formula 3, we have

 V − y
D

y sx 2 1 y 2 d dA − y"y2

2"y2
 y2

 
cos !

0
 r 2 r dr d! − y"y2

2"y2
 F r 4

4 G0

2 cos !

 d!

− 4 y"y2

2"y2
 cos4! d! − 8 y"y2

0
 cos4! d! − 8 y"y2

0
 S 1 1 cos 2!

2 D2

 d!

 − 2 y"y2

0
 f1 1 2 cos 2! 1 1

2 s1 1 cos 4!dg d!

  − 2f3
2 ! 1 sin 2! 1 1

8 sin 4!g0

"y2
− 2S 3

2DS"

2 D −
3"

2
 Q

FIGURE 9

0

y

x1 2

D

(x-1)@+¥=1
(or  r=2 cos ¨)

FIGURE 10
y

x

z

1–4 A region R is shown. Decide whether to use polar coordinates 
or rectangular coordinates and write yy

R
 f sx, yd dA as an iterated 

integral, where  f  is an arbitrary continuous function on R.

 1. 

0
52

5

2

y

x

R

 2. 

0_1 1

1
y

x

R

 3. 

0
1_1

y

x
R

_1

 4. 

0 3

y

x

R

_3

5 –6 Sketch the region whose area is given by the integral and 
evaluate the integral.

 5. y3"y4

"y4
 y2

1
 r dr d! 6. y"

"y2
 y2 sin !

0
 r dr d!

7–14 Evaluate the given integral by changing to polar coordinates.

 7.  yy
D
 x 2y dA, where D is the top half of the disk with center the 

origin and radius 5

 8.  yy
R
 s2x 2 yd dA, where R is the region in the first quadrant 

enclosed by the circle x 2 1 y 2 − 4 and the lines x − 0  
and y − x

 9.  yy
R
 sinsx 2 1 y 2d dA, where R is the region in the first quadrant 

between the circles with center the origin and radii 1 and 3

 10.  y
R

y 
y 2

x 2 1 y 2  dA, where R is the region that lies between the 

  circles x 2 1 y 2 − a2 and x 2 1 y 2 − b2 with 0 , a , b

 11.  yy
D
 e2x22y2

 dA, where D is the region bounded by the semi-

  circle x − s4 2 y 2  and the y-axis
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 SECTION 15.3  Double Integrals in Polar Coordinates 1015

 31. y1y2

0
ys12y2

 

s3
 

y
xy 2 dx dy

 32. y2

0
 ys2x2x2

 

0  sx 2 1 y 2 
 dy dx

33–34 Express the double integral in terms of a single integral with 
respect to r. Then use your calculator to evaluate the integral correct 
to four decimal places.

 33.  yy
D
 e sx21y2d2 dA, where D is the disk with center the origin and 

radius 1

 34.   yyD xys1 1 x 2 1 y 2  dA, where D is the portion of the disk 

   x 2 1 y 2 < 1 that lies in the first quadrant

 35.  A swimming pool is circular with a 40-ft diameter. The depth 
is constant along east-west lines and increases linearly from 
2 ft at the south end to 7 ft at the north end. Find the volume of 
water in the pool.

 36.  An agricultural sprinkler distributes water in a circular pattern 
of radius 100 ft. It supplies water to a depth of e2r feet per hour 
at a distance of r feet from the sprinkler.

 (a)  If 0 , R < 100, what is the total amount of water supplied 
per hour to the region inside the circle of radius R centered 
at the sprinkler?

 (b)  Determine an expression for the average amount of water 
per hour per square foot supplied to the region inside the 
circle of radius R.

 37.  Find the average value of the function f sx, yd − 1ysx 2 1 y2  
on the annular region a 2 < x 2 1 y2 < b2, where 0 , a , b.

 38.  Let D be the disk with center the origin and radius a. What is 
the average distance from points in D to the origin?

 39.  Use polar coordinates to combine the sum

y1

1ys2
 
 yx

s12x2
 

 
 xy dy dx 1 ys2

1
 yx

0
 xy dy dx 1 y2

s2
 ys42x2

 

0  xy dy dx

  into one double integral. Then evaluate the double integral.

 40. (a)  We define the improper integral (over the entire plane R2d

 I − y
R2

y 
e2sx2 1 y2d dA

 − y`

2`
 y`

2`
 e2sx21y2d dy dx

 − lim
al`

y
Da

y e2sx21y2d dA

    where Da is the disk with radius a and center the origin.  
Show that

y`

2`
 y`

2`
 e2sx21y2d dA − "

 12.  yyD cos sx 2 1 y 2  dA, where D is the disk with center the  
origin and radius 2

 13.  yyR arctans yyxd dA,
  where R − hsx, yd | 1 < x 2 1 y 2 < 4, 0 < y < xj

 14.  yyD x dA, where D is the region in the first quadrant that lies 
between the circles x 2 1 y 2 − 4 and x 2 1 y 2 − 2x

15–18 Use a double integral to find the area of the region.

 15. One loop of the rose r − cos 3!

 16.  The region enclosed by both of the cardioids r − 1 1 cos !  
and r − 1 2 cos !

 17.  The region inside the circle sx 2 1d2 1 y 2 − 1 and outside the 
circle x 2 1 y 2 − 1

 18.  The region inside the cardioid r − 1 1 cos ! and outside the 
circle r − 3 cos !

19–27 Use polar coordinates to find the volume of the given solid.

 19.  Under the paraboloid z − x 2 1 y 2 and above the disk 
x 2 1 y 2 < 25

 20.  Below the cone z − sx 2 1 y 2 

 and above the ring 
1 < x 2 1 y 2 < 4

 21.  Below the plane 2x 1 y 1 z − 4 and above the disk 
x 2 1 y 2 < 1

 22.  Inside the sphere x 2 1 y 2 1 z 2 − 16 and outside the  
cylinder x 2 1 y 2 − 4

 23. A sphere of radius a

 24.  Bounded by the paraboloid z − 1 1 2x 2 1 2y 2 and the  
plane z − 7 in the first octant

 25.  Above the cone z − sx 2 1 y 2  and below the sphere 
x 2 1 y 2 1 z2 − 1

 26.  Bounded by the paraboloids z − 6 2 x 2 2 y 2 and 
z − 2x 2 1 2y 2

 27.  Inside both the cylinder x 2 1 y 2 − 4 and the ellipsoid 
4x 2 1 4y 2 1 z2 − 64

 28. (a)  A cylindrical drill with radius r1 is used to bore a hole 
through the center of a sphere of radius r2. Find the volume 
of the ring-shaped solid that remains.

 (b)  Express the volume in part (a) in terms of the height h of 
the ring. Notice that the volume depends only on h, not  
on r1 or r2.

29–32 Evaluate the iterated integral by converting to polar  
coordinates.

 29. y2

0
ys42x2 

0
 e2x 22y 2

 dy dx 30. ya

0
ysa22y2

 

2sa22y2
 s2x 1 yd dx dy
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1016 CHAPTER 15  Multiple Integrals

 (c) Deduce that
y`

2`
 e2x2 dx − s"  

 (d)  By making the change of variable t − s2 x, show that

y`

2`
 e2x2y2 dx − s2"  

   (This is a fundamental result for probability and statistics.)

 41.  Use the result of Exercise 40 part (c) to evaluate the following 
integrals.

 (a) y`

0
 x 2e2x2 dx (b) y`

0
 sx e2x dx

 (b)  An equivalent definition of the improper integral in part (a) 
is

y
R2

y e2sx21y2d dA − lim
al `

y
Sa

y  
  e2sx21y2d dA

   where Sa is the square with vertices s6a, 6ad. Use this to 
show that

y`

2`
 e2x2 dx y`

2`
 e2y2 dy − "

We have already seen one application of double integrals: computing volumes. Another 
geometric application is finding areas of surfaces and this will be done in the next sec-
tion. In this section we explore physical applications such as computing mass, electric 
charge, center of mass, and moment of inertia. We will see that these physical ideas are 
also important when applied to probability density functions of two random variables.

Density and Mass
In Section 8.3 we were able to use single integrals to compute moments and the center of 
mass of a thin plate or lamina with constant density. But now, equipped with the double 
integral, we can consider a lamina with variable density. Suppose the lamina occupies a 
region D of the xy-plane and its density (in units of mass per unit area) at a point sx, yd in 
D is given by #sx, yd, where # is a continuous function on D. This means that

#sx, yd − lim 
Dm
DA

where Dm and DA are the mass and area of a small rectangle that contains sx, yd and 
the limit is taken as the dimensions of the rectangle approach 0. (See Figure 1.)

To find the total mass m of the lamina we divide a rectangle R containing D into sub-
rectangles Rij of the same size (as in Figure 2) and consider #sx, yd to be 0 outside D. If 
we choose a point sxij*, yij*d in Rij, then the mass of the part of the lamina that occupies Rij 
is approximately #sxij*, yij*d DA, where DA is the area of Rij. If we add all such masses, we 
get an approximation to the total mass:

m < o
k

i−1
 o

l

j−1
 #sxij*, yij*d DA

If we now increase the number of subrectangles, we obtain the total mass m of the lamina 
as the limiting value of the approximations:

1  m − lim
k, l l `

 o
k

i−1
 o

l

j−1
 #sxij*, yij*d DA − y

D

y #sx, yd dA 

Physicists also consider other types of density that can be treated in the same manner. 
For example, if an electric charge is distributed over a region D and the charge density 

0 x

y

D

(x, y)

FIGURE 1

Rij
y

0 x

(xij, yij)* *

FIGURE 2
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 SECTION 15.4  Applications of Double Integrals 1017

(in units of charge per unit area) is given by $sx, yd at a point sx, yd in D, then the total 
charge Q is given by

2  Q − y
D

y $sx, yd dA 

EXAMPLE 1 Charge is distributed over the triangular region D in Figure 3 so that the 
charge density at sx, yd is $sx, yd − xy, measured in coulombs per square meter (Cym2). 
Find the total charge.

SOLUTION From Equation 2 and Figure 3 we have

 Q − y
D

y $sx, yd dA − y1

0
 y1

12x
 xy dy dx

 − y1

0
 Fx 

y 2

2 G
y−12x

y−1 

dx − y1

0
 
x
2

 f12 2 s1 2 xd2 g dx

 − 1
2 y1

0
 s2x 2 2 x 3 d dx −

1
2

 F 2x 3

3
2

x 4

 4 G0

1

−
5
24

Thus the total charge is 5
24 C. Q

Moments and Centers of Mass
In Section 8.3 we found the center of mass of a lamina with constant density; here we 
consider a lamina with variable density. Suppose the lamina occupies a region D and 
has density function #sx, yd. Recall from Chapter 8 that we defined the moment of a 
particle about an axis as the product of its mass and its directed distance from the axis. 
We divide D into small rectangles as in Figure 2. Then the mass of Rij is approximately 
#sxij*, yij*d DA, so we can approximate the moment of Rij with respect to the x-axis by

f#sxij*, yij*d DAg yij*

If we now add these quantities and take the limit as the number of subrectangles be comes  
large, we obtain the moment of the entire lamina about the x-axis:

3  Mx − lim
m, nl `

  o
m

i−1
 o

n

j−1
 yij* #sxij*, yij*d DA − y

D

y y #sx, yd dA 

Similarly, the moment about the y-axis is 

4  My − lim
m, nl `

  o
m

i−1
 o

n

j−1
 xij* #sxij*, yij*d DA − y

D

y x #sx, yd dA 

As before, we define the center of mass sx, yd so that mx − My and my − Mx. The physi-
cal significance is that the lamina behaves as if its entire mass is concentrated at its center 
of mass. Thus the lamina balances horizontally when supported at its center of mass (see 
Figure 4).

1

y

0 x

(1, 1)y=1

y=1-x

D

FIGURE 3

D 
(x, y) 

FIGURE 4
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1018 CHAPTER 15  Multiple Integrals

5  The coordinates sx, yd of the center of mass of a lamina occupying the 
region D and having density function #sx, yd are

x −
My

m
−

1
m

 y
D

y x #sx, yd dA      y −
Mx

m
−

1
m

 y
D

y  y #sx, yd dA

where the mass m is given by

m − y
D

y #sx, yd dA

EXAMPLE 2 Find the mass and center of mass of a triangular lamina with vertices  
s0, 0d, s1, 0d, and s0, 2d if the density function is #sx, yd − 1 1 3x 1 y.

SOLUTION The triangle is shown in Figure 5. (Note that the equation of the upper 
boundary is y − 2 2 2x.) The mass of the lamina is

 m − y
D

y #sx, yd dA − y1

0
 y222x

0
 s1 1 3x 1 yd dy dx

 − y1

0
 Fy 1 3xy 1

 y 2

2 Gy−0

y−222x

 dx

 − 4 y1

0
 s1 2 x 2 d dx − 4Fx 2

x 3

3 G0

1

−
8
3

Then the formulas in (5) give

  x −
1
m

 y
D

y x#sx, yd dA − 3
8 y1

0
 y222x

0
 sx 1 3x 2 1 xyd dy dx

  −
3
8

 y1

0
 Fxy 1 3x 2 y 1 x 

y 2

2 Gy−0

y−222x
 

dx

  −
3
2

 y1

0
 sx 2 x 3 d dx −

3
2 F x 2

2
2

x 4

4 G0

1

−
3
8

  y −
1
m

 y
D

y y#sx, yd dA − 3
8 y1

0
 y222x

0
 sy 1 3xy 1 y 2 d dy dx

 −
3
8

 y1

0
 F y 2

2
1 3x 

y 2

2
1

y 3

3 Gy−0

y−222x

dx − 1
4 y1

0
 s7 2 9x 2 3x 2 1 5x 3 d dx

  −
1
4

 F7x 2 9 
x 2

2
2 x 3 1 5 

x 4

4 G0

1

−
11
16

The center of mass is at the point (3
8, 11

16). Q

EXAMPLE 3 The density at any point on a semicircular lamina is proportional to the 
distance from the center of the circle. Find the center of mass of the lamina.

0

y

x(1, 0)

(0, 2)
y=2-2x

”     ,       ’3
8

11
16

D

FIGURE 5
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 SECTION 15.4  Applications of Double Integrals 1019

SOLUTION Let’s place the lamina as the upper half of the circle x 2 1 y 2 − a 2. (See 
Figure 6.) Then the distance from a point sx, yd to the center of the circle (the origin) is 
 sx 2 1 y 2 . Therefore the density function is

#sx, yd − Ksx 2 1 y 2 

where K is some constant. Both the density function and the shape of the lamina 
suggest that we convert to polar coordinates. Then sx 2 1 y 2 − r and the region D is 
given by 0 < r < a, 0 < ! < ". Thus the mass of the lamina is

 m − y
D

y #sx, yd dA − y
D

y Ksx 2 1 y 2  dA

 − y"

0
 ya

0
 sKrd r dr d! − K y"

0
 d! ya

0
 r 2 dr

 − K" 
r 3

3 G0

a

−
K"a3

3

Both the lamina and the density function are symmetric with respect to the y-axis, so 
the center of mass must lie on the y-axis, that is, x − 0. The y-coordinate is given by

 y −
1
m

 y
D

y y#sx, yd dA −
3

K"a3  y"

0
ya

0
 r sin ! sKrd r dr d!

 −
3

"a3  y"

0
 sin ! d! ya

0
   r 3 dr −

3
"a3  f2cos !g0

"F r 4

4 G0

a

 −
3

"a3  
2a 4

4
−

3a
2"

Therefore the center of mass is located at the point s0, 3ays2"dd. Q

Moment of Inertia
The moment of inertia (also called the second moment) of a particle of mass m about 
an axis is defined to be mr 2, where r is the distance from the particle to the axis. We 
extend this concept to a lamina with density function #sx, yd and occupying a region D 
by proceeding as we did for ordinary moments. We divide D into small rect angles, 
approximate the moment of inertia of each subrectangle about the x-axis, and take the 
limit of the sum as the number of subrectangles becomes large. The result is the moment 
of inertia of the lamina about the x-axis:

6  Ix − lim
m, nl `

  o
m

i−1
 o

n

j−1
 syij*d2 #sxij*, yij*d DA − y

D

y y 2 #sx, yd dA

Similarly, the moment of inertia about the y-axis is

7  Iy − lim
m, nl `

  o
m

i−1
 o

n

j−1
 sxij*d2 #sxij*, yij*d DA − y

D

y x 2 #sx, yd dA

0

y

xa_a

a

D

≈+¥=a@

”0,         ’3a
2π

FIGURE 6

Compare the location of the center of 
mass in Example 3 with Example 8.3.4, 
where we found that the center of mass 
of a lamina with the same shape but 
uniform density is located at the point 
s0, 4ays3"dd.
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1020 CHAPTER 15  Multiple Integrals

It is also of interest to consider the moment of inertia about the origin, also called the 
polar moment of inertia:

8  I0 − lim
m, nl `

  o
m

i−1
 o

n

j−1
 fsxij*d2 1 syij*d2g #sxij*, yij*d DA − y

D

y sx 2 1 y 2 d #sx, yd dA

Note that I0 − Ix 1 Iy.

EXAMPLE 4 Find the moments of inertia Ix, Iy, and I0 of a homogeneous disk D with 
density #sx, yd − #, center the origin, and radius a.

SOLUTION The boundary of D is the circle x 2 1 y 2 − a 2 and in polar coordinates D is 
described by 0 < ! < 2", 0 < r < a. Let’s compute I0 first:

 I0 − y
D

y  sx 2 1 y 2 d# dA − # y2"

0
 ya

0
 r 2 r dr d!

 − # y2"

0
 d! ya

0
 r 3 dr − 2"#F r 4

4 G0

a

−
"#a 4

2

Instead of computing Ix and Iy directly, we use the facts that Ix 1 Iy − I0 and Ix − Iy 
(from the symmetry of the problem). Thus

 Ix − Iy −
I0

2
−

"#a 4

4
 Q

In Example 4 notice that the mass of the disk is

m − density 3 area − #s"a 2 d

so the moment of inertia of the disk about the origin (like a wheel about its axle) can be 
written as

I0 −
"#a4

2
− 1

2 s#"a2da2 − 1
2 ma2

Thus if we increase the mass or the radius of the disk, we thereby increase the moment of 
inertia. In general, the moment of inertia plays much the same role in rotational motion 
that mass plays in linear motion. The moment of inertia of a wheel is what makes it diffi-
cult to start or stop the rotation of the wheel, just as the mass of a car is what makes it 
difficult to start or stop the motion of the car.

The radius of gyration of a lamina about an axis is the number R such that

9  mR2 − I 

where m is the mass of the lamina and I is the moment of inertia about the given axis. 
Equation 9 says that if the mass of the lamina were concentrated at a distance R from the 
axis, then the moment of inertia of this “point mass” would be the same as the moment 
of inertia of the lamina.

In particular, the radius of gyration y with respect to the x-axis and the radius of gyra-
tion x with respect to the y-axis are given by the equations

10  my 2 − Ix      mx 2 − Iy 
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 SECTION 15.4  Applications of Double Integrals 1021

Thus sx, yd is the point at which the mass of the lamina can be concentrated without 
changing the moments of inertia with respect to the coordinate axes. (Note the analogy 
with the center of mass.)

EXAMPLE 5 Find the radius of gyration about the x-axis of the disk in Example 4.

SOLUTION As noted, the mass of the disk is m − #"a 2, so from Equations 10 we have

y 2 −
Ix

m
−

1
4 "#a 4

#"a 2 −
a 2

4

Therefore the radius of gyration about the x-axis is y − 1
2 a, which is half the radius of the 

disk. Q

Probability
In Section 8.5 we considered the probability density function f  of a continuous random 
variable X. This means that f sxd > 0 for all x, y`

2` f sxd dx − 1, and the probability that 
X lies between a and b is found by integrating f  from a to b:

Psa < X < bd − yb

a
 f sxd dx

Now we consider a pair of continuous random variables X and Y, such as the lifetimes 
of two components of a machine or the height and weight of an adult female chosen 
at random. The joint density function of X and Y  is a function f  of two variables such 
that the probability that sX, Y d lies in a region D is

PssX, Y d [ Dd − y
D

y f sx, yd dA

In particular, if the region is a rectangle, the probability that X lies between a and b and  
Y  lies between c and d is

Psa < X < b, c < Y < dd − yb

a
 yd

c
 f sx, yd dy dx

(See Figure 7.)

c 

D 

z=f(x, y) 

d 
y x 

z 

a 

b FIGURE 7
The probability that X lies between a and b

and Y lies between c and d is the volume that
lies above the rectangle D=[a, b]x[c, d ] and

below the graph of the joint density function.
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1022 CHAPTER 15  Multiple Integrals

Because probabilities aren’t negative and are measured on a scale from 0 to 1, the 
joint density function has the following properties:

f sx, yd > 0      y
R2

y f sx, yd dA − 1

As in Exercise 15.3.40, the double integral over R2 is an improper integral defined as the 
limit of double integrals over expanding circles or squares, and we can write

y
R2

y f sx, yd dA − y`

2`
 y`

2`
 f sx, yd dx dy − 1

EXAMPLE 6 If the joint density function for X and Y is given by

f sx, yd − H0
Csx 1 2yd

otherwise
if 0 < x < 10, 0 < y < 10

find the value of the constant C. Then find PsX < 7, Y > 2d.

SOLUTION We find the value of C by ensuring that the double integral of f  is equal  
to 1. Because f sx, yd − 0 outside the rectangle f0, 10g 3 f0, 10g, we have

 y`

2`
 y`

2`
 f sx, yd dy dx − y10

0
 y10

0
 Csx 1 2yd dy dx − C y10

0
 fxy 1 y 2g y−0

y−10
 dx

 − C y10

0
 s10x 1100d dx − 1500C

Therefore 1500C − 1 and so C − 1
1500.

Now we can compute the probability that X is at most 7 and Y  is at least 2:

 PsX < 7, Y > 2d − y7

2`
 y`

2
 f sx, yd dy dx − y7

0
 y10

2
 1
1500 sx 1 2yd dy dx

 − 1
1500 y7

0
 fxy 1 y 2g y−2

y−10
 dx − 1

1500 y7

0
 s8x 1 96d dx

  − 868
1500 < 0.5787  Q

Suppose X is a random variable with probability density function f1sxd and Y  is a 
random variable with density function f2syd. Then X and Y  are called independent ran-
dom variables if their joint density function is the product of their individual density 
functions:

f sx, yd − f1sxd f2syd

In Section 8.5 we modeled waiting times by using exponential density functions

f std − H0
%21e2ty%

if t , 0
if t > 0

where % is the mean waiting time. In the next example we consider a situation with two 
independent waiting times.

EXAMPLE 7 The manager of a movie theater determines that the average time movie-
goers wait in line to buy a ticket for this week’s film is 10 minutes and the average time 
they wait to buy popcorn is 5 minutes. Assuming that the waiting times are independent, 
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 SECTION 15.4  Applications of Double Integrals 1023

find the probability that a moviegoer waits a total of less than 20 minutes before taking 
his or her seat.

SOLUTION Assuming that both the waiting time X for the ticket purchase and the 
waiting time Y  in the refreshment line are modeled by exponential probability density 
functions, we can write the individual density functions as

f1sxd − H0
1

10 e2xy10

if x , 0
if x > 0

      f2syd − H0
1
5 e2yy5

if y , 0
if y > 0

Since X and Y  are independent, the joint density function is the product:

f sx, yd − f1sxd f2syd − H 1
50 e2xy10 e2yy5

0
if x > 0, y > 0
otherwise

We are asked for the probability that X 1 Y , 20:

PsX 1 Y , 20d − PssX, Y d [ Dd

where D is the triangular region shown in Figure 8. Thus

 PsX 1 Y , 20d − y
D

y f sx, yd dA − y20

0
 y202x

0
 1
50 e2xy10e2yy5 dy dx

 − 1
50 y20

0
 fe2xy10s25de2yy5g y−0

y−202x
 dx

 − 1
10 y20

0
 e2xy10s1 2 e sx220dy5 d dx

 − 1
10 y20

0
 se2xy10 2 e24exy10 d dx

 − 1 1 e24 2 2e22 < 0.7476

This means that about 75% of the moviegoers wait less than 20 minutes before taking 
their seats. Q

Expected Values
Recall from Section 8.5 that if X is a random variable with probability density function 
f, then its mean is

% − y`

2`
 x f sxd dx

Now if X and Y are random variables with joint density function f , we define the X-mean 
and Y-mean, also called the expected values of X and Y, to be

11  %1 − y
R2

y x f sx, yd dA      %2 − y
R2

y y f sx, yd dA 

Notice how closely the expressions for %1 and %2 in (11) resemble the moments Mx and 
My of a lamina with density function # in Equations 3 and 4. In fact, we can think of 
probability as being like continuously distributed mass. We calculate probability the way 
we calculate mass—by integrating a density function. And because the total “probability 
mass” is 1, the expressions for x and y in (5) show that we can think of the expected val-
ues of X and Y, %1 and %2, as the coordinates of the “center of mass” of the probability 
distribution.

20

20

D

0

y

x

x+y=20

FIGURE 8
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1024 CHAPTER 15  Multiple Integrals

In the next example we deal with normal distributions. As in Section 8.5, a single 
random variable is normally distributed if its probability density function is of the form

f sxd −
1

!s2" 
 e2sx2#d2ys2!2d

where # is the mean and ! is the standard deviation.

EXAMPLE 8 A factory produces (cylindrically shaped) roller bearings that are sold as 
having diameter 4.0 cm and length 6.0 cm. In fact, the diameters X are normally distrib-
uted with mean 4.0 cm and standard deviation 0.01 cm while the lengths Y are normally 
distributed with mean 6.0 cm and standard deviation 0.01 cm. Assuming that X and Y are 
independent, write the joint density function and graph it. Find the probability that a 
bearing randomly chosen from the production line has either length or diameter that 
differs from the mean by more than 0.02 cm.

SOLUTION We are given that X and Y  are normally distributed with #1 − 4.0, 
#2 − 6.0, and !1 − !2 − 0.01. So the individual density functions for X and Y  are

f1sxd −
1

0.01s2" 
 e2sx24d2y0.0002      f2syd −

1

0.01s2" 
 e2s y26d2y0.0002

Since X and Y  are independent, the joint density function is the product:

 f sx, yd − f1sxd f2syd

 −
1

0.0002"
 e2sx24d2y0.0002e2sy26d2y0.0002

 −
5000

"
 e25000fsx24d21s y26d2g

A graph of this function is shown in Figure 9.
Let’s first calculate the probability that both X and Y  differ from their means by less 

than 0.02 cm. Using a calculator or computer to estimate the integral, we have

 Ps3.98 , X , 4.02, 5.98 , Y , 6.02d − y4.02

3.98
 y6.02

5.98
 f sx, yd dy dx

 −
5000

"
 y4.02

3.98
 y6.02

5.98
 e25000fsx24d21s y26d2g dy dx

 < 0.91

Then the probability that either X or Y  differs from its mean by more than 0.02 cm is 
approximately

 1 2 0.91 − 0.09 Q

1500
1000
500

0

y
6.05

6
5.95

x
4.05

4
3.95

z

FIGURE 9  
Graph of the bivariate normal joint 
density function in Example 8

 1.  Electric charge is distributed over the rectangle 0 < x < 5,  
2 < y < 5 so that the charge density at sx, yd is 
! sx, yd − 2x 1 4y (measured in coulombs per square meter). 
Find the total charge on the rectangle.

 2.  Electric charge is distributed over the disk x 2 1 y 2 < 1 so 
   that the charge density at sx, yd is ! sx, yd − sx 2 1 y 2   

(measured in coulombs per square meter). Find the total charge 
on the disk.

3–10 Find the mass and center of mass of the lamina that occupies 
the region D and has the given density function $.

 3. D − hsx, yd | 1 < x < 3, 1 < y < 4j; $sx, yd − ky 2
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 SECTION 15.4  Applications of Double Integrals 1025

21–24 A lamina with constant density $sx, yd − $ occupies the 
given region. Find the moments of inertia Ix and Iy and the radii 
of gyration x and y.

 21.  The rectangle 0 < x < b, 0 < y < h

 22.  The triangle with vertices s0, 0d, sb, 0d, and s0, hd

 23.  The part of the disk x 2 1 y 2 < a2 in the first quadrant

 24.  The region under the curve y − sin x from x − 0 to x − "

25–26  Use a computer algebra system to find the mass, center  
of mass, and moments of inertia of the lamina that occupies the 
region D and has the given density function.

 25.  D is enclosed by the right loop of the four-leaved rose 
r − cos 2%;  $sx, yd − x 2 1 y 2

 26. D − hsx, yd | 0 < y < xe2x, 0 < x < 2 j;  $sx, yd − x 2y 2

 27.  The joint density function for a pair of random variables X 
and Y is

f sx, yd − HCxs1 1 yd
0

if 0 < x < 1, 0 < y < 2
otherwise

 (a) Find the value of the constant C.
 (b) Find PsX < 1, Y < 1d.
 (c) Find PsX 1 Y < 1d.

 28. (a) Verify that

f sx, yd − H4xy
0

if 0 < x < 1, 0 < y < 1
otherwise

  is a joint density function.
 (b)  If X and Y are random variables whose joint density 

function is the function f  in part (a), find
 (i) PsX > 1

2 d (ii) PsX > 1
2, Y < 1

2 d
 (c) Find the expected values of X and Y.

 29.  Suppose X and Y are random variables with joint density  
function

f sx, yd − H0.1e2s0.5x10.2yd

0
if x > 0, y > 0
otherwise

 (a) Verify that f  is indeed a joint density function.
 (b) Find the following probabilities.
 (i) PsY > 1d (ii) PsX < 2, Y < 4d
 (c) Find the expected values of X and Y.

 30. (a)  A lamp has two bulbs, each of a type with average 
lifetime 1000 hours. Assuming that we can model the 
probability of failure of a bulb by an exponential den-
sity function with mean # − 1000, find the probability 
that both of the lamp’s bulbs fail within 1000 hours.

 (b)  Another lamp has just one bulb of the same type as in 
part (a). If one bulb burns out and is replaced by a bulb  
of the same type, find the probability that the two bulbs 
fail within a total of 1000 hours.

CAS

 4.  D − hsx, yd | 0 < x < a, 0 < y < bj; 
$sx, yd − 1 1 x 2 1 y 2

 5.  D is the triangular region with vertices s0, 0d, s2, 1d, s0, 3d;  
$sx, yd − x 1 y

 6.  D is the triangular region enclosed by the lines y − 0, 
y − 2x, and x 1 2y − 1; $sx, yd − x

 7.  D is bounded by y − 1 2 x 2 and y − 0; $sx, yd − ky

 8.  D is bounded by y − x 1 2 and y − x 2; $sx, yd − kx 2

 9.  D is bounded by the curves y − e2x, y − 0, x − 0, x − 1; 
$sx, yd − xy

 10.  D is enclosed by the curves y − 0 and y − cos x, 
2"y2 < x < "y2; $sx, yd − y

 11.  A lamina occupies the part of the disk x 2 1 y 2 < 1 in the 
first quadrant. Find its center of mass if the density at any 
point is proportional to its distance from the x-axis.

 12.  Find the center of mass of the lamina in Exercise 11 if the  
density at any point is proportional to the square of its  
distance from the origin.

 13.  The boundary of a lamina consists of the semicircles 
   y − s1 2 x 2  and y − s4 2 x 2  together with the portions  

of the x-axis that join them. Find the center of mass of 
the lamina if the density at any point is proportional to its 
distance from the origin.

 14.  Find the center of mass of the lamina in Exercise 13 if the 
density at any point is inversely proportional to its distance 
from the origin.

 15.  Find the center of mass of a lamina in the shape of an isos-
celes right triangle with equal sides of length a if the density 
at any point is proportional to the square of the distance 
from the vertex opposite the hypotenuse.

 16.  A lamina occupies the region inside the circle x 2 1 y 2 − 2y 
but outside the circle x 2 1 y 2 − 1. Find the center of mass 
if the density at any point is inversely proportional to its 
distance from the origin.

 17.  Find the moments of inertia Ix, Iy, I0 for the lamina of  
Exercise 3.

 18.  Find the moments of inertia Ix, Iy, I0 for the lamina of  
Exercise 6.

 19.  Find the moments of inertia Ix, Iy, I0 for the lamina of  
Exercise 15.

 20.  Consider a square fan blade with sides of length 2 and the 
lower left corner placed at the origin. If the density of the 
blade is $sx, yd − 1 1 0.1x, is it more difficult to rotate the 
blade about the x-axis or the y-axis?
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1026 CHAPTER 15  Multiple Integrals

 33.  When studying the spread of an epidemic, we assume that 
the probability that an infected individual will spread the 
disease to an uninfected individual is a function of the dis-
tance between them. Consider a circular city of radius 
10 miles in which the population is uniformly distributed. 
For an uninfected individual at a fixed point Asx0, y0 d, 
assume that the probability function is given by

f sPd − 1
20 f20 2 dsP, Adg

  where dsP, Ad denotes the distance between points P and A.
 (a)  Suppose the exposure of a person to the disease is the  

sum of the probabilities of catching the disease from all 
members of the population. Assume that the infected  
people are uniformly distributed throughout the city, 
with k infected individuals per square mile. Find a  
double integral that represents the exposure of a person 
residing at A.

 (b)  Evaluate the integral for the case in which A is the cen-
ter of the city and for the case in which A is located on 
the edge of the city. Where would you prefer to live?

 31.  Suppose that X and Y are independent random variables, 
where X is normally distributed with mean 45 and standard 
deviation 0.5 and Y is normally distributed with mean 20 
and standard deviation 0.1.

 (a) Find Ps40 < X < 50, 20 < Y < 25d.
 (b) Find Ps4sX 2 45d2 1 100sY 2 20d2 < 2d.

 32.  Xavier and Yolanda both have classes that end at noon and 
they agree to meet every day after class. They arrive at the 
coffee shop independently. Xavier’s arrival time is X and 
Yolanda’s arrival time is Y, where X and Y are measured in 
minutes after noon. The individual density functions are

f1sxd − He2x

0
if x > 0
if x , 0

  f2syd − H 1
50 y
0

if 0 < y < 10
otherwise

   (Xavier arrives sometime after noon and is more likely  
to arrive promptly than late. Yolanda always arrives by  
12:10 pm and is more likely to arrive late than promptly.) 
After Yolanda arrives, she’ll wait for up to half an hour for 
Xavier, but he won’t wait for her. Find the probability that 
they meet.

CAS

In this section we apply double integrals to the problem of computing the area of a 
surface. In Section 8.2 we found the area of a very special type of surface––a surface of 
revolution––by the methods of single-variable calculus. Here we compute the area of a 
surface with equation z − f sx, yd, the graph of a function of two variables.

Let S be a surface with equation z − f sx, yd, where f  has continuous partial deriva-
tives. For simplicity in deriving the surface area formula, we assume that f sx, yd > 0 and 
the domain D of f  is a rectangle. We divide D into small rectangles Rij with area 
DA − Dx Dy. If sxi, yjd is the corner of Rij closest to the origin, let Pijsxi, yj, f sxi, yjdd be 
the point on S directly above it (see Figure 1). The tangent plane to S at Pij is an approx-
imation to S near Pij. So the area DTij of the part of this tangent plane (a parallelogram) 
that lies directly above Rij is an approximation to the area DSij of the part of S that lies 
directly above Rij. Thus the sum o o  DTij is an approximation to the total area of S, and 
this approximation appears to improve as the number of rectangles increases. Therefore 
we define the surface area of S to be

1  AsSd − lim
m, nl`

 o
m

i−1
 o

n

j−1
 DTij 

To find a formula that is more convenient than Equation 1 for computational purposes, 
we let a and b be the vectors that start at Pij and lie along the sides of the parallelogram  
with area DTij. (See Figure 2.) Then DTij − | a 3 b |. Recall from Section 14.3 that 
fxsxi, yjd and fysxi, yjd are the slopes of the tangent lines through Pij in the directions of a 
and b. Therefore

 a − Dx i 1 fxsxi, yjd Dx k

 b − Dy j 1 fysxi, yjd Dy k

In Section 16.6 we will deal with 
areas of more general surfaces, called 
parametric surfaces, and so this section 
need not be covered if that later section 
will be covered.

FIGURE 1 
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 SECTION 15.5  Surface Area 1027

and

 a 3 b − Z i
Dx
0

j
0

Dy

k
fxsxi, yjd Dx
fysxi, yjd Dy

Z
 − 2fxsxi, yjd Dx Dy i 2 fysxi, yjd Dx Dy j 1 Dx Dy k

 − f2fxsxi, yjd i 2 fysxi, yjd j 1 kg DA

Thus DTij − | a 3 b | − sf fxsxi, yjdg2 1 f fysxi, yjdg2 1 1 DA

From Definition 1 we then have

 AsSd − lim
m, nl `

 o
m

i−1
 o

n

j−1
 DTij

 − lim
m, nl `

 o
m

i−1
 o

n

j−1
 sf fxsxi, yjdg2 1 f fysxi, yjdg2 1 1 DA

and by the definition of a double integral we get the following formula.

2   The area of the surface with equation z − f sx, yd, sx, yd [ D, where fx  
and fy are continuous, is

AsSd − y
D

y sf fxsx, ydg2 1 f fysx, ydg2 1 1 dA

We will verify in Section 16.6 that this formula is consistent with our previous for-
mula for the area of a surface of revolution. If we use the alternative notation for partial 
derivatives, we can rewrite Formula 2 as follows:

3  AsSd − yy
D

Î1 1 S −z
−xD2

1 S −z
−yD2

  dA 

Notice the similarity between the surface area formula in Equation 3 and the arc 
length formula from Section 8.1:

L − yb

a
Î1 1 S dy

dxD2

 
dx

EXAMPLE 1 Find the surface area of the part of the surface z − x 2 1 2y that lies above 
the triangular region T in the xy-plane with vertices s0, 0d, s1, 0d, and s1, 1d.

SOLUTION The region T  is shown in Figure 3 and is described by

T − hsx, yd | 0 < x < 1, 0 < y < xj

x

y=x

T

(1, 0)

(1, 1)

(0, 0)

y

FIGURE 3

FIGURE 1 

FIGURE 2 

y
0

z

x

ÎTij

Pij

Îy

Îx

b
a

y
0

z

x

S

ÎSij

ÎTijPij

Îy

Îx

D ÎARij

(xi,　yj)
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1028 CHAPTER 15  Multiple Integrals

Using Formula 2 with f sx, yd − x 2 1 2y, we get

 A − y
T

y ss2xd2 1 s2d2 1 1 dA − y1

0
 y x

0
 s4x 2 1 5 dy dx

 − y1

0
 xs4x 2 1 5 dx − 1

8 ? 2
3s4x 2 1 5d3y2g0

1
− 1

12 (27 2 5s5 )

Figure 4 shows the portion of the surface whose area we have just computed. Q

EXAMPLE 2 Find the area of the part of the paraboloid z − x 2 1 y 2 that lies under the 
plane z − 9.

SOLUTION The plane intersects the paraboloid in the circle x 2 1 y 2 − 9, z − 9. There-
fore the given surface lies above the disk D with center the origin and radius 3. (See 
Figure 5.) Using Formula 3, we have

 A − y
D

y Î1 1 S −z
−xD2

1 S −z
−yD2

  dA − y
D

ys1 1 s2xd2 1 s2yd2  dA

 − y
D

y s1 1 4sx 2 1 y 2 d dA

Converting to polar coordinates, we obtain

 A − y2"

0
 y3

0
 s1 1 4r 2  r dr d% − y2"

0
 d% y3

0
 18 s1 1 4r 2  s8rd dr

  − 2"(1
8) 2

3s1 1 4r 2 d3y2g0

3
−

"

6
 (37s37 2 1) Q

y
x

z

T

FIGURE 4

9 

x 

z 

y 3 
D 

FIGURE 5

1–12 Find the area of the surface.

 1.  The part of the plane 5x 1 3y 2 z 1 6 − 0 that lies above the  
rectangle f1, 4g 3 f2, 6g

 2.  The part of the plane 6x 1 4y 1 2z − 1 that lies inside the 
cylinder x 2 1 y 2 − 25

 3.  The part of the plane 3x 1 2y 1 z − 6 that lies in the  
first octant

 4.  The part of the surface 2y 1 4z 2 x 2 − 5 that lies above the 
triangle with vertices s0, 0d, s2, 0d, and s2, 4d

 5.  The part of the paraboloid z − 1 2 x 2 2 y 2 that lies above the 
plane z − 22

 6.  The part of the cylinder x 2 1 z 2 − 4 that lies above the square 
with vertices s0, 0d, s1, 0d, s0, 1d, and s1, 1d

 7.  The part of the hyperbolic paraboloid z − y 2 2 x 2 that lies 
between the cylinders x 2 1 y 2 − 1 and x 2 1 y 2 − 4

 8. The surface z − 2
3 sx 3y2 1 y 3y2 d, 0 < x < 1, 0 < y < 1

 9.  The part of the surface z − xy that lies within the cylinder 
x 2 1 y 2 − 1

 10.  The part of the sphere x 2 1 y 2 1 z2 − 4 that lies above the 
plane z − 1

 11.  The part of the sphere x 2 1 y 2 1 z2 − a 2 that lies within the 
cylinder x 2 1 y 2 − ax and above the xy-plane

 12.  The part of the sphere x 2 1 y 2 1 z2 − 4z that lies inside the 
paraboloid z − x 2 1 y 2

13–14 Find the area of the surface correct to four decimal places 
by expressing the area in terms of a single integral and using your 
calculator to estimate the integral.

 13.  The part of the surface z − 1ys1 1 x 2 1 y 2d that lies above the 
disk x 2 1 y 2 < 1

 14.  The part of the surface z − cossx 2 1 y 2d that lies inside the 
cylinder x 2 1 y 2 − 1
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 SECTION 15.6  Triple Integrals 1029

 21.  Show that the area of the part of the plane z − ax 1 by 1 c 
that projects onto a region D in the xy-plane with area AsDd 

  is sa 2 1 b 2 1 1 AsDd.

 22.  If you attempt to use Formula 2 to find the area of the top 
half of the sphere x 2 1 y 2 1 z2 − a 2, you have a slight 
problem because the double integral is improper. In fact, the 
integrand has an infinite discontinuity at every point of the 
boundary circle x 2 1 y 2 − a 2. However, the integral can  
be computed as the limit of the integral over the disk 
x 2 1 y 2 < t 2 as t l a 2. Use this method to show that the 
area of a sphere of radius a is 4"a 2.

 23.  Find the area of the finite part of the paraboloid y − x 2 1 z 2 
cut off by the plane y − 25. [Hint: Project the surface onto 
the xz-plane.]

 24.  The figure shows the surface created when the cylinder 
y 2 1 z 2 − 1 intersects the cylinder x 2 1 z 2 − 1. Find the  
area of this surface.

z 

y 
x 

 15. (a)  Use the Midpoint Rule for double integrals (see Sec-
tion 15.1) with four squares to estimate the surface area  
of the portion of the paraboloid z − x 2 1 y 2 that lies 
above the square f0, 1g 3 f0, 1g.

 (b)  Use a computer algebra system to approximate the sur-
face area in part (a) to four decimal places. Compare 
with the answer to part (a).

 16. (a)  Use the Midpoint Rule for double integrals with 
m − n − 2 to estimate the area of the surface 
z − xy 1 x 2 1 y 2, 0 < x < 2, 0 < y < 2.

 (b)  Use a computer algebra system to approximate the sur-
face area in part (a) to four decimal places. Compare 
with the answer to part (a).

 17.  Find the exact area of the surface z − 1 1 2x 1 3y 1 4y 2, 
1 < x < 4, 0 < y < 1.

 18.  Find the exact area of the surface

z − 1 1 x 1 y 1 x 2     22 < x < 1  21 < y < 1

  Illustrate by graphing the surface.

 19.  Find, to four decimal places, the area of the part of the 
surface z − 1 1 x 2 y 2 that lies above the disk x 2 1 y 2 < 1.

 20.  Find, to four decimal places, the area of the part of the  
surface z − s1 1 x 2 dys1 1 y 2 d that lies above the square 
| x | 1 | y | < 1. Illustrate by graphing this part of the 
surface.

CAS

CAS

CAS

CAS

CAS

CAS

Just as we defined single integrals for functions of one variable and double integrals 
for functions of two variables, so we can define triple integrals for functions of three 
variables. Let’s first deal with the simplest case where f  is defined on a rectangular box:

1  B − hsx, y, zd  |  a < x < b, c < y < d, r < z < s j  

The first step is to divide B into sub-boxes. We do this by dividing the interval fa, bg into 
l subintervals fxi21, xig of equal width Dx, dividing fc, dg into m subintervals of width Dy, 
and dividing fr, sg into n subintervals of width Dz. The planes through the endpoints of 
these subintervals parallel to the coordinate planes divide the box B into lmn sub-boxes

Bi jk − fxi21, xig 3 fyj21, yjg 3 fzk21, zk g

which are shown in Figure 1. Each sub-box has volume DV − Dx Dy Dz.
Then we form the triple Riemann sum

2  o
l

i−1
 o

m

j−1
 o

n

k−1
 f sxij k* , yij k* , zij k* d DV  

where the sample point sxi jk* , yi jk* , zi jk* d is in Bi jk. By analogy with the definition of a 
double integral (15.1.5), we define the triple integral as the limit of the triple Riemann 
sums in (2).

B

Bijk

ÎxÎy

Îz

z

yx

z

yx

FIGURE 1
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1030 CHAPTER 15  Multiple Integrals

3   Definition The triple integral of f  over the box B is

 y y
B

y f sx, y, zd dV − lim 
l, m, n l `

 o
l

i−1
 o

m

j−1
 o

n

k−1
 f sxi jk* , yi jk* , zi jk* d DV

if this limit exists.

Again, the triple integral always exists if f  is continuous. We can choose the sample 
point to be any point in the sub-box, but if we choose it to be the point sxi, yj, zk d we get 
a simpler-looking expression for the triple integral:

y y
B

y f sx, y, zd dV − lim 
l, m, n l `

 o
l

i−1
 o

m

j−1
 o

n

k−1
 f sxi, yj, zk d DV

Just as for double integrals, the practical method for evaluating triple integrals is to 
express them as iterated integrals as follows.

4   Fubini’s Theorem for Triple Integrals If f  is continuous on the rectangu-
lar box B − fa, bg 3 fc, dg 3 fr, sg, then

y y
B

y f sx, y, zd dV − ys

r
 yd

c
 yb

a
 f sx, y, zd dx dy dz

The iterated integral on the right side of Fubini’s Theorem means that we integrate 
first with respect to x (keeping y and z fixed), then we integrate with respect to y (keeping 
z fixed), and finally we integrate with respect to z. There are five other possible orders in 
which we can integrate, all of which give the same value. For instance, if we integrate 
with respect to y, then z, and then x, we have

y y
B

y f sx, y, zd dV − yb

a
 ys

r
 yd

c
 f sx, y, zd dy dz dx

EXAMPLE 1 Evaluate the triple integral yyyB xyz2 dV, where B is the rectangular box 
given by

B − hsx, y, zd  |  0 < x < 1, 21 < y < 2, 0 < z < 3j

SOLUTION We could use any of the six possible orders of integration. If we choose to  
integrate with respect to x, then y, and then z, we obtain

 y y
B

y xyz2 dV − y3

0
 y2

21
 y1

0
 xyz2 dx dy dz − y3

0
 y2

21
 F x 2 yz2

2 G
x−0

x−1

 dy dz

 − y3

0
 y2

21
 
yz2

2
 dy dz − y3

0
 F y 2z2

4 G
y−21

y−2

 dz

  − y3

0
 
3z2

4
 dz −

z3

4 G0

3

−
27
4

 Q
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 SECTION 15.6  Triple Integrals 1031

Now we define the triple integral over a general bounded region E in three- 
dimensional space (a solid) by much the same procedure that we used for double inte-
grals (15.2.2). We enclose E in a box B of the type given by Equation 1. Then we define 
F so that it agrees with f  on E but is 0 for points in B that are outside E. By definition,

 y y
E

y f sx, y, zd dV − y y
B

y Fsx, y, zd dV

This integral exists if f  is continuous and the boundary of E is “reasonably smooth.” The 
triple integral has essentially the same properties as the double integral (Properties 6–9 
in Section 15.2).

We restrict our attention to continuous functions f  and to certain simple types of 
regions. A solid region E is said to be of type 1 if it lies between the graphs of two con-
tinuous functions of x and y, that is,

5  E − hsx, y, zd | sx, yd [ D, u1sx, yd < z < u2sx, ydj  

where D is the projection of E onto the xy-plane as shown in Figure 2. Notice that the 
upper boundary of the solid E is the surface with equation z − u2sx, yd, while the lower 
boundary is the surface z − u1sx, yd.

By the same sort of argument that led to (15.2.3), it can be shown that if E is a type 1 
region given by Equation 5, then

6  y y
E

y f sx, y, zd dV − y
D

y Fyu2sx, yd

u1sx, yd
 f sx, y, zd dzG dA 

The meaning of the inner integral on the right side of Equation 6 is that x and y are held 
fixed, and therefore u1sx, yd and u2sx, yd are regarded as constants, while f sx, y, zd is 
integrated with respect to z.

In particular, if the projection D of E onto the xy-plane is a type I plane region (as in 
Figure 3), then

E − hsx, y, zd | a < x < b, t1sxd < y < t2sxd, u1sx, yd < z < u2sx, ydj
and Equation 6 becomes

7  y y
E

y f sx, y, zd dV − yb

a
 yt2sxd

t1sxd
yu2sx, yd

u1sx, yd
 f sx, y, zd dz dy dx 

If, on the other hand, D is a type II plane region (as in Figure 4), then

E − hsx, y, zd | c < y < d, h1syd < x < h2syd, u1sx, yd < z < u2sx, ydj
and Equation 6 becomes

8   y y
E

y f sx, y, zd dV − yd

c
 yh2syd

h1syd
yu2sx, yd

u1sx, yd
 f sx, y, zd dz dx dy 

FIGURE 2
A type 1 solid region

z 

0 

x y D 

E 
z=u™(x, y)

z=u¡(x, y)

FIGURE 3
A type 1 solid region where the  
projection D is a type I plane region 

z=u™(x, y) 

0 

D 

E 

y=g™(x) y=g¡(x) 

z 

y x 

a 
b 

z=u¡(x, y) 

x 

0 

z 

y 

c d 

z=u™(x, y) 

x=h™(y) 

x=h¡(y) 

z=u¡(x, y) E 

D 

FIGURE 4
A type 1 solid region with a type II 
projection 
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1032 CHAPTER 15  Multiple Integrals

EXAMPLE 2 Evaluate yyyE z dV, where E is the solid tetrahedron bounded by the four 
planes x − 0, y − 0, z − 0, and x 1 y 1 z − 1.

SOLUTION When we set up a triple integral it’s wise to draw two diagrams: one of  
the solid region E (see Figure 5) and one of its projection D onto the xy-plane (see  
Fig ure 6). The lower boundary of the tetrahedron is the plane z − 0 and the upper 
boundary is the plane x 1 y 1 z − 1 (or z − 1 2 x 2 y), so we use u1sx, yd − 0 and 
u2sx, yd − 1 2 x 2 y in Formula 7. Notice that the planes x 1 y 1 z − 1 and z − 0 
intersect in the line x 1 y − 1 (or y − 1 2 x) in the xy-plane. So the projection of E is 
the triangular region shown in Figure 6, and we have

9  E − hsx, y, zd | 0 < x < 1, 0 < y < 1 2 x, 0 < z < 1 2 x 2 yj  

This description of E as a type 1 region enables us to evaluate the integral as follows:

 y y
E

y z dV − y1

0
 y12x

0
 y12x2y

0
 z dz dy dx − y1

0
 y12x

0
 F z2

2 Gz−0

z−12x2y

 dy dx

 − 1
2 y1

0
 y12x

0
 s1 2 x 2 yd2 dy dx − 1

2 y1

0
 F2

s1 2 x 2 yd3

3 G
y−0

y−12x

 dx

  − 1
6 y1

0
 s1 2 xd3 dx −

1
6

 F2
s1 2 xd4

4 G
0

1

−
1
24

 Q

A solid region E is of type 2 if it is of the form

E − hsx, y, zd | sy, zd [ D, u1sy, zd < x < u2sy, zdj

where, this time, D is the projection of E onto the yz-plane (see Figure 7). The back sur-
face is x − u1sy, zd, the front surface is x − u2sy, zd, and we have

10  y y
E

y f sx, y, zd dV − y
D

y Fyu2sy, zd

u1sy, zd
 f sx, y, zd dxG dA 

Finally, a type 3 region is of the form

E − hsx, y, zd | sx, zd [ D, u1sx, zd < y < u2sx, zdj

where D is the projection of E onto the xz-plane, y − u1sx, zd is the left surface, and 
y − u2sx, zd is the right surface (see Figure 8). For this type of region we have

11  y y
E

y f sx, y, zd dV − y
D

y Fyu2sx, zd

u1sx, zd
 f sx, y, zd dyG dA 

In each of Equations 10 and 11 there may be two possible expressions for the integral 
depending on whether D is a type I or type II plane region (and corresponding to Equa-
tions 7 and 8).

EXAMPLE 3 Evaluate yyyE sx 2 1 z 2  dV, where E is the region bounded by the parabo-
loid y − x 2 1 z2 and the plane y − 4.

x

0

z

y(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

E

z=1-x-y

z=0

FIGURE 5

0 

z

y x E 

D 

x=u¡(y, z) 

x=u™(y, z) 

FIGURE 7
A type 2 region

FIGURE 6

0

1

x1y=0

y=1-x

D

y

FIGURE 8
A type 3 region 

z 

y=u™(x, z) 

y=u¡(x, z) 
x 

0 

y 

D 
E 
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 SECTION 15.6  Triple Integrals 1033

SOLUTION The solid E is shown in Figure 9. If we regard it as a type 1 region, then we 
need to consider its projection D1 onto the xy-plane, which is the parabolic region in 
Figure 10. (The trace of y − x 2 1 z2 in the plane z − 0 is the parabola y − x 2.)

0 

FIGURE 10
Projection onto xy-plane

FIGURE 9
R e gion of int e gratio n 

0 

4 

y=≈+z@ 

E 

x 

y 

y=4 

y=≈ 
D¡ 

x 

z 

y 

From y − x 2 1 z2 we obtain z − 6sy 2 x 2 , so the lower boundary surface of E is 
z − 2sy 2 x 2  and the upper surface is z − sy 2 x 2 . Therefore the description of E 
as a type 1 region is

E − hsx, y, zd | 22 < x < 2, x 2 < y < 4, 2sy 2 x 2 < z < sy 2 x 2 j
and so we obtain

y y
E

y sx 2 1 z2   dV − y2

22
 y4

x2
 ysy2x2

 

2sy2x2
  sx 2 1 z 2  dz dy dx

Although this expression is correct, it is extremely difficult to evaluate. So let’s 
instead consider E as a type 3 region. As such, its projection D3 onto the xz-plane is the 
disk x 2 1 z2 < 4 shown in Figure 11.

Then the left boundary of E is the paraboloid y − x 2 1 z2 and the right boundary is 
the plane y − 4, so taking u1sx, zd − x 2 1 z2 and u2sx, zd − 4 in Equation 11, we have

 yy
E

y sx 2 1 z2  dV − y
D3

y Fy4

x21z2
 sx 2 1 z2  dyG dA − y

D3

y s4 2 x 2 2 z2 dsx 2 1 z2  dA

Although this integral could be written as

y2

22
 ys42x2

 

2s42x2
 

 
s4 2 x 2 2 z 2d sx 2 1 z 2 

 dz dx

it’s easier to convert to polar coordinates in the xz-plane: x − r cos %, z − r sin %. This 
gives

 y y
E

y sx 2 1 z2  dV − y
D3

y s4 2 x 2 2 z2 dsx 2 1 z2  dA

 − y2"

0
 y2

0
 s4 2 r 2 dr r dr d% − y2"

0
 d% y2

0
 s4r 2 2 r 4 d dr

  − 2"F 4r 3

3
2

r 5

5 G0

2

−
128"

15
 Q

TEC Visual 15.6 illustrates how solid 
regions (including the one in Figure 9) 
project onto coordinate planes.

FIGURE 11
Projection onto xz-plane

x0

z

≈+z@=4

_2 2

D£

 The most difficult step in evaluating 
a triple integral is setting up an expres-
sion for the region of integration (such 
as Equation 9 in Example 2). Remem  -
ber that the limits of integra tion in 
the inner integral contain at most two 
variables, the limits of integration in 
the middle integral contain at most one 
variable, and the limits of integration in 
the outer integral must be constants.
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EXAMPLE 4 Express the iterated integral y1
0 yx2

0 yy
0 f sx, y, zd dz dy dx as a triple integral 

and then rewrite it as an iterated integral in a different order, integrating first with respect 
to x, then z, and then y.

SOLUTION We can write

y1

0
 yx2

0 
 yy

0
 f sx, y, zd dz dy dx − y

E

yy f sx, y, zd dV

where E − hsx, y, zd | 0 < x < 1, 0 < y < x 2, 0 < z < yj. This description of E 
enables us to write projections onto the three coordinate planes as follows:

 on the xy-plane: D1 − hsx, yd | 0 < x < 1, 0 < y < x 2j

 − 5sx, yd | 0 < y < 1, sy < x < 16
 on the yz-plane: D2 − hsy, zd | 0 < y < 1, 0 < z < yj

 on the xz-plane: D3 − hsx, zd | 0 < x < 1, 0 < z < x 2j

From the resulting sketches of the projections in Figure 12 we sketch the solid E in Fig-
ure 13. We see that it is the solid enclosed by the planes z − 0, x − 1, y − z and the 
parabolic cylinder y − x 2 sor x − sy d.

If we integrate first with respect to x, then z, and then y, we use an alternate descrip-
tion of E:

E − 5 sx, y, zd | 0 < y < 1, 0 < z < y, sy < x < 16
Thus

 y y
E

y f sx, y, zd dV − y1

0
 yy

0
 y1

sy 
 f sx, y, zd dx dz dy Q

Applications of Triple Integrals
Recall that if f sxd > 0, then the single integral yb

a  f sxd dx represents the area under the
curve y − f sxd from a to b, and if f sx, yd > 0, then the double integral yy

D
 f sx, yd dA rep-

resents the volume under the surface z − f sx, yd and above D. The corresponding inter-
pretation of a triple integral yyyE f sx, y, zd dV, where f sx, y, zd > 0, is not very useful 
because it would be the “hypervolume” of a four-dimensional object and, of course, that 
is very difficult to visualize. (Remember that E is just the domain of the function f ; the 
graph of f  lies in four-dimensional space.) Nonetheless, the triple integral yyyE f sx, y, zd dV  
can be interpreted in different ways in different physical situations, depending on the 
phys ical interpretations of x, y, z, and f sx, y, zd.

Let’s begin with the special case where f sx, y, zd − 1 for all points in E. Then the 
triple integral does represent the volume of E:

12  VsEd − y y
E

y dV  

For example, you can see this in the case of a type 1 region by putting f sx, y, zd − 1 in 
Formula 6:

y y
E

y 1 dV − y
D

y Fyu2sx, yd

u1sx, yd
 dzG dA − y

D

y fu2sx, yd 2 u1sx, ydg dA

FIGURE 12
Projections of E
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z=≈
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FIGURE 13
The solid E
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 SECTION 15.6  Triple Integrals 1035

and from Section 15.2 we know this represents the volume that lies between the surfaces 
z − u1sx, yd and z − u2sx, yd.

EXAMPLE 5 Use a triple integral to find the volume of the tetrahedron T bounded by the 
planes x 1 2y 1 z − 2, x − 2y, x − 0, and z − 0.

SOLUTION The tetrahedron T  and its projection D onto the xy-plane are shown in Fig-
ures 14 and 15. The lower boundary of T  is the plane z − 0 and the upper boundary is 
the plane x 1 2y 1 z − 2, that is, z − 2 2 x 2 2y.

FIGURE 14

(or y=1- x/2)  

FIGURE 15

 y=x/2

”1,    ’1
2D

y

0

1

x1

x+2y=2

(0, 1, 0)

(0, 0, 2)

y

x

0

z

x+2y+z=2x=2y

”1,    , 0’1
2

T

Therefore we have

 VsT d − y y
T

y dV − y1

0
 y12xy2

xy2
 y22x22y

0
 dz dy dx

 − y1

0
 y12xy2

xy2
 s2 2 x 2 2yd dy dx − 1

3

by the same calculation as in Example 15.2.4.
(Notice that it is not necessary to use triple integrals to compute volumes. They 

simply give an alternative method for setting up the calculation.) Q

All the applications of double integrals in Section 15.4 can be immediately ex tended to 
triple integrals. For example, if the density function of a solid object that occupies the 
region E is !sx, y, zd, in units of mass per unit volume, at any given point sx, y, zd, then 
its mass is

13 � m − y y
E

y !sx, y, zd dV �

and its moments about the three coordinate planes are

14 � Myz − y y
E

y x !sx, y, zd dV � � � � � � Mxz − y y
E

y y !sx, y, zd dV �

Mx y − y y
E

y z !sx, y, zd dV

The center of mass is located at the point sx, y, z d, where

15 � x −
Myz

m
� � � � � � y −

Mxz

m
� � � � � � z −

Mxy

m
�
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1036 CHAPTER 15  Multiple Integrals

If the density is constant, the center of mass of the solid is called the centroid of E. The 
moments of inertia about the three coordinate axes are

16 � Ix − y y
E

y sy 2 1 z2 d !sx, y, zd dV � � � � � � Iy − y y
E

y sx 2 1 z2 d !sx, y, zd dV �

Iz − y y
E

ysx 2 1 y 2 d !sx, y, zd dV

As in Section 15.4, the total electric charge on a solid object occupying a region E 
and having charge density "sx, y, zd is

Q − y y
E

y "sx, y, zd dV

If we have three continuous random variables X, Y, and Z, their joint density func-
tion is a function of three variables such that the probability that sX, Y, Z d lies in E is

PssX, Y, Z d [ Ed − y y
E

y f sx, y, zd dV

In particular,

Psa < X < b, c < Y < d, r < Z < sd − yb

a
 yd

c
 ys

r
 f sx, y, zd dz dy dx

The joint density function satisfies

f sx, y, zd > 0� � � � � � y`

2`
 y`

2`
 y`

2`
 f sx, y, zd dz dy dx − 1

EXAMPLE 6 Find the center of mass of a solid of constant density that is bounded by the 
parabolic cylinder x − y2 and the planes x − z, z − 0, and x − 1.

SOLUTION The solid E and its projection onto the xy-plane are shown in Figure 16. 
The lower and upper surfaces of E are the planes z − 0 and z − x, so we describe E as 
a type 1 region:

E − hsx, y, zd | 21 < y < 1, y2 < x < 1, 0 < z < x j

Then, if the density is !sx, y, zd − !, the mass is

 m − y y
E

y ! dV − y1

21
 y1

y2 y x

0
 ! dz dx dy

 − ! y1

21
 y1

y2 x dx dy − ! y1

21
 F x 2

2 G
x−1

x−y2
 dy

 −
!

2
 y1

21
 s1 2 y 4 d dy − ! y1

0
 s1 2 y 4 d dy

 − !Fy 2
y 5

5 G0

1

−
4!

5

0 

y 

x 

x=1 
x=¥ 

D 

0 

1 

E 

z=x 

x 

z 

y 

FIGURE 16
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Because of the symmetry of E and ! about the xz-plane, we can immediately say that 
Mxz − 0 and therefore y − 0. The other moments are

 Myz − y y
E

y x! dV − y1

21
 y1

y2
 y x

0
 x! dz dx dy

 − ! y1

21
 y1

y2
 x 2 dx dy − ! y1

21
 F x 3

3 Gx−y2

x−1
 
dy

 −
2!

3
 y1

0
 s1 2 y 6 d dy −

2!

3
 Fy 2

y 7

7 G0

1

−
4!

7

 Mxy − y y
E

y z! dV − y1

21
 y1

y2 y x

0
 z! dz dx dy

 − ! y1

21
 y1

y2

 F z2

2 Gz−0

z−x

 dx dy −
!

2
 y1

21
 y1

y2
 x 2 dx dy

 −
!

3
 y1

0
 s1 2 y 6 d dy −

2!

7

Therefore the center of mass is

 sx, y, z d − SMyz

m
, 

Mxz

m
, 

Mxy

m D − (5
7 , 0, 5

14 ) Q

 1.  Evaluate the integral in Example 1, integrating first with 
respect to y, then z, and then x.

 2. Evaluate the integral yyy E sxy 1 z 2d dV, where

E − 5sx, y, zd | 0 < x < 2, 0 < y < 1, 0 < z < 36
  using three different orders of integration.

3–8 Evaluate the iterated integral.

 3. y2

0
 yz2

0
 yy2z

0
 s2x 2 yd dx dy dz

 4. y1

0
y2y

y
yx1y

0
 6xy dz dx dy

 5. y2

1
 y2z

0
 y ln x

0
 xe2y dy dx dz

 6. y1

0
 y1

0
ys12z2

 

0
 

z
y 1 1  dx dz dy

 7. y#

0
 y1

0
ys12z2 

0
 z sin x dy dz dx

 8. y1

0
y1

0
y22x22y2

0
 xye z dz dy dx

9–18 Evaluate the triple integral.

 9.  yyyE y dV, where

  E − h sx, y, zd | 0 < x < 3, 0 < y < x, x 2 y < z < x 1 y j
 10. yyyE e zyy dV, where

  E − 5sx, y, zd | 0 < y < 1, y < x < 1, 0 < z < xy6
 11.  yyyE 

z
x 2 1 z 2  dV, where

  E − h sx, y, zd | 1 < y < 4, y < z < 4, 0 < x < z j
 12.  yyyE sin y dV, where E lies below the plane z − x and above 

the triangular region with vertices s0, 0, 0d, s#, 0, 0d, and 
s0, #, 0d

 13.  yyyE 6xy dV, where E lies under the plane z − 1 1 x 1 y  
and above the region in the xy-plane bounded by the curves 
y − sx , y − 0, and x − 1

 14.  yyyE sx 2 yd dV, where E is enclosed by the surfaces 
z − x 2 2 1, z − 1 2 x 2, y − 0, and y − 2

 15.  yyyT y
2 dV, where T is the solid tetrahedron with vertices 

s0, 0, 0d, s2, 0, 0d, s0, 2, 0d, and s0, 0, 2d
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1038 CHAPTER 15  Multiple Integrals

29–32 Express the integral yyyE f sx, y, zd dV as an iterated 
integral in six different ways, where E is the solid bounded by 
the given surfaces.

 29. y − 4 2 x 2 2 4z2,  y − 0

 30. y 2 1 z2 − 9,  x − 22,  x − 2

 31. y − x 2,  z − 0,  y 1 2z − 4

 32. x − 2,  y − 2,  z − 0,  x 1 y 2 2z − 2

 33. The figure shows the region of integration for the integral

y1

0
 y1

sx 
 y12y

0
 f sx, y, zd dz dy dx

   Rewrite this integral as an equivalent iterated integral in the 
five other orders.

0 

z 

1 

x 

1 y 

z=1-y 
y=œ„x

 34. The figure shows the region of integration for the integral

y1

0
 y12x2

0
 y12x

0
 f sx, y, zd dy dz dx

   Rewrite this integral as an equivalent iterated integral in the 
five other orders.

1 
1 

1 
z=1-≈ 

y=1-x 

0 
y 

x 

z 

35–36 Write five other iterated integrals that are equal to the 
given iterated integral.

 35. y1

0
 y1

y
 yy

0
 f sx, y, zd dz dx dy

 36. y1

0
 y1

y
 yz

0
 f sx, y, zd dx dz dy

 16.  yyyT xz dV, where T is the solid tetrahedron with vertices 
s0, 0, 0d, s1, 0, 1d, s0, 1, 1d, and s0, 0, 1d

 17.  yyyE x dV, where E is bounded by the paraboloid  
x − 4y2 1 4z2 and the plane x − 4

 18.  yyyE z dV, where E is bounded by the cylinder y 2 1 z2 − 9  
and the planes x − 0, y − 3x, and z − 0 in the first octant

19–22 Use a triple integral to find the volume of the given solid.

 19.  The tetrahedron enclosed by the coordinate planes and the 
plane 2x 1 y 1 z − 4

 20.  The solid enclosed by the paraboloids y − x 2 1 z 2 and 
y − 8 2 x 2 2 z 2

 21.  The solid enclosed by the cylinder y − x 2 and the planes 
z − 0 and y 1 z − 1

 22.  The solid enclosed by the cylinder x 2 1 z 2 − 4 and the 
planes y − 21 and y 1 z − 4

 23. (a)  Express the volume of the wedge in the first octant 
that is cut from the cylinder y 2 1 z2 − 1 by the planes 
y − x and x − 1 as a triple integral.

 (b)  Use either the Table of Integrals (on Reference Pages  
6–10) or a computer algebra system to find the exact 
value of the triple integral in part (a).

 24. (a)  In the Midpoint Rule for triple integrals we use a 
triple Riemann sum to approximate a triple integral 
over a box B, where f sx, y, zd is evaluated at the center 
sxi, yj, zk d of the box Bijk. Use the Midpoint Rule to 

    estimate yyyB sx 2 1 y 2 1 z 2   dV, where B is the cube 
defined by 0 < x < 4, 0 < y < 4, 0 < z < 4. Divide 
B into eight cubes of equal size.

 (b)  Use a computer algebra system to approximate the  
integral in part (a) correct to the nearest integer. Com-
pare with the answer to part (a).

25–26 Use the Midpoint Rule for triple integrals (Exer cise 24) 
to estimate the value of the integral. Divide B into eight sub-
boxes of equal size.

 25.  yyyB cossxyzd dV, where 
  B − hsx, y, zd | 0 < x < 1, 0 < y < 1, 0 < z < 1j

 26.  yyyB sx e xyz dV, where 

  B − hsx, y, zd | 0 < x < 4, 0 < y < 1, 0 < z < 2j

27–28 Sketch the solid whose volume is given by the iterated  
integral.

 27. y1

0
 y12x

0
 y222z

0
 dy dz dx 28. y2

0
 y22y

0
 y42y2

0
 dx dz dy

CAS

CAS
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 SECTION 15.6  Triple Integrals 1039

 49.  Let E be the solid in the first octant bounded by the cylinder 
x 2 1 y 2 − 1 and the planes y − z, x − 0, and z − 0 with 
the density function ! sx, y, zd − 1 1 x 1 y 1 z. Use a 
computer algebra system to find the exact values of the fol-
lowing quantities for E.

 (a) The mass
 (b) The center of mass
 (c) The moment of inertia about the z-axis

 50.  If E is the solid of Exercise 18 with density function 
! sx, y, zd − x 2 1 y 2, find the following quantities, correct  
to three decimal places.

 (a) The mass
 (b) The center of mass
 (c) The moment of inertia about the z-axis

 51.  The joint density function for random variables X, Y, and Z 
is f sx, y, zd − Cxyz if 0 < x < 2, 0 < y < 2, 0 < z < 2, 
and f sx, y, zd − 0 otherwise.

 (a) Find the value of the constant C.
 (b) Find PsX < 1, Y < 1, Z < 1d.
 (c) Find PsX 1 Y 1 Z < 1d.

 52.  Suppose X, Y, and Z are random variables with joint density 
function f sx, y, zd − Ce2s0.5x10.2y10.1zd if x > 0, y > 0, z > 0, 
and f sx, y, zd − 0 otherwise.

 (a) Find the value of the constant C.
 (b) Find PsX < 1, Y < 1d.
 (c) Find PsX < 1, Y < 1, Z < 1d.

53–54 The average value of a function f sx, y, zd over a solid 
region E is defined to be 

fave −
1

VsE d
 y y

E

y f sx, y, zd dV

 where VsE d is the volume of E. For instance, if ! is a density  
function, then !ave is the average density of E.

 53.  Find the average value of the function f sx, y, zd − xyz over  
the cube with side length L that lies in the first octant with 
one vertex at the origin and edges parallel to the coordinate 
axes.

 54.  Find the average height of the points in the solid hemisphere 
x 2 1 y 2 1 z 2 < 1, z > 0.

 55. (a) Find the region E for which the triple integral 

y y
E

y s1 2 x 2 2 2y 2 2 3z 2d dV

   is a maximum.
 (b)  Use a computer algebra system to calculate the exact  

maximum value of the triple integral in part (a).

CAS

CAS

CAS

37–38 Evaluate the triple integral using only geometric 
interpretation and symmetry.

 37.  yyyC s4 1 5x 2yz 2d dV, where C is the cylindrical region

  x 2 1 y 2 < 4, 22 < z < 2

 38.  yyyB sz 3 1 sin y 1 3d dV, where B is the unit ball

  x 2 1 y 2 1 z 2 < 1

39–42 Find the mass and center of mass of the solid E with the 
given density function !.

 39.  E lies above the xy-plane and below the paraboloid 
z − 1 2 x 2 2 y 2;  ! sx, y, zd − 3

 40.  E is bounded by the parabolic cylinder z − 1 2 y 2 and the 
planes x 1 z − 1, x − 0, and z − 0;  ! sx, y, zd − 4

 41.  E is the cube given by 0 < x < a, 0 < y < a, 0 < z < a;  
! sx, y, zd − x 2 1 y 2 1 z2

 42.  E is the tetrahedron bounded by the planes x − 0, y − 0,  
z − 0, x 1 y 1 z − 1;  ! sx, y, zd − y

43–46 Assume that the solid has constant density k.

 43.  Find the moments of inertia for a cube with side length L if  
one vertex is located at the origin and three edges lie along 
the coordinate axes.

 44.  Find the moments of inertia for a rectangular brick with 
dimensions a, b, and c and mass M if the center of the brick 
is situated at the origin and the edges are parallel to the 
coordinate axes.

 45.  Find the moment of inertia about the z-axis of the solid  
cylinder x 2 1 y 2 < a 2, 0 < z < h.

 46.  Find the moment of inertia about the z-axis of the solid cone 
sx 2 1 y 2 < z < h.

47–48 Set up, but do not evaluate, integral expressions for  
(a) the mass, (b) the center of mass, and (c) the moment of  
inertia about the z-axis.

 47. The solid of Exercise 21;  ! sx, y, zd − sx 2 1 y 2 

 48.  The hemisphere x 2 1 y 2 1 z2 < 1, z > 0; 
  ! sx, y, zd − sx 2 1 y 2 1 z 2 
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1040 CHAPTER 15  Multiple Integrals

In plane geometry the polar coordinate system is used to give a convenient description of 
certain curves and regions. (See Section 10.3.) Figure 1 enables us to recall the connec-
tion between polar and Cartesian coordinates. If the point P has Cartesian coordinates 
sx, yd and polar coordinates sr, $d, then, from the figure,

 x − r cos $ y − r sin $

r 2 − x 2 1 y 2        tan $ −
y
x

In three dimensions there is a coordinate system, called cylindrical coordinates, that 
is similar to polar coordinates and gives convenient descriptions of some commonly 
occurring surfaces and solids. As we will see, some triple integrals are much easier to 
evaluate in cylindrical coordinates.

Cylindrical Coordinates
In the cylindrical coordinate system, a point P in three-dimensional space is represented 
by the ordered triple sr, $, zd, where r and $ are polar coordinates of the projection of P 
onto the xy-plane and z is the directed distance from the xy-plane to P. (See Figure 2.)

To convert from cylindrical to rectangular coordinates, we use the equations

1  x − r cos $    y − r sin $    z − z 

whereas to convert from rectangular to cylindrical coordinates, we use

2  r 2 − x 2 1 y 2    tan $ −
y
x

    z − z 

O

y

x
¨

x

yr

P(r, ̈ )=P(x, y)

FIGURE 1

In this project we find formulas for the volume enclosed by a hypersphere in n-dimensional 
space.

1.  Use a double integral and trigonometric substitution, together with Formula 64 in the Table of 
Integrals, to find the area of a circle with radius r.

2.  Use a triple integral and trigonometric substitution to find the volume of a sphere with  
radius r.

3.  Use a quadruple integral to find the (4-dimensional) volume enclosed by the hypersphere 
x 2 1 y 2 1 z 2 1 w 2 − r 2 in R4. (Use only trigonometric substitution and the reduction  
formulas for y sinnx dx or y cosnx dx.)

4.  Use an n-tuple integral to find the volume enclosed by a hypersphere of radius r in  
n-dimensional space Rn.  [Hint: The formulas are different for n even and n odd.]

DISCOVERY PROJECT VOLUMES OF HYPERSPHERES

O
r

z

¨

(r, ̈ , 0)

P(r, ̈ , z)

FIGURE 2
The cylindrical coordinates of a point

x

z

y
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EXAMPLE 1 
(a) Plot the point with cylindrical coordinates s2, 2#y3, 1d and find its rectangular  
coordinates.
(b) Find cylindrical coordinates of the point with rectangular coordinates s3, 23, 27d.

SOLUTION
(a) The point with cylindrical coordinates s2, 2#y3, 1d is plotted in Figure 3. From 
Equations 1, its rectangular coordinates are

 x − 2 cos 
2#

3
− 2S2 1

2D − 21

 y − 2 sin 
2#

3
− 2Ss3 

2 D − s3 

 z − 1

So the point is s21, s3 , 1d in rectangular coordinates.

(b) From Equations 2 we have

r − s32 1 s23d2 − 3s2 

tan $ −
23
3

− 21    so    $ −
7#

4
1 2n#

z − 27

Therefore one set of cylindrical coordinates is s3s2 , 7#y4, 27d. Another is 
s3s2 , 2#y4, 27d. As with polar coordinates, there are infinitely many choices. Q

Cylindrical coordinates are useful in problems that involve symmetry about an axis, 
and the z-axis is chosen to coincide with this axis of symmetry. For instance, the axis of 
the circular cylinder with Cartesian equation x 2 1 y 2 − c 2 is the z-axis. In cylindrical 
coordinates this cylinder has the very simple equation r − c. (See Figure 4.) This is the 
reason for the name “cylindrical” coordinates.

EXAMPLE 2 Describe the surface whose equation in cylindrical coordinates is z − r.

SOLUTION The equation says that the z-value, or height, of each point on the surface is 
the same as r, the distance from the point to the z-axis. Because $ doesn’t appear, it can 
vary. So any horizontal trace in the plane z − k sk . 0d is a circle of radius k. These 
traces suggest that the surface is a cone. This prediction can be confirmed by converting 
the equation into rectangular coordinates. From the first equation in (2) we have

z2 − r 2 − x 2 1 y 2

We recognize the equation z2 − x 2 1 y 2 (by comparison with Table 1 in Section 12.6) 
as being a circular cone whose axis is the z-axis (see Figure 5). Q

”2,       , 1’2π
3

0

2π
3

2

1

x
y

z

FIGURE 3

FIGURE 4
r=c, a cylinder

0

z

y

x

(0, c, 0)

(c, 0, 0)

FIGURE 5
z=r , a cone 

0 

z 

x 

y 
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1042 CHAPTER 15  Multiple Integrals

Evaluating Triple Integrals with Cylindrical Coordinates
Suppose that E is a type 1 region whose projection D onto the xy-plane is conveniently 
described in polar coordinates (see Figure 6). In particular, suppose that f  is continuous 
and

E − 5sx, y, zd | sx, yd [ D, u1sx, yd < z < u2sx, yd6
where D is given in polar coordinates by

D − 5sr, $d | % < $ < &, h1s$d < r < h2s$d6
We know from Equation 15.6.6 that

3  y y
E

y f sx, y, zd dV − y
D

y Fyu2sx, yd

u1sx, yd
 f sx, y, zd dzG dA 

But we also know how to evaluate double integrals in polar coordinates. In fact, combin-
ing Equation 3 with Equation 15.3.3, we obtain

4  y y
E

y f sx, y, zd dV − y&

%
 yh2s$d

h1s$d
 yu2sr cos $, r sin $d

u1sr cos $, r sin $d
 f sr cos $, r sin $, zd r dz dr d$ 

Formula 4 is the formula for triple integration in cylindrical coordinates. It says that 
we convert a triple integral from rectangular to cylindrical coordinates by writing 
x − r cos $, y − r sin $, leaving z as it is, using the appropriate limits of integration for z,  
r, and $, and replacing dV  by r dz dr d$. (Figure 7 shows how to remember this.) It is  
worthwhile to use this formula when E is a solid region easily described in cylindrical  
coordinates, and especially when the function f sx, y, zd involves the expression x 2 1 y2.

EXAMPLE 3 A solid E lies within the cylinder x 2 1 y 2 − 1, below the plane z − 4, and 
above the paraboloid z − 1 2 x 2 2 y 2. (See Figure 8.) The density at any point is 
proportional to its distance from the axis of the cylinder. Find the mass of E.

SOLUTION In cylindrical coordinates the cylinder is r − 1 and the paraboloid is 
z − 1 2 r 2, so we can write

E − 5sr, $, zd | 0 < $ < 2#, 0 < r < 1, 1 2 r 2 < z < 46
Since the density at sx, y, zd is proportional to the distance from the z-axis, the density 
function is

f sx, y, zd − Ksx 2 1 y 2 − Kr

where K is the proportionality constant. Therefore, from Formula 15.6.13, the mass of 
E is

 m − y y
E

y Ksx 2 1 y 2  dV − y2#

0
 y1

0
 y4

12r2

 sKrd r dz dr d$

 − y2#

0
 y1

0
 Kr 2 f4 2 s1 2 r 2 dg dr d$ − K y2#

0
 d$ y1

0
 s3r 2 1 r 4 d dr

  − 2#KFr 3 1
r 5

5 G0

1

−
12#K

5
 Q

z

x
y

0

D
r=h™(¨)

¨=b
¨=a

r=h¡(¨)

z=u™(x, y)

z=u¡(x, y)

FIGURE 6

z

dz

dr
r d¨

d¨
r

Volume element in cylindrical
coordinates: dV=r dz dr d¨

0 
(1,  0,  0 ) 

(0 ,  0,  1 ) 

(0 ,  0,  4 ) 
z=4 

z=1-r @ 

z 

x 
y 

FIGURE 8

FIGURE 7
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EXAMPLE 4 Evaluate y2

22
 ys42x2 

2s42x2  
y2

sx21y2 

 sx 2 1 y 2d dz dy dx.

SOLUTION This iterated integral is a triple integral over the solid region 

E − hsx, y, zd | 22 < x < 2, 2s4 2 x 2 < y < s4 2 x 2 , sx 2 1 y 2 < z < 2j
and the projection of E onto the xy-plane is the disk x 2 1 y 2 < 4. The lower sur face of 
E is the cone z − sx 2 1 y 2  and its upper surface is the plane z − 2. (See Fig ure 9.) 
This region has a much simpler description in cylindrical coordinates:

E − hsr, $, zd | 0 < $ < 2#, 0 < r < 2, r < z < 2 j
Therefore we have

  y2

22
 ys42x2

 

2s42x2  
y2

sx21y2 

 sx 2 1 y 2d dz dy dx − y y
E

y sx 2 1 y 2d dV

 − y2#

0
 y2

0
 y2

r
 r 2 r dz dr d$

 − y2#

0
 d$ y2

0
 r 3s2 2 rd dr

 − 2# f1
2 r 4 2 1

5 r 5 g0

2
− 16

5 # Q

z=œ„„„„„ ≈+¥ 

z=2 

2 

z 

x 2 y 2 

FIGURE 9

1–2 Plot the point whose cylindrical coordinates are given. 
Then find the rectangular coordinates of the point.

 1. (a) s4, #y3, 22d (b) s2, 2#y2, 1d

 2. (a) ss2 , 3#y4, 2d (b) s1, 1, 1d

3–4 Change from rectangular to cylindrical coordinates.

 3. (a) s21, 1, 1d (b) s22, 2s3 , 3d
 4. (a) (2s2 , s2 , 1) (b) s2, 2, 2d

5–6 Describe in words the surface whose equation is given.

 5. r − 2 6. $ − #y6

7–8 Identify the surface whose equation is given.

 7. r 2 1 z 2 − 4 8. r − 2 sin $

9–10 Write the equations in cylindrical coordinates.

 9. (a) x 2 2 x 1 y 2 1 z 2 − 1 (b) z − x 2 2 y 2

 10. (a) 2x 2 1 2y 2 2 z 2 − 4 (b) 2x 2 y 1 z − 1

11–12 Sketch the solid described by the given inequalities.

 11. r 2 < z < 8 2 r 2

 12. 0 < $ < #y2,  r < z < 2

 13.  A cylindrical shell is 20 cm long, with inner radius 6 cm 
and outer radius 7 cm. Write inequalities that describe the 
shell in an appropriate coordinate system. Explain how you 
have positioned the coordinate system with respect to the 
shell.

 14.  Use a graphing device to draw the solid enclosed by the  
paraboloids z − x 2 1 y 2 and z − 5 2 x 2 2 y 2.

15–16 Sketch the solid whose volume is given by the integral  
and evaluate the integral.

 15. y#y2

2#y2
 y2

0
 yr2

0
 r dz dr d$ 16. y2

0
 y2#

0
 yr

0
 r dz d$ dr

17–28 Use cylindrical coordinates.

 17.  Evaluate yyyE sx 2 1 y 2  dV, where E is the region that lies 
inside the cylinder x 2 1 y 2 − 16 and between the planes 
z − 25 and z − 4.

 18.  Evaluate yyyE z dV, where E is enclosed by the paraboloid
  z − x 2 1 y 2 and the plane z − 4.

;
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29–30 Evaluate the integral by changing to cylindrical 
coordinates.

 29. y2

22
 ys42y2

 

2s42y2  y
2

sx21y2 

   xz dz dx dy

 30. y3

23
 ys92x2  

0
 y92x22y2

0
 sx2 1 y2  dz dy dx

 31.  When studying the formation of mountain ranges, geolo-
gists estimate the amount of work required to lift a moun-
tain from sea level. Consider a mountain that is essentially 
in the shape of a right circular cone. Suppose that the 
weight density of the material in the vicinity of a point P is 
tsPd and the height is hsPd.

 (a)  Find a definite integral that represents the total work 
done in forming the mountain.

 (b)  Assume that Mount Fuji in Japan is in the shape of a 
right circular cone with radius 62,000 ft, height 
12,400 ft, and density a constant 200 lbyft3. How much 
work was done in forming Mount Fuji if the land was 
initially at sea level?

©
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 19.  Evaluate yyyE sx 1 y 1 zd dV, where E is the solid in the 
first octant that lies under the paraboloid z − 4 2 x 2 2 y 2.

 20.  Evaluate yyyE sx 2 yd dV, where E is the solid that lies 
between the cylinders x 2 1 y 2 − 1 and x 2 1 y 2 − 16, 
above the xy-plane, and below the plane z − y 1 4.

 21.  Evaluate yyyE x 2 dV, where E is the solid that lies within the 
   cylinder x 2 1 y 2 − 1, above the plane z − 0, and below the 

cone z2 − 4x 2 1 4y 2.

 22.  Find the volume of the solid that lies within both the cylin-
der x 2 1 y 2 − 1 and the sphere x 2 1 y 2 1 z2 − 4.

 23.  Find the volume of the solid that is enclosed by the cone 
z − sx 2 1 y 2  and the sphere x 2 1 y 2 1 z 2 − 2.

 24.  Find the volume of the solid that lies between the parabo-
loid z − x 2 1 y 2 and the sphere x 2 1 y 2 1 z 2 − 2.

 25. (a)  Find the volume of the region E that lies between 
the paraboloid z − 24 2 x 2 2 y 2 and the cone 
z − 2sx 2 1 y 2 .

 (b)  Find the centroid of E (the center of mass in the case 
where the density is constant).

 26. (a)  Find the volume of the solid that the cylinder 
r − a cos ! cuts out of the sphere of radius a centered 
at the origin.

 (b)  Illustrate the solid of part (a) by graphing the sphere 
and the cylinder on the same screen.

 27.  Find the mass and center of mass of the solid S bounded by 
the paraboloid z − 4x 2 1 4y 2 and the plane z − a sa . 0d 
if S has constant density K.

 28.  Find the mass of a ball B given by x 2 1 y 2 1 z2 < a 2 if the 
density at any point is proportional to its distance from the  
z-axis.

;

The figure shows the solid enclosed by three circular cylinders with the same diameter that inter-
sect at right angles. In this project we compute its volume and determine how its shape changes if 
the cylinders have different diameters.

DISCOVERY PROJECT THE INTERSECTION OF THREE CYLINDERS
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Another useful coordinate system in three dimensions is the spherical coordinate system. 
It simplifies the evaluation of triple integrals over regions bounded by spheres or cones.

Spherical Coordinates
The spherical coordinates s", !, #d of a point P in space are shown in Figure 1, where 
" − | OP | is the distance from the origin to P, ! is the same angle as in cylindrical coor-
di nates, and # is the angle between the positive z-axis and the line segment OP. Note that

" > 0      0 < # < $

The spherical coordinate system is especially useful in problems where there is symmetry 
about a point, and the origin is placed at this point. For example, the sphere with center the 
origin and radius c has the simple equation " − c (see Figure 2); this is the reason for  
the name “spherical” coordinates. The graph of the equation ! − c is a vertical half-
plane (see Figure 3), and the equation # − c represents a half-cone with the z-axis as its 
axis (see Figure 4).

0 
c 

0 
0 

c 

0<c<π/2

0 c 

π/2<c<π

z 

x 
y 

z 

x 
y 

z 

y 

x 

z 

y 

x 

FIGURE 2 " − c, a sphere  FIGURE 3  ! − c, a half-plane FIGURE 4 # − c, a half-cone

P(∏, ¨, ˙)

O

z

∏

¨

˙

x y

FIGURE 1 
 The spherical coordinates of a point

1.   Sketch carefully the solid enclosed by the three cylinders x 2 1 y 2 − 1, x 2 1 z 2 − 1, and 
y 2 1 z 2 − 1. Indicate the positions of the coordinate axes and label the faces with the equa-
tions of the corresponding cylinders.

2. Find the volume of the solid in Problem 1.

3. Use a computer algebra system to draw the edges of the solid.

4.  What happens to the solid in Problem 1 if the radius of the first cylinder is different  
from 1? Illustrate with a hand-drawn sketch or a computer graph.

5.  If the first cylinder is x 2 1 y 2 − a 2, where a , 1, set up, but do not evaluate, a double inte-
gral for the volume of the solid. What if a . 1?

CAS
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1046 CHAPTER 15  Multiple Integrals

The relationship between rectangular and spherical coordinates can be seen from Fig-
ure 5. From triangles OPQ and OPP9 we have

z − " cos #      r − " sin #

But x − r cos ! and y − r sin !, so to convert from spherical to rectangular coordinates, 
we use the equations

1  x − " sin # cos !    y − " sin # sin !    z − " cos # 

Also, the distance formula shows that

2  "2 − x 2 1 y 2 1 z2 

We use this equation in converting from rectangular to spherical coordinates.

EXAMPLE 1 The point s2, $y4, $y3d is given in spherical coordinates. Plot the point 
and find its rectangular coordinates.

SOLUTION We plot the point in Figure 6. From Equations 1 we have

 x − " sin #  cos ! − 2 sin 
$

3
 cos 

$

4
− 2Ss3 

2 DS 1

s2 D − Î3
2

 

 y − " sin # sin ! − 2 sin 
$

3
 sin 

$

4
− 2Ss3 

2 DS 1

s2 D − Î3
2

 

 z − " cos # − 2 cos 
$

3
− 2(1

2) − 1

Thus the point s2, $y4, $y3d is ss3y2 , s3y2 , 1d in rectangular coordinates. Q

EXAMPLE 2 The point s0, 2s3 , 22d is given in rectangular coordinates. Find spherical 
coordinates for this point.

SOLUTION From Equation 2 we have

" − sx 2 1 y 2 1 z 2 − s0 1 12 1 4 − 4

and so Equations 1 give

 cos # −
z
"

−
22
4

− 2
1
2

    # −
2$

3

  cos ! −
x

" sin #
− 0 ! −

$

2

(Note that ! ± 3$y2 because y − 2s3 . 0.) Therefore spherical coordinates of the 
given point are s4, $y2, 2$y3d. Q

P(x, y, z)
P(∏, ̈ , ̇ )

P ª(x, y, 0)

O

¨

y

x

z
˙

r

∏

x
y

z

˙

Q

FIGURE 5

0
2

π
3

π
4

(2, π/4, π/3)

z

x
y

FIGURE 6

 WARNING There is not universal 
agreement on the notation for spherical 
coordinates. Most books on physics 
reverse the meanings of ! and # and use 
r in place of ".

TEC In Module 15.8 you can investi-
gate families of surfaces in cylindrical 
and spherical coordinates.
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Evaluating Triple Integrals with Spherical Coordinates
In the spherical coordinate system the counterpart of a rectangular box is a spherical 
wedge

E − hs", !, #d | a < " < b, % < ! < &, c < # < d j

where a > 0 and & 2 % < 2$, and d 2 c < $. Although we defined triple integrals 
by dividing solids into small boxes, it can be shown that dividing a solid into small 
spherical wedges always gives the same result. So we divide E into smaller spherical 
wedges Eijk by means of equally spaced spheres " − "i, half-planes ! − !j, and half-
cones # − #k. Figure 7 shows that Eijk is approximately a rectangular box with dimen-
sions D", "i D# (arc of a circle with radius "i, angle D#), and "i sin #k D! (arc of a circle 
with radius "i sin #k, angle D!). So an approximation to the volume of Eijk is given by

DVijk <  sD"ds"i D#ds"i sin #k D!d − "i
2 sin #k D" D! D#

In fact, it can be shown, with the aid of the Mean Value Theorem (Exercise 49), that the 
volume of Eijk is given exactly by

DVijk − "~ i
2 sin #

~

k D" D! D#

where s"~ i, !
~

j, #
~

k d is some point in Eijk. Let sx ijk* , y ijk* , z ijk* d be the rectangular coordinates 
of this point. Then

y y
E

y f sx, y, zd dV − lim
l, m, n l `

 o
l

i−1
 o

m

j−1
 o

n

k−1
 f sxijk* , yijk* , z ijk* d DVijk

− lim
l, m, n l `

 o
l

i−1
o
m

j−1
o

n

k−1
 f s"~ i sin #

~

k cos !
~

j, "
~

i sin #
~

k sin !
~

j, "
~

i cos #
~

k d "~ i
2 sin #

~

k D"D!D#

But this sum is a Riemann sum for the function

Fs", !, #d − f s" sin # cos !, " sin # sin !, " cos #d "2 sin #

Consequently, we have arrived at the following formula for triple integration in spher-
ical coordinates.

3   y y
E

y f sx, y, zd dV

     − yd

c
 y&

%
 yb

a
 f s" sin # cos !, " sin # sin !, " cos #d "2 sin # d" d! d#

where E is a spherical wedge given by

E − hs", !, #d | a < " < b, % < ! < &, c < # < d j

Formula 3 says that we convert a triple integral from rectangular coordinates to spheri-
cal coordinates by writing

x − " sin # cos !      y − " sin # sin !      z − " cos #

using the appropriate limits of integration, and replacing dV  by "2 sin # d" d! d#. This 
is illustrated in Figure 8.

z

0

x
y

ri=∏i sin ˙k

ri Î¨=∏i sin ˙k Î¨

∏i Î˙

∏i sin ˙k Î¨ Î∏

Î˙
˙k

Î¨

FIGURE 7

Volume element in spherical
coordinates: dV=∏ @ sin  ̇d∏ d  ̈d˙

z

0

x
yd¨

∏ d˙

˙

∏ sin ˙ d¨

∏

d∏

d˙

FIGURE 8
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1048 CHAPTER 15  Multiple Integrals

This formula can be extended to include more general spherical regions such as

E − hs", !, #d | % < ! < &, c < # < d, t1s!, #d < " < t2s!, #dj

In this case the formula is the same as in (3) except that the limits of integration for " are 
t1s!, #d and t2s!, #d.

Usually, spherical coordinates are used in triple integrals when surfaces such as cones 
and spheres form the boundary of the region of integration.

EXAMPLE 3 Evaluate yyyB e
sx21y21z2d3y2 dV, where B is the unit ball:

B − hsx, y, zd | x 2 1 y 2 1 z2 < 1j

SOLUTION Since the boundary of B is a sphere, we use spherical coordinates:

B − hs", !, #d | 0 < " < 1, 0 < ! < 2$, 0 < # < $ j

In addition, spherical coordinates are appropriate because

x 2 1 y 2 1 z2 − "2

Thus (3) gives

 y y
B

y e sx21y21z2d3y2 dV − y$

0
 y2$

0
 y1

0
 es"2d3y2

"2 sin # d" d! d#

  − y$

0
 sin # d#  y2$

0
 d!  y1

0
 "2e "3 d"

  − f2cos #g0

$
 s2$d f1

3e "3g0

1
− 4

3$ se 2 1d Q

NOTE It would have been extremely awkward to evaluate the integral in Example 3 
without spherical coordinates. In rectangular coordinates the iterated integral would have 
been

y1

21
 ys12x2

 

2s12x2 
 ys12x22y2

 

2s12x22y2  
 e sx21y21z2d3y2 dz dy dx

EXAMPLE 4 Use spherical coordinates to find the volume of the solid that lies above the 
cone z − sx 2 1 y 2  and below the sphere x 2 1 y 2 1 z2 − z. (See Figure 9.)

(0, 0, 1) 
≈+¥+z@=z 

z=œ„„„„„ ≈+¥ 
π 
4 

y 
x 

z 

FIGURE 9
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SOLUTION Notice that the sphere passes through the origin and has center s0, 0, 12 d. We 
write the equation of the sphere in spherical coordinates as

"2 − " cos #    or    " − cos #

The equation of the cone can be written as

" cos # − s"2 sin2 # cos 2 ! 1 "2 sin2 # sin2 ! − " sin #

This gives sin # − cos #, or # − $y4. Therefore the description of the solid E in  
spherical coordinates is

E − hs", !, #d | 0 < ! < 2$, 0 < # < $y4, 0 < " < cos # j

Figure 11 shows how E is swept out if we integrate first with respect to ", then #, and 
then !. The volume of E is

 VsEd − y y
E

y dV − y2$

0
 y$y4

0
 ycos

 
#

0
 "2 sin # d" d# d!

 − y2$

0
 d!  y$y4

0
 sin #F "3

3 G"−0

"−cos #

 d#

  −
2$

3
 y$y4

0
 sin # cos3# d# −

2$

3
 F2

cos4#

4 G
0

$y4

−
$

8
 

¨ varies from 0 to 2π.

z

yx

z

yx
∏ varies from 0 to cos ˙
while ˙ and ̈   are constant.

z

yx
˙ varies from 0 to π/4
 while ¨ is constant.

 
Q

Figure 10 gives another look (this 
time drawn by Maple) at the solid of 
Example 4.

TEC Visual 15.8 shows an animation 
of Figure 11.

1–2 Plot the point whose spherical coordinates are given. Then  
find the rectangular coordinates of the point.

 1. (a) s6, $y3, $y6d (b) s3, $y2, 3$y4d

 2. (a) s2, $y2, $y2d (b) s4, 2$y4, $y3d

3–4 Change from rectangular to spherical coordinates.

 3. (a) s0, 22, 0d (b) s21, 1, 2s2 d

 4. (a) s1, 0, s3 d (b) ss3 , 21, 2s3 d

FIGURE 10

FIGURE 11
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1050 CHAPTER 15  Multiple Integrals

 22.  Evaluate yyyE y2z 2 dV, where E lies above the cone # − $y3 
and below the sphere " − 1.

 23.  Evaluate yyyE sx 2 1 y2d dV, where E lies between the spheres
  x 2 1 y 2 1 z 2 − 4 and x 2 1 y 2 1 z 2 − 9.

 24.  Evaluate yyyE y 2 dV, where E is the solid hemisphere
  x 2 1 y 2 1 z2 < 9, y > 0.

 25.  Evaluate yyyE xe x21y21z2 

dV, where E is the portion of the unit
  ball x 2 1 y 2 1 z 2 < 1 that lies in the first octant.

 26.  Evaluate yyyE sx 2 1 y 2 1 z 2  dV, where E lies above the cone 
   z − sx 2 1 y 2  and between the spheres x 2 1 y 2 1 z 2 − 1 and 

x 2 1 y 2 1 z 2 − 4.

 27.  Find the volume of the part of the ball " < a that lies between 
the cones # − $y6 and # − $y3.

 28.  Find the average distance from a point in a ball of radius a to 
its center.

 29. (a)  Find the volume of the solid that lies above the cone 
# − $y3 and below the sphere " − 4 cos #.

 (b) Find the centroid of the solid in part (a).

 30.  Find the volume of the solid that lies within the sphere 
x 2 1 y 2 1 z 2 − 4, above the xy-plane, and below the cone 
z − sx 2 1 y 2 .

 31. (a)  Find the centroid of the solid in Example 4. (Assume con-
stant density K.)

 (b)  Find the moment of inertia about the z-axis for this solid.

 32.  Let H be a solid hemisphere of radius a whose density at any 
point is proportional to its distance from the center of the base.

 (a) Find the mass of H.
 (b) Find the center of mass of H.
 (c) Find the moment of inertia of H about its axis.

 33. (a)  Find the centroid of a solid homogeneous hemisphere of 
radius a.

 (b)  Find the moment of inertia of the solid in part (a) about a 
diameter of its base.

 34.  Find the mass and center of mass of a solid hemisphere of 
radius a if the density at any point is proportional to its  
distance from the base.

35–40 Use cylindrical or spherical coordinates, whichever seems 
more appropriate.

 35.  Find the volume and centroid of the solid E that lies above the 
cone z − sx 2 1 y 2  and below the sphere x 2 1 y 2 1 z2 − 1.

 36.  Find the volume of the smaller wedge cut from a sphere of 
radius a by two planes that intersect along a diameter at an 
angle of $y6.

 37.  A solid cylinder with constant density has base radius a and 
height h.

 (a) Find the moment of inertia of the cylinder about its axis.
 (b)  Find the moment of inertia of the cylinder about a diameter 

of its base.

5–6 Describe in words the surface whose equation is given.

 5. # − $y3 6. " 2 2 3" 1 2 − 0

7–8 Identify the surface whose equation is given.

 7. " cos # − 1 8. " − cos #

9–10 Write the equation in spherical coordinates.

 9. (a) x 2 1 y 2 1 z 2 − 9 (b) x 2 2 y 2 2 z 2 − 1

 10. (a) z − x 2 1 y 2 (b) z − x 2 2 y 2

11–14 Sketch the solid described by the given inequalities.

 11. " < 1, 0 < # < $y6, 0 < ! < $

 12. 1 < " < 2, $y2 < # < $

 13. 2 < " < 4,  0 < # < $y3,  0 < ! < $

 14. " < 2,  " < csc #

 15.  A solid lies above the cone z − sx 2 1 y 2  and below the 
sphere x 2 1 y 2 1 z2 − z. Write a description of the solid in 
terms of inequalities involving spherical coordinates.

 16. (a)  Find inequalities that describe a hollow ball with diameter 
30 cm and thickness 0.5 cm. Explain how you have posi-
tioned the coordinate system that you have chosen.

 (b)  Suppose the ball is cut in half. Write inequalities that 
describe one of the halves.

17–18 Sketch the solid whose volume is given by the integral  
and evaluate the integral.

 17. y$y6

0
 y$y2

0
 y3

0
 "2 sin # d" d! d#

 18. y$y4

0
y2$

0
ysec #

0
 " 2 sin # d" d! d#

19–20 Set up the triple integral of an arbitrary continuous function 
f sx, y, zd in cylindrical or spherical coordinates over the solid 
shown.

 19.   20. z 

x y 

3 

2 

z 

x y 2 
1 

21–34 Use spherical coordinates.

 21.  Evaluate yyyB sx2 1 y2 1 z2 d2 dV, where B is the ball with  
center the origin and radius 5.
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distance from Los Angeles (lat. 34.06° N, long. 118.258 W) 
to Montréal (lat. 45.50° N, long. 73.60° W). Take the radius 
of the earth to be 3960 mi. (A great circle is the circle of 
intersection of a sphere and a plane through the center of 
the sphere.)

 47.   The surfaces " − 1 1 1
5 sin m! sin n# have been used as 

models for tumors. The “bumpy sphere” with m − 6 and 
n − 5 is shown. Use a computer algebra system to find the 
volume it encloses.

 48. Show that

y`

2` 
y`

2` 
y`

2`
 sx 2 1 y 2 1 z2 

 
e2sx21y21z2d dx dy dz − 2$

   (The improper triple integral is defined as the limit of a  
triple integral over a solid sphere as the radius of the sphere 
increases indefinitely.)

 49. (a)  Use cylindrical coordinates to show that the volume of  
the solid bounded above by the sphere r 2 1 z2 − a 2 and 
below by the cone z − r cot # 0 (or # − # 0), where 
0 , # 0 , $y2, is

V −
2$a 3

3
 s1 2 cos# 0 d

 (b)  Deduce that the volume of the spherical wedge given by 
"1 < " < " 2, !1 < ! < ! 2, #1 < # < # 2 is

DV −
" 2

3 2 "1
3

3
 scos #1 2 cos # 2 ds! 2 2 !1 d

 (c)  Use the Mean Value Theorem to show that the volume 
in part (b) can be written as

DV − "~ 2 sin #
~

D" D! D#

   where "~  lies between "1 and " 2, #
~

 lies between #1 and  
# 2, D" − " 2 2 "1, D! − !2 2 !1, and D# − # 2 2 #1.

CAS

 38.  A solid right circular cone with constant density has base 
radius a and height h.

 (a)  Find the moment of inertia of the cone about its axis.
 (b)  Find the moment of inertia of the cone about a diameter 

of its base.

 39.  Evaluate yyyE z dV, where E lies above the paraboloid 
   z − x 2 1 y 2 and below the plane z − 2y. Use either the 

Table of Integrals (on Reference Pages 6–10) or a computer 
algebra system to evaluate the integral.

 40. (a) Find the volume enclosed by the torus " − sin #.
 (b) Use a computer to draw the torus.

41–43 Evaluate the integral by changing to spherical 
coordinates.

 41. y1

0
 ys12x2 

0
 ys22x22y2 

sx21y2 
  xy dz dy dx

 42. ya

2a
 ysa22y2 

2sa22y2  y
sa22x22y2 

2sa22x22y2   
sx 2z 1 y 2z 1 z3d dz dx dy

 43. y2

22
 ys42x2 

2s42x2
 y21s42x22y2 

22s42x22y2 
 sx 2 1 y 2 1 z 2d3y2 dz dy dx

 44.  A model for the density ' of the earth’s atmosphere near its 
surface is

' − 619.09 2 0.000097"

   where " (the distance from the center of the earth) is mea- 
sured in meters and ' is measured in kilograms per cubic 
meter. If we take the surface of the earth to be a sphere with 
radius 6370 km, then this model is a reasonable one for 
6.370 3 106 < " < 6.375 3 106. Use this model to esti-
mate the mass of the atmosphere between the ground and an 
altitude of 5 km.

 45.  Use a graphing device to draw a silo consisting of a cylinder 
with radius 3 and height 10 surmounted by a hemisphere.

 46.  The latitude and longitude of a point P in the Northern 
Hemisphere are related to spherical coordinates ", !, # as 
follows. We take the origin to be the center of the earth 
and the positive z-axis to pass through the North Pole. The 
positive x-axis passes through the point where the prime 
meridian (the meridian through Greenwich, England) inter-
sects the equator. Then the latitude of P is % − 90° 2 #° 
and the longitude is & − 3608 2 ! 8. Find the great-circle 

CAS

CAS

;
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1052 CHAPTER 15  Multiple Integrals

Suppose that a solid ball (a marble), a hollow ball (a squash ball), a solid cylinder (a steel bar), 
and a hollow cylinder (a lead pipe) roll down a slope. Which of these objects reaches the bottom 
first? (Make a guess before proceeding.)

To answer this question, we consider a ball or cylinder with mass m, radius r, and moment of 
inertia I (about the axis of rotation). If the vertical drop is h, then the potential energy at the top is 
mth. Suppose the object reaches the bottom with velocity v and angular velocity (, so v − (r.  
The kinetic energy at the bottom consists of two parts: 12 mv2 from translation (moving down the 
slope) and 12 I(2 from rotation. If we assume that energy loss from rolling friction is negligible, 
then conservation of energy gives

mth − 1
2 mv2 1 1

2 I(2

1. Show that

v2 −
2th

1 1 I*
    where I* −

I
mr 2

2.  If ystd is the vertical distance traveled at time t, then the same reasoning as used in  
Problem 1 shows that v2 − 2tyys1 1 I*d at any time t. Use this result to show that y  
satisfies the differential equation

dy
dt

− Î 2t
1 1 I* ssin %dsy 

 where % is the angle of inclination of the plane.

3. By solving the differential equation in Problem 2, show that the total travel time is

T − Î 2hs1 1 I*d
t sin2%

 This shows that the object with the smallest value of I* wins the race.

4. Show that I* − 1
2 for a solid cylinder and I* − 1 for a hollow cylinder.

5.  Calculate I* for a partly hollow ball with inner radius a and outer radius r. Express your 
answer in terms of b − ayr. What happens as a l 0 and as a l r?

6.  Show that I* − 2
5 for a solid ball and I* − 2

3 for a hollow ball. Thus the objects finish in the 
following order: solid ball, solid cylinder, hollow ball, hollow cylinder.

å

h

APPLIED PROJECT ROLLER DERBY

In one-dimensional calculus we often use a change of variable (a substitution) to sim-
plify an integral. By reversing the roles of x and u, we can write the Substitution Rule 
(5.5.6) as

1  yb

a
 f sxd dx − yd

c
 f stsudd t9sud du 

where x − tsud and a − tscd, b − tsdd. Another way of writing Formula 1 is as follows:

2  yb

a
 f sxd dx − yd

c
 f sxsudd 

dx
du

 du 
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 SECTION 15.9  Change of Variables in Multiple Integrals 1053

A change of variables can also be useful in double integrals. We have already seen one 
example of this: conversion to polar coordinates. The new variables r and ! are related to 
the old variables x and y by the equations

x − r cos !    y − r sin !

and the change of variables formula (15.3.2) can be written as

y
R

y f sx, yd dA − y
S

y f sr cos !, r sin !d r dr d!

where S is the region in the r!-plane that corresponds to the region R in the xy-plane.
More generally, we consider a change of variables that is given by a transformation 

T  from the uv-plane to the xy-plane:

Tsu, vd − sx, yd

where x and y are related to u and v by the equations

3  x − tsu, vd    y − hsu, vd 

or, as we sometimes write,

x − xsu, vd    y − ysu, vd

We usually assume that T  is a C 1 transformation, which means that t and h have contin-
uous first-order partial derivatives.

A transformation T  is really just a function whose domain and range are both sub- 
sets of R 2. If Tsu1, v1d − sx1, y1d, then the point sx1, y1d is called the image of the point 
su1, v1d. If no two points have the same image, T  is called one-to-one. Figure 1 shows the 
effect of a transformation T  on a region S in the uv-plane. T  transforms S into a region R 
in the xy-plane called the image of S, consisting of the images of all points in S.

0

√

0

y

u x

(u¡, √¡)
(x¡, y¡)

S R
T –!

T

If T  is a one-to-one transformation, then it has an inverse transformation T 21 from 
the xy-plane to the uv-plane and it may be possible to solve Equations 3 for u and v in 
terms of x and y:

u − Gsx, yd    v − Hsx, yd

EXAMPLE 1 A transformation is defined by the equations

x − u 2 2 v2     y − 2uv

Find the image of the square S − hsu, vd | 0 < u < 1,  0 < v < 1j.

SOLUTION The transformation maps the boundary of S into the boundary of the image. 
So we begin by finding the images of the sides of S. The first side, S1, is given by v − 0 

FIGURE 1
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1054 CHAPTER 15  Multiple Integrals

s0 < u < 1d. (See Figure 2.) From the given equations we have x − u 2, y − 0, and  
so 0 < x < 1. Thus S1 is mapped into the line segment from s0, 0d to s1, 0d in the  
xy-plane. The second side, S2, is u − 1 s0 < v < 1d and, putting u − 1 in the given 
equations, we get

x − 1 2 v2    y − 2v

Eliminating v, we obtain

4  x − 1 2
y 2

4
    0 < x < 1 

which is part of a parabola. Similarly, S3 is given by v − 1 s0 < u < 1d, whose image 
is the parabolic arc

5  x −
y 2

4
2 1    21 < x < 0 

Finally, S4 is given by u − 0 s0 < v < 1d whose image is x − 2v2, y − 0, that is, 
21 < x < 0. (Notice that as we move around the square in the counterclockwise 
direction, we also move around the parabolic region in the counterclockwise direction.) 
The image of S is the region R (shown in Figure 2) bounded by the x-axis and the 
parabolas given by Equations 4 and 5. Q

Now let’s see how a change of variables affects a double integral. We start with a 
small rectangle S in the uv-plane whose lower left corner is the point su0, v0 d and whose 
dimensions are Du and Dv. (See Figure 3.)

y¸)
T

0

y

x

(x¸, 

r(u, √¸)

r (u¸, √)

0

√

u

Îu

Î√

√=√¸

u=u¸

S

(u¸, √ ¸)
R

The image of S is a region R in the xy-plane, one of whose boundary points is 
sx0, y0 d − Tsu0, v0 d. The vector

rsu, vd − tsu, vd i 1 hsu, vd j

is the position vector of the image of the point su, vd. The equation of the lower side of S 
is v − v0, whose image curve is given by the vector function rsu, v0d. The tangent vector 
at sx0, y0 d to this image curve is

ru − tusu0, v0 d 

i 1 husu0, v0 d 

j −
−x
−u

 i 1
−y
−u

 j

Similarly, the tangent vector at sx0, y0 d to the image curve of the left side of S (namely, 

T

0

√

u

(0, 1) (1, 1)

(1, 0)

S

S£

S¡

S™S¢

0

y

x(_1, 0)

(0, 2)

(1, 0)

R

x=1- ¥
4x=      -1¥

4

FIGURE 2

FIGURE 3
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 SECTION 15.9  Change of Variables in Multiple Integrals 1055

u − u0) is

rv − tvsu0, v0 d 

i 1 hvsu0, v0 d 

j −
−x
−v

 i 1
−y
−v

 j

We can approximate the image region R − T sSd by a parallelogram determined by the 
secant vectors

a − rsu0 1 Du, v0 d 2 rsu0, v0 d      b − rsu0, v0 1 Dvd 2 rsu0, v0 d

shown in Figure 4. But

ru − lim
Du l 0

 
rsu0 1 Du, v0 d 2 rsu0, v0 d

Du

and so  rsu0 1 Du, v0 d 2 rsu0, v0 d < Du ru 

Similarly  rsu0, v0 1 Dvd 2 rsu0, v0 d < Dv rv 

This means that we can approximate R by a parallelogram determined by the vectors 
Du ru and Dv rv. (See Figure 5.) Therefore we can approximate the area of R by the area 
of this parallelogram, which, from Section 12.4, is

6  | sDu ru d 3 sDv rv d | − | ru 3 rv | Du Dv 

Computing the cross product, we obtain

ru 3 rv −    

i j k
−x
−u

−y
−u

0

−x
−v

−y
−v

0

   −

−x
−u

−y
−u

−x
−v

−y
−v

    k −

−x
−u

−x
−v

−y
−u

−y
−v

   k

The determinant that arises in this calculation is called the Jacobian of the transforma tion 
and is given a special notation.

7   Definition The Jacobian of the transformation T  given by x − tsu, vd and 
y − hsu, vd is

−sx, yd
−su, vd

− Z −x
−u

−x
−v

−y
−u

−y
−v

Z −
−x
−u

 
−y
−v

2
−x
−v

 
−y
−u

The Jacobian is named after the 
German mathematician Carl Gustav 
Jacob Jacobi (1804–1851). Although 
the French mathematician Cauchy 
first used these special determinants 
involving partial derivatives, Jacobi 
developed them into a method for 
evaluating multiple integrals.

With this notation we can use Equation 6 to give an approximation to the area DA  
of R:

8  DA < Z −sx, yd
−su, vd Z Du Dv 

where the Jacobian is evaluated at su0, v0 d.

r (u¸, √¸) Îu ru

Î√ r√

FIGURE 4

FIGURE 5

r (u¸, √¸)

r (u¸+Îu, √¸)

R

a

b

r (u¸, √¸+Î√)
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1056 CHAPTER 15  Multiple Integrals

Next we divide a region S in the uv-plane into rectangles Sij and call their images in 
the xy-plane Rij. (See Figure 6.)

T

0

y

x

R

0

√

u

S Î√
Îu

(ui, √ j)

Sij

(xi, yj)

Rij

Applying the approximation (8) to each Rij, we approximate the double integral of f  
over R as follows:

 y
R

y f sx, yd dA < o
m

i−1
 o

n

j−1
 f sxi, yjd DA

 < o
m

i−1
 o

n

j−1
 f stsui, vjd, hsui, vjdd Z −sx, yd

−su, vd Z Du Dv

where the Jacobian is evaluated at sui, vjd. Notice that this double sum is a Riemann sum 
for the integral

y
S

y f stsu, vd, hsu, vdd Z −sx, yd
−su, vd Z  du dv

The foregoing argument suggests that the following theorem is true. (A full proof is 
given in books on advanced calculus.)

9   Change of Variables in a Double Integral Suppose that T  is a C1 trans-
formation whose Jacobian is nonzero and that T  maps a region S in the uv-plane 
onto a region R in the xy-plane. Suppose that f  is continuous on R and that R 
and S are type I or type II plane regions. Suppose also that T  is one-to-one, 
except perhaps on the boundary of S. Then

y
R

y f sx, yd dA − y
S

y f sxsu, vd, ysu, vdd Z −sx, yd
−su, vd Z  du dv

Theorem 9 says that we change from an integral in x and y to an integral in u and v by 
expressing x and y in terms of u and v and writing

dA − Z −sx, yd
−su, vd Z  du dv

Notice the similarity between Theorem 9 and the one-dimensional formula in Equa-
tion 2. Instead of the derivative dxydu, we have the absolute value of the Jacobian, that 
is, | −sx, ydy−su, vd |.

FIGURE 6
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 SECTION 15.9  Change of Variables in Multiple Integrals 1057

As a first illustration of Theorem 9, we show that the formula for integration in polar 
coordinates is just a special case. Here the transformation T  from the r!-plane to the  
xy-plane is given by

x − tsr, !d − r cos !    y − hsr, !d − r sin !

and the geometry of the transformation is shown in Figure 7. T  maps an ordinary rect-
angle in the r!-plane to a polar rectangle in the xy-plane. The Jacobian of T  is

−sx, yd
−sr, !d

− Z −x
−r

−x
−!

−y
−r

−y
−!

Z − Z cos !
sin !

2r sin !
r cos ! Z − r cos2! 1 r sin2! − r . 0

Thus Theorem 9 gives

 y
R

y f sx, yd dx dy − y
S

y f sr cos !, r sin !d Z −sx, yd
−sr, !d Z  dr d!

 − y"

#
 yb

a
 f sr cos !, r sin !d r dr d!

which is the same as Formula 15.3.2.

EXAMPLE 2 Use the change of variables x − u 2 2 v2, y − 2uv to evaluate the integral 
yyR y dA, where R is the region bounded by the x-axis and the parabolas y 2 − 4 2 4x 
and y 2 − 4 1 4x, y > 0.

SOLUTION The region R is pictured in Figure 2 (on page 1054). In Example 1 we 
discovered that T sSd − R, where S is the square f0, 1g 3 f0, 1g. Indeed, the reason 
for making the change of variables to evaluate the integral is that S is a much simpler 
region than R. First we need to compute the Jacobian:

−sx, yd
−su, vd

− Z −x
−u

−x
−v

−y
−u

−y
−v

Z − Z 2u
2v

22v
2u Z − 4u 2 1 4v 2 . 0

Therefore, by Theorem 9,

 y
R

y y dA − y
S

y 2uv Z −sx, yd
−su, vd Z dA − y1

0
y1

0
 s2uvd4su2 1 v 2 d du dv

 − 8 y1

0
y1

0
 su3v 1 uv3 d du dv − 8 y1

0
 f1

4u4v 1 1
2 u2v3gu−1

u−0    
dv

  − y1

0
 s2v 1 4v3 d dv − fv2 1 v4 g0

1 
− 2  Q

NOTE Example 2 was not a very difficult problem to solve because we were given 
a suitable change of variables. If we are not supplied with a transformation, then the 
first step is to think of an appropriate change of variables. If f sx, yd is difficult to inte-

FIGURE 7  
The polar coordinate transformation

0

y

x

¨=∫ r=b

¨=år=a
∫ å

R

0

¨
∫

å

ra b

¨=∫

r=a

¨=å

r=bS

T
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1058 CHAPTER 15  Multiple Integrals

grate, then the form of f sx, yd may suggest a transformation. If the region of integration 
R is awkward, then the transformation should be chosen so that the corresponding region 
S in the uv-plane has a convenient description.

EXAMPLE 3 Evaluate the integral yyR e sx1ydysx2yd dA, where R is the trapezoidal region 
with vertices s1, 0d, s2, 0d, s0, 22d, and s0, 21d.

SOLUTION Since it isn’t easy to integrate e sx1ydysx2yd, we make a change of variables 
suggested by the form of this function:

10  u − x 1 y    v − x 2 y 

These equations define a transformation T 21 from the xy-plane to the uv-plane. Theo-
rem 9 talks about a transformation T  from the uv-plane to the xy-plane. It is obtained  
by solving Equations 10 for x and y:

11  x − 1
2 su 1 vd    y − 1

2 su 2 vd 

The Jacobian of T  is

−sx, yd
−su, vd

− Z −x
−u

−x
−v

−y
−u

−y
−v

Z − Z 1
2
1
2

1
2

21
2

Z − 21
2

To find the region S in the uv-plane corresponding to R, we note that the sides of R 
lie on the lines

y − 0    x 2 y − 2    x − 0    x 2 y − 1

and, from either Equations 10 or Equations 11, the image lines in the uv-plane are

u − v    v − 2    u − 2v    v − 1

Thus the region S is the trapezoidal region with vertices s1, 1d, s2, 2d, s22, 2d, and 
s21, 1d shown in Figure 8. Since

S − 5 su, vd | 1 < v < 2, 2v < u < v6
Theorem 9 gives

 y
R

y e sx1ydysx2yd dA − y
S

y euyv Z −sx, yd
−su, vd Z  du dv

 − y2

1
 yv

2v
 euyv(1

2) du dv − 1
2 y2

1
 fveuyv gu−2v

u−v

dv

  − 1
2 y2

1
 se 2 e21 dv dv − 3

4 se 2 e21 d  Q

Triple Integrals
There is a similar change of variables formula for triple integrals. Let T  be a transfor-
mation that maps a region S in uvw-space onto a region R in xyz-space by means of the 
equations

x − tsu, v, wd    y − hsu, v, wd    z − ksu, v, wd

T T–!

0

√

u

(_2, 2) (2, 2)

(_1, 1) (1, 1)

√=2

√=1

u=√u=_√ S

0

y

_1

_2

x
1 2

x-y=2

x-y=1

R

FIGURE 8
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 SECTION 15.9  Change of Variables in Multiple Integrals 1059

The Jacobian of T  is the following 3 3 3 determinant:

12  
−sx, y, zd
−su, v, wd

−  

−x
−u

−x
−v

−x
−w

−y
−u

−y
−v

−y
−w

−z
−u

−z
−v

−z
−w

 

Under hypotheses similar to those in Theorem 9, we have the following formula for triple 
integrals:

13  y y
R

y f sx, y, zd dV −y y
S

y f sxsu, v, wd, ysu, v, wd, zsu, v, wdd Z −sx, y, zd
−su, v, wd

 Z  du dv dw 

EXAMPLE 4 Use Formula 13 to derive the formula for triple integration in spherical 
coordinates.

SOLUTION Here the change of variables is given by

x − $ sin % cos !    y − $ sin % sin !    z − $ cos %

We compute the Jacobian as follows:

 
−sx, y, zd
−s$, !, %d

− Z sin % cos !
sin % sin !

cos %

2$ sin % sin !
$ sin % cos !

0

$ cos % cos !
$ cos % sin !

2$ sin %
Z

 − cos % Z 2$ sin % sin !
$ sin % cos !

$ cos % cos !
$ cos % sin ! Z 2 $ sin % Z sin % cos !

sin %  sin !
2$ sin % sin !!

$ sin % cos  ! Z
 − cos % s2$2 sin % cos % sin2! 2 $2 sin % cos % cos2!d

 2 $ sin % s$ sin2% cos2! 1 $ sin2% sin2!d

 − 2$2 sin % cos2% 2 $2 sin % sin2% − 2$2 sin %

Since 0 < % < &, we have sin % > 0. Therefore

Z −sx, y, zd
−s$, !, %d Z − | 2$2 sin % | − $2 sin %

and Formula 13 gives

y y
R

y f sx, y, zd dV − y y
S

y f s$ sin % cos !, $ sin % sin !, $ cos %d $2 sin % d$ d! d%

which is equivalent to Formula 15.8.3. Q
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1060 CHAPTER 15  Multiple Integrals

 19.  yyR  xy dA, where R is the region in the first quadrant 
bounded by the lines y − x and y − 3x and the hyperbolas 
xy − 1, xy − 3;  x − uyv, y − v

 20.  yyR y
2 dA, where R is the region bounded by the curves  

xy − 1, xy − 2, xy 2 − 1, xy 2 − 2;  u − xy, v − xy 2.  
Illustrate by using a graphing calculator or computer to  
draw R.

 21. (a)  Evaluate yyy
E
 dV, where E is the solid enclosed by the 

ellipsoid x 2ya 2 1 y 2yb 2 1 z2yc 2 − 1. Use the transfor-
mation x − au, y − bv, z − cw.

 (b)  The earth is not a perfect sphere; rotation has resulted 
in flattening at the poles. So the shape can be approxi-
mated by an ellipsoid with a − b − 6378 km and 
c − 6356 km. Use part (a) to estimate the volume of the 
earth.

