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TO THE STUDENT

Authors of books live with the hope that someone actually reads them. Contrary to 
what you might believe, almost everything in a typical college-level mathematics 
text is written for you and not the instructor. True, the topics covered in the text are 
chosen to appeal to instructors because they make the decision on whether to use it 
in their classes, but everything written in it is aimed directly at you the student. So 
I want to encourage you—no, actually I want to tell you—to read this textbook! But 
do not read this text as you would a novel; you should not read it fast and you should 
not skip anything. Think of it as a workbook. By this I mean that mathematics should workbook. By this I mean that mathematics should work
always be read with pencil and paper at the ready because, most likely, you will have 
to work your way through the examples and the discussion. Before attempting any 
problems in the section exercise sets, work through all the examples in that section. all the examples in that section. all
The examples are constructed to illustrate what I consider the most important aspects 
of the section, and therefore, re�ect the procedures necessary to work most of the 
problems. When reading an example, copy it down on a piece of paper and do not 
look at the solution in the book. Try working it, then compare your results against 
the solution given, and, if necessary resolve any differences. I have tried to include 
most of the important steps in each example, but if something is not clear you should 
always try—and here is where the pencil and paper come in again—to �ll in the 
details or missing steps. This may not be easy, but it is part of the learning process. 
The accumulation of facts followed by the slow assimilation of understanding simply 
cannot be achieved without a struggle.

Speci�cally for you, a Student Resource Manual (SRM) is available as an opSRM) is available as an opSRM -
tional supplement. In addition to containing solutions of selected problems from the 
exercises sets, the SRM contains hints for solving problems, extra examples, and a 
review of those areas of algebra and calculus that I feel are particularly important 
to the successful study of differential equations. Bear in mind you do not have to 
purchase the SRM; you can review the appropriate mathematics from your old pre-
calculus or calculus texts.

In conclusion, I wish you good luck and success. I hope you enjoy the text and 
the course you are about to embark on—as an undergraduate math major it was one 
of my favorites because I liked mathematics that connected with the physical world. 
If you have any comments, or if you �nd any errors as you read/work your way 
through the text, or if you come up with a good idea for improving either it or the 
SRM, please feel free to contact me through Cengage Learning:

spencer.arritt@cengage.com.

TO THE INSTRUCTOR

In case you are examining this text for the �rst time, A First Course in Differen-
tial Equations with Modeling Applications, Eleventh Edition, is intended for a one-
semester or one-quarter course in ordinary differential equations. The longer version 
of the text, Differential Equations with Boundary-Value Problems, Ninth Edition,
can be used for either a one- or two-semester course that covers ordinary and partial 
differential equations. This text contains six additional chapters. For a one-semester 

Preface
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course, it is assumed that the students have successfully completed at least two semes-
ters of calculus. Since you are reading this, undoubtedly you have already examined 
the table of contents for the topics that are covered. You will not �nd a “suggested syl-
labus” in this preface; I will not pretend to be so wise as to tell other teachers what to 
teach. I feel that there is plenty of material here to choose from and to form a course 
to your liking. The text strikes a reasonable balance between the analytical, qualita-
tive, and quantitative approaches to the study of differential equations. As far as my 
“underlying philosophy” goes, it is this: An undergraduate text should be written with 
the students’ understanding kept �rmly in mind, which means to me that the material 
should be presented in a straightforward, readable, and helpful manner, while keep-
ing the level of theory consistent with the notion of a “�rst course.”

For those who are familiar with the previous editions, I would like to mention 
a few improvements made in this edition. Many exercise sets have been updated by 
the addition of new problems. Some of these problems involve new and, I think, 
interesting mathematical models. Additional examples, �gures, and remarks have 
been added to many sections. Throughout the text I have given a greater emphasis 
to the concepts of piecewise-linear differential equations and solutions that involve 
nonelementary integrals. Finally, Appendix A, Integral-De�ned Functions, is new 
to the text.

Student Resources
 ● Student Resource Manual (SRM), prepared by Warren S. Wright and 

Roberto Martinez (ISBN 978-1-305-96573-7, accompanies A First Course 
in Differential Equations with Modeling Applications, Eleventh Edition, and 
ISBN 978-1-305-96581-2 accompanies Differential Equations with Boundary-
Value Problems, Ninth Edition), provides important review material from 
algebra and calculus, the solution of every third problem in each exercise 
set (with the exception of the Discussion Problems and Computer Lab 
Assignments), relevant command syntax for the computer algebra systems 
Mathematica and Maple, and lists of important concepts, as well as helpful 
hints on how to start certain problems.

 ● MindTap for A First Course in Differential Equations with Modeling 
Applications, Eleventh Edition, is a digital representation of your course that 
provides you with the tools you need to better manage your limited time, stay 
organized, and be successful. You can complete assignments whenever and 
wherever you are ready to learn with course material specially customized for 
you by your instructor and streamlined in one proven, easy-to-use interface. 
With an array of study tools, you’ll get a true understanding of course concepts, 
achieve better grades, and set the groundwork for your future courses. Learn 
more at www.cengage.com/mindtap.

Instructor Resources
 ● Instructor’s Solutions Manual (ISM(ISM( ), prepared by Warren S. Wright and 

Roberto Martinez, provides complete worked-out solutions for all problems  
in the text. It is available through the Instructor Companion website at www 
.cengage.com.

 ● Cengage Learning Testing Powered by Cognero is a �exible, online system 
that allows you to author, edit, and manage test bank content, create multiple 
test versions in an instant, and deliver tests from your learning management 
system (LMS), your classroom, or wherever you want. Cognero is available 
online at www.cengage.com/login.

 ● Turn the light on with MindTap for A First Course in Differential Equations 
with Modeling Applications, Eleventh Edition. Through personalized paths of 
dynamic assignments and applications, MindTap is a digital learning solution 
and representation of your course.

The Right Content: With MindTap’s carefully curated material, you get the 
precise content and groundbreaking tools you need for every course you teach.
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Personalization: Customize every element of your course—from rearranging 
the Learning Path to inserting videos and activities.

Improved Work�ow: Save time when planning lessons with all of the 
trusted, most current content you need in one place in MindTap.

Tracking Students’ Progress in Real Time: Promote positive outcomes 
by tracking students in real time and tailoring your course as needed based on 
the analytics.

Learn more at www.cengage.com/mindtap.
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2

1.1 Definitions and Terminology 
 1.2 Initial-Value Problems 
1.3 Differential Equations as Mathematical Models

C H A P T E R  1  I N  R E V I E W

T he words differential and differential and differential equations suggest solving some kind of 

equation that contains derivatives y9, y0, Á . Analogous to a course in 

algebra, in which a good amount of time is spent solving equations such 

as x2 1 5x 1 4 5 0 for the unknown number x, in this course one of our tasks 

will be to solve differential equations such as y0 1 2y9 1 y 5 0 for an unknown 

function y 5 �(x). As the course unfolds, you will see there is more to the study of 

differential equations than just mastering methods that mathematicians over past 

centuries devised to solve them. But �rst things �rst. In order to read, study, and be 

conversant in a specialized subject you have to learn some of the terminology of that 

discipline. This is the thrust of the �rst two sections of this chapter. In the last section 

we brie�y examine the link between differential equations and the real world.

1
Introduction to Differential Equations
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INTRODUCTION The derivative dydyd ydxdxd  of a function y 5 �(x) is itself another 
function �9(x) found by an appropriate rule. The exponential function y 5 e0.1x2

 is 
differentiable on the interval (2`, `) and by the Chain Rule its �rst derivative is 
dydyd ydxdxd 5 0.2x.2x.2 e0.1x2

. If we replace e0.1x2
 on the right-hand side of the last equation by 

the symbol y, the derivative becomes

dydyd

dxdxd
5 0.2x.2x.2 yxyx . (1)

Now imagine that a friend of yours simply hands you equation (1)—you have no idea 
how it was constructed—and asks, What is the function represented by the symbol y? 
You are now face to face with one of the basic problems in this course:

How do you solve an equation such as (1) for the function y = �(x)?

A DEFINITION The equation that we made up in (1) is called a differential
equation. Before proceeding any further, let us consider a more precise de�nition 
of this concept.

1.1 Definitions and Terminology  

DEFINITION 1.1.1 Differential Equation

An equation containing the derivatives of one or more unknown functions (or 
dependent variables), with respect to one or more independent variables, is 
said to be a differential equation (DE).

To talk about them, we shall classify differential equations according to type, order,
and linearity.

CLASSIFICATION BY TYPE If a differential equation contains only ordinary 
derivatives of one or more unknown functions with respect to a single independent 
variable, it is said to be an ordinary differential equation (ODE). An equation 
involving partial derivatives of one or more unknown functions of two or more inde-
pendent variables is called a partial differential equation (PDE). Our �rst example 
illustrates several of each type of differential equation.

 EXAMPLE 1 Types of Differential Equations

(a) The equations
an ODE can contain more 

than one unknown function
p p

dydyd

dxdxd
1 5y 5 ex,

d2y

dxdxd 2 2
dydyd

dxdxd
1 6y 5 0, and

dxdxd

dt
1

dydyd

dt
5 2x 1 y (2)

are examples of ordinary differential equations.

(b) The following equations are partial differential equations:*

−2u

−x2 1
−2u

−y2 5 0,
−2u

−x2 5
−2u

−t2
2 2

−u

−t
,

−u

−y
5 2

−v

−x
. (3)

*Except for this introductory section, only ordinary differential equations are considered in A First Course 
in Differential Equations with Modeling Applications, Eleventh Edition. In that text the word equation
and the abbreviation DE refer only to ODEs. Partial differential equations or PDEs are considered in the 
expanded volume Differential Equations with Boundary-Value Problems, Ninth Edition.

. DEFINITIONS AND TERMINOLOGY 3
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Notice in the third equation that there are two unknown functions and two indepen-
dent variables in the PDE. This means u and v must be functions of two or more
independent variables. .

NOTATION Throughout this text ordinary derivatives will be written by using 
either the Leibniz notation dyydx, d2yydx2, d3yydx3, . . . or the prime notation y9, y0, 
y-, . . . . By using the latter notation, the �rst two differential equations in (2) can be 
written a little more compactly as y9 + 5y = ex and x and x y0 − y9 + 6y = 0. Actually, the 
prime notation is used to denote only the �rst three derivatives; the fourth derivative 
is written y(4) instead of y00. In general, the nth derivative of y is written dnyydxn or 
y(n). Although less convenient to write and to typeset, the Leibniz notation has an 
advantage over the prime notation in that it clearly displays both the dependent and 
independent variables. For example, in the equation

d 2x2x2
–––
dt2

1 16x 5 0

unknown function
or dependent variable

independent variable

it is immediately seen that the symbol x now represents a dependent variable, 
whereas  the independent variable is t. You should also be aware that in physical 
sciences and engineering, Newton’s dot notation (derogatorily referred to by some 
as the “�yspeck” notation) is sometimes used to denote derivatives with respect 
to time t. Thus the differential equation d2sydt2 = −32 becomes s̈ = −32. Partial 
derivatives are often denoted by a subscript notation indicating the indepen-
dent variables. For example, with the subscript notation the second equation in (3) 
becomes uxx = utt − 2ut.

CLASSIFICATION BY ORDER The order of a differential equation (either ODE 
or PDE) is the order of the highest derivative in the equation. For example,

�rst ordersecond order

1 5(     )3
2 4y 5 ex

dy
–––
dx     dx     

d 2y2y2
––––
dx2

is a second-order ordinary differential equation. In Example 1, the �rst and third 
equations in (2) are �rst-order ODEs, whereas in (3) the �rst two equations are 
second-order PDEs. A �rst-order ordinary differential equation is sometimes written 
in the differential form

M(x, y) dxdxd 1 N(N(N x, y) dydyd 5 0.

 EXAMPLE 2  Differential Form of a First-Order ODE

If we assume that y is the dependent variable in a �rst-order ODE, then recall from 
calculus that the differential dy is de�ned to be dydyd 5 y9dxdxd .

(a) By dividing by the differential dx an alternative form of the equation dx an alternative form of the equation dx
(y 2 x) dxdxd 1 4x dydyd 5 0 is given by

y 2 x 1 4x
dydyd

dxdxd
5 0 or equivalently 4x

dydyd

dxdxd
1 y 5 x. 

4 CHAPTER  INTRODUCTION TO DIFFERENTIAL EQUATIONS
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(b) By multiplying the differential equation 

6xy
dydyd

dxdxd
1 x2 1 y2 5 0

by dxdxd  we see that the equation has the alternative differential form

(x2 1 y2) dxdxd 1 6xy dydyd 5 0. .

In symbols we can express an nth-order ordinary differential equation in one 
dependent variable by the general form

F(x,  y,  y9, . . . , y(n)) 5 0, (4)

where F is a real-valued function of F is a real-valued function of F n + 2 variables: x, y, y9, . . . , y(n). For both 
practical and theoretical reasons we shall also make the assumption hereafter that 
it is possible to solve an ordinary differential equation in the form (4) uniquely 
for the highest derivative y(n) in terms of the remaining n + 1 variables. The dif-
ferential equation

dny

dxdxd n 5 f (x, y, y9, . . . , y(n21)), (5)

where f is a real-valued continuous function, is referred to as the f is a real-valued continuous function, is referred to as the f normal form of (4). 
Thus when it suits our purposes, we shall use the normal forms

dy

dx
5 f (x, y) and

d2y

dx2 5 f (x, y, y9)

to represent general �rst- and second-order ordinary differential equations.

 EXAMPLE 3  Normal Form of an ODE

(a) By solving for the derivative dydyd ydxdxd  the normal form of the �rst-order differential 
equation 

4x
dydyd

dxdxd
1 y 5 x is

dydyd

dxdxd
5

x 2 y

4x
.

(b) By solving for the derivative y0 the normal form of the second-order differential 
equation 

y0 2 y9 1 6 5 0 is y0 5 y9 2 6y. .

CLASSIFICATION BY LINEARITY An nth-order ordinary differential equation (4) 
is said to be linear if F is linear in F is linear in F y, y9, . . . , y(n). This means that an nth-order ODE 
is linear when (4) is an(x(x( )y(n) + an−1(x(x( )y(n−1) + Á + a1(x(x( )y9 + a0(x(x( )y − g(x(x( ) = 0 or

an(x) 
dny

dxdxd n 1 an21(x) 
dn21y

dxdxd n21 1 Á 1 a1(x) 
dydyd

dxdxd
1 a0(x)y 5 g(x). (6)

Two important special cases of (6) are linear �rst-order (n 5 1) and linear second-
order (n = 2) DEs:

a1(x) 
dy

dx
1 a0(x)y 5 g(x)  and a2(x) 

d2y

dx2 1 a1(x) 
dy

dx
1 a0(x)y 5 g(x). (7)

In the additive combination on the left-hand side of equation (6) we see that the char-
acteristic two properties of a linear ODE are as follows:

 ● The dependent variable y and all its derivatives y9, y0, . . . , y(n) are of the 
�rst degree, that is, the power of each term involving y is 1.

 ● The coef�cients a0, a1, . . . , an of y, y9, . . . , y(n) depend at most on the 
independent variable x.
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A nonlinear ordinary differential equation is simply one that is not linear. Nonlinear 
functions of the dependent variable or its derivatives, such as sin y or ey9, cannot 
appear in a linear equation.

 EXAMPLE 4 Linear and Nonlinear ODEs

(a) The equations

(y 2 x) dxdxd 1 4x dydyd 5 0, y0 2 2y 1 y 5 0, x3 d3y

dxdxd 3 1 x
dydyd

dxdxd
2 5y 5 ex

are, in turn, linear �rst-, second-, and third-order ordinary differential equations. We linear �rst-, second-, and third-order ordinary differential equations. We linear
have just demonstrated in part (a) of Example 2 that the �rst equation is linear in the 
variable y by writing it in the alternative form 4xy9 + y = x. 

(b) The equations

nonlinear term:
coef�cient depends on y

nonlinear term:
nonlinear function of y

nonlinear term:
power not 1

(1 2 y)y9 1 2y 5 ex, 1 sin y 5 0, and
d 2y2y2
––––
dx2 1 y 2 5 0

d 4y4y4
––––
dx 4

are examples of nonlinear �rst-, second-, and fourth-order ordinary differential equanonlinear �rst-, second-, and fourth-order ordinary differential equanonlinear -
tions, respectively. .

SOLUTIONS As was stated on page 2, one of the goals in this course is to solve, 
or �nd solutions of, differential equations. In the next de�nition we consider the con-
cept of a solution of an ordinary differential equation.

DEFINITION 1.1.2 Solution of an ODE

Any function f, de�ned on an interval I and possessing at least I and possessing at least I n derivatives 
that are continuous on I, which when substituted into an nth-order ordinary 
differential equation reduces the equation to an identity, is said to be a solution
of the equation on the interval.

In other words, a solution of an nth-order ordinary differential equation (4) is a 
function f that possesses at least n derivatives and for which

F(x, �(x), �9(x), . . . , �(n)(x)) 5 0 for all x ix ix n I.

We say that f satis�es the differential equation on I. For our purposes we shall also 
assume that a solution f is a real-valued function. In our introductory discussion we 
saw that y 5 e0.1x2

 is a solution of dyydx = 0.2xy on the interval (−`, `).
Occasionally, it will be convenient to denote a solution by the alternative 

symbol y(x).

INTERVAL OF DEFINITION You cannot think solution of an ordinary differential 
equation without simultaneously thinking interval. The interval I in De�nition 1.1.2 I in De�nition 1.1.2 I
is variously called the interval of de�nition, the interval of existence, the interval 
of validity, or the domain of the solution and can be an open interval (a, b), a closed 
interval [a, b], an in�nite interval (a, `), and so on.

6 CHAPTER  INTRODUCTION TO DIFFERENTIAL EQUATIONS

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



1

x

y

1

(a) function y 5 1/x, x ? 0

(b) solution y 5 1/x, (0, ∞)

1

x

y

1

FIGURE 1.1.1 In Example 6 the function 
y = 1yx is not the same as the solution x is not the same as the solution x
y = 1yx

 EXAMPLE 5 Verification of a Solution

Verify that the indicated function is a solution of the given differential equation on 
the interval (−`, `).

(a)
dydyd

dxdxd
5 xyxyx 1/2; y 5 1

16 x4  (b) y0 2 2y9 1 y 5 0; y 5 xex

SOLUTION One way of verifying that the given function is a solution is to see, after 
substituting, whether each side of the equation is the same for every x in the interval.x in the interval.x

(a) From

lefefe tftf {hand side:
dydyd

dxdxd
5

1

16
 (4 (4 ? x3) 5

1

4
x3,

right{hand side: xy1/2 5 x ? 1 1

16
x42

1/2

5 x ? 11

4
x22 5

1

4
x3,

we see that each side of the equation is the same for every real number x. Note that 
y1/2 5 1

4 x2 is, by de�nition, the nonnegative square root of 1
16 x4.

(b) From the derivatives y9 = xex + ex and x and x y0 = xex + 2ex we have, for every real x we have, for every real x

number x,

lefefe tftf {hand side: y0 2 2y9 1 y 5 (xex 1 2ex) 2 2(xex 1 ex) 1 xex 5 0,

right{hand side: 0. .

Note, too, that each differential equation in Example 5 possesses the constant 
solution y 5 0, −` < x < `. A solution of a differential equation that is identically 
zero on an interval I is said to be a I is said to be a I trivial solution.

SOLUTION CURVE The graph of a solution f of an ODE is called a solution 
curve. Since f is a differentiable function, it is continuous on its interval I of de�niI of de�niI -
tion. Thus there may be a difference between the graph of the function f and the 
graph of the solution f. Put another way, the domain of the function f need not 
be the same as the interval I of de�nition (or domain) of the solution I of de�nition (or domain) of the solution I f. Example 6 
illustrates the difference.

 EXAMPLE 6 Function versus Solution

(a) The domain of y = 1yx, considered simply as a function, is the set of all 
real numbers x except 0. When we graph y = 1yx, we plot points in the xy-plane 
corresponding to a judicious sampling of numbers taken from its domain. The 
rational function y = 1yx is discontinuous at 0, and its graph, in a neighborhood 
of the origin, is given in Figure 1.1.1(a). The function y = 1yx is not differen-
tiable at x = 0, since the y-axis (whose equation is x = 0) is a vertical asymptote 
of the graph.

(b) Now y = 1yx is also a solution of the linear �rst-order differential equation x is also a solution of the linear �rst-order differential equation x
xy9 + y = 0. (Verify.) But when we say that y = 1yx is a x is a x solution of this DE, we 
mean that it is a function de�ned on an interval I on which it is differentiable and I on which it is differentiable and I
satis�es the equation. In other words, y = 1yx is a solution of the DE on x is a solution of the DE on x any interval 
that does not contain 0, such as (−3, −1), _

y
_

y
1
2, 10+, (−`, 0), or (0, `). Because the 

solution curves de�ned by y = 1yx for x for x −3 < x < −1 and 1
2 , x , 10 are simply 

segments, or pieces, of the solution curves de�ned by y = 1yx for x for x −` < x < 0 and 
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0 < x < `, respectively, it makes sense to take the interval I to be as large as posI to be as large as posI -
sible. Thus we take I to be either (I to be either (I −`, 0) or (0, `). The solution curve on (0, `) is 
shown in Figure 1.1.1(b). .

EXPLICIT AND IMPLICIT SOLUTIONS You should be familiar with the terms 
explicit functions and implicit functions from your study of calculus. A solution 
in which the dependent variable is expressed solely in terms of the independent 
variable and constants is said to be an explicit solution. For our purposes, let us 
think of an explicit solution as an explicit formula y = f(x) that we can manipulate, 
evaluate, and differentiate using the standard rules. We have just seen in the last 
two examples that y 5 1

16 x4, y = xex, and y = 1yx are, in turn, explicit solutions 
of  dyydx = xy1/2, y0 − 2y9 + y = 0, and xy9 + y = 0. Moreover, the trivial solu-
tion y = 0 is an explicit solution of all three equations. When we get down to the 
business of actually solving some ordinary differential equations, you will see that 
methods of solution do not always lead directly to an explicit solution y = f(x). 
This is particularly true when we attempt to solve nonlinear �rst-order differential 
equations. Often we have to be content with a relation or expression G(x, y) = 0 that 
de�nes a solution f implicitly.

DEFINITION 1.1.3 Implicit Solution of an ODE

A relation G(x, y) = 0 is said to be an implicit solution of an ordinary differen-
tial equation (4) on an interval I, provided that there exists at least one function 
f that satis�es the relation as well as the differential equation on I.

It is beyond the scope of this course to investigate the conditions under which a 
relation G(x, y) = 0 de�nes a differentiable function f. So we shall assume that if 
the formal implementation of a method of solution leads to a relation G(x, y) = 0, 
then there exists at least one function f that satis�es both the relation (that is, 
G(x, f(x)) = 0) and the differential equation on an interval I. If the implicit solution 
G(x, y) = 0 is fairly simple, we may be able to solve for y in terms of x and obtain x and obtain x
one or more explicit solutions. See (iv) in the Remarks.

 EXAMPLE 7 Verification of an Implicit Solution

The relation x2 + y2 = 25 is an implicit solution of the differential equation

dydyd

dxdxd
5 2

x
y

(8)

on the open interval (−5, 5). By implicit differentiation we obtain

d

dxdxd
x2 1

d

dxdxd
y2 5

d

dxdxd
 2 25 or 2x2x2 1 2y

dydyd

dxdxd
5 0. (9)

Solving the last equation in (9) for the symbol dyydx gives (8). Moreover, solving dx gives (8). Moreover, solving dx
x2 + y2 = 25 for y in terms of x yields x yields x y 5 6Ï25 2 x2Ï . The two functions
y 5 �1(x) 5 Ï25 2 x2 and y 5 �2(x) 5 2Ï25 2 x2 satisfy the relation (that is, 
x2 + �1

2 = 25 and x2 + �2
2 = 25) and are explicit solutions de�ned on the interval 

(−5, 5). The solution curves given in Figures 1.1.2(b) and 1.1.2(c) are segments of the 
graph of the implicit solution in Figure 1.1.2(a).

8 CHAPTER  INTRODUCTION TO DIFFERENTIAL EQUATIONS
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FIGURE 1.1.3 Some solutions of DE in 
part (a) of Example 8

y

x

c . 0

c , 0

c 5 0

Because the distinction between an explicit solution and an implicit solution 
should be intuitively clear, we will not belabor the issue by always saying, “Here is 
an explicit (implicit) solution.”

FAMILIES OF SOLUTIONS The study of differential equations is similar to 
that of integral calculus. When evaluating an antiderivative or inde�nite integral 
in calculus, we use a single constant c of integration. Analogously, we shall see 
in Chapter 2 that when solving a �rst-order differential equation F(x, y, y9) 5 0
we usually obtain a solution containing a single constant or parameter c. A solu-
tion of F(x, y, y9) 5 0 containing a constant c is a set of solutions Gsx, y, cd 5 0
called a one-parameter family of solutions. When solving an nth-order differen-
tial equation F(x, y, y9, Á , y(n)) 5 0 we seek an n-parameter family of solutions 
G(x, y, c1, c2, Á , cn) 5 0. This means that a single differential equation can possess 
an in�nite number of solutions corresponding to an unlimited number of choices for 
the parameter(s). A solution of a differential equation that is free of parameters is 
called a particular solution.

The parameters in a family of solutions such as G(x, y, c1, c2, Á , cn) 5 0 are 
arbitrary up to a point. For example, proceeding as in (9) a relation x2 1 y2 5 c
formally satis�es (8) for any constant c. However, it is understood that the relation 
should always make sense in the real number system; thus, if c 5 225 we cannot say 
that x2 1 y2 5 225 is an implicit solution of the differential equation.

 EXAMPLE 8 Particular Solutions

(a) For all real values of c, the one-parameter family y 5 cxcxc 2 x cx cx os x is an explicit x is an explicit x
solution of the linear �rst-order equation 

xyxyx 9 2 y 5 x2 sin x

on the interval (−`, `). (Verify.) Figure 1.1.3 shows the graphs of some particular 
solutions in this family for various choices of c. The solution y = −x cos x, the blue 
graph in the �gure, is a particular solution corresponding to c = 0. 

(b) The two-parameter family y = c1ex + c2xex is an explicit solution of the linear x is an explicit solution of the linear x

second-order equation 

y0 − 2y9 + y = 0

in part (b) of Example 5. (Verify.) In Figure 1.1.4 we have shown seven of the “dou-
ble in�nity” of solutions in the family. The solution curves in red, green, and blue 
are the graphs of the particular solutions y = 5xex (x (x cl = 0, c2 = 5), y = 3ex (x (x cl = 3, 
c2 = 0), and y = 5ex − 2xex (x (x c1 = 5, c2 = 2), respectively. .

FIGURE 1.1.2 An implicit solution and two explicit solutions of (8) in Example 7 .

y

x
5

5

(b) explicit solution

y1 5 25 2ÏÏ255 2255 2Ï25Ï5 2Ï5 2255 2Ï5 2 x2, 52, 52 , x , 5

y

x

5

5

25

(c) explicit solution

y2 5 2ÏÏ25Ï25Ï 2 x2, 25 , x , 5

y

x
5

5

x2 1 y2 5 25

implicit solution(a)(a)(a)

FIGURE 1.1.4 Some solutions of DE in 
part (b) of Example 8

y

x
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FIGURE 1.1.5 Some solutions of DE in 
Example 10

(a) two explicit solutions

(b) piecewise-de�ned solution

c 5 21

c 5 21,

c 5 1

c 5 1,

x

y

x , 0

x $ 0

x

y

Sometimes a differential equation possesses a solution that is not a member of 
a family of solutions of the equation—that is, a solution that cannot be obtained by 
specializing any of the parameters in the family of solutions. Such an extra solution 
is called a singular solution. For example, we have seen that y 5 1

16 x4 and y = 0 
are solutions of the differential equation dyydx = xy1/2 on (−`, `). In Section 2.2 
we shall demonstrate, by actually solving it, that the differential equation dyydx = xy1/2

possesses the one-parameter family of solutions y 5 _
we shall demonstrate, by actually solving it, that the differential equation 

_
we shall demonstrate, by actually solving it, that the differential equation 

1
4 x2 1 c+

we shall demonstrate, by actually solving it, that the differential equation 
+

we shall demonstrate, by actually solving it, that the differential equation 
2

we shall demonstrate, by actually solving it, that the differential equation 
2

we shall demonstrate, by actually solving it, that the differential equation 
, c $ 0. When c = 0, 

the resulting particular solution is y 5 1
16 x4. But notice that the trivial solution y = 0 

is a singular solution since it is not a member of the family y 5 _14 x2 1 c+2; there is 
no way of assigning a value to the constant c to obtain y = 0.

In all the preceding examples we used x and x and x y to denote the independent and 
dependent variables, respectively. But you should become accustomed to seeing 
and working with other symbols to denote these variables. For example, we could 
denote the independent variable by t and the dependent variable by t and the dependent variable by t x.

 EXAMPLE 9 Using Different Symbols

The functions x = c1 cos 4t and t and t x = c2 sin 4t, where c1 and c2 are arbitrary constants 
or parameters, are both solutions of the linear differential equation

x0 1 16x 5 0.

For x = c1 cos 4t the �rst two derivatives with respect to t the �rst two derivatives with respect to t t are t are t x9 = −4c1 sin 4t
and x0 = −16c1 cos 4t. Substituting x0 and x then givesx then givesx

x0 1 16x 5 216c1 cos 4t 1 16(c1 cos 4t) 5 0.

In like manner, for x = c2 sin 4t we have t we have t x0 = −16c2 sin 4t, and so

x0 1 16x 5 216c2 sin 4t 1 16(c2 sin 4t) 5 0.

Finally, it is straightforward to verify that the linear combination of solutions, or the 
two-parameter family x = c1 cos 4t + c2 sin 4t, is also a solution of the differential 
equation. .

The next example shows that a solution of a differential equation can be a 
piecewise-de�ned function.

 EXAMPLE 10 Piecewise-Defined Solution

The one-parameter family of quartic monomial functions y = cx4 is an explicit solu-
tion of the linear �rst-order equation

xy9 − 4y = 0

on the interval (−`, `). (Verify.) The blue and red solution curves shown in 
Figure 1.1.5(a) are the graphs of y = x4 and y = −x4 and correspond to the choices 
c = 1 and c = −1, respectively.

The piecewise-de�ned differentiable function 

y 5 52x4, x , 0

x4, x . 0

is also a solution of the differential equation but cannot be obtained from the family 
y = cx4 by a single choice of c. As seen in Figure 1.1.5(b) the solution is constructed 
from the family by choosing c = −1 for x < 0 and c = 1 for x $ 0. .

SYSTEMS OF DIFFERENTIAL EQUATIONS Up to this point we have been dis-
cussing single differential equations containing one unknown function. But often 
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in theory, as well as in many applications, we must deal with systems of differ-
ential equations. A system of ordinary differential equations is two or  more 
equations involving the derivatives of two or more unknown functions of a single 
independent variable. For example, if x and y denote dependent variables and 
t denotes the independent variable, then a system of two �rst-order differential t denotes the independent variable, then a system of two �rst-order differential t
equations is given by

dx

dt
5 f (t, x, y)

dy

dt
5 g(t, x, y).

(10)

A solution of a system such as (10) is a pair of differentiable functions x = f1(t), 
y = f2(t), de�ned on a common interval I, that satisfy each equation of the system 
on this interval.

REMARKS

(i) It might not be apparent whether a �rst-order ODE written in differential 
form M(x, y) dxdxd 1 N(N(N x, y) dydyd 5 0 is linear or nonlinear because there is 
nothing in this form that tells us which symbol denotes the dependent variable. 
See Problems 9 and 10 in Exercises 1.1.

(ii) We will see in the chapters that follow that a solution of a differential equa-
tion may involve an integral-de�ned function. One way of de�ning a function 
F of a single variable F of a single variable F x by means of a de�nite integral is:x by means of a de�nite integral is:x

F(x) 5 #x

a
#

a
# g(t) dt. (11) 

If the integrand g in (11) is continuous on an interval [a, b] and a # x # b, then 
the derivative form of the Fundamental Theorem of Calculus states that F is F is F
differentiable on (a, b) and

F9(x) 5
d

dxdxd #x

a
#

a
# g(t) dt 5 g(x) (12)

The integral in (11) is often nonelementary, that is, an integral of a function g
that does not have an elementary-function antiderivative. Elementary functions 
include the familiar functions studied in a typical precalculus course: 

constant, polynomial, rational, exponential, logarithmic, trigonometric,
and inverse trigonometric functions, 

as well as rational powers of these functions; �nite combinations of these func-
tions using addition, subtraction, multiplication, division; and function com-
positions. For example, even though e2t2t2t ,Ï1 1 t3Ï ,  and cos t2 are elementary 
functions, the integrals ee2t2t2t dt, eÏ1 1 t3Ï dt, and e cos t2 dt are nonelementary. t are nonelementary. t
See Problems 25–28 in Exercises 1.1. Also see Appendix A.

(iii) Although the concept of a solution of a differential equation has been 
emphasized in this section, you should be aware that a DE does not necessarily 
have to possess a solution. See Problem 43 in Exercises 1.1. The question of 
whether a solution exists will be touched on in the next section.

(continued)continued)continued
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EXERCISES 1.1
In Problems 1–8 state the order of the given ordinary differential 
equation. Determine whether the equation is linear or nonlinear by 
matching it with (6).

1. (1 − x)y0 − 4xy9+ 5y = cos x

2. x
d 3y

dxdxd 3 2 Sdy

dxdxd D4

1 y 5 0

3. t5y(4) − t3y0 + 6y = 0

4.
d 2u

dr 2 1
du

dr
1 u 5 cos(r 1 u)

5.
d 2y2y2

dxdxd 2 5Î1 1 1dydyd

dxdxd 2
2Î

6.
d 2R

dt 2 5 2
k

R2

7. (sin u)y- − (cos u)y9 = 2

8. x
$

2 11 2
x?2

3 2x? 1 x 5 0

In Problems 9 and 10 determine whether the given �rst-order dif-In Problems 9 and 10 determine whether the given �rst-order dif-In Problems 9 and 10 determine whether the given �rst-order dif
ferential equation is linear in the indicated dependent variable by 
matching it with the �rst differential equation given in (7).

9. (y2 − 1) dx + x dy = 0; in y; in x

10. u dv + (v + uv − ueu) du = 0; in v; in u

In Problems 11–14 verify that the indicated function is an explicit 
solution of the given differential equation. Assume an appropriate 
interval I of de�nition for each solution.I of de�nition for each solution.I

11. 2y9 + y = 0; y = e−x/2x/2x

Answers to selected odd-numbered problems begin on page ANS-1.

(iv) A few last words about implicit solutions of differential equations are in 
order. In Example 7 we were able to solve the relation x2 + y2 = 25 for y in terms 
of x to get two explicit solutions, x to get two explicit solutions, x �1(x) 5 Ï25 2 x2Ï  and �2(x) 5 2Ï25 2 x2Ï , 
of the differential equation (8). But don’t read too much into this one example. 
Unless it is easy or important or you are instructed to, there is usually no need 
to try to solve an implicit solution G(x(x( , y) = 0 for y explicitly in terms of x. Also 
do not misinterpret the second sentence following De�nition 1.1.3. An implicit 
solution G(x(x( , y) = 0 can de�ne a perfectly good differentiable function f that is 
a solution of a DE, yet we might not be able to solve G(x(x( , y) = 0 using analyti-
cal methods such as algebra. The solution curve of f may be a segment or piece 
of the graph of G(x, y) = 0. See Problems 49 and 50 in Exercises 1.1. Also, 
read the discussion following Example 4 in Section 2.2.

(v) It might not seem like a big deal to assume that F(x, y, y9, . . . , y(n)) = 0 
can be solved for y(n), but one should be a little bit careful here. There 
are exceptions, and there certainly are some problems connected with this 
assumption. See Problems 56 and 57 in Exercises 1.1.

(vi) If every solution of an nth-order ODE F(x(x( , y, y9, . . . , y(n)) = 0 on an inter-
val I can be obtained from an I can be obtained from an I n-parameter family G(x(x( , y, c1, c2, . . . , cn) = 0 by 
appropriate choices of the parameters ci, i = 1, 2, . . . , n, we then say that the 
family is the general solution of the DE. In solving linear ODEs, we shall im-
pose relatively simple restrictions on the coef�cients of the equation; with these 
restrictions one can be assured that not only does a solution exist on an interval 
but also that a family of solutions yields all possible solutions. Nonlinear ODEs, 
with the exception of some �rst-order equations, are usually dif�cult or impos-
sible to solve in terms of elementary functions. Furthermore, if we happen to 
obtain a family of solutions for a nonlinear equation, it is not obvious whether 
this family contains all solutions. On a practical level, then, the designation 
“general solution” is applied only to linear ODEs. Don’t be concerned about 
this concept at this point, but store the words “general solution” in the back 
of your mind—we will come back to this notion in Section 2.3 and again in 
Chapter 4.
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12.
dy

dt
1 20y20y20 5 24; y 5

6

5
2

6

5
e220t

13. y0 − 6y9 + 13y = 0; y = e3x cos 2x cos 2x x cos 2x cos 2

14. y0 + y = tan x; y = −(cos x) ln(sec x + tan x)

In Problems 15–18 verify that the indicated function y = f(x) is an 
explicit solution of the given �rst-order differential equation. Pro-
ceed as in Example 6, by considering f simply as a function and give 
its domain. Then by considering f as a solution of the differential 
equation, give at least one interval I of de�nition.I of de�nition.I

15. (y 2 x)y9 5 y 2 x 1 8; y 5 x 1 4ÏxÏxÏ 1 2Ï

16. y9 = 25 + y2; y = 5 tan 5x

17. y9 = 2xy2xy2 2; y = 1y(4 − x2)

18. 2y9 = y3 cos x; y = (1 − sin x)−1/2

In Problems 19 and 20 verify that the indicated expression is an im-
plicit solution of the given �rst-order differential equation. Find at 
least one explicit solution y = f(x) in each case. Use a graphing util-
ity to obtain the graph of an explicit solution. Give an interval I of I of I
de�nition of each solution f.

19.
dX

dt
5 (X 2 1)(1 2 2X2X2 );X);X ln12X2X2 2 1

X 2 1 2 5 t

20. 2xy dx + (x2 − y) dy = 0; −2x2x2 2y + y2 = 1

In Problems 21–24 verify that the indicated family of functions is a 
solution of the given differential equation. Assume an appropriate 
interval I of de�nition for each solution.I of de�nition for each solution.I

21.
dP

dt
5 P(1 2 P); P 5

c1et

1 1 c1et

22.
dy

dx
1 4xy4xy4 5 8x3; y 5 2x2x2 2 2 1 1 c1e22x2x2 2

23.
d 2y

dx2 2 4 
dy

dx
1 4y 5 0; y 5 c1e2x 1 c2xe2xe2

2x

24. x3
d3y

dx3 1 2x2x2 2
d 2y

dx2 2 x
dy

dx
1 y 5 12x12x12 2;

y 5 c1x21 1 c2x2x2 1 c3x ln x ln x x 1 4x4x4 2

In Problems 25–28 use (12) to verify that the indicated function is 
a solution of the given differential equation. Assume an appropriate 
interval I of de�nition of each solution.I of de�nition of each solution.I

25. x
dy

dx
2 3xy 5 1; y 5 e3x#x

1
#

1
# e23t

t
dt

26. 2x2x2
dy

dx
2 y 5 2x2x2  cos x cos x x; y 5 ÏxÏxÏÏ #x

4
#

4
# cos t

ÏtÏ
dt

27. x2
dy

dx
1 xy 5 10 sin x; y 5

5
x

1
10
x #x

1
#

1
# sin t

t
dt

28.
dy

dx
1 2xy2xy2 5 1; y 5 e2x2

1 e2x2#x

0
#

0
# et2t2t dt

29. Verify that the piecewise-de�ned functionVerify that the piecewise-de�ned functionV

y 5 52x2, x , 0

x2, x $ 0

is a solution of the differential equation xy9 − 2y = 0 on  
(−`, `).

30. In Example 7 we saw that y = f1(x) = Ï25 2 x2Ï  and 
y 5 �2(x) 5 2Ï25 2 x2
In Example 7 we sa

Ï  are solutions of dyydx = −xyy on the 
interval (−5, 5). Explain why the piecewise-de�ned function

y 5 5Ï25 2 x2Ï 25 , x , 0

2Ï25 2 x2Ï ,  0 # x , 5

is not a solution of the differential equation on the interval (not a solution of the differential equation on the interval (not −5, 5).

In Problems 31–34 �nd values of m so that the function y = emx is a mx is a mx

solution of the given differential equation. 

31. y9 + 2y = 0 32. 5y9 = 2y

33. y0 − 5y9 + 6y = 0 34. 2y0 + 7y9 − 4y = 0

In Problems 35 and 36 �nd values of m so that the function y = xm is 
a solution of the given differential equation. 

35. xy0 + 2y9 = 0

36. x2y2y2 0 − 7xy9 + 15y = 0

In Problems 37–40 use the concept that y = c, −` < x < `, is a 
constant function if and only if y9 = 0 to determine whether the given 
differential equation possesses constant solutions.

37. 3xy9 + 5y = 10 38. y9 = y2 + 2y − 3

39. (y − 1)y9 = 1 40. y0 + 4y9 + 6y = 10

In Problems 41 and 42 verify that the indicated pair of functions is a 
solution of the given system of differential equations on the interval 
(−`, `).

41.
dx

dt
5 x 1 3y 42.

d 2x2x2

dt 2 5 4y 1 et

dy

dt
5 5x 1 3y;

d 2y2y2

dt 2 5 4x 2 et;

x 5 e22t 1 3e6t, x 5 cos 2t 1 sin 2t 1 1
5 et,

y 5 2e22t 1 5e6t y 5 2cos 2t 2 sin 2t 2 1
5 et

Discussion Problems
43. Make up a differential equation that does not possess any real 

solutions.

44. Make up a differential equation that you feel con�dent 
possesses only the trivial solution y = 0. Explain your 
reasoning.

45. What function do you know from calculus is such that its �rst 
derivative is itself? Its �rst derivative is a constant multiple k of k of k
itself? Write each answer in the form of a �rst-order differential 
equation with a solution.

46. What function (or functions) do you know from calculus is such 
that its second derivative is itself? Its second derivative is the 
negative of itself? Write each answer in the form of a second-
order differential equation with a solution.

. DEFINITIONS AND TERMINOLOGY 13
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47. The function y 5 sin x is an explicit solution of the �rst-order x is an explicit solution of the �rst-order x

differential equation 
dydyd

dxdxd
5 Ï1 2 y2Ï . Find an interval I of I of I

de�nition. [Hint: I is  I is  I not the interval (not the interval (not −`, `).]

48. Discuss why it makes intuitive sense to presume that the linear 
differential equation y0 + 2y9 + 4y = 5 sin t has a solution of t has a solution of t
the form y = A sin t + B cos t, where A and B are constants. 
Then �nd speci�c constants A and B so that y = A sin t + B cos t
is a particular solution of the DE.

In Problems 49 and 50 the given �gure represents the graph 
of an implicit solution G(x, y) = 0 of a differential equation 
dyydx = f (x, y). In each case the relation G(x, y) = 0 implicitly de-
�nes several solutions of the DE. Carefully reproduce each �gure 
on a piece of paper. Use different colored pencils to mark off seg-
ments, or pieces, on each graph that correspond to graphs of so-
lutions. Keep in mind that a solution f must be a function and 
differentiable. Use the solution curve to estimate an interval I of I of I
de�nition of each solution f.

49. 50.

51. The graphs of members of the one-parameter family 
x3 + y3 = 3cxy are called folia of Descartes. Verify that this 
family is an implicit solution of the �rst-order differential 
equation

dydyd

dxdxd
5

y(y3 2 2x2x2 3)

x(2y2y2 3 2 x3)
.

52. The graph in Figure 1.1.7 is the member of the family of folia in 
Problem 51 corresponding to c = 1. Discuss: How can the DE in 
Problem 51 help in �nding points on the graph of x3 + y3 = 3xy
where the tangent line is vertical? How does knowing where 
a tangent line is vertical help in determining an interval I of I of I
de�nition of a solution f of the DE? Carry out your ideas 
and compare with your estimates of the intervals in Problem 50.

53. In Example 7 the largest interval I over which the explicit I over which the explicit I
solutions y = f1(x) and y = f2(x) are de�ned is the open 
interval (−5, 5). Why can’t the interval I of de�nition be the I of de�nition be the I
closed interval [−5, 5]?

54. In Problem 21 a one-parameter family of solutions of the DE 
P9 = P(1 − P) is given. Does any solution curve pass through 
the point (0, 3)? Through the point (0, 1)?

55. Discuss, and illustrate with examples, how to solve differential 
equations of the forms dyydx = f (x) and d2yydx2 = f (x).

56. The differential equation x(y9)2 − 4y9 − 12x12x12 3 = 0 has the form 
given in (4). Determine whether the equation can be put into the 
normal form dyydx = f (x, y).

FIGURE 1.1.7 Graph for 
Problem 50

1 x

1

y

57. The normal form (5) of an nth-order differential equation 
is equivalent to (4) whenever both forms have exactly the 
same solutions. Make up a �rst-order differential equation 
for which F(x, y, y9) = 0 is not equivalent to the normal form 
dyydx = f (x, y).

58. Find a linear second-order differential equation F(x(x( , y, y9, y0) = 0 
for which y = c1x + c2x2x2

2 is a two-parameter family of solutions. 
Make sure that your equation is free of the arbitrary parameters 
c1 and c2.

Qualitative information about a solution y = f(x) of a 
differential equation can often be obtained from the equation 
itself. Before working Problems 59–62, recall the geometric 
signi�cance of the derivatives dyydx and dx and dx d2d2d y2y2 ydx2.

59. Consider the differential equation dydyd ydxdxd 5 e2x2
.

(a) Explain why a solution of the DE must be an increasing 
function on any interval of the x-axis.

(b) What are lim
x S 2`

dydyd ydxdxd and lim
x S `

dydyd ydxdxd ? What does this  

suggest about a solution curve as x S 6`?

(c) Determine an interval over which a solution curve is  
concave down and an interval over which the curve is  
concave up.

(d) Sketch the graph of a solution y = f(x) of the differential 
equation whose shape is suggested by parts (a)– (c).

60. Consider the differential equation dyydx = 5 − y.

(a) Either by inspection or by the method suggested in  
Problems 37–40, �nd a constant solution of the DE.

(b) Using only the differential equation, �nd intervals on the  
y-axis on which a nonconstant solution y = f(x) is  
increasing. Find intervals on the y-axis on which y = f(x) 
is decreasing.