 (c)   If the solid of part (a) has constant density k, find its 
moment of inertia about the z-axis.

 22.  An important problem in thermodynamics is to find the 
work done by an ideal Carnot engine. A cycle consists of 
alternating expansion and compression of gas in a piston. 
The work done by the engine is equal to the area of the 
region R enclosed by two isothermal curves xy − a, xy − b 
and two adiabatic curves xy 1.4 − c, xy 1.4 − d, where 
0 , a , b and 0 , c , d. Compute the work done by 
determining the area of R.

23–27 Evaluate the integral by making an appropriate change of 
variables.

 23.  y
R

y 
x 2 2y
3x 2 y

 dA, where R is the parallelogram enclosed by

   the lines x 2 2y − 0, x 2 2y − 4, 3x 2 y − 1, and 
3x 2 y − 8

 24.  yyR sx 1 yde x22y2
 dA, where R is the rectangle enclosed by 

the lines x 2 y − 0, x 2 y − 2, x 1 y − 0, and x 1 y − 3

 25.  y
R

y cosS y 2 x
y 1 xD dA, where R is the trapezoidal region 

  with vertices s1, 0d, s2, 0d, s0, 2d, and s0, 1d

 26.  yyR sins9x 2 1 4y 2 d dA, where R is the region in the first  
quadrant bounded by the ellipse 9x 2 1 4y 2 − 1

 27.  yyR e x1y dA, where R is given by the inequality 
| x | 1 | y | < 1

 28.  Let f  be continuous on f0, 1g and let R be the triangular 
region with vertices s0, 0d, s1, 0d, and s0, 1d. Show that

y
R

y f sx 1 yd dA − y1

0
 uf sud du

;

1–6 Find the Jacobian of the transformation.

 1. x − 2u 1 v, y − 4u 2 v

 2. x − u 2 1 uv, y − uv 2

 3. x − s cos t, y − s sin t

 4. x − pe q, y − qe p

 5. x − uv, y − vw, z − wu

 6. x − u 1 vw, y − v 1 wu, z − w 1 uv

7–10 Find the image of the set S under the given transformation.

 7.  S − hsu, vd | 0 < u < 3, 0 < v < 2j; 
x − 2u 1 3v, y − u 2 v

 8.  S is the square bounded by the lines u − 0, u − 1, v − 0, 
v − 1;  x − v, y − us1 1 v 2 d

 9.  S is the triangular region with vertices s0, 0d, s1, 1d, s0, 1d;  
x − u2, y − v

 10. S is the disk given by u 2 1 v2 < 1;  x − au, y − bv

11–14 A region R in the xy-plane is given. Find equations for a 
transformation T that maps a rectangular region S in the uv-plane 
onto R, where the sides of S are parallel to the u- and v-axes.

 11.  R is bounded by y − 2x 2 1, y − 2x 1 1, y − 1 2 x, 
y − 3 2 x

 12.  R is the parallelogram with vertices s0, 0d, s4, 3d, s2, 4d, 
s22, 1d

 13.  R lies between the circles x 2 1 y2 − 1 and x 2 1 y2 − 2 in 
the first quadrant

 14.  R is bounded by the hyperbolas y − 1yx, y − 4yx and the  
lines y − x, y − 4x in the first quadrant

15–20 Use the given transformation to evaluate the integral.

 15.  yyR sx 2 3yd dA, where R is the triangular region with 
vertices s0, 0d, s2, 1d, and s1, 2d;  x − 2u 1 v, y − u 1 2v

 16.  yyR s4x 1 8yd dA, where R is the parallelogram with  
vertices s21, 3d, s1, 23d, s3, 21d, and s1, 5d; 
x − 1

4su 1 vd, y − 1
4sv 2 3ud

 17.  yyR x
2 dA, where R is the region bounded by the ellipse 

  9x 2 1 4y 2 − 36;  x − 2u, y − 3v

 18.  yyR sx 2 2 xy 1 y 2 d dA, where R is the region bounded  
by the ellipse x 2 2 xy 1 y 2 − 2;  
x − s2 u 2 s2y3 v, y − s2 u 1 s2y3 v
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CONCEPT CHECK Answers to the Concept Check can be found on the back endpapers.

15 REVIEW

 1.  Suppose f  is a continuous function defined on a rectangle 
R − fa, bg 3 fc, d g.

 (a)  Write an expression for a double Riemann sum of f .  
If f sx, yd > 0, what does the sum represent?

 (b)  Write the definition of yyR f sx, yd dA as a limit.
 (c)  What is the geometric interpretation of yyR f sx, yd dA if 

f sx, yd > 0? What if f  takes on both positive and negative 
values?

 (d) How do you evaluate yyR f sx, yd dA?
 (e) What does the Midpoint Rule for double integrals say?
 (f ) Write an expression for the average value of f .

 2. (a)  How do you define yyD f sx, yd dA if D is a bounded region 
that is not a rectangle?

 (b)  What is a type I region? How do you evaluate 
yyD f sx, yd dA if D is a type I region?

 (c)  What is a type II region? How do you evaluate 
yyD f sx, yd dA if D is a type II region?

 (d) What properties do double integrals have?

 3.  How do you change from rectangular coordinates to polar  
coordinates in a double integral? Why would you want to make 
the change?

 4.  If a lamina occupies a plane region D and has density function 
$sx, yd, write expressions for each of the following in terms of 
double integrals.

 (a) The mass
 (b) The moments about the axes
 (c) The center of mass
 (d) The moments of inertia about the axes and the origin

 5.  Let f  be a joint density function of a pair of continuous  
random variables X and Y.

 (a)  Write a double integral for the probability that X lies  
between a and b and Y lies between c and d.

 (b) What properties does f  possess?
 (c) What are the expected values of X and Y?

 6.  Write an expression for the area of a surface with equation 
z − f sx, yd, sx, yd [ D.

 7. (a)  Write the definition of the triple integral of f  over a  
rectangular box B.

 (b) How do you evaluate yyyB  f sx, y, zd dV?
 (c)  How do you define yyyE  f sx, y, zd dV if E is a bounded solid 

region that is not a box?
 (d)  What is a type 1 solid region? How do you evaluate 

yyyE  f sx, y, zd dV if E is such a region?
 (e)  What is a type 2 solid region? How do you evaluate 

yyyE  f sx, y, zd dV if E is such a region?
 (f)  What is a type 3 solid region? How do you evaluate 

yyyE  f sx, y, zd dV if E is such a region?

 8.  Suppose a solid object occupies the region E and has density 
function $sx, y, zd. Write expressions for each of the following.

 (a) The mass
 (b) The moments about the coordinate planes
 (c) The coordinates of the center of mass
 (d) The moments of inertia about the axes

 9. (a)  How do you change from rectangular coordinates to cylin-
drical coordinates in a triple integral?

 (b)  How do you change from rectangular coordinates to  
spherical coordinates in a triple integral?

 (c)  In what situations would you change to cylindrical or 
spherical coordinates?

 10. (a)  If a transformation T is given by x − tsu, vd,  
y − hsu, vd, what is the Jacobian of T?

 (b) How do you change variables in a double integral?
 (c) How do you change variables in a triple integral?

TRUE-FALSE QUIZ

 6. y4

1
 y1

0
 sx 2 1 sy d sinsx 2 y 2 d dx dy < 9

 7. If D is the disk given by x 2 1 y 2 < 4, then

y
D

y s4 2 x 2 2 y 2  dA − 16
3 &

 8.  The integral yyyE kr 3 dz dr d! represents the moment of  
inertia about the z-axis of a solid E with constant density k.

 9. The integral 

y2&

0
 y2

0
 y2

r
 dz dr d!

   represents the volume enclosed by the cone z − sx 2 1 y 2   
and the plane z − 2.

Determine whether the statement is true or false. If it is true, explain 
why. If it is false, explain why or give an example that disproves the 
statement.

 1. y2

21
 y6

0
 x 2 sinsx 2 yd dx dy − y6

0
 y2

21
 x 2 sinsx 2 yd dy dx

 2. y1

0
 yx

0
 sx 1 y2 dy dx − yx

0
y1

0
 sx 1 y2  dx dy

 3. y2

1
 y4

3
 x 2e y dy dx − y2

1
 x 2 dx y4

3
 e y dy

 4. y1

21
 y1

0
 ex21y2

 sin y dx dy − 0

 5. If f  is continuous on f0, 1g, then

y1

0
y1

0
 f sxd f syd dy dx − Fy1

0
 f sxd dxG2
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EXERCISES

 15.  Write the equation in cylindrical coordinates and in spherical 
coordinates.

 (a) x 2 1 y 2 1 z 2 − 4 (b) x 2 1 y 2 − 4

 16.   Sketch the solid consisting of all points with spherical coor-
dinates s$, !, %d such that 0 < ! < &y2, 0 < % < &y6, and 
0 < $ < 2 cos %.

 17. Describe the region whose area is given by the integral 

y&y2

0
 ysin 2!

0
 r dr d!

 18.  Describe the solid whose volume is given by the integral 

y&y2

0
 y&y2

0
 y2

1
 $2 sin % d$ d% d!

  and evaluate the integral.

19–20 Calculate the iterated integral by first reversing the order of 
integration.

 19. y1

0
 y1

x
 cossy 2d dy dx 20. y1

0
 y1

sy 
  

yex2

x 3
  dx dy

21–34 Calculate the value of the multiple integral.

 21. yyR ye xy dA, where R − hsx, yd | 0 < x < 2, 0 < y < 3j

 22. yyD xy dA, where D − hsx, yd | 0 < y < 1, y 2 < x < y 1 2j

 23. y
D

y 
y

1 1 x 2  dA, 

  where D is bounded by y − sx , y − 0, x − 1

 24.  y
D

y 
1

1 1 x 2  dA, where D is the triangular region with 

  vertices s0, 0d, s1, 1d, and s0, 1d

 25.  yyD y dA, where D is the region in the first quadrant bounded by 
the parabolas x − y 2 and x − 8 2 y 2

 26.  yyD y dA, where D is the region in the first quadrant that lies 
above the hyperbola xy − 1 and the line y − x and below the 
line y − 2

 27.  yyD sx 2 1 y 2 d3y2 dA, where D is the region in the first 
   quad rant bounded by the lines y − 0 and y − s3 x and the  

circle x 2 1 y 2 − 9

 28.  yyD x dA, where D is the region in the first quadrant that lies 
between the circles x 2 1 y 2 − 1 and x 2 1 y 2 − 2

 29. yyyE xy dV, where
  E − hsx, y, zd | 0 < x < 3, 0 < y < x, 0 < z < x 1 yj

 30.  yyyT xy dV, where T is the solid tetrahedron with vertices
  s0, 0, 0d, s1

3 , 0, 0d, s0, 1, 0d, and s0, 0, 1d

 31.  yyyE y 2z2 dV, where E is bounded by the paraboloid 
x − 1 2 y 2 2 z2 and the plane x − 0

 32.  yyyE z dV, where E is bounded by the planes y − 0, z − 0, 
x 1 y − 2 and the cylinder y 2 1 z2 − 1 in the first octant

 1.  A contour map is shown for a function f  on the square 
R − f0, 3g 3 f0, 3g. Use a Riemann sum with nine terms to 
estimate the value of yyR f sx, yd dA. Take the sample points to 
be the upper right corners of the squares.

y

1
1

1 2 3

2

3

2
3

4
5

8
9

10

6
7

x0

 2.  Use the Midpoint Rule to estimate the integral in Exercise 1.

3–8 Calculate the iterated integral.

 3. y2

1
 y2

0
 sy 1 2xe y d dx dy 4. y1

0
 y1

0
 ye xy dx dy

 5. y1

0
 yx

0
 cossx 2 d dy dx 6. y1

0
yex

x
 3xy2 dy dx

 7. y&

0
 y1

0
 ys12y2

0
 y sin x dz dy dx 8. y1

0
 yy

0
 y1

x
 6xyz dz dx dy

9–10 Write yyR f sx, yd dA as an iterated integral, where R is the 
region shown and f  is an arbitrary continuous function on R.

 9.   10.

0 42_2_4

y

x

R
2

4

0

4
y

x

R

4_4

 11.  The cylindrical coordinates of a point are (2s3 , &y3, 2). Find 
the rectangular and spherical coordinates of the point.

 12.   The rectangular coordinates of a point are s2, 2, 21d. Find the 
cylindrical and spherical coordinates of the point.

 13.  The spherical coordinates of a point are s8, &y4, &y6d. Find  
the rectangular and cylindrical coordinates of the point.

 14.  Identify the surfaces whose equations are given.
 (a) ! − &y4 (b) % − &y4
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 48. Use spherical coordinates to evaluate

y2

22
 ys42y2 

0
 ys42x22y2 

2s42x22y2
 y 2sx 2 1 y 2 1 z 2  dz dx dy

 49.  If D is the region bounded by the curves y − 1 2 x 2 and 
y − e x, find the approximate value of the integral yyD y 2 dA. 
(Use a graphing device to estimate the points of intersection  
of the curves.)

 50.  Find the center of mass of the solid tetrahedron with verti-
ces s0, 0, 0d, s1, 0, 0d, s0, 2, 0d, s0, 0, 3d and density function 
$sx, y, zd − x 2 1 y 2 1 z2.

 51. The joint density function for random variables X and Y is

f sx, yd − HCsx 1 yd
0

if 0 < x < 3, 0 < y < 2
otherwise

 (a) Find the value of the constant C.
 (b) Find PsX < 2, Y > 1d.
 (c) Find PsX 1 Y < 1d.

 52.  A lamp has three bulbs, each of a type with average lifetime 
800 hours. If we model the probability of failure of a bulb 
by an exponential density function with mean 800, find  
the probability that all three bulbs fail within a total of  
1000 hours.

 53. Rewrite the integral

y1

21
 y1

x2 y12y

0
 f sx, y, zd dz dy dx

  as an iterated integral in the order dx dy dz.

 54. Give five other iterated integrals that are equal to

y2

0
 yy3

0
 yy2

0
 f sx, y, zd dz dx dy

 55.  Use the transformation u − x 2 y, v − x 1 y to evaluate

yy
R

x 2 y
x 1 y

 dA

   where R is the square with vertices s0, 2d, s1, 1d, s2, 2d,  
and s1, 3d.

 56.  Use the transformation x − u 2, y − v2, z − w2 to  
find the volume of the region bounded by the surface 
sx 1 sy 1 sz − 1 and the coordinate planes.

 57.  Use the change of variables formula and an appropriate 
transformation to evaluate yyR xy dA, where R is the square 
with vertices s0, 0d, s1, 1d, s2, 0d, and s1, 21d.

 58.  The Mean Value Theorem for double integrals says that  
if f  is a continuous function on a plane region D that is of 
type I or II, then there exists a point sx0, y0 d in D such that

y
D

y f sx, yd dA − f sx0, y0 d AsDd

   Use the Extreme Value Theorem (14.7.8) and Property 
15.2.11 of integrals to prove this theorem. (Use the proof of 
the single-variable version in Section 6.5 as a guide.)

;

CAS

 33.  yyyE yz dV, where E lies above the plane z − 0, below 
the plane z − y, and inside the cylinder x 2 1 y 2 − 4

 34.  yyyH z3sx 2 1 y 2 1 z 2  dV, where H is the solid hemisphere 
that lies above the xy-plane and has center the origin and  
radius 1

35–40 Find the volume of the given solid.

 35.  Under the paraboloid z − x 2 1 4y 2 and above the rectangle 
R − f0, 2g 3 f1, 4g

 36.  Under the surface z − x 2 y and above the triangle in the  
xy-plane with vertices s1, 0d, s2, 1d, and s4, 0d

 37.  The solid tetrahedron with vertices s0, 0, 0d, s0, 0, 1d, 
s0, 2, 0d, and s2, 2, 0d

 38.  Bounded by the cylinder x 2 1 y 2 − 4 and the planes z − 0  
and y 1 z − 3

 39.  One of the wedges cut from the cylinder x 2 1 9y 2 − a 2 by 
the planes z − 0 and z − mx

 40.  Above the paraboloid z − x 2 1 y 2 and below the half-cone
  z − sx 2 1 y 2 

 41.  Consider a lamina that occupies the region D bounded by  
the parabola x − 1 2 y 2 and the coordinate axes in the first 
quadrant with density function $sx, yd − y.

 (a) Find the mass of the lamina.
 (b) Find the center of mass.
 (c)  Find the moments of inertia and radii of gyration about  

the x- and y-axes.

 42.  A lamina occupies the part of the disk x 2 1 y 2 < a 2 that 
lies in the first quadrant.

 (a) Find the centroid of the lamina.
 (b)  Find the center of mass of the lamina if the density 

function is $sx, yd − xy 2.

 43. (a)  Find the centroid of a solid right circular cone with 
height h and base radius a. (Place the cone so that its 
base is in the xy-plane with center the origin and its axis 
along the positive z-axis.)

 (b)  If the cone has density function $sx, y, zd − sx 2 1 y 2 , 
find the moment of inertia of the cone about its axis (the 
z-axis).

 44.  Find the area of the part of the cone z2 − a 2sx 2 1 y 2 d 
between the planes z − 1 and z − 2.

 45.  Find the area of the part of the surface z − x 2 1 y that lies 
above the triangle with vertices (0, 0), (1, 0), and (0, 2).

 46.  Graph the surface z − x sin y, 23 < x < 3, 2& < y < &, 
and find its surface area correct to four decimal places.

 47. Use polar coordinates to evaluate

y3

0
 ys92x2 

2s92x2  sx 3 1 xy 2d dy dx

CAS
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1064 CHAPTER 15  Multiple Integrals

 (b)  For what values of n does the integral in part (a) have a 
limit as r l 01?

 (c)  Find y  y
E

y 
1

sx 2 1 y 2 1 z2 dny2  dV, where E is the region

    bounded by the spheres with center the origin and radii r 
  and R, 0 , r , R.
 (d)  For what values of n does the integral in part (c) have a 

limit as r l 01?

 59.  Suppose that f  is continuous on a disk that contains the  
point sa, bd. Let Dr be the closed disk with center sa, bd and 
radius r. Use the Mean Value Theorem for double integrals (see 
Exercise 58) to show that

lim
r l 0

 
1

&r 2  y
Dr

y  
f sx, yd dA − f sa, bd

 60. (a)  Evaluate y
D

y 
1

sx 2 1 y 2 dny2  dA, where n is an integer and D 

    is the region bounded by the circles with center the origin 
and radii r and R, 0 , r , R.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1065

Problems Plus  1. If v xb  denotes the greatest integer in x, evaluate the integral

y
R

y v x 1 yb  dA

  where R − hsx, yd | 1 < x < 3, 2 < y < 5j.

 2. Evaluate the integral

y1

0
 y1

0
 e maxhx2, y2j dy dx

   where maxhx 2, y 2 j means the larger of the numbers x 2 and y 2.

 3.  Find the average value of the function f sxd − y1
x  cosst 2 d dt on the interval [0, 1].

 4.  If a, b, and c are constant vectors, r is the position vector x i 1 y j 1 z k, and E is given by 
the inequalities 0 < a ? r < #, 0 < b ? r < ", 0 < c ? r < ', show that

y y
E

y sa ? rdsb ? rdsc ? rd dV −
s#"'d2

8 | a ? sb 3 cd |

 5.  The double integral y1

0
 y1

0
 

1
1 2 xy

 dx dy is an improper integral and could be defined as

   the limit of double integrals over the rectangle f0, tg 3 f0, tg as t l 12. But if we expand 
the integrand as a geometric series, we can express the integral as the sum of an infinite 
series. Show that

y1

0
 y1

0
 

1
1 2 xy

 dx dy − o
`

n−1
 

1
n 2

 6.  Leonhard Euler was able to find the exact sum of the series in Problem 5. In 1736 he 
proved that

o
`

n−1
 

1
n 2 −

& 2

6

   In this problem we ask you to prove this fact by evaluating the double integral in Prob- 
lem 5. Start by making the change of variables

x −
u 2 v

s2 
      y −

u 1 v

s2 

   This gives a rotation about the origin through the angle &y4. You will need to sketch the  
corresponding region in the uv-plane.

     [Hint: If, in evaluating the integral, you encounter either of the expressions  
s1 2 sin !dycos ! or scos !dys1 1 sin !d, you might like to use the identity 
cos ! − sinss&y2d 2 !d and the corresponding identity for sin !.]

 7. (a) Show that

y1

0
 y1

0
 y1

0
 

1
1 2 xyz

 dx dy dz − o
`

n−1
 

1
n 3

    (Nobody has ever been able to find the exact value of the sum of this series.)

  (b) Show that

y1

0
 y1

0
 y1

0
 

1
1 1 xyz

 dx dy dz − o
`

n−1
 
s21dn21

n3

    Use this equation to evaluate the triple integral correct to two decimal places.
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 8. Show that

y`

0
 
arctan &x 2 arctan x

x
 dx −

&

2
 ln &

  by first expressing the integral as an iterated integral.

 9. (a) Show that when Laplace’s equation

−2u
−x 2 1

−2u
−y 2 1

−2u
−z2 − 0 

   is written in cylindrical coordinates, it becomes

−2u
−r 2 1

1
r

 
−u
−r

1
1
r 2  

−2u
−! 2 1

−2u
−z2 − 0

  (b) Show that when Laplace’s equation is written in spherical coordinates, it becomes

−2u
−$ 2 1

2
$

 
−u
−$

1
cot %

$ 2  
−u
−%

1
1
$ 2  

−2u
−% 2 1

1
$ 2 sin2%

 
−2u
−! 2 − 0

 10. (a)  A lamina has constant density $ and takes the shape of a disk with center the origin and 
radius R. Use Newton’s Law of Gravitation (see Section 13.4) to show that the magni-
tude of the force of attraction that the lamina exerts on a body with mass m located at 
the point s0, 0, d d on the positive z-axis is

F − 2&Gm$dS 1
d

2
1

sR 2 1 d 2 D
    [Hint: Divide the disk as in Figure 15.3.4 and first compute the vertical component of 

the force exerted by the polar subrectangle Rij.]

  (b)  Show that the magnitude of the force of attraction of a lamina with density $ that occu-
pies an entire plane on an object with mass m located at a distance d from the plane is

F − 2&Gm$

   Notice that this expression does not depend on d.

 11. If f  is continuous, show that

yx

0
 yy

0
 yz

0
 f std dt dz dy − 1

2 yx

0
 sx 2 td2 f std dt

 12. Evaluate lim
n l `

 n22 o
n

i−1
 o

n2

j−1
 

1

sn 2 1 ni 1 j 
.

 13. The plane

 
x
a

1
y
b

1
z
c

− 1    a . 0,  b . 0,  c . 0

  cuts the solid ellipsoid

x 2

a 2 1
y2

b2 1
z 2

c 2 < 1

  into two pieces. Find the volume of the smaller piece.
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Parametric surfaces, which 
are studied in Section 16.6, 

are frequently used by 
programmers in creating the 

sophisticated software used in 
the development of computer 

animated films like the Shrek 
series. The software employs 

parametric and other types of 
surfaces to create 3D models 
of the characters and objects 
in a scene. Color, texture, and 

lighting is then rendered to 
bring the scene to life.

IN THIS CHAPTER WE STUDY the calculus of vector fields. (These are functions that assign vec-
tors to points in space.) In particular we define line integrals (which can be used to find the work 
done by a force field in moving an object along a curve). Then we define surface integrals (which 
can be used to find the rate of fluid flow across a surface). The connections between these new 
types of integrals and the single, double, and triple integrals that we have already met are given 
by the higher-dimensional versions of the Fundamental Theorem of Calculus: Green’s Theorem, 
Stokes’ Theorem, and the Divergence Theorem.

16 Vector Calculus

1067
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1068 CHAPTER 16  Vector Calculus

The vectors in Figure 1 are air velocity vectors that indicate the wind speed and direc-
tion at points 10 m above the surface elevation in the San Francisco Bay area. We see 
at a glance from the largest arrows in part (a) that the greatest wind speeds at that time 
occurred as the winds entered the bay across the Golden Gate Bridge. Part (b) shows the 
very different wind pattern 12 hours earlier. Associated with every point in the air we can 
imagine a wind velocity vector. This is an example of a velocity vector field.

(a) 6:00 PM, March 1, 2010 (b) 6:00 AM, March 1, 2010
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FIGURE 1 Velocity vector fields showing San Francisco Bay wind patterns

Other examples of velocity vector fields are illustrated in Figure 2: ocean currents and 
flow past an airfoil.

Nova Scotia

(a) Ocean currents off the coast of Nova Scotia (b) Airflow past an inclined airfoil
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Another type of vector field, called a force field, associates a force vector with each 
point  in a region. An example is the gravitational force field that we will look at in  
Example 4.

FIGURE 2  
Velocity vector fields
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 SECTION 16.1  Vector Fields 1069

In general, a vector field is a function whose domain is a set of points in R 2 (or R 3) 
and whose range is a set of vectors in V2 (or V3).

1   Definition Let D be a set in R 2 (a plane region). A vector field on R 2 is a 
function F that assigns to each point sx, yd in D a two-dimensional vector Fsx, yd.

The best way to picture a vector field is to draw the arrow representing the vector 
Fsx, yd starting at the point sx, yd. Of course, it’s impossible to do this for all points sx, yd, 
but we can gain a reasonable impression of F by doing it for a few representative points in 
D as in Figure 3. Since Fsx, yd is a two-dimensional vector, we can write it in terms of its 
component functions P and Q as follows:

Fsx, yd − Psx, yd i 1 Qsx, yd j − kPsx, yd, Qsx, ydl

or, for short, F − P i 1 Q j

Notice that P and Q are scalar functions of two variables and are sometimes called scalar 
fields to distinguish them from vector fields.

2   Definition Let E be a subset of R 3. A vector field on R 3 is a function F 
that assigns to each point sx, y, zd in E a three-dimensional vector Fsx, y, zd.

A vector field F on R 3 is pictured in Figure 4. We can express it in terms of its com-
ponent functions P, Q, and R as

Fsx, y, zd − Psx, y, zd i 1 Qsx, y, zd j 1 Rsx, y, zd k

As with the vector functions in Section 13.1, we can define continuity of vector fields  
and show that F is continuous if and only if its component functions P, Q, and R are  
continuous.

We sometimes identify a point sx, y, zd with its position vector x − kx, y, zl and write 
Fsxd instead of Fsx, y, zd. Then F becomes a function that assigns a vector Fsxd to a vec-
tor x.

EXAMPLE 1 A vector field on R 2 is defined by Fsx, yd − 2y i 1 x j. Describe F by 
sketching some of the vectors Fsx, yd as in Figure 3.

SOLUTION Since Fs1, 0d − j, we draw the vector j − k0, 1l starting at the point s1, 0d 
in Figure 5. Since Fs0, 1d − 2i, we draw the vector k21, 0l with starting point s0, 1d. 
Continuing in this way, we calculate several other representative values of Fsx, yd in the 
table and draw the corresponding vectors to represent the vector field in Figure 5.

sx, yd Fsx, yd sx, yd Fsx, yd

s1, 0d k0, 1d s21, 0d k0, 21l
s2, 2d k22, 2l s22, 22d k2, 22l
s3, 0d k0, 3l s23, 0d k0, 23l
s0, 1d k21, 0l s0, 21d k1, 0)

s22, 2d k22, 22l s2, 22d k2, 2l
s0, 3d k23, 0l s0, 23d k3, 0l

FIGURE 3
Vector field on R@

0

(x, y)

F(x, y)

x

y

FIGURE 4
Vector field on R#

y

0

z

x

(x, y, z)

F (x, y, z)

FIGURE 5
F(x, y)=_y i+x j

F (1, 0)

F (0, 3) F (2, 2)

0 x

y
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1070 CHAPTER 16  Vector Calculus

It appears from Figure 5 that each arrow is tangent to a circle with center the origin. 
To confirm this, we take the dot product of the position vector x − x i 1 y j with the 
vector Fsxd − Fsx, yd:

 x ! Fsxd − sx i 1 y jd ! s2y i 1 x jd − 2xy 1 yx − 0

This shows that Fsx, yd is perpendicular to the position vector kx, yl and is therefore 
tangent to a circle with center the origin and radius | x | − sx 2 1 y 2 . Notice also that

| Fsx, yd | − ss2yd2 1 x 2 − sx 2 1 y 2 − | x |
so the magnitude of the vector Fsx, yd is equal to the radius of the circle. Q

Some computer algebra systems are capable of plotting vector fields in two or three 
dimensions. They give a better impression of the vector field than is possible by hand 
because the computer can plot a large number of representative vectors. Figure 6 shows a 
computer plot of the vector field in Example 1; Figures 7 and 8 show two other vector 
fields. Notice that the computer scales the lengths of the vectors so they are not too long 
and yet are proportional to their true lengths.

5

_5

_5 5

6

_6

_6 6

5

_5

_5 5

FIGURE 6
F(x, y)=k_y, xl

FIGURE 7
F(x, y)=ky, sin xl

FIGURE 8
F(x, y)=k ln(1+¥), ln(1+≈)l

EXAMPLE 2 Sketch the vector field on R 3 given by Fsx, y, zd − z k.

SOLUTION The sketch is shown in Figure 9. Notice that all vectors are vertical and 
point upward above the xy-plane or downward below it. The magnitude increases with 
the distance from the xy-plane.

 

y

0

z

x

 Q

We were able to draw the vector field in Example 2 by hand because of its particularly 
simple formula. Most three-dimensional vector fields, however, are virtually impossible 

FIGURE 9  
Fsx, y, zd − z k
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 SECTION 16.1  Vector Fields 1071

to sketch by hand and so we need to resort to computer software. Examples are shown in 
Figures 10, 11, and 12. Notice that the vector fields in Figures 10 and 11 have similar 
formulas, but all the vectors in Figure 11 point in the general direction of the negative  
y-axis because their y-components are all 22. If the vector field in Figure 12 represents 
a velocity field, then a particle would be swept upward and would spiral around the z-axis 
in the clockwise direction as viewed from above.

z
1
0

_1

y 10_1 x1 0 _1

FIGURE 10
F(x, y, z)=y i+z j+x k

z
1
0

y 10 x1 0

FIGURE 11
F(x, y, z)=y i-2 j+x k

z

5

3

1

y 10_1 x1
0

_1

FIGURE 12

F(x, y, z)=    i-    j+    ky
z

x
z

z
4

_1_1

_1

EXAMPLE 3 Imagine a fluid flowing steadily along a pipe and let Vsx, y, zd be the 
velocity vector at a point sx, y, zd. Then V assigns a vector to each point sx, y, zd in a 
certain domain E (the interior of the pipe) and so V is a vector field on R 3 called a 
velocity field. A possible velocity field is illustrated in Figure 13. The speed at any given 
point is indicated by the length of the arrow.

Velocity fields also occur in other areas of physics. For instance, the vector field in 
Example 1 could be used as the velocity field describing the counterclockwise rotation of 
a wheel. We have seen other examples of velocity fields in Figures 1 and 2. Q

EXAMPLE 4 Newton’s Law of Gravitation states that the magnitude of the gravitational 
force between two objects with masses m and M is

| F | −
mMG

r 2

where r is the distance between the objects and G is the gravitational constant. (This  
is an example of an inverse square law.) Let’s assume that the object with mass M is  
located at the origin in R 3. (For instance, M could be the mass of the earth and the 
origin would be at its center.) Let the position vector of the object with mass m be 
x − kx, y, zl. Then r − | x |, so r 2 − | x |2. The gravitational force exerted on this 
second object acts toward the origin, and the unit vector in this direction is

2
x

| x |
Therefore the gravitational force acting on the object at x − kx, y, zl is

3  Fsxd − 2
mMG

| x |3  x 

[Physicists often use the notation r instead of x for the position vector, so you may see 
Formula 3 written in the form F − 2smMGyr 3 dr.] The function given by Equation 3 is 

TEC In Visual 16.1 you can rotate the  
vector fields in Figures 10–12 as well 
as additional fields.

z

y
x

0

FIGURE 13  
Velocity field in fluid flow
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1072 CHAPTER 16  Vector Calculus

an example of a vector field, called the gravitational field, because it associates a 
vector [the force Fsxd] with every point x in space.

Formula 3 is a compact way of writing the gravitational field, but we can also write  
it in terms of its component functions by using the facts that x − x i 1 y j 1 z k and 

| x | − sx 2 1 y 2 1 z 2 :

Fsx, y, zd −
2mMGx

sx 2 1 y 2 1 z2 d3y2  i 1
2mMGy

sx 2 1 y 2 1 z2 d3y2  j 1
2mMGz

sx 2 1 y 2 1 z2 d3y2  k

The gravitational field F is pictured in Figure 14. Q

EXAMPLE 5 Suppose an electric charge Q is located at the origin. According to Cou-
lomb’s Law, the electric force Fsxd exerted by this charge on a charge q located at a point 
sx, y, zd with position vector x − kx, y, zl is

4  Fsxd −
«qQ

| x |3  x 

where « is a constant (that depends on the units used). For like charges, we have 
qQ . 0 and the force is repulsive; for unlike charges, we have qQ , 0 and the force is 
attractive. Notice the similarity between Formulas 3 and 4. Both vector fields are 
examples of force fields.

Instead of considering the electric force F, physicists often consider the force per 
unit charge:

Esxd −
1
q

 Fsxd −
«Q

| x |3  x

Then E is a vector field on R 3 called the electric field of Q. Q

Gradient Fields
If f  is a scalar function of two variables, recall from Section 14.6 that its gradient = f  (or 
grad f ) is defined by

= f sx, yd − fxsx, yd i 1 fysx, yd j

Therefore = f  is really a vector field on R 2 and is called a gradient vector field. Like-
wise, if f  is a scalar function of three variables, its gradient is a vector field on R 3 given by

= f sx, y, zd − fxsx, y, zd i 1 fysx, y, zd j 1 fzsx, y, zd k

EXAMPLE 6 Find the gradient vector field of f sx, yd − x 2 y 2 y 3. Plot the gradient 
vector field together with a contour map of f. How are they related?

SOLUTION The gradient vector field is given by

= f sx, yd −
−f
−x

 i 1
−f
−y

 j − 2xy i 1 sx 2 2 3y 2 d j

Figure 15 shows a contour map of f  with the gradient vector field. Notice that the 
gradient vectors are perpendicular to the level curves, as we would expect from 

4

_4

_4 4

FIGURE 15

y

z

x

FIGURE 14  
Gravitational force field
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 SECTION 16.1  Vector Fields 1073

Section 14.6. Notice also that the gradient vectors are long where the level curves are 
close to each other and short where the curves are farther apart. That’s because the length 
of the gradient vector is the value of the directional derivative of f  and closely spaced 
level curves indicate a steep graph. Q

A vector field F is called a conservative vector field if it is the gradient of some sca-
lar function, that is, if there exists a function f  such that F − = f . In this situation f  is 
called a potential function for F.

Not all vector fields are conservative, but such fields do arise frequently in physics. 
For example, the gravitational field F in Example 4 is conservative because if we define

f sx, y, zd −
mMG

sx 2 1 y 2 1 z 2 

then

 = f sx, y, zd −
−f
−x

 i 1
−f
−y

 j 1
−f
−z

 k

 −
2mMGx

sx 2 1 y 2 1 z 2 d3y2  i 1
2mMGy

sx 2 1 y 2 1 z 2 d3y2  j 1
2mMGz

sx 2 1 y 2 1 z 2 d3y2  k

 − Fsx, y, zd

In Sections 16.3 and 16.5 we will learn how to tell whether or not a given vector field is 
conservative.

 1–10 Sketch the vector field F by drawing a diagram like  
Fig ure 5 or Figure 9.

 1. Fsx, yd − 0.3 i 2 0.4 j 2. Fsx, yd − 1
2 x i 1 y j

 3. Fsx, yd − 21
2 i 1 sy 2 xd j

 4. Fsx, yd − y i 1 sx 1 yd j

 5. Fsx, yd −
y i 1 x j

sx 2 1 y 2 

 6. Fsx, yd −
y i 2 x j

sx 2 1 y 2 

 7. Fsx, y, zd − i

 8. Fsx, y, zd − z i

 9. Fsx, y, zd − 2y i

 10. Fsx, y, zd − i 1 k

11–14 Match the vector fields F with the plots labeled I–IV.  
Give reasons for your choices.

 11. Fsx, yd − kx, 2yl

 12. Fsx, yd − ky, x 2 yl

 13. Fsx, yd − ky, y 1 2l

 14. Fsx, yd − kcossx 1 yd, xl

3

_3

_3 3

3

_3

_3 3

3

_3

_3 3

3

_3

_3 3

I II

III IV
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1074 CHAPTER 16  Vector Calculus

29–32 Match the functions f  with the plots of their gradient  
vector fields labeled I–IV. Give reasons for your choices.

 29. f sx, yd − x 2 1 y 2 30. f sx, yd − xsx 1 yd

 31. f sx, yd − sx 1 yd2 32. f sx, yd − sinsx 2 1 y 2 

4

_4

_4 4

4

_4

_4 4

4

_4

_4 4

I II

III IV4

_4

_4 4

 33.  A particle moves in a velocity field Vsx, yd − kx 2, x 1 y 2l.  
If it is at position s2, 1d at time t − 3, estimate its location 
at time t − 3.01.

 34.  At time t − 1, a particle is located at position s1, 3d. If it 
moves in a velocity field 

Fsx, yd − kxy 2 2, y 2 2 10l
  find its approximate location at time t − 1.05.

 35.  The flow lines (or streamlines) of a vector field are the 
paths followed by a particle whose velocity field is the 
given vector field. Thus the vectors in a vector field are 
tangent to the flow lines.

 (a)  Use a sketch of the vector field Fsx, yd − x i 2 y j to 
draw some flow lines. From your sketches, can you 
guess the equations of the flow lines?

 (b)  If parametric equations of a flow line are x − xstd, 
y − ystd, explain why these functions satisfy the differ-
ential equa tions dxydt − x and dyydt − 2y. Then solve 
the differential equations to find an equation of the flow 
line that passes through the point (1, 1).

 36. (a)  Sketch the vector field Fsx, yd − i 1 x j and then 
sketch some flow lines. What shape do these flow lines 
appear to have?

 (b)  If parametric equations of the flow lines are x − xstd, 
y − ystd, what differential equations do these functions  
satisfy? Deduce that dyydx − x.

 (c)  If a particle starts at the origin in the velocity field given 
by F, find an equation of the path it follows.

15–18 Match the vector fields F on R3 with the plots labeled  
I–IV. Give reasons for your choices.

 15. Fsx, y, zd − i 1 2 j 1 3 k

 16. Fsx, y, zd − i 1 2 j 1 z k

 17. Fsx, y, zd − x i 1 y j 1 3 k

 18. Fsx, y, zd − x i 1 y j 1 z k

z
1
0

_1

y 10_1 x1 0 _1

z
1
0

_1

y 10_1 x1 0 _1

0y 1_1 x1 0 _1

z
1
0

_1

z
1
0

_1

y 10_1 1 0 _1
x

I II

III IV

 19.  If you have a CAS that plots vector fields (the command  
is fieldplot in Maple and PlotVectorField or  
VectorPlot in Mathematica), use it to plot

Fsx, yd − sy 2 2 2xyd i 1 s3xy 2 6x 2 d j

   Explain the appearance by finding the set of points sx, yd  
such that Fsx, yd − 0.

 20.  Let Fsxd − sr 2 2 2rdx, where x − kx, yl and r − | x |. Use a 
CAS to plot this vector field in various domains until you can 
see what is happening. Describe the appearance of the plot 
and explain it by finding the points where Fsxd − 0.

21–24 Find the gradient vector field of f .

 21. f sx, yd − y sinsxyd 22. f ss, td − s2s 1 3t 

 23. f sx, y, zd − sx 2 1 y 2 1 z 2  24. f sx, y, zd − x 2ye yyz

25–26 Find the gradient vector field = f  of f  and sketch it.

 25. f sx, yd − 1
2sx 2 yd2 26. f sx, yd − 1

2sx 2 2 y 2d

27–28 Plot the gradient vector field of f  together with a contour 
map of f . Explain how they are related to each other.

 27. f sx, yd − lns1 1 x 2 1 2y 2d 28. f sx, yd − cos x 2 2 sin y

CAS

CAS

CAS
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 SECTION 16.2  Line Integrals 1075

In this section we define an integral that is similar to a single integral except that instead 
of integrating over an interval fa, bg, we integrate over a curve C. Such integrals are 
called line integrals, although “curve integrals” would be better terminology. They were 
invented in the early 19th century to solve problems involving fluid flow, forces, electric-
ity, and magnetism.

We start with a plane curve C given by the parametric equations

1  x − xstd    y − ystd    a < t < b 

or, equivalently, by the vector equation rstd − xstd i 1 ystd j, and we assume that C is a 
smooth curve. [This means that r9 is continuous and r9std ± 0. See Section 13.3.] If we 
divide the parameter interval fa, bg into n subintervals fti21, tig of equal width and we let 
xi − xstid and yi − ystid, then the corresponding points Pi sxi, yi d divide C into n subarcs 
with lengths Ds1, Ds2, . . . , Dsn. (See Figure 1.) We choose any point Pi*sxi*, yi*d in the ith 
subarc. (This corresponds to a point ti* in fti21, tig.) Now if f  is any function of two vari-
ables whose domain includes the curve C, we evaluate f  at the point sxi*, yi*d, multiply 
by the length Dsi of the subarc, and form the sum

o
n

i−1
 f sxi*, yi*d Dsi

which is similar to a Riemann sum. Then we take the limit of these sums and make the 
following definition by analogy with a single integral.

2   Definition If f  is defined on a smooth curve C given by Equations 1, then 
the line integral of f  along C is

y
C
 f sx, yd ds − lim

n l `
 o

n

i−1
 f sxi*, yi*d Dsi

if this limit exists.

In Section 10.2 we found that the length of C is

L − yb

a
 ÎS dx

dt D2

1 S dy
dt D2 

 dt

A similar type of argument can be used to show that if f  is a continuous function, then 
the limit in Definition 2 always exists and the following formula can be used to evaluate 
the line integral:

3  y
C

 fsx, yd ds − yb

a
 f sxstd, ystddÎS dx

dt D2

1 S dy
dt D2

  dt 

The value of the line integral does not depend on the parametrization of the curve, pro-
vided that the curve is traversed exactly once as t increases from a to b.

t i-1

P¸
P¡
P™

C

a b

x0

y

t
t i

t*i

Pi-1 Pi

Pn

P*i (x*i , y*i )

FIGURE 1
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1076 CHAPTER 16  Vector Calculus

If sstd is the length of C between rsad and rstd, then

ds
dt

− ÎS dx
dt D2

1 S dy
dt D2 

So the way to remember Formula 3 is to express everything in terms of the parameter t: 
Use the parametric equations to express x and y in terms of t and write ds as

ds − ÎS dx
dt D2

1 S dy
dt D2

 dt

In the special case where C is the line segment that joins sa, 0d to sb, 0d, using x as the  
parameter, we can write the parametric equations of C as follows: x − x, y − 0,  
a < x < b. Formula 3 then becomes

y
C
 f sx, yd ds − yb

a
 f sx, 0d dx

and so the line integral reduces to an ordinary single integral in this case.
Just as for an ordinary single integral, we can interpret the line integral of a positive 

function as an area. In fact, if f sx, yd > 0, yC f sx, yd ds represents the area of one side of 
the “fence” or “curtain” in Figure 2, whose base is C and whose height above the point 
sx, yd is f sx, yd.

EXAMPLE 1 Evaluate yC s2 1 x 2yd ds, where C is the upper half of the unit circle 
x 2 1 y 2 − 1.

SOLUTION In order to use Formula 3, we first need parametric equations to repre- 
sent C. Recall that the unit circle can be parametrized by means of the equations

x − cos t    y − sin t

and the upper half of the circle is described by the parameter interval 0 < t < !. 
(See Figure 3.) Therefore Formula 3 gives

 y
C
 s2 1 x 2yd ds − y!

0
 s2 1 cos2t sin tdÎS dx

dt D2

1 S dy
dt D2 

 dt

 − y!

0
 s2 1 cos2t sin tdssin2 t 1 cos2 t  dt

 − y!

0
 s2 1 cos2t sin td dt − F2t 2

cos3t
3 G

0

!

  − 2! 1 2
3  Q

Suppose now that C is a piecewise-smooth curve; that is, C is a union of a finite 
number of smooth curves C1, C2, . . . , Cn, where, as illustrated in Figure 4, the initial 
point of Ci11 is the terminal point of Ci . Then we define the integral of f  along C as the 
sum of the integrals of f  along each of the smooth pieces of C:

y
C
 f sx, yd ds − y

C1

 f sx, yd ds 1 y
C2

 f sx, yd ds 1 ∙ ∙ ∙ 1 y
Cn

f sx, yd ds

The arc length function s is discussed in  
Section 13.3.

f(x, y)

(x, y)

C y

z

x

0

FIGURE 2

0

≈+¥=1
(y˘0)

x

y

1_1

FIGURE 3

0

C£C™

C¡

C¢
C∞

x

y

FIGURE 4  
A piecewise-smooth curve
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 SECTION 16.2  Line Integrals 1077

EXAMPLE 2 Evaluate yC 2x ds, where C consists of the arc C1 of the parabola y − x 2 
from s0, 0d to s1, 1d followed by the vertical line segment C2 from s1, 1d to s1, 2d.

SOLUTION The curve C is shown in Figure 5. C1 is the graph of a function of x, so we 
can choose x as the parameter and the equations for C1 become

x − x    y − x 2    0 < x < 1

Therefore

y
C1

 2x ds − y1

0
 2xÎS dx

dxD2

1 S dy
dxD2

 dx − y1

0
 2xs1 1 4x 2  dx

 − 1
4 ! 2

3 s1 1 4x 2 d3y2g0

1 
−

5s5 2 1
6

On C2 we choose y as the parameter, so the equations of C2 are

x − 1    y − y    1 < y < 2

and y
C2

 2x ds − y2

1
 2s1dÎS dx

dyD2

1 S dy
dyD2

 dy − y2

1
 2 dy − 2

Thus y
C
 2x ds − y

C1

 2x ds 1 y
C2

 2x ds −
5s5 2 1

6
1 2 Q

Any physical interpretation of a line integral yC f sx, yd ds depends on the physical 
interpretation of the function f. Suppose that "sx, yd represents the linear density at a 
point sx, yd of a thin wire shaped like a curve C. Then the mass of the part of the wire 
from Pi21 to Pi in Figure 1 is approximately "sxi*, yi*d Dsi and so the total mass of the 
wire is approximately o  "sxi*, yi*d Dsi. By taking more and more points on the curve, we 
obtain the mass m of the wire as the limiting value of these approximations:

m − lim
n l `

 o
n

i−1
 "sxi*, yi*d Dsi − y

C
 "sx, yd ds

[For example, if f sx, yd − 2 1 x 2 y represents the density of a semicircular wire, then 
the integral in Example 1 would represent the mass of the wire.] The center of mass of 
the wire with density function " is located at the point sx, yd, where

4  x −
1
m

 y
C
 x "sx, yd ds      y −

1
m

 y
C
 y "sx, yd ds 

Other physical interpretations of line integrals will be discussed later in this chapter.

EXAMPLE 3 A wire takes the shape of the semicircle x 2 1 y 2 − 1, y > 0, and is thicker 
near its base than near the top. Find the center of mass of the wire if the linear density at 
any point is proportional to its distance from the line y − 1.

SOLUTION As in Example 1 we use the parametrization x − cos t, y − sin t, 
0 < t < !, and find that ds − dt. The linear density is

"sx, yd − ks1 2 yd

(0, 0)

(1, 1)

(1, 2)

C¡

C™

x

y

FIGURE 5  
C − C1 ø C2
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1078 CHAPTER 16  Vector Calculus

where k is a constant, and so the mass of the wire is

 m − y
C
 ks1 2 yd ds − y!

0
 ks1 2 sin td dt − kft 1 cos tg 0

!

− ks! 2 2d

From Equations 4 we have

 y −
1
m

 y
C
 y "sx, yd ds −

1
ks! 2 2d

 y
C
 y ks1 2 yd ds

 −
1

! 2 2
 y!

0
 ssin t 2 sin2td dt −

1
! 2 2

 f2cos t 2 1
2 t 1 1

4 sin 2tg0

!

 −
4 2 !

2s! 2 2d

By symmetry we see that x − 0, so the center of mass is

S0,  
4 2 !

2s! 2 2dD < s0, 0.38d

See Figure 6. Q

Two other line integrals are obtained by replacing Dsi by either Dxi − xi 2 xi21 or 
Dyi − yi 2 yi21 in Definition 2. They are called the line integrals of f  along C with 
respect to x and y:

5 �  y
C
 f sx, yd dx − lim

n l `
 o

n

i−1
 f sxi*, yi*d Dxi 

6 �  y
C
 f sx, yd dy − lim

n l `
 o

n

i−1
 f sxi*, yi*d Dyi 

When we want to distinguish the original line integral yC f sx, yd ds from those in Equa -
tions 5 and 6, we call it the line integral with respect to arc length.

The following formulas say that line integrals with respect to x and y can also be  
evaluated by expressing everything in terms of t: x − xstd, y − ystd, dx − x9std dt, 
dy − y9std dt.

7 �  y
C
 f sx, yd dx − yb

a
 f sxstd, ystdd x9std dt 

�  y
C
 f sx, yd dy − yb

a
 f sxstd, ystdd y9std dt 

It frequently happens that line integrals with respect to x and y occur together. When 
this happens, it’s customary to abbreviate by writing

y
C
 Psx, yd dx 1 y

C
 Qsx, yd dy − y

C
 Psx, yd dx 1 Qsx, yd dy

When we are setting up a line integral, sometimes the most difficult thing is to think 
of a parametric representation for a curve whose geometric description is given. In par-
ticular, we often need to parametrize a line segment, so it’s useful to remember that a 

0 1_1

1 center of
mass

x

y

FIGURE 6
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 SECTION 16.2  Line Integrals 1079

vector representation of the line segment that starts at r0 and ends at r1 is given by

8  rstd − s1 2 tdr0 1 t r1    0 < t < 1 

(See Equation 12.5.4.)

EXAMPLE 4 Evaluate yC y 2 dx 1 x dy, where (a) C − C1 is the line segment from 
s25, 23d to s0, 2d and (b) C − C2 is the arc of the parabola x − 4 2 y 2 from s25, 23d 
to s0, 2d. (See Figure 7.)

SOLUTION
(a) A parametric representation for the line segment is

x − 5t 2 5    y − 5t 2 3    0 < t < 1

(Use Equation 8 with r0 − k25, 23l and r1 − k0, 2l.) Then dx − 5 dt, dy − 5 dt, and 
Formulas 7 give

 y
C1

 y 2 dx 1 x dy − y1

0
 s5t 2 3d2s5 dtd 1 s5t 2 5ds5 dtd

 − 5 y1

0
 s25t 2 2 25t 1 4d dt

 − 5F 25t 3

3
2

25t 2

2
1 4tG

0

1

− 2
5
6

(b) Since the parabola is given as a function of y, let’s take y as the parameter and 
write C2 as

x − 4 2 y 2    y − y    23 < y < 2

Then dx − 22y dy and by Formulas 7 we have

 y  

C2

 y 2 dx 1 x dy − y2

23
 y 2s22yd dy 1 s4 2 y 2 d dy

 − y2

23
 s22y 3 2 y 2 1 4d dy

  − F2
y 4

2
2

y 3

3
1 4yG

23

2

− 40 5
6 Q

Notice that we got different answers in parts (a) and (b) of Example 4 even though the 
two curves had the same endpoints. Thus, in general, the value of a line integral depends 
not just on the endpoints of the curve but also on the path. (But see Section 16.3 for con-
ditions under which the integral is independent of the path.)

Notice also that the answers in Example 4 depend on the direction, or orientation, of 
the curve. If 2C1 denotes the line segment from s0, 2d to s25, 23d, you can verify, using 
the parametrization

x − 25t    y − 2 2 5t    0 < t < 1

that y  

2C1

 y 2 dx 1 x dy − 5
6

0 4

(_5, _3)

(0, 2)

C¡ C™

x=4-¥

x

y

FIGURE 7
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1080 CHAPTER 16  Vector Calculus

In general, a given parametrization x − xstd, y − ystd, a < t < b, determines an 
orien tation of a curve C, with the positive direction corresponding to increasing values 
of the parameter t. (See Figure 8, where the initial point A corresponds to the parameter 
value a and the terminal point B corresponds to t − b.)

If 2C denotes the curve consisting of the same points as C but with the opposite ori-
entation (from initial point B to terminal point A in Figure 8), then we have

y
2C

 f sx, yd dx − 2y
C
 f sx, yd dx      y

2C
 f sx, yd dy − 2y

C
 f sx, yd dy

But if we integrate with respect to arc length, the value of the line integral does not 
change when we reverse the orientation of the curve:

y
2C

 f sx, yd ds − y
C
 f sx, yd ds

This is because Dsi is always positive, whereas Dxi and Dyi change sign when we reverse 
the orientation of C.

Line Integrals in Space
We now suppose that C is a smooth space curve given by the parametric equations

x − xstd    y − ystd    z − zstd    a < t < b

or by a vector equation rstd − xstd i 1 ystd j 1 zstd k. If f  is a function of three variables 
that is continuous on some region containing C, then we define the line integral of f  
along C (with respect to arc length) in a manner similar to that for plane curves:

y
C
 f sx, y, zd ds − lim

n l `
 o

n

i−1
 f sxi*, yi*, zi*d Dsi

We evaluate it using a formula similar to Formula 3:

9  y
C
 f sx, y, zd ds − yb

a
 f sxstd, ystd, zstddÎS dx

dt D2

1 S dy
dt D2

1 S dz
dtD2 

 dt 

Observe that the integrals in both Formulas 3 and 9 can be written in the more compact 
vector notation

yb

a
 f srstdd | r9std | dt

For the special case f sx, y, zd − 1, we get

y
C
 ds − yb

a
 | r9std | dt − L

where L is the length of the curve C (see Formula 13.3.3).

B

A

ta b

C

_CA

B

FIGURE 8
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 SECTION 16.2  Line Integrals 1081

Line integrals along C with respect to x, y, and z can also be defined. For example,

 y
C
 f sx, y, zd dz − lim

n l `
 o

n

i−1
 f sxi*, yi*, zi*d Dzi

 − yb

a
 f sxstd, ystd, zstdd z9std dt

Therefore, as with line integrals in the plane, we evaluate integrals of the form

10  y
C
 Psx, y, zd dx 1 Qsx, y, zd dy 1 Rsx, y, zd dz 

by expressing everything sx, y, z, dx, dy, dzd in terms of the parameter t.

EXAMPLE 5 Evaluate yC y sin z ds, where C is the circular helix given by the equa tions 
x − cos t, y − sin t, z − t, 0 < t < 2!. (See Figure 9.)

SOLUTION Formula 9 gives

 y
C
 y sin z ds − y2!

0
 ssin td sin tÎS dx

dt D2

1 S dy
dt D2

1 S dz
dtD2 

 dt

 − y2!

0
 sin2tssin2t 1 cos 2t 1 1 dt − s2  y2!

0
 12s1 2 cos 2td dt

 − s2 

2
 ft 2 1

2 sin 2tg0

2!
− s2 ! Q

EXAMPLE 6 Evaluate yC y dx 1 z dy 1 x dz, where C consists of the line segment C1 
from s2, 0, 0d to s3, 4, 5d, followed by the vertical line segment C2 from s3, 4, 5d to 
s3, 4, 0d.

SOLUTION The curve C is shown in Figure 10. Using Equation 8, we write C1 as

rstd − s1 2 td k2, 0, 0 l 1 t k3, 4, 5 l − k2 1 t, 4t, 5t l

or, in parametric form, as

x − 2 1 t    y − 4t    z − 5t    0 < t < 1

Thus

 y
C1

 y dx 1 z dy 1 x dz − y1

0
 s4td dt 1 s5td4 dt 1 s2 1 td5 dt

 − y1

0
 s10 1 29td dt − 10t 1 29 

t 2

2 G0

1

− 24.5

Likewise, C2 can be written in the form

rstd − s1 2 td k3, 4, 5 l 1 tk3, 4, 0 l − k3, 4, 5 2 5t l

or x − 3    y − 4    z − 5 2 5t    0 < t < 1

1
x

z

y

C

1

0

_1

0

_1
0

2

4

6

1
x

z

y

C

1

0

_1

0

_1
0

2

4

6

FIGURE 9

y

z

x

0

(3, 4, 5)

(3, 4, 0)

(2, 0, 0)

C¡ C™

FIGURE 10
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1082 CHAPTER 16  Vector Calculus

Then dx − 0 − dy, so

y
C2

 y dx 1 z dy 1 x dz − y1

0
 3s25d dt − 215

Adding the values of these integrals, we obtain

 y
C
 y dx 1 z dy 1 x dz − 24.5 2 15 − 9.5 Q

Line Integrals of Vector Fields
Recall from Section 6.4 that the work done by a variable force f sxd in moving a particle 
from a to b along the x-axis is W − yb

a  f sxd dx. Then in Section 12.3 we found that the 
work done by a constant force F in moving an object from a point P to another point Q in
space is W − F ! D, where D − PQ

l
 is the displacement vector.

Now suppose that F − P i 1 Q j 1 R k is a continuous force field on R 3, such as the 
gravitational field of Example 16.1.4 or the electric force field of Example 16.1.5. (A force 
field on R 2 could be regarded as a special case where R − 0 and P and Q depend only 
on x and y.) We wish to compute the work done by this force in moving a particle along 
a smooth curve C.

We divide C into subarcs Pi21Pi with lengths Dsi by dividing the parameter interval 
fa, bg into subintervals of equal width. (See Figure 1 for the two-dimensional case or  
Figure 11 for the three-dimensional case.) Choose a point Pi*sxi*, yi*, zi*d on the ith sub-
arc corresponding to the parameter value ti*. If Dsi is small, then as the particle moves 
from Pi21 to Pi along the curve, it proceeds approximately in the direction of Tsti*d, the 
unit tangent vector at Pi*. Thus the work done by the force F in moving the particle from 
Pi21 to Pi is approximately

Fsxi*, yi*, zi*d ! fDsi Tsti*dg − fFsxi*, yi*, zi*d ! Tsti*dg Dsi

and the total work done in moving the particle along C is approximately

11  o
n

i−1
 fFsxi*, yi*, zi*d ? Tsxi*, yi*, zi*dg Dsi 

where Tsx, y, zd is the unit tangent vector at the point sx, y, zd on C. Intuitively, we see 
that these approximations ought to become better as n becomes larger. Therefore we 
define the work W  done by the force field F as the limit of the Riemann sums in (11), 
namely,

12  W − y
C
 Fsx, y, zd ! Tsx, y, zd ds − y

C
 F ! T ds 

Equation 12 says that work is the line integral with respect to arc length of the tangen tial 
component of the force.

If the curve C is given by the vector equation rstd − xstd i 1 ystd j 1 zstd k, then 
Tstd − r9stdy| r9std |, so using Equation 9 we can rewrite Equation 12 in the form

 W − yb

a
 FFsrstdd !

r9std
| r9std |G | r9std | dt − yb

a
 Fsrstdd ! r9std dt

0

F(x*i , y*i , z*i )
T(t*i )

Pi

P¸

Pi-1

P*i (x*i , y*i , z*i ) y

z

x

Pn

FIGURE 11
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 SECTION 16.2  Line Integrals 1083

This integral is often abbreviated as yC F ! dr and occurs in other areas of physics as 
well. Therefore we make the following definition for the line integral of any continuous 
vector field.

13   Definition Let F be a continuous vector field defined on a smooth curve C 
given by a vector function rstd, a < t < b. Then the line integral of F along C 
is

y
C
 F ! dr − yb

a
 Fsrstdd ! r9std dt − y

C
 F ! T ds

When using Definition 13, bear in mind that Fsrstdd is just an abbreviation for the vector 
field Fsxstd, ystd, zstdd, so we evaluate Fsrstdd simply by putting x − xstd, y − ystd,  
and z − zstd in the expression for Fsx, y, zd. Notice also that we can formally write 
dr − r9std dt.

EXAMPLE 7 Find the work done by the force field Fsx, yd − x 2 i 2 xy j in moving a 
particle along the quarter-circle rstd − cos t i 1 sin t j, 0 < t < !y2.

SOLUTION Since x − cos t and y − sin t, we have

 Fsrstdd − cos2t i 2 cos t sin t j

and  r9std − 2sin t i 1 cos t j

Therefore the work done is

 y
C
 F ! dr − y!y2

0
 Fsrstdd ! r9std dt − y!y2

0
 s22 cos2 t sin td dt

  − 2 
cos3t

3 G
0

!y2

− 2
2
3

 Q

NOTE Even though yC F ! dr − yC F ! T ds and integrals with respect to arc length 
are unchanged when orientation is reversed, it is still true that

y
2C

 F ! dr − 2y
C
 F ! dr

 because the unit tangent vector T is replaced by its negative when C is replaced by 2C.

EXAMPLE 8 Evaluate yC F ! dr, where Fsx, y, zd − xy i 1 yz j 1 zx k and C is the 
twisted cubic given by

x − t    y − t 2    z − t 3    0 < t < 1

SOLUTION We have

 rstd − t i 1 t 2 j 1 t 3 k

 r9std − i 1 2t j 1 3t 2 k

 Fsrstdd − t 3 i 1 t 5 j 1 t 4 k

Figure 12 shows the force field and the 
curve in Example 7. The work done 
is negative because the field impedes 
movement along the curve.

0 1

1
y

x

FIGURE 12

Figure 13 shows the twisted cubic C in  
Example 8 and some typical vectors 
acting at three points on C.

y

z

x

0

1

2

2
1

0

12 0

F{r (1)}

F{r(3/4)}

F{r(1 /2)}

(1, 1, 1)
C

FIGURE 13
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1084 CHAPTER 16  Vector Calculus

 9.  yC x 2y ds,  
C: x − cos t, y − sin t, z − t, 0 < t < !y2

 10.   yC y 2z ds,  
C is the line segment from s3, 1, 2d to s1, 2, 5d

 11.  yC xe yz ds,   
C is the line segment from (0, 0, 0) to (1, 2, 3)

 12.  yC sx 2 1 y 2 1 z2d ds,   
 C: x − t, y − cos 2t, z − sin 2t, 0 < t < 2!

 13. yC xye yz dy,  C: x − t, y − t 2, z − t 3, 0 < t < 1

 14. yC y dx 1 z dy 1 x dz,  
  C: x − st  , y − t, z − t 2, 1 < t < 4

 15.  yC z2 dx 1 x 2 dy 1 y 2 dz,   
C is the line segment from s1, 0, 0d to s4, 1, 2d

 16.  yC sy 1 zd dx 1 sx 1 zd dy 1 sx 1 yd dz,   
C consists of line segments from s0, 0, 0d to s1, 0, 1d and from 
s1, 0, 1d to s0, 1, 2d

1–16 Evaluate the line integral, where C is the given curve.

 1. yC y ds, C: x − t 2, y − 2t, 0 < t < 3

 2. yC sxyyd ds, C: x − t 3, y − t 4, 1 < t < 2

 3. yC xy 4 ds,  C is the right half of the circle x 2 1 y 2 − 16

 4. yC xe y ds,  C is the line segment from s2, 0d to s5, 4d

 5. yC sx 2y 1 sin xd dy, 
  C is the arc of the parabola y − x 2 from s0, 0d to s!, ! 2d

 6. yC e x dx,
   C is the arc of the curve x − y 3 from s21, 21d to s1, 1d 

 7.  yC sx 1 2yd  dx 1 x 2 dy,  C consists of line segments from
  s0, 0d to s2, 1d and from s2, 1d to s3, 0d

 8.  yC x 2 dx 1 y 2 dy,  C consists of the arc of the circle 
   x 2 1 y 2 − 4 from s2, 0d to s0, 2d followed by the line segment 

from s0, 2d to s4, 3d

Thus  y
C
 F ! dr − y1

0
 Fsrstdd ! r9std dt  

  − y1

0
 st 3 1 5t 6 d dt −

t 4

4
1

5t 7

7 G0

1

−
27
28

 Q

Finally, we note the connection between line integrals of vector fields and line integrals 
of scalar fields. Suppose the vector field F on R 3 is given in component form by the equa-
tion F − P i 1 Q j 1 R k. We use Definition 13 to compute its line integral along C:

 y
C
 F ! dr − yb

a
 Fsrstdd ! r9std dt

 − yb

a
 sP i 1 Q j 1 R kd ! sx9std i 1 y9std j 1 z9std kd dt

 − yb

a
 fPsxstd, ystd, zstdd x9std 1 Qsxstd, ystd, zstdd y9std 1 Rsxstd, ystd, zstdd z9stdg dt

But this last integral is precisely the line integral in (10). Therefore we have

y
C
 F ! dr − y

C
 P dx 1 Q dy 1 R dz    where F − P i 1 Q j 1 R k

For example, the integral yC y dx 1 z dy 1 x dz in Example 6 could be expressed as
yC F ! dr where

Fsx, y, zd − y i 1 z j 1 x k

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 16.2  Line Integrals 1085

 24.  yC F ! dr, where Fsx, y, zd − yze x i 1 zxe y j 1 xye z k and 
rstd − sin t i 1 cos t j 1 tan t k, 0 < t < !y4

 25.  yC xy arctan z ds, where C has parametric equations  
x − t 2, y − t 3, z − st

  

, 1 < t < 2

 26.  yC z lnsx 1 yd ds, where C has parametric equations  
x − 1 1 3t, y − 2 1 t 2, z − t 4, 21 < t < 1

27–28 Use a graph of the vector field F and the curve C to 
guess whether the line integral of F over C is positive, negative, 
or zero. Then evaluate the line integral.

 27.  Fsx, yd − sx 2 yd i 1 xy j, 
C is the arc of the circle x 2 1 y 2 − 4 traversed counter-
clockwise from (2, 0) to s0, 22d

 28.  Fsx, yd −
x

sx 2 1 y 2 
 i 1

y

sx 2 1 y 2 
 j,

  C is the parabola y − 1 1 x 2 from s21, 2d to (1, 2)

 29. (a)  Evaluate the line integral yC F ! dr, where 
Fsx, yd − e x21 i 1 xy j and C is given by  
rstd − t 2 i 1 t 3 j, 0 < t < 1.

 (b)  Illustrate part (a) by using a graphing calculator or com-
puter to graph C and the vectors from the vector field  
corresponding to t − 0, 1ys2 , and 1 (as in Figure 13).

 30. (a)  Evaluate the line integral yC F ! dr, where 
Fsx, y, zd − x i 2 z j 1 y k and C is given by 
rstd − 2t i 1 3t j 2 t 2 k, 21 < t < 1.

 (b)  Illustrate part (a) by using a computer to graph C and  
the vectors from the vector field corresponding to  
t − 61 and 61

2 (as in Figure 13).

 31.  Find the exact value of yC x 3y 2z ds, where C is the curve 
with parametric equations x − e2t cos 4 t, y − e2t sin 4 t, 
z − e2t, 0 < t < 2!.

 32. (a)  Find the work done by the force field 
Fsx, yd − x 2 i 1 xy j on a particle that moves once 
around the circle x 2 1 y 2 − 4 oriented in the counter-
clockwise direction.

 (b)  Use a computer algebra system to graph the force field 
and circle on the same screen. Use the graph to explain 
your answer to part (a).

 33.  A thin wire is bent into the shape of a semicircle 
x 2 1 y 2 − 4, x > 0. If the linear density is a constant k, 
find the mass and center of mass of the wire.

 34.  A thin wire has the shape of the first-quadrant part of the  
circle with center the origin and radius a. If the density  
function is "sx, yd − kxy, find the mass and center of mass  
of the wire.

 35. (a)  Write the formulas similar to Equations 4 for the center 
of mass sx, y, z d of a thin wire in the shape of a space 
curve C if the wire has density function "sx, y, zd.

CAS

;

;

CAS

CAS

 17.  Let F be the vector field shown in the figure.
 (a)  If C1 is the vertical line segment from s23, 23d to 

s23, 3d, determine whether yC1
 F ! dr is positive, nega-

tive, or zero.
 (b)  If C2 is the counterclockwise-oriented circle with  

radius 3 and center the origin, determine whether 
yC2

 F ! dr is positive, negative, or zero.

y

x0 1

1

2 3

2

3

_3 _2 _1

_3

_2

_1

 18.  The figure shows a vector field F and two curves C1 and C2. 
Are the line integrals of F over C1 and C2 positive, negative,  
or zero? Explain.

y

x

C¡
C™

19–22 Evaluate the line integral yC F ! dr, where C is given by 
the vector function rstd.

 19.  Fsx, yd − xy 2 i 2 x 2 j,   
rstd − t 3 i 1 t 2 j,  0 < t < 1

 20.  Fsx, y, zd − sx 1 y 2d i 1 xz j 1 sy 1 zd k,   
rstd − t 2 i 1 t 3 j 2 2t k,  0 < t < 2

 21.  Fsx, y, zd − sin x i 1 cos y j 1 xz k, 
 rstd − t 3 i 2 t 2 j 1 t k,  0 < t < 1

 22.  Fsx, y, zd − x i 1 y j 1 xy k, 
 rstd − cos t i 1 sin t j 1 t k,  0 < t < !

23–26 Use a calculator to evaluate the line integral correct to 
four decimal places.

 23.  yC F ! dr, where Fsx, yd − sx 1 y  i 1 syyxd j and 
  rstd − sin2 t i 1 sin t cos t j, !y6 < t < !y3
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1086 CHAPTER 16  Vector Calculus

 45.  A 160-lb man carries a 25-lb can of paint up a helical staircase 
that encircles a silo with a radius of 20 ft. If the silo is 90 ft 
high and the man makes exactly three complete revolutions 
climbing to the top, how much work is done by the man against 
gravity?

 46.  Suppose there is a hole in the can of paint in Exercise 45 and  
9 lb of paint leaks steadily out of the can during the man’s 
ascent. How much work is done?

 47. (a)  Show that a constant force field does zero work on a  
particle that moves once uniformly around the circle 
x 2 1 y 2 − 1.

 (b)  Is this also true for a force field Fsxd − kx, where k is a 
constant and x − kx, yl?

 48.  The base of a circular fence with radius 10 m is given by 
x − 10 cos t, y − 10 sin t. The height of the fence at position 
sx, yd is given by the function hsx, yd − 4 1 0.01sx 2 2 y 2d, so 
the height varies from 3 m to 5 m. Suppose that 1 L of paint 
covers 100 m2. Sketch the fence and determine how much paint 
you will need if you paint both sides of the fence.

 49.  If C is a smooth curve given by a vector function rstd, 
a < t < b, and v is a constant vector, show that

y
C
 v ? dr − v ? frsbd 2 rsadg

 50.  If C is a smooth curve given by a vector function rstd, 
a < t < b, show that

y
C
 r ? d r − 1

2f|rsbd|2 2 |rsad|2g

 51.  An object moves along the curve C shown in the figure from 
(1, 2) to (9, 8). The lengths of the vectors in the force field F 
are measured in newtons by the scales on the axes. Estimate the 
work done by F on the object.

0 1

1

y
(meters)

x
(meters)

C

C

 52.  Experiments show that a steady current I in a long wire pro-
duces a magnetic field B that is tangent to any circle that lies in 
the plane perpendicular to the wire and whose center is the axis 
of the wire (as in the figure). Ampère’s Law relates the electric 

 (b)  Find the center of mass of a wire in the shape of the helix 
x − 2 sin t, y − 2 cos t, z − 3t, 0 < t < 2!, if the density 
is a constant k.

 36.  Find the mass and center of mass of a wire in the shape of the 
helix x − t, y − cos t, z − sin t, 0 < t < 2!, if the density at 
any point is equal to the square of the distance from the origin.

 37.  If a wire with linear density "sx, yd lies along a plane curve C, 
its moments of inertia about the x- and y-axes are defined as

Ix − y
C
 y 2"sx, yd ds    Iy − y

C
 x 2"sx, yd ds

  Find the moments of inertia for the wire in Example 3.

 38.  If a wire with linear density "sx, y, zd lies along a space curve 
C, its moments of inertia about the x-, y-, and z-axes are 
defined as

 Ix − y
C
 s y 2 1 z2 d"sx, y, zd ds

 Iy − y
C
 sx 2 1 z2 d"sx, y, zd ds

 Iz − y
C
 sx 2 1 y 2 d"sx, y, zd ds

  Find the moments of inertia for the wire in Exercise 35.

 39.  Find the work done by the force field

Fsx, yd − x i 1 s y 1 2d j

   in moving an object along an arch of the cycloid

rstd − st 2 sin td i 1 s1 2 cos td j  0 < t < 2!

 40.  Find the work done by the force field Fsx, yd − x 2 i 1 ye x j on 
a particle that moves along the parabola x − y 2 1 1 from s1, 0d 
to s2, 1d.

 41.  Find the work done by the force field

Fsx, y, zd − kx 2 y 2, y 2 z2, z 2 x 2 l

   on a particle that moves along the line segment from s0, 0, 1d to 
s2, 1, 0d.

 42.  The force exerted by an electric charge at the origin on a 
charged particle at a point sx, y, zd with position vector 
r − kx, y, z l is Fsrd − Kry| r |3 where K is a constant. (See 
Example 16.1.5.) Find the work done as the particle moves 
along a straight line from s2, 0, 0d to s2, 1, 5d.

 43.  The position of an object with mass m at time t is 
rstd − at 2 i 1 bt 3 j, 0 < t < 1.

 (a)  What is the force acting on the object at time t?
 (b)  What is the work done by the force during the time  

interval 0 < t < 1?

 44.  An object with mass m moves with position function 
rstd − a sin t i 1 b cos t j 1 ct k, 0 < t < !y2. Find the work 
done on the object during this time period.
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 SECTION 16.3  The Fundamental Theorem for Line Integrals 1087

B

I  current to its magnetic effects and states that

y
C
 B ! dr − #0 I

   where I is the net current that passes through any surface 
bounded by a closed curve C, and #0 is a constant called the 
permeability of free space. By taking C to be a circle with 
radius r, show that the magnitude B − | B | of the magnetic 
field at a distance r from the center of the wire is

B −
#0 I
2!r

Recall from Section 5.3 that Part 2 of the Fundamental Theorem of Calculus can be 
written as

1  yb

a
 F9sxd dx − Fsbd 2 Fsad 

where F9 is continuous on fa, bg. We also called Equation 1 the Net Change Theorem: 
The integral of a rate of change is the net change.

If we think of the gradient vector = f  of a function f  of two or three variables as a sort 
of derivative of f , then the following theorem can be regarded as a version of the Funda-
mental Theorem for line integrals.

2   Theorem Let C be a smooth curve given by the vector function rstd,  
a < t < b. Let f  be a differentiable function of two or three variables whose 
gradient vector = f  is continuous on C. Then

y
C
 = f ! dr − f srsbdd 2 f srsadd

0

A(x¡, y¡) B(x™, y™)

C x

y

(a)

0

A(x¡, y¡, z¡)
B(x™, y™, z™)

C

y

z

x

(b)

FIGURE 1

NOTE Theorem 2 says that we can evaluate the line integral of a conservative vec-
tor field (the gradient vector field of the potential function f ) simply by knowing the 
value of f  at the endpoints of C. In fact, Theorem 2 says that the line integral of = f  is 
the net change in f. If f  is a function of two variables and C is a plane curve with initial 
point Asx1, y1d and terminal point Bsx2, y2d, as in Figure 1(a), then Theorem 2 becomes

y
C
 = f ! dr − f sx2, y2d 2 f sx1, y1d

 If f  is a function of three variables and C is a space curve joining the point Asx1, y1, z1 d 
to the point Bsx2, y2, z2 d, as in Figure 1(b), then we have

y
C
 = f ! dr − f sx2, y2, z2 d 2 f sx1, y1, z1 d

Let’s prove Theorem 2 for this case.
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1088 CHAPTER 16  Vector Calculus

PROOF OF THEOREM 2 Using Definition 16.2.13, we have

 y
C
 = f ! dr − yb

a
 = f srstdd ! r9std dt

 − yb

a
S −f

−x
 
dx
dt

1
−f
−y

 
dy
dt

1
−f
−z

 
dz
dtD dt

  − yb

a
 

d
dt

 f srstdd dt    (by the Chain Rule)

  − f srsbdd 2 f srsadd

The last step follows from the Fundamental Theorem of Calculus (Equation 1). Q

Although we have proved Theorem 2 for smooth curves, it is also true for piecewise-
smooth curves. This can be seen by subdividing C into a finite number of smooth curves 
and adding the resulting integrals.

EXAMPLE 1 Find the work done by the gravitational field

Fsxd − 2
mMG

| x |3  x

in moving a particle with mass m from the point s3, 4, 12d to the point s2, 2, 0d along a 
piecewise-smooth curve C. (See Example 16.1.4.)

SOLUTION From Section 16.1 we know that F is a conservative vector field and, in 
fact, F − = f , where

f sx, y, zd −
mMG

sx 2 1 y 2 1 z 2 

Therefore, by Theorem 2, the work done is

 W − y
C
 F ! dr − y

C
 = f ! dr

 − f s2, 2, 0d 2 f s3, 4, 12d

  −
mMG

s22 1 22 
2

mMG

s32 1 42 1 122 
− mMGS 1

2s2 2
1
13D Q

Independence of Path
Suppose C1 and C2 are two piecewise-smooth curves (which are called paths) that have 
the same initial point A and terminal point B. We know from Example 16.2.4 that, in 
general, yC1

F ! dr ± yC2
 F ! dr. But one implication of Theorem 2 is that

y  

C1

 = f ! dr − y  

C2

 = f ! dr

whenever = f  is continuous. In other words, the line integral of a conservative vector field 
depends only on the initial point and terminal point of a curve.

In general, if F is a continuous vector field with domain D, we say that the line inte-
gral yC F ! dr is independent of path if yC1

 F ! dr − yC2
 F ! dr for any two paths C1 and 

C2 in D that have the same initial points and the same terminal points. With this terminol-
ogy we can say that line integrals of conservative vector fields are independent of path.
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A curve is called closed if its terminal point coincides with its initial point, that is, 
rsbd − rsad. (See Figure 2.) If yC F ! dr is independent of path in D and C is any closed 
path in D, we can choose any two points A and B on C and regard C as being composed 
of the path C1 from A to B followed by the path C2 from B to A. (See Fig ure 3.) Then

y
C
 F ! dr − y  

C1

 F ! dr 1 y  

C2

 F ! dr − y  

C1

 F ! dr 2 y  

2C2

 F ! dr − 0

since C1 and 2C2 have the same initial and terminal points.
Conversely, if it is true that yC F ! dr − 0 whenever C is a closed path in D, then we 

demonstrate independence of path as follows. Take any two paths C1 and C2 from A to B 
in D and define C to be the curve consisting of C1 followed by 2C2. Then

0 − y
C
 F ! dr − y  

C1

 F ! dr 1 y  

2C2

 F ! dr − y  

C1

 F ! dr 2 y  

C2

 F ! dr

and so yC1
 F ! dr − yC2

 F ! dr. Thus we have proved the following theorem.

3   Theorem yC F ! dr is independent of path in D if and only if yC F ! dr − 0 
for every closed path C in D.

Since we know that the line integral of any conservative vector field F is independent 
of path, it follows that yC F ! dr − 0 for any closed path. The physical interpretation is 
that the work done by a conservative force field (such as the gravitational or electric field 
in Section 16.1) as it moves an object around a closed path is 0.

The following theorem says that the only vector fields that are independent of path are 
conservative. It is stated and proved for plane curves, but there is a similar version for 
space curves. We assume that D is open, which means that for every point P in D there is 
a disk with center P that lies entirely in D. (So D doesn’t contain any of its boundary 
points.) In addition, we assume that D is connected: this means that any two points in D 
can be joined by a path that lies in D.

4   Theorem Suppose F is a vector field that is continuous on an open con-
nected region D. If yC F ! dr is independent of path in D, then F is a conservative 
vector field on D; that is, there exists a function f  such that = f − F.

PROOF Let Asa, bd be a fixed point in D. We construct the desired potential function f  
by defining

f sx, yd − ysx, yd

sa, bd
 F ! dr

for any point sx, yd in D. Since yC F ! dr is independent of path, it does not matter  
which path C from sa, bd to sx, yd is used to evaluate f sx, yd. Since D is open, there 
exists a disk contained in D with center sx, yd. Choose any point sx1, yd in the disk with 
x1 , x and let C consist of any path C1 from sa, bd to sx1, yd followed by the horizontal 
line segment C2 from sx1, yd to sx, yd. (See Figure 4.) Then

f sx, yd − y  

C1

 F ! dr 1 y  

C2

 F ! dr − ysx1, yd

sa, bd
 F ! dr 1 y  

C2

 F ! dr

Notice that the first of these integrals does not depend on x, so

−

−x
 f sx, yd − 0 1

−

−x
 y  

C2

 F ! dr

C

C¡

C™
B

A

FIGURE 2  
A closed curve

FIGURE 3

(a, b)

x0

y

D

(x¡, y)

C¡

C™

(x, y)

FIGURE 4
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1090 CHAPTER 16  Vector Calculus

If we write F − P i 1 Q j, then

y  

C2

 F ! dr − y  

C2

 P dx 1 Q dy

On C2, y is constant, so dy − 0. Using t as the parameter, where x1 < t < x, we have

 
−

−x
 f sx, yd −

−

−x
 y

C
2

 P dx 1 Q dy −
−

−x
 y x

x1

 Pst, yd dt − Psx, yd

by Part 1 of the Fundamental Theorem of Calculus (see Section 5.3). A similar argu-
ment, using a vertical line segment (see Figure 5), shows that

−

−y
 f sx, yd −

−

−y
 y  

C2

 P dx 1 Q dy −
−

−y
 yy

y1

 Qsx, td dt − Qsx, yd

Thus F − P i 1 Q j −
−f
−x

 i 1
−f
−y

 j − = f  

which says that F is conservative. Q

The question remains: how is it possible to determine whether or not a vector field  
F is conservative? Suppose it is known that F − P i 1 Q j is conservative, where P and  
Q have continuous first-order partial derivatives. Then there is a function f  such that  
F − = f , that is,

P −
−f
−x

    and    Q −
−f
−y

Therefore, by Clairaut’s Theorem,

−P
−y

−
−2 f

−y −x
−

−2 f
−x −y

−
−Q
−x

5   Theorem If Fsx, yd − Psx, yd i 1 Qsx, yd j is a conservative vector field, 
where P and Q have continuous first-order partial derivatives on a domain D, 
then throughout D we have

−P
−y

−
−Q
−x

The converse of Theorem 5 is true only for a special type of region. To explain this, 
we first need the concept of a simple curve, which is a curve that doesn’t intersect itself 
anywhere between its endpoints. [See Figure 6; rsad − rsbd for a simple closed curve, 
but rst1 d ± rst2 d when a , t1 , t2 , b.]

In Theorem 4 we needed an open connected region. For the next theorem we need a 
stronger condition. A simply-connected region in the plane is a connected region D 
such that every simple closed curve in D encloses only points that are in D. Notice from 
Figure 7 that, intuitively speaking, a simply-connected region contains no hole and can’t 
consist of two separate pieces.

In terms of simply-connected regions, we can now state a partial converse to Theo-
rem 5 that gives a convenient method for verifying that a vector field on R 2 is conserva-
tive. The proof will be sketched in the next section as a consequence of Green’s Theorem.

(a, b)

x0

y

D

(x, y)

C¡

C™
(x, y¡)

FIGURE 5

simply-connected region

regions that are not simply-connected

FIGURE 7

simple,
not closed

not simple,
not closed

simple,
closed

not simple,
closed

FIGURE 6  
Types of curves 
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6   Theorem Let F − P i 1 Q j be a vector field on an open simply-connected 
region D. Suppose that P and Q have continuous first-order partial derivatives and

−P
−y

−
−Q
−x

     throughout D

Then F is conservative.

EXAMPLE 2 Determine whether or not the vector field

Fsx, yd − sx 2 yd i 1 sx 2 2d j

is conservative.

SOLUTION Let Psx, yd − x 2 y and Qsx, yd − x 2 2. Then

−P
−y

− 21      
−Q
−x

− 1

Since −Py−y ± −Qy−x, F is not conservative by Theorem 5. Q

EXAMPLE 3 Determine whether or not the vector field

Fsx, yd − s3 1 2xyd i 1 sx 2 2 3y 2 d j

is conservative.

SOLUTION Let Psx, yd − 3 1 2xy and Qsx, yd − x 2 2 3y 2. Then

−P
−y

− 2x −
−Q
−x

Also, the domain of F is the entire plane sD − R 2 d, which is open and simply- 
connected. Therefore we can apply Theorem 6 and conclude that F is conservative. Q

In Example 3, Theorem 6 told us that F is conservative, but it did not tell us how to 
find the (potential) function f  such that F − = f. The proof of Theorem 4 gives us a clue 
as to how to find f. We use “partial integration” as in the following example.

EXAMPLE 4 
(a) If Fsx, yd − s3 1 2xyd i 1 sx 2 2 3y 2 d j, find a function f  such that F − = f.
(b) Evaluate the line integral yC F ! dr, where C is the curve given by 

rstd − e t sin t i 1 e t cos t j     0 < t < !

SOLUTION
(a) From Example 3 we know that F is conservative and so there exists a function f  
with = f − F, that is,

7   fxsx, yd − 3 1 2xy 

8   fysx, yd − x 2 2 3y 2 

Figures 8 and 9 show the vector fields  
in Examples 2 and 3, respec tively. The 
vectors in Figure 8 that start on the 
closed curve C all appear to point in 
roughly the same direction as C.  
So it looks as if yC F ! dr . 0 and 
therefore F is not conservative. The 
calculation in Example 2 confirms this 
impression. Some of the vectors near 
the curves C1 and C2 in Figure 9 point 
in approximately the same direction as 
the curves, whereas others point in the 
opposite direction. So it appears plau-
sible that line integrals around all closed 
paths are 0. Example 3 shows that F is 
indeed conservative.

C

10

_10

_10 10

FIGURE 8

C™C¡

2

_2

_2 2

FIGURE 9
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Integrating (7) with respect to x, we obtain

9  f sx, yd − 3x 1 x 2 y 1 tsyd 

Notice that the constant of integration is a constant with respect to x, that is, a function 
of y, which we have called tsyd. Next we differentiate both sides of (9) with respect  
to y:

10  fysx, yd − x 2 1 t9syd 

Comparing (8) and (10), we see that

t9syd − 23y 2

Integrating with respect to y, we have

tsyd − 2y 3 1 K

where K is a constant. Putting this in (9), we have

f sx, yd − 3x 1 x 2 y 2 y 3 1 K

as the desired potential function.

(b) To use Theorem 2 all we have to know are the initial and terminal points of C, 
namely, rs0d − s0, 1d and rs!d − s0, 2e! d. In the expression for f sx, yd in part (a), any 
value of the constant K will do, so let’s choose K − 0. Then we have

 y
C
 F ! dr − y

C
 = f ! dr − f s0, 2e! d 2 f s0, 1d − e 3! 2 s21d − e 3! 1 1

This method is much shorter than the straightforward method for evaluating line 
integrals that we learned in Section 16.2. Q

A criterion for determining whether or not a vector field F on R 3 is conservative is 
given in Section 16.5. Meanwhile, the next example shows that the technique for finding 
the potential function is much the same as for vector fields on R 2.

EXAMPLE 5 If Fsx, y, zd − y 2 i 1 s2xy 1 e 3zd  j 1 3ye 3z k, find a function f  such  
that = f − F.

SOLUTION If there is such a function f, then

11   fxsx, y, zd − y 2  

12   fysx, y, zd − 2xy 1 e 3z 

13   fzsx, y, zd − 3ye 3z  

Integrating (11) with respect to x, we get

14  f sx, y, zd − xy 2 1 tsy, zd 

where tsy, zd is a constant with respect to x. Then differentiating (14) with respect to y, 
we have

fysx, y, zd − 2xy 1 tysy, zd
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and comparison with (12) gives

tysy, zd − e 3z

Thus tsy, zd − ye 3z 1 hszd and we rewrite (14) as

f sx, y, zd − xy 2 1 ye 3z 1 hszd

Finally, differentiating with respect to z and comparing with (13), we obtain h9szd − 0 
and therefore hszd − K, a constant. The desired function is

f sx, y, zd − xy 2 1 ye 3z 1 K

It is easily verified that = f − F. Q

Conservation of Energy
Let’s apply the ideas of this chapter to a continuous force field F that moves an object 
along a path C given by rstd, a < t < b, where rsad − A is the initial point and rsbd − B 
is  the terminal point of C. According to Newton’s Second Law of Motion (see Sec-
tion 13.4), the force Fsrstdd at a point on C is related to the acceleration astd − r0std by 
the equation

Fsrstdd − mr0std

So the work done by the force on the object is

  W − y
C
 F ! dr − yb

a
 Fsrstdd ! r9std dt − yb

a
 mr0std ! r9std dt

  −
m
2

 yb

a
 

d
dt

 fr9std ! r9stdg dt (Theorem 13.2.3, Formula 4)

 −
m
2

 yb

a
 

d
dt

 | r9std |2 dt −
m
2

 f| r9std |2ga

b
    (Fundamental Theorem of Calculus)

  −
m
2

 s| r9sbd |2 2 | r9sad |2 d

Therefore

15  W − 1
2 m | vsbd |2 2 1

2 m | vsad |2 

where v − r9 is the velocity.
The quantity 12 m | vstd |2, that is, half the mass times the square of the speed, is called 

the kinetic energy of the object. Therefore we can rewrite Equation 15 as

16  W − KsBd 2 KsAd 

which says that the work done by the force field along C is equal to the change in kinetic 
energy at the endpoints of C.

Now let’s further assume that F is a conservative force field; that is, we can write 
F − = f . In physics, the potential energy of an object at the point sx, y, zd is defined as 
Psx, y, zd − 2f sx, y, zd, so we have F − 2=P. Then by Theorem 2 we have

 W − y
C
 F ! dr − 2y

C
 =P ! dr − 2fPsrsbdd 2 Psrsaddg − PsAd 2 PsBd
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1094 CHAPTER 16  Vector Calculus

 9. Fsx, yd − sy 2 cos x 1 cos yd i 1 s2y sin x 2 x sin yd j

 10. Fsx, yd − sln y 1 yyxd i 1 sln x 1 xyyd j

 11.  The figure shows the vector field Fsx, yd − k2xy, x 2l and 
three curves that start at (1, 2) and end at (3, 2).

 (a)  Explain why yC F ! dr has the same value for all three 
curves.

 (b) What is this common value?

y

x0 3

3

2

1

21

12–18 (a) Find a function f  such that F − = f  and (b) use  
part (a) to evaluate yC F ! dr along the given curve C.

 12.  Fsx, yd − s3 1 2xy 2d i 1 2x 2y j,
  C is the arc of the hyperbola y − 1yx from s1, 1d to (4, 14)

 13.  Fsx, yd − x 2y 3 i 1 x 3y 2 j,
  C: rstd − kt 3 2 2t, t 3 1 2tl,  0 < t < 1

 14.  Fsx, yd − s1 1 xyde xy i 1 x 2e xy j,
  C: rstd − cos t i 1 2 sin t j,  0 < t < !y2

 15.  Fsx, y, zd − yz i 1 xz j 1 sxy 1 2zd k, 
C is the line segment from s1, 0, 22d to s4, 6, 3d

 1.  The figure shows a curve C and a contour map of a function f  
whose gradient is continuous. Find yC = f ! dr.

y

x0

10
20

30
40

50
60

C

 2.  A table of values of a function f  with continuous gradient is 
given. Find yC = f ! dr, where C has parametric equations

x − t 2 1 1        y − t 3 1 t        0 < t < 1

1

3

8

6

5

2

4

7

9

x
y

0

1

2

0 1 2

3–10 Determine whether or not F is a conservative vector field.  
If it is, find a function f  such that F − = f .

 3. Fsx, yd − sxy 1 y 2d i 1 sx 2 1 2xyd j

 4. Fsx, yd − sy 2 2 2xd i 1 2xy j

 5. Fsx, yd − y 2e xy i 1 s1 1 xyde xy j

 6. Fsx, yd − ye x i 1 se x 1 e yd j

 7. Fsx, yd − sye x 1 sin yd i 1 se x 1 x cos yd j

 8. Fsx, yd − s2xy 1 y22d i 1 sx 2 2 2xy23d j,  y . 0

Comparing this equation with Equation 16, we see that

PsAd 1 KsAd − PsBd 1 KsBd

which says that if an object moves from one point A to another point B under the influ-
ence of a conservative force field, then the sum of its potential energy and its kinetic 
energy remains constant. This is called the Law of Conservation of Energy and it is the 
reason the vector field is called conservative.
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 28.  Let F − = f , where f sx, yd − sinsx 2 2yd. Find curves C1 
and C2 that are not closed and satisfy the equation.

 (a) y
C1

 F ! dr − 0 (b) y
C2

 F ! dr − 1

 29.  Show that if the vector field F − P i 1 Q j 1 R k is 
conservative and P, Q, R have continuous first-order partial 
derivatives, then

−P
−y

−
−Q
−x

      
−P
−z

−
−R
−x

      
−Q
−z

−
−R
−y

 30.  Use Exercise 29 to show that the line integral 
yC y dx 1 x dy 1 xyz dz is not independent of path.

31–34 Determine whether or not the given set is (a) open,  
(b) connected, and (c) simply-connected.

 31. hsx, yd |  0 , y , 3j 32. hsx, yd |  1 , | x | , 2j

 33. hsx, yd | 1 < x 2 1 y 2 < 4, y > 0j

 34. hsx, yd |  sx, yd ± s2, 3dj

 35. Let Fsx, yd −
2y i 1 x j

x 2 1 y 2 .

 (a) Show that −Py−y − −Qy−x.

 (b)  Show that yC F ! dr is not independent of path.  
[Hint: Compute y 

C1
 F ! dr and y 

C2
 F ! dr, where C1  

and C2 are the upper and lower halves of the circle 
x 2 1 y 2 − 1 from s1, 0d to s21, 0d.] Does this contra-
dict Theorem 6?

 36. (a) Suppose that F is an inverse square force field, that is,

Fsrd −
cr

| r |3

   for some constant c, where r − x i 1 y j 1 z k.  
Find the work done by F in moving an object from a 
point P1 along a path to a point P2 in terms of the dis-
tances d1 and d2 from these points to the origin.

 (b)  An example of an inverse square field is the gravita- 
 tional field F − 2smMG dry| r |3 discussed in Exam-
ple 16.1.4. Use part (a) to find the work done by  
the gravitational field when the earth moves from  
aphelion (at a maximum distance of 1.52 3 108 km  
from the sun) to perihelion (at a minimum distance  
of 1.47 3 108 km). (Use the values  
m − 5.97 3 1024 kg, M − 1.99 3 1030 kg, and  
G − 6.67 3 10211 N ∙m2ykg2.d

 (c)  Another example of an inverse square field is the  
elec tric force field F − «qQry| r |3 discussed in  
Example 16.1.5. Suppose that an electron with a charge 
of 21.6 3 10219 C is located at the origin. A positive 
unit charge is positioned a distance 10212 m from the 
elec tron and moves to a position half that distance from 
the electron. Use part (a) to find the work done by the 
electric force field. (Use the value « − 8.985 3 10 9.)

 16.  Fsx, y, zd − sy2z 1 2xz2d i 1 2xyz j 1 sxy 2 1 2x 2zd k, 
 C: x − st , y − t 1 1, z − t 2,  0 < t < 1

 17.  Fsx, y, zd − yze xz i 1 e xz j 1 xye xz k, 
C: rstd − st 2 1 1d i 1 st 2 2 1d j 1 st 2 2 2td k,  
0 < t < 2

 18.  Fsx, y, zd − sin y  i 1 sx cos y 1 cos zd j 2 y sin z k, 
C: rstd − sin t i 1 t  j 1 2t  k,  0 < t < !y2

19–20 Show that the line integral is independent of path and 
evaluate the integral.

 19.  yC 2xe2y dx 1 s2y 2 x 2e2yd dy,  
  C is any path from s1, 0d to s2, 1d

 20.  yC sin y dx 1 sx cos y 2 sin yd dy,  
  C is any path from s2, 0d to s1, !d

 21.  Suppose you’re asked to determine the curve that requires 
the least work for a force field F to move a particle from 
one point to another point. You decide to check first whether 
F is conservative, and indeed it turns out that it is. How 
would you reply to the request?

 22.  Suppose an experiment determines that the amount of work 
required for a force field F to move a particle from the point 
s1, 2d to the point s5, 23d along a curve C1 is 1.2 J and the 
work done by F in moving the particle along another curve  
C2 between the same two points is 1.4 J. What can you say 
about F? Why?

23–24 Find the work done by the force field F in moving an 
object from P to Q.

 23. Fsx, yd − x 3 i 1 y 3 j; Ps1, 0d, Qs2, 2d

 24. Fsx, yd − s2x 1 yd i 1 x j; Ps1, 1d, Qs4, 3d

25–26 Is the vector field shown in the figure conservative? 
Explain.

 25.   26. y

x

y

x

 27.  If Fsx, yd − sin y i 1 s1 1 x cos yd j, use a plot to guess 
whether F is conservative. Then determine whether your 
guess is correct.

CAS
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1096 CHAPTER 16  Vector Calculus

Green’s Theorem gives the relationship between a line integral around a simple closed 
curve C and a double integral over the plane region D bounded by C. (See Figure 1. We 
assume that D consists of all points inside C as well as all points on C.) In stating Green’s 
Theorem we use the convention that the positive orientation of a simple closed curve C 
refers to a single counterclockwise traversal of C. Thus if C is given by the vector func-
tion rstd, a < t < b, then the region D is always on the left as the point rstd traverses C.  
(See Figure 2.)

(a) Positive orientation

y

x0

D

C

(b) Negative orientation

y

x0

D

C

Green’s Theorem Let C be a positively oriented, piecewise-smooth, simple 
closed curve in the plane and let D be the region bounded by C. If P and Q have 
continuous partial derivatives on an open region that contains D, then

y
C
 P dx 1 Q dy − y

D

y S −Q
−x

2
−P
−y D dA

Recall that the left side of this equation  
is another way of writing yC F ! dr, 
where F − P i 1 Q j.

NOTE The notation

!y
C
 P dx 1 Q dy    or    g

C
P dx 1 Q dy

is sometimes used to indicate that the line integral is calculated using the positive orien-
tation of the closed curve C. Another notation for the positively oriented boundary curve 
of D is −D, so the equation in Green’s Theorem can be written as

1  y
D

y S −Q
−x

2
−P
−y D dA − y

−D
 P dx 1 Q dy 

Green’s Theorem should be regarded as the counterpart of the Fundamental Theorem 
of Calculus for double integrals. Compare Equation 1 with the statement of the Funda-
mental Theorem of Calculus, Part 2, in the following equation:

yb

a
 F9sxd dx − Fsbd 2 Fsad

In both cases there is an integral involving derivatives (F9, −Qy−x, and −Py−y) on the left 
side of the equation. And in both cases the right side involves the values of the original 
functions (F, Q, and P) only on the boundary of the domain. (In the one-dimensional case, 
the domain is an interval fa, bg whose boundary consists of just two points, a and b.)

y

x0

D

C

FIGURE 1

FIGURE 2
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Green’s Theorem is not easy to prove in general, but we can give a proof for the spe-
cial case where the region is both type I and type II (see Section 15.2). Let’s call such 
regions simple regions.

PROOF OF GREEN’S THEOREM FOR THE CASE IN WHICH D IS A SIMPLE REGION Notice 
that Green’s Theorem will be proved if we can show that

2  y
C
 P dx − 2y

D

y 
−P
−y

 dA 

and

3  y
C
 Q dy − y

D

y 
−Q
−x

 dA 

We prove Equation 2 by expressing D as a type I region:

D − hsx, yd | a < x < b, t1sxd < y < t2sxdj

where t1 and t2 are continuous functions. This enables us to compute the double 
integral on the right side of Equation 2 as follows:

4   y
D

y 
−P
−y

 dA − yb

a
 yt2sxd

t1sxd
 
−P
−y

 sx, yd dy dx − yb

a
 fPsx, t2sxdd 2 Psx, t1sxddg dx 

where the last step follows from the Fundamental Theorem of Calculus.
Now we compute the left side of Equation 2 by breaking up C as the union of the 

four curves C1, C2, C3, and C4 shown in Figure 3. On C1 we take x as the parameter and 
write the parametric equations as x − x, y − t1sxd, a < x < b. Thus

y  

C1

 Psx, yd dx − yb

a
 Psx, t1sxdd dx

Observe that C3 goes from right to left but 2C3 goes from left to right, so we can write 
the parametric equations of 2C3 as x − x, y − t2sxd, a < x < b. Therefore

y  

C3

 Psx, yd dx − 2y  

2C3

 Psx, yd dx − 2yb

a
 Psx, t2sxdd dx

On C2 or C4 (either of which might reduce to just a single point), x is constant, so 
dx − 0 and

y  

C2

 Psx, yd dx − 0 − y  

C4

 Psx, yd dx

Hence

 y
C
 Psx, yd dx − y  

C1

 Psx, yd dx 1 y  

C2

 Psx, yd dx 1 y  

C3

 Psx, yd dx 1 y  

C4

 Psx, yd dx

 − yb

a
 Psx, t1sxdd dx 2 yb

a
 Psx, t2sxdd dx

George Green
Green’s Theorem is named after the 
self-taught English scientist George 
Green (1793–1841). He worked full-
time in his father’s bakery from the 
age of nine and taught himself math-
ematics from library books. In 1828 
he published privately An Essay on the 
Application of Mathematical Analysis 
to the Theories of Electricity and Mag-
netism, but only 100 copies were 
printed and most of those went to 
his friends. This pamphlet contained 
a theorem that is equivalent to what 
we know as Green’s Theorem, but it 
didn’t become widely known at that 
time. Finally, at age 40, Green entered 
Cambridge University as an under-
graduate but died four years after 
graduation. In 1846 William Thomson 
(Lord Kelvin) located a copy of Green’s 
essay, realized its significance, and 
had it reprinted. Green was the 
first person to try to formulate a 
mathematical theory of electricity 
and magnetism. His work was the 
basis for the subsequent electromag-
netic theories of Thomson, Stokes, 
Rayleigh, and Maxwell.

y

x0 a b

D

C¡

y=g™(x)

y=g¡(x)

C™

C£

C¢

FIGURE 3
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Comparing this expression with the one in Equation 4, we see that

y
C
 Psx, yd dx − 2y

D

y 
−P
−y

 dA

Equation 3 can be proved in much the same way by expressing D as a type II region 
(see Exercise 30). Then, by adding Equations 2 and 3, we obtain Green’s Theorem. Q

EXAMPLE 1 Evaluate yC x 4 dx 1 xy dy, where C is the triangular curve consisting of 
the line segments from s0, 0d to s1, 0d, from s1, 0d to s0, 1d, and from s0, 1d to s0, 0d.

SOLUTION Although the given line integral could be evaluated as usual by the meth-
ods of Section 16.2, that would involve setting up three separate integrals along the 
three sides of the triangle, so let’s use Green’s Theorem instead. Notice that the region 
D enclosed by C is simple and C has positive orientation (see Figure 4). If we let 
Psx, yd − x 4 and Qsx, yd − xy, then we have

 y
C
 x 4 dx 1 xy dy − y

D

y S −Q
−x

2
−P
−y D dA − y1

0
 y12x

0
 sy 2 0d dy dx

 − y1

0
 f1

2 y 2 g y−0

y−12x
 dx − 1

2 y1

0
 s1 2 xd2 dx

  − 21
6 s1 2 xd3 g0

1
− 1

6  Q

EXAMPLE 2 Evaluate !yC s3y 2 e sin x d dx 1 (7x 1 sy 4 1 1) dy, where C is the circle 
x 2 1 y 2 − 9.

SOLUTION The region D bounded by C is the disk x 2 1 y 2 < 9, so let’s change to 
polar coordinates after applying Green’s Theorem:

!y
C
 s3y 2 e sin x d dx 1 (7x 1 sy 4 1 1) dy

  − y
D

y F −

−x
 (7x 1 sy 4 1 1) 2

−

−y
 s3y 2 e sin x dG dA

 − y2!

0
 y3

0
 s7 2 3d r dr d" − 4 y2!

0
 d"  y3

0
 r dr − 36! Q

In Examples 1 and 2 we found that the double integral was easier to evaluate than the 
line integral. (Try setting up the line integral in Example 2 and you’ll soon be con-
vinced!) But sometimes it’s easier to evaluate the line integral, and Green’s Theorem is 
used in the reverse direction. For instance, if it is known that Psx, yd − Qsx, yd − 0 on 
the curve C, then Green’s Theorem gives

y
D

y S −Q
−x

2
−P
−y D dA − y

C
 P dx 1 Q dy − 0

no matter what values P and Q assume in the region D.
Another application of the reverse direction of Green’s Theorem is in computing 

areas. Since the area of D is yyD 1 dA, we wish to choose P and Q so that

−Q
−x

2
−P
−y

− 1

y

x

C

(1, 0)(0, 0)

(0, 1) y=1-x

D

FIGURE 4

Instead of using polar coordinates, we 
could simply use the fact that D is a 
disk of radius 3 and write

y
D

y 4 dA − 4 ? !s3d2 − 36!
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 SECTION 16.4  Green’s Theorem 1099

There are several possibilities:

 Psx, yd − 0      Psx, yd − 2y      Psx, yd − 21
2 y

 Qsx, yd − x      Qsx, yd − 0      Qsx, yd − 1
2 x

Then Green’s Theorem gives the following formulas for the area of D:

5  A − !y
C

 x dy − 2!y
C

 y dx − 1
2 !y

C
 x dy 2 y dx 

EXAMPLE 3 Find the area enclosed by the ellipse 
x 2

a 2 1
y 2

b 2 − 1.

SOLUTION The ellipse has parametric equations x − a cos t and y − b sin t, where 
0 < t < 2!. Using the third formula in Equation 5, we have

 A − 1
2 y

C
 x dy 2 y dx

 − 1
2 y2!

0
 sa cos tdsb cos td dt 2 sb sin tds2a sin td dt

  −
ab
2

 y2!

0
 dt − !ab  Q

Formula 5 can be used to explain how planimeters work. A planimeter is a mechani-
cal instrument used for measuring the area of a region by tracing its boundary curve. 
These devices are useful in all the sciences: in biology for measuring the area of leaves 
or wings, in medicine for measuring the size of cross-sections of organs or tumors, in 
forestry for estimating the size of forested regions from photographs.

Figure 5 shows the operation of a polar planimeter: the pole is fixed and, as the tracer 
is moved along the boundary curve of the region, the wheel partly slides and partly rolls 
perpendicular to the tracer arm. The planimeter measures the distance that the wheel 
rolls and this is proportional to the area of the enclosed region. The explanation as a 
consequence of Formula 5 can be found in the following articles:

●  R. W. Gatterman, “The planimeter as an example of Green’s Theorem” Amer. 
Math. Monthly, Vol. 88 (1981), pp. 701–4.

●  Tanya Leise, “As the planimeter wheel turns” College Math. Journal, Vol. 38 
(2007), pp. 24–31.

Extended Versions of Green’s Theorem
Although we have proved Green’s Theorem only for the case where D is simple, we can 
now extend it to the case where D is a finite union of simple regions. For example, if D 
is the region shown in Figure 6, then we can write D − D1 ø D2, where D1 and D2 are 
both simple. The boundary of D1 is C1 ø C3 and the boundary of D2 is C2 ø s2C3d so, 
apply ing Green’s Theorem to D1 and D2 separately, we get

 y  

C1øC3

 P dx 1 Q dy − y
D1

y S −Q
−x

2
−P
−y D dA

 y
C2øs2C3d

 P dx 1 Q dy − y
D2

y S −Q
−x

2
−P
−y D dA

2

4

0 10

43 5

9 8

7

7
0

5
6

Pivot

Wheel
Pole arm

Tracer arm

Tracer

Pole

FIGURE 5  
A Keuffel and Esser polar planimeter

C¡
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FIGURE 6
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If we add these two equations, the line integrals along C3 and 2C3 cancel, so we get

y  

C1øC2

 P dx 1 Q dy − y
D

y S −Q
−x

2
−P
−y D dA

which is Green’s Theorem for D − D1 ø D2, since its boundary is C − C1 ø C2.
The same sort of argument allows us to establish Green’s Theorem for any finite union 

of nonoverlapping simple regions (see Figure 7).

EXAMPLE 4 Evaluate !yC y 2 dx 1 3xy dy, where C is the boundary of the semiannular 
region D in the upper half-plane between the circles x 2 1 y 2 − 1 and x 2 1 y 2 − 4.

SOLUTION Notice that although D is not simple, the y-axis divides it into two simple 
regions (see Figure 8). In polar coordinates we can write

D − hsr, "d | 1 < r < 2, 0 < " < !j
Therefore Green’s Theorem gives

 !y
C

 y 2 dx 1 3xy dy − y
D

y F −

−x
 s3xyd 2

−

−y
 sy 2 dG 

dA

 − y
D

y y dA − y!

0
 y2

1
 sr sin "d r dr d"

  − y!

0
 sin " d"  y2

1
 r 2 dr − f2cos "g0

! f1
3 r 3 g1

2
−

14
3

 Q

Green’s Theorem can be extended to apply to regions with holes, that is, regions that 
are not simply-connected. Observe that the boundary C of the region D in Fig ure 9 con-
sists of two simple closed curves C1 and C2. We assume that these boundary curves are  
oriented so that the region D is always on the left as the curve C is traversed. Thus the  
positive direction is counterclockwise for the outer curve C1 but clockwise for the inner 
curve C2. If we divide D into two regions D9 and D 0 by means of the lines shown in  
Figure 10 and then apply Green’s Theorem to each of D9 and D 0, we get

 y
D

y S −Q
−x

2
−P
−y D dA − y

D9

y S −Q
−x

2
−P
−y D dA 1 y

D0

y S −Q
−x

2
−P
−y D dA

 − y
−D9

 P dx 1 Q dy 1 y
−D0

 P dx 1 Q dy

Since the line integrals along the common boundary lines are in opposite directions, they 
cancel and we get

y
D

y S −Q
−x

2
−P
−y D dA − y  

C1

 P dx 1 Q dy 1 y  

C2

 P dx 1 Q dy − y
C
 P dx 1 Q dy

which is Green’s Theorem for the region D.

EXAMPLE 5 If Fsx, yd − s2y i 1 x jdysx 2 1 y 2 d, show that yC F ! dr − 2! for every 
positively oriented simple closed path that encloses the origin.

SOLUTION Since C is an arbitrary closed path that encloses the origin, it’s difficult to 
compute the given integral directly. So let’s consider a counterclockwise-oriented circle C9  

C

FIGURE 7

0

y

x

C

≈+¥=4

≈+¥=1

D

FIGURE 8

D
C™

C¡

Dª

Dªª

FIGURE 9

FIGURE 10
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with center the origin and radius a, where a is chosen to be small enough that C9 lies 
inside C. (See Figure 11.) Let D be the region bounded by C and C9. Then its positively 
oriented boundary is C ø s2C9d and so the general version of Green’s Theorem gives

 y
C
 P dx 1 Q dy 1 y

2C9
 P dx 1 Q dy − y

D

y S −Q
−x

2
−P
−y D dA

 − y
D

y F y 2 2 x 2

sx 2 1 y 2 d2 2
y 2 2 x 2

sx 2 1 y 2 d2G dA − 0

Therefore  y
C
 P dx 1 Q dy − y

C9
 P dx 1 Q dy

that is,  y
C
 F ! dr − y

C9
 F ! dr

We now easily compute this last integral using the parametrization given by 
rstd − a cos t i 1 a sin t j, 0 < t < 2!. Thus

 y
C
 F ! dr − y

C9
 F ! dr − y2!

0
 Fsrstdd ! r9std dt

 − y2!

0
 
s2a sin tds2a sin td 1 sa cos tdsa cos td

a 2 cos2t 1 a 2 sin2t
 dt − y2!

0
 dt − 2! Q

We end this section by using Green’s Theorem to discuss a result that was stated in the 
preceding section.

SKETCH OF PROOF OF THEOREM 16.3.6 We’re assuming that F − P i 1 Q j is a vector 
field on an open simply-connected region D, that P and Q have continuous first-order 
partial derivatives, and that

−P
−y

−
−Q
−x

     throughout D

If C is any simple closed path in D and R is the region that C encloses, then Green’s 
Theorem gives

!y
C
 F ! dr − !y

C
 P dx 1 Q dy − yy

R

S −Q
−x

2
−P
−y D dA − yy

R

0 dA − 0

A curve that is not simple crosses itself at one or more points and can be broken up  
into a number of simple curves. We have shown that the line integrals of F around these  
simple curves are all 0 and, adding these integrals, we see that yC F ! dr − 0 for any 
closed curve C. Therefore yC F ! dr is independent of path in D by Theo rem 16.3.3. It 
follows that F is a conservative vector field. Q

y

x
D

C

Cª

FIGURE 11

1–4 Evaluate the line integral by two methods: (a) directly and  
(b) using Green’s Theorem.

 1. !yC y 2 dx 1 x 2y dy,
  C is the rectangle with vertices s0, 0d, s5, 0d, s5, 4d, and s0, 4d

 2. !yC y dx 2 x dy,
  C is the circle with center the origin and radius 4

 3. !yC xy dx 1 x 2y 3 dy,
  C is the triangle with vertices s0, 0d, (1, 0), and (1, 2)
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1102 CHAPTER 16  Vector Calculus

the work done on this particle by the force field 
Fsx, yd − ksin x, siny 1 xy 2 1 1

3x 3l .

 19.  Use one of the formulas in (5) to find the area under one 
arch of the cycloid x − t 2 sin t, y − 1 2 cos t.

 20.  If a circle C with radius 1 rolls along the outside of the  
circle x 2 1 y 2 − 16, a fixed point P on C traces out a  
curve called an epicycloid, with parametric equations 
x − 5 cos t 2 cos 5t, y − 5 sin t 2 sin 5t. Graph the epi-
cycloid and use (5) to find the area it encloses.

 21. (a)  If C is the line segment connecting the point sx1, y1d to 
the point sx2, y2d, show that 

y
C
 x dy 2 y dx − x1 y2 2 x2 y1

 (b)  If the vertices of a polygon, in counterclockwise order, 
are sx1, y1 d, sx2, y2 d, . . . , sxn , yn d, show that the area of 
the polygon is

 A − 1
2 fsx1 y2 2 x2 y1 d 1 sx2 y3 2 x3 y2 d 1 ∙ ∙ ∙

 1 sxn21 yn 2 xn yn21 d 1 sxn y1 2 x1 yn dg

 (c)  Find the area of the pentagon with vertices s0, 0d, s2, 1d, 
s1, 3d, s0, 2d, and s21, 1d.

 22.  Let D be a region bounded by a simple closed path C in the  
xy-plane. Use Green’s Theorem to prove that the coordi-
nates of the centroid sx, y d of D are

x −
1

2A
 !y

C
 x 2 dy      y − 2

1
2A  !y

C
 y 2 dx

  where A is the area of D.

 23.  Use Exercise 22 to find the centroid of a quarter-circular 
region of radius a.

 24.  Use Exercise 22 to find the centroid of the triangle with  
vertices s0, 0d, sa, 0d, and sa, bd, where a . 0 and b . 0.

 25.  A plane lamina with constant density #sx, yd − # occupies a 
region in the xy-plane bounded by a simple closed path C. 
Show that its moments of inertia about the axes are

Ix − 2
#

3
 !y

C
 y 3 dx      Iy −

#

3
 !y

C
 x 3 dy

 26.  Use Exercise 25 to find the moment of inertia of a circular 
disk of radius a with constant density # about a diameter. 
(Compare with Example 15.4.4.)

 27.  Use the method of Example 5 to calculate yC F ! dr, where

Fsx, yd −
2xy i 1 sy 2 2 x 2d j

sx 2 1 y 2d2

   and C is any positively oriented simple closed curve that 
encloses the origin.

 28.  Calculate yC F ! dr, where Fsx, yd − kx 2 1 y, 3x 2 y 2 l and 
C is the positively oriented boundary curve of a region D 
that has area 6.

 29.  If F is the vector field of Example 5, show that 
yC F ! dr − 0 for every simple closed path that does not 
pass through or enclose the origin.

;

 4.  !yC x 2y 2 dx 1 xy dy,  C consists of the arc of the parabola 
y − x 2 from s0, 0d to s1, 1d and the line segments from 
s1, 1d to s0, 1d and from s0, 1d to s0, 0d

5–10 Use Green’s Theorem to evaluate the line integral along  
the given positively oriented curve.

 5.  yC ye x dx 1 2e x dy,
   C is the rectangle with vertices s0, 0d, s3, 0d, s3, 4d,  

and s0, 4d

 6.  yC sx 2 1 y 2d dx 1 sx 2 2 y 2d dy,
  C is the triangle with vertices s0, 0d, s2, 1d, and s0, 1d

 7.  yC (y 1 esx ) dx 1 s2x 1 cos y 2 d dy, 
C is the boundary of the region enclosed by the parabolas 
y − x 2 and x − y 2

 8.  yC y 4 dx 1 2xy 3 dy,  C is the ellipse x 2 1 2y 2 − 2

 9. yC y 3 dx 2 x 3 dy,  C is the circle x 2 1 y 2 − 4

 10.  yC s1 2 y 3d dx 1 sx 3 1 e y 2d dy,  C is the boundary of the 
region between the circles x 2 1 y 2 − 4 and x 2 1 y 2 − 9

11–14 Use Green’s Theorem to evaluate yC F ! dr. (Check the  
orientation of the curve before applying the theorem.)

 11.   Fsx, yd − ky cos x 2 xy sin x, xy 1 x cos x l,   
C is the triangle from s0, 0d to s0, 4d to s2, 0d to s0, 0d

 12.  Fsx, yd − ke2x 1 y 2, e2y 1 x 2 l,   
C consists of the arc of the curve y − cos x from s2!y2, 0d 
to s!y2, 0d and the line segment from s!y2, 0d to s2!y2, 0d

 13.  Fsx, yd − ky 2 cos y, x sin yl,   
C is the circle sx 2 3d2 1 sy 1 4d2 − 4 oriented clockwise

 14.  Fsx, yd − ksx 2 1 1, tan21 xl ,  C is the triangle from s0, 0d 
to s1, 1d to s0, 1d to s0, 0d

15–16 Verify Green’s Theorem by using a computer algebra 
system to evaluate both the line integral and the double integral.

 15.  Psx, yd − x 3y 4,  Qsx, yd − x 5y 4, 
C consists of the line segment from s2!y2, 0d to s!y2, 0d 
followed by the arc of the curve y − cos x from s!y2, 0d to 
s2!y2, 0d

 16.  Psx, yd − 2x 2 x 3y 5,  Qsx, yd − x 3y 8, 
C is the ellipse 4x 2 1 y 2 − 4

 17.  Use Green’s Theorem to find the work done by the force 
Fsx, yd − xsx 1 yd i 1 xy 2 j in moving a particle from the  
origin along the x-axis to s1, 0d, then along the line segment  
to s0, 1d, and then back to the origin along the y-axis.

 18.  A particle starts at the origin, moves along the x-axis to 
s5, 0d, then along the quarter-circle x 2 1 y 2 − 25, x > 0,  
y > 0 to the point s0, 5d, and then down the y-axis 
back to the origin. Use Green’s Theorem to find 

CAS
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 SECTION 16.5  Curl and Divergence 1103

   Here R is the region in the xy-plane that corresponds to the 
region S in the uv-plane under the transformation given by 
x − tsu, vd, y − hsu, vd.

     [Hint: Note that the left side is AsRd and apply the first 
part of Equation 5. Convert the line integral over −R to a  
line integral over −S and apply Green’s Theorem in the  
uv-plane.]

 30.  Complete the proof of the special case of Green’s Theorem 
by proving Equation 3.

 31.  Use Green’s Theorem to prove the change of variables  
formula for a double integral (Formula 15.9.9) for the case 
where f sx, yd − 1:

y
R

y dx dy − y
S

y Z −sx, yd
−su, vd Z  du dv

In this section we define two operations that can be performed on vector fields and that 
play a basic role in the applications of vector calculus to fluid flow and electricity and 
magnetism. Each operation resembles differentiation, but one produces a vector field 
whereas the other produces a scalar field.

Curl
If F − P i 1 Q j 1 R k is a vector field on R 3 and the partial derivatives of P, Q, and R 
all exist, then the curl of F is the vector field on R 3 defined by

1  curl F − S −R
−y

2
−Q
−z D i 1 S −P

−z
2

−R
−x D j 1 S −Q

−x
2

−P
−y D k 

As an aid to our memory, let’s rewrite Equation 1 using operator notation. We intro-
duce the vector differential operator = (“del”) as

= − i 
−

−x
1 j 

−

−y
1 k 

−

−z
 

It has meaning when it operates on a scalar function to produce the gradient of f :

= f − i 
−f
−x

1 j 
−f
−y

1 k 
−f
−z

−
−f
−x

 i 1
−f
−y

 j 1
−f
−z

 k

If we think of = as a vector with components −y−x, −y−y, and −y−z, we can also consider 
the formal cross product of = with the vector field F as follows:

 = 3 F −   

i j k
−

−x
−

−y
−

−z
P Q R

 − S −R
−y

2
−Q
−z D i 1 S −P

−z
2

−R
−x D j 1 S −Q

−x
2

−P
−y D k

 − curl F

So the easiest way to remember Definition 1 is by means of the symbolic expression

2  curl F − = 3 F 
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1104 CHAPTER 16  Vector Calculus

EXAMPLE 1 If Fsx, y, zd − xz i 1 xyz j 2 y 2 k, find curl F.

SOLUTION Using Equation 2, we have

  curl F − = 3 F −   

i j k
−

−x
−

−y
−

−z
xz xyz 2y 2

  − F −

−y
 s2y 2 d 2

−

−z
 sxyzdG i 2 F −

−x
 s2y 2 d 2

−

−z
 sxzdG j

 1 F −

−x
 sxyzd 2

−

−y
 sxzdG k

  − s22y 2 xyd i 2 s0 2 xd j 1 syz 2 0d k

 − 2ys2 1 xd i 1 x j 1 yz k Q

Recall that the gradient of a function f  of three variables is a vector field on R 3 and 
so we can compute its curl. The following theorem says that the curl of a gradient vector 
field is 0.

3   Theorem If f  is a function of three variables that has continuous second-
order partial derivatives, then

curls= f d − 0

PROOF We have

 
curls= f d − = 3 s= f d −

  

i j k
−

−x
−

−y
−

−z
−f
−x

−f
−y

−f
−z

 − S −2f
−y −z

2
−2f

−z −yD i 1 S −2f
−z −x

2
−2f

−x −zD j 1 S −2f
−x −y

2
−2f

−y −xD k

 − 0 i 1 0 j 1 0 k − 0

by Clairaut’s Theorem. Q

Since a conservative vector field is one for which F − = f , Theorem 3 can be re phrased 
as follows:

If F is conservative, then curl F − 0.

This gives us a way of verifying that a vector field is not conservative.

CAS  Most computer algebra systems 
have commands that compute the curl 
and divergence of vector fields. If 
you have access to a CAS, use these 
commands to check the answers to the 
examples and exercises in this section.

Notice the similarity to what we know  
from Section 12.4: a 3 a − 0 for every  
three-dimensional vector a.

Compare this with Exercise 16.3.29.
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 SECTION 16.5  Curl and Divergence 1105

EXAMPLE 2 Show that the vector field Fsx, y, zd − xz i 1 xyz j 2 y 2 k is not  
conservative.

SOLUTION In Example 1 we showed that

curl F − 2ys2 1 xd i 1 x j 1 yz k

This shows that curl F ± 0 and so, by the remarks preceding this example, F is not 
conservative. Q

The converse of Theorem 3 is not true in general, but the following theorem says the 
converse is true if F is defined everywhere. (More generally it is true if the domain is  
simply-connected, that is, “has no hole.”) Theorem 4 is the three-dimensional version  
of Theorem 16.3.6. Its proof requires Stokes’ Theorem and is sketched at the end of  
Section 16.8.

4   Theorem If F is a vector field defined on all of R 3 whose component func-
tions have continuous partial derivatives and curl F − 0, then F is a conservative 
vector field.

EXAMPLE 3 
(a) Show that

Fsx, y, zd − y 2z3 i 1 2xyz3 j 1 3xy 2z2 k

is a conservative vector field.
(b) Find a function f  such that F − = f .

SOLUTION
(a) We compute the curl of F:

 curl F − = 3 F −   

i j k
−

−x
−

−y
−

−z
y2z3 2xyz3 3xy2z2

 − s6xyz2 2 6xyz2 d i 2 s3y 2z2 2 3y 2z2 d j 1 s2yz3 2 2yz3 d k

 − 0

Since curl F − 0 and the domain of F is R 3, F is a conservative vector field by  
Theorem 4.

(b) The technique for finding f  was given in Section 16.3. We have

5   fxsx, y, zd − y 2z3  

6   fysx, y, zd − 2xyz3  

7   fzsx, y, zd − 3xy 2z2 

Integrating (5) with respect to x, we obtain

8  f sx, y, zd − xy 2z3 1 tsy, zd 
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1106 CHAPTER 16  Vector Calculus

Differentiating (8) with respect to y, we get fysx, y, zd − 2xyz3 1 tysy, zd, so compari-
son with (6) gives tysy, zd − 0. Thus tsy, zd − hszd and

fzsx, y, zd − 3xy 2z2 1 h9szd

Then (7) gives h9szd − 0. Therefore

 f sx, y, zd − xy 2z3 1 K Q

The reason for the name curl is that the curl vector is associated with rotations. One 
connection is explained in Exercise 37. Another occurs when F represents the velocity 
field in fluid flow (see Example 16.1.3). Particles near sx, y, zd in the fluid tend to rotate 
about the axis that points in the direction of curl Fsx, y, zd, and the length of this curl 
vector is a measure of how quickly the particles move around the axis (see Figure 1). If 
curl F − 0 at a point P, then the fluid is free from rotations at P and F is called irrota-
tional at P. In other words, there is no whirlpool or eddy at P. If curl F − 0, then a  
tiny paddle wheel moves with the fluid but doesn’t rotate about its axis. If curl F ± 0, the 
paddle wheel rotates about its axis. We give a more detailed explanation in Section 16.8 
as a consequence of Stokes’ Theorem.