61. Consider the differential equation dyydx = y(a − by), where  
a and b are positive constants.

(a) Either by inspection or by the method suggested in  
Problems 37–40, �nd two constant solutions of the DE.

(b) Using only the differential equation, �nd intervals on the 
y-axis on which a nonconstant solution y = f(x) is increas-
ing. Find intervals on which y = f(x) is decreasing.

(c) Using only the differential equation, explain why  
y = ay2b is the y-coordinate of a point of in�ection of the 
graph of a nonconstant solution y = f(x).

(d) On the same coordinate axes, sketch the graphs of the 
two constant solutions found in part (a). These constant 
solutions partition the xy-plane into three regions. In 
each region, sketch the graph of a nonconstant solution 
y = f(x) whose shape is suggested by the results in 
parts (b) and (c).

62. Consider the differential equation y9 = y2 + 4.

(a) Explain why there exist no constant solutions of the DE.

(b) Describe the graph of a solution y = f(x). For example, 
can a solution curve have any relative extrema?

FIGURE 1.1.6 Graph for 
Problem 49

y

x

1

1
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FIGURE 1.2.1 Solution curve of 
�rst-order IVP

xI

solutions of the DE

(x0, y0)

y

(c) Explain why y 5 0 is the y-coordinate of a point of  
in�ection of a solution curve.

(d) Sketch the graph of a solution y = f(x) of the differential 
equation whose shape is suggested by parts (a)–(c).

Computer Lab Assignments
In Problems 63 and 64 use a CAS to compute all derivatives 
and to carry out the simplifications needed to verify that 

the indicated function is a particular solution of the given 
differential equation.

63. y(4) − 20y- + 158y0 − 580y9 + 841y = 0; 

y = xe5x cos 2x cos 2x x cos 2x cos 2

64. x3y90 1 2x2y0 1 20xy9 2 78y 5 0;

y 5 20
cos(5 ln x)

x
2 3

sin(5 ln x)

x

INTRODUCTION We are often interested in problems in which we seek a solution y(x)
of a differential equation so that y(x) also satis�es certain prescribed side conditions, 
that is, conditions that are imposed on the unknown function y(x) and its derivatives 
at a number x0. On some interval I containing I containing I x0 the problem of solving an nth-order 
differential equation subject to n side conditions speci�ed at x0:

Solve:
d ny

dxdxd n 5 f (x, y, y9, Á , y(n21))
(1)

Subject to: ysx0d 5 y0, y9sx0d 5 y1, Á , ysn21dsx0d 5 yn21,

where y0, y1, Á , yn21 are arbitrary constants, is called an nth-order initial-value 
problem (IVP). The values of y(x) and its �rst n21 derivatives at x0, y(x0) 5 y0,
y9(x0) 5 y1, Á , y(n21)(x0) 5 yn21 are called initial conditions (IC).

Solving an nth-order initial-value problem such as (1) frequently entails �rst 
�nding an n-parameter family of solutions of the differential equation and then using 
the initial conditions at x0 to determine the n constants in this family. The resulting 
particular solution is de�ned on some interval I containing the number I containing the number I x0.

GEOMETRIC INTERPRETATION  The cases n 5 1 and n 5 2 in (1),

Solve:
dy

dx
5 f sx, yd

Subject to: ysx0d 5 y0

(2)

and

Solve:
d 2y

dx2 5 f (x, y, y9)

Subject to: y(x0) 5 y0,  y9(x0) 5 y1

(3)

are examples of �rst- and second-order initial-value problems, respectively. These 
two problems are easy to interpret in geometric terms. For (2) we are seeking a 
solution y(x) of the differential equation y9 = f (x, y) on an interval I containing I containing I x0 so 
that its graph passes through the speci�ed point (x0, y0). A solution curve is shown 
in blue in Figure 1.2.1. For (3) we want to �nd a solution y(x) of the differential 
equation y0 = f (x, y, y9) on an interval I containing I containing I x0 so that its graph not only 
passes through (x0, y0) but the slope of the curve at this point is the number y1. A 
solution curve is shown in blue in Figure 1.2.2. The words initial conditions derive 
from physical systems where the independent variable is time t and where t and where t y(t0) = y0

1.2 Initial-Value Problems 

FIGURE 1.2.2 Solution curve of 
second-order IVP

xI

solutions of the DE

(x0, y0)

y

m 5 y1
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FIGURE 1.2.4 Graphs of function and 
solution of IVP in Example 2

(0, 21)

x

y

121

x

y

121

(a) function de�ned for all x ex ex xcept x = x = x 61

(b) solution de�ned on interval containing x = x = x 0

and y9(t0) = y1 represent the position and velocity, respectively, of an object at some 
beginning, or initial, time t0.

 EXAMPLE 1 Two First-Order IVPs

(a) In Problem 45 in Exercises 1.1 you were asked to deduce that y = cex is a one-x is a one-x

parameter family of solutions of the simple �rst-order equation y9 = y. All the so-
lutions in this family are de�ned on the interval (−`, `). If we impose an initial 
condition, say, y(0) = 3, then substituting x = 0, y = 3 in the family determines the 
constant 3 = ce0 = c. Thus y = 3ex is a solution of the IVPx is a solution of the IVPx

y9 5 y, y(0) 5 3.

(b) Now if we demand that a solution curve pass through the point (1, −2) rather 
than (0, 3), then y(1) = −2 will yield −2 = ce or c = −2e−1. In this case y = −2ex−1

is a solution of the IVP

y9 5 y, y(1) 5 22.

The two solution curves are shown in dark blue and dark red in Figure 1.2.3. .

The next example illustrates another �rst-order initial-value problem. In this ex-
ample notice how the interval I of de�nition of the solution I of de�nition of the solution I y(x) depends on the initial 
condition y(x0) = y0.

 EXAMPLE 2 Interval I of Definition of a SolutionI of Definition of a SolutionI

In Problem 6 of Exercises 2.2 you will be asked to show that a one-parameter family 
of solutions of the �rst-order differential equation y9 + 2xy2 = 0 is y = 1y(x2 + c). 
If we impose the initial condition y(0) = −1, then substituting x = 0 and y = −1 
into the family of solutions gives −1 = 1yc or c = −1. Thus y = 1y(x2 − 1). We 
now emphasize the following three distinctions:

 ● Considered as a function, the domain of y = 1y(x2 − 1) is the set of real 
numbers x for which x for which x y(x) is de�ned; this is the set of all real numbers 
except x = −1 and x = 1. See Figure 1.2.4(a).

 ● Considered as a solution of the differential equation y9 + 2xy2 = 0, the 
interval I of de�nition of I of de�nition of I y = 1y(x2 − 1) could be taken to be any 
interval over which y(x) is de�ned and differentiable. As can be seen in 
Figure 1.2.4(a), the largest intervals on which y = 1y(x2 − 1) is a solution 
are (−`,−1), (−1, 1), and (1, `).

 ● Considered as a solution of the initial-value problem y9 + 2xy2 = 0, 
y(0) = −1, the interval I of de�nition of I of de�nition of I y = 1y(x2 − 1) could be taken to 
be any interval over which y(x) is de�ned, differentiable, and contains the and contains the and
initial point x = 0; the largest interval for which this is true is (−1, 1). See 
the red curve in Figure 1.2.4(b). .

See Problems 3–6 in Exercises 1.2 for a continuation of Example 2.

 EXAMPLE 3 Second-Order IVP

In Example 9 of Section 1.1 we saw that x = c1 cos 4t + c2 sin 4t is a two-t is a two-t
parameter family of solutions of x0 + 16x = 0. Find a solution of the initial-value 
problem

x0 1 16x 5 0, x 1�

2 2 5 22, x91�

2 2 5 1. (4)

FIGURE 1.2.3 Solution curves of two 
IVPs in Example 1

y

x

(0, 3)

(1,22) 
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y y 5  x 4 / 16

(0, 0)

1

x
y 5 0

FIGURE 1.2.5 Two solution curves of the 
same IVP in Example 4

SOLUTION We �rst apply x(py2) =−2 to the given family of solutions: c1 cos 2p +
c2 sin 2p =−2. Since cos 2p = 1 and sin 2p = 0, we �nd that c1 =−2. We next apply 
x9(py2) = 1 to the one-parameter family x(t)t)t =−2 cos 4t + c2 sin 4t. Differentiating 
and then setting t = py2 and x9 = 1 gives 8 sin 2p + 4c2 cos 2p = 1, from which we 
see that c2 5 1

4. Hence x 5 22 cos 4t 1 1
4 sin 4t is a solution of (4). .

EXISTENCE AND UNIQUENESS Two fundamental questions arise in considering 
an initial-value problem:

Does a solution of the problem exist? If a solution exists, is it unique?

For the �rst-order initial-value problem (2) we ask:

Existence 5Does the differential equation dyydx = f (x, y) possess solutions?
 Do any of the solution curves pass through the point (x0, y0)?

Uniqueness 5When can we be certain that there is precisely one solution curve   
    passing through the point (x0, y0)?

Note that in Examples 1 and 3 the phrase “a solution” is used rather than “the solution” 
of the problem. The inde�nite article “a” is used deliberately to suggest the 
possibility that other solutions may exist. At this point it has not been demonstrated 
that there is a single solution of each problem. The next example illustrates an initial-
value problem with two solutions.

 EXAMPLE 4 An IVP Can Have Several Solutions

Each of the functions y = 0 and y 5 1
16 x4 satis�es the differential equation 

dyydx = xy1/2 and the initial condition y(0) = 0, so the initial-value problem

dydyd

dxdxd
5 xyxyx 1/2, y(0) 5 0

has at least two solutions. As illustrated in Figure 1.2.5, the graphs of both functions, 
shown in red and blue pass through the same point (0, 0). .

Within the safe con�nes of a formal course in differential equations one can be 
fairly con�dent that most differential equations will have solutions and that solumost differential equations will have solutions and that solumost -
tions of initial-value problems will probably be unique. Real life, however, is not so 
idyllic. Therefore it is desirable to know in advance of trying to solve an initial-value 
problem whether a solution exists and, when it does, whether it is the only solution 
of the problem. Since we are going to consider �rst-order differential equations in 
the next two chapters, we state here without proof a straightforward theorem that 
gives conditions that are suf�cient to guarantee the existence and uniqueness of a 
solution of a �rst-order initial-value problem of the form given in (2). We shall wait 
until Chapter 4 to address the question of existence and uniqueness of a second-order 
initial-value problem.

THEOREM 1.2.1 Existence of a Unique Solution

Let R be a rectangular region in the xy-plane de�ned by a # x # b, c # y # d
that contains the point (xthat contains the point (xthat contains the point ( 0, y0) in its interior. If f (x(x( , y) and −f−f− y−y are continuous 
on R, then there exists some interval I0: (x: (x: ( 0 − h, x0 + h), h . 0, contained in 
[a, b], and a unique function y(x(x( ), de�ned on I0, that is a solution of the initial-
value problem (2).

. INITIALVALUE PROBLEMS 17
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The foregoing result is one of the most popular existence and uniqueness theo-
rems for �rst-order differential equations because the criteria of continuity of f (x, y) 
and −f−f− yfyf −y are relatively easy to check. The geometry of Theorem 1.2.1 is illustrated 
in Figure 1.2.6.

 EXAMPLE 5 Example 4 Revisited

We saw in Example 4 that the differential equation dyydx = xy1/2 possesses at least 
two solutions whose graphs pass through (0, 0). Inspection of the functions

f (x, y) 5 xyxyx 1/2 and
−f−f−

−y
5

x

2y1/2

shows that they are continuous in the upper half-plane de�ned by y > 0. Hence 
Theorem 1.2.1 enables us to conclude that through any point (x0, y0), y0 > 0 in the 
upper half-plane there is some interval centered at x0 on which the given differential 
equation has a unique solution. Thus, for example, even without solving it, we know 
that there exists some interval centered at 2 on which the initial-value problem 
dyydx = xy1/2, y(2) = 1 has a unique solution. .

In Example 1, Theorem 1.2.1 guarantees that there are no other solutions of the 
initial-value problems y9 = y, y(0) = 3 and y9 = y, y(1) = −2 other than y = 3ex

and y = −2ex−1, respectively. This follows from the fact that f (x, y) = y and 
−f−f− yfyf −y = 1 are continuous throughout the entire xy-plane. It can be further shown that 
the interval I on which each solution is de�ned is (I on which each solution is de�ned is (I −`, `).

INTERVAL OF EXISTENCE/UNIQUENESS Suppose y(x) represents a solution 
of the initial-value problem (2). The following three sets on the real x-axis may 
not be the same: the domain of the function y(x), the interval I over which the soluI over which the soluI -
tion y(x) is de�ned or exists, and the interval I0I0I  of existence and uniqueness. Exand uniqueness. Exand -
ample 6 of Section 1.1 illustrated the difference between the domain of a function 
and the interval  I of de�nition. Now suppose (I of de�nition. Now suppose (I x0, y0) is a point in the interior of 
the rectangular region R in Theorem 1.2.1. It turns out that the continuity of the 
function f (x, y) on R by itself is suf�cient to guarantee the existence of at least one 
solution of  dyydx = f (x, y), y(x0) = y0, de�ned on some interval I. The interval I
of de�nition for this initial-value problem is usually taken to be the largest interval 
containing x0 over which the solution y(x) is de�ned and differentiable. The interval 
I depends on both I depends on both I f (x, y) and the initial condition y(x0) = y0. See Problems 31–34 in 
Exercises 1.2. The extra condition of continuity of the �rst partial derivative −f−f− yfyf −y
on R enables us to say that not only does a solution exist on some interval I0I0I  con-
taining x0, but it is the only solution satisfying y(x0) = y0. However, Theorem 1.2.1 
does not give any indication of the sizes of intervals I and I and I I0I0I ; the interval I of 
de�nition need not be as wide as the region R, and the interval I0de�nition need not be as wide as the region R, and the interval I0de�nition need not be as wide as the region R, and the interval I of existence and 
uniqueness may not be as large as I. The number h > 0 that de�nes the interval 
I0I0I : (x0 − h, x0 + h) could be very small, so it is best to think that the solution y(x) 
is unique in a local sense—that is, a solution de�ned near the point (x0, y0). See 
Problem 51 in Exercises 1.2.

x0

R

a bIa bI0a b0

c

d

a ba ba ba ba ba b

(x0, y0)

y

FIGURE 1.2.6 Rectangular region R

REMARKS

(i) The conditions in Theorem 1.2.1 are suf�cient but not necessary. This means 
that when f (x(x( , y) and −f−f− yfyf −y are continuous on a rectangular region R, it must 
always follow that a solution of (2) exists and is unique whenever (xalways follow that a solution of (2) exists and is unique whenever (xalways follow that a solution of (2) exists and is unique whenever ( 0, y0) is 
a point interior to R. However, if the conditions stated in the hypothesis of 
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Theorem 1.2.1 do not hold, then anything could happen: Problem (2) may still 
have a solution and this solution may be unique, or (2) may have several solu-
tions, or it may have no solution at all. A rereading of Example 5 reveals that 
the hypotheses of Theorem 1.2.1 do not hold on the line y = 0 for the differen-
tial equation dyydx = xy1/2, so it is not surprising, as we saw in Example 4 of 
this section, that there are two solutions de�ned on a common interval (2h, h) 
satisfying y(0) = 0. On the other hand, the hypotheses of Theorem 1.2.1 do not 
hold on the line y = 1 for the differential equation dyydx = uy − 1u. 
Nevertheless it can be proved that the solution of the initial-value problem 
dyydx = uy − 1u, y(0) = 1, is unique. Can you guess this solution?

(ii) You are encouraged to read, think about, work, and then keep in mind 
Problem 50 in Exercises 1.2.

(iii) Initial conditions are prescribed at a single point x0. But we are also 
interested in solving differential equations that are subject to conditions 
speci�ed on y(x) or its derivative at two different points x0 and x1. Condi-
tions such as 

y(1) 5 0, y(5) 5 0 or y(�y2) 5 0, y9(�) 5 1

are called boundary conditions (BC). A differential equation together with 
boundary conditions is called a boundary-value problem (BVP). For example,

y0 1 y 5 0, y9(0) 5 0, y9(�) 5 0

is a boundary-value problem. See Problems 39–44 in Exercises 1.2.
When we start to solve differential equations in Chapter 2 we will solve 

only �rst-order equations and �rst-order initial-value problems. The math-
ematical description of many problems in science and engineering involve 
second-order IVPs or two-point BVPs. We will examine some of these 
problems in Chapters 4 and 5.  

EXERCISES 1.2

In Problems 1 and 2, y 5 1y(1 1 c1e2x) is a one-parameter family 
of solutions of the �rst-order DE y9 = y − y2. Find a solution of the 
�rst-order IVP consisting of this differential equation and the given 
initial condition.

1. y(0) 5 21
3 2. y(−1) = 2

In Problems 3–6, y = 1y(x2 + c) is a one-parameter family of so-
lutions of the �rst-order DE y9 + 2xy2xy2 2 = 0. Find a solution of the 
�rst-order IVP consisting of this differential equation and the given 
initial condition. Give the largest interval I over which the solution I over which the solution I
is de�ned.

3. y(2) 5 1
3 4. y(22) 5 1

2

5. y(0) = 1 6. y_12+ 5 24

In Problems 7–10, x = c1 cos t + c2 sin t is a two-parameter family t is a two-parameter family t
of solutions of the second-order DE x0 + x = 0. Find a solution of 

the second-order IVP consisting of this differential equation and the 
given initial conditions.

7. x(0) = −1, x9(0) = 8

8. x(py2) = 0, x9(py2) = 1

9. x(�y6) 5 1
2, x9(�y6) 5 0

10. x(�y4) 5 Ï2Ï , x9(�y4) 5 2Ï2Ï

In Problems 11–14, y = c1ex + c2e−x is a two-parameter family of x is a two-parameter family of x

solutions of the second-order DE y0 − y = 0. Find a solution of the 
second-order IVP consisting of this differential equation and the 
given initial conditions.

11. y(0) 5 1, y9(0) 5 2

12. y(1) = 0, y9(1) = e

13. y(−1) = 5, y9(−1) = −5

14. y(0) = 0, y9(0) = 0

Answers to selected odd-numbered problems begin on page ANS-1.
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In Problems 15 and 16 determine by inspection at least two solutions 
of the given �rst-order IVP.

15. y9 = 3y2/3, y(0) = 0

16. xy9 = 2y, y(0) = 0

In Problems 17–24 determine a region of the xy-plane for which 
the given differential equation would have a unique solution whose 
graph passes through a point (x0, y0) in the region.

17.
dydyd

dxdxd
5 y2/3 18.

dydyd

dxdxd
5 ÏxÏxÏ yxyxÏ

19. x
dydyd

dxdxd
5 y 20.

dydyd

dxdxd
2 y 5 x

21. (4 − y2)y9 = x2 22. (1 + y3)y9 = x2

23. (x2 + y2)y9 = y2 24. (y − x)y9 = y + x

In Problems 25–28 determine whether Theorem 1.2.1 guarantees that 
the differential equation y9 5 ÏyÏyÏ 2 2 9
In Problems 25–28 determine whether Theorem 1.2.1 guarantees that 

Ï  possesses a unique solution 
through the given point.

25. (1, 4) 26. (5, 3)

27. (2, −3) 28. (−1, 1)

29. (a) By inspection �nd a one-parameter family of solutions of 
the differential equation xy9 = y. Verify that each member 
of the family is a solution of the initial-value problem 
xy9 = y, y(0) = 0.

(b) Explain part (a) by determining a region R in the xy-plane 
for which the differential equation xy9 = y would have a 
unique solution through a point (x0, y0) in R.

(c) Verify that the piecewise-de�ned function

y 5 50, x , 0

x, x $ 0

satis�es the condition y(0) = 0. Determine whether this 
function is also a solution of the initial-value problem in 
part (a).

30. (a) Verify that y = tan (x + c) is a one-parameter family of 
solutions of the differential equation y9 = 1 + y2.

(b) Since f (x, y) = 1 + y2 and −f−f− yfyf −y = 2y are continuous ev-
erywhere, the region R in Theorem 1.2.1 can be taken to 
be the entire xy-plane. Use the family of solutions in part 
(a) to �nd an explicit solution of the �rst-order initial-value 
problem y9 = 1 + y2, y(0) = 0. Even though x0 = 0 is in 
the interval (−2, 2), explain why the solution is not de�ned 
on this interval.

(c) Determine the largest interval I of de�nition for the solution I of de�nition for the solution I
of the initial-value problem in part (b).

31. (a) Verify that y = −1y(x + c) is a one-parameter family of 
solutions of the differential equation y9 = y2.

(b) Since f (x, y) = y2 and −f−f− yfyf −y = 2y are continuous every-
where, the region R in Theorem 1.2.1 can be taken to be 
the entire xy-plane. Find a solution from the family in 
part (a) that satis�es y(0) = 1. Then �nd a solution from 
the family in part (a) that satis�es y(0) = −1. Determine 

the largest interval I of de�nition for the solution of each I of de�nition for the solution of each I
initial-value problem.

(c) Determine the largest interval I of de�nition for the solution I of de�nition for the solution I
of the �rst-order initial-value problem y9 = y2, y(0) = 0. 
[Hint: The solution is not a member of the family of  
solutions in part (a).]

32. (a)  Show that a solution from the family in part (a) of Problem 31 
that satis�es y9 = y2, y(1) = 1, is y = 1y(2 − x).

(b) Then show that a solution from the family in part (a)  
of Problem 31 that satis�es y9 = y2, y(3) = −1, is  
y = 1y(2 − x).

(c) Are the solutions in parts (a) and (b) the same?

33. (a)  Verify that 3x2 − y2 = c is a one-parameter family of 
solutions of the differential equation y dyydx = 3x.

(b) By hand, sketch the graph of the implicit solution 
3x2 − y2 = 3. Find all explicit solutions y = f(x) of the  
DE in part (a) de�ned by this relation. Give the interval I
of de�nition of each explicit solution.

(c) The point (−2, 3) is on the graph of 3x2 − y2 = 3, 
but which of the explicit solutions in part (b) satis�es 
y(−2) = 3?

34. (a) Use the family of solutions in part (a) of Problem 33 to  
�nd an implicit solution of the initial-value problem  
ydyydx = 3x, y(2) = −4. Then, by hand, sketch the  
graph of the explicit solution of this problem and give its 
interval I of de�nition.I of de�nition.I

(b) Are there any explicit solutions of y dyydx = 3x that pass x that pass x
through the origin?

In Problems 35–38 the graph of a member of a family of solutions 
of a second-order differential equation d2d2d y2y2 ydx2 = f (x, y, y9) is given. 
Match the solution curve with at least one pair of the following initial 
conditions.

(a) y(1) = 1, y9(1) = −2

(b) y(−1) = 0, y9(−1) = −4

(c) y(1) = 1, y9(1) = 2

(d) y(0) = −1, y9(0) = 2

(e) y(0) = −1, y9(0) = 0

(f) y(0) = −4, y9(0) = −2

35.

FIGURE 1.2.7 Graph for Problem 35

y

x

5

25

5
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FIGURE 1.2.12 Two solutions of the IVP in Problem 51

(a)

(2, 1)

y

x

(b)

(2, 1)

y

x

FIGURE 1.2.11 Graphs for Problem 47

((0, )1
2

1

1 x

y

36.

37.

38.

In Problems 39–44, y 5 c1 cos 2x2x2 1 c2 sin 2x2x2  is a two-parameter x is a two-parameter x
family of solutions of the second-order DE y0 1 4y 5 0. If possible, 
�nd a solution of the differential equation that satis�es the given side 
conditions. The conditions speci�ed at two different points are called 
boundary conditions.

39. y(0) 5 0, y(�y4) 5 3 40. y(0) 5 0, y(�) 5 0

41. y9(0) 5 0, y9(�y6) 5 0 42. y(0) 5 1, y9(�) 5 5

43. y(0) 5 0, y(�) 5 2 44. y9(�y2) 5 1, y9(�) 5 0

Discussion Problems

In Problems 45 and 46 use Problem 55 in Exercises 1.1 and (2) and 
(3) of this section.

45. Find a function whose graph at each point (x, y) has the slope 
given by 8e2x2x2 + 6x and has the x and has the x y-intercept (0, 9).

46. Find a function whose second derivative is y0 = 12x12x12 − 2 at 
each point (x, y) on its graph and y = −x + 5 is tangent to the 
graph at the point corresponding to x = 1.

47. Consider the initial-value problem y9 = x − 2y, y(0) 5 1
2.

Determine which of the two curves shown in Figure 1.2.11 is 
the only plausible solution curve. Explain your reasoning.

48. Show that 

x 5 #y

0
#

0
# 1

Ït3 1 1Ï
dt

is an implicit solution of the initial-value problem

2
d 2y2y2

dxdxd 2 2 3y2 5 0, ys0d 5 0, y9s0d 5 1.

Assume that y $ 0. [Hint: The integral is nonelementary. See 
(ii) in the Remarks at the end of Section 1.1.] 

49. Determine a plausible value of x0 for which the graph of the 
solution of the initial-value problem y9 + 2y2y2 = 3x − 6, y(x(x( 0) = 0 
is tangent to the x-axis at (x-axis at (x-axis at ( 0, 0). Explain your reasoning.

50. Suppose that the �rst-order differential equation dyydx = f (x, y) 
possesses a one-parameter family of solutions and that f (x, y) 
satis�es the hypotheses of Theorem 1.2.1 in some rectangular 
region R of the xy-plane. Explain why two different solution 
curves cannot intersect or be tangent to each other at a point 
(x0, y0) in R.

51. The functions y(x) 5 1
16 x4, 2` , x , ` and

y(x) 5 50,
1
16 x4,

x , 0

x $ 0

have the same domain but are clearly different. See  
Figures 1.2.12(a) and 1.2.12(b), respectively. Show that 
both functions are solutions of the initial-value problem 
dyydx = xy1/2, y(2) = 1 on the interval (−`, `). Resolve the 
apparent contradiction between this fact and the last sentence  
in Example 5.

FIGURE 1.2.9 Graph for Problem 37
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x
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25

5

FIGURE 1.2.8 Graph for Problem 36

y

x
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25

5

FIGURE 1.2.10 Graph for Problem 38
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Express assumptions
in terms of DEs

Display predictions
of  model 

(e.g., graphically)

Solve the DEs

If necessary,
alter assumptions

or increase resolution
of model

Assumptions
and hypotheses

Mathematical
formulation

Obtain
solutions

Check model
predictions with

known facts

FIGURE 1.3.1 Steps in the modeling process with differential equations

INTRODUCTION In this section we introduce the notion of a differential equation 
as a mathematical model and discuss some speci�c models in biology, chemistry, and 
physics. Once we have studied some methods for solving differential equations in 
Chapters 2 and 4, we return to and solve some of these models in Chapters 3 and 5.

MATHEMATICAL MODELS It is often desirable to describe the behavior of 
some real-life system or a phenomenon—whether physical, sociological, or even 
economic—in mathematical terms. The mathematical description of a system or a 
phenomenon is called a mathematical model and is constructed with certain goals 
in mind. For example, we may wish to understand the mechanisms of a certain eco-
system by studying the growth of animal populations in that system, or we may wish 
to date fossils by means of analyzing the decay of a radioactive substance, either in 
the fossil or in the stratum in which it was discovered.

Construction of a mathematical model of a system starts with

(i) identi�cation of the variables that are responsible for changing the sys-
tem. We may choose not to incorporate all these variables into the model 
at �rst. In this step we are specifying the level of resolution of the model.

Next

(ii) we make a set of reasonable assumptions, or hypotheses, about the 
system we are trying to describe. These assumptions will also include 
any empirical laws that may be applicable to the system.

For some purposes it may be perfectly within reason to be content with  low- 
resolution models. For example, you may already be aware that in beginning 
physics courses, the retarding force of air friction is sometimes ignored in modeling 
the motion of a body falling near the surface of the Earth, but if you are a scientist 
whose job it is to accurately predict the �ight path of a long-range projectile, you have 
to take into account air resistance and other factors such as the curvature of the Earth.

Since the assumptions made about a system frequently involve a rate of change
of one or more of the variables, the mathematical depiction of all these assumptions 
may be one or more equations involving derivatives. In other words, the mathemati-
cal model may be a differential equation or a system of differential equations.

Once we have formulated a mathematical model that is either a differential equa-
tion or a system of differential equations, we are faced with the not insigni�cant 
problem of trying to solve it. If we can solve it, then we deem the model to be reasonIf we can solve it, then we deem the model to be reasonIf -
able if its solution is consistent with either experimental data or known facts about 
the behavior of the system. But if the predictions produced by the solution are poor, 
we can either increase the level of resolution of the model or make alternative as-
sumptions about the mechanisms for change in the system. The steps of the model-
ing process are then repeated, as shown in the diagram in Figure 1.3.1.

1.3 Differential Equations as Mathematical Models 
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*If two quantities u and v are proportional, we write u ~ v. This means that one quantity is a constant 
multiple of the other: u = kv.

Of course, by increasing the resolution, we add to the complexity of the mathemati-
cal model and increase the likelihood that we cannot obtain an explicit solution of 
the differential equation.

A mathematical model of a physical system will often involve the variable time t.
A solution of the model then gives the state of the system; in other words, the values 
of the dependent variable (or variables) for appropriate values of t describe the system t describe the system t
in the past, present, and future.

POPULATION DYNAMICS One of the earliest attempts to model human 
population growth by means of mathematics was by the English clergyman and 
economist Thomas Malthus (1766–1834) in 1798. Basically, the idea behind the 
Malthusian model is the assumption that the rate at which the population of a country 
grows at a certain time is proportional* to the total population of the country at that 
time. In other words, the more people there are at time t, the more there are going to be 
in the future. In mathematical terms, if P(t) denotes the total population at time t, then 
this assumption can be expressed as

dPdPd

dt
~ P or

dP

dt
5 kP, (1)

where k is a constant of proportionality. This simple model, which fails to take into k is a constant of proportionality. This simple model, which fails to take into k
account many factors that can in�uence human populations to either grow or decline 
(immigration and emigration, for example), nevertheless turned out to be fairly accu-
rate in predicting the population of the United States during the years 1790–1860. 
Populations that grow at a rate described by (1) are rare; nevertheless, (1) is still used 
to model growth of small populations over short intervals of time (bacteria growing 
in a petri dish, for example).

RADIOACTIVE DECAY The nucleus of an atom consists of combinations of protons 
and neutrons. Many of these combinations of protons and neutrons are unstable—that 
is, the atoms decay or transmute into atoms of another substance. Such nuclei are 
said to be radioactive. For example, over time the highly radioactive radium, Ra-226, 
transmutes into the radioactive gas radon, Rn-222. To model the phenomenon of 
radioactive decay, it is assumed that the rate dAydt at which the nuclei of a subdt at which the nuclei of a subdt -
stance decay is proportional to the amount (more precisely, the number of nuclei) 
A(t) of the substance remaining at time t:

dAdAd

dt
~ A or

dA

dt
5 kA. (2)

Of course, equations (1) and (2) are exactly the same; the difference is only in the in-
terpretation of the symbols and the constants of proportionality. For growth, as we 
expect in (1), k > 0, and for decay, as in (2), k < 0.

The model (1) for growth can also be seen as the equation dSydt = rS, which 
describes the growth of capital S when an annual rate of interest S when an annual rate of interest S r is compounded r is compounded r
continuously. The model (2) for decay also occurs in biological applications such 
as determining the half-life of a drug—the time that it takes for 50% of a drug 
to be eliminated from a body by excretion or metabolism. In chemistry the decay 
model (2) appears in the mathematical description of a �rst-order chemical reaction. 
The point is this:

A single differential equation can serve as a mathematical model for  
many different phenomena.
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Mathematical models are often accompanied by certain side conditions. For ex-
ample, in (1) and (2) we would expect to know, in turn, the initial population P0 and 
the initial amount of radioactive substance A0 on hand. If the initial point in time is 
taken to be t = 0, then we know that P(0) = P0 and A(0) = A0. In other words, a 
mathematical model can consist of either an initial-value problem or, as we shall see 
later on in Section 5.2, a boundary-value problem.

NEWTON’S LAW OF COOLING/WARMING According to Newton’s empirical 
law of cooling/warming, the rate at which the temperature of a body changes is pro-
portional to the difference between the temperature of the body and the temperature 
of the surrounding medium, the so-called ambient temperature. If T(T(T t) represents the 
temperature of a body at time t, TmTmT  the temperature of the surrounding medium, and 
dTydTydT dt the rate at which the temperature of the body changes, then Newton’s law of dt the rate at which the temperature of the body changes, then Newton’s law of dt
cooling/warming translates into the mathematical statement

dT

dt
~ T 2 TmTmT or

dT

dt
5 k(T 2 Tm), (3)

where k is a constant of proportionality. In either case, cooling or warming, if k is a constant of proportionality. In either case, cooling or warming, if k TmTmT  is a 
constant, it stands to reason that k < 0.

SPREAD OF A DISEASE A contagious disease—for example, a �u virus—is 
spread throughout a community by people coming into contact with other people. Let 
x(t) denote the number of people who have contracted the disease and y(t) denote the 
number of people who have not yet been exposed. It seems reasonable to assume that 
the rate dxydt at which the disease spreads is proportional to the number of encoundt at which the disease spreads is proportional to the number of encoundt -
ters, or interactions, between these two groups of people. If we assume that the num-
ber of interactions is jointly proportional to x(t) and y(t)—that is, proportional to the 
product xy—then

dxdxd

dt
5 kxy, (4)

where k is the usual constant of proportionality. Suppose a small community has a k is the usual constant of proportionality. Suppose a small community has a k
�xed population of n people. If one infected person is introduced into this commu-
nity, then it could be argued that x(t) and y(t) are related by x + y = n + 1. Using 
this last equation to eliminate y in (4) gives us the model

dx

dt
5 kx(n 1 1 2 x). (5)

An obvious initial condition accompanying equation (5) is x(0) = 1.

CHEMICAL REACTIONS The disintegration of a radioactive substance, governed 
by the differential equation (1), is said to be a �rst-order reaction. In chemistry 
a  few  reactions follow this same empirical law: If the molecules of substance  A
decompose into smaller molecules, it is a natural assumption that the rate at which 
this decomposition takes place is proportional to the amount of the �rst substance 
that  has not undergone conversion; that is, if X(t) is the amount of substance A
remaining at any time, then dXydt = kX, where k is a negative constant since k is a negative constant since k X is X is X
decreasing. An example of a �rst-order chemical reaction is the conversion of t-butyl 
chloride, (CH3)3CCl, into t-butyl alcohol, (CH3)3COH:

(CH3)3CCl 1 NaOH S (CH3)3COH 1 NaCl.

Only the concentration of the t-butyl chloride controls the rate of reaction. But in the 
reaction

CH3Cl 1 NaOH S CH3OH 1 NaCl

one molecule of sodium hydroxide, NaOH, is consumed for every molecule of 
methyl chloride, CH3Cl, thus forming one molecule of methyl alcohol, CH3OH, and 
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input rate of brine
3 gal/min

output rate of brine
3 gal/min

constant
300 gal

FIGURE 1.3.2 Mixing tank

*Don’t confuse these symbols with Rin and Rout, which are input and output rates of salt.

one molecule of sodium chloride, NaCl. In this case the rate at which the reaction 
proceeds is proportional to the product of the remaining concentrations of CH3Cl and 
NaOH. To describe this second reaction in general, let us suppose one molecule of a 
substance A combines with one molecule of a substance B to form one molecule of a 
substance C. If X denotes the amount of chemical X denotes the amount of chemical X C formed at time C formed at time C t and if t and if t a and b
are, in turn, the amounts of the two chemicals A and B at t = 0 (the initial amounts), 
then the instantaneous amounts of A and B not converted to chemical C are C are C a − X
and b − X, respectively. Hence the rate of formation of C is given byC is given byC

dX

dt
5 k(� 2 X)(� 2 X), (6)

where k is a constant of proportionality. A reaction whose model is equation (6) is k is a constant of proportionality. A reaction whose model is equation (6) is k
said to be a second-order reaction.

MIXTURES The mixing of two salt solutions of differing concentrations gives 
rise to a �rst-order differential equation for the amount of salt contained in the mix-
ture. Let us suppose that a large mixing tank initially holds 300 gallons of brine (that 
is, water in which a certain number of pounds of salt has been dissolved). Another 
brine solution is pumped into the large tank at a rate of 3 gallons per minute; the 
concentration of the salt in this in�ow is 2 pounds per gallon. When the solution in 
the tank is well stirred, it is pumped out at the same rate as the entering solution. See 
Figure 1.3.2. If A(t) denotes the amount of salt (measured in pounds) in the tank at 
time t, then the rate at which A(t) changes is a net rate:

dA

dt
5 1input rate

of salt 2 2 1output rate

of salt 2 5 Rin 2 Rout. (7)

The input rate Rin at which salt enters the tank is the product of the in�ow concentra-
tion of salt and the in�ow rate of �uid. Note that Rin is measured in pounds per 
minute:

concentration
of salt

in in�ow
input rate
of brine

input rate
of salt

Rin 5 (2 lb/gal) ? (3 gal/min) 5 (6 lb/min).

Now, since the solution is being pumped out of the tank at the same rate that it 
is pumped in, the number of gallons of brine in the tank at time t is a constant t is a constant t
300 gallons. Hence the concentration of the salt in the tank as well as in the out�ow 
is c(t) = A(t)y300 lb/gal, so the output rate Rout of salt isout of salt isout

Rout 5 (        lb/gal) ? (3 gal/min) 5         lb/min.
A(t)
––––
300
        
300
        

A(t)
––––
100

         
100

         

concentration
of salt

in out�ow
output rate

of brine
output rate

of salt

The net rate (7) then becomes

dAdAd

dt
5 6 2

A

100
or

dA

dt
1

1

100
 A 5 6. (8)

If rin and routroutr  denote general input and output rates of the brine solutions,* then out denote general input and output rates of the brine solutions,* then out

there are three possibilities: rin = routroutr , rin > routroutr , and rin < routroutr . In the analysis lead-
ing to (8) we have assumed that rin = routroutr . In the latter two cases the number of gal-
lons of brine in the tank is either increasing (rin > routroutr ) or decreasing (rin < routroutr ) at the 
net rate rin − routroutr . See Problems 10–12 in Exercises 1.3.
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(a) LRC-series circuit(a)-series circuit(a)
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Inductor
inductance L: henries (h)

voltage drop across: L
di
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i

Capacitor
capacitance C: farads (f)

voltage drop across:
1
C

i
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resistance R: ohms (V)
voltage drop across: iR

i

q

C

FIGURE 1.3.4 Symbols, units, and 
voltages. Current i(t) and charge q(t) are 
measured in amperes (A) and coulombs 
(C), respectively

DRAINING A TANK In hydrodynamics, Torricelli’s law states that the speed v of 
ef�ux of water though a sharp-edged hole at the bottom of a tank �lled to a depth h
is the same as the speed that a body (in this case a drop of water) would acquire 
in falling freely from a height h — that is, v 5 Ï2ghÏ , where g is the acceleration 
due to gravity. This last expression comes from equating the kinetic energy 1

2 mv2

with the potential energy mgh and solving for v. Suppose a tank �lled with water 
is allowed to drain through a hole under the in�uence of gravity. We would like to 
�nd the depth h of water remaining in the tank at time t. Consider the tank shown 
in Figure 1.3.3. If the area of the hole is Ah (in ft2) and the speed of the water leav-
ing the tank is v 5 Ï2ghÏ  (in ft/s), then the volume of water leaving the tank per 
second is AhÏ2ghÏ  (in ft3/s). Thus if V(V(V t) denotes the volume of water in the tank 
at time t, then

dV

dt
5 2AhÏ2ghÏ , (9)

where the minus sign indicates that V is decreasing. Note here that we are ignoring V is decreasing. Note here that we are ignoring V
the possibility of friction at the hole that might cause a reduction of the rate of �ow 
there. Now if the tank is such that the volume of water in it at time t can be written t can be written t
V(V(V t) = Awh, where Aw (in ft2) is the constant area of the upper surface of the water constant area of the upper surface of the water constant
(see Figure 1.3.3), then dVydVydV dt = Aw dhydt. Substituting this last expression into (9) 
gives us the desired differential equation for the height of the water at time t:

dh

dt
5 2

Ah

Aw
 Ï2gh. (10)

It is interesting to note that (10) remains valid even when Aw is not constant. In this 
case we must express the upper surface area of the water as a function of h—that is, 
Aw = A(h). See Problem 14 in Exercises 1.3.

SERIES CIRCUITS Consider the single-loop LRC-series circuit shown in Fig-
ure 1.3.4(a), containing an inductor, resistor, and capacitor. The current in a circuit 
after a switch is closed is denoted by i(t); the charge on a capacitor at time t is denoted t is denoted t
by q(t). The letters L, R, and C are known as inductance, resistance, and capacitance, C are known as inductance, resistance, and capacitance, C
respectively, and are generally constants. Now according to Kirchhoff’s second law,
the impressed voltage E(t) on a closed loop must equal the sum of the voltage drops 
in the loop. Figure 1.3.4(b) shows the symbols and the formulas for the respective 
voltage drops across an inductor, a capacitor, and a resistor. Since current i(t) is 
related to charge q(t) on the capacitor by i = dqydt, adding the three voltages

 inductor resistor capacitor

L
di

dt
5 L

d2q

dt2
, iRiRi 5 R

dqdqd

dt
, and

1

C
q

and equating the sum to the impressed voltage yields a second-order differential 
equation

L 
d2q

dt2
1 R 

dq

dt
1

1

C
 q 5 E(t). (11)

We will examine a differential equation analogous to (11) in great detail in 
Section 5.1.

FALLING BODIES To construct a mathematical model of the motion of a body 
moving in a force �eld, one often starts with the laws of motion formulated by the 
English mathematician Isaac Newton (1643–1727). Recall from elementary phys-
ics that Newton’s �rst law of motion states that a body either will remain at rest 
or will continue to move with a constant velocity unless acted on by an external 
force. In each case this is equivalent to saying that when the sum of the forces 

h

Aw

Ah

FIGURE 1.3.3 Draining tank

26 CHAPTER  INTRODUCTION TO DIFFERENTIAL EQUATIONS

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



positive
direction

air resistance

gravitygravitygra

kv

mg

FIGURE 1.3.6 Falling body of mass m

ground

building

rock

s(t)
s0

v0

FIGURE 1.3.5 Position of rock measured 
from ground level

F 5 oFkFkF —that is, the net or resultant force — acting on the body is zero, then the net or resultant force — acting on the body is zero, then the net
acceleration a of the body is zero. Newton’s second law of motion indicates that 
when the net force acting on a body is not zero, then the net force is proportional 
to its acceleration a or, more precisely, F = ma, where m is the mass of the body.

Now suppose a rock is tossed upward from the roof of a building as illustrated 
in Figure 1.3.5. What is the position s(t) of the rock relative to the ground at time t? 
The acceleration of the rock is the second derivative d2d2d sydt2. If we assume that the 
upward direction is positive and that no force acts on the rock other than the force of 
gravity, then Newton’s second law gives

m
d2s

dt2 5 2mg or
d2s

dt2 5 2g. (12)

In other words, the net force is simply the weight F = F1 = −W of the rock near W of the rock near W
the surface of the Earth. Recall that the magnitude of the weight is W = mg, where 
m is the mass of the body and g is the acceleration due to gravity. The minus 
sign in (12) is used because the weight of the rock is a force directed downward, 
which is opposite to the positive direction. If the height of the building is s0 and 
the initial velocity of the rock is v0, then s is determined from the second-order 
initial-value problem

d2s

dt2 5 2g, s(0) 5 s0, s9(0) 5 v0. (13)

Although we have not been stressing solutions of the equations we have con-
structed, note that (13) can be solved by integrating the constant −g twice with 
respect to t. The initial conditions determine the two constants of integration. 
From elementary physics you might recognize the solution of (13) as the formula 
s(t) 5 21

2gt2 1 v0t 1 s0.

FALLING BODIES AND AIR RESISTANCE Before the famous experiment by 
the Italian mathematician and physicist Galileo Galilei (1564–1642) from the 
leaning tower of Pisa, it was generally believed that heavier objects in free fall, 
such as a cannonball, fell with a greater acceleration than lighter objects, such as 
a feather. Obviously, a cannonball and a feather when dropped simultaneously 
from the same height do fall at different rates, but it is not because a cannonball 
is heavier. The difference in rates is due to air resistance. The resistive force of air 
was ignored in the model given in (13). Under some circumstances a falling body 
of mass m, such as a feather with low density and irregular shape, encounters air 
resistance proportional to its instantaneous velocity v. If we take, in this circum-
stance, the positive direction to be oriented downward, then the net force acting 
on the mass is given by F = F1 + F2 = mg − kv, where the weight F1 = mg of 
the body is force acting in the positive direction and air resistance F2 = −kv is 
a force, called viscous damping, acting in the opposite or upward direction. See 
Figure 1.3.6. Now since v is related to acceleration a by a = dvydt, Newton’s 
second law becomes F = ma = m dvydt. By equating the net force to this form of 
Newton’s second law, we obtain a �rst-order differential equation for the velocity 
v(t) of the body at time t,

m 
dv

dt
5 mg 2 kv. (14)

Here k is a positive constant of proportionality. If k is a positive constant of proportionality. If k s(t) is the distance the body falls in 
time t from its initial point of release, then t from its initial point of release, then t v = dsydt and dt and dt a = dvydt = d2sydt2. In 
terms of s, (14) is a second-order differential equation

m
d2s

dt2 5 mg 2 k
dsdsd

dt
or m 

d2s

dt2 1 k 
ds

dt
5 mg. (15)
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SUSPENDED CABLES Suppose a �exible cable, wire, or heavy rope is suspended 
between two vertical supports. Physical examples of this could be one of the two 
cables supporting the roadbed of a suspension bridge as shown in Figure 1.3.7(a) 
or a long telephone wire strung between two posts as shown in Figure 1.3.7(b). Our 
goal is to construct a mathematical model that describes the shape that such a cable 
assumes.

To begin, let’s agree to examine only a portion or element of the cable between 
its lowest point P1 and any arbitrary point P2. As drawn in blue in Figure 1.3.8, this 
element of the cable is the curve in a rectangular coordinate system with y-axis cho-
sen to pass through the lowest point P1 on the curve and the x-axis chosen a units 
below P1. Three forces are acting on the cable: the tensions T1 and T2 in the ca-
ble that are tangent to the cable at P1 and P2, respectively, and the portion W of 
the total vertical load between the points P1 and P2. Let T1 = uT1u, T2T2T = uT2u, and 
W = uWu denote the magnitudes of these vectors. Now the tension T2 resolves into 
horizontal and vertical components (scalar quantities) T2T2T cos u and T2T2T sin u. Because 
of static equilibrium we can write

T1 5 T2T2T  cos � and W 5 T2T2T  sin �.

By dividing the last equation by the �rst, we eliminate T2T2T  and get tan u = WyWyW T1. But 
because dyydx = tan u, we arrive at

dy

dx
5

W

T1
. (16)

This simple �rst-order differential equation serves as a model for both the shape of a 
�exible wire such as a telephone wire hanging under its own weight and the shape of 
the cables that support the roadbed of a suspension bridge. We will come back to 
equation (16) in Exercises 2.2 and Section 5.3.

WHAT LIES AHEAD Throughout this text you will see three different types of 
approaches to, or analyses of, differential equations. Over the centuries differential 
equations would often spring from the efforts of a scientist or engineer to describe 
some physical phenomenon or to translate an empirical or experimental law into 
mathematical terms. As a consequence, a scientist, engineer, or mathematician would 
often spend many years of his or her life trying to �nd the solutions of a DE. With a 
solution in hand, the study of its properties then followed. This quest for solutions 
is called by some the analytical approach to differential equations. Once they real-
ized that explicit solutions are at best dif�cult to obtain and at worst impossible to 
obtain, mathematicians learned that a differential equation itself could be a font of 
valuable information. It is possible, in some instances, to glean directly from the dif-valuable information. It is possible, in some instances, to glean directly from the dif-valuable information. It is possible, in some instances, to glean directly from the dif
ferential equation answers to questions such as 

Does the DE actually have solutions? If a solution of the DE exists and  
satis�es an initial condition, is it the only such so lution? What are some of the 
properties of the unknown solutions? What can we say about the geometry of 
the solution curves? 

Such an approach is qualitative analysis. Finally, if a differential equation cannot be 
solved by analytical methods, yet we can prove that a solution exists, the next logical 
query is 

Can we somehow approxi mate the values of an unknown solution? 

Here we enter the realm of numerical analysis. An af�rmative answer to the last 
question stems from the fact that a differential equation can be used as a cornerstone 
for constructing very accurate approximation algorithms. In Chapter 2 we start with 
qualitative considerations of �rst-order ODEs, then examine analytical stratagems 
for solving some special �rst-order equations, and conclude with an introduction to 
an elementary numerical method. See Figure 1.3.9.

FIGURE 1.3.8 Element of cable

cos �wire T2T2T

sin �T2T2T
T2

P2

T1

W

P1

y

x(x, 0)

(0, a)

�

(a) suspension bridge cable

(b) telephone wires

FIGURE 1.3.7 Cables suspended between 
vertical supports
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(a) analytical (b) qualitative (c) numerical

y'=f(y)

FIGURE 1.3.9 Different approaches to the study of differential equations

REMARKS

Each example in this section has described a dynamical system—a system that 
changes or evolves with the �ow of time t. Since the study of dynamical systems 
is a branch of mathematics currently in vogue, we shall occasionally relate the 
terminology of that �eld to the discussion at hand.

In more precise terms, a dynamical system consists of a set of time-
dependent variables, called state variables, together with a rule that 
enables us to determine (without ambiguity) the state of the system (this 
may be a past, present, or future state) in terms of a state prescribed at some 
time t0. Dynamical systems are classi�ed as either discrete-time systems or 
continuous-time systems. In this course we shall be concerned only with 
continuous-time systems — systems in which all variables are de�ned over a 
continuous range of time. The rule, or mathematical model, in a continuous-
time dynamical system is a differential equation or a system of differential 
equations. The state of the system at a time t is the value of the state varit is the value of the state varit -
ables at that time; the speci�ed state of the system at a time t0 is simply the 
initial conditions that accompany the mathematical model. The solution of 
the initial-value problem is referred to as the response of the system. For 
example, in the case of radioactive decay, the rule is dAydt = kA. Now if the 
quantity of a radioactive substance at some time t0 is known, say A(t0) = A0, 
then by solving the rule we �nd that the response of the system for t $ t0

is A(t) 5 A0e(t2t0t0t ) (see Section 3.1). The response A(t) is the single state 
variable for this system. In the case of the rock tossed from the roof of a 
building, the response of the system — the solution of the differential equa-
tion d 2sydt2 = −g, subject to the initial state s(0) = s0, s9(0) = v0 , is the 
function s(t) 5 21

2 gt2 1 v0t 1 s0, 0 # t # T,T,T  where T represents the time T represents the time T
when the rock hits the ground. The state variables are s(t) and s9(t), which 
are the vertical position of the rock above ground and its velocity at time t, 
respectively. The acceleration s0(t) is not a state variable, since we have to not a state variable, since we have to not
know only any initial position and initial velocity at a time t0 to uniquely 
determine the rock’s position s(t) and velocity s9(t) = v(t) for any time in the 
interval t0 # t # T. The acceleration s0(t) = a(t) is, of course, given by the 
differential equation s0(t) = −g, 0 < t < T.

One last point: Not every system studied in this text is a dynamical system. 
We shall also examine some static systems in which the model is a differential 
equation.
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EXERCISES 1.3

FIGURE 1.3.11 Ambient temperature in Problem 6
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Population Dynamics
1. Under the same assumptions that underlie the model in (1), 

determine a differential equation for the population P(t) of 
a country when individuals are allowed to immigrate into 
the country at a constant rate r > 0. What is the differential 
equation for the population P(t) of the country when 
individuals are allowed to emigrate from the country at a 
constant rate r > 0?

2. The population model given in (1) fails to take death into 
consideration; the growth rate equals the birth rate. In 
another model of a changing population of a community 
it is assumed that the rate at which the population changes 
is a net rate—that is, the difference between the rate of 
births and the rate of deaths in the community. Determine 
a model for the population P(t) if both the birth rate and 
the death rate are proportional to the population present 
at time t > 0.

3. Using the concept of net rate introduced in Problem 2, 
determine a model for a population P(t) if the birth rate is 
proportional to the population present at time t but the death t but the death t
rate is proportional to the square of the population present at 
time t.

4. Modify the model in Problem 3 for net rate at which the 
population P(t) of a certain kind of �sh changes by also 
assuming that the �sh are harvested at a constant rate 
h > 0.

Newton’s Law of Cooling/Warming
5. A cup of coffee cools according to Newton’s law of cooling (3). 

Use data from the graph of the temperature T(T(T t) in Figure 1.3.10 
to estimate the constants TmTmT , T0T0T , and k in a model of the form k in a model of the form k
of a �rst-order initial-value problem: dTydTydT dt = k(T − TmTmT ), 
T(0)T(0)T = T0T0T .

6. The ambient temperature TmTmT  in (3) could be a function of time t.
Suppose that in an arti�cially controlled environment, TmTmT (t) is 
periodic with a 24-hour period, as illustrated in Figure 1.3.11. 
Devise a mathematical model for the temperature T(T(T t) of a body 
within this environment.

Spread of a Disease/Technology
7. Suppose a student carrying a �u virus returns to an isolated 

college campus of 1000 students. Determine a differential 
equation for the number of people x(t) who have contracted the 
�u if the rate at which the disease spreads is proportional to the 
number of interactions between the number of students who 
have the �u and the number of students who have not yet been 
exposed to it.

8. At a time denoted as t = 0 a technological innovation is 
introduced into a community that has a �xed population of  
n people. Determine a differential equation for the number of 
people x(t) who have adopted the innovation at time t if it is t if it is t
assumed that the rate at which the innovations spread through 
the community is jointly proportional to the number of people 
who have adopted it and the number of people who have not 
adopted it.

Mixtures
9. Suppose that a large mixing tank initially holds 300 gallons 

of water in which 50 pounds of salt have been dissolved. Pure 
water is pumped into the tank at a rate of 3 gal/min, and when 
the solution is well stirred, it is then pumped out at the same 
rate. Determine a differential equation for the amount of salt 
A(t) in the tank at time t > 0. What is A(0)?

10. Suppose that a large mixing tank initially holds 300 gallons 
of water in which 50 pounds of salt have been dissolved. 
Another brine solution is pumped into the tank at a rate 
of 3 gal/min, and when the solution is well stirred, it 
is then pumped out at a slower rate of 2 gal/min. If the slower rate of 2 gal/min. If the slower
concentration of the solution entering is 2 lb/gal, determine 
a differential equation for the amount of salt A(t) in the tank 
at time t > 0.

11. What is the differential equation in Problem 10, if the well-
stirred solution is pumped out at a faster rate of 3.5 gal/min?faster rate of 3.5 gal/min?faster

12. Generalize the model given in equation (8) of this section by 
assuming that the large tank initially contains N0N0N  number of 
gallons of brine, rin and routroutr  are the input and output rates of the out are the input and output rates of the out

brine, respectively (measured in gallons per minute), cin is the 
concentration of the salt in the in�ow, c(t) the concentration of 

FIGURE 1.3.10 Cooling curve in Problem 5
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Answers to selected odd-numbered problems begin on page ANS-1.
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FIGURE 1.3.14 LR-series circuit in Problem 15

FIGURE 1.3.15 RC-series circuit in Problem 16
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FIGURE 1.3.13 Conical tank in Problem 14
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FIGURE 1.3.17 Bobbing motion of �oating barrel in Problem 18
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FIGURE 1.3.12 Cubical tank in Problem 13

the salt in the tank as well as in the out�ow at time t (measured t (measured t
in pounds of salt per gallon), and A(t) is the amount of salt in 
the tank at time t > 0.

Draining a Tank
13. Suppose water is leaking from a tank through a circular hole of 

area Ah at its bottom. When water leaks through a hole, friction and 
contraction of the stream near the hole reduce the volume of water 
leaving the tank per second to cAcAc hÏ2ghÏ , where c (0 < c < 1) 
is an empirical constant. Determine a differential equation for 
the height h of water at time t for the cubical tank shown in t for the cubical tank shown in t
Figure 1.3.12. The radius of the hole is 2 in., and g = 32 ft/s2.

14. The right-circular conical tank shown in Figure 1.3.13 
loses water out of a circular hole at its bottom. Determine a 
differential equation for the height of the water h at time t > 0.
The radius of the hole is 2 in., g = 32 ft/s2, and the friction/
contraction factor introduced in Problem 13 is c = 0.6.

Series Circuits
15. A series circuit contains a resistor and an inductor as shown in 

Figure 1.3.14. Determine a differential equation for the current 
i(t) if the resistance is R, the inductance is L, and the impressed 
voltage is E(t).

16. A series circuit contains a resistor and a capacitor as shown in 
Figure 1.3.15. Determine a differential equation for the charge 
q(t) on the capacitor if the resistance is R, the capacitance is C, 
and the impressed voltage is E(t).

Falling Bodies and Air Resistance
17. For high-speed motion through the air—such as the skydiver 

shown in Figure 1.3.16, falling before the parachute is 
opened—air resistance is closer to a power of the instantaneous 
velocity v(t). Determine a differential equation for the velocity 
v(t) of a falling body of mass m if air resistance is proportional 
to the square of the instantaneous velocity. Assume the 
downward direction is positive.

Newton’s Second Law and Archimedes’ Principle
18. A cylindrical barrel s feet in diameter of weight w lb is 

�oating in water as shown in Figure 1.3.17(a). After an initial 
depression the barrel exhibits an up-and-down bobbing motion 
along a vertical line. Using Figure 1.3.17(b), determine a 
differential equation for the vertical displacement y(t) if the 
origin is taken to be on the vertical axis at the surface of the 
water when the barrel is at rest. Use Archimedes’ principle:
Buoyancy, or upward force of the water on the barrel, is 
equal to the weight of the water displaced. Assume that the 
downward direction is positive, that the weight density of water 
is 62.4 lb/ft3, and that there is no resistance between the barrel 
and the water.
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FIGURE 1.3.19 Single-stage rocket in Problem 21
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Newton’s Second Law and Hooke’s Law
19. After a mass m is attached to a spring, it stretches it s units 

and then hangs at rest in the equilibrium position as shown in 
Figure 1.3.18(b). After the spring/mass system has been set in 
motion, let x(t) denote the directed distance of the mass beyond 
the equilibrium position. As indicated in Figure 1.3.18(c), 
assume that the downward direction is positive, that the motion 
takes place in a vertical straight line through the center of gravity 
of the mass, and that the only forces acting on the system are 
the weight of the mass and the restoring force of the stretched 
spring. Use Hooke’s law: The restoring force of a spring is 
proportional to its total elongation. Determine a differential 
equation for the displacement x(t) at time t > 0.

20. In Problem 19, what is a differential equation for the 
displacement x(t) if the motion takes place in a medium that 
imparts a damping force on the spring/mass system that is 
proportional to the instantaneous velocity of the mass and acts 
in a direction opposite to that of motion?

Newton’s Second Law and Variable Mass 
When the mass m of a body is changing with time, Newton’s second 
law of motion becomes  

F 5
d

dt
 (mv), (17)

where F is the net force acting on the body and F is the net force acting on the body and F mv is its momentum. 
Use (17) in Problems 21 and 22.

21. A small single-stage rocket is launched vertically as shown 
in Figure 1.3.19. Once launched, the rocket consumes its 

fuel, and so its total mass m(t) varies with time t > 0. If it is 
assumed that the positive direction is upward, air resistance 
is proportional to the instantaneous velocity v of the rocket, 
and R is the upward thrust or force generated by the propulsion 
system, then construct a mathematical model for the velocity 
v(t) of the rocket. [Hint: See (14) in Section 1.3.]

22. In Problem 21, the mass m(t) is the sum of three different 
masses: m(t) 5 mpmpm 1 mv 1 mfmfm (t), where mpmpm  is the constant mass 
of the payload, mv is the constant mass of the vehicle, and mfmfm  (f (f t) 
is the variable amount of fuel.  

(a) Show that the rate at which the total mass m(t) of the rocket 
changes is the same as the rate at which the mass mfmfm  (f (f t) of 
the fuel changes.

(b) If the rocket consumes its fuel at a constant rate �, �nd 
m(t). Then rewrite the differential equation in Problem 21 
in terms of � and the initial total mass m(0) = m0.

(c) Under the assumption in part (b), show that the burnout 
time tbtbt > 0 of the rocket, or the time at which all the fuel is 
consumed, is tbtbt 5 mfmfm (0)y�, where mfmfm  (0) is the initial mass f (0) is the initial mass f

of the fuel.

Newton’s Second Law and the Law  
of Universal Gravitation
23. By Newton’s universal law of gravitation the free-fall 

acceleration a of a body, such as the satellite shown in 
Figure 1.3.20, falling a great distance to the surface is not the not the not
constant g. Rather, the acceleration a is inversely proportional 
to the square of the distance from the center of the Earth, 
a = kyr2, where k is the constant of proportionality. Use k is the constant of proportionality. Use k
the fact that at the surface of the Earth r = R and a = g to 
determine k. If the positive direction is upward, use Newton’s 
second law and his universal law of gravitation to �nd a 
differential equation for the distance r.

24. Suppose a hole is drilled through the center of the Earth and a 
bowling ball of mass m is dropped into the hole, as shown in 
Figure 1.3.21. Construct a mathematical model that describes the 

Earth of mass M

R

satellite of
mass m

r
surfafaf ce

satellite of
mass m

FIGURE 1.3.20 Satellite in Problem 23

surface

mm

R

r

FIGURE 1.3.21 Hole through Earth in Problem 24

unstretched
spring

equilibrium
position m

x 5 0
xx((t) ) t) t . 00

xx((t) ) ) ) ) t) t , 00

m
s

(a) (b) (c)

FIGURE 1.3.18 Spring/mass system in Problem 19
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FIGURE 1.3.22 Waterskier in Problem 28
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FIGURE 1.3.23 Re�ecting surface in Problem 29
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motion of the ball. At time t let t let t r denote the distance from the r denote the distance from the r
center of the Earth to the mass m, M denote the mass of the Earth,  M denote the mass of the Earth,  M
MrMrM  denote the mass of that portion of the Earth within a sphere of r denote the mass of that portion of the Earth within a sphere of r

radius r, and d denote the constant density of the Earth.

Additional Mathematical Models
25. Learning Theory In the theory of learning, the rate at which 

a subject is memorized is assumed to be proportional to the 
amount that is left to be memorized. Suppose M denotes the M denotes the M
total amount of a subject to be memorized and A(t) is the 
amount memorized in time t > 0. Determine a differential 
equation for the amount A(t).

26. Forgetfulness In Problem 25 assume that the rate at which 
material is forgotten is proportional to the amount memorized 
in time t > 0. Determine a differential equation for the amount 
A(t) when forgetfulness is taken into account.

27. Infusion of a Drug A drug is infused into a patient’s 
bloodstream at a constant rate of r grams per second. r grams per second. r
Simultaneously, the drug is removed at a rate proportional 
to the amount x(t) of the drug present at time t. Determine a 
differential equation for the amount x(t).

28. Tractrix A motorboat starts at the origin and moves in the 
direction of the positive x-axis, pulling a waterskier along a 
curve C called a C called a C tractrix. See Figure 1.3.22. The waterskier, 
initially located on the y-axis at the point (0, a), is pulled by 
a rope of constant length a that is kept taut throughout the 
motion. At time t . 0 the waterskier is at point P(x, y). Assume 
that the rope is always tangent to C. Use the concept of slope to 
determine a differential equation for the path C of motion.C of motion.C

a surface of revolution with the property that all light rays L
parallel to the x-axis striking the surface are re�ected to a single 
point O (the origin). Use the fact that the angle of incidence 
is equal to the angle of re�ection to determine a differential 
equation that describes the shape of the curve C. Such a curve 
C is important in applications ranging from construction of C is important in applications ranging from construction of C
telescopes to satellite antennas, automobile headlights, and 
solar collectors. [Hint: Inspection of the �gure shows that we 
can write f = 2u. Why? Now use an appropriate trigonometric 
identity.]

Discussion Problems
30. Reread Problem 45 in Exercises 1.1 and then give an explicit 

solution P(t) for equation (1). Find a one-parameter family of 
solutions of (1).

31. Reread the sentence following equation (3) and assume that TmTmT
is a positive constant. Discuss why we would expect k < 0 in 
(3) in both cases of cooling and warming. You might start by 
interpreting, say, T(T(T t) > TmTmT  in a graphical manner.

32. Reread the discussion leading up to equation (8). If we assume 
that initially the tank holds, say, 50 lb of salt, it stands to reason 
that because salt is being added to the tank continuously for 
t > 0, A(t) should be an increasing function. Discuss how you 
might determine from the DE, without actually solving it, the 
number of pounds of salt in the tank after a long period of time.

33. Population Model The differential equation 
dPdPd

dt
5 (k cos t)P,

where k is a positive constant, is a model of human population k is a positive constant, is a model of human population k
P(t) of a certain community. Discuss an interpretation for 
the solution of this equation. In other words, what kind of 
population do you think the differential equation describes?

34. Rotating Fluid As shown in Figure 1.3.24(a), a right-
circular cylinder partially �lled with �uid is rotated with a 
constant angular velocity v about a vertical y-axis through its 
center. The rotating �uid forms a surface of revolution S. To 
identify S, we �rst establish a coordinate system consisting of 
a vertical plane determined by the y-axis and an x-axis drawn 
perpendicular to the y-axis such that the point of intersection 
of the axes (the origin) is located at the lowest point on the 
surface S. We then seek a function y = f (x) that represents 
the curve C of intersection of the surface C of intersection of the surface C S and the vertical S and the vertical S
coordinate plane. Let the point P(x, y) denote the position of a 
particle of the rotating �uid of mass m in the coordinate plane. 
See Figure 1.3.24(b).

y

x

mg

2x2x2m

P(x, y)

F

tangent line to
curve C at C at C P

curve C ofC ofC
intersection
of xy-plane
and surface
of revolution

(a) (b)

P

y

�

�

�

�

FIGURE 1.3.24 Rotating �uid in Problem 34

29. Reflecting Surface Assume that when the plane curve C
shown in Figure 1.3.23 is revolved about the x-axis, it generates 
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(a) At P there is a reaction force of magnitude F due to the F due to the F
other particles of the �uid which is normal to the surface S.
By Newton’s second law the magnitude of the net force act-
ing on the particle is mv2x.2x.2  What is this force? Use Figure 
1.3.24(b) to discuss the nature and origin of the equations

F cos � 5 mg, F sin � 5 m�2x2x2 .

(b) Use part (a) to �nd a �rst-order differential equation that 
de�nes the function y = f (x).

35. Falling Body In Problem 23, suppose r = R + s, where s is 
the distance from the surface of the Earth to the falling body. 
What does the differential equation obtained in Problem 23 
become when s is very small in comparison to R? [Hint: Think 
binomial series for 

(R + s)−2 = R−2 (1 + syR)−2.]

36. Raindrops Keep Falling In meteorology the term virga refers 
to falling raindrops or ice particles that evaporate before they 
reach the ground. Assume that a typical raindrop is spherical. 
Starting at some time, which we can designate as t = 0, the 
raindrop of radius r0r0r  falls from rest from a cloud and begins to 
evaporate.

(a) If it is assumed that a raindrop evaporates in such a manner 
that its shape remains spherical, then it also makes sense to 
assume that the rate at which the raindrop evaporates—that 
is, the rate at which it loses mass—is proportional to its 
surface area. Show that this latter assumption implies that 
the rate at which the radius r of the raindrop decreases is a r of the raindrop decreases is a r
constant. Find r(t). [Hint: See Problem 55 in Exercises 1.1.]

(b) If the positive direction is downward, construct a  
mathematical model for the velocity v of the falling  
raindrop at time t > 0. Ignore air resistance. [Hint: Use  
the form of Newton’s second law of motion given in (17).]

37. Let It Snow The “snowplow problem” is a classic and appears 
in many differential equations texts, but it was probably made 
famous by Ralph Palmer Agnew:

One day it started snowing at a heavy and steady rate. A 
snowplow started out at noon, going 2 miles the �rst hour  
and 1 mile the second hour. What time did it start snowing?

Find the textbook Differential Equations, Ralph Palmer Agnew, 
McGraw-Hill Book Co., and then discuss the construction and 
solution of the mathematical model.

38. Population Dynamics Suppose that dPdPd ydt 5 0.15P(t)
represents a mathematical model for the growth of a certain 
cell culture, where P(t) is the size of the culture (measured in 
millions of cells) at time t . 0 (measured in hours). How fast 
is the culture growing at the time when the size of the culture 
reaches 2 million cells?

39. Radioactive Decay Suppose that dAdAd ydt 5 20.0004332 A(t)
represents a mathematical model for the decay of radium-226, 
where A(t) is the amount of radium (measured in grams) 
remaining at time t . 0 (measured in years). How much of the 
radium sample remains at the time when the sample is decaying 
at a rate of 0.002 grams per year?

40. Reread this section and classify each mathematical model as 
linear or nonlinear.

In Problems 1 and 2 �ll in the blank and then write this result as a 
linear �rst-order differential equation that is free of the symbol c1 and 
has the form dyydx = f (x, y). The symbol c1 represents a constant.

1.
d

dxdxd
c1e10x0x0 5

2.
d

dxdxd
(5 1 c1e22x2x2 ) 5

In Problems 3 and 4 �ll in the blank and then write this result as a 
linear second-order differential equation that is free of the symbols 
c1 and c2 and has the form F(y, y0) = 0. The symbols c1, c2, and k
represent constants.

3.
d 2

dxdxd 2 (c1 cos kxkxk 1 c2 sin kxkxk ) 5

4.
d 2

dxdxd 2 (c1 cosh kxkxk 1 c2 sinh kxkxk ) 5

In Problems 5 and 6 compute y9 and y0 and then combine these de-
rivatives with y as a linear second-order differential equation that is 
free of the symbols c1 and c2 and has the form F(y, y9 y0) = 0. The 
symbols c1 and c2 represent constants.

5. y = c1ex + c2xex 6. y = c1ex cos x + c2ex sin x

Chapter 1 In Review Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 7–12 match each of the given differential equations with 
one or more of these solutions:

(a) y = 0, (b) y = 2, (c) y = 2x, (d) y = 2x2.

7. xy9 = 2y 8. y9 = 2

9. y9 = 2y − 4 10. xy9 = y

11. y0 + 9y = 18 12. xy0 − y9 = 0

In Problems 13 and 14 determine by inspection at least one solution 
of the given differential equation.

13. y0 = y9 14. y9 = y(y − 3)

In Problems 15 and 16 interpret each statement as a differential 
equation.

15. On the graph of y = f(x) the slope of the tangent line at a 
point P(x, y) is the square of the distance from P(x, y) to the 
origin.

16. On the graph of y = f(x) the rate at which the slope changes 
with respect to x at a point x at a point x P(x, y) is the negative of the slope of 
the tangent line at P(x, y).

34 CHAPTER  INTRODUCTION TO DIFFERENTIAL EQUATIONS
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FIGURE 1.R.1 Graph for Problem 39

17. (a) Give the domain of the function y = x2/3.

(b) Give the largest interval I of de�nition over which I of de�nition over which I y = x2/3

is a solution of the differential equation 3xy9 − 2y = 0.

18. (a) Verify that the one-parameter family y2 − 2y = x2 − x + c
is an implicit solution of the differential equation 

(2y − 2)y9 = 2x − 1.

(b) Find a member of the one-parameter family in part (a) that 
satis�es the initial condition y(0) = 1.

(c) Use your result in part (b) to �nd an explicit function 
y = f(x) that satis�es y(0) = 1. Give the domain of the 
function f. Is y = f(x) a solution of the initial-value prob-
lem? If so, give its interval I of de�nition; if not, explain.I of de�nition; if not, explain.I

19. The function y = x − 2yx is a solution of the DE x is a solution of the DE x xy9 + y = 2x.
Find x0 and the largest interval I for which I for which I y(x(x( ) is a solution of 
the �rst-order IVP xy9 + y = 2x, y(x(x( 0) = 1.

20. Suppose that y(x) denotes a solution of the �rst-order IVP 
y9 = x2 + y2, y(1) = −1 and that y(x) possesses at least 
a second derivative at x = 1. In some neighborhood of 
x = 1 use the DE to determine whether y(x) is increasing 
or decreasing and whether the graph y(x) is concave up or 
concave down.

21. A differential equation may possess more than one family of 
solutions.

(a) Plot different members of the families y = f1(x) = x2 + c1

and y = f2(x) = −x2 + c2.

(b) Verify that y = f1(x) and y = f2(x) are two solutions of the 
nonlinear �rst-order differential equation (y9)2 = 4x2.

(c) Construct a piecewise-de�ned function that is a solution of 
the nonlinear DE in part (b) but is not a member of either 
family of solutions in part (a).

22. What is the slope of the tangent line to the graph of a solution 
of y9 5 6ÏyÏyÏÏ 1 5x3 that passes through (−1, 4)?

In Problems 23–26 verify that the indicated function is an explicit 
solution of the given differential equation. Give an interval of de�ni-
tion I for each solution.I for each solution.I

23. y0 + y = 2 cos x − 2 sin x; y = x sin x sin x x + x cos x cos x x

24. y0 + y = sec x; y = x sin x sin x x + (cos x) ln(cos x)

25. x2y0 + xy9 + y = 0; y = sin(ln x)

26. x2y0 + xy9 + y = sec(ln x); 
y = cos(ln x) ln(cos(ln x)) + (ln x) sin(ln x)

In Problems 27–30 use (12) of Section 1.1 to verify that the indicated 
function is a solution of the given differential equation. Assume an 
appropriate interval I of de�nition of each solution.I of de�nition of each solution.I

27.
dydyd

dxdxd
1 (sin x)y 5 x; y 5 ecos x#x

0
#

0
# te2cos t dt

28.
dydyd

dxdxd
2 2x2x2 yxyx 5 ex; y 5 ex2#x

0
#

0
# et2t2

dt

29. x2y2y2 0 1 (x2 2 x)y9 1 (1 2 x)y 5 0; y 5 x#x

1
#

1
# e2t

t
dt

30. y0 1 y 5 ex2
; y 5 sin x#x

0
#

0
# et2

cos t dt 2 cos x#x

0
#

0
# et2

sin t dt

In Problems 31–34 verify that the indicated expression is an implicit 
solution of the given differential equation.

31. x
dydyd

dxdxd
1 y 5

1

y2; x3y3 5 x3 1 1

32. 1dydyd

dxdxd 2
2

1 1 5
1

y2 ; (x 2 5)2 1 y2 5 1

33. y0 5 2y2y2 (y9)3; y3 1 3y 5 1 2 3x

34. (1 2 xyxyx )y9 5 y2; y 5 exyxyx

In Problems 35–38, y = c1e3x + c2e−x − 2x2x2  is a two-parameter famx is a two-parameter famx -
ily of the second-order DE y0 − 2y2y2 9 − 3y = 6x6x6 + 4. Find a solution 
of the second-order IVP consisting of this differential equation and 
the given initial conditions.

35. y (0) = 0, y9(0) = 0 36. y (0) = 1, y9(0) = −3

37. y (1) = 4, y9(1) = −2 38. y (−1) = 0, y9(−1) = 1

39. The graph of a solution of a second-order initial-value problem 
d2yydx2 = f (x, y, y9), y(2) = y0, y9(2) = y1, is given in 
Figure 1.R.1. Use the graph to estimate the values of y0 and y1.

40. A tank in the form of a right-circular cylinder of radius 2 feet 
and height 10 feet is standing on end. If the tank is initially full 
of water and water leaks from a circular hole of radius 1
and height 10 feet is standing on end. If the tank is initially full 

1
and height 10 feet is standing on end. If the tank is initially full 

2 inch at 
its bottom, determine a differential equation for the height h of 
the water at time t > 0. Ignore friction and contraction of water 
at the hole.
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2
First-Order Differential Equations

 2.1 Solution Curves Without a Solution
 2.2 Separable Equations
 2.3 Linear Equations
 2.4 Exact Equations
 2.5 Solutions by Substitutions
 2.6 A Numerical Method

C H A P T E R  2  I N  R E V I E W

T he history of mathematics is rife with stories of persons who devoted much 

of their lives to solving equations—algebraic equations at �rst and then 

eventually differential equations. In Sections 2.2–2.5 we will study some of 

the important analytical methods for solving �rst-order DEs. But before we start 

solving anything, you should be aware of two facts: A differential equation may 

have no solutions, and a differential equation may possess solutions yet there might 

not exist any analytical method for solving it. In Sections 2.1 and 2.6 we do not 

solve any DEs but show how to glean information about its solutions directly from 

the equation itself.

Joggie Botma/Shutterstock.com
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INTRODUCTION Let us imagine for the moment that we have in front of us a �rst-
order differential equation dydyd ydxdxd 5 f (x, y), and that we can neither �nd a solution 
nor invent a method for solving it analytically. This is not as bad a predicament as 
one might think, since the differential equation itself can be a fount of information 
about how its solutions “behave.”

We begin our study of �rst-order differential equations with two ways of analyzing 
a DE qualitatively. Both of these ways enable us to determine, in an approximate sense, 
what a solution curve must look like without actually solving the equation.

2.1.1 DIRECTION FIELDS
SOME FUNDAMENTAL QUESTIONS We saw in Section 1.2 that whenever 
f (x,  y) and −f−f− yfyf −y satisfy certain continuity conditions, qualitative questions about 
existence and uniqueness of solutions can be answered. In this section we shall see 
that other qualitative questions about properties of solutions—How does a solution 
behave near a certain point? How does a solution behave as x S `?—can often be 
answered when the function f depends solely on the variable f depends solely on the variable f y. We begin, however, 
with a simple concept from calculus: 

A derivative dyydx of a differentiable function y 5 y(x) gives slopes of  
tangent lines at points on its graph.

SLOPE Because a solution y 5 y(x) of a first-order differential equation

dy

dx
5 f (x, y) (1)

is necessarily a differentiable function on its interval I of de�nition, it must also I of de�nition, it must also I
be continuous on I. Thus the corresponding solution curve on I must have no breaks I must have no breaks I
and must possess a tangent line at each point (x, y(x)). The function f in the normal f in the normal f
form (1) is called the slope function or rate function. The slope of the tangent line 
at (x, y(x)) on a solution curve is the value of the �rst derivative dyydx at this point, dx at this point, dx
and we know from (1) that this is the value of the slope function f (x, y(x)). Now 
suppose that (x, y) represents any point in a region of the xy-plane over which the 
function f is de�ned. The value f is de�ned. The value f f (x, y) that the function f assigns to the point repf assigns to the point repf -
resents the slope of a line or, as we shall envision it, a line segment called a lineal 
element. For example, consider the equation dyydx 5 0.2xy, where f (x, y) 5 0.2xy.
At, say, the point (2, 3) the slope of a lineal element is f (2, 3) 5 0.2(2)(3) 5 1.2. 
Figure 2.1.1(a) shows a line segment with slope 1.2 passing though (2, 3). As shown 
in Figure 2.1.1(b), if a solution curve also passes through the point (2, 3), it does so if a solution curve also passes through the point (2, 3), it does so if
tangent to this line segment; in other words, the lineal element is a miniature tangent 
line at that point.

DIRECTION FIELD If we systematically evaluate f over a rectangular grid of f over a rectangular grid of f
points in the xy-plane and draw a line element at each point (x, y) of the grid with 
slope f (x, y), then the collection of all these line elements is called a direction field
or a slope field of the differential equation dyydx 5 f (x, y). Visually, the direction 
field suggests the appearance or shape of a family of solution curves of the dif-field suggests the appearance or shape of a family of solution curves of the dif-field suggests the appearance or shape of a family of solution curves of the dif
ferential equation, and consequently, it may be possible to see at a glance certain 
qualitative aspects of the solutions—regions in the plane, for example, in which a 
solution exhibits an unusual behavior. A single solution curve that passes through 

2.1 S Solution Curves Without a Solution

FIGURE 2.1.1 A solution curve is tangent 
to lineal element at (2, 3)

solution
curve

(a) lineal element at a point

(b) lineal element is tangent to
solution curve that passes
through the point

slope 51.2

(2, 3)

x

y

tangent

(2, 3)

x

y
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a direction field must follow the flow pattern of the field; it is tangent to a lineal 
element when it intersects a point in the grid. Figure 2.1.2 shows a computer-
generated direction field of the differential equation dydyd ydx 5 sin(x 1 y) over a 
region of the xy-plane. Note how the three solution curves shown in color follow 
the flow of the field.

 EXAMPLE 1 Direction Field

The direction �eld for the differential equation dyydx 5 0.2xy shown in Figure 2.1.3(a) 
was obtained by using computer software in which a 5 3 5 grid of points (mh, nh), 
m and n integers, was de�ned by letting 25 # m # 5, 25 # n # 5, and h 5 1. Notice 
in Figure 2.1.3(a) that at any point along the x-axis (y 5 0) and the y-axis (x 5 0), 
the slopes are f (x, 0) 5 0 and f (0, y) 5 0, respectively, so the lineal elements are 
horizontal. Moreover, observe in the �rst quadrant that for a �xed value of x the x the x
values of f (x, y) 5 0.2xy0.2xy0.2  increase as y increases; similarly, for a �xed y the values of 
f (x, y) 5 0.2xy0.2xy0.2 increase as x increases. This means that as both x increases. This means that as both x x and x and x y increase, the 
lineal elements almost become vertical and have positive slope ( f (x, y) 5 0.2xy0.2xy0.2 . 0 
for x . 0, y . 0). In the second quadrant, u f (x, y)u increases as uxu and y increase, so 
the lineal elements again become almost vertical but this time have negative slope 
( f (x, y) 5 0.2xy0.2xy0.2 , 0 for x , 0, y . 0). Reading from left to right, imagine a solu-
tion curve that starts at a point in the second quadrant, moves steeply downward, 
becomes �at as it passes through the y-axis, and then, as it enters the �rst quadrant, 
moves steeply upward—in other words, its shape would be concave upward and 
similar to a horseshoe. From this it could be surmised that y : ` as x : 6`. Now 
in the third and fourth quadrants, since f (x, y) 5 0.2xy0.2xy0.2 . 0 and f (x, y) 5 0.2xy0.2xy0.2 , 0, 
respectively, the situation is reversed: A solution curve increases and then decreases 
as we move from left to right.

We saw in (1) of Section 1.1 that y 5 e0.1x2
 is an explicit solution of the dif-explicit solution of the dif-explicit solution of the dif

ferential equation dyydx 5 0.2xy0.2xy0.2 ; you should verify that a one-parameter family of 
solutions of the same equation is given by y 5 ce0.1x2

. For purposes of comparison 
with Figure 2.1.3(a) some representative graphs of members of this family are shown 
in Figure 2.1.3(b). .

 EXAMPLE 2 Direction Field

Use a direction �eld to sketch an approximate solution curve for the initial-value 
problem dyydx 5 sin y, y(0) 5 23

2.

SOLUTION Before proceeding, recall that from the continuity of f (x, y) 5 sin y and 
−f−f− yfyf −y 5 cos y, Theorem 1.2.1 guarantees the existence of a unique solution curve 
passing through any speci�ed point (x0, y0) in the plane. Now we set our computer 
software again for a 5 3 5 rectangular region and specify (because of the initial con-
dition) points in that region with vertical and horizontal separation of 12 unit—that is, 
at points (mh, nh), h 5 1

2, m and n integers such that 210 # m # 10, 210 # n # 10. 
The result is shown in Figure 2.1.4. Because the right-hand side of dyydx 5 sin y is 0 
at y 5 0, and at y 5 2�, the lineal elements are horizontal at all points whose second 
coordinates are y 5 0 or y 5 2�. It makes sense then that a solution curve passing 
through the initial point _0, 23

2+ has the shape shown in the �gure. .

INCREASING/DECREASING Interpretation of the derivative dyydx as a function dx as a function dx
that gives slope plays the key role in the construction of a direction field. Another 
telling property of the first derivative will be used next, namely, if dyydx . 0  (or 
dyydx , 0) for all x in an interval x in an interval x I, then a differentiable function y 5 y(x) is 
increasing (or decreasing) on I.

c . 0

c , 0

x

y

424

24

22

2

4

24

22

2

4

22 2

424 22 2

x

y

c c  5 0

(b) some solution curves in the
family y 5 ce0.1x2

(a) direction 
eld for
dy/dx 5 0.2xy0.2xy0.2

FIGURE 2.1.3 Direction �eld and solution 
curves in Example 1

FIGURE 2.1.2 Solution curves following 
�ow of a direction �eld
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2.1.2 AUTONOMOUS FIRSTORDER DEs
AUTONOMOUS FIRSTORDER DEs In Section 1.1 we divided the class of 
ordinary differential equations into two types: linear and nonlinear. We now consider 
briefly another kind of classification of ordinary differential equations, a classifica-
tion that is of particular importance in the qualitative investigation of differential 
equations. An ordinary differential equation in which the independent variable does 
not appear explicitly is said to be autonomous. If the symbol x denotes the indepen-
dent variable, then an autonomous first-order differential equation can be written as 
f (y, y9) 5 0 or in normal form as

dy

dx
5 f (y). (2)

We shall assume throughout that the function f in (2) and its derivative f in (2) and its derivative f f9 are contin-
uous functions of y on some interval I. The �rst-order equations

f ( y) f (x, y)
 p p

dydyd

dx
5 1 1 y2 and

dydyd

dx
5 0.2xy

are autonomous and nonautonomous, respectively.
Many differential equations encountered in applications or equations that are 

models of physical laws that do not change over time are autonomous. As we have 
already seen in Section 1.3, in an applied context, symbols other than y and x are roux are roux -
tinely used to represent the dependent and independent variables. For example, if t
represents time then inspection of

dAdAd

dt
5 kAkAk ,

dxdxd

dt
5 kx(n 1 1 2 x),

dT

dt
5 k(T 2 TmTmT ),

dAdAd

dt
5 6 2

1

100
A,

where k, n, and TmTmT  are constants, shows that each equation is time independent. 
Indeed, all of the �rst-order differential equations introduced in Section 1.3 are time all of the �rst-order differential equations introduced in Section 1.3 are time all
independent and so are autonomous.

CRITICAL POINTS The zeros of the function f in (2) are of special importance. We f in (2) are of special importance. We f
say that a real number c is a critical point of the autonomous differential equation (2) 
if it is a zero of f—that is, f—that is, f f (c) 5 0. A critical point is also called an equilibrium 
point or stationary point. Now observe that if we substitute the constant function 
y(x) 5 c into (2), then both sides of the equation are zero. This means:

If c is a critical point of (2), then y(x) 5 c is a constant solution of the  
autonomous differential equation.

x

y

24

22

2

4

424 22 2

FIGURE 2.1.4 Direction �eld in  
Example 2 on page 38

REMARKS

Sketching a direction �eld by hand is straightforward but time consuming; 
it is probably one of those tasks about which an argument can be made for 
doing it once or twice in a lifetime, but it is overall most ef�ciently carried 
out by means of computer software. Before calculators, PCs, and software 
the method of isoclines was used to facilitate sketching a direction �eld 
by hand. For the DE dyydx 5 f (x, y), any member of the family of curves 
f (x, y) 5 c, c a constant, is called an isocline. Lineal elements drawn through 
points on a speci�c isocline, say, f (x, y) 5 c1 all have the same slope c1. In 
Problem 15 in Exercises 2.1 you have your two opportunities to sketch a 
direction �eld by hand.
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A constant solution y(x) 5 c of (2) is called an equilibrium solution; equilibria are 
the only constant solutions of (2).

As was already mentioned, we can tell when a nonconstant solution y 5 y(x) of 
(2) is increasing or decreasing by determining the algebraic sign of the derivative 
dyydx; in the case of (2) we do this by identifying intervals on the y-axis over which 
the function f (y) is positive or negative.

EXAMPLE 3 An Autonomous DE

The differential equation

dPdPd

dt
5 P(a 2 bP),

where a and b are positive constants, has the normal form dPydt 5 f (P), which is (2) 
with t and t and t P playing the parts of P playing the parts of P x and x and x y, respectively, and hence is autonomous. 
From f (P) 5 P(a 2 bP) 5 0 we see that 0 and ayb are critical points of the equa-
tion, so the equilibrium solutions are P(t)t)t 5 0 and P(t)t)t 5 ayb. By putting the critical 
points on a vertical line, we divide the line into three intervals de�ned by 2` , P , 0, 
0 , P , ayb, ayb , P , `. The arrows on the line shown in Figure 2.1.5 indicate the 
algebraic sign of falgebraic sign of falgebraic sign of (f(f P) 5 P(a 2 bP) on these intervals and whether a nonconstant solution 
P(t) is t) is t increasing or decreasing on an interval. The following table explains the �gure.

I nt e r val Si gn  of  f ( P)P)P P(P(P t) A r r ow

(2`, 0) minus decreasing points down

(0, ayb) plus increasing points up

(ayb, `) minus decreasing points down

Figure 2.1.5 is called a one-dimensional phase portrait, or simply phase 
portrait, of the differential equation dPydt 5 P(a 2 bP). The vertical line is called a 
phase line.

SOLUTION CURVES Without solving an autonomous differential equation, we 
can usually say a great deal about its solution curves. Since the function f in (2) is f in (2) is f
independent of the variable x, we may consider f defined for f defined for f 2` , x , ` or for 
0 # x , `. Also, since f and its derivative f and its derivative f f9 are continuous functions of y on some 
interval I of the I of the I y-axis, the fundamental results of Theorem 1.2.1 hold in some hori-
zontal strip or region R in the xy-plane corresponding to I, and so through any point 
(x0, y0) in R there passes only one solution curve of (2). See Figure 2.1.6(a). For the 
sake of discussion, let us suppose that (2) possesses exactly two critical points c1 and 
c2 and that c1 , c2. The graphs of the equilibrium solutions y(x) 5 c1 and y(x) 5 c2

are horizontal lines, and these lines partition the region R into three subregions R1, 
R2, and R3, as illustrated in Figure 2.1.6(b). Without proof here are some conclusions 
that we can draw about a nonconstant solution y(x) of (2):

 ● If (x0, y0) is in a subregion Ri, i 5 1, 2, 3, and y(x) is a solution whose 
graph passes through this point, then y(x) remains in the subregion Ri for  
all x. As illustrated in Figure 2.1.6(b), the solution y(x) in R2 is bounded 
below by c1 and above by c2, that is, c1 , y(x) , c2 for all x. The solution 
curve stays within R2 for all x because the graph of a nonconstant solution x because the graph of a nonconstant solution x
of (2) cannot cross the graph of either equilibrium solution y(x) 5 c1 or 
y(x) 5 c2. See Problem 33 in Exercises 2.1.

 ● By continuity of f we must then have either f we must then have either f f (y) . 0 or f (y) , 0 for all x in x in x
a subregion Ri, i 5 1, 2, 3. In other words, f (y) cannot change signs in a 
subregion. See Problem 33 in Exercises 2.1.

.

P-axis

a

0

b

FIGURE 2.1.5 Phase portrait of the DE  
in Example 3

R

I

R1

R2
(x0, y0)

(x0, y0)

y(x) 5 c2

y(x) 5 c1

R3

y

y

x

x

(a) region R

(b) subregions R1, R2, and R3 of R

FIGURE 2.1.6 Lines y(x) 5 c1 and 
y(x) 5 c2 partition R into three horizontal 
subregions
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 ● Since dyydx 5 f (y(x)) is either positive or negative in a subregion Ri, i 5 1, 
2, 3, a solution y(x) is strictly monotonic—that is, y(x) is either increasing 
or decreasing in the subregion Ri. Therefore y(x) cannot be oscillatory, nor 
can it have a relative extremum (maximum or minimum). See Problem 33 
in Exercises 2.1.

 ● If y(x) is bounded above by a critical point c1 (as in subregion R1 where  
y(x) , c1 for all x), then the graph of y(x) must approach the graph of the 
equilibrium solution y(x) 5 c1 either as x : ` or as x : 2`. If y(x) is 
bounded—that is, bounded above and below by two consecutive critical bounded—that is, bounded above and below by two consecutive critical bounded
points (as in subregion R2 where c1 , y(x) , c2 for all x)—then the graph 
of y(x) must approach the graphs of the equilibrium solutions y(x) 5 c1 and 
y(x) 5 c2, one as x : ` and the other as x : 2`. If y(x) is bounded below
by a critical point (as in subregion R3 where c2 , y(x) for all x), then the 
graph of y(x) must approach the graph of the equilibrium solution y(x) 5 c2

either as x : ` or as x : 2`. See Problem 34 in Exercises 2.1.

With the foregoing facts in mind, let us reexamine the differential equation in 
Example 3.