Divergence
If F − P i 1 Q j 1 R k is a vector field on R 3 and −Py−x, −Qy−y, and −Ry−z exist, then 
the divergence of F is the function of three variables defined by

9  div F −
−P
−x

1
−Q
−y

1
−R
−z

 

Observe that curl F is a vector field but div F is a scalar field. In terms of the gradi-
ent  operator = − s−y−xd i 1 s−y−yd j 1 s−y−zd k, the divergence of F can be written 
symbolically as the dot product of = and F:

10  div F − = ! F 

EXAMPLE 4 If Fsx, y, zd − xz i 1 xyz j 2 y 2 k, find div F.

SOLUTION By the definition of divergence (Equation 9 or 10) we have

  div F − = ! F −
−

−x
 sxzd 1

−

−y
 sxyzd 1

−

−z
 s2y 2 d − z 1 xz Q

If F is a vector field on R 3, then curl F is also a vector field on R 3. As such, we can  
compute its divergence. The next theorem shows that the result is 0.

11  Theorem If F − P i 1 Q j 1 R k is a vector field on R 3 and P, Q, and R 
have continuous second-order partial derivatives, then

div curl F − 0

(x, y, z)

curl F(x, y, z)

FIGURE 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 16.5  Curl and Divergence 1107

PROOF Using the definitions of divergence and curl, we have

 div curl F − = ! s= 3 Fd

 −
−

−x
 S −R

−y
2

−Q
−z D 1

−

−y
 S −P

−z
2

−R
−x D 1

−

−z
 S −Q

−x
2

−P
−y D

 −
−2R

−x −y
2

−2Q
−x −z

1
−2P

−y −z
2

−2R
−y −x

1
−2Q

−z −x
2

−2P
−z −y

 − 0

because the terms cancel in pairs by Clairaut’s Theorem. Q

EXAMPLE 5 Show that the vector field Fsx, y, zd − xz i 1 xyz j 2 y 2 k can’t be  
written as the curl of another vector field, that is, F ± curl G.

SOLUTION In Example 4 we showed that

div F − z 1 xz

and therefore div F ± 0. If it were true that F − curl G, then Theorem 11 would give

div F − div curl G − 0

which contradicts div F ± 0. Therefore F is not the curl of another vector field. Q

Again, the reason for the name divergence can be understood in the context of fluid 
flow. If Fsx, y, zd is the velocity of a fluid (or gas), then div Fsx, y, zd represents the net 
rate of change (with respect to time) of the mass of fluid (or gas) flowing from the point 
sx, y, zd per unit volume. In other words, div Fsx, y, zd measures the tendency of the fluid 
to diverge from the point sx, y, zd. If div F − 0, then F is said to be incompressible.

Another differential operator occurs when we compute the divergence of a gradient 
vector field = f . If f  is a function of three variables, we have

divs= f d − = ! s= f d −
−2f
−x 2 1

−2f
−y 2 1

−2f
−z2

and this expression occurs so often that we abbreviate it as = 2 f . The operator

= 2 − = ! =

is called the Laplace operator because of its relation to Laplace’s equation

= 2 f −
−2f
−x 2 1

−2f
−y 2 1

−2f
−z2 − 0

We can also apply the Laplace operator = 2 to a vector field

F − P i 1 Q j 1 R k

in terms of its components:

= 2 F − = 2P i 1 = 2Q j 1 = 2R k

Note the analogy with the scalar triple  
product: a ! sa 3 bd − 0.

The reason for this interpretation of 
div F will be explained at the end of 
Section 16.9 as a consequence of the 
Divergence Theorem.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1108 CHAPTER 16  Vector Calculus

Vector Forms of Green’s Theorem
The curl and divergence operators allow us to rewrite Green’s Theorem in versions that 
will be useful in our later work. We suppose that the plane region D, its boundary curve  
C, and the functions P and Q satisfy the hypotheses of Green’s Theorem. Then we con-
sider the vector field F − P i 1 Q j. Its line integral is

 !y
C
 F ! dr − ! y

C
 P dx 1 Q dy

and, regarding F as a vector field on R3 with third component 0, we have

curl F −   

i j k
−

−x
−

−y
−

−z
Psx, yd Qsx, yd 0

 − S −Q
−x

2
−P
−y D k

Therefore

scurl Fd ! k − S −Q
−x

2
−P
−y D k ! k −

−Q
−x

2
−P
−y

and we can now rewrite the equation in Green’s Theorem in the vector form

12  !y
C

 F ! dr − y
D

y scurl Fd ! k dA 

Equation 12 expresses the line integral of the tangential component of F along C as 
the double integral of the vertical component of curl F over the region D enclosed by C. 
We now derive a similar formula involving the normal component of F.

If C is given by the vector equation

rstd − xstd i 1 ystd j    a < t < b

then the unit tangent vector (see Section 13.2) is

Tstd −
x9std

| r9std |  i 1
 y9std
| r9std |  j

You can verify that the outward unit normal vector to C is given by

nstd −
 y9std
| r9std |  i 2

x9std
| r9std |  j

(See Figure 2.) Then, from Equation 16.2.3, we have

  !  y
C
 F ! n ds − yb

a
 sF ! ndstd | r9std | dt

 − yb

a
 FPsxstd, ystdd y9std

| r9std | 2
Qsxstd, ystdd x9std

| r9std | G | r9std | dt

 − yb

a
 Psxstd, ystdd y9std dt 2 Qsxstd, ystdd x9std dt

 − y
C
 P dy 2 Q dx − y

D

y S −P
−x

1
−Q
−y D dA

 

0

y

x

D
C

r(t) n(t)

T(t)

FIGURE 2
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 SECTION 16.5  Curl and Divergence 1109

by Green’s Theorem. But the integrand in this double integral is just the divergence  
of F. So we have a second vector form of Green’s Theorem.

13  ! y
C
 F ! n ds − y

D

y div Fsx, yd dA 

This version says that the line integral of the normal component of F along C is equal to 
the double integral of the divergence of F over the region D enclosed by C.

1–8 Find (a) the curl and (b) the divergence of the vector field.

 1. Fsx, y, zd − xy 2z 2 i 1 x 2yz 2 j 1 x 2y 2z k

 2. Fsx, y, zd − x 3yz 2 j 1 y 4z 3 k

 3. Fsx, y, zd − xye z i 1 yze x k

 4. Fsx, y, zd − sin yz i 1 sin zx j 1 sin xy k

 5. Fsx, y, zd −
sx 

1 1 z
 i 1

sy 

1 1 x
 j 1

sz 

1 1 y
 k

 6. Fsx, y, zd − lns2y 1 3zd i 1 lnsx 1 3zd j 1 lnsx 1 2yd k

 7. Fsx, y, zd − ke x sin y, e y sin z , e z sin xl

 8. Fsx, y, zd − karctansxyd, arctansyzd, arctanszxdl

9–11 The vector field F is shown in the xy-plane and looks the 
same in all other horizontal planes. (In other words, F is inde pen - 
d ent of z and its z-component is 0.)
 (a) Is div F positive, negative, or zero? Explain.
 (b)  Determine whether curl F − 0. If not, in which direction does 

curl F point?

 9. y

x0

 10. y

x0

 11. y

x0

 12.  Let f  be a scalar field and F a vector field. State whether  
each expression is meaningful. If not, explain why. If so, state 
whether it is a scalar field or a vector field.

 (a) curl f  (b) grad f
 (c) div F (d) curlsgrad f d
 (e) grad F (f) gradsdiv Fd
 (g) divsgrad f d (h) gradsdiv f d
 (i) curlscurl Fd (j) divsdiv Fd
 (k) sgrad f d 3 sdiv Fd (l) divscurlsgrad f dd

13–18 Determine whether or not the vector field is conservative.  
If it is conservative, find a function f  such that F − = f .

 13. Fsx, y, zd − y 2z3 i 1 2xyz3 j 1 3xy 2z2 k

 14. Fsx, y, zd − xyz 4 i 1 x 2z4 j 1 4x 2yz 3 k

 15. Fsx, y, zd − z cos y i 1 xz sin y j 1 x cos y k

 16.  Fsx, y, zd − i 1 sin z j 1 y cos z k

 17.  Fsx, y, zd − e yz i 1 xze yz j 1 xye yz k

 18.  Fsx, y, zd − e x sin yz  i 1 ze x cos yz  j 1 ye x cos yz k

 19.  Is there a vector field G on R 3 such that 
curl G − kx sin y, cos y, z 2 xyl? Explain.

 20.  Is there a vector field G on R 3 such that curl G − kx, y, zl? 
Explain.

 21.  Show that any vector field of the form

Fsx, y, zd − f sxd i 1 tsyd j 1 hszd k

  where f , t, h are differentiable functions, is irrotational.

 22.  Show that any vector field of the form

Fsx, y, zd − f sy, zd i 1 tsx, zd j 1 hsx, yd k

  is incompressible.
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1110 CHAPTER 16  Vector Calculus

23–29 Prove the identity, assuming that the appropriate partial 
derivatives exist and are continuous. If f  is a scalar field and F, G 
are vector fields, then f F, F ! G, and F 3 G are defined by

 s f Fdsx, y, zd − f sx, y, zd Fsx, y, zd

 sF ! Gdsx, y, zd − Fsx, y, zd ! Gsx, y, zd

 sF 3 Gdsx, y, zd − Fsx, y, zd 3 Gsx, y, zd

 23. divsF 1 Gd − div F 1 div G

 24. curlsF 1 Gd − curl F 1 curl G

 25. divs f Fd − f  div F 1 F ! = f

 26. curls f Fd − f  curl F 1 s= f d 3 F

 27. divsF 3 Gd − G ! curl F 2 F ! curl G

 28. divs= f 3 =td − 0

 29. curlscurl Fd − gradsdiv Fd 2 = 2F

30–32 Let r − x i 1 y j 1 z k and r − | r |.
 30. Verify each identity.
 (a) = ! r − 3 (b) = ! srrd − 4r
 (c) = 2r 3 − 12r

 31. Verify each identity.
 (a) =r − ryr (b) = 3 r − 0
 (c) =s1yrd − 2ryr 3 (d) = ln r − ryr 2

 32.  If F − ryr p, find div F. Is there a value of p for which  
div F − 0?

 33.  Use Green’s Theorem in the form of Equation 13 to prove 
Green’s first identity:

y
D

y f =2t dA − !y
C
 f s=td ! n ds 2 y

D

y = f ! =t dA

   where D and C satisfy the hypotheses of Green’s Theorem  
and the appropriate partial derivatives of f  and t exist and are 
continuous. (The quantity =t ! n − Dn t occurs in the line inte-
gral. This is the directional derivative in the direction of the 
normal vector n and is called the normal derivative of t.)

 34.  Use Green’s first identity (Exercise 33) to prove Green’s  
second identity:

y
D

y s f =2t 2 t=2f d dA − !  y
C
 s f =t 2 t= f d ! n ds

   where D and C satisfy the hypotheses of Green’s Theorem  
and the appropriate partial derivatives of f  and t exist and are 
continuous.

 35.  Recall from Section 14.3 that a function t is called harmonic 
on D if it satisfies Laplace’s equation, that is, =2t − 0 on D. 
Use Green’s first identity (with the same hypotheses as in 

   Exercise 33) to show that if t is harmonic on D, then 
!  yC Dn t ds − 0. Here Dn t is the normal derivative of t defined 
in Exercise 33.

 36.  Use Green’s first identity to show that if f  is harmonic  
on D, and if f sx, yd − 0 on the boundary curve C, then 
yyD | =f |2 dA − 0. (Assume the same hypotheses as in  
Exercise 33.)

 37.  This exercise demonstrates a connection between the curl  
vector and rotations. Let B be a rigid body rotating about the  
z-axis. The rotation can be described by the vector w − !k, 
where ! is the angular speed of B, that is, the tangential speed 
of any point P in B divided by the distance d from the axis of 
rotation. Let r − kx, y, zl be the position vector of P.

 (a)  By considering the angle " in the figure, show that the 
velocity field of B is given by v − w 3 r.

 (b) Show that v − 2!y i 1 ! x j.
 (c) Show that curl v − 2w.

0 

¨ 

P 
d 

B

w 

v 

z 

y 

x 
 38.  Maxwell’s equations relating the electric field E and magnetic 

field H as they vary with time in a region containing no charge 
and no current can be stated as follows:

  div E − 0  div H − 0

 curl E − 2
1
c

 
−H
−t

       curl H −
1
c

 
−E
−t

   where c is the speed of light. Use these equations to prove the 
following:

 (a) = 3 s= 3 Ed − 2
1
c 2  

−2 E
−t 2

 (b) = 3 s= 3 Hd − 2
1
c 2  

−2 H
−t 2

 (c) = 2E −
1
c 2  

−2 E
−t 2   [Hint: Use Exercise 29.]

 (d) = 2H −
1
c 2  

−2 H
−t 2
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 SECTION 16.6  Parametric Surfaces and Their Areas 1111

So far we have considered special types of surfaces: cylinders, quadric surfaces, graphs 
of functions of two variables, and level surfaces of functions of three variables. Here we 
use vector functions to describe more general surfaces, called parametric surfaces, and 
compute their areas. Then we take the general surface area formula and see how it applies 
to special surfaces.

Parametric Surfaces
In much the same way that we describe a space curve by a vector function rstd of a single 
parameter t, we can describe a surface by a vector function rsu, vd of two param  eters u  
and v. We suppose that

1  rsu, vd − xsu, vd i 1 ysu, vd j 1 zsu, vd k 

is a vector-valued function defined on a region D in the uv-plane. So x, y, and z, the com-
ponent functions of r, are functions of the two variables u and v with domain D. The set 
of all points sx, y, zd in R 3 such that

2  x − xsu, vd    y − ysu, vd    z − zsu, vd 

and su, vd varies throughout D, is called a parametric surface S and Equations 2 are 
called parametric equations of S. Each choice of u and v gives a point on S; by making 
all choices, we get all of S. In other words, the surface S is traced out by the tip of the 
position vector rsu, vd as su, vd moves throughout the region D. (See Figure 1.)

0

z

x y

S

r(u, √)
0

√

u

D (u, √)
r

EXAMPLE 1 Identify and sketch the surface with vector equation

rsu, vd − 2 cos u i 1 v j 1 2 sin u k

SOLUTION The parametric equations for this surface are

x − 2 cos u    y − v    z − 2 sin u

FIGURE 1  
A parametric surface

 39.  We have seen that all vector fields of the form F − =t  
satisfy the equation curl F − 0 and that all vector fields of the 
form F − curl G satisfy the equation div F − 0 (assuming  
continuity of the appropriate partial derivatives). This suggests 
the question: are there any equations that all functions of the 

   form f − div G must satisfy? Show that the answer to this 
question is “No” by proving that every continuous func- 
tion f  on R 3 is the divergence of some vector field.

      [Hint: Let Gsx, y, zd − ktsx, y, zd, 0, 0l, where 
tsx, y, zd − yx

0 f st, y, zd dt.]
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1112 CHAPTER 16  Vector Calculus

So for any point sx, y, zd on the surface, we have

x 2 1 z2 − 4 cos2u 1 4 sin2u − 4

This means that vertical cross-sections parallel to the xz-plane (that is, with y constant) 
are all circles with radius 2. Since y − v and no restriction is placed on v, the surface  
is a circular cylinder with radius 2 whose axis is the y-axis (see Figure 2). Q

In Example 1 we placed no restrictions on the parameters u and v and so we obtained 
the entire cylinder. If, for instance, we restrict u and v by writing the parameter domain 
as

0 < u < #y2    0 < v < 3

then x > 0, z > 0, 0 < y < 3, and we get the quarter-cylinder with length 3 illustrated 
in Figure 3.

If a parametric surface S is given by a vector function rsu, vd, then there are two useful 
families of curves that lie on S, one family with u constant and the other with v constant. 
These families correspond to vertical and horizontal lines in the uv-plane. If we keep u 
constant by putting u − u0, then rsu0, vd becomes a vector function of the single param-
eter v and defines a curve C1 lying on S. (See Figure 4.)

r 

0 

z 

y 
x 

C¡  
C™

0 

D 

√=√ ̧  
(u     ¸, √¸)

u=u ̧  

u 

√ 

Similarly, if we keep v constant by putting v − v0, we get a curve C2 given by rsu, v0 d 
that lies on S. We call these curves grid curves. (In Example 1, for instance, the grid 
curves obtained by letting u be constant are horizontal lines whereas the grid curves with 
v constant are circles.) In fact, when a computer graphs a parametric surface, it usually 
depicts the surface by plotting these grid curves, as we see in the following example.

EXAMPLE 2 Use a computer algebra system to graph the surface

rsu, vd − ks2 1 sin vd cos u, s2 1 sin vd sin u, u 1 cos vl

Which grid curves have u constant? Which have v constant?

SOLUTION We graph the portion of the surface with parameter domain 0 < u < 4#,
0 < v < 2# in Figure 5. It has the appearance of a spiral tube. To identify the grid 
curves, we write the corresponding parametric equations:

x − s2 1 sin vd cos u    y − s2 1 sin vd sin u    z − u 1 cos v

If v is constant, then sin v and cos v are constant, so the parametric equations resemble 
those of the helix in Example 13.1.4. Thus the grid curves with v constant are the spiral 
curves in Figure 5. We deduce that the grid curves with u constant must be the curves 

0 

(0, 0, 2)

(2, 0, 0)

x y 

z 

FIGURE 2

0 

(0 , 3, 2) 

x y 

z 

FIGURE 3

TEC Visual 16.6 shows animated ver-
sions of Figures 4 and 5, with moving 
grid curves, for several parametric 
surfaces.

FIGURE 4
z

yx

u constant

√ constant

FIGURE 5
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 SECTION 16.6  Parametric Surfaces and Their Areas 1113

that look like circles in the figure. Further evidence for this assertion is that if u is kept 
constant, u − u0, then the equation z − u0 1 cos v shows that the z-values vary from 
u0 2 1 to u0 1 1. Q

In Examples 1 and 2 we were given a vector equation and asked to graph the corre-
sponding parametric surface. In the following examples, however, we are given the more 
challenging problem of finding a vector function to represent a given surface. In the rest 
of this chapter we will often need to do exactly that.

EXAMPLE 3 Find a vector function that represents the plane that passes through the 
point P0 with position vector r0 and that contains two nonparallel vectors a and b.

SOLUTION If P is any point in the plane, we can get from P0 to P by moving a certain 
distance in the direction of a and another distance in the direction of b. So there are
scalars u and v such that P0PB − ua 1 vb. (Figure 6 illustrates how this works, by 
means of the Parallelogram Law, for the case where u and v are positive. See also  
Exercise 12.2.46.) If r is the position vector of P, then

r − OP0
B 1 P0PB − r0 1 ua 1 vb

So the vector equation of the plane can be written as

rsu, vd − r0 1 ua 1 vb

where u and v are real numbers.
If we write r − kx, y,  z l, r0 − kx0, y0, z0 l, a − ka1, a2, a3 l, and b − kb1, b2, b3 l,  

then we can write the parametric equations of the plane through the point sx0, y0, z0 d as 
follows:

 x − x0 1 ua1 1 vb1    y − y0 1 ua2 1 vb2    z − z0 1 ua3 1 vb3 Q

EXAMPLE 4 Find a parametric representation of the sphere

x 2 1 y 2 1 z2 − a 2

SOLUTION The sphere has a simple representation $ − a in spherical coordinates, so 
let’s choose the angles % and " in spherical coordinates as the parameters (see Section 
15.8). Then, putting $ − a in the equations for conversion from spherical to rectangular 
coordinates (Equations 15.8.1), we obtain

x − a sin % cos "    y − a sin % sin "    z − a cos %

as the parametric equations of the sphere. The corresponding vector equation is

rs%, "d − a sin % cos " i 1 a sin % sin " j 1 a cos % k

We have 0 < % < # and 0 < " < 2#, so the parameter domain is the rectangle 
D − f0, #g 3 f0, 2#g. The grid curves with % constant are the circles of constant lati- 
tude (including the equator). The grid curves with " constant are the meridians (semi - 
circles), which connect the north and south poles (see Figure 7). Q

NOTE We saw in Example 4 that the grid curves for a sphere are curves of constant lati-
tude or constant longitude. For a general parametric surface we are really making a map and 
the grid curves are similar to lines of latitude and longitude. Describing a point on a para- 
metric surface (like the one in Figure 5) by giving specific values of u and v is like giving 
the latitude and longitude of a point.

P

ua
P¸

√b

a

b

FIGURE 6

0

2π

¨
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c π

D

˙=c
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r

˙=c

¨=k

0

z

x
y

FIGURE 7
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1114 CHAPTER 16  Vector Calculus

FIGURE 8 FIGURE 9

EXAMPLE 5 Find a parametric representation for the cylinder

x 2 1 y 2 − 4    0 < z < 1

SOLUTION The cylinder has a simple representation r − 2 in cylindrical coordinates, 
so we choose as parameters " and z in cylindrical coordinates. Then the parametric 
equations of the cylinder are

x − 2 cos "    y − 2 sin "    z − z

where 0 < " < 2# and 0 < z < 1. Q

EXAMPLE 6 Find a vector function that represents the elliptic paraboloid z − x 2 1 2y 2.

SOLUTION If we regard x and y as parameters, then the parametric equations are  
simply

x − x    y − y    z − x 2 1 2y 2

and the vector equation is

 rsx, yd − x i 1 y j 1 sx 2 1 2y 2 d k Q

In general, a surface given as the graph of a function of x and y, that is, with an equa-
tion of the form z − f sx, yd, can always be regarded as a parametric surface by taking x 
and y as parameters and writing the parametric equations as

x − x    y − y    z − f sx, yd

Parametric representations (also called parametrizations) of surfaces are not unique. 
The next example shows two ways to parametrize a cone.

EXAMPLE 7 Find a parametric representation for the surface z − 2sx 2 1 y 2 , that is, 
the top half of the cone z2 − 4x 2 1 4y 2.

SOLUTION 1 One possible representation is obtained by choosing x and y as  
parameters:

x − x    y − y    z − 2sx 2 1 y 2 

So the vector equation is

rsx, yd − x i 1 y j 1 2sx 2 1 y 2  k

SOLUTION 2 Another representation results from choosing as parameters the polar  
coordinates r and ". A point sx, y, zd on the cone satisfies x − r cos ", y − r sin ", and 

One of the uses of parametric surfaces 
is in computer graphics. Figure 8 
shows the result of trying to graph the 
sphere x 2 1 y 2 1 z2 − 1 by solving 
the equation for z and graphing the top 
and bottom hemispheres separately. 
Part of the sphere appears to be missing 
because of the rectangular grid system 
used by the computer. The much better 
picture in Figure 9 was produced by  
a computer using the parametric equa-
tions found in Example 4.

TEC In Module 16.6 you can inves-
tigate several families of parametric 
surfaces.
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 SECTION 16.6  Parametric Surfaces and Their Areas 1115

z − 2sx 2 1 y 2 − 2r. So a vector equation for the cone is

rsr, "d − r cos " i 1 r sin " j 1 2r k

where r > 0 and 0 < " < 2#. Q

Surfaces of Revolution
Surfaces of revolution can be represented parametrically and thus graphed using a com-
puter. For instance, let’s consider the surface S obtained by rotating the curve y − f sxd,  
a < x < b, about the x-axis, where f sxd > 0. Let " be the angle of rotation as shown 
in Figure 10. If sx, y, zd is a point on S, then

3  x − x    y − f sxd cos "    z − f sxd sin " 

Therefore we take x and " as parameters and regard Equations 3 as parametric equations 
of S. The parameter domain is given by a < x < b, 0 < " < 2#.

EXAMPLE 8 Find parametric equations for the surface generated by rotating the curve 
y − sin x, 0 < x < 2#, about the x-axis. Use these equations to graph the surface of 
revolution.

SOLUTION From Equations 3, the parametric equations are

x − x    y − sin x cos "    z − sin x sin "

and the parameter domain is 0 < x < 2#, 0 < " < 2#. Using a computer to plot these 
equations and and then rotating the image, we obtain the graph in Figure 11. Q

We can adapt Equations 3 to represent a surface obtained through revolution about the 
y- or z-axis (see Exercise 30).

Tangent Planes
We now find the tangent plane to a parametric surface S traced out by a vector function

rsu, vd − xsu, vd i 1 ysu, vd j 1 zsu, vd k

at a point P0 with position vector rsu0, v0 d. If we keep u constant by putting u − u0, then 
rsu0, vd becomes a vector function of the single parameter v and defines a grid curve C1 
lying on S. (See Figure 12.) The tangent vector to C1 at P0 is obtained by taking the par-
tial derivative of r with respect to v:

4  rv −
−x
−v

 su0, v0 d i 1
−y
−v

 su0, v0 d j 1
−z
−v

 su0, v0 d k 

0 u 

D 

√=√¸ 
(u ̧ , √ ̧ ) 

u=u ̧  

√ 

0 

z 

y x 

C¡  

C™ 

r u 
r √ 

P¸ 

r 

0 

z 

y 

x 

¨ z 
x 

(x, y , z) 

y=ƒ 

ƒ 

ƒ 

FIGURE 10

z y

x

FIGURE 11

For some purposes the parametric 
representations in Solutions 1 and 2 are 
equally good, but Solution 2 might be 
preferable in certain situations. If we 
are interested only in the part of the 
cone that lies below the plane z − 1, for 
instance, all we have to do in Solution 2 
is change the parameter domain to

0 < r < 1
2    0 < " < 2#

FIGURE 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1116 CHAPTER 16  Vector Calculus

Similarly, if we keep v constant by putting v − v0, we get a grid curve C2 given by 
rsu, v0 d that lies on S, and its tangent vector at P0 is

5  ru −
−x
−u

 su0, v0 d i 1
−y
−u

 su0, v0 d j 1
−z
−u

 su0, v0 d k 

If ru 3 rv is not 0, then the surface S is called smooth (it has no “corners”). For a smooth 
surface, the tangent plane is the plane that contains the tangent vectors ru and rv, and the 
vector ru 3 rv is a normal vector to the tangent plane.

EXAMPLE 9 Find the tangent plane to the surface with parametric equations x − u 2, 
y − v2, z − u 1 2v at the point s1, 1, 3d.

SOLUTION We first compute the tangent vectors:

 ru −
−x
−u

 i 1
−y
−u

 j 1
−z
−u

 k − 2u i 1 k

 rv −
−x
−v

 i 1
−y
−v

 j 1
−z
−v

 k − 2v j 1 2 k

Thus a normal vector to the tangent plane is

ru 3 rv − Z i
2u
0

j
0
2v

k
1
2

Z − 22v i 2 4u j 1 4uv k

Notice that the point s1, 1, 3d corresponds to the parameter values u − 1 and v − 1, so 
the normal vector there is

22 i 2 4 j 1 4 k

Therefore an equation of the tangent plane at s1, 1, 3d is

 22sx 2 1d 2 4sy 2 1d 1 4sz 2 3d − 0

or  x 1 2y 2 2z 1 3 − 0 Q

Surface Area
Now we define the surface area of a general parametric surface given by Equation 1. For 
simplicity we start by considering a surface whose parameter domain D is a rectangle, 
and we divide it into subrectangles Rij. Let’s choose sui*, vj*d to be the lower left corner 
of Rij. (See Figure 14.)

0
y

z

x

Pij
Sijr

(u*i , √*j )
0 u

√

Îu

Rij

Î√

Figure 13 shows the self-intersecting  
surface in Example 9 and its tangent 
plane at s1, 1, 3d.

z

x

y

(1, 1, 3)

FIGURE 13

FIGURE 14  
The image of the  

subrectangle Rij is the patch Sij.
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 SECTION 16.6  Parametric Surfaces and Their Areas 1117

The part Sij of the surface S that corresponds to Rij is called a patch and has the point 
Pij with position vector rsui*, vj*d as one of its corners. Let

ru* − rusui*, vj*d    and    rv* − rvsui*, vj*d

be the tangent vectors at Pij as given by Equations 5 and 4.
Figure 15(a) shows how the two edges of the patch that meet at Pij can be approxi-

mated by vectors. These vectors, in turn, can be approximated by the vectors Du ru* and 
Dv rv* because partial derivatives can be approximated by difference quotients. So 
we approxi mate Sij by the parallelogram determined by the vectors Du ru* and Dv rv*. 
This parallelogram is shown in Figure 15(b) and lies in the tangent plane to S at Pij. The 
area of this parallelogram is

| sDu ru*d 3 sDv rv*d | − | ru* 3 rv* | Du Dv

and so an approximation to the area of S is

o
m

i−1
 o

n

j−1
 | ru* 3 rv* | Du Dv

Our intuition tells us that this approximation gets better as we increase the number of 
subrectangles, and we recognize the double sum as a Riemann sum for the double inte-
gral yyD | ru 3 rv | du dv. This motivates the following definition.

6   Definition If a smooth parametric surface S is given by the equation

rsu, vd − xsu, vd i 1 ysu, vd j 1 zsu, vd k    su, vd [ D

and S is covered just once as su, vd ranges throughout the parameter domain D, 
then the surface area of S is

AsSd − y
D

y | ru 3 rv | dA

where ru −
−x
−u

 i 1
−y
−u

 j 1
−z
−u

 k      rv −
−x
−v

 i 1
−y
−v

 j 1
−z
−v

 k

EXAMPLE 10 Find the surface area of a sphere of radius a.

SOLUTION In Example 4 we found the parametric representation

x − a sin % cos "    y − a sin % sin "    z − a cos %

where the parameter domain is

D − hs%, "d | 0 < % < #, 0 < " < 2#j

We first compute the cross product of the tangent vectors:

 r% 3 r" − Z i j k
−x
−%

−y
−%

−z
−%

−x
−"

−y
−"

−z
−"

Z − Z i
   a cos % cos "
2a sin % sin "

j
a cos % sin "
a sin % cos "

k
2a sin %

0
Z

 − a 2 sin2% cos " i 1 a 2 sin2% sin " j 1 a 2 sin % cos % k

(b)

Î√  r*√

Îu r*u

(a)
Pij

Sij

FIGURE 15  
Approximating a patch by a 
parallelogram
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1118 CHAPTER 16  Vector Calculus

Thus

 | r! 3 r" | − sa 4 sin4! cos 2" 1 a 4 sin4! sin2" 1 a 4 sin2! cos 2! 

 − sa 4 sin4! 1 a 4 sin2! cos 2! − a 2 ssin2! − a 2 sin !

since sin ! > 0 for 0 < ! < #. Therefore, by Definition 6, the area of the sphere is

 A − y
D

y | r! 3 r" | dA − y2#

0
 y#

0
 a 2 sin ! d! d"

  − a 2 y2#

0
 d" y#

0
 sin ! d! − a 2s2#d2 − 4#a 2 Q

Surface Area of the Graph of a Function
For the special case of a surface S with equation z − f sx, yd, where sx, yd lies in D and f  
has continuous partial derivatives, we take x and y as parameters. The parametric equa-
tions are

x − x    y − y    z − f sx, yd

so rx − i 1 S −f
−xD k      ry − j 1 S −f

−yD k

and

7  rx 3 ry − Z i j k

1 0
−f
−x

0 1
−f
−y

Z − 2
−f
−x

 
i 2

−f
−y

 
j 1 k 

Thus we have

8  | rx 3 ry | − ÎS −f
−xD2

1 S −f
−yD2

1 1 − Î1 1 S −z
−xD2

1 S −z
−yD2

 

and the surface area formula in Definition 6 becomes

9  AsSd − y
D

y Î1 1 S −z
−xD2

1 S −z
−yD2 

 dA 

EXAMPLE 11 Find the area of the part of the paraboloid z − x 2 1 y 2 that lies under the 
plane z − 9.

SOLUTION The plane intersects the paraboloid in the circle x 2 1 y 2 − 9, z − 9. There-
fore the given surface lies above the disk D with center the origin and radius 3. (See 

Notice the similarity between the 
surface area formula in Equation 9 and 
the arc length formula

L − yb

a
 Î1 1 S dy

dxD2  
 dx

 

from Section 8.1.
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Figure 16.) Using Formula 9, we have

 A − y
D

y Î1 1 S −z
−xD2

1 S −z
−yD2 

 dA

 − y
D

y s1 1 s2xd 2 1 s2yd 2  dA

 − y
D

y s1 1 4sx 2 1 y 2 d dA

Converting to polar coordinates, we obtain

 A − y2#

0
 y3

0
 s1 1 4r 2  r dr d" − y2#

0
 d" y3

0
 rs1 1 4r 2  dr

  − 2#(1
8)2

3 s1 1 4r 2 d3y2 g0

3 
−

#

6
 (37s37 2 1)  Q

The question remains whether our definition of surface area (6) is consistent with the 
surface area formula from single-variable calculus (8.2.4).

We consider the surface S obtained by rotating the curve y − f sxd, a < x < b, about 
the x-axis, where f sxd > 0 and f 9 is continuous. From Equations 3 we know that para- 
metric equations of S are

x − x    y − f sxd cos "    z − f sxd sin "    a < x < b    0 < " < 2#

To compute the surface area of S we need the tangent vectors

 rx − i 1 f 9sxd cos " j 1 f 9sxd sin " k

 r" − 2f sxd sin " j 1 f sxd cos " k

Thus

 rx 3 r" − Z i j k
1 f9sxd cos " f9sxd sin "
0 2fsxd sin " fsxd cos "

Z
 − f sxd f 9sxd i 2 f sxd cos " j 2 f sxd sin " k

and so

 | rx 3 r" | − sf f sxdg2 f f 9sxdg2 1 f f sxdg2 cos2 " 1 f f sxdg2 sin2 " 

 − sf f sxdg2f1 1 f f 9sxdg2 g − f sxds1 1 f f 9sxdg2 

because f sxd > 0. Therefore the area of S is

 A − y
D

y | rx 3 r" | dA

 − y2#

0
 yb

a
 f sxds1 1 f f 9sxdg2  dx d"

 − 2# yb

a
 f sxds1 1 f f 9sxdg2  dx

This is precisely the formula that was used to define the area of a surface of revolution in 
single-variable calculus (8.2.4).

9 

x 

z 

y 3 
D 

FIGURE 16
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19–26 Find a parametric representation for the surface.

 19.  The plane through the origin that contains the vectors i 2 j 
and j 2 k

 20.  The plane that passes through the point s0, 21, 5d and con-
tains the vectors k2, 1, 4 l and k23, 2, 5 l

 21.  The part of the hyperboloid 4x 2 2 4y2 2 z2 − 4 that lies in 
front of the yz-plane

 22.  The part of the ellipsoid x 2 1 2y 2 1 3z2 − 1 that lies to the 
left of the xz-plane

 23.  The part of the sphere x 2 1 y 2 1 z2 − 4 that lies above the 
cone z − sx 2 1 y 2 

 24.  The part of the cylinder x 2 1 z 2 − 9 that lies above the  
xy-plane and between the planes y − 24 and y − 4

 25.  The part of the sphere x 2 1 y 2 1 z 2 − 36 that lies between 
   the planes z − 0 and z − 3s3 

1–2 Determine whether the points P and Q lie on the given 
surface.

 1. rsu, vd − ku 1 v, u 2 2v, 3 1 u 2 v l 
  Ps4, 25, 1d,  Qs0, 4, 6d

 2. rsu, vd − k1 1 u 2 v, u 1 v 2, u 2 2 v 2l 
  Ps1, 2, 1d,  Qs2, 3, 3d

3–6 Identify the surface with the given vector equation.

 3. rsu, vd − su 1 vd i 1 s3 2 vd j 1 s1 1 4u 1 5vd k

 4. rsu, vd − u 2 i 1 u cos v j 1 u sin v k

 5. rss, td − ks cos t, s sin t, sl

 6. rss, td − k3 cos t, s, sin tl, 21 < s < 1

7–12 Use a computer to graph the parametric surface. Get a 
printout and indicate on it which grid curves have u constant and 
which have v constant.

 7.  rsu, vd − ku 2, v 2, u 1 v l,   
21 < u < 1, 21 < v < 1

 8.  rsu, vd − ku, v 3, 2v l,   
22 < u < 2, 22 < v < 2

 9.  rsu, vd − ku 3, u sin v, u cos v l,   
21 < u < 1, 0 < v < 2#

 10.  rsu, vd − ku, sinsu 1 vd, sin v l, 
2# < u < #, 2# < v < #

 11.  x − sin v,  y − cos u sin 4v,  z − sin 2u sin 4v, 
0 < u < 2#, 2#y2 < v < #y2

 12. x −  cos u,  y − sin u sin v,  z − cos v, 
  0 < u < 2#, 0 < v < 2#

13–18 Match the equations with the graphs labeled I–VI and  
give reasons for your answers. Determine which families of grid 
curves have u constant and which have v constant.

 13. rsu, vd − u cos v i 1 u sin v j 1 v k

 14. rsu, vd − uv 2 i 1 u 2v j 1 su 2 2 v 2d k

 15. rsu, vd − su 3 2 ud i 1 v 2 j 1 u 2 k

 16.  x − s1 2 uds3 1 cos vd cos 4#u,

  y − s1 2 uds3 1 cos vd sin 4#u,

  z − 3u 1 s1 2 ud sin v

 17.  x − cos3u cos3v,  y − sin3u cos3v,  z − sin3v

 18.  x − sin u,  y − cos u sin v,  z − sin v

;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 16.6  Parametric Surfaces and Their Areas 1121

39–50 Find the area of the surface.

 39.  The part of the plane 3x 1 2y 1 z − 6 that lies in the  
first octant

 40.  The part of the plane with vector equation 
rsu, vd − ku 1 v, 2 2 3u, 1 1 u 2 vl that is given by 
0 < u < 2, 21 < v < 1

 41.  The part of the plane x 1 2y 1 3z − 1 that lies inside the  
cylinder x 2 1 y2 − 3

 42.  The part of the cone z − sx 2 1 y2  that lies between the 
plane y − x and the cylinder y − x 2

 43. The surface z − 2
3 sx 3y2 1 y 3y2 d, 0 < x < 1, 0 < y < 1

 44.  The part of the surface z − 4 2 2x 2 1 y that lies above the 
triangle with vertices s0, 0d, s1, 0d, and s1, 1d

 45.  The part of the surface z − xy that lies within the  
cylinder x 2 1 y 2 − 1

 46.  The part of the surface x − z 2 1 y that lies between the 
planes y − 0, y − 2, z − 0, and z − 2

 47.  The part of the paraboloid y − x 2 1 z 2 that lies within the 
cylinder x 2 1 z 2 − 16

 48.  The helicoid (or spiral ramp) with vector equation  
rsu, vd − u cos v i 1 u sin v j 1 v k, 0 < u < 1, 
0 < v < #

 49.  The surface with parametric equations x − u2, y − uv, 
z − 1

2v 2, 0 < u < 1, 0 < v < 2

 50.  The part of the sphere x 2 1 y2 1 z 2 − b2 that lies inside the 
cylinder x 2 1 y 2 − a 2, where 0 , a , b

 51.  If the equation of a surface S is z − f sx, yd, where 
x 2 1 y 2 < R 2, and you know that | fx | < 1 and | fy | < 1, 
what can you say about AsSd?

52–53 Find the area of the surface correct to four decimal 
places by expressing the area in terms of a single integral and 
using your calculator to estimate the integral.

 52.  The part of the surface z − cossx 2 1 y 2d that lies inside the 
cylinder x 2 1 y 2 − 1

 53.  The part of the surface z − lnsx 2 1 y 2 1 2d that lies above 
the disk x 2 1 y 2 < 1

 54.  Find, to four decimal places, the area of the part of the 
surface z − s1 1 x 2 dys1 1 y 2 d that lies above the square 
| x | 1 | y | < 1. Illustrate by graphing this part of the  
surface.

 55. (a)  Use the Midpoint Rule for double integrals (see Sec-
tion 15.1) with six squares to estimate the area of the  
surface z − 1ys1 1 x 2 1 y 2d, 0 < x < 6, 0 < y < 4.

 (b)  Use a computer algebra system to approximate the 
surface area in part (a) to four decimal places. Compare 
with the answer to part (a).

CAS

CAS

 26.  The part of the plane z − x 1 3 that lies inside the  
cylinder x 2 1 y 2 − 1

27–28 Use a graphing device to produce a graph that looks like 
the given one.

 27.   28. 
3

0

_3
_3

0
0 5

z

y
x

0

_1_1

1
0

1
0

_1

z

y x

 29.  Find parametric equations for the surface obtained by  
rotating the curve y − 1ys1 1 x 2d, 22 < x < 2, about  
the x-axis and use them to graph the surface.

 30.  Find parametric equations for the surface obtained by  
rotating the curve x − 1yy, y > 1, about the y-axis and  
use them to graph the surface.

 31. (a)  What happens to the spiral tube in Example 2 (see Fig-
ure 5) if we replace cos u by sin u and sin u by cos u?

 (b)  What happens if we replace cos u by cos 2u and sin u  
by sin 2u?

 32.  The surface with parametric equations

 x − 2 cos " 1 r coss"y2d

 y − 2 sin " 1 r coss"y2d

 z − r sins"y2d

   where 21
2 < r < 1

2 and 0 < " < 2#, is called a Möbius 
strip. Graph this surface with several viewpoints. What is 
unusual about it?

33–36 Find an equation of the tangent plane to the given para-
metric surface at the specified point.

 33. x − u 1 v,  y − 3u2,  z − u 2 v;  s2, 3, 0d

 34. x − u2 1 1,  y − v 3 1 1,  z − u 1 v;  s5, 2, 3d

 35. rsu, vd − u cos v i 1 u sin v j 1 v k;  u − 1, v − #y3

 36.  rsu, vd − sin u i 1 cos u sin v j 1 sin v k;   
u − #y6, v − #y6

37–38 Find an equation of the tangent plane to the given 
parametric surface at the specified point. Graph the surface and 
the tangent plane.

 37. rsu, vd − u2 i 1 2u sin v j 1 u cos v k;  u − 1, v − 0

 38. rsu, vd − s1 2 u2 2 v2d i 2 v j 2 u k;  s21, 21, 21d

;

;

;

;

;

CAS
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1122 CHAPTER 16  Vector Calculus

 61.  Find the area of the part of the sphere x 2 1 y 2 1 z2 − 4z 
that lies inside the paraboloid z − x 2 1 y 2.

 62.  The figure shows the surface created when the cylinder 
y 2 1 z 2 − 1 intersects the cylinder x 2 1 z 2 − 1. Find the  
area of this surface.

z 

y 
x 

 63.  Find the area of the part of the sphere x 2 1 y 2 1 z2 − a 2 
that lies inside the cylinder x 2 1 y 2 − ax.

 64. (a)  Find a parametric representation for the torus obtained  
by rotating about the z-axis the circle in the xz-plane 
with center sb, 0, 0d and radius a , b. [Hint: Take as 
parameters the angles " and $ shown in the figure.]

 (b)  Use the parametric equations found in part (a) to graph 
the torus for several values of a and b.

 (c)  Use the parametric representation from part (a) to find 
the surface area of the torus.

å 
¨ 

0 

(x, y, z) 

(b, 0, 0) 

z 

x 

y 

;

 56.  Find the area of the surface with vector equation 
rsu, vd − kcos3u cos3v, sin3u cos3v, sin3v l, 0 < u < #,  
0 < v < 2#. State your answer correct to four decimal 
places.

 57.  Find the exact area of the surface z − 1 1 2x 1 3y 1 4y 2, 
1 < x < 4, 0 < y < 1.

 58. (a)  Set up, but do not evaluate, a double integral for 
the area of the surface with parametric equations 
x − au cos v, y − bu sin v, z − u 2, 0 < u < 2, 
0 < v < 2#.

 (b)  Eliminate the parameters to show that the surface is an 
elliptic paraboloid and set up another double integral 
for the surface area.

 (c)  Use the parametric equations in part (a) with a − 2 and 
b − 3 to graph the surface.

 (d)  For the case a − 2, b − 3, use a computer algebra 
system to find the surface area correct to four decimal 
places.

 59. (a)  Show that the parametric equations x − a sin u cos v, 
y − b sin u sin v, z − c cos u, 0 < u < #,  
0 < v < 2#, represent an ellipsoid.

 (b)  Use the parametric equations in part (a) to graph the 
ellipsoid for the case a − 1, b − 2, c − 3.

 (c)  Set up, but do not evaluate, a double integral for the sur-
face area of the ellipsoid in part (b).

 60. (a)  Show that the parametric equations x − a cosh u cos v, 
y − b cosh u sin v, z − c sinh u, represent a hyperbo-
loid of one sheet.

 (b)  Use the parametric equations in part (a) to graph the 
hyperboloid for the case a − 1, b − 2, c − 3.

 (c)  Set up, but do not evaluate, a double integral for the sur-
face area of the part of the hyperboloid in part (b) that 
lies between the planes z − 23 and z − 3.

CAS

CAS

;

CAS

;

;

The relationship between surface integrals and surface area is much the same as the rela-
tionship between line integrals and arc length. Suppose f  is a function of three variables 
whose domain includes a surface S. We will define the surface integral of f over S in 
such a way that, in the case where f sx, y, zd − 1, the value of the surface integral is equal 
to the surface area of S. We start with parametric surfaces and then deal with the special 
case where S is the graph of a function of two variables.

Parametric Surfaces
Suppose that a surface S has a vector equation

rsu, vd − xsu, vd i 1 ysu, vd j 1 zsu, vd k    su, vd [ D

We first assume that the parameter domain D is a rectangle and we divide it into subrect-
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 SECTION 16.7  Surface Integrals 1123

angles Rij with dimensions Du and Dv. Then the surface S is divided into corresponding 
patches Sij as in Figure 1. We evaluate f  at a point Pij* in each patch, multiply by the area 
DSij of the patch, and form the Riemann sum

o
m

i−1
 o

n

j−1
 f sPij*d DSij

Then we take the limit as the number of patches increases and define the surface inte-
gral of f  over the surface S as

1  y
S

y f sx, y, zd dS − lim 
m, n l `

 o
m

i−1
 o

n

j−1
 f sPij*d DSij 

Notice the analogy with the definition of a line integral (16.2.2) and also the analogy with 
the definition of a double integral (15.1.5).

To evaluate the surface integral in Equation 1 we approximate the patch area DSij by 
the area of an approximating parallelogram in the tangent plane. In our discussion of 
surface area in Section 16.6 we made the approximation

DSij < | ru 3 rv | Du Dv

where ru −
−x
−u

 i 1
−y
−u

 j 1
−z
−u

 k      rv −
−x
−v

 i 1
−y
−v

 j 1
−z
−v

 k

are the tangent vectors at a corner of Sij. If the components are continuous and ru and rv 
are nonzero and nonparallel in the interior of D, it can be shown from Definition 1, even 
when D is not a rectangle, that

2  y
S

y f sx, y, zd dS − y
D

y f srsu, vdd | ru 3 rv | dA 

This should be compared with the formula for a line integral:

y
C
 f sx, y, zd ds − yb

a
 f srstdd | r9std | dt

Observe also that

y
S

y 1 dS − y
D

y | ru 3 rv | dA − AsSd

Formula 2 allows us to compute a surface integral by converting it into a double inte-
gral over the parameter domain D. When using this formula, remember that f srsu, vdd is 
evaluated by writing x − xsu, vd, y − ysu, vd, and z − zsu, vd in the formula for f sx, y, zd.

EXAMPLE 1 Compute the surface integral yyS x
2 dS, where S is the unit sphere 

x 2 1 y 2 1 z2 − 1.

SOLUTION As in Example 16.6.4, we use the parametric representation

x − sin ! cos "   y − sin ! sin "   z − cos !   0 < ! < #   0 < " < 2#

0

√

u

Rij

Î√
Îu

0

z

y
x

P*ijS
Sij

D

r

FIGURE 1

We assume that the surface is covered 
only once as su, vd ranges throughout  
D. The value of the surface integral 
does not depend on the parametrization 
that is used.
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that is, rs!, "d − sin ! cos " i 1 sin ! sin " j 1 cos ! k

As in Example 16.6.10 , we can compute that

| r! 3 r" | − sin !

Therefore, by Formula 2,

 y
S

y x 2 dS − y
D

y ssin ! cos "d2 | r! 3 r" | dA

 − y2#

0
 y#

0
 sin2! cos2" sin ! d! d" − y2#

0
 cos2" d"  y#

0
 sin3! d!

 − y2#

0
 12 s1 1 cos 2"d d"  y#

0
 ssin ! 2 sin ! cos2!d d!

  − 1
2 f" 1 1

2 sin 2"g0

2#
 f2cos ! 1 1

3 cos3!g0

#

−
4#

3
 Q

Surface integrals have applications similar to those for the integrals we have previ-
ously considered. For example, if a thin sheet (say, of aluminum foil) has the shape of a 
surface S and the density (mass per unit area) at the point sx, y, zd is %sx, y, zd, then the 
total mass of the sheet is

m − y
S

y %sx, y, zd dS

and the center of mass is sx, y, z d, where

x −
1
m

 y
S

y x %sx, y, zd dS    y −
1
m

 y
S

y y %sx, y, zd dS    z −
1
m

 y
S

y z %sx, y, zd dS

Moments of inertia can also be defined as before (see Exercise 41).

Graphs of Functions
Any surface S with equation z − tsx, yd can be regarded as a parametric surface with 
parametric equations

x − x    y − y    z − tsx, yd

and so we have rx − i 1 S −t
−xD k      ry − j 1 S −t

−yD k

Thus

3  rx 3 ry − 2
−t
−x

 i 2
−t
−y

 j 1 k 

and | rx 3 ry | − ÎS −z
−xD2

1 S −z
−yD2

1 1

Here we use the identities

cos2" − 1
2 s1 1 cos 2"d

sin2! − 1 2 cos2!

Instead, we could use Formulas 64 and 
67 in the Table of Integrals.
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Therefore, in this case, Formula 2 becomes

4  y
S

y fsx, y, zd dS − y
D

y f sx, y, tsx, yddÎS −z
−xD2

1 S −z
−yD2

1 1 dA 

Similar formulas apply when it is more convenient to project S onto the yz-plane or  
xz-plane. For instance, if S is a surface with equation y − hsx, zd and D is its projection 
onto the xz-plane, then

y
S

y f sx, y, zd dS − y
D

y f sx, hsx, zd, zdÎS −y
−xD2

1 S −y
−zD2

1 1 dA

EXAMPLE 2 Evaluate yyS y dS, where S is the surface z − x 1 y 2, 0 < x < 1, 
0 < y < 2. (See Figure 2.)

SOLUTION Since
−z
−x

− 1    and    
−z
−y

− 2y

Formula 4 gives

 y
S

y y dS − y
D

y yÎ1 1 S −z
−xD2

1 S −z
−yD2 

 dA

 − y1

0
 y2

0
 ys1 1 1 1 4y 2  dy dx

 − y1

0
 dx s2  y2

0
 ys1 1 2y 2  dy

  − s2 (1
4)2

3 s1 1 2y 2 d3y2g0

2
−

13s2 

3
 Q

If S is a piecewise-smooth surface, that is, a finite union of smooth surfaces S1, S2, . . . , 
Sn that intersect only along their boundaries, then the surface integral of f  over S is 
defined by

y
S

y f sx, y, zd dS − y
S1

y f sx, y, zd dS 1 ∙ ∙ ∙ 1 y
Sn

y f sx, y, zd dS

EXAMPLE 3 Evaluate yyS z dS, where S is the surface whose sides S1 are given by the 
cylinder x 2 1 y 2 − 1, whose bottom S2 is the disk x 2 1 y 2 < 1 in the plane z − 0, and 
whose top S3 is the part of the plane z − 1 1 x that lies above S2.

SOLUTION The surface S is shown in Figure 3. (We have changed the usual position  
of the axes to get a better look at S.) For S1 we use " and z as parameters (see Exam- 
ple 16.6.5) and write its parametric equations as

x − cos "    y − sin "    z − z
where

0 < " < 2#    and    0 < z < 1 1 x − 1 1 cos "

y

x

z

FIGURE 2

0 

S¡ (≈+¥=1) 

S™ 

S£ (z=1+x ) 

x 

z 

y 

FIGURE 3
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Therefore

r" 3 rz − Z i j k
2sin " cos " 0

0 0 1
Z − cos " i 1 sin " j

and | r" 3 rz | − scos 2" 1 sin2" − 1

Thus the surface integral over S1 is

 y
S1

y z dS − y
D

y z | r" 3 rz | dA

 − y2#

0
 y11cos

 
"

0
 z dz d" − y2#

0
 12 s1 1 cos "d2 d"

 − 1
2 y2#

0
 f1 1 2 cos " 1 1

2 s1 1 cos 2"dg d"

 − 1
2 f3

2 " 1 2 sin " 1 1
4 sin 2"g0

2#
−

3#

2

Since S2 lies in the plane z − 0, we have

y
S2

y z dS − y
S2

y 0 dS − 0

The top surface S3 lies above the unit disk D and is part of the plane z − 1 1 x. So, 
taking tsx, yd − 1 1 x in Formula 4 and converting to polar coordinates, we have

 y
S3

y z dS − y
D

y s1 1 xdÎ1 1 S −z
−xD2

1 S −z
−yD2  

 dA

 − y2#

0
 y1

0
 s1 1 r cos "ds1 1 1 1 0  r dr d"

 − s2  y2#

0
 y1

0
 sr 1 r 2 cos "d dr d"

 − s2  y2#

0
 (1

2 1 1
3 cos "d d"

 − s2 F "

2
1

sin "
3 G

0

2#

− s2 #

Therefore

 y
S

y z dS − y
S1

y z dS 1 y
S2

y z dS 1 y
S3

y z dS

  −
3#

2
1 0 1 s2 # − (3

2 1 s2 )# Q
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Oriented Surfaces
To define surface integrals of vector fields, we need to rule out nonorientable surfaces such 
as the Möbius strip shown in Figure 4. [It is named after the German geometer August 
Möbius (1790–1868).] You can construct one for yourself by taking a long rectangular 
strip of paper, giving it a half-twist, and taping the short edges together as in Fig ure 5. 
If an ant were to crawl along the Möbius strip starting at a point P, it would end up on  
the “other side” of the strip (that is, with its upper side pointing in the opposite direction). 
Then, if the ant continued to crawl in the same direction, it would end up back at the same 
point P without ever having crossed an edge. (If you have constructed a Möbius strip, 
try drawing a pencil line down the middle.) Therefore a Möbius strip really has only one 
side. You can graph the Möbius strip using the parametric equations in Exercise 16.6.32.

A 

B 

D 

C 

A 

B 

C 

D 

From now on we consider only orientable (two-sided) surfaces. We start with a sur-
face S that has a tangent plane at every point sx, y, zd on S (except at any boundary point). 
There are two unit normal vectors n1 and n2 − 2n1 at sx, y, zd. (See Figure 6.) 

If it is possible to choose a unit normal vector n at every such point sx, y, zd so that n 
varies con tinuously over S, then S is called an oriented surface and the given choice of 
n provides S with an orientation. There are two possible orientations for any orient-
able surface (see Figure 7).

n n 
n 

n 
n 

n n 
n 

n n 

For a surface z − tsx, yd given as the graph of t, we use Equation 3 to associate with 
the surface a natural orientation given by the unit normal vector

5  n −
2

−t
−x

 i 2
−t
−y

 j 1 k

Î1 1 S −t
−xD2

1 S −t
−yD2 

 

Since the k-component is positive, this gives the upward orientation of the surface.
If S is a smooth orientable surface given in parametric form by a vector function  

rsu, vd, then it is automatically supplied with the orientation of the unit normal vector

6  n −
ru 3 rv

| ru 3 rv |  

and the opposite orientation is given by 2n. For instance, in Example 16.6.4 we found 

A Möbius strip

P 

FIGURE 4  

TEC Visual 16.7 shows a Möbius 
strip with a normal vector that can be 
moved along the surface.

n¡

n™
0 

y 

z 

x 

FIGURE 6

FIGURE 5 
Constructing a Möbius strip

FIGURE 7  
The two orientations  
of an orientable surface
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1128 CHAPTER 16  Vector Calculus

the parametric representation

rs!, "d − a sin ! cos " i 1 a sin ! sin " j 1 a cos ! k

for the sphere x 2 1 y 2 1 z2 − a 2. Then in Example 16.6.10 we found that

r! 3 r" − a 2 sin2! cos " i 1 a 2 sin2! sin " j 1 a 2 sin ! cos ! k

and | r! 3 r" | − a 2 sin !

So the orientation induced by rs!, "d is defined by the unit normal vector

n −
r! 3 r"

| r! 3 r" | − sin ! cos " i 1 sin ! sin " j 1 cos ! k −
1
a

 rs!, "d

Observe that n points in the same direction as the position vector, that is, outward from the 
sphere (see Figure 8). The opposite (inward) orientation would have been obtained (see 
Figure 9) if we had reversed the order of the parameters because r" 3 r! − 2r! 3 r".

0 

y

z

x
y 

z 

x 

FIGURE 8  
Positive orientation

FIGURE 9  
Negative orientation

For a closed surface, that is, a surface that is the boundary of a solid region E, the  
convention is that the positive orientation is the one for which the normal vectors point  
outward from E, and inward-pointing normals give the negative orientation (see Fig-
ures 8 and 9).

Surface Integrals of Vector Fields
Suppose that S is an oriented surface with unit normal vector n, and imagine a fluid with 
density #sx, y, zd and velocity field vsx, y, zd flowing through S. (Think of S as an imagi-
nary surface that doesn’t impede the fluid flow, like a fishing net across a stream.) Then the 
rate of flow (mass per unit time) per unit area is #v. If we divide S into small patches Sij,  
as in Figure 10 (compare with Figure 1), then Sij is nearly planar and so we can approxi-
mate the mass of fluid per unit time crossing Sij in the direction of the normal n by the 
quantity

s#v ! ndAsSijd

where #, v, and n are evaluated at some point on Sij. (Recall that the component of 
the vector #v in the direction of the unit vector n is #v ! n.) By summing these quantities 
and taking the limit we get, according to Definition 1, the surface integral of the function 
#v ! n over S:

7  y
S

y #v ! n dS − y
S

y #sx, y, zdvsx, y, zd ! nsx, y, zd dS 

and this is interpreted physically as the rate of flow through S.

0 

y 

z 

x 

n 
F=∏v

S 
Sij

FIGURE 10
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 SECTION 16.7  Surface Integrals 1129

If we write F − #v, then F is also a vector field on R 3 and the integral in Equation 7 
becomes

y
S

y F ! n dS

A surface integral of this form occurs frequently in physics, even when F is not #v, and 
is called the surface integral (or flux integral) of F over S.

8   Definition If F is a continuous vector field defined on an oriented surface S 
with unit normal vector n, then the surface integral of F over S is

y
S

y F ! dS − y
S

y F ! n dS

This integral is also called the flux of F across S.

In words, Definition 8 says that the surface integral of a vector field over S is equal to 
the surface integral of its normal component over S (as previously defined).

If S is given by a vector function rsu, vd, then n is given by Equation 6, and from Defi-
nition 8 and Equation 2 we have

 y
S

y F ! dS − y
S

y F !
ru 3 rv

| ru 3 rv |  dS

 − y
D

y FFsrsu, vdd !
ru 3 rv

| ru 3 rv | G| ru 3 rv | dA

where D is the parameter domain. Thus we have

9  y
S

y F ! dS − y
D

y F ! sru 3 rv d dA 

EXAMPLE 4 Find the flux of the vector field Fsx, y, zd − z i 1 y j 1 x k across the unit 
sphere x 2 1 y 2 1 z2 − 1.

SOLUTION As in Example 1, we use the parametric representation

rs!, "d − sin ! cos " i 1 sin ! sin " j 1 cos ! k 0 < ! < $ 0 < " < 2$

Then Fsrs!, "dd − cos ! i 1 sin ! sin " j 1 sin ! cos " k

and, from Example 16.6.10,

r! 3 r" − sin2! cos " i 1 sin2! sin " j 1 sin ! cos ! k

Therefore

Fsrs!, "dd ! sr! 3 r" d − cos ! sin2! cos " 1 sin3! sin2" 1 sin2! cos ! cos "

Compare Equation 9 to the similar 
expression for evaluating line integrals 
of vector fields in Definition 16.2.13:

y
C
 F ! dr − yb

a
 Fsrstdd ! r9std dt

Figure 11 shows the vector field F in 
Example 4 at points on the unit sphere.

y

x

z

FIGURE 11
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1130 CHAPTER 16  Vector Calculus

and, by Formula 9, the flux is

  y
S

y F ! dS − y
D

yF ! sr! 3 r" d dA

  − y2$

0
 y$

0
 s2 sin2! cos ! cos " 1 sin3! sin2"d d! d"

  − 2 y$

0
 sin2! cos ! d!  y2$

0
 cos " d" 1 y$

0
 sin3! d!  y2$

0
 sin2" d"

 − 0 1 y$

0
 sin3! d!  y2$

0
 sin2" d"    Ssince y2$

0
 cos " d" − 0D

  −
4$

3

by the same calculation as in Example 1. Q

If, for instance, the vector field in Example 4 is a velocity field describing the flow of a 
fluid with density 1, then the answer, 4$y3, represents the rate of flow through the unit 
sphere in units of mass per unit time.

In the case of a surface S given by a graph z − tsx, yd, we can think of x and y as 
parameters and use Equation 3 to write

F ! srx 3 ryd − sP i 1 Q j 1 R kd ! S2 −t
−x

 i 2
−t
−y

 j 1 kD
Thus Formula 9 becomes

10  y
S

y F ! dS − y
D

y S2P 
−t
−x

2 Q 
−t
−y

1 RD dA 

This formula assumes the upward orientation of S; for a downward orientation we multi-
ply by 21. Similar formulas can be worked out if S is given by y − hsx, zd or x − ksy, zd.  
(See Exercises 37 and 38.)

EXAMPLE 5 Evaluate yyS F ! dS, where Fsx, y, zd − y i 1 x j 1 z k and S is the 
boundary of the solid region E enclosed by the paraboloid z − 1 2 x 2 2 y 2 and the  
plane z − 0.

SOLUTION S consists of a parabolic top surface S1 and a circular bottom surface S2. 
(See Figure 12.) Since S is a closed surface, we use the convention of positive (out-
ward) orientation. This means that S1 is oriented upward and we can use Equation 10 
with D being the projection of S1 onto the xy-plane, namely, the disk x 2 1 y 2 < 1. 
Since

Psx, y, zd − y      Qsx, y, zd − x      Rsx, y, zd − z − 1 2 x 2 2 y 2

on S1 and 
−t
−x

− 22x      
−t
−y

− 22y

S™ 

S¡ 

y 

z 

x 

FIGURE 12
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 SECTION 16.7  Surface Integrals 1131

we have

 y
S1

y F ! dS − y
D

y S2P 
−t
−x

2 Q 
−t
−y

1 RD dA

 − y
D

y f2ys22xd 2 xs22yd 1 1 2 x 2 2 y 2 g dA

 − y
D

y s1 1 4xy 2 x 2 2 y 2 d dA

 − y2$

0
 y1

0
 s1 1 4r 2 cos " sin " 2 r 2 d r dr d"

 − y2$

0
 y1

0
 sr 2 r 3 1 4r 3 cos " sin "d dr d"

 − y2$

0
 ( 1

4 1 cos " sin ") d" − 1
4 s2$d 1 0 −

$

2

The disk S2 is oriented downward, so its unit normal vector is n − 2k and we have

y
S2

y F ! dS − y
S2

y F ! s2kd dS − y
D

y s2zd dA − y
D

y 0 dA − 0

since z − 0 on S2. Finally, we compute, by definition, yyS F ! dS as the sum of the 
surface integrals of F over the pieces S1 and S2:

 y
S

y F ! dS − y
S1

y F ! dS 1 y
S2

y F ! dS −
$

2
1 0 −

$

2
 Q

Although we motivated the surface integral of a vector field using the example of fluid 
flow, this concept also arises in other physical situations. For instance, if E is an electric 
field (see Example 16.1.5), then the surface integral

y
S

y E ! dS

is called the electric flux of E through the surface S. One of the important laws of electro-
statics is Gauss’s Law, which says that the net charge enclosed by a closed surface S is

11  Q − «0 y
S

y E ! dS 

where «0 is a constant (called the permittivity of free space) that depends on the units used. 
(In the SI system, «0 < 8.8542 3 10212 C2yN ?m2.) Therefore, if the vector field F in 
Example 4 represents an electric field, we can conclude that the charge enclosed by S is 
Q − 4

3$«0.
Another application of surface integrals occurs in the study of heat flow. Suppose the 

temperature at a point sx, y, zd in a body is usx, y, zd. Then the heat flow is defined as the 
vector field

F − 2K =u
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1132 CHAPTER 16  Vector Calculus

where K is an experimentally determined constant called the conductivity of the sub-
stance. The rate of heat flow across the surface S in the body is then given by the surface 
integral

y
S

y F ! dS − 2K y
S

y =u ! dS

EXAMPLE 6 The temperature u in a metal ball is proportional to the square of the 
distance from the center of the ball. Find the rate of heat flow across a sphere S of 
radius a with center at the center of the ball.

SOLUTION Taking the center of the ball to be at the origin, we have

usx, y, zd − Csx 2 1 y 2 1 z2 d

where C is the proportionality constant. Then the heat flow is

Fsx, y, zd − 2K =u − 2KCs2x i 1 2y j 1 2z kd

where K is the conductivity of the metal. Instead of using the usual parametrization of 
the sphere as in Example 4, we observe that the outward unit normal to the sphere 
x 2 1 y 2 1 z2 − a 2 at the point sx, y, zd is

 n −
1
a

 sx i 1 y j 1 z kd

and so  F ! n − 2
2KC

a
 sx 2 1 y 2 1 z2 d

But on S we have x 2 1 y 2 1 z2 − a 2, so F ! n − 22aKC. Therefore the rate of heat 
flow across S is

 y
S

y F ! dS − y
S

y F ! n dS − 22aKC y
S

y dS

  − 22aKCAsSd − 22aKCs4$a 2 d − 28KC$a 3 Q

 1.  Let S be the surface of the box enclosed by the planes x − 61, 
   y − 61, z − 61. Approximate yyS cossx 1 2y 1 3zd dS by 

using a Riemann sum as in Definition 1, taking the patches Sij 
to be the squares that are the faces of the box S and the points 
Pij* to be the centers of the squares.

 2.  A surface S consists of the cylinder x 2 1 y 2 − 1, 21 < z < 1,  
together with its top and bottom disks. Suppose you know that 
f  is a continuous function with 

f s61, 0, 0d − 2     f s0, 61, 0d − 3     f s0, 0, 61d − 4

   Estimate the value of yyS f sx, y, zd dS by using a Riemann sum, 
taking the patches Sij to be four quarter-cylinders and the top 
and bottom disks.

 3.  Let H be the hemisphere x 2 1 y 2 1 z2 − 50, z > 0, and  
suppose f  is a continuous function with f s3, 4, 5d − 7,
f s3, 24, 5d − 8, f s23, 4, 5d − 9, and f s23, 24, 5d − 12.  
By dividing H into four patches, estimate the value of 
yyH f sx, y, zd dS.

 4.  Suppose that f sx, y, zd − t(sx 2 1 y 2 1 z 2 ), where t is a  
function of one variable such that ts2d − 25. Evaluate 
yyS f sx, y, zd dS, where S is the sphere x 2 1 y 2 1 z2 − 4.

5–20 Evaluate the surface integral.

 5.  yyS sx 1 y 1 zd dS, 
S is the parallelogram with parametric equations x − u 1 v, 
y − u 2 v, z − 1 1 2u 1 v, 0 < u < 2, 0 < v < 1
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 SECTION 16.7  Surface Integrals 1133

 22.  Fsx, y, zd − z i 1 y j 1 x k, 
S is the helicoid of Exercise 7 with upward orientation

 23.  Fsx, y, zd − xy i 1 yz j 1 zx k, S is the part of the  
para boloid z − 4 2 x 2 2 y 2 that lies above the square 
0 < x < 1, 0 < y < 1, and has upward orientation

 24.  Fsx, y, zd − 2x i 2 y j 1 z 3 k, S is the part of the cone 
z − sx 2 1 y 2  between the planes z − 1 and z − 3 with  
downward orientation

 25.  Fsx, y, zd − x i 1 y j 1 z 2 k, S is the sphere with radius 1 
and center the origin

 26.  Fsx, y, zd − y i 2 x j 1 2z k, S is the hemisphere 
x 2 1 y 2 1 z 2 − 4, z > 0, oriented downward

 27.  Fsx, y, zd − y j 2 z k, 
S consists of the paraboloid y − x 2 1 z2, 0 < y < 1,  
and the disk x 2 1 z2 < 1, y − 1

 28.  Fsx, y, zd − yz i 1 zx j 1 xy k, 
S is the surface z − x sin y, 0 < x < 2, 0 < y < $, with 
upward orientation

 29.  Fsx, y, zd − x i 1 2y j 1 3z k, 
S is the cube with vertices s61, 61, 61d

 30.  Fsx, y, zd − x i 1 y j 1 5 k, S is the boundary of the 
region enclosed by the cylinder x 2 1 z2 − 1 and the planes 
y − 0 and x 1 y − 2

 31.  Fsx, y, zd − x 2 i 1 y 2 j 1 z2 k, S is the boundary of the 
solid half-cylinder 0 < z < s1 2 y 2  , 0 < x < 2

 32.  Fsx, y, zd − y i 1 sz 2 yd j 1 x k, 
S is the surface of the tetrahedron with vertices s0, 0, 0d, 
s1, 0, 0d, s0, 1, 0d, and s0, 0, 1d

 33.  Evaluate yyS sx 2 1 y 2 1 z2d dS correct to four deci-
mal places, where S is the surface z − xe y, 0 < x < 1, 
0 < y < 1.

 34.  Find the exact value of yyS xyz dS, where S is the surface 
z − x 2y 2, 0 < x < 1, 0 < y < 2.

 35.  Find the value of yyS x
2 y 2z2 dS correct to four deci-

mal places, where S is the part of the paraboloid 
z − 3 2 2x 2 2 y 2 that lies above the xy-plane.

 36.  Find the flux of 

Fsx, y, zd − sinsxyzd i 1 x 2 y j 1 z2e xy5 k

   across the part of the cylinder 4y 2 1 z2 − 4 that lies above  
the xy-plane and between the planes x − 22 and x − 2 
with upward orientation. Illustrate by using a computer 
algebra system to draw the cylinder and the vector field on 
the same screen.

 37.  Find a formula for yyS F ! dS similar to Formula 10 for 
the case where S is given by y − hsx, zd and n is the unit 
normal that points toward the left.

CAS

CAS

CAS

CAS

 6.  yyS xyz dS, 
S is the cone with parametric equations x − u cos v,  
y − u sin v, z − u, 0 < u < 1, 0 < v < $y2

 7.  yyS y dS, S is the helicoid with vector equation 
rsu, vd − ku cos v, u sin v, v l, 0 < u < 1, 0 < v < $

 8.  yyS sx 2 1 y 2d dS, 
S is the surface with vector equation 
rsu, vd − k2uv, u2 2 v2, u2 1 v2 l, u 2 1 v2 < 1

 9.  yyS x
2yz dS, 

S is the part of the plane z − 1 1 2x 1 3y that lies above 
the rectangle f0, 3g 3 f0, 2g

 10.  yyS xz dS,  
S is the part of the plane 2x 1 2y 1 z − 4 that lies in the 
first octant

 11.  yyS  x dS, 
S is the triangular region with vertices s1, 0, 0d, s0, 22, 0d,  
and s0, 0, 4d

 12.  yyS y dS,
  S is the surface z − 2

3 sx 3y2 1 y 3y2 d, 0 < x < 1, 0 < y < 1

 13.  yyS  z 2 dS, 
S is the part of the paraboloid x − y 2 1 z 2 given by 
0 < x < 1

 14.  yyS  y 2z 2 dS, 
S is the part of the cone y − sx 2 1 z 2  given by 0 < y < 5

 15.  yyS  x dS, 
S is the surface y − x 2 1 4z, 0 < x < 1, 0 < z < 1

 16.  yyS  y 2 dS, 
S is the part of the sphere x 2 1 y 2 1 z 2 − 1 that lies above 

  the cone z − sx 2 1 y 2 

 17.  yyS sx 2z 1 y 2zd dS, 
S is the hemisphere x 2 1 y 2 1 z2 − 4, z > 0

 18.  yyS sx 1 y 1 zd dS, 
S is the part of the half-cylinder x 2 1 z 2 − 1, z > 0, that 
lies between the planes y − 0 and y − 2

 19.   yyS xz dS, 
S is the boundary of the region enclosed by the cylinder 
y2 1 z2 − 9 and the planes x − 0 and x 1 y − 5

 20.  yyS sx 2 1 y 2 1 z2 d dS, 
S is the part of the cylinder x 2 1 y2 − 9 between the planes 
z − 0 and z − 2, together with its top and bottom disks

21–32 Evaluate the surface integral yyS F ! dS for the given 
vector field F and the oriented surface S. In other words, find 
the flux of F across S. For closed surfaces, use the positive 
(outward) orientation.

 21.  Fsx, y, zd − ze xy  i 2 3ze xy j 1 xy k,   
S is the parallelogram of Exercise 5 with upward orientation
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1134 CHAPTER 16  Vector Calculus

 44.  Seawater has density 1025 kgym3 and flows in a velocity field 
v − y i 1 x j, where x, y, and z are measured in meters and the 
components of v in meters per second. Find the rate of flow 
outward through the hemisphere x 2 1 y 2 1 z 2 − 9, z > 0.

 45.  Use Gauss’s Law to find the charge contained in the solid 
hemisphere x 2 1 y 2 1 z2 < a 2, z > 0, if the electric field is 

Esx, y, zd − x i 1 y j 1 2z k

 46.  Use Gauss’s Law to find the charge enclosed by the cube  
with vertices s61, 61, 61d if the electric field is 

Esx, y, zd − x i 1 y j 1 z k

 47.  The temperature at the point sx, y, zd in a substance with 
conductivity K − 6.5 is usx, y, zd − 2y 2 1 2z2. Find the rate 
of heat flow inward across the cylindrical surface y 2 1 z2 − 6, 
0 < x < 4.

 48.  The temperature at a point in a ball with conductivity K is 
inversely proportional to the distance from the center of the 
ball. Find the rate of heat flow across a sphere S of radius a 
with center at the center of the ball.

 49.  Let F be an inverse square field, that is, Fsrd − cry| r |3 for 
some constant c, where r − x i 1 y j 1 z k. Show that the flux 
of F across a sphere S with center the origin is independent of 
the radius of S.

 38.  Find a formula for yyS F ! dS similar to Formula 10 for the case 
where S is given by x − ksy, zd and n is the unit normal that 
points forward (that is, toward the viewer when the axes are 
drawn in the usual way).

 39.  Find the center of mass of the hemisphere x 2 1 y 2 1 z2 − a 2, 
z > 0, if it has constant density.

 40.  Find the mass of a thin funnel in the shape of a cone 
z − sx 2 1 y 2 , 1 < z < 4, if its density function is 
#sx, y, zd − 10 2 z.

 41. (a)  Give an integral expression for the moment of inertia Iz 
about the z-axis of a thin sheet in the shape of a surface S if 
the density function is #.

 (b)  Find the moment of inertia about the z-axis of the funnel in 
Exercise 40.

 42.  Let S be the part of the sphere x 2 1 y2 1 z2 − 25 that lies 
above the plane z − 4. If S has constant density k, find  
(a) the center of mass and (b) the moment of inertia about  
the z-axis.

 43.  A fluid has density 870 kgym3 and flows with velocity 
v − z i 1 y 2 j 1 x 2 k, where x, y, and z are measured in 
meters and the components of v in meters per second. Find the 
rate of flow outward through the cylinder x 2 1 y 2 − 4, 
0 < z < 1.

Stokes’ Theorem can be regarded as a higher-dimensional version of Green’s Theo rem. 
Whereas Green’s Theorem relates a double integral over a plane region D to a line inte-
gral around its plane boundary curve, Stokes’ Theorem relates a surface integral over a 
surface S to a line integral around the boundary curve of S (which is a space curve). Fig-
ure 1 shows an oriented surface with unit normal vector n. The orientation of S induces 
the positive orientation of the boundary curve C shown in the figure. This means that 
if you walk in the positive direction around C with your head pointing in the direction of 
n, then the surface will always be on your left.

Stokes’ Theorem Let S be an oriented piecewise-smooth surface that is 
bounded by a simple, closed, piecewise-smooth boundary curve C with positive 
orientation. Let F be a vector field whose components have continuous partial 
derivatives on an open region in R 3 that contains S. Then

y
C
 F ! dr − y

S

y curl F ! dS

Since

y
C
 F ! dr − y

C
 F ! T ds    and    y

S

y curl F ! dS − y
S

y curl F ! n dS

S 

y 

z 

x 

C 
0 

n 

n 

FIGURE 1
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 SECTION 16.8  Stokes’ Theorem 1135

Stokes’ Theorem says that the line integral around the boundary curve of S of the tan-
gential component of F is equal to the surface integral over S of the normal component 
of the curl of F.

The positively oriented boundary curve of the oriented surface S is often written as  
−S, so Stokes’ Theorem can be expressed as

1  y
S

y curl F ! dS − y
−S

 F ! dr 

There is an analogy among Stokes’ Theorem, Green’s Theorem, and the Fundamental  
Theorem of Calculus. As before, there is an integral involving derivatives on the left side 
of Equation 1 (recall that curl F is a sort of derivative of F) and the right side involves the 
values of F only on the boundary of S.

In fact, in the special case where the surface S is flat and lies in the xy-plane with 
upward orientation, the unit normal is k, the surface integral becomes a double integral, 
and Stokes’ Theorem becomes

y
C
 F ! dr − y

S

y curl F ! dS − y
S

y scurl Fd ! k dA

This is precisely the vector form of Green’s Theorem given in Equation 16.5.12. Thus we 
see that Green’s Theorem is really a special case of Stokes’ Theorem.

Although Stokes’ Theorem is too difficult for us to prove in its full generality, we can 
give a proof when S is a graph and F, S, and C are well behaved.

PROOF OF A SPECIAL CASE OF STOKES’ THEOREM We assume that the equation of S is 
z − tsx, yd, sx, yd [ D, where t has continuous second-order partial derivatives and D  
is a simple plane region whose boundary curve C1 corresponds to C. If the orientation 
of S is upward, then the positive orientation of C corresponds to the positive orientation 
of C1. (See Figure 2.) We are also given that F − P i 1 Q j 1 R k, where the partial 
derivatives of P, Q, and R are continuous.

Since S is a graph of a function, we can apply Formula 16.7.10 with F replaced by 
curl F. The result is

2  y
S

y curl F ? dS 

− y
D

y F2S −R
−y

2
−Q
−z D 

−z
−x

2 S −P
−z

2
−R
−x D 

−z
−y

1 S −Q
−x

2
−P
−y DG dA 

where the partial derivatives of P, Q, and R are evaluated at sx, y, tsx, ydd. If

x − xstd    y − ystd    a < t < b

is a parametric representation of C1, then a parametric representation of C is

x − xstd    y − ystd    z − tsxstd, ystdd    a < t < b

George Stokes
Stokes’ Theorem is named after 
the Irish mathematical physicist Sir 
George Stokes (1819–1903). Stokes 
was a professor at Cambridge Univer-
sity (in fact he held the same position 
as Newton, Lucasian Professor of 
Mathematics) and was especially 
noted for his studies of fluid flow  
and light. What we call Stokes’ 
Theorem was actually discovered 
by the Scottish physicist Sir William 
Thomson (1824–1907, known as  
Lord Kelvin). Stokes learned of this 
theorem in a letter from Thomson in 
1850 and asked students to prove 
it on an examination at Cambridge 
University in 1854. We don’t know  
if any of those students was able to 
do so.

0 

D 

C 
S 

z=g(x, y) 

C¡  

n 

y 

z 

x 

FIGURE 2
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1136 CHAPTER 16  Vector Calculus

This allows us, with the aid of the Chain Rule, to evaluate the line integral as follows:

 y
C
 F ! dr − yb

a
 SP 

dx
dt

1 Q 
dy
dt

1 R 
dz
dtD dt

 − yb

a
 FP 

dx
dt

1 Q 
dy
dt

1 RS −z
−x

 
dx
dt

1
−z
−y

 
dy
dt DG dt

 − yb

a
 FSP 1 R 

−z
−xD 

dx
dt

1 SQ 1 R 
−z
−yD 

dy
dt G dt

 − y
C1

 SP 1 R 
−z
−xD dx 1 SQ 1 R 

−z
−yD dy

 − y
D

y F −

−x
 SQ 1 R 

−z
−yD 2

−

−y
 SP 1 R 

−z
−xDG dA

where we have used Green’s Theorem in the last step. Then, using the Chain Rule again 
and remembering that P, Q, and R are functions of x, y, and z and that z is itself a 
function of x and y, we get

y
C
 F ! dr − y

D

y FS −Q
−x

1
−Q
−z

 
−z
−x

1
−R
−x

 
−z
−y

1
−R
−z

 
−z
−x

 
−z
−y

1 R 
−2z

−x −yD
2 S −P

−y
1

−P
−z

 
−z
−y

1
−R
−y

 
−z
−x

1
−R
−z

 
−z
−y

 
−z
−x

1 R 
−2z

−y −xDG dA

Four of the terms in this double integral cancel and the remaining six terms can be 
arranged to coincide with the right side of Equation 2. Therefore

 y
C
 F ! dr − y

S

y curl F ! dS Q

EXAMPLE 1 Evaluate yC F ! dr, where Fsx, y, zd − 2y 2 i 1 x j 1 z2 k and C is the 
curve of intersection of the plane y 1 z − 2 and the cylinder x 2 1 y 2 − 1. (Orient C to 
be counterclockwise when viewed from above.)

SOLUTION The curve C (an ellipse) is shown in Figure 3. Although yC F ! dr could be  
evaluated directly, it’s easier to use Stokes’ Theorem. We first compute

curl F −  

i j k
−

−x
−

−y
−

−z
2y2 x z2

 − s1 1 2yd k

Although there are many surfaces with boundary C, the most convenient choice is the 
elliptical region S in the plane y 1 z − 2 that is bounded by C. If we orient S upward, 
then C has the induced positive orientation. The projection D of S onto the xy-plane is 

CS
y+z=2

D 0
y

z

x

FIGURE 3
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 SECTION 16.8  Stokes’ Theorem 1137

the disk x 2 1 y 2 < 1 and so using Equation 16.7.10 with z − tsx, yd − 2 2 y, we have

 y
C
 F ! dr − y

S

y curl F ! dS − y
D

y s1 1 2yd dA

 − y2$

0
 y1

0
 s1 1 2r sin "d r dr d"

 − y2$

0
 F r 2

2
1 2 

r 3

3
 sin "G

0

1  
d" − y2$

0
 (1

2 1 2
3 sin ") d"

  − 1
2 s2$d 1 0 − $  Q

EXAMPLE 2 Use Stokes’ Theorem to compute the integral yyS curl F ! dS, where 
Fsx, y, zd − xz i 1 yz j 1 xy k and S is the part of the sphere x 2 1 y 2 1 z2 − 4 that  
lies inside the cylinder x 2 1 y 2 − 1 and above the xy-plane. (See Figure 4.)

SOLUTION To find the boundary curve C we solve the equations x 2 1 y 2 1 z2 − 4 and 
 x 2 1 y 2 − 1. Subtracting, we get z2 − 3 and so z − s3  (since z . 0). Thus C is the 
circle given by the equations x 2 1 y 2 − 1, z − s3 . A vector equation of C is

 rstd − cos t i 1 sin t j 1 s3  k    0 < t < 2$

so  r9std − 2sin t i 1 cos t j

Also, we have

Fsrstdd − s3  cos t i 1 s3  sin t j 1 cos t sin t k

Therefore, by Stokes’ Theorem,

 y
S

y curl F ! dS − y
C
 F ! dr − y2$

0
 Fsrstdd ! r9std dt

 − y2$

0
 (2s3  cos t sin t 1 s3  sin t cos t) dt

  − s3  y2$

0
 0 dt − 0  Q

Note that in Example 2 we computed a surface integral simply by knowing the values 
of F on the boundary curve C. This means that if we have another oriented surface with 
the same boundary curve C, then we get exactly the same value for the surface integral!

In general, if S1 and S2 are oriented surfaces with the same oriented boundary curve C 
and both satisfy the hypotheses of Stokes’ Theorem, then

3  y
S1

y curl F ! dS − y
C
 F ! dr − y

S2

y curl F ! dS 

This fact is useful when it is difficult to integrate over one surface but easy to integrate 
over the other.

We now use Stokes’ Theorem to throw some light on the meaning of the curl vector. 
Suppose that C is an oriented closed curve and v represents the velocity field in fluid 
flow. Consider the line integral

y
C
 v ! dr − y

C
 v ! T ds

0 

S 

≈+¥+z@=4 

C 

≈+¥=1 
y 

z 

x 

FIGURE 4
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1138 CHAPTER 16  Vector Calculus

and recall that v ! T is the component of v in the direction of the unit tangent vector T. 
This means that the closer the direction of v is to the direction of T, the larger the value 
of v ! T. Thus yC v ! dr is a measure of the tendency of the fluid to move around C and 
is called the circulation of v around C. (See Figure 5.)

T

v

C

(b) jC v ! dr<0, negative circulation

T

vC

(a) jC v ! dr>0, positive circulation

Now let P0sx0, y0, z0 d be a point in the fluid and let Sa be a small disk with radius a and 
center P0. Then (curl FdsPd < scurl FdsP0d for all points P on Sa because curl F is contin-
uous. Thus, by Stokes’ Theorem, we get the following approximation to the circulation 
around the boundary circle Ca:

 y
Ca

 v ! dr − y
Sa

y curl v ! dS − y
Sa

y curl v ! n dS

 < y
Sa

y curl vsP0 d ! nsP0 d dS − curl vsP0 d ! nsP0 d!a 2

This approximation becomes better as a l 0 and we have

4  curl vsP0 d ! nsP0 d − lim 
a l 0

 
1

!a 2  y
Ca

 v ! dr 

Equation 4 gives the relationship between the curl and the circulation. It shows that 
curl v ! n is a measure of the rotating effect of the fluid about the axis n. The curling 
effect is greatest about the axis parallel to curl v.

Finally, we mention that Stokes’ Theorem can be used to prove Theorem 16.5.4 
(which states that if curl F − 0 on all of R 3, then F is conservative). From our pre vious 
work (Theorems 16.3.3 and 16.3.4), we know that F is conservative if yC F ! dr − 0 for 
every closed path C. Given C, suppose we can find an orientable surface S whose bound-
ary is C. (This can be done, but the proof requires advanced techniques.) Then Stokes’ 
Theorem gives

y
C
 F ! dr − y

S

y curl F ! dS − y
S

y 0 ! dS − 0

A curve that is not simple can be broken into a number of simple curves, and the integrals 
around these simple curves are all 0. Adding these integrals, we obtain yC F ! dr − 0 for 
any closed curve C.

FIGURE 5

curl v

FIGURE 6

Imagine a tiny paddle wheel placed in 
the fluid at a point P, as in Figure 6; the 
paddle wheel rotates fastest when its 
axis is parallel to curl v.
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 10.  Fsx, y, zd − 2y i 1 xz j 1 sx 1 yd k, C is the curve 
of intersection of the plane z − y 1 2 and the cylinder 
x 2 1 y 2 − 1

 11. (a)  Use Stokes’ Theorem to evaluate yC F ! dr, where

Fsx, y, zd − x 2z i 1 xy 2 j 1 z2 k

   and C is the curve of intersection of the plane 
x 1 y 1 z − 1 and the cylinder x 2 1 y 2 − 9, oriented 
counterclockwise as viewed from above.

 (b)  Graph both the plane and the cylinder with domains  
chosen so that you can see the curve C and the surface  
that you used in part (a).

 (c)  Find parametric equations for C and use them to  
graph C.

 12. (a)  Use Stokes’ Theorem to evaluate yC F ! dr, where 
Fsx, y, zd − x 2 y i 1 1

3 x 3 j 1 xy k and C is the curve of 
intersection of the hyperbolic paraboloid z − y 2 2 x 2 
and the cylinder x 2 1 y 2 − 1, oriented counterclock-
wise as viewed from above.

 (b)  Graph both the hyperbolic paraboloid and the cylinder 
with domains chosen so that you can see the curve C 
and the surface that you used in part (a).

 (c)  Find parametric equations for C and use them to  
graph C.

13–15 Verify that Stokes’ Theorem is true for the given vector  
field F and surface S.

 13.  Fsx, y, zd − 2y i 1 x j 2 2 k, 
S is the cone z 2 − x 2 1 y2, 0 < z < 4, oriented downward

 14.  Fsx, y, zd − 22yz i 1 y j 1 3x k, 
S is the part of the paraboloid z − 5 2 x 2 2 y 2 that lies 
above the plane z − 1, oriented upward

 15.  Fsx, y, zd − y i 1 z j 1 x k, 
S is the hemisphere x 2 1 y 2 1 z 2 − 1, y > 0, oriented in 
the direction of the positive y-axis

 16.  Let C be a simple closed smooth curve that lies in the plane 
x 1 y 1 z − 1. Show that the line integral

y
C
 z dx 2 2x dy 1 3y dz

   depends only on the area of the region enclosed by C and 
not on the shape of C or its location in the plane.

 17.  A particle moves along line segments from the origin to the 
points s1, 0, 0d, s1, 2, 1d, s0, 2, 1d, and back to the origin 
under the influence of the force field 

Fsx, y, zd − z 2 i 1 2xy j 1 4y 2 k

  Find the work done.

;

;

;

;

 1.  A hemisphere H and a portion P of a paraboloid are shown. 
Suppose F is a vector field on R3 whose components have 
continuous partial derivatives. Explain why

y
H

y curl F ! dS − y
P

y curl F ! dS

H

4

z

x y22

P

4

z

x y22

2–6 Use Stokes’ Theorem to evaluate yyS curl F ! dS.

 2.  Fsx, y, zd − x 2 sin z i 1 y 2 j 1 xy k, 
S is the part of the paraboloid z − 1 2 x 2 2 y 2 that lies 
above the xy-plane, oriented upward

 3.  Fsx, y, zd − ze y i 1 x cos y j 1 xz sin y k, 
S is the hemisphere x 2 1 y 2 1 z 2 − 16, y > 0, oriented in 
the direction of the positive y-axis

 4.  Fsx, y, zd − tan21sx 2 yz2d i 1 x 2y j 1 x 2z2 k,
   S is the cone x − sy 2 1 z2 , 0 < x < 2, oriented in the 

direction of the positive x-axis

 5.  Fsx, y, zd − xyz i 1 xy j 1 x 2 yz k, 
S consists of the top and the four sides (but not the bottom)  
of the cube with vertices s61, 61, 61d, oriented outward

 6.  Fsx, y, zd − e xy i 1 e xz j 1 x 2z k, 
S is the half of the ellipsoid 4x 2 1 y 2 1 4z 2 − 4 that lies to  
the right of the xz-plane, oriented in the direction of the 
positive y-axis

7–10 Use Stokes’ Theorem to evaluate yC F ! dr. In each case C 
is oriented counterclockwise as viewed from above.

 7.  Fsx, y, zd − sx 1 y 2 d i 1 sy 1 z2 d j 1 sz 1 x 2 d k,   
C is the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1)

 8.  Fsx, y, zd − i 1 sx 1 yzd j 1 sxy 2 sz d k,   
C is the boundary of the part of the plane 3x 1 2y 1 z − 1  
in the first octant

 9.  Fsx, y, zd − xy i 1 yz j 1 zx k, C is the boundary of the 
part of the paraboloid z − 1 2 x 2 2 y 2 in the first octant

 SECTION 16.8  Stokes’ Theorem 
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1140 CHAPTER 16  Vector Calculus

 20.  Suppose S and C satisfy the hypotheses of Stokes’ Theorem 
and f, t have continuous second-order partial derivatives. Use 
Exercises 24 and 26 in Section 16.5 to show the following.

 (a) yC s f =td ! dr − yyS s= f 3 =td ! dS

 (b) yC s f = f d ! dr − 0

 (c) yC s f =t 1 t= f d ! dr − 0

 18.  Evaluate 

y
C
 sy 1 sin xd dx 1 sz2 1 cos yd dy 1 x 3 dz

   where C is the curve rstd − ksin t, cos t, sin 2tl, 0 < t < 2!. 
[Hint: Observe that C lies on the surface z − 2xy.]

 19.  If S is a sphere and F satisfies the hypotheses of Stokes’  
Theorem, show that yyS curl F ! dS − 0.

Although two of the most important theorems in vector calculus are named after George Green  
and George Stokes, a third man, William Thomson (also known as Lord Kelvin), played a large 
role in the formulation, dissemination, and application of both of these results. All three men  
were interested in how the two theorems could help to explain and predict physical phenomena  
in electricity and magnetism and fluid flow. The basic facts of the story are given in the margin 
notes on pages 1097 and 1135.

 Write a report on the historical origins of Green’s Theorem and Stokes’ Theorem. Explain the 
similarities and relationship between the theorems. Discuss the roles that Green, Thomson, and 
Stokes played in discovering these theorems and making them widely known. Show how both 
theorems arose from the investigation of electricity and magnetism and were later used to study a 
variety of physical problems.

The dictionary edited by Gillispie [2] is a good source for both biographical and scientific  
information. The book by Hutchinson [5] gives an account of Stokes’ life and the book by  
Thompson [8] is a biography of Lord Kelvin. The articles by Grattan-Guinness [3] and Gray [4] 
and the book by Cannell [1] give background on the extraordinary life and works of Green.  
Additional historical and mathematical information is found in the books by Katz [6] and  
Kline [7].

1.  D. M. Cannell, George Green, Mathematician and Physicist 1793–1841: The Background to 
His Life and Work (Philadelphia: Society for Industrial and Applied Mathematics, 2001).

2.  C. C. Gillispie, ed., Dictionary of Scientific Biography (New York: Scribner’s, 1974). See the 
article on Green by P. J. Wallis in Volume XV and the articles on Thomson by Jed Buchwald 
and on Stokes by E. M. Parkinson in Volume XIII.

3.  I. Grattan-Guinness, “Why Did George Green Write his Essay of 1828 on Electricity and  
Magnetism?” Amer. Math. Monthly, Vol. 102 (1995), pp. 387–96.

4.  J. Gray, “There Was a Jolly Miller.” The New Scientist, Vol. 139 (1993), pp. 24–27.

5.  G. E. Hutchinson, The Enchanted Voyage and Other Studies (Westport, CT: Greenwood  
Press, 1978).

6.  Victor Katz, A History of Mathematics: An Introduction (New York: HarperCollins, 1993),  
pp. 678–80.

7.  Morris Kline, Mathematical Thought from Ancient to Modern Times (New York: Oxford  
University Press, 1972), pp. 683–85.

8.  Sylvanus P. Thompson, The Life of Lord Kelvin (New York: Chelsea, 1976).

The photograph shows a stained-glass  
window at Cambridge University in 
honor of George Green.

Courtesy of the Masters and Fellows of Gonville and  
Caius College, Cambridge University, England

WRITING PROJECT THREE MEN AND TWO THEOREMS
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 SECTION 16.9  The Divergence Theorem 1141

In Section 16.5 we rewrote Green’s Theorem in a vector version as

y
C
 F ! n ds − y

D

y div Fsx, yd dA

where C is the positively oriented boundary curve of the plane region D. If we were seek-
ing to extend this theorem to vector fields on R 3, we might make the guess that

1  y
S

y F ! n dS − y y
E

y div Fsx, y, zd dV  

where S is the boundary surface of the solid region E. It turns out that Equation 1 is true, 
under appropriate hypotheses, and is called the Divergence Theorem. Notice its similar-
ity to Green’s Theorem and Stokes’ Theorem in that it relates the integral of a derivative 
of a function (div F in this case) over a region to the integral of the original function F 
over the boundary of the region.

At this stage you may wish to review the various types of regions over which we were 
able to evaluate triple integrals in Section 15.6. We state and prove the Diver gence Theo-
rem for regions E that are simultaneously of types 1, 2, and 3 and we call such regions  
simple solid regions. (For instance, regions bounded by ellipsoids or rectangular boxes 
are simple solid regions.) The boundary of E is a closed surface, and we use the conven-
tion, introduced in Section 16.7, that the positive orientation is outward; that is, the unit 
normal vector n is directed outward from E.

The Divergence Theorem Let E be a simple solid region and let S be the 
boundary surface of E, given with positive (outward) orientation. Let F be a vec-
tor field whose component functions have continuous partial derivatives on an 
open region that contains E. Then

y
S

y F ? dS − y y
E

y div F dV

The Divergence Theorem is sometimes 
called Gauss’s Theorem after the great 
German mathe matician Karl Friedrich 
Gauss (1777–1855), who discovered 
this theorem during his investigation 
of electrostatics. In Eastern Europe 
the Divergence Theorem is known 
as Ostrogradsky’s Theorem after 
the Russian mathe  matician Mikhail 
Ostrogradsky (1801–1862), who pub-
lished this result in 1826.

Thus the Divergence Theorem states that, under the given conditions, the flux of F 
across the boundary surface of E is equal to the triple integral of the divergence of F  
over E.

PROOF Let F − P i 1 Q j 1 R k. Then

div F −
−P
−x

1
−Q
−y

1
−R
−z

so y  y
E

y div F dV − y y
E

y 
−P
−x

 dV 1 y y
E

y 
−Q
−y

 dV 1 y y
E

y 
−R
−z

 dV

If n is the unit outward normal of S, then the surface integral on the left side of the 
Divergence Theorem is

 y
S

y F ! dS − y
S

y F ! n dS − y
S

y sP i 1 Q j 1 R kd ! n dS

 − y
S

y P i ! n dS 1 y
S

y Q j ! n dS 1 y
S

y R k ! n dS

Therefore, to prove the Divergence Theorem, it suffices to prove the following three 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1142 CHAPTER 16  Vector Calculus

equations:

2   y
S

y P i ! n dS −  y y
E

y 
−P
−x

 dV  

3   y
S

y Q j ! n dS − y y
E

y 
−Q
−y

 dV  

4   y
S

y R k ! n dS − y y
E

y 
−R
−z

 dV  

To prove Equation 4 we use the fact that E is a type 1 region:

E − hsx, y, zd | sx, yd [ D, u1sx, yd < z < u2sx, ydj
where D is the projection of E onto the xy-plane. By Equation 15.6.6, we have

y y
E

y 
−R
−z

 dV − y
D

y Fyu2sx, yd

u1sx, yd
 
−R
−z

 sx, y, zd dzG dA

and therefore, by the Fundamental Theorem of Calculus,

5  y y
E

y 
−R
−z

 dV − y
D

y fR(x, y, u2sx, yd) 2 R(x, y, u1sx, yd)g dA 

The boundary surface S consists of three pieces: the bottom surface S1, the top 
surface S2, and possibly a vertical surface S3, which lies above the boundary curve of D. 
(See Figure 1. It might happen that S3 doesn’t appear, as in the case of a sphere.) Notice 
that on S3 we have k ! n − 0, because k is vertical and n is horizontal, and so

y
S3

y R k ! n dS − y
S3

y 0 dS − 0

Thus, regardless of whether there is a vertical surface, we can write

6  y
S

y R k ! n dS − y
S1

y R k ! n dS 1 y
S2

y R k ! n dS 

The equation of S2 is z − u2sx, yd, sx, yd [ D, and the outward normal n points 
upward, so from Equation 16.7.10 (with F replaced by R k) we have

y
S2

y R k ! n dS − y
D

y Rsx, y, u2sx, ydd dA

On S1 we have z − u1sx, yd, but here the outward normal n points downward, so we 
multiply by 21:

y
S1

y R k ! n dS − 2y
D

y Rsx, y, u1sx, ydd dA

Therefore Equation 6 gives

y
S

y R k ! n dS − y
D

y fRsx, y, u2sx, ydd 2 Rsx, y, u1sx, yddg dA

0 

D 

E S£ 

S™ {z=u™(x, y)}

S¡ {z=u¡(x, y)}
y 

z 

x 

FIGURE 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 16.9  The Divergence Theorem 1143

Comparison with Equation 5 shows that

y
S

y R k ! n dS − y y
E

y 
−R
−z

 dV

Equations 2 and 3 are proved in a similar manner using the expressions for E as a  
type 2 or type 3 region, respectively. Q

EXAMPLE 1 Find the flux of the vector field Fsx, y, zd − z i 1 y j 1 x k over the unit 
sphere x 2 1 y 2 1 z2 − 1.

SOLUTION First we compute the divergence of F:

div F −
−

−x
 szd 1

−

−y
 syd 1

−

−z
 sxd − 1

The unit sphere S is the boundary of the unit ball B given by x 2 1 y 2 1 z2 < 1. Thus 
the Divergence Theorem gives the flux as

  y
S

y F ! dS − y y
B

y  div F dV − y y
B

y 1 dV − VsBd − 4
3 !s1d3 −

4!

3
 Q

EXAMPLE 2 Evaluate yyS F ! dS, where

Fsx, y, zd − xy i 1 (y 2 1 exz2) 

j 1 sinsxyd k

and S is the surface of the region E bounded by the parabolic cylinder z − 1 2 x 2 and 
the planes z − 0, y − 0, and y 1 z − 2. (See Figure 2.)

SOLUTION It would be extremely difficult to evaluate the given surface integral  
directly. (We would have to evaluate four surface integrals corresponding to the four 
pieces of S.) Furthermore, the divergence of F is much less complicated than F itself:

 div F −
−

−x
 sxyd 1

−

−y
 (y 2 1 exz2) 1

−

−z
 ssin xyd − y 1 2y − 3y

Therefore we use the Divergence Theorem to transform the given surface integral into a 
triple integral. The easiest way to evaluate the triple integral is to express E as a type 3 
region:

E − hsx, y, zd | 21 < x < 1, 0 < z < 1 2 x 2, 0 < y < 2 2 z j
Then we have

  y
S

y F ! dS − y y
E

y div F dV − y y
E

y 3y dV

 − 3 y1

21
 y12x2

0  y22z

0  y dy dz dx − 3 y1

21
 y12x2

0
 
s2 2 zd2

2
 dz dx

 −
3
2

 y1

21
 F2

s2 2 zd3

3 G
0

12x2

dx − 21
2 y1

21
 fsx 2 1 1d3 2 8g dx

 − 2y1

0
 sx 6 1 3x 4 1 3x 2 2 7d dx −

184
35

 Q

Notice that the method of proof of the  
Divergence Theorem is very similar to 
that of Green’s Theorem.

The solution in Example 1 should  
be compared with the solution in  
Exam ple 16.7.4.

0 

(1, 0, 0) (0, 2, 0)

y=2-z 

z=1-≈ 

y 

z 

(0, 0, 1)

x 

FIGURE 2
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1144 CHAPTER 16  Vector Calculus

Although we have proved the Divergence Theorem only for simple solid regions, it 
can be proved for regions that are finite unions of simple solid regions. (The procedure is 
sim ilar to the one we used in Section 16.4 to extend Green’s Theorem.)

For example, let’s consider the region E that lies between the closed surfaces S1 and 
S2, where S1 lies inside S2. Let n1 and n2 be outward normals of S1 and S2. Then the 
boundary surface of E is S − S1 ø S2 and its normal n is given by n − 2n1 on S1 and 
n − n2 on S2. (See Figure 3.) Applying the Divergence Theorem to S, we get

7   y y
E

y div F dV − y
S

y  F ! dS − y
S

y F ! n dS  

 − y
S1

y   F ! s2n1d dS 1 y
S2

y F ! n2  dS

 − 2y
S1

y F ! dS 1 y
S2

y F ! dS

EXAMPLE 3 In Example 16.1.5 we considered the electric field

Esxd −
«Q

| x |3  x

where the electric charge Q is located at the origin and x − kx, y, zl is a position vector. 
Use the Divergence Theorem to show that the electric flux of E through any closed 
surface S2 that encloses the origin is

 y
S2

y E ! dS − 4!«Q

SOLUTION The difficulty is that we don’t have an explicit equation for S2 because 
it is any closed surface enclosing the origin. The simplest such surface would be a 
sphere, so we let S1 be a small sphere with radius a and center the origin. You can 
verify that div E − 0. (See Exercise 23.) Therefore Equation 7 gives

 y
S2

y E ! dS − y
S1

y E ! dS 1 y y
E

y div E dV − y
S1

y E ! dS − y
S1

y E ! n dS

The point of this calculation is that we can compute the surface integral over S1 because 
S1 is a sphere. The normal vector at x is xy| x |. Therefore

 E ! n −
«Q

| x |3  x ! S x

| x | D −
«Q

| x |4  x ! x −
«Q

| x |2 −
«Q
a 2

since the equation of S1 is | x | − a. Thus we have

y
S2

y E ! dS − y
S1

y E ! n dS −
«Q
a 2  y

S1

y dS −
«Q
a 2  AsS1d −

«Q
a 2  4!a 2 − 4!«Q

This shows that the electric flux of E is 4!«Q through any closed surface S2 that contains 
the origin. [This is a special case of Gauss’s Law (Equation 16.7.11) for a single charge. 
The relationship between « and «0 is « − 1ys4!«0 d.] Q

n¡

S¡ S™ _n¡

n™

FIGURE 3
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 SECTION 16.9  The Divergence Theorem 1145

Another application of the Divergence Theorem occurs in fluid flow. Let vsx, y, zd be 
the velocity field of a fluid with constant density ". Then F − "v is the rate of flow per 
unit  area. If P0sx0, y0, z0 d is a point in the fluid and Ba is a ball with center P0 and 
very small radius a, then div FsPd < div FsP0 d for all points P in Ba since div F is con-
tinuous. We approximate the flux over the boundary sphere Sa as follows:

 y
Sa

y F ! dS − y y
Ba

y div F dV < y y
Ba

y div FsP0 d dV − div FsP0 dVsBa d

This approximation becomes better as a l 0 and suggests that

8 � div FsP0 d − lim 
a l 0

 
1

VsBa d
 y
Sa

y F ! dS 

Equation 8 says that div FsP0 d is the net rate of outward flux per unit volume at P0. (This 
is the reason for the name divergence.) If div FsPd . 0, the net flow is outward near P 
and P is called a source. If div FsPd , 0, the net flow is inward near P and P is called 
a sink.

For the vector field in Figure 4, it appears that the vectors that end near P1 are shorter 
than the vectors that start near P1. Thus the net flow is outward near P1, so div FsP1d . 0 
and P1 is a source. Near P2, on the other hand, the incoming arrows are longer than the  
outgoing arrows. Here the net flow is inward, so div FsP2 d , 0 and P2 is a sink. We  
can use the formula for F to confirm this impression. Since F − x 2 i 1 y 2 j, we have 
div F − 2x 1 2y, which is positive when y . 2x. So the points above the line y − 2x 
are sources and those below are sinks.

P¡

P™

y

x

FIGURE 4  
The vector field F − x 2 i 1 y 2 j

 1–4 Verify that the Divergence Theorem is true for the vector field 
F on the region E.

 1.  Fsx, y, zd − 3x i 1 xy j 1 2xz k, 
E is the cube bounded by the planes x − 0, x − 1, y − 0, 
y − 1, z − 0, and z − 1

 2.    Fsx, y, zd − y 2z 3 i 1 2yz j 1 4z 2 k, 
E is the solid enclosed by the paraboloid z − x 2 1 y 2 and the 
plane z − 9

 3.  Fsx, y, zd − kz, y, x l, 
E is the solid ball x 2 1 y 2 1 z 2 < 16

 4.  Fsx, y, zd − kx 2, 2y, zl, 
E is the solid cylinder y 2 1 z2 < 9, 0 < x < 2

5–15 Use the Divergence Theorem to calculate the surface integral 
yyS F ! dS; that is, calculate the flux of F across S.

 5.  Fsx, y, zd − xyez i 1 xy 2z3 j 2 yez k, 
S is the surface of the box bounded by the coordinate planes 
and the planes x − 3, y − 2, and z − 1

 6.  Fsx, y, zd − x 2yz i 1 xy 2z j 1 xyz2 k, 
S is the surface of the box enclosed by the planes x − 0,  
x − a, y − 0, y − b, z − 0, and z − c, where a, b, and c are 
positive numbers

 7.  Fsx, y, zd − 3xy 2 i 1 xe z j 1 z3 k, 
S is the surface of the solid bounded by the cylinder 
y 2 1 z2 − 1 and the planes x − 21 and x − 2

 8.  Fsx, y, zd − sx 3 1 y 3d i 1 sy 3 1 z3d j 1 sz3 1 x 3d k, 
S is the sphere with center the origin and radius 2

 9.  Fsx, y, zd − xe y i 1 sz 2 e yd j 2 xy k, 
S is the ellipsoid x 2 1 2y 2 1 3z 2 − 4

 10.  Fsx, y, zd − z i 1 y  j 1 zx k, 
S is the surface of the tetrahedron enclosed by the coordinate 
planes and the plane

x
a

1
y
b

1
z
c

− 1

   where a, b, and c are positive numbers

 11.  Fsx, y, zd − s2x 3 1 y 3d i 1 sy 3 1 z 3d  j 1 3y 2z k, 
S is the surface of the solid bounded by the paraboloid 
z − 1 2 x 2 2 y 2 and the xy-plane

 12.  Fsx, y, zd − sxy 1 2xzd i 1 sx 2 1 y 2d  j 1 sxy 2 z 2d k, 
S is the surface of the solid bounded by the cylinder 
x 2 1 y 2 − 4 and the planes z − y 2 2 and z − 0

 13.  F − | r | r, where r − x i 1 y j 1 z k, 
S consists of the hemisphere z − s1 2 x 2 2 y 2  and the disk 
x 2 1 y 2 < 1 in the xy-plane
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1146 CHAPTER 16  Vector Calculus

 23. Verify that div E − 0 for the electric field Esxd −
«Q

| x |3  x.

 24.   Use the Divergence Theorem to evaluate

y
S

y s2x 1 2y 1 z 2d dS

  where S is the sphere x 2 1 y 2 1 z2 − 1.

25–30 Prove each identity, assuming that S and E satisfy the 
conditions of the Divergence Theorem and the scalar functions 
and components of the vector fields have continuous second-order 
partial derivatives.

 25. y
S

y a ! n dS − 0, where a is a constant vector

 26. VsE d − 1
3 y

S

y F ! dS, where Fsx, y, zd − x i 1 y j 1 z k

 27. y
S

y curl F ! dS − 0 28. y
S

y Dn f dS − y y
E

y = 2f dV

 29. y
S

y s f =td ! n dS − y y
E

y s f = 2t 1 = f ! =td dV

 30. y
S

y s f =t 2 t= f d ! n dS − y y
E

y s f = 2t 2 t= 2f d dV

 31.  Suppose S and E satisfy the conditions of the Divergence Theo-
rem and f  is a scalar function with continuous partial deriva-
tives. Prove that

y
S

y f n dS − y y
E

y = f dV

   These surface and triple integrals of vector functions are  
vectors defined by integrating each component function. 
[Hint: Start by applying the Divergence Theorem to F − f c, 
where c is an arbitrary constant vector.]

 32.  A solid occupies a region E with surface S and is immersed 
in a liquid with constant density ". We set up a coordinate 
system so that the xy-plane coincides with the surface of the 
liquid, and positive values of z are measured downward into the 
liquid. Then the pressure at depth z is p − "tz, where t is the 
acceleration due to gravity (see Section 8.3). The total buoyant 
force on the solid due to the pressure distribution is given by 
the surface integral

F − 2y
S

y pn dS

   where n is the outer unit normal. Use the result of Exer cise 31 
to show that F − 2Wk, where W is the weight of the liquid 
displaced by the solid. (Note that F is directed upward because 
z is directed downward.) The result is Archimedes’ Principle: 
The buoyant force on an object equals the weight of the dis-
placed liquid.

 14.  F − | r |2 r, where r − x i 1 y j 1 z k,  
S is the sphere with radius R and center the origin

 15.  Fsx, y, zd − e y tan z i 1 ys3 2 x 2  j 1 x sin y k, 
S is the surface of the solid that lies above the xy-plane  
and below the surface z − 2 2 x 4 2 y 4, 21 < x < 1,
21 < y < 1

 16.  Use a computer algebra system to plot the vector field 
Fsx, y, zd − sin x cos2 y i 1 sin3y cos4z j 1 sin5z cos6x k

   in the cube cut from the first octant by the planes x − !y2, 
y − !y2, and z − !y2. Then compute the flux across the  
surface of the cube.

 17.  Use the Divergence Theorem to evaluate yyS F ! dS, where 
   Fsx, y, zd − z2x i 1 (1

3 y 3 1 tan z) j 1 sx 2z 1 y 2 d k  
and S is the top half of the sphere x 2 1 y 2 1 z2 − 1.  
[Hint: Note that S is not a closed surface. First compute  
integrals over S1 and S2, where S1 is the disk x 2 1 y 2 < 1, 
oriented downward, and S2 − S ø S1.]

 18.  Let Fsx, y, zd − z tan21sy 2 d i 1 z3 lnsx 2 1 1d j 1 z k.  
Find the flux of F across the part of the paraboloid 
x 2 1 y 2 1 z − 2 that lies above the plane z − 1 and is  
oriented upward.

 19.  A vector field F is shown. Use the interpretation of diver-
gence derived in this section to determine whether div F  
is positive or negative at P1 and at P2.

2

_2

_2 2

P¡

P™

 20. (a)  Are the points P1 and P2 sources or sinks for the vector 
field F shown in the figure? Give an explanation based 
solely on the picture.

 (b)  Given that Fsx, yd − kx, y 2 l, use the definition of diver-
gence to verify your answer to part (a).

2

_2

_2 2

P¡

P™

21–22 Plot the vector field and guess where div F . 0 and 
where div F , 0. Then calculate div F to check your guess.

 21. Fsx, yd − kxy, x 1 y 2 l 22. Fsx, yd − kx 2, y 2 l

CAS

CAS

CAS
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 SECTION 16.10  Summary 1147

The main results of this chapter are all higher-dimensional versions of the Funda mental 
Theorem of Calculus. To help you remember them, we collect them together here (with-
out hypotheses) so that you can see more easily their essential similarity. Notice that in 
each case we have an integral of a “derivative” over a region on the left side, and the right  
side involves the values of the original function only on the boundary of the region.

Fundamental Theorem of Calculus yb

a
 F9sxd dx − Fsbd 2 Fsad a b 

Fundamental Theorem for Line Integrals y
C
 = f ! dr − f srsbdd 2 f srsadd 

r (a) 

r (b) 

C 

Green’s Theorem y
D

y S −Q
−x

2
−P
−y D dA − y

C
 P dx 1 Q dy 

C 

D 

Stokes’ Theorem y
S

y curl F ! dS − y
C
 F ! dr 

C 

S 

n 

Divergence Theorem y y
E

y div F dV − y
S

y F ! dS E 

S 
n 

n 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1148 CHAPTER 16  Vector Calculus

 (c)  If F is a velocity field in fluid flow, what are the physical 
interpretations of curl F and div F?

 10.  If F − P i 1 Q j, how do you determine whether F is conser-
vative? What if F is a vector field on R3?

 11. (a) What is a parametric surface? What are its grid curves?
 (b) Write an expression for the area of a parametric surface.
 (c)  What is the area of a surface given by an equation 

z − tsx, yd?

 12. (a)  Write the definition of the surface integral of a scalar func-
tion f  over a surface S.

 (b)  How do you evaluate such an integral if S is a para metric 
surface given by a vector function rsu, vd?

 (c) What if S is given by an equation z − tsx, yd?
 (d)  If a thin sheet has the shape of a surface S, and the density 

at sx, y, zd is !sx, y, zd, write expressions for the mass and 
center of mass of the sheet.

 13. (a)  What is an oriented surface? Give an example of a non- 
orientable surface.

 (b)  Define the surface integral (or flux) of a vector field F over 
an oriented surface S with unit normal vector n.

 (c)  How do you evaluate such an integral if S is a parametric 
surface given by a vector function rsu, vd?

 (d) What if S is given by an equation z − tsx, yd?

 14. State Stokes’ Theorem.

 15. State the Divergence Theorem.

 16.  In what ways are the Fundamental Theorem for Line Integrals, 
Green’s Theorem, Stokes’ Theorem, and the Divergence  
Theorem similar?

CONCEPT CHECK Answers to the Concept Check can be found on the back endpapers.

 1.  What is a vector field? Give three examples that have physical 
meaning.

 2. (a) What is a conservative vector field?
 (b) What is a potential function?

 3. (a)  Write the definition of the line integral of a scalar function  
f  along a smooth curve C with respect to arc length.

 (b) How do you evaluate such a line integral?
 (c)  Write expressions for the mass and center of mass of a thin 

wire shaped like a curve C if the wire has linear density 
function !sx, yd.

 (d)  Write the definitions of the line integrals along C of a scalar 
function f  with respect to x, y, and z.

 (e) How do you evaluate these line integrals?

 4. (a)  Define the line integral of a vector field F along a smooth 
curve C given by a vector function rstd.

 (b)  If F is a force field, what does this line integral represent?
 (c)  If F − kP, Q, R l, what is the connection between the line 

integral of F and the line integrals of the component func-
tions P, Q, and R?

 5. State the Fundamental Theorem for Line Integrals.

 6. (a)  What does it mean to say that yC F ! dr is independent  
of path?

 (b)  If you know that yC F ! dr is independent of path, what can 
you say about F?

 7. State Green’s Theorem.

 8.  Write expressions for the area enclosed by a curve C in terms  
of line integrals around C.

 9. Suppose F is a vector field on R3.
 (a) Define curl F. (b) Define div F.

16 REVIEW

TRUE-FALSE QUIZ

 8.   The work done by a conservative force field in moving a par-
ticle around a closed path is zero.

 9.  If F and G are vector fields, then

curlsF 1 Gd − curl F 1 curl G

 10.  If F and G are vector fields, then

curlsF ! Gd − curl F ! curl G

 11.  If S is a sphere and F is a constant vector field, then 
yyS F ! dS − 0.

 12. There is a vector field F such that

curl F − x i 1 y j 1 z k

 13.  The area of the region bounded by the positively oriented, piece-
  wise smooth, simple closed curve C is A − !y

C
 y dx.

Determine whether the statement is true or false. If it is true, explain 
why. If it is false, explain why or give an example that disproves the 
statement.

 1. If F is a vector field, then div F is a vector field.

 2. If F is a vector field, then curl F is a vector field.

 3.  If f  has continuous partial derivatives of all orders on R 3, then 
divscurl = f d − 0.

 4.  If f  has continuous partial derivatives on R 3 and C is any  
circle, then yC = f ! dr − 0.

 5.  If F − P i 1 Q j and Py − Qx in an open region D, then F is 
conservative.

 6. y2C f sx, yd ds − 2yC f sx, yd ds

 7.  If F and G are vector fields and divF − divG, then F − G.
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EXERCISES

 12. Fsx, y, zd − sin y i 1 x cos y j 2 sin z k

13–14 Show that F is conservative and use this fact to evaluate 
yC F ! dr along the given curve.

 13.  Fsx, yd − s4x 3y 2 2 2xy 3d i 1 s2x 4 y 2 3x 2y 2 1 4y 3d j, 
 C: rstd − st 1 sin " td i 1 s2t 1 cos " td j, 0 < t < 1

 14.  Fsx, y, zd − e y i 1 sxe y 1 e zd j 1 ye z k, 
C is the line segment from s0, 2, 0d to s4, 0, 3d

 15.  Verify that Green’s Theorem is true for the line integral 
yC xy 2 dx 2 x 2 y dy, where C consists of the parabola y − x 2 
from s21, 1d to s1, 1d and the line segment from s1, 1d  
to s21, 1d.

 16. Use Green’s Theorem to evaluate

y
C
 s1 1 x 3  dx 1 2xy dy

   where C is the triangle with vertices s0, 0d, s1, 0d, and s1, 3d.

 17.  Use Green’s Theorem to evaluate yC x 2 y dx 2 xy 2 dy,  
where C is the circle x 2 1 y 2 − 4 with counterclockwise  
orientation.

 18. Find curl F and div F if

Fsx, y, zd − e2x sin y i 1 e2y sin z j 1 e2z sin x k

 19.  Show that there is no vector field G such that

curl G − 2x i 1 3yz j 2 xz2 k

 20.  If F and G are vector fields whose component functions have 
continuous first partial derivatives, show that

curlsF 3 Gd − F div G 2 G div F 1 sG ! = dF 2 sF ! = dG

 21.  If C is any piecewise-smooth simple closed plane curve  
and f  and t are differentiable functions, show that 
yC f sxd dx 1 tsyd dy − 0.

 22. If f  and t are twice differentiable functions, show that

= 2s ftd − f = 2t 1 t= 2f 1 2= f ! =t

 23.  If f  is a harmonic function, that is, = 2 f − 0, show that the line 
integral y fy dx 2 fx dy is independent of path in any simple 
region D.

 24. (a)  Sketch the curve C with parametric equations

x − cos t    y − sin t    z − sin t    0 < t < 2"

 (b) Find yC 2xe 2y dx 1 s2x 2e 2y 1 2y cot zd dy 2 y 2 csc2z dz.

 1. A vector field F, a curve C, and a point P are shown.
 (a) Is yC F ! dr positive, negative, or zero? Explain.
 (b) Is div FsPd positive, negative, or zero? Explain.

y

x

P

C

2–9 Evaluate the line integral.

 2.  yC x ds, 
C is the arc of the parabola y − x 2 from (0, 0) to (1, 1)

 3.  yC yz cos x ds, 
C: x − t, y − 3 cos t, z − 3 sin t, 0 < t < "

 4.  yC y dx 1 sx 1 y 2d dy,  C is the ellipse 4x 2 1 9y 2 − 36  
with counterclockwise orientation

 5.  yC y 3 dx 1 x 2 dy,  C is the arc of the parabola x − 1 2 y 2  
from s0, 21d to s0, 1d

 6.  yC sxy  dx 1 e y dy 1 xz dz, 
C is given by rstd − t 4 i 1 t 2 j 1 t 3 k, 0 < t < 1

 7.  yC xy dx 1 y 2 dy 1 yz dz, 
C is the line segment from s1, 0, 21d, to s3, 4, 2d

 8.  yC F ! dr, where Fsx, yd − xy i 1 x 2 j and C is given by 
rstd − sin t i 1 s1 1 td j, 0 < t < "

 9.  yC F ! dr, where Fsx, y, zd − e z i 1 xz j 1 sx 1 yd k and  
C is given by rstd − t 2 i 1 t 3 j 2 t k, 0 < t < 1

 10.   Find the work done by the force field

Fsx, y, zd − z i 1 x j 1 y k

   in moving a particle from the point s3, 0, 0d to the point 
s0, "y2, 3d along

 (a) a straight line
 (b) the helix x − 3 cos t, y − t, z − 3 sin t

11–12 Show that F is a conservative vector field. Then find a 
function f  such that F − = f .

 11. Fsx, yd − s1 1 xyde xy i 1 se y 1 x 2e xy d j
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1150 CHAPTER 16  Vector Calculus

 37. Let

Fsx, y, zd − s3x 2 yz 2 3yd i 1 sx 3z 2 3xd j 1 sx 3 y 1 2zd k

   Evaluate yC F ! dr, where C is the curve with initial point 
s0, 0, 2d and terminal point s0, 3, 0d shown in the figure.

0

(0, 0, 2)

(0, 3, 0)
(1, 1, 0)

(3, 0, 0)

z

x

y

 38. Let

Fsx, yd −
s2x 3 1 2xy 2 2 2yd i 1 s2y 3 1 2x 2 y 1 2xd j

x 2 1 y 2

  Evaluate ! yC F ! dr, where C is shown in the figure.

0 x

y
C

 39.  Find yyS F ! n dS, where Fsx, y, zd − x i 1 y j 1 z k and 
S is the outwardly oriented surface shown in the figure 
(the boundary surface of a cube with a unit corner cube 
removed).

(0, 2, 2)
(2, 0, 2)

(2, 2, 0)S

y

z

x

1

11

 40.  If the components of F have continuous second partial 
derivatives and S is the boundary surface of a simple solid 
region, show that yyS curl F ! dS − 0.

 41.   If a is a constant vector, r − x i 1 y j 1 z k, and S 
is an oriented, smooth surface with a simple, closed, 
smooth, positively oriented boundary curve C, show that

y
S

y 2a ! dS − y
C
 sa 3 rd ! dr

 25.  Find the area of the part of the surface z − x 2 1 2y that lies 
above the triangle with vertices s0, 0d, s1, 0d, and s1, 2d.

 26. (a)  Find an equation of the tangent plane at the point 
s4, 22, 1d to the parametric surface S given by

rsu, vd − v2 i 2 uv j 1 u 2 k   0 < u < 3, 23 < v < 3

 (b)  Use a computer to graph the surface S and the tangent 
plane found in part (a).

 (c)  Set up, but do not evaluate, an integral for the surface 
area of S.

 (d) If

Fsx, y, zd −
z2

1 1 x 2  i 1
x 2

1 1 y 2  j 1
 y 2

1 1 z2  k

  find yyS F ! dS correct to four decimal places.

27–30 Evaluate the surface integral.

 27.  yyS z dS, where S is the part of the paraboloid z − x 2 1 y 2 
that lies under the plane z − 4

 28.  yyS sx 2z 1 y 2zd dS, where S is the part of the plane 
z − 4 1 x 1 y that lies inside the cylinder x 2 1 y 2 − 4

 29.  yyS F ! dS, where Fsx, y, zd − xz i 2 2y j 1 3x k and S is 
the sphere x 2 1 y 2 1 z2 − 4 with outward orientation

 30.  yyS F ! dS, where Fsx, y, zd − x 2 i 1 xy j 1 z k and S is the 
part of the paraboloid z − x 2 1 y 2 below the plane z − 1 
with upward orientation

 31.  Verify that Stokes’ Theorem is true for the vector field 
Fsx, y, zd − x 2 i 1 y 2 j 1 z2 k, where S is the part of the 
paraboloid z − 1 2 x 2 2 y 2 that lies above the xy-plane 
and S has upward orientation.

 32.  Use Stokes’ Theorem to evaluate yyS curl F ! dS, where
   Fsx, y, zd − x 2 yz i 1 yz2 j 1 z3e xy k, S is the part of the 

sphere x 2 1 y 2 1 z2 − 5 that lies above the plane z − 1, 
and S is oriented upward.

 33.  Use Stokes’ Theorem to evaluate yC F ! dr, where 
Fsx, y, zd − xy i 1 yz j 1 zx k, and C is the triangle with 
vertices s1, 0, 0d, s0, 1, 0d, and s0, 0, 1d, oriented counter-
clockwise as viewed from above.

 34.  Use the Divergence Theorem to calculate the surface inte-
gral yyS F ! dS, where Fsx, y, zd − x 3 i 1 y 3 j 1 z3 k and 
S is the surface of the solid bounded by the cylinder 
x 2 1 y 2 − 1 and the planes z − 0 and z − 2.

 35.  Verify that the Divergence Theorem is true for the vector  
field Fsx, y, zd − x i 1 y j 1 z k, where E is the unit ball 
x 2 1 y 2 1 z2 < 1.

 36. Compute the outward flux of

Fsx, y, zd −
x i 1 y j 1 z k

sx 2 1 y 2 1 z2 d3y2

  through the ellipsoid 4x 2 1 9y 2 1 6z2 − 36.

;

CAS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1151

Problems Plus  1.  Let S be a smooth parametric surface and let P be a point such that each line that starts  
at P intersects S at most once. The solid angle VsS d subtended by S at P is the set of lines 
starting at P and passing through S. Let Ssad be the intersection of VsS d with the surface of 
the sphere with center P and radius a. Then the measure of the solid angle (in steradians) is 
defined to be

| VsS d | −
area of Ssad

a2

  Apply the Divergence Theorem to the part of VsS d between Ssad and S to show that

| VsS d | − y
S

y 
r ! n

r 3   dS

   where r is the radius vector from P to any point on S, r − | r |, and the unit normal vector n 
is directed away from P.

     This shows that the definition of the measure of a solid angle is independent of the radius 
a of the sphere. Thus the measure of the solid angle is equal to the area subtended on a 
unit sphere. (Note the analogy with the definition of radian measure.) The total solid angle 
subtended by a sphere at its center is thus 4" steradians.

P 

S 

S(a) 

a 

 2. Find the positively oriented simple closed curve C for which the value of the line integral

y
C
 sy 3 2 yd dx 2 2x 3 dy 

  is a maximum.

 3.  Let C be a simple closed piecewise-smooth space curve that lies in a plane with unit normal 
vector n − ka, b, c l and has positive orientation with respect to n. Show that the plane area 
enclosed by C is

1
2 y

C
 sbz 2 cyd dx 1 scx 2 azd dy 1 say 2 bxd dz 

 4.  Investigate the shape of the surface with parametric equations x − sin u, y − sin v, 
z − sinsu 1 vd. Start by graphing the surface from several points of view. Explain the  
appearance of the graphs by determining the traces in the horizontal planes z − 0, z − 61,  
and z − 61

2.

 5. Prove the following identity:

=sF ! Gd − sF ! =dG 1 sG ! =dF 1 F 3 curl G 1 G 3 curl F

;
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 6.  The figure depicts the sequence of events in each cylinder of a four-cylinder internal 
combustion engine. Each piston moves up and down and is connected by a pivoted arm to a 
rotating crankshaft. Let Pstd and Vstd be the pressure and volume within a cylinder at time  
t, where a < t < b gives the time required for a complete cycle. The graph shows how P 
and V vary through one cycle of a four-stroke engine.

P

V0

C

! @

#

$

%
In

ta
ke

Co
m

pr
es

sio
n

Ex
pl

os
io

n

Ex
ha

us
tio

n

Flywheel

Crankshaft
Connecting rod

Water

     During the intake stroke (from ① to ②) a mixture of air and gasoline at atmospheric 
pressure is drawn into a cylinder through the intake valve as the piston moves downward. 
Then the piston rapidly compresses the mix with the valves closed in the compression stroke 
(from ② to ③) during which the pressure rises and the volume decreases. At ③ the sparkplug 
ignites the fuel, raising the temperature and pressure at almost constant volume to ④. Then, 
with valves closed, the rapid expansion forces the piston downward during the power stroke 
(from ④ to ⑤). The exhaust valve opens, temperature and pressure drop, and mechanical 
energy stored in a rotating flywheel pushes the piston upward, forcing the waste products 
out of the exhaust valve in the exhaust stroke. The exhaust valve closes and the intake valve 
opens. We’re now back at ① and the cycle starts again.

  (a)  Show that the work done on the piston during one cycle of a four-stroke engine is 
W − yC P dV, where C is the curve in the PV-plane shown in the figure. 
  [Hint: Let xstd be the distance from the piston to the top of the cylinder and note that  
 the force on the piston is F − APstd i, where A is the area of the top of the piston. Then  
 W − yC1

 F ! dr, where C1 is given by rstd − xstd i, a < t < b. An alternative approach 
is to work directly with Riemann sums.]

  (b)  Use Formula 16.4.5 to show that the work is the difference of the areas enclosed by the 
two loops of C.
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The motion of a shock 
absorber in a motorcycle is 

described by the differential 
equations that we solve  

in Section 17.3.

THE BASIC IDEAS OF DIFFERENTIAL equations were explained in Chapter 9; there we concen-
trated on first-order equations. In this chapter we study second-order linear differential equations 
and learn how they can be applied to solve problems concerning the vibrations of springs and the 
analysis of electric circuits. We will also see how infinite series can be used to solve differential 
equations.

17 Second-Order  
Differential Equations

1153
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1154 CHAPTER 17  Second-Order Differential Equations

A second-order linear differential equation has the form

1  Psxd 
d 2y
dx 2 1 Qsxd 

dy
dx

1 Rsxdy − Gsxd 

where P, Q, R, and G are continuous functions. We saw in Section 9.1 that equations 
of this type arise in the study of the motion of a spring. In Section 17.3 we will further 
pursue this application as well as the application to electric circuits.

In this section we study the case where Gsxd − 0, for all x, in Equation 1. Such equa-
tions are called homogeneous linear equations. Thus the form of a second-order linear 
homogeneous differential equation is

2  Psxd 
d 2 y
dx 2 1 Qsxd 

dy
dx

1 Rsxdy − 0 

If Gsxd ± 0 for some x, Equation 1 is nonhomogeneous and is discussed in Section 
17.2.

Two basic facts enable us to solve homogeneous linear equations. The first of these 
says that if we know two solutions y1 and y2 of such an equation, then the linear combi-
nation y − c1y1 1 c2y2 is also a solution.

3   Theorem If y1sxd and y2sxd are both solutions of the linear homogeneous  
equation (2) and c1 and c2 are any constants, then the function

ysxd − c1y1sxd 1 c2y2sxd

is also a solution of Equation 2.

PROOF Since y1 and y2 are solutions of Equation 2, we have

 Psxdy01 1 Qsxdy19 1 Rsxdy1 − 0

and  Psxdy20 1 Qsxdy29 1 Rsxdy2 − 0

Therefore, using the basic rules for differentiation, we have

   Psxdy0 1 Qsxdy9 1 Rsxdy

 − Psxdsc1y1 1 c2y2d0 1 Qsxdsc1y1 1 c2y2d9 1 Rsxdsc1y1 1 c2y2d

 − Psxdsc1y10 1 c2y20d 1 Qsxdsc1y19 1 c2y29d 1 Rsxdsc1y1 1 c2y2d

 − c1fPsxdy10 1 Qsxdy19 1 Rsxdy1g 1 c2 fPsxdy20 1 Qsxdy29 1 Rsxdy2g

 − c1s0d 1 c2s0d − 0

Thus y − c1y1 1 c2y2 is a solution of Equation 2. Q
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 SECTION 17.1  Second-Order Linear Equations 1155

The other fact we need is given by the following theorem, which is proved in more 
advanced courses. It says that the general solution is a linear combination of two linearly 
independent solutions y1 and y2. This means that neither y1 nor y2 is a constant multiple 
of the other. For instance, the functions f sxd − x 2 and tsxd − 5x 2 are linearly dependent, 
but f sxd − ex and tsxd − xex are linearly independent.

4   Theorem If y1 and y2 are linearly independent solutions of Equation 2 on 
an interval, and Psxd is never 0, then the general solution is given by

ysxd − c1y1sxd 1 c2y2sxd

where c1 and c2 are arbitrary constants.

Theorem 4 is very useful because it says that if we know two particular linearly inde-
pendent solutions, then we know every solution.

In general, it’s not easy to discover particular solutions to a second-order linear equa-
tion. But it is always possible to do so if the coefficient functions P, Q, and R are constant 
functions, that is, if the differential equation has the form

5  ay0 1 by9 1 cy − 0 

where a, b, and c are constants and a ± 0.
It’s not hard to think of some likely candidates for particular solutions of Equation 5 

if we state the equation verbally. We are looking for a function y such that a constant 
times its second derivative y0 plus another constant times y9 plus a third constant times y 
is equal to 0. We know that the exponential function y − erx (where r is a constant) has 
the property that its derivative is a constant multiple of itself: y9 − rerx. Furthermore, 
y0 − r 2erx. If we substitute these expressions into Equation 5, we see that y − erx is a 
solution if

 ar 2erx 1 brerx 1 cerx − 0

or  sar 2 1 br 1 cderx − 0

But erx is never 0. Thus y − erx is a solution of Equation 5 if r is a root of the equation

6  ar 2 1 br 1 c − 0 

Equation 6 is called the auxiliary equation (or characteristic equation) of the differen-
tial equation ay0 1 by9 1 cy − 0. Notice that it is an algebraic equation that is obtained 
from the differential equation by replacing y0 by r 2, y9 by r, and y by 1.

Sometimes the roots r1 and r2 of the auxiliary equation can be found by factoring. In 
other cases they are found by using the quadratic formula:

7  r1 −
2b 1 sb 2 2 4ac

2a
      r2 −

2b 2 sb 2 2 4ac
2a

 

We distinguish three cases according to the sign of the discriminant b 2 2 4ac.
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1156 CHAPTER 17  Second-Order Differential Equations

CASE I b2 2 4ac . 0
In this case the roots r1 and r2 of the auxiliary equation are real and distinct, so y1 − er1x 
and y2 − er2 x are two linearly independent solutions of Equation 5. (Note that er2 x is not 
a constant multiple of er1x.) Therefore, by Theorem 4, we have the following fact.

8   If the roots r1 and r2 of the auxiliary equation ar 2 1 br 1 c − 0 are real and 
unequal, then the general solution of ay0 1 by9 1 cy − 0 is

y − c1er1x 1 c2 er2 x

EXAMPLE 1 Solve the equation y0 1 y9 2 6y − 0.

SOLUTION The auxiliary equation is

r 2 1 r 2 6 − sr 2 2dsr 1 3d − 0

whose roots are r − 2, 23. Therefore, by (8), the general solution of the given differ-
ential equation is

y − c1e 2x 1 c2 e23x

We could verify that this is indeed a solution by differentiating and substituting into the 
differential equation. Q

EXAMPLE 2 Solve 3 
d 2y
dx 2 1

dy
dx

2 y − 0.

SOLUTION To solve the auxiliary equation 3r 2 1 r 2 1 − 0, we use the quadratic  
formula:

r −
21 6 s13 

6

Since the roots are real and distinct, the general solution is

 y − c1e s211s13 dxy6 1 c2 e s212s13 dxy6 Q

CASE II b 2 2 4ac − 0
In this case r1 − r2; that is, the roots of the auxiliary equation are real and equal. Let’s 
denote by r the common value of r1 and r2. Then, from Equations 7, we have

9  r − 2
b

2a
    so  2ar 1 b − 0 

We know that y1 − erx is one solution of Equation 5. We now verify that y2 − xerx is 
also a solution:

 ay20 1 by29 1 cy2 − as2re rx 1 r 2xerx d 1 bserx 1 rxerx d 1 cxerx

 − s2ar 1 bderx 1 sar 2 1 br 1 cdxerx

 − 0serx d 1 0sxerx d − 0

In Figure 1 the graphs of the basic 
solutions f sxd − e 2x and tsxd − e23x of 
the differential equation in Example 1 
are shown in blue and red, respec tively. 
Some of the other solutions, linear 
combinations of f  and t, are shown  
in black.

8
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_1 1

5f+g
f+5g

f

f-g g-f

f+g
g

FIGURE 1
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 SECTION 17.1  Second-Order Linear Equations 1157

In the first term, 2ar 1 b − 0 by Equations 9; in the second term, ar 2 1 br 1 c − 0 
because r is a root of the auxiliary equation. Since y1 − erx and y2 − xerx are linearly 
independent solutions, Theorem 4 provides us with the general solution.

10   If the auxiliary equation ar 2 1 br 1 c − 0 has only one real root r, then 
the general solution of ay0 1 by9 1 cy − 0 is

y − c1erx 1 c2 xerx

EXAMPLE 3 Solve the equation 4y0 1 12y9 1 9y − 0.

SOLUTION The auxiliary equation 4r 2 1 12r 1 9 − 0 can be factored as

s2r 1 3d2 − 0

so the only root is r − 23
2. By (10) the general solution is

 y − c1e23xy2 1 c2 xe23xy2 Q

CASE III b 2 2 4ac , 0
In this case the roots r1 and r2 of the auxiliary equation are complex numbers. (See 
Appen dix H for information about complex numbers.) We can write

r1 − ! 1 i"      r2 − ! 2 i"

where ! and " are real numbers. [In fact, ! − 2bys2ad, " − s4ac 2 b 2 ys2ad.] Then, 
using Euler’s equation

e i# − cos # 1 i sin #

from Appendix H, we write the solution of the differential equation as

  y − C1er1 x 1 C2er2 x − C1e s!1i"dx 1 C2e s!2i"dx

 − C1e!xscos "x 1 i sin "xd 1 C2e!xscos "x 2 i sin "xd

 − e!xfsC1 1 C2 d cos "x 1 isC1 2 C2 d sin "xg

 − e!xsc1 cos "x 1 c2 sin "xd

where c1 − C1 1 C2, c2 − isC1 2 C2d. This gives all solutions (real or complex) of the 
dif ferential equation. The solutions are real when the constants c1 and c2 are real. We 
summarize the discussion as follows.

11   If the roots of the auxiliary equation ar 2 1 br 1 c − 0 are the complex  
numbers r1 − ! 1 i", r2 − ! 2 i", then the general solution of 
ay0 1 by9 1 cy − 0 is

y − e! xsc1 cos "x 1 c2 sin "xd

Figure 2 shows the basic solutions 
f sxd − e23xy2 and tsxd − xe23xy2 in  
Exam ple 3 and some other members of 
the family of solutions. Notice that all 
of them approach 0 as x l `.

8
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1158 CHAPTER 17  Second-Order Differential Equations

EXAMPLE 4 Solve the equation y0 2 6y9 1 13y − 0.

SOLUTION The auxiliary equation is r 2 2 6r 1 13 − 0. By the quadratic formula, the 
roots are

r −
6 6 s36 2 52 

2
−

6 6 s216 

2
− 3 6 2i

By (11), the general solution of the differential equation is

 y − e 3xsc1 cos 2x 1 c2 sin 2xd Q

Initial-Value and Boundary-Value Problems
An initial-value problem for the second-order Equation 1 or 2 consists of finding a solu-
tion y of the differential equation that also satisfies initial conditions of the form

ysx0 d − y0      y9sx0 d − y1

where y0 and y1 are given constants. If P, Q, R, and G are continuous on an interval and 
Psxd ± 0 there, then a theorem found in more advanced books guarantees the existence 
and uniqueness of a solution to this initial-value problem. Examples 5 and 6 illustrate the 
technique for solving such a problem.

EXAMPLE 5 Solve the initial-value problem

y0 1 y9 2 6y − 0      ys0d − 1      y9s0d − 0

SOLUTION From Example 1 we know that the general solution of the differential equa- 
tion is

ysxd − c1e 2x 1 c2 e23x

Differentiating this solution, we get

y9sxd − 2c1e 2x 2 3c2 e23x

To satisfy the initial conditions we require that

12   ys0d − c1 1 c2 − 1  

13   y9s0d − 2c1 2 3c2 − 0 

From (13), we have c2 − 2
3 c1 and so (12) gives

c1 1 2
3 c1 − 1      c1 − 3

5      c2 − 2
5 

Thus the required solution of the initial-value problem is

 y − 3
5 e 2x 1 2

5 e23x Q

EXAMPLE 6 Solve the initial-value problem

y0 1 y − 0      ys0d − 2      y9s0d − 3

SOLUTION The auxiliary equation is r 2 1 1 − 0, or r 2 − 21, whose roots are 6i. 
Thus ! − 0, " − 1, and since e0x − 1, the general solution is

 ysxd − c1 cos x 1 c2 sin x

Since  y9sxd − 2c1 sin x 1 c2 cos x

Figure 3 shows the graphs of the solu-
tions in Example 4, f sxd − e 3x cos 2x 
and tsxd − e 3x sin 2x, together with 
some linear combina tions. All solutions 
approach 0 as x l 2`.

3

_3

_3 2
f

g
f-g

f+g

FIGURE 3

Figure 4 shows the graph of the solu-
tion of the initial-value problem in 
Example 5. Compare with Figure 1.

20

0_2 2

FIGURE 4
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 SECTION 17.1  Second-Order Linear Equations 1159

the initial conditions become

ys0d − c1 − 2      y9s0d − c2 − 3

Therefore the solution of the initial-value problem is

 ysxd − 2 cos x 1 3 sin x Q

A boundary-value problem for Equation 1 or 2 consists of finding a solution y of the 
differential equation that also satisfies boundary conditions of the form

ysx0 d − y0      ysx1 d − y1

In contrast with the situation for initial-value problems, a boundary-value problem does 
not always have a solution. The method is illustrated in Example 7.

EXAMPLE 7 Solve the boundary-value problem

y0 1 2y9 1 y − 0      ys0d − 1      ys1d − 3

SOLUTION The auxiliary equation is

r 2 1 2r 1 1 − 0    or    sr 1 1d2 − 0

whose only root is r − 21. Therefore the general solution is

ysxd − c1e2x 1 c2 xe2x

The boundary conditions are satisfied if

 ys0d − c1 − 1

 ys1d − c1e21 1 c2 e21 − 3

The first condition gives c1 − 1, so the second condition becomes

e21 1 c2 e21 − 3

Solving this equation for c2 by first multiplying through by e, we get

1 1 c2 − 3e    so    c2 − 3e 2 1

Thus the solution of the boundary-value problem is

 y − e2x 1 s3e 2 1dxe2x Q

Summary: Solutions of ay0 1 by9 1 c − 0

Roots of ar 2 1 br 1 c − 0 General solution

r1, r2 real and distinct y − c1er1x 1 c2er2 x

r1 − r2 − r y − c1erx 1 c2 xerx

r1, r2 complex: ! 6 i"  y − e! xsc1 cos "x 1 c2 sin "xd

The solution to Example 6 is graphed in  
Figure 5. It appears to be a shifted sine 
curve and, indeed, you can verify that 
another way of writing the solu tion is

y − s13 sinsx 1 $d  where tan $ − 2
3

5

_5

_2π 2π

FIGURE 5

Figure 6 shows the graph of the solu-
tion of the boundary-value problem in 
Example 7.
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1160 CHAPTER 17  Second-Order Differential Equations

 22. 4y 0 2 20y9 1 25y − 0,  ys0d − 2,  y9s0d − 23

 23. y 0 2 y9 2 12y − 0,  ys1d − 0,  y9s1d − 1

 24. 4y 0 1 4y9 1 3y − 0,  ys0d − 0,  y9s0d − 1

25–32 Solve the boundary-value problem, if possible.

 25. y 0 1 16y − 0, ys0d − 23, ys%y8d − 2

 26. y 0 1 6y9 − 0, ys0d − 1, ys1d − 0

 27. y 0 1 4y9 1 4y − 0,  ys0d − 2,  ys1d − 0

 28. y 0 2 8y9 1 17y − 0,  ys0d − 3,  ys%d − 2

 29. y 0 − y9,  ys0d − 1,  ys1d − 2

 30. 4y 0 2 4y9 1 y − 0,  ys0d − 4,  ys2d − 0

 31. y 0 1 4y9 1 20y − 0,  ys0d − 1,  ys% d − 2

 32. y 0 1 4y9 1 20y − 0,  ys0d − 1,  ys%d − e22%

 33. Let L be a nonzero real number.
 (a)  Show that the boundary-value problem y 0 1 &y − 0, 

ys0d − 0, ysLd − 0 has only the trivial solution y − 0 
for the cases & − 0 and & , 0.

 (b)  For the case & . 0, find the values of & for which this 
prob lem has a nontrivial solution and give the corre-
sponding solution.

 34.  If a, b, and c are all positive constants and ysxd is a solution  
of the differential equation ay 0 1 by9 1 cy − 0, show that 
lim x l ` ysxd − 0.

 35.  Consider the boundary-value problem y 0 2 2y9 1 2y − 0, 
ysad − c, ysbd − d.

 (a)  If this problem has a unique solution, how are a and b 
related?

 (b)  If this problem has no solution, how are a, b, c, and d 
related?

 (c)  If this problem has infinitely many solutions, how are  
a, b, c, and d related?

1–13 Solve the differential equation.

 1. y0 2 y9 2 6y − 0 2. y 0 2 6y9 1 9y − 0

 3. y 0 1 2y − 0 4. y 0 1 y9 2 12y − 0

 5. 4y 0 1 4y9 1 y − 0 6. 9y 0 1 4y − 0

 7. 3y 0 − 4y9 8. y − y 0

 9. y0 2 4y9 1 13y − 0 10. 3y 0 1 4y9 2 3y − 0

 11. 2 
d 2y
dt 2 1 2 

dy
dt

2 y − 0

 12. 
d 2R
dt 2 1 6 

dR
dt

1 34R − 0

 13. 3 
d 2V
dt 2 1 4 

dV
dt

1 3V − 0

14–16 Graph the two basic solutions along with several other 
solutions of the differential equation. What features do the 
solutions have in common?

 14. 4 
d 2y
dx 2 2 4 

dy
dx

1 y − 0

 15. 
d 2y
dx 2 1 2 

dy
dx

1 2y − 0

 16. 2 
d 2y
dx 2 1

dy
dx

2 y − 0

17–24 Solve the initial-value problem.

 17. y 0 1 3y − 0, ys0d − 1, y9s0d − 3

 18. y 0 2 2y9 2 3y − 0, ys0d − 2, y9s0d − 2

 19. 9y 0 1 12y9 1 4y − 0,  ys0d − 1,  y9s0d − 0

 20. 3y 0 2 2y9 2 y − 0, ys0d − 0, y9s0d − 24

 21. y 0 2 6y9 1 10y − 0,  ys0d − 2,  y9s0d − 3

;

In this section we learn how to solve second-order nonhomogeneous linear differential 
equa tions with constant coefficients, that is, equations of the form

1  ay0 1 by9 1 cy − Gsxd 

where a, b, and c are constants and G is a continuous function. The related homogeneous 
equation

2  ay0 1 by9 1 cy − 0 
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 SECTION 17.2  Nonhomogeneous Linear Equations 1161

is called the complementary equation and plays an important role in the solution of the 
original nonhomogeneous equation (1).

3   Theorem The general solution of the nonhomogeneous differential equa- 
tion (1) can be written as

ysxd − ypsxd 1 ycsxd

where yp is a particular solution of Equation 1 and yc is the general solution of 
the complementary Equation 2.

PROOF We verify that if y is any solution of Equation 1, then y 2 yp is a solution of  
the complementary Equation 2. Indeed

 asy 2 yp d0 1 bsy 2 yp d9 1 csy 2 yp d − ay0 2 ayp0 1 by9 2 byp9 1 cy 2 cyp

 − say0 1 by9 1 cyd 2 sayp0 1 byp9 1 cyp d

 − Gsxd 2 Gsxd − 0

This shows that every solution is of the form ysxd − ypsxd 1 ycsxd. It is easy to 
check that every function of this form is a solution. Q

We know from Section 17.1 how to solve the complementary equation. (Recall that 
the solution is yc − c1y1 1 c2y2, where y1 and y2 are linearly independent solutions of 
Equa tion 2.) Therefore Theorem 3 says that we know the general solution of the non-
homogeneous equation as soon as we know a particular solution yp. There are two methods 
for finding a particular solution: The method of undetermined coefficients is straightfor-
ward but works only for a restricted class of functions G. The method of variation of 
parameters works for every function G but is usually more difficult to apply in practice.

The Method of Undetermined Coefficients
We first illustrate the method of undetermined coefficients for the equation

ay0 1 by9 1 cy − Gsxd

where Gsx) is a polynomial. It is reasonable to guess that there is a particular solution  
yp that is a polynomial of the same degree as G because if y is a polynomial, then 
ay0 1 by9 1 cy is also a polynomial. We therefore substitute ypsxd − a polynomial (of 
the same degree as G) into the differential equation and determine the coefficients.

EXAMPLE 1 Solve the equation y0 1 y9 2 2y − x 2.

SOLUTION The auxiliary equation of y0 1 y9 2 2y − 0 is

r 2 1 r 2 2 − sr 2 1dsr 1 2d − 0

with roots r − 1, 22. So the solution of the complementary equation is

yc − c1ex 1 c2 e22x

Since Gsxd − x 2 is a polynomial of degree 2, we seek a particular solution of the form

ypsxd − Ax 2 1 Bx 1 C
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1162 CHAPTER 17  Second-Order Differential Equations

Then yp9 − 2Ax 1 B and yp0 − 2A so, substituting into the given differential equation, 
we have

 s2Ad 1 s2Ax 1 Bd 2 2sAx 2 1 Bx 1 Cd − x 2

or  22Ax 2 1 s2A 2 2Bdx 1 s2A 1 B 2 2Cd − x 2

Polynomials are equal when their coefficients are equal. Thus

22A − 1      2A 2 2B − 0      2A 1 B 2 2C − 0

The solution of this system of equations is

A − 21
2      B − 21

2      C − 23
4

A particular solution is therefore

ypsxd − 21
2 x 2 2 1

2 x 2 3
4

and, by Theorem 3, the general solution is

 y − yc 1 yp − c1ex 1 c2 e22x 2 1
2 x 2 2 1

2 x 2 3
4  Q

If Gsxd (the right side of Equation 1) is of the form Cek x, where C and k are constants, 
then we take as a trial solution a function of the same form, ypsxd − Aek x, because the 
derivatives of ek x are constant multiples of ek x.

EXAMPLE 2 Solve y0 1 4y − e 3x.

SOLUTION The auxiliary equation is r 2 1 4 − 0 with roots 62i, so the solution of the 
complementary equation is

ycsxd − c1 cos 2x 1 c2 sin 2x

For a particular solution we try ypsxd − Ae 3x. Then yp9 − 3Ae 3x and yp0 − 9Ae 3x. Substi- 
tuting into the differential equation, we have

9Ae 3x 1 4sAe 3x d − e 3x

so 13Ae 3x − e 3x and A − 1
13. Thus a particular solution is

ypsxd − 1
13 e 3x

and the general solution is

 ysxd − c1 cos 2x 1 c2 sin 2x 1 1
13 e 3x Q

If Gsxd is either C cos kx or C sin kx, then, because of the rules for differentiating the 
sine and cosine functions, we take as a trial particular solution a function of the form 

ypsxd − A cos kx 1 B sin kx

EXAMPLE 3 Solve y0 1 y9 2 2y − sin x.

SOLUTION We try a particular solution

ypsxd − A cos x 1 B sin x

8

_5

_3 3
yp

yp+3g
yp+2f

yp+2f+3g

Figure 1 shows four solutions of the 
differential equation in Example 1  
in terms of the particular solution  
yp and the functions f sxd − e x and  
tsxd − e22x.

FIGURE 1

Figure 2 shows solutions of the dif-
ferential equation in Example 2  
in terms of yp and the functions 
f sxd − cos 2x and tsxd − sin 2x. 
Notice that all solutions approach ` as 
x l ` and all solutions (except yp)  
resemble sine func tions when x is 
negative.

4

_2

_4 2yp
yp+g

yp+f

yp+f+g

FIGURE 2
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 SECTION 17.2  Nonhomogeneous Linear Equations 1163

Then yp9 − 2A sin x 1 B cos x      yp0 − 2A cos x 2 B sin x

so substitution in the differential equation gives

 s2A cos x 2 B sin xd 1 s2A sin x 1 B cos xd 2 2sA cos x 1 B sin xd − sin x

or  s23A 1 Bd cos x 1 s2A 2 3Bd sin x − sin x

This is true if

23A 1 B − 0    and    2A 2 3B − 1

The solution of this system is

A − 2 1
10      B − 2 3

10

so a particular solution is

ypsxd − 2 1
10 cos x 2 3

10 sin x

In Example 1 we determined that the solution of the complementary equation is 
yc − c1ex 1 c2e22x. Thus the general solution of the given equation is

 ysxd − c1ex 1 c2 e22x 2 1
10 scos x 1 3 sin xd Q

If Gsxd is a product of functions of the preceding types, then we take the trial solu- 
tion to be a product of functions of the same type. For instance, in solving the differential 
equation

y0 1 2y9 1 4y − x cos 3x

we would try

ypsxd − sAx 1 Bd cos 3x 1 sCx 1 Dd sin 3x

If Gsxd is a sum of functions of these types, we use the easily verified principle of 
superposition, which says that if yp1

 and yp2
 are solutions of

ay0 1 by9 1 cy − G1sxd      ay0 1 by9 1 cy − G2sxd

respectively, then yp1 1 yp2 is a solution of

ay0 1 by9 1 cy − G1sxd 1 G2sxd

EXAMPLE 4 Solve y0 2 4y − xex 1 cos 2x.

SOLUTION The auxiliary equation is r 2 2 4 − 0 with roots 62, so the solution of the 
complementary equation is ycsxd − c1e 2x 1 c2 e22x. For the equation y0 2 4y − xex  
we try

yp1sxd − sAx 1 Bdex

Then yp19 − sAx 1 A 1 Bdex, yp10 − sAx 1 2A 1 Bdex, so substitution in the equation 
gives

 sAx 1 2A 1 Bdex 2 4sAx 1 Bdex − xex

or  s23Ax 1 2A 2 3Bdex − xex
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1164 CHAPTER 17  Second-Order Differential Equations

Thus 23A − 1 and 2A 2 3B − 0, so A − 21
3, B − 22

9, and

yp1
sxd − (21

3 x 2 2
9)ex

For the equation y0 2 4y − cos 2x, we try

yp2sxd − C cos 2x 1 D sin 2x

Substitution gives

 24C cos 2x 2 4D sin 2x 2 4sC cos 2x 1 D sin 2xd − cos 2x

or  28C cos 2x 2 8D sin 2x − cos 2x

Therefore 28C − 1, 28D − 0, and

yp2sxd − 21
8 cos 2x

By the superposition principle, the general solution is

 y − yc 1 yp1 1 yp2 − c1e 2x 1 c2 e22x 2 (1
3 x 1 2

9 )ex 2 1
8 cos 2x  Q

Finally we note that the recommended trial solution yp sometimes turns out to be a 
solution of the complementary equation and therefore can’t be a solution of the nonhomo-
geneous equation. In such cases we multiply the recommended trial solution by x (or by 
x 2 if necessary) so that no term in ypsxd is a solution of the complementary equation.

EXAMPLE 5 Solve y0 1 y − sin x.

SOLUTION The auxiliary equation is r 2 1 1 − 0 with roots 6i, so the solution of the 
complementary equation is

ycsxd − c1 cos x 1 c2 sin x

Ordinarily, we would use the trial solution

ypsxd − A cos x 1 B sin x

but we observe that it is a solution of the complementary equation, so instead we try

ypsxd − Ax cos x 1 Bx sin x

Then  yp9sxd − A cos x 2 Ax sin x 1 B sin x 1 Bx cos x

 yp0sxd − 22A sin x 2 Ax cos x 1 2B cos x 2 Bx sin x

Substitution in the differential equation gives

yp0 1 yp − 22A sin x 1 2B cos x − sin x

In Figure 3 we show the particular 
solution yp − yp1 1 yp2 of the differ-
ential equation in Example 4. The 
other solutions are given in terms of 
f sxd − e 2x and tsxd − e22x.

5

_2

_4 1yp

yp+g

yp+f

yp+2f+g

FIGURE 3
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 SECTION 17.2  Nonhomogeneous Linear Equations 1165

so A − 21
2, B − 0, and

ypsxd − 21
2 x cos x

The general solution is

 ysxd − c1 cos x 1 c2 sin x 2 1
2 x cos x  Q

We summarize the method of undetermined coefficients as follows:

Summary of the Method of Undetermined Coefficients
1.  If Gsxd − ekxPsxd, where P is a polynomial of degree n, then try 

ypsxd − ekxQsxd, where Qsxd is an nth-degree polynomial (whose coefficients 
are determined by substituting in the differential equation).

2.  If Gsxd − ekxPsxd cos mx or Gsxd − ekxPsxd sin mx, where P is an nth-degree  
polynomial, then try

ypsxd − ekxQsxd cos mx 1 ekxRsxd sin mx

 where Q and R are nth-degree polynomials.

 Modification: If any term of yp is a solution of the complementary equation,  
multiply yp by x (or by x 2 if necessary).

EXAMPLE 6 Determine the form of the trial solution for the differential equation 
y0 2 4y9 1 13y − e 2x cos 3x.

SOLUTION Here Gsxd has the form of part 2 of the summary, where k − 2, m − 3, and 
Psxd − 1. So, at first glance, the form of the trial solution would be

ypsxd − e 2xsA cos 3x 1 B sin 3xd

But the auxiliary equation is r 2 2 4r 1 13 − 0, with roots r − 2 6 3i, so the solution 
of the complementary equation is

ycsxd − e 2xsc1 cos 3x 1 c2 sin 3xd

This means that we have to multiply the suggested trial solution by x. So, instead, we 
use

 ypsxd − xe 2xsA cos 3x 1 B sin 3xd Q

The Method of Variation of Parameters
Suppose we have already solved the homogeneous equation ay0 1 by9 1 cy − 0 and 
written the solution as

4  ysxd − c1y1sxd 1 c2y2sxd 

where y1 and y2 are linearly independent solutions. Let’s replace the constants (or param-
eters) c1 and c2 in Equation 4 by arbitrary functions u1sxd and u2sxd. We look for a particu-

The graphs of four solutions of the 
differential equation in Example 5 are 
shown in Figure 4.

4

_4

_2π 2π
yp

FIGURE 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1166 CHAPTER 17  Second-Order Differential Equations

lar solution of the nonhomogeneous equation ay0 1 by9 1 cy − Gsxd of the form

5  ypsxd − u1sxd y1sxd 1 u2sxd y2sxd 

(This method is called variation of parameters because we have varied the parameters 
c1 and c2 to make them functions.) Differentiating Equation 5, we get

6  yp9 − su19y1 1 u29y2 d 1 su1 y19 1 u2 y29 d 

Since u1 and u2 are arbitrary functions, we can impose two conditions on them. One 
con dition is that yp is a solution of the differential equation; we can choose the other 
condition so as to simplify our calculations. In view of the expression in Equation 6, let’s 
impose the condition that

7  u19y1 1 u29y2 − 0 

Then yp0 − u19y19 1 u29y29 1 u1 y10 1 u2 y20

Substituting in the differential equation, we get

asu19y19 1 u29y29 1 u1 y10 1 u2 y20 d 1 bsu1 y19 1 u2 y29 d 1 csu1 y1 1 u2 y2 d − G

or

8  u1say10 1 by19 1 cy1d 1 u2say20 1 by29 1 cy2 d 1 asu19y19 1 u29y29 d − G 

But y1 and y2 are solutions of the complementary equation, so

ay10 1 by19 1 cy1 − 0    and    ay20 1 by29 1 cy2 − 0

and Equation 8 simplifies to

9  asu19y19 1 u29y29d − G 

Equations 7 and 9 form a system of two equations in the unknown functions u19 and u29. 
After solving this system we may be able to integrate to find u1 and u2 and then the par-
ticular solution is given by Equation 5.

EXAMPLE 7 Solve the equation y0 1 y − tan x, 0 , x , !y2.

SOLUTION The auxiliary equation is r 2 1 1 − 0 with roots 6i, so the solution of 
y0 1 y − 0 is ysxd − c1 sin x 1 c2 cos x. Using variation of parameters, we seek a  
solution of the form

ypsxd − u1sxd sin x 1 u2sxd cos x

Then yp9 − su19 sin x 1 u29 cos xd 1 su1 cos x 2 u2 sin xd

Set

10  u19 sin x 1 u29 cos x − 0 
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 SECTION 17.2  Nonhomogeneous Linear Equations 1167

Then yp0 − u19 cos x 2 u29 sin x 2 u1 sin x 2 u2 cos x

For yp to be a solution we must have

11  yp0 1 yp − u19 cos x 2 u29 sin x − tan x 

Solving Equations 10 and 11, we get

u19ssin2x 1 cos2xd − cos x tan x

u19 − sin x      u1sxd − 2cos x

(We seek a particular solution, so we don’t need a constant of integration here.) Then, 
from Equation 10, we obtain

u29 − 2
sin x
cos x

 u19 − 2
sin2x
cos x

−
cos2x 2 1

cos x
− cos x 2 sec x

So u2sxd − sin x 2 lnssec x 1 tan xd

(Note that sec x 1 tan x . 0 for 0 , x , !y2.) Therefore

 ypsxd − 2cos x sin x 1 fsin x 2 lnssec x 1 tan xdg cos x

 − 2cos x lnssec x 1 tan xd

and the general solution is

 ysxd − c1 sin x 1 c2 cos x 2 cos x lnssec x 1 tan xd Q

Figure 5 shows four solutions of the  
differential equation in Example 7.

π
2

2.5

_1

0
yp

FIGURE 5

1–10 Solve the differential equation or initial-value problem 
using the method of undetermined coefficients.

 1. y 0 1 2y9 2 8y − 1 2 2x 2

 2. y 0 2 3y9 − sin 2x

 3. 9y 0 1 y − e 2x

 4. y 0 2 2y9 1 2y − x 1 e x

 5. y 0 2 4y9 1 5y − e2x

 6. y 0 2 4y9 1 4y − x 2 sin x

 7. y 0 2 2y9 1 5y − sin x, ys0d − 1, y9s0d − 1

 8. y 0 2 y − xe 2x, ys0d − 0, y9s0d − 1

 9. y 0 2 y9 − xe x,  ys0d − 2,  y9s0d − 1

 10. y 0 1 y9 2 2y − x 1 sin 2x,  y s0d − 1,  y9s0d − 0

11–12 Graph the particular solution and several other solutions. 
What characteristics do these solutions have in common?

 11. y 0 1 3y9 1 2y − cos x 12. y 0 1 4y − e2x

13–18 Write a trial solution for the method of undetermined 
coefficients. Do not determine the coefficients.

 13. y 0 2 y9 2 2y − xe x cos x

 14. y 0 1 4y − cos 4x 1 cos 2x

 15. y 0 2 3y9 1 2y − e x 1 sin x

 16. y 0 1 3y9 2 4y − sx 3 1 xde x

 17. y 0 1 2y9 1 10y − x 2e2x cos 3x

 18. y 0 1 4y − e 3x 1 x sin 2x

;
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1168 CHAPTER 17  Second-Order Differential Equations

 24. y 0 1 y − sec3x, 0 , x , !y2

 25. y 0 2 3y9 1 2y −
1

1 1 e2x

 26. y 0 1 3y9 1 2y − sinse x d

 27. y 0 2 2y9 1 y −
e x

1 1 x 2

 28. y 0 1 4y9 1 4y −
e22x

x 3

19–22 Solve the differential equation using (a) undetermined 
coefficients and (b) variation of parameters.

 19. 4y 0 1 y − cos x 20. y 0 2 2y9 2 3y − x 1 2

 21. y 0 2 2y9 1 y − e2x

 22. y 0 2 y9 − e x

23–28 Solve the differential equation using the method of varia-
tion of parameters.

 23. y 0 1 y − sec2x, 0 , x , !y2

Second-order linear differential equations have a variety of applications in science and 
engineering. In this section we explore two of them: the vibration of springs and electric 
circuits.

Vibrating Springs
We consider the motion of an object with mass m at the end of a spring that is either ver-
tical (as in Figure 1) or horizontal on a level surface (as in Figure 2).

In Section 6.4 we discussed Hooke’s Law, which says that if the spring is stretched (or 
compressed) x units from its natural length, then it exerts a force that is proportional to x:

restoring force − 2kx

where k is a positive constant (called the spring constant). If we ignore any external 
resisting forces (due to air resistance or friction) then, by Newton’s Second Law (force 
equals mass times acceleration), we have

1  m 
d 2x
dt 2 − 2kx    or    m 

d 2x
dt 2 1 kx − 0 

This is a second-order linear differential equation. Its auxiliary equation is mr 2 1 k − 0 
with roots r − 6"i, where  " − skym . Thus the general solution is

xstd − c1 cos "t 1 c2 sin "t

which can also be written as

xstd − A coss"t 1 #d

where  " − skym   (frequency)

  A − sc1
2 1 c2

2   (amplitude)

cos # −
c1

A
      sin # − 2

c2

A
  s# is the phase angled 

(See Exercise 17.) This type of motion is called simple harmonic motion.

x0 x

equilibrium position

m

m

x

0

x m

equilibrium
position

FIGURE 2

FIGURE 1
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 SECTION 17.3  Applications of Second-Order Differential Equations 1169

EXAMPLE 1 A spring with a mass of 2 kg has natural length 0.5 m. A force of 25.6 N is 
required to maintain it stretched to a length of 0.7 m. If the spring is stretched to a length 
of 0.7 m and then released with initial velocity 0, find the position of the mass at any  
time t.

SOLUTION From Hooke’s Law, the force required to stretch the spring is

ks0.2d − 25.6

so k − 25.6y0.2 − 128. Using this value of the spring constant k, together with m − 2 
in Equation 1, we have

2 
d 2x
dt 2 1 128x − 0

As in the earlier general discussion, the solution of this equation is

2  xstd − c1 cos 8t 1 c2 sin 8t 

We are given the initial condition that xs0d − 0.2. But, from Equation 2, xs0d − c1. 
Therefore c1 − 0.2. Differentiating Equation 2, we get

x9std − 28c1 sin 8t 1 8c2 cos 8t

Since the initial velocity is given as x9s0d − 0, we have c2 − 0 and so the solution is

 xstd − 0.2 cos 8t Q

Damped Vibrations
We next consider the motion of a spring that is subject to a frictional force (in the case of 
the horizontal spring of Figure 2) or a damping force (in the case where a vertical spring 
moves through a fluid as in Figure 3). An example is the damping force supplied by a 
shock absorber in a car or a bicycle.

We assume that the damping force is proportional to the velocity of the mass and acts 
in the direction opposite to the motion. (This has been confirmed, at least approximately, 
by some physical experiments.) Thus

damping force − 2c 
dx
dt

where c is a positive constant, called the damping constant. Thus, in this case, Newton’s 
Second Law gives

m 
d 2x
dt 2 − restoring force 1 damping force − 2kx 2 c 

dx
dt

or

3  m 
d 2x
dt 2 1 c 

dx
dt

1 kx − 0 

m

FIGURE 3
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1170 CHAPTER 17  Second-Order Differential Equations

Equation 3 is a second-order linear differential equation and its auxiliary equation is 
mr 2 1 cr 1 k − 0. The roots are

4  r1 −
2c 1 sc 2 2 4mk

2m
      r2 −

2c 2 sc 2 2 4mk
2m

 

According to Section 17.1 we need to discuss three cases.

CASE I c2 2 4mk . 0 (overdamping)
In this case r1 and r2 are distinct real roots and

x − c1er1 t 1 c2 er2 t

Since c, m, and k are all positive, we have sc 2 2 4mk , c, so the roots r1 and r2 given 
by Equations 4 must both be negative. This shows that x l 0 as t l `. Typical graphs of  
x as a function of t are shown in Figure 4. Notice that oscillations do not occur. (It’s 
possible for the mass to pass through the equilibrium position once, but only once.) This 
is because c 2 . 4mk means that there is a strong damping force (high-viscosity oil or 
grease) compared with a weak spring or small mass.

CASE II c2 2 4mk − 0 (critical damping)
This case corresponds to equal roots

r1 − r2 − 2
c

2m

and the solution is given by

x − sc1 1 c2tde2scy2mdt

It is similar to Case I, and typical graphs resemble those in Figure 4 (see Exercise 12), 
but the damping is just sufficient to suppress vibrations. Any decrease in the viscosity of 
the fluid leads to the vibrations of the following case.

CASE III c2 2 4mk , 0 (underdamping)
Here the roots are complex:

r1

r2
J − 2

c
2m

6 "i

where " −
s4mk 2 c 2 

2m

The solution is given by

x − e2scy2mdtsc1 cos "t 1 c2 sin "td

We see that there are oscillations that are damped by the factor e2scy2mdt. Since c . 0 
and m . 0, we have 2scy2md , 0 so e2scy2mdt l 0 as t l `. This implies that x l 0 
as t l `; that is, the motion decays to 0 as time increases. A typical graph is shown in 
Figure 5.

x

t0

x

t0

FIGURE 4  
Overdamping

x

t0

x=Ae–(c/2m)t

x=_Ae–(c/2m)t

FIGURE 5  
Underdamping
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 SECTION 17.3  Applications of Second-Order Differential Equations 1171

EXAMPLE 2 Suppose that the spring of Example 1 is immersed in a fluid with damp- 
ing constant c − 40. Find the position of the mass at any time t if it starts from the 
equilibrium position and is given a push to start it with an initial velocity of 0.6 mys.

SOLUTION From Example 1, the mass is m − 2 and the spring constant is k − 128, so 
the differential equation (3) becomes

 2 
d 2x
dt 2 1 40 

dx
dt

1 128x − 0

or  
d 2x
dt 2 1 20 

dx
dt

1 64x − 0

The auxiliary equation is r 2 1 20r 1 64 − sr 1 4dsr 1 16d − 0 with roots 24 and 
216, so the motion is overdamped and the solution is

xstd − c1e24 t 1 c2 e216 t

We are given that xs0d − 0, so c1 1 c2 − 0. Differentiating, we get

 x9std − 24c1e24 t 2 16c2e216 t

so  x9s0d − 24c1 2 16c2 − 0.6

Since c2 − 2c1, this gives 12c1 − 0.6 or c1 − 0.05. Therefore

 x − 0.05se24 t 2 e216 td Q

Forced Vibrations
Suppose that, in addition to the restoring force and the damping force, the motion of the 
spring is affected by an external force Fstd. Then Newton’s Second Law gives

 m 
d 2x
dt 2 − restoring force 1 damping force 1 external force

 − 2kx 2 c 
dx
dt

1 Fstd

Thus, instead of the homogeneous equation (3), the motion of the spring is now governed 
by the following nonhomogeneous differential equation:

5  m 
d 2x
dt 2 1 c 

dx
dt

1 kx − Fstd 

The motion of the spring can be determined by the methods of Section 17.2.

Figure 6 shows the graph of the position 
function for the overdamped motion in 
Example 2.

0.03

0 1.5

FIGURE 6
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1172 CHAPTER 17  Second-Order Differential Equations

A commonly occurring type of external force is a periodic force function

Fstd − F0 cos "0t    where "0 ± " − skym 

In this case, and in the absence of a damping force (c − 0), you are asked in Exercise 9 
to use the method of undetermined coefficients to show that

6  xstd − c1 cos "t 1 c2 sin "t 1
F0

ms"2 2 " 0
2 d

 cos "0t  

If "0 − ", then the applied frequency reinforces the natural frequency and the result is 
vibrations of large amplitude. This is the phenomenon of resonance (see Exercise 10).

Electric Circuits
In Sections 9.3 and 9.5 we were able to use first-order separable and linear equations to 
analyze electric circuits that contain a resistor and inductor (see Figure 9.3.5 or Fig-
ure 9.5.4) or a resistor and capacitor (see Exercise 9.5.29). Now that we know how 
to solve second-order linear equations, we are in a position to analyze the circuit 
shown in Figure 7. It contains an electromotive force E (supplied by a battery or gen-
erator), a resistor R, an inductor L, and a capacitor C, in series. If the charge on the 
capacitor at time t is Q − Qstd, then the current is the rate of change of Q with respect  
to t: I − dQydt. As in Section 9.5, it is known from physics that the voltage drops across 
the resistor, inductor, and capacitor are

RI      L 
dI
dt

      
Q
C

respectively. Kirchhoff’s voltage law says that the sum of these voltage drops is equal to 
the supplied voltage:

L 
dI
dt

1 RI 1
Q
C

− Estd

Since I − dQydt, this equation becomes

7  L 
d 2Q
dt 2 1 R 

dQ
dt

1
1
C

 Q − Estd 

which is a second-order linear differential equation with constant coefficients. If the 
charge Q0 and the current I0 are known at time 0, then we have the initial conditions

Qs0d − Q0      Q9s0d − Is0d − I0

and the initial-value problem can be solved by the methods of Section 17.2.

C

E

R

L
switch

FIGURE 7
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 SECTION 17.3  Applications of Second-Order Differential Equations 1173

A differential equation for the current can be obtained by differentiating Equation 7 
with respect to t and remembering that I − dQydt:

L 
d 2I
dt 2 1 R 

dI
dt

1
1
C

 I − E9std

EXAMPLE 3 Find the charge and current at time t in the circuit of Figure 7 if R − 40 V, 
L − 1 H, C − 16 3 1024 F, Estd − 100 cos 10t, and the initial charge and current are 
both 0.

SOLUTION With the given values of L, R, C, and Estd, Equation 7 becomes

8  
d 2Q
dt 2 1 40 

dQ
dt

1 625Q − 100 cos 10t 

The auxiliary equation is r 2 1 40r 1 625 − 0 with roots

r −
240 6 s2900 

2
− 220 6 15i

so the solution of the complementary equation is

Qcstd − e220 tsc1 cos 15t 1 c2 sin 15td

For the method of undetermined coefficients we try the particular solution

 Qpstd − A cos 10t 1 B sin 10t

Then  Qp9std − 210A sin 10t 1 10B cos 10t

 Qp0std − 2100A cos 10t 2 100B sin 10t

Substituting into Equation 8, we have

s2100A cos 10t 2 100B sin 10td 1 40s210A sin 10t 1 10B cos 10td

1 625sA cos 10t 1 B sin 10td − 100 cos 10t

or s525A 1 400Bd cos 10t 1 s2400A 1 525Bd sin 10t − 100 cos 10t

Equating coefficients, we have

 525A 1 400B − 100    or   21A 1 16B − 4

 2400A 1 525B − 0     or   216A 1 21B − 0

The solution of this system is A − 84
697 and B − 64

697, so a particular solution is

Qpstd − 1
697 s84 cos 10t 1 64 sin 10td
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1174 CHAPTER 17  Second-Order Differential Equations

and the general solution is

Qstd − Qcstd 1 Qpstd

 − e220tsc1 cos 15t 1 c2 sin 15td 1 4
697 s21 cos 10t 1 16 sin 10td

Imposing the initial condition Qs0d − 0, we get

Qs0d − c1 1 84
697 − 0      c1 − 2 84

697

To impose the other initial condition, we first differentiate to find the current:

 I −
dQ
dt

− e220t fs220c1 1 15c2 d cos 15t 1 s215c1 2 20c2 d sin 15tg

 1 40
697 s221 sin 10t 1 16 cos 10td

  Is0d − 220c1 1 15c2 1 640
697 − 0      c2 − 2 464

2091

Thus the formula for the charge is

Qstd −
4

697
 F e220 t

3
 s263 cos 15t 2 116 sin 15td 1 s21 cos 10t 1 16 sin 10tdG

and the expression for the current is

Istd − 1
2091 fe220 ts21920 cos 15t 1 13,060 sin 15td 1 120s221 sin 10t 1 16 cos 10tdg

� � Q

NOTE 1 In Example 3 the solution for Qstd consists of two parts. Since e220 t l 0 as 
t l ` and both cos 15t and sin 15t are bounded functions,

Qcstd − 4
2091 e220 ts263 cos 15t 2 116 sin 15td l 0    as t l `

So, for large values of t,

Qstd < Qpstd − 4
697 s21 cos 10t 1 16 sin 10td

and, for this reason, Qpstd is called the steady state solution. Figure 8 shows how the 
graph of the steady state solution compares with the graph of Q in this case.

NOTE 2 Comparing Equations 5 and 7, we see that mathematically they are identi-
cal. This suggests the analogies given in the following chart between physical situations 
that, at first glance, are very different.

Spring system Electric circuit

 x displacement  Q charge

 dxydt velocity  I − dQydt current

 m mass  L inductance

 c damping constant  R resistance

 k spring constant  1yC elastance

 Fstd external force  Estd electromotive force

0.2

_0.2

0 1.2

Qp

Q

FIGURE 8

5    m 
d 2x
dt 2 1  c 

dx
dt

1  kx − Fstd

7    L 
d 2Q
dt 2 1  R 

dQ
dt

1  
1
C

 Q − Estd
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 SECTION 17.3  Applications of Second-Order Differential Equations 1175

We can also transfer other ideas from one situation to the other. For instance, the 
steady state solution discussed in Note 1 makes sense in the spring system. And the phe-
nomenon of resonance in the spring system can be usefully carried over to electric cir-
cuits as electrical resonance.

 1.  A spring has natural length 0.75 m and a 5-kg mass. A force 
of 25 N is needed to keep the spring stretched to a length of 
1 m. If the spring is stretched to a length of 1.1 m and then 
released with velocity 0, find the position of the mass after  
t seconds.

 2.  A spring with an 8-kg mass is kept stretched 0.4 m beyond 
its natural length by a force of 32 N. The spring starts at  
its equilibrium position and is given an initial velocity of  
1 mys. Find the position of the mass at any time t.

 3.  A spring with a mass of 2 kg has damping constant 14, and  
a force of 6 N is required to keep the spring stretched 0.5 m 
beyond its natural length. The spring is stretched 1 m 
beyond its natural length and then released with zero veloc-
ity. Find the position of the mass at any time t.

 4.  A force of 13 N is needed to keep a spring with a 2-kg mass 
stretched 0.25 m beyond its natural length. The damping 
constant of the spring is c − 8.

 (a)  If the mass starts at the equilibrium position with a  
velocity of 0.5 mys, find its position at time t.

 (b) Graph the position function of the mass.

 5.  For the spring in Exercise 3, find the mass that would pro-
duce critical damping.

 6.  For the spring in Exercise 4, find the damping constant that 
would produce critical damping.

 7.  A spring has a mass of 1 kg and its spring constant is 
k − 100. The spring is released at a point 0.1 m above its 
equilibrium position. Graph the position function for the 
following values of the damping constant c: 10, 15, 20,  
25, 30. What type of damping occurs in each case?

 8.  A spring has a mass of 1 kg and its damping constant is 
c − 10. The spring starts from its equilibrium position with 
a velocity of 1 mys. Graph the position function for the 
following values of the spring constant k: 10, 20, 25, 30, 40. 
What type of damping occurs in each case?

 9.  Suppose a spring has mass m and spring constant k and let 
! − skym . Suppose that the damping constant is so small  
that the damping force is negligible. If an external force 
Fstd − F0 cos !0t is applied, where !0 ± !, use the method  
of undetermined coefficients to show that the motion of the 
mass is described by Equation 6.

;

;

;

 10.  As in Exercise 9, consider a spring with mass m, spring con -
   stant k, and damping constant c − 0, and let ! − skym .  

If an external force Fstd − F0 cos !t is applied (the applied  
frequency equals the natural frequency), use the method of 
undetermined coefficients to show that the motion of the 
mass is given by

xstd − c1 cos !t 1 c2 sin !t 1
F0

2m!
t sin !t

 11.  Show that if !0 ± !, but !y!0 is a rational number, then 
the motion described by Equation 6 is periodic.

 12.  Consider a spring subject to a frictional or damping force.
 (a)  In the critically damped case, the motion is given by 

x − c1ert 1 c2tert. Show that the graph of x crosses the  
t-axis whenever c1 and c2 have opposite signs.

 (b)  In the overdamped case, the motion is given by 
x − c1er 1 t 1 c2er 2 t, where r1 . r2. Determine a condi-
tion on the relative magnitudes of c1 and c2 under which 
the graph of x crosses the t-axis at a positive value of t.

 13.  A series circuit consists of a resistor with R − 20 V, an 
inductor with L − 1 H, a capacitor with C − 0.002 F, and 
a 12-V battery. If the initial charge and current are both 0, 
find the charge and current at time t.

 14.  A series circuit contains a resistor with R − 24 V, an induc-
tor with L − 2 H, a capacitor with C − 0.005 F, and a 12-V 
bat tery. The initial charge is Q − 0.001 C and the initial 
current is 0.

 (a) Find the charge and current at time t.
 (b) Graph the charge and current functions.

 15.  The battery in Exercise 13 is replaced by a generator pro-
ducing a voltage of Estd − 12 sin 10t. Find the charge at  
time t.

 16.  The battery in Exercise 14 is replaced by a generator pro-
duc ing a voltage of Estd − 12 sin 10t.

 (a) Find the charge at time t.
 (b) Graph the charge function.

 17.  Verify that the solution to Equation 1 can be written in the 
form xstd − A coss!t 1 "d.

;

;
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1176 CHAPTER 17  Second-Order Differential Equations

 (b)  What is the maximum angle from the vertical?
 (c)  What is the period of the pendulum (that is, the time to 

complete one back-and-forth swing)?
 (d)  When will the pendulum first be vertical?
 (e)  What is the angular velocity when the pendulum is  

vertical?

¨ L

 18.  The figure shows a pendulum with length L and the angle # 
from the vertical to the pendulum. It can be shown that #, as a 
function of time, satisfies the nonlinear differential equation

d 2#

dt 2 1
t
L

 sin # − 0

   where t is the acceleration due to gravity. For small values of  
# we can use the linear approximation sin # < # and then the 
differential equation becomes linear.

 (a)  Find the equation of motion of a pendulum with length 1 m 
if # is initially 0.2 rad and the initial angular velocity is 
d#ydt − 1 radys.

Many differential equations can’t be solved explicitly in terms of finite combinations of 
simple familiar functions. This is true even for a simple-looking equation like

1  y0 2 2xy9 1 y − 0 

But it is important to be able to solve equations such as Equation 1 because they arise 
from physical problems and, in particular, in connection with the Schrödinger equation 
in quantum mechanics. In such a case we use the method of power series; that is, we look 
for a solution of the form

y − f sxd − o
`

n−0
 cn xn − c0 1 c1 x 1 c2 x 2 1 c3 x 3 1 ∙ ∙ ∙

The method is to substitute this expression into the differential equation and determine 
the values of the coefficients c0, c1, c2, . . . . This technique resembles the method of 
undetermined coefficients discussed in Section 17.2.

Before using power series to solve Equation 1, we illustrate the method on the simpler 
equation y0 1 y − 0 in Example 1. It’s true that we already know how to solve this equa-
tion by the techniques of Section 17.1, but it’s easier to understand the power series 
method when it is applied to this simpler equation.

EXAMPLE 1 Use power series to solve the equation y0 1 y − 0.

SOLUTION We assume there is a solution of the form

2  y − c0 1 c1 x 1 c2 x 2 1 c3 x 3 1 ∙ ∙ ∙ − o
`

n−0
 cn xn 

We can differentiate power series term by term, so

 y9 − c1 1 2c2 x 1 3c3 x 2 1 ∙ ∙ ∙ − o
`

n−1
 ncn xn21

3   y0 − 2c2 1 2 ∙ 3c3 x 1 ∙ ∙ ∙ − o
`

n−2
 nsn 2 1dcn xn22 
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 SECTION 17.4  Series Solutions 1177

In order to compare the expressions for y and y0 more easily, we rewrite y0 as follows:

4  y0 − o
`

n−0
 sn 1 2dsn 1 1dcn12 xn 

Substituting the expressions in Equations 2 and 4 into the differential equation, we 
obtain

o
`

n−0
 sn 1 2dsn 1 1dcn12 xn 1 o

`

n−0
 cn xn − 0

or

5  o
`

n−0
 fsn 1 2dsn 1 1dcn12 1 cn gxn − 0 

If two power series are equal, then the corresponding coefficients must be equal. 
Therefore the coefficients of xn in Equation 5 must be 0:

sn 1 2dsn 1 1dcn12 1 cn − 0

6  cn12 − 2
cn

sn 1 1dsn 1 2d
    n − 0, 1, 2, 3, . . . 

Equation 6 is called a recursion relation. If c0 and c1 are known, this equation allows  
us to determine the remaining coefficients recursively by putting n − 0, 1, 2, 3, . . . in  
succession.

 Put n − 0: c2 − 2
c0

1 ! 2

 Put n − 1: c3 − 2
c1

2 ! 3

 Put n − 2: c4 − 2
c2

3 ! 4
−

c0

1 ! 2 ! 3 ! 4
−

c0

4!

 Put n − 3: c5 − 2
c3

4 ! 5
−

c1

2 ! 3 ! 4 ! 5
−

c1

5!

 Put n − 4: c6 − 2
c4

5 ! 6
− 2

c0

4! 5 ! 6
− 2

c0

6!

 Put n − 5: c7 − 2
c5

6 ! 7
− 2

c1

5! 6 ! 7
− 2

c1

7!

By now we see the pattern:

 For the even coefficients, c2n − s21dn 
c0

s2nd!

 For the odd coefficients, c2n11 − s21dn 
c1

s2n 1 1d!

By writing out the first few terms of (4), 
you can see that it is the same as (3). To 
obtain (4), we replaced n by n 1 2 and 
began the summation at 0 instead of 2.
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1178 CHAPTER 17  Second-Order Differential Equations

Putting these values back into Equation 2, we write the solution as

 y − c0 1 c1 x 1 c2 x 2 1 c3 x 3 1 c4 x 4 1 c5 x 5 1 ∙ ∙ ∙

 − c0S1 2
x 2

2!
1

x 4

4!
2

x 6

6!
1 ∙ ∙ ∙ 1 s21dn 

x 2n

s2nd!
1 ∙ ∙ ∙D

 1 c1Sx 2
x 3

3!
1

x 5

5!
2

x 7

7!
1 ∙ ∙ ∙ 1 s21dn 

x 2n11

s2n 1 1d!
1 ∙ ∙ ∙D

 − c0 o
`

n−0
 s21dn 

x 2n

s2nd!
1 c1 o

`

n−0
 s21dn 

x 2n11

s2n 1 1d!

Notice that there are two arbitrary constants, c0 and c1. Q

NOTE 1 We recognize the series obtained in Example 1 as being the Maclaurin series 
for cos x and sin x. (See Equations 11.10.16 and 11.10.15.) Therefore we could write the 
solution as

ysxd − c0 cos x 1 c1 sin x

But we are not usually able to express power series solutions of differential equations in 
terms of known functions.

EXAMPLE 2 Solve y0 2 2xy9 1 y − 0.

SOLUTION We assume there is a solution of the form

  y − o
`

n−0
 cn xn

Then  y9 − o
`

n−1
 ncn xn21

and  y0 − o
`

n−2
 nsn 2 1dcn xn22 − o

`

n−0
 sn 1 2dsn 1 1dcn12 xn

as in Example 1. Substituting in the differential equation, we get

 o
`

n−0
 sn 1 2dsn 1 1dcn12 xn 2 2x o

`

n−1
 ncn xn21 1 o

`

n−0
 cn xn − 0

 o
`

n−0
 sn 1 2dsn 1 1dcn12 xn 2  o

`

n−1
 2ncn xn 1 o

`

n−0
 cn xn − 0

 o
`

n−0
 fsn 1 2dsn 1 1dcn12 2 s2n 2 1dcn gxn − 0

This equation is true if the coefficients of xn are 0:

sn 1 2dsn 1 1dcn12 2 s2n 2 1dcn − 0

7  cn12 −
2n 2 1

sn 1 1dsn 1 2d
 cn    n − 0, 1, 2, 3, . . . 

o
`

n−1
 2ncn x n − o

`

n−0
 2ncn x n
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 SECTION 17.4  Series Solutions 1179

We solve this recursion relation by putting n − 0, 1, 2, 3, . . . successively in Equation 7:

 Put n − 0: c2 −
21

1 ! 2
 c0

 Put n − 1: c3 −
1

2 ! 3
 c1

 Put n − 2: c4 −
3

3 ! 4
 c2 − 2

3
1 ! 2 ! 3 ! 4

 c0 − 2
3
4!

 c0

 Put n − 3: c5 −
5

4 ! 5
 c3 −

1 ! 5
2 ! 3 ! 4 ! 5

 c1 −
1 ! 5

5!
 c1

 Put n − 4: c6 −
7

5 ! 6
 c4 − 2

3 ! 7
4! 5 ! 6

 c0 − 2
3 ! 7
6!

 c0

 Put n − 5: c7 −
9

6 ! 7
 c5 −

1 ! 5 ! 9
5! 6 ! 7

 c1 −
1 ! 5 ! 9

7!
 c1

 Put n − 6: c8 −
11

7 ! 8
 c6 − 2

3 ! 7 ! 11
8!

 c0

 Put n − 7: c9 −
13

8 ! 9
 c7 −

1 ! 5 ! 9 ! 13
9!

 c1

In general, the even coefficients are given by

c2n − 2
3 ! 7 ! 11 ! ∙ ∙ ∙ ! s4n 2 5d

s2nd!
 c0

and the odd coefficients are given by

c2n11 −
1 ! 5 ! 9 ! ∙ ∙ ∙ ! s4n 2 3d

s2n 1 1d!
 c1

The solution is

 y − c0 1 c1 x 1 c2 x 2 1 c3 x 3 1 c4 x 4 1 ∙ ∙ ∙

 − c0S1 2
1
2!

 x 2 2
3
4!

 x 4 2
3 ! 7

6!
 x 6 2

3 ! 7 ! 11
8!

 x 8 2 ∙ ∙ ∙D
 1 c1Sx 1

1
3!

 x 3 1
1 ! 5

5!
 x 5 1

1 ! 5 ! 9
7!

 x 7 1
1 ! 5 ! 9 ! 13

9!
 x 9 1 ∙ ∙ ∙D

or

8   y − c0S1 2
1
2!

 x 2 2 o
`

n−2
 
3 ! 7 ! ∙ ∙ ∙ ! s4n 2 5d

s2nd!
 x 2nD 

  1 c1Sx 1 o
`

n−1
 
1 ! 5 ! 9 ! ∙ ∙ ∙ ! s4n 2 3d

s2n 1 1d!
 x 2n11D Q
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1180 CHAPTER 17  Second-Order Differential Equations

NOTE 2 In Example 2 we had to assume that the differential equation had a series 
solution. But now we could verify directly that the function given by Equation 8 is 
indeed a solution.

NOTE 3 Unlike the situation of Example 1, the power series that arise in the solution 
of Example 2 do not define elementary functions. The functions

 y1sxd − 1 2
1
2!

 x 2 2 o
`

n−2
 
3 ! 7 ! ∙ ∙ ∙ ! s4n 2 5d

s2nd!
 x 2n

and  y2sxd − x 1 o
`

n−1
 
1 ! 5 ! 9 ! ∙ ∙ ∙ ! s4n 2 3d

s2n 1 1d!
 x 2n11  

are perfectly good functions but they can’t be expressed in terms of familiar functions. 
We can use these power series expressions for y1 and y2 to compute approximate val-
ues of the functions and even to graph them. Figure 1 shows the first few partial sums 
T0, T2, T4, . . . (Taylor polynomials) for y1sxd, and we see how they converge to y1. In this 
way we can graph both y1 and y2 as in Figure 2.

NOTE 4 If we were asked to solve the initial-value problem

y0 2 2xy9 1 y − 0      ys0d − 0       y9s0d − 1

we would observe from Theorem 11.10.5 that

c0 − ys0d − 0      c1 − y9s0d − 1

This would simplify the calculations in Example 2, since all of the even coefficients 
would be 0. The solution to the initial-value problem is

ysxd − x 1 o
`

n−1
 
1 ? 5 ? 9 ? ∙ ∙ ∙ ? s4n 2 3d

s2n 1 1d!
 x 2n11

15

_15

_2.5 2.5
›

fi

2

_8

_2 2

T¸

T¡¸

FIGURE 2

FIGURE 1

1–11 Use power series to solve the differential equation. 

 1. y9 2 y − 0 2. y9 − xy 

 3. y9 − x 2 y 4. sx 2 3dy9 1 2y − 0

 5. y0 1 xy9 1 y − 0 6. y0 − y 

 7. sx 2 1dy0 1 y9 − 0

 8. y0 − xy 

 9. y0 2 xy9 2 y − 0,  ys0d − 1,  y9s0d − 0 

 10. y0 1 x 2 y − 0,  ys0d − 1,  y9s0d − 0 

 11. y0 1 x 2 y9 1 xy − 0,  ys0d − 0,  y9s0d − 1

 12. The solution of the initial-value problem

x 2 y0 1 xy9 1 x 2 y − 0    ys0d − 1    y9s0d − 0

   is called a Bessel function of order 0.
 (a)  Solve the initial-value problem to find a power series 

expansion for the Bessel function.
 (b)  Graph several Taylor polynomials until you reach one 

that looks like a good approximation to the Bessel func-
tion on the interval f25, 5g.

;
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 CHAPTER 17  Review 1181

CONCEPT CHECK Answers to the Concept Check can be found on the back endpapers.

17 REVIEW

 1. (a)  Write the general form of a second-order homogeneous  
linear differential equation with constant coefficients.

 (b)  Write the auxiliary equation.
 (c)  How do you use the roots of the auxiliary equation to solve 

the differential equation? Write the form of the solution for 
each of the three cases that can occur.

 2. (a)  What is an initial-value problem for a second-order differ-
ential equation?

 (b)  What is a boundary-value problem for such an equation?

 3. (a)  Write the general form of a second-order nonhomogeneous 
linear differential equation with constant coefficients.

 (b)  What is the complementary equation? How does it help 
solve the original differential equation?

 (c)  Explain how the method of undetermined coefficients 
works.

 (d)  Explain how the method of variation of parameters works.

 4.  Discuss two applications of second-order linear differential 
equations.

 5.  How do you use power series to solve a differential equation?

TRUE-FALSE QUIZ

 3.  The general solution of y0 2 y − 0 can be written as

y − c1 cosh x 1 c2 sinh x

 4.  The equation y0 2 y − e x has a particular solution of the form

yp − Ae x

Determine whether the statement is true or false. If it is true, explain 
why. If it is false, explain why or give an example that disproves the 
statement.

 1.  If y1 and y2 are solutions of y0 1 y − 0, then y1 1 y2 is also  
a solution of the equation.

 2.  If y1 and y2 are solutions of y0 1 6y9 1 5y − x, then 
c1 y1 1 c2 y2 is also a solution of the equation.

EXERCISES

11–14 Solve the initial-value problem.

 11. y0 1 6y9 − 0,  ys1d − 3,  y9s1d − 12

 12. y0 2 6y9 1 25y − 0,  ys0d − 2,  y9s0d − 1

 13. y0 2 5y9 1 4y − 0,  ys0d − 0,  y9s0d − 1

 14. 9y0 1 y − 3x 1 e 2x,  ys0d − 1,  y9s0d − 2

15–16 Solve the boundary-value problem, if possible.

 15. y0 1 4y9 1 29y − 0,  ys0d − 1,  ys$d − 21

 16. y0 1 4y9 1 29y − 0,  ys0d − 1,  ys$d − 2e22$

 17. Use power series to solve the initial-value problem

y0 1 xy9 1 y − 0    ys0d − 0    y9s0d − 1

 18. Use power series to solve the differential equation

y0 2 xy9 2 2y − 0

 19.  A series circuit contains a resistor with R − 40 V, an inductor 
with L − 2 H, a capacitor with C − 0.0025 F, and a 12-V bat-
tery. The initial charge is Q − 0.01 C and the initial current  
is 0. Find the charge at time t.

1–10 Solve the differential equation.

 1. 4y0 2 y − 0 

 2. y0 2 2y9 1 10y − 0

 3. y0 1 3y − 0 

 4. y0 1 8y9 1 16y − 0

 5. 
d 2y
dx 2 2 4 

dy
dx

1 5y − e 2x

 6. 
d 2y
dx 2 1

dy
dx

2 2y − x 2

 7. 
d 2y
dx 2 2 2 

dy
dx

1 y − x cos x

 8. 
d 2y
dx 2 1 4y − sin 2x

 9. 
d 2y
dx 2 2

dy
dx

2 6y − 1 1 e22x

 10. 
d 2y
dx 2 1 y − csc x,  0 , x , $y2
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1182 CHAPTER 17  Second-Order Differential Equations

 (a) Show that Fr −
2GMm

R3  r.

 (b)  Suppose a hole is drilled through the earth along a diame-
ter. Show that if a particle of mass m is dropped from rest 
at the surface, into the hole, then the distance y − ystd of 
the particle from the center of the earth at time t is given by

y0std − 2k 2 ystd

  where k 2 − GMyR3 − tyR.
 (c)  Conclude from part (b) that the particle undergoes simple 

harmonic motion. Find the period T.
 (d)  With what speed does the particle pass through the center 

of the earth?

 20.  A spring with a mass of 2 kg has damping constant 16, and a 
force of 12.8 N keeps the spring stretched 0.2 m beyond its  
natural length. Find the position of the mass at time t if it  
starts at the equilibrium position with a velocity of 2.4 mys.

 21.  Assume that the earth is a solid sphere of uniform density with 
mass M and radius R − 3960 mi. For a particle of mass m 
within the earth at a distance r from the earth’s center, the 
gravi tational force attracting the particle to the center is

Fr −
2GMr m

r 2

   where G is the gravitational constant and Mr is the mass of the 
earth within the sphere of radius r.
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A2 APPENDIX A  Numbers, Inequalities, and Absolute Values

Calculus is based on the real number system. We start with the integers:

. . . , 23, 22, 21, 0, 1, 2, 3, 4, . . .

Then we construct the rational numbers, which are ratios of integers. Thus any rational 
number r can be expressed as

r −
m
n

    where m and n are integers and n ± 0

Examples are

1
2      23

7      46 − 46
1       0.17 − 17

100

(Recall that division by 0 is always ruled out, so expressions like 30 and 00 are undefined.) 
Some real numbers, such as s2 , can’t be expressed as a ratio of integers and are there-
fore called irrational numbers. It can be shown, with varying degrees of difficulty, that 
the following are also irrational numbers:

s3       s5       s3 2       !      sin 18      log10 2

The set of all real numbers is usually denoted by the symbol R. When we use the word 
number without qualification, we mean “real number.”

Every number has a decimal representation. If the number is rational, then the cor-
responding decimal is repeating. For example,

1
2 − 0.5000 . . . − 0.50 2

3 − 0.66666 . . . − 0.6

157
495 − 0.317171717 . . . − 0.317   9

7 − 1.285714285714 . . . − 1.285714

(The bar indicates that the sequence of digits repeats forever.) On the other hand, if the  
number is irrational, the decimal is nonrepeating:

s2 − 1.414213562373095 . . .      ! − 3.141592653589793 . . .

If we stop the decimal expansion of any number at a certain place, we get an approxima-
tion to the number. For instance, we can write

! < 3.14159265

where the symbol < is read “is approximately equal to.” The more decimal places we 
retain, the better the approximation we get.

The real numbers can be represented by points on a line as in Figure 1. The positive 
direction (to the right) is indicated by an arrow. We choose an arbitrary reference point 
O, called the origin, which corresponds to the real number 0. Given any convenient unit 
of measurement, each positive number x is represented by the point on the line a distance 
of x units to the right of the origin, and each negative number 2x is represented by the 
point x units to the left of the origin. Thus every real number is represented by a point on 
the line, and every point P on the line corresponds to exactly one real number. The num-
ber associated with the point P is called the coordinate of P and the line is then called a 
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 APPENDIX A  Numbers, Inequalities, and Absolute Values A3

coordinate line, or a real number line, or simply a real line. Often we identify the point 
with its coordinate and think of a number as being a point on the real line.

0 41 2 3_1_2_3
_2.63 2 π_ œ„

1
2

3
7

The real numbers are ordered. We say a is less than b and write a , b if b 2 a is 
a pos itive number. Geometrically this means that a lies to the left of b on the number line. 
(Equiv alently, we say b is greater than a and write b . a.) The symbol a < b (or b > a) 
means that either a , b or a − b and is read “a is less than or equal to b.” For instance, 
the fol lowing are true inequalities:

7 , 7.4 , 7.5      23 . 2!      s2 , 2      s2 < 2      2 < 2

In what follows we need to use set notation. A set is a collection of objects, and these 
objects are called the elements of the set. If S is a set, the notation a [ S means that a 
is an element of S, and a Ó S means that a is not an element of S. For example, if Z rep-
resents the set of integers, then 23 [ Z but ! Ó Z. If S and T  are sets, then their union 
S ø T  is the set consisting of all elements that are in S or T  (or in both S and T). The 
intersection of S and T  is the set S > T  consisting of all elements that are in both S and 
T. In other words, S > T  is the common part of S and T. The empty set, denoted by ∅, is 
the set that contains no element.

Some sets can be described by listing their elements between braces. For instance, the 
set A consisting of all positive integers less than 7 can be written as

 A − h1, 2, 3, 4, 5, 6j

We could also write A in set-builder notation as

A − hx | x is an integer and 0 , x , 7j

which is read “A is the set of x such that x is an integer and 0 , x , 7.”

Intervals
Certain sets of real numbers, called intervals, occur frequently in calculus and corre-
spond geometrically to line segments. For example, if a , b, the open interval from a 
to b consists of all numbers between a and b and is denoted by the symbol sa, bd. Using 
set-builder notation, we can write

sa, bd − hx | a , x , bj

Notice that the endpoints of the interval—namely, a and b—are excluded. This is indi-
cated by the round brackets s d and by the open dots in Figure 2. The closed interval 
from a to b is the set

fa, bg − hx | a < x < bj

Here the endpoints of the interval are included. This is indicated by the square brackets 
f g and by the solid dots in Figure 3. It is also possible to include only one endpoint in an 
inter val, as shown in Table 1.

FIGURE 1 

FIGURE 2  
Open interval sa, bd

FIGURE 3  
Closed interval fa, bg

a b

a b
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A4 APPENDIX A  Numbers, Inequalities, and Absolute Values

We also need to consider infinite intervals such as

sa, `d − hx | x . aj

This does not mean that ` (“infinity”) is a number. The notation sa, `d stands for the 
set of all numbers that are greater than a, so the symbol ` simply indicates that the inter-
val extends indefinitely far in the positive direction.

Notation Set description Picture

sa, bd hx | a , x , bj

fa, bg hx | a < x < bj

fa, bd hx | a < x , bj

sa, bg hx | a , x < bj

sa, `d hx | x . aj

fa, `d hx | x > aj

s2`, bd hx | x , bj

s2`, bg hx | x < bj

s2`, `d R (set of all real numbers)

a
a
a
a
a
a

b
b

b
b
b
b

Inequalities
When working with inequalities, note the following rules.

2   Rules for Inequalities
1. If a , b, then a 1 c , b 1 c.

2. If a , b and c , d, then a 1 c , b 1 d.

3. If a , b and c . 0, then ac , bc.

4. If a , b and c , 0, then ac . bc.

5. If 0 , a , b, then 1ya . 1yb.

Rule 1 says that we can add any number to both sides of an inequality, and Rule 2 says 
that two inequalities can be added. However, we have to be careful with multiplication. 
Rule 3 says that we can multiply both sides of an inequality by a positive number, but
Rule 4 says that if we multiply both sides of an inequality by a negative number, then 
we reverse the direction of the inequality. For example, if we take the inequality 3 , 5 
and multiply by 2, we get 6 , 10, but if we multiply by 22, we get 26 . 210. Finally, 
Rule 5 says that if we take reciprocals, then we reverse the direction of an inequality 
(provided the numbers are positive).

EXAMPLE 1  Solve the inequality 1 1 x , 7x 1 5.

SOLUTION The given inequality is satisfied by some values of x but not by others. To 
solve an inequality means to determine the set of numbers x for which the inequality is 
true. This is called the solution set.

Table 1 lists the nine possible types of 
intervals. When these intervals are dis-
cussed, it is always assumed that a , b.

1   Table of Intervals
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 APPENDIX A  Numbers, Inequalities, and Absolute Values A5

First we subtract 1 from each side of the inequality (using Rule 1 with c − 21):

x , 7x 1 4

Then we subtract 7x from both sides (Rule 1 with c − 27x):

26x , 4

Now we divide both sides by 26 (Rule 4 with c − 21
6):

x . 24
6 − 22

3

These steps can all be reversed, so the solution set consists of all numbers greater than 
22

3 . In other words, the solution of the inequality is the interval (22
3, `). Q

EXAMPLE 2  Solve the inequalities 4 < 3x 2 2 , 13.

SOLUTION Here the solution set consists of all values of x that satisfy both inequalities. 
Using the rules given in (2), we see that the following inequalities are equivalent:

  4 < 3x 2 2 , 13

  6 < 3x , 15 (add 2)

  2 < x , 5 (divide by 3)

Therefore the solution set is f2, 5d. Q

EXAMPLE 3  Solve the inequality x 2 2 5x 1 6 < 0.

SOLUTION First we factor the left side:

sx 2 2dsx 2 3d < 0

We know that the corresponding equation sx 2 2dsx 2 3d − 0 has the solutions 2  
and 3. The numbers 2 and 3 divide the real line into three intervals:

s2`, 2d      s2, 3d      s3, `d

On each of these intervals we determine the signs of the factors. For instance,

x [ s2`, 2d   ?   x , 2   ?   x 2 2 , 0

Then we record these signs in the following chart:

Interval x 2 2 x 2 3 sx 2 2d sx 2 3d

 x , 2 2 2 1

 2 , x , 3 1 2 2

 x . 3 1 1 1

Another method for obtaining the information in the chart is to use test values. For 
instance, if we use the test value x − 1 for the interval s2`, 2d, then substitution in 
x 2 2 5x 1 6 gives

12 2 5s1d 1 6 − 2

FIGURE 4 

x0

y
y=≈-5x+6

1 2 3 4

A visual method for solving Exam ple 3 
is to use a graphing device to graph the 
parabola y − x 2 2 5x 1 6 (as in Fig-
ure 4) and observe that the curve lies on 
or below the x-axis when 2 < x < 3.
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A6 APPENDIX A  Numbers, Inequalities, and Absolute Values

The polynomial x 2 2 5x 1 6 doesn’t change sign inside any of the three intervals, so 
we conclude that it is positive on s2`, 2d.

Then we read from the chart that sx 2 2dsx 2 3d is negative when 2 , x , 3. Thus 
the solution of the inequality sx 2 2dsx 2 3d < 0 is

hx | 2 < x < 3j − f2, 3g

Notice that we have included the endpoints 2 and 3 because we are looking for 
values of x such that the product is either negative or zero. The solution is illustrated in 
Figure 5. Q

EXAMPLE 4  Solve x 3 1 3x 2 . 4x.

SOLUTION First we take all nonzero terms to one side of the inequality sign and factor 
the resulting expression:

x 3 1 3x 2 2 4x . 0    or    xsx 2 1dsx 1 4d . 0 

As in Example 3 we solve the corresponding equation xsx 2 1dsx 1 4d − 0 and use the 
solutions x − 24, x − 0, and x − 1 to divide the real line into four intervals s2`, 24d, 
s24, 0d, s0, 1d, and s1, `d. On each interval the product keeps a constant sign, which we 
list in the following chart:

Interval x x 2 1 x 1 4 x sx 2 1dsx 1 4d

 x , 24 2 2 2 2

 24 , x , 0 2 2 1 1

 0 , x , 1 1 2 1 2

 x . 1 1 1 1 1

Then we read from the chart that the solution set is

hx | 24 , x , 0 or x . 1j − s24, 0d ø s1, `d

The solution is illustrated in Figure 6. Q

Absolute Value
The absolute value of a number a, denoted by | a |, is the distance from a to 0 on the real 
number line. Distances are always positive or 0, so we have

| a | > 0    for every number a

For example,

| 3 | − 3    | 23 | − 3    | 0 | − 0    | s2 2 1 | − s2 2 1    | 3 2 ! | − ! 2 3

In general, we have

 | a | − a  if a > 0

 | a | − 2a if a , 0

FIGURE 5 

0 2 3

+ - +
x

FIGURE 6 

0 1_4

Remember that if a is negative,  
then 2a is positive.

3
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EXAMPLE 5  Express | 3x 2 2 | without using the absolute-value symbol.

SOLUTION

 | 3x 2 2 | − H3x 2 2
2s3x 2 2d

if 3x 2 2 > 0
if 3x 2 2 , 0

  − H3x 2 2
2 2 3x

if x > 2
3

if x , 2
3

 
Q

Recall that the symbol s  means “the positive square root of.” Thus sr − s means
s 2 − r and s > 0. Therefore the equation sa 2 − a is not always true. It is true only 
when a > 0. If a , 0, then 2a . 0, so we have sa 2 − 2a. In view of (3), we then 
have the equation

sa 2 − | a |

which is true for all values of a.
Hints for the proofs of the following properties are given in the exercises.

5   Properties of Absolute Values Suppose a and b are any real numbers and  
n is an integer. Then

1. | ab | − | a | | b |        2. Z a
b Z − | a |

| b |    sb ± 0d        3. | an | − | a |n

For solving equations or inequalities involving absolute values, it’s often very helpful 
to use the following statements.

6   Suppose a . 0. Then

4. | x | − a  if and only if  x − 6a

5. | x | , a  if and only if  2a , x , a

6. | x | . a  if and only if  x . a or x , 2a

For instance, the inequality | x | , a says that the distance from x to the origin is less 
than a, and you can see from Figure 7 that this is true if and only if x lies between 2a 
and a.

If a and b are any real numbers, then the distance between a and b is the absolute 
value of the difference, namely, | a 2 b |, which is also equal to | b 2 a |. (See Figure 8.)

EXAMPLE 6  Solve | 2x 2 5 | − 3.

SOLUTION By Property 4 of (6), | 2x 2 5 | − 3 is equivalent to

2x 2 5 − 3    or    2x 2 5 − 23

So 2x − 8 or 2x − 2. Thus x − 4 or x − 1. Q

4

0 a_a x

a a

| x |

FIGURE 7 

| a-b |
ab

| a-b |
ba

FIGURE 8 
Length of a line segment − | a 2 b |
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EXAMPLE 7  Solve | x 2 5 | , 2.

SOLUTION 1 By Property 5 of (6), | x 2 5 | , 2 is equivalent to

22 , x 2 5 , 2

Therefore, adding 5 to each side, we have

3 , x , 7

and the solution set is the open interval s3, 7d.

SOLUTION 2 Geometrically the solution set consists of all numbers x whose distance 
from 5 is less than 2. From Figure 9 we see that this is the interval s3, 7d. Q

EXAMPLE 8  Solve | 3x 1 2 | > 4.

SOLUTION By Properties 4 and 6 of (6), | 3x 1 2 | > 4 is equivalent to

3x 1 2 > 4    or    3x 1 2 < 24

In the first case 3x > 2, which gives x > 2
3. In the second case 3x < 26, which gives 

x < 22. So the solution set is

 hx | x < 22 or x > 2
3j − s2`, 22g ø f2

3, `) Q

Another important property of absolute value, called the Triangle Inequality, is used 
frequently not only in calculus but throughout mathematics in general.

7   The Triangle Inequality If a and b are any real numbers, then

| a 1 b | < | a | 1 | b |

Observe that if the numbers a and b are both positive or both negative, then the two 
sides in the Triangle Inequality are actually equal. But if a and b have opposite signs, 
the left side involves a subtraction and the right side does not. This makes the Tri angle 
Inequality seem reasonable, but we can prove it as follows.

Notice that

2| a | < a < | a |
is always true because a equals either | a | or 2| a |. The corresponding statement for b is

2| b | < b < | b |
Adding these inequalities, we get

2s| a | 1 | b |d < a 1 b < | a | 1 | b |
If we now apply Properties 4 and 5 (with x replaced by a 1 b and a by | a | 1 | b |), we 
obtain

| a 1 b | < | a | 1 | b |
which is what we wanted to show.

3 5 7

22

FIGURE 9 
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EXAMPLE 9  If | x 2 4 | , 0.1 and | y 2 7 | , 0.2, use the Triangle Inequality to esti-
mate | sx 1 yd 2 11 |.
SOLUTION In order to use the given information, we use the Triangle Inequality with 
a − x 2 4 and b − y 2 7:

 | sx 1 yd 2 11 | − | sx 2 4d 1 sy 2 7d |
 < | x 2 4 | 1 | y 2 7 |
 , 0.1 1 0.2 − 0.3

Thus | sx 1 yd 2 11 | , 0.3 Q

1–12 Rewrite the expression without using the absolute-value  
symbol.

 1. | 5 2 23 | 2. | 5 | 2 | 223 |
  3. | 2! | 4. | ! 2 2 |
 5. | s5 2 5 | 6. || 22 | 2 | 23 ||
 7. | x 2 2 |  if x , 2 8. | x 2 2 |  if x . 2

 9. | x 1 1 | 10. | 2x 2 1 |
 11. | x 2 1 1 | 12. | 1 2 2x 2 |

13–38 Solve the inequality in terms of intervals and illustrate the 
solution set on the real number line.

 13. 2x 1 7 . 3 14. 3x 2 11 , 4

 15. 1 2 x < 2 16. 4 2 3x > 6

 17. 2x 1 1 , 5x 2 8 18. 1 1 5x . 5 2 3x

 19. 21 , 2x 2 5 , 7 20. 1 , 3x 1 4 < 16

 21. 0 < 1 2 x , 1 22. 25 < 3 2 2x < 9

 23. 4x , 2x 1 1 < 3x 1 2 24. 2x 2 3 , x 1 4 , 3x 2 2

 25. sx 2 1dsx 2 2d . 0 26. s2x 1 3dsx 2 1d > 0

 27. 2x 2 1 x < 1 28. x 2 , 2x 1 8

 29. x 2 1 x 1 1 . 0 30. x 2 1 x . 1

 31. x 2 , 3 32. x 2 > 5

 33. x 3 2 x 2 < 0

 34. sx 1 1dsx 2 2dsx 1 3d > 0

 35. x 3 . x 36. x 3 1 3x , 4x 2

 37. 
1
x

, 4 38. 23 ,
1
x

< 1

 39.  The relationship between the Celsius and Fahrenheit tem per a-
ture scales is given by C − 5

9 sF 2 32d, where C is the temper-

ature in degrees Celsius and F is the temperature in degrees 
Fahrenheit. What interval on the Celsius scale corresponds to 
the temperature range 50 < F < 95?

 40.  Use the relationship between C and F given in Exercise 39 to 
find the interval on the Fahrenheit scale corresponding to the 
temperature range 20 < C < 30.

 41.  As dry air moves upward, it expands and in so doing cools at  
a rate of about 1°C for each 100-m rise, up to about 12 km.

 (a)  If the ground temperature is 20°C, write a formula for the 
temperature at height h.

 (b)  What range of temperature can be expected if a plane takes 
off and reaches a maximum height of 5 km?

 42.  If a ball is thrown upward from the top of a building 128 ft 
high with an initial velocity of 16 ftys, then the height h above 
the ground t seconds later will be

h − 128 1 16t 2 16t 2

During what time interval will the ball be at least 32 ft above 
the ground?

43–46 Solve the equation for x.

 43. | 2x | − 3 44. | 3x 1 5 | − 1

 45. | x 1 3 | − | 2x 1 1 | 46. Z 2x 2 1
x 1 1 Z − 3

47–56 Solve the inequality.

 47. | x | , 3 48. | x | > 3

 49. | x 2 4 | , 1 50. | x 2 6 | , 0.1

 51. | x 1 5 | > 2 52. | x 1 1 | > 3

 53. | 2x 2 3 | < 0.4 54. | 5x 2 2 | , 6

 55. 1 < | x | < 4 56. 0 , | x 2 5 | , 1
2
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A10 APPENDIX A  Numbers, Inequalities, and Absolute Values

Just as the points on a line can be identified with real numbers by assigning them coordi-
nates, as described in Appendix A, so the points in a plane can be identified with ordered 
pairs of real numbers. We start by drawing two perpendicular coordinate lines that inter-
sect at the origin O on each line. Usually one line is horizontal with positive direction to 
the right and is called the x-axis; the other line is vertical with positive direction upward 
and is called the y-axis.

Any point P in the plane can be located by a unique ordered pair of numbers as fol-
lows. Draw lines through P perpendicular to the x- and y-axes. These lines intersect the 
axes in points with coordinates a and b as shown in Figure 1. Then the point P is assigned 
the ordered pair sa, bd. The first number a is called the x-coordinate of P; the second 
number b is called the y-coordinate of P. We say that P is the point with coordinates 
sa, bd, and we denote the point by the symbol Psa, bd. Several points are labeled with 
their coordinates in Figure 2.

0 x1 2 3 4 5_1_2_3

1
2
3
4

_2
_3

_1

y

_4

(5, 0)

(1, 3)
(_2, 2)

(_3, _2)

(2, _4)

x1 2 3 4 5_1_2_3
a

O

2

4

_2
_1

b

y

1

3
P(a, b)

III

IVIII
_3
_4

FIGURE 1 FIGURE 2  

By reversing the preceding process we can start with an ordered pair sa, bd and arrive  
at the corresponding point P. Often we identify the point P with the ordered pair sa, bd 
and refer to “the point sa, bd.” [Although the notation used for an open interval sa, bd is 

57–58 Solve for x, assuming a, b, and c are positive constants.

 57. asbx 2 cd > bc  58. a < bx 1 c , 2a

59–60 Solve for x, assuming a, b, and c are negative constants.

 59.  ax 1 b , c 60. 
ax 1 b

c
< b

 61.   Suppose that | x 2 2 | , 0.01 and | y 2 3 | , 0.04. Use the  
Triangle Inequality to show that | sx 1 yd 2 5 | , 0.05.

 62.  Show that if | x 1 3 | , 1
2, then | 4x 1 13 | , 3.

 63.  Show that if a , b, then a ,
a 1 b

2
, b.

 64.  Use Rule 3 to prove Rule 5 of (2).

 65.  Prove that | ab | − | a | | b |. [Hint: Use Equation 4.]

 66.  Prove that Z a
b Z − | a |

| b | .

 67.  Show that if 0 , a , b, then a 2 , b 2.

 68.   Prove that | x 2 y | > | x | 2 | y |. [Hint: Use the Triangle 
Inequality with a − x 2 y and b − y.]

 69.   Show that the sum, difference, and product of rational numbers 
are rational numbers.

 70.  (a)  Is the sum of two irrational numbers always an irrational 
number?

 (b)  Is the product of two irrational numbers always an  
irrational number?
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 APPENDIX B  Coordinate Geometry and Lines A11

the same as the notation used for a point sa, bd, you will be able to tell from the context 
which meaning is intended.]

This coordinate system is called the rectangular coordinate system or the Cartesian 
coordinate system in honor of the French mathematician René Descartes (1596–1650), 
even though another Frenchman, Pierre Fermat (1601–1665), invented the principles 
of analytic geometry at about the same time as Descartes. The plane supplied with this 
coordinate system is called the coordinate plane or the Cartesian plane and is denoted 
by R 2.

The x- and y-axes are called the coordinate axes and divide the Cartesian plane into 
four quadrants, which are labeled I, II, III, and IV in Figure 1. Notice that the first quad-
rant consists of those points whose x- and y-coordinates are both positive.

EXAMPLE 1  Describe and sketch the regions given by the following sets.
(a) hsx, yd | x > 0j      (b) hsx, yd | y − 1j      (c) hsx, yd | | y | , 1j

SOLUTION
(a) The points whose x-coordinates are 0 or positive lie on the y-axis or to the right of 
it as indicated by the shaded region in Figure 3(a).

x0

y

x0

y

y=1

x0

y

y=1

y=_1

(a) x ! 0 (b) y=1 (c) | y |<1

(b) The set of all points with y-coordinate 1 is a horizontal line one unit above the  
x-axis [see Figure 3(b)].

(c) Recall from Appendix A that

| y | , 1    if and only if    21 , y , 1

The given region consists of those points in the plane whose y-coordinates lie between 
21 and 1. Thus the region consists of all points that lie between (but not on) the hori-
zontal lines y − 1 and y − 21. [These lines are shown as dashed lines in Figure 3(c) 
to indicate that the points on these lines don’t lie in the set.] Q

Recall from Appendix A that the distance between points a and b on a number line 
is | a 2 b | − | b 2 a |. Thus the distance between points P1sx1, y1d and P3sx2, y1d on a 
horizontal line must be | x2 2 x1 | and the distance between P2sx2, y2 d and P3sx2, y1d on a 
ver tical line must be | y2 2 y1 |. (See Figure 4.)

To find the distance | P1P2 | between any two points P1sx1, y1d and P2sx2, y2 d, we note 
that triangle P1P2 P3 in Figure 4 is a right triangle, and so by the Pythagorean Theorem  
we have

 | P1P2 | − s| P1P3 |2 1 | P2P3 |2 − s| x2 2 x1 |2 1 | y2 2 y1 |2 

 − ssx2 2 x1d2 1 sy2 2 y1d2 

FIGURE 3

P¡(⁄, ›)

x⁄ ¤0

›

fi

y

P™(¤, fi)

P£(¤, ›)|¤-⁄|

|fi-›|

FIGURE 4 
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A12 APPENDIX B  Coordinate Geometry and Lines

1   Distance Formula The distance between the points P1sx1, y1d and P2sx2, y2 d is

| P1P2 | − ssx2 2 x1d2 1 sy2 2 y1d2 

EXAMPLE 2  The distance between s1, 22d and s5, 3d is

 ss5 2 1d 2 1 f3 2 s22dg 2 − s42 1 52 − s41 Q

Lines
We want to find an equation of a given line L; such an equation is satisfied by the coordi-
nates of the points on L and by no other point. To find the equation of L we use its slope, 
which is a measure of the steepness of the line.

2   Definition The slope of a nonvertical line that passes through the points 
P1sx1, y1d and P2sx2, y2 d is

m −
Dy
Dx

−
y2 2 y1

x2 2 x1

The slope of a vertical line is not defined.

Thus the slope of a line is the ratio of the change in y, Dy, to the change in x, Dx. (See 
Figure 5.) The slope is therefore the rate of change of y with respect to x. The fact that 
the line is straight means that the rate of change is constant.

Figure 6 shows several lines labeled with their slopes. Notice that lines with positive 
slope slant upward to the right, whereas lines with negative slope slant downward to the 
right. Notice also that the steepest lines are the ones for which the absolute value of the 
slope is largest, and a horizontal line has slope 0.

Now let’s find an equation of the line that passes through a given point P1sx1, y1d 
and has slope m. A point Psx, yd with x ± x1 lies on this line if and only if the slope of 
the line through P1 and P is equal to m; that is,

y 2 y1

x 2 x1
− m

This equation can be rewritten in the form

y 2 y1 − msx 2 x1d

and we observe that this equation is also satisfied when x − x1 and y − y1. Therefore it 
is an equation of the given line.

3   Point-Slope Form of the Equation of a Line An equation of the line passing 
through the point P1sx1, y1d and having slope m is

y 2 y1 − msx 2 x1d

FIGURE 5 

P™(x™, y™)

P¡(x¡, y¡)

L

Îy=fi-›
=rise

Îx=¤-⁄
=run

x0

y

x0

y

m=1

m=0

m=_1
m=_2

m=_5

m=2
m=5

m= 1
2

m=_ 1
2

FIGURE 6 
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 APPENDIX B  Coordinate Geometry and Lines A13

EXAMPLE 3  Find an equation of the line through s1, 27d with slope 21
2.

SOLUTION Using (3) with m − 21
2, x1 − 1, and y1 − 27, we obtain an equation of the 

line as

y 1 7 − 21
2 sx 2 1d

which we can rewrite as

 2y 1 14 − 2x 1 1    or    x 1 2y 1 13 − 0 Q

EXAMPLE 4  Find an equation of the line through the points s21, 2d and s3, 24d.

SOLUTION By Definition 2 the slope of the line is

m −
24 2 2

3 2 s21d
− 2

3
2

Using the point-slope form with x1 − 21 and y1 − 2, we obtain

y 2 2 − 23
2 sx 1 1d

which simplifies to 3x 1 2y − 1 Q

Suppose a nonvertical line has slope m and y-intercept b. (See Figure 7.) This means 
it intersects the y-axis at the point s0, bd, so the point-slope form of the equation of the 
line, with x1 − 0 and y1 − b, becomes

y 2 b − msx 2 0d

This simplifies as follows.

4   Slope-Intercept Form of the Equation of a Line An equation of the line 
with slope m and y-intercept b is

y − mx 1 b

In particular, if a line is horizontal, its slope is m − 0, so its equation is y − b, where 
b is the y-intercept (see Figure 8). A vertical line does not have a slope, but we can write 
its equation as x − a, where a is the x-intercept, because the x-coordinate of every point 
on the line is a.

Observe that the equation of every line can be written in the form

Ax 1 By 1 C − 05

because a vertical line has the equation x − a or x 2 a − 0 (A − 1, B − 0, C − 2ad 
and a nonvertical line has the equation y − mx 1 b or 2mx 1 y 2 b − 0 (A − 2m, 
B − 1, C − 2b). Conversely, if we start with a general first-degree equation, that is, an 
equation of the form (5), where A, B, and C are constants and A and B are not both 0, then 
we can show that it is the equation of a line. If B − 0, the equation becomes Ax 1 C − 0 
or x − 2CyA , which represents a vertical line with x-intercept 2CyA . If B ± 0, the 

FIGURE 7 

x0

y

b
y=mx+b

0

y

b

xa

x=a

y=b

FIGURE 8 
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A14 APPENDIX B  Coordinate Geometry and Lines

equation can be rewritten by solving for y:

y − 2
A
B

 x 2
C
B

and we recognize this as being the slope-intercept form of the equation of a line  
(m − 2AyB, b − 2CyB). Therefore an equation of the form (5) is called a linear 
equation or the general equation of a line. For brevity, we often refer to “ the line 
Ax 1 By 1 C − 0” instead of “the line whose equation is Ax 1 By 1 C − 0.”

EXAMPLE 5  Sketch the graph of the equation 3x 2 5y − 15.

SOLUTION Since the equation is linear, its graph is a line. To draw the graph, we can 
simply find two points on the line. It’s easiest to find the intercepts. Substituting y − 0 
(the equation of the x-axis) in the given equation, we get 3x − 15, so x − 5 is the  
x-intercept. Substituting x − 0 in the equation, we see that the y-intercept is 23. This 
allows us to sketch the graph as in Figure 9. Q

EXAMPLE 6  Graph the inequality x 1 2y . 5.

SOLUTION We are asked to sketch the graph of the set hsx, yd | x 1 2y . 5j and we 
begin by solving the inequality for y:

 x 1 2y . 5

 2y . 2x 1 5

 y . 21
2 x 1 5

2

Compare this inequality with the equation y − 21
2 x 1 5

2 , which represents a line with 
slope 21

2 and y-intercept 52 . We see that the given graph consists of points whose  
y-coordinates are larger than those on the line y − 21

2 x 1 5
2 . Thus the graph is the 

region that lies above the line, as illustrated in Figure 10. Q

Parallel and Perpendicular Lines
Slopes can be used to show that lines are parallel or perpendicular. The following facts 
are proved, for instance, in Precalculus: Mathematics for Calculus, Seventh Edition, by 
Stewart, Redlin, and Watson (Belmont, CA, 2016).

6   Parallel and Perpendicular Lines
1. Two nonvertical lines are parallel if and only if they have the same slope.

2.  Two lines with slopes m1 and m2 are perpendicular if and only if m1m2 − 21; 
that is, their slopes are negative reciprocals:

m2 − 2
1

m1

EXAMPLE 7  Find an equation of the line through the point s5, 2d that is parallel to the  
line 4x 1 6y 1 5 − 0.

SOLUTION The given line can be written in the form

y − 22
3 x 2 5

6

y

0 x(5, 0)

(0, _3)

3x-5y=15

FIGURE 9 

FIGURE 10 

0

y

2.5

x5

y=_   x+
1

2 5
2
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 APPENDIX B  Coordinate Geometry and Lines A15

which is in slope-intercept form with m − 22
3. Parallel lines have the same slope, so the 

required line has slope 22
3 and its equation in point-slope form is

y 2 2 − 22
3 sx 2 5d

We can write this equation as 2x 1 3y − 16. Q

EXAMPLE 8  Show that the lines 2x 1 3y − 1 and 6x 2 4y 2 1 − 0 are perpendicular.

SOLUTION The equations can be written as

y − 22
3 x 1 1

3    and    y − 3
2 x 2 1

4

from which we see that the slopes are

m1 − 22
3    and    m2 − 3

2

Since m1m2 − 21, the lines are perpendicular. Q

1–6 Find the distance between the points.

 1. s1, 1d,  s4, 5d 2. s1, 23d,  s5, 7d

 3. s6, 22d,  s21, 3d 4. s1, 26d,  s21, 23d

 5. s2, 5d,  s4, 27d 6. sa, bd,  sb, ad

7–10 Find the slope of the line through P and Q.

 7. Ps1, 5d,   Qs4, 11d 8. Ps21, 6d,  Qs4, 23d

 9. Ps23, 3d,  Qs21, 26d 10. Ps21, 24d,  Qs6, 0d

 11.  Show that the triangle with vertices As0, 2d, Bs23, 21d, and 
Cs24, 3d is isosceles.

 12. (a)  Show that the triangle with vertices As6, 27d, Bs11, 23d, 
and Cs2, 22d is a right triangle using the converse of the 
Pythagorean Theorem.

 (b) Use slopes to show that ABC is a right triangle.
 (c) Find the area of the triangle.

 13.  Show that the points s22, 9d, s4, 6d, s1, 0d, and s25, 3d are 
the vertices of a square.

 14. (a)  Show that the points As21, 3d, Bs3, 11d, and Cs5, 15d 
are collinear (lie on the same line) by showing that 
| AB | 1 | BC | − | AC |.

 (b) Use slopes to show that A, B, and C are collinear.

 15.  Show that As1, 1d, Bs7, 4d, Cs5, 10d, and Ds21, 7d are  
vertices of a parallelogram.

 16.  Show that As1, 1d, Bs11, 3d, Cs10, 8d, and Ds0, 6d are vertices 
of a rectangle.

17–20 Sketch the graph of the equation.

 17. x − 3 18. y − 22

 19. xy − 0 20. | y | − 1

21–36 Find an equation of the line that satisfies the given 
conditions.

 21. Through s2, 23d,  slope 6

 22.  Through s21, 4d,  slope 23

 23.  Through s1, 7d,  slope 23

 24.  Through s23, 25d,  slope 27
2

 25.  Through s2, 1d and s1, 6d

 26.  Through s21, 22d and s4, 3d

 27.  Slope 3,  y-intercept 22

 28.  Slope 25,  y-intercept 4

 29.  x-intercept 1,  y-intercept 23

 30.  x-intercept 28,  y-intercept 6

 31.  Through s4, 5d,  parallel to the x-axis

 32.  Through s4, 5d,  parallel to the y-axis

 33.  Through s1, 26d,  parallel to the line x 1 2y − 6

 34.  y-intercept 6,  parallel to the line 2x 1 3y 1 4 − 0

 35.   Through s21, 22d,  perpendicular to the line 
2x 1 5y 1 8 − 0

 36.  Through (1
2, 22

3 ),  perpendicular to the line 4x 2 8y − 1

37–42 Find the slope and y-intercept of the line and draw  
its graph.

 37. x 1 3y − 0 38. 2x 2 5y − 0
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In Appendix B we saw that a first-degree, or linear, equation Ax 1 By 1 C − 0 repre-
sents a line. In this section we discuss second-degree equations such as

x 2 1 y 2 − 1      y − x 2 1 1      
x 2

9
1

 y 2

4
− 1      x 2 2 y 2 − 1

which represent a circle, a parabola, an ellipse, and a hyperbola, respectively.
The graph of such an equation in x and y is the set of all points sx, yd that satisfy the 

equation; it gives a visual representation of the equation. Conversely, given a curve in the 
xy-plane, we may have to find an equation that represents it, that is, an equation satisfied 
by the coordinates of the points on the curve and by no other point. This is the other half 
of the basic principle of analytic geometry as formulated by Descartes and Fermat. The 
idea is that if a geometric curve can be represented by an algebraic equation, then the 
rules of alge bra can be used to analyze the geometric problem.

Circles
As an example of this type of problem, let’s find an equation of the circle with radius r 
and center sh, kd. By definition, the circle is the set of all points Psx, yd whose distance 

 57.  Show that the lines 2x 2 y − 4 and 6x 2 2y − 10 are not 
parallel and find their point of intersection.

 58.  Show that the lines 3x 2 5y 1 19 − 0 and 
10x 1 6y 2 50 − 0 are perpendicular and find their point of 
intersection.

 59.  Find an equation of the perpendicular bisector of the line seg-
ment joining the points As1, 4d and Bs7, 22d.

 60. (a)  Find equations for the sides of the triangle with vertices 
Ps1, 0d, Qs3, 4d, and Rs21, 6d.

 (b)  Find equations for the medians of this triangle. Where do 
they intersect?

 61. (a)  Show that if the x- and y-intercepts of a line are nonzero 
numbers a and b, then the equation of the line can be put in 
the form

x
a

1
y
b

− 1

   This equation is called the two-intercept form of an equa-
tion of a line.

 (b)  Use part (a) to find an equation of the line whose  
x-intercept is 6 and whose y-intercept is 28.

 62.  A car leaves Detroit at 2:00 pm, traveling at a constant speed 
west along I-96. It passes Ann Arbor, 40 mi from Detroit, at 
2:50 pm.

 (a) Express the distance traveled in terms of the time elapsed.
 (b) Draw the graph of the equation in part (a).
 (c) What is the slope of this line? What does it represent?

 39. y − 22 40. 2x 2 3y 1 6 − 0

 41. 3x 2 4y − 12 42. 4x 1 5y − 10

43–52 Sketch the region in the xy-plane.

 43. hsx, yd | x , 0j 44. hsx, yd | y . 0j

 45. hsx, yd | xy , 0j 46. hsx, yd | x > 1 and y , 3j

 47. hsx, yd | | x | < 2j

 48. hsx, yd | | x | , 3 and | y | , 2j

 49. hsx, yd | 0 < y < 4 and x < 2j

 50. hsx, yd | y . 2x 2 1j

 51. hsx, yd | 1 1 x < y < 1 2 2xj

 52. hsx, yd | 2x < y , 1
2 sx 1 3dj

 53.  Find a point on the y-axis that is equidistant from s5, 25d  
and s1, 1d.

 54.   Show that the midpoint of the line segment from P1sx1, y1d to 
P2sx2, y2 d is

S x1 1 x2

2
, 

 y1 1 y2

2 D
 55.   Find the midpoint of the line segment joining the given points.
 (a) s1, 3d and s7, 15d (b) s21, 6d and s8, 212d

 56.   Find the lengths of the medians of the triangle with vertices 
As1, 0d, Bs3, 6d, and Cs8, 2d. (A median is a line segment from 
a vertex to the midpoint of the opposite side.)
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 APPENDIX C  Graphs of Second-Degree Equations A17

from the center Csh, kd is r. (See Figure 1.) Thus P is on the circle if and only if | PC | − r.  
From the distance formula, we have

ssx 2 hd2 1 sy 2 kd2 − r

or equivalently, squaring both sides, we get

sx 2 hd2 1 sy 2 kd2 − r 2

This is the desired equation.

1   Equation of a Circle An equation of the circle with center  sh, kd and  
radius r is 

sx 2 hd2 1 sy 2 kd2 − r 2

In particular, if the center is the origin s0, 0d, the equation is

x 2 1 y 2 − r 2

EXAMPLE 1  Find an equation of the circle with radius 3 and center s2, 25d.

SOLUTION From Equation 1 with r − 3, h − 2, and k − 25, we obtain

 sx 2 2d2 1 sy 1 5d2 − 9 Q

EXAMPLE 2  Sketch the graph of the equation x 2 1 y 2 1 2x 2 6y 1 7 − 0 by first 
showing that it represents a circle and then finding its center and radius.

SOLUTION We first group the x-terms and y-terms as follows:

sx 2 1 2xd 1 sy 2 2 6yd − 27

Then we complete the square within each grouping, adding the appropriate constants 
(the squares of half the coefficients of x and y) to both sides of the equation:

sx 2 1 2x 1 1d 1 sy 2 2 6y 1 9d − 27 1 1 1 9

or sx 1 1d2 1 sy 2 3d2 − 3

Comparing this equation with the standard equation of a circle (1), we see that h − 21,
k − 3, and r − s3 , so the given equation represents a circle with center s21, 3d and 
radius s3 . It is sketched in Figure 2.

 
x0

y

1

(_1, 3)

 Q

FIGURE 1 

C(h, k)

x0

y

r
P(x, y)

FIGURE 2  
x 2 1 y 2 1 2x 2 6y 1 7 − 0
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A18 APPENDIX C  Graphs of Second-Degree Equations

Parabolas
The geometric properties of parabolas are reviewed in Section 10.5. Here we regard a 
parabola as a graph of an equation of the form y − ax 2 1 bx 1 c.

EXAMPLE 3  Draw the graph of the parabola y − x 2.

SOLUTION We set up a table of values, plot points, and join them by a smooth curve to 
obtain the graph in Figure 3.

x y − x 2

0 0

6 1
2

1
4

6 1 1

6 2 4
6 3 9

      
0

y

1

x1

y=≈

FIGURE 3  Q

Figure 4 shows the graphs of several parabolas with equations of the form y − ax 2 
for various values of the number a. In each case the vertex, the point where the parabola 
changes direction, is the origin. We see that the parabola y − ax 2 opens upward if a . 0 
and downward if a , 0 (as in Figure 5).

x0

y

(_x, y) (x, y) x
0

y

(a)  y=a≈,  a>0 (b)  y=a≈,  a<0

y

x

y=2≈
y=≈

y=_≈
y=_2≈

y=   ≈1
2

y=_    ≈1
2

Notice that if sx, yd satisfies y − ax 2, then so does s2x, yd. This corresponds to the 
geometric fact that if the right half of the graph is reflected about the y-axis, then the left 
half of the graph is obtained. We say that the graph is symmetric with respect to the  
y-axis.

The graph of an equation is symmetric with respect to the y-axis if the equation is 
unchanged when x is replaced by 2x.

If we interchange x and y in the equation y − ax 2, the result is x − ay 2, which also rep-
resents a parabola. (Interchanging x and y amounts to reflecting about the diagonal line 
y − x.) The parabola x − ay 2 opens to the right if a . 0 and to the left if a , 0. (See 

FIGURE 4   FIGURE 5 
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 APPENDIX C  Graphs of Second-Degree Equations A19

Figure 6.) This time the parabola is symmetric with respect to the x-axis because if sx, yd  
satisfies x − ay 2, then so does sx, 2yd.

x0

y

x0

y

(a)  x=a¥,  a>0 (b)  x=a¥,  a<0

The graph of an equation is symmetric with respect to the x-axis if the equation is 
unchanged when y is replaced by 2y.

EXAMPLE 4  Sketch the region bounded by the parabola x − y 2 and the line 
y − x 2 2.

SOLUTION First we find the points of intersection by solving the two equations. Substi -
tuting x − y 1 2 into the equation x − y 2, we get y 1 2 − y 2, which gives

0 − y 2 2 y 2 2 − sy 2 2dsy 1 1d

so y − 2 or 21. Thus the points of intersection are s4, 2d and s1, 21d, and we draw the 
line y − x 2 2 passing through these points. We then sketch the parabola x − y 2 by 
referring to Figure 6(a) and having the parabola pass through s4, 2d and s1, 21d. The 
region bounded by x − y 2 and y − x 2 2 means the finite region whose boundaries are 
these curves. It is sketched in Figure 7. Q

Ellipses
The curve with equation

x 2

a 2 1
 y 2

b 2 − 12

where a and b are positive numbers, is called an ellipse in standard position. (Geometric 
properties of ellipses are discussed in Section 10.5.) Observe that Equation 2 is unchanged 
if x is replaced by 2x or y is replaced by 2y, so the ellipse is symmetric with respect to  
both axes. As a further aid to sketching the ellipse, we find its intercepts.

The x-intercepts of a graph are the x-coordinates of the points where the graph 
intersects the x-axis. They are found by setting y − 0 in the equation of the graph.
The y-intercepts are the y-coordinates of the points where the graph intersects the  
y-axis. They are found by setting x − 0 in its equation.

If we set y − 0 in Equation 2, we get x 2 − a 2 and so the x-intercepts are 6a . Setting 
x − 0, we get y 2 − b 2, so the y-intercepts are 6b. Using this information, together with 
symmetry, we sketch the ellipse in Figure 8. If a − b, the ellipse is a circle with radius a.

FIGURE 6

FIGURE 7 

x0

y

1

2

4

y=x-2
x=¥

(1, _1)

(4, 2)

0 x

y

(0, b)

(0, _b)

(a, 0)(_a, 0)

FIGURE 8  
x 2

a 2 1
 y 2

b 2 − 1
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A20 APPENDIX C  Graphs of Second-Degree Equations

EXAMPLE 5  Sketch the graph of 9x 2 1 16y 2 − 144.

SOLUTION We divide both sides of the equation by 144:

x 2

16
1

 y 2

9
− 1

The equation is now in the standard form for an ellipse (2), so we have a 2 − 16, 
b 2 − 9, a − 4, and b − 3. The x-intercepts are 64; the y-intercepts are 63. The graph 
is sketched in Figure 9.

 

0 x

y
(0, 3)

(4, 0)(_4, 0)

(0, _3)
 Q

Hyperbolas
The curve with equation

3   
x 2

a 2 2
y 2

b 2 − 1 

is called a hyperbola in standard position. Again, Equation 3 is unchanged when x is 
replaced by 2x or y is replaced by 2y, so the hyperbola is symmetric with respect to 
both axes. To find the x-intercepts we set y − 0 and obtain x 2 − a 2 and x − 6a. How-
ever, if we put x − 0 in Equation 3, we get y 2 − 2b 2, which is impossible, so there is no 
y-intercept. In fact, from Equation 3 we obtain

x 2

a 2 − 1 1
 y 2

b 2 > 1

which shows that x 2 > a 2 and so | x | − sx 2 > a. Therefore we have x > a or x < 2a.  
This means that the hyperbola consists of two parts, called its branches. It is sketched 
in Figure 10.

In drawing a hyperbola it is useful to draw first its asymptotes, which are the lines 
y − sbyadx and y − 2sbyadx shown in Figure 10. Both branches of the hyperbola 
approach the asymptotes; that is, they come arbitrarily close to the asymptotes. This 
involves the idea of a limit, which is discussed in Chapter 2. (See also Exercise 4.5.73.)

By interchanging the roles of x and y we get an equation of the form

 y 2

a 2 2
x 2

b 2 − 1

which also represents a hyperbola and is sketched in Figure 11.

FIGURE 9  
9x 2 1 16y 2 − 144

0

y

x(_a, 0) (a, 0)

y=_   xb
a y=  xb

a

y

0 x

(0, a)

(0, _a)

y=_   xa
b y=  xa

b

FIGURE 10  

The hyperbola 
x 2

a 2 2
y 2

b 2 − 1

FIGURE 11  

The hyperbola 
y 2

a 2 2
x 2

b 2 − 1
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EXAMPLE 6 Sketch the curve 9x 2 2 4y 2 − 36.

SOLUTION Dividing both sides by 36, we obtain

x 2

4
2

 y 2

9
− 1

which is the standard form of the equation of a hyperbola (Equation 3). Since  
a 2 − 4, the x-intercepts are 62. Since b 2 − 9, we have b − 3 and the asymptotes 
are y − 63

2 x. The hyperbola is sketched in Figure 12.

 

0

y

(_2, 0) (2, 0) x

y=   x3
2y=_    x3

2

 Q

If b − a, a hyperbola has the equation x 2 2 y 2 − a 2 (or y 2 2 x 2 − a 2) and is called an 
equilateral hyperbola [see Figure 13(a)]. Its asymptotes are y − 6x, which are perpendi-
cular. If an equilateral hyperbola is rotated by 458, the asymptotes become the x- and  
y-axes, and it can be shown that the new equation of the hyperbola is xy − k, where k is 
a constant [see Figure 13(b)].

(a) ≈-¥=a@ (b) xy=k  (k>0)

0

y

x0

y

x

y=xy=_x

Shifted Conics
Recall that an equation of the circle with center the origin and radius r is x 2 1 y 2 − r 2, 
but if the center is the point sh, kd, then the equation of the circle becomes

sx 2 hd2 1 sy 2 kd2 − r 2

Similarly, if we take the ellipse with equation

4   
x 2

a 2 1
 y 2

b 2 − 1 

FIGURE 12  
The hyperbola 9x 2 2 4y 2 − 36

FIGURE 13  
Equilateral hyperbolas 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A22 APPENDIX C  Graphs of Second-Degree Equations

and translate it (shift it) so that its center is the point sh, kd, then its equation becomes

5   
sx 2 hd2

a 2 1
sy 2 kd2

b 2 − 1 

(See Figure 14.)

(0, 0)

y

(x-h, y-k)

(h, k)

(x, y)

x

¥
b@

≈
a@ +      =1

(x-h)@
a@

(y-k)@
b@+           =1

b

a
h

b

k

a

Notice that in shifting the ellipse, we replaced x by x 2 h and y by y 2 k in Equation 
4 to obtain Equation 5. We use the same procedure to shift the parabola y − ax 2 so that 
its vertex (the origin) becomes the point sh, kd as in Figure 15. Replacing x by x 2 h and 
y by y 2 k, we see that the new equation is

y 2 k − asx 2 hd2    or    y − asx 2 hd2 1 k

y

(h, k)

y=a(x-h)@+k

y=a≈

0 x

EXAMPLE 7 Sketch the graph of the equation y − 2x 2 2 4x 1 1.

SOLUTION First we complete the square:

y − 2sx 2 2 2xd 1 1 − 2sx 2 1d2 2 1

In this form we see that the equation represents the parabola obtained by shifting 
y − 2x 2 so that its vertex is at the point s1, 21d. The graph is sketched in Figure 16.

 

x0

y

1

321

(1, _1)  Q

FIGURE 14

FIGURE 15

FIGURE 16 
y − 2x 2 2 4x 1 1
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EXAMPLE 8 Sketch the curve x − 1 2 y 2.

SOLUTION This time we start with the parabola x − 2y 2 (as in Figure 6 with a − 21)
and shift one unit to the right to get the graph of x − 1 2 y 2. (See Figure 17.)

 (a) x=_¥

0

y

x

(b) x=1-¥

x10

y

 QFIGURE 17

EXERCISES

1–4 Find an equation of a circle that satisfies the given 
conditions.

 1. Center s3, 21d, radius 5

 2. Center s22, 28d, radius 10

 3. Center at the origin, passes through s4, 7d

 4. Center s21, 5d, passes through s24, 26d

 5–9 Show that the equation represents a circle and find the center 
and radius.

 5. x 2 1 y 2 2 4x 1 10y 1 13 − 0

 6. x 2 1 y 2 1 6y 1 2 − 0

 7. x 2 1 y 2 1 x − 0

 8. 16x 2 1 16y 2 1 8x 1 32y 1 1 − 0

 9. 2x 2 1 2y 2 2 x 1 y − 1

 10.  Under what condition on the coefficients a, b, and c does the 
equation x 2 1 y 2 1 ax 1 by 1 c − 0 represent a circle? 
When that condition is satisfied, find the center and radius of 
the circle.

 11–32 Identify the type of curve and sketch the graph. Do not 
plot points. Just use the standard graphs given in Figures 5, 6, 8, 
10, and 11 and shift if necessary.

 11. y − 2x 2 12. y 2 2 x 2 − 1

 13. x 2 1 4y 2 − 16 14. x − 22y 2

 15. 16x 2 2 25y 2 − 400 16. 25x 2 1 4y 2 − 100

 17. 4x 2 1 y 2 − 1 18. y − x 2 1 2

 19. x − y 2 2 1 20. 9x 2 2 25y 2 − 225

 21. 9y 2 2 x 2 − 9 22. 2x 2 1 5y 2 − 10

 23. xy − 4 24. y − x 2 1 2x

 25. 9sx 2 1d2 1 4sy 2 2d2 − 36

 26. 16x 2 1 9y 2 2 36y − 108

 27. y − x 2 2 6x 1 13 28. x 2 2 y 2 2 4x 1 3 − 0

 29. x − 4 2 y 2 30. y 2 2 2x 1 6y 1 5 − 0

 31. x 2 1 4y 2 2 6x 1 5 − 0

 32. 4x 2 1 9y 2 2 16x 1 54y 1 61 − 0

33–34 Sketch the region bounded by the curves.

 33.  y − 3x,  y − x 2 34.  y − 4 2 x 2,  x 2 2y − 2

 35.  Find an equation of the parabola with vertex s1, 21d that 
passes through the points s21, 3d and s3, 3d.

 36.  Find an equation of the ellipse with center at the origin that 
  passes through the points s1, 210s2 y3d and s22, 5s5 y3d.
37–40 Sketch the graph of the set.