 EXAMPLE 4 Example 3 Revisited

The three intervals determined on the P-axis or phase line by the critical points 0 and 
ayb now correspond in the tP-plane to three subregions de�ned by:

R1: 2` , P , 0, R2: 0 , P , ayb, and R3: ayb , P , `,

where 2` , t , `. The phase portrait in Figure 2.1.7 tells us that P(t) is decreasing 
in R1, increasing in R2, and decreasing in R3. If P(0) 5 P0 is an initial value, then in 
R1, R2, and R3 we have, respectively, the following:

(i) For P0 , 0, P(t) is bounded above. Since P(t) is decreasing, P(t) 
decreases without bound for increasing t, and so P(t) : 0 as t : 2`. 
This means that the negative t-axis, the graph of the equilibrium solution 
P(t) 5 0, is a horizontal asymptote for a solution curve.

(ii) For 0 , P0 , ayb, P(t) is bounded. Since P(t) is increasing, P(t) : ayb
as t : ` and P(t) : 0 as t : 2`. The graphs of the two equilibrium 
solutions, P(t) 5 0 and P(t) 5 ayb, are horizontal lines that are horizon-
tal asymptotes for any solution curve starting in this subregion.

(iii) For P0 . ayb, P(t) is bounded below. Since P(t) is decreasing,  
P(t) : ayb as t : `. The graph of the equilibrium solution P(t) 5 ayb
is a horizontal asymptote for a solution curve.

In Figure 2.1.7 the phase line is the P-axis in the tP-plane. For clarity the original 
phase line from Figure 2.1.5 is reproduced to the left of the plane in which the subre-
gions R1, R2, and R3 are shaded. The graphs of the equilibrium solutions P(t) 5 ayb
and P(t) 5 0 (the t-axis) are shown in the �gure as blue dashed lines; the solid graphs 
represent typical graphs of P(t) illustrating the three cases just discussed. .

In a subregion such as R1 in Example 4, where P(t) is decreasing and unbounded 
below, we must necessarily have P(t) : 2`. Do not interpret this last statement to not interpret this last statement to not
mean P(t) : 2` as t : `; we could have P(t) : 2` as t : T, where T, where T T . 0 is a 
�nite number that depends on the initial condition P(t0) 5 P0. Thinking in dynamic 
terms, P(t) could “blow up” in �nite time; thinking graphically, P(t) could have a 
vertical asymptote at t 5 T . 0. A similar remark holds for the subregion R3.

The differential equation dyydx 5 sin y in Example 2 is autonomous and has an 
in�nite number of critical points, since sin y 5 0 at y 5 n�, n an integer. Moreover, 
we now know that because the solution y(x) that passes through _

 an integer. Moreover, 
_

 an integer. Moreover, 
0, 23

2+
 an integer. Moreover, 

+
 an integer. Moreover, 

 is bounded 
above and below by two consecutive critical points (2� , y(x) , 0)  and is 

R1

R2
P0

P0

P0

PP

a
b

0
t

R3

phase line

decreasing

decreasing

increasing

tP-plane

FIGURE 2.1.7 Phase portrait and solution 
curves in Example 4
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decreasing (sin y , 0 for 2� , y , 0), the graph of y(x) must approach the graphs 
of the equilibrium solutions as horizontal asymptotes: y(x) : 2� as � as � x : ` and 
y(x) : 0 as x : 2`.

EXAMPLE 5 Solution Curves of an Autonomous DE

The autonomous equation dyydx 5 (y 2 1)2 possesses the single critical point 1. 
From the phase portrait in Figure 2.1.8(a) we conclude that a solution y(x) is an 
increasing function in the subregions de�ned by 2` , y , 1 and 1 , y , `, where 
2` , x , `. For an initial condition y(0) 5 y0 , 1, a solution y(x) is increasing and 
bounded above by 1, and so y(x) : 1 as x : `; for y(0) 5 y0 . 1 a solution y(x) is 
increasing and unbounded.

Now y(x) 5 1 2 1y(x 1 c) is a one-parameter family of solutions of the differ-
ential equation. (See Problem 4 in Exercises 2.2.) A given initial condition deter-
mines a value for c. For the initial conditions, say, y(0) 5 21 , 1 and y(0) 5 2 . 1, 
we �nd, in turn, that y(x) 5 1 2 1y_

 For the initial conditions, say, 
_

 For the initial conditions, say, 
x_x_ 1 1

2+
 For the initial conditions, say, 

+
 For the initial conditions, say, 

, and y(x) 5 1 2 1y(x 2 1). As shown in 
Figures 2.1.8(b) and 2.1.8(c), the graph of each of these rational functions possesses 

1

increasing

y

increasing

(a) phase line

(0,   2(0,   2(0,  1 )  2 1 )  2

y 1

1
2

x

x

y

(b) xy-plane
y(0) , 1

(0, 2)

y 1

x 1

x

y

(c) xy-plane
y(0) . 1

5 5

5

 52 x 52 x

FIGURE 2.1.8 Behavior of solutions near y 5 1 in Example 5

a vertical asymptote. But bear in mind that the solutions of the IVPs

dydyd

dx
5 ( y 2 1)2, y(0) 5 21 and

dydyd

dx
5 (y 2 1)2, y(0) 5 2

are de�ned on special intervals. The two solutions are, respectively,

y(x) 5 1 2
1

x 1 1
2

, 21
2 , x , ` and y(x) 5 1 2

1

x 2 1
, 2` , x , 1.

The solution curves are the portions of the graphs in Figures 2.1.8(b) and 
2.1.8(c)  shown in blue. As predicted by the phase portrait, for the solution curve 
in  Figure 2.1.8(b), y(x) : 1 as x : `; for the solution curve in Figure 2.1.8(c), 
y(x) : ` as x : 1 from the left. .

ATTRACTORS AND REPELLERS Suppose that y(x) is a nonconstant solution 
of  the autonomous differential equation given in (1) and that c is a critical point 
of the DE. There are basically three types of behavior that y(x) can exhibit near c.
In Figure 2.1.9 we have placed c on four vertical phase lines. When both arrow-
heads on either side of the dot labeled c point toward c, as in Figure 2.1.9(a), all 

cccc

y0

(d)

y0

(c)

y0

(b)

y0

(a)

FIGURE 2.1.9 Critical point c is an 
attractor in (a), a repeller in (b), and  
semi-stable in (c) and (d).
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solutions y(x) of (1) that start from an initial point (x0, y0) sufficiently near c exhibit 
the asymptotic behavior limxmxm S ` y(x) 5 c. For this reason the critical point c is said 
to be asymptotically stable. Using a physical analogy, a solution that starts near c
is like a charged particle that, over time, is drawn to a particle of opposite charge, 
and so c is also referred to as an attractor. When both arrowheads on either side of 
the dot labeled c point away from c, as in Figure 2.1.9(b), all solutions y(x) of (1) 
that start from an initial point (x0, y0) move away from c as x increases. In this case x increases. In this case x
the critical point c is said to be unstable. An unstable critical point is also called 
a repeller,  for obvious reasons. The critical point c illustrated in Figures 2.1.9(c) 
and 2.1.9(d) is neither an attractor nor a repeller. But since c exhibits characteristics 
of both an attractor and a repeller—that is, a solution starting from an initial point 
(x0, y0) sufficiently near c is attracted to c from one side and repelled from the other 
side—we say that the critical point c is semi-stable. In Example 3 the critical point 
ayb is asymptotically stable (an attractor) and the critical point 0 is unstable (a repel-
ler). The critical point 1 in Example 5 is semi-stable.

AUTONOMOUS DES AND DIRECTION FIELDS If a first-order differential 
equation is autonomous, then we see from the right-hand side of its normal form 
dyydx 5 f (y) that slopes of lineal elements through points in the rectangular grid 
used to construct a direction field for the DE depend solely on the y-coordinate of 
the points. Put another way, lineal elements passing through points on any horizontal
line must all have the same slope and therefore are parallel; slopes of lineal elements 
along any vertical line will, of course, vary. These facts are apparent from inspecvertical line will, of course, vary. These facts are apparent from inspecvertical -
tion of the horizontal yellow strip and vertical blue strip in Figure 2.1.10. The figure 
exhibits a direction field for the autonomous equation dyydx 5 2(y 2 1). The red 
lineal elements in Figure 2.1.10 have zero slope because they lie along the graph of 
the equilibrium solution y 5 1.

TRANSLATION PROPERTY You may recall from precalculus mathemat-
ics that the graph of a function y 5 f (x 2 k), where k is a constant, is the graph of k is a constant, is the graph of k
y 5 f (x) rigidly translated or shifted horizontally along the x-axis by an amount uku;
the translation is to the right if k . 0 and to the left if k , 0. It turns out that under the 
conditions stipulated for (2), solution curves of an autonomous first-order DE are re-
lated by the concept of translation. To see this, let’s consider the differential equation 
dyydx 5 y(3 2 y), which is a special case of the autonomous equation considered in 
Examples 3 and 4. Because y 5 0 and y 5 3 are equilibrium solutions of the DE, their 
graphs divide the xy-plane into three subregions R1, R2, and R3:

R1: 2` , y , 0, R2: 0 , y , 3, and R3: 3 , y , `.

In Figure 2.1.11 we have superimposed on a direction �eld of the DE six solutions 
curves. The �gure illustrates that all solution curves of the same color, that is, solu-
tion curves lying within a particular subregion Ri, look alike. This is no coincidence 
but is a natural consequence of the fact that lineal elements passing through points 
on any horizontal line are parallel. That said, the following translation property of 
an automonous DE should make sense:

If y(x) is a solution of an autonomous differential equation dyydx 5 f (y),  
then y1(x) 5 y(x 2 k), k a constant, is also a solution.

Thus, if y(x) is a solution of the initial-value problem dyydx 5 f (y), y(0) 5 y0, then 
y1(x) 5 y(x 2 x0) is a solution of the IVP dyydx 5 f (y), y(x0) 5 y0. For example, 
it is easy to verify that y(x) 5 ex, 2` , x , `, is a solution of the IVP dyydx 5 y, 
y(0) 5 1 and so a solution y1(x) of, say, dyydx 5 y, y(5) 5 1 is y(x) 5 ex translated x translated x

5 units to the right:

y1(x) 5 y(x 2 5) 5 ex25, 2` , x , `.

slopes of lineal
elements on a
vertical line varyslopes of lineal

elements on a horizontal
line are all the same

x

y

y 5 1

FIGURE 2.1.10 Direction �eld for an 
autonomous DE

x

y

y 5 0

y 5 3

FIGURE 2.1.11 Translated solution 
curves of an autonomous DE
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EXERCISES 2.1

2.1.1 Direction Fields

In Problems 1–4 reproduce the given computer-generated direc-
tion �eld. Then sketch, by hand, an approximate solution curve that 
passes through each of the indicated points. Use different colored 
pencils for each solution curve.

1.
dydy

yy

d

dxdx

xx

d
5 x2 2 y2

(a) y(22) 5 1 (b) y(3) 5 0

(c) y(0) 5 2 (d) y(0) 5 0

Answers to selected odd-numbered problems begin on page ANS-1.

4.
dydy

yy

d

dxdx

xx

d
5 (sin x) cos y

(a) y(0) 5 1 (b) y(1) 5 0

(c) y(3) 5 3 (d) y(0) 5 25
2

x

321212223
23

22

21

1

2

3
y

FIGURE 2.1.12 Direction �eld for Problem 1

2.
dydy

yy

d

dx
5 e20.01xy2

(a) y(26) 5 0 (b) y(0) 5 1

(c) y(0) 5 24 (d) y(8) 5 24

x

y

828

28

24

4

8

24 4

FIGURE 2.1.13 Direction �eld for Problem 2

3.
dydy

yy

d

dx
5 1 2 xy

(a) y(0) 5 0 (b) y(21) 5 0

(c) y(2) 5 2 (d) y(0) 5 24

x

y

424
24

22

2

4

22 2

FIGURE 2.1.14 Direction �eld for Problem 3

x

y

424

24

22

2

4

22 2

FIGURE 2.1.15 Direction �eld for Problem 4

In Problems 5–12 use computer software to obtain a direction �eld 
for the given differential equation. By hand, sketch an approximate 
solution curve passing through each of the given points.

5. y9 5 x 6. y9 5 x 1 y

(a) y(0) 5 0 (a) y(22) 5 2

(b) y(0) 5 23 (b) y(1) 5 23

7. y
dydy

yy

d

dxdx

xx

d
5 2x 8.

dy

dx
5

1
y

(a) y(1) 5 1 (a) y(0) 5 1

(b) y(0) 5 4 (b) y(22) 5 21

9.
dy

dx
5 0.2x2 1 y 10.

dy

dx
5 xey

(a) y(0) 5 1
2 (a) y(0) 5 22

(b) y(2) 5 21 (b) y(1) 5 2.5
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11. y9 5 y 2 cos
�

2
x 12.

dy

dx
5 1 2

y

x

(a) y(2) 5 2 (a) y_21
2+ 5 2

(b) y(21) 5 0 (b) y_32+ 5 0

In Problems 13 and 14 the given �gure represents the graph of f (y) 
and f (x), respectively. By hand, sketch a direction �eld over an appro-
priate grid for dyydx 5 f (y) (Problem 13) and then for dyydx 5 f (x) 
(Problem 14).

13.

17. For a �rst-order DE dyydx 5 f (x, y) a curve in the plane 
de�ned by f (x, y) 5 0 is called a nullcline of the equation, 
since a lineal element at a point on the curve has zero slope. 
Use computer software to obtain a direction �eld over a 
rectangular grid of points for dyydx 5 x2 2 2y, and then 
superimpose the graph of the nullcline y 5 1

2 x2 over the 
direction �eld. Discuss the behavior of solution curves in 
regions of the plane de�ned by y , 1

2 x2 and by y . 1
2 x2. 

Sketch some approximate solution curves. Try to generalize 
your observations.

18. (a) Identify the nullclines (see Problem 17) in Problems 1, 3, 
and 4. With a colored pencil, circle any lineal elements in 
Figures 2.1.12, 2.1.14, and 2.1.15 that you think may be a 
lineal element at a point on a nullcline.

(b) What are the nullclines of an autonomous �rst-order DE?

2.1.2 Autonomous First-Order DEs

19. Consider the autonomous �rst-order differential equation 
dyydx 5 y 2 y3 and the initial condition y(0) 5 y0. By hand, 
sketch the graph of a typical solution y(x) when y0 has the given 
values.

(a) y0 . 1 (b) 0 , y0 , 1 

(c) 21 , y0 , 0 (d) y0 , 21

20. Consider the autonomous �rst-order differential equation 
dyydx 5 y2 2 y4 and the initial condition y(0) 5 y0. By hand, 
sketch the graph of a typical solution y(x) when y0 has the  
given values.

(a) y0 . 1 (b) 0 , y0 , 1 

(c) 21 , y0 , 0 (d) y0 , 21

In Problems 21–28 �nd the critical points and phase portrait of the 
given autonomous �rst-order differential equation. Classify each 
critical point as asymptotically stable, unstable, or semi-stable. By 
hand, sketch typical solution curves in the regions in the xy-plane 
determined by the graphs of the equilibrium solutions.

21.
dydyd

dxdxd
5 y2 2 3y 22.

dydyd

dxdxd
5 y2 2 y3

23.
dydyd

dxdxd
5 (y 2 2)4 24.

dydyd

dxdxd
5 10 1 3y 2 y2

25.
dydyd

dxdxd
5 y2(4 2 y2) 26.

dydyd

dxdxd
5 y(2 2 y)(4 2 y)

27.
dydyd

dxdxd
5 y ln(y 1 2) 28.

dydyd

dxdxd
5

ye y 2 9y

e y

In Problems 29 and 30 consider the autonomous differential equation 
dyydx 5 f (y), where the graph of f is given. Use the graph to locate f is given. Use the graph to locate f
the critical points of each differential equation. Sketch a phase por-
trait of each differential equation. By hand, sketch typical solution 
curves in the subregions in the xy-plane determined by the graphs of 
the equilibrium solutions.

f

1 y

1

FIGURE 2.1.16 Graph for Problem 13

f

x11

1

FIGURE 2.1.17 Graph for Problem 14

14.

15. In parts (a) and (b) sketch isoclines f (x, y) 5 c (see the Remarks
on page 39) for the given differential equation using the 
indicated values of c. Construct a direction �eld over a grid by 
carefully drawing lineal elements with the appropriate slope 
at chosen points on each isocline. In each case, use this rough 
direction �eld to sketch an approximate solution curve for 
the IVP consisting of the DE and the initial condition y(0) 5 1.

(a) dyydx 5 x 1 y; c an integer satisfying 25 # c # 5

(b) dyydx 5 x2 1 y2; c 5 1
4, c 5 1, c 5 9

4, c 5 4

Discussion Problems
16. (a)  Consider the direction �eld of the differential equation 

dyydx 5 x(y 2 4)2 2 2, but do not use technology to obtain 
it. Describe the slopes of the lineal elements on the lines 
x 5 0, y 5 3, y 5 4, and y 5 5.

(b) Consider the IVP dyydx 5 x(y 2 4)2 2 2, y(0) 5 y0, where 
y0 , 4. Can a solution y(x) : ` as x : `? Based on the 
information in part (a), discuss.
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curves are concave down. Discuss why each solution curve 
of an initial-value problem of the form dyydx 5 y2 2 y 2 6, 
y(0) 5 y0, where 22 , y0 , 3, has a point of in�ection with the 
same y-coordinate. What is that y-coordinate? Carefully sketch 
the solution curve for which y(0) 5 21. Repeat for y(2) 5 2.

37. Suppose the autonomous DE in (2) has no critical points. 
Discuss the behavior of the solutions.

Mathematical Models
38. Population Model The differential equation in Example 3 is a 

well-known population model. Suppose the DE is changed to

dPdPd

dt
5 P(aP 2 b),

where a and b are positive constants. Discuss what happens to 
the population P as time t increases.t increases.t

39. Population Model Another population model is given by

dPdPd

dt
5 kPkPk 2 h,

where h and k are positive constants. For what initial values k are positive constants. For what initial values k
P(0) 5 P0 does this model predict that the population will go 
extinct?

40. Terminal  Terminal  T VelocityVelocityV In Section 1.3 we saw that the autonomous 
differential equation

m
dvdvd

dt
5 mg 2 kv,

where k is a positive constant and k is a positive constant and k g is the acceleration due to 
gravity, is a model for the velocity v of a body of mass m that is 
falling under the in�uence of gravity. Because the term 2kv rep-
resents air resistance, the velocity of a body falling from a great 
height does not increase without bound as time t increases.t increases.t Use a 
phase portrait of the differential equation to �nd the limiting, or 
terminal, velocity of the body. Explain your reasoning.

41. Suppose the model in Problem 40 is modi�ed so that air 
resistance is proportional to v2, that is,

m
dvdvd

dt
5 mg 2 kv2.

See Problem 17 in Exercises 1.3. Use a phase portrait to �nd the 
terminal velocity of the body. Explain your reasoning.

42. Chemical Reactions When certain kinds of chemicals are 
combined, the rate at which the new compound is formed is 
modeled by the autonomous differential equation

dXdXd

dt
5 k(� 2 X)(� 2 X),

29. f

c y

FIGURE 2.1.18 Graph for Problem 29

f

y1

1

FIGURE 2.1.19 Graph for Problem 30

30.

Discussion Problems
31. Consider the autonomous DE dyydx 5 (2y�)y 2 sin y.

Determine the critical points of the equation. Discuss a way of 
obtaining a phase portrait of the equation. Classify the critical 
points as asymptotically stable, unstable, or semi-stable.

32. A critical point c of an autonomous �rst-order DE is said to be 
isolated if there exists some open interval that contains c but no 
other critical point. Can there exist an autonomous DE of the 
form given in (2) for which every critical point is nonisolated? 
Discuss; do not think profound thoughts.

33. Suppose that y(x) is a nonconstant solution of the autonomous 
equation dyydx 5 f (y) and that c is a critical point of the DE. 
Discuss: Why can’t the graph of y(x) cross the graph of the 
equilibrium solution y 5 c? Why can’t f (y) change signs in  
one of the subregions discussed on page 40? Why can’t y(x)  
be oscillatory or have a relative extremum (maximum  
or minimum)?

34. Suppose that y(x) is a solution of the autonomous equation  
dyydx 5 f (y) and is bounded above and below by two 
consecutive critical points c1 , c2, as in subregion R2 of  
Figure 2.1.6(b). If f (y) . 0 in the region, then limx0 in the region, then limx0 in the region, then lim :` y(x) 5 c2. 
Discuss why there cannot exist a number L , c2 such that 
limxlimxlim :` y(x) 5 L. As part of your discussion, consider what 
happens to y9(x) as x : `.

35. Using the autonomous equation (2), discuss how it is possible 
to obtain information about the location of points of in�ection 
of a solution curve.

36. Consider the autonomous DE dyydx 5 y2 2 y 2 6. Use your 
ideas from Problem 35 to �nd intervals on the y-axis for which 
solution curves are concave up and intervals for which solution 
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INTRODUCTION We begin our study of solution methods with the simplest of 
all differential equations: �rst-order equations with separable variables. Because the 
method discussed in this section and many other methods for solving differential 
equations involve integration, you are urged to refresh your memory on important 
formulas (such as eduyu) and techniques (such as integration by parts) by consulting 
a calculus text.

SOLUTION BY INTEGRATION Consider the first-order differential equation
dydyd ydxdxd 5 f (x, y). When f does not depend on the variable f does not depend on the variable f y, that is, f (x, y) 5 g(x), the 
differential equation

dydyd

dxdxd
5 g(x) (1)

can be solved by integration. If g(x) is a continuous function, then integrating 
both sides of (1) gives y 5 eg(x) dxdxd 5 G(x) 1 c, where G(x) is an antiderivative 
(inde�nite integral) of g(x). For example, if dyydx 5 1 1 e2x2x2 , then its solution is 
y 5 e(1 1 e2x) dxdxd  or y 5 x 1 1

2e2x 1 c.

A DEFINITION Equation (1), as well as its method of solution, is just a special 
case when the function f in the normal form f in the normal form f dyydx 5 f (x, y) can be factored into a 
function of x times a function of x times a function of x y.

2.2 S Separable Equations

For example, the equations

dy

dx
5 y2x2x2 e3x14y and

dy

dx
5 y 1 sin x

(c) Verify that an explicit solution of the DE in the case when 
k 5 1 and � 5 � is X(t) 5 � 2 1y(t 1 c). Find a solution 
that satis�es X(0) 5 �y2. Then �nd a solution that 
satis�es X(0) 5 2�. Graph these two solutions. Does 
the behavior of the solutions as t : ` agree with your 
answers to part (b)?

where k . 0 is a constant of proportionality and � . � . 0. 
Here X(t) denotes the number of grams of the new compound 
formed in time t.

(a) Use a phase portrait of the differential equation to predict 
the behavior of X(t) as t : `.

(b) Consider the case when � 5 �. Use a phase portrait of 
the differential equation to predict the behavior of X(t) as 
t : ` when X(0) , �. When X(0) . �.

DEFINITION 2.2.1 Separable Equation

A �rst-order differential equation of the form

dy

dx
5 g(x)h(y)

is said to be separable or to have separable variables.
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are separable and nonseparable, respectively. In the �rst equation we can factor 
f (x, y) 5 y2xe2xe2 3x14y as

g(x)  h(y)
p p

f(f(f x, y) 5 y2x2x2 e3x14y 5  (xe3x )(y2e4y ),

but in the second equation there is no way of expressing y 1 sin x as a product of a x as a product of a x
function of x times a function of x times a function of x y.

Observe that by dividing by the function h(y), we can write a separable equation 
dyydx 5 g(x)h(y) as

p(y) 
dydyd

dx
5 g(x), (2)

where, for convenience, we have denoted 1yh(y) by p(y). From this last form we can 
see immediately that (2) reduces to (1) when h(y) 5 1.

Now if y 5 �(x) represents a solution of (2), we must have p(�(x))�9(x) 5 g(x), 
and therefore

#p#p# (� (x))�9(x) dxdxd 5 #g(x) dxdxd . (3)

But dy 5 �9(x) dx, and so (3) is the same as

# p(y) dydyd 5 # g(x) dx or H(y) 5 G(x) 1 c, (4)

where H(y) and G(x) are antiderivatives of p(y) 5 1yh(y) and g(x), respectively.

METHOD OF SOLUTION Equation (4) indicates the procedure for solving 
separable equations. A one-parameter family of solutions, usually given implicitly, is 
obtained by integrating both sides of p(y) dy 5 g(x) dx.

NOTE There is no need to use two constants in the integration of a separable equa-
tion, because if we write H(y) 1 c1 5 G(x) 1 c2, then the difference c2 2 c1 can be 
replaced by a single constant c, as in (4). In many instances throughout the chapters 
that follow, we will relabel constants in a manner convenient to a given equation. 
For example, multiples of constants or combinations of constants can sometimes be 
replaced by a single constant.

EXAMPLE 1 Solving a Separable DE

Solve (1 1 x) dy 2 y dx 5 0.

SOLUTION Dividing by (1 1 x)y, we can write dyyy 5 dxy(1 1 x), from which it 
follows that

# dydyd

y
5 # dx

1 1 x

lnuyu 5 lnu1 1 xu 1 c1

uyu 5 elnu11xu1c1 5 elnu11xu ?ec1 ; laws of exponents

5 u1 1 x u ec1

y 5 6ec1(1 1 x).

Relabeling 6ec1 as c then gives y 5 c(1 1 x). .

d 5u1 1 xu 5 1 1 x,

u1 1 xu 5 2(1 1 x), x $ 21

x , 21
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In the solution of Example 1 because each integral results in a logarithm, a judicious 
choice for the constant of integration is lnucu rather than c. Rewriting the second 
line of the solution as lnuyu 5 lnu1 1 xu 1 lnucu enables us to combine the terms on 
the right-hand side by the properties of logarithms. From lnuyu 5 lnuc(1 1 x)u we 
immediately get y 5 c(1 1 x). Even if the inde�nite integrals are not all logarithms, all logarithms, all
it may still be advantageous to use lnucu. However, no �rm rule can be given.

In Section 1.1 we saw that a solution curve may be only a segment or an arc of 
the graph of an implicit solution G(x, y) 5 0.

EXAMPLE 2 Solution Curve

Solve the initial-value problem
dy

dx
5 2

x
y
, y(4) 5 23.

SOLUTION Rewriting the equation as y dy 5 2x dx, we get

# y dy 5 2# x dx and
y2

2
5 2

x2

2
1 c1.

We can write the result of the integration as x2 1 y2 5 c2 by replacing the constant 
2c1 by c2. This solution of the differential equation represents a one-parameter family 
of concentric circles centered at the origin.

Now when x 5 4, y 5 23, so 16 1 9 5 25 5 c2. Thus the initial-value problem 
determines the circle x2 1 y2 5 25 with radius 5. Because of its simplicity we can 
solve this implicit solution for an explicit solution that satis�es the initial condition. 
We saw this solution as y 5 �2(x) or y 5 2Ï25 2 x2, 25 , x , 5 in Example 7 of 
Section 1.1. A solution curve is the graph of a differentiable function. In this case the 
solution curve is the lower semicircle, shown in dark blue in Figure 2.2.1 containing 
the point (4, 23). .

LOSING A SOLUTION Some care should be exercised in separating variables, since 
the variable divisors could be zero at a point. Specifically, if r is a zero of the function r is a zero of the function r
h(y), then substituting y 5 r into r into r dyydx 5 g(x)h(y) makes both sides zero; in other 
words, y 5 r is a constant solution of the differential equation.r is a constant solution of the differential equation.r

But after variables are separated, the left-hand side of 
dydyd

h(y)
5 g(x(x( ) dx is unde�ned at dx is unde�ned at dx r.

As a consequence, y 5 r might not show up in the family of solutions that are r might not show up in the family of solutions that are r
obtained after integration and simpli�cation. Recall that such a solution is called a 
singular solution.

 EXAMPLE 3 Losing a Solution

Solve
dydyd

dxdxd
5 y2 2 4.

SOLUTION We put the equation in the form

dydyd

y2 2 4
5 dxdxd or 3

1
4

y 2 2
2

1
4

y 1 24 dydyd 5 dxdxd . (5)

The second equation in (5) is the result of using partial fractions on the left-hand side 
of the �rst equation. Integrating and using the laws of logarithms gives

1

4
 l lnuy 2 2u 2

1

4
 l lnuy 1 2u 5 x 1 c1

 lnu y 2 2

y 1 2 u 5 4x 1 c2 or
y 2 2

y 1 2
5 6e4x1c2.

FIGURE 2.2.1 Solution curve for the  
IVP in Example 2

x

y

(4, 2 3)2 3)2
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Here we have replaced 4c1 by c2. Finally, after replacing 6ec2 by c and solving the 
last equation for y, we get the one-parameter family of solutions

y 5 2
1 1 ce4x

1 2 ce4x. (6)

Now if we factor the right-hand side of the differential equation as 
dyydx 5 (y 2 2)(y 1 2), we know from the discussion of critical points in 
Section 2.1 that y 5 2 and y 5 22 are two constant (equilibrium) solutions. The 
solution y 5 2 is a member of the family of solutions de�ned by (6) corresponding 
to the value c 5 0. However, y 5 22 is a singular solution; it cannot be obtained 
from (6) for any choice of the parameter c. This latter solution was lost early on 
in the solution process. Inspection of (5) clearly indicates that we must preclude 
y 5 62 in these steps. .

 EXAMPLE 4 An Initial-Value Problem

Solve (e2y 2 y) cos x
dy

dx
5 ey sin 2x, y(0) 5 0.

SOLUTION Dividing the equation by ey cos x givesx givesx

e2y 2 y

ey dydyd 5
sin 2x
cos x

dx.

Before integrating, we use termwise division on the left-hand side and the trigono-
metric identity sin 2xmetric identity sin 2xmetric identity sin 2 5 2 sin x cos x cos x x on the right-hand side. Thenx on the right-hand side. Thenx

 integration by parts : # (ey 2 ye2y) dy 5 2 # sin x dx

yields ey 1 ye2y 1 e2y 5 22 cos x 1 c. (7)

The initial condition y 5 0 when x 5 0 implies c 5 4. Thus a solution of the initial-
value problem is

ey 1 ye2y 1 e2y 5 4 2 2 cos x. (8) .

USE OF COMPUTERS The Remarks at the end of Section 1.1 mentioned 
that  it  may be difficult to use an implicit solution G(x, y) 5 0 to find an explicit 
solution y 5 �(x). Equation (8) shows that the task of solving for y in terms of x may x may x
present more problems than just the drudgery of symbol pushing—sometimes it sim-
ply cannot be done! Implicit solutions such as (8) are somewhat frustrating; nei-
ther the graph of the equation nor an interval over which a solution satisfying y(0) 5 0 
is defined is apparent. The problem of “seeing” what an implicit solution looks 
like can be overcome in some cases by means of technology. One way* of pro-
ceeding is to use the contour plot application of a computer algebra system (CAS). 
Recall  from multivariate calculus that for a function of two variables z 5 G(x, y) 
the two-dimensional curves defined by two-dimensional curves defined by two-dimensional G(x, y) 5 c, where c is constant, are called 
the level curves of the function. With the aid of a CAS, some of the level curves 
of the function G(x, y) 5 ey 1 ye2y 1 e2y 1 2 cos x have been reproduced in x have been reproduced in x
Figure 2.2.2. The family of solutions defined by (7) is the level curves G(x, y) 5 c.
Figure 2.2.3 illustrates the level curve G(x(x( , y) 5 4, which is the particular solution (8), 
in blue color. The other curve in Figure 2.2.3 is the level curve G(x, y) 5 2, which is 
the member of the family G(x, y) 5 c that satisfies y(�y2) 5 0.

x

y

222
22

21

1

2

21 1

FIGURE 2.2.2 Level curves of 
G(x, y) 5 ey 1 ye2y 1 e2y 1 2 cos x

FIGURE 2.2.3 Level curves c 5 2  
and c 5 4

(0, 0) (�/2, 0)�/2, 0)�
x

y

222
22

21

1

2

21 1

c 5 4

c 5 2

*In Section 2.6 we will discuss several other ways of proceeding that are based on the concept of  
a numerical solver.
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If an initial condition leads to a particular solution by yielding a speci�c value 
of the parameter c in a family of solutions for a �rst-order differential equation, 
there is a natural inclination for most students (and instructors) to relax and be con-
tent. However, a solution of an initial-value problem might not be unique. We saw in 
Example 4 of Section 1.2 that the initial-value problem

dydyd

dxdxd
5 xy1/2, y(0) 5 0 (9)

has at least two solutions, y 5 0 and y 5 1
16 x4. We are now in a position to solve the 

equation. Separating variables and integrating y21/2 dydyd 5 x dxdxd  gives 2y1/2 5 1
2x2 1 c1. 

Solving for y and replacing 12 c1 by c yields

y 5 11

4
x2 1 c2

2

. (10)

Each of the functions in the family given in (10) is a solution of the DE de�ned on 
the interval (2`, `) provided we take c $ 0. See Problem 52 in Exercises 2.2. Now 
when we substitute x 5 0, y 5 0 in (10) we see that c 5 0. Therefore y 5 1

16 x4 is 

a solution of the IVP.  The trivial solution y 5 0 was lost by dividing by y1/2. The 
initial-value problem (9) actually possesses many more solutions, since for any 
choice of the parameter a $ 0 the piecewise-de�ned function

y 5 50,
1

16 (x2 2 a2)2,

x , a

x $ a

satis�es both the differential equation and the initial condition. See Figure 2.2.4.

AN INTEGRALDEFINED FUNCTION In (ii) of the Remarks at the end of 
Section 1.1 it was pointed out that a solution method for a certain kind of differential 
equation may lead to an integral-defined function. This is especially true for separa-
ble differential equations because integration is the method of solution. For example, 
if g is continuous on some interval I containing I containing I x0 and x, then a solution of the simple 
initial-value problem dydyd ydydy xdxd 5 g(x), y(x0) 5 y0, defined on I, is given by

ysxd 5 y0 1 #x

x
#

x
#

0

gstd dt.

To see this, we have immediately from (12) of Section 1.1 that dydyd ydxdxd 5 g(x) and 
y(x0) 5 y0 because ex0

xexe
0
g(t) dt 5 0. When eg(t) dt is nonelementary—that is, cannot t is nonelementary—that is, cannot t

be expressed in terms of elementary functions—the form y(x) 5 y0 1 ex
xexe

0
g(t) dt may t may t

be the best we can do in obtaining an explicit solution of an IVP. The next example 

illustrates this idea.

 EXAMPLE 5 An Initial-Value Problem

Solve
dydyd

dxdxd
5 e2x2

, y(3) 5 5.

SOLUTION The function g(x) 5 e2x2
 is continuous on (2`, `), but its antiderivative 

is not an elementary function. Using t as dummy variable of integration, we can writet as dummy variable of integration, we can writet

#x

3
#

3
# dydyd

dt
dt 5 #x

3
#

3
# e2t2

dt

y(t)gx
3 5 #x

3
#

3
# e2t2

dt

y(x) 2 y(3) 5 #x

3
#

3
# e2t2

dt

y(x) 5 y(3) 1 #x

3
#

3
# e2t2

dt.

a 5  .  0 a  0 .  0 . 

(0, 0) x

y

FIGURE 2.2.4 Piecewise-de�ned  
solutions of (9)
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Using the initial condition y(3) 5 5, we obtain the solution

y(x) 5 5 1 #x

3
#

3
# e2t2t2t dt. .

The procedure demonstrated in Example 5 works equally well on separable 
equations dydyd ydxdxd 5 g(x) f (y) where, say, f (y) possesses an elementary antiderivative 
but g(x) does not possess an elementary antiderivative. See Problems 29 and 30 in 
Exercises 2.2.

EXERCISES 2.2 Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 1–22 solve the given differential equation by separation 
of variables.

1.
dydyd

dxdxd
5 sin 5xx 2.

dydyd

dxdxd
5 (x 1 1)2

3. dx 1 e3xx dy 5 0 4. dy 2 (y 2 1)2 dx 5 0

5. x
dydyd

dxdxd
5 4y 6.

dydyd

dxdxd
1 2xy2 5 0

7.
dydyd

dxdxd
5 e3x12y2y2 8. exy

dydyd

dx
5 e2y 1 e22x2y

9. y ln x
dxdxd

dydyd
5 1y 1 1

x 2
2

10.
dydyd

dxdxd
5 12y2y2 1 3

4x4x4 1 52
2

11. csc y dx 1 sec2x dy2x dy2 5 0

12. sin 3x dx 1 2y cos33x dy 5 0

13. (ey 1 1)2e2y dx 1 (ex 1 1)3e2x dy 5 0

14. x(1 1 y2)1/2 dx 5 y(1 1 x2)1/2 dy

15.
dSdSd

dr
5 kSkSk 16.

dQ

dt
5 k(Q 2 70)

17.
dPdPd

dt
5 P 2 P2 18.

dNdNd

dt
1 N 5 NtNtN et12

19.
dydyd

dxdxd
5

xy 1 3x 2 y 2 3

xy 2 2x2x2 1 4y 2 8
20.

dydyd

dxdxd
5

xy 1 2y2y2 2 x 2 2

xy 2 3y 1 x 2 3

21.
dydyd

dxdxd
5 xÏ1 2 y2Ï 22. (ex 1 e2x)

dydyd

dxdxd
5 y2

In Problems 23–28 �nd an explicit solution of the given initial-value 
problem.

23.
dxdxd

dt
5 4(x2 1 1), x(�y4) 5 1

24.
dydyd

dx
5

y2 2 1

x2 2 1
, y(2) 5 2

25. x2
dydyd

dx
5 y 2 xy, y(21) 5 21

26.
dydyd

dt
1 2y2y2 5 1, y(0) 5

5

2

27. Ï1 2 y2Ï dxdxd 2 Ï1 2 x2Ï dydyd 5 0, y(0) 5
Ï3Ï

2

28. (1 1 x4) dy 1 x(1 1 4y2) dx 5 0, y(1) 5 0

In Problems 29 and 30 proceed as in Example 5 and �nd an explicit 
solution of the given initial-value problem.

29.
dydyd

dxdxd
5 ye2x2

, y(4) 5 1

30.
dydyd

dxdxd
5 y2 sin x2, y(22) 5

1

3

REMARKS

In some of the preceding examples we saw that the constant in the one-
parameter family of solutions for a �rst-order differential equation can be 
relabeled when convenient. Also, it can easily happen that two individuals 
solving the same equation correctly arrive at dissimilar expressions for their 
answers. For example, by separation of variables we can show that one-
parameter families of solutions for the DE (1 1 y2) dx 1 (1 1 x2) dy 5 0 are

arctan x 1 arctan y 5 c or
x 1 y

1 2 xy
5 c.

As you work your way through the next several sections, bear in mind that 
families of solutions may be equivalent in the sense that one family may be 
obtained from another by either relabeling the constant or applying algebra and 
trigonometry. See Problems 27 and 28 in Exercises 2.2.
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In Problems 31–34 �nd an explicit solution of the given initial-value 
problem. Determine the exact interval I of de�nition by analytical I of de�nition by analytical I
methods. Use a graphing utility to plot the graph of the solution. 

31.
dydyd

dxdxd
5

2x2x2 1 1

2y2y2
, y(22) 5 21

32. (2y2y2 2 2)
dydyd

dxdxd
5 3x2 1 4x4x4 1 2, y(1) 5 22

33. ey dxdxd 2 e2x dydyd 5 0, y(0) 5 0

34. sin x dxdxd 1 ydydyd 5 0, y(0) 5 1

35. (a)  Find a solution of the initial-value problem consisting of the 
differential equation in Example 3 and each of the initial-
conditions: y(0) 5 2, y(0) 5 22, and y _
differential equation in Example 3 and each of the initial-

_
differential equation in Example 3 and each of the initial-

1
4+

differential equation in Example 3 and each of the initial-
+

differential equation in Example 3 and each of the initial-
5 1.

(b) Find the solution of the differential equation in Example 3  
when ln c1 is used as the constant of integration on the  
left-hand side in the solution and 4 ln left-hand side in the solution and 4 ln left-hand c1 is replaced by ln c.
Then solve the same initial-value problems in part (a).

36. Find a solution of x
dydyd

dxdxd
5 y2 2 y that passes through 

the indicated points.

(a) (0, 1) (b) (0, 0) (c) _12, 1
2+ (d) _2, 1

4+
37. Find a singular solution of Problem 21. Of Problem 22.

38. Show that an implicit solution of

2x2x2 sin2 y dxdxd 2 (x2 1 10) cos y dydyd 5 0

  is given by ln(x2 1 10) 1 csc y 5 c. Find the constant solutions, 
if any, that were lost in the solution of the differential equation.

Often a radical change in the form of the solution of a differential equa-
tion corresponds to a very small change in either the initial condition or 
the equation itself. In Problems 39–42 �nd an explicit solution of the 
given initial-value problem. Use a graphing utility to plot the graph of 
each solution. Compare each solution curve in a neighborhood of (0, 1).

39.
dydyd

dxdxd
5 ( y 2 1)2, y(0) 5 1

40.
dydyd

dxdxd
5 (y 2 1)2, y(0) 5 1.01

41.
dydyd

dxdxd
5 (y 2 1)2 1 0.01, y(0) 5 1

42.
dydyd

dxdxd
5 (y 2 1)2 2 0.01, y(0) 5 1

43. Every autonomous �rst-order equation dyydx 5 f (y) is 
separable. Find explicit solutions y1(x), y2(x), y3(x), and y4(x) 
of the differential equation dyydx 5 y 2 y3 that satisfy, in turn, 
the initial conditions y1(0) 5 2, y2(0) 5 1

y
1
y

2, y3(0) 5 21
 that satisfy, in turn, 

1
 that satisfy, in turn, 

2, and 
y4(0) 5 22. Use a graphing utility to plot the graphs of each 
solution. Compare these graphs with those predicted in  
Problem 19 of Exercises 2.1. Give the exact interval of 
de�nition for each solution.

44. (a) The autonomous �rst-order differential equation 
dyydx 5 1y(y 2 3) has no critical points. Nevertheless, 
place 3 on the phase line and obtain a phase portrait of the 
equation. Compute d2d2d y2y2 ydx2 to determine where solution 
curves are concave up and where they are concave down 

(see Problems 35 and 36 in Exercises 2.1). Use the phase 
portrait and concavity to sketch, by hand, some typical 
solution curves.

(b) Find explicit solutions y1(x(x( ), y2(x(x( ), y3(x(x( ), and y4(x(x( ) of the 
differential equation in part (a) that satisfy, in turn, the initial 
conditions y1(0) 5 4, y2(0) 5 2, y3(1) 5 2, and y4(21) 5 4. 
Graph each solution and compare with your sketches in 
part (a). Give the exact interval of de�nition for each 
solution.

In Problems 45–50 use a technique of integration or a substitution to 
�nd an explicit solution of the given differential equation or initial-
value problem. 

45.
dydyd

dxdxd
5

1

1 1 sin x
46.

dydyd

dxdxd
5

sinÏxÏxÏÏ
ÏyÏyÏÏ

47. _ÏxÏxÏÏ 1 x+
dydyd

dxdxd
5 ÏyÏyÏÏ 1 y 48.

dydyd

dxdxd
5 y2/3 2 y

49.
dydyd

dxdxd
5

eÏxÏxÏÏ

y
, y(1) 5 4 50.

dydyd

dxdxd
5

x tan21 x

y
, y(0) 5 3

Discus sion Problems
51. (a) Explain why the interval of de�nition of the explicit 

solution y 5 �2(x) of the initial-value problem in  
Example 2 is the open interval (25, 5).

(b) Can any solution of the differential equation cross the 
x-axis? Do you think that x2 1 y2 5 1 is an implicit solution 
of the initial-value problem dyydx 5 2xyy, y(1) 5 0?

52. On page 51 we showed that a one-parameter family of 
solutions of the �rst-order differential equation dydyd ydxdxd 5 xy1/2

is y 5 _
solutions of the �rst-order differential equation 

_
solutions of the �rst-order differential equation 

1
4 x4 1 c+

solutions of the �rst-order differential equation 
+

solutions of the �rst-order differential equation 
2 for c $ 0. Each solution in this family is 

de�ned on (2`, `). The last statement is not true if we choose 
c to be negative. For c 5 21, explain why y 5 _14 x4 2 1+2
is not a solution of the DE on the interval is not a solution of the DE on the interval is not (2`, `). Find an 

interval of de�nition I on which I on which I y 5 _14 x4 2 1+2 is a solution 

of the DE.

53. In Problems 43 and 44 we saw that every autonomous �rst-
order differential equation dyydx 5 f (y) is separable. Does  
this fact help in the solution of the initial-value problem
dydyd

dxdxd
5 Ï1 1 y2Ï sin2 y, y(0) 5 1

2? Discuss. Sketch, by hand, a 

plausible solution curve of the problem.

54. (a) Solve the two initial-value problems:

dydyd

dxdxd
5 y, y(0) 5 1

and

dydyd

dxdxd
5 y 1

y

x ln x
, y(e) 5 1.

(b) Show that there are more than 1.65 million digits in the  
y-coordinate of the point of intersection of the two solution 
curves in part (a).
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54 CHAPTER  FIRSTORDER DIFFERENTIAL EQUATIONS

55. Find a function whose square plus the square of its derivative is 1.

56. (a)  The differential equation in Problem 27 is equivalent to the 
normal form

dydyd

dxdxd
5Î1 2 y2

1 2 x2Î
in the square region in the xy-plane de�ned by uxu , 1, uyu , 1. 
But the quantity under the radical is nonnegative also in the 
regions de�ned by uxu . 1, uyu . 1. Sketch all regions in the 
xy-plane for which this differential equation possesses real 
solutions.

(b) Solve the DE in part (a) in the regions de�ned 
by uxu . 1, uyu . 1. Then �nd an implicit and an explicit  
solution of the differential equation subject to y(2) 5 2.

Mathematical Model
57. Suspension Bridge In (16) of Section 1.3 we saw that a 

mathematical model for the shape of a �exible cable strung 
between two vertical supports is

dydyd

dxdxd
5

W

T1T1T
, (11)

where W denotes the portion of the total vertical load between W denotes the portion of the total vertical load between W
the points P1 and P2 shown in Figure 1.3.7. The DE (11) 
is separable under the following conditions that describe a 
suspension bridge.

Let us assume that the x- and y-axes are as shown in Figure 
2.2.5—that is, the x-axis runs along the horizontal roadbed, and 
the y-axis passes through (0, a), which is the lowest point on 
one cable over the span of the bridge, coinciding with the inter-
val [2Ly2, Ly2]. In the case of a suspension bridge, the usual 
assumption is that the vertical load in (11) is only a uniform 
roadbed distributed along the horizontal axis. In other words, 
it is assumed that the weight of all cables is negligible in com-
parison to the weight of the roadbed and that the weight per unit 
length of the roadbed (say, pounds per horizontal foot) is a con-
stant �. Use this information to set up and solve an appropriate 
initial-value problem from which the shape (a curve with equa-
tion y 5 �(x)) of each of the two cables in a suspension bridge 
is determined. Express your solution of the IVP in terms of the 
sag h and span L. See Figure 2.2.5.

Computer Lab Assignments
58. (a)  Use a CAS and the concept of level curves to plot 

representative graphs of members of the family of solutions 

of the differential equation 
dydyd

dxdxd
5 2

8x 1 5

3y2 1 1
. Experiment 

with different numbers of level curves as well as various 
rectangular regions de�ned by a # x # b, c # y # d.

(b) On separate coordinate axes plot the graphs of the  
particular solutions corresponding to the initial conditions: 
y(0) 5 21; y(0) 5 2; y(21) 5 4; y(21) 5 23.

59. (a) Find an implicit solution of the IVP

(2y2y2 1 2) dydyd 2 (4x4x4 3 1 6x) dxdxd 5 0, y(0) 5 23.

(b) Use part (a) to �nd an explicit solution y 5 �(x) of 
the IVP.

(c) Consider your answer to part (b) as a function only. Use a 
graphing utility or a CAS to graph this function, and then 
use the graph to estimate its domain.

(d) With the aid of a root-�nding application of a CAS,  
determine the approximate largest interval I of I of I de�nition 
of the solution y 5 �(x) in part (b). Use a graphing utility 
or a CAS to graph the solution curve for the IVP on this 
interval.

60. (a) Use a CAS and the concept of level curves to plot 
representative graphs of members of the family of solutions 
of the differential equation 

dydyd

dxdxd
5

x(1 2 x)

y(22 1 y)
. 

Experiment with different numbers of level curves as well 
as various rectangular regions in the xy-plane until your 
result resembles Figure 2.2.6.

(b) On separate coordinate axes, plot the graph of the implicit 
solution corresponding to the initial condition y(0) 5 3

2. 
Use a colored pencil to mark off that segment of the graph 
that corresponds to the solution curve of a solution � that 
satis�es the initial condition. With the aid of a root-
�nding application of a CAS, determine the approximate 
largest interval I of de�nition of the solution I of de�nition of the solution I �. [Hint: 
First �nd the points on the curve in part (a) where the 
tangent is vertical.]

(c) Repeat part (b) for the initial condition y(0) 5 22.

FIGURE 2.2.5 Shape of a cable in Problem 57

L/2
L (span)

h (sag)

cable

roadbed (load)roadbed (load)

x

(0, a)

L/2

y

x

y

FIGURE 2.2.6 Level curves in Problem 60
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INTRODUCTION We continue our quest for solutions of �rst-order differential 
equations by next examining linear equations. Linear differential equations are an 
especially “friendly” family of differential equations, in that, given a linear equation, 
whether �rst order or a higher-order kin, there is always a good possibility that we can 
�nd some sort of solution of the equation that we can examine.

A DEFINITION The form of a linear first-order DE was first given in (7) of 
Section 1.1. This form, in the case when n 5 1 in (6) of that section, is reproduced 
here for convenience. 

2.3 L Linear Equations

DEFINITION 2.3.1 Linear Equation

A �rst-order differential equation of the form  

a1(x) 

dy

dx
1 a0(x)y 5 g(x), (1)

is said to be a linear equation in the variable y.

STANDARD FORM By dividing both sides of (1) by the lead coefficient a1(x), we 
obtain a more useful form, the standard form, of a linear equation:

dy

dx
1 P(x)y 5 f(x). (2)

We seek a solution of (2) on an interval I for which both coef�cient functions I for which both coef�cient functions I P and 
f are continuous.f are continuous.f

Before we examine a general procedure for solving equations of form (2) we 
note that in some instances (2) can be solved by separation of variables. For example, 
you should verify that the equations 

dydyd

dxdxd
1 2x2x2 yxyx 5 0 and

dydyd

dxdxd
5 y 1 5

are both linear and separable, but that the linear equation

dydyd

dxdxd
1 y 5 x

is not separable.

METHOD OF SOLUTION The method for solving (2) hinges on a remarkable fact 
that the left-hand side of the equation can be recast into the form of the exact deriva-
tive of a product by multiplying the both sides of (2) by a special function �(x). It is 
relatively easy to find the function �(x) because we want

 left-hand side of 
 product   product rule (2) multipled by �(x) 

d

dxdxd
[�(x)y] 5 �

ddydyd

dxdxd
1

d�

dx
y 5 �

dydyd

dxdxd
1 �PyPyP .

 c c
these must be equal

The equality is true provided that
d�

dxdxd
5 �P.

We match each equation with (2). 
In the first equation P(x(x( )x)x 5 2x, x, x
f (x(x( )x)x 5 0 and in the second 
P(x(x( ) x) x 5 21, f (x(x( )x)x 5 5.

5 5 5
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The last equation can be solved by separation of variables. Integrating

d�

�
5 P dxdxd and solving ln u�(x) u 5 #P(x) dxdxd 1 c1

gives �(x) 5 c2eeP(x(x( )dxdxd . Even though there are in�nite choices of �(x) (all constant 
multiples of eeP(x(x( )dxdxd ), all produce the same desired result. Hence we can simplify life 
and choose c2 5 1. The function 

�(x) 5 eeP(x) dx (3)

is called an integrating factor for equation (2).  
Here is what we have so far: We multiplied both sides of (2) by (3) and, by 

construction, the left-hand side is the derivative of a product of the integrating factor 
and y:

eeP(x(x( ) dxdxd dydyd

dxdxd
1 P(x)eeP(x(x( ) dxdxd y 5 eeP(x(x( ) dxdxd f (x)

d

dxdxd
feeP(x(x( ) dxdxd yg 5 eeP(x(x( ) dxdxd f (x).

Finally, we discover why (3) is called an integrating factor. We can integrate both 
sides of the last equation,

eeP(x(x( ) dxdxd y 5 #eeP(x(x( ) dxdxd f(f(f x) dxdxd 1 c

and solve for y. The result is a one-parameter family of solutions of (2):

y 5 e2eP(x(x( ) dxdxd # eeP(x(x( ) dxdxd f(f(f x) dxdxd 1 ce2eP(x(x( ) dxdxd .  (4)

We emphasize that you should not memorize formula (4). The following 
procedure should be worked through each time. 

See Problem 55 
in Exercises 2.3

Solving a Linear First-Order Equation

(i) Remember to put a linear equation into the standard form (2). 

(ii) From the standard form of the equation identify P(x) and then �nd the 
integrating factor eeP(x) dx. No constant need be used in evaluating the 
inde�nite integral eP(x)dx.

(iii) Multiply the both sides of the standard form equation by the integrating 
factor. The left-hand side of the resulting equation is automatically the 
derivative of the product of the integrating factor eeP(x)dx and dx and dx y:

d

dx
 feeP(x) dxyg 5 eeP(x) dx f(x). (5)

(iv) Integrate both sides of the last equation and solve for y.

EXAMPLE 1 Solving a Linear Equation

Solve
dydyd

dxdxd
2 3y 5 0.

SOLUTION This linear equation can be solved by separation of variables. Alter-
natively, since the differential equation is already in standard form (2), we identify 

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



. LINEAR EQUATIONS 57

P(x) 5 23, and so the integrating factor is ee(23) dxdxd 5 e23x. We then multiply the 
given equation by this factor and recognize that 

e23x dydyd

dxdxd
2 3e23x y 5 e23x ? 0 is the same as

d

dxdxd
 [ [e23x y] 5 0.

Integration of the last equation, 

# d

dxdxd
 [ [e23x y] dxdxd 5 #0 dxdxd

then yields e23xyxyx 5 c or y 5 ce3x, 2` , x , `. .

EXAMPLE 2 Solving a Linear Equation

Solve
dydyd

dxdxd
2 3y 5 6.

SOLUTION This linear equation, like the one in Example 1, is already in standard 
form with P(x) 5 23. Thus the integrating factor is again e23x. This time multiplying 
the given equation by this factor gives

e23x dydyd

dxdxd
2 3e23x y 5 6e23x and so

d

dxdxd
 [ [e23x y] 5 6e23x.

Integrating the last equation,  

# d

dxdxd
 [ [e23x y] dxdxd 5 6#e23x dxdxd gives e23x y 5 261e23x

3 2 1 c,

or y 5 22 1 ce3x, 2` , x , `. .

When a1, a0, and g in (1) are constants, the differential equation is autono-
mous. In Example 2 you can verify from the normal form dyydx 5 3(y 1 2) 
that 22 is a critical point and that it is unstable (a repeller). Thus a solution curve 
with an initial point either above or below the graph of the equilibrium solution 
y 5 22 pushes away from this horizontal line as x increases. Figure 2.3.1, obtained x increases. Figure 2.3.1, obtained x
with the aid of a graphing utility, shows the graph of y 5 22 along with some 
additional solution curves.

GENERAL SOLUTION Suppose again that the functions P and f in (2) are conf in (2) are conf -
tinuous on a common interval I. In the steps leading to (4) we showed that if (2) has if (2) has if
a solution on I, then it must be of the form given in (4). Conversely, it is a straight-
forward exercise in differentiation to verify that any function of the form given in 
(4)  is a solution of the differential equation (2) on I. In other words, (4) is a one-
parameter family of solutions of equation (2) and every solution of (2) every solution of (2) every solution of de�ned on I is a 
member of this family. Therefore we call (4) the general solution of the differential 
equation on the interval I. (See the Remarks at the end of Section 1.1.) Now by writ-
ing (2) in the normal form y9 5 F(x, y), we can identify F(x, y) 5 2P(x)y 1 f (x) and 
−Fy−y 5 2P(x). From the continuity of P and f on the interval f on the interval f I we see that I we see that I F and F and F
−Fy−y are also continuous on I. With Theorem 1.2.1 as our justification, we conclude 
that there exists one and only one solution of the first-order initial-value problem

dydyd

dxdxd
1 P(x)y 5 f(f(f x), y(x0) 5 y0 (6)

de�ned on some interval I0I0I  containing x0. But when x0 is in I, �nding a solution of (6) 
is just a matter of �nding an appropriate value of c in (4)—that is, to each x0 in I there I there I

FIGURE 2.3.1 Solution curves of DE  
in Example 2

21 211 21 3 4

22

21

1

23

x

y
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corresponds a distinct c. In other words, the interval I0I0I  of existence and uniqueness 
in Theorem 1.2.1 for the initial-value problem (6) is the entire interval I.

EXAMPLE 3 General Solution

Solve x
dydyd

dxdxd
2 4y 5 x6ex.

SOLUTION Dividing by x, the standard form of the given DE is

dydyd

dxdxd
2

4
x

y 5 x5ex. (7)

From this form we identify P(x) 5 24yx and x and x f (x) 5 x5ex and further observe that x and further observe that x

P and f are continuous on (0, f are continuous on (0, f `). Hence the integrating factor is

we can use ln x instead of ln |x| since x . 0
p

e24edx/dx/dx x/x/ 5 e24ln x 5 eln x24
5 x24.

Here we have used the basic identity blogbN 5 N, N, N N .  0. Now we multiply (7) by 
x24 and rewrite

x24 dydyd

dxdxd
2 4x25y 5 xex as

d

dxdxd
 [ [x24y4y4 ] 5 xex.

It follows from integration by parts that the general solution de�ned on the interval 
(0, `) is x24y4y4 5 xex 2 ex 1 c or y 5 x5ex 2 x4ex 1 cx4. .

Except in the case in which the lead coef�cient is 1, the recasting of equation (1) 
into the standard form (2) requires division by a1(x). Values of x for which x for which x a1(x) 5 0 
are called singular points of the equation. Singular points are potentially trouble-
some. Speci�cally, in (2), if P(x) (formed by dividing a0(x) by a1(x)) is discontinuous 
at a point, the discontinuity may carry over to solutions of the differential equation.

EXAMPLE 4 General Solution

Find the general solution of (x2 2 9) 
dydyd

dxdxd
1 xy 5 0.

SOLUTION We write the differential equation in standard form

dydyd

dxdxd
1

x

x2 2 9
y 5 0 (8)

and identify P(x) 5 xy(x2 2 9). Although P is continuous on (2`, 23), (23, 3), and 
(3, `), we shall solve the equation on the �rst and third intervals. On these intervals 
the integrating factor is

eexexe dx/(x(x( 229) 5 e1/2 e2x dx/(x(x( 229) 5 e1/2 lnux229u 5 ÏxÏxÏ 2 2 9Ï .

After multiplying the standard form (8) by this factor, we get

d

dxdxd 3ÏxÏxÏ 2 2 9Ï y4 5 0. 

Integrating both sides of the last equation gives ÏxÏxÏ 2 2 9Ï y 5 c. Thus on either

(2`, 23) or (3, `) the general solution of the equation is y 5
c

Ïx2 2 9
. .

In case you are wondering why 
the interval (0, `) is important in 
Example 3, read this paragraph 
and the paragraph following 
Example 4.
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Notice in Example 4 that x 5 3 and x 5 23 are singular points of the equation 
and that every function in the general solution y 5 cyÏxÏxÏ 2 2 9Ï   is discontinuous at 
these points. On the other hand, x 5 0 is a singular point of the differential equation 
in Example 3, but the general solution y 5 x5ex 2 x4ex 1 cx4 is noteworthy in that 
every function in this one-parameter family is continuous at x 5 0 and is de�ned 
on the interval (2`, `) and not just on (0, `), as stated in the solution. However, 
the  family y 5 x5ex 2 x4ex 1 cx4 de�ned on (2`, `) cannot be considered the 
general solution of the DE, since the singular point x 5 0 still causes a problem. 
See Problems 50 and 51 in Exercises 2.3.

 EXAMPLE 5 An Initial-Value Problem

Solve
dydyd

dxdxd
1 y 5 x, y(0) 5 4.

SOLUTION The equation is in standard form, and P(x) 5 1 and f (x) 5 x are continx are continx -
uous on (2`, `). The integrating factor is eedx 5 ex, so integrating

d

dxdxd
 [ [exy] 5 xex

gives exyxyx 5 xex 2 ex 1 c. Solving this last equation for y yields the general solution 
y 5 x 2 1 1 ce2x. But from the initial condition we know that y 5 4 when x 5 0. 
Substituting these values into the general solution implies that c 5 5. Hence the 
solution of the problem on the interval (2`, `) is

y 5 x 2 1 1 5e2x. (9) .

Figure 2.3.2, obtained with the aid of a graphing utility, shows the graph of 
the  solution (9) in dark blue along with the graphs of other members of the one-
parameter family of solutions y 5 x 2 1 1 ce2x. It is interesting to observe that as x
increases, the graphs of all members of this family are close to the graph of the soluall members of this family are close to the graph of the soluall -
tion y 5 x 2 1. The last solution corresponds to c 5 0 in the family and is shown in 
dark green in Figure 2.3.2. This asymptotic behavior of solutions is due to the fact 
that the contribution of ce2x, c Þ 0, becomes negligible for increasing values of x.  
We say that ce2x is a x is a x transient term, since e2x : 0 as x : `. While this behavior 
is not characteristic of all general solutions of linear equations (see Example 2), the 
notion of a transient is often important in applied problems.

PIECEWISELINEAR DIFFERENTIAL EQUATION In the construction of math-
ematical models (especially in the biological sciences and engineering) it can happen 
that one or more coefficients in a differential equation is a piecewise-defined func-
tion. In particular, when either P(x) or f (x) in (2) is a piecewise-defined function the 
equation is then referred to as a piecewise-linear differential equation. In the next 
example, f (x) is piecewise continuous on the interval f0, `) with a single jump dis-
continuity at x 5 1. The basic idea is to solve the initial-value problem in two parts 
corresponding to the two intervals over which f (x) is defined; each part consists of a 
linear equation solvable by the method of this section. As we will see, it is then pos-
sible to piece the two solutions together at x 5 1 so that y(x) is continuous on f0, `).
See Problems 37–42 in Exercises 2.3.

EXAMPLE 6 An Initial-Value Problem

Solve
dydyd

dxdxd
1 y 5 f (x), y(0) 5 0 where f (x) 5 51,

0,

0 # x # 1

x . 1.

x

y

424

24

22

2

4

22 2

c 5 0

c . 0 c 5 5

c , 0

FIGURE 2.3.2 Solution curves of DE  
in Example 5
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SOLUTION The graph of the discontinuous function f is shown in Figure 2.3.3. We f is shown in Figure 2.3.3. We f
solve the DE for y(x) �rst on the interval [0, 1] and then on the interval (1, `). For 
0 # x # 1 we have

dydyd

dxdxd
1 y 5 1 or, equivalently,

d

dxdxd
 [ [exy] 5 ex.

Integrating this last equation and solving for y gives y 5 1 1 c1e2x. Since y(0) 5 0, 
we must have c1 5 21, and therefore y 5 1 2 e2x, 0 # x # 1. Then for x . 1 the 
equation

dydyd

dxdxd
1 y 5 0

leads to y 5 c2e2x. Hence we can write

y 5 51 2 e2x,

c2e2x,

0 # x # 1

x . 1.

By appealing to the de�nition of continuity at a point, it is possible to determine 
c2 so  that the foregoing function is continuous at x 5 1. The requirement that 
limxmxm S11 y(x) 5 y(1) implies that c2e21 5 1 2 e21 or c2 5 e 2 1. As seen in 
Figure 2.3.4, the function

y 5 51 2 e2x,

(e 2 1)e2x,

0 # x # 1

x . 1
(10)

is continuous on (0, `). .

It is worthwhile to think about (10) and Figure 2.3.4 a little bit; you are urged to 
read and answer Problem 53 in Exercises 2.3.

ERROR FUNCTION In mathematics, science, and engineering some important 
functions are defined in terms of nonelementary integrals. Two such special func-
tions are the error function and complementary error function:

erf(x) 5
2

Ï�#
x

0
e2t2

 dt     at     at nd erfc(x) 5
2

Ï�#
`

x
e2t2

 dt. (11)

From the known result e`

0e0e e2t2
dt 5 Ï�Ï y2* we can write (2yÏ�Ï )e`

0e0e e2t2t2t dt 5 1.

Using the additive interval property of de�nite integrals e`

0e0e 5 ex

0e0e 1 e`

xexe  we can 
rewrite the last result in the alternative form 

erf(x) erfc(x)

2

Ï�Ï #`

0
#

0
# e2t 2

dt 5
2

Ï�Ï #x

0
#

0
# e2t 2

dt 1
2

Ï�Ï #`

x
#

x
# e2t 2

dt 5 1. (12)

It is seen from (12) that the error function erf(x) and complementary error function 
erfc(x) are related by the identity

erf(x) 1 erfc(x) 5 1.

Because of its importance in probability, statistics, and applied partial differential 
equations, the error function has been extensively tabulated. Note that erf(0) 5 0
is one obvious function value. Numerical values of erf(x) can also be found using a 
CAS such as Mathematica.

5 5

*This result is proved in Appendix A.

FIGURE 2.3.3 Discontinuous f(f(f x(x( )  
in Example 6

x

y

1

1

1

1

x

y

FIGURE 2.3.4 Graph of (10)  
in Example 6
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If we are solving an initial-value problem (6) and recognize that inde�nite inte-
gration of the right-hand side of (5) would lead to a nonelementary integral, then as 
we saw in Example 5 of Section 2.2 it is convenient to use instead de�nite integration 
over the interval fx0, xg. The last example illustrates that this procedure automatically 
incorporates the initial condition at x0 into the solution of the DE; in other words, we 
do not have to solve for the constant c in its general solution.

EXAMPLE 7 The Error Function

Solve the initial-value problem
dydyd

dxdxd
2 2xy 5 2, y(0) 5 1.

SOLUTION The differential equation is already in standard form, and so we see that 

the integrating factor is ee(22x dxdxd ) 5 e2x2
. Multiplying both sides of the equation by 

this factor then gives e2x2 dydyd

dxdxd
2 2x2x2 e2x2

y 5 2e2x2
, which is the same as

d

dxdxd
fe2x2

yg 5 2e2x2
. (13)

Because inde�nite integration of both sides of equation (13) leads to the nonelemen-
tary integral ee2x2

dxdxd  we identify x0 5 0 and use de�nite integration over the interval 
f0, xg:

#x

0
#

0
# d

dt
_e2t2t2t y(t)+ dt 5 2#x

0
#

0
# e2t2t2t dtt or     e2x2

y(x) 2 y(0) 5 2#x

0
#

0
# e2t2t2t dt.

Using the initial condition y(0) 5 1 the last expression yields the solution

y 5 ex2
1 2ex2#x

0
#

0
# e2t2t2t dt. (14)

Then by inserting the factor Ï�Ï yÏ�Ï  into this solution in the following manner—� into this solution in the following manner—�

y 5 ex2
1 2ex2

e #x

0
#

0
# e2t2

dt 5 ex231 1 Ï�Ï 1 2

Ï�Ï #x

0
#

0
# e2t2t2t dt24

we see from (11) that (14) can be rewritten in terms of the error function as

y 5 ex2 f1 1 Ï�Ï  e� e� rf (x)g. (15)

The graph of solution (15), obtained with the aid of a CAS, is given in 
Figure 2.3.5. .

See Problems 43–48 in Exercises 2.3.

USE OF COMPUTERS The computer algebra systems Mathematica and Maple
are capable of producing implicit or explicit solutions for some kinds of differential 
equations using their dsolve commands.*

erf(x)5

*Certain commands have the same spelling, but in Mathematica commands begin with a capital letter  
(DSolve), whereas in Maple the same command begins with a lower case letter (dsolve). When 
discussing such common syntax, we compromise and write, for example, dsolve. See the Student 
Resource Manual for the complete input commands used to solve a linear �rst-order DE.Resource Manual for the complete input commands used to solve a linear �rst-order DE.Resource Manual

FIGURE 2.3.5 Graph of (15) in  
Example 7
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EXERCISES 2.3 Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1–24 �nd the general solution of the given differential 
equation. Give the largest interval I over which the general solution I over which the general solution I
is de�ned. Determine whether there are any transient terms in the 
general solution.

1.
dydyd

dxdxd
5 5y 2.

dydyd

dxdxd
1 2y2y2 5 0

3.
dydyd

dxdxd
1 y 5 e3x 4. 3

dydyd

dxdxd
1 12y 5 4

5. y9 1 3x2y2y2 5 x2 6. y9 1 2xy2xy2 5 x3

7. x2y9 1 xy 5 1 8. y9 5 2y 1 x2 1 5

9. x
dydyd

dxdxd
2 y 5 x2sin x 10. x

dydyd

dxdxd
1 2y 5 3

11. x
dydyd

dxdxd
1 4y 5 x3 2 x 12. (1 1 x)

dydyd

dxdxd
2 xy 5 x 1 x2

13. x2y2y2 9 1 x(x 1 2)y 5 ex

14. xy9 1 (1 1 x)y 5 e2x sin 2x sin 2x x sin 2x sin 2

15. y dx 2 4(x 1 y6) dy 5 0

16. y dx 5 (yey 2 2x2x2 ) dy

17. cos x
dydyd

dxdxd
1 (sin x)y 5 1

18. cos2x2x2 sin x
dydyd

dxdxd
1 (cos3x)y 5 1

19. (x 1 1)
dydyd

dxdxd
1 (x 1 2)y 5 2x2x2 e2x

20. (x 1 2)2
dydyd

dxdxd
5 5 2 8y 2 4x4x4 y

21.
dr

d�
1 r sec � 5 cos �

22.
dPdPd

dt
1 2tPtPt 5 P 1 4t 2 2

23. x
dydyd

dxdxd
1 (3x 1 1)y 5 e23x

24. (x2 2 1)
dydyd

dxdxd
1 2y2y2 5 (x 1 1)2

REMARKS

(i) Occasionally, a �rst-order differential equation is not linear in one variable 
but is linear in the other variable. For example, the differential equation

dydyd

dxdxd
5

1

x 1 y2

is not linear in the variable y. But its reciprocal

dxdxd

dydyd
5 x 1 y2 or

dxdxd

dydyd
2 x 5 y2

is recognized as linear in the variable x. You should verify that the integrating 
factor ee(21)dydyd 5 e2y and integration by parts yield the explicit solution 
x 5 2y2 2 2y 2 2 1 cey for the second equation. This expression is then an 
implicit solution of the �rst equation.

(ii) Mathematicians have adopted as their own certain words from engi-
neering, which they found appropriately descriptive. The word transient,
used earlier, is one of these terms. In future discussions the words input and input and input
output will occasionally pop up. The function output will occasionally pop up. The function output f in (2) is called the f in (2) is called the f input or 
driving function; a solution y(x) of the differential equation for a given input 
is called the output or response.

(iii) The term special functions mentioned in conjunction with the error 
function also applies to the sine integral function and the Fresnel sine integral
introduced in Problems 47 and 48 in Exercises 2.3. “Special Functions” is 

actually a well-de�ned branch of mathematics. More special functions are 
studied in Section 6.4.
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In Problems 25–36 solve the given initial-value problem. Give the 
largest interval I over which the solution is I over which the solution is I de�ned.

25.
dydyd

dxdxd
5 x 1 5y, y(0) 5 3

26.
dydyd

dxdxd
5 2x2x2 2 3y, y(0) 5 1

3

27. xyxyx 9 1 y 5 ex, y(1) 5 2

28. y
dxdxd

dydyd
2 x 5 2y2y2 2, y(1) 5 5

29. L
di

dt
1 Ri 5 E, i(0) 5 i0, L, R, E, i0 constants

30.
dT

dt
5 k(T 2 TmTmT ), T(T(T 0) 5 T0T0T , k, TmTmT , T0T0T constants

31. x
dydyd

dxdxd
1 y 5 4x4x4 1 1, y(1) 5 8

32. y9 1 4x4x4 y 5 x3ex2
, y(0) 5 21

33. (x 1 1)
dydyd

dxdxd
1 y 5 ln x, y(1) 5 10

34. x(x 1 1)
dydyd

dxdxd
1 xyxyx 5 1, y(e) 5 1

35. y9 2 (sin x)y 5 2 sin x, y(�y2) 5 1

36. y9 1 (tan x)y 5 cos2 x, y(0) 5 21

In Problems 37–40 proceed as in Example 6 to solve the given ini-
tial-value problem. Use a graphing utility to graph the continuous 
function y(x).

37.
dydyd

dxdxd
1 2y2y2 5 f (x), y(0) 5 0,  where

f (x) 5 51,

0,

0 # x # 3

x . 3

38.
dydyd

dxdxd
1 y 5 f (x), y(0) 5 1, where

f (x) 5 51,

21,

0 # x # 1

x . 1

39.
dydyd

dxdxd
1 2xy 5 f (x), y(0) 5 2, where

f (x) 5 5x,

0,

0 # x , 1

x $ 1

40. (1 1 x2)
dydyd

dxdxd
1 2xy 5 f (x), y(0) 5 0, where

f (x) 5 5x,

2x,

0 # x , 1

x $ 1

In Problems 41 and 42 proceed as in Example 6 to solve the given 
initial-value problem. Use a graphing utility to graph the continuous 
function y(x).

41.
dydyd

dxdxd
1 P(x)y 5 4x4x4 , y(0) 5 3, where

P(x) 5 52, 0 # x # 1

2
2
x

, x . 1

42.
dy

dxdxd
1 P(x)y 5 0, y(0) 5 4, where

P(x) 5 51, 0 # x # 2

5, x . 2

In Problems 43 and 44 proceed as in Example 7 and express the solu-
tion of the given initial-value problem in terms of erf(x) (Problem 43) 
and erfc(x) (Problem 44).

43.
dydyd

dxdxd
2 2xy 5 1, y(1) 5 1

44.
dy

dxdxd
2 2xy 5 21, y(0) 5 Ï�Ï y2

In Problems 45 and 46 proceed as in Example 7 and express the 
solution of the given initial-value problem in terms of an integral-
de�ned function.

45.
dy

dxdxd
1 exy 5 1, y(0) 5 1

46. x2
dy

dxdxd
2 y 5 x3, y(1) 5 0

47. The sine integral function is de�ned as

Si(x) 5 #x

0
#

0
# sint

t
dt,

where the integrand is de�ned to be 1 at x 5 0. See Appendix A. 
Express the solution of the initial-value problem 

x3
dydyd

dxdxd
1 2x2y2y2 5 10sinx, y(1) 5 0

  in terms of Si(x).

48. The Fresnel sine integral function is de�ned as

S(x) 5 #x

0
#

0
# sin1�

2
t22 dt.

See Appendix A. Express the solution of the initial-value problem 

dy

dxdxd
2 (sinx2)y 5 0, y(0) 5 5

in terms of S(x).

Discussion Problems
49. Reread the discussion following Example 2. Construct a linear 

�rst-order differential equation for which all nonconstant 
solutions approach the horizontal asymptote y 5 4 as x : `.
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50. Reread Example 3 and then discuss, with reference to  
Theorem 1.2.1, the existence and uniqueness of a solution  
of the initial-value problem consisting of xy9 2 4y 5 x6ex

and the given initial condition.

(a) y(0) 5 0

(b) y(0) 5 y0, y0 . 0

(c) y(x0) 5 y0, x0 . 0, y0 . 0

51. Reread Example 4 and then �nd the general solution of the 
differential equation on the interval (23, 3).

52. Reread the discussion following Example 5. Construct a linear 
�rst-order differential equation for which all solutions are 
asymptotic to the line y 5 3x 2 5 as x : `.

53. Reread Example 6 and then discuss why it is technically 
incorrect to say that the function in (10) is a “solution” of the 
IVP on the interval [0, `).

54. (a) Construct a linear �rst-order differential equation of the 
form xy9 1 3y 5 g(x) for which y 5 x3 1 cyx3 is its general 
solution. Give an interval I of de�nition of this solution. I of de�nition of this solution. I

(b) Give an initial condition y(x0) 5 y0 for the DE found in part 
(a) so that the solution of the IVP is y 5 x3 2 1yx3. Repeat 
if the solution is y 5 x3 1 2yx3. Give an interval I of de�ni-I of de�ni-I
tion of each of these solutions. Graph the solution curves.  
Is there an initial-value problem whose solution is de�ned 
on (2`, `)?

(c) Is each IVP found in part (b) unique? That is, can there be 
more than one IVP for which, say, y 5 x3 2 1yx3, x in some x in some x
interval I, is the solution?

55. In determining the integrating factor (3), we did not use 
a constant of integration in the evaluation of eP(x) dx. 
Explain why using eP(x) dx 1 c1 has no effect on the 
solution of (2).

56. Suppose P(x) is continuous on some interval I and I and I a is a 
number in I. What can be said about the solution of the  
initial-value problem y9 1 P(x)y 5 0, y(a) 5 0?

Mathematical Models
57. Radioactive Decay Series The following system of 

differential equations is encountered in the study of the decay 
of a special type of radioactive series of elements:

dxdxd

dt
5 2�1x

dydyd

dt
5 �1x 2 �2y,

where �1 and �2 are constants. Discuss how to solve this system 
subject to x(0) 5 x0, y(0) 5 y0. Carry out your ideas.

58. Heart Pacemaker A heart pacemaker consists of a switch, 
a battery of constant voltage E0E0E , a capacitor with constant 
capacitance C, and the heart as a resistor with constant 
resistance R. When the switch is closed, the capacitor charges; 
when the switch is open, the capacitor discharges, sending an 
electrical stimulus to the heart. During the time the heart is 
being stimulated, the voltage E across the heart satis�es the E across the heart satis�es the E
linear differential equation

dEdEd

dt
5 2

1

RC
E.

  Solve the DE, subject to E(4) 5 E0E0E .

Computer Lab Assignments  
59. (a) Use a CAS to graph the solution curve of the initial-value 

problem in Problem 44 on the interval (2`, `).

(b) Use tables or a CAS to value the value y(2).

60. (a) Use a CAS to graph the solution curve of the initial-value 
problem in Problem 47 on the interval [0, `).

(b) Use a CAS to �nd the value of the absolute maximum of 
the solution y(x) on the interval.

61. (a) Use a CAS to graph the solution curve of the initial-value 
problem in Problem 48 on the interval (2`, `).

(b) It is known that Fresnel sine integral S(x) S 1
2 as x S `

and S(x) S 21
2 as x S 2`. What does the solution y(x)

approach as x S `? As x S 2`?

(c) Use a CAS to �nd the values of the absolute maximum and 
the absolute minimum of the solution y(x) on the interval.

2.4 E Exact Equations

INTRODUCTION Although the simple �rst-order differential equation

ydxdxd 1 x dydyd 5 0

is both separable and linear, we can solve the equation by an alternative manner by 
recognizing that the expression on the left-hand side of the equality is the differential 
of the function f (x, y) 5 xy; that is,

d(xyxyx ) 5 ydxdxd 1 x dydyd .

In this section we examine �rst-order equations written in differential form 
M(x, y) dxdxd 1 N(N(N x, y) dydyd 5 0. By applying a simple test to the coef�cients M and M and M N, N, N
we can determine whether M(x, y) dxdxd 1 N(N(N x, y) dydyd  is the differential of a function 
f (x, y). If the answer is yes, we can construct f by partial integration.f by partial integration.f
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DIFFERENTIAL OF A FUNCTION OF TWO VARIABLES If z 5 f (x, y) is a func-
tion of two variables with continuous first partial derivatives in a region R of the 
xyxyx {plane, then recall from calculus that its differential is defined to be

dzdzd 5
−f−f−

−x
dx 1

−f−f−

−y
dydyd . (1)

In the special case when f (x, y) 5 c, where c is a constant, then (1) gives

−f−f−

−x
dx 1

−f−f−

−y
dy 5 0. (2)

In other words, given a one-parameter family of functions f (x, y) 5 c, we can gener-
ate a �rst-order differential equation by computing the differential of both sides of 
the equality. For example, if x2 2 5xy 1 y3 5 c, then (2) gives the �rst-order DE

(2x(2x(2 2 5y) dxdxd 1 (25x 1 3y2) dydyd 5 0. (3)

A DEFINITION Of course, not every first-order DE written in differential form 
M(x, y)dx 1 N(N(N x, y) dy 5 0 corresponds to a differential of f (x, y) 5 c. So for our 
purposes it is more important to turn the foregoing example around; namely,  if 
we  are  given a first-order DE such as (3), is there some way we can recognize 
that  the  differential expression (2xthat  the  differential expression (2xthat  the  differential expression (2 2 5y)dx 1 (25x 1 3y2)dy is the differential 
d(x2 2 5xy 1 y3)? If there is, then an implicit solution of (3) is x2 2 5xy 1 y3 5 c.
We answer this question after the next definition.

DEFINITION 2.4.1 Exact Equation

A differential expression M(x, y) dx 1 N(N(N x, y) dy is an exact differential in a 
region R of the xy-plane if it corresponds to the differential of some function 
f (x, y) de�ned in R. A �rst-order differential equation of the form

M(x, y) dx 1 N(x, y) dy 5 0

is said to be an exact equation if the expression on the left-hand side is an 
exact differential.

For example, x2y2y2 3 dx 1 x3y2 dy 5 0 is an exact equation, because its left-hand 
side is an exact differential:

d _13 x3 y3+ 5 x2y3 dxdxd 1 x3y2 dydyd .

Notice that if we make the identi�cations M(x, y) 5 x2y2y2 3 and N(N(N x, y) 5 x3y2, then 
−My−y 5 3x2y2y2 2 5 −NyNyN −x. Theorem 2.4.1, given next, shows that the equality of the 
partial derivatives −My−y and −NyNyN −x is no coincidence.x is no coincidence.x

THEOREM 2.4.1 Criterion for an Exact Differential

Let M(x, y) and N(N(N x, y) be continuous and have continuous �rst partial 
derivatives in a rectangular region R de�ned by a , x , b, c , y , d. Then a 
necessary and suf�cient condition that M(x, y) dx 1 N(N(N x, y) dy be an exact 
differential is

−M

−y
5

−N

−x
. (4)
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PROOF OF THE NECESSITY For simplicity let us assume that M(x, y) and 
N(N(N x, y) have continuous �rst partial derivatives for all (x, y). Now if the expression 
M(x, y) dx 1 N(N(N x, y) dy is exact, there exists some function f such that for all f such that for all f x in x in x R,

M(x, y) dxdxd 1 N(x, y) dydyd 5
−f−f−

−x
dxdxd 1

−f−f−

−y
dydyd .

Therefore M(x, y) 5
−f−f−

−x
, N(x, y) 5

−f−f−

−y
,

and       
−M

−y
5

−

−y 1−f−f−

−x2 5
−2 f

−y −x
5

−

−x 1−f−f−

−y2 5
−N

−x
.

The equality of the mixed partials is a consequence of the continuity of the �rst 
partial derivatives of M(x, y) and N(N(N x, y).

The suf�ciency part of Theorem 2.4.1 consists of showing that there exists a 
function f for which f for which f −f−f− yfyf −x 5 M(x, y) and −f−f− yfyf −y 5 N(N(N x, y) whenever (4) holds. The 
construction of the function f actually re�ects a basic procedure for solving exact f actually re�ects a basic procedure for solving exact f
equations.

METHOD OF SOLUTION Given an equation in the differential form 
M(x, y) dx 1 N(N(N x, y) dy 5 0, determine whether the equality in (4) holds. If it does, 
then there exists a function f for whichf for whichf

−f−f−

−x
5 M(x, y).

We can �nd f by integrating f by integrating f M(x, y) with respect to x while holding x while holding x y constant:

f (x, y) 5 #M(x, y) dxdxd 1 g(y), (5)

where the arbitrary function g(y) is the “constant” of integration. Now differentiate 
(5) with respect to y and assume that −f−f− yfyf −y 5 N(N(N x, y):

−f−f−

−y
5

−

−y #M(x, y) dxdxd 1 g9(y) 5 N(N(N x, y).

This gives g9(y) 5 N(N(N x, y) 2
−

−y#M(x, y) dxdxd . (6)

Finally, integrate (6) with respect to y and substitute the result in (5). The implicit 
solution of the equation is f (x, y) 5 c.

Some observations are in order. First, it is important to realize that the expres-
sion N(N(N x, y) 2 (−y−y) e M(x, y) dx in (6) is independent of dx in (6) is independent of dx x, because

−

−x 3N(N(N x, y) 2
−

−y #M(x, y) dxdxd 4 5
−N

−x
2

−

−y 1 −

−x #M(x, y) dxdxd 2 5
−N

−x
2

−M

−y
5 0.

Second, we could just as well start the foregoing procedure with the assumption that 
−f−f− yfyf −y 5 N(N(N x, y). After integrating N with respect to N with respect to N y and then differentiating that 
result, we would �nd the analogues of (5) and (6) to be, respectively,

f (x, y) 5 #N(N(N x, y) dydyd 1 h(x) and h9(x) 5 M(x, y) 2
−

−x #N(N(N x, y) dydyd .

In either case none of these formulas should be memorized.
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 EXAMPLE 1 Solving an Exact DE

Solve 2xy dx2xy dx2 1 (x2 2 1) dy 5 0.

SOLUTION With M(x, y) 5 2xy2xy2  and N(N(N x, y) 5 x2 2 1 we have

−M

−y
5 2x 5

−N

−x
.

Thus the equation is exact, and so by Theorem 2.4.1 there exists a function f (x, y) 
such that

−f−f−

−x
5 2xy and

−f−f−

−y
5 x2 2 1.

From the �rst of these equations we obtain, after integrating,

f (x, y) 5 x2y 1 g(y).

Taking the partial derivative of the last expression with respect to y and setting the 
result equal to N(N(N x, y) gives

−f−f−

−y
5 x2 1 g9(y) 5 x2 2 1. ; N(x, y)

It follows that g9(y) 5 21 and g(y) 5 2y. Hence f (x, y) 5 x2y2y2 2 y, so the solution 
of the equation in implicit form is x2y 2 y 5 c. The explicit form of the solution is 
easily seen to be y 5 cy(x2 2 1) and is de�ned on any interval not containing either 
x 5 1 or x 5 21. .

NOTE The solution of the DE in Example 1 is not f (x(x( , y) 5 x2y2y2 2 y. Rather, it 
is f (x(x( , y) 5 c; if a constant is used in the integration of g9(y(y( ), we can then write the 
solution as f (x(x( , y) 5 0. 

 EXAMPLE 2 Solving an Exact DE

Solve (e2y 2 y cos xy) dx 1 (2xe(2xe(2 2y 2 x cos x cos x xy 1 2y) dy 5 0.

SOLUTION The equation is exact because

−M

−y
5 2e2y 1 xy sin xy 2 cos xy 5

−N

−x
.

Hence a function f (x, y) exists for which

M(x, y) 5
−f−f−

−x
and N(N(N x, y) 5

−f−f−

−y
.

Now, for variety, we shall start with the assumption that −f−f− yfyf −y 5 N(N(N x, y); that is,

−f−f−

−y
5 2xe2y 2 x cos x cos x xy 1 2y

f (x, y) 5 2x2x2x # e2y dy 2 xx # cos xy dy 1 2 #y dy 1 h(x).

Remember, the reason x can come out in front of the symbol x can come out in front of the symbol x e is that in the integra-
tion with respect to y, x is treated as an ordinary constant. It follows that x is treated as an ordinary constant. It follows that x

f(f(f x, y) 5 xe2y 2 sin xy 1 y2 1 h(x)

−f−f−

−x
5 e2y 2 y cos xy 1 h9(x) 5 e2y 2 y cos xy, ; M(x, y)
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and so h9(x) 5 0 or h(x) 5 c. Hence a family of solutions is

xe2y 2 sin xy 1 y2 1 c 5 0. .

EXAMPLE 3 An Initial-Value Problem

Solve
dydyd

dxdxd
5

xy2 2 cos x sx sx in x

y(1 2 x2)
, y(0) 5 2.

SOLUTION By writing the differential equation in the form

(cos x sin x sin x x 2 xy2) dx 1 y(1 2 x2) dy 5 0,

we recognize that the equation is exact because

−M

−y
5 22x2x2 y 5

−N

−x
.

Now
−f−f−

−y
5 y(1 2 x2)

f(f(f x, y) 5
y2

2
 (1 (1 2 x2) 1 h(x)

−f−f−

−x
5 2xy2 1 h9(x) 5 cos x sx sx in x 2 xy2.

The last equation implies that h9(x) 5 cos x sin x sin x x. Integrating gives

h(x) 5 2# (cos x)(2sin x dxdxd ) 5 2
1

2
 c cos2 x.

Thus
y2

2
 (1 (1 2 x2) 2

1

2
 c cos2 x 5 c1 or y2(1 2 x2) 2 cos2 x 5 c, (7)

where 2c1 has been replaced by c. The initial condition y 5 2 when x 5 0 demands 
that 4(1) 2 cos2 (0) 5 c, and so c 5 3. An implicit solution of the problem is then 
y2(1 2 x2) 2 cos2 x 5 3.

The solution curve of the IVP is the curve drawn in blue in Figure 2.4.1; it is part 
of an interesting family of curves. The graphs of the members of the one-parameter 
family of solutions given in (7) can be obtained in several ways, two of which are 
using software to graph level curves (as discussed in Section 2.2) and using a graph-
ing utility to carefully graph the explicit functions obtained for various values of c by 
solving y2 5 (c 1 cos2 x)y(1 2 x2) for y. .

INTEGRATING FACTORS Recall from Section 2.3 that the left-hand side of 
the  linear equation y9 1 P(x)y 5 f (x) can be transformed into a derivative when 
we multiply the equation by an integrating factor. The same basic idea sometimes 
works for a nonexact differential equation M(x, y) dx 1 N(N(N x, y) dy 5 0. That is, it is 
sometimes possible to find an integrating factor �(x, y) so that after multiplying, 
the left-hand side of

�(x, y)M(x, y) dx 1 dx 1 dx �(x, y)N(N(N x, y) dy 5 0 (8)

is an exact differential. In an attempt to �nd �, we turn to the criterion (4) for exact-
ness. Equation (8) is exact if and only if (�M)M)M y 5 (�N)N)N x, where the subscripts denote 
partial derivatives. By the Product Rule of differentiation the last equation is the 
same as �MyMyM 1 �yMyMy 5 �NxNxN 1 �xNxNx  orN orN

�xNxNx 2 �yMyMy 5 (MyMyM 2 NxNxN )�. (9)

x

y

FIGURE 2.4.1 Solution curves of DE  
in Example 3
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Although M, N, N, N  My My M , and NxNxN  are known functions of x are known functions of x x and x and x y, the dif�culty here in 
determining the unknown �(x, y) from (9) is that we must solve a partial differential 
equation. Since we are not prepared to do that, we make a simplifying assumption. 
Suppose � is a function of one variable; for example, say that � depends only on x.
In this case, �x 5 d�ydx and dx and dx �y 5 0, so (9) can be written as

d�

dxdxd
5

MyMyM 2 NxNxN

N
�. (10)

We are still at an impasse if the quotient (MyMyM 2 NxNxN )yN depends on both N depends on both N x and x and x y.
However, if after all obvious algebraic simpli�cations are made, the quotient 
(MyMyM 2 NxNxN )yN turns out to depend solely on the variable N turns out to depend solely on the variable N x, then (10) is a �rst-
order ordinary differential equation. We can �nally determine � because (10) is 
separable  as well as linear. It follows from either Section 2.2 or Section 2.3 that 

�(x) 5 ee((MyMyM 2NxNxN )/N)/N)/ )N)N dx. In like manner, it follows from (9) that if � depends only on 
the variable y, then

d�

dydyd
5

NxNxN 2 MyMyM

M
�. (11)

In this case, if (NxNxN 2 MyMyM )yM is a function of M is a function of M y only, then we can solve (11) for �.
We summarize the results for the differential equation

M(x, y) dx 1 dx 1 dx N(N(N x, y) dy 5 0. (12)

 ● If (MyMyM 2 NxNxN )yN is a function of N is a function of N x alone, then an integrating factor for (12) isx alone, then an integrating factor for (12) isx

�(x) 5 e#
My2Nx

N dx. (13)

 ● If (NxNxN 2 MyMyM )yM is a function of M is a function of M y alone, then an integrating factor for (12) is

�(y) 5 e#
Nx2My

M dy. (14)

 EXAMPLE 4 A Nonexact DE Made Exact

The nonlinear �rst-order differential equation

xy dx 1 (2x (2x (2 2 1 3y2 2 20) dy 5 0

is not exact. With the identi�cations M 5 xy, N 5 2x2x2 2 1 3y2 2 20, we �nd the 
partial derivatives MyMyM 5 x and x and x NxNxN 5 4x.4x.4  The �rst quotient from (13) gets us nowhere, 
since

MyMyM 2 NxNxN

N
5

x 2 4x

2x2x2 2 1 3y2 2 20
5

23x

2x2x2 2 1 3y2 2 20

depends on x and x and x y. However, (14) yields a quotient that depends only on y:

NxNxN 2 MyMyM

M
5

4x 2 x
xy

5
3x
xy

5
3
y

.