 37. hsx, yd | x 2 1 y 2 < 1j 38. hsx, yd | x 2 1 y 2 . 4j

 39. hsx, yd | y > x 2 2 1j 40. hsx, yd | x 2 1 4y 2 < 4j
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Angles
Angles can be measured in degrees or in radians (abbreviated as rad). The angle given by 
a complete revolution contains 3608, which is the same as 2! rad. Therefore

1   ! rad − 1808 

and

2   1 rad − S 180
! D8

< 57.38      18 −
!

180
 rad < 0.017 rad 

EXAMPLE 1
(a) Find the radian measure of 608.   (b) Express 5!y4 rad in degrees.

SOLUTION
(a) From Equation 1 or 2 we see that to convert from degrees to radians we multiply  
by !y180. Therefore

608 − 60S !

180D −
!

3
 rad

(b) To convert from radians to degrees we multiply by 180y!. Thus

 
5!

4
 rad −

5!

4 S 180
! D − 2258 Q

In calculus we use radians to measure angles except when otherwise indicated. The  
fol lowing table gives the correspondence between degree and radian measures of some 
common angles.

Degrees 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360°

Radians 0
!

6
!

4
!

3
!

2
2!

3
3!

4
5!

6
!

3!

2
2!

Figure 1 shows a sector of a circle with central angle " and radius r subtending an arc 
with length a. Since the length of the arc is proportional to the size of the angle, and since 
the entire circle has circumference 2!r and central angle 2!, we have

"

2!
−

a
2!r

Solving this equation for " and for a, we obtain

3   " −
a
r

 a − r" 

Remember that Equations 3 are valid only when " is measured in radians.

r

r

a

¨

FIGURE 1
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In particular, putting a − r in Equation 3, we see that an angle of 1 rad is the angle sub-
tended at the center of a circle by an arc equal in length to the radius of the circle (see  
Figure 2).

EXAMPLE 2
(a) If the radius of a circle is 5 cm, what angle is subtended by an arc of 6 cm?
(b) If a circle has radius 3 cm, what is the length of an arc subtended by a central angle 
of 3!y8 rad?

SOLUTION
(a) Using Equation 3 with a − 6 and r − 5, we see that the angle is

" − 6
5 − 1.2 rad

(b) With r − 3 cm and " − 3!y8 rad, the arc length is

 a − r" − 3S 3!

8 D −
9!

8
 cm Q

The standard position of an angle occurs when we place its vertex at the origin of 
a coor dinate system and its initial side on the positive x-axis as in Figure 3. A positive 
angle is obtained by rotating the initial side counterclockwise until it coincides with 
the terminal side. Likewise, negative angles are obtained by clockwise rotation as in 
Figure 4.

0

y

x

¨ initial side

terminal
side

0

y

x¨

initial side

terminal side

FIGURE 3 " > 0  FIGURE 4 " , 0

Figure 5 shows several examples of angles in standard position. Notice that differ-
ent angles can have the same terminal side. For instance, the angles 3!y4, 25!y4, and 
11!y4 have the same initial and terminal sides because

3!

4
2 2! − 2

5!

4
      

3!

4
1 2! −

11!

4

and 2! rad represents a complete revolution.

y

x
0

¨=_ 5π
4

0

y

x

¨=11π
4

0

y

x

¨=3π
4

0

y

x
¨=_ π

2

0

y

x
¨=1

r

r
r

1 rad

FIGURE 2

FIGURE 5  
Angles in standard position 
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The Trigonometric Functions
For an acute angle " the six trigonometric functions are defined as ratios of lengths of 
sides of a right triangle as follows (see Figure 6).

4    sin " −
opp
hyp

        csc " −
hyp
opp

  cos " −
adj
hyp

        sec " −
hyp
adj

  tan " −
opp
adj

        cot " −
adj
opp

This definition doesn’t apply to obtuse or negative angles, so for a general angle " 
in stan dard position we let Psx, yd be any point on the terminal side of " and we let r be 
the dis tance | OP | as in Figure 7. Then we define

5    sin " −
 y
r

        csc " −
r
y

  cos " −
x
r
         sec " −

r
x

  tan " −
 y
x

        cot " −
x
y

Since division by 0 is not defined, tan " and sec " are undefined when x − 0 and csc " 
and cot " are undefined when y − 0. Notice that the definitions in (4) and (5) are consis-
tent when " is an acute angle.

If " is a number, the convention is that sin " means the sine of the angle whose radian 
measure is ". For example, the expression sin 3 implies that we are dealing with an angle 
of 3 rad. When finding a calculator approximation to this number, we must remember 
to set our calculator in radian mode, and then we obtain

sin 3 < 0.14112

If we want to know the sine of the angle 38 we would write sin 38 and, with our calculator 
in degree mode, we find that

sin 38 < 0.05234

The exact trigonometric ratios for certain angles can be read from the triangles in 
Fig ure 9. For instance,

 sin 
!

4
−

1

s2  sin 
!

6
−

1
2

 sin 
!

3
−

s3 

2

 cos 
!

4
−

1

s2 
 cos 

!

6
−

s3 

2
 cos 

!

3
−

1
2

 tan 
!

4
− 1  tan 

!

6
−

1

s3  tan 
!

3
− s3 

opposite
hypotenuse

adjacent

¨

FIGURE 6

P(x, y)

O

y

x

r
¨

FIGURE 7

If we put r − 1 in Definition 5 and 
draw a unit circle with center the origin 
and label " as in Figure 8, then the 
coordinates of P are scos ", sin "d.

O

y

x1
1 ¨

P(cos ¨ , sin ¨)

FIGURE 8

1

1

2œ„
π
4

π
4 1

2 π
3

œ„3

π
6

FIGURE 9
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The signs of the trigonometric functions for angles in each of the four quadrants can 
be remembered by means of the rule “All Students Take Calculus” shown in Figure 10.

EXAMPLE 3 Find the exact trigonometric ratios for " − 2!y3.

SOLUTION From Figure 11 we see that a point on the terminal line for " − 2!y3 is 
 Ps21, s3 d. Therefore, taking

x − 21      y − s3       r − 2 

in the definitions of the trigonometric ratios, we have

 sin 
2!

3
−

s3 

2
 cos 

2!

3
− 2

1
2

 tan 
2!

3
− 2s3 

  csc 
2!

3
−

2

s3  sec 
2!

3
− 22  cot 

2!

3
− 2

1

s3  Q

The following table gives some values of sin " and cos " found by the method of  
Example 3.

" 0
!

6
!

4
!

3
!

2
2!

3
3!

4
5!

6
!

3!

2
2!

sin " 0
1
2

1

s2 

s3 

2
1 s3 

2

1

s2 

1
2

0 21 0

cos " 1
s3 

2
1

s2 

1
2

0 2
1
2

2
1

s2 
2

s3 

2
21 0 1

EXAMPLE 4 If cos " − 2
5 and 0 , " , !y2, find the other five trigonometric func-

tions of ".

SOLUTION Since cos " − 2
5, we can label the hypotenuse as having length 5 and the 

adjacent side as having length 2 in Figure 12. If the opposite side has length x, then the 
Pythagorean Theorem gives x 2 1 4 − 25 and so x 2 − 21, x − s21. We can now use 
the diagram to write the other five trigonometric functions:

sin " −
s21

5
      tan " −

s21
2

 csc " −
5

s21
      sec " −

5
2

      cot " −
2

s21
 Q

EXAMPLE 5 Use a calculator to approximate the value of x in Figure 13.

SOLUTION From the diagram we see that

tan 408 −
16
x

Therefore x −
16

tan 408
< 19.07 Q

0

y

x

sin ¨>0

tan ¨>0

all ratios>0

cos ¨>0

y

0 x

2π
3π

3

2œ„3

1

P {_1, œ„3}

FIGURE 10 

FIGURE 11 

FIGURE 12 

FIGURE 13 

16

40°

x

5

2
¨

x=œ„„   21
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Trigonometric Identities
A trigonometric identity is a relationship among the trigonometric functions. The most  
ele mentary are the following, which are immediate consequences of the definitions of 
the trig onometric functions.

6   csc " −
1

sin "
      sec " −

1
cos "

      cot " −
1

tan "

 tan " −
sin "
cos "

      cot " −
cos "
sin "

For the next identity we refer back to Figure 7. The distance formula (or, equivalently, 
the Pythagorean Theorem) tells us that x 2 1 y 2 − r 2. Therefore

sin2" 1 cos2" −
 y 2

r 2 1
x 2

r 2 −
x 2 1 y 2

r 2 −
r 2

r 2 − 1

We have therefore proved one of the most useful of all trigonometric identities:

7   sin2" 1 cos2" − 1 

If we now divide both sides of Equation 7 by cos2" and use Equations 6, we get

8   tan2" 1 1 − sec2" 

Similarly, if we divide both sides of Equation 7 by sin2", we get

9   1 1 cot2" − csc2" 

The identities

10a    sins2"d − 2sin " 

10b    coss2"d − cos "  

show that sine is an odd function and cosine is an even function. They are easily proved 
by drawing a diagram showing " and 2" in standard position (see Exercise 39).

Since the angles " and " 1 2! have the same terminal side, we have

11  sins" 1 2!d − sin "      coss" 1 2!d − cos " 

These identities show that the sine and cosine functions are periodic with period 2!.
The remaining trigonometric identities are all consequences of two basic identities 

called the addition formulas:

Odd functions and even functions are 
discussed in Section 1.1.
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 APPENDIX D  Trigonometry A29

12a    sinsx 1 yd − sin x cos y 1 cos x sin y 

12b    cossx 1 yd − cos x cos y 2 sin x sin y 

The proofs of these addition formulas are outlined in Exercises 85, 86, and 87.
By substituting 2y for y in Equations 12a and 12b and using Equations 10a and 10b, 

we obtain the following subtraction formulas:

13a    sinsx 2 yd − sin x cos y 2 cos x sin y 

13b    cossx 2 yd − cos x cos y 1 sin x sin y 

Then, by dividing the formulas in Equations 12 or Equations 13, we obtain the cor-
responding formulas for tansx 6 yd:

14a    tansx 1 yd −
tan x 1 tan y

1 2 tan x tan y
 

14b    tansx 2 yd −
tan x 2 tan y

1 1 tan x tan y
 

If we put y − x in the addition formulas (12), we get the double-angle formulas:

15a    sin 2x − 2 sin x cos x  

15b    cos 2x − cos2x 2 sin2x 

Then, by using the identity sin2x 1 cos2x − 1, we obtain the following alternate forms 
of the double-angle formulas for cos 2x:

16a    cos 2x − 2 cos2x 2 1 

16b    cos 2x − 1 2 2 sin2x 

If we now solve these equations for cos2x and sin2x, we get the following half-angle 
formulas, which are useful in integral calculus:

17a    cos2x −
1 1 cos 2x

2
 

17b    sin2x −
1 2 cos 2x

2
 

Finally, we state the product formulas, which can be deduced from Equations 12  
and 13:
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18a    sin x cos y − 1
2 fsinsx 1 yd 1 sinsx 2 ydg�

18b    cos x cos y − 1
2 fcossx 1 yd 1 cossx 2 ydg�

18c    sin x sin y − 1
2 fcossx 2 yd 2 cossx 1 ydg�

There are many other trigonometric identities, but those we have stated are the ones 
used most often in calculus. If you forget any of the identities 13–18, remember that they 
can all be deduced from Equations 12a and 12b.

EXAMPLE 6 Find all values of x in the interval f0, 2!g such that sin x − sin 2x.

SOLUTION Using the double-angle formula (15a), we rewrite the given equation as

sin x − 2 sin x cos x    or    sin x s1 2 2 cos xd − 0

Therefore there are two possibilities:

 sin x − 0   or 1 2 2 cos x − 0

 x − 0, !, 2!  cos x − 1
2

  x −
!

3
, 

5!

3

The given equation has five solutions: 0, !y3, !, 5!y3, and 2!. Q

Graphs of the Trigonometric Functions
The graph of the function f sxd − sin x, shown in Figure 14(a), is obtained by plotting 
points for 0 < x < 2! and then using the periodic nature of the function (from Equa- 
tion 11) to complete the graph. Notice that the zeros of the sine function occur at the 

y
1

_1
x

x

π_π
2π

3π
0_π

2
π
2

3π
2

5π
2

(b) ©=cos x

y

1

_1
0 π_π 2π 3π

_π
2

π
2

3π
2

5π
2

(a) ƒ=sin x

FIGURE 14 
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integer multiples of !, that is,

sin x − 0    whenever x − n!, n an integer

Because of the identity

cos x − sinSx 1
!

2 D
(which can be verified using Equation 12a), the graph of cosine is obtained by shifting 
the graph of sine by an amount !y2 to the left [see Figure 14(b)]. Note that for both 
the sine and cosine functions the domain is s2`, `d and the range is the closed interval 
f21, 1g. Thus, for all values of x, we have

 21 < sin x < 1� � � � � � 21 < cos x < 1�

The graphs of the remaining four trigonometric functions are shown in Figure 15 and 
their domains are indicated there. Notice that tangent and cotangent have range s2`, `d, 
whereas cosecant and secant have range s2`, 21g ø f1, `d. All four functions are peri-
odic: tangent and cotangent have period !, whereas cosecant and secant have period 2!.

(c) y=csc x

y

1

_1

0
xπ

y=sin x

_ π
2

π
2

3π
2

(d) y=sec x

y

0
xπ

_π

_1

1
y=cos x

_ π
2

π
2

3π
2

(a) y=tan x (b) y=cot x

y

0 xπ_π _ π
2

π
2

3π
2

y

1

_1

0
xπ

_π

_ π
2

π
2

3π
2

FIGURE 15
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 35–38 Find, correct to five decimal places, the length of the side 
labeled x.

 35. 

10 cm
x

35°

 36. 

25 cm

x
40°

 37. 

8 cm

x
2π
5

 38. 
22 cm x

3π
8

39–41 Prove each equation.

 39. (a) Equation 10a (b) Equation 10b

 40. (a) Equation 14a (b) Equation 14b

 41. (a) Equation 18a (b) Equation 18b 
  (c) Equation 18c

42–58 Prove the identity.

 42. cosS!

2
2 xD − sin x

 43. sinS!

2
1 xD − cos x 44. sins! 2 xd − sin x

 45. sin " cot " − cos " 46. ssin x 1 cos xd2 − 1 1 sin 2x

 47. sec y 2 cos y − tan y sin y

 48. tan2# 2 sin2# − tan2# sin2#

 49. cot2" 1 sec2" − tan2" 1 csc2"

 50. 2 csc 2t − sec t csc t

 51. tan 2" −
2 tan "

1 2 tan2"

 52. 
1

1 2 sin "
1

1
1 1 sin "

− 2 sec2"

 53. sin x sin 2x 1 cos x cos 2x − cos x

 54. sin2x 2 sin2 y − sinsx 1 yd sinsx 2 yd

 55. 
sin $

1 2 cos $
− csc $ 1 cot $

 56. tan x 1 tan y −
sinsx 1 yd
cos x cos y

EXERCISES

1–6 Convert from degrees to radians.

 1. 2108 2. 3008 3. 98

 4. 23158 5. 9008 6. 368

7–12 Convert from radians to degrees.

 7. 4! 8. 2
7!

2
 9. 

5!

12

 10. 
8!

3
 11. 2

3!

8
 12. 5

 13.  Find the length of a circular arc subtended by an angle of  
!y12 rad if the radius of the circle is 36 cm.

 14.  If a circle has radius 10 cm, find the length of the arc sub-
tended by a central angle of 728.

 15.  A circle has radius 1.5 m. What angle is subtended at the 
center of the circle by an arc 1 m long?

 16.  Find the radius of a circular sector with angle 3!y4 and arc 
length 6 cm.

 17–22 Draw, in standard position, the angle whose measure is 
given.

 17. 3158 18. 21508 19. 2
3!

4
 rad

 20. 
7!

3
 rad 21. 2 rad 22. 23 rad

 23–28 Find the exact trigonometric ratios for the angle whose 
radian measure is given.

 23. 
3!

4
 24. 

4!

3
 25. 

9!

2

 26. 25! 27. 
5!

6
 28. 

11!

4

29–34 Find the remaining trigonometric ratios.

 29. sin " −
3
5

,  0 , " ,
!

2

 30. tan # − 2,  0 , # ,
!

2

 31. sec $ − 21.5,  
!

2
, $ , !

 32. cos x − 2
1
3

,  ! , x ,
3!

2

 33. cot % − 3,  ! , % , 2!

 34. csc " − 2
4
3

,  
3!

2
, " , 2!
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position, as in the figure. Express x and y in terms of " and 
then use the distance formula to compute c.]

 84.  In order to find the distance | AB | across a small inlet, a point 
C was located as in the figure and the following measure-
ments were recorded:

/C − 1038    | AC | − 820 m     | BC | − 910 m 

   Use the Law of Cosines from Exercise 83 to find the required 
distance.

A

C

B

 85. Use the figure to prove the subtraction formula 

coss# 2 %d − cos # cos % 1 sin # sin %

   [Hint: Compute c 2 in two ways (using the Law of 
Cosines from Exercise 83 and also using the distance for-
mula) and compare the two expressions.]

0

y

B(cos ∫, sin ∫ )

∫

1

A(cos å, sin å)

1

å

c

x

 86.  Use the formula in Exercise 85 to prove the addition formula 
for cosine (12b).

 87. Use the addition formula for cosine and the identities 

cosS!

2
2 "D − sin "      sinS!

2
2 "D − cos "

  to prove the subtraction formula (13a) for the sine function.

 88.  Show that the area of a triangle with sides of lengths a and b 
and with included angle " is

A − 1
2 ab sin "

 89.  Find the area of triangle ABC, correct to five decimal places, 
if

| AB | − 10 cm      | BC | − 3 cm      /ABC − 1078

 57. sin 3" 1 sin " − 2 sin 2" cos "

 58. cos 3" − 4 cos3" 2 3 cos "

 59–64 If sin x − 1
3 and sec y − 5

4, where x and y lie between 0 
and !y2, evaluate the expression.

 59. sinsx 1 yd 60. cossx 1 yd

 61. cossx 2 yd 62. sinsx 2 yd

 63. sin 2y 64. cos 2y

 65–72 Find all values of x in the interval f0, 2!g that satisfy the 
equation.

 65. 2 cos x 2 1 − 0 66. 3 cot2x − 1

 67. 2 sin2x − 1 68. | tan x | − 1

 69. sin 2x − cos x 70. 2 cos x 1 sin 2x − 0

 71. sin x − tan x 72. 2 1 cos 2x − 3 cos x

 73–76 Find all values of x in the interval f0, 2!g that satisfy the 
inequality.

 73. sin x < 1
2 74. 2 cos x 1 1 . 0

 75. 21 , tan x , 1 76. sin x . cos x

 77–82 Graph the function by starting with the graphs in Fig-
ures 14 and 15 and applying the transformations of Section 1.3 
where appropriate.

 77. y − cosSx 2
!

3 D 78. y − tan 2x

 79. y −
1
3

 tanSx 2
!

2 D 80. y − 1 1 sec x

 81. y − | sin x | 82. y − 2 1 sinSx 1
!

4 D
 83.  Prove the Law of Cosines: If a triangle has sides with lengths 

a, b, and c, and " is the angle between the sides with lengths 
a and b, then

c 2 − a 2 1 b 2 2 2ab cos "

0

y P(x, y)

¨

cb

(a, 0) x

    [Hint: Introduce a coordinate system so that " is in standard 
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A convenient way of writing sums uses the Greek letter o  (capital sigma, corresponding 
to our letter S) and is called sigma notation.

1   Definition If am, am11, . . . , an are real numbers and m and n are integers such 
that m < n,  then

 o
n

i−m
 ai − am 1 am11 1 am12 1 ∙ ∙ ∙ 1 an21 1 an

With function notation, Definition 1 can be written as

o
n

i−m
 f sid − f smd 1 f sm 1 1d 1 f sm 1 2d 1 ∙ ∙ ∙ 1 f sn 2 1d 1 f snd

Thus the symbol o n
i−m  indicates a summation in which the letter i (called the index of 

summation) takes on consecutive integer values beginning with m and ending with n, 
that is, m, m 1 1, . . . , n. Other letters can also be used as the index of summation.

EXAMPLE 1

(a) o
4

i−1
 i 2 − 12 1 22 1 32 1 42 − 30

(b) o
n

i−3
 i − 3 1 4 1 5 1 ∙ ∙ ∙ 1 sn 2 1d 1 n

(c) o
5

j−0
 2 j − 20 1 21 1 22 1 23 1 24 1 25 − 63

(d) o
n

k−1
 
1
k

− 1 1
1
2

1
1
3

1 ∙ ∙ ∙ 1
1
n

(e) o
3

i−1
 

i 2 1
i 2 1 3

−
1 2 1
12 1 3

1
2 2 1
22 1 3

1
3 2 1
32 1 3

− 0 1
1
7

1
1
6

−
13
42

(f) o
4

i−1
 2 − 2 1 2 1 2 1 2 − 8 Q

EXAMPLE 2 Write the sum 23 1 33 1 ∙ ∙ ∙ 1 n 3 in sigma notation.

SOLUTION There is no unique way of writing a sum in sigma notation. We could write

  23 1 33 1 ∙ ∙ ∙ 1 n 3 − o
n

i−2
 i 3  

or  23 1 33 1 ∙ ∙ ∙ 1 n 3 − o
n21

j−1
 s j 1 1d3 

or  23 1 33 1 ∙ ∙ ∙ 1 n 3 − o
n22

k−0
 sk 1 2d3 Q

The following theorem gives three simple rules for working with sigma notation.

This tells us to
end with i=n.
This tells us
to add.

This tells us to
start with i=m.

µ ai
n

i!m
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2   Theorem If c is any constant (that is, it does not depend on i), then

(a) o
n

i−m
 cai − c o

n

i−m
 ai (b) o

n

i−m
 sai 1 bid − o

n

i−m
 ai 1 o

n

i−m
 bi

(c) o
n

i−m
 sai 2 bid − o

n

i−m
 ai 2 o

n

i−m
 bi

PROOF To see why these rules are true, all we have to do is write both sides in  
expanded form. Rule (a) is just the distributive property of real numbers:

cam 1 cam11 1 ∙ ∙ ∙ 1 can − csam 1 am11 1 ∙ ∙ ∙ 1 an d

Rule (b) follows from the associative and commutative properties:

  sam 1 bm d 1 sam11 1 bm11d 1 ∙ ∙ ∙ 1 san 1 bn d

     − sam 1 am11 1 ∙ ∙ ∙ 1 an d 1 sbm 1 bm11 1 ∙ ∙ ∙ 1 bn d
Rule (c) is proved similarly. Q

EXAMPLE 3 Find o
n

i−1
 1.

SOLUTION o
n

i−1
 1 − 1 1 1 1 ∙ ∙ ∙ 1 1 − n Q

EXAMPLE 4 Prove the formula for the sum of the first n positive integers:

o
n

i−1
 i − 1 1 2 1 3 1 ∙ ∙ ∙ 1 n −

nsn 1 1d
2

SOLUTION This formula can be proved by mathematical induction (see page 72) or 
by the following method used by the German mathematician Karl Friedrich Gauss 
(1777–1855) when he was ten years old.

Write the sum S twice, once in the usual order and once in reverse order:

 S − 1 1  2  1  3  1 ∙ ∙ ∙ 1  sn 2 1d 1  n

 S − n 1  sn 2 1d 1  sn 2 2d 1 ∙ ∙ ∙ 1  2  1  1

Adding all columns vertically, we get

2S − sn 1 1d 1 sn 1 1d 1 sn 1 1d 1 ∙ ∙ ∙ 1 sn 1 1d 1 sn 1 1d

On the right side there are n terms, each of which is n 1 1, so

 2S − nsn 1 1d    or    S −
nsn 1 1d

2
 Q

EXAMPLE 5 Prove the formula for the sum of the squares of the first n positive  
integers:

o
n

i−1
 i 2 − 12 1 22 1 32 1 ∙ ∙ ∙ 1 n 2 −

nsn 1 1ds2n 1 1d
6

n terms
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SOLUTION 1 Let S be the desired sum. We start with the telescoping sum (or collapsing 
sum):

 o
n

i−1
 fs1 1 id3 2 i 3 g − s23 2 13 d 1 s33 2 23 d 1 s43 2 33 d 1 ∙ ∙ ∙ 1 fsn 1 1d3 2 n 3 g

 − sn 1 1d3 2 13 − n 3 1 3n 2 1 3n

On the other hand, using Theorem 2 and Examples 3 and 4, we have

 o
n

i−1
 fs1 1 i d3 2 i 3 g − o

n

i−1
 f3i 2 1 3i 1 1g − 3 o

n

i−1
 i 2 1 3 o

n

i−1
 i 1 o

n

i−1
 1

 − 3S 1 3 
nsn 1 1d

2
1 n − 3S 1 3

2 n 2 1 5
2 n

Thus we have

n 3 1 3n 2 1 3n − 3S 1 3
2 n 2 1 5

2 n

Solving this equation for S, we obtain

  3S − n 3 1 3
2 n 2 1 1

2 n

or  S −
2n 3 1 3n 2 1 n

6
−

nsn 1 1ds2n 1 1d
6

SOLUTION 2 Let Sn be the given formula.

1. S1 is true because 12 −
1s1 1 1ds2 ? 1 1 1d

6

2. Assume that Sk is true; that is,

12 1 22 1 32 1 ∙ ∙ ∙ 1 k 2 −
ksk 1 1ds2k 1 1d

6
 Then

 12 1 22 1 32 1 ∙ ∙ ∙ 1 sk 1 1d2 − s12 1 22 1 32 1 ∙ ∙ ∙ 1 k 2 d 1 sk 1 1d2

 −
ksk 1 1ds2k 1 1d

6
1 sk 1 1d2

 − sk 1 1d 
ks2k 1 1d 1 6sk 1 1d

6

 − sk 1 1d 
2k 2 1 7k 1 6

6

 −
sk 1 1dsk 1 2ds2k 1 3d

6

 −
sk 1 1dfsk 1 1d 1 1gf2sk 1 1d 1 1g

6

 So Sk11 is true.

By the Principle of Mathematical Induction, Sn is true for all n. Q

Most terms cancel in pairs.

Principle of Mathematical Induction
Let Sn be a statement involving the 
positive integer n. Suppose that

1. S1 is true.
2. If Sk is true, then Sk11 is true.

Then Sn is true for all positive inte- 
gers n.

See pages 72 and 74 for a more 
thorough discussion of mathematical 
induction.
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We list the results of Examples 3, 4, and 5 together with a similar result for cubes (see 
Exercises 37–40) as Theorem 3. These formulas are needed for finding areas and evalu-
ating integrals in Chapter 5.

3   Theorem  Let c be a constant and n a positive integer. Then

(a)   o
n

i−1
 1 − n (b)   o

n

i−1
 c − nc

(c)   o
n

i−1
 i −

nsn 1 1d
2

 (d)   o
n

i−1
 i 2 −

nsn 1 1ds2n 1 1d
6

(e)   o
n

i−1
 i 3 − F nsn 1 1d

2 G2

EXAMPLE 6 Evaluate o
n

i−1
 is4i 2 2 3d.

SOLUTION Using Theorems 2 and 3, we have

 o
n

i−1
 is4i 2 2 3d − o

n

i−1
 s4i 3 2 3id − 4 o

n

i−1
i 3 2 3 o

n

i−1
 i

 − 4F nsn 1 1d
2 G2

2 3 nsn 1 1d
2

 −
nsn 1 1df2nsn 1 1d 2 3g

2

  −
nsn 1 1ds2n 2 1 2n 2 3d

2
 Q

EXAMPLE 7 Find lim
n l `

 o
n

i−1
 
3
n

 FS i
nD2

1 1G.

SOLUTION

  lim
n l `

  o
n

i−1

3
n

 FS i
nD2

1 1G − lim
n l `

 o
n

i−1
F 3

n 3  i 2 1
3
nG

 − lim
n l `

 F 3
n 3  o

n

i−1
 i 2 1

3
n

 o
n

i−1
 1G

 − lim
n l `

 F 3
n 3  

nsn 1 1ds2n 1 1d
6

1
3
n

? nG
 − lim

n l `
 F 1

2
?

n
n

? S n 1 1
n DS 2n 1 1

n D 1 3G
 − lim

n l `
 F 1

2
? 1S1 1

1
nDS2 1

1
nD 1 3G

  − 1
2 ? 1 ? 1 ? 2 1 3 − 4  Q

The type of calculation in Example 7 
arises in Chapter 5 when we compute 
areas.
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 35. o
n

i−1
 si 3 2 i 2 2d

 36. Find the number n such that o
n

i−1
 i − 78.

 37. Prove formula (b) of Theorem 3.

 38.  Prove formula (e) of Theorem 3 using mathematical  
induction.

 39.  Prove formula (e) of Theorem 3 using a method similar to 
that of Example 5, Solution 1 [start with s1 1 i d4 2 i 4 g.

 40.  Prove formula (e) of Theorem 3 using the following method 
published by Abu Bekr Mohammed ibn Alhusain Alkar-
chi in about ad 1010. The figure shows a square ABCD in 
which sides AB and AD have been divided into segments of 
lengths 1, 2, 3, . . . , n. Thus the side of the square has length 
nsn 1 1dy2 so the area is fnsn 1 1dy2g2. But the area is also 
the sum of the areas of the n “gnomons” G1, G2, . . . , Gn 
shown in the figure. Show that the area of Gi is i 3 and con-
clude that formula (e) is true.

1 2 3 4 5 . . . n BA
1
2
3
4

5

n

D

...

C

Gn

G™
G£

G¢

G∞

    .  ..

 41. Evaluate each telescoping sum.

 (a) o
n

i−1
 fi 4 2 si 2 1d4 g (b) o

100

i−1
 s5 i 2 5 i21 d

 (c) o
99

i−3
 S 1

i
2

1
i 1 1D (d) o

n

i−1
 sai 2 ai21d

 42. Prove the generalized triangle inequality:

Zon

i−1
 ai Z < o

n

i−1
| ai |

43–46 Find the limit.

 43. lim
n l `

 o
n

i−1
 
1
n

 S i
nD2

 44. lim
n l `

 o
n

i−1
 
1
n

 FS i
nD3

1 1G
 45. lim

nl `
 o

n

i−1
 
2
n

 FS 2i
n D3

1 5S 2i
n DG

EXERCISES

1–10 Write the sum in expanded form.

 1. o
5

i−1
 si   2. o

6

i−1
 

1
i 1 1

 3. o
6

i−4
 3 i  4. o

6

i−4
 i 3

 5. o
4

k−0
 
2k 2 1
2k 1 1

  6. o
8

k−5
 x k

 7. o
n

i−1
 i 10  8. o

n13

j−n
 j 2

 9. o
n21

j−0
 s21d j 10. o

n

i−1
  f sxi d Dxi

11–20 Write the sum in sigma notation.

 11. 1 1 2 1 3 1 4 1 ∙ ∙ ∙ 1 10

 12. s3 1 s4 1 s5 1 s6 1 s7 

 13. 1
2 1 2

3 1 3
4 1 4

5 1 ∙ ∙ ∙ 1 19
20

 14. 3
7 1 4

8 1 5
9 1 6

10 1 ∙ ∙ ∙ 1 23
27

 15. 2 1 4 1 6 1 8 1 ∙ ∙ ∙ 1 2n

 16. 1 1 3 1 5 1 7 1 ∙ ∙ ∙ 1 s2n 2 1d

 17. 1 1 2 1 4 1 8 1 16 1 32

 18. 1
1 1 1

4 1 1
9 1 1

16 1 1
25 1 1

36

 19. x 1 x 2 1 x 3 1 ∙ ∙ ∙ 1 x n

 20. 1 2 x 1 x 2 2 x 3 1 ∙ ∙ ∙ 1 s21dnx n

21–35 Find the value of the sum.

 21. o
8

i−4
 s3i 2 2d 22. o

6

i−3
 isi 1 2d

 23. o
6

j−1
 3 j11 24. o

8

k−0
 cos k!

 25. o
20

n−1
 s21dn 26. o

100

i−1
 4

 27. o
4

i−0
 s2 i 1 i 2d 28. o

4

i−22
 232i

 29. o
n

i−1
 2i 30. o

n

i−1
 s2 2 5i d

 31. o
n

i−1
 si 2 1 3i 1 4d 32. o

n

i−1
 s3 1 2i d2

 33. o
n

i−1
 si 1 1dsi 1 2d 34. o

n

i−1
 isi 1 1dsi 1 2d
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 APPENDIX F  Proofs of Theorems A39

In this appendix we present proofs of several theorems that are stated in the main body 
of the text. The sections in which they occur are indicated in the margin.

Limit Laws  Suppose that c is a constant and the limits

lim
x l a

 f sxd − L    and    lim
x l a

 tsxd − M

exist. Then

1.   lim
x l a

 f f sxd 1 tsxdg − L 1 M  2.   lim
x l a

 f f sxd 2 tsxdg − L 2 M

3.   lim
x l a

 fcf sxdg − cL   4. lim
x l a

 f f sxdtsxdg − LM

5.   lim
x l a

 
 f sxd
tsxd

−
L
M

  if M ± 0

Section 2.3

PROOF OF LAW 4 Let « . 0 be given. We want to find & . 0 such that

if    0 , | x 2 a | , &    then    | f sxdtsxd 2 LM | , «

In order to get terms that contain | f sxd 2 L | and | tsxd 2 M |, we add and subtract 
Ltsxd as follows:

  | f sxdtsxd 2 LM | − | f sxdtsxd 2 Ltsxd 1 Ltsxd 2 LM |
  − | f f sxd 2 Lg tsxd 1 Lftsxd 2 Mg |

 < | f f sxd 2 Lg tsxd | 1 | Lftsxd 2 Mg |      (Triangle Inequality)

  − | f sxd 2 L | | tsxd | 1 | L | | tsxd 2 M |
We want to make each of these terms less than «y2.

Since lim x l a tsxd − M, there is a number &1 . 0 such that

if    0 , | x 2 a | , &1    then    | tsxd 2 M | ,
«

2(1 1 | L |)
Also, there is a number &2 . 0 such that if 0 , | x 2 a | , &2, then

| tsxd 2 M | , 1
and therefore

| tsxd | − | tsxd 2 M 1 M | < | tsxd 2 M | 1 | M | , 1 1 | M |

 46. lim
nl `

 o
n

i−1
 
3
n

 FS1 1
3i
n D3

2 2S1 1
3i
n DG

 47.  Prove the formula for the sum of a finite geometric series with 
first term a and common ratio r ± 1:

o
n

i−1
 ar i21 − a 1 ar 1 ar 2 1 ∙ ∙ ∙ 1 ar n21 −

asr n 2 1d
r 2 1

 48. Evaluate o
n

i−1
 

3
2 i21 .

 49. Evaluate o
n

i−1
 s2i 1 2 i d.

 50. Evaluate o
m

i−1
Fo

n

j−1
si 1 j dG.
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Since lim x l a f sxd − L, there is a number !3 . 0 such that

if    0 , | x 2 a | , !3    then     | f sxd 2 L | ,
«

2(1 1 | M |)
Let ! − minh!1, !2, !3 j. If 0 , | x 2 a | , !, then we have 0 , | x 2 a | , !1,  
0 , | x 2 a | , !2, and 0 , | x 2 a | , !3, so we can combine the inequalities to 
obtain

 | f sxdtsxd 2 LM | < | f sxd 2 L | | tsxd | 1 | L | | tsxd 2 M |
 ,

«

2(1 1 | M |)  (1 1 | M |) 1 | L |  
«

2(1 1 | L |)
 ,

«

2
1

«

2
− «

This shows that lim x l a f f sxd tsxdg − LM. Q

PROOF OF LAW 3 If we take tsxd − c in Law 4, we get

  lim
x l a

 fcf sxdg − lim
x l a

 ftsxd f sxdg − lim
x l a

 tsxd ? lim
x l a

 f sxd

 − lim
x l a

 c ? lim
xl a

  f sxd

  − c lim
xla

 f sxd    (by Law 7) Q

PROOF OF LAW 2 Using Law 1 and Law 3 with c − 21, we have

  lim
x l a

 f f sxd 2 tsxdg − lim
x l a

 f f sxd 1 s21dtsxdg − lim
xl a

 f sxd 1 lim
x l a

 s21dtsxd

  − lim
x l a

 f sxd 1 s21d lim
x l a

 tsxd − lim
x l a

 f sxd 2 lim
x l a

 tsxd Q

PROOF OF LAW 5 First let us show that

lim
x l a

1
tsxd

−
1
M

To do this we must show that, given « . 0, there exists ! . 0 such that

if    0 , | x 2 a | , !    then    Z 1
tsxd

2
1
M Z , «

Observe that Z 1
tsxd

2
1
M Z − | M 2 tsxd |

| Mtsxd |
We know that we can make the numerator small. But we also need to know that the 
denominator is not small when x is near a. Since lim x l a tsxd − M, there is a number 
!1 . 0 such that, whenever 0 , | x 2 a | , !1, we have

| tsxd 2 M | , | M |
2

and therefore  | M | − | M 2 tsxd 1 tsxd | < | M 2 tsxd | 1 | tsxd |
 , | M |

2
1 | tsxd |
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 APPENDIX F  Proofs of Theorems A41

This shows that

if    0 , | x 2 a | , !1    then    | tsxd | . | M |
2

and so, for these values of x,

1

| Mtsxd | −
1

| M | | tsxd | ,
1

| M | ?
2

| M | −
2

M 2

Also, there exists !2 . 0 such that

if    0 , | x 2 a | , !2    then    | tsxd 2 M | ,
M 2

2
 «

Let ! − minh!1, !2 j. Then, for 0 , | x 2 a | , !, we have

Z 1
tsxd

2
1
M Z − | M 2 tsxd |

| Mtsxd | ,
2

M 2  
M 2

2
 « − «

It follows that lim x l a 1ytsxd − 1yM. Finally, using Law 4, we obtain

�  lim
x l a

 
 f sxd
tsxd

− lim
x l a

 S f sxd ?
1

tsxdD − lim
x l a

 f sxd lim
x l a

 
1

tsxd
− L ?

1
M

−
L
M

� Q

2   Theorem If f sxd < tsxd for all x in an open interval that contains a (except 
possibly at a) and

 lim 
x l a

 f sxd − L    and     lim
x l a

 tsxd − M

then L < M.

PROOF We use the method of proof by contradiction. Suppose, if possible, that L . M.  
Law 2 of limits says that

 lim 
x l a

 ftsxd 2 f sxdg − M 2 L

Therefore, for any « . 0, there exists ! . 0 such that

if    0 , | x 2 a | , !    then    | ftsxd 2 f sxdg 2 sM 2 Ld | , «

In particular, taking « − L 2 M (noting that L 2 M . 0 by hypothesis), we have a 
number ! . 0 such that

if    0 , | x 2 a | , !    then    | ftsxd 2 f sxdg 2 sM 2 Ld | , L 2 M

Since b < | b | for any number b, we have

if    0 , | x 2 a | , !    then    ftsxd 2 f sxdg 2 sM 2 Ld , L 2 M

which simplifies to

if    0 , | x 2 a | , !    then    tsxd , f sxd

But this contradicts f sxd < tsxd. Thus the inequality L . M must be false. There- 
fore L < M. Q
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3   The Squeeze Theorem If f sxd < tsxd < hsxd for all x in an open interval that  
contains a (except possibly at a) and

lim
x l a

 f sxd − lim
x l a

 hsxd − L

then lim
x l a

 tsxd − L

PROOF Let « . 0 be given. Since lim x l a f sxd − L, there is a number !1 . 0 such that

if    0 , | x 2 a | , !1    then    | f sxd 2 L | , «

that is,

if    0 , | x 2 a | , !1    then    L 2 « , f sxd , L 1 «

Since lim x l a hsxd − L, there is a number !2 . 0 such that

if    0 , | x 2 a | , !2    then    | hsxd 2 L | , «

that is,

if    0 , | x 2 a | , !2    then    L 2 « , hsxd , L 1 «

Let ! − minh!1, !2 j. If 0 , | x 2 a | , !, then 0 , | x 2 a | , !1 and 
0 , | x 2 a | , !2, so

L 2 « , f sxd < tsxd < hsxd , L 1 «

In particular, L 2 « , tsxd , L 1 «

and so | tsxd 2 L | , «. Therefore lim x l a tsxd − L. Q

  Theorem If f  is a one-to-one continuous function defined on an interval sa, bd, 
then its inverse function f 21 is also continuous.

Section 2.5

 PROOF First we show that if f  is both one-to-one and continuous on sa, bd, then it must 
be either increasing or decreasing on sa, bd. If it were neither increasing nor decreas-
ing, then there would exist numbers x1, x2, and x3 in sa, bd with x1 , x2 , x3 such that 
f sx2 d does not lie between f sx1d and f sx3 d. There are two possibilities: either (1) f sx3 d 
lies between f sx1d and f sx2 d or (2) f sx1d lies between f sx2 d and f sx3 d. (Draw a pic-
ture.) In case (1) we apply the Intermediate Value Theorem to the continuous function 
f  to get a number c between x1 and x2 such that f scd − f sx3 d. In case (2) the Intermedi-
ate Value Theorem gives a number c between x2 and x3 such that f scd − f sx1d. In either 
case we have contradicted the fact that f  is one-to-one.

Let us assume, for the sake of definiteness, that f  is increasing on sa, bd. We take 
any number y0 in the domain of f 21 and we let f 21sy0 d − x0; that is, x0 is the number 
in sa, bd such that f sx0d − y0. To show that f 21 is continuous at y0 we take any « . 0 
such that the interval sx0 2 «, x0 1 «d is contained in the interval sa, bd. Since f  is 
increasing, it maps the numbers in the interval sx0 2 «, x0 1 «d onto the numbers in the 
interval s f sx0 2 «d, f sx0 1 «dd and f 21 reverses the correspondence. If we let ! denote 
the smaller of the numbers !1 − y0 2 f sx0 2 «d and !2 − f sx0 1 «d 2 y0, then the 
interval sy0 2 !, y0 1 !d is contained in the interval s f sx0 2 «d, f sx0 1 «dd and so is 
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 APPENDIX F  Proofs of Theorems A43

mapped into the interval sx0 2 «, x0 1 «d by f 21. (See the arrow diagram in Figure 1.) 
We have therefore found a number ! . 0 such that

if    | y 2 y0 | , !    then    | f 21syd 2 f 21sy0 d | , «

x

y

x¸

y¸

f f –!

ba

f(x¸-∑) f(x¸+∑)

x¸-∑ x¸+∑

∂¡ ∂™
}

{ }{ }

{

f

This shows that lim y l y0 f 21syd − f 21sy0d and so f 21 is continuous at any number y0 in 
its domain. Q

8   Theorem If f  is continuous at b and lim x l a tsxd − b, then

lim
x l

 

a
 f stsxdd − f sbd

PROOF Let « . 0 be given. We want to find a number ! . 0 such that

if    0 , | x 2 a | , !    then    | f stsxdd 2 f sbd | , «

Since f  is continuous at b, we have

lim
y l b

 f syd − f sbd

and so there exists !1 . 0 such that

if    0 , | y 2 b | , !1    then    | f syd 2 f sbd | , «

Since lim x l a tsxd − b, there exists ! . 0 such that

if    0 , | x 2 a | , !    then    | tsxd 2 b | , !1

Combining these two statements, we see that whenever 0 , | x 2 a | , ! we have 
| tsxd 2 b | , !1, which implies that | f stsxdd 2 f sbd | , «. Therefore we have proved

that limx l a f stsxdd − f sbd. Q

 The proof of the following result was promised when we proved that lim
" l 0

sin "
"

− 1.

 Theorem If 0 , " , #y2, then " < tan ".

PROOF Figure 2 shows a sector of a circle with center O, central angle ", and radius 1. 
Then

| AD | − | OA | tan " − tan "

FIGURE 1

Section 3.3
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We approximate the arc AB by an inscribed polygon consisting of n equal line seg-
ments and we look at a typical segment PQ. We extend the lines OP and OQ to meet 
AD in the points R and S. Then we draw RT i PQ as in Figure 2. Observe that

/RTO − /PQO , 908

and so /RTS . 908. Therefore we have

| PQ | , | RT | , | RS |
If we add n such inequalities, we get

Ln , | AD | − tan "

where Ln is the length of the inscribed polygon. Thus, by Theorem 2.3.2, we have

lim
nl `

 Ln < tan "

But the arc length is defined in Equation 8.1.1 as the limit of the lengths of inscribed 
polygons, so

 " − lim
n l `

 Ln < tan " Q

Concavity Test
(a) If f 0sxd . 0 for all x in I, then the graph of f  is concave upward on I.

(b) If f 0sxd , 0 for all x in I, then the graph of f  is concave downward on I.

Section 4.3

PROOF OF (a) Let a be any number in I. We must show that the curve y − f sxd lies 
above the tangent line at the point sa, f sadd. The equation of this tangent is

y − f sad 1 f 9sadsx 2 ad

So we must show that

f sxd . f sad 1 f 9sadsx 2 ad

whenever x [ I sx ± ad. (See Figure 3.)
First let us take the case where x . a. Applying the Mean Value Theorem to f  on 

the interval fa, xg, we get a number c, with a , c , x, such that

1   f sxd 2 f sad − f 9scdsx 2 ad 

Since f 0 . 0 on I, we know from the Increasing/Decreasing Test that f 9 is increasing  
on I. Thus, since a , c, we have

f 9sad , f 9scd

and so, multiplying this inequality by the positive number x 2 a, we get

2   f 9sadsx 2 ad , f 9scdsx 2 ad�

a x

f(a)+f ª(a)(x-a)ƒ

y=ƒ

x

y

0

FIGURE 3

Q
T

S

° °

B

D

° °
P

R

AO 1

¨

FIGURE 2
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 APPENDIX F  Proofs of Theorems A45

Now we add f sad to both sides of this inequality:

f sad 1 f 9sadsx 2 ad , f sad 1 f 9scdsx 2 ad

But from Equation 1 we have f sxd − f sad 1 f 9scdsx 2 ad. So this inequality becomes

3   f sxd . f sad 1 f 9sadsx 2 ad�

which is what we wanted to prove.
For the case where x , a we have f 9scd , f 9sad, but multiplication by the negative 

number x 2 a reverses the inequality, so we get (2) and (3) as before. Q

In order to give the promised proof of l’Hospital’s Rule, we first need a generalization of 
the Mean Value Theorem. The following theorem is named after another French math-
ematician, Augustin-Louis Cauchy (1789–1857).

1   Cauchy’s Mean Value Theorem Suppose that the functions f  and t are con-
tinuous on fa, bg and differentiable on sa, bd, and t9sxd ± 0 for all x in sa, bd. Then 
there is a number c in sa, bd such that

 f 9scd
t9scd

−
 f sbd 2 f sad
tsbd 2 tsad

See the biographical sketch of Cauchy  
on page 109.

Notice that if we take the special case in which tsxd − x, then t9scd − 1 and Theo-
rem 1 is just the ordinary Mean Value Theorem. Furthermore, Theorem 1 can be proved 
in a sim ilar manner. You can verify that all we have to do is change the function h given 
by Equation 4.2.4 to the function

hsxd − f sxd 2 f sad 2
 f sbd 2 f sad
tsbd 2 tsad

 ftsxd 2 tsadg

and apply Rolle’s Theorem as before.

 L’Hospital’s Rule Suppose f  and t are differentiable and t9sxd ± 0 on an open 
interval I that contains a (except possibly at a). Suppose that

 lim
x l a

 f sxd − 0   and     lim
x l a

tsxd − 0

or that  lim
x l a

 f sxd − 6`    and     lim
x l a

tsxd − 6`

(In other words, we have an indeterminate form of type 00 or ỳ`.) Then

lim
x l a

 
 f sxd
tsxd

− lim
x l a

 
 f 9sxd
t9sxd

if the limit on the right side exists (or is ` or 2`).

Section 4.4
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PROOF OF L’HOSPITAL’S RULE We are assuming that lim x l a f sxd − 0 and 
lim x l a tsxd − 0. Let

L − lim
x l a

 
 f 9sxd
t9sxd

We must show that lim x l a f sxdytsxd − L. Define

Fsxd − Hf sxd
0

if x ± a
if x − a

Gsxd − Htsxd
0

if x ± a
if x − a

Then F is continuous on I since f  is continuous on hx [ I | x ± aj and

lim
x l a

 Fsxd − lim
x l a

 f sxd − 0 − Fsad

Likewise, G is continuous on I. Let x [ I and x . a. Then F and G are continuous on 
fa, xg and differentiable on sa, xd and G9 ± 0 there (since F9 − f 9 and G9 − t9). There-
fore, by Cauchy’s Mean Value Theorem, there is a number y such that a , y , x and

F9syd
G9syd

−
Fsxd 2 Fsad
Gsxd 2 Gsad

−
Fsxd
Gsxd

Here we have used the fact that, by definition, Fsad − 0 and Gsad − 0. Now, if we let 
x l a1, then y l a1 (since a , y , x), so

lim
x l a1

 
 f sxd
tsxd

− lim
x l a1

 
Fsxd
Gsxd

− lim
y l a1

F9syd
G9syd

− lim
y l a1

 f 9syd
t9syd

− L

A similar argument shows that the left-hand limit is also L. Therefore

lim
x l a

f sxd
tsxd

− L

This proves l’Hospital’s Rule for the case where a is finite.
If a is infinite, we let t − 1yx. Then t l 01 as x l `, so we have

  lim
x l `

f sxd
tsxd

− lim
t l 01

f s1ytd
ts1ytd

�  − lim
t l 01

f 9s1ytds21yt 2 d
t9s1ytds21yt 2 d

� � � � (by l’Hospital’s Rule for finite a)

  − lim
t l 01

f 9s1ytd
t9s1ytd

− lim
x l `

f 9sxd
t9sxd

 Q

In order to prove Theorem 11.8.4, we first need the following results.

Theorem

1.  If a power series o  cn xn converges when x − b (where b ± 0), then it converges 
whenever | x | , | b |.

2.  If a power series o  cn xn diverges when x − d (where d ± 0), then it diverges 
whenever | x | . | d |.

Section 11.8
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PROOF OF 1 Suppose that o cnbn converges. Then, by Theorem 11.2.6, we have 
lim n l ` cnbn − 0. According to Definition 11.1.2 with « − 1, there is a positive integer  
N such that |cnbn | , 1 whenever n > N. Thus, for n > N, we have

|cn xn | − Z cnbnxn

bn Z − |cnbn |Z x
b Z n

, Z x
b Z n

If | x | , | b |, then | xyb | , 1, so o  | xyb |n is a convergent geometric series. Therefore, 
by the Comparison Test, the series o`

n−N |cn xn | is convergent. Thus the series o cn xn is 
absolutely convergent and therefore convergent. Q

PROOF OF 2 Suppose that o cndn diverges. If x is any number such that | x | . | d |,  
then o cn xn cannot converge because, by part 1, the convergence of o cn xn would  
imply the convergence of o cndn. Therefore o cn xn diverges whenever | x | . | d |. Q

 Theorem For a power series o cn xn there are only three possibilities:

1. The series converges only when x − 0.

2. The series converges for all x.

3.  There is a positive number R such that the series converges if | x | , R and 
diverges if | x | . R.

PROOF Suppose that neither case 1 nor case 2 is true. Then there are nonzero numbers 
b and d such that o cn xn converges for x − b and diverges for x − d. Therefore the set 
S − hx | o cn xn convergesj is not empty. By the preceding theorem, the series diverges 
if | x | . | d |, so | x | < | d | for all x [ S. This says that | d | is an upper bound for the 
set S. Thus, by the Completeness Axiom (see Section 11.1), S has a least upper bound 
R. If | x | . R, then x Ó S, so o cn xn diverges. If | x | , R, then | x | is not an upper 
bound for S and so there exists b [ S such that b . | x |. Since b [ S, o cn xn con-
verges, so by the preceding theorem o cn xn converges. Q

4   Theorem For a power series o  cnsx 2 adn there are only three possibilities:

1. The series converges only when x − a.

2. The series converges for all x.

3.  There is a positive number R such that the series converges if | x 2 a | , R  
and diverges if | x 2 a | . R.

PROOF If we make the change of variable u − x 2 a, then the power series becomes 
o cnun and we can apply the preceding theorem to this series. In case 3 we have con- 
vergence for | u | , R and divergence for | u | . R. Thus we have convergence for 
| x 2 a | , R and divergence for | x 2 a | . R. Q
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  Clairaut’s Theorem Suppose f  is defined on a disk D that contains the point 
sa, bd. If the functions fxy and fyx are both continuous on D, then fxysa, bd − fyxsa, bd.

PROOF For small values of h, h ± 0, consider the difference

Dshd − f f sa 1 h, b 1 hd 2 f sa 1 h, bdg 2 f f sa, b 1 hd 2 f sa, bdg

Notice that if we let tsxd − f sx, b 1 hd 2 f sx, bd, then

Dshd − tsa 1 hd 2 tsad

By the Mean Value Theorem, there is a number c between a and a 1 h such that

tsa 1 hd 2 tsad − t9scdh − hf fxsc, b 1 hd 2 fxsc, bdg

Applying the Mean Value Theorem again, this time to fx , we get a number d between b 
and b 1 h such that

fxsc, b 1 hd 2 fxsc, bd − fxysc, ddh

Combining these equations, we obtain

Dshd − h 2fxysc, dd

If h l 0, then sc, dd l sa, bd, so the continuity of fxy at sa, bd gives

lim
h l 0

 
Dshd
h 2 − lim 

sc, dd l sa, bd
 fxysc, dd − fxysa, bd

Similarly, by writing

Dshd − f f sa 1 h, b 1 hd 2 f sa, b 1 hdg 2 f f sa 1 h, bd 2 f sa, bdg

and using the Mean Value Theorem twice and the continuity of fyx at sa, bd, we obtain

lim
h l 0

 
Dshd
h 2 − fyxsa, bd

It follows that fxysa, bd − fyxsa, bd. Q

8Section 14.4   Theorem If the partial derivatives fx and fy exist near sa, bd and are continu-
ous at sa, bd, then f  is differentiable at sa, bd.

PROOF Let

Dz − f sa 1 Dx, b 1 Dyd 2 f sa, bd

According to (14.4.7), to prove that f  is differentiable at sa, bd we have to show that we 
can write Dz in the form

Dz − fxsa, bd Dx 1 fysa, bd Dy 1 «1 Dx 1 «2 Dy

where «1 and «2 l 0 as sDx, Dyd l s0, 0d.

Section 14.3
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 APPENDIX F  Proofs of Theorems A49

Referring to Figure 4, we write

1   Dz − f f sa 1 Dx, b 1 Dyd 2 f sa, b 1 Dydg 1 f f sa, b 1 Dyd 2 f sa, bdg�

x

y

0

R(a, √)

(a, b+Îy)

(a+Îx, b+Îy)
(u, b+Îy)

(a, b)

Observe that the function of a single variable

tsxd − f sx, b 1 Dyd

is defined on the interval fa, a 1 Dxg and t9sxd − fxsx, b 1 Dyd. If we apply the Mean 
Value Theorem to t, we get

tsa 1 Dxd 2 tsad − t9sud Dx

where u is some number between a and a 1 Dx. In terms of f, this equation becomes

f sa 1 Dx, b 1 Dyd 2 f sa, b 1 Dyd − fxsu, b 1 Dyd Dx

This gives us an expression for the first part of the right side of Equation 1. For the  
second part we let hsyd − f sa, yd. Then h is a function of a single variable defined on  
the interval fb, b 1 Dyg and h9syd − fysa, yd. A second application of the Mean Value  
Theorem then gives

hsb 1 Dyd 2 hsbd − h9svd Dy

where v is some number between b and b 1 Dy. In terms of f, this becomes

f sa, b 1 Dyd 2 f sa, bd − fysa, vd Dy

We now substitute these expressions into Equation 1 and obtain

 Dz − fxsu, b 1 Dyd Dx 1 fysa, vd Dy

 − fxsa, bd Dx 1 f fxsu, b 1 Dyd 2 fxsa, bdg Dx 1 fysa, bd Dy

 1 f fysa, vd 2 fysa, bdg Dy

 − fxsa, bd Dx 1 fysa, bd Dy 1 «1 Dx 1 «2 Dy

where  «1 − fxsu, b 1 Dyd 2 fxsa, bd

 «2 − fysa, vd 2 fysa, bd

Since su, b 1 Dyd l sa, bd and sa, vd l sa, bd as sDx, Dyd l s0, 0d and since fx and fy 
are continuous at sa, bd, we see that «1 l 0 and «2 l 0 as sDx, Dyd l s0, 0d.

Therefore f  is differentiable at sa, bd. Q

FIGURE 4 
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A50 APPENDIX G  The Logarithm Defined as an Integral

Our treatment of exponential and logarithmic functions until now has relied on our intu-
ition, which is based on numerical and visual evidence. (See Sections 1.4, 1.5, and 3.1.) 
Here we use the Fundamental Theorem of Calculus to give an alternative treatment that 
provides a surer footing for these functions.

Instead of starting with bx and defining logb x as its inverse, this time we start by defin-
ing ln x as an integral and then define the exponential function as its inverse. You should  
bear in mind that we do not use any of our previous definitions and results concerning  
exponential and logarithmic functions.

The Natural Logarithm
We first define ln x as an integral.

1   Definition The natural logarithmic function is the function defined by

ln x − y x

1
 
1
t

 dt    x . 0

The existence of this function depends on the fact that the integral of a continuous 
function always exists. If x . 1, then ln x can be interpreted geometrically as the area 
under the hyperbola y − 1yt from t − 1 to t − x. (See Figure 1.) For x − 1, we have

ln 1 − y1

1
 
1
t

 dt − 0

For 0 , x , 1, ln x − y x

1
 
1
t

 dt − 2y1

x
 
1
t

 dt , 0

and so ln x is the negative of the area shown in Figure 2.

EXAMPLE 1
(a) By comparing areas, show that 12 , ln 2 , 3

4.
(b) Use the Midpoint Rule with n − 10 to estimate the value of ln 2.

SOLUTION
(a) We can interpret ln 2 as the area under the curve y − 1yt from 1 to 2. From Fig-
ure 3 we see that this area is larger than the area of rectangle BCDE and smaller than 
the area of trapezoid ABCD. Thus we have

 12 ? 1 , ln 2 , 1 ? 1
2 s1 1 1

2 d

 12 , ln 2 , 3
4

(b) If we use the Midpoint Rule with f std − 1yt, n − 10, and Dt − 0.1, we get

 ln 2 − y2

1
 
1
t

 dt < s0.1df f s1.05d 1 f s1.15d 1 ∙ ∙ ∙ 1 f s1.95dg

  − s0.1dS 1
1.05

1
1

1.15
1 ∙ ∙ ∙ 1

1
1.95D < 0.693  Q

y= 1
t

0

y

1 x t

area=ln x

y= 1
t

0

y

1x t

area=_ ln x

y= 1
t

0

y

1 2 t

A

B C

DE

FIGURE 1

FIGURE 2

FIGURE 3
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 APPENDIX G  The Logarithm Defined as an Integral A51

Notice that the integral that defines ln x is exactly the type of integral discussed in Part 1 
of the Fundamental Theorem of Calculus (see Section 5.3). In fact, using that theorem,  
we have

d
dx

 yx

1
 
1
t

 dt −
1
x

and so

2   
d
dx

 sln xd −
1
x

 

We now use this differentiation rule to prove the following properties of the logarithm 
function.

3   Laws of Logarithms If x and y are positive numbers and r is a rational num-
ber, then

1. lnsxyd − ln x 1 ln y    2. lnS x
yD − ln x 2 ln y    3. lnsxrd − r ln x

PROOF

1. Let f sxd − lnsaxd, where a is a positive constant. Then, using Equation 2 and 
the Chain Rule, we have

f 9sxd −
1
ax

 
d

dx
 saxd −

1
ax

? a −
1
x

Therefore f sxd and ln x have the same derivative and so they must differ by a constant:

lnsaxd − ln x 1 C

Putting x − 1 in this equation, we get ln a − ln 1 1 C − 0 1 C − C. Thus

lnsaxd − ln x 1 ln a

If we now replace the constant a by any number y, we have

lnsxyd − ln x 1 ln y

2. Using Law 1 with x − 1yy, we have

 ln 
1
y

1 ln y − lnS 1
y

? yD − ln 1 − 0

and so  ln 
1
y

− 2ln y

Using Law 1 again, we have

lnS x
yD − lnSx ?

1
yD − ln x 1 ln 

1
y

− ln x 2 ln y

The proof of Law 3 is left as an exercise. Q
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A52 APPENDIX G  The Logarithm Defined as an Integral

In order to graph y − ln x, we first determine its limits:

4   (a) lim
x l `

 ln x − `      (b) lim
xl

 

01
 ln x − 2` 

PROOF
(a) Using Law 3 with x − 2 and r − n (where n is any positive integer), we have 

lns2n d − n ln 2. Now ln 2 . 0, so this shows that lns2n d l ` as n l `. But ln x is an 
increasing function since its derivative 1yx . 0. Therefore ln x l ` as x l `.

(b) If we let t − 1yx, then t l ` as x l 01. Thus, using (a), we have

 lim
x l

 

01
 ln x − lim

t l `
 lnS 1

t D − lim
t l `

 s2ln td − 2` Q

If y − ln x, x . 0, then

dy
dx

−
1
x

. 0    and    
d 2 y
dx 2 − 2

1
x 2 , 0

which shows that ln x is increasing and concave downward on s0, `d. Putting this infor-
mation together with (4), we draw the graph of y − ln x in Figure 4.

Since ln 1 − 0 and ln x is an increasing continuous function that takes on arbitrarily 
large values, the Intermediate Value Theorem shows that there is a number where ln x 
takes on the value 1. (See Figure 5.) This important number is denoted by e.

5   Definition  e is the number such that ln e − 1.

We will show (in Theorem 19) that this definition is consistent with our previous defi-
nition of e.

The Natural Exponential Function
Since ln is an increasing function, it is one-to-one and therefore has an inverse function, 
which we denote by exp. Thus, according to the definition of an inverse function,

6   expsxd − y &? ln y − x 

and the cancellation equations are

7   expsln xd − x and lnsexp xd − x 

In particular, we have

 exps0d − 1 since ln 1 − 0

 exps1d − e since ln e − 1

We obtain the graph of y − exp x by reflecting the graph of y − ln x about the line

0

y

1

x1 e

y=ln x

0

y

x1

y=ln x

FIGURE 4

0

y

1

x1 e

y=ln x

0

y

x1

y=ln x

FIGURE 5

f 21sxd − y &? f syd − x

 f 21s f sxdd − x

f s f 21sxdd − x
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 APPENDIX G  The Logarithm Defined as an Integral A53

y − x. (See Figure 6.) The domain of exp is the range of ln, that is, s2`, `d; the range 
of exp is the domain of ln, that is, s0, `d.

If r is any rational number, then the third law of logarithms gives

 lnserd − r ln e − r

Therefore, by (6),   expsrd − er

Thus expsxd − ex whenever x is a rational number. This leads us to define ex, even for 
irrational values of x, by the equation

 ex − expsxd 

In other words, for the reasons given, we define ex to be the inverse of the function ln x. 
In this notation (6) becomes

8   ex − y &? ln y − x 

and the cancellation equations (7) become

9    e ln x − x x . 0 

10    lnsex d − x for all x 

The natural exponential function f sxd − ex is one of the most frequently occurring  
functions in calculus and its applications, so it is important to be familiar with its graph 
(Figure 7) and its properties (which follow from the fact that it is the inverse of the natu-
ral logarithmic function).

Properties of the Exponential Function  The exponential function f sxd − ex is 
an increasing continuous function with domain R and range s0, `d. Thus ex . 0  
for all x. Also

lim
x l2`

 ex − 0      lim
x l `

 ex − `

So the x-axis is a horizontal asymptote of f sxd − ex.

We now verify that f  has the other properties expected of an exponential function.

11   Laws of Exponents If x and y are real numbers and r is rational, then

1. ex1y − exey          2. ex2y −
ex

ey           3. sex dr − erx

y=´

x0

1

y

1

FIGURE 7  
The natural exponential function 

y

1

0 x

y=x

y=ln x

y=exp x

1

FIGURE 6
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PROOF OF LAW 1 Using the first law of logarithms and Equation 10, we have

lnsexey d − lnsex d 1 lnsey d − x 1 y − lnsex1y d

Since ln is a one-to-one function, it follows that exey − ex1y.
Laws 2 and 3 are proved similarly (see Exercises 6 and 7). As we will soon see,  

Law 3 actually holds when r is any real number. Q

We now prove the differentiation formula for ex.

12   
d
dx

 sex d − ex 

PROOF The function y − ex is differentiable because it is the inverse function of 
y − ln x, which we know is differentiable with nonzero derivative. To find its deriva-
tive, we use the inverse function method. Let y − ex. Then ln y − x and, differentiating 
this latter equation implicitly with respect to x, we get

 
1
y

 
dy
dx

− 1

  
dy
dx

− y − ex Q

General Exponential Functions
If b . 0 and r is any rational number, then by (9) and (11),

br − se ln b dr − er ln b

Therefore, even for irrational numbers x, we define

13   bx − ex ln b 

Thus, for instance,

2s3 

− es3  ln 2 < e1.20 < 3.32

The function f sxd − bx is called the exponential function with base b. Notice that bx is 
positive for all x because ex is positive for all x.

Definition 13 allows us to extend one of the laws of logarithms. We already know that 
lnsbrd − r ln b when r is rational. But if we now let r be any real number we have, from 
Definition 13, 

ln br − lnser ln b d − r ln b

Thus

14   ln br − r ln b for any real number r 
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 APPENDIX G  The Logarithm Defined as an Integral A55

The general laws of exponents follow from Definition 13 together with the laws of 
exponents for ex.

15   Laws of Exponents If x and y are real numbers and a, b . 0, then

1. bx1y − bxby     2. bx2y − bxyby     3. sbx dy − bxy     4. sabdx − axbx

PROOF

1. Using Definition 13 and the laws of exponents for ex, we have

 bx1y − e sx1yd ln b − ex ln b 1 y ln b

 − ex ln be y ln b − bxby

3. Using Equation 14 we obtain

 sbx dy − ey lnsb xd − eyx ln b − exy ln b − bxy

The remaining proofs are left as exercises. Q

The differentiation formula for exponential functions is also a consequence of Defi ni- 
 tion 13:

16   
d
dx

 sbx d − bx ln b 

PROOF

  
d

dx
 sbx d −

d
dx

 sex ln b d − ex ln b 
d

dx
 sx ln bd − bx ln b Q

If b . 1, then ln b . 0, so sdydxd bx − bx ln b . 0, which shows that y − bx is 
increasing (see Figure 8). If 0 , b , 1, then ln b , 0 and so y − bx is decreasing (see 
Figure 9).

General Logarithmic Functions
If b . 0 and b ± 1, then f sxd − bx is a one-to-one function. Its inverse function is called 
the logarithmic function with base b and is denoted by log b. Thus

17   logb x − y &? by − x 

In particular, we see that

loge x − ln x

x

lim  b ®=0,  lim b ®=`
x _` x `

0

y

1

x

lim  b ®=`,  lim b ®=0
x _` x `

0

y

1

x

lim  b ®=0,  lim b ®=`
x _` x `

0

y

1

x

lim  b ®=`,  lim b ®=0
x _` x `

0

y

1

FIGURE 9 y − b x, 0 , b , 1

FIGURE 8 y − b x, b . 1
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The laws of logarithms are similar to those for the natural logarithm and can be deduced 
from the laws of exponents (see Exercise 10).

To differentiate y − logb x, we write the equation as by − x. From Equation 14 we 
have y ln b − ln x, so

logb x − y −
ln x
ln b

Since ln b is a constant, we can differentiate as follows:

d
dx

 slogb xd −
d

dx
 
ln x
ln b

−
1

ln b
 

d
dx

 sln xd −
1

x ln b

18   
d
dx

 slogb xd −
1

x ln b
 

The Number e Expressed as a Limit
In this section we defined e as the number such that ln e − 1. The next theorem shows 
that this is the same as the number e defined in Section 3.1 (see Equation 3.6.5).

19   e − lim
x l 0

 s1 1 xd1yx 

PROOF Let f sxd − ln x. Then f 9sxd − 1yx, so f 9s1d − 1. But, by the definition of 
derivative,

  f 9s1d − lim
hl 0

 
 f s1 1 hd 2 f s1d

h
− lim

xl 0
 
 f s1 1 xd 2 f s1d

x

 − lim
xl 0

 
lns1 1 xd 2 ln 1

x
− lim

xl 0
 
1
x

 lns1 1 xd − lim
xl 0

 lns1 1 xd1yx

Because f 9s1d − 1, we have

lim
x l 0

 lns1 1 xd1yx − 1

Then, by Theorem 2.5.8 and the continuity of the exponential function, we have

 e − e1 − elimxl0 lns11xd1yx
− lim

xl 0
 elns11xd1yx

− lim
xl 0

 s1 1 xd1yx Q

 1.  (a) By comparing areas, show that

1
3 , ln 1.5 , 5

12

 (b) Use the Midpoint Rule with n − 10 to estimate ln 1.5.

 2. Refer to Example 1.
 (a)  Find the equation of the tangent line to the curve y − 1yt 

that is parallel to the secant line AD.

 (b) Use part (a) to show that ln 2 . 0.66.

 3. By comparing areas, show that

1
2

1
1
3

1 ∙ ∙ ∙ 1
1
n

, ln n , 1 1
1
2

1
1
3

1 ∙ ∙ ∙ 1
1

n 2 1

 4. (a) By comparing areas, show that ln 2 , 1 , ln 3.
 (b) Deduce that 2 , e , 3.

EXERCISES

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 APPENDIX H  Complex Numbers A57

A complex number can be represented by an expression of the form a 1 bi, where a 
and b are real numbers and i is a symbol with the property that i 2 − 21. The complex 
number a 1 bi can also be represented by the ordered pair sa, bd and plotted as a point in 
a plane (called the Argand plane) as in Figure 1. Thus the complex number i − 0 1 1 ? i 
is identified with the point s0, 1d.

The real part of the complex number a 1 bi is the real number a and the imaginary 
part is the real number b. Thus the real part of 4 2 3i is 4 and the imaginary part is 23. 
Two complex numbers a 1 bi and c 1 di are equal if a − c and b − d, that is, their real 
parts are equal and their imaginary parts are equal. In the Argand plane the horizontal 
axis is called the real axis and the vertical axis is called the imaginary axis.

The sum and difference of two complex numbers are defined by adding or subtracting 
their real parts and their imaginary parts:

 sa 1 bid 1 sc 1 did − sa 1 cd 1 sb 1 ddi

 sa 1 bid 2 sc 1 did − sa 2 cd 1 sb 2 ddi

For instance,
s1 2 id 1 s4 1 7id − s1 1 4d 1 s21 1 7di − 5 1 6i

The product of complex numbers is defined so that the usual commutative and distribu-
tive laws hold:

 sa 1 bidsc 1 did − asc 1 did 1 sbidsc 1 did

 − ac 1 adi 1 bci 1 bdi 2

Since i 2 − 21, this becomes

sa 1 bidsc 1 did − sac 2 bdd 1 sad 1 bcdi

EXAMPLE 1

 s21 1 3ids2 2 5id − s21ds2 2 5id 1 3is2 2 5id

  − 22 1 5i 1 6i 2 15s21d − 13 1 11i Q

Division of complex numbers is much like rationalizing the denominator of a rational 
expression. For the complex number z − a 1 bi, we define its complex conjugate to be 
z − a 2 bi. To find the quotient of two complex numbers we multiply numerator and 
denominator by the complex conjugate of the denominator.

EXAMPLE 2 Express the number 
21 1 3i
2 1 5i

 in the form a 1 bi.

Re

Im

0

i

_2-2i
_i

3-2i

2+3i
_4+2i

1

FIGURE 1  
Complex numbers as points in the 
Argand plane

 5.  Prove the third law of logarithms. [Hint: Start by showing that 
both sides of the equation have the same derivative.]

 6. Prove the second law of exponents for e x [see (11)].

 7. Prove the third law of exponents for e x [see (11)].

 8. Prove the second law of exponents [see (15)].

 9. Prove the fourth law of exponents [see (15)].

 10. Deduce the following laws of logarithms from (15):
 (a) logbsxyd − logb x 1 logb y

 (b) logbsxyyd − logb x 2 logb y

 (c) logbsx y d − y logb x
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SOLUTION We multiply numerator and denominator by the complex conjugate of 
2 1 5i, namely, 2 2 5i, and we take advantage of the result of Example 1:

 
21 1 3i
2 1 5i

−
21 1 3i
2 1 5i

?
2 2 5i
2 2 5i

−
13 1 11i
22 1 52 −

13
29

1
11
29

 i Q

The geometric interpretation of the complex conjugate is shown in Figure 2: z is the 
reflection of z in the real axis. We list some of the properties of the complex conjugate 
in the following box. The proofs follow from the definition and are requested in Exer-
cise 18.

Properties of Conjugates

z 1 w − z 1 w      zw − z w        z n − z n

The modulus, or absolute value, | z | of a complex number z − a 1 bi is its distance 
from the origin. From Figure 3 we see that if z − a 1 bi, then

 | z | − sa 2 1 b 2  

Notice that

zz − sa 1 bidsa 2 bid − a 2 1 abi 2 abi 2 b 2i 2 − a 2 1 b 2

and so zz − | z |2 

This explains why the division procedure in Example 2 works in general:

z
w

−
zw
ww

−
zw

| w |2

Since i 2 − 21, we can think of i as a square root of 21. But notice that we also have 
s2id2 − i 2 − 21 and so 2i is also a square root of 21. We say that i is the principal 
square root of 21 and write s21 − i. In general, if c is any positive number, we write

 s2c − sc  i

With this convention, the usual derivation and formula for the roots of the quadratic equa- 
tion ax 2 1 bx 1 c − 0 are valid even when b 2 2 4ac , 0:

x −
2b 6 sb 2 2 4ac 

2a

EXAMPLE 3 Find the roots of the equation x 2 1 x 1 1 − 0.

SOLUTION Using the quadratic formula, we have

 x −
21 6 s12 2 4 ? 1

2
−

21 6 s23 

2
−

21 6 s3  i
2

 Q

Re

Im

0

bi

a

b

z=a+bi

|z |=    a
@+b@

œ„„„„„„

Re

Im

0

i

_i

z=a-bi–

z=a+bi

FIGURE 3 

FIGURE 2 
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 APPENDIX H  Complex Numbers A59

We observe that the solutions of the equation in Example 3 are complex conjugates of 
each other. In general, the solutions of any quadratic equation ax 2 1 bx 1 c − 0 with 
real coefficients a, b, and c are always complex conjugates. (If z is real, z − z, so z is its 
own conjugate.)

We have seen that if we allow complex numbers as solutions, then every quadratic  
equation has a solution. More generally, it is true that every polynomial equation

an xn 1 an21 xn21 1 ∙ ∙ ∙ 1 a1 x 1 a0 − 0

of degree at least one has a solution among the complex numbers. This fact is known as  
the Fundamental Theorem of Algebra and was proved by Gauss.

Polar Form
We know that any complex number z − a 1 bi can be considered as a point sa, bd and 
that any such point can be represented by polar coordinates sr, !d with r > 0. In fact,

a − r cos !      b − r sin !

as in Figure 4. Therefore we have

z − a 1 bi − sr cos !d 1 sr sin !di

Thus we can write any complex number z in the form

 z − rscos ! 1 i sin !d 

where r − | z | − sa 2 1 b 2     and    tan ! −
b
a

The angle ! is called the argument of z and we write ! − argszd. Note that argszd is not 
unique; any two arguments of z differ by an integer multiple of 2".

EXAMPLE 4 Write the following numbers in polar form.

(a) z − 1 1 i (b) w − s3 2 i

SOLUTION

(a) We have r − | z | − s12 1 12 − s2  and tan ! − 1, so we can take ! − "y4. 
Therefore the polar form is

z − s2  Scos 
"

4
1 i sin 

"

4 D
(b) Here we have r − | w | − s3 1 1 − 2 and tan ! − 21ys3 . Since w lies in the 
fourth quadrant, we take ! − 2"y6 and

w − 2FcosS2
"

6 D 1 i sinS2
"

6 DG
The numbers z and w are shown in Figure 5. Q

Re

Im

0

a+bi

b
¨

r

aa

FIGURE 4

Re

Im

0

œ„3-i
2

1+i
œ„2

π
4

_π
6

FIGURE 5
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A60 APPENDIX H  Complex Numbers

The polar form of complex numbers gives insight into multiplication and division. Let

z1 − r1scos !1 1 i sin !1d      z2 − r2scos !2 1 i sin !2 d

be two complex numbers written in polar form. Then

 z1z2 − r1r2scos !1 1 i sin !1dscos !2 1 i sin !2 d

 − r1r2fscos !1 cos !2 2 sin !1 sin !2 d 1 issin !1 cos !2 1 cos !1 sin !2 dg

Therefore, using the addition formulas for cosine and sine, we have

1   z1z2 − r1r2fcoss!1 1 !2 d 1 i sins!1 1 !2 dg�

This formula says that to multiply two complex numbers we multiply the moduli and add 
the arguments. (See Figure 6.)

A similar argument using the subtraction formulas for sine and cosine shows that to 
divide two complex numbers we divide the moduli and subtract the arguments.

 
z1

z2
−

r1

r2
 fcoss!1 2 !2 d 1 i sins!1 2 !2 dg� � � � z2 ± 0�

In particular, taking z1 − 1 and z2 − z (and therefore !1 − 0 and ! 2 − !), we have the  
following, which is illustrated in Figure 7.

 If� � z − rscos ! 1 i sin !d,� � then� �
1
z

−
1
r

 scos ! 2 i sin !d.�

EXAMPLE 5 Find the product of the complex numbers 1 1 i and s3 2 i in polar 
form.

SOLUTION From Example 4 we have

 1 1 i − s2  Scos 
"

4
1 i sin 

"

4 D
and  s3 2 i − 2FcosS2

"

6 D 1 i sinS2
"

6 DG
So, by Equation 1,

 s1 1 idss3 2 id − 2s2  FcosS"

4
2

"

6 D 1 i sinS"

4
2

"

6 DG
 − 2s2  Scos 

"

12
1 i sin 

"

12D
This is illustrated in Figure 8. Q

Re

Im

0

r

z

¨
_¨
1
r

1
z

FIGURE 7

0

2

z=1+i

w=œ„3-i

zw
2œ„2œ„2

Re

Im

π
12

FIGURE 8

z¡

Re

Im

z¡z™

¨¡+¨™

z™

¨¡

¨™

FIGURE 6 
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 APPENDIX H  Complex Numbers A61

Repeated use of Formula 1 shows how to compute powers of a complex number. If

 z − r scos ! 1 i sin !d

then  z2 − r 2scos 2! 1 i sin 2!d

and  z3 − zz2 − r 3scos 3! 1 i sin 3!d

In general, we obtain the following result, which is named after the French mathemati-
cian Abraham De Moivre (1667–1754).

2   De Moivre’s Theorem If z − r scos ! 1 i sin !d and n is a positive integer, 
then

z n − fr scos ! 1 i sin !dgn − r nscos n! 1 i sin n!d

This says that to take the nth power of a complex number we take the nth power of the 
modulus and multiply the argument by n.

EXAMPLE 6 Find (1
2 1 1

2 i)10.

SOLUTION Since 12 1 1
2 i − 1

2 s1 1 id, it follows from Example 4(a) that 12 1 1
2 i has the 

polar form

1
2

1
1
2

 i −
s2 

2
 Scos 

"

4
1 i sin 

"

4 D
So by De Moivre’s Theorem,

S 1
2

1
1
2

 iD10

− Ss2 

2 D10Scos 
10"

4
1 i sin 

10"

4 D
  −

25

210  Scos 
5"

2
1 i sin 

5"

2 D −
1
32

 i Q

De Moivre’s Theorem can also be used to find the nth roots of complex numbers. An  
nth root of the complex number z is a complex number w such that

w n − z

Writing these two numbers in trigonometric form as

w − sscos # 1 i sin #d    and    z − r scos ! 1 i sin !d

and using De Moivre’s Theorem, we get

s nscos n# 1 i sin n#d − r scos ! 1 i sin !d

The equality of these two complex numbers shows that

s n − r    or    s − r 1yn

and cos n# − cos !    and    sin n# − sin !
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A62 APPENDIX H  Complex Numbers

From the fact that sine and cosine have period 2", it follows that

n# − ! 1 2k"    or    # −
! 1 2k"

n

Thus w − r 1ynFcosS ! 1 2k"

n D 1 i sinS ! 1 2k"

n DG
Since this expression gives a different value of w for k − 0, 1, 2, . . . , n 2 1, we have 
the following.

3   Roots of a Complex Number Let z − r scos ! 1 i sin !d and let n be a posi-
tive integer. Then z has the n distinct nth roots

wk − r 1ynFcosS ! 1 2k"

n D 1 i sinS ! 1 2k"

n DG
where k − 0, 1, 2, . . . , n 2 1.

Notice that each of the nth roots of z has modulus | wk | − r 1yn. Thus all the nth roots of  
z lie on the circle of radius r 1yn in the complex plane. Also, since the argument of each 
suc cessive nth root exceeds the argument of the previous root by 2"yn, we see that the  
nth roots of z are equally spaced on this circle.

EXAMPLE 7 Find the six sixth roots of z − 28 and graph these roots in the complex 
plane.

SOLUTION In trigonometric form, z − 8scos " 1 i sin "d. Applying Equation 3 with 
n − 6, we get

wk − 81y6Scos 
" 1 2k"

6
1 i sin 

" 1 2k"

6 D
We get the six sixth roots of 28 by taking k − 0, 1, 2, 3, 4, 5 in this formula:

 w0 − 81y6Scos 
"

6
1 i sin 

"

6 D − s2  Ss3 

2
1

1
2

 iD
 w1 − 81y6Scos 

"

2
1 i sin 

"

2 D − s2  i

 w2 − 81y6Scos 
5"

6
1 i sin 

5"

6 D − s2  S2
s3 

2
1

1
2

 iD
 w3 − 81y6Scos 

7"

6
1 i sin 

7"

6 D − s2  S2
s3 

2
2

1
2

 iD
 w4 − 81y6Scos 

3"

2
1 i sin 

3"

2 D − 2s2  i

 w5 − 81y6Scos 
11"

6
1 i sin 

11"

6 D − s2  Ss3 

2
2

1
2

 iD
All these points lie on the circle of radius s2  as shown in Figure 9. Q

0

w¡

w¢

w∞

w¸w™

w£
_œ„2 œ„2

_œ„2i

œ„2i

Re

Im

FIGURE 9  
The six sixth roots of z − 28
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 APPENDIX H  Complex Numbers A63

Complex Exponentials
We also need to give a meaning to the expression e z when z − x 1 iy is a complex num-
ber.  The theory of infinite series as developed in Chapter 11 can be extended to the 
case where the terms are complex numbers. Using the Taylor series for ex (11.10.11) as 
our guide, we define

4   e z − o
`

n−0
 
z n

n!
− 1 1 z 1

z2

2!
1

z3

3!
1 ∙ ∙ ∙�

and it turns out that this complex exponential function has the same properties as the real 
exponential function. In particular, it is true that

5  � e z11z2 − e z1e z2�

If we put z − iy, where y is a real number, in Equation 4, and use the facts that

i 2 − 21,  i 3 − i 2i − 2i,  i 4 − 1,  i 5 − i,  . . .

we get  e iy − 1 1 iy 1
siyd2

2!
1

siyd3

3!
1

siyd4

4!
1

siyd5

5!
1 ∙ ∙ ∙

 − 1 1 iy 2
 y 2

2!
2 i 

 y 3

3!
1

 y 4

4!
1 i 

 y 5

5!
1 ∙ ∙ ∙

 − S1 2
 y 2

2!
1

 y 4

4!
2

 y 6

6!
1 ∙ ∙ ∙D 1 iSy 2

 y 3

3!
1

 y 5

5!
2 ∙ ∙ ∙D

 − cos y 1 i sin y

Here we have used the Taylor series for cos y and sin y (Equations 11.10.16 and 11.10.15). 
The result is a famous formula called Euler’s formula:

6   e iy − cos y 1 i sin y�

Combining Euler’s formula with Equation 5, we get

7  � ex1iy − exe iy − exscos y 1 i sin yd�

EXAMPLE 8 Evaluate:  (a) e i"      (b) e211i"y2

SOLUTION
(a) From Euler’s equation (6) we have

e i" − cos " 1 i sin " − 21 1 is0d − 21

(b) Using Equation 7 we get

 e211i"y2 − e21Scos 
"

2
1 i sin 

"

2 D −
1
e

 f0 1 is1dg −
i
e

 Q

Finally, we note that Euler’s equation provides us with an easier method of proving  
De Moivre’s Theorem:

fr scos ! 1 i sin !dgn − sre i! dn − r ne in! − r nscos n! 1 i sin n!d

We could write the result of  
Example 8(a) as

e i" 1 1 − 0

This equation relates the five most 
famous numbers in all of mathematics: 
0, 1, e, i, and ".
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A64 APPENDIX H  Complex Numbers

 32. z − 4ss3 1 i d,  w − 23 2 3i

33–36 Find the indicated power using De Moivre’s Theorem.

 33. s1 1 i d20 34. s1 2 s3 i d5

 35. s2s3 1 2i d5 36. s1 2 i d8

 37–40 Find the indicated roots. Sketch the roots in the complex 
plane.

 37. The eighth roots of 1 38. The fifth roots of 32

 39. The cube roots of i 40. The cube roots of 1 1 i

41–46 Write the number in the form a 1 bi.

 41. e i"y2 42. e 2" i

 43. e i"y3 44. e 2i"

 45. e 21i" 46. e "1i

 47.  Use De Moivre’s Theorem with n − 3 to express cos 3! and 
sin 3! in terms of cos ! and sin !.

 48.  Use Euler’s formula to prove the following formulas for cos x 
and sin x:

cos x −
eix 1 e2ix

2
      sin x −

eix 2 e2ix

2i

 49.  If usxd − f sxd 1 itsxd is a complex-valued function of a real 
variable x and the real and imaginary parts f sxd and tsxd are 
differentiable functions of x, then the derivative of u is defined 
to be u9sxd − f 9sxd 1 it9sxd. Use this together with Equation 7 
to prove that if Fsxd − e rx, then F9sxd − re rx when r − a 1 bi 
is a complex number.

 50.  (a)  If u is a complex-valued function of a real variable, its 
indefinite integral y usxd dx is an antiderivative of u.  
Evaluate

y e s11i dx dx

 (b)  By considering the real and imaginary parts of the integral 
in part (a), evaluate the real integrals

y e x cos x dx    and    y e x sin x dx

 (c)  Compare with the method used in Example 7.1.4.

 1–14 Evaluate the expression and write your answer in the  
form a 1 bi.

 1. s5 2 6i d 1 s3 1 2i d 2. s4 2 1
2 id 2 s9 1 5

2 id
 3. s2 1 5i ds4 2 id 4. s1 2 2i ds8 2 3i d

 5. 12 1 7i 6. 2i (1
2 2 i)

 7. 
1 1 4i
3 1 2i

 8. 
3 1 2i
1 2 4i

 9. 
1

1 1 i
 10. 

3
4 2 3i

 11. i 3  12. i 100

 13. s225  14. s23 s212 

 15–17 Find the complex conjugate and the modulus of the  
number.

 15. 12 2 5i 16. 21 1 2s2 i

 17. 24i

 18. Prove the following properties of complex numbers.
 (a) z 1 w − z 1 w          (b) zw − z w
 (c) z n − z n, where n is a positive integer
 [Hint: Write z − a 1 bi, w − c 1 di.]

19–24 Find all solutions of the equation.

 19. 4x 2 1 9 − 0 20. x 4 − 1

 21. x 2 1 2x 1 5 − 0 22. 2x 2 2 2x 1 1 − 0

 23. z2 1 z 1 2 − 0 24. z2 1 1
2 z 1 1

4 − 0

 25–28 Write the number in polar form with argument between 0 
and 2".

 25. 23 1 3i 26. 1 2 s3 i

 27. 3 1 4i 28. 8i

 29–32 Find polar forms for zw, zyw, and 1yz by first putting z and 
w into polar form.

 29. z − s3 1 i,  w − 1 1 s3 i

 30. z − 4s3 2 4i,  w − 8i

 31. z − 2s3 2 2i,  w − 21 1 i

EXERCISES
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 APPENDIX I  Answers to Odd-Numbered Exercises A65

CHAPTER 1

EXERCISES 1.1  �  PAGE 19
1. Yes
3. (a) 3   (b) 20.2   (c) 0, 3   (d) 20.8    
(e) f22, 4g, f21, 3g   (f) f22, 1g    
5. f285, 115g    7. No    
9. Yes, f23, 2g, f23, 22d ø f21, 3g    
11. (a) 13.8°C   (b) 1990   (c) 1910, 2005   (d) f13.5, 14.5g
13. T

0 t

15. (a) 500 MW; 730 MW   (b) 4 am; noon; yes
17. T

tmidnight noon

19. 

0

amount

price

21. Height
of grass

Wed. Wed.Wed. Wed. Wed. t

23. (a) T

0 t
(hours)

2 4 6 8 10 12 14

65
70
75
80
85

(° F)     (b) 74°F

25. 12, 16, 3a2 2 a 1 2, 3a2 1 a 1 2, 3a2 1 5a 1 4,  
6a2 2 2a 1 4, 12a2 2 2a 1 2, 3a4 2 a2 1 2, 
9a4 2 6a3 1 13a2 2 4a 1 4, 3a2 1 6ah 1 3h2 2 a 2 h 1 2
27. 23 2 h    29. 21ysaxd    
31. s2`, 23d ø s23, 3d ø s3, `d    33. s2`, `d
35. s2`, 0d ø s5, `d    37. f0, 4g

39. s2`, `d 41. 21, 1, 21
y

x1.5_2.4
0

 

x

(0, 2)
(0, 1)

_2 1

y

0

43. 2 2, 0, 4 45. 

x

y

1

!1 0

 y

x0 1

2

47. y

t0 1
3

1

 

49. y

x1

1

_1
_1

51. f sxd − 5
2 x 2 11

2 , 1 < x < 5    53. f sxd − 1 2 s2x 

55. f sxd − H2x 1 3
2x 2 6

if 0 < x < 3
if 3 , x < 5

57. AsLd − 10L 2 L2, 0 , L , 10
59. Asxd − s3x 2y4, x . 0    61. Ssxd − x 2 1 s8yxd, x . 0
63. Vsxd − 4x 3 2 64x 2 1 240x, 0 , x , 6

65. Fsxd − H15s40 2 xd
0
15sx 2 65d

if  0 < x , 40
if  40 < x < 65
if x . 65

0 40 65 100

600 (100, 525)
F

x
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11. f sxd − 23xsx 1 1dsx 2 2d
13. (a) 8.34, change in mg for every 1 year change    
(b) 8.34 mg

15. (a) F

C

(100, 212)

F=   C+329
5

(_40, _40)

32

(b) 9
5, change in 8F for every 18C change; 32, Fahrenheit tempera-

ture corresponding to 08C

17. (a) T − 1
6 N 1 307

6    (b) 1
6, change in 8F for every chirp per 

minute change   (c) 768F
19. (a) P − 0.434d 1 15   (b) 196 ft
21. (a) Cosine   (b) Linear
23. (a) 15

0 61,000

  A linear model is  
appropriate.

(b) y − 20.000105x 1 14.521

 15

0 61,000

(b)

(c)

(c) y − 20.00009979x 1 13.951 
(d) About 11.5 per 100 population    
(e) About 6%   (f) No

25. (a) See graph in part (b).

(b) y − 1.88074x 1 82.64974

 

35 55
150

180

H
ei

gh
t (

cm
)

Femur length (cm)

(c) 182.3 cm

67. (a) R (%)

0 I (in dollars)10,000 20,000

10

15

  (b) $400, $1900

(c) T (in dollars)

0 I (in dollars)10,000 20,000

1000

2500

30,000

69. f  is odd, t is even    71. (a) s25, 3d   (b) s25, 23d
73. Odd    75. Neither    77. Even
79. Even; odd; neither (unless f − 0 or t − 0)

EXERCISES 1.2  �  PAGE 33
1. (a) Logarithmic   (b) Root   (c) Rational    
(d) Polynomial, degree 2   (e) Exponential   (f) Trigonometric
3. (a) h   (b) f    (c) t
5. hx | x ± !y2 1 2n!j, n an integer

7. (a) y − 2x 1 b,  y

x

b=3 b=0
b=_1

y=2x+b

where b is the y-intercept.

(b) y − mx 1 1 2 2m,  y

x

m=_1
m=1

m=0

y-1=m(x-2)

(2, 1)

where m is the slope.

(c) y − 2x 2 3

9. Their graphs have slope 21. 
y

x

c=_2
c=_1

0 c=2
c=1
c=0
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 APPENDIX I  Answers to Odd-Numbered Exercises A67

13. y
2

0 π x

y=2cos 3x

15. 

x

y

0 2

1

5

y=(x-2)@+1

17. y

x0 4

y=2-œ„x
2

19.  y

x0

1 2π

y=sin(x/2)

21.

 
0 2

2

y

x

y=|x - 2|

23.

 
0 1

1 y=|œ„x-1|

y

x

25. Lstd − 12 1 2 sinF 2!

365
 st 2 80dG

27. Vstd − 250 sins!ty2d 1 2250
29. (a) The portion of the graph of y − f sxd to the right of the  
y-axis is reflected about the y-axis.
(b) (c) 

x

y y=  |x|

0

sin
  y

x0

y=œ„„|x|

27. (a) A linear model is appropriate. See graph in part (b).
(b) y − 1116.64x 1 60,188.33 

0

90,000

55,000
25

T
ho

us
an

ds
 o

f b
ar

re
ls

 p
er

 d
ay

Years since 1985

(c) In thousands of barrels per day: 79,171 and 90,338
29. Four times as bright
31. (a) N − 3.1046A0.308   (b) 18

EXERCISES 1.3  �  PAGE 42
1. (a) y − f sxd 1 3   (b) y − f sxd 2 3   (c) y − f sx 2 3d
(d) y − f sx 1 3d   (e) y − 2f sxd   (f) y − f s2xd
(g) y − 3f sxd   (h) y − 1

3 f sxd
3. (a) 3   (b) 1   (c) 4   (d) 5   (e) 2

5. (a) y

0 x

1

1

 (b) 
y

0 x

1

2

(c) y

0 x

1

1

 (d) y

0 x1

1

7. y − 2s2x 2 2 5x 2 4 2 1

9. y

0 x

y=_≈

11. 

x1

1

y

0

y=˛+1
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EXERCISES 1.4  �  PAGE 53
1. (a) 4   (b) x 24y3

3. (a) 16b12   (b) 648y7

5. (a) f sxd − b x, b . 0   (b) R   (c) s0, `d
(d) See Figures 4(c), 4(b), and 4(a), respectively.
7. y=20® y=5® y=´

y=2®

5

_1 2
0

 All approach 0 as x l 2`,  
all pass through s0, 1d, and 
all are increasing. The larger 
the base, the faster the rate 
of increase.

9. 
5

_2 2

y=3®y=10®

0

y=”   ’®1
3

y=”    ’®1
10

 The functions with base 
greater than 1 are increasing 
and those with base less than 
1 are decreasing. The latter 
are reflections of the former 
about the y-axis.

11. y

0
x1

3

y=4®-1

y=-1

 13. 

ca010509
6.11.00

x
_1

y

0

y=_2–®

15. 

3cA010511
6.16.04

x

y

0

y=1-   e–®

y=1

1
2

”0,    ’1
2

17. (a) y − e x 2 2   (b) y − e x22   (c) y − 2e x

(d) y − e2x   (e) y − 2e2x

19. (a) s2`, 21d ø s21, 1d ø s1, `d   (b) s2`, `d
21. f sxd − 3 ? 2x    27. At x < 35.8
29. (a) See graph in part (c).
(b) f std − 36.89301s1.06614d t

(c) 

250

190

B
ac

te
ri

a 
co

un
t (

C
FU

/m
l)

t  (hours)

 About 10.87 h

31. (a) 25 mg   (b) 200 ? 2 2ty5 mg 
(c) 10.9 mg   (d) 38.2 days

31. (a) s f 1 tdsxd − x 3 1 5x 2 2 1, s2`, `d
(b) s f 2 tdsxd − x 3 2 x 2 1 1, s2`, `d
(c) s ftdsxd − 3x 5 1 6x 4 2 x 3 2 2x 2, s2`, `d

(d) s fytdsxd −
x 3 1 2x 2

3x 2 2 1
, Hx | x ± 6

1

s3 J
33. (a) s f + tdsxd − 3x 2 1 3x 1 5, s2`, `d
(b) st + f dsxd − 9x 2 1 33x 1 30, s2`, `d
(c) s f + f dsxd − 9x 1 20, s2`, `d
(d) st + tdsxd − x 4 1 2x 3 1 2x 2 1 x, s2`, `d

35. (a) s f + tdsxd − s4x 2 2 , f1
2, `)

(b) st + f dsxd − 4sx 1 1 2 3, f21, `d
(c) s f + f dsxd − ssx 1 1 1 1 , f21, `d
(d) st + tdsxd − 16x 2 15, s2`, `d

37. (a) s f 8 tdsxd −
2x 2 1 6x 1 5
sx 1 2dsx 1 1d

, hx | x ± 22, 21j

(b) st 8 f dsxd −
x 2 1 x 1 1

sx 1 1d2 , {x | x ± 21, 0j

(c) s f 8 f dsxd −
x 4 1 3x 2 1 1

xsx 2 1 1d
, {x | x ± 0j

(d) st 8 tdsxd −
2x 1 3
3x 1 5

, hx | x ± 22, 25
3j

39. s f 8 t 8 hdsxd − 3 sinsx 2d 2 2

41. s f 8 t 8 hdsxd − sx 6 1 4x 3 1 1
43. tsxd − 2x 1 x 2, f sxd − x 4

45. tsxd − s3 x , f sxd − xys1 1 xd
47. tstd − t 2, f std − sec t tan t

49. hsxd − sx , tsxd − x 2 1, f sxd − sx 

51. hstd − cos t, tstd − sin t, f std − t 2

53. (a) 4   (b) 3   (c) 0   (d) Does not exist; f s6d − 6 is not 
in the domain of t.   (e) 4   (f) 22

55. (a) rstd − 60t   (b) sA 8 rdstd − 3600!t 2; the area of the  
circle as a function of time

57. (a) s − sd 2 1 36   (b) d − 30t

(c) s f 8 tdstd − s900t 2 1 36; the distance between the lighthouse 
and the ship as a function of the time elapsed since noon

59. (a) H

t

1

0

 (b) V

t

120

0

  Vstd − 120Hstd 
(c) V

t

240

0 5

 Vstd − 240Hst 2 5d

61. Yes; m1m2     
63. (a) f sxd − x 2 1 6   (b) tsxd − x 2 1 x 2 1
65. Yes
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 APPENDIX I  Answers to Odd-Numbered Exercises A69

49. (a) s0, `d; s2`, `d   (b) e22

(c)

 

x

y

ƒ=ln x+2

e–@

x=0

0

51. (a) 1
4s7 2 ln 6d   (b) 1

3se2 1 10d
53. (a) 5 1 log2 3 or 5 1 sln 3dyln 2   (b) 1

2 (1 1 s1 1 4e )
55. (a) 0 , x , 1   (b) x . ln 5
57. (a) sln 3, `d   (b) f 21sxd − lnse x 1 3d; R
59. The graph passes the Horizontal Line Test. 

f 21sxd − 21
6 s3 4 (s3 D 2 27x 2 1 20 2 s3 D 1 27x 2 2 20 1 s3 2

 ),
where D − 3s3

 s27x 4 2 40x 2 1 16 ; two of the expressions are 
complex.
61. (a) f 21snd − s3yln 2d lnsny100d; the time elapsed when there 
are n bacteria   (b) After about 26.9 hours
63. (a) !   (b) !y6
65. (a) !y4   (b) !y2
67. (a) 5!y6   (b) !y3
71. xys1 1 x 2 

73. y=sin– ! x

π
2

π
2_

y=sin x

π
2_

π
2

75. f22
3, 0g, f2!y2, !y2g

77. (a) t21 sxd − f 21sxd 2 c   (b) h21sxd − s1ycd f 21sxd

CHAPTER 1 REVIEW  �  PAGE 69

True-False Quiz
1. False    3. False    5. True     7. False    9. True
11. False    13. False

Exercises
1. (a) 2.7   (b) 2.3, 5.6   (c) f26, 6g   (d) f24, 4g
(e) f24, 4g   (f) No; it fails the Horizontal Line Test.   
(g) Odd; its graph is symmetric about the origin.
3. 2a 1 h 2 2    5. s2`, 1

3 d ø s 1
3 , `d, s2`, 0d ø s0, `d     

7. s26, `d, R

5

_1

4_2

The second graph is 
the reflection of the 
first graph about the 
line y − x

33. 3.5 days
35. P − 2614.086s1.01693dt; 5381 million; 8466 million

EXERCISES 1.5  �  PAGE 66

1. (a) See Definition 1. 
(b) It must pass the Horizontal Line Test.
3. No    5. No    7. Yes    9. Yes    11. No    13. No
15. (a) 6   (b) 3    17. 0

19. F − 9
5 C 1 32; the Fahrenheit temperature as a function of the 

Celsius temperature; f2273.15, `d
21. f 21sxd − 1

3sx 2 1d2 2 2
3, x > 1

23. f 21sxd − 1
2s1 1 ln xd    25. y − e x 2 3

27. f 21sxd − 1
4sx 2 2 3d, x > 0 10

_1
10_1

f

f–!

29. 

3cA010629
6.16.04

x

y

f

f–!

0

31. (a) f 21sxd − s1 2 x 2 , 0 < x < 1; f 21 and f  are the same 
function.   (b) Quarter-circle in the first quadrant
33. (a) It’s defined as the inverse of the exponential function with 
base b, that is, logb x − y &? b y − x.
(b) s0, `d   (c) R   (d) See Figure 11.

35. (a) 5    (b) 1
3  37. (a) 2    (b) 2

3

39. ln 250    41. ln 
sx 

x 1 1

43.  
3

!5

4

y=log1.5 x

y=log10 x
0

y=ln x

y=log50 x

All graphs approach  
2` as x l 01, all pass 
through s1, 0d, and all  
are increasing. The 
larger the base, the 
slower the rate of 
increase.

45. About 1,084,588 mi

47. (a) 

_5 _4 x

y

0

y=log10 (x+5)
   (b) 

1 x

y

0

y=-ln x
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A70 APPENDIX I  Answers to Odd-Numbered Exercises

9. (a) 

ƒ=max{x, 1/x}

1
_1

y

x

(b) 
ƒ=max{sin x, cos x}1

_œ„2/2

0

y

x_7π
4

_3π
4

5π
4

π
4

(c) 

ƒ=max{≈, 2+x, 2-x}

_2 20

4

y

x

11. 5    13. x [ f21, 1 2 s3 d ø s1 1 s3, 3 g
15. 40 miyh    19. fnsxd − x 2 n11

CHAPTER 2

EXERCISES 2.1  �  PAGE 82
1. (a) 244.4, 238.8, 227.8, 222.2, 216.6    
(b) 233.3   (c) 233 13
3. (a) (i) 2  (ii) 1.111111  (iii) 1.010101  (iv) 1.001001 
(v) 0.666667  (vi) 0.909091  (vii) 0.990099   
(viii) 0.999001   (b) 1   (c) y − x 2 3
5. (a) (i) 232 ftys  (ii) 225.6 ftys  (iii) 224.8 ftys
(iv) 224.16 ftys   (b) 224 ftys    
7. (a) (i) 29.3 ftys   (ii) 32.7 ftys   (iii) 45.6 ftys
(iv) 48.75 ftys   (b) 29.7 ftys
9. (a) 0, 1.7321, 21.0847, 22.7433, 4.3301, 22.8173, 0, 
22.1651, 22.6061, 25, 3.4202; no   (c) 231.4

EXERCISES 2.2  �  PAGE 92
1. Yes
3. (a) lim x l23 f sxd − ` means that the values of f sxd can be  
made arbitrarily large (as large as we please) by taking x suffi-
ciently close to 23 (but not equal to 23). 
(b) lim x l 41 f sxd − 2` means that the values of f sxd can be made 
arbitrarily large negative by taking x sufficiently close to 4 through 
values larger than 4.

9. (a) Shift the graph 8 units upward.
(b) Shift the graph 8 units to the left.
(c) Stretch the graph vertically by a factor of 2, then shift it  
1 unit upward.
(d) Shift the graph 2 units to the right and 2 units downward.
(e) Reflect the graph about the x-axis.
(f) Reflect the graph about the line y − x (assuming f is 
one-to-one).

11. y

0 2 x

y=(x-2)#

13. y

0

1

1 x

y=(x-1)@+1

15. y
1

0 π x

y=-cos 2x

17.  (a) Neither   (b) Odd   (c) Even   (d) Neither

19. (a) s f 8 tdsxd − lnsx 2 2 9d, s2`, 23d ø s3, `d
(b) st 8 f dsxd − sln xd2 2 9, s0, `d
(c) s f 8 f dsxd − ln ln x, s1, `d
(d) st 8 tdsxd − sx 2 2 9d2 2 9, s2`, `d

21. y − 0.2493x 2 423.4818; about 77.6 years

23. 1    25. (a) 9   (b) 2   (c) 1ys3   (d) 3
5

27. (a) 1
16 g   (b) mstd − 2 2ty4

(c) tsmd − 24 log2 m; the time elapsed when there are m grams 
of 100Pd     
(d) About 26.6 days

PRINCIPLES OF PROBLEM SOLVING  �  PAGE 76

1. a − 4sh 2 2 16yh, where a is the length of the altitude and  
h is the length of the hypotenuse

3. 2 7
3 , 9

5. 

1 x

y
 7. 

y

x0
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 APPENDIX I  Answers to Odd-Numbered Exercises A71

49. (a) (i) 5  (ii) 25   (b) Does not exist

(c) 

_3
_3

0

(2, 5)

(2, _5)

y

x

51. 7
53. (a) (i) 22  (ii) Does not exist  (iii) 23
(b) (i) n 2 1  (ii) n   (c) a is not an integer.
59. 8    65. 15; 21

EXERCISES 2.4  �  PAGE 113
1. 0.1 (or any smaller positive number)
3. 1.44 (or any smaller positive number)
5. 0.0906 (or any smaller positive number)
7. 0.011 (or any smaller positive number)
9. (a) 0.01 (or any smaller positive number) 

 (b) lim
x l21

 
1 

lnsx 2 1d
− `

11. (a) s1000y!  cm    (b) Within approximately 0.0445 cm
 (c) Radius; area; s1000y! ; 1000; 5; <0.0445 
13. (a) 0.025   (b) 0.0025    
35. (a) 0.093   (b) " − sB 2y3 2 12dys6B 1y3d 2 1, where 
B − 216 1 108« 1 12s336 1 324« 1 81«2 

41. Within 0.1

EXERCISES 2.5  �  PAGE 124
1. lim x l 4 f sxd − f s4d
3. (a) 24, 22, 2, 4; f s24d is not defined and lim

x l a
 f sxd does not 

exist for a − 22, 2, and 4 
(b) 24, neither; 22, left; 2, right; 4, right

5. y

0 x2

 7. y

0 x53

9. (a) 

7 10 16 19 240

5
7

T

t

5. (a) 2   (b) 1   (c) 4   (d) Does not exist   (e) 3
7. (a) 21   (b) 22   (c) Does not exist    (d) 2    (e) 0 
(f) Does not exist   (g) 1   (h) 3
9. (a) 2`   (b) `   (c) `   (d) 2`   (e) `    
(f) x − 27, x − 23, x − 0, x − 6
11. lim

x l a
 f sxd exists for all a except a − 21.

13. (a) 1   (b) 0   (c) Does not exist

15. y

0 x

1

_1

2
 17. y

0 x1

19. 1
2    21. 5    23. 0.25    25. 1.5   27. 1    

29. (a) 21.5    31. `    33. `    35. 2`    37. 2`

39. 2`    41. `    43. 2`    45. 2`; `    

47. (a) 2.71828  (b) 6

4_4

_2

49. (a) 0.998000, 0.638259, 0.358484, 0.158680, 0.038851, 
0.008928, 0.001465; 0
(b) 0.000572, 20.000614, 20.000907, 20.000978, 20.000993, 
20.001000; 20.001
51. No matter how many times we zoom in toward the origin, the 
graph appears to consist of almost-vertical lines. This indicates 
more and more frequent oscillations as x l 0.
53. x < 60.90, 62.24; x − 6sin21s!y4d, 6s! 2 sin21s!y4dd
55. (a) 6   (b) Within 0.0649 of 1

EXERCISES 2.3  �  PAGE 102
1. (a) 26   (b) 28   (c) 2   (d) 26    
(e) Does not exist   (f) 0
3. 105    5. 7

8    7. 390    9. 3
2    11. 4    

13. Does not exist    15. 6
5    17. 210    19. 1

12   
21. 1

6    23. 21
9    25. 1    27. 1

128   29. 21
2   

31. 3x 2    33. (a), (b) 2
3    37. 7    41. 6    43. 24

45. Does not exist    

47. (a) 

x

1

y

0

 (b) (i) 1   
 (ii) 21    
 (iii) Does not exist   
 (iv) 1
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A72 APPENDIX I  Answers to Odd-Numbered Exercises

5. y

0 x

y=5

y=_5

 7. 

x

y

0

x=2

9. 

3cA020509
6.16.04

x

y

0

y=3

x=4

11. 0    13. 2
5    15. 3

2    17. 0    19. 21    21. 4

23. 22    25. s3
4     27. 1

6    29. 1
2sa 2 bd    31. `    

33. 2`    35. !y2    37. 21
2    39. 0    41. `    

43. (a) (i) 0   (ii) 2`   (iii) `   (b) `    
(c) y

0
x

y=

x=1

x
lnx

45. (a), (b) 21
2    47. y − 4, x − 23    

49. y − 2; x − 22, x − 1    51. x − 5    53. y − 3    
55. (a) 0   (b) 6`    

57. f sxd −
2 2 x

x 2sx 2 3d
    59. (a) 5

4   (b) 5    

61. 2`, 2` 63. 2`, `

ms80107-1
6et 2.6.49
5.28.06

0 1

y

x

 

ms80109-1
6et 2.6.50
5.28.06

0 1
3

y

x

65. (a) 0   (b) An infinite number of times

_0.5

1

-25 25

67. 5    

17. f s22d is undefined.

0

y

x

x=_2

y= 1
x+2

19. lim
xl21

 f sxd does not exist. 21. lim
x l 0

  f sxd ± f s0d
y

0 x-1

y=x+3

y=2®

 

ms80098-1
6et 2.5.19
5.27.06

y

0 x1_π

23. Define f s2d − 3.    25. s2`, `d    

27. s2`, s3 2 d ø ss3 2 , `d    29. f21, 0g    

31. s2`, 21g ø s0, `d

33. x − 0    3

4_4

_1

35. 8    37. ln 2    

41. 21, right 43. 0, right; 1, left 
y

0 x

(_1, 1)
(1, 1)

(_1, _1)

 

ca020429
7.4.00

y

x0

(1, e)

(1, 1)
(0, 1)

(0, 2)

45. 2
3    47. 4    

49. (a) tsxd − x 3 1 x 2 1 x 1 1   (b) tsxd − x 2 1 x  
57. (b) s0.86, 0.87d    59. (b) 70.347    67. None    
69. Yes 

EXERCISES 2.6  �  PAGE 137
1. (a) As x becomes large, f sxd approaches 5.    
(b) As x becomes large negative, f sxd approaches 3.
3. (a) 22   (b) 2   (c) `   (d) 2`    
(e) x − 1, x − 3, y − 22, y − 2
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 APPENDIX I  Answers to Odd-Numbered Exercises A73

25. y

0

1

5 x_2

x=_5

(5, 3)

 27. y − 3x 2 1

29. (a) 23
5 ; y − 23

5 x 1 16
5    (b) 

3cA020709
6.16.04

4

_2

6_1

31. 6a 2 4    33. 
5

sa 1 3d2     35. 2
1

s1 2 2a 

37. f sxd − sx , a − 9    39. f sxd − x 6, a − 2    

41. f sxd − cos x, a − ! or f sxd − coss! 1 xd, a − 0

43. 32 mys; 32 mys

45. Temperature
(in F̄)

0 Time
(in hours)

1

38

2

72

   Greater (in magnitude)

47. (a) In smgymLdyh: (i) 20.15   (ii) 20.12    
(iii) 20.12   (iv) 20.11   (b) 20.12 smgymLdyh; After  
2 hours, the BAC is decreasing at a rate of 0.12 smgymLdyh.

49. (a) 1169.6 thousands of barrels of oil per day per year; oil 
consumption rose by an average of 1169.6 thousands of barrels of 
oil per day each year from 1990 to 2005.
(b) 1397.8 thousands of barrels of oil per day per year

51. (a) (i) $20.25yunit  (ii) $20.05yunit   (b) $20yunit

53. (a) The rate at which the cost is changing per ounce of gold 
produced; dollars per ounce    
(b) When the 800th ounce of gold is produced, the cost of  
production is $17yoz.    
(c) Decrease in the short term; increase in the long term

55. (a) The rate at which daily heating costs change with respect 
to temperature when the temperature is 588F; dollarsy8F 
(b) Negative; If the outside temperature increases, the building 
should require less heating.

57. (a) The rate at which the oxygen solubility changes with 
respect to the water temperature; smgyLdy°C 
(b) S9s16d < 20.25; as the temperature increases past 16°C,  
the oxygen solubility is decreasing at a rate of 0.25 smgyLdy°C.

59. Does not exist

69. (a) v*   (b) 1.2

0 1

< 0.47 s

71. N > 15    73. N < 29, N < 219    
75. (a) x > 100    

EXERCISES 2.7  �  PAGE 148

1. (a) 
 f sxd 2 f s3d

x 2 3
   (b) lim

x l 3
 
 f sxd 2 f s3d

x 2 3
3. (a) 2   (b) y − 2x 1 1   (c)

ms80114-1
6et 2.7.03c
5.28.06

6

0 5_1

5. y − 28x 1 12    7. y − 1
2 x 1 1

2

9. (a) 8a 2 6a 2   (b) y − 2x 1 3, y − 28x 1 19
(c) 

3cA020611
6.16.04

10

_3

4_2

11. (a) Right: 0 , t , 1 and 4 , t , 6; left: 2 , t , 3;  
standing still: 1 , t , 2 and 3 , t , 4

(b) 

3cA020613b
6.16.04

t
(seconds)

v (m/s)

0 1

1

13. 224 ftys    
15. 22ya3 mys; 22 mys; 21

4 mys; 2 2
27 mys

17. t9s0d, 0, t9s4d, t9s2d, t9s22d    
19. (a) 26   (b) No   (c) Yes    
21. f s2d − 3; f 9s2d − 4
23. y

0
x1

1
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 (b) 

4 62 8 12100

20

40

y

x

y=Cª(t)

The rate of change of percentage of 
full capacity is decreasing and 
approaching 0.

15. 

ca020813
7.4.00

0.05

19901980197019601950

_0.03 t

y=Mª(t)0.1

y 1963 to 1971

17. y

x1

1

0

f, f ª

 f 9sxd − e x

19. (a) 0, 1, 2, 4   (b) 21, 22, 24   (c) f 9sxd − 2x
21. f 9sxd − 3 , R, R    23. f 9std − 5t 1 6, R, R
25. f 9sxd − 2x 2 6x 2, R, R    

27. t9sxd − 2
1

2s9 2 x 
, s2`, 9g, s2`, 9d

29. G9std −
27

s3 1 td2 , s2`, 23d ø s23, `d, s2`, 23d ø s23, `d

31. f 9sxd − 4x 3, R, R    33. (a) f 9sxd − 4x 3 1 2
35. (a) The rate at which the unemployment rate is changing, in 
percent unemployed per year
(b) 

 t U9std t U9std

 2003 20.50 2008 2.35
 2004 20.45 2009 1.90
 2005 20.45 2010 20.20
 2006 20.25 2011 20.75
 2007 0.60 2012 20.80

37. t 14 21 28 35 42 49

H9std 13
7

23
14

9
7 1 11

14
5
7

y

0 t

y=Hª(t)

7 14 21 28 35 42 49

1

2

61. (a) 4

_4

2π_2π

   Slope appears to be 1.

 (b) 0.25

_0.25

0.4_0.4

   Yes

 (c) 0.005

_0.005

0.008_0.008

   Yes; 0

EXERCISES 2.8  �  PAGE 160
1. (a) 20.2   (b) 0   (c) 1   (d) 2    
(e) 1   (f) 0   (g) 20.2

0

1

2

21_1_2
_3

y

x

3

fª

3. (a) II   (b) IV   (c) I   (d) III
5. 

ca020805
7.4.00

fª

x

y

0

 7. 

ca020807
7.4.00

x

y

0

fª

9. 

3cA020809
6.17.04

y

0 x

f ª
 11. 

x0

y

f ª

13. (a) The instantaneous rate of change of percentage of full 
capacity with respect to elapsed time in hours

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 APPENDIX I  Answers to Odd-Numbered Exercises A75

CHAPTER 2 REVIEW  �  PAGE 166

True-False Quiz
1. False    3. True    5. True    7. False    9. True     
11. True    13. True    15. False    17. True    
19. True    21. False    23. False    25. True

Exercises
1. (a) (i) 3  (ii) 0  (iii) Does not exist  (iv) 2   
(v) `  (vi) 2`  (vii) 4  (viii) 21    
(b) y − 4, y − 21   (c) x − 0, x − 2   (d) 23, 0, 2, 4
3. 1    5. 3

2    7. 3    9. `    11. 4
7    13. 1

2
15. 2`    17. 2    19. !y2    21. x − 0, y − 0    23. 1
29. (a) (i) 3  (ii) 0  (iii) Does not exist   
(iv) 0  (v) 0  (vi) 0 
(b) At 0 and 3   (c) 

x0

y

3

3

31. R    35.  (a) 28   (b) y − 28x 1 17
37. (a) (i) 3 mys  (ii) 2.75 mys  (iii) 2.625 mys
(iv) 2.525 mys   (b) 2.5 mys
39. (a) 10   (b) y − 10x 2 16 
(c) 

4– 4

–12

12

41. (a) The rate at which the cost changes with respect to the  
interest rate; dollarsy(percent per year) 
(b) As the interest rate increases past 10%, the cost is increasing  
at a rate of $1200y(percent per year). 
(c) Always positive
43. 

ca02r33
7.4.00

x

y

0

fª

45.  (a) f 9sxd − 2 5
2 s3 2 5xd21y2   (b) (2`, 35 g, (2`, 35 )

(c) 6

1_3

_6

f

f ª

47. 24 (discontinuity), 21 (corner), 2 (discontinuity),  
5 (vertical tangent)

39. (a) The rate at which the percentage of electrical power pro-
duced by solar panels is changing, in percentage points per year. 
(b) On January 1, 2002, the percentage of electrical power pro-
duced by solar panels was increasing at a rate of 3.5 percentage 
points per year.
41. 24 scornerd; 0 sdiscontinuityd
43. 1 snot definedd; 5 svertical tangentd
45. 2

_1

_2 1

 Differentiable at 21;
 not differentiable at 0

47. f 99s1d    49. a − f, b − f 9, c − f 99
51. a − acceleration, b − velocity, c − position

53. 6x 1 2; 6    7

_1
4

fª

f ·
f

_4

55. 

ca020841
9.4.00

3

6!4

!7

f

fª

f ·

f ªªª

 f 9sxd − 4x 2 3x 2, 

 f 99sxd − 4 2 6x,

 f 999sxd − 26,

 f s4dsxd − 0

57. (a) 1
3 a22y3    

59. f 9sxd − H21
1

if x , 6
if x . 6

   

x

y

0 6

1

_1

f ª

or f 9sxd −
x 2 6

| x 2 6 |

61. (a) 

x
0

y  (b) All x
 (c) f 9sxd − 2| x |

65. (a) 

0 3 8 10 15 19

s

t

 (b) 

0 3 8 10 15 19

y=ds/dty

t

67. 63°
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A76 APPENDIX I  Answers to Odd-Numbered Exercises

49. y

0 x1

1

51. The rate at which the number of US $20 bills in circulation is 
changing with respect to time; 0.156 billion bills per year
53. 0

PROBLEMS PLUS  �  PAGE 169
1. 2

3    3. 24    5. (a) Does not exist   (b) 1
7. a − 1

2 6 1
2 s5     9. 25    11. (b) Yes   (c) Yes; no    

13. (a) 0   (b) 1   (c) f 9sxd − x 2 1 1    

CHAPTER 3

EXERCISES 3.1  �  PAGE 180

1. (a) e is the number such that lim
h l 0

 
e h 2 1

h
− 1.