The integrating factor is then ee3dy/y/y/ 5 e3lny3lny3ln 5 elny3
5 y3. After we multiply the given 

DE by �(y) 5 y3, the resulting equation is 

xy4 dx 1 (2x (2x (2 2y2y2 3 1 3y5 2 20y3) dy 5 0.

You should verify that the last equation is now exact as well as show, using the 
method of this section, that a family of solutions is 12 x2y4 1 1

2 y6 2 5y4 5 c. .
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EXERCISES 2.4 Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1–20 determine whether the given differential equation 
is exact. If it is exact, solve it.

1. (2x(2x(2 2 1) dx 1 (3y 1 7) dy 5 0

2. (2x(2x(2 1 y) dx 2 (x 1 6y) dy 5 0

3. (5x 1 4y) dx 1 (4x 2 8y3) dy 5 0

4. (sin y 2 y sin x) dx 1 (cos x 1 x cos x cos x y 2 y) dy 5 0

5. (2xy(2xy(2 2 2 3) dx 1 (2x(2x(2 2y2y2 1 4) dy 5 0

6. 12y2y2 2
1
x

1 cos 3x2 dydyd

dxdxd
1

y

x2 2 4x4x4 3 1 3y sin 3x 5 0

7. (x2 2 y2) dx 1 (x2 2 2xy2xy2 ) dy 5 0

8. 11 1 ln x 1
y

x2 dxdxd 5 (1 2 ln x) dydyd

9. (x 2 y3 1 y2 sin x) dx 5 (3xy2 1 2y cos x) dy

10. (x3 1 y3) dx 1 3xy2 dy 5 0

11. (y ln y 2 e2xyxyx ) dxdxd 1 11
y

1 x ln y2 dydyd 5 0

12. (3x2y2y2 1 ey) dx 1 (x3 1 xey 2 2y) dy 5 0

13. x
dydyd

dxdxd
5 2x2x2 ex 2 y 1 6x2

14. 11 2
3
y

1 x2 dy

dxdxd
1 y 5

3
x

2 1

15. 1x2y3 2
1

1 1 9x22 dxdxd

dydyd
1 x3y2 5 0

16. (5y 2 2x2x2 )y9 2 2y 5 0

17. (tan x 2 sin x sin x sin x y) dx 1 cos x cos x cos x y dy 5 0

18. (2y2y2 sin x cos x 2 y 1 2y2y2 2exy2
) dxdxd

5 (x 2 sin2 x 2 4xyexy2
) dydyd

19. (4t3y 2 15t2 2 y) dt 1 (t4t4t 1 3y2 2 t) dy 5 0

20. 11

t
1

1

t2
2

y

t2 1 y22 dt 1 1yey 1
t

t2 1 y22 dydyd 5 0

In Problems 21–26 solve the given initial-value problem.

21. (x 1 y)2 dx 1 (2xy(2xy(2 1 x2 2 1) dy 5 0, y(1) 5 1

22. (ex 1 y) dx 1 (2 1 x 1 yey) dy 5 0, y(0) 5 1

23. (4y 1 2t 2 5) dt 1 (6y 1 4t 2 1) dy 5 0, y(21) 5 2

24. 13y2 2 t2

y5 2 dydyd

dt
1

t

2y2y2 4 5 0, y(1) 5 1

25. (y2 cos x 2 3x2y2y2 2 2x2x2 ) dx

1 (2y sin x 2 x3 1 ln y) dy 5 0, y(0) 5 e

26. 1 1

1 1 y2 1 cos x 2 2xy2 dydyd

dxdxd
5 y(y 1 sin x), y(0) 5 1

In Problems 27 and 28 �nd the value of k so that the given differential k so that the given differential k
equation is exact.

27. (y3 1 kxy4 2 2x2x2 ) dx 1 (3xy2 1 20x20x20 2y2y2 3) dy 5 0

28. (6xy3 1 cos y) dx 1 (2kx2y2y2 2 2 x sin x sin x y) dy 5 0

In Problems 29 and 30 verify that the given differential equation is not 
exact. Multiply the given differential equation by the indicated inte-
grating factor �(x(x( , y) and verify that the new equation is exact. Solve.

29. (2xy sin x 1 2y cos x) dx 1 2x2x2  cos x cos x x dy 5 0;
�(x, y) 5 xy

REMARKS

(i) When testing an equation for exactness, make sure it is of the precise form 
M(x, y) dx 1 N(N(N x, y) dydyd 5 0. Sometimes a differential equation is written 
G(x, y) dx 5 H(x, y) dy. In this case, �rst rewrite it as G(x, y) dx 2
H(x, y) dy 5 0 and then identify M(x, y) 5 G(x, y) and N(N(N x, y) 5 2H(x, y) 
before using (4).

(ii) In some texts on differential equations the study of exact equations 
precedes that of linear DEs. Then the method for �nding integrating factors just 
discussed can be used to derive an integrating factor for y9 1 P(x)y 5 f (x). By 
rewriting the last equation in the differential form (P(x)y 2 f (x)) dx 1 dy 5 0, 
we see that

MyMyM 2 NxNxN

N
5 P(x).

From (13) we arrive at the already familiar integrating factor eeP(x)dx used in dx used in dx

Section 2.3.
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44. True or False: Every separable �rst-order equation 
dyydx 5 g(x)h(y) is exact.

Mathematical Model
45. Falling Chain A portion of a uniform chain of length 8 ft is 

loosely coiled around a peg at the edge of a high horizontal 
platform, and the remaining portion of the chain hangs at rest over 
the edge of the platform. See Figure 2.4.2. Suppose that the length 
of the overhanging chain is 3 ft, that the chain weighs 2 lb/ft, and 
that the positive direction is downward. Starting at t 5 0 seconds, 
the weight of the overhanging portion causes the chain on the 
table to uncoil smoothly and to fall to the �oor. If x(t) denotes t) denotes t
the length of the chain overhanging the table at time t . 0, then 
v 5 dxydt is its dt is its dt velocity. When all resistive forces are ignored, it 
can be shown that a mathematical model relating v to x is given byx is given byx

xv
dvdvd

dxdxd
1 v2 5 32x.

(a) Rewrite this model in differential form. Proceed as in  
Problems 31–36 and solve the DE for v in terms of x by x by x
�nding an appropriate integrating factor. Find an explicit 
solution v(x).

(b) Determine the velocity with which the chain leaves the 
platform.

x(t)

platform edge

pepegg

FIGURE 2.4.2 Uncoiling chain in Problem 45

30. (x2 1 2xy2xy2 2 y2) dx 1 (y2 1 2xy2xy2 2 x2) dy 5 0;
�(x, y) 5 (x 1 y)22

In Problems 31–36 solve the given differential equation by �nding, 
as in Example 4, an appropriate integrating factor.

31. (2y2 1 3x) dx 1 2xy dy2xy dy2 5 0

32. y(x 1 y 1 1) dx 1 (x 1 2y) dy 5 0

33. 6xy dx 1 (4y 1 9x2) dy 5 0

34. cos x dxdxd 1 11 1
2
y2 sin x dydyd 5 0

35. (10 2 6y 1 e23x) dx 2 2 dy 5 0

36. (y2 1 xy3) dx 1 (5y2 2 xy 1 y3 sin y) dy 5 0

In Problems 37 and 38 solve the given initial-value problem by 
�nding, as in Example 4, an appropriate integrating factor.

37. x dx 1 (x2y2y2 1 4y) dy 5 0, y(4) 5 0

38. (x2 1 y2 2 5) dx 5 (y 1 xy) dy, y(0) 5 1

39. (a) Show that a one-parameter family of solutions of the 
equation

(4xy 1 3x2) dx 1 (2y 1 2x2x2 2) dy 5 0

is x3 1 2x2x2 2y2y2 1 y2 5 c.

(b) Show that the initial conditions y(0) 5 22 and  
y(1) 5 1 determine the same implicit solution.

(c) Find explicit solutions y1(x) and y2(x) of the differential ) of the differential ) of the dif
equation in part (a) such that y1(0) 5 22 and y2(1) 5 1. 
Use a graphing utility to graph y1(x) and y2(x).

Discussion Problems
40. Consider the concept of an integrating factor used in  

Problems 29–38. Are the two equations M dx 1 N dy 5 0  
and �M dx 1 �N dy 5 0 necessarily equivalent in the sense 
that a solution of one is also a solution of the other? Discuss.

41. Reread Example 3 and then discuss why we can conclude that 
the interval of de�nition of the explicit solution of the IVP (the 
blue curve in Figure 2.4.1) is (21, 1).

42. Discuss how the functions M(x, y) and N(N(N x, y) can be found so 
that each differential equation is exact. Carry out your ideas.

(a) M(x, y) dxdxd 1 1xexy 1 2xy 1
1
x2 dydyd 5 0

(b) 1x21/2y1/2 1
x

x2 1 y2 dxdxd 1 N(x, y) dy 5 0

43. Differential equations are sometimes solved by having a  
clever idea. Here is a little exercise in cleverness: Although  
the differential equation (x 2 ÏxÏxÏ 2 1 y2Ï ) dx 1 y dy 5 0  
is not exact, show how the rearrangement  
(x dx 1 y dy)yÏxÏxÏ 2 1 y2Ï 5 dx and the observation  dx and the observation  dx
1
2 d(x2 1 y2) 5 x dx 1 y dy can lead to a solution.

Computer Lab Assignments
46. Streamlines

(a) The solution of the differential equation

2x2x2 yxyx

(x2 1 y2)2 dxdxd 1 31 1
y2 2 x2

(x2 1 y2)24 dydyd 5 0

is a family of curves that can be interpreted as streamlines 
of a �uid �ow around a circular object whose boundary is 
described by the equation x2 1 y2 5 1. Solve this DE and 
note the solution f (x, y) 5 c for c 5 0.

(b) Use a CAS to plot the streamlines for c 5 0, 60.2, 60.4, 
60.6, and 60.8 in three different ways. First, use the 
contourplot of a CAS. Second, solve for x in terms of 
the variable y. Plot the resulting two functions of y
for the given values of c, and then combine the graphs. 
Third, use the CAS to solve a cubic equation for y
in terms of x.
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INTRODUCTION We usually solve a differential equation by recognizing it as a 
certain kind of equation (say, separable, linear, exact, and so on) and then carrying 
out a procedure consisting of equation-speci�c mathematical steps (say, separating 
variables and integrating) that yields a solution of the equation. But it is not 
uncommon to be stumped by a differential equation because it does not fall into one 
of the classes of equations that we know how to solve. The substitution procedures 
that are discussed in this section may be helpful in this situation.

SUBSTITUTIONS Often the first step in solving a differential equation con-
sists of transforming it into another differential equation by means of a substi-
tution. For example, suppose we wish to transform the first-order differential 
equation dyydx 5 f (x, y) by the substitution y 5 g(x, u), where u is regarded 
as a function of the variable x. If g possesses first-partial derivatives, then the 
Chain Rule

dydyd

dxdxd
5

−g

−x

dxdxd

dxdxd
1

−g

−u

du

dxdxd
gives

dydyd

dxdxd
5 gx(x, u) 1 gu(x, u) 

du

dxdxd
.

If we replace dyydx by the foregoing derivative and replace dx by the foregoing derivative and replace dx y in f (x, y) by g(x, u), then

the DE dyydx 5 f (x, y) becomes gx(x, u) 1 gu(x, u) 
du

dxdxd
5 f (x, g(x, u)), which, solved

for duydx, has the form 
du

dxdxd
5 F(x, u). If we can determine a solution u 5 �(x) of this 

last equation, then a solution of the original differential equation is y 5 g(x, �(x)).
In the discussion that follows we examine three different kinds of �rst-order 

differential equations that are solvable by means of a substitution.

HOMOGENEOUS EQUATIONS If a function f possesses the property f possesses the property f f (tx, ty) 5 
 t�f (x, y) for some real number �, then f is said to be a f is said to be a f homogeneous function of 
degree �. For example, f (x, y) 5 x3 1 y3 is a homogeneous function of degree 3, 
since

f (tx, ty) 5 (tx)3 1 (ty)3 5 t3(x3 1 y3) 5 t3f3f3 (x, y),

whereas f (x, y) 5 x3 1 y3 1 1 is not homogeneous. A �rst-order DE in differential 
form

M(x, y) dx 1 N(x, y) dy 5 0 (1)

is said to be homogeneous if both coef�cient functions M and M and M N are homogeneous N are homogeneous N
functions of the same degree. In other words, (1) is homogeneous if

M(tx, ty) 5 t�t�t M(x, y) and N(N(N tx, ty) 5 t�t�t N(N(N x, y).

In addition, if M and M and M N are homogeneous functions of degree N are homogeneous functions of degree N �, we can also write

M(x, y) 5 x�M(1, u) and N(N(N x, y) 5 x�N(1N(1N , u), where u 5 yyx, (2)

and

M(x, y) 5 y�M(v, 1) and N(N(N x, y) 5 y�N(N(N v, 1), where v 5 xyy. (3)

See Problem 31 in Exercises 2.5. Properties (2) and (3) suggest the substitutions 
that can be used to solve a homogeneous differential equation. Speci�cally, either
of the substitutions y 5 ux or ux or ux x 5 vy, where u and v are new dependent vari-
ables, will reduce a homogeneous equation to a separable �rst-order differential 

2.5 S Solutions by Substitutions
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equation. To show this, observe that as a consequence of (2) a homogeneous equation 
M(x, y) dx 1 N(N(N x, y) dy 5 0 can be rewritten as

x�M(1, u) dxdxd 1 x�N(1N(1N , u) dydyd 5 0 or M(1, u) dxdxd 1 N(1N(1N , u) dydyd 5 0,

where u 5 yyx or x or x y 5 ux. By substituting the differential dy 5 u dx 1 x du into the 
last equation and gathering terms, we obtain a separable DE in the variables u and x:

M(1, u) dxdxd 1 N(1N(1N , u)[u dxdxd 1 x du] 5 0

[M(1, u) 1 uN(1N(1N , u)] dxdxd 1 xN(1N(1N , u) du 5 0

or
dxdxd
x

1
N(1N(1N , u) du

M(1, u) 1 uN(1N(1N , u)
5 0.

At this point we offer the same advice as in the preceding sections: Do not memorize 
anything here (especially the last formula); rather, work through the procedure each 
time. The proof that the substitutions x 5 vy and dx 5 v dy 1 y dv also lead to a 
separable equation follows in an analogous manner from (3).

EXAMPLE 1 Solving a Homogeneous DE

Solve (x2 1 y2) dx 1 (x2 2 xy) dy 5 0.

SOLUTION Inspection of M(x, y) 5 x2 1 y2 and N(N(N x, y) 5 x2 2 xy shows that 
these coef�cients are homogeneous functions of degree 2. If we let y 5 ux, then 
dy 5 u dx 1 x du, so after substituting, the given equation becomes

(x2 1 u2x2x2 2) dxdxd 1 (x2 2 uxuxu 2)[u dxdxd 1 x du] 5 0

x2(1 1 u) dxdxd 1 x3(1 2 u) du 5 0

1 2 u

1 1 u
du 1

dxdxd
x

5 0

321 1
2

1 1 u4 du 1
dxdxd
x

5 0.

After integration the last line gives

2u 1 2 lnu 1 1 u u 1 lnux u 5 lnuc u

2
y

x
1 2 ln u1 1

y

x u 1 lnux u 5 lnucu.

Using the properties of logarithms, we can write the preceding solution as

lnu (x 1 y)2

cxcxc u 5
y

x
or (x 1 y)2 5 cxcxc ey/x/x/ . .

Although either of the indicated substitutions can be used for every homoge-
neous differential equation, in practice we try x 5 vy whenever the function M(x, y) 
is simpler than N(N(N x, y). Also it could happen that after using one substitution, we may 
encounter integrals that are dif�cult or impossible to evaluate in closed form; switch-
ing substitutions may result in an easier problem.

BERNOULLI’S EQUATION The differential equation

dy

dx
1 P(x)y 5 f (x)yn, (4)

where n is any real number, is called Bernoulli’s equation. Note that for n 5 0 and 
n 5 1, equation (4) is linear. For n Þ 0 and n Þ 1 the substitution u 5 y12n reduces 
any equation of form (4) to a linear equation.

; long division

; resubstituting u 5 yyx
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EXAMPLE 2 Solving a Bernoulli DE

Solve x
dydyd

dxdxd
1 y 5 x2y2.

SOLUTION We begin by rewriting the equation in the form given in (4) by dividing 
by x:

dydyd

dxdxd
1

1
x

y 5 xy2.

With n 5 2 we have u 5 y21 or y 5 u21. We then substitute

dydyd

dxdxd
5

dydyd

du

du

dxdxd
5 2u22 du

dxdxd

into the given equation and simplify. The result is

du

dxdxd
2

1
x

u 5 2x.

The integrating factor for this linear equation on, say, (0, `) is

e2e dx/x/x x/x/ 5 e2ln x 5 eln x21
5 x21.

Integrating
d

dxdxd
 [ [x21u] 5 21

gives x21u 5 2x 1 c or u 5 2x2 1 cx. Since u 5 y21, we have y 5 1yu, so a solu-
tion of the given equation is y 5 1y(2x2 1 cx). .

Note that we have not obtained the general solution of the original nonlinear dif-Note that we have not obtained the general solution of the original nonlinear dif-Note that we have not obtained the general solution of the original nonlinear dif
ferential equation in Example 2, since y 5 0 is a singular solution of the equation.

REDUCTION TO SEPARATION OF VARIABLES A differential equation of the 
form

dy

dx
5 f(Ax 1 By 1 C) (5)

can always be reduced to an equation with separable variables by means of the sub-
stitution u 5 Ax 1 By 1 C, B Þ 0. Example 3 illustrates the technique.

EXAMPLE 3 An Initial-Value Problem

Solve
dydyd

dxdxd
5 (22x2x2 1 y)2 2 7, y(0) 5 0.

SOLUTION If we let u 5 22x2x2 1 y, then duydx 5 22 1 dyydx, so the differential 
equation is transformed into

du

dxdxd
1 2 5 u2 2 7 or

du

dxdxd
5 u2 2 9.

The last equation is separable. Using partial fractions

du

(u 2 3)(u 1 3)
5 dxdxd or

1

6 3 1

u 2 3
2

1

u 1 34 du 5 dxdxd

; Chain Rule
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and then integrating yields

1

6
 l lnu u 2 3

u 1 3 u 5 x 1 c1 or
u 2 3

u 1 3
5 e6x16c1 5 ce6x. 

Solving the last equation for u and then resubstituting gives the solution

u 5
3(1 1 ce6x)

1 2 ce6x or y 5 2x2x2 1
3(1 1 ce6x)

1 2 ce6x . (6)

Finally, applying the initial condition y(0) 5 0 to the last equation in (6) gives 
c 5 21. Figure 2.5.1, obtained with the aid of a graphing utility, shows the graph of 

the particular solution y 5 2x 1
3(1 2 e6x)

1 1 e6x  in blue, along with the graphs of some 

other members of the family of solutions (6). .

EXERCISES 2.5 Answers to selected odd-numbered problems begin on page ANS-2.

Each DE in Problems 1–14 is homogeneous.

In Problems 1–10 solve the given differential equation by using an 
appropriate substitution.

1. (x 2 y) dx 1 x dy 5 0 2. (x 1 y) dx 1 x dy 5 0

3. x dx 1 (y 2 2x2x2 ) dy 5 0 4. y dx 5 2(x 1 y) dy 

5. (y2 1 yx) dx 2 x2 dy 5 0

6. (y2 1 yx) dx 1 x2 dy 5 0

7.
dydyd

dxdxd
5

y 2 x

y 1 x

8.
dy

dxdxd
5

x 1 3y

3x 1 y

9. 2y dxdxd 1 _x_x_ 1 ÏxÏxÏ yÏ + dy 5 0

10. x
dy

dxdxd
5 y 1 ÏxÏxÏ 2 2 y2Ï , x . 0

In Problems 11–14 solve the given initial-value problem.

11. xy2
dy

dxdxd
5 y3 2 x3, y(1) 5 2

12. (x2 1 2y2y2 2)
dxdxd

dy
5 xy, y(21) 5 1

13. (x 1 yey/x/x/ ) dx 2 xey/x/x/  dyx dyx 5 0, y(1) 5 0

14. y dx 1 x(ln x 2 ln y 2 1) dy 5 0, y(1) 5 e

Each DE in Problems 15–22 is a Bernoulli equation.

In Problems 15–20 solve the given differential equation by using an 
appropriate substitution.

15. x
dydyd

dxdxd
1 y 5

1

y2 16.
dydyd

dxdxd
2 y 5 exy2

17.
dydyd

dxdxd
5 y (xy3 2 1) 18. x

dydyd

dxdxd
2 (1 1 x)y 5 xy2

19. t2
dydyd

dt
1 y2 5 ty 20. 3(1 1 t2)

dydyd

dt
5 2ty( y3 2 1)

In Problems 21 and 22 solve the given initial-value problem.

21. x2
dy

dxdxd
2 2xy 5 3y4, y(1) 5 1

2

22. y1/2
dy

dxdxd
1 y3/2 5 1, y(0) 5 4

Each DE in Problems 23–30 is of the form given in (5).

In Problems 23–28 solve the given differential equation by using an 
appropriate substitution.

23.
dy

dxdxd
5 (x 1 y 1 1)2 24.

dy

dxdxd
5

1 2 x 2 y

x 1 y

25.
dydyd

dxdxd
5 tan2(x 1 y) 26.

dy

dxdxd
5 sin(x 1 y)

27.
dy

dxdxd
5 2 1 ÏyÏyÏ 2 2x2x2 1 3Ï 28.

dy

dxdxd
5 1 1 ey2x15

In Problems 29 and 30 solve the given initial-value problem.

29.
dy

dxdxd
5 cos(x 1 y), y(0) 5 �y4

30.
dy

dxdxd
5

3x 1 2y2y2

3x 1 2y2y2 1 2
, y (21) 5 21

Discussion Problems
31. Explain why it is always possible to express any homogeneous 

differential equation M(x, y) dx 1 N(N(N x, y) dy 5 0 in the form

dydyd

dxdxd
5 F1 y

x2.
You might start by proving that

M(x, y) 5 x�M(1, yyx) and N(x, y) 5 x�N(1, yyx).

32. Put the homogeneous differential equation
(5x2 2 2y2) dx 2 xydy 5 0

into the form given in Problem 31.

x

y

FIGURE 2.5.1 Solutions of DE  
in Example 3

; replace e6c1 by c
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2.6 A Numerical Method

INTRODUCTION A differential equation can be a source of information. We 
started this chapter by observing that we could garner qualitative information from 
a �rst-order DE about its solutions even before we attempted to solve the equation. 
Then in Sections 2.2–2.5 we examined �rst-order DEs analytically—that is, we 
developed some procedures for obtaining explicit and implicit solutions. But a 
differential equation can possess a solution and yet it may not be possible to obtain 
it analytically. So to round out the picture of the different types of analyses of 
differential equations, we conclude this chapter with a method by which we can 
“solve” the differential equation numerically; this means that the DE is used as the 
foundation on which we construct an algorithm for approximating the unknown 
solution.

In this section we are going to develop only the simplest of numerical 
methods—a method that utilizes the idea that a tangent line can be used to approxi-
mate the values of a function in a small neighborhood of the point of tangency. A 
more extensive treatment of numerical methods for ordinary differential equations is 
given in Chapter 9.

USING THE TANGENT LINE Let us assume that the first-order initial-value 
problem

y9 5 f (x, y), y(x0) 5 y0 (1)

possesses a solution. One way of approximating this solution is to use tangent 
lines. For example, let y(x) denote the unknown solution of the �rst-order initial-
value problem y9 5 0.1ÏyÏyÏÏ 1 0.4x2, y(2) 5 4. The nonlinear differential equa-
tion in this  IVP cannot be solved directly by any of the methods considered in 

33. (a) Determine two singular solutions of the DE in Problem 10.

(b) If the initial condition y(5) 5 0 is as prescribed in  
Problem 10, then what is the largest interval I over which I over which I
the solution is de�ned? Use a graphing utility to graph the 
solution curve for the IVP.

34. In Example 3 the solution y(x) becomes unbounded as x : 6`. 
Nevertheless, y(x) is asymptotic to a curve as x : 2` and to 
a different curve as x : `. What are the equations of these 
curves?

35. The differential equation dyydx 5 P(x) 1 Q(x)y 1 R(x)y2 is 
known as Riccati’s equation.

(a) A Riccati equation can be solved by a succession of two 
substitutions provided that we know a provided that we know a provided particular solution 
y1 of the equation. Show that the substitution y 5 y1 1 u
reduces Riccati’s equation to a Bernoulli equation (4) with 
n 5 2. The Bernoulli equation can then be reduced to a  
linear equation by the substitution w 5 u21.

(b) Find a one-parameter family of solutions for the differential 
equation

dydyd

dxdxd
5 2

4

x2 2
1
x

y 1 y2

where y1 5 2yx is a known solution of the equation.x is a known solution of the equation.x

36. Determine an appropriate substitution to solve

xy9 5 y ln(xy).

Mathematical Models
37. Falling Chain In Problem 45 in Exercises 2.4 we saw that a 

mathematical model for the velocity v of a chain slipping off 
the edge of a high horizontal platform is

xv
dvdvd

dxdxd
1 v2 5 32x.

In that problem you were asked to solve the DE by converting 
it into an exact equation using an integrating factor. This time 
solve the DE using the fact that it is a Bernoulli equation.

38. Population Growth In the study of population dynamics 
one of the most famous models for a growing but bounded 
population is the logistic equation

dPdPd

dt
5 P(a 2 bP),

where a and b are positive constants. Although we will come 
back to this equation and solve it by an alternative method in 
Section 3.2, solve the DE this �rst time using the fact that it is a 
Bernoulli equation.
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Sections 2.2, 2.4, and 2.5; nevertheless, we can still �nd approximate numerical 
values of the unknown y(x). Speci�cally, suppose we wish to know the value of 
y(2.5). The IVP has a solution, and as the �ow of the direction �eld of the DE in 
Figure 2.6.1(a) suggests, a solution curve must have a shape similar to the curve 
shown in blue.

The direction �eld in Figure 2.6.1(a) was generated with lineal elements pass-
ing through points in a grid with integer coordinates. As the solution curve passes 
through the initial point (2, 4), the lineal element at this point is a tangent line with 
slope given by f (2, 4) 5 0.1Ï4Ï4ÏÏ 1 0.4(2)2 5 1.8. As is apparent in Figure 2.6.1(a) 
and the “zoom in” in Figure 2.6.1(b), when x is close to 2, the points on the solux is close to 2, the points on the solux -
tion curve are close to the points on the tangent line (the lineal element). Using the 
point (2, 4), the slope f (2, 4) 5 1.8, and the point-slope form of a line, we �nd that 
an equation of the tangent line is y 5 L(x), where L(x) 5 1.8x 1 0.4. This last equa-
tion, called a linearization of y(x) at x 5 2, can be used to approximate values of 
y(x) within a small neighborhood of x 5 2. If y1 5 L(x1) denotes the y-coordinate on 
the tangent line and y(x1) is the y-coordinate on the solution curve corresponding to 
an x-coordinate x1 that is close to x 5 2, then y(x1) ø y1. If we choose, say, x1 5 2.1, 
then y1 5 L(2.1) 5 1.8(2.1) 1 0.4 5 4.18, so y(2.1) ø 4.18.

2

(2, 4) slope
m 5 1.8

x

y

2

4

22

(a) direction �eld for y $ 0 (b) lineal element at (2, 4)lineal element at (2, 4)lineal element at (2,

e
solution
curvecurve

FIGURE 2.6.1 Magni�cation of a neighborhood about the point (2, 4)

solution curve

x

y

x1 5 1x5 1x5 105 105 1hx0

L(x)

(x0, y0)
(x1, y1)

h

(x1, y(x1))

slopeslope 5 f(x0, y0)

error

FIGURE 2.6.2 Approximating y(x1) using 
a tangent line

EULER’S METHOD To generalize the procedure just illustrated, we use the 
linearization of the unknown solution y(x) of (1) at x 5 x0:

L(x) 5 y0 1 f (x0, y0)(x 2 x0). (2)

The graph of this linearization is a straight line tangent to the graph of y 5 y(x) at 
the point (x0, y0). We now let h be a positive increment of the x-axis, as shown in 
Figure 2.6.2. Then by replacing x by x by x x1 5 x0 1 h in (2), we get

L(x1) 5 y0 1 f (x0, y0)(x0 1 h 2 x0) or y1 5 y0 1 h f (x1, y1),

where y1 5 L(x1). The point (x1, y1) on the tangent line is an approximation to the 
point (x1, y(x1)) on the solution curve. Of course, the accuracy of the approxima-
tion  L(x1) ø y(x1) or y1 ø y(x1) depends heavily on the size of the increment h.
Usually, we must choose this step size to be “reasonably small.” We now repeat the 
process using a second “tangent line” at (x1, y1).* By identifying the new starting 

*This is not an actual tangent line, since (x1, y1) lies on the �rst tangent and not on the solution curve.
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point as (x1, y1) with (x0, y0) in the above discussion, we obtain an approximation 
y2 ø y(x2) corresponding to two steps of length h from x0, that is, x2 5 x1 1 h 5
x0 1 2h, and

y(x2) 5 y(x0 1 2h) 5 y(x1 1 h) < y2 5 y1 1 hfhfh  (f (f x1, y1).

Continuing in this manner, we see that y1, y2, y3, . . . , can be de�ned recursively by 
the general formula

yn11 5 yn 1 hf (xn, yn), (3)

where xn 5 x0 1 nh, n 5 0, 1, 2, . . . . This procedure of using successive “tangent 
lines” is called Euler’s method.

EXAMPLE 1 Euler’s Method

Consider the initial-value problem y9 5 0.1ÏyÏyÏÏ 1 0.4x2, y(2) 5 4. Use Euler’s 
method to obtain an approximation of y(2.5) using �rst h 5 0.1 and then h 5 0.05.

SOLUTION With the identi�cation f (x, y) 5 0.1ÏyÏyÏÏ 1 0.4x2, (3) becomes

yn11 5 yn 1 h_0.1ÏyÏyÏ nÏ 1 0.4xn
2+.

Then for h 5 0.1, x0 5 2, y0 5 4, and n 5 0 we �nd

y1 5 y0 1 h_0.1ÏyÏyÏ 0Ï 1 0.4x0
2+ 5 4 1 0.1_0.1Ï4Ï4ÏÏ 1 0.4(2)2+ 5 4.18,

which, as we have already seen, is an estimate to the value of y(2.1). However, if we 
use the smaller step size h 5 0.05, it takes two steps to reach x 5 2.1. From

y1 5 4 1 0.05_0.1Ï4Ï4ÏÏ 1 0.4(2)2+ 5 4.09

y2 5 4.09 1 0.05_0.1Ï4Ï4Ï .09Ï 1 0.4(2.05)2+ 5 4.18416187

we have y1 ø y(2.05) and y2 ø y(2.1). The remainder of the calculations were 
carried out by using software. The results are summarized in Tables 2.6.1 and 2.6.2, 
where each entry has been rounded to four decimal places. We see in Tables 2.6.1 and 
2.6.2 that it takes �ve steps with h 5 0.1 and 10 steps with h 5 0.05, respectively, 
to get to x 5 2.5. Intuitively, we would expect that y10 5 5.0997 corresponding to 
h 5 0.05 is  the better approximation of y(2.5) than the value y5 5 5.0768 corre-
sponding to h 5 0.1. .

In Example 2 we apply Euler’s method to a differential equation for which we 
have already found a solution. We do this to compare the values of the approxima-
tions yn at each step with the true or actual values of the solution y(xn) of the initial-
value problem.

EXAMPLE 2 Comparison of Approximate and Actual Values

Consider the initial-value problem y9 5 0.2xy0.2xy0.2 , y(1) 5 1. Use Euler’s method to 
obtain an approximation of y(1.5) using �rst h 5 0.1 and then h 5 0.05.

SOLUTION With the identi�cation f (x, y) 5 0.2xy0.2xy0.2 , (3) becomes

yn11 5 yn 1 h(0.2x.2x.2 n yn)

where x0 5 1 and y0 5 1. Again with the aid of computer software we obtain the 
values in Tables 2.6.3 and 2.6.4 on page 79.

In Example 1 the true or actual values were calculated from the known solution 
y 5 e0.1(x(x( 221). (Verify.) The absolute error is de�ned to be

u actual value 2 approximation u.

TABLE 2.6.1 h 5 0.1

xn yn

2.00 4.0000
2.10 4.1800
2.20 4.3768
2.30 4.5914
2.40 4.8244
2.50 5.0768

TABLE 2.6.2 h 5 0.05

xn yn

2.00 4.0000
2.05 4.0900
2.10 4.1842
2.15 4.2826
2.20 4.3854
2.25 4.4927
2.30 4.6045
2.35 4.7210
2.40 4.8423
2.45 4.9686
2.50 5.0997
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The relative error and percentage relative error are, in turn,

absolute error

u actual value u
and

absolute error

u actual value u
3 100.

It is apparent from Tables 2.6.3 and 2.6.4 that the accuracy of the approximations 
improves as the step size h decreases. Also, we see that even though the percentage 
relative error is growing with each step, it does not appear to be that bad. But you 
should not be deceived by one example. If we simply change the coef�cient of the 
right side of the DE in Example 2 from 0.2 to 2, then at xn 5 1.5 the percentage 
relative errors increase dramatically. See Problem 4 in Exercises 2.6.

A CAVEAT Euler’s method is just one of many different ways in which a solution 
of a differential equation can be approximated. Although attractive for its sim-
plicity, Euler’s method is seldom used in serious calculations. It was introduced 
here simply to give you a first taste of numerical methods. We will go into greater 
detail in discussing numerical methods that give significantly greater accuracy, 
notably the fourth order Runge-Kutta method, referred to as the RK4 method,
in Chapter 9.

NUMERICAL SOLVERS Regardless of whether we can actually find an explicit 
or implicit solution, if a solution of a differential equation exists, it represents a 
smooth curve in the Cartesian plane. The basic idea behind any numerical method 
for  first-order ordinary differential equations is to somehow approximate the 
y-values of a  solution for preselected values of x. We start at a specified initial 
point (x0, y0) on a solution curve and proceed to calculate in a step-by-step fashion 
a sequence of points (x1, y1), (x2, y2), . . . , (xn, yn) whose y-coordinates yi approxi-
mate the y-coordinates y(xi) of points (x1, y(x1)), (x2, y(x2)), . . . , (xn, y(xn)) that 
lie on  the graph of the usually unknown solution y(x). By taking the x-coordi-
nates close together (that is, for small values of h) and by joining the points (x1, 
y1), (x2, y2), . . . , (xn, yn) with short line segments, we obtain a polygonal curve 
whose qualitative characteristics we hope are close to those of an actual solution 
curve. Drawing curves is something that is well suited to a computer. A computer 
program written to either implement a numerical method or render a visual rep-
resentation of an approximate solution curve fitting the numerical data produced 
by this method is  referred to as a numerical solver. Many different numerical 
solvers are commercially available, either embedded in a larger software package, 
such as a computer algebra system, or provided as a stand-alone package. Some 
software packages simply plot the generated numerical approximations, whereas 
others generate hard numerical data as well as the corresponding approximate or 

TABLE 2.6.3 h 5 0.1

xn yn Actual value Abs. error % Rel. error

1.00 1.0000 1.0000 0.0000 0.00
1.10 1.0200 1.0212 0.0012 0.12
1.20 1.0424 1.0450 0.0025 0.24
1.30 1.0675 1.0714 0.0040 0.37
1.40 1.0952 1.1008 0.0055 0.50
1.50 1.1259 1.1331 0.0073 0.64

TABLE 2.6.4 h 5 0.05

xn yn Actual value Abs. error % Rel. error

1.00 1.0000 1.0000 0.0000 0.00
1.05 1.0100 1.0103 0.0003 0.03
1.10 1.0206 1.0212 0.0006 0.06
1.15 1.0318 1.0328 0.0009 0.09
1.20 1.0437 1.0450 0.0013 0.12
1.25 1.0562 1.0579 0.0016 0.16
1.30 1.0694 1.0714 0.0020 0.19
1.35 1.0833 1.0857 0.0024 0.22
1.40 1.0980 1.1008 0.0028 0.25
1.45 1.1133 1.1166 0.0032 0.29
1.50 1.1295 1.1331 0.0037 0.32

.
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numerical solution curves. By way of illustration of the connect-the-dots nature 
of the graphs produced by a numerical solver, the two colored polygonal graphs 
in Figure 2.6.3 are the numerical solution curves for the initial-value problem 
y9 5 0.2xy, y(0) 5 1  on the  interval [0, 4] obtained from Euler’s method and 
the RK4 method using the step size h 5 1. The blue smooth curve is the graph of 
the exact solution y 5 e0.1x2

 of the IVP. Notice in Figure 2.6.3 that, even with the 
ridiculously large step size of h 5 1, the RK4 method produces the more believable 
“solution curve.” The numerical solution curve obtained from the RK4 method is 
indistinguishable from the actual solution curve on the interval [0, 4] when a more 
typical step size of h 5 0.1 is used.

USING A NUMERICAL SOLVER Knowledge of the various numerical methods is 
not necessary in order to use a numerical solver. A solver usually requires that 
the differential equation be expressed in normal form the differential equation be expressed in normal form the dif dyydx 5 f (x, y). Numerical 
solvers that generate only curves usually require that you supply f (x, y) and the 
initial data x0 and y0 and specify the desired numerical method. If the idea is to 
approximate the numerical value of y(a), then a solver may additionally require 
that you state a value for h or, equivalently, give the number of steps that you want 
to take to get from x 5 x0 to x 5 a. For example, if we wanted to approximate y(4) 
for the IVP illustrated in Figure 2.6.3, then, starting at x 5 0 it would take four 
steps to reach x 5 4 with a step size of h 5 1; 40 steps is equivalent to a step size 
of h 5 0.1. Although we will not delve here into the many problems that one can 
encounter when attempting to approximate mathematical quantities, you should at 
least be aware of the fact that a  numerical solver may break down near certain 
points or give an incomplete or misleading picture when applied to some first-order 
differential equations in the normal form. Figure 2.6.4 illustrates the graph 
obtained by applying Euler’s method to a certain first-order initial-value problem 
dyydx 5 f (x, y), y(0) 5 1. Equivalent results were obtained using three different 
commercial numerical solvers, yet the graph is hardly a plausible solution curve. 
(Why?) There are several avenues of recourse when a numerical solver has difficul-
ties; three of the more obvious are decrease the step size, use another numerical 
method, and try a different numerical solver.

FIGURE 2.6.4 A not-very helpful 
numerical solution curve
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FIGURE 2.6.3 Comparison of the  
Runge-Kutta (RK4) and Euler methods

EXERCISES 2.6 Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1 and 2 use Euler’s method to obtain a four-decimal 
approximation of the indicated value. Carry out the recursion of 
(3) by hand, �rst using h 5 0.1 and then using h 5 0.05.

1. y9 5 2x2x2 2 3y 1 1, y(1) 5 5; y(1.2)

2. y9 5 x 1 y2, y(0) 5 0; y(0.2)

In Problems 3 and 4 use Euler’s method to obtain a four-decimal 
approximation of the indicated value. First use h 5 0.1 and then use 
h 5 0.05. Find an explicit solution for each initial-value problem and 
then construct tables similar to Tables 2.6.3 and 2.6.4.

3. y9 5 y, y(0) 5 1; y(1.0)

4. y9 5 2xy2xy2 , y(1) 5 1; y(1.5)

In Problems 5–10 use a numerical solver and Euler’s method to ob-
tain a four-decimal approximation of the indicated value. First use 
h 5 0.1 and then use h 5 0.05.

5. y9 5 e2y, y(0) 5 0; y(0.5)

6. y9 5 x2 1 y2, y(0) 5 1; y(0.5)

7. y9 5 (x 2 y)2, y(0) 5 0.5; y(0.5)

8. y9 5 xy 1 ÏyÏyÏÏ , y(0) 5 1; y(0.5)

9. y9 5 xy2 2
y

x
, y(1) 5 1; y(1.5)

10. y9 5 y 2 y2, y(0) 5 0.5; y(0.5)

In Problems 11 and 12 use a numerical solver to obtain a numerical 
solution curve for the given initial-value problem. First use Euler’s 
method and then the RK4 method. Use h 5  0.25 in each case. 
Superimpose both solution curves on the same coordinate axes. If 
possible, use a different color for each curve. Repeat, using h 5 0.1 
and h 5 0.05.

11. y9 5 2(cos x)y, y(0) 5 1

12. y9 5 y(10 2 2y), y(0) 5 1
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Answer Problems 1–12 without referring back to the text. Fill in the 
blanks or answer true or false.

1. The linear DE, y9 2 ky 5 A, where k and k and k A are constants,  
is autonomous. The critical point  of the equation 
is a(n)  (attractor or repeller) for k . 0 and  
a(n)  (attractor or repeller) for k , 0.

2. The initial-value problem x
dydyd

dxdxd
2 4y 5 0, y(0) 5 k, has an 

in�nite number of solutions for k 5  and no 
solution for k 5 .

3. The linear DE, y9 1 k1y 5 k2, where k1 and k2 are nonzero 
constants, always possesses a constant solution. 

4. The linear DE, a1(x)y9 1 a0(x)y 5 0 is also separable. 

5. An example of a nonlinear third-order differential equation  
in normal form is .

6. The �rst-order DE, 
dr

d�
5 r� 1 r 1 � 1 1 is not separable. 

7. Every autonomous DE dydyd ydxdxd 5 f (y) is separable. 

8. By inspection, two solutions of the differential equation 

y9 1 uy u 5 2 are .

9. If y9 5 exyxyx , then y 5 .

10. If a differentiable function y(x) satis�es y9 5 ux u, y(21) 5 2,

then y(x) 5 .

11. y 5 ecos x#x

0
#

0
# te2cos t dt is a solution of the linear �rst-order t is a solution of the linear �rst-order t

differential equation .

12. An example of an autonomous linear �rst-order DE with  
a single critical point 23 is , whereas an 
autonomous nonlinear �rst-order DE with a single critical  
point 23 is .

In Problems 13 and 14 construct an autonomous �rst-order 
differential equation dyydx 5 f (y) whose phase portrait is consistent 
with the given �gure.

Chapter 2 In Review Answers to selected odd-numbered problems begin on page ANS-3.

13.  14.

1

3

y

FIGURE 2.R.1 Graph for  
Problem 13

0

2

4

y

FIGURE 2.R.2 Graph for  
Problem 14

15. The number 0 is a critical point of the autonomous differential 
equation dxydt 5 xn, where n is a positive integer. For what 
values of n is 0 asymptotically stable? Semi-stable? Unstable? 
Repeat for the differential equation dxydt 5 2xn.

16. Consider the differential equation dPdPd ydt 5 f (P), where

f (P) 5 20.5P3 2 1.7P 1 3.4.

The function f (P) has one real zero, as shown in Figure 2.R.3. 
Without attempting to solve the differential equation, estimate 
the value of limt S ` P(t).

P1

1

f

FIGURE 2.R.3 Graph for Problem 16

17. Figure 2.R.4 is a portion of a direction �eld of a differential 
equation dyydx 5 f (x, y). By hand, sketch two different 
solution curves—one that is tangent to the lineal element 
shown in black and one that is tangent to the lineal element 
shown in red.

Discussion Problems
13. Use a numerical solver and Euler’s method to approximate 

y(1.0), where y(x) is the solution to y9 5 2xy2xy2 2, y(0) 5 1. First 
use h 5 0.1 and then use h 5 0.05. Repeat, using the RK4 
method. Discuss what might cause the approximations to y(1.0) 
to differ so greatly.

Computer Lab Assignments
14. (a)  Use a numerical solver and the RK4 method to graph 

the solution of the initial-value problem y9 5 22xy2xy2 1 1, 
y(0) 5 0.

(b) Solve the initial-value problem by one of the analytic  
procedures developed earlier in this chapter.

(c) Use the analytic solution y(x) found in part (b) and a CAS 
to �nd the coordinates of all relative extrema.
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18. Classify each differential equation as separable, exact, linear, 
homogeneous, or Bernoulli. Some equations may be more than 
one kind. Do not solve.

(a)
dydyd

dxdxd
5

x 2 y

x
(b)

dydyd

dxdxd
5

1
y 2 x

(c) (x 1 1)
dydyd

dxdxd
5 2y 1 10 (d)

dydyd

dxdxd
5

1

x(x 2 y)

(e)
dydyd

dxdxd
5

y2 1 y

x2 1 x
(f)

dydyd

dxdxd
5 5y 1 y2

(g) y dx 5 (y 2 xy2) dy (h) x
dydyd

dxdxd
5 yex/y 2 x

(i) xy y9 1 y2 5 2x2x2 (j) 2xy y2xy y2 9 1 y2 5 2x2x2 2

(k) y dx 1 x dy 5 0

(l) 1x2 1
2y2y2

x 2 dxdxd 5 (3 2 ln x2) dydyd

(m)
dydyd

dxdxd
5

x

y
1

y

x
1 1 (n)

y

x2

dydyd

dxdxd
1 e2x31y2

5 0

In Problems 19–26 solve the given differential equation.

19. (y2 1 1) dx 5 y sec2 x dy

20. y(ln x 2 ln y) dx 5 (x ln x ln x x 2 x ln x ln x y 2 y) dy

21. (6x 1 1)y2
dydyd

dxdxd
1 3x2 1 2y2y2 3 5 0

22.
dxdxd

dydyd
5 2

4y2 1 6xy

3y2 1 2x

23. t
dQ

dt
1 Q 5 t4 ln t

24. (2x(2x(2 1 y 1 1)y9 5 1

25. (x2 1 4) dy 5 (2x(2x(2 2 8xy) dx

26. (2r2r2r  cos � sin � 1 r cos r cos r �) d�

1 (4r 1 sin � 2 2r cosr cosr 2 �) dr 5 0

In Problems 27–30 express the solution of the given initial-value 
problem in terms of an integral-de�ned function.

27. 2
dydyd

dxdxd
1 (4 cos x)y 5 x, y(0) 5 1

28.
dy

dxdxd
2 4xy 5 sin x2, y(0) 5 7

29. x
dy

dxdxd
1 2y2y2 5 xex2

, y(1) 5 3

30. x
dy

dxdxd
1 (sin x)y 5 0, y(0) 5 10

In Problems 31 and 32 solve the given initial-value problem.