 (b) 0.99, 1.03; 2.7 , e , 2.8
3. f 9sxd − 0    5. f 9sxd − 5.2    7. f 9std − 6t 2 2 6t 2 4
9. t9sxd − 2x 2 6x 2    11. t9std − 23

2 t 27y4    
13. F9srd − 215yr 4     15. R9sad − 18a 1 6    
17. S9spd − 1

2 p21y2 2 1    19.  y9 − 3e x 2 4
3x24y3    

21. h9sud − 3Au2 1 2Bu 1 C

23. y9 − 3
2 sx 1

2

sx 
2

3
2xsx 

    25. j9sxd − 2.4x 1.4

27. G9sqd − 22q 22 2 2q23    29. f 9svd − 22
3v 25y3 2 2ev

31. z9 − 210Ayy11 1 Be y    33. y − 4x 2 1    
35. y − 1

2x 1 2    
37. Tangent: y − 2x 1 2; normal: y − 21

2 x 1 2
39. y − 3x 2 1    41. f 9sxd − 4x 3 2 6x 2 1 2x
43. (a)  (c) 4x 3 2 9x 2 2 12x 1 7

50

!10

!3 5

    100

!40

!3 5

45.  f 9sxd − 0.005x 4 2 0.06x 2, f 99sxd − 0.02x 3 2 0.12x

47. f 9sxd − 2 2 15
4 x21y4, f 99sxd − 15

16 x25y4

49. (a) vstd − 3t 2 2 3, astd − 6t   (b) 12 mys2    
(c) as1d − 6 mys2    
51. 1.718; instantaneous rate of change of the length with respect 
to the age at 12 yr
53. (a) V − 5.3yP    
(b) 20.00212; instantaneous rate of change of the volume with 
respect to the pressure at 258C; m3ykPa
55. s22, 21d, s1, 26d    59. y − 3x 2 3, y − 3x 2 7
61. y − 22x 1 3
63. s62, 4d    67. Psxd − x 2 2 x 1 3    

69. y − 3
16 x 3 2 9

4 x 1 3

71. No 

x

(1, 2)
y=ƒ

0

y   

x0

y
2

1

1y=fª(x)

73. (a) Not differentiable at 3 or 23

f 9sxd − H2x
22x

if | x | . 3
if | x | , 3

(b) 

!3 3 x
0

y

ƒ"

!3 3 x0

9

y

ƒ

75. y − 2x 2 2 x    77. a − 21
2, b − 2     79. 21

3

81. m − 4, b − 24    83. 1000    85. 3; 1

EXERCISES 3.2  �  PAGE 188
1. 1 2 2x 1 6x 2 2 8x 3    3. f 9sxd − e xs3x 2 1 x 2 5d

5. y9 −
1 2 x

e x     7. t9sxd −
10

s3 2 4xd2     9. H9sud − 2u 2 1

11. F9syd − 5 1
14
y 2 1

9
y 4     13. y9 −

xs2x 3 2 3x 2 2d
sx 3 2 1d2     

15. y9 −
t 4 2 8t 3 1 6t 2 1 9

st 2 2 4t 1 3d2     

17. y9 − e ps1 1 3
2sp 1 p 1 psp d    19. y9 −

3 2 2ss 

2s 5y2     

21. f 9std −
22t 2 3

3t 2y3st 2 3d2      23. f 9sxd −
xe xsx 3 1 2e xd

sx 2 1 e xd2

25. f 9sxd −
2cx

sx 2 1 cd2     

27. sx 3 1 3x 2 1 1de x; sx 3 1 6x 2 1 6x 1 1de x    

29. 
xs2 1 2e x 2 xe xd

s1 1 e xd2 ; 

2 1 4e x 2 4xe x 2 x 2e x 1 2e2x 2 4xe2x 1 x 2e2x

s1 1 e xd3     

31. y − 2
3 x 2 2

3    33. y − 2x; y − 21
2 x    

35. (a) y − 1
2 x 1 1 (b) 

(_1, 0.5)

1.5

!0.5

!4 4
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 APPENDIX I  Answers to Odd-Numbered Exercises A77

31. (a) f 9sxd − s1 1 tan xdysec x   (b) f 9sxd − cos x 1 sin x
33. s2n 1 1d! 6 1

3!, n an integer    
35. (a) vstd − 8 cos t, astd − 28 sin t   
(b) 4s3

 

, 24, 24s3
 

; to the left
37. 5 ftyrad    39. 5

3    41. 3    43. 23
4

45. 1
2    47. 21

4    49. 2s2
 

    51. 2cos x    
53. A − 2 3

10, B − 2 1
10

55. (a) sec2x −
1

cos2x
   (b) sec x tan x −

sin x
cos2x

   

(c) cos x 2 sin x −
cot x 2 1

csc x
    

57. 1

EXERCISES 3.4 �  PAGE 204

1. 
4

3s3 s1 1 4xd2     3. ! sec2!x    5. 
esx

2sx 
    

7. F9sxd − 24 x11s5x 3 1 2d3 s5x 3 1 1d    

9. f 9sxd −
5

2s5x 1 1
    11. f 9s"d − 22" sin s" 2d

13. y9 − xe23x s2 2 3xd    15. f 9std − e atsb cos bt 1 a sin btd
17. f 9sxd − s2x 2 3d3sx 2 1 x 1 1d4s28x 2 2 12x 2 7d
19. h9std − 2

3st 1 1d21y3s2t 2 2 1d2s20t 2 1 18t 2 1d

21. y9 −
1

2sx
  

 sx 1 1d3/2
    23. y9 − ssec2 "d e tan "    

25. g9sud −
48u 2su 3 2 1d7

su 3 1 1d9     27. r9std −
sln 10d10 2st 

st  
    

29. H9srd −
2sr 2 2 1d2 sr 2 1 3r 1 5d

s2r 1 1d6

31. F9std − e t sin 2 ts2t cos 2t 1 sin 2td

33. G9sxd − 2C sln 4d
4C /x

x 2

35. y9 −
4e2x

s1 1 e2xd2
 sin 

1 2 e2x

1 1 e2x     

37. y9 − 22 cos " cotssin "d csc2ssin "d    
39. f 9std − 2sec2ssecscos tdd secscos td tanscos td sin t    
41. f 9std − 4 sin sesin2 t d cos sesin2 t d esin2 t sin t cos t    
43. t9sxd − 2r 2 psln ad s2ra rx 1 nd p21 a rx

45. y9 −
2! cosstan !xd sec2s!xd sinssin stan !xd

2ssin stan !xd
47. y9 − 23 cos 3" sinssin 3"d; 
y99 − 29 cos2s3"d cosssin 3"d 1 9ssin 3"d sinssin 3"d

49. y9 −
2sec t tan t

2s1 2 sec t 
;

y 0 −
sec t s3 sec3t 2 4 sec2t 2 sec t 1 2d

4s1 2 sec td3/2

51. y − sln 2dx 1 1    53. y − 2x 1 !
55. (a) y − 1

2 x 1 1   (b) 3

_1.5

_3 3

(0, 1)

37. (a) e xsx 3 1 3x 2 2 x 2 1d   
(b) 2

fª

f

_2

2!10

39. (a) f 9sxd −
4x

sx 2 1 1d2 ; f 99sxd −
4s1 2 3x 2d
sx 2 1 1d3

(b) 4

f·
fªf

_2

6_6

41. 1
4    43. (a) 216   (b) 2 20

9    (c) 20    45. 7    
47. y − 22x 1 18    49. (a) 0   (b) 22

3

51. (a) y9 − xt9sxd 1 tsxd   (b) y9 −
tsxd 2 xt9sxd

ftsxdg 2     

(c) y9 −
xt9sxd 2 tsxd

x 2     

53. Two, s22 6 s3, 12 s1 7 s3 dd    55. 1    
57. $1.627 billionyyear    

59. 
0.0021

s0.015 1 [S]d2 ;

 The rate of change of the rate of an enzymatic reaction with 
respect to the concentration of a substrate S.
61. (c) 3e3x

63. f 9sxd − sx 2 1 2xde x, f 99sxd − sx 2 1 4x 1 2de x,  
f -sxd − sx 2 1 6x 1 6de x, f s4dsxd − sx 2 1 8x 1 12de x, 
f s5dsxd − sx 2 1 10x 1 20de x; f sndsxd − fx 2 1 2nx 1 nsn 2 1dge x

EXERCISES 3.3  �  PAGE 196
1. f 9sxd − x 2 cos x 1 2x sin x    3. f 9sxd − e xscos x 2 sin xd
5. y9 − sec " ssec2" 1 tan2"d    
7. y9 − 2c sin t 1 t st cos t 1 2 sin td

9. y9 −
2 2 tan x 1 x sec2x

s2 2 tan xd2     11. f 9s"d −
1

1 1 cos "
    

13. y9 −
st 2 1 tdcos t 1 sin t

s1 1 td2

15. f 9s"d − 1
2 sin 2" 1 " cos 2"

21. y − x 1 1    23. y − x 2 ! 2 1
25. (a) y − 2x   (b) 

ms80171-1
6et 3.3.25b
6.24.06

π0

3π
2

”    , π’π
2

27. (a) sec x tan x 2 1
29. " cos " 1 sin "; 2 cos " 2 " sin "
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41. (a) 4

5_2

_3

  Eight; x < 0.42, 1.58

(b) y − 2x 1 1, y − 1
3 x 1 2   (c) 1 7 1

3s3
 

43. (65
4 s3

 

, 65
4 )    45. sx0 xya 2d 2 sy0yyb 2d − 1    

49. y9 −
2 tan21x
1 1 x 2     51. y9 −

1

s2x 2 2 x 
    

53. F9sxd −
3

sx 6 2 1
1 sec21sx 3d    55. h9std − 0    

57. y9 − sin21x    59. y9 −
sa 2 2 b2 

a 1 b cos x
    

61. 1 2
x arcsin x

s1 2 x 2 
65. 

x

y     67. 

x

y

71. (a) 
V 3snb 2 V d

PV 3 2 n2aV 1 2n3ab
   (b) 24.04 Lyatm

73. (6s3
 

, 0)    75. s21, 21d, s1, 1d    77. (b) 3
2    

79. (a) 0   (b) 21
2

EXERCISES 3.6  �  PAGE 223
1. The differentiation formula is simplest.

3. f 9sxd −
cossln xd

x
    5. f 9sxd − 2

1
x

7. f 9sxd −
2sin x

s1 1 cos xd ln 10
    9. t9sxd −

1
x

2 2

11. F9std − ln t Sln t cos t 1
2 sin t

t D    

13. G9syd −
10

2y 1 1
2

y
y 2 1 1

    15. F9ssd −
1

s ln s
    

17. T9szd − 2zS 1
z ln 2

1 ln zD
19. y9 −

2x
1 1 x

    21. y9 − sec2 f lnsax 1 bdg
a

ax 1 b
    

23. y9 − s2 1 ln xdy(2sx
 ); y0 − 2ln xy(4xsx

 )
25. y9 − tan x; y0 − sec2x    

27. f 9sxd −
2x 2 1 2 sx 2 1d lnsx 2 1d

sx 2 1df1 2 lnsx 2 1dg 2 ; 

 s1, 1 1 ed ø s1 1 e, `d

29. f 9sxd −
2sx 2 1d
x sx 2 2d

; s2`, 0d ø s2, `d    31. 2    

57. (a) f 9sxd −
2 2 2x 2

s2 2 x 2 
59. ss!y2d 1 2n!, 3d, ss3!y2d 1 2n!, 21d, n an integer
61. 24    63. (a) 30   (b) 36
65. (a) 3

4   (b) Does not exist   (c) 22    67. 21
6 s2 

69. (a) F9sxd − e x f 9se xd   (b) G9sxd − e f sxd f 9sxd
71. 120    73. 96    
77. 2250 cos 2x    79. vstd − 5

2! coss10! td cmys

81. (a) 
dB
dt

−
7!

54
 cos 

2!t
5.4

   (b) 0.16

83. vstd − 2e21.5 t s2! cos 2!t 2 1.5 sin 2!td
2

!1

0 2

s

  15

!7

0 2

√

85. (a) 0.0075 smgymLdymin   (b) 0.0030 smgymLdymin
87. dvydt is the rate of change of velocity with respect to time; 
dvyds is the rate of change of velocity with respect to displacement
89. (a) Q − abt where a < 100.01244 and b < 0.000045146    
(b) 2670.63 mA
91. (b) The factored form   95. (b) 2n cosn21x sinfsn 1 1dxg

EXERCISES 3.5  �  PAGE 215
1. (a) y9 − 9xyy   (b) y − 6s9x 2 2 1, y9 − 69xys9x 2 2 1

3. (a) y9 − 2sy ysx    (b) y − (1 2 sx )2, y9 − 1 2 1ysx 

5. y9 −
2y 2 x
y 2 2x

    7. y9 − 2
2xs2x 2 1 y 2d
ys2x 2 1 3yd

9. y9 −
xsx 1 2yd

2x 2y 1 4xy 2 1 2y 3 1 x 2     11. y9 −
2x 1 y sin x
cos x 2 2y

13. y9 −
1 2 8x 3sx 1 y 
8y 3sx 1 y 2 1

    15. y9 −
ysy 2 e xyyd
y 2 2 xe xyy

17. y9 −
1 1 x 4y 2 1 y 2 1 x 4y 4 2 2xy

x 2 2 2xy 2 2x 5y 3

19. y9 − 2
y cossxyd 1 sinsx 1 yd
x cossxyd 1 sinsx 1 yd

    21. 216
13    

23. x9 −
22x4y 1 x3 2 6xy2

4x3y2 2 3x 2y 1 2y3     25. y − 1
2 x

27. y − 3
4 x 2 1

2    29. y − x 1 1
2    31. y − 2 9

13 x 1 40
13

33. (a) y − 9
2 x 2 5

2   (b) 5

2_2

_2

(1, 2)

35. 21ys4y 3d    37. 
cos2y cos x 1 sin2x sin y

cos3y
    39. 1ye 2
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 APPENDIX I  Answers to Odd-Numbered Exercises A79

(b) Speeding up when 1 , t , 2 or 3 , t , 4; 
slowing down when 0 , t , 1 or 2 , t , 3
7. (a) 4.9 mys; 214.7 mys   (b) After 2.5 s   (c) 32 5

8 m 
(d) <5.08 s   (e) <225.3 mys
9. (a) 7.56 mys   (b) 6.24 mys; 26.24 mys
11. (a) 30 mm2ymm; the rate at which the area is increasing  
with respect to side length as x reaches 15 mm 
(b) DA < 2x Dx
13. (a) (i) 5!  (ii) 4.5!  (iii) 4.1! 
(b) 4!   (c) DA < 2!r Dr
15. (a) 8! ft2yft   (b) 16! ft2yft   (c) 24! ft2yft  
The rate increases as the radius increases.
17. (a) 6 kgym   (b) 12 kgym    (c) 18 kgym 
At the right end; at the left end
19. (a) 4.75 A   (b) 5 A; t − 2

3 s
23. (a) dVydP − 2CyP 2   (b) At the beginning
25. 400s3td ln 3; < 6850 bacteriayh
27. (a) 16 millionyyear; 78.5 millionyyear 
(b) Pstd − at 3 1 bt 2 1 ct 1 d, where a < 20.0002849, 
b < 0.5224331, c < 26.395641, d < 1720.586 
(c) P9std − 3at 2 1 2bt 1 c    
(d) 14.16 millionyyear (smaller); 71.72 millionyyear (smaller)

(e) f 9std − (1.43653 3 109) ? (1.01395)t
 ln 1.01395 

(f) 26.25 millionyyear (larger); 60.28 millionyyear (smaller) 
(g) P9s85d < 76.24 millionyyear, f 9s85d − 64.61 millionyyear
29. (a) 0.926 cmys; 0.694 cmys; 0 
(b) 0; 292.6 scmysdycm; 2185.2 scmysdycm
(c) At the center; at the edge
31. (a) C9sx d − 3 1 0.02x 1 0.0006x 2 
(b) $11ypair; the rate at which the cost is changing as the 100th 
pair of jeans is being produced; the cost of the 101st pair 
(c) $11.07
33. (a) fxp9sxd 2 psxdgyx 2; the average productivity increases as 
new workers are added.

35. 
dt
dc

−
3s9c2 2 8c 1 9c 2 4

s9c2 2 8c (3c 1 s9c2 2 8c ) ; the rate of change

of duration of dialysis required with respect to the initial urea 
concentration
37. 20.2436 Kymin
39. (a) 0 and 0   (b) C − 0    
(c) s0, 0d, s500, 50d; it is possible for the species to coexist.

EXERCISES 3.8  �  PAGE 242
1. About 235
3. (a) 100s4.2d t   (b) <7409   (c) <10,632 bacteriayh    
(d) sln 100dysln 4.2d < 3.2 h
5. (a) 1508 million, 1871 million   (b) 2161 million 
(c) 3972 million; wars in the first half of century, increased life 
expectancy in second half
7. (a) Ce20.0005t   (b) 22000 ln 0.9 < 211 s
9. (a) 100 3 22ty30 mg   (b) < 9.92 mg   (c) <199.3 years
11. <2500 years    13. Yes; 12.5 billion years
15. (a) <1378F   (b) <116 min
17. (a) 13.3°C   (b) <67.74 min
19. (a) <64.5 kPa   (b) <39.9 kPa

33. y − 3x 2 9    35. cos x 1 1yx    37. 7

39. y9 − sx 2 1 2d2sx 4 1 4d4S 4x
x 2 1 2

1
16x 3

x 4 1 4D
41. y9 − Î x 2 1

x 4 1 1
 
 S 1

2x 2 2
2

2x 3

x 4 1 1D
43. y9 − x xs1 1 ln xd

45. y9 − x sin xSsin x
x

1 cos x ln xD
47. y9 − scos xdxs2x tan x 1 ln cos xd

49. y9 − stan xd1yxS sec2x
x tan x

2
ln tan x

x 2 D    

51. y9 −
2x

x 2 1 y 2 2 2y
    53. f sndsxd −

s21dn21sn 2 1d!
sx 2 1dn

EXERCISES 3.7  �  PAGE 233
1. (a) 3t 2 2 16t 1 24   (b) 11 ftys   (c) Never   (d) Always
(e) 72 ft
(f) 

t=0
s=0

t=6
s=72

s

 (g) 6t 2 16; 210 ftys2

(h) 

60

80

_20

s

√

a

   (i) Speeding up when 
t . 8

3; slowing down when 
0 < t , 8

3

3. (a) (!y2) cos(!ty2)   (b) 0 ftys   
(c) t − 2n 1 1, t a nonnegative integer   
(d) 0 , t , 1,  3 , t , 5,  7 , t , 9, and so on   (e) 6 ft   
(f) 

st=0
s=0

t=3
s=1.5

t=6 
s=1.2

 (g)  (2! 2 y4) sin(! ty2);
2! 2 y4 ftys 2

(h) 

6

_1

2

0

s

√

a

(i) Speeding up when 1 , t , 2, 3 , t , 4, and 5 , t , 6;  
slowing down when 0 , t , 1, 2 , t , 3, and 4 , t , 5
5. (a) Speeding up when 0 , t , 1 or 2 , t , 3;  
slowing down when 1 , t , 2 
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A80 APPENDIX I  Answers to Odd-Numbered Exercises

19. Dy − 1.25, dy − 1  y

0 x3

_3

y=x@-4x

dy Îy

dx=Îx

21. Dy < 0.34, dy − 0.4  y

0
x1 2 3

1
dyÎy

dx=Îx

y=œ„„„„„x-2

23. 15.968    25. 10.003    27. 1.1
33. (a) 270 cm3, 0.01, 1%   (b) 36 cm2, 0.006, 0.6%
35. (a) 84y! < 27 cm2; 1

84 < 0.012 − 1.2%

(b) 1764y! 2 < 179 cm3; 1
56 < 0.018 − 1.8%

37. (a) 2!rh Dr   (b) !sDrd2h    
43. (a) 4.8, 5.2   (b) Too large

EXERCISES 3.11  �  PAGE 264
1. (a) 0   (b) 1    3. (a) 13

5    (b) 1
2 se 5 1 e25 d < 74.20995

5. (a) 1   (b) 0    
21. sech x − 3

5, sinh x − 4
3, csch x − 3

4, tanh x − 4
5, coth x − 5

4    
23. (a) 1   (b) 21   (c) `   (d) 2`   (e) 0   (f) 1    
(g) `   (h) 2`   (i) 0   (j) 1

2

31. f 9sxd −
sech2sx

 

2sx
     33. h9sxd − 2x coshsx 2d    

35. G9std −
t 2 1 1

2t 2

37. y9 − 3e cosh 3x sinh 3x    

39. g9std − coth st 2 1 1 2
t 2

st 2 1 1 
  csch2st 2 1 1

 

41. y9 −
1

2sxsx 2 1d 

43. y9 − sinh21sxy3d    45. y9 − 2csc x
51. (a) 0.3572   (b) 70.34°
53. (a) 164.50 m   (b) 120 m; 164.13 m
55. (b) y − 2 sinh 3x 2 4 cosh 3x

57. (ln (1 1 s2
 ), s2

 )

CHAPTER 3 REVIEW  �  PAGE 266
True-False Quiz
1. True    3. True    5. False    7. False    9. True
11. True    13. True    15. True    

21. (a) (i) $3828.84  (ii) $3840.25  (iii) $3850.08 
(iv) $3851.61  (v) $3852.01  (vi) $3852.08 
(b) dAydt − 0.05A, As0d − 3000

EXERCISES 3.9  �  PAGE 249
1. dVydt − 3x 2 dxydt    3. 48 cm2ys    5. 3ys25!d mymin    
7. 128! cm2ymin    9. (a) 1   (b) 25    11. 218
13. (a) The plane’s altitude is 1 mi and its speed is 500 miyh. 
(b) The rate at which the distance from the plane to the station is 
increasing when the plane is 2 mi from the station
(c) 

y

x

1

 (d) y 2 − x 2 1 1

 (e) 250s3
 

 miyh

15. (a) The height of the pole (15 ft), the height of the man (6 ft), 
and the speed of the man s5 ftysd 
(b) The rate at which the tip of the man’s shadow is moving when 
he is 40 ft from the pole
(c) 

yx

15

6

   (d) 
15
6

−
x 1 y

y
   (e) 25

3  ftys

17.  65 miyh    19. 837ys8674 < 8.99 ftys    
21. 21.6 cmymin    23. 720

13 < 55.4 kmyh
25.  s10,000 1 800,000!y9d < 2.89 3 105 cm3ymin
27. 10

3  cmymin    29. 6ys5!d < 0.38 ftymin    
31. 150s3

 

 cm2ymin    33. 5 m    35. !r 2y60 cm2ymin
37. 80 cm3ymin    39. 107

810 < 0.132 Vys    
41. s7 !y21 <  0.396 mymin    
43. (a) 360 ftys   (b) 0.096 radys    
45. 10

9 ! kmymin    47. 1650ys31 < 296 kmyh    

49. 7
4 s15 < 6.78 mys

EXERCISES 3.10  �  PAGE 256
1. Lsxd − 16x 1 23    3. Lsxd − 1

4 x 1 1
5. s1 2 x < 1 2 1

2 x;    3

3_3

_1

(0, 1)

(1, 0)

y=œ„„„„1-x

y=1-   x1
2s0.9

 < 0.95,
s0.99

 < 0.995

7. 20.383 , x , 0.516    9. 20.368 , x , 0.677

11. (a) dy − s1 2 4xde24x dx   (b) dy − 2
2t 3

s1 2 t 4  dt

13. (a) dy −
sec2st 

2st 
 dt   (b) dy −

24v
s1 1 v2d2  dv

15. (a) dy − 1
10 e xy10 dx   (b) 0.01

17. (a) dy −
x

s3 1 x 2 
 dx   (b) 20.05
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 APPENDIX I  Answers to Odd-Numbered Exercises A81

89. (a) vstd − 3t 2 2 12; astd − 6t   (b) t . 2; 0 < t , 2    
(c) 23   (d) 20

0 3

!15

a

v

position

t

y
   

(e) t . 2; 0 , t , 2
91. 4 kgym    
93. (a) 200s3.24d t   (b) <22,040
(c) <25,910 bacteriayh   (d) sln 50dysln 3.24d < 3.33 h
95. (a) C0 e2kt   (b) <100 h    97. 4

3 cm2ymin    
99. 13 ftys    101. 400 ftyh    
103. (a) Lsxd − 1 1 x; s3 1 1 3x

 < 1 1 x; s3 1.03
 < 1.01 

(b) 20.23 , x , 0.40    
105. 12 1 3

2! < 16.7 cm2    107. 1
32    109. 1

4    111. 1
8 x 2

PROBLEMS PLUS  �  PAGE 271

1. s6s3y2, 14 d    5. 3s2     11. s0, 54 d    

13. 3 lines; s0, 2d, (4
3s2 , 23) and (2

3s2 , 10
3 ), (24

3s2 , 23) and 
(22

3s2 , 10
3 )

15. (a) 4!s3
 ys11 radys   (b) 40(cos " 1 s8 1 cos2" ) cm

(c) 2480! sin " (1 1 cos "ys8 1 cos2"
 ) cmys

19. xT [ s3, `d, yT [ s2, `d, xN [ s0, 53 d, yN [ s25
2, 0d

21. (b) (i) 538 (or 127°d  (ii) 638 (or 1178)
23. R approaches the midpoint of the radius AO.
25. 2sin a    27. 2se

 

    31. s1, 22d, s21, 0d    
33. s29

 y58    35. 2 1 375
128! < 11.204 cm3ymin

CHAPTER 4

EXERCISES 4.1  �  PAGE 283
Abbreviations: abs, absolute; loc, local; max, maximum;  
min, minimum
1. Abs min: smallest function value on the entire domain of the 
function; loc min at c: smallest function value when x is near c
3. Abs max at s, abs min at r, loc max at c, loc min at b and r,  
neither a max nor a min at a and d
5. Abs max f s4d − 5, loc max f s4d − 5 and f s6d − 4,  
loc min f s2d − 2 and f s1d − f s5d − 3

7. y

x0 54321

3

2

1

 9. y

0 x1 2 3 4 5

1
2
3
4

Exercises

1. 4x 7sx 1 1d3s3x 1 2d    3. 3
2sx 2

1
2sx 

2
1

sx 3 

5. xs!x cos !x 1 2 sin !xd

7. 
8t 3

st 4 1 1d2     9. 
1 1 ln x

x ln x
    11. 

cossx
 

2 sx
 

 sin sx
 

2sx
 

13. 2
e1yxs1 1 2xd

x 4     15. 
2xy 2 cos y

1 2 x sin y 2 x 2

17. 
1

2sarctan x s1 1 x 2d
    19. 

1 2 t 2

s1 1 t 2d2  sec2S t
1 1 t 2D

21. 3x ln xsln 3ds1 1 ln xd    23. 2sx 2 1d22

25. 
2x 2 y cossxyd
x cossxyd 1 1

     27. 
2

s1 1 2xd ln 5
    

29. cot x 2 sin x cos x     31. 
4x

1 1 16x 2 1 tan21s4xd    

33. 5 sec 5x    35. 26x csc2 s3x2 1 5d    

37. cos(tan s1 1 x 3 )(sec2s1 1 x 3 ) 3x 2

2s1 1 x 3 
    

39. 2 cos " tanssin "d sec2ssin "d    

41. 
s2 2 xd4s3x 2 2 55x 2 52d

2sx 1 1 sx 1 3d8
    43. 2x 2 coshsx 2 d 1 sinhsx 2 d    

45. 3 tanh 3x    47. 
cosh x

ssinh2x 2 1

49. 
23 sinsestan 3xdestan 3x sec2s3xd

2stan 3x
    51. 2 4

27    

53. 25x 4yy 11    57. y − 2s3
 

x 1 1 2 !s3
 y3

59. y − 2x 1 1    61. y − 2x 1 2; y − x 1 2    

63. (a) 
10 2 3x

2s5 2 x
   (b) y − 7

4 x 1 1
4, y − 2x 1 8

(c) 

(4, 4)

10

_10

_10 10
(1, 2)

ƒ

65. (!y4, s2
 ), (5!y4, 2s2

 )    
69. (a) 4   (b) 6   (c) 7

9   (d) 12    
71. 2xtsxd 1 x 2t9sxd    73. 2tsxdt9sxd
75. t9se x de x    77. t9sxdytsxd    

79. 
f 9sxdftsxdg 2 1 t9sxd f f sxdg 2

f f sxd 1 tsxdg 2

81. f 9stssin 4xddt9ssin 4xdscos 4xds4d    
83. s23, 0d    85. y − 22

3 x 2 1 14
3 x    

87. vstd − 2Ae2ct fc coss#t 1 $d 1 # sins#t 1 $dg,
astd − Ae2ct fsc 2 2 #2 d coss#t 1 $d 1 2c# sins#t 1 $dg
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A82 APPENDIX I  Answers to Odd-Numbered Exercises

EXERCISES 4.2  �  PAGE 291
1. 1, 5    
3. (a) t is continuous on f0, 8g and differentiable on s0, 8d.    
(b) 2.1, 6.3   (c) 3.6, 5.6    
5. 1    7. !
9. f  is not differentiable on s21, 1d    11. 1    
13. 3y ln 4    15. 1; yes    17. f  is not continous at 3 
25. 16    27. No    33. No

EXERCISES 4.3  �  PAGE 300
1. (a) s1, 3d, s4, 6d   (b) s0, 1d, s3, 4d   (c) s0, 2d    
(d) s2, 4d, s4, 6d   (e) s2, 3d    
3. (a) I/D Test   (b) Concavity Test     
(c) Find points at which the concavity changes.
5. (a) Inc on s1, 5d; dec on s0, 1d and s5, 6d 
(b) Loc max at x − 5, loc min at x − 1    
7. (a) 3, 5   (b) 2, 4, 6    (c) 1, 7
9. (a) Inc on s2`, 21d, s3, `d; dec on s21, 3d    
(b) Loc max f s21d − 9; loc min f s3d − 223    
(c) CU on s1, `d, CD on s2`, 1d; IP s1, 27d
11. (a) Inc on s21, 0d, s1, `d; dec on s2`, 21d, s0, 1d 
(b) Loc max f s0d − 3; loc min f s61d − 2
(c) CU on (2`, 2s3

 y3), (s3
 y3, `);

CD on (2s3
 y3, s3

 y3); IP (6s3
 y3, 22

9 )
13. (a) Inc on s0, !y4d, s5!y4, 2!d; dec on s!y4, 5!y4d   
 (b) Loc max f s!y4d − s2

  

; loc min f s5!y4d − 2s2
 

    
(c) CU on s3!y4, 7!y4d; CD on s0, 3!y4d, s7!y4, 2!d;  
IP s3!y4, 0d, s7!y4, 0d
15. (a) Inc on s21

3 ln 2, `d; dec on  s2`, 21
3 ln 2d   

(b) Loc min f s21
3 ln 2d − 222y3 1 21y3   (c) CU on s2`, `d

17. (a) Inc on s1, `d; dec on s0, 1d   (b) Loc min f s1d − 0    
(c) CU on s0, `d; No IP
19. Loc max f s1d − 2; loc min f s0d − 1

21. Loc min f ( 1
16) − 21

4

23. (a) f  has a local maximum at 2.   
(b) f  has a horizontal tangent at 6.

25. (a) y

0 x

 (b) y

0 x

27. 

x

y

0 1 32 4

 29. 

x

y

0 2

3

5 8

11. (a) y

0 x1

_1
2

1

3

 (b) y

0 x1

_1
2

1

3

(c) y

0 x1

_1
2

1

2

3

13. (a) y

0 x2

_1

 (b) y

0 x

15. Abs max f s3d − 4    17. Abs max f s1d − 1
19. Abs min f s0d − 0
21. Abs max f s!y2d − 1; abs min f s2!y2d − 21
23. Abs max f s2d − ln 2    25. Abs max f s0d − 1    
27. Abs min f s1d − 21    29. 1

3    31. 22, 3    33. 0
35. 0, 2    37. 0, 49    39. 0, 87, 4    41. n! sn an integerd    
43. 0, 23    45. 10    47. f s2d − 16, f s5d − 7
49. f s21d − 8, f s2d − 219    51. f s22d − 33, f s2d − 231
53. f s0.2d − 5.2, f s1d − 2    
55. f s4d − 4 2 s3 4

 

, f (s3
 y9) − 22s3

 y9    
57. f s!y6d − 3

2s3, f s!y2d − 0    

59. f (e1/2) − 1ys2ed, f (1
2) − 24 ln 2    

61. f s1d − ln 3, f (21
2) − ln  34    

63. fS a
a 1 bD −

a abb

sa 1 bda1b

65. (a) 2.19, 1.81   (b) 6
25 s3

5
 1 2, 2 6

25 s3
5

 1 2

67. (a) 0.32, 0.00   (b) 3
16 s3

 

, 0    
69. 0.177 mgymL; 21.4 min    71. <3.96658C
73. About 4.1 months after Jan. 1

75. (a) r − 2
3 r0   (b) v − 4

27 kr 0
3 

(c) √

0 r

kr#̧4
27

r¸2
3 r¸
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 APPENDIX I  Answers to Odd-Numbered Exercises A83

(d) y

0 x2_2

5

10

_5

(0, 3)

(_2, _5) (2, _5)

IP IP

41. (a) Inc on s2`, 22d, s0, `d;  

ms80622-1
6et 4.3.37
07.30.06

x_1

(_1, 3)

(0, _1)

(_2, 7) y
7

 
dec on s22, 0d 
(b) Loc max h s22d − 7;  
loc min h s0d − 21 
(c) CU on s21, `d;  
CD on s2`, 21d; IP s21, 3d 
(d) See graph at right.

43. (a) Inc on s2`, 4d;  {          }

4

y

x0 6

4, 4œ„2  
dec on s4, 6d 
(b) Loc max F s4d − 4s2  
(c) CD on s2`, 6d; No IP 
(d) See graph at right.

45. (a) Inc on s21, `d; 

Stewart / Calculus:  ET 5th Editio n
Solution Ar t
5et040341
5.24.02

x

y

_4 0

{ 2, 6 Œ„2 }

(_1, _3)

 
dec on s2`, 21d 
(b) Loc min Cs21d − 23 
(c) CU on s2`, 0d, s2, `d;  
CD on s0, 2d;
IPs s0, 0d, (2, 6s3 2

 )
(d) See graph at right.

47. (a) Inc on s!, 2!d; 

ms80628-1
3c3 4.3.43
7.31.06

¨
(π, _1)

”   ,    ’

y

π
3

5
4 ”    ,    ’5π

3
5
41

_1
0 π 2π

 
dec on s0, !d 
(b) Loc min f s!d − 21 
(c) CU on s!y3, 5!y3d;  
CD on s0, !y3d, s5!y3, 2!d;
IPs s!y3, 54d, s5!y3, 54d
(d) See graph at right.

49. (a) VA x − 0; HA y − 1 y

20 3

y=1

x

(2, 5/4) 
 

(b) Inc on s0, 2d;  
dec on s2`, 0d, s2, `d 
(c) Loc max f s2d − 5

4 
(d) CU on s3, `d;  
CD on s2`, 0d, s0, 3d; IP s3, 11

9 d 
(e) See graph at right.

51. (a) HA y − 0 

x

y

0

1

 
(b) Dec on s2`, `d 
(c) None 
(d) CU on s2`, `d 
(e) See graph at right.

31. y

0 x2

5

y=8

(2, 5)

33. (a) No    
(b) Yes y

0 x1-1 2

4

IP
IP

(c) y

0 x1-1 2

4

IP IP

35. (a) Inc on (0, 2), (4, 6), s8, `d; 

x

y

0 2 4 6 8

dec on (2, 4), (6, 8) 
(b) Loc max at x − 2, 6; 
loc min at x − 4, 8 
(c) CU on (3, 6), s6, `d;  
CD on (0, 3)   (d) 3 
(e) See graph at right.

37. (a) Inc on s2`, 22d, s2, `d; dec on s22, 2d    
(b) Loc max f s22d − 18; loc min f s2d − 214 
(c) CU on s0, `d, CD on s2`, 0d; IP s0, 2d
(d) 

x_2 2
2

y

0

(_2, 18)

(2, _14)

39. (a) Inc on s22, 0d, s2, `d; dec on s2`, 22d, s0, 2d    
(b) Loc max f s0d − 3; loc min f s62d − 25   

(c) CU on S2`, 2
2

s3
 D, S 2

s3
 , `D; CD on S2

2

s3
 , 

2

s3
 D; 

IPs S6
2

s3
 , 2

13
9 D
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EXERCISES 4.5  �  PAGE 321
Abbreviation: int, intercept; SA, slant asymptote
1. A. R   B. y-int 0; x-int 23, 0 

y

x

(_2, 4)

(_1, 2)
(0, 0)

C. None   D. None 
E. Inc on s2`, 22d, s0, `d;  
dec on s22, 0d 
F. Loc max f s22d − 4;  
loc min f s0d − 0 
G. CU on s21, `d; CD on s2`, 21d;  
IP s21, 2d 
H. See graph at right.

3. A. R   B. y-int 0; x-int 0, s3 4  

x

y

(1, _3)

0

C. None   D. None 
E. Inc on s1, `d; dec on s2`, 1d 
F. Loc min f s1d − 23 
G. CU on s2`, `d 
H. See graph at right.

5. A. R   B. y-int 0; x-int 0, 4 

x

y

0 (4, 0)

(2, _16)

(1, _27)

C. None   D. None 
E. Inc on s1, `d; dec on s2`, 1d 
F. Loc min f s1d − 227 
G. CU on s2`, 2d, s4, `d;  
CD on s2, 4d; 
IPs s2, 216d, s4, 0d 
H. See graph at right.

7. A. R   B. y-int 0; x-int 0 

x

y

(0,  0)

{_2,  _       }256
15

{2,       }256
15

C. About s0, 0d   D. None 
E. Inc on s2`, `d 
F. None 
G. CU on s22, 0d, s2, `d; 
CD on s2`, 22d, s0, 2d; 
 IPs s22, 2256

15 d, s0, 0d, s2, 256
15 d 

H. See graph at right.

9. A. hx | x ± 1j   B. y-int 0; x-int 0 

x

y

0
x ! 1

y ! 1
C. None   D. VA x − 1, HA y − 1 
E. Dec on s2`, 1d, s1, `d    
F. None 
G. CU on s1, `d; CD on s2`, 1d 
H. See graph at right.

11. A. s2`, 1d ø s1, 2d ø s2, `d 

x

y

(1, 1)

x=2

y=_1
0

B. y-int 0; x-int 0   C. None    
D. HA y − 21; VA x − 2 
E. Inc on s2`, 1d, s1, 2d, s2, `d 
F. None    
G. CU on s2`, 1d, s1, 2d;  
CD on s2, `d 
H. See graph at right.

53. (a) HA y − 0 

x_1 1

y

0

 
(b) Inc on s2`, 0d,  
dec on s0, `d 
(c) Loc max f s0d − 1

(d) CU on s2`, 21s2 d, 
s1ys2 , `d; CD on s21ys2 , 1ys2 d; IPs s61ys2 , e21y2d
(e) See graph at right.

55. (a) VA x − 0, x − e    y

0 x

(1, 0)1

x=ex=0
 

(b) Dec on s0, ed    
(c) None 
(d) CU on (0, 1); CD on s1, ed;  
IP (1, 0) 
(e) See graph at right.

57. s3, `d
59. (a) Loc and abs max f s1d − s2

 

, no min   (b) 1
4 (3 2 s17

 )
61. (b) CU on s0, 0.85d, s1.57, 2.29d; CD on s0.85, 1.57d, 
s2.29, !d; IP s0.85, 0.74d, s1.57, 0d, s2.29, 20.74d
63. CU on s2`, 20.6d, s0.0, `d; CD on s20.6, 0.0d
65. (a) The rate of increase is initially very small, increases to a 
maximum at t < 8 h, then decreases toward 0.    
(b) When t − 8   (c) CU on s0, 8d; CD on s8, 18d    
(d) s8, 350d
67. If Dstd is the size of the deficit as a function of time, then at 
the time of the speech D9std . 0, but D0std , 0.
69. Ks3d 2 Ks2d; CD
71. 28.57 min, when the rate of increase of drug level in the 
bloodstream is greatest; 85.71 min, when rate of decrease is  
greatest    
73. f sxd − 1

9 s2x 3 1 3x 2 2 12x 1 7d    

75. (a) a − 0, b − 21   (b) y − 2x at s0, 0d

EXERCISES 4.4  �  PAGE 311
1. (a) Indeterminate   (b) 0   (c) 0 
(d) `, 2`, or does not exist   (e) Indeterminate
3. (a) 2`   (b) Indeterminate   (c) `

5. 9
4    7. 1    9. 6    11. 21

3    
13. 2`    15. 2    17. 1

4    19. 0   21. 2`    
23. 8

5    25. 3    27. 1
2    29. 1    31. 1    

33. 1y ln 3    35. 0    37. 0    39. ayb
41. 1

24    43. !    45. 5
3    47. 0   49. 22y!    

51. 1
2    53. 1

2    55. `    57. 1    59. e22    

61. 1ye    63. 1    65. e 4    67. e 3    69. e 2    

71. 1
4    75. 1   

77. f  has an absolute minimum for c . 0. As c increases, the 
minimum points get farther away from the origin.
81. (a) M; the population should approach its maximum size as 
time increases   (b) P0e kt; exponential
83. 16

9 a    85. 1
2    87. 56    91. (a) 0
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 APPENDIX I  Answers to Odd-Numbered Exercises A85

25. A. R   B. y-int 0; x-int 0 

Stewart / Calculus:  ET 5th Editio n
Solution Ar t
5et040523
5.20.02

x

y

(0, 0)

y=_1

y=1C. About s0, 0d    
D. HA y − 61    
E. Inc on s2`, `d   F. None    
G. CU on s2`, 0d;  
CD on s0, `d; IP s0, 0d 
H. See graph at right.

27. A. f21, 0d ø s0, 1g   B. x-int 61   C. About (0, 0)    
D. VA x − 0    

1

!1

x

y

0

 
E. Dec on s21, 0d, s0, 1d    
F. None 
G. CU on (21, 2s2y3), 
(0, s2y3);
CD on (2s2y3, 0), (s2y3, 1);
IPs (6s2y3, 61ys2

 ) 
H. See graph at right.

29. A. R   B. y-int 0; x-int 63s3
 

, 0   C. About s0, 0d    
D. None   E. Inc on s2`, 21d, s1, `d; dec on s21, 1d 
F. Loc max f s21d − 2;  

Stewart / Calculus:  ET 5th Editio n
Solution Ar t
5et040527
5.20.02

x

y

0
!_3œ„3, 0"

!3œ„3, 0"

!1, _2"

!_1, 2"

!0, 0"

 
loc min f s1d − 22    
G. CU on s0, `d;  
CD on s2`, 0d; IP s0, 0d 
H. See graph at right.

31. A. R   B. y-int 21; x-int 61 

ms80344-1
6et 4.5.29
8.10.06

y

0 x(_1, 0) (1, 0)
(0, _1)

 
C. About the y-axis   D. None    
E. Inc on s0, `d; dec on s2`, 0d 
F. Loc min f s0d − 21 
G. CU on s21, 1d; 
CD on s2`, 21d, s1, `d; IPs s61, 0d 
H. See graph at right.

33. A. R   B. y-int 0; x-int n! (n an integer)    
C. About s0, 0d, period 2!   D. None    
E–G answers for 0 < x < !: 
E. Inc on s0, !y2d; dec on s!y2, !d   F. Loc max f s!y2d − 1 
G. Let % − sin21s2y3 ; CU on s0, %d, s! 2 %, !d; 
CD on s%, ! 2 %d; IPs at x − 0, !, %, ! 2 % 
H. 

x

y

0_2π 2π
4π

35. A. s2!y2, !y2d   B. y-int 0; x-int 0   C. About y-axis 
D. VA x − 6!y2 

x

y

0

x ! "
π
2 x !

π
2

 
E. Inc on s0, !y2d;  
dec on s2!y2, 0d 
F. Loc min f s0d − 0 
G. CU on s2!y2, !y2d 
H. See graph at right.

13. A. s2`, 22d ø s22, 2d ø s2, `d   B. y-int 0; x-int 0    
C. About s0, 0d   D. VA x − 62; HA y − 0   
E. Dec on s2`, 22d, s22, 2d, s2, `d y

x

x=_2

x=2

(0, 0)

F. No local extrema 
G. CU on s22, 0d, s2, `d; 
CD on s2`, 22d, s0, 2d; IP s0, 0d    
H. See graph at right.

15. A. R   B. y-int 0; x-int 0 

Stewart / Calculus:  ET 5th Editio n
Solution Ar t
5et040517
5.20.02

x

y

(0, 0)

y=1

1
4 ”1,    ’1

4”_1,    ’

C. About y-axis  D. HA y − 1 
E. Inc on s0, `d; dec on s2`, 0d 
F. Loc min f s0d − 0 
G. CU on s21, 1d;  
CD on s2`, 21d, s1, `d; IPs s61, 14d 
H. See graph at right.

17. A. s2`, 0d ø s0, `d   B. x-int 1 

Stewart / Calculus:  ET 5th Editio n
Solution Ar t
5et040515
5.20.02

”3,    ’2
9

x

y

0 1

”2,    ’1
4

C. None   D. HA y − 0; VA x − 0    
E. Inc on s0, 2d;  
dec on s2`, 0d, s2, `d 
F. Loc max f s2d − 1

4 
G. CU on s3, `d;  
CD on s2`, 0d, s0, 3d; IP s3, 29d 
H. See graph at right.

19. A. s2`, 21d ø s21, `d    y

x

x=_1

y=1
(0, 0)

1
3Œ„„„1/2

B. y-int 0; x-int 0    C. None    
D. VA x − 21; HA y − 1    
E. Inc on s2`, 21d, s21, `d;  
F. None 
G. CU on s2`, 21d, (0, s3 1

2
 ); 

CD on s21, 0d, (s3 1
2

 

, `); 
IPs s0, 0d, (s3 1

2
 

, 13 ) 
H. See graph at right.

21. A. f0, `d   B. y-int 0; x-int 0, 3 

x

y

(1, _2)

30

C. None   D. None 
E. Inc on s1, `d; dec on s0, 1d 
F. Loc min f s1d − 22 
G. CU on s0, `d 
H. See graph at right.

23. A. s2`, 22g ø f1, `d 

ms80342-1
6et 4.5.21
8.10.06

y

0 x1_2

B. x-int 22, 1   C. None    
D. None    
E. Inc on s1, `d; dec on s2`, 22d 
F. None    
G. CD on s2`, 22d, s1, `d 
H. See graph at right.
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37. A. f22!, 2!g   B. y-int s3 ; x-int 24!y3, 2!y3, 2!y3, 
5!y3   C. Period 2!   D. None    
E. Inc on s22!, 211!y6d, s25!y6, !y6d, s7!y6, 2!d;  
dec on s211!y6, 25!y6d, s!y6, 7!y6d    
F. Loc max f s211!y6d − f s!y6d − 2;  loc min 
f s25!y6d − f s7!y6d − 22 y

0 x

2

_2

_2π 2π

4π
3

π
3

π
6

2π
3

7π
6

5π
3

5π
6

11π
6”          ,2’

”         ,_2’ ”      ,_2’

”     ,2’
 

G. CU on s24!y3, 2!y3d,  
s2!y3, 5!y3d;  
CD on s22!, 24!y3d,  
s2!y3, 2!y3d, s5!y3, 2!d;  
IPs s24!y3, 0d, s2!y3, 0d,  
s2!y3, 0d, s5!y3, 0d 
H. See graph at right.

39. A. All reals except s2n 1 1d! (n an integer) 
B. y-int 0; x-int 2n!   C. About the origin, period 2!    
D. VA x − s2n 1 1d!   E. Inc on ss2n 2 1d!, s2n 1 1d!d    
F. None   G. CU on s2n!, s2n 1 1d!d;  
CD on ss2n 2 1d!, 2n!d; IPs s2n!, 0d 
H. 

Stewart / Calculus:  ET 5th Editio n
Solution Ar t
5et040539
5.20.02

x

y

_2π 0 2π

x=_3π x=_π x=π x=3π

41. A. R   B. y-int !y4 

x

y y=π/2

y=0

(0, π/4)

0

 
C. None 
D. HA y − 0, y − !y2 
E. Inc on s2`, `d   F. None 
G. CU on s2`, 0d;  
CD on s0, `d; IP s0, !y4d    
H. See graph at right.

43. A. R   B. y-int 12   C. None 

x

y

0

y ! 1D. HA y − 0, y − 1 
E. Inc on R   F. None 
G. CU on s2`, 0d;  
CD on s0, `d;   IP s0, 12 d    
H. See graph at right.

45. A. s0, `d   B. None y

0 x1 2 3 4

1

2

3

4

(1, 1) 1
2”2, +ln 2’

 
C. None   D. VA x − 0 
E. Inc on s1, `d; dec on s0, 1d 
F. Loc min f s1d − 1 
G. CU on s0, 2d; CD on s2, `d; 
IP (2, 12 1 ln 2) 
H. See graph at right.

47. A. R   B. y-int 14 

ms80352-1
6et 4.5.48
8.12.06

y

0 x

y=1

”ln    ,     ’4
9

1
2

 
C. None    
D. HA y − 0, y − 1 
E. Dec on R   F. None 
G. CU on (ln 12, `);  
CD on s2`, ln 12d; IP sln 12, 49d 
H. See graph at right.

49. A. All x in s2n!, s2n 1 1d!d (n an integer)    
B. x-int !y2 1 2n!   C. Period 2!   D. VA x − n! 
E. Inc on s2n!, !y2 1 2n!d; dec on s!y2 1 2n!, s2n 1 1d!d 
F. Loc max f s!y2 1 2n!d − 0   G. CD on s2n!, s2n 1 1d!d 
H. 

Stewart / Calculus:  ET 5th Editio n
Solution Ar t
5et040547
5.20.02

x

y

_4π _3π _2π _π π 2π 3π 4π
0

51. A. s2`, 0d ø s0, `d 

x(0, 0)

(_1, _e)

y
 

B. None   C. None    
D. VA x − 0 
E. Inc on s2`, 21d, s0, `d;  
dec on s21, 0d 
F. Loc max f s21d − 2e 
G. CU on s0, `d; CD on s2`, 0d 
H. See graph at right.

53. A. R   B. y-int 1    y

0 x2_2 4 6 8

1

2

3

4

arctan(1/2)

y=e

y=e _π/2

π/2

1
2” ,  e ’

C. None   D. HA y − e6!y2    
E. Inc on R   F. None
G. CU on (2`, 12 ); CD on ( 1

2, `); 
IP  (1

2, e arctans1y2d)
H. See graph at right.

55. 

ms80354-1
6et 4.5.53
8.12.06

m

0 √

(0, m¸) √=c

57. (a) When t − sln adyk   (b) When t − sln adyk    
(c) 

t

y

0 ln a
k

1

1/2
y=p(t)

59. y

xLL/20

61. y − x 2 1       63. y − 2x 2 3
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 APPENDIX I  Answers to Odd-Numbered Exercises A87

3. Inc on s21.31, 20.84d, s1.06, 2.50d, s2.75, `d; dec on 
s2`, 21.31d, s20.84, 1.06d, s2.50, 2.75d; loc max 
f s20.84d < 23.71, f s2.50d < 211.02; loc min 
f s21.31d < 20.72, f s1.06d < 233.12, f s2.75d < 211.33; CU 
on s2`. 21.10d, s0.08, 1.72d, s2.64, `d; CD on s21.10, 0.08d, 
s1.72, 2.64d; IPs s21.10, 22.09d, s0.08, 23.88d, s1.72, 222.53d, 
s2.64, 211.18d

50

_40

4_2

f

5. Inc on s2`, 21.47d, s21.47, 0.66d; dec on s0.66, `d;  
loc max f s0.66d < 0.38; CU on s2`, 21.47d, s20.49, 0d,  
s1.10, `d; CD on s21.47, 20.49d, s0, 1.10d;  
IPs s20.49, 20.44d, s1.10, 0.31d, s0, 0d

3

_3

3_4

xÅ_1.47

f

7. Inc on s21.40, 20.44d, s0.44, 1.40d; dec on s2!, 21.40d, 
s20.44, 0d, s0, 0.44d, s1.40, !d; loc max f s20.44d < 24.68, 
f s1.40d < 6.09; loc min f s21.40d < 26.09, f s0.44d < 4.68;  
CU on s2!, 20.77d, s0, 0.77d; CD on s20.77, 0d, s0.77, !d;  
IPs s20.77, 25.22d, s0.77, 5.22d

8

_8

π_π

f

9. Inc on s28 2 s61, 28 1 s61 d; dec on s2`, 28 2 s61 d, 
 s28 1 s61, 0d, s0, `d; CU on (212 2 s138

 

, 212 1 s138
 ),

 s0, `d; CD on (2`, 212 2 s138
 ), s212 1 s138, 0d

ms30191-1
c3c 4.4.91-1
07.09.04

1

0.95

f

_100 _1

  

ms30191-2
c3c 4.4.91-2
07.09.04

75

_10

f

_1 1

65. A. s2`, 1d ø s1, `d    

x

y

(0, 0)

(2, 4)
 

B. y-int 0; x-int 0   C. None    
D. VA x − 1; SA y − x 1 1    
E. Inc on s2`, 0d, s2, `d;  
dec on s0, 1d, s1, 2d    
F. Loc max f s0d − 0;  
loc min f s2d − 4    
G. CU on s1, `d; CD on s2`, 1d    
H. See graph at right.

67. A. s2`, 0d ø s0, `d 

x

y

_2

(2, 3) y=x

0

 
B. x-int 2s3 4    C. None 
D. VA x − 0; SA y − x 
E. Inc on s2`, 0d, s2, `d; 
dec on s0, 2d 
F. Loc min f s2d − 3 
G. CU on s2`, 0d, s0, `d 
H. See graph at right.

69. A. R   B. y-int 2 

x

y

2
1

10

y=1+   x1
2

{ln 2,    +    ln 2}3
2

1
2

 
C. None 
D. SA y − 1 1 1

2 x 
E. Inc on sln 2, `d;  
dec on s2`, ln 2d 
F. Loc min f sln 2d − 3

2 1 1
2 ln 2 

G. CU on s2`, `d 
H. See graph at right.

71. 

x

y

0

y ! x " π
 2

y ! x # π
 2

 75.  VA x − 0, asymptotic to y − x 3 

 

2!2 x

10

!10

y

0

ƒ

y=˛

 

EXERCISES 4.6  �  PAGE 329
1. Inc on s2`, 21.50d, s0.04, 2.62d, s2.84, `d; dec on 
s21.50, 0.04d, s2.62, 2.84d; loc max f s21.50d < 36.47, 
f s2.62d < 56.83; loc min f s0.04d < 20.04, f s2.84d < 56.73;  
CU on s20.89, 1.15d, s2.74, `d; CD on s2`, 20.89d, s1.15, 2.74d; 
IPs s20.89, 20.90d, s1.15, 26.57d, s2.74, 56.78d

150

_100

5_3

f
1

_1

0.3_0.2

f

60

2.3 3.3
55

f
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 CU on s9.60, 12.25d, s15.81, 18.65d;  
CD on s24.91, 24.10d, s0, 4.10d, s4.91, 9.60d, s12.25, 15.81d, 
s18.65, 20d;  
IPs s9.60, 2.95d, s12.25, 3.27d, s15.81, 3.91d, s18.65, 4.20d

ms80362-2
6et 4.6.19-2
8.8.06

5

f

0 20_5

21. Inc on s2`, 0d, s0, `d; 

_3 3

_1

1

ƒ

ƒ

 
CU on s2`, 20.42d, s0, 0.42d;  
CD on s20.42, 0d, s0.42, `d;  
IPs s 70.42, 60.83d

23. 0.01

0
32

0.6

0
2_2

   0.01

0
32

0.6

0
2_2

25. (a) 2

_1

0 8

(b)  limx l 01 x 1yx − 0, lim x l ` x 1yx − 1
(c) Loc max f sed − e 1ye   (d) IPs at x < 0.58, 4.37

27. Max f s0.59d < 1, f s0.68d < 1, f s1.96d < 1;  
min f s0.64d < 0.99996, f s1.46d < 0.49, f s2.73d < 20.51; 
IPs s0.61, 0.99998d, s0.66, 0.99998d, s1.17, 0.72d,  
s1.75, 0.77d, s2.28, 0.34d

4a040619-1
10.3.00

1.2

!1.2

0 π
f

ca040419-2-3
10.31.00

1

0.9997
0.55 0.73

1.2

_1.2

_2π 2π

f f

11. (a) 1

_0.25

_0.25 1.75

!     , !     "     
1
2e

1
œ„e

(b) limx l 01 f sxd − 0   (c) Loc min f (1yse
 ) − 21ys2ed;  

CD on s0, e23y2d; CU on se23y2, `d
13. Loc max f s25.6d < 0.018, f s0.82d < 2281.5,  
f s5.2d < 0.0145; loc min f s3d − 0

 

15. f 9sxd − 2
x sx 1 1d2sx 3 1 18x 2 2 44x 2 16d

sx 2 2d3sx 2 4d5

f 0sxd − 2 
sx 1 1dsx 6 1 36x 51 6x 4 2 628x 3 1 684x 2 1 672x 1 64d

sx 2 2d4sx 2 4d6

CU on s235.3, 25.0d, s21, 20.5d, s20.1, 2d, s2, 4d, s4, `d;
CD on s2`, 235.3d, s25.0, 21d, s20.5, 20.1d;  
IPs s235.3, 20.015d, s25.0, 20.005d, s21, 0d, s20.5, 0.00001d, 
s20.1, 0.0000066d
17. Inc on s29.41, 21.29d, s0, 1.05d;  
dec on s2`, 29.41d, s21.29, 0d, s1.05, `d;  
loc max f s21.29d < 7.49, f s1.05d < 2.35;  
loc min f s29.41d < 20.056, f s0d − 0.5;  
CU on s213.81, 21.55d, s21.03, 0.60d, s1.48, `d;  
CD on s2`, 213.81d, s21.55, 21.03d, s0.60, 1.48d;  
IPs s213.81, 20.05d, s21.55, 5.64d, s21.03, 5.39d, s0.60, 1.52d, 
s1.48, 1.93d

8

f

_1
6_6

1

_0.1
0_15

f
 8

f

_1
6_6

1

_0.1
0_15

f

19. Inc on s24.91, 24.51d, s0, 1.77d, s4.91, 8.06d, s10.79, 14.34d, 
s17.08, 20d;  
dec on s24.51, 24.10d, s1.77, 4.10d, s8.06, 10.79d, s14.34, 17.08d;  
loc max f s24.51d < 0.62, f s1.77d < 2.58, f s8.06d < 3.60, 
f s14.34d < 4.39;  
loc min f s10.79d < 2.43, f s17.08d < 3.49; 

y

x

1

0.02

!3.5!8

!0.04

4a040613-3
10.3.00

500

2!1

!1500

0.03

82.5
0
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35. For | c | , 1, the graph has loc max and min values; for  
|c | > 1  it does not. The function increases for c > 1 and 
decreases for c < 21. As c changes, the IPs move vertically but 
not horizontally.

10

_10

_15 1 5

c=3 c=1
c=0.5

c=_3 c=_1

c=_0.5

c=0

37. 
3

3_3

_3

_2
!1

0

1 2

For c . 0, lim x l ` f sxd − 0 and lim x l2` f sxd − 2`.  
For c , 0, lim x l ` f sxd − ` and lim x l2` f sxd − 0.  
As | c | increases, the max and min points and the IPs get closer  
to the origin.
39. (a) Positive   (b) 

12

_12

_6 6

c=4
c=1

c=0.5

c=_1

c=0.1
c=0.2

c=0

c=_4

EXERCISES 4.7  �  PAGE 336
1. (a) 11, 12   (b) 11.5, 11.5    3. 10, 10    5. 9

4
7. 25 m by 25 m    9. N − 1    
11. (a) 

75

120 9000 ft@

250

50 12,500 ft@

125

100 12,500 ft@

(b) 

y

x

29. For c , 0, there is a loc min that moves toward s23, 29d 
as c increases. For 0 , c , 8, there is a loc min that moves 
toward s23, 29d and a loc max that moves toward the origin as 
c decreases. For all c . 0, there is a first quadrant loc min that 
moves toward the origin as c decreases. c − 0 is a transitional 
value that gives the graph of a parabola. For all nonzero c, the  
y-axis is a VA and there is an IP that moves toward the origin as 
| c | l 0.
c < 0:

40

_40

4_10

c=0 c=_1
c=_10
c=_32
c=_50

c=_1
c=_10
c=_32
c=_50 40

_40

4_10

c=1
c=8
c=20
c=30

c=1
c=8
c=20
c=30

(_3, _9)

(_3, _9)

c=0

c > 0:

40

_40

4_10

c=0 c=_1
c=_10
c=_32
c=_50

c=_1
c=_10
c=_32
c=_50 40

_40

4_10

c=1
c=8
c=20
c=30

c=1
c=8
c=20
c=30

(_3, _9)

(_3, _9)

c=0

31. For c , 0, there is no extreme point and one IP, which  
decreases along the x-axis. For c . 0, there is no IP, and one  
minimum point.

10

10_10

_10

c=5

c=0
c=_5

c=_ 1
5

c= 1
5

ms82012
8.21.08

33. For c . 0, the maximum and minimum values are always  
61

2, but the extreme points and IPs move closer to the y-axis as c 
increases. c − 0 is a transitional value: when c is replaced by 2c, 
the curve is reflected in the x-axis.

0.6

!0.6

!5 5

0.2
0.5
1 2

!1

4
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A90 APPENDIX I  Answers to Odd-Numbered Exercises

29. f std − 2t 3 1 cos t 1 Ct 2 1 Dt 1 E
31. f sxd − x 1 2x 3y2 1 5    33. f std − 4 arctan t 2 !
35. f sxd − 3x 5y3 2 75    
37. f std − tan t 1 sec t 2 2 2 s2     
39. f sxd − 2x 2 1 2x 3 2 x 4 1 12x 1 4    
41. f s"d − 2sin " 2 cos " 1 5" 1 4
43. f sxd − 2x 2 1 x 3 1 2x 4 1 2x 1 3    

45. f sxd − e x 1 2 sin x 2
2
!

(e!y2 1 4)x 1 2

47. f sxd − 2ln x 1 sln 2dx 2 ln 2    49. 8    51. b
53. y

0 x

1 F

1

55. y

0 x1

_1
2

1

2

3

(1, 1)

(2, 2)

(3, 1)

 57. 

ms80403-2
3c3 4.9.55-2
7.31.06

x0

F

2π_2π

y

59. sstd − 1 2 cos t 2 sin t    61. sstd − 1
3t 3 1 1

2t 2 2 2t 1 3    
63. sstd − 210 sin t 2 3 cos t 1 s6y!dt 1 3    
65. (a) sstd − 450 2 4.9t 2   (b) s450y4.9

 < 9.58 s
(c) 29.8s450y4.9

 < 293.9 mys   (d) About 9.09 s
69. 225 ft    71. $742.08    73. 130

11 < 11.8 s    
75. 88

15 < 5.87 ftys2    77. 62,500 kmyh2 < 4.82 mys2    
79. (a) 22.9125 mi   (b) 21.675 mi   (c) 30 min 33 s 
(d) 55.425 mi    

CHAPTER 4 REVIEW  �  PAGE 358
True-False Quiz
1. False    3. False    5. True    7. False    9. True
11. True    13. False    15. True    17. True     
19. True    21. False

Exercises
1. Abs max f s2d − f s5d − 18, abs min f s0d − 22,  
loc max f s2d − 18, loc min f s4d − 14
3. Abs max f s2d − 2

5, abs and loc min f (21
3) − 29

2

5. Abs and loc max f s!y6d − !y6 1 s3
 

, 
 abs min f s2!d − 2! 2 2, loc min f s5!y6d − 5!y6 2 s3 

7. 1    9. 4    11. 0    13. 1
2    

15. y

0
x1

!2

9 12

x " 6

(c) A − xy   (d) 5x 1 2y − 750   (e) Asxd − 375x 2 5
2 x 2 

(f) 14,062.5 ft 2

13. 1000 ft by 1500 ft    15. 4000 cm3    17. $191.28    
19. 20s30 ft by  40

3 s30 ft    21. s26
5, 35d    

23. (21
3, 64

3 s2
 )    25. Square, side s2

 

r    
27. Ly2, s3

 

 Ly4    29. Base s3
 

r, height 3ry2    

31. 4!r 3y(3s3
 )    33. !r 2(1 1 s5

 )    35. 24 cm by 36 cm    
37. (a) Use all of the wire for the square 
(b) 40s3

 y(9 1 4s3
 ) m for the square

39. 16 in.    41. V − 2!R3y(9s3
 )    45. E 2ys4rd

47. (a) 3
2 s 2 csc " scsc " 2 s3

 

 cot "d   (b) cos21(1ys3
 ) < 558

(c) 6sfh 1 sy(2s2
 )g

49. Row directly to B    51. < 4.85 km east of the refinery    
53. 10s3 3

 y(1 1 s3 3
 ) ft from the stronger source    

55. sa 2y3 1 b 2y3d3y2    57. 2s6 

59. (b) (i) $342,491; $342yunit; $390yunit  (ii) 400   
(iii) $320yunit    
61. (a) psxd − 19 2 1

3000 x   (b) $9.50    
63. (a) psxd − 500 2 1

8 x   (b) $250   (c) $310
69. 9.35 m    73. x − 6 in.    75. !y6    
77. At a distance 5 2 2s5

 

 from A    79. 1
2 sL 1 W d2    

81. (a) About 5.1 km from B   (b) C is close to B; C is close  
to D; WyL − s25 1 x 2 yx, where x − | BC |   
 (c) <1.07; no such value   (d) s41y4 < 1.6

EXERCISES 4.8  �  PAGE 348
1. (a) x2 < 7.3, x3 < 6.8   (b) Yes    
3. 9

2    5. a, b, c    7. 1.5215    9. 21.25    
11. 2.94283096    13. (b) 2.630020    15. 21.964636    
17. 23.637958, 21.862365, 0.889470
19. 21.257691, 0.653483    21. 0, 60.902025
23. 21.69312029, 20.74466668, 1.26587094    
25. 0.76682579    27. 0.21916368, 1.08422462    
29. (b) 31.622777    
35. (a) 21.293227, 20.441731, 0.507854   (b) 22.0212    
37. s1.519855, 2.306964d    39. s0.410245, 0.347810d    
41. 0.76286%

EXERCISES 4.9  �  PAGE 355
1. F sxd − 2x 2 1 7x 1 C    3. F sxd − 1

2 x 4 2 2
9 x 3 1 5

2 x 2 1 C    
5. F sxd − 4x 3 1 4x 2 1 C    7. F sxd − 5x 7y5 1 40x 1y5 1 C
9. F sxd − s2 x 1 C    11. F sxd − 2x 3y2 2 3

2 x 4y3 1 C

13. F sxd − H1
5 x 2 2 ln|x | 1 C1  if x , 0
1
5 x 2 2 ln|x | 1 C2  if x . 0

15. Gstd − 2t 1y2 1 2
3t 3y2 1 2

5t 5y2 1 C
17. Hs"d − 22 cos " 2 tan " 1 Cn on sn! 2 !y2, n! 1 !y2d,  
n an integer
19. F sxd − 2xyln 2 1 4 cosh x 1 C
21. F sxd − x 2 1 4x 1 1yx 1 C, x . 0
23. Fsxd − x 5 2 1

3 x 6 1 4    
25. f sxd − x 5 2 x 4 1 x 3 1 Cx 1 D
27. f sxd − 1

3x 3 1 3e x 1 Cx 1 D    

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 APPENDIX I  Answers to Odd-Numbered Exercises A91

 G. CU on s2!y2, !y2d; CD on s2!, 2!y2d, s!y2, !d;  
IPs s2!y2, 2e2!y2d, s!y2, e!y2d
H. 

x

y

0 π_π

{   ,      e#π/4}3π
4

œ„2
2

{_  , _      e_π/4}π
4

œ„2
2

31. A. hx || x | > 1j    

x

y

0 1_1

π
2

π
2_

 
B. None   C. About (0, 0) 
D. HA y − 0  
E. Dec on s2`, 21d, s1, `d 
F. None 
G. CU on s1, `d;  
CD on s2`, 21d 
H. See graph at right.
33. A. R    

x

y

0

_2

1
2

{3, e_#}
 

B. y-int 22; x-int 2    
C. None   D. HA y − 0 
E. Inc on s2`, 3d; dec on s3, `d 
F. Loc max f s3d − e23 
G. CU on s4, `d;  
CD on s2`, 4d; 
IP s4, 2e24d 
H. See graph at right.

35. Inc on (2s3
 

, 0), (0, s3
 ); 

ƒ

1.5

_1.5

_5 5

dec on (2`, 2s3
 ), (s3

 

, `);
loc max f (s3

 ) − 2
9 s3

 

,

loc min f (2s3
 ) − 2 2

9 s3
 

;

CU on (2s6
 

, 0), (s6
 

, `);
CD on (2`, 2s6

 ), (0, s6
 );

IPs (s6
 

, 5
36 s6

 ), (2s6
 

, 2 5
36 s6

 )
37. Inc on s20.23, 0d, s1.62, `d; dec on s2`, 20.23d, s0, 1.62d;  
loc max f s0d − 2; loc min f s20.23d < 1.96, f s1.62d < 219.2; 
CU on s2`, 20.12d, s1.24, `d;  
CD on s20.12, 1.24d; IPs s20.12, 1.98d, s1.24, 212.1d

4a04r31-1
10.3.00

f

15

2.1_1

_20

 

4a040r31-2
7.4.00

2.5

0.4_0.5
1.5

f

39. 

5
0

_5

1 s60.82, 0.22d; (6s2y3, e23y2 )

17. y

x

y=_2

y=2

19. A. R   B. y-int 2    y

x

2

 
C. None   D. None    
E. Dec on s2`, `d   F. None 
G. CU on s2`, 0d;  
CD on s0, `d; IP s0, 2d 
H. See graph at right.

21. A. R   B. y-int 2 y

0 x1

5

2_1_2

(0, 2) (1, 1)

2
3

38
27”     ,      ’

 
C. None   D. None
E. Inc on s1, `d; dec on s2`, 1d
F. Loc min f s1d − 1

G. CU on s2`, 0d, ( 2
3, `); 

CD on (0, 23 ); IPs s0, 2d, ( 2
3, 38

27 )
H. See graph at right.

23. A. hx | x ± 0, 3j    y

0 x

x ! 3

 
B. None   C. None 
D. HA y − 0; VA x − 0, x − 3 
E. Inc on s1, 3d;  
dec on s2`, 0d, s0, 1d, s3, `d 
F. Loc min f s1d − 1

4 
G. CU on s0, 3d, s3, `d;  
CD on s2`, 0d 
H. See graph at right.

25. A. s2`, 0d ø s0, `d  y

0 x4

2

_2

-4

(1, 0)

x=0

”_2, _     ’27
4

y=x-3

 
B. x-int 1   C. None 
D. VA x − 0; SA y − x 2 3 
E. Inc on s2`, 22d, s0, `d; 
dec on s22, 0d    
F. Loc max f s22d − 227

4  
G. CU on s1, `d; CD on s2`, 0d, 
 s0, 1d; IP s1, 0d 
H. See graph at right.

27. A. f22, `d y

x

”_   ,  _        ’4
3

4œ„6
9

 
B. y-int 0; x-int 22, 0 
C. None   D. None 
E. Inc on s2 4

3 , `d, dec on s22, 2 4
3 d

F. Loc min f (2 4
3 ) − 24

9 s6
 

G. CU on s22, `d 
H. See graph at right.

29. A. f2!, !g   B. y-int 0; x-int 2!, 0, !    
C. None   D. None    
E. Inc on s2!y4, 3!y4d; dec on s2!, 2!y4d, s3!y4, !d
F. Loc max f s3!y4d − 1

2s2 e3!y4, 
 loc min f s2!y4d − 21

2s2 e2!y4   
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A92 APPENDIX I  Answers to Odd-Numbered Exercises

(b) R10 < 14.4, L10 < 19.4

y

x0 4

4

2

8

y=ƒ

y

x0 4

4

2

8

y=ƒ

3. (a) 0.6345, underestimate   (b) 0.7595, overestimate
y

0 x1 2

f(x)=∆
1

 y

0 x1 2

1
f(x)=∆

5. (a) 8, 6.875 (b) 5, 5.375

ca050105a1
10.3.00

y

x0 1

2

ca050105a2
10.3.00

y

x0 1

2

ca050105b 1
10.3.00

y

x0 1

2

ca050105b 2
10.3.00

y

x0 1

2

(c) 5.75, 5.9375 

ca050105c1
10.3.00

y

x0 1

2

 

ca050105c2
10.3.00

y

x0 1

2

(d) M6

41. 22.96, 20.18, 3.01; 21.57, 1.57; 22.16, 20.75, 0.46, 2.21
43. For C . 21, f  is periodic with period 2! and has local  
maxima at 2n! 1 !y2, n an integer. For C < 21, f  has no graph. 
For 21 , C < 1, f  has vertical asymptotes. For C . 1, f  is con-
tinuous on R. As C increases, f  moves upward and its oscillations 
become less pronounced.
49. (a) 0   (b) CU on R    53. 3s3

 

r 2    
55. 4ys3

 

 cm from D    57. L − C    59. $11.50    
61. 1.297383    63. 1.16718557    
65. F sxd − 8

3 x 3y2 2 2x 3 1 3x 1 C    
67. F std − 22 cos t 2 3e t 1 C
69. f std − t 2 1 3 cos t 1 2
71. f sxd − 1

2 x 2 2 x 3 1 4x 4 1 2x 1 1    
73. sstd − t 2 2 tan21t 1 1    
75. (b) 0.1e x 2 cos x 1 0.9 (c) 5

4

_1

_4

F

77. No    
79. (b) About 8.5 in. by 2 in.   (c) 20ys3

 

 in. by 20s2y3
 

 in.
85. (a) 20s2

 < 28 ft

(b) 
dI
dt

−
2480ksh 2 4d

fsh 2 4d2 1 1600g5y2 , where k is the constant 

of proportionality

PROBLEMS PLUS  �  PAGE 363
3. Abs max f s25d − e 45, no abs min    7. 24    
9. s22, 4d, s2, 24d    13. (1 1 s5 )y2    15. smy2, m 2y4d
17. a < e 1ye    
21. (a) T1 − Dyc1, T2 − s2h sec "dyc1 1 sD 2 2h tan "dyc2, 
T3 − s4h2 1 D 2 yc1

(c) c1 < 3.85 kmys, c2 < 7.66 kmys, h < 0.42 km    
25. 3y(s3 2

 

2 1) < 111
2 h

CHAPTER 5

EXERCISES 5.1  �  PAGE 375
1. (a) R5 < 12, L5 < 22   

y

x0 4

4

2

8

y=ƒ

y

x0 4

4

2

8

y=ƒ

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 APPENDIX I  Answers to Odd-Numbered Exercises A93

3. 249
16 y

x

1 1.50.5
2.5 3

f(x)=≈-4

1

_1
_2
_3

2
3
4

 
The Riemann sum represents the 
sum of the areas of the two rect-
angles above the x-axis minus the 
sum of the areas of the four 
rectangles below the x-axis.

5. (a) 6   (b) 4   (c) 2
7. Lower, L5 − 264; upper, R5 − 16
9. 6.1820    11. 0.9071    13. 0.9029, 0.9018
15.  
  The values of Rn appear to be  
  approaching 2.

17. y1

0
 

e x

1 1 x
 dx    19. y7

2  s5x 3 2 4xd dx    

21. 29    23. 2
3    25. 23

4

29. lim
nl`

 o
n

i−1
 s4 1 s1 1 2iynd ?

2
n

31. lim
n l `

 o
n

i−1
 Ssin 

5!i
n D 

!

n
−

2
5

    

33. (a) 4   (b) 10   (c) 23   (d) 2    
35. 3

2    37. 3 1 9
4!    39. 25

4     41. 0    43. 3    

45. e 5 2 e 3    47. y5
21 f sxd dx    49. 122    

51. B , E , A , D , C    53. 15

59. 0 < y1
0 x

3 dx < 1    61. 
!

12
< y!y3

!y4
 tan x dx <

!

12
 s3

 

    

63. 0 < y2
0  xe2x dx < 2ye    67. y2

1  arctan x dx

73. y1
0 x

4 dx    75. 1
2

EXERCISES 5.3  �  PAGE 399
1. One process undoes what the other one does. See the Funda-
mental Theorem of Calculus, page 398.
3. (a) 0, 2, 5, 7, 3 (d) y

0 x

1

1

g(b) (0, 3)
(c) x − 3

5. 

0 1

y

tx

y=t@
 (a), (b) x 2

 n Rn

 5 1.933766
 10 1.983524
 50 1.999342
 100 1.999836

7. n − 2: upper − 3! < 9.42, lower − 2! < 6.28

 

x

y

1

2

3

ππ
2

0

n − 4: upper − s10 1 s2 ds!y4d < 8.96,

 lower − s8 1 s2 ds!y4d < 7.39

 
x

y

1

2

3

ππ
4

π
2

3π
4

0

n − 8: upper < 8.65, lower < 7.86

 
x

y

1

2

3

ππ
4

π
2

3π
4

0

9. 0.2533, 0.2170, 0.2101, 0.2050; 0.2
11. (a) Left: 0.8100, 0.7937, 0.7904;  
right: 0.7600, 0.7770, 0.7804
13. 34.7 ft, 44.8 ft    15. 63.2 L, 70 L    17. 155 ft

19. 7840    21.  lim
n l `

 o
n

i−1
 

2s1 1 2iynd
s1 1 2iynd2 1 1

?
2
n

    

23. lim
n l `

 o
n

i−1
 ssins!iynd ?

!

n
25. The region under the graph of y − tan x from 0 to !y4
27. (a) Ln , A , Rn

29. (a) lim
n l `

 
64
n 6  o

n

i−1
 i 5   (b) 

n 2sn 1 1d2 s2n 2 1 2n 2 1d
12

   

(c) 32
3

31. sin b, 1

EXERCISES 5.2  �  PAGE 388
1. 210 y

0 x2

f(x)=x-1

_2_4_6
4

1

_3

_5

3
 

The Riemann sum represents 
the sum of the areas of the two  
rectangles above the x-axis minus 
the sum of the areas of the three 
rectangles below the x-axis; that is, 
the net area of the rectangles with 
respect to the x-axis.
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19. sin x 1 1
4 x 2 1 C 

ms80493-1
6et 5.4.19
8.12.06

20
10

_5
05

_6

10_10

21. 210
3     23. 21

5     25. 22    27. 5e! 1 1    29. 36

31.  55
63    33. 3

4 2 2 ln 2     35. 
1
11

1
9

ln 10
    

37. 1 1 !y4    39. 69
4     41. !y3    43. !y6    45. 23.5    

47. <1.36    49. 4
3    

51. The increase in the child’s weight (in pounds) between the  
ages of 5 and 10
53. Number of gallons of oil leaked in the first 2 hours
55. Increase in revenue when production is increased from  
1000 to 5000 units
57. Newton-meters (or joules)    59. (a) 2 3

2 m   (b) 41
6  m

61. (a) vstd − 1
2 t 2 1 4t 1 5 mys   (b) 416 2

3 m
63. 46 2

3 kg    65. 1.4 mi    67. $58,000    69. 39.8 ftys
71. 5443 bacteria    73. 4.75 3 105 megawatt-hours

EXERCISES 5.5  �  PAGE 418
1. 1

2 sin 2x 1 C    3. 2
9 sx 3 1 1d3y2 1 C    

5. 1
4 ln | x 4 2 5 | 1 C    7. 21

3 s1 2 x 2d3y2 1 C    
9. 2 1

20s1 2 2xd10 1 C    11. s2y!d sins!ty2d 1 C    
13. 2 1

3 ln| 5 2 3x | 1 C    
15. 21

4 cos4 " 1 C    17. 
1

1 2 e u 1 C

19. 2
3 s3ax 1 bx 3  1 C    21. 1

3sln xd3 1 C    23. 1
4 tan4" 1 C

25. 2
3 s1 1 e x d3y2 1 C    27. 1

15sx 3 1 3xd5 1 C    

29. 2
1

ln 5
 coss5 td 1 C    31. 1

3sarctan xd3 1 C    

33. 1
5 sins1 1 5td 1 C    35. 2 2

3 scot xd3y2 1 C    
37. 1

3 sinh3x 1 C    39. 2lns1 1 cos2 xd 1 C    
41. ln |sin x | 1 C    43. ln | sin21 x | 1 C    
45. tan21x 1 1

2 lns1 1 x 2 d 1 C    
47. 1

40s2x 1 5d10 2 5
36s2x 1 5d9 1 C

49. 1
8sx 2 2 1d4 1 C 51. 2ecos x 1 C

ms80513-1
6et 5.5.47
8.12.06

1

_1

2_2

F

f

 
2

_3

2π0

f

F

53. 2y!    55. 45
28    57. 2ys3

 

2 1    59. e 2 se
 

    
61. 0    63. 3    65. 1

3 (2s2
 

2 1)a 3    67. 16
15    69. 2    

71. lnse 1 1d    73. 1
6    75. s3

 

2 1
3    77. 6!    

79. All three areas are equal.    81. < 4512 L    

83. 
5

4! S1 2 cos 
2!t

5 D L    

7. t9sxd − sx 1 x 3 

    9. t9ssd − ss 2 s 2d8

11. F9sxd − 2s1 1 sec x     13. h9sxd − xe x

15. y9 −
3s3x 1 2d

1 1 s3x 1 2d3     

17. y9 − 21
2 tan sx     19. 26

3     21. 2    23. 52
3

25. 1 1 s3
 y2    27. 237

6     29. 82
5     31. 1    33. 15

4     

35. ln 2 1 7    37. 
1

e 1 1
1 e 2 1    39. 4!y3    

41. 
15

ln 2
    43. 0    45. 16

3     47. 32
3     

49. 243
4     51. 2    

53. 3.75

ca050339
10.3.00

x

y

0 2

!1

y=˛

55. The function f sxd − x 24 is not continuous on the interval 
f22, 1g, so FTC2 cannot be applied.
57. The function f s"d − sec " tan " is not continuous on the  
interval f!y3, !g, so FTC2 cannot be applied.

59. t9sxd −
22s4x 2 2 1d

4x 2 1 1
1

3s9x 2 2 1d
9x 2 1 1

61. F9sxd − 2xe x 4
2 e x 2

63. y9 − sin x lns1 1 2 cos xd 1 cos x lns1 1 2 sin xd
65. s24, 0d    67. y − e 4x 2 2e 4    69. 29    

71. (a) 22sn
 

, s4n 2 2
 

, n an integer . 0

(b) s0, 1d, (2s4n 2 1, 2s4n 2 3
 ), and ss4n 2 1, s4n 1 1 d, 

n an integer . 0   (c) 0.74    

73. (a) Loc max at 1 and 5; 

x

8642

1

0

_1

y

_2

 
loc min at 3 and 7 
(b) x − 9
(c) (1

2, 2), s4, 6d, s8, 9d
(d) See graph at right.

75. 7
10    83. f sxd − x 3y2, a − 9

85. (b) Average expenditure over f0, tg; minimize average  
expenditure

EXERCISES 5.4  �  PAGE 408
5. 1

2.3 x 2.3 1 2x3.5 1 C    7. 5x 1 2
9 x 3 1 3

16 x 4 1 C    

9. 2
3u3 1 9

2u2 1 4u 1 C    11. ln | x | 1 2sx 1 x 1 C    
13. 2cos x 1 cosh x 1 C    15. " 1 tan " 1 C    

17. 
2 t

ln 2
1

10 t

ln 10
1 C    
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 APPENDIX I  Answers to Odd-Numbered Exercises A95

51. (a) Twelfth st < 11.26d   (b) Eighteenth st < 17.18d    
(c) 706
53. (a) Car A   (b) The distance by which A is ahead of B after 
1 minute   (c) Car A   (d) t < 2.2 min    
55. 24

5 s3
 

    57. 42y3    59. 66    
61. 0 , m , 1; m 2 ln m 2 1

EXERCISES 6.2  �  PAGE 446
1. 26!y3 y

1

0 x2y=0
x=0

x=2

y

0 x

y=x+1  

3. 8!

x

y
y=œ„„„„x-1

1 5

x=5

y=00 x

y

0

5. 162! 

3c3 Ans 6.2.3
9.12.04

y

0 x

(6, 9)

x=2œ„y

y=9

x=0

y

0 x

7. 4!y21 y

3c Ans 6.2.5
9.12.04

0 x

(1, 1)

y=˛

y=x

y

0 x

9. 64!y15 

x0

y

(4, 2)

x0

y

x=2y

¥=x

85. C0s1 2 e230ryV d; the total amount of urea removed from the 
blood in the first 30 minutes of dialysis treatment
87. 5    93. ! 2y4

CHAPTER 5 REVIEW  �  PAGE 421
True-False Quiz
1. True    3. True    5. False    7. True    9. True
11. False   13. True    15. False    17. False    

Exercises
1. (a) 8 (b) 5.7

2 x

2

0

y=ƒ

6

y  

6
2 x

2

0

y=ƒ

y

3. 1
2 1 !y4    5. 3    7. f is c, f 9 is b, yx

0 f std dt is a    
9. 3, 0    11. 37    13. 9

10    15. 276    17. 21
4

19. Does not exist    21. 1
3 sin 1    23. 0    

25. 2s1yxd 2 2 ln | x | 1 x 1 C    
27. sx2 1 4x

 

1 C    29. f1ys2!dg sin2! t 1 C    
31. 2esx 

1 C    33. 2 1
2 flnscos xdg2 1 C    

35. 1
4 lns1 1 x 4 d 1 C    37. ln | 1 1 sec " | 1 C    39. 23

3     
41. 2s1 1 sin x

 

1 C    43. 64
5     45. F9sxd − x 2ys1 1 x 3d   

47. t9sxd − 4x 3 cossx 8d    49. y9 − (2e x 2 e sx )ys2xd    
51. 4 < y3

1  sx 2 1 3  dx < 4s3
 

    57. 0.280981    
59. Number of barrels of oil consumed from Jan. 1, 2000, through 
Jan. 1, 2008    
61. 72,400    63. 3    65. c < 1.62    
67. f sxd − e2xs2x 2 1dys1 2 e2xd    73. 2

3

PROBLEMS PLUS  �  PAGE 425
1. !y2    3. 2k    5. 21    7. e22    9. f21, 2g    
11. (a) 1

2sn 2 1dn   
 (b) 1

2 vbb s2b 2 vbb 2 1d 2 1
2 vab s2a 2 vab 2 1d

17. y − 2
2b
a2 x 2 1

3b
a

x    19. 2(s2
 

2 1)    

CHAPTER 6

EXERCISES 6.1  �  PAGE 434
1. 45

4 2 ln 8    3. e 2 s1yed 1 10
3     5. e 2 s1yed 1 4

3    
7. 9

2    9. ln 2 2 1
2    11. 8

3    13.  72    15. 6s3     
17. 32

3     19. 2y! 1 2
3    21. 2 2 2 ln 2    

23. 47
3 2 9

2 s3 12     25. 13
5     27. ln 2

29. (a) 39   (b) 15    31. 1
6 ln 2    33. 5

2    35. 3
2s3

 

2 1
37. 0, 0.90; 0.04    39. 21.11, 1.25, 2.86; 8.38    
41. 2.80123    43. 0.25142    45. 12s6

 

2 9    
47. 1171

3 ft    49. 4232 cm2
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A96 APPENDIX I  Answers to Odd-Numbered Exercises

11. 11!y30 

x

y

0 1

y=1

y=≈

x=y@

x

y

0 1

2
y=1

13. 2! s 4
3 ! 2 s3 d

ms80547-1 & 547-2
6et 6.2.13
8.26.06

y

0 x

y=1 y=1

y=3

y=1+sec x

y

0 x

”   , 3’π
3”_   , 3’π

3

15. 3!y5

x

y

0

1

1 3 4
x=2

x

y

0

y=x#

1

1
x=2

17. 10s2 !y3

x

y

0 1

x=3

x

y

y=1-¥
0 1

1
2

1
2{   , œ„ }

x=¥

x=3

19. !y3    21. !y3    23. !y3    
25. 13!y45    27. !y3    29. 17!y45

31. (a) 2! y1
0 e

22x 2 dx < 3.75825   

(b) 2! y1
0 (e22x 2

1 2e2x 2) dx < 13.14312

33. (a) 2! y2
0  8s1 2 x 2y4  dx < 78.95684   

(b) 2! y1

0
 8s4 2 4y 2  dy < 78.95684

35. 24.091, 21.467, 1.091; 89.023    37. 11
8 ! 2    

39. Solid obtained by rotating the region 0 < x < !, 
0 < y < ssin x  about the x-axis
41. Solid obtained by rotating the region above the x-axis 
bounded by x − y 2 and x − y4 about the y-axis    
43. 1110 cm3    45. (a) 196   (b) 838    
47. 1

3!r 2h    49. !h2sr 2 1
3hd    51. 2

3 b 2h    
53. 10 cm3    55. 24    57. 1

3    59. 8
15    61. 4!y15

63. (a) 8!R yr
0 sr 2 2 y 2  dy   (b) 2! 2r 2R    

65. (b) !r 2h    67. 5
12 !r 3    69. 8 yr

0 sR 2 2 y 2 sr 2 2 y 2  dy

EXERCISES 6.3  �  PAGE 453
1. Circumference − 2!x, height − x sx 2 1d2; !y15

3. 6!y7    5. ! s1 2 1yed    7. 8!    
9. 4!    11. 192!    13. 16!y3    
15. 264!y5    17. 8!y3    19. 13!y3    

21. (a) 2! y2
0  x 2e2x dx   (b) 4.06300

23. (a) 4! y!y2
2!y2 s! 2 xd cos4x dx   (b) 46.50942

25. (a) y!
0  2! s4 2 ydssin y

 

 dy   (b) 36.57476    
27. 3.68
29. Solid obtained by rotating the region 0 < y < x 4, 0 < x < 3 
about the y-axis
31. Solid obtained (using shells) by rotating the region 
0 < x < 1yy 2, 1 < y < 4 about the line y − 22
33. 0, 2.175; 14.450    35. 1

32 ! 3    37. 8!    
39. 4s3 !    41. 4!y3
43. 117!y5    45. 4

3!r 3    47. 1
3!r 2h

EXERCISES 6.4  �  PAGE 458
1. (a) 7200 ft-lb   (b) 7200 ft-lb
3. 4.5 ft-lb    5. 180 J    7. 15

4  ft-lb    
9. (a) 25

24 < 1.04 J   (b) 10.8 cm    11. W2 − 3W1    
13. (a) 625 ft-lb   (b) 1875

4  ft-lb    15. 650,000 ft-lb    
17. 3857 J    19. 62.5 ft-lb    21. 2450 J    
23. <1.06 3 106 J    25. !1.04 3 105 ft-lb    27. 2.0 m    
31. (b) 161.3 ft-lb

33. (a) Gm1m2S 1
a

2
1
bD   (b) <8.50 3 109 J
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 APPENDIX I  Answers to Odd-Numbered Exercises A97

CHAPTER 7

EXERCISES 7.1  �  PAGE 476
1. 1

2 xe 2x 2 1
4 e 2x 1 C    3. 1

5 x sin 5x 1 1
25 cos 5x 1 C

5. 21
3te23t 2 1

9e23t 1 C
7. sx 2 1 2xd sin x 1 s2x 1 2d cos x 2 2 sin x 1 C
9. x cos21x 2 s1 2 x 2 1 C    11. 1

5 t 5 ln t 2 1
25 t 5 1 C    

13. 2t cot t 1 ln | sin t | 1 C    
15. x sln xd2 2 2x ln x 1 2x 1 C
17. 1

13 e 2"s2 sin 3" 2 3 cos 3"d 1 C    
19. z3e z 2 3z2e z 1 6ze z 2 6e z 1 C

21. 
e 2x

4s2x 1 1d
1 C    23. 

! 2 2
2! 2

25. 2 cosh 2 2 sinh 2    27. 4
5 2 1

5 ln 5    29. 2!y4    
31. 2e21 2 6e25    33. 1

2 ln 2 2 1
2    

35. 32
5 sln 2d2 2 64

25 ln 2 1 62
125

37. 2sx esx 2 2esx 1 C    39. 21
2 2 !y4

41. 1
2sx 2 2 1d lns1 1 xd 2 1

4 x 2 1 1
2 x 1 3

4 1 C
43. 21

2 xe22x 2 1
4 e22x 1 C 1

_1

3_1
f

F

45. 1
3 x 2s1 1 x 2d3y2 2 2

15s1 1 x 2d5y2 1 C

ms80646-1
6et 7.1.41
8.13.06

4

_4

2_2

F

f

47. (b) 2 1
4 cos x sin3x 1 3

8 x 2 3
16 sin 2x 1 C    

49. (b) 2
3, 8

15    
55. x fsln xd3 2 3sln xd2 1 6 ln x 2 6g 1 C
57. 16

3  ln 2 2 29
9      59. 21.75119, 1.17210; 3.99926

61. 4 2 8y!    63. 2!e    
65. (a) 2!(2 ln 2 2 3

4)   (b) 2!fsln 2d2 2 2 ln 2 1 1g
67. x Ssxd 1 1

! cos(1
2 !x 2) 1 C

69. 2 2 e2tst 2 1 2t 1 2d m    71. 2

EXERCISES 7.2  �  PAGE 484
1. 1

3 sin3x 2 1
5 sin5x 1 C    3. 1

120

5. 2 1
14 cos7s2td 1 1

5 cos5s2td 2 1
6 cos3s2td 1 C

7. !y4    9. 3!y8    11. !y16    
13. 2

7 scos "d7y2 2 2
3 scos "d3y2 1 C    

15. ln | sin x | 2 1
2 sin2x 1 C    17. 1

2 sin4x 1 C    
19. 1

4t 2 2 1
4t sin 2t 2 1

8 cos 2t 1 C    21. 1
3 sec3x 1 C    

23. tan x 2 x 1 C    25. 1
9 tan9x 1 2

7 tan7x 1 1
5 tan5x 1 C    

27. 1
3 sec3x 2 sec x 1 C    29. 1

8 tan8x 1 1
3 tan6x 1 1

4 tan4x 1 C
31. 1

4 sec4x 2 tan2x 1 ln | sec x | 1 C

EXERCISES 6.5  �  PAGE 463
1. 7    3. 6y!    5. s2y!dse 2 1d    7. 2ys5!d
9. (a) 1   (b) 2, 4   (c)

11. (a) 4y!   (b) <1.24, 2.81   
(c) 

15. 9
8    17. s50 1 28y!d°F < 59°F    19. 6 kgym    

21. About 4056 million (or 4 billion) people
23. 5ys4!d < 0.4 L

CHAPTER 6 REVIEW  �  PAGE 466

Exercises

1. 8
3    3. 7

12    5. 4
3 1 4y!    7. 64!y15    9. 1656!y5

11. 4
3! s2ah 1 h 2 d3y2    13. y!y3

2!y3 2! s!y2 2 xdscos2x 2 1
4d dx

15. (a) 2!y15   (b) !y6   (c) 8!y15    
17. (a) 0.38   (b) 0.87    
19. Solid obtained by rotating the region 0 < y < cos x, 
0 < x < !y2 about the y-axis    
21. Solid obtained by rotating the region 0 < x < !, 
0 < y < 2 2 sin x about the x-axis
23. 36    25. 125

3 s3
 

 m3    27. 3.2 J    
29. (a) 8000!y3 < 8378 ft-lb   (b) 2.1 ft    
31. 4y!    33. f sxd    

PROBLEMS PLUS  �  PAGE 468

1. (a) f std − 3t 2   (b) f sxd − s2xy!     3. 32
27    

5. (b) 0.2261   (c) 0.6736 m 
(d) (i) 1ys105!d < 0.003 inys  (ii) 370!y3 s < 6.5 min  
9. y − 32

9 x 2    
11. (a) V − yh

0 ! f f sydg2 dy   

(c) f syd − skAys!Cd y 1y4. Advantage: the markings on the  
container are equally spaced.
13. b − 2a    15. B − 16A
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A98 APPENDIX I  Answers to Odd-Numbered Exercises

9. 1
2 ln | 2x 1 1| 1 2 ln | x 2 1| 1 C  11. 2 ln 32

13. a ln | x 2 b | 1 C    15. 5
2 2 ln 2 2 ln 3  (or 52 2 ln 6)

17. 27
5  ln 2 2 9

5 ln 3  (or 95 ln 83)
19. 1

2 2 5 ln 2 1 3 ln 3  (or 12 1 ln 27
32 )

21. 
1
4 Fln | t 1 1 | 2

1
t 1 1

2 ln | t 2 1 | 2
1

t 2 1G 1 C

23. ln | x 2 1 | 2 1
2 lnsx 2 1 9d 2 1

3 tan21sxy3d 1 C
25. 22 ln | x 1 1 | 1 lnsx 2 1 1d 1 2 tan21x 1 C

27. 1
2 lnsx 2 1 1d 1 tan21x 2 1

2 tan21S x
2D 1 C

29. 1
2 lnsx 2 1 2x 1 5d 1 3

2 tan21S x 1 1
2 D 1 C

31. 1
3 ln | x 2 1 | 2 1

6 lnsx 2 1 x 1 1d 2
1

s3
 tan21 

2x 1 1

s3
1 C

33. 1
4 ln 83    

35. 2 ln | x | 1 3
2 lnsx 2 1 1d 1 1

2 tan21x 1
x

2sx 2 1 1d
1 C

37. 7
8 s2

 

 tan21S x 2 2

s2
 D 1

3x 2 8
4sx 2 2 4x 1 6d

1 C

39. 2 tan21sx 2 1 1 C

41. 22 ln sx 2
2

sx 
1 2 lnssx 1 1d 1 C

43. 3
10 sx 2 1 1d5y3 2 3

4 sx 2 1 1d2y3 1 C
45. 2sx

 

1 3s3 x
 

1 6s6 x
 

1 6 ln | s6 x
 

2 1 | 1 C

47. ln Fse x 1 2d2

se x 1 1d G 1 C

49. ln | tan t 1 1| 2 ln | tan t 1 2 | 1 C
51. x 2 lnse x 1 1d 1 C

53. (x 2 1
2) lnsx 2 2 x 1 2d 2 2x 1 s7

 

 tan21S 2x 2 1

s7
 D 1 C

55. 2 1
2 ln 3 < 20.55 

57. 1
2 ln Z x 2 2

x Z 1 C   61. 1
5 ln Z 2 tansxy2d 2 1

tansxy2d 1 2 Z 1 C

63. 4 ln 23 1 2    65. 21 1 11
3  ln 2

67. t − ln 
10,000

P
1 11 ln 

P 2 9000
1000

69. (a) 
24,110
4879

 
1

5x 1 2
2

668
323

 
1

2x 1 1
2

9438
80,155

 
1

3x 2 7

   1
1

260,015
 
22,098x 1 48,935

x 2 1 x 1 5

(b) 
4822
4879

 ln | 5x 1 2 | 2
334
323

 ln | 2x 1 1 |
  2

3146
80,155

 ln | 3x 2 7 |
1

11,049
260,015

 lnsx 2 1 x 1 5d 1
75,772

260,015s19
 tan21 

2x 1 1

s19
1 C

The CAS omits the absolute value signs and the constant of  
integration.

75. 
1

a nsx 2 ad
2

1
a nx

2
1

an21x 2 2 ∙ ∙ ∙ 2
1

ax n

33. x sec x 2 ln | sec x 1 tan x | 1 C    35. s3
 

2 1
3!

37. 22
105 s2 2 8

105    39. ln | csc x 2 cot x | 1 C
41. 2 1

6 cos 3x 2 1
26 cos 13x 1 C    43. 1

15    
45. 1

2 s2     47. 1
2 sin 2x 1 C    

49. x tan x 2 ln | sec x | 2 1
2x 2 1 C

51. 1
4 x 2 2 1

4 sinsx 2d cossx 2d 1 C 

ms80660-1
6et 7.2.51
8.13.06

π

_π

π_π

F

f

53. 1
6 sin 3x 2 1

18 sin 9x 1 C   
ƒ

1

!1

_2 2
F

55. 0    57. 1
2 ! 2 4

3    59. 0    61. ! 2y4    

63. ! (2s2
 

2 5
2)    65. s − s1 2 cos3#tdys3#d

EXERCISES 7.3  �  PAGE 491

1. 2
s4 2 x 2 

4x
1 C    3. sx 2 2 4 2 2 sec21 S x

2D 1 C

5. 
1
3

 
sx 2 2 1d3y2

x 3 1 C    7. 
1

s2 a 2

9. 2
3 s3

 

2 3
4 s2

 

    11. 1
12    

13.  16 sec21sxy3d 2 sx 2 2 9
 ys2x 2d 1 C

15. 1
16 !a4    17. sx 2 2 7 

1 C

19. ln | (s1 1 x 2 2 1)yx | 1 s1 1 x 2 1 C    21. 9
500!

23. ln | sx 2 1 2x 1 5 1 x 1 1 | 1 C

25. 4 sin21S x 2 1
2 D 1

1
4

sx 2 1d3s3 1 2x 2 x 2 

   2 2
3 s3 1 2x 2 x 2 d3y2 1 C

27. 1
2sx 1 1dsx 2 1 2x 2 1

2 ln |x 1 1 1 sx 2 1 2x | 1 C

29. 1
4 sin21sx 2d 1 1

4 x 2 s1 2 x 4 1 C

33. 1
6 ss48 2 sec21 7d    37. 3

8! 2 1 3
4!

41. 2! 2Rr 2    43. rsR 2 2 r 2 

1 !r 2y2 2 R 2 arcsinsryRd    

EXERCISES 7.4  �  PAGE 501

1. (a) 
A

1 1 2x
1

B
3 2 x

   (b) 
A
x

1
B
x 2 1

C
x 3 1

D
1 1 x

3. (a) 
A
x

1
B
x 2 1

Cx 1 D
1 1 x 2    (b) 1 1

A
x

1
B

x 2 1
1

C
x 2 2

5. (a) x 4 1 4x 2 1 16 1
A

x 1 2
1

B
x 2 2

(b) 
Ax 1 B

x 2 2 x 1 1
1

Cx 1 D
x 2 1 2

1
Ex 1 F

sx 2 1 2d2

7. 1
4x 4 1 1

3x 3 1 1
2x 2 1 x 1 ln | x 2 1| 1 C
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 APPENDIX I  Answers to Odd-Numbered Exercises A99

19. 1
9 sin3x f3 lnssin xd 2 1g 1 C    

21. 
1

2s3
  ln Z e x 1 s3

 

e x 2 s3
 Z 1 C

23. 1
4 tan x sec3x 1 3

8 tan x sec x 1 3
8 ln | sec x 1 tan x | 1 C

25. 1
2sln xds4 1 sln xd2 1 2 lnfln x 1 s4 1 sln xd2 g 1 C

27. 21
2x 22 cos21sx 22d 1 1

2s1 2 x 24 1 C
29. se 2x 2 1 2 cos21se2x d 1 C    
31. 1

5 ln | x 5 1 sx 10 2 2 | 1 C    33. 3
8! 2

37. 1
3 tan x sec2x 1 2

3 tan x 1 C    

39. 1
4 xsx 2 1 2dsx 2 1 4 2 2 lnssx 2 1 4 1 xd 1 C

41. 1
4 cos3x sin x 1 3

8x 1 3
8 sin x cos x 1 C

43. 2ln | cos x | 2 1
2 tan2 x 1 1

4 tan4x 1 C

45. (a) 2ln Z 1 1 s1 2 x 2 

x
 Z 1 C; 

both have domain s21, 0d ø s0, 1d

EXERCISES 7.7  �  PAGE 524
1. (a) L2 − 6, R2 − 12, M2 < 9.6 
(b) L2 is an underestimate, R2 and M2 are overestimates. 
(c) T2 − 9 , I   (d) Ln , Tn , I , Mn , Rn

3. (a) T4 < 0.895759 (underestimate) 
(b) M4 < 0.908907 (overestimate); T4 , I , M4

5. (a) M10 < 0.806598, EM < 20.001879 
(b) S10 < 0.804779, ES < 20.000060
7. (a) 1.506361   (b) 1.518362   (c) 1.511519
9. (a) 2.660833   (b) 2.664377   (c) 2.663244
11. (a) 27.276910   (b) 24.818251   (c) 25.605350
13. (a) 22.364034   (b) 22.310690   (c) 22.346520
15. (a) 0.243747   (b) 0.243748   (c) 0.243751
17. (a) 8.814278   (b) 8.799212   (c) 8.804229
19. (a) T8 < 0.902333, M8 < 0.905620 
(b) | ET | < 0.0078, | EM | < 0.0039 
(c) n − 71 for Tn, n − 50 for Mn

21. (a) T10 < 1.983524, ET < 0.016476; 
M10 < 2.008248, EM < 20.008248;  
S10 < 2.000110, ES < 20.000110 
(b) | ET | < 0.025839, | EM | < 0.012919, | ES | < 0.000170 
(c) n − 509 for Tn, n − 360 for Mn, n − 22 for Sn

23. (a) 2.8   (b) 7.954926518   (c) 0.2894    
(d) 7.954926521   (e) The actual error is much smaller.    
(f) 10.9   (g) 7.953789422   (h) 0.0593
(i) The actual error is smaller.   (j) n > 50
25.  n Ln Rn Tn Mn

5 0.742943 1.286599 1.014771 0.992621
10 0.867782 1.139610 1.003696 0.998152
20 0.932967 1.068881 1.000924 0.999538

 n EL    ER    ET EM

5 0.257057 20.286599 20.014771 0.007379
10 0.132218 20.139610 20.003696 0.001848
20 0.067033 20.068881 20.000924 0.000462

 Observations are the same as after Example 1.

EXERCISES 7.5  �  PAGE 507
1. 2lns1 2 sin xd 1 C    3. 32

3  ln 2 2 28
9

5. 
1

2s2 
 tan21S t 2

s2 D 1 C    7. e!y4 2 e2!y4

9. 4
5 ln 2 1 1

5 ln 3  (or 1
5 ln 48)   11. 1

2 sec21x 1
sx 2 2 1

 

2x 2 1 C

13. 21
5 cos5t 1 2

7 cos7t 2 1
9 cos9t 1 C    

15. x sec x 2 ln | sec x 1 tan x | 1 C
17. 1

4! 2    19. ee x
1 C    21. sx 1 1d arctan sx 2 sx 1 C

23. 4097
45     25. 4 2 ln 4    27. x 2 ln s1 1 e xd 1 C    

29. x lnsx 1 sx 2 2 1d 2 sx 2 2 1 1 C
31. sin21x 2 s1 2 x 2 

1 C    

33. 2 sin21S x 1 1
2 D 1

x 1 1
2

s3 2 2x 2 x 2 1 C

35. 0    37. 1
4    39. ln | sec " 2 1 | 2 ln | sec " | 1 C

41. " tan " 2 1
2 " 2 2 ln | sec " | 1 C    43. 2

3 tan21sx 3y2d 1 C
45. 2 1

3 sx 3 1 1de2x 3
1 C    

47. ln | x 2 1 | 2 3sx 2 1d21 2 3
2 sx 2 1d22 2 1

3 sx 2 1d23 1 C

49. ln Z s4x 1 1 2 1

s4x 1 1 1 1 Z 1 C    51. 2ln Z s4x 2 1 1 1 1
2x Z 1 C

53. 
1
m

 x 2 cosh mx 2
2

m2  x sinh mx 1
2

m3  cosh mx 1 C

55. 2 ln sx 2 2 lns1 1 sx d 1 C

57. 3
7 sx 1 cd7y3 2 3

4 csx 1 cd4y3 1 C

59. 
1
32

 ln Z x 2 2
x 1 2 Z 2

1
16

 tan21S x
2D 1 C    

61. csc " 2 cot " 1 C or tans"y2d 1 C
63. 2(x 2 2sx

 

1 2)esx
 

1 C
65. 2tan21scos2xd 1 C    67. 2

3 fsx 1 1d3y2 2 x 3y2 g 1 C

69. s2
 

2 2ys3
 

1 ln (2 1 s3
 ) 2 ln (1 1 s2

 )
71. e x 2 lns1 1 e x d 1 C
73. 2s1 2 x 2 1 1

2 sarcsin xd2 1 C    75. ln | ln x 2 1 | 1 C

77. 2sx 2 2ds1 1 e x 1 2 ln 
s1 1 e x 1 1

s1 1 e x 2 1
1 C

79. 1
3 x sin3x 1 1

3 cos x 2 1
9 cos3x 1 C

81. 2s1 1 sin x 1 C    83. xe x 2
1 C

EXERCISES 7.6  �  PAGE 512
1. 2 5

21    3. s13 2 3
4 lns4 1 s13 d 2 1

2 1 3
4 ln 3

5. 
!

8
 arctan 

!

4
2 1

4 lns1 1 1
16! 2d    7. 1

6 ln Z sin x 2 3
sin x 1 3

 Z 1 C

9. 2
s9x 2 1 4 

x
1 3 ln(3x 1 s9x 2 1 4 ) 1 C    

11. 5!y16    13. 2sx  arctan sx 2 lns1 1 xd 1 C    
15. 2ln | sinhs1/yd | 1 C    

17. 
2y 2 1

8
s6 1 4y 2 4y 2 1

7
8

 sin21S 2y 2 1

s7
 D

  2 1
12 s6 1 4y 2 4y 2d3y2 1 C
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A100 APPENDIX I  Answers to Odd-Numbered Exercises

(c) 1

!0.1

1 10

©=sin@ x
≈

ƒ= 1
≈

49. C    51. D    53. D    55. !    57. p , 1, 1ys1 2 pd
59. p . 21, 21ysp 1 1d2    63. !    65. s2GMyR

 

    
67. (a) 

1

700 t0
(in hours)

y

y=F(t)

 
(b) The rate at which the 
fraction Fstd increases as t 
increases 
(c) 1; all bulbs burn out 
eventually

69. $ −
cN

%sk 1 %d
    71. 1000    

73. (a) Fssd − 1ys, s . 0   (b) Fssd − 1yss 2 1d, s . 1 
(c) Fssd − 1ys 2, s . 0
79. C − 1; ln 2    81. No

CHAPTER 7 REVIEW  �  PAGE 537
True-False Quiz
1. False    3. False    5. False    7. False    
9. (a) True   (b) False    11. False    13. False    

Exercises
1. 7

2 1 ln 2    3. e sin x 1 C    5. ln| 2t 1 1 | 2 ln| t 1 1 | 1 C
7. 2

15    9. 2cossln td 1 C    11. s3
 

2 1
3!    

13. 3e s3 x sx 2y3 2 2x 1y3 1 2d 1 C
15. 21

2 ln | x | 1 3
2 ln | x 1 2 | 1 C

17. x sinh x 2 cosh x 1 C
19. 1

18 lns9x 2 1 6x 1 5d 1  19 tan21f 1
2 s3x 1 1dg 1 C

21. ln | x 2 2 1 sx 2 2 4x  | 1 C

23. ln Z sx 2 1 1 2 1
x Z 1 C

25. 3
2 lnsx 2 1 1d 2 3 tan21x 1 s2

 

 tan21(xys2
 ) 1 C

27. 2
5    29. 0    31. 6 2 3

2!

33. 
x

s4 2 x 2  2 sin21S x
2D 1 C

35. 4s1 1 sx  1 C    37. 1
2 sin 2x 2 1

8 cos 4x 1 C
39. 1

8 e 2 1
4    41. 1

36    43. D
45. 4 ln 4 2 8    47. 24

3    49. !y4
51. sx 1 1d lnsx 2 1 2x 1 2d 1 2 arctansx 1 1d 2 2x 1 C
53. 0    
55. 1

4s2x 2 1ds4x 2 2 4x 2 3
 

  2 ln | 2x 2 1 1 s4x 2 2 4x 2 3
 | 1 C

57. 1
2 sin xs4 1 sin2x 1 2 lnssin x 1 s4 1 sin2x d 1 C

61. No
63. (a) 1.925444   (b) 1.920915   (c) 1.922470
65. (a) 0.01348, n > 368   (b) 0.00674, n > 260

27.  n Tn Mn Sn

6 6.695473 6.252572 6.403292
12 6.474023 6.363008 6.400206

 n ET EM  ES

6 20.295473 0.147428 20.003292
12 20.074023 0.036992 20.000206

 Observations are the same as after Example 1.
29. (a) 19   (b) 18.6   (c) 18.6
31. (a) 14.4   (b) 1

2     
33. 70.8°F    35. 37.73 ftys    37. 10,177 megawatt-hours    
39. (a) 190   (b) 828    
41. 28    43. 59.4
45. 

5et070743
Solution Ar t
6.26.02

0 x

y
1

1 20.5 1.5

EXERCISES 7.8  �  PAGE 534
Abbreviations: C, convergent; D, divergent
1. (a), (d) Infinite discontinuity   (b), (c) Infinite interval
3. 1

2 2 1ys2t 2 d; 0.495, 0.49995, 0.4999995; 0.5
5. 2    7. D    9. 1

5 e210    11. D    13. 0    15. D    
17. ln 2    19. 21

4    21. D    23. 2!y8    25. 2   
27. D    29. 32

3     31. D    33. 9
2    35. D    37. 21

4
39. 22ye    
41. 1ye 43. 1

2 ln 2

x

y

0 1
x=1

y=e_x

 2

0 3

y=   1
˛+x

45. Infinite area
 

ca051037
10.31.00

20

0
π
2

y=sec@ x

47. (a) 

It appears that the integral is convergent.

 t y t

1
 fssin2xdyx 2 g dx

 2 0.447453
 5 0.577101
 10 0.621306
 100 0.668479
 1,000 0.672957
 10,000 0.673407
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 APPENDIX I  Answers to Odd-Numbered Exercises A101

17. !a 2    19. 1,230,507    21. 24.145807
23. 1

4! f4 ln(s17
 

1 4) 2 4 ln(s2
 

1 1) 2 s17
 

1 4s2
 g

25. 1
6 ! fln(s10 1 3) 1 3s10 g

29. (a) 1
3 !a 2   (b) 56

45 !s3
 

a 2

31. (a) 2!Fb 2 1
a 2b sin21(sa 2 2 b 2 ya)

sa 2 2 b 2 G
(b) 2!a2 1

2!ab 2

sa 2 2 b 2 
 ln 

a 1 sa 2 2 b 2 

b
33. yb

a 2!fc 2 f sxdgs1 1 f f 9sxdg2  dx    35. 4! 2r 2

37. Both equal ! yb
a (e xy2 1 e2xy2)2 dx.

EXERCISES 8.3  �  PAGE 565
1. (a) 187.5 lbyft2   (b) 1875 lb   (c) 562.5 lb
3. 7000 lb    5. 2.36 3 10 7 N    7. 9.8 3 103 N    
9. 889 lb    11. 2

3 &ah2    13. 5.27 3 105 N    
15. (a) 314 N   (b) 353 N    
17. (a) 5.63 3 103 lb   (b) 5.06 3 104 lb    
(c) 4.88 3 104 lb   (d) 3.03 3 105 lb    
19. 4148 lb    21. 330; 22    
23. 10; 14; s1.4, 1d    25. ( 2

3, 23)

27. S 1
e 2 1

, 
e 1 1

4 D    29. ( 9
20, 9

20)    

31. S !s2
 

2 4
4(s2

 

2 1)
, 

1

4(s2
 

2 1)D    33. ( 8
5, 21

2 )

35. S 28
3s! 1 2d

, 
10

3s! 1 2dD    37. s21
5, 212

35d    

41. s0, 1
12 d    45. 1

3!r 2h    47. S 8
!

, 
8
!D

49. 4! 2rR

EXERCISES 8.4  �  PAGE 572
1. $21,104    3. $140,000; $60,000    5. $407.25
7. $166,666.67    9. (a) 3800   (b) $324,900
11. 3727; $37,753    13. 2

3 (16s2
 

2 8) < $9.75 million    

15. $65,230.48    17. 
s1 2 kdsb 22k 2 a 22kd
s2 2 kdsb12k 2 a12kd

19. 1.19 3 1024 cm3ys    21. 6.59 Lymin    23. 5.77 Lymin

EXERCISES 8.5  �  PAGE 579
1. (a) The probability that a randomly chosen tire will have a  
lifetime between 30,000 and 40,000 miles 
(b) The probability that a randomly chosen tire will have a  
lifetime of at least 25,000 miles
3. (a) f sxd > 0 for all x and y`

2`
 f sxd dx − 1   (b) 17

81
5. (a) 1y!   (b) 1

2
7. (a) f sxd > 0 for all x and y`

2`
 f sxd dx − 1   (b) 5

11. (a) !46.5%   (b) !15.3%   (c) About 4.8 s
13. !59.4%   (b) 40 min    15. !44%
17. (a) 0.0668   (b) <5.21%    19. <0.9545

67. 8.6 mi    
69. (a) 3.8   (b) 1.7867, 0.000646   (c) n > 30
71. (a) D   (b) C
73. 2    75. 3

16! 2

PROBLEMS PLUS  �  PAGE 541
1. About 1.85 inches from the center    3. 0    
7. f s!d − 2!y2    11. sb ba2a d1ysb2ade21    13. 1

8! 2 1
12    

15. 2 2 sin21s2ys5 d

CHAPTER 8

EXERCISES 8.1  �  PAGE 548
1. 4s5

 

    3. 3.8202    5. 3.4467    7. 3.6095
9. 2

243 s82s82 2 1d    11. 59
24    13. 32

3     

15. ln(s2
 

1 1)    17. 3
4 1 1

2 ln 2    19. ln 3 2 1
2

21. s2
 

1 ln(1 1 s2
 )    23. 10.0556    

25. 15.498085; 15.374568    27. 7.094570; 7.118819
29. (a), (b)   

 L1 − 4,
 L2 < 6.43,
 L4 < 7.50

(c) y4
0 s1 1 f4s3 2 xdys3s4 2 xd2y3 dg2 

 dx   (d) 7.7988

31. s1 1 e 4 2 ln(1 1 s1 1 e 4 ) 1 22s2
 

1 ln(1 1 s2
 )

33. 6   

35. ssxd − 2
27 fs1 1 9xd3y2 2 10s10 g    37. 2s2

 (s1 1 x
 

2 1)
41. 209.1 m    43. 29.36 in.    45. 12.4

EXERCISES 8.2  �  PAGE 555
1. (a) (i) y!y3

0  2! tan xs1 1 sec 4 x  dx  

(ii) y!y3
0  2!xs1 1 sec 4 x  dx   (b) (i) 10.5017  (ii) 7.9353

3. (a) (i) y1
21 2!e2x 2s1 1 4x 2e 22x 2 dx

(ii) y1
0 2!xs1 1 4x 2e 22x 2 dx   (b) (i) 11.0753  (ii) 3.9603

5. (a) (i) y1
0 2!ys1 1 s1 1 3y 2d2  dy  

(ii) y1
0 2!sy 1 y3ds1 1 s1 1 3y2d2  dy   

(b) (i) 8.5302  (ii) 13.5134
7. 1

27 ! (145s145
 

2 1)    9. 1
6 ! (27s27

 

2 5s5
 )

11. !s5
 

1 4! lnS 1 1 s5
 

2 D    13. 21
2 !    15. 3712

15 !
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EXERCISES 9.2  �  PAGE 597
1. (a) 

0 x1_1_2 2

0.5

1.0

1.5

2.0
y

(i)

(ii)
(iii)

(iv)

(b) y − 0.5, y − 1.5
3. III    5. IV
7. y

0 x

4

2_2

2
(c) y(0)=3.5
(b) y(0)=2.5
(a) y(0)=1

9. 

0 x_3 3

_3

3
y

11. 

ca070211
10.31.00

y

x3_3

3

_3

13. 

ca070213
10.31.00

y

x3_3

3

_3

15. 4

0 2_3

21. (b) 0; a0           
 (c) 1x1010

0 4x10–10

(d) 1 2 41e28 < 0.986   (e) 3
2 a0

CHAPTER 8 REVIEW  �  PAGE 581

Exercises

1. 1
54 (109s109

 

2 1)    3. 53
6     

5. (a) 3.5121   (b) 22.1391   (c) 29.8522
7. 3.8202    9. 124

5     11. < 458 lb    13. s 8
5 , 1d    

15. ( 4
3, 4

3)    17. 2! 2    19. $7166.67    
21. (a) f sxd > 0 for all x and y`

2`
 f sxd dx − 1     

(b) < 0.3455   (c) 5; yes
23. (a) 1 2 e23y8 < 0.31   (b) e25y4 < 0.29 
(c) 8 ln 2 < 5.55 min

PROBLEMS PLUS  �  PAGE 583
1. 2

3! 2 1
2 s3

 

3. (a) 2!rsr 6 d d   (b) <3.36 3 106 mi2    
(d) <7.84 3 107 mi2    
5. (a) Pszd − P0 1 t yz

0 'sxd dx    
(b) sP0 2 '0tHds!r 2d 1 '0tHe LyH yr

2r e
xyH ? 2sr 2 2 x 2  dx    

7. Height s2
 

 b, volume (28
27 s6

 

2 2)!b 3    9. 0.14 m    
11. 2y!; 1y!    13. s0, 21d

CHAPTER 9

EXERCISES 9.1  �  PAGE 590

3. (a) 1
2, 21    5. (d)

7. (a) It must be either 0 or decreasing 
(c) y − 0   (d) y − 1ysx 1 2d
9. (a) 0 , P , 4200   (b) P . 4200 
(c) P − 0, P − 4200
13. (a) III   (b) I   (c) IV   (d) II
15. (a) At the beginning; stays positive, but decreases
(c) 

  0

 M

 P(t)

t

 P(0)

17. It approaches 0 as c approaches cs.
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 APPENDIX I  Answers to Odd-Numbered Exercises A103

23. (a) sin21y − x 2 1 C
(b) y − sinsx 2d, 2s!y2

 

< x < s!y2
 

    (c) No

ca070317
10.31.00

1

0

y=sin (≈)

_œ„„„π/2_œ „„„π/2œ

25. cos y − cos x 2 1  5

2.5
0

!2.5

27. (a) 

0 x_3 3

_3

3
y (b) y −

1
K 2 x

29. y − Cx 2 4

4

_4

_4

31. x 2 2 y2 − C 
≈-¥=C

xy=k
4

4

_4

_4

33. y − 1 1 e22x 2y2    35. y − ( 1
2 x 2 1 2)2

37. Qstd − 3 2 3e24 t; 3    39. Pstd − M 2 Me2kt; M    

41. (a) x − a 2
4

(kt 1 2ysa
 )2

(b) t −
2

ksa 2 b
 Stan21Î b

a 2 b
 2 tan21Î b 2 x

a 2 b
 D    

17. y

0

_2

_1 t1

2

c=3

c=_3

c=_1

c=1

 22 < c < 2; 22, 0, 2

19. (a) (i) 1.4  (ii) 1.44  (iii) 1.4641 
(b) y

0 0.2 x0.40.1 0.3

y=´
h=0.1
h=0.2
h=0.4

1.0

1.1

1.2

1.3

1.4

1.5

    Underestimates

(c) (i) 0.0918  (ii) 0.0518  (iii) 0.0277 
It appears that the error is also halved (approximately).

21. 21, 23, 26.5, 212.25    23. 1.7616
25. (a) (i) 3  (ii) 2.3928  (iii) 2.3701  (iv) 2.3681 
(c) (i) 20.6321  (ii) 20.0249  (iii) 20.0022   (iv) 20.0002 
It appears that the error is also divided by 10 (approximately).
27. (a), (d) (b) 3 
 Q

0

2

2 t4

4

6
 (c) Yes, Q − 3

  (e) 2.77 C

EXERCISES 9.3  �  PAGE 605
1. y − 21ysx 3 1 Cd, y − 0    

3. y − 6sx 2 1 2 ln | x | 1 C     
5. e y 2 y − 2x 1 sin x 1 C    
7. " sin " 1 cos " − 21

2 e2t 2
1 C    9. p − Ke t 3y32t 2 1    

11. y − 2ln(1 2 1
2 x 2)    13. u − 2st 2 1 tan t 1 25

 

15. 1
2 y 2 1 1

3s3 1 y 2d3y2 − 1
2 x 2 ln x 2 1

4 x 2 1 41
12

17. y −
4a

s3
  sin x 2 a    

19. y − sx 2 1 4
 

    21. y − Ke x 2 x 2 1
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A104 APPENDIX I  Answers to Odd-Numbered Exercises

(d) 

0 t

P

1208040

1200

800

400

 0 , P0 , 250: P l 0; 
   P0 − 250: P l 250;  
   P0 . 250: P l 750

(e) Pstd −
250 2 750ke ty25

1 2 ke ty25  

0 120

1200P

t

where k − 1
11, 2 1

9

21. (b) 

0 t

P

1008060

1400

800

400

4020

600

200

1200
1000

  0 , P0 , 200: P l 0;
  P0 − 200: P l 200;
 P0 . 200: P l 1000

(c) Pstd −
msM 2 P0d 1 MsP0 2 mde sM2mdskyMd t

M 2 P0 1 sP0 2 mde sM2mdskyMd t

23. (a) Pstd − P0e skyrdfsinsrt 2 (d 1 sin (g   (b) Does not exist

EXERCISES 9.5  �  PAGE 625
1. No    3. Yes    5. y − 1 1 Ce2x    

7. y − x 2 1 1 Ce2x    9. y − 2
3 sx

 

1 Cyx    

11. y − x 2sln x 1 Cd    13. y − 1
3 t23s1 1 t 2d3y2 1 Ct23    

15. y −
1
x

 ln x 2
1
x

1
3
x 2     17. u − 2t 2 1 t 3

19. y − 2x cos x 2 x    

21. y −
sx 2 1de x 1 C

x 2  

6et Ans. 9.5.21
12.07.06

5

_5

3_3

C=_1 C=_1C=_3 C=_3

C=1

C=3C=3
C=5C=5

C=7C=7

C=_5 C=_5

25. y − 6SCx 4 1
2
5xD21y2

    

27. (a) I std − 4 2 4e25t   (b) 4 2 4e21y2 < 1.57 A    
29. Qstd − 3s1 2 e24 t d, I std − 12e24 t

43. (a) Cstd − sC0 2 rykde2kt 1 ryk   (b) ryk; the concentration 
approaches ryk regardless of the value of C0

45. (a) 15e2ty100 kg   (b) 15e20.2 < 12.3 kg    
47. About 4.9%    49. tyk    
51. (a) L1 − KL k

2    (b) B − KV 0.0794

53. (a) dAydt − ksA sM 2 Ad   (b) Astd − MSCe sM
 

kt 2 1
Ce sM

 

kt 1 1D2

, 

where C −
sM 1 sA0

   

sM 2 sA0
   

 and A0 − As0d   

EXERCISES 9.4  �  PAGE 617

1. (a) 1200; 0.04   (b) Pstd −
1200

1 1 19e20.04 t    (c) 87

3. (a) 100; 0.05   (b) Where P is close to 0 or 100;  
on the line P − 50; 0 , P0 , 100; P0 . 100    
(c) 

P¸=140
P¸=120

P¸=80

P¸=40
P¸=20

P¸=60

0 t

P

604020

150

100

50

Solutions approach 100; some increase and some decrease, some 
have an inflection point but others don’t; solutions with P0 − 20 
and P0 − 40 have inflection points at P − 50 
(d) P − 0, P − 100; other solutions move away from P − 0 and 
toward P − 100
5. (a) 3.23 3 107 kg   (b) <1.55 years    7. 9000

9. (a) 
dP
dt

−
1

305
PS1 2

P
20D

(b) 6.24 billion   (c) 7.57 billion; 13.87 billion

11. (a) dyydt − kys1 2 yd   (b) y −
y0

y0 1 s1 2 y0 de2kt    

(c) 3:36 PM    
15. PE std − 1909.7761 s1.0796dt 1 94,000; 

PLstd −
33,086.4394

1 1 12.3428e20.1657t 1 94,000

90,000
20101960

130,000

PE

PL

t (in years)

P

17. (a) Pstd −
m
k

1 SP0 2
m
k De kt   (b) m , kP0

(c) m − kP0, m . kP0   (d) Declining
19. (a) Fish are caught at a rate of 15 per week. 
(b) See part (d).    (c) P − 250, P − 750  
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 (d) 

0 t

R

1000

W

40

1500

500

60

20

80W

R

CHAPTER 9 REVIEW  �  PAGE 634
True-False Quiz
1. True    3. False    5. True    7. True    

Exercises
1. (a) 

6

10 t

y

2

4

(i)

(ii)

(iv)

(iii)

(b) 0 < c < 4; y − 0, y − 2, y − 4
3. (a) 

0 x

y

1 2_1_2

1

2

3_3

3    ys0.3d < 0.8

(b) 0.75676 
(c) y − x and y − 2x; there is a loc max or loc min

5.  y − s1
2 x 2 1 Cde2sin x    

7. y − 6slnsx 2 1 2x 3y2 1 Cd    
9. rstd − 5et2t 2

    11. y − 1
2 x sln xd2 1 2x    13. x − C 2 1

2 y2

15. (a) Pstd −
2000

1 1 19e20.1t ; <560   (b) t − 210 ln 2
57 < 33.5

17. (a) Lstd − L` 2 fL` 2 Ls0dge2kt   (b) Lstd − 53 2 43e20.2 t

19. 15 days    21. k ln h 1 h − s2RyV dt 1 C
23. (a) Stabilizes at 200,000 
(b) (i) x − 0, y − 0: Zero populations 
(ii) x − 200,000, y − 0: In the absence of birds, the insect  
population is always 200,000. 
(iii) x − 25,000, y − 175: Both populations are stable. 
(c) The populations stabilize at 25,000 insects and 175 birds. 
(d) 

0 t

x

35,000

15,000

y

15025,000

5,000

45,000

200

100

250
(insects) (birds)

50

birds

insects

31. Pstd − M 1 Ce2kt 

  0

 M

 P(t)

t

 P(0)

33. y − 2
5 s100 1 2td 2 40,000s100 1 2td23y2; 0.2275 kgyL

35. (b) mtyc   (c) smtycdft 1 smycde2ctym g 2 m 2tyc 2

37. (b) Pstd −
M

1 1 MCe2kt

EXERCISES 9.6  �  PAGE 631
1. (a) x − predators, y − prey; growth is restricted only by  
predators, which feed only on prey. 
(b) x − prey, y − predators; growth is restricted by carrying  
capacity and by predators, which feed only on prey.
3. (a) Competition    
(b) (i) x − 0, y − 0: zero populations 
(ii) x − 0, y − 400: In the absence of an x-population, the  
y-population stabilizes at 400.   
(iii) x − 125, y − 0: In the absence of a y-population, the  
x-population stabilizes at 125.   
(iv) x − 50, y − 300: Both populations are stable.
5. (a) The rabbit population starts at about 300, increases to 2400, 
then decreases back to 300. The fox population starts at 100, 
decreases to about 20, increases to about 315, decreases to 100,  
and the cycle starts again. 
(b) 

0 t

R

2000

t¡

1000

F

200

t™ t£

1500

500

2500
300

100

R F

7. 