31.
dydyd

dxdxd
1 y 5 f (x), y(0) 5 5, where

f (x) 5 5e2x, 0 # x , 1

0, x $ 1

32.
dydyd

dxdxd
1 P(x)y 5 ex, y(0) 5 21, where

P(x) 5 51, 0 # x , 1

21, x $ 1

In Problems 33 and 34 solve the given initial-value problem and give 
the largest interval I on which the solution is I on which the solution is I de�ned.

33. sin x
dydyd

dxdxd
1 (cos x)y 5 0, y(7�y6) 5 22

34.
dydyd

dt
1 2(t 1 1)y2 5 0, y(0) 5 21

8

35. (a) Without solving, explain why the initial-value problem

dydyd

dxdxd
5 ÏyÏyÏÏ , y(x0) 5 y0

has no solution for y0 , 0.

(b) Solve the initial-value problem in part (a) for y0 . 0 and 
�nd the largest interval I on which the solution is de�ned.I on which the solution is de�ned.I

36. (a) Find an implicit solution of the initial-value problem

dydyd

dxdxd
5

y2 2 x2

xy
, y(1) 5 2Ï2Ï .

(b) Find an explicit solution of the problem in part (a) and give 
the largest interval I over which the solution is de�ned. A I over which the solution is de�ned. A I
graphing utility may be helpful here.

37. Graphs of some members of a family of solutions for a �rst-order 
differential equation dyydx 5 f (x(x( , y) are shown in Figure 2.R.5. 
The graphs of two implicit solutions, one that passes through the 
point (1, 21) and one that passes through (21, 3), are shown 
in blue. Reproduce the �gure on a piece of paper. With colored 
pencils trace out the solution curves for the solutions y 5 y1(x(x( ) 
and y 5 y2(x(x( ) de�ned by the implicit solutions such that 

FIGURE 2.R.4 Portion of a direction �eld for Problem 17

x

y

FIGURE 2.R.5 Graph for Problem 37
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y1(1) 5 21 and y2(21) 5 3, respectively. Estimate the intervals 
on which the solutions y 5 y1(x(x( ) and y 5 y2(x(x( ) are de�ned.

38. Use Euler’s method with step size h 5 0.1 to approximate 
y(1.2), where y(x) is a solution of the initial-value problem 
y9 5 1 1 xÏyÏyÏÏ , y(1) 5 9.

In Problems 39 and 40 each �gure represents a portion of a direction 
�eld of an autonomous �rst-order differential equation dyydx 5 f (y). 
Reproduce the �gure on a separate piece of paper and then com-
plete the direction �eld over the grid. The points of the grid are 
(mh, nh), where h 5 1

2, m and n integers, 27 # m # 7, 27 # n # 7. 
In each direction �eld, sketch by hand an approximate solution curve 
that passes through each of the solid points shown in red. Discuss: 
Does it appear that the DE possesses critical points in the interval 
23.5 # y # 3.5? If so, classify the critical points as asymptotically 
stable, unstable, or semi-stable.

39.

40.

x

321212223

23

22

21

1

2

3

y

FIGURE 2.R.6 Portion of a direction �eld for Problem 39

FIGURE 2.R.7 Portion of a direction �eld for Problem 40

x

321212223

23

22

21

1

2

3

y
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3
Modeling with First-Order 
Differential Equations

 3.1 Linear Models
 3.2 Nonlinear Models
 3.3 Modeling with Systems of First-Order DEs

C H A P T E R  3  I N  R E V I E W

I n Section 1.3 we saw how a �rst-order differential equation could be used as 

a mathematical model in the study of population growth, radioactive decay, 

cooling of bodies, mixtures, chemical reactions, �uid draining from a tank, 

velocity of a falling body, and current in a series circuit. Using the methods 

discussed in Chapter 2, we are now able to solve some of the linear DEs in  

Section 3.1 and nonlinear DEs in Section 3.2 that frequently appear in applications.

Fotos593/Shutterstock.com
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INTRODUCTION In this section we solve some of the linear �rst-order models 
that were introduced in Section 1.3.

GROWTH AND DECAY The initial-value problem

dx

dt
5 kx, x(t0) 5 x0, (1)

where k is a constant of proportionality, serves as a model for diverse phenomena k is a constant of proportionality, serves as a model for diverse phenomena k
involving either growth or decay. We saw in Section 1.3 that in biological applica-
tions the rate of growth of certain populations (bacteria, small animals) over short 
periods of time is proportional to the population present at time t. Knowing the popu-
lation at some arbitrary initial time t0t0t , we can then use the solution of (1) to predict 
the population in the future—that is, at times t . t0t0t . The constant of proportionality 
k in (1) can be determined from the solution of the initial-value problem, using a k in (1) can be determined from the solution of the initial-value problem, using a k
subsequent measurement of x at a time x at a time x t1 . t0t0t . In physics and chemistry (1) is seen 
in the form of a �rst-order reaction—that is, a reaction whose rate, or velocity, dxydt
is directly proportional to the amount x of a substance that is unconverted or remainx of a substance that is unconverted or remainx -
ing at time t. The decomposition, or decay, of U-238 (uranium) by radioactivity into 
Th-234 (thorium) is a �rst-order reaction.

 EXAMPLE 1 Bacterial Growth

A culture initially has P0 number of bacteria. At t 5 1 h the number of bacteria 
is measured to be 3

2 P0. If the rate of growth is proportional to the number of bac-
teria P(t) present at time t, determine the time necessary for the number of bacteria 
to triple.

SOLUTION We �rst solve the differential equation in (1), with the symbol x replaced 
by P. With t0t0t 5 0 the initial condition is P(0) 5 P0. We then use the empirical 
observation that P(1) 5 3

2 P0 to determine the constant of proportionality k.
Notice that the differential equation dPydt 5 kP is both separable and linear. 

When it is put in the standard form of a linear �rst-order DE,

dPdPd

dt
2 kP 5 0,

we can see by inspection that the integrating factor is e2kt. Multiplying both sides of 
the equation by this term and integrating gives, in turn,

d

dt
 [ [e2ktPtPt ] 5 0 and e2ktPtPt 5 c.

Therefore P(t) 5 cekt. At t 5 0 it follows that P0 5 ce0 5 c, so P(t) 5 P0ekt. At t 5 1 
we have 3

2 P0 5 P0ek or ek 5 3
2. From the last equation we get k 5 ln 3

2 5 0.4055, so 
P(t) 5 P0e0.4055t. To �nd the time at which the number of bacteria has tripled, we 
solve 3P0 5 P0e0.4055t for t for t t. It follows that 0.4055t 5 ln 3, or

t 5
ln 3

0.4055
< 2.71 h.

See Figure 3.1.1. .

 3.1 Linear Models

t

P

3P0

P0

t 5  t 5  t 2.71 5  2.71 5  

P(t) 5 ) 5 ) P0e0.4055t

FIGURE 3.1.1 Time in which population 
triples in Example 1
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Notice in Example 1 that the actual number P0 of bacteria present at time t 5 0 
played no part in determining the time required for the number in the culture to triple. 
The time necessary for an initial population of, say, 100 or 1,000,000 bacteria to 
triple is still approximately 2.71 hours.

As shown in Figure 3.1.2, the exponential function ekt increases as kt increases as kt t increases t increases t
for k . 0 and decreases as t increases for t increases for t k , 0. Thus problems describing growth 
(whether of populations, bacteria, or even capital) are characterized by a positive 
value of k, whereas problems involving decay (as in radioactive disintegration) yield 
a negative k value. Accordingly, we say that k value. Accordingly, we say that k k is either a k is either a k growth constant (k . 0) or 
a decay constant (k , 0).

HALFLIFE In physics the half-life is a measure of the stability of a radioactive 
substance. The half-life is simply the time it takes for one-half of the atoms in 
an initial amount A0 to disintegrate, or transmute, into the atoms of another 
element. The longer the half-life of a substance, the more stable it is. For example, 
the half-life  of highly radioactive radium, Ra-226, is about 1700 years. In 1700 
years one-half of a given quantity of Ra-226 is transmuted into radon, Rn-222. The 
most commonly occurring uranium isotope, U-238, has a half-life of approximately 
4,500,000,000 years. In about 4.5 billion years, one-half of a quantity of U-238 is 
transmuted into lead, Pb-206.

 EXAMPLE 2 Half-Life of Plutonium

A breeder reactor converts relatively stable uranium-238 into the isotope plutonium- 
239. After 15 years it is determined that 0.043% of the initial amount A0 of plutonium 
has disintegrated. Find the half-life of this isotope if the rate of disintegration is 
proportional to the amount remaining.

SOLUTION Let A(t) denote the amount of plutonium remaining at time t. As in 
Example 1 the solution of the initial-value problem

dAdAd

dt
5 kA, A(0) 5 A0

is A(t) 5 A0ekt. If 0.043% of the atoms of A0 have disintegrated, then 99.957% of the 
substance remains. To �nd the decay constant k, we use 0.99957A0 5 A(15)—that is, 
0.99957A0 5 A0e15k. Solving for k then gives k then gives k k 5 1

15 ln 0.99957 5 20.00002867. 
Hence A(t) 5 A0e20.00002867t. Now the half-life is the corresponding value of time at 
which A(t) 5 1

2 A0. Solving for t gives t gives t 1
2 A0 5 A0e20.00002867t, or 12 5 e20.00002867t. The 

last equation yields

t 5
ln 2

0.00002867
< 24,180 yr. .

CARBON DATING About 1950, a team of scientists at the University of Chicago 
led by the chemist Willard Libby devised a method using a radioactive isotope 
of carbon as a means of determining the approximate ages of carbonaceous fossil-
ized matter. See Figure 3.1.3. The theory of carbon dating is based on the fact that 
the radioisotope carbon-14 is produced in the atmosphere by the action of cosmic 
radiation on nitrogen-14. The ratio of the amount of C-14 to the stable C-12 in the 
atmosphere appears to be a constant, and as a consequence the proportionate amount 
of the isotope present in all living organisms is the same as that in the atmosphere. 
When a living organism dies, the absorption of C-14, by breathing, eating, or photo-
synthesis, ceases. By comparing the proportionate amount of C-14, say, in a fossil 
with the constant amount ratio found in the atmosphere, it is possible to obtain a 
reasonable estimation of its age. The method is based on the knowledge of the 
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FIGURE 3.1.3 Willard Libby (1908–1980)
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ekt, k , k , k  0 ,  0 , 
decay
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FIGURE 3.1.2 Growth (k . 0) and  
decay (k , 0)
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half-life of C-14. Libby’s calculated value of the half-life of C-14 was approximately 
5600 years, and is called the Libby half-life. Today the commonly accepted value 
for the half-life of C-14 is the Cambridge half-life that is close to 5730 years. For 
his work, Libby was awarded the Nobel Prize for chemistry in 1960. Libby’s method 
has been used to date wooden furniture found in Egyptian tombs, the woven �ax 
wrappings of the Dead Sea Scrolls, a recently discovered copy of the Gnostic Gospel 
of Judas written on papyrus, and the cloth of the enigmatic Shroud of Turin. See 
Figure 3.1.4 and Problem 12 in Exercises 3.1.

EXAMPLE 3 Age of a Fossil

A fossilized bone is found to contain 0.1% of its original amount of C-14. Determine 
the age of the fossil.

SOLUTION As in Example 2 the starting point is A(t) 5 A0ekt. To determine the value 
of the decay constant k we use the fact that k we use the fact that k 1

2 A0 5 A(5730) or 1
2 A0 5 A0e5730k. The 

last equation implies 5730k 5 ln 1
2 5 2ln 2 and so we get k 5 2(ln 2)y5730 5

20.00012097. Therefore A(t) 5 A0e20.00012097t. With A(t) 5 0.001A0 we have 
0.001A0 5 A0e20.00012097t and t and t 20.00012097t 5 ln(0.001) 5 2ln 1000. Thus

t 5
ln 1000

0.00012097
< 57,100 years. .

The age found in Example 3 is really at the border of accuracy of this method. 
The usual carbon-14 technique is limited to about 10 half-lives of the isotope, or 
roughly 60,000 years. One fundamental reason for this limitation is the relatively 
short half-life of C-14. There are other problems as well: The chemical analysis 
needed to obtain an accurate measurement of the remaining C-14 becomes somewhat 
formidable around the point 0.001A0. Moreover, this analysis requires the destruc-
tion of a rather large sample of the specimen. If this measurement is accomplished 
indirectly, based on the actual radioactivity of the specimen, then it is very dif�-
cult to distinguish between the radiation from the specimen and the normal back-
ground radiation. But recently the use of a particle accelerator has enabled scientists 
to separate the C-14 from the stable C-12 directly. When the precise value of the 
ratio of C-14 to C-12 is computed, the accuracy of the dating method can be ex-
tended to 70,000–100,000 years. For these reasons and the fact that the C-14 dating 
is restricted to organic materials, this method is used mainly by archeologists. On the 
other hand, geologists who are interested in questions about the age of rocks or the 
age of the Earth use radiometric-dating techniques. Radiometric dating, invented 
by the physicist chemist Ernest Rutherford (1871–1937) around 1905, is based on 
the radioactive decay of a naturally occurring radioactive isotope with a very long 
half-life and a comparison between a measured quantity of this decaying isotope 
and one of its decay products using known decay rates. Radiometric methods using 
potassium-argon, rubidium-strontium, or uranium-lead can give ages of certain kinds 
of rocks of several billion years. See Problems 5 and 6 in Exercises 3.3 for a brief 
discussion of the potassium-argon method of dating.

NEWTON’S LAW OF COOLING/WARMING In equation (3) of Section 1.3 we saw 
that the mathematical formulation of Newton’s empirical law of cooling/warming of 
an object is given by the linear �rst-order differential equation

dT

dt
5 k(T 2 Tm), (2)

where k is a constant of proportionality, k is a constant of proportionality, k T(T(T t) is the temperature of the object for t . 0, 
and TmTmT  is the ambient temperature—that is, the temperature of the medium around 
the object. In Example 4 we assume that TmTmT  is constant.

The size and location of the 
sample caused major difficulties 
when a team of scientists were 
invited to use carbon-14 dating 
on the Shroud of Turin in 1988.

The half-life of uranium-238 
is about 4.47 billion years.

FIGURE 3.1.4 A page of the Gnostic 
Gospel of Judas
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EXAMPLE 4 Cooling of a Cake

When a cake is removed from an oven, its temperature is measured at 300° F. Three 
minutes later its temperature is 200° F. How long will it take for the cake to cool off 
to a room temperature of 70° F?

SOLUTION In (2) we make the identi�cation TmTmT 5 70. We must then solve the 
initial-value problem

dT

dt
5 k(T 2 70), T(0T(0T ) 5 300 (3)

and determine the value of k so that k so that k T(3)T(3)T 5 200.
Equation (3) is both linear and separable. If we separate variables,

dT

T 2 70
5 k dt,

yields ln uT 2 70u 5 kt 1 c1, and so T 5 70 1 c2ekt. When t 5 0, T 5 300, so 
300 5 70 1 c2 gives c2 5 230; therefore T 5 70 1 230ekt. Finally, the measurement 
T(3)T(3)T 5 200 leads to e3k 5 13

23, or k 5 1
3 ln 13

23 5 20.19018. Thus

T (t) 5 70 1 230e20.19018t. (4)

We note that (4) furnishes no �nite solution to T(T(T t) 5 70, since lim tS`T (t) 5 70. 
Yet we intuitively expect the cake to reach room temperature after a reasonably long 
period of time. How long is “long”? Of course, we should not be disturbed by the fact 
that the model (3) does not quite live up to our physical intuition. Parts (a) and (b) of 
Figure 3.1.5 clearly show that the cake will be approximately at room temperature in 
about one-half hour. .

The ambient temperature in (2) need not be a constant but could be a function 
TmTmT (t) of time t. See Problem 18 in Exercises 3.1.

MIXTURES The mixing of two �uids sometimes gives rise to a linear �rst-order 
differential equation. When we discussed the mixing of two brine solutions in 
Section 1.3, we assumed that the rate A9(t) at which the amount of salt in the mixing 
tank changes was a net rate:

dAdAd

dt
5 (input rat rat te of salt) 2 (output rat rat te of salt) 5 Rin 2 Rout. (5)

In Example 5 we solve equation (8) on page 25 of Section 1.3.

 EXAMPLE 5 Mixture of Two Salt Solutions

Recall that the large tank considered in Section 1.3 held 300 gallons of a brine 
solution. Salt was entering and leaving the tank; a brine solution was being 
pumped into the tank at the rate of 3 gal/min; it mixed with the solution there, 
and then the mixture was pumped out at the rate of 3 gal/min. The concentration 
of the salt in the in�ow, or solution entering, was 2 lb/gal, so salt was entering 
the tank at the rate Rin 5 (2 lb/gal) ? (3 gal/min) 5 6 lb/min and leaving the tank 
at the rate Rout 5 (A(A( y300 lb/gal) ? (3 gal/min) 5 Ay100 lb/min. From this data and 
(5) we get equation (8) of Section 1.3. Let us pose the question: If 50 pounds of 
salt were dissolved initially in the 300 gallons, how much salt is in the tank after 
a long time?

t

T

15 30

300

150 T 5 70

(a)

T(t) t (min)

758 20.1
748 21.3
738 22.8
728 24.9
718 28.6
70.58 32.3

(b)

FIGURE 3.1.5 Temperature of cooling 
cake in Example 4
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SOLUTION To �nd the amount of salt A(t) in the tank at time t, we solve the 
initial-value problem

dAdAd

dt
1

1

100
A 5 6, A(0) 5 50.

Note here that the side condition is the initial amount of salt A(0) 5 50 in the tank 
and not the initial amount of liquid in the tank. Now since the integrating factor not the initial amount of liquid in the tank. Now since the integrating factor not
of the linear differential equation is et/100t/100t , we can write the equation as

d

dt
 [ [et/t/t 100A0A0 ] 5 6et/t/t 100.

Integrating the last equation and solving for A gives the general solution 
A(t) 5 600 1 ce2t/100t/100t . When t 5 0, A 5 50, so we �nd that c 5 2550. Thus the 
amount of salt in the tank at time t is given byt is given byt

A(t) 5 600 2 550e2t/t/t 100. (6)

The solution (6) was used to construct the table in Figure 3.1.6(b). Also, it can be 
seen from (6) and Figure 3.1.6(a) that A(t) : 600 as t : `. Of course, this is what 
we would intuitively expect; over a long time the number of pounds of salt in the 
solution must be (300 gal)(2 lb/gal) 5 600 lb. .

In Example 5 we assumed that the rate at which the solution was pumped in was 
the same as the rate at which the solution was pumped out. However, this need not be 
the case; the mixed brine solution could be pumped out at a rate routroutr  that is faster out that is faster out

or slower than the rate rin at which the other brine solution is pumped in. The next 
example illustrates the case when the mixture is pumped out at rate that is slower
than the rate at which the brine solution is being pumped into the tank.

 EXAMPLE 6 Example 5 Revisited

If the well-stirred solution in Example 5 is pumped out at a slower rate of, say, 
rout rout r 5 2 gal/min, then liquid will accumulate in the tank at the rate of 

rin 2 rout rout r 5 (3 2 2) gal/min 5 1 gal/min. 

After t minutes,t minutes,t

(1 gal/min) ? (t min) t min) t 5 t galt galt

will accumulate, so the tank will contain 300 1 t gallons of brine. The concentration t gallons of brine. The concentration t
of the out�ow is then c(t) 5 Ay(300 1 t) lb/gal, and the output rate of salt is Rout 5
c(t) ? routroutr , or

Rout 5 1 A

300 1 t
 l lb/gal2 ? (2 gal/min) 5

2A2A2

300 1 t
 l lb/min.

Hence equation (5) becomes

dAdAd

dt
5 6 2

2A

300 1 t
or

dAdAd

dt
1

2

300 1 t
A 5 6.

The integrating factor for the last equation is 

ee2 dty(3001t) 5 e2 ln(3001t) 5 e ln(3001t)2
5 (300 1 t)2

and so after multiplying by the factor the equation is cast into the form 

d

dt
f(300 1 t)2 Ag 5 6(300 1 t)2.

t

A A 5600

500

(a)

t (min) A (lb)

50 266.41
100 397.67397.67397
150 477.27477.27477
200 525.57
300 572.62
400 589.93

(b)

FIGURE 3.1.6 Pounds of salt in the tank 
in Example 5
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Integrating the last equation gives (300 1 t)2A2A2 5 2(300 1 t)3 1 c. By ap-
plying the initial condition A(0) 5 50 and solving for A yields the solution 
A(t) 5 600 1 2t 2 (4.95 3 107)(300 1 t)22. As Figure 3.1.7 shows, not unexpect-
edly, salt builds up in the tank over time, that is, A S `  as t S `. .

SERIES CIRCUITS For a series circuit containing only a resistor and an inductor, 
Kirchhoff’s second law states that the sum of the voltage drop across the inductor 
(L(diydt)) and the voltage drop across the resistor (iR) is the same as the impressed 
voltage (E(t)) on the circuit. See Figure 3.1.8.

Thus we obtain the linear differential equation for the current i(t),

L 

di

dt
1 Ri 5 E(t), (7)

where L and L and L R are known as the inductance and the resistance, respectively. The cur-
rent i(t) is also called the response of the system.

The voltage drop across a capacitor with capacitance C is given by C is given by C q(t)yC, where 
q is the charge on the capacitor. Hence, for the series circuit shown in Figure 3.1.9, 
Kirchhoff’s second law gives

Ri 1
1

C
q 5 E(t). (8)

But current i and charge q are related by i 5 dqydt, so (8) becomes the linear differ-, so (8) becomes the linear differ -, so (8) becomes the linear differ
ential equation

R 

dq

dt
1

1

C
q 5 E(t). (9)

EXAMPLE 7 LR-Series Circuit

A 12-volt battery is connected to a series circuit in which the inductance is 1
2 henry 

and the resistance is 10 ohms. Determine the current i if the initial current is zero.

SOLUTION From (7) we see that we must solve the equation

1

2

di

dt
1 10 i 5 12,

subject to i(0) 5 0. First, we multiply the differential equation by 2 and read off the 
integrating factor e20t. We then obtain

d

dt
 [ [e20ti] 5 24e20t.

Integrating each side of the last equation and solving for i gives i(t) 5 6
5 1 ce220t. 

Now i(0) 5 0 implies that 0 5 6
5 1 c or c 5 26

5. Therefore the response is 
i(t) 5 6

5 2 6
5 e220t. .

From (4) of Section 2.3 we can write a general solution of (7):

i(t) 5
e2(R/L/L/ )t

L #e(R/L/L/ )tEtEt (t) dt 1 ce2(R/L/L/ )t. (10)

In particular, when E(t) 5 E0E0E  is a constant, (10) becomes

i(t) 5
E0E0E

R
1 ce2(R/L/L/ )t. (11)

t

A

50

250

500

100

FIGURE 3.1.7 Graph of A(t) in Example 6

E
L

R

FIGURE 3.1.8 LR-series circuit

RR

C

E

FIGURE 3.1.9 RC-series circuit
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Note that as t : `, the second term in equation (11) approaches zero. Such a term 
is usually called a transient term; any remaining terms are called the steady-state
part of the solution. In this case E0E0E yR is also called the steady-state current; for 
large values of time it appears that the current in the circuit is simply governed by 
Ohm’s law (E 5 iR).

EXERCISES 3.1

Growth and Decay
1. The population of a community is known to increase at a rate 

proportional to the number of people present at time t. If an 
initial population P0 has doubled in 5 years, how long will it 
take to triple? To quadruple?

2. Suppose it is known that the population of the community 
in Problem 1 is 10,000 after 3 years. What was the initial 
population P0? What will be the population in 10 years? How 
fast is the population growing at t 5 10?

3. The population of a town grows at a rate proportional to the 
population present at time t. The initial population of 500 
increases by 15% in 10 years. What will be the population in 
30 years? How fast is the population growing at t 5 30?

4. The population of bacteria in a culture grows at a rate 
proportional to the number of bacteria present at time t. After 
3 hours it is observed that 400 bacteria are present. After 
10 hours 2000 bacteria are present. What was the initial number 
of bacteria?

5. The radioactive isotope of lead, Pb-209, decays at a rate 
proportional to the amount present at time t and has a half-life t and has a half-life t
of 3.3 hours. If 1 gram of this isotope is present initially, how 
long will it take for 90% of the lead to decay?

6. Initially 100 milligrams of a radioactive substance was present. 
After 6 hours the mass had decreased by 3%. If the rate of 
decay is proportional to the amount of the substance present at 
time t, �nd the amount remaining after 24 hours.

Answers to selected odd-numbered problems begin on page ANS-3.

t1t1 t2

P

P0

(a)

t1

P

P0

(b) (c)

t1

P

P0

FIGURE 3.1.10 Population growth is a discrete process

REMARKS

The solution P(t)t)t 5 P0e0.4055t of the initial-value problem in Example 1 t of the initial-value problem in Example 1 t described 
the population of a colony of bacteria at any time t $ 0. Of course, P(t) is a con-
tinuous function that takes on all real numbers in the interval all real numbers in the interval all P0 # P , `. But 
since we are talking about a population, common sense dictates that P can take 
on only positive integer values. Moreover, we would not expect the population 
to grow continuously—that is, every second, every microsecond, and so on—as 
predicted by our solution; there may be intervals of time [t1, t2t2t ] over which there 
is no growth at all. Perhaps, then, the graph shown in Figure 3.1.10(a) is a more 
realistic description of P than is the graph of an exponential function. Using a 
continuous function to describe a discrete phenomenon is often more a matter 
of convenience than of accuracy. However, for some purposes we may be 
satis�ed if our model describes the system fairly closely when viewed macro-
scopically in time, as in Figures 3.1.10(b) and 3.1.10(c), rather than microscopi-
cally, as in Figure 3.1.10(a).
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7. Determine the half-life of the radioactive substance described in 
Problem 6.

8. (a)  Consider the initial-value problem dAydt 5 kA, A(0) 5 A0

as the model for the decay of a radioactive substance. 
Show that, in general, the half-life T of the substance is T of the substance is T
T 5 2(ln 2)yk.

(b) Show that the solution of the initial-value problem in part 
(a) can be written A(t) 5 A022t/t/t T.

(c) If a radioactive substance has the half-life T given in part (a), T given in part (a), T
how long will it take an initial amount A0 of the substance to 
decay to 1
how long will it take an initial amount 

1
how long will it take an initial amount 

8 A0?

9. When a vertical beam of light passes through a transparent 
medium, the rate at which its intensity I decreases is proportional 
to I(I(I t), where t represents the thickness of the medium (in feet). t represents the thickness of the medium (in feet). t
In clear seawater, the intensity 3 feet below the surface is 25% of 
the initial intensity I0I0I  of the incident beam. What is the intensity 
of the beam 15 feet below the surface?

10. When interest is compounded continuously, the amount of money 
increases at a rate proportional to the amount S present at time S present at time S t, 
that is, dSydt 5 rS, where r is the r is the r annual rate of interest.

(a) Find the amount of money accrued at the end of 5 years 
when $5000 is deposited in a savings account drawing  
53

4% annual interest compounded continuously.

(b) In how many years will the initial sum deposited have doubled?

(c) Use a calculator to compare the amount obtained in part (a) 
with the amount S 5 5000_
Use a calculator to compare the amount obtained in part (a) 

_
Use a calculator to compare the amount obtained in part (a) 

1 1 1
4(0.0575)+

Use a calculator to compare the amount obtained in part (a) 
+

Use a calculator to compare the amount obtained in part (a) 
5(4) that is accrued 

when interest is compounded quarterly.

Carbon Dating
11. Archaeologists used pieces of burned wood, or charcoal, found 

at the site to date prehistoric paintings and drawings on walls 
and ceilings of a cave in Lascaux, France. See Figure 3.1.11. 
Use the information on page 87 to determine the approximate 
age of a piece of burned wood, if it was found that 85.5% of the 
C-14 found in living trees of the same type had decayed.
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FIGURE 3.1.11 Cave wall painting in Problem 11

12. The Shroud of Turin, which shows the negative image of the 
body of a man who appears to have been cruci�ed, is believed 
by many to be the burial shroud of Jesus of Nazareth. See 
Figure 3.1.12. In 1988 the Vatican granted permission to 
have the shroud carbon-dated. Three independent scienti�c 
laboratories analyzed the cloth and concluded that the shroud was 
approximately 660 years old, an age consistent with its historical 
appearance. Using this age, determine what percentage of the 
original amount of C-14 remained in the cloth as of 1988.

So
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rg

FIGURE 3.1.12 Shroud image in Problem 12

Newton’s Law of Cooling/Warming
13. A thermometer is removed from a room where the temperature 

is 70° F and is taken outside, where the air temperature is 10° F. 
After one-half minute the thermometer reads 50° F. What is the 
reading of the thermometer at t 5 1 min? How long will it take 
for the thermometer to reach 15° F?

14. A thermometer is taken from an inside room to the outside, 
where the air temperature is 5° F. After 1 minute the 
thermometer reads 55° F, and after 5 minutes it reads 30° F. 
What is the initial temperature of the inside room?

15. A small metal bar, whose initial temperature was 20° C, is dropped 
into a large container of boiling water. How long will it take the bar 
to reach 90° C if it is known that its temperature increases 2° in 
1 second? How long will it take the bar to reach 98° C?

16. Two large containers A and B of the same size are �lled with 
different �uids. The �uids in containers A and B are maintained 
at 0° C and 100° C, respectively. A small metal bar, whose 
initial temperature is 100° C, is lowered into container A. After 
1 minute the temperature of the bar is 90° C. After 2 minutes 
the bar is removed and instantly transferred to the other 
container. After 1 minute in container B the temperature of the 
bar rises 10°. How long, measured from the start of the entire 
process, will it take the bar to reach 99.9° C?

17. A thermometer reading 70° F is placed in an oven preheated to a 
constant temperature. Through a glass window in the oven door, 
an observer records that the thermometer reads 110° F after 
1
2 minute and 145° F after 1 minute. How hot is the oven?

18. At t 5 0 a sealed test tube containing a chemical is immersed 
in a liquid bath. The initial temperature of the chemical 
in the test tube is 80° F. The liquid bath has a controlled 
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temperature (measured in degrees Fahrenheit) given by 
TmTmT (t) 5 100 2 40e20.1t, t $ 0, where t is measured in minutes.t is measured in minutes.t

(a) Assume that k 5 20.1 in (2). Before solving the IVP,  
describe in words what you expect the temperature T(T(T t) of 
the chemical to be like in the short term. In the long term.

(b) Solve the initial-value problem. Use a graphing utility to 
plot the graph of T(T(T t) on time intervals of various lengths. 
Do the graphs agree with your predictions in part (a)?

19. A dead body was found within a closed room of a house where 
the temperature was a constant 70° F. At the time of discovery the 
core temperature of the body was determined to be 85° F. One hour 
later a second measurement showed that the core temperature of 
the body was 80° F. Assume that the time of death corresponds 
to t 5 0 and that the core temperature at that time was 98.6° F. 
Determine how many hours elapsed before the body was found. 
[Hint: Let t1 . 0 denote the time that the body was discovered.]

20. The rate at which a body cools also depends on its exposed 
surface area S. If S is a constant, then a modi�cation of (2) isS is a constant, then a modi�cation of (2) isS

dT

dt
5 kSkSk (T 2 TmTmT ),

where k , 0 and TmTmT  is a constant. Suppose that two cups A and B
are �lled with coffee at the same time. Initially, the temperature of 
the coffee is 150° F. The exposed surface area of the coffee in cup 
B is twice the surface area of the coffee in cup A. After 30 min the 
temperature of the coffee in cup A is 100° F. If TmTmT 5 70° F, then 
what is the temperature of the coffee in cup B after 30 min?

Mixtures
21. A tank contains 200 liters of �uid in which 30 grams of salt 

is dissolved. Brine containing 1 gram of salt per liter is then 
pumped into the tank at a rate of 4 L/min; the well-mixed 
solution is pumped out at the same rate. Find the number A(t) of 
grams of salt in the tank at time t.

22. Solve Problem 21 assuming that pure water is pumped into the tank.

23. A large tank is �lled to capacity with 500 gallons of pure water. 
Brine containing 2 pounds of salt per gallon is pumped into the 
tank at a rate of 5 gal/min. The well-mixed solution is pumped 
out at the same rate. Find the number A(t) of pounds of salt in 
the tank at time t.

24. In Problem 23, what is the concentration c(t) of the salt in the 
tank at time t? At t 5 5 min? What is the concentration of the 
salt in the tank after a long time, that is, as t : `? At what time 
is the concentration of the salt in the tank equal to one-half this 
limiting value?

25. Solve Problem 23 under the assumption that the solution is 
pumped out at a faster rate of 10 gal/min. When is the tank empty?

26. Determine the amount of salt in the tank at time t in Example 5 t in Example 5 t
if the concentration of salt in the in�ow is variable and given 
by cin(t) 5 2 1 sin(ty4) lb/gal. Without actually graphing, 
conjecture what the solution curve of the IVP should look like. 
Then use a graphing utility to plot the graph of the solution 
on the interval [0, 300]. Repeat for the interval [0, 600] and 
compare your graph with that in Figure 3.1.6(a).

27. A large tank is partially �lled with 100 gallons of �uid in which 
10 pounds of salt is dissolved. Brine containing 1
A large tank is partially �lled with 100 gallons of �uid in which 

1
A large tank is partially �lled with 100 gallons of �uid in which 

2 pound of salt  pound of salt 

per gallon is pumped into the tank at a rate of 6 gal/min. The well-
mixed solution is then pumped out at a slower rate of 4 gal/min. 
Find the number of pounds of salt in the tank after 30 minutes.

28. In Example 5 the size of the tank containing the salt mixture 
was not given. Suppose, as in the discussion following 
Example 5, that the rate at which brine is pumped into the 
tank is 3 gal/min but that the well-stirred solution is pumped 
out at a rate of 2 gal/min. It stands to reason that since brine is 
accumulating in the tank at the rate of 1 gal/min, any �nite tank 
must eventually over�ow. Now suppose that the tank has an 
open top and has a total capacity of 400 gallons.

(a) When will the tank over�ow?

(b) What will be the number of pounds of salt in the tank at the 
instant it over�ows?

(c) Assume that although the tank is over�owing, brine solution 
continues to be pumped in at a rate of 3 gal/min and the 
well-stirred solution continues to be pumped out at a rate of 
2 gal/min. Devise a method for determining the number of 
pounds of salt in the tank at t 5 150 minutes.

(d) Determine the number of pounds of salt in the tank as 
t : `. Does your answer agree with your intuition?

(e) Use a graphing utility to plot the graph of A(t) on the 
interval [0, 500).

Series Circuits
29. A 30-volt electromotive force is applied to an LR-series circuit 

in which the inductance is 0.1 henry and the resistance is 
50 ohms. Find the current i(t) if i(0) 5 0. Determine the current 
as t : `.

30. Solve equation (7) under the assumption that E(t) 5 E0E0E  sin vt
and i(0) 5 i0.

31. A 100-volt electromotive force is applied to an RC-series  
circuit in which the resistance is 200 ohms and the capacitance 
is 1024 farad. Find the charge q(t) on the capacitor if q(0) 5 0. 
Find the current i(t).

32. A 200-volt electromotive force is applied to an RC-series 
circuit in which the resistance is 1000 ohms and the capacitance 
is 5 3 1026 farad. Find the charge q(t) on the capacitor if 
i(0) 5 0.4. Determine the charge and current at t 5 0.005 s. 
Determine the charge as t : `.

33. An electromotive force

E(t) 5 5120,

0,

0 # t # 20

t . 20

is applied to an LR-series circuit in which the inductance is 
20 henries and the resistance is 2 ohms. Find the current i(t) if 
i(0) 5 0.

34. An LR-series circuit has a variable inductor with the inductance 
de�ned by

L(t) 5 51 2 1
10 t,

0,

0 # t , 10

t . 10.

Find the current i(t) if the resistance is 0.2 ohm, the impressed 
voltage is E(t) 5 4, and i(0) 5 0. Graph i(t).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



94 CHAPTER  MODELING WITH FIRSTORDER DIFFERENTIAL EQUATIONS

Additional Linear Models
35. Air Resistance In (14) of Section 1.3 we saw that a differential 

equation describing the velocity v of a falling mass subject to air 
resistance proportional to the instantaneous velocity is

m
dvdvd

dt
5 mg 2 kv,

where k . 0 is a constant of proportionality. The positive 
direction is downward.

(a) Solve the equation subject to the initial condition v(0) 5 v0.

(b) Use the solution in part (a) to determine the limiting, or 
terminal, velocity of the mass. We saw how to determine the 
terminal velocity without solving the DE in Problem 40 in 
Exercises 2.1.

(c) If the distance s, measured from the point where the mass was 
released above ground, is related to velocity v by v by v dsydtdtd 5 v(t), t), t
�nd an explicit expression for s(t) if t) if t s(0) 5 0.

36. How High?—No Air Resistance Suppose a small cannonball 
weighing 16 pounds is shot vertically upward, as shown in 
Figure 3.1.13, with an initial velocity v0 5 300 ft/s. The answer 
to the question “How high does the cannonball go?” depends on 
whether we take air resistance into account.

(a) Suppose air resistance is ignored. If the positive direction 
is upward, then a model for the state of the cannonball is 
given by d2sydt2 5 2g (equation (12) of Section 1.3). Since 
dsydt 5 v(t) the last differential equation is the same as 
dvydt 5 2g, where we take g 5 32 ft/s2. Find the velocity 
v(t) of the cannonball at time t.

(b) Use the result obtained in part (a) to determine the height 
s(t) of the cannonball measured from ground level. Find the 
maximum height attained by the cannonball.

FIGURE 3.1.13 Find the maximum height of the cannonball in 
Problem 36

groundground
lelevel

2mg

37. How High?—Linear Air Resistance Repeat Problem 36, 
but this time assume that air resistance is proportional to 
instantaneous velocity. It stands to reason that the maximum 
height attained by the cannonball must be less than that in part (b) 
of Problem 36. Show this by supposing that the constant of 
proportionality is k 5 0.0025. [Hint: Slightly modify the 
differential equation in Problem 35.]

38. Skydiving A skydiver weighs 125 pounds, and her parachute 
and equipment combined weigh another 35 pounds. After 

exiting from a plane at an altitude of 15,000 feet, she waits 
15 seconds and opens her parachute. Assume that the constant 
of proportionality in the model in Problem 35 has the value 
k 5 0.5 during free fall and k 5 10 after the parachute is 
opened. Assume that her initial velocity on leaving the plane 
is zero. What is her velocity and how far has she traveled 
20 seconds after leaving the plane? See Figure 3.1.14. How 
does her velocity at 20 seconds compare with her terminal 
velocity? How long does it take her to reach the ground? 
[Hint: Think in terms of two distinct IVPs.]

free fall

parachute opens

air resistance is 0.5v

air resistance is 10air resistance is 10v

t 5 20 s

FIGURE 3.1.14 Find the time to reach the ground in Problem 38

39. Rocket Motion Suppose a small single-stage rocket of 
total mass m(t) is launched vertically, the positive direction is 
upward, the air resistance is linear, and the rocket consumes its 
fuel at a constant rate. In Problem 22 of Exercises 1.3 you were 
asked to use Newton’s second law of motion in the form given 
in (17) of that exercise set to show that a mathematical model 
for the velocity v(t) of the rocket is given by

dvdvd

dt
1

k 2 �

m0 2 �t
v 5 2g 1

R

m0 2 �t
,

where k is the air resistance constant of proportionality, k is the air resistance constant of proportionality, k � is 
the constant rate at which fuel is consumed, R is the thrust of 
the rocket, m(t) 5 m0 2 lt, m0 is the total mass of the rocket at 
t 5 0, and g is the acceleration due to gravity.   

(a) Find the velocity v(t) of the rocket if t) of the rocket if t m0 5 200 kg, R 5 2000 N, 
l 5 1 kg/s, g 5 9.8 m/s2, k 5 3 kg/s, and v(0) 5 0. 

(b) Use ds/dt 5 v and the result in part (a) to �nd the height s(t) 
of the rocket at time t.

40. Rocket Motion—Continued In Problem 39 suppose of the 
rocket’s initial mass m0 that 50 kg is the mass of the fuel.

(a) What is the burnout time tbtbt , or the time at which all the fuel 
is consumed?  

(b) What is the velocity of the rocket at burnout?  

(c) What is the height of the rocket at burnout?

(d) Why would you expect the rocket to attain an altitude higher 
than the number in part (b)?

(e) After burnout what is a mathematical model for the velocity 
of the rocket?
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41. Evaporating Raindrop As a raindrop falls, it evaporates 
while retaining its spherical shape. If we make the further 
assumptions that the rate at which the raindrop evaporates 
is proportional to its surface area and that air resistance is 
negligible, then a model for the velocity v(t) of the raindrop is

dvdvd

dt
1

3(k/k/k �/�/ )

(k/k/k �/�/ )t 1 r0r0r
v 5 g.

Here r is the density of water, r0r0r  is the radius of the raindrop 
at t 5 0, k , 0 is the constant of proportionality, and the 
downward direction is taken to be the positive direction.

(a) Solve for v(t) if the raindrop falls from rest.

(b) Reread Problem 36 of Exercises 1.3 and then show that the 
radius of the raindrop at time t is t is t r(t) 5 (kyr)t 1 r0r0r .

(c) If r0r0r 5 0.01 ft and r 5 0.007 ft 10 seconds after the raindrop 
falls from a cloud, determine the time at which the raindrop 
has evaporated completely.

42. Fluctuating Population The differential equation  
dPydt 5 (k cos k cos k t)P, where k is a positive constant, is a k is a positive constant, is a k
mathematical model for a population P(t) that undergoes yearly 
seasonal �uctuations. Solve the equation subject to P(0) 5 P0. 
Use a graphing utility to graph the solution for different choices 
of P0.

43. Population Model In one model of the changing population 
P(t) of a community, it is assumed that

dPdPd

dt
5

dBdBd

dt
2

dDdDd

dt
,

where dBydt and dt and dt dDydt are the birth and death rates, dt are the birth and death rates, dt
respectively.

(a) Solve for P(t) if dBydt 5 k1P and dDydt 5 k2P.

(b) Analyze the cases k1 . k2, k1 5 k2, and k1 , k2.

44. Constant-Harvest Model A model that describes the 
population of a �shery in which harvesting takes place at a 
constant rate is given by

dPdPd

dt
5 kPkPk 2 h,

where k and k and k h are positive constants.

(a) Solve the DE subject to P(0) 5 P0.

(b) Describe the behavior of the population P(t) for 
increasing time in the three cases P0 . hyk, P0 5 hyk, and 
0 , P0 , hyk.

(c) Use the results from part (b) to determine whether the 
�sh population will ever go extinct in �nite time, that is, 
whether there exists a time T . 0 such that P(T) T) T 5 0. If the 
population goes extinct, then �nd T.T.T

45. Drug Dissemination A mathematical model for the rate at 
which a drug disseminates into the bloodstream is given by 

dxdxd

dt
5 r 2 kxkxk ,

where r and r and r k are positive constants. The function k are positive constants. The function k x(t) describes 
the concentration of the drug in the bloodstream at time t.

(a) Since the DE is autonomous, use the phase portrait concept 
of Section 2.1 to �nd the limiting value of x(t) as t : `.

(b) Solve the DE subject to x(0) 5 0. Sketch the graph of x(t) 
and verify your prediction in part (a). At what time is the 
concentration one-half this limiting value?

46. Memorization When forgetfulness is taken into account, the 
rate of memorization of a subject is given by

dAdAd

dt
5 k1(M 2 A) 2 k2 A,

where k1 . 0, k2 . 0, A(t) is the amount memorized in time t,  
M is the total amount to be memorized, and M is the total amount to be memorized, and M M 2 A is the 
amount remaining to be memorized.

(a) Since the DE is autonomous, use the phase portrait concept 
of Section 2.1 to �nd the limiting value of A(t) as t : `. 
Interpret the result.

(b) Solve the DE subject to A(0) 5 0. Sketch the graph of A(t) 
and verify your prediction in part (a).

47. Heart Pacemaker A heart pacemaker, shown in Figure 3.1.15, 
consists of a switch, a battery, a capacitor, and the heart as a 
resistor. When the switch S is at S is at S P, the capacitor charges; when 
S is at S is at S Q, the capacitor discharges, sending an electrical stimulus 
to the heart. In Problem 58 in Exercises 2.3 we saw that during 
this time the electrical stimulus is being applied to the heart, the 
voltage E across the heart satis�es the linear DEE across the heart satis�es the linear DEE

dEdEd

dt
5 2

1

RC
E.

(a) Let us assume that over the time interval of length 
t1, 0 , t , t1, the switch S is at position S is at position S P shown in P shown in P
Figure 3.1.15 and the capacitor is being charged. When the 
switch is moved to position Q at time t1 the capacitor dis-
charges, sending an impulse to the heart over the time interval 
of length t2t2t : t1 # t , t1 1 t2t2t . Thus over the initial charging/
discharging interval 0 , t , t1 1 t2t2t  the voltage to the heart is 
actually modeled by the piecewise-linear differential equation 

dEdEd

dt
5 5

0,

2
1

RC
E,

0 # t , t1

t1 # t , t1 1 t2 .

By moving S between S between S P and Q, the charging and 
discharging over time intervals of lengths t1 and t2 is 

heart

C

Q

P SP SP S
switch

P SP SP S

E0

P SP SP S

R

FIGURE 3.1.15 Model of a pacemaker in Problem 47
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96 CHAPTER  MODELING WITH FIRSTORDER DIFFERENTIAL EQUATIONS

repeated inde�nitely. Suppose t1 5 4 s, t2 5 2 s, E0E0E 5 12 V, 
and E(0) 5 0, E(4) 5 12, E(6) 5 0, E(10) 5 12, 
E(12) 5 0, and so on. Solve for E(t) for 0 # t # 24.

(b) Suppose for the sake of illustration that R 5 C 5 1. Use a 
graphing utility to graph the solution for the IVP in part (a) 
for 0 # t # 24.

48. Sliding Box (a) A box of mass m slides down an inclined 
plane that makes an angle u with the horizontal as shown in 
Figure 3.1.16. Find a differential equation for the velocity 
v(t) of the box at time t in each of the following three cases:t in each of the following three cases:t

(i) No sliding friction and no air resistance

(ii) With sliding friction and no air resistance

(iii) With sliding friction and air resistance

  In cases (ii) and (iii), use the fact that the force of friction 
opposing the motion of the box is mNmNm , where N, where N m is the 
coef�cient of sliding friction and N is the normal component N is the normal component N
of the weight of the box. In case (iii) assume that air 
resistance is proportional to the instantaneous velocity.