0 Species 1

Species 2

50

200

100

50

100 150 200 250

t=3

t=0, 5

150

t=1

t=2

t=4

11. (a) Population stabilizes at 5000. 
(b) (i) W − 0, R − 0: Zero populations 
(ii) W − 0, R − 5000: In the absence of wolves, the rabbit  
population is always 5000. 
(iii) W − 64, R − 1000: Both populations are stable. 
(c) The populations stabilize at 1000 rabbits and 64 wolves.
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PROBLEMS PLUS  �  PAGE 637
1. f sxd − 610e x    5. y − x 1yn    7. 20 8C

9. (b) f sxd −
x 2 2 L 2

4L
2

L
2

 lnS x
LD   (c) No

11. (a) 9.8 h   (b) 31,900! ft2; 2000! ft2yh   (c) 5.1 h
13. x 2 1 sy 2 6d2 − 25    15. y − Kyx,  K ± 0

CHAPTER 10

EXERCISES 10.1  �  PAGE 645
1. y

0 x1

1

_1
_1_3

_3

_2

_2

t=2,
(_3, 0)

t=1, (0, 1)

t=0,  (1, 0)

t=_1,
(0, _3)

 3. y

0 x1 2_1
_1

_2

1

t=_π,
(_π, _1)

t=_
t=0, (0, 1)

t=

t=π, 
(π, _1)

π
2

π
2

5. (a) y

0 x5_5

2

t=_4,
(_9, _1)

t=0,
(_1, 1)

t=_2,
(_5, 0)

t=2,
(3, 2)

t=4,
(7, 3)

 (b) y − 1
4 x 1 5

4

7. (a) y

0 x_2

2

_4

4

4

_2

2 6

t=1,
(_2, 3)

t=_1,
(_2, 1)

t=3,
(6, 5)

t=_3,
(6, _1)

 (b)  x − y 2 2 4y 1 1, 
21 < y < 5

9. (a) y

0 x

(0, 1)  t=0

(1, 0)  t=1

(2, _3)  t=4

 (b) y − 1 2 x 2, x > 0

11. (a) x 2 1 y 2 − 1, y > 0 (b) 

0 1

1
y

x_1

13. (a) y − 1yx, y . 1 (b) 

3cA010711b
6.16.04

y

x0

(1, 1)

15. (a) x − e 2y (b) y

0 x5

1

_2

17. (a) y 2 2 x 2 − 1, y > 1 (b) 

6et Ans. 10.1.17
12.06.06

x0

1

y

19. Moves counterclockwise along the circle 

 S x 2 5
2 D2

1 S y 2 3
2 D2

− 1 from s3, 3d to s7, 3d

21. Moves 3 times clockwise around the ellipse  
sx 2y25d 1 sy 2y4d − 1, starting and ending at s0, 22d
23. It is contained in the rectangle described by 1 < x < 4  
and 2 < y < 3.
25. y

0
x1 2

1

_1

t=0  (0, 0)

t=_1  (1, 1)

t=1  (1, _1)

 27. y

0 x1

1 t=_1, 1  (0, 1)

t=0
(1, 0)

29. π

_π

4_4

31. (b) x − 22 1 5t, y − 7 2 8t, 0 < t < 1    
33. (a) x − 2 cos t, y − 1 2 2 sin t, 0 < t < 2! 
(b) x − 2 cos t, y − 1 1 2 sin t, 0 < t < 6! 
(c) x − 2 cos t, y − 1 1 2 sin t, !y2 < t < 3!y2
37. The curve y − x 2y3 is generated in (a). In (b), only the portion 
with x > 0 is generated, and in (c) we get only the portion with 
x . 0.
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25. y − x, y − 2x 
 

0

y

x

27. (a) d sin "ysr 2 d cos "d 29. s4,0d    31. !ab    
33. 24

5     35. 2!r 2 1 !d 2    37. y2
0  s2 1 2e22t  dt < 3.1416

39. y4!
0  s5 2 4 cos t  dt < 26.7298    41. 4s2

 

2 2   

43. 1
2 s2

  

1 1
2 ln(1 1 s2

 )
45. s2

 

 se ! 2 1d   8

0
!25 2.5

47. 16.7102    1.4

_1.4

2.1_2.1

49. 612.3053    51. 6s2
 

, s2
 

55. (a) 15

!15

!15 15

 t [ f0, 4!g   

(b) 294
57. y!y2

0  2! t cos t st 2 1 1 dt < 4.7394

59. y1
0 2!e2ts1 1 2e t 1 e 2t 1 e22t  dt < 10.6705

61. 2
1215 ! (247s3

 

1 64)    63. 6
5!a 2    

65. 24
5 ! (949s26

 

1 1)    71. 1
4

EXERCISES 10.3  �  PAGE 666
1. (a) 

O

”1,    ’π
4

π
4

 (b) 

O

”_2,      ’3π
2

3π
2

 s1, 9!y4d, s21, 5!y4d  s2, !y2d, s22, 7!y2d

41. x − a cos ", y − b sin "; sx 2ya 2 d 1 sy 2yb 2 d − 1, ellipse
43. y

O x

2a

45. (a) Two points of intersection 
4

!4

!6 6

(b) One collision point at s23, 0d 
when t − 3!y2 
(c) There are still two intersection 
points, but no collision point.

47. For c − 0, there is a cusp; for c . 0, there is a loop whose 
size increases as c increases.

3

0 1.5

_3

_1
0

0 1.5

1

_1

1
1
2

49. The curves roughly follow the line y − x, and they start  
having loops when a is between 1.4 and 1.6 smore precisely,  
when a . s2

 ). The loops increase in size as a increases.
51. As n increases, the number of oscillations increases;  
a and b determine the width and height.

EXERCISES 10.2  �  PAGE 655
1. 1

2 s1 1 td3y2    3. y − 2x    5. y − !x 1 ! 2

7. y − 2x 1 1    
9. y − 3x 1 3 5

0 3_2

(0, 3)

11. 
2t 1 1

2t
, 2

1
4t 3 , t , 0    13. e22 ts1 2 td, e23ts2t 2 3d, t . 3

2

15. 
t 1 1
t 2 1

, 
22t

st 2 1d3 , 0 , t , 1    

17. Horizontal at s0, 23d, vertical at s62, 22d
19. Horizontal at s1

2 , 21d and s21
2 , 1d, no vertical

21. s0.6, 2d; (5 ? 626y5, e6 21y5)    
23. 7.5

!1

!8.5 3
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33. 

O

(2π, 2π)

 35. 

(3, 0)

¨=π
6

37. 
¨= π

8

(2, 0)

 39.

(_2, π)
(4, 0)

41. 

ms80907-2
6et 10.3.43
12.06.06

O

(3, π/4)
 43. 

O

(3, π/6)

45. 

(1, π) (_1, 3π)

”œ„2/2,    ’π
2

 47. 

cah135
10.6.00

O 1

1

2

49. 

(2, 0) (6, 0)

 51. 

O

x=1

53. (a) For c , 21, the inner loop begins at " − sin21 s21ycd 
and ends at " − ! 2 sin21 s21/cd; for c . 1, it begins at 
" − ! 1 sin21 s1ycd and ends at " − 2! 2 sin21 s1ycd.
55. 1ys3

 

    57. 2!    59. 1    
61. Horizontal at (3ys2

 

, !y4), (23ys2
 

, 3!y4);  
vertical at s3, 0d, s0, !y2d
63. Horizontal at ( 3

2, !y3), s0, !d [the pole], and ( 3
2, 5!y3); 

vertical at (2, 0), ( 1
2, 2!y3), ( 1

2, 4!y3)    

65. Center sby2, ay2d, radius sa 2 1 b 2 y2

(c) 

O

”3,        ’π
3_

π
3_

 s3, 5!y3d, s23, 2!y3d
3. (a) 

O

”2,       ’3π
2

 (b) 

O

”œ„,    ’π
42

π
4

  s0, 22d  s1, 1d
(c) 

O

”_1, _    ’

π
6_

π
6

 (2s3
 y2, 1y2)

5. (a) (i) (4s2
 

, 3!y4)  (ii) (24s2
 

, 7!y4) 
(b) (i) s6, !y3d  (ii) s26, 4!y3d
7. 

O

r=1

 9. 

¨= 3π
4 ¨=π

4

O

11. 

O

r=2
r=3

¨=7π
3

¨=5π
3

13. 2s7
 

    15. Circle, center O, radius s5 

17. Circle, center s5y2, 0d, radius 5y2
19. Hyperbola, center O, foci on x-axis
21. r − 2 csc "    23. r − 1yssin " 2 3 cos "d
25. r − 2c cos "    27. (a) " − !y6   (b) x − 3
29. 

O

(2, 3π/2)

 31. 

O
(4, 0)
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45. 2!    47. 8
3 fs! 2 1 1d3y2 2 1g    49. 16

3
51. 2.4221    53. 8.0091    
55. (b) 2! (2 2 s2

 )

EXERCISES 10.5  �  PAGE 680
1. s0, 0d, s0, 32d, y − 23

2 3. s0, 0d, (21
2, 0), x − 1

2

x

y
6

”0,   ’3
2

6
y=-3

2

 
2

x

y

_2

x=

(_1/2, 0)

1
2

5. s22, 3d s22, 5d, y − 1      7. s4, 23d, ( 7
2, 23), x − 9

2

y

x

y=1

(_2, 5)

 y

0
x_4

1

x=9
2

7
2”    , _3’

9. x − 2y 2, focus (1
4, 0), directrix x − 1

4

11. s0, 62d, s0, 6s2 d 13. s63, 0d, s62s2 , 0d

x

y

0 2œ„

2_œ„

2œ„

2_œ„

2

_2

 

x

y

0 3_3
2œ„2_2œ„2

11

_1

15. s1, 63d, s1, 6s5 d 17. 
x 2

4
1

y 2

9
− 1, foci s0, 6s5 d

x0

y

!1 3

(1, _3)

(1, 3)

19. s0, 65d; (0, 6s34
 ); y − 65

3 x

x

y
5 
3y=  x

5 
3y=_  x

(0, _5)

(0, 5)

œ„„34}{0,  

œ„„34}{0, _     

(3, 5)

67. 

_3.4 1.8

_2.6

2.6  69. 

_3 3

_2.5

3.5

71. 

73. By counterclockwise rotation through angle !y6, !y3,  
or # about the origin
75. For c − 0, the curve is a circle. As c increases, the left 
side gets flatter, then has a dimple for 0.5 , c , 1, a cusp for 
c − 1, and a loop for c . 1.

EXERCISES 10.4  �  PAGE 672
1. e 2!y4 2 e 2!y2    3. !y2    5. 1

2    7. 41
4 !

9. ! 11. 11!

(1, π)

(3, π/2)

(3, 3π/2)

O
(5, 0)

13. 9
2 !

15. 3
2 ! 1.4

_1.4

2.1_2.1

17. 4
3 !    19. 1

16 !   21. ! 2 3
2 s3

 

    23. 4
3 ! 1 2 s3

 

    
25. 4s3

 

2 4
3 !    27. !    29. 9

8 ! 2 9
4    31. 1

2 ! 2 1    

33. 2s3
 

1 2 1 1
3 !    35. 1

4 (! 1 3s3
 )

37. (1
2, !y6), (1

2, 5!y6), and the pole
39. s1, "d where " − !y12, 5!y12, 13!y12, 17!y12  
and s21, "d where " − 7!y12, 11!y12, 19!y12, 23!y12

41. s1
2 s3, !y3d, s1

2 s3, 2!y3d, and the pole    
43. Intersection at " < 0.89, 2.25; area < 3.46    

O
r=2 sin ¨

(2, π/2)

3

_3

4_4
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11. (a) 1   (b) Parabola   (c) y − 2
3 

(d) 

x

y

”   ,   ’1
3

π
2

O
”   , π’2
3 ”   , 0’2

3

y=2/3

13. (a) 1
3   (b) Ellipse   (c) x − 9

2    
(d) 

O

x=9
2

”   ,    ’π
2

3
2

”   , 0’9
8”   , π’9

4

”   ,      ’3π
2

3
2

5et100613
Ans wer Ar t
8.14.02

15. (a) 2   (b) Hyperbola   (c) x − 23
8 

(d) 

5et100615
Ans wer Ar t
10.5.02

O

x=_ 3
8

”-   , 0’3
4 ”    , π’1

4

17. (a) 2, y − 21
2 

6et Ans. 10.6.17a
12.07.06

1

_3

_2 2

-y= 1
2

(b) r −
1

1 2 2 sins" 2 3!y4d
 

6et Ans. 10.6.17b
12.07.06

2

_2

_2 2

19. The ellipse is nearly circular     e=0.4 e=1.0

e=0.8
e=0.6

 
when e is close to 0 and becomes  
more elongated as e l 12. At  
e − 1, the curve becomes a  
parabola.

25. r −
2.26 3 108

1 1 0.093 cos "
    27. r −

1.07
1 1 0.97 cos "

; 35.64 AU

29.  7.0 3 107 km    31. 3.6 3 108 km

21. s610, 0d, (610s2
 

, 0), y − 6x

x

y

(_10, 0) (10, 0)

y=x

y=_x

{_10œ„2     , 0} {10œ„2     , 0}

(10, 10)

23. s61, 1d, (6s2
 

, 1), y 2 1 − 6x y

x
(_1, 0)

”_œ„, 1’
(1, 0)

(1, 2)

y=x+1

y=_x+1

2 ”œ„, 1’2

25. Hyperbola, s61, 0d, (6s5
 

, 0)
27. Ellipse, s6s2, 1d, s61, 1d    
29. Parabola, s1, 22d, (1, 211

6 )    
31. y 2 − 4x    33. y 2 − 212sx 1 1d    
35. sy 1 1d2 − 21

2 sx 2 3d    

37. 
x 2

25
1

y 2

21
− 1    39. 

x 2

12
1

sy 2 4d2

16
− 1

41. 
sx 1 1d2

12
1

sy 2 4d2

16
− 1    43. 

x 2

9
2

y 2

16
− 1

45. 
sy 2 1d2

25
2

sx 1 3d2

39
− 1    47. 

x 2

9
2

y 2

36
− 1

49. 
x 2

3,763,600
1

y 2

3,753,196
− 1

51. (a) 
121x 2

1,500,625
2

121y 2

3,339,375
− 1   (b) <248 mi

55. (a) Ellipse   (b) Hyperbola   (c) No curve    
59. 15.9

61. 
b2c
a

1 ab lnS a
b 1 cD where c 2 − a 2 1 b2

63. s0, 4y!d

EXERCISES 10.6  �  PAGE 688

1. r −
4

2 1 cos "
    3. r −

6
2 1 3 sin "

5. r −
10

3 2 2 cos "
    7. r −

6
1 1 sin "

9. (a) 4
5   (b) Ellipse   (c) y − 21 

(d) 

x

y
(4, π/2)

O”   , π’4
5 ”    , 0’4

5

”    ,     ’4
9

3π
2 y=_1
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29. Vertical tangent at 

x

y

0

(!3a, 0) (a, 0)

 
( 3

2 a, 61
2s3 a), s23a, 0d; 

horizontal tangent at 
sa, 0d, (21

2 a, 63
2 s3 a)

31. 18    33. s2, 6!y3d    35. 1
2s! 2 1d   

37. 2(5s5
 

2 1)

39. 
2s! 2 1 1 2 s4! 2 1 1

2!
1 lnS 2! 1 s4! 2 1 1

! 1 s! 2 1 1 D
41. 471,295!y1024
43. All curves have the vertical asymptote x − 1. For c , 21, the 
curve bulges to the right. At c − 21, the curve is the line x − 1. 
For 21 , c , 0, it bulges to the left. At c − 0 there is a cusp at 
(0, 0). For c . 0, there is a loop.
45. s61, 0d, s63, 0d 47. s2 25

24 , 3d, s21, 3d 
 

x

y

0

(1, 0)
2œ„2

!2œ„2

!3 3

  

x

(_1, 3)

y

0

49. 
x 2

25
1

y 2

9
− 1    51. 

y 2

72y5
2

x 2

8y5
− 1    

53. 
x 2

25
1

s8y 2 399d2

160,801
− 1    55. r −

4
3 1 cos "

57. x − a scot " 1 sin " cos "d, y − a s1 1 sin2 "d

PROBLEMS PLUS  �  PAGE 692

1. lns!y2d    3. f23
4 s3

 

, 34 s3
 g 3 f21, 2g

CHAPTER 11

EXERCISES 11.1  �  PAGE 704
Abbreviations: C, convergent; D, divergent
1. (a) A sequence is an ordered list of numbers. It can also be 
defined as a function whose domain is the set of positive integers. 
(b) The terms an approach 8 as n becomes large. 
(c) The terms an become large as n becomes large.
3. 2

3, 45, 87, 16
9 , 32

11   5. 1
5, 2 1

25, 1
125, 2 1

625, 1
3125   7. 1

2, 16, 1
24, 1

120, 1
720

9. 1, 2, 7, 32, 157    11. 2, 23, 25, 27, 29    13. an − 1ys2nd

15. an − 23s22
3dn21

    17. an − s21dn11 
n 2

n 1 1
19. 0.4286, 0.4615, 0.4737, 0.4800, 0.4839, 0.4865, 0.4884, 
0.4898, 0.4909, 0.4918; yes; 12
21. 0.5000, 1.2500, 0.8750, 1.0625, 0.9688, 1.0156, 0.9922, 
1.0039, 0.9980, 1.0010; yes; 1
23. 5    25. D    27. 0    29. 1    31. 2    
33. D    35. 0    37. 0    39. D    41. 0    43. 0    
45. 1    47. e 2    49. ln 2    51. !y2    53. D    55. D 
57. D    59. !y4    61. D    63. 0    

CHAPTER 10 REVIEW  �  PAGE 689
True-False Quiz

1. False    3. False    5. True    7. False    9. True

Exercises
1. x − y 2 2 8y 1 12  3. y − 1yx

y

x

(0, 6), t=_4

(5, 1),
t=1

 

6et Ans. 10.R.3
12.07.06

x

y

(1, 1), ¨=0

5. x − t, y − st ; x − t 4, y − t 2;  
x − tan2 t, y − tan t, 0 < t , !y2
7. (a) 

6et Ans. 10.r.7a
12.07.06

O

2π
3

”4,      ’2π
3

 (b) (3s2
 

, 3!y4),
 (23s2

 

, 7!y4)

 (22, 2s3
 )

9. 

O

(2, π/2)

(1, 0)(1, π)

 11. 

6et Ans. 10.r.11
12.07.06

¨=π
6

(1, 0)

13.

O

1

_1

(2, π) (2, 0)

5et10R09
Ans wer Ar t
8.14.02

 15. 

6et Ans. 10.R.15
12.07.06

”_3,     ’3π
2

”1,    ’π
2

3
2y=

O

17. r −
2

cos " 1 sin "
 19.    0.75

-0.3 1.2

-0.75

r= sin ̈
¨

21. 2    23. 21    

25. 
1 1 sin t
1 1 cos t

, 
1 1 cos t 1 sin t

s1 1 cos td3     27. s 11
8 , 34 d
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A112 APPENDIX I  Answers to Odd-Numbered Exercises

59. 21 , x , 5; 
3

5 2 x

61. x . 2 or x , 22; 
x

x 2 2
    63. x , 0; 

1
1 2 e x

65. 1    67. a1 − 0, an −
2

nsn 1 1d
 for n . 1, sum − 1    

69. (a) 120 mg; 124 mg    
(b) Qn11 − 100 1 0.20Qn   (c) 125 mg
71. (a) 157.875 mg; 3000

19 s1 2 0.05nd   (b) 157.895 mg

73. (a) Sn −
Ds1 2 c n d

1 2 c
   (b) 5    75. 1

2 ss3 2 1d    

79. 
1

nsn 1 1d
    81. The series is divergent.    

87. hsn j is bounded and increasing.    
89. (a) 0, 19, 29, 13, 23, 79, 89, 1

91. (a) 1
2, 56, 23

24, 119
120; 

sn 1 1d! 2 1
sn 1 1d!

   (c) 1

EXERCISES 11.3  �  PAGE 725
1. C   

0 x

y

1
. . .

a™ a£ a¢ a∞
2 3 4

y= 1
x1.3

3. C    5. D    7. D    9. C    11. C    13. D    
15. C    17. C    19. D    21. D    23. C    25. C
27. f  is neither positive nor decreasing.
29. p . 1    31. p , 21    33. s1, `d    
35. (a) 9

10! 4   (b) 1
90! 4 2 17

16
37. (a) 1.54977, error < 0.1   (b) 1.64522, error < 0.005    
(c) 1.64522 compared to 1.64493   (d) n . 1000    
39. 0.00145    45. b , 1ye

EXERCISES 11.4  �  PAGE 731
1. (a) Nothing   (b) C    3. C    5. D    7. C    9. D
11. C    13. C    15. D    17. D     19. C    21. D    
23. C    25. D    27. C    29. C    31. D    
33. 0.1993, error , 2.5 3 1025    
35. 0.0739, error , 6.4 3 1028

45. Yes

EXERCISES 11.5  �  PAGE 736
1. (a) A series whose terms are alternately positive and  
negative    (b) 0 , bn11 < bn and limn l ` bn − 0, 
where bn − | an |   (c) | Rn | < bn11

3. D    5. C    7. D    9. C    11. C    13. D    
15. C    17. C    19. D    21. 20.5507    23. 5    
25. 5    27. 20.4597    29. 20.1050    
31. An underestimate    
33. p is not a negative integer.    35. hbn j is not decreasing.

65. (a) 1060, 1123.60, 1191.02, 1262.48, 1338.23   (b) D    
67. (b) 5734    69. 21 , r , 1    
71. Convergent by the Monotonic Sequence Theorem; 5 < L , 8
73. Decreasing; yes    75. Not monotonic; no    
77. Increasing; yes    
79. 2    81. 1

2 (3 1 s5
 )    83. (b) 1

2 (1 1 s5
 )    

85. (a) 0   (b) 9, 11

EXERCISES 11.2  �  PAGE 715
1. (a) A sequence is an ordered list of numbers whereas a series is 
the sum of a list of numbers. 
(b) A series is convergent if the sequence of partial sums is a con-
vergent sequence. A series is divergent if it is not convergent.
3. 2    
5. 0.5, 0.55, 0.5611, 0.5648, 0.5663, 0.5671, 0.5675, 0.5677; C
7. 1, 1.7937, 2.4871, 3.1170, 3.7018, 4.2521, 4.7749, 5.2749; D
9. 22.40000, 21.92000, 

ca080203
10.5.00

ssnd

1

0 10

_3

sand22.01600, 21.99680,
22.00064, 21.99987,
22.00003, 21.99999,
22.00000, 22.00000;
convergent, sum − 22

11. 0.44721, 1.15432, 
1.98637, 2.88080,
3.80927, 4.75796,
5.71948, 6.68962,
7.66581, 8.64639;
divergent

13. 1.00000, 1.33333, 

ssnd

sand
12

2

20

1.50000, 1.60000, 
1.66667, 1.71429, 
1.75000, 1.77778, 
1.80000, 1.81818; 
convergent, sum − 2

15. (a) Yes   (b) No    17. D    19. 25
3     21. 400

9     
23. 1

7    25. D    27. D    29. D    31. 9    33. D    

35. 
sin 100

1 2 sin 100
    

37. D    39. D    41. eyse 2 1d    43. 3
2    45. 11

6     
47. e 2 1    
49. (b) 1   (c) 2   (d) All rational numbers with a terminating 
decimal representation, except 0
51. 8

9    53. 838
333    55. 45,679y37,000    

57. 2
1
5

, x ,
1
5

; 
25x

1 1 5x
    

10

0 11

ssnd

sand
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 APPENDIX I  Answers to Odd-Numbered Exercises A113

13. (a) o
`

n−0
 s21dnsn 1 1dx n, R − 1

(b) 
1
2

 o
`

n−0
 s21dnsn 1 2dsn 1 1dx n, R − 1

(c) 
1
2

 o
`

n−2
 s21dnnsn 2 1dx n, R − 1

15. ln 5 2 o
`

n−1
 

x n

n5n , R − 5    

17. o
`

n−0
s21dn4nsn 1 1dx n11, R − 1

4

19.  o
`

n−0
s2n 1 1dx n, R − 1

21. o
`

n−0
 s21dnx 2n12, R − 1 1

0 1_1

f

s¡

s£

s™
s¢

s∞

23. o
`

n−0
 

2x 2n11

2n 1 1
, R − 1 3

2

!3

!2

s¡
f

s£ s™

25. C 1 o
`

n−0
 

t 8n12

8n 1 2
, R − 1    

27. C 1 o
`

n−1
 s21dn 

x n13

nsn 1 3d
, R − 1

29. 0.044522    31. 0.000395
33. 0.19740    
35. (b) 0.920    39. f21, 1g, f21, 1d, s21, 1d    

EXERCISES 11.10  �  PAGE 771

1. b8 − f s8ds5dy8!    3. o
`

n−0
 sn 1 1dx n, R − 1

5. x 1 x 2 1 1
2 x 3 1 1

6 x 4

7. 2 1 1
12 sx 2 8d 2 1

288 sx 2 8d2 1 5
20,736 sx 2 8d3

9. 
1
2

1
s3
2 Sx 2

!

6 D 2
1
4 Sx 2

!

6 D2

2
s3
12 Sx 2

!

6 D3

11. o
`

n−0
 sn 1 1dx n, R − 1    13. o

`

n−0
 s21dn 

x 2n

s2nd!
, R − `

EXERCISES 11.6  �  PAGE 742
Abbreviations: AC, absolutely convergent; 
CC, conditionally convergent
1. (a) D   (b) C   (c) May converge or diverge    
3. CC    5. AC    7. AC    9. D    11. AC    
13. AC    15. D    17. AC    19. AC    21. AC    
23. D    25. AC    27. AC    29. D    31. CC    
33. AC    35. D    37. AC    39. D    41. AC
43. (a) and (d)

47. (a) 661
960 < 0.68854, error , 0.00521    

(b) n > 11, 0.693109

53. (b) o
`

n−2
 

s21dn

n ln n
; o

`

n−1
 

s21dn21

n

EXERCISES 11.7  �  PAGE 746
1. D    3. CC    5. D    7. D    9. C    11. C
13. C    15. C    17. C    19. C    21. D    23. D    
25. C    27. C    29. C    31. D     
33. C    35. D    37. C    

EXERCISES 11.8  �  PAGE 751
1. A series of the form o `n−0 cnsx 2 adn, where x is a variable  
and a and the cn’s are constants
3. 1, s21, 1d    5. 1, f21, 1d    
7. `, s2`, `d    9. 4, f24, 4g
11. 1

4, (21
4, 14g    13. 2, f22, 2d

15. 1, f1, 3g    17. 2, f24, 0d
19. `, s2`, `d    21. b, sa 2 b, a 1 bd    23. 0, h 1

2j    

25. 1
5, f 3

5, 1g    27. `, s2`, `d    

29. (a) Yes   (b) No    
31. k k    33. No
35. (a) s2`, `d
 (b), (c) 2

8

_2

_8

s¸

J¡

s£ s∞s¡

s™ s¢     

37. s21, 1d, f sxd − s1 1 2xdys1 2 x 2d    41. 2    

EXERCISES 11.9  �  PAGE 757

1. 10    3. o
`

n−0
 s21dnx n, s21, 1d    5. 2 o

`

n−0
 

1
3 n11 x n, s23, 3d

7. o
`

n−0
 
s21dn x 4n12

2 4n14 , s22, 2d    9. 2
1
2

2 o
`

n−1
 
s21dn 3x n

2n11 , s22, 2d

11. o
`

n−0
 S21 2

1
3n11D x n, s21, 1d
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A114 APPENDIX I  Answers to Odd-Numbered Exercises

49. 0.99619

51. (a) 1 1 o
`

n−1
 
1 ? 3 ? 5 ? ∙ ∙ ∙ ? s2n 2 1d

2nn!
 x 2n

 (b) x 1 o
`

n−1
 
1 ? 3 ? 5 ? ∙ ∙ ∙ ? s2n 2 1d

s2n 1 1d2nn!
 x 2n11

53. C 1 o
`

n−0
 S 1

2

nD 
x 3n11

3n 1 1
, R − 1

55. C 1 o
`

n−1
 s21dn 

1
2ns2nd!

 x 2n, R − `    

57. 0.0059    59. 0.40102    61. 1
2    63. 1

120    65. 3
5

67. 1 2 3
2 x 2 1 25

24 x 4    69. 1 1 1
6 x 2 1 7

360 x 4     

71. x 2 2
3 x 4 1 23

45 x 6

73. e2x 4
    75. ln 85    

77. 1ys2
 

    79. e 3 2 1    

EXERCISES 11.11  �  PAGE 780

1. (a)  T0sxd − 0, T1sxd − T2sxd − x, T3sxd − T4sxd − x 2 1
6 x 3,

T5sxd − x 2 1
6 x 3 1 1

120 x 5

5

_5

2π_2π
fT¸

T¡=T™

T£=T¢

T∞=Tß

(b) x f T0 T1 − T2 T3 − T4 T5

!y4 0.7071 0 0.7854   0.7047 0.7071

!y2 1 0 1.5708   0.9248 1.0045
! 0 0 3.1416 22.0261 0.5240

(c) As n increases, Tnsxd is a good approximation to f sxd on a  
larger and larger interval.

3. e 1 esx 2 1d 1 1
2 esx 2 1d2 1 1

6 esx 2 1d3

 

12

0 2.5_1
f
T£

15. o
`

n−0
 
sln 2dn

n!
 x n, R − `    17. o

`

n−0
 

x 2n11

s2n 1 1d!
, R − `    

19. 50 1 105sx 2 2d 1 92sx 2 2d2 1 42sx 2 2d3 1 10sx 2 2d4 
1 sx 2 2d5, R − `

21. ln 2 1 o
`

n−1
 s21d n11 

1
n2n  sx 2 2dn, R − 2

23. o
`

n−0
 
2ne6

n!
 sx 2 3dn, R − `

25. o
`

n−0
 

s21dn11

s2n 1 1d!
 sx 2 !d2n11, R − `

31. 1 2
1
4

x 2 o
`

n−2
 
3 ? 7 ? ∙ ∙ ∙ ? s4n 2 5d

4 n ? n!
x n, R − 1

33. o
`

n−0
 s21dn 

sn 1 1dsn 1 2d
2n14  x n, R − 2

35. o
`

n−0
 s21dn 

1
2n 1 1

 x 4n12, R − 1

37. o
`

n−0
 s21dn  

22n

s2nd!
 x 2n11, R − `

39. o
`

n−0
 s21dn 

1
2 2ns2nd!

 x 4n11 , R − `    

41. 
1
2

x 1 o
`

n−1
 s21dn 

1 ? 3 ? 5 ? ∙ ∙ ∙ ? s2n 2 1d
n!23n11  x 2n11, R − 2

43. o
`

n−1
 s21dn11 2

2n21

s2nd!
 x 2n, R − `

45. o
`

n−0
 s21dn 

1
s2nd!

 x 4n, R − `    

1.5

1.5

_1.5

_1.5

Tˆ=T˜=T¡¸=T¡¡

T¢=T∞=Tß=T¶

T¸=T¡=T™=T£

f

47. o
`

n−1
 

s21dn21

sn 2 1d!
 x n, R − `    

6

_6

4_3

T¡

T¡

T£

T£

T™
T™

T¢

T¢

Tß

Tß

T∞

T∞

f

f
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 APPENDIX I  Answers to Odd-Numbered Exercises A115

23. 0.17365    25. Four    27. 21.037 , x , 1.037    
29. 20.86 , x , 0.86    31. 21 m, no    
37. (c) They differ by about 8 3 1029 km.

CHAPTER 11 REVIEW  �  PAGE 784
True-False Quiz
1. False    3. True    5. False    7. False    9. False
11. True    13. True    15. False    17. True    
19. True    21. True

Exercises
1. 1

2    3. D    5. 0    7. e 12     9. 2    11. C     
13. C    15. D    17. C    19. C    21. C    23. CC
25. AC    27. 1

11    29. !y4    31. e2e    35. 0.9721    
37. 0.189 762 24, error , 6.4 3 1027    
41. 4, f26, 2d    43. 0.5, [2.5, 3.5)

45. 
1
2

 o
`

n−0
 s21dnF 1

s2nd!
 Sx 2

!

6 D2n

1
s3

s2n 1 1d!
 Sx 2

!

6 D2n11G
47. o

`

n−0
 s21dnx n12, R − 1    49. ln 4 2 o

`

n−1
 

x n

n4n , R − 4    

51. o
`

n−0
 s21dn 

x 8n14

s2n 1 1d!
, R − `

53. 
1
2

1 o
`

n−1
 
1 ? 5 ? 9 ? ∙ ∙ ∙ ? s4n 2 3d

n!26n11  x n, R − 16

55. C 1 ln | x | 1 o
`

n−1
 

x n

n ? n!

57. (a) 1 1 1
2 sx 2 1d 2 1

8 sx 2 1d2 1 1
16 sx 2 1d3

 (b) 1.5

20

T£

f

   (c) 0.000 006

59. 2 1
6    

PROBLEMS PLUS  �  PAGE 787
1. 15!y5! − 10,897,286,400
3. (b) 0 if x − 0, s1yxd 2 cot x if x ± k!, k an integer
5. (a) sn − 3 ? 4n, ln − 1y3n, pn − 4ny3n21   (c) 2

5 s3
 

9. 
3!

4
    11. s21, 1d, 

x 3 1 4x 2 1 x
s1 2 xd4     13. ln 12    

17. (a) 250
101! se2sn21d!y5 2 e2n!y5d   (b) 250

101!

19. 
!

2s3 
2 1

21. 2S!

2
2 !kD2

, where k is a positive integer

5. 2Sx 2
!

2 D 1
1
6 Sx 2

!

2 D3

1.1

_1.1

T£

T£

f

f

π0 π
2

7. sx 2 1d 2 1
2sx 2 1d2 1 1

3sx 2 1d3

T£
2

_4

3_1
f

9. x 2 2x 2 1 2x 3 

_4f

3

_1 1.5

T£

11. T5sxd − 1 2 2Sx 2
!

4 D 1 2Sx 2
!

4 D2

2
8
3Sx 2

!

4 D3

 1
10
3 Sx 2

!

4 D4

2
64
15Sx 2

!

4 D5

5

_2

T™
T¢

T™

T£

T£

T¢ T∞

T∞

f

f
20

π
4

π
2

13. (a) 1 2 sx 2 1d 1 sx 2 1d2   (b) 0.006 482 7

15. (a) 1 1 2
3sx 2 1d 2 1

9sx 2 1d2 1 4
81sx 2 1d3   (b) 0.000 097

17. (a) 1 1 1
2 x 2   (b) 0.0015    

19. (a) 1 1 x 2   (b) 0.000 06    21. (a) x 2 2 1
6 x 4  (b) 0.042   
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CHAPTER 12

EXERCISES 12.1  �  PAGE 796
1. s4, 0, 23d    3. C; A
5. A line parallel to the y-axis and 4 units to the right of it; a verti-
cal plane parallel to the yz-plane and 4 units in front of it.

x=4

x

y

0 4

 

y

x

4

0

z

7. A vertical plane that z

y
2

x
2

0

y=2-x

y=2-x, z=0

intersects the xy-plane in
the line y − 2 2 x, z − 0

9. (a) |PQ| − 6, | QR | − 2s10, | RP | − 6; isosceles triangle
11. (a) No   (b) Yes    
13. sx 1 3d2 1 sy 2 2d2 1 sz 2 5d2 − 16; 
sy 2 2d2 1 sz 2 5d2 − 7, x − 0 (a circle)
15. sx 2 3d2 1 sy 2 8d2 1 sz 2 1d2 − 30
17. s1, 2, 24d, 6    19. s2, 0, 26d, 9ys2 

21. (b) 5
2, 12 s94 , 12 s85 

23. (a) sx 2 2d2 1 sy 1 3d2 1 sz 2 6d2 − 36 
(b) sx 2 2d2 1 sy 1 3d2 1 sz 2 6d2 − 4 
(c) sx 2 2d2 1 sy 1 3d2 1 sz 2 6d2 − 9
25. A plane parallel to the yz-plane and 5 units in front of it
27. A half-space consisting of all points to the left of the  
plane y − 8 
29. All points on or between the horizontal planes z − 0 and z − 6
31. All points on a circle with radius 2 with center on the z-axis 
that is contained in the plane z − 21
33. All point on a sphere with radius 2 and center s0, 0, 0d
35. All points on or between spheres with radii 1 and s5  and 
centers s0, 0, 0d
37. All points on or inside a circular cylinder of radius 3 with axis 
the y-axis
39. 0 , x , 5    41. r 2 , x 2 1 y 2 1 z2 , R2

43. (a) (2, 1, 4)   (b) 

P

A

C

B

0

z

yx

L™

L¡

45. 14x 2 6y 2 10z − 9, a plane perpendicular to AB

47. 2s3 2 3

EXERCISES 12.2  �  PAGE 805
1. (a) Scalar   (b) Vector   (c) Vector   (d) Scalar

3. AB
l

− DC
l

, DA
l

− CB
l

, DE
l

− EB
l

, EA
l

− CE
l

5. (a) 
vu+v

u

 (b)

w

u

u+w

 (c) 
w v

v+w

 (d)
_v

u

u-v

 (e) 

w
v

u

v+u+w

 (f) _w
u

_v

u-w-v

7. c − 1
2 a 1 1

2 b, d − 1
2 b 2 1

2 a

9. a − k 3, 1 l 11. a − k21, 4 l

 x

y

A(_2, 1)

0

B(1, 2)

a

 
x

y

A(3, _1)
0

B(2, 3)

a

13. a − k2, 0, 22 l 15. k5, 2 l
z

y

0

A(0, 3, 1)

a
B(2, 3, _1)x

 

x0

y

k6, _2l

k5, 2l
k_1, 4l

17. k3, 8, 1 l

y

z

k3, 8, 1l

k0, 8, 0l

k3, 0, 1l

x

19. k6, 3 l,  k6, 14 l, 5, 13
21. 6 i 2 3 j 2 2 k, 20 i 2 12 j, s29 , 7

23. K 3

s10 
, 2

1

s10 L    25. 8
9 i 2 1

9 j 1 4
9 k    27. 608

29. k2, 2s3l     31. < 45.96 ftys, <38.57 ftys

33. 100s7 < 264.6 N, <139.1°

35. s493 < 22.2 miyh, N8°W
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 APPENDIX I  Answers to Odd-Numbered Exercises A117

EXERCISES 12.5  �  PAGE 831
1. (a) True   (b) False   (c) True   (d) False    
(e) False   (f ) True   (g) False   (h) True   (i) True    
( j) False   (k) True
3. r − s2 i 1 2.4 j 1 3.5 kd 1 ts3 i 1 2 j 2 kd;  
x − 2 1 3t, y − 2.4 1 2t, z − 3.5 2 t
5. r − si 1 6kd 1 t si 1 3 j 1 kd;  
x − 1 1 t, y − 3t, z − 6 1 t
7. x − 2 1 2t, y − 1 1 1

2 t, z − 23 2 4t;
sx 2 2dy2 − 2y 2 2 − sz 1 3dys24d
9. x − 28 1 11t, y − 1 2 3t, z − 4; 

x 1 8
11

−
y 2 1

23
, z − 4

11. x − 26 1 2t, y − 2 1 3t, z − 3 1 t;  
sx 1 6dy2 − sy 2 2dy3 − z 2 3
13. Yes
15. (a) sx 2 1dys21d − s y 1 5dy2 − sz 2 6dys23d
(b) s21, 21, 0d, s23

2 , 0, 23
2d, s0, 23, 3d

17. rstd − s6 i 2 j 1 9kd 1 ts i 1 7 j 2 9kd, 0 < t < 1
19. Skew    21. s4, 21, 25d    23. x 2 2y 1 5z − 0
25. x 1 4y 1 z − 4    27. 5x 2 y 2 z − 7
29. 6x 1 6y 1 6z − 11    31. x 1 y 1 z − 2    
33. 5x 2 3y 2 8z − 29    35. 8x 1 y 2 2z − 31
37. x 2 2y 2 z − 23    39. 3x 2 8y 2 z − 238
41. 

0

z

y

x

(0, 0, 10)

(5, 0, 0)

(0, 2, 0)

43.

0

z

y

x

”0, 0,    ’

(1, 0, 0)

(0, _2, 0)

3
2

45. s22, 6, 3d    47. (2
5, 4, 0)    49. 1, 0, 21    

51. Perpendicular    53. Neither, cos21S2
1

s6 D < 114.1°    

55. Parallel    

57. (a) x − 1, y − 2t, z − t   (b) cos21S 5
3s3D < 15.88

59. x − 1, y 2 2 − 2z    
61. x 1 2y 1 z − 5    
63. sxyad 1 syybd 1 szycd − 1
65. x − 3t, y − 1 2 t, z − 2 2 2t
67. P2 and P3 are parallel, P1 and P4 are identical

69. s61y14    71. 18
7     73. 5ys2s14 d    

77. 1ys6    79. 13ys69 

81. (a) x − 325 1 440t, y − 810 2 135t, z − 561 1 38t, 
0 < t < 1   (b) No

EXERCISES 12.6  �  PAGE 839
1. (a) Parabola 
(b) Parabolic cylinder with rulings parallel to the z-axis 
(c) Parabolic cylinder with rulings parallel to the x-axis

37. !2177.39 i 1 211.41 j, !177.39 i 1 138.59 j;  
!275.97 N, !225.11 N
39. (a) At an angle of 43.48 from the bank, toward upstream 
(b) 20.2 min
41. 6si 1 4 jdys17    43. 0

45. (a), (b) y

x0

a

b

c

sa

tb

    (d) s − 9
7, t − 11

7

47. A sphere with radius 1, centered at sx0, y0, z0 d

EXERCISES 12.3  �  PAGE 812
1. (b), (c), (d) are meaningful    3. 23.6    5. 19    7. 1    
9. 14s3     11. u ! v − 1

2, u ! w − 21
2

15. cos21S 1

s5 D < 63°    17. cos21(25
6) < 146°

19. cos21S 7

s130 D < 52°    21. 48°, 75°, 57°

23. (a) Orthogonal   (b) Neither     
(c) Parallel   (d) Orthogonal
25. Yes    27. si 2 j 2 kdys3  for s2i 1 j 1 kdys3 g
29. 45°    31. 0° at s0, 0d, !8.1° at s1, 1d
33. 2

3, 13, 23; 48°, 71°, 48°    

35. 1ys14 , 22ys14 , 23ys14 ; 748, 1228, 1438

37. 1ys3, 1ys3, 1ys3; 55°, 55°, 55°    39. 4, k220
13, 48

13 l
41. 1

9, k 4
81, 7

81, 2 4
81 l      43. 27ys19 , 2 21

19 i 1 21
19 j 2 7

19 k

47. k0, 0, 22s10 l  or any vector of the form

ks, t, 3s 2 2s10l , s, t [ R

49. 144 J    51. 2400 coss40°d < 1839 ft@lb    
53. 13

5     55. cos21(1ys3) < 55°  

EXERCISES 12.4  �  PAGE 821
1. 15 i 2 10 j 2 3 k    3. 14 i 1 4 j 1 2 k    
5. 23

2 i 1 7
4 j 1 2

3 k    7. s1 2 td i 1 st 3 2 t 2d k    
9. 0    11. i 1 j 1 k    
13. (a) Scalar   (b) Meaningless   (c) Vector    
(d) Meaningless   (e) Meaningless   (f ) Scalar
15. 96s3; into the page   17. k27, 10, 8 l, k 7, 210, 28 l

19. K2
1

3s3 
, 2

1
3s3 

, 
5

3s3 L, K 1
3s3 , 

1
3s3 , 2

5
3s3 L

27. 20    29. (a) k0, 18, 29 l    (b) 9
2 s5 

31. (a)  k13, 214, 5 l    (b) 1
2 s390

33. 9    35. 16    39. 10.8 sin 80° < 10.6 N ? m
41. <417 N    43. 60°
45. (b) s97y3    53. (a) No   (b) No   (c) Yes
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A118 APPENDIX I  Answers to Odd-Numbered Exercises

17. Ellipsoid 

x y

z
(0, 0, 2)

(3, 0, 0) (0, 5, 0)

19. Hyperbolic paraboloid  

ca090619
10.12.00

z

y

x

21. VII    23. II    25. VI    27. VIII

29. Circular paraboloid z

y

x

31. y 2 − x 2 1
z2

9
 

y

x

z

Elliptic cone with axis the  
y-axis

33. y − z2 2
x 2

2
 z

x

y

Hyperbolic paraboloid

3. Circular cylinder 5. Parabolic cylinder

y

z

x

 

y
x

z

7. Hyperbolic cylinder

y

x

y

9. (a) x − k, y2 2 z2 − 1 2 k2, hyperbola sk ±61d; 
y − k, x 2 2 z2 − 1 2 k2, hyperbola sk ±61d; 
z − k, x 2 1 y 2 − 1 1 k2, circle 
(b) The hyperboloid is rotated so that it has axis the y-axis 
(c) The hyperboloid is shifted one unit in the negative y-direction
11. Elliptic paraboloid with axis the x-axis

ms81200
6et 12.6.11
04.01.07

x

z

y

13. Elliptic cone with axis the x-axis
z

yx

15. Hyperboloid of one sheet with axis the x-axis 
z

y
x
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 APPENDIX I  Answers to Odd-Numbered Exercises A119

Exercises
1. (a) sx 1 1d2 1 sy 2 2d2 1 sz 2 1d2 − 69 
(b) sy 2 2d2 1 sz 2 1d2 − 68, x − 0 
(c) Center s4, 21, 23d, radius 5
3. u ! v − 3s2; | u 3 v | − 3s2; out of the page    
5. 22, 24    7. (a) 2   (b) 22   (c) 22   (d) 0    
9. cos21( 1

3 ) < 71°    11. (a) k4, 23, 4 l    (b) s41y2    
13. !166 N, !114 N    
15. x − 4 2 3t, y − 21 1 2t, z − 2 1 3t    
17. x − 22 1 2t, y − 2 2 t, z − 4 1 5t
19. 24x 1 3y 1 z − 214    21. (1, 4, 4)    23. Skew    
25. x 1 y 1 z − 4    27. 22ys26    
29. Plane 31. Cone

z

yx

 

x

y

z

0

33. Hyperboloid of two sheets 35. Ellipsoid
 z

x

y
(0, 2, 0)

 z

x y

(0, 1, 2)

(0, 2, 0)(1, 1, 0)

(0, 1, -2)

37. 4x 2 1 y 2 1 z2 − 16    

PROBLEMS PLUS  �  PAGE 844
1. ss3 2 3

2d m
3. (a) sx 1 1dys22cd − sy 2 cdysc 2 2 1d − sz 2 cdysc 2 1 1d 
(b) x 2 1 y 2 − t 2 1 1, z − t   (c) 4!y3
5. 20

CHAPTER 13

EXERCISES 13.1  �  PAGE 853
1. s21, 3d    3. i 1 j 1 k    5. k21, !y2, 0 l

7. 

3c3 Ans 10.1.5
09.21.04

y

x1

π

    9. 

x y

z

(0, 2, 0)

35. z − sx 2 1d2 1 sy 2 3d2 z

yx (1, 3, 0)

Circular paraboloid with  
vertex s1, 3, 0d and axis the  
vertical line x − 1, y − 3

37. 
sx 2 2d2

5
2

y2

5
1

sz 2 1d2

5
− 1 z

y

x

Hyperboloid of one sheet with  
center s2, 0, 1d and axis the  
horizontal line x − 2, z − 1

39. 

_404 x
_4 0 4y

_4

0z

4
   41.

_202 x_2 0 2y

z

_2

0

2

43. z

yx

0
z=œ„„„„„≈+¥

z=2

45. x − y 2 1 z2    47. 24x − y 2 1 z2, paraboloid

49. (a) 
x 2

s6378.137d2 1
y 2

s6378.137d2 1
z2

s6356.523d2 − 1

(b) Circle   (c) Ellipse

53. 

2
1
0

y
1

0
!1

x
1

0
!1

z

CHAPTER 12 REVIEW  �  PAGE 842
True-False Quiz
1. False    3. False    5. True    7. True    9. True
11. True    13. True    15. False    17. False    
19. False    21. True
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37.   39.

_1_1 0
1 1 0

x
_1

0z

y

1  

0
2 2

!2

0

2

!2

0
x

y

z

43. rstd − t i 1 1
2 st 2 2 1d j 1 1

2 st 2 1 1d k
45. rstd −  cos t i 1 sin t j 1 cos 2t k, 0 < t < 2!

47. x − 2 cos t, y − 2 sin t, z − 4 cos2t, 0 < t < 2!    49. Yes

51. (a) 

2

0

_2

_1 0 1

_1
0

1

EXERCISES 13.2  �  PAGE 860
1. (a) y

x0 1

1

RC

Q

P

r(4.5)

r(4.2)

r(4)

r(4.5)-r(4)

r(4.2)-r(4)

 (b), (d) 

y

x0 1

1

RC

Q

P

r(4.5)

r(4.2)

r(4)

r(4.5)-r(4)
0.5

r(4.2)-r(4)
0.2

T(4)

 (c) r9s4d − lim
h l 0

 
rs4 1 hd 2 rs4d

h
; Ts4d −

r9s4d
| r9s4d |

11. z

x
y

(3, 0, 2)
    13. 

x

z

y y=≈

15. 

x
2π

y

1

_1_2π

 

x

z
2

_2
2π_2π

 

y

z
2

_2

_1 1

    
x

y

z

(0, 0, 2)

17. rstd − k2 1 4t, 2t, 22t l, 0 < t < 1;  
x − 2 1 4t, y − 2t, z − 22t, 0 < t < 1
19. rstd − k1

2t, 21 1 4
3t, 1 2 3

4tl , 0 < t < 1; 

x − 1
2t, y − 21 1 4

3t, z − 1 2 3
4t, 0 < t < 1

21. II    23. V    25. IV
27. 

ca100121?
10.13.00

z

y
x

0

    29. y − exy2, z − ex, z − y 2

31. s0, 0, 0d, s1, 0, 1d
33.  35.

1

1 1

0 x

_1

0

0

z

y

_1
_1

    

x
y

z

0
0

0

1
2

3

_1

0.5
_0.5
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 APPENDIX I  Answers to Odd-Numbered Exercises A121

21. 6t 2ys9t 4 1 4t 2d3y2    23. 
s6 

2s3t 2 1 1d2     

25. 1
7 s19

14    27. 12x 2ys1 1 16x 6d3y2    
29. e x| x 1 2 |yf1 1 sxe x 1 e xd2g3y2

31. (21
2 ln 2, 1ys2); approaches 0    33. (a) P   (b) 1.3,  0.7

35. 

3c3 Ans 10.3.29
9.13.04

4

_4 4

_1

y=k(x)
y=x–@

37. 

5

_5 0
250

500100500

0z

y
x

 
0.6

50_5 t

"(t)

39. a is y − f sxd, b is y − "sxd

41. "std −
6s4 cos2t 2 12 cos t 1 13 

s17 2 12 cos td3y2

k(t)

t0 2π 4π 6π

 integer multiples of 2!

43. 6t 2ys4 t 2 1 9t 4d3y2

45. 1y(s2et)    47. k 2
3, 23, 13 l , k21

3, 23, 22
3 l , k22

3, 13, 23 l
49. x 2 2z − 24!, 2x 1 z − 2!

51. (x 1 5
2 )2 1 y 2 − 81

4 , x 2 1 (y 2 5
3 )2 − 16

9

5

2.5!7.5

!5

53. s21, 23, 1d    
55. 2x 1 y 1 4z − 7, 6x 2 8y 2 z − 23
65. 2yst 4 1 4t 2 1 1d    67. 2.07 3 1010 Å < 2 m

EXERCISES 13.4  �  PAGE 878
1. (a) 1.8 i 2 3.8 j 2 0.7k, 2.0 i 2 2.4 j 2 0.6k, 
2.8 i 1 1.8 j 2 0.3k, 2.8 i 1 0.8 j 2 0.4k
 (b) 2.4 i 2 0.8 j 2 0.5k, 2.58

3. (a), (c) y

0 x

r(_1)
rª(_1)

(_3, 2)

3c3 Ans 10.2.3
09.13.04

    (b) r9std − k1, 2t l

5. (a), (c) 

x

y

0

rª(0)

r(0)

(1, 1)

    (b) r9std − 2e 2 t i 1 e t j

7. (a), (c) y

0 x4

2

r(3π/4)

rª(3π/4)
”2œ„2, œ„2’

 (b) r9std − 4 cos t i 1 2 sin t j

9. r9std − K 1

2st 2 2
, 0, 2

2

t 3L
11. r9std − 2t i 2 2t sinst 2d j 1 2 sin t cos t k
13. r9std − st cos t 1 sin td i 1 etscos t 2 sin td j

1 scos2t 2 sin2td k
15. r9std − b 1 2tc    17. k 2

7, 37, 67 l     19. 3
5 j 1 4

5 k

21.  k1, 2t, 3t 2 l, k1ys14, 2ys14, 3ys14 l , k0, 2, 6t l, k6t 2, 26t, 2 l
23. x − 2 1 2t, y − 4 1 2t, z − 1 1 t
25. x − 1 2 t, y − t, z − 1 2 t
27. rstd − s3 2 4td i 1 s4 1 3td j 1 s2 2 6td k
29. x − t , y − 1 2 t , z − 2t
31. x − 2! 2 t, y − ! 1 t, z − 2! t
33. 66°    35. 2 i 2 4 j 1 32 k    
37. sln 2d i 1 s!y4d j 1 1

2 ln 2 k
39. tan t i 1 1

8st 2 1 1d4 j 1 (1
3 t 3 ln t 2 1

9 t 3)k 1 C
41. t 2 i 1 t 3 j 1 ( 2

3t 3y2 2 2
3) k    

47. 2t cos t 1 2 sin t 2 2 cos t sin t    49. 35

EXERCISES 13.3  �  PAGE 868
1. 10s10     3. e 2 e21    5. 1

27s13 3y2 2 8d    
7. 18.6833    9. 10.3311    11. 42
13. (a) sstd − s26  st 2 1d; 

rstssdd − S4 2
s

s26 D i 1 S 4s

s26 
1 1D j 1 S 3s

s26 
1 3D k

 (b) S4 2
4

s26 
, 

16

s26 
1 1, 

12

s26 
1 3D

15. s3 sin 1, 4, 3 cos 1d
17. (a) k1ys10 , (23ys10 ) sin t, (3ys10 ) cos tl , 
k0, 2cos t, 2sin t l   (b) 3

10

19. (a) 
1

e 2 t 1 1
ks2et, e 2 t, 21l , 

1
e2 t 1 1

k1 2 e 2 t, s2e t, s2e tl
 (b) s2e 2 tyse 2 t 1 1d2
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37. 
4 1 18t 2

s4 1 9t 2 
, 

6t

s4 1 9t 2 
    39. 0, 1    41. 

7

s30 
, Î 131

30
    

43. 4.5 cmys2, 9.0 cmys2    45. t − 1

CHAPTER 13 REVIEW  �  PAGE 881
True-False Quiz
1. True    3. False    5. False    7. False     
9. True    11. False    13. True

Exercises
1. (a) 

ca10r01a
10.13.00

z

y

x

(0, 1, 0)

(2, 1, 0)

 (b) r9std − i 2 ! sin !t j 1 ! cos !t k, 
r 0std − 2! 2 cos !t j 2 ! 2 sin !t k
3. rstd − 4 cos t i 1 4 sin t j 1 s5 2 4 cos tdk, 0 < t < 2!

5. 1
3 i 2 s2y! 2d j 1 s2y! dk    7. 86.631    9. 90°

11. (a) 
1

s13 
 k3 sin t, 23 cos t, 2l    (b) kcos t, sin t, 0l

 (c) 
1

s13 
 k22 sin t, 2 cos t, 3l

 (d) 
3

13 sin t cos t
 or 

3
13

 sec t csc t

13. 12y173y2    15. x 2 2y 1 2! − 0
17. vstd − s1 1 ln td i 1 j 2 e2t k,

| vstd | − s2 1 2 ln t 1 sln td2 1 e22 t  , astd − s1ytd i 1 e2t k
19. rstd − st 3 1 td i 1 st 4 2 td j 1 (3t 2 t 3) k
21. !37.3°, !157.4 m
23. (c) 22e2t vd 1 e2t R    

PROBLEMS PLUS  �  PAGE 884
1. (a) v − #Rs2sin #t i 1 cos #t jd   (c) a − 2#2r
3. (a) 90°, v0

2ys2td    
5. (a) <0.94 ft to the right of the table’s edge, <15 ftys
 (b) <7.6°   (c) <2.13 ft to the right of the table’s edge
7. 56°
9. sa2b3 2 a3b2dsx 2 c1d 1 sa3b1 2 a1b3dsy 2 c2d 

1 sa1b2 2 a2b1dsz 2 c3d − 0 

CHAPTER 14

EXERCISES 14.1  �  PAGE 899
1. (a) 227; a temperature of 215°C with wind blowing at  
40 kmyh feels equivalent to about 227°C without wind.
 (b) When the temperature is 220°C, what wind speed gives a 
wind chill of 230°C?  20 kmyh
 (c) With a wind speed of 20 kmyh, what temperature gives a wind 
chill of 249°C?  235°C

3.  vstd − k2t, 1 l 
(_2, 2)

0

y

x

v(2)

a(2)

3c3 Ans 10.4.3
9.13.04

 
astd − k21, 0 l 

| vstd | − st 2 1 1

5.  vstd − 23 sin t i 1 2 cos t j 

0

y

x

3c3 Ans 10.4.5
9.13.04

v ”   ’π
3

a ”   ’π
3

”   , œ„3’3
2

(0, 2)

(3, 0)

 
astd − 23 cos t i 2 2 sin t j 

| vstd | − s5 sin2 t 1 4

7.  vstd − i 1 2t j 

(1, 1, 2)

z

y

x

3c3 Ans 10.4.7
9.13.04

a(1)

v(1)

 
astd − 2 j 
| vstd | − s1 1 4t 2

9. k2t 1 1, 2t 2 1, 3t 2 l,  k2, 2, 6t l,  s9t 4 1 8t 2 1 2 

11. s2 i 1 e t j 2 e2t k, e t j 1 e2t k, e t 1 e2t

13. e t fscos t 2 sin td i 1 ssin t 1 cos td j 1 st 1 1dkg,
 e t f22 sin t i 1 2 cos t j 1 st 1 2dkg, e tst 2 1 2t 1 3 
15. vstd − s2t 1 3d i 2 j 1 t 2 k, 
rstd − st 2 1 3td i 1 s1 2 td j 1 ( 1

3t 3 1 1) k
17. (a) rstd − ( 1

3t 3 1 t) i 1 st 2 sin t 1 1d j 1 ( 1
4 2 1

4 cos 2t) k
 (b) 

3c3 Ans 10.4.15b
9.13.04

_2000200
x

_10
0

10
y

z
0

0.2
0.4
0.6

19. t − 4    
21. rstd − t i 2 t j 1 5

2 t 2 k, | vstd | − s25t 2 1 2
23. (a) <3535 m   (b) <1531 m   (c) 200 mys
25. !30 mys    27. < 544 ftys
29. 13.0° , $ , 36.0°, 55.4° , $ , 85.5°
31. s250, 250, 0d; 10s93 < 96.4 ftys
33. (a) 16 m (b) <23.6° upstream

ca100427a
10.13.00

40

_4

0

20

 

ca100427b
10.13.00

40

_12

0

12

35. The path is contained in a circle that lies in a plane perpen- 
dicular to c with center on a line through the origin in the direction 
of c.
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 APPENDIX I  Answers to Odd-Numbered Exercises A123

23. z − y, plane through the x-axis
z

x y
0

25. 4x 1 5y 1 z − 10, plane 

0

z

y
x

(0, 0, 10)

(2.5, 0, 0)
(0, 2, 0)

27. z − sin x, cylinder 

z

y
x

29. z − x 2 1 4y 2 1 1, elliptic paraboloid 

z

yx

(0, 0, 1)

31. z − s4 2 4x 2 2 y 2 

, 

x y

z

(0, 0, 2)

(1, 0, 0) (0, 2, 0)

 top half of ellipsoid

33. <56, <35    35. 11°C, 19.5°C    37. Steep; nearly flat
39. h

0 m20 40 60 80 100 120 140

0.5
1

1.5
2

2.5

k=18.5
k=25
k=30
k=40

B(m, h)=k

  No

 (d) A function of wind speed that gives wind-chill values when the 
temperature is 25°C
 (e) A function of temperature that gives wind-chill values when the 
wind speed is 50 kmyh
3. <94.2; the manufacturer’s yearly production is valued at 
$94.2 million when 120,000 labor hours are spent and $20 million 
in capital is invested.
5. (a) <20.5; the surface area of a person 70 inches tall who 
weighs 160 pounds is approximately 20.5 square feet.
7. (a) 25; a 40-knot wind blowing in the open sea for 15 h will  
create waves about 25 ft high.
 (b) f s30, td is a function of t giving the wave heights produced by 
30-knot winds blowing for t hours.
 (c) f sv, 30d is a function of v giving the wave heights produced by 
winds of speed v blowing for 30 hours.
9. (a) 1   (b) R 2   (c) f21, 1g
11. (a) 3   
(b) hsx, y, zd | x 2 1 y 2 1 z 2 , 4, x > 0, y > 0, z > 0j, interior of 
a sphere of radius 2, center the origin, in the first octant
13. hsx, yd | x > 2, y > 1j y

0 x2

1

15. 5sx, yd | 19 x
2 1 y 2 , 16  

ca110105
10.31.00

y

x0

≈+¥=11
9

17. hsx, yd | y ± 2xj y

0 x

y=_x

19. hsx, yd | y > x 2, x ± 61j 

ca090607
10.13.00

y

x0 1_1

y=≈

21. hsx, y, zd |22 < x < 2, 23 < y < 3, 21 < z < 1j
z

y
x

(2, 0, 0)
(0, 3, 0)

(0, 0, 1)
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A124 APPENDIX I  Answers to Odd-Numbered Exercises

55. y

0 x

57. 

0

_2 0 2 2 0 _2y x

z

59. 

1.0

0.5z

0.0

4 0
x

_4
4

0y
_4

61. (a) C   (b) II    63. (a) F   (b) I    
65. (a) B   (b) VI    67. Family of parallel planes    
69. Family of circular cylinders with axis the x-axis sk . 0d
71. (a) Shift the graph of f  upward 2 units
 (b) Stretch the graph of f  vertically by a factor of 2
 (c) Reflect the graph of f  about the xy-plane
 (d) Reflect the graph of f  about the xy-plane and then shift it 
upward 2 units

73. 

0

20

0

_20

_40
y 50_5 x5

_5

z

 f  appears to have a maximum value of about 15. There are two 
local maximum points but no local minimum point.

75. 10

5

0

_5

_10

y2 0 _2x

2
0

_2

z

 The function values approach 0 as x, y become large; as sx, yd 
approaches the origin, f  approaches 6` or 0, depending on the 
direction of approach.

41.   43. 

ca110113
10.28.00

z

14

yx

 
5

y
x

z

45. x 2 2 y 2 − k y

x
0123

_3
_2

_1

0 1 2 3
_1
_2
_3

47. y − 2sx 1 k 49. y − ke2x

y

x

0
_1
_2

1
2

 

3c3 Ans 11.1.19
09.16.04

y

x0
0

1 2 3

_1
_2

_3

51. x 2 1 y 2 − k 3 sk > 0d
y

x
10 2

3
4

5

53. x 2 1 9y 2 − k
y

0 x

4321

 

y

x

z

z=4

z=3

z=2

z=1
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 APPENDIX I  Answers to Odd-Numbered Exercises A125

13.  

_2 0
2x

0
2

y

_20

0

20
z

_2

 f sx, yd − x 2y 3

 
_2

_20
2x

0
2

y

_20

0

20
z

 fxsx, yd − 2xy 3

 
_2 0

2x
0

2
y

0

20

40

_2

z

 fysx, yd − 3x 2y 2

15. fxsx, yd − 4x 3 1 5y 3, fysx, yd − 15xy 2

17. fxsx, td − 2t 2e2x, ftsx, td − 2te2x

19. 
−z
−x

−
1

x 1 t 2 , 
−z
−t

−
2t

x 1 t 2

21. fxsx, yd − 1yy, fysx, yd − 2xyy 2

23. fxsx, yd −
sad 2 bcdy
scx 1 dyd2 , fysx, yd −

sbc 2 addx
scx 1 dyd2

25. tusu, vd − 10uvsu2v 2 v 3d4, tvsu, vd − 5su 2 2 3v 2dsu2v 2 v 3d 4

27. Rpsp, qd −
q 2

1 1 p2q4 , Rqsp, qd −
2pq

1 1 p2q4

29. Fxsx, yd − cosse xd, Fysx, yd − 2cosse yd
31. fx − 3x 2yz 2, fy − x 3z 2 1 2z, fz − 2x 3yz 1 2y
33. −wy−x − 1ysx 1 2y 1 3zd, −wy−y − 2ysx 1 2y 1 3zd, 
−wy−z − 3ysx 1 2y 1 3zd
35. −py−t − 2t 3yst 4 1 u 2 cos v , 

 −py−u − u cos vyst 4 1 u 2 cos v ,
−py−v − 2u 2 sin vy(2st 4 1 u 2 cos v )
37. hx − 2xy cosszytd, hy − x 2 cosszytd, 
 hz − s2x 2yytd sinszytd, ht − sx 2yzyt 2d sinszytd
39. −uy−xi − xiysx1

2 1 x2
2 1 ∙ ∙ ∙ 1 xn

2 
41. 1    43. 1

6    45. fxsx, yd − y 2 2 3x 2y, fysx, yd − 2xy 2 x 3

47. 
−z
−x

− 2
x

3z
, 

−z
−y

− 2
2y
3z

    

49. 
−z
−x

−
yz

e z 2 xy
, 

−z
−y

−
xz

e z 2 xy

77. If c − 0, the graph is a cylindrical surface. For c . 0, the 
level curves are ellipses. The graph curves upward as we leave  
the origin, and the steepness increases as c increases. For c , 0, 
the level curves are hyperbolas. The graph curves upward in the  
y-direction and downward, approaching the xy-plane, in the  
x-direction giving a saddle-shaped appearance near (0, 0, 1).
79. c − 22, 0, 2    81. (b) y − 0.75x 1 0.01

EXERCISES 14.2  �  PAGE 910
1. Nothing; if f  is continuous, f s3, 1d − 6    3. 25

2

5. 56    7. !y2    9. Does not exist    11. Does not exist
13. 0    15. Does not exist    17. 2    19. s3     
21. Does not exist
23. The graph shows that the function approaches different num-
bers along different lines.
25. hsx, yd − s2x 1 3y 2 6d2 1 s2x 1 3y 2 6; 
hsx, yd | 2x 1 3y > 6j
27. Along the line y − x    29. R2    
31. hsx, yd | x 2 1 y 2 ± 1j    33. hsx, yd | x 2 1 y 2 < 1, x > 0j
35. hsx, y, zd | x 2 1 y 2 1 z 2 < 1j    
37. hsx, yd | sx, yd ± s0, 0dj    39. 0    41. 21

43. 

_2
0

2 x_2 0 2y

z

_1
0
1
2

  f  is continuous on R 2

EXERCISES 14.3  �  PAGE 923
1. (a) The rate of change of temperature as longitude varies, with 
latitude and time fixed; the rate of change as only latitude varies; 
the rate of change as only time varies
 (b) Positive, negative, positive
3. (a) fT s215, 30d < 1.3; for a temperature of 215°C and wind 
speed of 30 kmyh, the wind-chill index rises by 1.3°C for each 
degree the temperature increases. fvs215, 30d < 20.15; for a  
temperature of 215°C and wind speed of 30 kmyh, the wind-chill 
index decreases by 0.15°C for each kmyh the wind speed  
increases.
 (b) Positive, negative   (c) 0
5. (a) Positive   (b) Negative    
7. (a) Positive   (b) Negative    
9. c − f, b − fx, a − fy

11. fxs1, 2d − 28 − slope of C1, fys1, 2d − 24 − slope of C2

z

y
0

x

(1, 2, 8)
C¡

(1, 2)
2

16

4

z

y
0

x

(1, 2, 8)

C™

(1, 2)
2

16

4
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A126 APPENDIX I  Answers to Odd-Numbered Exercises

51. (a) f 9sxd, t9syd   (b) f 9sx 1 yd,  f 9sx 1 yd
53. fxx − 12x 2y 2 12xy 2, fxy − 4x 3 2 12x 2y − fyx, fyy − 24x 3

55. zxx −
8y

s2x 1 3yd3 , zxy −
6y 2 4x

s2x 1 3yd3 − zyx, 

zyy − 2
12x

s2x 1 3yd3

57. vss − 2 cosss 2 2 t 2d 2 4s 2 sinss 2 2 t 2d,  
vst − 4st sinss 2 2 t 2d − vts , 
vt t − 22 cosss 2 2 t 2d 2 4t 2 sinss 2 2 t 2d
63. 24xy 2 2 6y, 24x 2y 2 6x   65. s2x 2y 2z 5 1 6xyz 3 1 2zde xyz 2

67. 3
4 vsu 1 v 2d25y2    69. 4ysy 1 2zd3, 0    71. 6yz 2    

73. <12.2, <16.8, <23.25    83. R 2yR1
2

87. 
−T
−P

−
V 2 nb

nR
, 

−P
−V

−
2n 2a
V 3 2

nRT
sV 2 nbd2

91. (a) !0.0545; for a person 70 inches tall who weighs 
160 pounds, an increase in weight causes the surface area to 
increase at a rate of about 0.0545 square feet per pound. 
(b) !0.213; for a person 70 inches tall who weighs 160 pounds, 
an increase in height (with no change in weight) causes the surface 
area to increase at a rate of about 0.213 square feet per inch of 
height.

93. −Py−v − 3Av 2 2
Bsmtyxd2

v 2  is the rate of change of the 

 power needed during flapping mode with respect to the bird’s veloc-
ity when the mass and fraction of flapping time remain constant; 

 −Py−x − 2
2Bm2t 2

x 3v
 is the rate at which the power changes 

 when only the fraction of time spent in flapping mode varies; 

 −Py−m −
2Bmt2

x 2v
 is the rate of change of the power when only the 

 mass varies.
97. No    99. x − 1 1 t, y − 2, z − 2 2 2t    103. 22
105. (a) 

_0.2

0.2
0

_1
0

1
y

1 0 _1
x

z

 (b) fxsx, yd −
x 4y 1 4x 2y 3 2 y 5

sx 2 1 y 2 d2 , fysx, yd −
x 5 2 4x 3y 2 2 xy 4

sx 2 1 y 2 d2

 (c) 0, 0   (e) No, since fxy and fyx are not continuous.

EXERCISES 14.4  �  PAGE 934
1. z − 4x 2 y 2 6    3. z − x 2 y 1 1    5. x 1 y 1 z − 0

7. 

ca110405
10.28.00

400

200

0

y5 0 _5x
10 0 _10

z

9. 

y
x

z

1 1.50

1

1

2

3

0.5

11. 6x 1 4y 2 23    13. 2x 1 y 2 1    
15. 2x 1 2y 1 ! 2 4    19. 6.3    
21. 3

7 x 1 2
7 y 1 6

7 z; 6.9914    23. 4T 1 H 2 329; 129°F    
25. dz − 22e22x cos 2! t dx 2 2!e22x sin 2! t dt
27. dm − 5p4q3 dp 1 3p5q2 dq
29. dR − " 2 cos # d$ 1 2$" cos # d" 2 $" 2 sin # d#

31. Dz − 0.9225, dz − 0.9    33. 5.4 cm2    35. 16 cm3

37. <20.0165mt; decrease    39. 1
17 < 0.059 V

41. (a) 0.8264m 2 34.56h 1 38.02   (b) 18.801
43. «1 − Dx, «2 − Dy

EXERCISES 14.5  �  PAGE 943
1. 2tsy 3 2 2xy 1 3xy 2 2 x 2d

3. 
1

2st 
 cos x cos y 1

1

t 2
 sin x sin y

5. e yyzf2t 2 sxyzd 2 s2xyyz2 dg
7. −zy−s − 5sx 2 yd4s2st 2 t 2d, −zy−t − 5sx 2 yd4ss 2 2 2std

9. 
−z
−s

−
3 sin t 2 2t sin s

3x 1 2y
, 

−z
−t

−
3s cos t 1 2 cos s

3x 1 2y

11. 
−z

−s
− e rSt cos % 2

s

ss 2 1 t 2
 sin %D,

−z

−t
− e rSs cos % 2

t

ss 2 1 t 2
 sin %D

13. 42    15. 7, 2

17.  
−u
−r

−
−u
−x

 
−x
−r

1
−u
−y

 
−y
−r

, 
−u
−s

−
−u
−x

 
−x
−s

1
−u
−y

 
−y
−s

,

−u
−t

−
−u
−x

 
−x
−t

1
−u
−y

 
−y
−t

19. 
−T
−x

−
−T
−p

 
−p
−x

1
−T
−q

 
−q
−x

1
−T
−r

 
−r
−x

, 

 
−T
−y

−
−T
−p

 
−p
−y

1
−T
−q

 
−q
−y

1
−T
−r

 
−r
−y

, 

−T
−z

−
−T
−p

 
−p
−z

1
−T
−q

 
−q
−z

1
−T
−r

 
−r
−z

21. 1582, 3164, 2700    23. 2!, 22!

25. 5
144, 2 5

96 , 5
144    27. 

2x 1 y sin x
cos x 2 2y

29. 
1 1 x 4y 2 1 y 2 1 x 4y 4 2 2xy

x 2 2 2xy 2 2x 5y 3

31. 2
x

3z
, 2

2y
3z

    33. 
yz

e z 2 xy
, 

xz
e z 2 xy

35. 2°Cys    37. < 20.33 mys per minute
39. (a) 6 m3ys   (b) 10 m2ys   (c) 0 mys    
41. < 20.27 Lys    43. 21y(12s3) radys
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 APPENDIX I  Answers to Odd-Numbered Exercises A127

23. Minima f s1, 61d − f s21, 61d − 3

25. Maximum f s!y3, !y3d − 3s3y2, 
minimum f s5!y3, 5!y3d − 23s3y2, saddle point at s!, !d
27. Minima f s0, 20.794d < 21.191, f s61.592, 1.267d < 21.310
, saddle points s60.720, 0.259d,  
lowest points s61.592, 1.267, 21.310d
29. Maximum f s0.170, 21.215d < 3.197,  
minima f s21.301, 0.549d < 23.145, f s1.131, 0.549d < 20.701,  
saddle points s21.301, 21.215d, s0.170, 0.549d, s1.131, 21.215d, 
no highest or lowest point
31. Maximum f s0, 62d − 4, minimum f s1, 0d − 21
33. Maximum f s61, 1d − 7, minimum f s0, 0d − 4
35. Maximum f s0, 3d − f s2, 3d − 7, minimum f s1, 1d − 22
37. Maximum f s1, 0d − 2, minimum f s21, 0d − 22
39. 

_3

_2

_1

0

_1 0 1
_2

2
4

x

y

z

(_1, 0, 0) (1, 2, 0)

41. 2ys3     43. (2, 1, s5), (2, 1, 2s5)    45. 100
3 , 100

3 , 100
3  

47. 8r 3y (3s3)    49. 4
3    51. Cube, edge length cy12

53. Square base of side 40 cm, height 20 cm    55. L 3y(3s3)
57. (a) H − 2p1 ln p1 2 p2 ln p2 2 s1 2 p1 2 p2d  lns1 2 p1 2 p2d
 (b) hsp1, p2d | 0 , p1 , 1, p2 , 1 2 p1j   
 (c) ln 3; p1 − p2 − p3 − 1

3

EXERCISES 14.8  �  PAGE 977
1. <59, 30
3. Maximum f s61, 0d − 1, minimum f s0, 61d − 21
5. Maximum f s1, 2d − f s21, 22d − 2,  
minimum f s1, 22d − f s21, 2d − 22
7. Maximum f s2, 2, 1d − 9, minimum f s22, 22, 21d − 29
9. Maximum f (1, 6s2 , 1) − f (21, 6s2 , 21) − 2, 
 minimum f (1, 6s2 , 21) − f (21, 6s2 , 1) − 22
11. Maximum s3, minimum 1
13. Maximum f ( 1

2, 12, 12, 12 ) − 2,
 minimum f (21

2, 21
2, 21

2, 21
2 ) − 22

15. Minimum f s1, 1d − f s21, 21d − 2
17. Maximum f (0, 1, s2 ) − 1 1 s2 , 
 minimum f (0, 1, 2s2 ) − 1 2 s2 

19. Maximum 32, minimum 12
21. Maximum f (3ys2 , 23ys2 ) − 9 1 12s2 ,  
minimum f s22, 2d − 28
23. Maximum f (61ys2, 71y(2s2 )) − e 1y4,

 minimum f (61ys2, 61y(2s2 )) − e21y4

31–43. See Exercises 41–55 in Section 14.7.
45. Nearest ( 1

2, 12, 12 ), farthest s21, 21, 2d
47. Maximum <9.7938, minimum <25.3506
49. (a) cyn   (b) When x1 − x2 − ∙ ∙ ∙ − xn

45. (a) −zy−r − s−zy−xd cos % 1 s−zy−yd sin %,
−zy−% − 2s−zy−xd r sin % 1 s−zy−yd r cos %
51. 4rs −2zy−x 2 1 s4r 2 1 4s 2 d−2zy−x −y 1 4rs −2zy−y 2 1 2 −zy−y

EXERCISES 14.6  �  PAGE 956
1. < 20.08 mbykm    3. < 0.778    5. s2 y2
7. (a) =f sx, yd − s1yyd i 2 sxyy 2d j   (b) i 2 2 j   (c) 21
9. (a) k2xyz 2 yz 3, x 2z 2 xz 3, x 2y 2 3xyz 2l    
(b) k23, 2, 2l   (c) 2

5

11. 
4 2 3s3 

10
    13. 7y(2s5 )    15. 1    17. 23

42    

19. 2
5    21. s65 , k1, 8l    23. 1, k0, 1l    

25. 3
4, k1, 22, 22l     27. (b) k212, 92l    

29. All points on the line y − x 1 1    31. (a) 240y(3s3)
33. (a) 32ys3   (b) k38, 6, 12l   (c) 2s406    
35. 327

13     39. 774
25

41. (a) x 1 y 1 z − 11   (b) x 2 3 − y 2 3 − z 2 5

43. (a) x 1 2y 1 6z − 12   (b) x 2 2 −
y 2 2

2
−

z 2 1
6

45. (a) x 1 y 1 z − 1   (b) x − y − z 2 1
47. 

1
_1

0

1

2

1 2x 2

z

y

 49. k2, 3l, 2x 1 3y − 12

  

y

x0

2x+3y=12

xy=6

(3, 2)

f (3, 2)Î

55. No    59. (25
4, 25

4 , 25
8 )

63. x − 21 2 10t, y − 1 2 16t, z − 2 2 12t
65. s21, 0, 1d; !7.8°
69. If u − ka, bl and v − kc, d l, then afx 1 bfy and cfx 1 dfy are 
known, so we solve linear equations for fx and fy.

EXERCISES 14.7  �  PAGE 967
1. (a) f has a local minimum at (1, 1).
 (b) f  has a saddle point at (1, 1).
3. Local minimum at (1, 1), saddle point at (0, 0)
5. Minimum f (1

3, 22
3) − 21

3

7. Saddle points at s1, 1d, s21, 21d

9. Minima fS 1

s2 
, 2

1

s2 D − fS2
1

s2 
, 

1

s2 D − 2
1
4

, 

 saddle point at s0, 0d
11. Maximum f s21, 0d − 2, minimum f s1, 0d − 22,  
saddle points at s0, 61d
13. Maximum f s0, 21d − 2, minima f s61, 1d − 23,  
saddle points at s0, 1d, s61, 21d
15. None
17. Minima f sx, yd − 1 at all points sx, yd on x- and y-axes
19. Minima f s0, 1d −  f s!, 21d −  f s2!, 1d − 21,  
saddle points at s!y2, 0d, s3!y2, 0d
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A128 APPENDIX I  Answers to Odd-Numbered Exercises

59. Maximum f (6s2y3, 1ys3) − 2y(3s3),
 minimum f (6s2y3, 21ys3) − 22y(3s3)
61. Maximum 1, minimum 21
63. (6321y4, 321y4s2, 631y4 ), (6321y4, 2321y4s2, 631y4 )
65. P(2 2 s3), P(3 2 s3)y6, P(2s3 2 3)y3

PROBLEMS PLUS  �  PAGE 985
1. L2W 2, 14 L2W 2    3. (a) x − wy3, base − wy3   (b) Yes
7. s3y2, 3ys2

CHAPTER 15

EXERCISES 15.1  �  PAGE 999
1. (a) 288   (b) 144    3. (a) 0.990   (b) 1.151
5. U , V , L    7. (a) <248   (b) <15.5
9. 24s2     11. 3    13. 2 1 8y 2, 3x 1 27x 2

15. 222    17. 5
2 2 e21    19. 18

21. 15
2  ln 2 1 3

2 ln 4 or 21
2  ln 2    23. 6    

25. 31
30    27. 2    29. 9 ln 2    

31. 1
2 (s3 2 1) 2 1

12!    33. 1
2e26 1 5

2

35. 

7etA150223
08/19/10
MasterID: ms09696

z

y
x

0

1

1

4

37. 51    39. 166
27     41. 8

3    43. 64
3

45. 21e 2 57   

2

0

y
1

0

x1
0

z

47. 5
6    49. 0

51. Fubini’s Theorem does not apply. The integrand has an infinite 
discontinuity at the origin.

EXERCISES 15.2  �  PAGE 1008
1. 868

3     3. 1
6se 2 1d    5. 1

3 sin 1    
7. 1

4 ln 17    9. 1
2s1 2 e29d

11. (a)  (b) 

 

0 x

y

D

12.3.11a
82358
1/5/09

0 x

y

D

 

0 x

y

D

12.3.11b
82359
1/5/09

CHAPTER 14 REVIEW  �  PAGE 982
True-False Quiz
1. True    3. False    5. False    7. True    9. False
11. True

Exercises
1. hsx, yd | y . 2x 2 1j 3. 

x y

z

3c3 Ans 11.R.3
09.16.04

1

1

3c3 Ans 11.R.1
09.23.04

y

x_1
_1

y=_x-1

5. 

3c3 Ans 11.R.5
09.16.04

y

x
123 4 5

0

 7. 

ca11r07
10.28.00

x210

y
2

1

9. 2
3    

11. (a) <3.5°Cym, 23.0°Cym    
(b) < 0.35°Cym by Equation 14.6.9 (Definition 14.6.2 gives 
<1.1°Cym.)    
(c) 20.25
13. fx − 32xys5y 3 1 2x 2yd7, fy − s16x 2 1 120y 2ds5y 3 1 2x 2yd7

15. F$ −
2$ 3

$ 2 1 " 2 1 2$ lns$ 2 1 " 2d, F" −
2$ 2"

$ 2 1 " 2

17. Su − arctan(vsw ), Sv −
usw 

1 1 v2w
, Sw −

uv

2sw s1 1 v2wd
19. f xx − 24x, f xy − 22y − f yx, f yy − 22x
21. f xx − ksk 2 1dx k22 y lz m, f xy − klx k21y l21z m − f yx,  
f xz − kmx k21y lz m21 − f zx, f yy − lsl 2 1dx k y l22z m, 
f yz − lmx k y l21z m21 − f zy, f zz − msm 2 1dx k y lz m22

25. (a) z − 8x 1 4y 1 1   (b) 
x 2 1

8
−

y 1 2
4

−
z 2 1
21

27. (a) 2x 2 2y 2 3z − 3   (b) 
x 2 2

4
−

y 1 1
24

−
z 2 1
26

29. (a) x 1 2y 1 5z − 0    
(b) x − 2 1 t, y − 21 1 2t, z − 5t
31. (2, 12, 21), (22, 21

2, 1)    
33. 60x 1 24

5 y 1 32
5 z 2 120; 38.656

35. 2xy 3s1 1 6pd 1 3x 2y 2s pe p 1 e pd 1 4z 3s p cos p 1 sin pd
37. 247, 108    
43. k2xe yz 2

, x 2z 2e yz 2
, 2x 2yzeyz 2 l    45. 24

5

47. s145y2, k4, 92 l     49. < 5
8 knotsymi   

51. Minimum f s24, 1d − 211
53. Maximum f s1, 1d − 1; saddle points (0, 0), (0, 3), (3, 0)
55. Maximum f s1, 2d − 4, minimum f s2, 4d − 264
57. Maximum f s21, 0d − 2, minima f s1, 61d − 23,
 saddle points s21, 61d, s1, 0d
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7. 1250
3     9. s!y4dscos 1 2 cos 9d

11. s!y2ds1 2 e24 d    13. 3
64 ! 2    15. !y12    

17. 
!

3
1

s3 

2
    19. 625

2 !    21. 4!    23. 4
3 !a 3    

25. s!y3d(2 2 s2)    27. s8!y3d(64 2 24s3)    
29. s!y4ds1 2 e24d    31. 1

120    33. 4.5951
35. 1800! ft3    37. 2ysa 1 bd    39. 15

16    
41. (a) s! y4   (b) s! y2

EXERCISES 15.4  �  PAGE 1024
1. 285 C    3. 42k, (2, 85

28)    5. 6, ( 3
4,  32)    7. 8

15 k, (0, 47)

9. 1
8s1 2 3e22d, S e 2 2 5

e 2 2 3
, 

8se 3 2 4d
27se 3 2 3edD    

11. (3
8, 3!y16)    13. s0, 45ys14!dd

15. s2ay5, 2ay5d if vertex is (0, 0) and sides are along positive 
axes
17. 409.2k, 182k, 591.2k
19. 7ka6y180, 7ka6y180, 7ka6y90 if vertex is s0, 0d and sides are 
along positive axes
21. &bh3y3, &b3hy3; bys3, hys3
23. &a4!y16, &a4!y16; ay2, ay2

25. m − 3!y64, sx, y d − S 16384s2 

10395!
, 0D,

 Ix −
5!

384
2

4
105

, Iy −
5!

384
1

4
105

, I0 −
5!

192
27. (a) 1

2   (b) 0.375   (c) 5
48 < 0.1042

29. (b) (i) e20.2 < 0.8187
 (ii) 1 1 e21.8 2 e20.8 2 e21 < 0.3481   (c) 2, 5
31. (a) <0.500   (b) <0.632

33. (a) yyD kf1 2 1
20 ssx 2 x0 d2 1 sy 2 y0 d2 g dA, where D is  

the disk with radius 10 mi centered at the center of the city
 (b) 200!ky3 < 209k, 200(!y2 2 8

9 )k < 136k, on the edge

EXERCISES 15.5  �  PAGE 1028
1. 12s35    3. 3s14    5. s!y6d(13s13 2 1)
7. s!y6d(17s17 2 5s5)    9. s2!y3d(2s2 2 1)
11. a 2s! 2 2d    13. 3.6258    
15. (a) <1.83   (b) <1.8616

17. 45
8 s14 1 15

16 lnf(11s5 1 3s70)y(3s5 1 s70)g
19. 3.3213    23. s!y6d(101s101 2 1)

EXERCISES 15.6  �  PAGE 1037
1. 27

4     3. 16
15    5. 5

3    7. 2
3    9. 27

2     11. 9!y8

13. 65
28    15. 8

15    17. 16!y3    19. 16
3     21. 8

15

23. (a) y1
0 yx

0 ys12y2

0  dz dy dx   (b) 1
4 ! 2 1

3    

25. !0.985    27. 

ca120723
10.31.00

z

y

x

0
1

2

1

13. Type I: D − hsx, yd | 0 < x < 1, 0 < y < xj,
 type II: D − hsx, yd | 0 < y < 1, y < x < 1j; 13
15. y1

0 ysx 

2sx
   y dy dx 1 y4

1 ysx 

x22 y dy dx − y2
21 y

y12
y2  y dx dy − 9

4

17. 1
2 s1 2 cos 1d    19. 11

3     21. 0    23. 3
4

25. 31
8     27. 16

3     29. 128
15     31. 1

3    
33. 0, 1.213; 0.713    35. 64

3     

37. 
10

3s2 
 or 

5s2 

3
39. 

0

z

y

x

(0, 0, 1)

(1, 0, 0)

(0, 1, 0)

41. 13,984,735,616y14,549,535    43. !y2   
45. y1

0 y1
x  f sx, yd dy dx 

x

y

0

y=x

(0, 1)
(1, 1)

47. y1
0 ycos21 y

0  f sx, yd dx dy 

x

y
y=cos x

x=cos_1y
or

π
2

1

0

49. y ln 2
0  y2

e y f sx, yd dx dy y

x0

x=2

y=ln x  or  x=e†

ln 2

1 2

y=0

51. 1
6 se 9 2 1d    53. 2

9 (2s2 2 1)    
55. 1

3 (2s2 2 1)    57. 1    

59. 
s3 

2
! < yys s4 2 x 2y 2  dA < !

61. 3
4    65. 9!    67. a 2b 1 3

2 ab 2    69. !a 2b

EXERCISES 15.3  �  PAGE 1014
1. y2!

0  y5
2 f sr cos %, r sin %d r dr d%    

3. y2!
!  y1

0 f sr cos %, r sin %d r dr d%
5. 

x

y

0 1 2_2 _1

¨=3π
4 ¨=π

4

R

 3!y4
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11. 

x

z

y

z=8-r@

z=r@

8

13.  Cylindrical coordinates: 6 < r < 7, 0 < % < 2!, 0 < z < 20
15. 

y

z

x

  4!

17. 384!    19. 8
3! 1 128

15     21. 2!y5    23. 4
3! (s2 2 1)

25. (a) 512
3 !   (b) (0, 0, 23

2 )    
27. !Ka 2y8, s0, 0, 2ay3d    29. 0    
31. (a) yyyC hsPdtsPd dV, where C is the cone
 (b) <3.1 3 1019 ft-lb

EXERCISES 15.8  �  PAGE 1049
1. (a) (b)
 

x

z

y

”6,   ,    ’π
3

π
6

6
π
6

π
3

0

 

x

z

y

”3,   ,     ’π
2

3π
4

3

π
2

0
3π
4

S 3
2

, 
3s3 

2
, 3s3 D S0, 

3s2 

2
, 2

3s2 

2 D
3. (a) s2, 3!y2, !y2d   (b) s2, 3!y4, 3!y4d
5. Half-cone    7. Horizontal plane
9. (a) & − 3   (b) & 2ssin2' cos 2% 2 cos2'd − 1

11. 

x

z

y

∏=1

˙=π
6

1
 13. 

y

x 

z

∏=4

∏=2
˙=π

3

15. 0 < ' < !y4, 0 < & < cos '

29. y2
22 y42x2

0 ys42x22yy2
2s42x22yy2 f sx, y, zd dz dy dx

− y4
0 ys42y

2s42y ys42x22yy2
2s42x22yy2 f sx, y, zd dz dx dy

− y1
21 y4 2 4z2

0  ys4 2 y 2 4z2

2s4 2 y 2 4z2 f sx, y, zd dx dy dz

− y4
0 ys42yy2

2s42yy2 ys42y24z 2

2s42y24z 2 f sx, y, zd dx dz dy

− y2
22 ys42x2y2

2s42x2y2 y42x224z 2

0  f sx, y, zd dy dz dx

− y1
21 ys4 2 4z2

2s4 2 4z2 y4 2 x2 2 4z 2

0  f sx, y, zd dy dx dz

31. y2
22 y4

x2 y22yy2
0  f sx, y, zd dz dy dx

− y4
0 ysy

2sy y22yy2
0  f sx, y, zd dz dx dy

− y2
0 y422z

0  ysy
2sy f sx, y, zd dx dy dz

− y4
0 y22yy2

0  ysy
2sy f sx, y, zd dx dz dy

− y2
22 y22x2y2

0  y422z
x2  f sx, y, zd dy dz dx

− y2
0 ys422z

2s422z y422z
x2  f sx, y, zd dy dx dz

33. y1
0 y1

sx y12y
0  f sx, y, zd dz dy dx − y1

0 yy 2

0  y12y
0  f sx, y, zd dz dx dy

− y1
0 y12z

0  yy 2

0  f sx, y, zd dx dy dz − y1
0 y12y

0  yy 2

0  f sx, y, zd dx dz dy
− y1

0 y12sx
0  y12z

sx  f sx, y, zd dy dz dx − y1
0 ys12zd2

0  y12z
sx  f sx, y, zd dy dx dz

35. y1
0 y1

y  yy
0 f sx, y, zd dz dx dy − y1

0 yx
0 yy

0 f sx, y, zd dz dy dx
− y1

0 y1
z  y1

y  f sx, y, zd dx dy dz − y1
0 yy

0 y1
y  f sx, y, zd dx dz dy

− y1
0 yx

0 yx
z  f sx, y, zd dy dz dx − y1

0 y1
z  yx

z  f sx, y, zd dy dx dz
37. 64!    39. 3

2!, (0, 0, 13)    
41. a 5, s7ay12, 7ay12, 7ay12d
43. Ix − Iy − Iz − 2

3 kL5    45. 1
2!kha 4

47. (a) m − y1
21 y1

x 2 y12y
0  sx 2 1 y 2 

 dz dy dx
 (b) sx, y, zd, where
 x − s1ymd y1

21 y1
x 2 y12y

0  xsx 2 1 y 2 

 dz dy dx,
 y − s1ymd y1

21 y1
x 2 y12y

0  ysx 2 1 y 2 

 dz dy dx,
 and z − s1ymd y1

21 y1
x 2 y12y

0  zsx 2 1 y 2 

 dz dy dx
 (c) y1

21 y1
x 2 y12y

0  sx 2 1 y 2d3y2 dz dy dx
49. (a) 3

32 ! 1 11
24   

 (b) S 28
9! 1 44

, 
30! 1 128
45! 1 220

, 
45! 1 208
135! 1 660D

 (c) 1
240 s68 1 15!d

51. (a) 1
8   (b) 1

64   (c) 1
5760    53. L3y8

55. (a) The region bounded by the ellipsoid x 2 1 2y 2 1 3z2 − 1
 (b) 4s6!y45

EXERCISES 15.7  �  PAGE 1043
1. (a) (b)

x

z

y

”4,   , _2’π
3

_2

4π
3

0
 

x

z

y

”2, _   , 1’π
2

2
1

π
2 0_

(2, 2s3 , 22) s0, 22, 1d
3. (a) (s2 , 3!y4, 1)   (b) s4, 2!y3, 3d
5. Circular cylinder with radius 2 and axis the z-axis    
7. Sphere, radius 2, centered at the origin    
9. (a) z 2 − 1 1 r cos % 2 r 2   (b) z − r 2 cos 2%
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51. (a) 1
15   (b) 1

3   (c) 1
45

53. y1
0 y12z

0  ysy
2sy f sx, y, zd dx dy dz    55. 2ln 2    57. 0

PROBLEMS PLUS  �  PAGE 1065
1. 30    3. 1

2 sin 1    7. (b) 0.90

13. abc!S 2
3

2
8

9s3D
CHAPTER 16

EXERCISES 16.1  �  PAGE 1073
1. 

1

2

1_1_2

y

0 x

_1

cs130101
1.31.09

3. 

x

y

2

_2

_2 2

5. y

x0

7. 

x

z

y

 9. 

x

z

y

11. IV    13. I    15. IV    17. III    
19. 4.5

!4.5

!4.5 4.5

   The line y − 2x

17. 

x y

z

π
6

3
 s9!y4d (2 2 s3)

19. y!y2
0  y3

0  y2
0  f sr cos %, r sin %, zd r dz dr d%    

21. 312,500!y7    23. 1688!y15    25. !y8
27. (s3 2 1)!a 3y3    29. (a) 10!   (b) (0, 0, 2.1)
31. (a) (0, 0, 7

12)   (b) 11K!y960
33. (a) (0, 0, 38 a)   (b) 4K!a 5y15 (K is the density)

35. 1
3! (2 2 s2), (0, 0, 3yf8(2 2 s2)g)    

37. (a) !Ka4hy2 (K is the density)   (b) !Ka 2hs3a 2 1 4h2dy12
39. 5!y6    41. (4s2 2 5)y15    43. 4096!y21
45.     47. 136!y99    

EXERCISES 15.9  �  PAGE 1060
1. 26    3. s    5. 2uvw
7. The parallelogram with vertices (0, 0), (6, 3), (12, 1), s6, 22d
9. The region bounded by the line y − 1, the y-axis, and y − sx 

11. x − 1
3sv 2 ud, y − 1

3su 1 2vd is one possible transformation, 
where S − hsu, vd | 21 < u < 1, 1 < v < 3j
13. x − u cos v, y − u sin v is one possible transformation,  
where S − 5su, vd | 1 < u < s2, 0 < v < !y26
15. 23    17. 6!    19. 2 ln 3    
21. (a) 4

3 !abc   (b) 1.083 3 1012 km3   (c) 4
15!sa2 1 b2dabck

23. 8
5 ln 8    25. 3

2 sin 1    27. e 2 e21

CHAPTER 15 REVIEW  �  PAGE 1061
True-False Quiz
1. True    3. True    5. True    7. True    9. False

Exercises
1. <64.0    3. 4e 2 2 4e 1 3    5. 1

2 sin 1    7. 2
3    

9. y!
0  y4

2  f sr cos %, r sin %d r dr d%

11. (s3, 3, 2), s4, !y3, !y3d
13. (2s2, 2s2, 4s3), (4, !y4, 4s3)
15. (a) r 2 1 z 2 − 4, & − 2   (b) r − 2, & sin ' − 2
17. The region inside the loop of the four-leaved rose r − sin 2% 
in the first quadrant
19. 1

2 sin 1    21. 1
2 e 6 2 7

2    23. 1
4 ln 2    25. 8    

27. 81!y5    29. 81
2     31. !y96    33. 64

15    
35. 176    37. 2

3    39. 2ma 3y9 
41. (a) 1

4   (b) ( 1
3 , 8

15 )    
 (c) Ix − 1

12, Iy − 1
24; y − 1ys3, x − 1ys6

43. (a) s0, 0, hy4d   (b) !a 5hy15
45. ln(s2 1 s3) 1 s2y3    47. 486

5     49. 0.0512    
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31. 172,704
5,632,705 s2 s1 2 e214! d    33. 2!k, s4y!, 0d

35. (a) x − s1ymd yC x&sx, y, zd ds,
 y − s1ymd yC y&sx, y, zd ds,
 z − s1ymd yC z&sx, y, zd ds, where m − yC &sx, y, zd ds
 (b) s0, 0, 3!d
37. Ix − k(1

2 ! 2 4
3 ), Iy − k (1

2 ! 2 2
3 )    39. 2! 2    41. 7

3

43. (a) 2ma i 1 6mbt j, 0 < t < 1   (b) 2ma 2 1 9
2mb 2

45. <1.67 3 104 ft@lb    47. (b) Yes    51. <22 J

EXERCISES 16.3  �  PAGE 1094
1. 40    3. Not conservative
5. f sx, yd − ye xy 1 K    7. f sx, yd − ye x 1 x sin y 1 K
9. f sx, yd − y 2 sin x 1 x cos y 1 K

11. (b) 16    13. (a) f sx, yd − 1
3 x 3y 3   (b) 29

15. (a) f sx, y, zd − xyz 1 z 2   (b) 77
17. (a) f sx, y, zd − ye xz   (b) 4    19. 4ye
21. It doesn’t matter which curve is chosen.
23. 31

4     25. No    27. Conservative
31. (a) Yes   (b) Yes   (c) Yes
33. (a) No   (b) Yes   (c) Yes

EXERCISES 16.4  �  PAGE 1101
1. 120    3. 2

3    5. 4se3 2 1d    7. 1
3    

9. 224!    11. 216
3     13. 4!    

15. 1
15!4 2 4144

1125!2 1
7,578,368
253,125 < 0.0779    

17. 2 1
12    19. 3!    21. (c) 9

2    
23. s4ay3!, 4ay3!d if the region is the portion of the disk 
x 2 1 y 2 − a 2 in the first quadrant
27. 0

EXERCISES 16.5  �  PAGE 1109
1. (a) 0   (b) y 2z 2 1 x 2z 2 1 x 2y 2

3. (a) zex i 1 sxyez 2 yzexd j 2 xez k   (b) yse z 1 e x d

5. (a) 2
sz 

s1 1 yd2  i 2
sx 

s1 1 zd2  j 2
sy 

s1 1 xd2  k   

 (b) 
1

2sx s1 1 zd
1

1

2sy s1 1 xd
1

1

2sz s1 1 yd
7. (a) k2e y cos z, 2e z cos x, 2e x cos yl    
(b) e x sin y 1 e y sin z 1 e z sin x
9. (a) Negative   (b) curl F − 0
11. (a) Zero   (b) curl F points in the negative z-direction.
13. f sx, y, zd − xy 2z3 1 K    15. Not conservative    
17. f sx, y, zd − xe yz 1 K    19. No

EXERCISES 16.6  �  PAGE 1120
1. P: yes; Q: no
3. Plane through s0, 3, 1d containing vectors k1, 0, 4l, k1, 21, 5 l
5. Circular cone with axis the z-axis

21. =f sx, yd − y 2 cossxyd i 1 fxy cossxyd 1 sinsxydg j
23. = f sx, y, zd −

x

sx 2 1 y 2 1 z2
 i

1
y

sx 2 1 y 2 1 z2
 j 1

z

sx 2 1 y 2 1 z2
 k

25. =f sx, yd − sx 2 yd i 1 sy 2 xd j  y

x

2

4

4

_4

_4 _2
_2

2

27. 4

_4

4_4

29. III    31. II    33. s2.04, 1.03d
35. (a) y

x0

   (b) y − 1yx, x . 0

 y − Cyx

EXERCISES 16.2  �  PAGE 1084
1. 4

3s10 3y2 2 1d    3. 1638.4    5. 1
3 ! 6 1 2!    7. 5

2

9. s2y3    11. 1
12s14 se 6 2 1d    13. 2

5se 2 1d    15. 35
3

17. (a) Positive   (b) Negative    19. 1
20    

21. 6
5 2 cos 1 2 sin 1    23. 0.5424    25. 94.8231

27. 3! 1 2
3   2.5

!2.5

!2.5 2 .5

29. (a) 11
8 2 1ye   (b) 

0 2.1

2.1

_0.2

cs13.2.29b
1.31.09

F”r”      ’’

F{r(1)}

F{r(0)}

1
œ„2
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 APPENDIX I  Answers to Odd-Numbered Exercises A133

43. 4
15s35y2 2 27y2 1 1d    45. s2!y3d(2s2 2 1)    

47. s!y6ds653y2 2 1d    49. 4    51. !R 2 < AsSd < s3 !R 2

53. 3.5618    55. (a) !24.2055   (b) 24.2476    

57. 45
8 s14 1 15

16 lnf(11s5 1 3s70)y(3s5 1 s70)g
59. (b) 

2

0

!2

!2 !10 2 1 0

z

y x

 (c) y2!
0  y!

0  s36 sin4u cos2v 1 9 sin4u sin2v 1 4 cos2u sin2u   du dv

61. 4!    63. 2a 2s! 2 2d    

EXERCISES 16.7  �  PAGE 1132
1. !26.93    3. 900!    5. 11s14    7. 2

3 (2s2 2 1)
9. 171s14    11. s21y3    13. s!y120d(25s5 1 1)    
15. 7

4s21 2 17
12s17    17. 16!    19. 0    21. 4    

23. 713
180    25. 8

3!   27. 0    29. 48    31. 2! 1 8
3

33. 4.5822    35. 3.4895
37. yyS F ! dS − yyD fPs−hy−xd 2 Q 1 Rs−hy−zdg dA,
 where D − projection of S onto xz-plane
39. s0, 0, ay2d
41. (a) Iz − yyS sx 2 1 y 2 d&sx, y, zd dS   (b) 4329s2!y5
43. 0 kgys    45. 8

3!a 3«0    47. 1248!

EXERCISES 16.8  �  PAGE 1139
3. 16!    5. 0    7. 21    9. 217

20
11. (a) 81!y2   (b) 

!2

5

0

!5

z

0
y 2

!2 2 0
x

 (c) x − 3 cos t, y − 3 sin t, 
 z − 1 2 3scos t 1 sin td,
0 < t < 2! 

_2
0
2
4

_2 0 2 2 0 _2

z

y x

13. 232!    15. 2!    17. 3

EXERCISES 16.9  �  PAGE 1145
1. 9

2    3. 256!y3    5. 9
2    7. 9!y2    9. 0    

11. !    13. 2!    15. 341s2y60 1 81
20 arcsin(s3y3)    

17. 13!y20    19. Negative at P1, positive at P2    
21. div F . 0 in quadrants I, II; div F , 0 in quadrants III, IV

7. 

√ constant

z

y

x

2

_2

0

0

0

11u constant

9. 

_1
0
x1

0y
1

_1
_1

0z

1

√ constantu constant

11. 

_1
0 x1

_1
0y

1

_1

0z

1

√ constant

u constant

13. IV    15. I    17. III
19. x − u, y − v 2 u, z − 2v
21. y − y, z − z, x − s1 1 y 2 1 1

4 z 2 

23. x − 2 sin ' cos %, y − 2 sin ' sin %,
 z − 2 cos ', 0 < ' < !y4, 0 < % < 2!

for x − x, y − y, z − s4 2 x 2 2 y 2, x 2 1 y 2 < 2g
25. x − 6 sin ' cos %, y − 6 sin ' sin %, z − 6 cos ', 
!y6 < ' < !y2, 0 < % < 2!

29. x − x, y −
1

1 1 x 2  cos %, y −
1

1 1 x 2  sin %, 

22 < x < 2, 0 < % < 2!

_2
0 x

2

0y
1

_1

0z

1

31. (a) Direction reverses   (b) Number of coils doubles

33.  3x 2 y 1 3z − 3    35. 
s3 

2
x 2

1
2

y 1 z −
!

3
37. 2x 1 2z − 1    39. 3s14    41. s14!    
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A134 APPENDIX I  Answers to Odd-Numbered Exercises

11. 3

_3

_3 8
yp

   The solutions are all asymptotic 
to yp − 1

10 cos x 1 3
10 sin x as 

x l `. Except for yp, all solu-
tions approach either ` or 2` 
as x l 2`.

13. yp − sAx 1 Bde x cos x 1 sCx 1 Dde x sin x
15. yp − Axe x 1 B cos x 1 C sin x
17. yp − xe2x fsAx 2 1 Bx 1 C d cos 3x 1 sDx 2 1 Ex 1 Fd sin 3xg
19. y − c1 cos(1

2 x) 1 c2 sin(1
2 x) 2 1

3 cos x
21. y − c1e x 1 c2 xe x 1 e 2x

23. y − c1 sin x 1 c2 cos x 1 sin x lnssec x 1 tan xd 2 1
25. y − fc1 1 lns1 1 e2x dge x 1 fc2 2 e2x 1 lns1 1 e2x dge 2x

27. y − e x fc1 1 c2 x 2 1
2 lns1 1 x 2d 1 x tan21xg

EXERCISES 17.3  �  PAGE 1175
1. x − 0.35 cos(2s5 t)    3. x − 2 1

5 e26 t 1 6
5 e2t    5. 49

12 kg

7. 

c=30
c=25

c=20

c=15
c=10

0.02

_0.11

0 1.4

13. Qstd − s2e210ty250ds6 cos 20t 1 3 sin 20td 1 3
125, 

Istd − 3
5 e210t sin 20t

15. Qstd − e210 tf 3
250 cos 20t 2 3

500 sin 20tg
2 3

250 cos 10t 1 3
125 sin 10t

EXERCISES 17.4  �  PAGE 1180

1. c0 o
`

n−0
 
x n

n!
− c0e x    3. c0 o

`

n−0
 

x 3n

3n n!
− c0e x 3y3

5. c0 o
`

n−0
 
s21dn

2n n!
 x 2n 1 c1 o

`

n−0
 

s22dn n!
s2n 1 1d!

 x 2n11    

7. c0 1 c1 o
`

n−1
 
x n

n
 − c0 2 c1 lns1 2 xd for | x | , 1

9. o
`

n−0
 

x 2n

2n n!
− e x 2y2

11. x 1 o
`

n−1
 
s21dn2252 ! ∙ ∙ ∙ ! s3n 2 1d2

s3n 1 1d!
 x 3n11

CHAPTER 17 REVIEW  �  PAGE 1181
True-False Quiz
1. True    3. True   

Exercises
1. y − c1e xy2 1 c2e2xy2

3. y − c1 cos(s3x) 1 c2 sin(s3x)    

5. y − e 2xsc1 cos x 1 c2 sin x 1 1d    

7. y − c1e x 1 c2 xe x 2 1
2 cos x 2 1

2sx 1 1d sin x

CHAPTER 16 REVIEW  �  PAGE 1148
True-False Quiz
1. False    3. True    5. False    7. False     
9. True    11. True    13. False

Exercises
1. (a) Negative   (b) Positive    3. 6s10    5. 4

15    7. 110
3

9. 11
12 2 4ye    11. f sx, yd − e y 1 xe xy 1 K    13. 0     

15. 0    17. 28!    25. 1
6 (27 2 5s5)     

27. s!y60d(391s17 1 1)    29. 264!y3    31. 0 
33. 21

2    35. 4!    37. 24    39. 21

CHAPTER 17

EXERCISES 17.1  �  PAGE 1160
1. y − c1e3x 1 c2e22x    3. y − c1 cos(s2x) 1 c2 sin(s2x)
5. y − c1e2xy2 1 c2 xe2xy2    7. y − c1 1 c2 e 4xy3

9. y − e 2xsc1 cos 3x 1 c2 sin 3xd
11. y − c1e (s321) ty2 1 c2e2(s311) ty2

13. V − e22 ty3Fc1 cosSs5
3

tD 1 c2 sinSs5
3

tDG
15. f sxd − e2x cos x, tsxd − e2x sin x. All solution curves 
approach 0 as x l ` and oscillate with amplitudes that become 
arbitrarily large as x l 2`.

60

_60

1_5

g

f

17. y − cos(s3x) 1 s3 sin(s3x)    19. y − e22xy3 1 2
3 xe22xy3

21. y − e 3xs2 cos x 2 3 sin xd
23. y − 1

7e 4x24 2 1
7e 323x    25. y − 23 cos 4x 1 2 sin 4x

27. y − 2e22x 2 2xe22x    29. y −
e 2 2
e 2 1

1
e x

e 2 1
31. No solution
33. (b) " − n 2! 2yL2, n a positive integer; y − C sinsn!xyLd
35. (a) b 2 a ± n!, n any integer   

 (b) b 2 a − n! and 
c
d

± e a2b 
cos a
cos b

 unless cos b − 0, then 
c
d

± e a2b 
sin a
sin b

   

 (c) b 2 a − n! and 
c
d

− e a2b 
cos a
cos b

 unless cos b − 0, then
c
d

− e a2b 
sin a
sin b

EXERCISES 17.2  �  PAGE 1167
1. y − c1e2x 1 c2e24x 1 1

4 x 2 1 1
8 x 2 1

32

3. y − c1 cos(1
3 x) 1 c2 sin(1

3 x) 1 1
37 e2x

5. y − e 2xsc1 cos x 1 c2 sin xd 1 1
10 e2x    

7. y − ex( 9
10 cos 2x 2 1

20 sin 2x) 1 1
10 cos x 1 1

5 sin x    

9. y − e x(1
2 x 2 2 x 1 2)
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 APPENDIX I  Answers to Odd-Numbered Exercises A135

21. y − 6x 2 15    23. 2x 2 3y 1 19 − 0    

25. 5x 1 y − 11    27. y − 3x 2 2    29. y − 3x 2 3    

31. y − 5    33. x 1 2y 1 11 − 0    35. 5x 2 2y 1 1 − 0

37. m − 21
3, 39. m − 0, 41. m − 3

4,
 b − 0 b − 22 b − 23

0 x

y  

0

_2

x

y

y=_2

 

0 x

y

_3

43. 

0

y

x

 45. 

0

y

x

47. 

0

y

x_2 2

 49. 

0

y

x

x ! 2

y ! 4

51. 

0

y

x

y=1-2x

y=1+x

!0, 1"

53. s0, 24d    55. (a) s4, 9d   (b) s3.5, 23d    57. s1, 22d
59. y − x 2 3    61. (b) 4x 2 3y 2 24 − 0

EXERCISES C  �  PAGE A23

1. sx 2 3d2 1 sy 1 1d2 − 25    3. x 2 1 y 2 − 65

5. s2, 25d, 4    7. (21
2, 0), 12    9. (1

4, 21
4), s10

 y4

11. Parabola 13. Ellipse

0
x

y  

0 x

y

_4 4

2

_2

9. y − c1e 3x 1 c2e22x 2 1
6 2 1

5 xe22x

11. y − 5 2 2e26sx21d    13. y − se 4x 2 e x dy3    

15. No solution    17. o
`

n−0
 

s22dn n!
s2n 1 1d!

 x 2n11

19. Qstd − 20.02e210 tscos 10t 1 sin 10td 1 0.03
21. (c) 2!yk < 85 min   (d) <17,600 miyh

APPENDIXES

EXERCISES A  �  PAGE A9

1. 18    3. !    5. 5 2 s5
 

    7. 2 2 x

9. | x 1 1 | − Hx 1 1
2x 2 1

for x > 21
for x , 21

   11. x 2 1 1

13. s22, `d 15. f21, `d 
 

0_2  
0_1

17. s3, `d 19. s2, 6d 
 

3
 

2 6

21. s0, 1g 23. f21, 12 d 
 

0 1
 

_1 1
2

25. s2`, 1d ø s2, `d 27. f21, 12 g 
 1 2  _1 1

2

29. s2`, `d 31. s2s3, s3 d 
  

_œ„3 0 œ„3

33. s2`, 1g 35. s21, 0d ø s1, `d 
 0 1  

_1 10

37. s2`, 0d ø s 1
4 , `d 

 0 1
4

39. 10 < C < 35    41. (a) T − 20 2 10h, 0 < h < 12
 (b) 2308C < T < 208C    43. 63

2    45. 2, 24
3

47. s23, 3d    49. s3, 5d    51. s2`, 27g ø f23, `d
53. f1.3, 1.7g    55. f24, 21g ø f1, 4g
57. x > sa 1 bdcysabd    59. x . sc 2 bdya

EXERCISES B  �  PAGE A15

1. 5    3. s74
 

    5. 2s37
 

    7. 2    9. 29
2

17. 

0 3 x

y

x=3

 19. 

0 x

y

xy=0
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A136 APPENDIX I  Answers to Odd-Numbered Exercises

EXERCISES D  �  PAGE A32
1. 7!y6    3. !y20    5. 5!    7. 720°    9. 75°
11. 267.58    13. 3! cm    15. 2

3 rad − s120y!d°
17. 

0 x

y

315¯

 19. 

0
x

y

_ 3π
4

21. 

0 x

y

2 rad

23. sins3!y4d − 1ys2
 

, coss3!y4d − 21ys2
 

, tans3!y4d − 21,
 cscs3!y4d − s2

 

, secs3!y4d − 2s2
 

, cots3!y4d − 21
25. sins9!y2d − 1, coss9!y2d − 0, cscs9!y2d − 1, cots9!y2d − 0
, tans9!y2d and secs9!y2d undefined
27. sins5!y6d − 1

2 , coss5!y6d − 2s3
 y2, tans5!y6d − 21ys3

 

, 
cscs5!y6d − 2, secs5!y6d − 22ys3

 

, cots5!y6d − 2s3
29. cos % − 4

5, tan % − 3
4, csc % − 5

3, sec % − 5
4, cot % − 4

3

31. sin ' − s5
 y3, cos ' − 22

3, tan ' − 2s5
 y2, csc ' − 3ys5

 

, 
cot ' − 22ys5

 

33. sin " − 21ys10
 

, cos " − 23ys10
 

, tan " − 1
3, 

 csc " − 2s10
 

, sec " − 2s10
 y3

35. 5.73576 cm    37. 24.62147 cm    59. 1
15 (4 1 6s2

 )
61. 1

15 (3 1 8s2
 )    63. 24

25    65. !y3, 5!y3
67. !y4, 3!y4, 5!y4, 7!y4    69. !y6, !y2, 5!y6, 3!y2
71. 0, !, 2!    73. 0 < x < !y6 and 5!y6 < x < 2!
75. 0 < x , !y4, 3!y4 , x , 5!y4, 7!y4 , x < 2!
77. y

0 x

11
2

π
3

5π
6

79. y

0 x3π
2

2πππ
2

5π
2

3π

81. y

0 x

1

π 2π_π

89. 14.34457 cm2

15. Hyperbola 17. Ellipse

0 x

y

_5 5

y=_    x4
5

y=   x4
5

 

0 x

y
1

_1

1
2

1
2_

19. Parabola 21. Hyperbola

0 x

y

_1

1

_1

 y

0 x

y=x
3y=_ x

3
1

_1

23. Hyperbola 25. Ellipse
y

0 x

 y

0
x

(1, 2)

27. Parabola 29. Parabola 

(3, 4)

y

0 x

 y

0 x

2

!2

4

31. Ellipse 33. 

0 x

y

1 3 5

 

0 x

y

(3, 9)

35. y − x 2 2 2x

37.  39. 
y

0 x

1

1

 y

0 x

!1

1
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 APPENDIX I  Answers to Odd-Numbered Exercises A137

17. 4i, 4    19. 63
2 i    21. 21 6 2i

23. 21
2 6 (s7

 y2)i    25. 3s2
 

 fcoss3!y4d 1 i sins3!y4dg

27. 5hcosftan21( 4
3)g 1 i sinftan21( 4

3)gj
29. 4fcoss!y2d 1 i sins!y2dg, coss2!y6d 1 i sins2!y6d, 
1
2 fcoss2!y6d 1 i sins2!y6dg
31. 4s2

 

 fcoss7!y12d 1 i sins7!y12dg, 
 (2s2

 )fcoss13!y12d 1 i sins13!y12dg, 14 fcoss!y6d 1 i sins!y6dg
33. 21024    35. 2512s3 1 512i

37. 61, 6i, (1ys2
 )s61 6 i d 39. 6(s3

 y2) 1 1
2 i, 2i

 

0

Im

Re

i

1

 

0

Im

Re

_i

41. i    43. 1
2 1 (s3

 y2)i    45. 2e 2

47. cos 3% − cos3% 2 3 cos % sin2%,  
sin 3% − 3 cos2% sin % 2 sin3%

EXERCISES E  �  PAGE A38

1. s1 1 s2
 

1 s3
 

1 s4
 

1 s5
 

    3. 34 1 35 1 36

5. 21 1 1
3 1 3

5 1 5
7 1 7

9    7. 110 1 210 1 310 1 ∙ ∙ ∙ 1 n10

9. 1 2 1 1 1 2 1 1 ∙ ∙ ∙ 1 s21dn21    11. o
10

i−1
 i

13. o
19

i−1
 

i
i 1 1

     15. o
n

i−1
 2i     17. o

5

i−0
 2 i    19. o

n

i−1
 x i

21. 80    23. 3276    25. 0    27. 61    29. nsn 1 1d
31. nsn 2 1 6n 1 17dy3    33. nsn 2 1 6n 1 11dy3
35. nsn 3 1 2n 2 2 n 2 10dy4
41. (a) n 4   (b) 5100 2 1   (c) 97

300   (d) an 2 a0

43. 1
3    45. 14    49. 2n11 1 n 2 1 n 2 2

EXERCISES G  �  PAGE A56
1. (b) 0.405

EXERCISES H  �  PAGE A64
1. 8 2 4i    3. 13 1 18i    5. 12 2 7i    7. 11

13 1 10
13 i

9. 1
2 2 1

2 i    11. 2i    13. 5i    15. 12 1 5i, 13
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A139

Abel, Niels, 211
absolute maximum and minimum, 276, 

959, 960, 965
absolute value, 16, A6, A58
absolute value function, 16
absolutely convergent series, 737
acceleration as a rate of change, 159, 224
acceleration of a particle, 871

components of, 874
as a vector, 871

Achilles and the tortoise, 5
adaptive numerical integration, 523
addition formulas for sine and cosine, A29
addition of vectors, 798, 801
Airy, Sir George, 752
Airy function, 752
algebraic function, 30
algebraic vector, 800
alternating harmonic series, 734, 737
alternating series, 732
Alternating Series Estimation  

Theorem, 735
Alternating Series Test, 732
Ampère’s Law, 1086
analytic geometry, A10
angle, A24

between curves, 273
of deviation, 285
negative or positive, A25
between planes, 828
standard position, A25
between vectors, 808, 809

angular momentum, 879
angular speed, 872
antiderivative, 350
antidifferentiation formulas, 352
aphelion, 687
apolune, 681
approach path of an aircraft, 208
approximate integration, 514
approximating cylinder, 440
approximating surface, 551
approximation

by differentials, 254
to e, 178
linear, 252, 929, 930, 933

linear, to a tangent plane, 929
by the Midpoint Rule, 384, 515
by Newton’s method, 345
by an nth-degree Taylor  

polynomial, 258
quadratic, 258
by Riemann sums, 379
by Simpson’s Rule, 519, 520
tangent line, 252
by Taylor polynomials, 774
by Taylor’s Inequality, 762, 775
by the Trapezoidal Rule, 516

Archimedes, 411
Archimedes’ Principle, 468, 1146
arc length, 544, 861, 862

of a parametric curve, 652
of a polar curve, 671
of a space curve, 861, 862

arc length contest, 550
arc length formula, 545
arc length formula for a space curve, 862
arc length function, 547, 863
arcsine function, 63
area, 2, 366

of a circle, 488
under a curve, 366, 371, 378
between curves, 428, 429
of an ellipse, 487
by exhaustion, 2, 97
enclosed by a parametric curve, 651
of a plane region, 1099
in polar coordinates, 658, 669
of a sector of a circle, 669
surface, 654, 1026, 1027, 1116,  

1117, 1118
of a surface of a revolution, 551, 557

area function, 391
area problem, 2, 366
argument of a complex number, A59
arithmetic-geometric mean, 706
arrow diagram, 11
astroid, 215, 649
asymptote(s), 316

in graphing, 316
horizontal, 128, 316
of a hyperbola, 678, A20

slant, 316, 320
vertical, 90, 316

asymptotic curve, 323
autonomous differential equation, 594
auxiliary equation, 1155

complex roots of, 1157
real and distinct roots of, 1156
real and equal roots of, 1156, 1157

average cost function, 339
average rate of change, 145, 224
average speed of molecules, 535
average value of a function, 461, 575,  

997, 1039
average velocity, 4, 81, 143, 224
axes, coordinate, 792, A11
axes of ellipse, A19
axis of a parabola, 674

bacterial growth, 610, 615
Barrow, Isaac, 3, 97, 152, 392, 411
base of a cylinder, 438
base b of a logarithm, 59, A55

change of, 62
baseball and calculus, 464
basis vectors, 802
Bernoulli, James, 600, 625
Bernoulli, John, 306, 314, 600, 644, 760
Bernoulli differential equation, 625
Bessel, Friedrich, 748
Bessel function, 217, 748, 752
Bézier, Pierre, 657
Bézier curves, 643, 657
binomial coefficients, 766
binomial series, 766

discovery by Newton, 773
binomial theorem, 173, rp1
binormal vector, 866
blackbody radiation, 783
blood flow, 230, 342, 570
body mass index (BMI), 901, 916
boundary curve, 1134
boundary-value problem, 1159
bounded sequence, 701
bounded set, 965
Boyle’s Law, 234
brachistochrone problem, 644

Index

rp denotes Reference Page numbers.
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Brahe, Tycho, 875
branches of a hyperbola, 678, A20
Buffon’s needle problem, 584
bullet-nose curve, 205

C 1 transformation, 1053
cable (hanging), 259
calculator, graphing, 323, 642, 665 

See also computer algebra system
calculus, 8

differential, 3
integral, 2, 3
invention of, 8, 411

cancellation equations
for inverse functions, 57
for inverse trigonometric functions, 

58, 64
for logarithms, 59

cans, minimizing manufacturing cost  
of, 343

Cantor, Georg, 718
Cantor set, 718
capital formation, 573
cardiac output, 571
cardioid, 215, 662
carrying capacity, 236, 297, 313, 587, 612
Cartesian coordinate system, A11
Cartesian plane, A11
Cassini, Giovanni, 669
CAS. See computer algebra system
catenary, 259
Cauchy, Augustin-Louis, 109, 994, A45
Cauchy-Schwarz Inequality, 814
Cauchy’s Mean Value Theorem, A45
Cavalieri, 520
Cavalieri’s Principle, 448
center of gravity, 560. See also center  

of mass
center of mass, 560

of a lamina, 1018
of a plate, 563
of a solid, 1035
of a surface, 1124
of a wire, 1077

centripetal acceleration, 884
centripetal force, 884
centroid of a plane region, 562
centroid of a solid, 1036
Chain Rule, 197, 198, 200

for several variables, 937, 938, 939, 940
change of base, formula for, 62
change of variables

in a double integral, 1012, 1052, 1056
in integration, 412
in a triple integral, 1042, 1047, 1058, 

1059

characteristic equation, 1155
charge, electric, 227, 1016, 1036, 1172
charge density, 1016, 1036
chemical reaction, 227
circle, A16

area of, 488
equation of, A16
in three-dimensional space, 794

circle of curvature, 867
circuit, electric, 1172
circular cylinder, 438
circulation of a velocity field, 1138
cissoid of Diocles, 648, 667
Clairaut, Alexis, 919
Clairaut’s Theorem, 919, A48
Clarke, Arthur C., 881
Clarke geonsynchronous orbit, 881
clipping planes, 833
closed curve, 1089
closed interval, A3
Closed Interval Method, 281

for a function of two variables, 966
closed set, 965
closed surface, 1128
Cobb, Charles, 889
Cobb-Douglas production function, 889, 

890, 922, 926, 978
graph of, 891
level curves for, 896

cochleoid, 690
coefficient(s)

binomial, 766
of friction, 197, 284
of inequality, 437
of a polynomial, 27
of a power series, 746
of static friction, 844

combinations of functions, 40
comets, orbits of, 688
common ratio, 709
comparison properties of the  

integral, 387
comparison test for improper  

integrals, 533
Comparison Test for series, 727
Comparison Theorem for integrals, 533
complementary equation, 1161
Completeness Axiom, 702
complex conjugate, A57
complex exponentials, A63
complex number(s), A57

addition and subtraction of, A57
argument of, A59
division of, A57, A60
equality of, A57
imaginary part of, A57

modulus of, A58
multiplication of, A57, A60
polar form, A59
powers of, A61
principal square root of, A58
real part of, A57
roots of, A62

component of b along a, 811
component function, 848, 1069
components of acceleration, 874
components of a vector, 800
composition of functions, 41, 198

continuity of, 121, 909
derivative of, 199

compound interest, 241, 313
compressibility, 228
computer algebra system, 86, 511, 642

for graphing sequences, 699
for integration, 511, 756
pitfalls of using, 86

computer algebra system, graphing  
with

curve, 323
function of two variables, 892
level curves, 897
parametric equations, 642
parametric surface, 1114
partial derivatives, 919
polar curve, 665
sequence, 699
space curve, 851
vector field, 1070, 1071

concavity, 296
Concavity Test, 296, A44
concentration, 227
conchoid, 645, 667
conditionally convergent series, 738
conductivity (of a substance), 1132
cone, 674, 837

parametrization of, 1114
conic section, 674, 682

directrix, 674, 682
eccentricity, 682
focus, 674, 676, 682
polar equation, 684
shifted, 679, A21
vertex (vertices), 674

conjugates, properties of, A58
connected region, 1089
conservation of energy, 1093
conservative vector field, 1073, 1090,  

1091, 1105
constant force (in work), 455, 811
constant function, 172
Constant Multiple Law of limits, 95
Constant Multiple Rule, 175
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constraint, 971, 976
consumer surplus, 569
continued fraction expansion, 706
continuity

of a function, 114, 849
of a function of three variables,  

909, 910
of a function of two variables, 907,  

908, 910
on an interval, 117
from the left, 116
from the right, 116
of a vector function, 849

continuous compounding of  
interest, 241, 313

continuous random variable, 573
contour curves, 893
contour map, 894, 895, 921
convergence

absolute, 737
conditional, 738
of an improper integral, 528, 531
interval of, 749
radius of, 749
of a sequence, 696
of a series, 708

convergent improper integral, 528, 531
convergent sequence, 696
convergent series, 708

properties of, 713
conversion of coordinates

cylindrical to rectangular, 1040
rectangular to cylindrical, 1040
rectangular to spherical, 1046

cooling tower, hyperbolic, 839
coordinate axes, 792, A11
coordinate planes, 792
coordinate system, A2

Cartesian, A11
cylindrical, 1040
polar, 658
retangular, A11
spherical, 1045
three-dimensional rectangular,  

792, 793
coplanar vectors, 820
Coriolis acceleration, 883
Cornu’s spiral, 656
cosine function, A26

derivative of, 192
graph of, 31, A31
power series for, 764, 766

cost function, 231, 335
critical number, 280
critical point(s), 960, 970
critically damped vibration, 1170

cross product, 814, 815
direction of, 816
geometric characterization of, 817
length of, 817, 818
magnitude of, 817
properties of, 816, 819

cross-section, 438
cross-section of a surface, 834
cubic function, 28
curl of a vector field, 1103
current, 227
curvature, 657, 864, 865, 875
curvature of a plane parametric  

curve, 869
curve(s)

asymptotic, 323
Bézier, 643, 657
boundary, 1134
bullet-nose, 205
cissoid of Diocles, 667
closed, 1089
Cornu’s spiral, 656
demand, 569
devil’s, 215
dog saddle, 902
epicycloid, 649
equipotential, 902
grid, 1112
helix, 849
length of, 544, 861
level, 893, 897
long-bow, 691
monkey saddle, 902
orientation of, 1080, 1096
orthogonal, 216
ovals of Cassini, 669
parametric, 640, 849
piecewise-smooth, 1076
polar, 660
serpentine, 188
simple, 1090
smooth, 544, 863
space, 849
strophoid, 673, 691
swallotail catastrophe, 648
toroidal spiral, 851
trochoid, 647
twisted cubic, 851
witch of Maria Agnesi, 647

curve fitting, 25
curve-sketching procedure, 315
cusp, 645
cycloid, 643
cylinder, 438, 794, 834

parabolic, 834
parametrization of, 1114

cylindrical coordinate system, 1040
conversion equations for, 1040
triple integrals in, 1042

cylindrical coordinates, 1040
cylindrical shell, 449

damped vibration, 1169
damping constant, 1169
damping force, 1169, 1171
decay, law of natural, 237
decay, radioactive, 239
decreasing function, 19
decreasing sequence, 700
definite integral, 378, 988

properties of, 385
Substitution Rule for, 416
of a vector function, 859

definite integration
by parts, 472, 474, 475
by substitution, 416

degree of a polynomial, 27
del (=), 949, 951
delta (D) notation, 145
demand curve, 336, 569
demand function, 336, 569
De Moivre, Abraham, A61
De Moivre’s Theorem, A61
density

of a lamina, 1016
linear, 226, 406
liquid, 558
mass vs. weight, 558
of a solid, 1035

dependent variable, 10, 888, 940
derivative(s), 140, 144, 152, 257

of a composite function, 198
of a constant function, 172
directional, 946, 947, 948, 950, 951
domain of, 153
of exponential functions, 179, 202,  

A54, A55
as a function, 152
higher, 158
higher partial, 918
of hyperbolic functions, 261
of an integral, 393
of an inverse function, 218
of inverse trigonometric functions,  

213, 214
left-hand, 165
of logarithmic functions, 218, A51, A54
normal, 1110
notation, 155
notation for partial, 914
partial, 913, 914
of a polynomial, 172
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derivative(s) (continued)
of a power function, 173
of a power series, 754
of a product, 183, 184
of a quotient, 186
as a rate of change, 140
right-hand, 165
second, 158, 858
second directional, 958
second partial, 918
as the slope of a tangent, 141, 146
third, 159
of trigonometric functions, 190, 193
of a vector function, 855, 856, 858

Descartes, René, A11
descent of aircraft, determining  

start of, 208
determinant, 815
devil’s curve, 215
Difference Law of limits, 95
difference of vectors, 799
difference quotient, 12
Difference Rule, 176
differentiable function, 155, 930
differential, 254, 932, 934
differential calculus, 3
differential equation, 181, 237, 353, 585,  

586, 588
autonomous, 594
Bernoulli, 625
family of solutions, 586, 589
first-order, 588
general solution of, 589
homogeneous, 1154
linear, 620
linearly independent solutions, 1155
logistic, 612, 707
nonhomogeneous, 1154, 1160, 1161
order of, 588
partial, 920
second-order, 588, 1154
separable, 599
solution of, 588

differentiation, 155
formulas for, 187, rp5
formulas for vector functions, 858
implicit, 208, 209, 917, 942
logarithmic, 220
partial, 911, 913, 914, 917
of a power series, 754
term-by-term, 754
of a vector function, 855, 856, 858

differentiation operator, 155
diffusion equation, 926
Direct Substitution Property, 97
directed line segment, 798

direction angles, 810
direction cosines 810
direction field, 592
direction numbers, 825
directional derivative, 946, 947, 948,  

950, 951
maximum value of, 952
second, 958

directrix, 674, 682
discontinuity, 115, 116
discontinuous function, 115
discontinuous integrand, 531
disk method for approximating  

volume, 440
dispersion, 286
displacement, 143, 406
displacement vector, 798, 811
distance

between parallel planes, 830, 833
between point and line in space, 822
between point and plane, 822,  

829, 830
between points in a plane, A11
between points in space, 795
between real numbers, A7
between skew lines, 830

distance formula, A12
in three dimensions, 795

distance problem, 373
divergence

of an improper integral, 528, 531
of an infinite series, 708
of a sequence, 696
of a vector field, 1106

Divergence, Test for, 713
Divergence Theorem, 1141, 1147
divergent improper integral, 528, 531
divergent sequence, 696
divergent series, 708
division of power series, 770
DNA, helical shape of, 850
dog saddle, 902
domain of a function, 10, 888
domain sketching, 888
Doppler effect, 945
dot product, 800

in component form, 807
properties of, 807
in vector form, 808

double-angle formulas, A29
double helix, 850
double integral(s), 988, 990

applications of, 1016
change of variable in, 1012,  

1052, 1056
over general regions, 1001

Midpoint Rule for, 992
in polar coordinates, 1010, 1012
properties of, 1006, 1007
over rectangles, 988

double Riemann sum, 991
Douglas, Paul, 889
Dumpster design, minimizing cost of, 970
dye dilution method, 571

e (the number), 51, 178, A52
as a limit, 222, A56
as a sum of an infinite series, 763

eccentricity, 682
electric charge, 599, 602, 623, 1016, 1036

on a solid, 1036
electric circuit, 599, 602, 623

analysis of, 1172
electric current to a flash bulb, 79, 206
electric field (force per unit charge), 1072
electric flux, 1131, 1144
electric force, 1072
elementary function, integrability of, 507
element of a set, A3
ellipse, 215, 676, 682, A19

area, 487
directrix, 682
eccentricity, 682
foci, 676, 682
major axis, 676, 687
minor axis, 676
polar equation, 684, 687
reflection property, 677
rotated, 217
vertices, 676

ellipsoid, 835, 837
elliptic paraboloid, 836, 837
empirical model, 25
end behavior of a function, 139
endpoint extreme values, 277
energy, 

conservation of, 1093
kinetic, 464, 1093
potential, 1093

epicycloid, 649
epitrochoid, 656
equation(s)

cancellation, 57
of a circle, A17
differential. (see differential equation)
diffusion, 926
of an ellipse, 676, 684, A19
of a graph, A16, A17
heat conduction, 925
of a hyperbola, 67, 679, 684, A20
Laplace’s, 920, 1107
of a line, A12, A13, A14, A16

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 INDEX A143

of a line in space, 824
of a line through two points, 825
linear, 827, A14
logistic difference, 707
logistic differential, 587, 619
Lotka-Volterra, 627
nth-degree, 211
of a parabola, 674, 684, A18
parametric, 640, 824, 849, 1110
of a plane, 827
of a plane through three points, 828
point-slope, A12
polar, 660, 684
predator-prey, 627
second-degree, A16
slope-intercept, A13
of a space curve, 849
of a sphere, 795
symmetric, 824
two-intercept form, A16
van der Waals, 926
vector, 824, 827
wave, 920

equilateral hyperbola, A21
equilibrium point, 629
equilibrium solution, 587, 628
equipotential curves, 902
equivalent vectors, 798
error

in approximate integration, 516, 517
percentage, 256
relative, 256
in Taylor approximation, 775

error bounds, 518, 522
error estimate

for alternating series, 735
for the Midpoint Rule, 516, 517
for Simpson’s Rule, 522
for the Trapezoidal Rule, 516, 517

error function, 401
escape velocity, 535
estimate of the sum of a series, 723, 730, 

735, 740
Euclid, 97
Eudoxus, 2, 97, 411
Euler, Leonhard, 52, 597, 720, 726, 763
Euler’s formula, A63
Euler’s Method, 595
even function, 17, 315
expected values, 1023
exponential decay, 237
exponential function(s), 32, 45, 177, A52,  

A54, rp4
with base b, A54
derivative, of 179, 202, A55
graphs of, 47, 179

integration of, 383, 413, 768, 769
limits of, 131, A53
power series for, 761
properties of, A53

exponential graph, 46
exponential growth, 237, 615
exponents, laws of, 47, A53, A55
extrapolation, 27
extreme value, 276
Extreme Value Theorem, 278, 965

family
of epicycloids and  

hypocycloids, 648
of exponential functions, 46
of functions, 29, 327, 328
of parametric curves, 644
of solutions, 586, 589

fat circles, 213, 550
Fermat, Pierre, 3, 152, 279, 411, A11
Fermat’s Principle, 340
Fermat’s Theorem, 279
Fibonacci, 695, 706
Fibonacci sequence, 695, 706
field

conservative, 1073, 1090, 1091, 1105
electric, 1072
force, 1072
gradient, 956, 1072
gravitational, 1072
incompressible, 1107
irrotational, 1106
scalar, 1069
vector, 1068, 1069
velocity, 1068, 1071

first-degree Taylor polynomial, 970
First Derivative Test, 294

for Absolute Extreme Values, 333
first octant, 792
first-order linear differential equation,  

588, 620
first-order optics, 780
fixed point of a function, 170, 292
flash bulb, current to, 79
flow lines, 1074
fluid flow, 1071, 1106, 1107, 1130
flux, 570, 1129, 1131
flux integral, 1129
FM synthesis, 327
foci, 676
focus, 674, 682

of a conic section, 682
of an ellipse, 676, 682
of a hyperbola, 677
of a parabola, 674

folium of Descartes, 209, 691

force, 455
centripetal, 884
constant, 455, 811
exerted by fluid, 558
resultant, 803
torque, 820, 879

force field, 1068, 1072
forced vibrations, 1171
Fourier, Joseph, 233
Fourier series, finite, 485
four-leaved rose, 662
fractions (partial), 493, 494
Frenet-Serret formulas, 870
Fresnel, Augustin, 395
Fresnel function, 395
frustum, 447, 448
Fubini, Guido, 994
Fubini’s Theorem, 994, 1030
function(s), 10, 888

absolute value, 16
Airy, 752
algebraic, 30
arc length, 547, 863
arcsine, 64
area, 391
arrow diagram of, 11
average cost, 339
average value of, 461, 575, 997, 1039
Bessel, 217, 748, 752
Cobb-Douglas production, 889, 890, 

922, 926, 978
combinations of, 40
component, 848, 1069
composite, 41, 198, 909
constant, 172
continuity of, 114, 849, 907, 908,  

909, 910
continuous, 849
cost, 230, 231
cubic, 28
decreasing, 19
demand, 336, 569
derivative of, 144
differentiability of, 155, 930
discontinuous, 115
domain of, 10, 888
elementary, 507
error, 401
even, 17, 315
exponential, 32, 45, 177, A54
extreme values of, 276
family of, 29, 327, 328
fixed point of, 170, 292
Fresnel, 395
Gompertz, 617, 620
gradient of, 936, 950
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function(s) (continued)
graph of, 11, 890
greatest integer, 101
harmonic, 920, 1110
Heaviside, 45, 87
homogeneous, 946
hyperbolic, 259
implicit, 209
increasing, 19
inverse, 55, 56
inverse cosine, 64
inverse hyperbolic, 261
inverse sine, 63
inverse tangent, 65
inverse trigonometric, 63, 64
joint density, 1021, 1036
limit of, 83, 105, 904, 909, 910
linear, 24, 891
logarithmic, 32, 59, A50, A55
machine diagram of, 11
marginal cost, 146, 231, 335, 406
marginal profit, 336
marginal revenue, 336
maximum and minimum values  

of, 276, 959, 960
of n variables, 898
natural exponential, 52, A52
natural logarithmic, 60, A50
nondifferentiable, 157
odd, 17, 315
one-to-one, 56
periodic, 316
piecewise defined, 15
polynomial, 27, 908
position, 142
power, 29, 172
probability density, 574, 1021
profit, 336
quadratic, 27
ramp, 45
range of, 10, 888
rational, 30, 493, 908
reciprocal, 30
reflected, 37
representation as a power series, 752
representations of, 10, 12
revenue, 336
root, 29
of several variables, 898, 909
shifted, 37
sine integral, 401
smooth, 544
step, 17
stretched, 37
tabular, 13
of three variables, 897, 909

transformation of, 36
translation of, 36
trigonometric, 31, A26
of two variables, 888
value of, 10, 11
vector, 848

Fundamental Theorem of Calculus, 392,  
394, 398

higher-dimensional versions, 1147
for line integrals, 1087, 1147
for vector functions, 859

G (gravitational constant), 234, 460
Gabriel’s horn, 556
Galileo, 644, 651, 674
Galois, Evariste, 211
Gause, G. F., 615
Gauss, Karl Friedrich, 1141, A35
Gaussian optics, 780
Gauss’s Law, 1131, 1144
Gauss’s Theorem, 1141
geometric series, 709
geometric vector, 800
geometry of a tetrahedron, 823
geosynchronous orbit, 881
Gibbs, Joseph Willard, 803
Gini, Corrado, 436
Gini coefficient, 437
Gini index, 437
global maximum and minimum, 276
Gompertz function, 617, 620
grad f , 949, 951
gradient, 950
gradient vector, 949, 951, 955

interpretations of, 955
gradient vector field, 956, 1072
graph(s)

of an equation, A16, A17
of equations in three dimensions, 793
of exponential functions, 46, 179, rp4
of a function, 11
of a function of two variables, 890
of logarithmic functions, 60, 62
of a parametric curve, 640
of a parametric surface, 1124
polar, 660, 665
of power functions, 29, rp3
of a sequence, 699
of a surface, 1124
of trigonometric functions, 31, A30, rp2

graphing calculator, 323, 642, 665
graphing device. See computer algebra 

system
gravitation law, 234, 460 
gravitational acceleration, 455
gravitational field, 1072

great circle, 1051
greatest integer function, 101
Green, George, 1096, 1140
Green’s identities, 1110
Green’s Theorem, 1096, 1140, 1147

vector forms, 1108
for a union of simple regions, 1099

Gregory, James, 198, 483, 520, 756, 760
Gregory’s series, 756
grid curves, 1112
growth, law of natural, 237, 611
growth rate, 229, 406

relative, 237, 611

half-angle formulas, A29
half-life, 50, 239
half-space, 898
Hamilton, Sir William Rowan, 815
hare-lynx system, 631
harmonic function, 920, 1110
harmonic series, 713, 722
harmonic series, alternating, 734
heat conduction equation, 925
heat conductivity, 1132
heat flow, 1131
heat index, 911, 931
Heaviside, Oliver, 87
Heaviside function, 45, 87
Hecht, Eugene, 254, 257, 779
helix, 849
hidden line rendering, 834
higher derivatives, 158
higher partial derivatives, 918
homogeneous differential equation, 1154
homogeneous function, 946
Hooke’s Law, 457, 1168
horizontal asymptote, 128, 316
horizontal line, equation of, A13
Horizontal Line Test, 56
horizontal plane, 793
Hubble Space Telescope, 282
humidex, 899, 911
Huygens, Christiaan, 644
hydro-turbine optimization, 980
hydrostatic pressure and force, 558
hyperbola, 215, 677, 682, A20

asymptotes, 678, A20
branches, 678, A20
directrix, 682
eccentricity, 682
equation, 678, 679, 684, A20
equilateral, A21
foci, 677, 682
polar equation, 684
reflection property, 682
vertices, 678
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hyperbolic function(s), 259
derivatives of, 261
inverse, 261

hyperbolic identities, 260
hyperbolic paraboloid, 836, 837
hyperbolic substitution, 489, 490
hyperboloid, 791, 837
hypersphere, volume of, 1040
hypervolume, 1034
hypocycloid, 648

i (imaginary number), A57
i (standard basis vector), 802
I/D Test, 293
ideal gas law, 236
image of a point, 1053
image of a region, 1053
implicit differentiation, 208, 209, 917, 942
implicit function, 208, 209
Implicit Function Theorem, 942, 943
improper integral, 527

convergence or divergence of, 528, 531
impulse of a force, 464
incompressible velocity field, 1107
increasing function, 19
increasing sequence, 700
Increasing/Decreasing Test, 293
increment, 145, 933
indefinite integral(s), 403

table of, 403
independence of path, 1088
independent random variable, 1022
independent variable, 10, 888, 940
indeterminate difference, 309
indeterminate forms of limits, 304
indeterminate power, 310
indeterminate product, 308
index of summation, A34
inequalities, rules for, A4
inertia (moment of), 1019, 1020,  

1036, 1086
infinite discontinuity, 116
infinite interval, 527, 528
infinite limit, 89, 112, 132
infinite sequence. See sequence
infinite series. See series
inflection point, 297
initial condition, 589
initial point 

of a parametric curve, 641
of a vector, 798

initial-value problem, 589, 1158
inner product, 807
instantaneous rate of change, 80, 145, 224
instantaneous rate of growth, 229
instantaneous rate of reaction, 227

instantaneous velocity, 81, 143, 224
integer, A2
integrable function, 990
integral(s)

approximations to, 384
change of variables in, 412, 1012, 1052, 

1056, 1058, 1059
comparison properties of, 387
conversion to cylindrical  

coordinates, 1040
conversion to polar coordinates, 1012
conversion to spherical  

coordinates, 1046
definite, 378, 988
derivative of, 394
double (see double integral)
evaluating, 381
improper, 527
indefinite, 402
iterated, 993
line (see line integral)
patterns in, 513
properties of, 385
surface, 1122, 1129
of symmetric functions, 417
table of, 471, 503, 509, rp6–10
triple, 1029, 1030
units for, 408

integral calculus, 2, 3
Integral Test, 721
integrand, 379

discontinuous, 531
integration, 379

approximate, 514
by computer algebra system, 511
of exponential functions, 383, 413
formulas, 471, 503, rp6–10
indefinite, 402
limits of, 379
numerical, 514
partial, 993, 995
by partial fractions, 493
by parts, 472, 473, 474
of a power series, 754
of rational functions, 493
by a rationalizing substitution, 500
reversing order of, 995, 1006
over a solid, 1042
substitution in, 412
tables, use of, 508
term-by-term, 754
of a vector function, 859

intercepts, 315, A19
interest compunded continuously, 241
Intermediate Value Theorem, 123
intermediate variable, 940

interpolation, 27
intersection

of planes, 828
of polar graphs, area of, 670
of sets, A3
of three cylinders, 1044

interval, A3
interval of convergence, 749
inverse cosine function, 64
inverse function(s), 55, 56
inverse sine function, 63
inverse square laws, 36
inverse tangent function, 65
inverse transformation, 1053
inverse trigonometric functions, 63, 64
irrational number, A2
irrotational vector field, 1106
isobar, 895
isothermal, 893
isothermal compressibility, 228
iterated integral, 993

j (standard basis vector), 802
Jacobi, Carl Gustav Jacob, 1055
Jacobian of a transformation, 1055, 1059
jerk, 160
joint density function, 1021, 1036
joule, 455
jump discontinuity, 116

k (standard basis vector), 802 
kampyle of Eudoxus, 215
Kepler, Johannes, 686, 875, 880
Kepler’s Laws, 686, 875, 876, 880
kinetic energy, 464, 1093
Kirchhoff’s Laws, 593, 1172
Kondo, Shigeru, 763

Lagrange, Joseph-Louis, 288, 289, 972
Lagrange multiplier, 971, 972
lamina, 562, 1016, 1017
Laplace, Pierre, 920, 1107
Laplace operator, 1107
Laplace’s equation, 920, 1107
lattice point, 274
law of conservation of angular  

momentum, 879
Law of Conservation of Energy, 1094
law of cosines, A33
law of gravitation, 460
law of laminar flow, 230, 570
law of natural growth or decay, 237
aw of universal gravitation, 876, 880
laws of exponents, 47, A53, A55
laws of logarithms, 60, A51
learning curve, 591
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least squares method, 26, 970
least upper bound, 702
left-hand derivative, 165
left-hand limit, 88, 109
Leibniz, Gottfried Wilhelm, 3, 155, 392, 

411, 600, 773
Leibniz notation, 155
lemniscate, 215
length

of a curve, 544
of a line segment, A7, A12
of a parametric curve, 652
of a polar curve, 671
of a space curve, 861
of a vector, 801

level curve(s), 893, 897
level surface, 898
 tangent plane to, 954
l’Hospital, Marquis de, 306, 314
l’Hospital’s Rule, 305, 314, A45

origins of, 314
libration point, 350
limaçon, 665
limit(s), 2, 83

calculating, 95
e (the number) as, 222
of exponential functions, 132, A53
of a function, 83, 106
of a function of three variables,  

909, 910
of a function of two variables,  

904, 910
infinite, 89, 112, 132
at infinity, 126, 127, 132
of integration, 379
left-hand, 88, 109
of logarithmic functions, 91, A50, A52
one-sided, 88, 109
precise definitions, 104, 109, 112,  

134, 137
properties of, 95
properties of, for vector functions, 855
right-hand, 88, 109
of a sequence, 5, 368, 696
involving sine and cosine functions, 

190, 191, 192
of a trigonometric function, 192
of a vector function, 848

Limit Comparison Test, 729
Limit Laws, 95, A39

for functions of two variables, 907
for sequences, 697

line(s) in the plane, 78, A12
equations of, A12, A13, A14
horizontal, A13
normal, 175

parallel, A14
perpendicular, A14
secant, 78, 79
slope of, A12
tangent, 78, 79, 141

line(s) in space
normal, 954
parametric equations of, 824
skew, 826
symmetric equations of, 824
tangent, 856
vector equation of, 823, 824

line integral, 1075, 1078
Fundamental Theorem for, 1087
for a plane curve, 1075
with respect to arc length, 1075,  

1078, 1080
with respect to x and y, 1078, 1081
for a space curve, 1080
work defined as, 1082
of vector fields, 1082, 1083, 1084

linear approximation, 252, 929,  
930, 933

linear combination, 1154
linear density, 226, 406
linear differential equation, 620, 1154
linear equation, A14

of a plane, 827
linear function, 24, 891
linear model, 24
linear regression, 26
linearization, 252, 929, 930
linearly independent solutions, 1155
liquid force, 558
Lissajous figure, 642, 648
lithotripsy, 677
local maximum and minimum, 276,  

959, 960
logarithm(s), 32, 59

laws of, 60, A51
natural, 60, A50
notation for, 60

logarithmic differentiation, 220
logarithmic function(s), 32, 59, A48

with base b, 59, A55
derivatives of, 218, A56
graphs of, 60, 62
limits of, 91, A52
properties of, 59, 60, A51

logistic difference equation, 707
logistic differential equation, 587, 612
logistic model, 587, 611
logistic sequence, 707
long-bow curve, 691
LORAN system, 681
Lorenz curve, 436

Lotka-Volterra equations, 627
lower sum, 371
LZR Racer, 887, 936

machine diagram of a function, 11
Maclaurin, Colin, 760
Maclaurin series, 759, 760

table of, 768
magnetic field strength of the earth, 921
magnitude of a vector, 801
major axis of ellipse, 676
marginal cost function, 146, 231,  

335, 406
marginal productivity, 922
marginal profit function, 336
marginal propensity to consume or  

save, 717
marginal revenue function, 336
mass

of a lamina, 1016
of a solid, 1035
of a surface, 1124
of a wire, 1077

mass, center of. See center of mass
mathematical induction, 72, 74, 703

principle of, 72, 74, A36
mathematical model, 13, 23

for vibration of membrane, 748
maximum and minimum values, 276,  

959, 960
mean life of an atom, 536
mean of a probability density  

function, 576
Mean Value Theorem, 287, 288

for double integrals, 1063
for integrals, 462

mean waiting time, 576
median of a probability density  

function, 578
method of cylindrical shells, 449
method of exhaustion, 2, 97
method of Lagrange multipliers,  

971, 972
with two constraints, 976

method of least squares, 26, 970
method of undetermined coefficients,  

1161, 1165
method of variation of parameters,  

1165, 1166
midpoint formula, A16

for points in space, 979
Midpoint Rule, 384, 515

for double integrals, 992
error in using, 516
for triple integrals, 1038

minor axis of ellipse, 676
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mixing problems, 604
Möbius, August, 1127
Möbius strip, 1121, 1127
model(s), mathematical, 13, 23

Cobb-Douglas, for production costs, 
889, 890, 922, 926, 978 

comparison of natural growth vs.  
logistic, 615

of electric current, 593
empirical, 25
exponential, 32, 48
Gompertz function, 617, 620
linear, 24
logarithmic, 32
polynomial, 28
for population growth, 237, 586, 617
power function, 29
predator-prey, 627
rational function, 30
seasonal-growth, 620
trigonometric, 31, 32
von Bertalanffy, 635

modeling
with differential equations, 586
motion of a spring, 587
population growth, 48, 237, 586, 611, 

617, 635
vibration of membrane, 748

modulus, A58
moment(s)

about an axis, 561, 1017
of inertia, 1019, 1020, 1036, 1086
of a lamina, 562, 1017, 1018
of a mass, 561
about a plane, 1035
polar, 1020
second, 1019
of a solid, 1035
of a system of particles, 561

momentum of an object, 464
monkey saddle, 902
monotonic sequence, 700
Monotonic Sequence Theorem, 702
motion in space, 870
motion of a projectile, 872
motion of a spring, force affecting
 damping, 1169, 1171
 resonance, 1172
 restoring, 1169, 1171
movie theater seating, 465
multiple integrals. See double integral; 

triple integral(s)
multiplication,scalar, 799, 801
multiplication of power series, 770
multiplier (Lagrange), 971, 972, 975
multiplier effect, 717

natural exponential function, 52,  
179, A52

derivative of, 179, A54
graph of, 179
power series for, 760
properties of, A53

natural growth law, 237, 611
natural logarithm function, 60, A50

derivative of, 218, A51
limits of, A51
properties of, A51

n-dimensional vector, 802
negative angle, A25
negative of a vector, 799
net area, 379
Net Change Theorem, 406
net investment flow, 573
newton (unit of force), 455
Newton, Sir Isaac, 3, 8, 97, 152, 155,  

392, 411, 773, 876, 880
Newton’s Law of Cooling, 240, 591
Newton’s Law of Gravitation, 234, 460, 

876, 880, 1071
Newton’s method, 345
Newton’s Second Law of Motion, 455, 464, 

872, 876, 880, 1168
Nicomedes, 645
nondifferentiable function, 157
nonhomogeneous differential equation, 

1154, 1160, 1161
nonparallel planes, 828
normal component of acceleration,  

874, 875
normal derivative, 1110
normal distribution, 578
normal line, 175

to a surface, 954
normal plane, 867
normal vector, 827, 866
normally distributed random variable, 

probability density function  
of, 1024

nth-degree equation, finding roots of, 211
nth-degree Taylor polynomial, 258, 761
n-tuple, 802
nuclear reactor, cooling towers of, 839
number

complex, A57
integer, A2
irrational, A2
rational, A2
real, A2

numerical integration, 514

O (origin), 792
octant, 792

odd function, 17, 315
one-sided limits, 87, 109
one-to-one function, 56
one-to-one transformation, 1053
open interval, A3
open region, 1089
optics

first-order, 780
Gaussian, 780
third-order, 780

optimization problems, 276, 330
orbit of a planet, 876
order of a differential equation, 588
order of integration, reversed,  

995, 1006
ordered pair, A10
ordered triple, 792
Oresme, Nicole, 713
orientation of a curve, 1080, 1096
orientation of a surface, 1127
oriented surface, 1127
origin, 792, A2, A10
orthogonal curves, 216
orthogonal projection of a vector, 813
orthogonal surfaces, 959
orthogonal trajectory, 216, 603
orthogonal vectors, 809
osculating circle, 867
osculating plane, 867
Ostrogradsky, Mikhail, 1141
ovals of Cassini, 669
overdamped vibration, 1170

Pappus, Theorem of, 565
Pappus of Alexandria, 565
parabola, 674, 682, A18

axis, 674
directrix, 674
equation, 674, 675
focus, 674, 682
polar equation, 684
reflection property, 274
vertex, 674

parabolic cylinder, 834
paraboloid, 836, 839
paradoxes of Zeno, 5
parallel lines, A14
parallel planes, 828
parallel vectors, 799, 817
parallelepiped, 438

volume of, 820
Parallelogram Law, 798, 814
parameter, 640, 824, 849
parametric curve, 640, 849

arc length of, 652
area under, 651
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parametric equations, 640, 824, 849
of a line in space, 824
of a space curve, 849
of a surface, 1110
of a trajectory, 873

parametric surface, 1110
graph of, 1124
smooth, 1116
surface area of, 1116, 1117
surface integral over, 1122, 1123
tangent plane to, 1115, 1116

parametrization of a space curve, 862
with respect to arc length, 863
smooth, 863

paraxial rays, 254
partial derivative(s), 913, 914

of a function of more than two 
variables, 917

interpretations of, 915
notations for, 914
as a rate of change, 915
rules for finding, 914
second, 918
as slopes of tangent lines, 915

partial differential equation, 920
partial differentiation, 911, 913, 914, 917
partial fractions, 493, 494
partial integration, 472, 473, 474

for double integrals, 993, 995
partial sum of a series, 708
particle, motion of, 870
parts, integration by, 472, 473, 474
pascal (unit of pressure), 558
path, 1088
patterns in integrals, 513
pendulum, approximating the period  

of, 254, 257
percentage error, 256
perihelion, 687
perilune, 681
period, 316
period of a particle, 884
periodic function, 316
perpendicular lines, A14
perpendicular vectors, 809
phase plane, 629
phase portrait, 629
phase trajectory, 629
piecewise defined function, 15
piecewise-smooth curve, 1076
Planck’s Law, 783
plane(s), 826

angle between, 828
coordinate, 792
equation(s) of, 823, 827, 828
equation of, through three points, 828

horizontal, 793
line of intersection, 829
linear equation of, 827
normal, 867
osculating, 867
parallel, 828
scalar equation of, 827
tangent to a surface, 928, 1115
vector equation of, 827
vertical, 888

plane region of type I, 1002
plane region of type II, 1002
planetary motion, laws of, 686, 875,  

876, 880
planimeter, 1099
point of inflection, 297
point-slope equation of a line, A12
point(s) in space

coordinates of, 792
distance between, 794, 795
projection of, 793

Poiseuille, Jean-Louis-Marie, 230
Poiseuille’s Laws, 257, 342, 571
polar axis, 658
polar coordinate system, 658

area in, 669
conic sections in, 682
conversion of double integral to,  

1012, 998
conversion equations for Cartesian 

coordinates, 659, 660
polar curve, 660

arc length of, 671
graph of, 660
symmetry in, 663
tangent line to, 663

polar equation(s), 660
of a conic, 684
graph of, 660

polar form of a complex number, A59
polar graph, 660
polar moment of inertia, 1020
polar rectangle, 1010
polar region, area of, 669
pole, 658
polynomial, 27
polynomial function, 27

of two variables, 908
population growth, 48, 237, 610

of bacteria, 610, 615
of insects, 502
models, 586
world, 49

position function, 142
position vector, 800
positive angle, A25

positive orientation
of a boundary curve, 1134
of a closed curve, 1096
of a surface, 1128

potential, 539
potential energy, 1093
potential function, 1073
pound (unit of force), 455
power, 147
power consumption, approximation  

of, 408
power function(s), 29

derviative of, 172
Power Law of limits, 96
Power Rule, 173, 174, 200, 221
power series, 746, 747

coefficients of, 746
for cosine and sine, 764
differentiation of, 754
division of, 770
for exponential function, 763
integration of, 754
interval of convergence, 749
multiplication of, 770
radius of convergence, 749
representations of functions as, 752

predator, 627
predator-prey model, 236, 627
pressure exerted by a fluid, 558
prey, 627
prime notation, 144, 176
principal square root of a complex  

number, A58
principal unit normal vector, 866
principle of mathematical induction,  

72, 74, A36
principle of superposition, 1163
probability, 573, 1021
probability density function, 574, 1021
problem-solving principles, 71

uses of, 169, 363, 412, 425
producer surplus, 572
product

cross, 814, 815 (see also cross product)
dot, 807 (see also dot product)
scalar, 807
scalar triple, 819
triple, 819

product formulas, A29
Product Law of limits, 95
Product Rule, 183, 184
profit function, 336
projectile, path of, 648, 872
projection, 793, 811

orthogonal, 813
p-series, 722
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quadrant, A11
quadratic approximation, 258, 970
quadratic function, 27
quadric surface(s), 835

cone, 837
ellipsoid, 835, 837
hyperboloid, 837
paraboloid, 836, 837
table of graphs, 837

quaternion, 803
Quotient Law of limits, 95
Quotient Rule, 185, 186

radian measure, 190, A24
radiation from stars, 783
radioactive decay, 239
radiocarbon dating, 243
radius of convergence, 749
radius of gyration of a lamina, 1020
rainbow, formation and location of, 285
rainbow angle, 286
ramp function, 45
range of a function, 10, 888
rate of change

average, 145, 224
derivative as, 146
instantaneous, 81, 145, 224

rate of growth, 229, 406
rate of reaction, 147, 227, 406
rates, related, 245
rational function, 30, 493, 908

continuity of, 118
integration of, 493

rational number, A2
rationalizing substitution for  

integration, 500
Ratio Test, 739
Rayleigh-Jeans Law, 783
real line, A3
real number, A2
rearrangement of a series, 742
reciprocal function, 30
Reciprocal Rule, 190
rectangular coordinate system, 793, A11

conversion to cylindrical  
coordinates, 1040

conversion to spherical  
coordinates, 1046

rectifying plane, 869
rectilinear motion, 354
recursion relation, 1177
reduction formula, 475
reflecting a function, 37
reflection property

of conics, 273
of an ellipse, 677

of a hyperbola, 682
of a parabola, 273, 274

region
between two graphs, 428
connected, 1089
open, 1089
plane, of type I or II, 1002, 1003
simple plane, 1097
simple solid, 1141
simply-connected, 1090
solid (of type 1, 2, or 3), 1031, 1032
under a graph, 366, 371

regression, linear, 26
related rates, 245
relative error, 256
relative growth rate, 237, 611
relative maximum or minimum, 276
remainder estimates

for the Alternating Series, 735
for the Integral Test, 723

remainder of the Taylor series, 761
removable discontinuity, 116
representation(s) of a function, 10,  

12, 13
as a power series, 752

resonance, 1172
restoring force, 1169, 1171
resultant force, 803
revenue function, 336
reversing order of integration, 995, 1006
revolution, solid of, 443
revolution, surface of, 551
Riemann, Georg Bernhard, 379
Riemann sum(s), 379

double, 991
triple, 1029

right circular cylinder, 438
right-hand derivative, 165
right-hand limit, 88, 109
right-hand rule, 792, 816
Roberval, Gilles de, 398, 651
rocket stages, determining optimal  

masses for, 979
Rolle, Michel, 287
roller coaster, design of, 182
roller derby, 1052
Rolle’s Theorem, 287
root function, 29
Root Law of limits, 97
Root Test, 741
roots of a complex number, A62
roots of an nth-degree equation, 211
rubber membrane, vibration of, 748
ruled surface, 841
ruling of a surface, 834
rumors, rate of spread, 232

saddle point, 961
sample point, 371, 378, 989
satellite dish, parabolic, 839
scalar, 799
scalar equation of a plane, 827
scalar field, 1069
scalar multiple of a vector, 799
scalar product, 807
scalar projection, 811
scalar triple product, 819

geometric characterization of, 819
scatter plot, 13
seasonal-growth model, 620
secant function, A26

derivative of, 193
graph of, A31

secant line, 3, 78, 79, 81
secant vector, 856
second-degree Taylor polynomial, 971
second derivative, 158

of a vector function, 858
Second Derivative Test, 297
Second Derivatives Test, 961
second directional derivative, 958
second moment of inertia, 1019
second-order differential equation, 588

boundary-value problem, 1159
initial-value problem, 1158
solutions of, 1154, 1159

second partial derivative, 918
sector of a circle, area of, 669
separable differential equation, 599
sequence, 5, 694

bounded, 701
convergent, 696
decreasing, 700
divergent, 696
Fibonacci, 695
graph of, 699
increasing, 700
limit of, 5, 368, 696
logistic, 707
monotonic, 700
of partial sums, 708
term of, 694

series, 6, 707
absolutely convergent, 737
alternating, 732
alternating harmonic, 734, 737, 738
binomial, 766
coefficients of, 746
conditionally convergent, 738
convergent, 708
divergent, 708
geometric, 709
Gregory’s, 756
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series (continued)
harmonic, 713, 722
infinite, 707
Maclaurin, 759, 760
p-, 722
partial sum of, 708
power, 746
rearrangement of, 742
strategy for testing, 744
sum of, 6, 708
Taylor, 759, 760
term of, 707
trigonometric, 746

series solution of a differential  
equation, 1176

set, bounded or closed, 965
set notation, A3
serpentine, 188
Shannon index, 969
shell method for approximating  

volume, 449
shift of a function, 37
shifted conics, 679, A21
shock absorber, 1169
Sierpinski carpet, 718
sigma notation, 372, A34
simple curve, 1090
simple harmonic motion, 206, 1168
simple plane region, 1097
simple solid region, 1141
simply-connected region, 1090
Simpson, Thomas, 520, 985
Simpson’s Rule, 519, 520

error bounds for, 522
sine function, A26

derivative of, 192, 193
graph of, 31, A31
power series for, 764

sine integral function, 401
sink, 1145
skew lines, 826
slant asymptote, 316, 320
slope, A12

of a curve, 141
slope field, 592
slope-intercept equation of a sline, A13
smooth curve, 544, 863
smooth function, 544
smooth parametrization of a space  

curve, 863
smooth surface, 1116
Snell’s Law, 341
snowflake curve, 788
solid, 438
solid, volume of, 438, 439, 990, 1031
solid angle, 1151

solid of revolution, 443
rotated on a slant, 557
volume of, 445, 451, 557

solid region, 1031, 1141
solution curve, 592
solution of a differential equation, 588
solution of predator-prey equations, 627
source, 1145
space, three-dimensional, 792
space curve, 849

arc length of, 861, 862
parametrization of, 851

speed of a particle, 146, 870
sphere

equation of, 795
flux across, 1129
parametrization of, 1113
surface area of, 1117

spherical coordinate system, 1045
 conversion equations for, 1046
 triple integrals in, 1047
spherical wedge, 1047
spherical zones, 583
spring constant, 457, 587, 1168
Squeeze Theorem, 101, A42

for sequences, 698
standard basis vectors, 802

properties of, 818
standard deviation, 578
standard position of an angle, A25
stationary point, 960
steady state solution, 1174
stellar stereography, 536
step function, 17
Stokes, Sir George, 1135, 1140
Stokes’ Theorem, 1134, 1140, 1147
strategy

for integration, 503, 504
for optimization problems, 330, 331
for problem solving, 71
for related rates, 247
for testing series, 744
for trigonometric integrals, 481, 482

streamlines, 1074
stretching of a function, 37
strophoid, 673, 691
Substitution Rule, 412, 413, 416

for definite integrals, 416
subtraction formulas for sine  

and cosine, A29
sum, 371

of a geometric series, 710
of an infinite series, 708
lower, 371
of partial fractions, 494
Riemann, 379

telescoping, 712
upper, 371
of vectors, 798, 801

Sum Law of limits, 95
summation notation, A34
Sum Rule, 176
supply function, 572
surface(s)

closed, 1128
graph of, 1124
level, 898
oriented, 1127
orthogonal, 959
parametric, 1111
positive orientation of, 1128
quadric, 835
smooth, 1116

surface area, 552
of a graph of a function, 1118
of a parametric surface, 654,  

1116, 1117
of a sphere, 1117
of a function of two variables, 1026

surface integral, 1122
 over a parametric surface,  

1122, 1123
 of a vector field, 1128, 1129
surface of revolution, 551

parametric representation of, 1115
surface area of, 552

swallowtail catastrophe curve, 648
symmetric equations of a line, 824
symmetric functions, integrals of, 417
symmetry, 17, 315, 417

in polar graphs, 663
symmetry principle, 562

T and T 21 transformations, 1053
table of differentiation  

formulas, 187, rp5
tables of integrals, 503, rp6–10

use of, 509
tabular function, 13
tangent function, A26

derivative of, 193
graph of, 32, A31

tangent line(s), 141
to a curve, 3, 78, 141
early methods of finding, 152
to a parametric curve, 649, 650
to a polar curve, 663
to a space curve, 856
vertical, 158

tangent line approximation, 252
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tangent plane
to a level surface, 954
to a parametric surface, 1115, 1116
to a surface, 928

tangent plane approximation, 929, 930
tangent problem, 2, 3, 78, 140
tangent vector, 856
tangential component of acceleration, 874
tautochrone problem, 644
Taylor, Brook, 760
Taylor polynomial, 258, 761, 970

applications of, 774
Taylor series, 759, 760
Taylor’s inequality, 762
techniques of integration, summary, 504
telescoping sum, 712
temperature-humidity index, 899, 911
term of a sequence, 694
term of a series, 707
terminal point of a parametric curve, 641
terminal point of a vector, 798
terminal velocity, 607
term-by-term differentiation and  

integration, 754
Test for Divergence, 713
tests for convergence and divergence  

of series
Alternating Series Test, 732
Comparison Test, 727
Integral Test, 721
Limit Comparison Test, 729
Ratio Test, 739
Root Test, 741
summary of tests, 744

tetrahedron, 823
third derivative, 159
third-order optics, 780
Thomson, William (Lord Kelvin), 1097,  

1135, 1140
three-dimensional coordinate systems, 792
TNB frame, 866
toroidal spiral, 851
torque, 820, 879
Torricelli, Evangelista, 651
Torricelli’s Law, 234
torsion of a space curve, 870
torus, 448, 1122
total differential, 932
total electric charge, 1016, 1036
total fertility rate, 168
trace of a surface, 834
trajectory, parametric equations for, 873
transfer curve, 870, 883
transformation

of a function, 36
inverse, 1053

Jacobian of, 1055, 1059
one-to-one, 1053
of a root function, 38

translation of a function, 36
Trapezoidal Rule, 516

error in, 516
tree diagram, 940
trefoil knot, 851, 855
Triangle Inequality, 111, A8

for vectors, 814
Triangle Law, 798
trigonometric functions, 31, A26

derivatives of, 190, 193
graphs of, 31, 32, A30, A31
integrals of, 403, 479
inverse, 63
limits involving, 191, 192

trigonometric identities, A28
trigonometric integrals, 479

strategy for evaluating, 481, 482
trigonometric series, 746
trigonometric substitutions, 486

table of, 486
triple integral(s), 1029, 1030

applications of, 1034
change of variables in, 1058
in cylindrical coordinates,  

1040, 1042
over a general bounded region, 1031
Midpoint Rule for, 1038
in spherical coordinates, 1045, 1047

triple product, 819
triple Riemann sum, 1029
trochoid, 647
Tschirnhausen cubic, 215, 436
twisted cubic, 851
type I or type II plane region,  

1002, 1003
type 1, 2, or 3 solid region, 1031, 1032

ultraviolet catastrophe, 783
underdamped vibration, 1170
undetermined coefficients, method of, 

1161, 1165
uniform circular motion, 884
union of sets, A3
unit normal vector, 866
unit tangent vector, 856
unit vector, 803
upper sum, 371

value of a function, 10
van der Waals equation, 217, 926
variable(s)

change of, 413
continuous random, 573

dependent, 10, 888, 940
independent, 10, 888, 940
independent random, 1022
intermediate, 940

variables, change of. See change of 
variable(s)

variation of parameters, method of,  
1165, 1166

vascular branching, 342
vector(s), 798

acceleration, 871
addition of, 798, 801
algebraic, 800
angle between, 808, 809
basis, 802
binormal, 866
combining speed, 806
components of, 800
coplanar, 820
cross product of, 814, 815
difference, 799
displacement, 798, 811
dot product, 807
equality of, 798
force, 1071
geometric representation of, 800
gradient, 949, 951, 955
i, j, and k, 802
length of, 801
magnitude of, 801
multiplication of, 799, 801
n-dimensional, 802
normal, 827, 866
orthogonal, 807
orthogonal projection of, 813
parallel, 799, 817
perpendicular, 807
position, 800
properties of, 802
representation of, 800
scalar mulitple of, 799, 801
secant, 856
standard basis, 802
subtraction of, 799, 801
tangent, 856
three-dimensional, 800
triple product, 820
two-dimensional, 800
unit, 803
unit normal, 866
unit tangent, 856
velocity, 870
zero, 798

vector equation 
of a line, 824
of a plane, 827
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vector field, 1068, 1069
component functions, 1069
conservative, 1073, 1090, 1091, 1105
curl of, 1103
divergence of, 1106
electric flux of, 1131, 1144
flux of, 1129
force, 1068, 1072
gradient, 956, 1072
gravitational, 1072
incompressible, 1107
irrotational, 1106
line integral of, 1082, 1083, 1084
surface integral of, 1128, 1129
velocity, 1068, 1071

vector function, 848
component functions of, 848
continuity of, 849
derivative of, 855, 856, 858
integration of, 859
limit of, 848, 855

vector product, 815
 properties of, 816, 819
vector projection, 811
vector triple product, 820
vector-valued function. See vector function
velocity, 3, 80, 143, 224, 406

average, 4, 81, 143, 224
instantaneous, 81, 143, 224

velocity field, 1071
airflow, 1068
ocean currents, 1068
wind patterns, 1068

velocity gradient, 230
velocity problem, 80, 142
velocity vector, 870
velocity vector field, 1086
Verhulst, Pierre-François, 587
vertex of a parabola, 674
vertical asymptote, 90, 316
vertical line, A13
Vertical Line Test, 15
vertical tangent line, 158
vertical translation of a graph, 37
vertices

of an ellipse, 676
of a hyperbola, 678

vibration of a rubber membrane, 748
vibration of a spring, 1168
vibrations, 1168, 1169, 1171
visual representations of a function,  

10, 12
volume, 439

by cross-sections, 438, 439, 570
by cylindrical shells, 449
by disks, 440, 443
by double integrals, 988
of a hypersphere, 1040
by polar coordinates, 1012
of a solid, 438, 990
of a solid of revolution, 443, 557
of a solid on a slant, 557
by triple integrals, 1035
by washers, 442, 443

Volterra, Vito, 627
von Bertalanffy model, 635

Wallis, John, 3
Wallis product, 478
washer method, 442
wave equation, 920
Weierstrass, Karl, 502
weight (force), 455
wind-chill index, 889
wind patterns in San Francisco Bay  

area, 1068
witch of Maria Agnesi, 188, 647
work (force), 455, 456, 811
work defined as a line integral, 1082
Wren, Sir Christopher, 654

x-axis, 792, A10
x-coordinate, 792, A10
x-intercept, A13, A19
X-mean, 1023

y-axis, 792, A10
y-coordinate, 792, A10
y-intercept, A13, A19
Y-mean, 1023

z-axis, 792
z-coordinate, 792
Zeno, 5
Zeno’s paradoxes, 5
zero vector, 798
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CHAPTER 8 CONCEPT CHECK ANSWERS
   The consumer surplus represents the amount of money saved 

by consumers in purchasing the commodity at price P [when 
they were willing to purchase it at price psxd], corresponding 
to an amount demanded of X.

  

consumer
surplus

0 x

p

(X, P)
P

X

p=p(x)

p=P

 7.  (a) What is the cardiac output of the heart?

    It is the volume of blood pumped by the heart per unit 
time, that is, the rate of flow into the aorta.

  (b)  Explain how the cardiac output can be measured by the 
dye dilution method.

    An amount A of dye is injected into part of the heart and 
its concentration cstd leaving the heart is measured over a 
time interval [0, T ] until the dye has cleared. The cardiac 
output is given by AyyT

0  cstd dt.

 8.   What is a probability density function? What properties does 
such a function have?

   Given a random variable X, its probability density function f  
is a function such that yb

a f sxd dx gives the probability that X 
lies between a and b. The function f  has the properties that 
f sxd > 0 for all x, and y`

2` f sxd dx − 1.

 9.   Suppose f sxd is the probability density function for the 
weight of a female college student, where x is measured in 
pounds.

  (a) What is the meaning of the integral y130
0  f sxd dx?

    It represents the probability that a randomly chosen 
female college student weighs less than 130 pounds.

  (b)  Write an expression for the mean of this density function.

! − y`
2` x  f sxd dx − y`

0  x f sxd dx

   [since f sxd − 0 for x , 0]

  (c)  How can we find the median of this density function?

    The median of f  is the number m such that 

  y`

m
 f sxd dx −

1
2

 10.   What is a normal distribution? What is the significance of the 
standard deviation?

   A normal distribution corresponds to a random variable X that 
has a probability density function with a bell-shaped graph 
and equation given by

  f sxd −
1

"s2#  
 e2sx2!d2ys2"2d

   where ! is the mean and the positive constant " is the stan-
dard deviation. " measures how spread out the values of X are.

 1.  (a) How is the length of a curve defined?

    We can approximate a curve C by a polygon with vertices 
Pi along C. The length L of C is defined to be the limit of 
the lengths of these inscribed polygons:

L − lim
n l `

 o
n

i−1
 | Pi21Pi |

  (b)  Write an expression for the length of a smooth curve 
given by y − f sxd, a < x < b.

   L − yb

a
 s1 1 f f 9sxdg2  dx

  (c)  What if x is given as a function of y?

   If x − tsyd, c < y < d, then L − yd

c
 s1 1 ft9sydg2  dy.

 2.  (a)  Write an expression for the surface area of the surface 
obtained by rotating the curve y − f sxd, a < x < b, about 
the x-axis.

   S − yb

a
 2# f sxd s1 1 f f 9sxdg2  dx

  (b)  What if x is given as a function of y?

   If x − tsyd, c < y < d, then S − yd

c
 2#ys1 1 ft9sydg2  dy.

  (c)  What if the curve is rotated about the y-axis?

   S − yb

a
 2#xs1 1 f f 9sxdg2  dx

   or S − yd

c
 2#tsyd s1 1 ft9sydg2  dy

 3.   Describe how we can find the hydrostatic force against a  
vertical wall submersed in a fluid.

   We divide the wall into horizontal strips of equal height Dx 
and approximate each by a rectangle with horizontal length 
f sxid at depth xi. If $ is the weight density of the fluid, then 
the hydrostatic force is

  F − lim
nl`

 o
n

i−1
 $xi f sxid Dx − yb

a
 $x f sxd dx

 4.  (a)  What is the physical significance of the center of mass of 
a thin plate?

    The center of mass is the point at which the plate balances 
horizontally.

  (b)  If the plate lies between y − f sxd and y − 0, where 
a < x < b, write expressions for the coordinates of the 
center of mass.

   x −
1
A

 yb

a
 xf sxd dx  and  y −

1
A

 yb

a
 12 f f sxdg2 dx

   where A −  yb

a
 f sxd dx.

 5.  What does the Theorem of Pappus say?

   If a plane region 5 that lies entirely on one side of a line / in 
its plane is rotated about /, then the volume of the resulting 
solid is the product of the area of 5 and the distance traveled 
by the centroid of 5.

 6.   Given a demand function psxd, explain what is meant by the 
consumer surplus when the amount of a commodity currently 
available is X and the current selling price is P. Illustrate with  
a sketch.
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CHAPTER 9 CONCEPT CHECK ANSWERS
    (Isxdy)9 − Isxd Qsxd. We then integrate both sides and 

solve for y.

 7.  (a)  Write a differential equation that expresses the law of  
natural growth. What does it say in terms of relative 
growth rate?

    If Pstd is the value of a quantity y at time t and if the rate 
of change of P with respect to t is proportional to its size 

   Pstd at any time, then 
dP
dt

− kP.

   In this case the relative growth rate, 
1
P

 
dP
dt

, is constant.

  (b)  Under what circumstances is this an appropriate model 
for population growth?

    It is an appropriate model under ideal conditions: unlim-
ited environment, adequate nutrition, absence of predators 
and disease.

  (c) What are the solutions of this equation?

    If Ps0d − P0, the initial value, then the solutions are 
Pstd − P0ekt.

 8.  (a) Write the logistic differential equation.

    The logistic differential equation is 

  
dP
dt

− kPS1 2
P
MD

   where M is the carrying capacity.

  (b)  Under what circumstances is this an appropriate model 
for population growth?

    It is an appropriate model for population growth if the  
population grows at a rate proportional to the size of the 
population in the beginning, but eventually levels off and  
approaches its carrying capacity because of limited  
resources.

 9.  (a)  Write Lotka-Volterra equations to model populations of 
food-fish sFd and sharks sSd.

  
dF
dt

− kF 2 aFS  and  
dS
dt

− 2rS 1 bFS

  (b)  What do these equations say about each population in the 
absence of the other?

    In the absence of sharks, an ample food supply would 
support exponential growth of the fish population, that is, 
dFydt − kF, where k is a positive constant. In the absence 
of fish, we assume that the shark population would decline 
at a rate proportional to itself, that is dSydt − 2rS, where 
r is a positive constant.

 1.  (a) What is a differential equation?

    It is an equation that contains an unknown function and 
one or more of its derivatives.

  (b) What is the order of a differential equation?

    It is the order of the highest derivative that occurs in the 
equation.

  (c) What is an initial condition?

    It is a condition of the form yst0d − y0.

 2.   What can you say about the solutions of the equation 
y9 − x 2 1 y 2 just by looking at the differential equation?

   The equation tells us that the slope of a solution curve at any 
point sx, yd is x 2 1 y 2. Note that x 2 1 y 2 is always positive 
except at the origin, where y9 − x 2 1 y 2 − 0. Thus there is a 
horizontal tangent at s0, 0d but nowhere else and the solution 
curves are increasing everywhere.

 3.   What is a direction field for the differential equation 
y9 − Fsx, yd?

   A direction field (or slope field) for the differential equation 
y9 − Fsx, yd is a two-dimensional graph consisting of short 
line segments with slope Fsx, yd at point sx, yd.

 4.  Explain how Euler’s method works.

   Euler’s method says to start at the point given by the initial 
value and proceed in the direction indicated by the direction 
field. Stop after a short time, look at the slope at the new loca-
tion, and proceed in that direction. Keep stopping and chang-
ing direction according to the direction field until the approxi-
mation is complete.

 5.   What is a separable differential equation? How do you  
solve it?

   It is a differential equation in which the expression for dyydx 
can be factored as a function of x times a function of y, that is, 
dyydx − tsxd f syd. We can solve the equation by rewriting it 
as f1yf sydg dy − tsxd dx, integrating both sides, and solving 
for y.

 6.   What is a first-order linear differential equation? How do you 
solve it?

   A first-order linear differential equation is a differential equa-
tion that can be put in the form 

  
dy
dx

1 Psxdy − Qsxd

   where P and Q are continuous functions on a given interval. 
To solve such an equation, we multiply both sides by the  
integrating factor Isxd − e y Psxd dx to put it in the form 
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CHAPTER 10 CONCEPT CHECK ANSWERS

(continued)

  (b)  Write equations that express the Cartesian coordinates  
sx, yd of a point in terms of the polar coordinates.

  x − r cos !  y − r sin !

  (c)  What equations would you use to find the polar coordi-
nates of a point if you knew the Cartesian coordinates?

    To find a polar representation sr, !d with r > 0 and 
0 < ! , 2", first calculate r − sx 2 1 y 2 . Then ! is 
specified by tan ! − yyx. Be sure to choose ! so that sr, !d 
lies in the correct quadrant.

 5.  (a)  How do you find the slope of a tangent line to a polar 
curve?

 
dy
dx

−

dy
d!

dx
d!

−

d
d!

 syd

d
d!

 sxd
−

d
d!

 sr sin !d

d
d!

 sr cos !d

  −
S dr

d!D sin ! 1 r cos !

S dr
d!D cos ! 2 r sin !

 where r − f s!d

  (b)  How do you find the area of a region bounded by a polar 
curve?

  A − yb

a
 12 r 2 d! − yb

a
 12 f f s!dg2 d!

  (c)  How do you find the length of a polar curve?

  L − yb

a
 ssdxyd!d2 1 sdyyd!d2

 
 

 d!

  − yb

a
 sr 2 1 sdryd!d2  d!

 − yb

a
 sf f s!dg2 1 f f 9s!dg2  d!

 6.  (a)  Give a geometric definition of a parabola.

    A parabola is a set of points in a plane whose distances 
from a fixed point F (the focus) and a fixed line l (the 
directrix) are equal.

  (b)  Write an equation of a parabola with focus s0, pd and 
directrix y − 2p. What if the focus is sp, 0d and the 
directrix is x − 2p?

    In the first case an equation is x 2 − 4py and in the second 
case, y 2 − 4px.

 7.  (a)  Give a definition of an ellipse in terms of foci.

    An ellipse is a set of points in a plane the sum of whose 
distances from two fixed points (the foci) is a constant.

  (b)  Write an equation for the ellipse with foci s6c, 0d and  
vertices s6a, 0d.

  
x 2

a 2 1
 y 2

b 2 − 1

   where a > b . 0 and c 2 − a 2 2 b 2.

 1.  (a) What is a parametric curve?

    A parametric curve is a set of points of the form 
sx, yd − s f std, tstdd, where f  and t are functions of a vari-
able t, the parameter.

  (b) How do you sketch a parametric curve?

    Sketching a parametric curve, like sketching the graph of 
a function, is difficult to do in general. We can plot points 
on the curve by finding f std and tstd for various values 
of t, either by hand or with a calculator or computer. 
Sometimes, when f  and t are given by formulas, we can 
eliminate t from the equations x − f std and y − tstd to get 
a Cartesian equation relating x and y. It may be easier to 
graph that equation than to work with the original formu-
las for x and y in terms of t.

 2.  (a)  How do you find the slope of a tangent to a parametric 
curve?

   You can find dyydx as a function of t by calculating

  
dy
dx

−
dyydt
dxydt

   if dxydt ± 0

  (b)  How do you find the area under a parametric curve?

    If the curve is traced out once by the parametric equations 
x − f std, y − tstd, # < t < $, then the area is

  A − yb

a
 y dx − y$

#
 tstd f 9std dt

   for y#
$ tstd f 9std dt if the leftmost point is s f s$d, ts$dd

   rather than s f s#d, ts#ddg.

 3.   Write an expression for each of the following:

  (a)  The length of a parametric curve

    If the curve is traced out once by the parametric equations  
x − f std, y − tstd, # < t < $, then the length is 

 L − y$

#
 ssdxydtd2 1 sdyydtd2

 

 dt

 − y$

#
 sf f 9stdg2 1 ft9stdg2  dt

  (b)  The area of the surface obtained by rotating a parametric 
curve about the x-axis

  S − y$

#
 2"yssdxydtd2 1 sdyydtd2

 

 dt

  − y$

#
 2"tstd sf f 9stdg2 1 ft9stdg2  dt

 4.  (a)  Use a diagram to explain the meaning of the polar coor-
dinates sr, !d of a point.

  
O

y

x
¨

x

yr

P (r, ̈ )=P(x, y)
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CHAPTER 10 CONCEPT CHECK ANSWERS (continued)

  (b)  What can you say about the eccentricity if the conic  
section is an ellipse? A hyperbola? A parabola?

    e , 1 for an ellipse; e . 1 for a hyperbola; e − 1 for a 
parabola

  (c)  Write a polar equation for a conic section with eccen-
tricity e and directrix x − d. What if the directrix is 
x − 2d? y − d? y − 2d?

 directrix x − d: r −
ed

1 1 e cos !

 x − 2d: r −
ed

1 2 e cos !

 y − d: r −
ed

1 1 e sin !

 y − 2d: r −
ed

1 2 e sin !

 8.  (a)  Give a definition of a hyperbola in terms of foci.

    A hyperbola is a set of points in a plane the difference  
of whose distances from two fixed points (the foci) is 
a constant. This difference should be interpreted as the 
larger distance minus the smaller distance.

  (b)  Write an equation for the hyperbola with foci s6c, 0d and 
vertices s6a, 0d.

  
x 2

a 2 2
 y 2

b 2 − 1

   where c 2 − a 2 1 b 2.

  (c)  Write equations for the asymptotes of the hyperbola in 
part (b).

  y − 6 
b
a

 x

 9.  (a)  What is the eccentricity of a conic section?

    If a conic section has focus F and corresponding directrix 
l, then the eccentricity e is the fixed ratio | PF |y| Pl | for 
points P of the conic section.
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CHAPTER 11 CONCEPT CHECK ANSWERS

(continued)

  (c) The Comparison Test

    Suppose that o an and o bn are series with positive terms.

    ■  If o bn is convergent and an < bn for all n, then o an is 
also convergent.

    ■  If o bn is divergent and an > bn for all n, then o an is 
also divergent.

  (d) The Limit Comparison Test

    Suppose that o an and o bn are series with positive terms. 
If lim

n l `
 anybn − c, where c is a finite number and c . 0, 

   then either both series converge or both diverge.

  (e) The Alternating Series Test

    If the alternating series 

   o
`

n−1
 s21dn21bn − b1 2 b2 1 b3 2 b4 1 b5 2 b6 1 ∙ ∙ ∙

    where bn . 0 satisfies (i) bn11 < bn for all n and  
(ii) lim

n l `
bn − 0, then the series is convergent.

  (f) The Ratio Test

    ■ If lim 
n l `

 Z an11

an
Z − L , 1, then the series o

`

n−1
 an is 

    absolutely convergent (and therefore convergent).

   ■ If lim 
n l `

 Z an11

an
Z − L . 1 or lim 

n l `
 Z an11

an
Z − `, then the 

    series o
`

n−1
 an is divergent.

   ■ If lim 
n l `

 Z an11

an
Z − 1, the Ratio Test is inconclusive.

  (g) The Root Test

   ■  If lim
nl `

sn |an | − L , 1, then the series o
`

n−1
 an is 

    absolutely convergent (and therefore convergent).

   ■ If lim
nl `

sn |an | − L . 1 or lim
nl `

sn |an | − `, then the 

    series o
`

n−1
 an is divergent.

   ■ If lim
nl `

sn |an | − 1, the Root Test is inconclusive.

 6.  (a) What is an absolutely convergent series?

    A series o an is called absolutely convergent if the series 
of absolute values o | an | is convergent.

  (b) What can you say about such a series?

    If a series o an is absolutely convergent, then it is  
convergent.

  (c) What is a conditionally convergent series?

    A series o an is called conditionally convergent if it is 
convergent but not absolutely convergent.

 1.  (a) What is a convergent sequence?

    A convergent sequence han j is an ordered list of numbers 
where lim n l `   an exists.

  (b) What is a convergent series?

    A series o an is the sum of a sequence of numbers. It is 

    convergent if the partial sums sn − o
n

i−1
 an approach a finite 

   value, that is, lim n l `   sn exists as a real number.

  (c) What does limn l ` an − 3 mean?

    The terms of the sequence han j approach 3 as n becomes 
large.

  (d) What does o `
n−1 an − 3 mean?

    By adding sufficiently many terms of the series, we can 
make the partial sums as close to 3 as we like.

 2.  (a) What is a bounded sequence?

    A sequence han j is bounded if there are numbers m and M 
such that m < an < M for all n > 1.

  (b) What is a monotonic sequence?

    A sequence is monotonic if it is either increasing or  
decreasing for all n > 1.

  (c)  What can you say about a bounded monotonic sequence?

   Every bounded, monotonic sequence is convergent.

 3.  (a)  What is a geometric series? Under what circumstances is  
it convergent? What is its sum?

    A geometric series is of the form 

  o
`

n−1
 ar n21 − a 1 ar 1 ar 2 1 ∙ ∙ ∙

   It is convergent if | r | , 1 and its sum is 
a

1 2 r
.

  (b)  What is a p-series? Under what circumstances is it  
convergent?

   A p-series is of the form o
`

n−1
 

1
n p . It is convergent if p . 1.

 4.   Suppose o an − 3 and sn is the nth partial sum of the series. 
What is limn l ` an? What is limn l ` sn?

  If o an − 3, then lim
n l `

 an − 0 and lim
n l `

 sn − 3.

 5.  State the following.

  (a) The Test for Divergence

    If lim
n l `

 an does not exist or if lim
n l `

 an ± 0, then the series 

   o
`

n−1
 an is divergent.

  (b) The Integral Test

    Suppose f  is a continuous, positive, decreasing function 
    on f1, `d and let an − f snd.

   ■ If y`

1
 f sxd dx is convergent, then o

`

n−1
 an is convergent.

   ■ If y`

1
 f sxd dx is divergent, then o

`

n−1
 an is divergent.
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CHAPTER 11 CONCEPT CHECK ANSWERS (continued)

 10.  (a)  Write an expression for the nth-degree Taylor polyno mial 
of f  centered at a.

   Tnsxd − o
n

i−0

 f sidsad
i!

 sx 2 ad i

  (b)  Write an expression for the Taylor series of f  centered  
at a.

  o
`

n−0
 
 f sndsad

n!
 sx 2 adn

  (c) Write an expression for the Maclaurin series of f.

  o
`

n−0
 
 f snds0d

n!
 x n  fa − 0 in part sbdg

  (d)  How do you show that f sxd is equal to the sum of its  
Taylor series?

    If f sxd − Tnsxd 1 Rnsxd, where Tnsxd is the nth-degree 
Taylor polynomial of f  and Rnsxd is the remainder of the 
Taylor series, then we must show that 

lim 
n l `

 Rnsxd − 0

  (e)  State Taylor’s Inequality.

    If | f sn11dsxd | < M for | x 2 a | < d, then the remainder 
Rnsxd of the Taylor series satisfies the inequality

  | Rnsxd | <
M

sn 1 1d!
 | x 2 a |n11    for | x 2 a | < d

 11.   Write the Maclaurin series and the interval of convergence 
for each of the following functions.

  (a) 
1

1 2 x
− o

`

n−0
 x n, R − 1

  (b) e x − o
`

n−0
 
x n

n!
, R − `

  (c) sin x − o
`

n−0
s21dn 

x 2n11

s2n 1 1d!
, R − `

  (d) cos x − o
`

n−0
s21dn 

x 2n

s2nd!
, R − `

  (e) tan21x − o
`

n−0
s21dn 

x 2n11

2n 1 1
, R − 1 

  (f) lns1 1 xd − o
`

n−1
s21dn21 

xn

n
, R − 1 

 12.   Write the binomial series expansion of s1 1 xdk. What is the 
radius of convergence of this series?

   If k is any real number and | x | , 1, then

 s1 1 xdk − o
`

n−0
 Sk

nDx n

  − 1 1 kx 1
ksk 2 1d

2!
x 2 1

ksk 2 1dsk 2 2d
3!

x 3 1 ∙ ∙ ∙

  The radius of convergence for the binomial series is 1.

 7.  (a)  If a series is convergent by the Integral Test, how do you 
estimate its sum?

    The sum s can be estimated by the inequality

  sn 1 y`

n11
f sxd dx < s < sn 1 y`

n
 f sxd dx

   where sn is the nth partial sum.

  (b)  If a series is convergent by the Comparison Test, how do 
you estimate its sum?

    We first estimate the remainder for the comparison series. 
This gives an upper bound for the remainder of the origi-
nal series (as in Example 11.4.5).

  (c)  If a series is convergent by the Alternating Series Test, 
how do you estimate its sum?

    We can use a partial sum sn of an alternating series as an 
approximation to the total sum. The size of the error is 
guaranteed to be no more than | an11 |, the absolute value 
of the first neglected term.

 8.  (a) Write the general form of a power series.

   A power series centered at a is

  o
`

n−0
 cnsx 2 adn

  (b) What is the radius of convergence of a power series?

    Given the power series o
`

n−0
 cnsx 2 adn, the radius of 

    convergence is:

   (i) 0 if the series converges only when x − a,

   (ii) ` if the series converges for all x, or

   (iii)  a positive number R such that the series converges if 
| x 2 a | , R and diverges if | x 2 a | . R.

  (c)  What is the interval of convergence of a power series?

    The interval of convergence of a power series is the inter-
val that consists of all values of x for which the series con-
verges. Corresponding to the cases in part (b), the interval 
of convergence is (i) the single point haj, (ii) s2`, `d, or 
(iii) an interval with endpoints a 2 R and a 1 R that can 
contain neither, either, or both of the endpoints.

 9.   Suppose f sxd is the sum of a power series with radius of  
convergence R.

  (a)  How do you differentiate f ? What is the radius of conver-
gence of the series for f 9?

   If f sxd − o
`

n−0
 cnsx 2 adn, then f 9sxd − o

`

n−1
 ncnsx 2 adn21 

   with radius of convergence R.

  (b)  How do you integrate f ? What is the radius of conver-
gence of the series for y f sxd dx?

   y f sxd dx − C 1 o
`

n−0
 cn 

sx 2 adn11

n 1 1
 with radius of 

   convergence R.
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CHAPTER 12 CONCEPT CHECK ANSWERS

(continued)

 7.  Write expressions for the scalar and vector projections of b  
onto a. Illustrate with diagrams.

   Scalar projection of b onto a: compa b −
a ! b

| a |

 

b

a

compa b

  Vector projection of b onto a: 

proja b − S a ! b

| a | D 
a

| a | −
a ! b

| a |2  a

a

proja b

b

 8.  How do you find the cross product a 3 b of two vectors if 
you know their lengths and the angle between them? What if 
you know their components?

   If ! is the angle between a and b (0 < ! < "), then a 3 b is 
the vector with length | a 3 b | − | a | | b | sin ! and direction 
orthogonal to both a and b, as given by the right-hand rule. If

a − ka1, a2, a3 l  and  b − kb1, b2, b3 l
  then

 
a 3 b − Z i

 a1

 b1

j
a2

b2

k
a3

b3

Z
 − ka2b3 2 a3b2, a3b1 2 a1b3,  a1b2 2 a2b1l

 9.  How are cross products useful?

   The cross product can be used to create a vector orthogonal 
to two given vectors and it can be used to compute the area 
of a parallelogram determined by two vectors. Two nonzero 
vectors are parallel if and only if their cross product is 0. In 
addition, if a force acts on a rigid body, then the torque vector 
is the cross product of the position and force vectors.

 1.  What is the difference between a vector and a scalar?

   A scalar is a real number, whereas a vector is a quantity that 
has both a real-valued magnitude and a direction.

 2.  How do you add two vectors geometrically? How do you add 
them algebraically?

   To add two vectors geometrically, we can use either the 
Triangle Law or the Parallelogram Law:

vu+v

u

v
v+u

u

u

v

u+v

Triangle Law Parallelogram Law

   Algebraically, we add the corresponding components of the 
vectors.

 3.   If a is a vector and c is a scalar, how is ca related to a  
geo metrically? How do you find ca algebraically?

   For c . 0, ca is a vector with the same direction as a and 
length c times the length of a. If c , 0, ca points in the direc-
tion opposite to a and has length | c | times the length of a. 
Algebraically, to find ca we multiply each component of a  
by c.

 4.  How do you find the vector from one point to another?

   The vector from point Asx1, y1, z1d to point Bsx2, y2, z2d is 
given by

kx2 2 x1, y2 2 y1, z2 2 z1l

 5.  How do you find the dot product a ! b of two vectors if you 
know their lengths and the angle between them? What if you 
know their components?

   If ! is the angle between the vectors a and b, then

a ! b − | a | | b | cos !

  If a − ka1, a2, a3l and b − kb1, b2, b3l, then

a ! b − a1b1 1 a2b2 1 a3b3

 6.  How are dot products useful?

   The dot product can be used to find the angle between two 
vectors. In particular, it can be used to determine whether two 
vectors are orthogonal. We can also use the dot product to find 
the scalar projection of one vector onto another. Additionally, 
if a constant force moves an object, the work done is the dot 
product of the force and displacement vectors.
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CHAPTER 12 CONCEPT CHECK ANSWERS (continued)

  (c)  How do you tell if two planes are parallel?

    Two planes are parallel if and only if their normal vectors 
are parallel.

 16. (a)  Describe a method for determining whether three points  
P, Q, and R lie on the same line.

    Determine the vectors PQ
l

− a and PR
l

− b. If there is a 
scalar t such that a − tb, then the vectors are parallel and 
the points must all lie on the same line.

    Alternatively, if PQ
l

3 PR
l

− 0, then PQ
l

 and PR
l

 are  
parallel, so P, Q, and R are collinear.

    An algebraic method is to determine an equation of the 
line joining two of the points, and then check whether or 
not the third point satisfies this equation.

  (b)  Describe a method for determining whether four points  
P, Q, R, and S lie in the same plane.

    Find the vectors PQ
l

− a, PR
l

− b, PS
l

− c. Then a 3 b 
is normal to the plane formed by P, Q, and R, and so S 
lies on this plane if a 3 b and c are orthogonal, that is, if 
sa 3 bd ! c − 0.

    Alternatively, we can check if the volume of the paral-
lelepiped determined by a, b, and c is 0 (see Example 
12.4.5).

    An algebraic method is to find an equation of the plane 
determined by three of the points, and then check whether 
or not the fourth point satisfies this equation.

 17. (a) How do you find the distance from a point to a line?

    Let P be a point not on the line L that passes through the 
    points Q and R and let a − QR

l
, b − QP

l
. The distance 

from the point P to the line L is

d − | a 3 b |
| a |

  (b) How do you find the distance from a point to a plane?

    Let P0sx0, y0, z0d be any point in the plane 
ax 1 by 1 cz 1 d − 0 and let P1sx1, y1, z1d be a point not 

    in the plane. If b − P¸P¡A − kx1 2 x0, y1 2 y0, z1 2 z0l,  
then the distance D from P1 to the plane is equal to the 
absolute value of the scalar projection of b onto the 
plane’s normal vector n − ka, b, cl:

 D − | compn b | − | n ! b |
| n | − | ax1 1 by1 1 cz1 1 d |

sa 2 1 b 2 1 c 2 

  (c) How do you find the distance between two lines?

    Two skew lines L1 and L2 can be viewed as lying on two 
parallel planes, each with normal vector n − v1 3 v2,  
where v1 and v2 are the direction vectors of L1 and L2. 
After choosing one point on L1 and determining the equa-
tion of the plane containing L2, we can proceed as in  
part (b). (See Example 12.5.10.)

 10. (a)  How do you find the area of the parallelogram deter-
mined by a and b?

    The area of the parallelogram determined by a and b is 
the length of the cross product: | a 3 b |.

  (b)  How do you find the volume of the parallelepiped  
determined by a, b, and c?

    The volume of the parallelepiped determined by a, b,  
and c is the magnitude of their scalar triple product: 
| a ! sb 3 cd |.

 11.  How do you find a vector perpendicular to a plane?

   If an equation of the plane is known, it can be written in 
the form ax 1 by 1 cz 1 d − 0. A normal vector, which is 
perpendicular to the plane, is ka, b, cl (or any nonzero scalar 
multiple of ka, b, cl). If an equation is not known, we can use 
points on the plane to find two nonparallel vectors that lie in 
the plane. The cross product of these vectors is a vector per-
pendicular to the plane.

 12.  How do you find the angle between two intersecting planes?

   The angle between two intersecting planes is defined as the 
acute angle ! between their normal vectors. If n1 and n2 are 
the normal vectors, then

 cos ! −
n1 ! n2

| n1 || n2 |
 13.  Write a vector equation, parametric equations, and sym metric 

equations for a line.

   A vector equation for a line that is parallel to a vector v 
and that passes through a point with position vector r0 is 
r − r0 1 tv. Parametric equations for a line through the point 
sx0, y0, z0d and parallel to the vector ka, b, cl are

x − x0 1 at    y − y0 1 bt    z − z0 1 ct

   while symmetric equations are
x 2 x0

a
−

y 2 y0

b
−

z 2 z0

c

 14.  Write a vector equation and a scalar equation for a plane.

   A vector equation of a plane that passes through a point with 
position vector r0 and that has normal vector n (meaning n is 
orthogonal to the plane) is n ! sr 2 r0d − 0 or, equivalently, 
n ! r − n ! r0.

   A scalar equation of a plane through a point sx0, y0, z0d with 
normal vector n − ka, b,  c l is

asx 2 x0 d 1 bsy 2 y0 d 1 csz 2 z0 d − 0

 15. (a)  How do you tell if two vectors are parallel?

    Two (nonzero) vectors are parallel if and only if one is a 
scalar multiple of the other. In addition, two nonzero vec-
tors are parallel if and only if their cross product is 0.

  (b)  How do you tell if two vectors are perpendicular?

    Two vectors are perpendicular if and only if their dot 
product is 0.

(continued)
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  Elliptic paraboloid: 
z
c

−
x 2

a 2 1
y 2

b 2

  Hyperboloid of one sheet: 
x 2

a 2 1
y 2

b 2 2
z 2

c 2 − 1

  Hyperboloid of two sheets: 2
x 2

a 2 2
y 2

b 2 1
z 2

c 2 − 1

  Hyperbolic paraboloid: 
z
c

−
x 2

a 2 2
y 2

b 2

 18.  What are the traces of a surface? How do you find them?

   The traces of a surface are the curves of intersection of the 
surface with planes parallel to the coordinate planes. We can 
find the trace in the plane x − k (parallel to the yz-plane) by 
setting x − k and determining the curve represented by the 
resulting equation. Traces in the planes y − k (parallel to the 
xz-plane) and z − k (parallel to the xy-plane) are found  
similarly.

 19.  Write equations in standard form of the six types of quadric 
surfaces.

   Equations for the quadric surfaces symmetric with respect to 
the z-axis are as follows.

Ellipsoid:  
x 2

a 2 1
y 2

b 2 1
z 2

c 2 − 1

 Cone: 
z 2

c 2 −
x 2

a 2 1
y 2

b 2

CHAPTER 12 CONCEPT CHECK ANSWERS (continued)
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CHAPTER 13 CONCEPT CHECK ANSWERS

(continued)

 5.  How do you find the length of a space curve given by a vector 
function rstd?

   If rstd − k f std, tstd, hstdl, a < t < b, and the curve is  
traversed exactly once as t increases from a to b, then the 
length is

L − yb

a
 | r9std | dt − yb

a
 sf f 9stdg2 1 ft9stdg2 1 fh9stdg2  dt

 6. (a) What is the definition of curvature?

    The curvature of a curve is ! − Z dT
ds Z  where T is the 

unit tangent vector.

  (b) Write a formula for curvature in terms of r9std and T9std.

!std − | T9std |
| r9std |

  (c) Write a formula for curvature in terms of r9std and r0std.

!std − | r9std 3 r0std |
| r9std |3

  (d)  Write a formula for the curvature of a plane curve with 
equation y − f sxd.

!sxd − | f 0sxd |
f1 1 s f 9sxdd2 g3y2

 7. (a)  Write formulas for the unit normal and binormal vectors 
of a smooth space curve rstd.

   Unit normal vector: Nstd −
T9std

| T9std |
   Binormal vector: Bstd − Tstd 3 Nstd

  (b)  What is the normal plane of a curve at a point? What is 
the osculating plane? What is the osculating circle?

    The normal plane of a curve at a point P is the plane 
determined by the normal and binormal vectors N and 
B at P. The tangent vector T is orthogonal to the normal 
plane.

    The osculating plane at P is the plane determined by the 
vectors T and N. It is the plane that comes closest to con-
taining the part of the curve near P.

    The osculating circle at P is the circle that lies in the 
osculating plane of C at P, has the same tangent as C at  
P, lies on the concave side of C (toward which N points), 
and has radius " − 1y! (the reciprocal of the curvature). 
It is the circle that best describes how C behaves near P; it 
shares the same tangent, normal, and curvature at P.

 1.  What is a vector function? How do you find its derivative and 
its integral?

   A vector function is a function whose domain is a set of real 
numbers and whose range is a set of vectors. To find the 
derivative or integral, we can differentiate or integrate each 
component function of the vector function.

 2.  What is the connection between vector functions and space 
curves?

   A continuous vector function r defines a space curve that is 
traced out by the tip of the moving position vector rstd.

 3.  How do you find the tangent vector to a smooth curve at a 
point? How do you find the tangent line? The unit tangent  
vector?

   The tangent vector to a smooth curve at a point P with posi-
tion vector rstd is the vector r9std. The tangent line at P is the 
line through P parallel to the tangent vector r9std. The unit 

  tangent vector is Tstd −
r9std

| r9std| .

 4.   If u and v are differentiable vector functions, c is a scalar, 
and f  is a real-valued function, write the rules for differenti-
ating the following vector functions.

  (a) ustd 1 vstd

d
dt

 fustd 1 vstdg − u9std 1 v9std

  (b) custd
d
dt

 fcustdg − cu9std

  (c) f std ustd

d
dt

 f f std ustdg − f 9std ustd 1 f std u9std

  (d) ustd ! vstd

d
dt

 fustd ! vstdg − u9std ! vstd 1 ustd ! v9std

  (e) ustd 3 vstd

d
dt

 fustd 3 vstdg − u9std 3 vstd 1 ustd 3 v9std

  (f) us f stdd
d
dt

 fus f stddg − f 9stdu9s f stdd
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CHAPTER 13 CONCEPT CHECK ANSWERS (continued)

 9.  State Kepler’s Laws.

  ■  A planet revolves around the sun in an elliptical orbit with 
the sun at one focus.

  ■  The line joining the sun to a planet sweeps out equal areas 
in equal times.

  ■  The square of the period of revolution of a planet is pro-
portional to the cube of the length of the major axis of its 
orbit.

 8.  (a)  How do you find the velocity, speed, and acceleration of a 
particle that moves along a space curve?

    If rstd is the position vector of the particle on the space 
curve, the velocity vector is vstd − r9std, the speed is given 
by | vstd |, and the acceleration is astd − v9std − r 0std.

  (b)  Write the acceleration in terms of its tangential and nor-
mal components.

    a − aTT 1 aNN, where aT − v9 and aN − !v2 sv − | v | is 
speed and ! is the curvature).
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CHAPTER 14 CONCEPT CHECK ANSWERS

(continued)

 5. (a)  Write expressions for the partial derivatives fxsa, bd and 
fysa, bd as limits.

fxsa, bd − lim
h l 0

 
 f sa 1 h, bd 2 f sa, bd

h

fysa, bd − lim
h l 0

 
 f sa, b 1 hd 2 f sa, bd

h

  (b)  How do you interpret fxsa, bd and fysa, bd geometrically? 
How do you interpret them as rates of change?

    If f sa, bd − c, then the point Psa, b, cd lies on the surface 
S given by z − f sx, yd. We can interpret fxsa, bd as the 
slope of the tangent line at P to the curve of intersection 
of the vertical plane y − b and S. In other words, if we 
restrict ourselves to the path along S through P that is par-
allel to the xz-plane, then fxsa, bd is the slope at P looking 
in the positive x-direction. Similarly, fysa, bd is the slope 
of the tangent line at P to the curve of intersection of the 
vertical plane x − a and S.

    If z − f sx, yd, then fxsx, yd can be interpreted as the rate 
of change of z with respect to x when y is fixed. Thus 
fxsa, bd is the rate of change of z (with respect to x) when 
y is fixed at b and x is allowed to vary from a. Similarly, 
fysa, bd is the rate of change of z (with respect to y) when 
x is fixed at a and y is allowed to vary from b.

  (c)  If f sx, yd is given by a formula, how do you calculate fx 
and fy ?

    To find fx, regard y as a constant and differentiate f sx, yd 
with respect to x. To find fy, regard x as a constant and 
differentiate f sx, yd with respect to y.

 6. What does Clairaut’s Theorem say?

   If f  is a function of two variables that is defined on a disk D 
containing the point sa, bd and the functions fxy and fyx are 
both continuous on D, then Clairaut’s Theorem states that 
fx ysa, bd − fyxsa, bd.

 7.  How do you find a tangent plane to each of the following 
types of surfaces?

  (a) A graph of a function of two variables, z − f sx, yd
    If f  has continuous partial derivatives, an equation of 

the tangent plane to the surface z − f sx, yd at the point 
sx0, y0, z0d is

z 2 z0 − fxsx0, y0dsx 2 x0d 1 fysx0, y0dsy 2 y0d

  (b)  A level surface of a function of three variables, 
Fsx, y, zd − k

    The tangent plane to the level surface Fsx, y, zd − k at 
Psx0, y0, z0d is the plane that passes through P and has 
normal vector =Fsx0, y0, z0d:

Fxsx0, y0, z0dsx 2 x0d 1 Fysx0, y0, z0dsy 2 y0d

1 Fzsx0, y0, z0dsz 2 z0d − 0

 1. (a) What is a function of two variables?

    A function f  of two variables is a rule that assigns to each 
ordered pair sx, yd of real numbers in its domain a unique 
real number denoted by f sx, yd.

  (b)  Describe three methods for visualizing a function of two 
variables.

    One way to visualize a function of two variables is by 
graphing it, resulting in the surface z − f sx, yd. Another 
method is a contour map, consisting of level curves 
f sx, yd − k (k a constant), which are horizontal traces 
of the graph of the function projected onto the xy-plane. 
Also, we can use an arrow diagram such as the one below.

y

x0

z

D f(a, b)

f(x, y)
(x, y)

(a, b)

0

 2.  What is a function of three variables? How can you visualize 
such a function?

   A function f  of three variables is a rule that assigns to each 
ordered triple sx, y, zd in its domain a unique real number 
f sx, y, zd. We can visualize a function of three variables by 
examining its level surfaces f sx, y, zd − k, where k is a  
constant.

 3. What does

lim
sx, yd l sa, bd 

 f sx, yd − L

  mean? How can you show that such a limit does not exist?

   lim
sx, yd l sa, bd 

 f sx, yd − L means that the values of f sx, yd 

   approach the number L as the point sx, yd approaches the point 
sa, bd along any path that is within the domain of f. We can 
show that a limit at a point does not exist by finding two dif-
ferent paths approaching the point along which f sx, yd has 
different limits.

 4. (a) What does it mean to say that f  is continuous at sa, bd?
   A function f  of two variables is continuous at sa, bd if

lim
sx, yd l sa, bd 

 f sx, yd − f sa, bd

  (b)  If f  is continuous on R2, what can you say about its 
graph?

    If f  is continuous on R2, its graph will appear as a surface 
without holes or breaks.
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CHAPTER 14 CONCEPT CHECK ANSWERS (continued)

 12.  If z is defined implicitly as a function of x and y by an equa-
tion of the form Fsx, y, zd − 0, how do you find −zy−x and 
−zy−y?

   If F is differentiable and −Fy−z ± 0, then

−z
−x

− 2 

−F
−x
−F
−z

      
−z
−y

− 2 

−F
−y
−F
−z

 13. (a)  Write an expression as a limit for the directional deriva-
tive of f  at sx0, y0 d in the direction of a unit vector 
u − k a, b l. How do you interpret it as a rate? How do 
you interpret it geometrically?

    The directional derivative of f  at sx0, y0 d in the direction 
of u is

Du f sx0, y0 d − lim
h l 0

 
 f sx0 1 ha, y0 1 hbd 2 f sx0, y0 d

h

   if this limit exists.

    We can interpret it as the rate of change of f  (with respect 
to distance) at sx0, y0 d in the direction of u.

    Geometrically, if P is the point sx0, y0, f sx0, y0dd on the 
graph of f  and C is the curve of intersection of the graph 
of f  with the vertical plane that passes through P in the 
direction of u, then Du f sx0, y0 d is the slope of the tangent 
line to C at P.

  (b)  If f  is differentiable, write an expression for Du f sx0, y0d 
in terms of fx and fy.

Du f sx0, y0 d − fxsx0, y0 d a 1 fysx0, y0 d b

 14. (a)  Define the gradient vector = f  for a function f  of two or 
three variables.

   If f  is a function of two variables, then

= f sx, yd − k fxsx, yd, fysx, yd l −
−f
−x

 i 1
−f
−y

 j

    For a function f  of three variables,

 = f sx, y, zd − k fxsx, y, zd, fysx, y, zd, fzsx, y, zd l

 −
−f
−x

 i 1
−f
−y

 j 1
−f
−z

 k

  (b) Express Du f  in terms of = f .

 Du f sx, yd − = f sx, yd ! u

    or  Du f sx, y, zd − = f sx, y, zd ! u

 8.  Define the linearization of f  at sa, bd. What is the corre-
sponding linear approximation? What is the geometric inter-
pretation of the linear approximation?

   The linearization of f  at sa, bd is the linear function whose 
graph is the tangent plane to the surface z − f sx, yd at the 
point sa, b, f sa, bdd:

Lsx, yd − f sa, bd 1 fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd

  The linear approximation of f  at sa, bd is

f sx, yd < f sa, bd 1 fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd

   Geometrically, the linear approximation says that function 
values f sx, yd can be approximated by values Lsx, yd from the  
tangent plane to the graph of f  at sa, b, f sa, bdd when sx, yd is 
near sa, bd.

 9.  (a)  What does it mean to say that f  is differentiable at sa, bd?
    If z − f sx, yd, then f  is differentiable at sa, bd if Dz can be 

expressed in the form

Dz − fxsa, bd Dx 1 fysa, bd Dy 1 «1 Dx 1 «2 Dy

    where «1 and «2 l 0 as sDx, Dyd l s0, 0d. In other 
words, a differentiable function is one for which the linear 
approximation as stated above is a good approximation 
when sx, yd is near sa, bd.

  (b) How do you usually verify that f  is differentiable?

    If the partial derivatives fx and fy exist near sa, bd and are 
continuous at sa, bd, then f  is differentiable at sa, bd.

 10.  If z − f sx, yd, what are the differentials dx, dy, and dz?

   The differentials dx and dy are independent variables that  
can be given any values. If f  is differentiable, the differential 
dz is then defined by

dz − fxsx, yd dx 1 fysx, yd dy

 11.  State the Chain Rule for the case where z − f sx, yd and x and 
y are functions of one variable. What if x and y are functions 
of two variables?

   Suppose that z − f sx, yd is a differentiable function of x and  
y, where x − tstd and y − hstd are both differentiable func-
tions of t. Then z is a differentiable function of t and

dz
dt

−
−f
−x

 
dx
dt

1
−f
−y

 
dy
dt

   If z − f sx, yd is a differentiable function of x and y, where 
x − tss, td and y − hss, td are differentiable functions of s and 
t, then

 
−z
−s

−
−z
−x

 
−x
−s

1
−z
−y

 
−y
−s

       
−z
−t

−
−z
−x

 
−x
−t

1
−z
−y

 
−y
−t

(continued)
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 18. (a)  What is a closed set in R 2? What is a bounded set?

    A closed set in R 2 is one that contains all its boundary 
points. If one or more points on the boundary curve are 
omitted, the set is not closed.

    A bounded set is one that is contained within some disk. 
In other words, it is finite in extent.

  (b)  State the Extreme Value Theorem for functions of two  
variables.

    If f  is continuous on a closed, bounded set D in R 2, then 
f  attains an absolute maximum value f sx1, y1d and an 
absolute minimum value f sx2, y2d at some points sx1, y1d 
and sx2, y2d in D.

  (c)  How do you find the values that the Extreme Value  
Theorem guarantees?

   ■ Find the values of f  at the critical points of f  in D.

   ■ Find the extreme values of f  on the boundary of D.

   ■  The largest of the values from the above steps is the 
absolute maximum value; the smallest of these values is 
the absolute minimum value.

 19.  Explain how the method of Lagrange multipliers works  
in finding the extreme values of f sx, y, zd subject to the con-
straint tsx, y, zd − k. What if there is a second constraint 
hsx, y, zd − c?

   To find the maximum and minimum values of f sx, y, zd 
subject to the constraint tsx, y, zd − k [assuming that 
these extreme values exist and =t ± 0 on the surface 
tsx, y, zd − k], we first find all values of x, y, z, and ! where 
 = f sx, y, zd − ! =tsx, y, zd and  tsx, y, zd − k. (Thus we are 
finding the points from the constraint where the gradient vec-
tors =f  and =t are parallel.) Evaluate f  at all the resulting 
points sx, y, zd; the largest of these values is the maximum 
value of f, and the smallest is the minimum value of f.

   If there is a second constraint hsx, y, zd − c, then we find all 
values of x, y, z, !, and " such that

= f sx, y, zd − ! =tsx, y, zd 1 " =hsx, y, zd

   Again we find the extreme values of f  by evaluating f  at the 
resulting points sx, y, zd.

  (c) Explain the geometric significance of the gradient.

    The gradient vector of f  gives the direction of maximum 
rate of increase of f. On the graph of z − f sx, yd, =f  
points in the direction of steepest ascent. Also, the gradi-
ent vector is perpendicular to the level curves or level 
surfaces of a function.

 15.  What do the following statements mean?

  (a) f  has a local maximum at sa, bd.
    f  has a local maximum at sa, bd if f sx, yd < f sa, bd when 

sx, yd is near sa, bd.
  (b) f  has an absolute maximum at sa, bd.
    f  has an absolute maximum at sa, bd if f sx, yd < f sa, bd 

for all points sx, yd in the domain of f.

  (c) f  has a local minimum at sa, bd.
    f  has a local minimum at sa, bd if f sx, yd > f sa, bd when 

sx, yd is near sa, bd.
  (d) f  has an absolute minimum at sa, bd.
    f  has an absolute minimum at sa, bd if f sx, yd > f sa, bd 

for all points sx, yd in the domain of f.

  (e) f  has a saddle point at sa, bd.
    f  has a saddle point at sa, bd if f sa, bd is a local maximum 

in one direction but a local minimum in another.

 16. (a)  If f  has a local maximum at sa, bd, what can you say 
about its partial derivatives at sa, bd?

    If f  has a local maximum at sa, bd and the first-order 
partial derivatives of f  exist there, then fxsa, bd − 0 and 
fysa, bd − 0.

  (b) What is a critical point of f ?

    A critical point of f  is a point sa, bd such that fxsa, bd − 0 
and fysa, bd − 0 or one of these partial derivatives does 
not exist.

 17.  State the Second Derivatives Test.

   Suppose the second partial derivatives of f  are con tinuous on 
a disk with center sa, bd, and suppose that fxsa, bd − 0 and 
fysa, bd − 0 [that is, sa, bd is a critical point of f ]. Let

D − Dsa, bd − fxxsa, bd fyy sa, bd 2 f fx y sa, bdg2

  ■  If D . 0 and fxxsa, bd . 0, then f sa, bd is a local minimum.
  ■  If D . 0 and fxxsa, bd , 0, then f sa, bd is a local  

maximum.
  ■  If D , 0, then f sa, bd is not a local maximum or minimum. 

The point sa, bd is a saddle point of f.

CHAPTER 14 CONCEPT CHECK ANSWERS (continued)
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CHAPTER 15 CONCEPT CHECK ANSWERS

(continued)

   Then we define

y
D

y f sx, yd dA − y
R

y Fsx, yd dA

  (b)  What is a type I region? How do you evaluate 
yy

D
 f sx, yd dA if D is a type I region?

    A region D is of type I if it lies between the graphs of two 
continuous functions of x, that is,

D − hsx, yd | a < x < b, t1sxd < y < t2sxdj
   where t1 and t2 are continuous on fa, bg. Then

y
D

y f sx, yd dA − yb

a
 yt 2sxd

t1sxd
  f sx, yd dy dx

  (c)  What is a type II region? How do you evaluate 
yy

D
 f sx, yd dA if D is a type II region?

    A region D is of type II if it lies between the graphs of 
two continuous functions of y, that is,

D − hsx, yd | c < y < d, h1syd < x < h2sydj

    where h1 and h2 are continuous on fc, dg. Then

y
D

y f sx, yd dA − yd

c
 yh 2syd

h1syd
  f sx, yd dx dy

  (d) What properties do double integrals have?

   ■ y
D

y f f sx, yd 1 tsx, ydg dA

 − y
D

y f sx, yd dA 1 y
D

y tsx, yd dA

   ■  y
D

y c f sx, yd dA − c y
D

y f sx, yd dA

   where c is a constant

   ■  If f sx, yd > tsx, yd for all sx, yd in D, then

y
D

y f sx, yd dA > y
D

y tsx, yd dA

   ■  If D − D1 ø D2, where D1 and D2 don’t overlap except 
perhaps on their boundaries, then

yy
D

 f sx, yd dA − yy
D1

 f sx, yd dA 1 yy
D2

 f sx, yd dA

   ■ y
D

y 1 dA − AsDd, the area of D.

   ■ If m < f sx, yd < M for all sx, yd in D, then 

mAsDd < y
D

y f sx, yd dA < MAsDd

 1.  Suppose f  is a continuous function defined on a rectangle 
R − fa, bg 3 fc, d g.

  (a)   Write an expression for a double Riemann sum of f.  
If f sx, yd > 0, what does the sum represent?

   A double Riemann sum of f  is

o
m

i−1
 o

n

j−1
 f sxij*, yij*d DA

    where DA is the area of each subrectangle and sxij*, yij*d is 
a sample point in each subrectangle. If f sx, yd > 0,  
this sum represents an approximation to the volume of the 
solid that lies above the rectangle R and below the graph 
of f.

  (b)  Write the definition of yy
R
 f sx, yd dA as a limit.

y
R

y f sx, yd dA − lim 
m, n l `

 o
m

i−1
o

n

j−1
 f sxij*, yij*d DA

  (c)  What is the geometric interpretation of yy
R
 f sx, yd dA if 

f sx, yd > 0? What if f  takes on both positive and nega-
tive values?

    If f sx, yd > 0, yy
R
 f sx, yd dA represents the volume of the 

solid that lies above the rectangle R and below the surface 
z − f sx, yd. If f  takes on both positive and negative val-
ues, then yy

R
 f sx, yd dA is V1 2 V2, where V1 is the volume 

above R and below the surface z − f sx, yd, and V2 is the 
volume below R and above the surface.

  (d) How do you evaluate yy
R
 f sx, yd dA?

    We usually evaluate yy
R
 f sx, yd dA as an iterated integral 

according to Fubini’s Theorem:

y
R

y f sx, yd dA − yb

a
 yd

c
 f sx, yd dy dx − yd

c
 yb

a
 f sx, yd dx dy

  (e) What does the Midpoint Rule for double integrals say?

    The Midpoint Rule for double integrals says that we 
approximate the double integral yy

R
 f sx, yd dA by the 

    double Riemann sum o
m

i−1

 o
n

j−1
 f sxi, yj d DA, where the sample 

    points sxi, yjd are the centers of the subrectangles.

  (f ) Write an expression for the average value of f .

fave −
1

AsRd
 yy

R

  f sx, yd dA

    where AsRd is the area of R.

 2. (a)  How do you define yy
D
 f sx, yd dA if D is a bounded region 

that is not a rectangle?

    Since D is bounded, it can be enclosed in a rectangular 
region R. We define a new function F with domain R by

Fsx, yd − H
0

f sx, yd if
if

sx, yd is in D

sx, yd is in R but not in D
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CHAPTER 15 CONCEPT CHECK ANSWERS (continued)

  (b) What properties does f  possess?

f sx, yd > 0   y
R 2

y f sx, yd dA − 1

  (c) What are the expected values of X and Y ?

    The expected value of X is !1 − y
R 2

y x f sx, yd dA

    The expected value of Y is !2 − y
R 2

y y f sx, yd dA

 6.  Write an expression for the area of a surface with equation 
z − f sx, yd, sx, yd [ D.

AsSd − y
D

y sf fxsx, ydg2 1 f fysx, ydg2 1 1 dA

   (assuming that fx and fy are continuous).

 7. (a)  Write the definition of the triple integral of f  over a  
rectangular box B.

 y y
B

y f sx, y, zd dV − lim 
l, m, n l `

 o
l

i−1
 o

m

j−1
 o

n

k−1
 f sxi jk* , yi jk* , zi jk* d DV

     where DV is the volume of each sub-box and 
sxi jk* , yi jk* , zi jk* d is a sample point in each sub-box.

  (b) How do you evaluate yyyB  f sx, y, zd dV?

    We usually evaluate yyyB  f sx, y, zd dV as an iterated inte-
gral according to Fubini’s Theorem for Triple Integrals: 
If f  is continuous on B − fa, bg 3 fc, d g 3 fr, sg, then

y y
B

y f sx, y, zd dV − ys

r
 yd

c
 yb

a
 f sx, y, zd dx dy dz

    Note that there are five other orders of integration that we 
can use.

  (c)  How do you define yyyE  f sx, y, zd dV if E is a bounded 
solid region that is not a box?

    Since E is bounded, it can be enclosed in a box B as 
described in part (b). We define a new function F with 
domain B by

Fsx, y, zd − H
0

f sx, y, zd if
if

sx, y, zd is in E
sx, y, zd is in B but not in E

   Then we define

 y y
E

y f sx, y, zd dV − y y
B

y Fsx, y, zd dV

 3.  How do you change from rectangular coordinates to polar  
coordinates in a double integral? Why would you want to 
make the change?

   We may want to change from rectangular to polar coordinates 
in a double integral if the region D of integration is more eas-
ily described in polar coordinates:

D − hsr, "d | # < " < $, h1s"d < r < h2s"dj

   To evaluate yy
R
 f sx, yd dA, we replace x by r cos ", y by r sin ", 

and dA by r dr d" (and use appropriate limits of integration):

y
D

y f sx, yd dA − y$

#
 yh2s"d

h1s"d
 f sr cos ", r sin "d r dr d"

 4.  If a lamina occupies a plane region D and has density func-
tion %sx, yd, write expressions for each of the following in 
terms of double integrals.

  (a) The mass: m − y
D

y %sx, yd dA

  (b) The moments about the axes: 

Mx − y
D

y y%sx, yd dA   My − y
D

y x%sx, yd dA

  (c) The center of mass:

sx, y d,  where x −
My

m
 and y −

Mx

m

  (d) The moments of inertia about the axes and the origin:

 Ix − y
D

y y 2 %sx, yd dA

 Iy − y
D

y x 2 %sx, yd dA

 I0 − y
D

y sx 2 1 y 2d %sx, yd dA

 5.  Let f  be a joint density function of a pair of continuous  
random variables X and Y.

  (a)  Write a double integral for the probability that X lies  
between a and b and Y lies between c and d.

Psa < X < b, c < Y < d d − yb

a
 yd

c
 f sx, yd dy dx

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



(continued)

C
ut

 h
er

e 
an

d 
ke

ep
 fo

r 
re

fe
re

nc
e

 8.  Suppose a solid object occupies the region E and has den- 
sity function %sx, y, zd. Write expressions for each of the  
following.

  (a) The mass: 

m − y y
E

y %sx, y, zd dV

  (b) The moments about the coordinate planes:

Myz − y y
E

y x %sx, y, zd dV

Mxz − y y
E

y y %sx, y, zd dV

Mx y − y y
E

y z %sx, y, zd dV

  (c) The coordinates of the center of mass:

sx, y, z d, where x −
Myz

m
, y −

Mxz

m
, z −

Mxy

m

  (d) The moments of inertia about the axes:

Ix − y y
E

y sy 2 1 z2 d %sx, y, zd dV

Iy − y y
E

y sx 2 1 z2 d %sx, y, zd dV

Iz − y y
E

ysx 2 1 y 2 d %sx, y, zd dV

  (d)  What is a type 1 solid region? How do you evaluate 
yyyE  f sx, y, zd dV if E is such a region?

    A region E is of type 1 if it lies between the graphs of two 
continuous functions of x and y, that is,

E − 5sx, y, zd | sx, yd [ D, u1sx, yd < z < u2sx, yd6
   where D is the projection of E onto the xy-plane. Then

y y
E

y f sx, y, zd dV − y
D

y Fyu2sx, yd

u1sx, yd
 f sx, y, zd dzG dA

  (e)  What is a type 2 solid region? How do you evaluate 
yyyE  f sx, y, zd dV if E is such a region?

   A type 2 region is of the form

E − 5sx, y, zd | sy, zd [ D, u1sy, zd < x < u2sy, zd6
    where D is the projection of E onto the yz-plane. Then

y y
E

y f sx, y, zd dV − y
D

y Fyu2sy, zd

u1sy, zd
 f sx, y, zd dxG dA

  (f)  What is a type 3 solid region? How do you evaluate 
yyyE  f sx, y, zd dV if E is such a region?

   A type 3 region is of the form

E − 5sx, y, zd | sx, zd [ D, u1sx, zd < y < u2sx, zd6
   where D is the projection of E onto the xz-plane. Then

y y
E

y f sx, y, zd dV − y
D

y Fyu2sx, zd

u1sx, zd
 f sx, y, zd dyG dA

CHAPTER 15 CONCEPT CHECK ANSWERS (continued)
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 9. (a)  How do you change from rectangular coordinates to cylindrical coordinates in a triple integral?

y y
E

y f sx, y, zd dV − y$

#
 yh2s"d

h1s"d
 yu2sr cos ", r sin "d

u1sr cos ", r sin "d
 f sr cos ", r sin ", zd r dz dr d"

    where

E − hsr, ", zd | # < " < $, h1s"d < r < h2s"d, u1sr cos ", r sin "d < z < u2sr cos ", r sin "dj

    Thus we replace x by r cos ", y by r sin ", dV by r dz dr d", and use appropriate limits of integration.

  (b)  How do you change from rectangular coordinates to spherical coordinates in a triple integral?

y y
E

y f sx, y, zd dV − yd

c
 y$

#
 yt2s", &d

t1s", &d
 f s% sin & cos ", % sin & sin ", % cos &d %2 sin & d% d" d&

   where E − 5s%, ", &d | # < " < $, c < & < d, t1s", &d < % < t2s", &dj

    Thus we replace x by % sin & cos ", y by % sin & sin ", z by % cos &, dV  by %2 sin & d% d" d&, and use appropriate limits of  
integration.

  (c)  In what situations would you change to cylindrical or spherical coordinates?

    We may want to change from rectangular to cylindrical or spherical coordinates in a triple integral if the region E of integration 
is more easily described in cylindrical or spherical coordinates. Regions that involve symmetry about the z-axis are often simpler 
to describe using cylindrical coordinates, and regions that are symmetrical about the origin are often simpler in spherical coordi-
nates. Also, sometimes the integrand is easier to integrate using cylindrical or spherical coordinates.

 10. (a) If a transformation T is given by x − tsu, vd, y − hsu, vd, what is the Jacobian of T ?

−sx, yd
−su, vd

− Z −x
−u

−x
−v

−y
−u

−y
−v

Z −
−x
−u

 
−y
−v

2
−x
−v

 
−y
−u

  (b) How do you change variables in a double integral?

    We change from an integral in x and y to an integral in u and v by expressing x and y in terms of u and v and writing

dA − Z −sx, yd
−su, vd Z  du dv

    Thus, under the appropriate conditions,

y
R

y f sx, yd dA − y
S

y f sxsu, vd, ysu, vdd Z −sx, yd
−su, vd Z  du dv

   where R is the image of S under the transformation.

  (c) How do you change variables in a triple integral?

   Similarly to the case of two variables in part (b),

y y
R

y f sx, y, zd dV −y y
S

y f sxsu, v, wd, ysu, v, wd, zsu, v, wdd Z −sx, y, zd
−su, v, wd

 Z  du dv dw

   where 
−sx, y, zd
−su, v, wd

−  

−x
−u

−x
−v

−x
−w

−y
−u

−y
−v

−y
−w

−z
−u

−z
−v

−z
−w

   is the Jacobian.

CHAPTER 15 CONCEPT CHECK ANSWERS (continued)
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CHAPTER 16 CONCEPT CHECK ANSWERS

(continued)

  (d)  Write the definitions of the line integrals along C of a 
scalar function f  with respect to x, y, and z.

y
C
 f sx, y, zd dx − lim

n l `
 o

n

i−1
 f sxi*, yi*, zi*d Dxi

y
C
 f sx, y, zd dy − lim

n l `
 o

n

i−1
 f sxi*, yi*, zi*d Dyi

y
C
 f sx, y, zd dz − lim

n l `
 o

n

i−1
 f sxi*, yi*, zi*d Dzi

    (We have similar results when f  is a function of two  
variables.)

  (e) How do you evaluate these line integrals?

 y
C
 f sx, y, zd dx − yb

a
 f sxstd, ystd, zstdd x9std dt

 y
C
 f sx, y, zd dy − yb

a
 f sxstd, ystd, zstdd y9std dt

 y
C
 f sx, y, zd dz − yb

a
 f sxstd, ystd, zstdd z9std dt

 4. (a)   Define the line integral of a vector field F along a smooth 
curve C given by a vector function rstd.

    If F is a continuous vector field and C is given by a vector 
function rstd, a < t < b, then

y
C
 F ! dr − yb

a
 Fsrstdd ! r9std dt − y

C
 F ! T ds

  (b)  If F is a force field, what does this line integral represent?

    It represents the work done by F in moving a particle 
along the curve C.

  (c)  If F − kP, Q, R l, what is the connection between the 
line integral of F and the line integrals of the component 
functions P, Q, and R?

y
C
 F ! dr − y

C
 P dx 1 Q dy 1 R dz

 5.  State the Fundamental Theorem for Line Integrals.

   If C is a smooth curve given by rstd, a < t < b, and f  is a 
differentiable function whose gradient vector = f  is continuous 
on C, then

y
C
 = f ! dr − f srsbdd 2 f srsadd

 6. (a)  What does it mean to say that yC F ! dr is independent  
of path?

    yC F ! dr is independent of path if the line integral has the 
same value for any two curves that have the same initial 
points and the same terminal points.

  (b)  If you know that yC F ! dr is independent of path, what 
can you say about F?

    We know that F is a conservative vector field, that is, there 
exists a function f  such that =f − F.

 1.  What is a vector field? Give three examples that have physical 
meaning.

   A vector field is a function that assigns a vector to each point 
in its domain.

   A vector field can represent, for example, the wind velocity 
at any location in space, the speed and direction of the ocean 
current at any location, or the force vector of the earth’s  
gravitational field at a location in space.

 2.  (a) What is a conservative vector field?

    A conservative vector field F is a vector field that is the 
gradient of some scalar function f , that is, F − =f .

  (b) What is a potential function?

    The function f  in part (a) is called a potential function  
for F.

 3. (a)  Write the definition of the line integral of a scalar func-
tion f  along a smooth curve C with respect to arc length.

    If C is given by the parametric equations x − xstd,  
y − ystd, a < t < b, we divide the parameter interval 
fa, bg into n subintervals fti21, ti g of equal width. The ith 
subinterval corresponds to a subarc of C with length Dsi.  
Then

y
C
 f sx, yd ds − lim

n l `
 o

n

i−1
 f sxi*, yi*d Dsi

   where sxi*, yi*d is any sample point in the ith subarc.

  (b) How do you evaluate such a line integral?

y
C

 f sx, yd ds − yb

a
 f sxstd, ystddÎS dx

dt D2

1 S dy
dt D2

  dt

   Similarly, if C is a smooth space curve, then 

 y
C
 f sx, y, zd ds

− yb

a
 f sxstd, ystd, zstddÎS dx

dt D2

1 S dy
dt D2

1 S dz
dtD2 

 dt

  (c)  Write expressions for the mass and center of mass of a 
thin wire shaped like a curve C if the wire has linear den-
sity function !sx, yd.

   The mass is m − yC !sx, yd ds.

   The center of mass is sx, y d, where

x −
1
m

 y
C
 x !sx, yd ds

y −
1
m

 y
C
 y !sx, yd ds
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CHAPTER 16 CONCEPT CHECK ANSWERS (continued)

  (b) Write an expression for the area of a parametric surface.

    If S is a smooth parametric surface given by

rsu, vd − xsu, vd i 1 ysu, vd j 1 zsu, vd k

    where su, vd [ D and S is covered just once as su, vd  
ranges throughout D, then the surface area of S is

AsSd − y
D

y | ru 3 rv | dA

  (c)  What is the area of a surface given by an equation 
z − tsx, yd?

AsSd − y
D

y Î1 1 S −z
−xD2

1 S −z
−yD2 

 dA

 12. (a)  Write the definition of the surface integral of a scalar 
function f  over a surface S.

    We divide S into “patches” Sij. Then

y
S

y f sx, y, zd dS − lim 
m, n l `

 o
m

i−1
 o

n

j−1
 f sPij*d DSij

    where DSij is the area of the patch Sij and Pij* is a sample 
point from the patch. (S is divided into patches in such a 
way that ensures that DSij l 0 as m, n l `.)

  (b)  How do you evaluate such an integral if S is a para metric 
surface given by a vector function rsu, vd?

y
S

y f sx, y, zd dS − y
D

y f srsu, vdd | ru 3 rv | dA

   where D is the parameter domain of S.

  (c) What if S is given by an equation z − tsx, yd?

   y
S

y f sx, y, zd dS

− y
D

y f sx, y, tsx, yddÎS −z
−xD2

1 S −z
−yD2

1 1 dA

  (d)  If a thin sheet has the shape of a surface S, and the den-
sity at sx, y, zd is !sx, y, zd, write expressions for the mass 
and center of mass of the sheet.

   The mass is

m − y
S

y !sx, y, zd dS

   The center of mass is sx, y, z d, where

x −
1
m

 y
S

y x !sx, y, zd dS

y −
1
m

 y
S

y y !sx, y, zd dS

z −
1
m

 y
S

y z !sx, y, zd dS

 7.  State Green’s Theorem.

   Let C be a positively oriented, piecewise-smooth, simple 
closed curve in the plane and let D be the region bounded by 
C. If P and Q have continuous partial derivatives on an open 
region that contains D, then

y
C
 P dx 1 Q dy − y

D

y S −Q
−x

2
−P
−y D dA

 8.  Write expressions for the area enclosed by a curve C in terms  
of line integrals around C.

A − !y
C

 x dy − 2!y
C

 y dx − 1
2 !y

C
 x dy 2 y dx

 9.  Suppose F is a vector field on R3.

  (a) Define curl F.

 curl F − S −R
−y

2
−Q
−z D i 1 S −P

−z
2

−R
−x D j 1 S −Q

−x
2

−P
−y D k

 − = 3 F

  (b) Define div F.

div F −
−P
−x

1
−Q
−y

1
−R
−z

− = ! F

  (c)  If F is a velocity field in fluid flow, what are the physical 
interpretations of curl F and div F?

    At a point in the fluid, the vector curl F aligns with the 
axis about which the fluid tends to rotate, and its length 
measures the speed of rotation; div F at a point measures 
the tendency of the fluid to flow away (diverge) from that 
point.

 10.   If F − P i 1 Q j, how do you determine whether F is conser-
vative? What if F is a vector field on R3?

   If P and Q have continuous first-order derivatives and 

  
−P
−y

−
−Q
−x

, then F is conservative.

   If F is a vector field on R 3 whose component functions have 
continuous partial derivatives and curl F − 0, then F is  
conservative.

 11.  (a) What is a parametric surface? What are its grid curves?

    A parametric surface S is a surface in R 3 described by a 
vector function

rsu, vd − xsu, vd i 1 ysu, vd j 1 zsu, vd k

    of two parameters u and v. Equivalent parametric equa-
tions are

x − xsu, vd    y − ysu, vd    z − zsu, vd

    The grid curves of S are the curves that correspond to 
holding either u or v constant.

(continued)
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    for the upward orientation of S; we multiply by 21 for the 
downward orientation.

 14. State Stokes’ Theorem.

   Let S be an oriented piecewise-smooth surface that is bounded 
by a simple, closed, piecewise-smooth boundary curve C with 
positive orientation. Let F be a vector field whose components 
have continuous partial derivatives on an open region in R 3 
that contains S. Then

y
C
 F ! dr − y

S

y curl F ! dS

 15. State the Divergence Theorem.

   Let E be a simple solid region and let S be the boundary sur-
face of E, given with positive (outward) orientation. Let F be 
a vector field whose component functions have continuous 
partial derivatives on an open region that contains E. Then

y
S

y F ! dS − y y
E

y div F dV

 16.  In what ways are the Fundamental Theorem for Line 
Integrals, Green’s Theorem, Stokes’ Theorem, and the 
Divergence Theorem similar?

   In each theorem, we integrate a “derivative” over a region, and 
this integral is equal to an expression involving the values of 
the original function only on the boundary of the region.

 13. (a)  What is an oriented surface? Give an example of a non- 
orientable surface.

    An oriented surface S is one for which we can choose a 
unit normal vector n at every point so that n varies con-
tinuously over S. The choice of n provides S with an  
orientation.

    A Möbius strip is a nonorientable surface. (It has only  
one side.)

  (b)  Define the surface integral (or flux) of a vector field F 
over an oriented surface S with unit normal vector n.

y
S

y F ! dS − y
S

y F ! n dS

  (c)  How do you evaluate such an integral if S is a parametric 
surface given by a vector function rsu, vd?

y
S

y F ! dS − y
D

y F ! sru 3 rv d dA

    We multiply by 21 if the opposite orientation of S is 
desired.

  (d) What if S is given by an equation z − tsx, yd?
   If F − kP, Q, Rl,

y
S

y F ! dS − y
D

y S2P 
−t
−x

2 Q 
−t
−y

1 RD dA

CHAPTER 16 CONCEPT CHECK ANSWERS (continued)
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CHAPTER 17 CONCEPT CHECK ANSWERS

(continued)

is a polynomial, choose yp to be a general polynomial 
of the same degree. If Gsxd is of the form Cek x, choose 
ypsxd − Ae k x. If Gsxd is C cos kx or C sin kx, choose 
ypsxd − A cos kx 1 B sin kx. If Gsxd is a product of func-
tions, choose yp to be a product of functions of the same 
type. Some examples are:

Gsxd ypsxd
x 2  Ax 2 1 Bx 1 C
e 2x  Ae 2x

sin 2x A cos 2x 1 B sin 2x
xe2x  sAx 1 Bde2x

    We then substitute yp, yp9, and yp0 into the differential equa-
tion and determine the coefficients.

    If yp happens to be a solution of the complementary equa-
tion, then multiply the initial trial solution by x (or x 2 if 
necessary).

    If Gsxd is a sum of functions, we find a particular solution 
for each function and then yp is the sum of these.

    The general solution of the differential equation is 

ysxd − ypsxd 1 ycsxd

  (d)  Explain how the method of variation of parameters 
works.

    We write the solution of the complementary equation 
ay0 1 by9 1 cy − 0 as ycsxd − c1y1sxd 1 c2y2sxd,  
where y1 and y2 are linearly independent solutions. We 
then take ypsxd − u1sxd y1sxd 1 u2sxd y2sxd as a particular 
solution, where u1sxd and u2sxd are arbitrary functions. 
After computing yp9, we impose the condition that 

u19y1 1 u29y2 − 0  (1)

    and then compute yp0. Substituting yp, yp9, and yp0 into the 
original differential equation gives

asu19y19 1 u29y29 d − G  (2)

    We then solve equations (1) and (2) for the unknown  
functions u19 and u29. If we are able to integrate 
these functions, then a particular solution is 
ypsxd − u1sxd y1sxd 1 u2sxd y2sxd and the general solution 
is ysxd − ypsxd 1 ycsxd.

 4.   Discuss two applications of second-order linear differential 
equations.

   The motion of an object with mass m at the end of a spring 
is an example of simple harmonic motion and is described by 
the second-order linear differential equation

m 
d 2x
dt 2 1 kx − 0

 1. (a)  Write the general form of a second-order homogeneous  
linear differential equation with constant coefficients.

ay0 1 by9 1 cy − 0

    where a, b, and c are constants and a ± 0.

  (b)  Write the auxiliary equation.

ar 2 1 br 1 c − 0

  (c)  How do you use the roots of the auxiliary equation to 
solve the differential equation? Write the form of the 
solution for each of the three cases that can occur.

    If the auxiliary equation has two distinct real roots r1 and 
r2, the general solution of the differential equation is

y − c1e r 1x 1 c2 e r 2 x

    If the roots are real and equal, the solution is

y − c1e rx 1 c2 xe rx

    where r is the common root.

    If the roots are complex, we can write r1 − ! 1 i" and 
r2 − ! 2 i", and the solution is

y − e ! xsc1 cos "x 1 c2 sin "xd

 2. (a)  What is an initial-value problem for a second-order dif-
ferential equation?

    An initial-value problem consists of finding a solution y of 
the differential equation that also satisfies given conditions 
ysx0 d − y0 and y9sx0 d − y1, where y0 and y1 are constants.

  (b)  What is a boundary-value problem for such an equation?

    A boundary-value problem consists of finding a solution y 
of the differential equation that also satisfies given bound-
ary conditions ysx0 d − y0 and ysx1 d − y1.

 3. (a)  Write the general form of a second-order nonhomo-
geneous linear differential equation with constant  
coefficients.

    ay0 1 by9 1 cy − Gsxd, where a, b, and c are constants 
and G is a continuous function.

  (b)  What is the complementary equation? How does it help 
solve the original differential equation?

    The complementary equation is the related homogeneous 
equation ay0 1 by9 1 cy − 0. If we find the general solu-
tion yc of the complementary equation and yp is any par-
ticular solution of the nonhomogeneous differential equa-
tion, then the general solution of the original differential 
equation is ysxd − ypsxd 1 ycsxd.

  (c)  Explain how the method of undetermined coefficients 
works.

    To determine a particular solution yp of 
ay0 1 by9 1 cy − Gsxd, we make an initial guess that 
yp is a general function of the same type as G. If Gsxd 
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CHAPTER 17 CONCEPT CHECK ANSWERS (continued)

  Differentiating gives

 y9 − o
`

n−1
 ncn x n21 − o

`

n−0
 sn 1 1dcn11 x n

  and

 y0 − o
`

n−2
 nsn 2 1dcn x n22 − o

`

n−0
 sn 1 2dsn 1 1dcn12 x n

   We substitute these expressions into the differential equation 
and equate the coefficients of x n to find a recursion relation 
involving the constants cn. Solving the recursion relation gives 
a formula for cn and then

 y − o
`

n−0
 cn x n

  is the solution of the differential equation.

   where k is the spring constant and x is the distance the spring 
is stretched (or compressed) from its natural length. If there 
are external forces acting on the spring, then the differential 
equation is modified.

   Second-order linear differential equations are also used to 
analyze electrical circuits involving an electromotive force, a 
resistor, an inductor, and a capacitor in series.

  See the discussion in Section 17.3 for additional details.

 5.  How do you use power series to solve a differential equation?

   We first assume that the differential equation has a power 
series solution of the form

y − o
`

n−0
 cn x n − c0 1 c1 x 1 c2 x 2 1 c3 x 3 1 ∙ ∙ ∙
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