(b) In part (a), suppose that the box weighs 96 pounds, that 
the angle of inclination of the plane is u 5 30°, that the 
coef�cient of sliding friction is � 5 Ï3Ï y4, and that the 
additional retarding force due to air resistance is numerically 
equal to 1
additional retarding force due to air 

1
additional retarding force due to air 

4v. Solve the differential equation in each of the 
three cases, assuming that the box starts from rest from the 
highest point 50 ft above ground.

u

50 ftmotion

friction

WW 5 mg

FIGURE 3.1.16 Box sliding down inclined plane in Problem 48

49. Sliding Box—Continued (a) In Problem 48 let s(t) be 
the distance measured down the inclined plane from the 
highest point. Use dsydt 5 v(t) and the solution for each 
of the three cases in part (b) of Problem 48 to �nd the 
time that it takes the box to slide completely down the 
inclined plane. A root-�nding application of a CAS may be 
useful here.

(b) In the case in which there is friction (m Þ 0) but no 
air resistance, explain why the box will not slide down 
the plane starting from rest from the highest point rest from the highest point rest
above ground when the inclination angle u satis�es 
tan u # m.

(c) The box will slide downward on the plane when tan will slide downward on the plane when tan will u # m
if it is given an initial velocity v(0) 5 v0 . 0. Suppose that 
� 5 Ï3Ï y4 and u 5 23°. Verify that tan u # m. How far 
will the box slide down the plane if v0 5 1 ft/s?

(d) Using the values � 5 Ï3Ï y4 and u 5 23°, approxi-
mate the smallest initial velocity v0 that can be given to 
the box so that, starting at the highest point 50 ft above 
ground, it will slide completely down the inclined plane. 
Then �nd the corresponding time it takes to slide down the 
plane.

50. What Goes Up . . . (a) It is well known that the model in 
which air resistance is ignored, part (a) of Problem 36, 
predicts that the time tatat  it takes the cannonball to attain 
its maximum height is the same as the time tdtdt  it takes the d it takes the d

cannonball to fall from the maximum height to the ground. 
Moreover, the magnitude of the impact velocity vi will be 
the same as the initial velocity v0 of the cannonball. Verify 
both of these results.

(b) Then, using the model in Problem 37 that takes air resis-
tance into account, compare the value of ta with td and d and d

the value of the magnitude of vi with v0. A root-�nding 
application of a CAS (or graphic calculator) may be 
useful here.

INTRODUCTION We �nish our study of single �rst-order differential equations 
with an examination of some nonlinear models.

POPULATION DYNAMICS If P(t) denotes the size of a population at time t, the 
model for exponential growth begins with the assumption that dPydt 5 kP for some 
k . 0. In this model, the relative, or speci�c, growth rate de�ned by

dPdPd ydt

P
(1)

is a constant k. True cases of exponential growth over long periods of time are hard 
to �nd because the limited resources of the environment will at some time exert 
restrictions on the growth of a population. Thus for other models, (1) can be expected 
to decrease as the population P increases in size.

 3.2 Nonlinear Models
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The assumption that the rate at which a population grows (or decreases) is 
dependent only on the number P present and not on any time-dependent mechanisms 
such as seasonal phenomena (see Problem 33 in Exercises 1.3) can be stated as

dPydt

P
5 f(f(f P) or

dPdPd

dt
5 PfPfP (f(f P). (2)

The differential equation in (2), which is widely assumed in models of animal 
populations, is called the density-dependent hypothesis.

LOGISTIC EQUATION Suppose an environment is capable of sustaining no more 
than a �xed number K of individuals in its population. The quantity K of individuals in its population. The quantity K K is called K is called K
the carrying capacity of the environment. Hence for the function f in (2) we have f in (2) we have f
f (K)K)K 5 0, and we simply let f (0) 5 r. Figure 3.2.1 shows three functions f that satf that satf -
isfy these two conditions. The simplest assumption that we can make is that f (P) is 
linear—that is, f (P) 5 c1P 1 c2. If we use the conditions f (0) 5 r and r and r f (K) K) K 5 0, we 
�nd, in turn, c2 5 r and r and r c1 5 2ryK, and so f takes on the form f takes on the form f f (P) 5 r 2 (ryK)K)K P.
Equation (2) becomes

dPdPd

dt
5 P1r 2

r

K
P2. (3)

With constants relabeled, the nonlinear equation (3) is the same as

dP

dt
5 P(a 2 bP). (4)

Around 1840 the Belgian mathematician-biologist P. F. Verhulst (1804–1849) 
was concerned with mathematical models for predicting the human populations of 
various countries. One of the equations he studied was (4), where a . 0 and b . 0. 
Equation (4) came to be known as the logistic equation, and its solution is called the 
logistic function. The graph of a logistic function is called a logistic curve.

The linear differential equation dPydt 5 kP does not provide a very accurate 
model for population when the population itself is very large. Overcrowded condi-
tions, with the resulting detrimental effects on the environment such as pollution and 
excessive and competitive demands for food and fuel, can have an inhibiting effect 
on population growth. As we shall now see, the solution of (4) is bounded as t : `. 
If we rewrite (4) as dPydt 5 aP 2 bP2, the nonlinear term 2bP2, b . 0, can be in-
terpreted as an “inhibition” or “competition” term. Also, in most applications the 
positive constant a is much larger than the constant b.

Logistic curves have proved to be quite accurate in predicting the growth patterns, 
in a limited space, of certain types of bacteria, protozoa, water �eas (Daphnia), and 
fruit �ies (Drosophila).

SOLUTION OF THE LOGISTIC EQUATION One method of solving (4) is separa-
tion of variables. Decomposing the left side of dPyP(a 2 bP) 5 dt into partial fracdt into partial fracdt -
tions and integrating gives

11ya

P
1

bya

a 2 bP2dPdPd 5 dt

1
a

 l ln u P u 2
1
a

 l ln u a 2 bP u 5 t 1 c

ln u P

a 2 bP u 5 at 1 ac

P

a 2 bP
5 c1eat.

P

f(P)

r

K

FIGURE 3.2.1 Simplest assumption for 
f (P) is a straight line (blue color)
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98 CHAPTER  MODELING WITH FIRSTORDER DIFFERENTIAL EQUATIONS

It follows from the last equation that

P(t) 5
ac1eat

1 1 bc1eat 5
ac1

bc1 1 e2at
.

If P(0) 5 P0, P0 Þ ayb, we �nd c1 5 P0y(a 2 bP0), and so after substituting and 
simplifying, the solution becomes

P(t) 5
aP0

bP0 1 (a 2 bP0)e2at
. (5)

GRAPHS OF Pt The basic shape of the graph of the logistic function P(t) can 
be obtained without too much effort. Although the variable t usually represents time t usually represents time t
and we are seldom concerned with applications in which t , 0, it is nonetheless of 
some interest to include this interval in displaying the various graphs of P. From (5) 
we see that

P(t) S aP0

bP0
5

a

b
as t S ` and P(t) S 0 as t S 2`.

The dashed line P 5 ay2b shown in Figure 3.2.2 corresponds to the ordinate of a    
point of in�ection of the logistic curve. To show this, we differentiate (4) by the 
Product Rule:

d2P

dt2
5 P 12b

dPdPd

dt 2 1 (a 2 bP) 
dPdPd

dt
5

dPdPd

dt
 ( (a 2 2bP)

5 P(a 2 bP)(a 2 2bP)

5 2b2P 1P 2
a

b21P 2
a

2b2.
From calculus recall that the points where d2Pydt2 5 0 are possible points of in�ec-
tion, but P 5 0 and P 5 ayb can obviously be ruled out. Hence P 5 ay2b is the only 
possible ordinate value at which the concavity of the graph can change. For 
0 , P , ay2b it follows that P0 . 0, and ay2b , P , ayb implies that P0 , 0. Thus, 
as we read from left to right, the graph changes from concave up to concave down at 
the point corresponding to P 5 ay2b. When the initial value satis�es 0 , P0 , ay2b, 
the graph of P(t) assumes the shape of an S, as we see in Figure  3.2.2(b). For 
ay2b , P0 , ayb the graph is still S-shaped, but the point of in�ection occurs at a 
negative value of t, as shown in Figure 3.2.2(c).

We have already seen equation (4) in (5) of Section 1.3 in the form 
dxydt 5 kx(n 1 1 2 x), k . 0. This differential equation provides a reasonable 
model for describing the spread of an epidemic brought about initially by introduc-
ing an infected individual into a static population. The solution x(t) represents the 
number of individuals infected with the disease at time t.

P0

P0

P0
a/2b

a/b

a/2b

a/b

a/2b

a/b
PP

P

ttt

(b) (c)(a)

FIGURE 3.2.2 Logistic curves for different initial conditions
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EXAMPLE 1 Logistic Growth

Suppose a student carrying a �u virus returns to an isolated college campus of 1000 
students. If it is assumed that the rate at which the virus spreads is proportional not 
only to the number x of infected students but also to the number of students not x of infected students but also to the number of students not x
infected, determine the number of infected students after 6 days if it is further 
observed that after 4 days x(4) 5 50.

SOLUTION Assuming that no one leaves the campus throughout the duration of the 
disease, we must solve the initial-value problem

dxdxd

dt
5 kx(1000 2 x), x(0) 5 1.

By making the identi�cation a 5 1000k and k and k b 5 k, we have immediately from 
(5) that

x(t) 5
1000k

k 1 999ke21000kt 5
1000

1 1 999e21000kt
.

Now, using the information x(4) 5 50, we determine k fromk fromk

50 5
1000

1 1 999e24000k
.

We �nd 21000k 5 1
4 ln 19

999 5 20.9906. Thus

x(t) 5
1000

1 1 999e20.9906t
.

Finally, x(6) 5
1000

1 1 999e25.9436 5 276 students.

Additional calculated values of x(t) are given in the table in Figure 3.2.3(b). Note that 
the number of infected students x(t) approaches 1000 as t increases.t increases.t . 

MODIFICATIONS OF THE LOGISTIC EQUATION There are many variations of 
the logistic equation. For example, the differential equations

dP

dt
5 P(a 2 bP) 2 h and

dP

dt
5 P(a 2 bP) 1 h (6)

could serve, in turn, as models for the population in a �shery where �sh are 
harvested  or are restocked at rate h. When h . 0 is a constant, the DEs in (6) 
can be readily analyzed qualitatively or solved analytically by separation of vari-
ables. The equations in (6) could also serve as models of the human population 
decreased by emigration or increased by immigration, respectively. The rate h in 
(6) could be a function of time t or could be population dependent; for example, t or could be population dependent; for example, t
harvesting might be done periodically over time or might be done at a rate propor-
tional to the population P at time t. In the latter instance, the model would look like 
P9 5 P(a 2 bP) 2 cP, c . 0. The human population of a community might change 
because of immigration in such a manner that the contribution due to immigration 
was large when the population P of the community was itself small but small when 
P was large; a reasonable model for the population of the community would then be 
P9 5 P(a 2 bP) 1 ce2kP, c . 0, k . 0. See Problem 24 in Exercises 3.2. Another 
equation of the form given in (2),

dP

dt
5 P(a 2 b ln P), (7)

(a)

t

x x 51000

10

500

5

(a)(a)(a)(a)

t (days) x (number infected)

4 50 (observed)
5 124
6 276
7 507
8 735
9 882

10 953

(b)

FIGURE 3.2.3 Number of infected 
students in Example 1
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is a modi�cation of the logistic equation known as the Gompertz differential 
equation named after the English mathematician Benjamin Gompertz (1779–1865). 
This DE is sometimes used as a model in the study of the growth or decline of pop-
ulations, the growth of solid tumors, and certain kinds of actuarial predictions. See 
Problem 8 in Exercises 3.2.

CHEMICAL REACTIONS Suppose that a grams of chemical A are combined with 
b grams of chemical B. If there are M parts of M parts of M A and N parts of N parts of N B formed in the compound 
and X(X(X t) is the number of grams of chemical t) is the number of grams of chemical t C formed, then the number of grams of C formed, then the number of grams of C
chemical A and the number of grams of chemical B remaining at time t are, respectively,t are, respectively,t

a 2
M

M 1 N
X and b 2

N

M 1 N
X.

The law of mass action states that when no temperature change is involved, the rate 
at which the two substances react is proportional to the product of the amounts of 
A and B that are untransformed (remaining) at time t:

dXdXd

dt
~ 1a 2

M

M 1 N
X21b 2

N

M 1 N
X2. (8)

If we factor out My(M 1 N) from the �rst factor and N) from the �rst factor and N NyNyN (M 1 N) from the second N) from the second N
and introduce a constant of proportionality k . 0, (8) has the form

dX

dt
5 k(� 2 X)(� 2 X), (9)

where a 5 a(M 1 N)N)N yM and M and M b 5 b(M 1 N)N)N yN. Recall from (6) of Section 1.3 that 
a chemical reaction governed by the nonlinear differential equation (9) is said to be 
a second-order reaction.

EXAMPLE 2  Second-Order Chemical Reaction

A compound C is formed when two chemicals C is formed when two chemicals C A and B are combined. The resulting 
reaction between the two chemicals is such that for each gram of A, 4 grams of B is used. 
It is observed that 30 grams of the compound C is formed in 10 minutes. C is formed in 10 minutes. C Determine the 
amount of C at time C at time C t if the rate of the reaction is proportional to the amounts of t if the rate of the reaction is proportional to the amounts of t A and 
B remaining and if initially there are 50 grams of A and 32 grams of B. How much of 
the compound C is present at 15 minutes? Interpret the solution as C is present at 15 minutes? Interpret the solution as C t : `.

SOLUTION Let X(t) denote the number of grams of the compound C present at time C present at time C t.
Clearly, X(0) 5 0 g and X(10) 5 30 g.

If, for example, 2 grams of compound C is present, we must have used, C is present, we must have used, C
say, a grams of A and b grams of B, so a 1 b 5 2 and b 5 4a. Thus we must use 
a 5 2

5 5 2_
 grams of 

_
 grams of 

1
5+

 grams of 
+

 grams of 
 g of chemical A and b 5 8

5 5 2_45+ g of B. In general, for X grams of X grams of X
C we must useC we must useC

1

5
X grams of A and

4

5
X gX gX rams of B.

The amounts of A and B remaining at time t are thent are thent

50 2
1

5
X and 32 2

4

5
X,

respectively.
Now we know that the rate at which compound C is formed satis�esC is formed satis�esC

dXdXd

dt
~ 150 2

1

5
X2132 2

4

5
X2.
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To simplify the subsequent algebra, we factor 1
5 from the �rst term and 4

5 from the 
second and then introduce the constant of proportionality:

dXdXd

dt
5 k(250 2 X)(40 2 X).

By separation of variables and partial fractions we can write

2

1
210

250 2 X
dXdXd 1

1
210

40 2 X
dXdXd 5 k dt.

Integrating gives

ln
250 2 X

40 2 X
5 210kt 1 c1 or

250 2 X

40 2 X
5 c2e210kt. (10)

When t 5 0, X 5 0, so it follows at this point that c2 5 25
4 . Using X 5 30 g at t 5 10, 

we �nd 210k 5 1
10 ln 88

25 5 0.1258. With this information we solve the last equation 
in (10) for X:

X(t) 5 1000
1 2 e20.1258t

25 2 4e20.1258t. (11)

From (11) we �nd X(15) 5 34.78 grams. The behavior of X as a function of time X as a function of time X
is displayed in Figure 3.2.4. It is clear from the accompanying table and (11) that 
X : 40 as t : `. This means that 40 grams of compound C is formed, leavingC is formed, leavingC

50 2
1

5
(40) 5 42 g of A and 32 2

4

5
(40) 5 0 g of B. .

10 20 30 40 t

X
X 5 40

(a)

t (min) X (g)

10 30 (measured)
15 34.78
20 37.25
25 38.54
30 39.22
35 39.59

(b)

FIGURE 3.2.4 Number of grams of 
compound C in Example 2C in Example 2C

EXERCISES 3.2

Logistic Equation
1. The number N(N(N t) of supermarkets throughout the country that 

are using a computerized checkout system is described by the 
initial-value problem

dN

dt
5 N(1 2 0.0005N ), N(0) 5 1.

(a) Use the phase portrait concept of Section 2.1 to predict 
how many supermarkets are expected to adopt the new 

procedure over a long period of time. By hand, sketch a  
solution curve of the given initial-value problem.

(b) Solve the initial-value problem and then use a graphing 
utility to verify the solution curve in part (a). How many 
companies are expected to adopt the new technology when 
t 5 10?

2. The number N(N(N t) of people in a community who are exposed to 
a particular advertisement is governed by the logistic equation. 
Initially, N(0)N(0)N 5 500, and it is observed that N(1)N(1)N 5 1000. Solve 

Answers to selected odd-numbered problems begin on page ANS-3.

REMARKS

The inde�nite integral e duy(a2 2 u2) can be evaluated in terms of logarithms, 
the inverse hyperbolic tangent, or the inverse hyperbolic cotangent. For 
example, of the two results

# du

a2 2 u2 5
1
a

 t tanh21 u
a

1 c, uu u , a (12)

# du

a2 2 u2 5
1

2a
 l lnua 1 u

a 2 u u 1 c, uuu Þ a, (13)

(12) may be convenient in Problems 15 and 26 in Exercises 3.2, whereas 
(13) may be preferable in Problem 27.
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for N(N(N t) if it is predicted that the limiting number of people in 
the community who will see the advertisement is 50,000.

3. A model for the population P(t) in a suburb of a large city is 
given by the initial-value problem

dPdPd

dt
5 P(1021 2 1027 P), P(0) 5 5000,

where t is measured in months. What is the limiting value of the t is measured in months. What is the limiting value of the t
population? At what time will the population be equal to one-
half of this limiting value?

4. (a) Census data for the United States between 1790 and 1950 
are given in Table 3.2.1. Construct a logistic population 
model using the data from 1790, 1850, and 1910.

(b) Construct a table comparing actual census population 
with the population predicted by the model in part (a). 
Compute the error and the percentage error for each entry 
pair.

TABLE 3.2.1 

Year Population (in millions)

1790 3.929
18001800 5.308
18101810 7.240
1820 9.638
1830 12.866
1840 17.069
1850 23.192
1860 31.433
1870 38.558
1880 50.156
1890 62.948
1900 75.996
1910 91.972
1920 105.711
1930 122.775
1940 131.669
1950 150.697

Modifications of the Logistic Model
5. (a) If a constant number h of �sh are harvested from a �shery 

per unit time, then a model for the population P(t) of the 
�shery at time t is given byt is given byt

dPdPd

dt
5 P(a 2 bP) 2 h, P(0) 5 P0,

where a, b, h, and P0 are positive constants. Suppose 
a 5 5, b 5 1, and h 5 4. Since the DE  is autonomous, 
use the phase portrait concept of Section 2.1 to sketch 
representative solution curves corresponding to the cases 
P0 . 4, 1 , P0 , 4, and 0 , P0 , 1. Determine the long-
term behavior of the population in each case.

(b) Solve the IVP in part (a). Verify the results of your phase 
portrait in part (a) by using a graphing utility to plot the 

graph of P(t) with an initial condition taken from each of 
the three intervals given.

(c) Use the information in parts (a) and (b) to determine 
whether the �shery population becomes extinct in �nite 
time. If so, �nd that time.

6. Investigate the harvesting model in Problem 5 both qualitatively 
and analytically in the case a 5 5, b 5 1, h 5

2
Investigate the harvesting model in Problem 5 both qualitatively 

2
Investigate the harvesting model in Problem 5 both qualitatively 

5
Investigate the harvesting model in Problem 5 both qualitatively 

5
Investigate the harvesting model in Problem 5 both qualitatively 

4 . Determine 
whether the population becomes extinct in �nite time. If so, �nd 
that time.

7. Repeat Problem 6 in the case a 5 5, b 5 1, h 5 7.

8. (a)  Suppose a 5 b 5 1 in the Gompertz differential 
equation (7). Since the DE is autonomous, use the phase 
portrait concept of Section 2.1 to sketch representative 
solution curves corresponding to the cases P0 . e and 
0 , P0 , e.

(b) Suppose a 5 1, b 5 21 in (7). Use a new phase portrait to 
sketch representative solution curves corresponding to the 
cases P0 . e21 and 0 , P0 , e21.

(c) Find an explicit solution of (7) subject to P(0) 5 P0.

Chemical Reactions
9. Two chemicals A and B are combined to form a chemical C.

The rate, or velocity, of the reaction is proportional to the 
product of the instantaneous amounts of A and B not converted 
to chemical C. Initially, there are 40 grams of A and 50 grams 
of B, and for each gram of B, 2 grams of A is used. It is 
observed that 10 grams of C is formed in 5 minutes. How much C is formed in 5 minutes. How much C
is formed in 20 minutes? What is the limiting amount of C
after a long time? How much of chemicals A and B remains 
after a long time?

10. Solve Problem 9 if 100 grams of chemical A is present initially. 
At what time is chemical C half-formed?C half-formed?C

Additional Nonlinear Models
11. Leaking Cylindrical Cylindrical C TankTankT A tank in the form of a right-

circular cylinder standing on end is leaking water through a 
circular hole in its bottom. As we saw in (10) of Section 1.3, 
when friction and contraction of water at the hole are ignored, 
the height h of water in the tank is described by

dh

dt
5 2

Ah

Aw
Ï2ghÏ ,

  where Aw and Ah are the cross-sectional areas of the water and 
the hole, respectively.

(a) Solve the DE if the initial height of the water is H. By 
hand, sketch the graph of h(t) and give its interval I of I of I
de�nition in terms of the symbols Aw, Ah, and H.
Use g 5 32 ft/s2.

(b) Suppose the tank is 10 feet high and has radius 2 feet and 
the circular hole has radius 1
Suppose the tank is 10 feet high and has radius 2 feet and 

1
Suppose the tank is 10 feet high and has radius 2 feet and 

2 inch. If the tank is initially 
full, how long will it take to empty?
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12. Leaking Cylindrical Cylindrical C Tank—Tank—T Continued When friction  
and contraction of the water at the hole are taken into account, 
the model in Problem 11 becomes

dh

dt
5 2c

Ah

Aw
Ï2ghÏ ,

where 0 , c , 1. How long will it take the tank in Problem 11(b) 
to empty if c 5 0.6? See Problem 13 in Exercises 1.3.

13. Leaking Conical TankTankT A tank in the form of a right-circular 
cone standing on end, vertex down, is leaking water through a 
circular hole in its bottom.

(a) Suppose the tank is 20 feet high and has radius 8 feet and 
the circular hole has radius 2 inches. In Problem 14 in 
Exercises 1.3 you were asked to show that the differential 
equation governing the height h of water leaking from a 
tank is

dh

dt
5 2

5

6h3/2.

In this model, friction and contraction of the water at the 
hole were taken into account with c 5 0.6, and g was taken 
to be 32 ft/s2. See Figure 1.3.12. If the tank is initially full, 
how long will it take the tank to empty?

(b) Suppose the tank has a vertex angle of 60° and the cir-
cular hole has radius 2 inches. Determine the differential 
equation governing the height h of water. Use c 5 0.6 and 
g 5 32 ft/s2. If the height of the water is initially 9 feet, 
how long will it take the tank to empty?

14. Inverted Conical TankTankT Suppose that the conical tank in 
Problem 13(a) is inverted, as shown in Figure 3.2.5, and that 
water leaks out a circular hole of radius 2 inches in the center 
of its circular base. Is the time it takes to empty a full tank the 
same as for the tank with vertex down in Problem 13? Take the 
friction/contraction coef�cient to be c 5 0.6 and g 5 32 ft/s2.

8 ft

Aw

h
20 ft

FIGURE 3.2.5 Inverted conical tank in Problem 14

15. Air Resistance A differential equation for the velocity v of 
a falling mass m subjected to air resistance proportional to the 
square of the instantaneous velocity is

m
dvdvd

dt
5 mg 2 kv2,

where k . 0 is a constant of proportionality. The positive 
direction is downward.

(a) Solve the equation subject to the initial condition v(0) 5 v0.

(b) Use the solution in part (a) to determine the limiting, or  
terminal, velocity of the mass. We saw how to determine 
the terminal velocity without solving the DE in Problem 41 
in Exercises 2.1.

(c) If the distance s, measured from the point where the 
mass was released above ground, is related to velocity v
by dsydt 5 v(t), �nd an explicit expression for s(t) if 
s(0) 5 0.

16. How High?—Nonlinear Air Resistance Consider the 
16-pound cannonball shot vertically upward in Problems 36 
and 37 in Exercises 3.1 with an initial velocity v0 5 300 ft/s. 
Determine the maximum height attained by the cannonball if 
air resistance is assumed to be proportional to the square of the 
instantaneous velocity. Assume that the positive direction is 
upward and take k 5 0.0003. [Hint: Slightly modify the DE in 
Problem 15.]

17. That Sinking Feeling (a) Determine a differential equation 
for the velocity v(t) of a mass m sinking in water that 
imparts a resistance proportional to the square of the 
instantaneous velocity and also exerts an upward buoyant 
force whose magnitude is given by Archimedes’ principle. 
See Problem 18 in Exercises 1.3. Assume that the positive 
direction is downward.

(b) Solve the differential equation in part (a).

(c) Determine the limiting, or terminal, velocity of the sinking 
mass.

18. Solar Collector The differential equation

dy

dxdxd
5

2x 1 ÏxÏxÏ 2 1 y2Ï
y

  describes the shape of a plane curve C that will re�ect all C that will re�ect all C
incoming light beams to the same point and could be a model 
for the mirror of a re�ecting telescope, a satellite antenna, or 
a solar collector. See Problem 29 in Exercises 1.3. There are 
several ways of solving this DE.

(a) Verify that the differential equation is homogeneous (see 
Section 2.5). Show that the substitution y 5 ux yieldsux yieldsux

u du

Ï1 1 u2Ï _1 2 Ï1 1 u2Ï +
5

dxdxd

x
.

Use a CAS (or another judicious substitution) to integrate 
the left-hand side of the equation. Show  that the curve C
must be a parabola with focus at the origin and is symmetric 
with respect to the x-axis.

(b) Show that the �rst differential equation can also be solved 
by means of the substitution u 5 x2 1 y2.

19. TsunamiTsunamiT (a) A simple model for the shape of a tsunami is 
given by

dW

dxdxd
5 W Ï4Ï4Ï 2 2WÏ ,
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where W(W(W x) . 0 is the height of the wave expressed as 
a function of its position relative to a point offshore. By 
inspection, �nd all constant solutions of the DE.

(b) Solve the differential equation in part (a). A CAS may be 
useful for integration.

(c) Use a graphing utility to obtain the graphs of all solutions 
that satisfy the initial condition W(0)W(0)W 5 2.

20. Evaporation An outdoor decorative pond in the shape of a 
hemispherical tank is to be �lled with water pumped into the 
tank through an inlet in its bottom. Suppose that the radius of the 
tank is R 5 10 ft, that water is pumped in at a rate of p ftp ftp 3/min, 
and that the tank is initially empty. See Figure 3.2.6. As the tank 
�lls, it loses water through evaporation. Assume that the rate of 
evaporation is proportional to the area A of the surface of the 
water and that the constant of proportionality is k 5 0.01.

(a) The rate of change dVydVydV dt of the volume of the dt of the volume of the dt water at time t
is a net rate. Use this net rate to determine a differential 
equation for the height h of the water at time t. The volume 
of the water shown in the �gure is V 5 pRhpRhp 2 2 1

3ph3, 
where R 5 10. Express the area of the surface of the water 
A 5 pr2r2r  in terms of h.

(b) Solve the differential equation in part (a). Graph the solution.

(c) If there were no evaporation, how long would it take the 
tank to �ll?

(d) With evaporation, what is the depth of the water at the time 
found in part (c)? Will the tank ever be �lled? Prove your 
assertion.

Output: water evaporates

         at rate    ft

A
V

Output: water evaporatesOutput: water evaporatesOutput: water evaporatesOutput: water evaporates
                 at rate proportional                 at rate proportional                 at rate proportional
                  to area                   to area                   to area AAA of surface of surface of surface

Input: water pumped inInput: water pumped inInput: water pumped in
         at rate    ft         at rate           at rate    ft333/min         at rate    ftp         at rate    ft         at rate    ft         at rate           at rate    ftp         at rate    ft         at rate           at rate    ft

(a) hemispherical tank (b) cross-section of tank

R

r

hhh

FIGURE 3.2.6 Decorative pond in Problem 20

21. Doomsday Equation Consider the differential equation

dPdPd

dt
5 kPkPk 11c,

where k . 0 and c $ 0. In Section 3.1 we saw that in 
the case c 5 0 the linear differential equation dPdPd ydt 5 kPkPk
is a mathematical model of a population P(t) that exhibits 
unbounded growth over the in�nite time interval [0, `), that is, 
P(t) S ` as t S `. See Example 1 on page 85. 

(a) Suppose for c 5 0.01 that the nonlinear differential equation 

dPdPd

dt
5 kP1.01, k . 0,

  is a mathematical model for a population of small animals, 
where time t is measured in months. Solve the differential t is measured in months. Solve the differential t

equation subject to the initial condition P(0) 5 10 and the 
fact that the animal population has doubled in 5 months. 

(b) The differential equation in part (a) is called a doomsday 
equation because the population P(t) exhibits unbounded 
growth over a �nite time interval (0, T)T)T , that is, there is 
some time T such that T such that T P(t) S ` as t S T 2. Find T.T.T

(c) From part (a), what is P(50)? P(100)?

22. Doomsday or Extinction Suppose the population model (4) 
is modi�ed to be

dPdPd

dt
5 P(bP 2 a).

(a) If a . 0, b . 0 show by means of a phase portrait (see  
page 40) that, depending on the initial condition P(0) 5 P0,
the mathematical model could include a doomsday scenario 
(P(t) S `) or an extinction scenario (P(t) S 0).

(b) Solve the initial-value problem

dPdPd

dt
5 P(0.0005P 2 0.1), P(0) 5 300.

Show that this model predicts a doomsday for the population 
in a �nite time T. T. T

(c) Solve the differential equation in part (b) subject to the 
initial condition P(0) 5 100. Show that this model predicts 
extinction for the population as t S `.

Project Problems
23. Regression Line Read the documentation for your CAS on 

scatter plots (or scatter diagrams) and least-squares linear �t.
The straight line that best �ts a set of data points is called a 
regression line or a least squares line. Your task is to construct 
a logistic model for the population of the United States, 
de�ning f (P) in (2) as an equation of a regression line based on 
the population data in the table in Problem 4. One way of doing 

this is to approximate the left-hand side 
1

P

dPdPd

dt
 of the �rst  of the �rst 

equation in (2), using the forward difference quotient in 
place of dPydt:

Q(t) 5
1

P(t)

P(t 1 h) 2 P(t)

h
.

(a) Make a table of the values t, P(t), and Q(t) using  
t 5 0, 10, 20, . . . , 160 and h 5 10. For example, the  
�rst line of the table should contain t 5 0, P(0), and Q(0). 
With P(0) 5 3.929 and P(10) 5 5.308,

Q(0) 5
1

P(0)

P(10) 2 P(0)

10
5 0.035.

Note that Q(160) depends on the 1960 census population 
P(170). Look up this value.

(b) Use a CAS to obtain a scatter plot of the data (P(t), Q(t)) 
computed in part (a). Also use a CAS to �nd an equation  
of the regression line and to superimpose its graph on the 
scatter plot.
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(c) Construct a logistic model dPydt 5 Pf (P), where f (P) is 
the equation of the regression line found in part (b).

(d) Solve the model in part (c) using the initial condition 
P(0) 5 3.929.

(e) Use a CAS to obtain another scatter plot, this time of the 
ordered pairs (t, P(t)) from your table in part (a). Use your 
CAS to superimpose the graph of the solution in part (d) on 
the scatter plot.

(f) Look up the U.S. census data for 1970, 1980, and 1990. 
What population does the logistic model in part (c) predict 
for these years? What does the model predict for the U.S. 
population P(t) as t : `?

24. Immigration Model (a) In Examples 3 and 4 of Section 2.1 
we saw that any solution P(t) of (4) possesses the asymptotic 
behavior P(t) : ayb as t : ` for P0 . ayb and for 
0 , P0 , ayb; as a consequence the equilibrium solution 
P 5 ayb is called an attractor. Use a root-�nding application 
of a CAS (or a graphic calculator) to approximate the 
equilibrium solution of the immigration model

dPdPd

dt
5 P(1 2 P) 1 0.3e2P.

(b) Use a graphing utility to graph the function  
F(P) 5 P(1 2 P) 1 0.3e2P. Explain how this graph  
can be used to determine whether the number found in  
part (a) is an attractor.

(c) Use a numerical solver to compare the solution curves for 
the IVPs

dPdPd

dt
5 P(1 2 P), P(0) 5 P0

for P0 5 0.2 and P0 5 1.2 with the solution curves for the 
IVPs

dPdPd

dt
5 P(1 2 P) 1 0.3e2P, P(0) 5 P0

for P0 5 0.2 and P0 5 1.2. Superimpose all curves on the 
same coordinate axes but, if possible, use a different color 
for the curves of the second initial-value problem. Over a 
long period of time, what percentage increase does the  
immigration model predict in the population compared  
to the logistic model?

25. What Goes Up . . . In Problem 16 let tatat  be the time it takes 
the cannonball to attain its maximum height and let tdtdt  be the d be the d

time it takes the cannonball to fall from the maximum height 
to the ground. Compare the value of tatat  with the value of tdtdt  and d and d

compare the magnitude of the impact velocity vi with the initial 
velocity v0. See Problem 50 in Exercises 3.1. A root-�nding 
application of a CAS might be useful here. [Hint: Use the 
model in Problem 15 when the cannonball is falling.]

26. Skydiving A skydiver is equipped with a stopwatch and an 
altimeter. As shown in Figure 3.2.7, he opens his parachute 
25 seconds after exiting a plane �ying at an altitude of 20,000 feet 
and observes that his altitude is 14,800 feet. Assume that air 
resistance is proportional to the square of the instantaneous 

velocity, his initial velocity on leaving the plane is zero, and 
g 5 32 ft/s2.

(a) Find the distance s(t), measured from the plane, the sky-
diver has traveled during freefall in time t. [Hint: The con-
stant of proportionality k in the model given in Problem 15 k in the model given in Problem 15 k
is not speci�ed. Use the expression for terminal velocity vt

obtained in part (b) of Problem 15 to eliminate k from the k from the k
IVP. Then eventually solve for vt.]

(b) How far does the skydiver fall and what is his velocity at 
t 5 15 s?

s(t)

25 s25 s25 s

14,800 ft

FIGURE 3.2.7 Skydiver in Problem 26

27. Hitting Bottom A helicopter hovers 500 feet above a large 
open tank full of liquid (not water). A dense compact object 
weighing 160 pounds is dropped (released from rest) from 
the helicopter into the liquid. Assume that air resistance is 
proportional to instantaneous velocity v while the object is 
in the air and that viscous damping is proportional to v2 after 
the object has entered the liquid. For air take k 5 1
in the air and that viscous damping is proportional to 

1
in the air and that viscous damping is proportional to 

4, and for 
the liquid take k 5 0.1. Assume that the positive direction is 
downward. If the tank is 75 feet high, determine the time and 
the impact velocity when the object hits the bottom of the tank. 
[Hint: Think in terms of two distinct IVPs. If you use (13), be 
careful in removing the absolute value sign. You might compare 
the velocity when the object hits the liquid—the initial velocity 
for the second problem—with the terminal velocity vt of the t of the t

object falling through the liquid.]

28. Old Man River . . . In Figure 3.2.8(a) suppose that the y-axis 
and the dashed vertical line x 5 1 represent, respectively, the 
straight west and east beaches of a river that is 1 mile wide. 
The river �ows northward with a velocity vr, where |vr| 5 vr mi/h r mi/h r

is a constant. A man enters the current at the point (1, 0) on 
the east shore and swims in a direction and rate relative to the 
river given by the vector vs, where the speed |vs| 5 vs mi/h is 
a constant. The man wants to reach the west beach exactly at 
(0, 0) and so swims in such a manner that keeps his velocity 
vector vs always directed toward the point (0, 0). Use  
Figure 3.2.8(b) as an aid in showing that a mathematical  
model for the path of the swimmer in the river is

dydyd

dxdxd
5

vsysys 2 vrÏxÏxÏ 2 1 y2Ï
vs x

.

[Hint: The velocity v of the swimmer along the path or curve 
shown in Figure 3.2.8 is the resultant v 5 vs 1 vr. Resolve 
vs and vr into components in the r into components in the r x- and y-directions. If 
x 5 x(t), y 5 y(t) are parametric equations of the swimmer’s 
path, then v 5 (dxdxd ydt, dydyd ydt).]

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



106 CHAPTER  MODELING WITH FIRSTORDER DIFFERENTIAL EQUATIONS

y

(0, 0) (1, 0)

y(t)

x(t)

(x(t), y(t))

vr

west
beach

east
beach

swimmer

current

x

y

(0, 0) (1, 0)

vs

vr

x

(a)

(b)

�

FIGURE 3.2.8 Path of swimmer in Problem 28

29. (a) Solve the DE in Problem 28 subject to y(1) 5 0. For 
convenience let k 5 vryvs.

(b) Determine the values of vs for which the swimmer will 
reach the point (0, 0) by examining lim

x S 01
y(x) in the cases  

k 5 1, k . 1, and 0 , k , 1.

30. Old Man River Keeps Moving . . . Suppose the man in 
Problem 28 again enters the current at (1, 0) but this time 
decides to swim so that his velocity vector vs is always directed 
toward the west beach. Assume that the speed |vs| 5 vs mi/h is 
a constant. Show that a mathematical model for the path of the 
swimmer in the river is now

dydyd

dxdxd
5 2

vr

vs
.

31. The current speed vr of a straight river such as that in r of a straight river such as that in r

Problem 28 is usually not a constant. Rather, an approximation 
to the current speed (measured in miles per hour) could be a 
function such as vr(x) 5 30x0x0 (1 2 x), 0 # x # 1, whose values 
are small at the shores (in this case, vr(0) 5 0 and vr(1) 5 0) 
and largest in the middle of the river. Solve the DE in Problem 
30 subject to y(1) 5 0, where vs 5 2 mi/h and vr(x) is as given. 
When the swimmer makes it across the river, how far will he 
have to walk along the beach to reach the point (0, 0)?

32. Raindrops Keep Falling . . . When a bottle of liquid 
refreshment was opened recently, the following factoid was 
found inside the bottle cap:

The average velocity of a falling raindrop is 7 miles/hour.

A quick search of the Internet found that meteorologist  
Jeff Haby offers the additional information that an 
“average” spherical raindrop has a radius of 0.04 in. and 
an approximate volume of 0.000000155 ft3. Use this data 
and, if need be, dig up other data and make other reasonable 
assumptions to determine whether “average velocity of . . . 
7 mi/h” is consistent with the models in Problems 35 and 36 
in Exercises 3.1 and Problem 15 in this exercise set. Also see 
Problem 36 in Exercises 1.3.

33. Time Drips By The clepsydra, or water clock, was a device 
that the ancient Egyptians, Greeks, Romans, and Chinese used 
to measure the passage of time by observing the change in the 
height of water that was permitted to �ow out of a small hole in 
the bottom of a container or tank.

(a) Suppose a tank is made of glass and has the shape of a right-
circular cylinder of radius 1 ft. Assume that h(0) 5 2 ft cor-
responds to water �lled to the top of the tank, a hole in the 
bottom is circular with radius 1
responds to water �lled to the top of the tank, a hole in the 

1
responds to water �lled to the top of the tank, a hole in the 

32 in., g 5 32 ft/s2, and c 5 0.6. 
Use the differential equation in Problem 12 to �nd the height 
h(t) of the water.

(b) For the tank in part (a), how far up from its bottom should 
a mark be made on its side, as shown in Figure 3.2.9, that 
corresponds to the passage of one hour? Next determine 
where to place the marks corresponding to the passage of 
2 hr, 3 hr, . . . , 12 hr. Explain why these marks are not 
evenly spaced.

21 hour

2 hours

1

FIGURE 3.2.9 Clepsydra in Problem 33

34. (a) Suppose that a glass tank has the shape of a cone with 
circular cross section as shown in Figure 3.2.10. As in part (a) 
of Problem 33, assume that h(0) 5 2 ft corresponds to water 
�lled to the top of the tank, a hole in the bottom is circular with 
radius 1
�lled to the top of the tank, a hole in the bottom is circular with 

1
�lled to the top of the tank, a hole in the bottom is circular with 

32 in.,  in., g 5 32 ft/s2, and c 5 0.6. Use the differential 
equation in Problem 12 to �nd the height h(t) of the water.t) of the water.t

(b) Can this water clock measure 12 time intervals of length 
equal to 1 hour? Explain using sound mathematics.

2

1

FIGURE 3.2.10 Clepsydra in Problem 34

35. Suppose that r 5 f(f(f h) de�nes the shape of a water clock for which 
the time marks are equally spaced. Use the differential equation in 
Problem 12 to �nd f(f(f h) and sketch a typical graph of h as a function h as a function h
of r. Assume that the cross-sectional area Ah of the hole is constant. 
[Hint: In this situation dhydt 5 2a, where a . 0 is a constant.]
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 3.3 Modeling with Systems of First-Order DEs

INTRODUCTION This section is similar to Section 1.3 in that we are just 
going to discuss certain mathematical models, but instead of a single differential 
equation the models will be systems of �rst-order differential equations. Although 
some of the models will be based on topics that we explored in the preceding 
two sections, we are not going to develop any general methods for solving 
these systems. There are reasons for this: First, we do not possess the necessary 
mathematical tools for solving systems at this point. Second, some of the systems 
that we discuss—notably the systems of nonlinear �rst-order DEs—simply cannot nonlinear �rst-order DEs—simply cannot nonlinear
be solved analytically. We shall examine solution methods for systems of linear
DEs in Chapters 4, 7, and 8.

LINEAR/NONLINEAR SYSTEMS We have seen that a single differential equa-
tion can serve as a mathematical model for a single population in an environment. 
But if there are, say, two interacting and perhaps competing species living in the 
same environment (for example, rabbits and foxes), then a model for their popu-
lations x(t) and y(t) might be a system of two �rst-order differential equations 
such as

dx

dt
5 g1(t, x, y)

dy

dt
5 g2(t, x, y).

(1)

When g1 and g2 are linear in the variables x and x and x y—that is, g1 and g2 have the forms

g1(t, x, y) 5 c1 x 1 c2 y 1 f1f1f (t) and g2(t, x, y) 5 c3 x 1 c4 y 1 f2f2f (t),

where the coef�cients ci could depend on t—then (1) is said to be a t—then (1) is said to be a t linear system.
A system of differential equations that is not linear is said to be nonlinear.

RADIOACTIVE SERIES In the discussion of radioactive decay in Sections 1.3 
and 3.1 we assumed that the rate of decay was proportional to the number A(t) of 
nuclei of the substance present at time t. When a substance decays by radioactiv-
ity, it usually doesn’t just transmute in one step into a stable substance; rather, the 
�rst substance decays into another radioactive substance, which in turn decays 
into a third substance, and so on. This process, called a radioactive decay series,
continues until a stable element is reached. For example, the uranium decay 
series is U-238 : Th-234 : ? ? ? : Pb-206, where Pb-206 is a stable isotope of 
lead. The half-lives of the various elements in a radioactive series can range from 
billions of years (4.5 3 109 years for U-238) to a fraction of a second. Suppose a 
radioactive series is described schematically by X S2�

 years for U-238) to a fraction of a second. Suppose a 
�

 years for U-238) to a fraction of a second. Suppose a 
1S1S Y S2�

 years for U-238) to a fraction of a second. Suppose a 
�

 years for U-238) to a fraction of a second. Suppose a 
2

Z, where k1 5 2l1 , 0 
and k2 5 2l2 , 0 are the decay constants for substances X and X and X Y, respectively, and Y, respectively, and Y
Z is a stable element. Suppose, too, that Z is a stable element. Suppose, too, that Z x(t), y(t), and z(t) denote amounts of 
substances X, Y, and  Y, and  Y Z, respectively, remaining at time t. The decay of element 
X is described byX is described byX

dxdxd

dt
5 2�1x,

whereas the rate at which the second element Y decays is the net rateY decays is the net rateY

dydyd

dt
5 �1x 2 �2y,
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108 CHAPTER  MODELING WITH FIRSTORDER DIFFERENTIAL EQUATIONS

since Y is Y is Y gaining atoms from the decay of X and at the same time X and at the same time X losing atoms 
because of its own decay. Since Z is a stable element, it is simply gaining atoms from Z is a stable element, it is simply gaining atoms from Z
the decay of element Y:

dz

dt
5 �2y.

In other words, a model of the radioactive decay series for three elements is the linear 
system of three �rst-order differential equations

dx

dt
5 2�1x

dy

dt
5 �1x 2 �2y (2)

dz

dt
5 �2y.

MIXTURES Consider the two tanks shown in Figure 3.3.1. Let us suppose for the 
sake of discussion that tank A contains 50 gallons of water in which 25 pounds of salt 
is dissolved. Suppose tank B contains 50 gallons of pure water. Liquid is pumped 
into and out of the tanks as indicated in the �gure; the mixture exchanged between 
the two tanks and the liquid pumped out of tank B are assumed to be well stirred. 
We wish to construct a mathematical model that describes the number of pounds x1(t) 
and x2(t) of salt in tanks A and B, respectively, at time t.

mixture
3 gal/min

mixture
4 gal/min

BA

pure water
3 gal/min

mixture
1 gal/min

FIGURE 3.3.1 Connected mixing tanks

By an analysis similar to that on page 25 in Section 1.3 and Example 5 of 
Section 3.1 we see that the net rate of change of x1(t) for tank A is

dx1–––
dt

5 (3 gal/min) ? (0 lb/gal) 1 (1 gal/min) ? (      lb/gal) 2 (4 gal/min) ? (      lb/gal)
5 2 x1 1 x2.

input rate
of salt

output rate
of salt

x
      lb/gal
x
      lb/gal2      lb/gal2      lb/gal      lb/gal–––      lb/gal
50
      lb/gal
50
      lb/gal

1
–––
5050

x
      lb/gal
x
      lb/gal1      lb/gal1      lb/gal      lb/gal–––      lb/gal
50
      lb/gal
50
      lb/gal

2
–––
2525

Similarly, for tank B the net rate of change of x2(t) is

dxdxd 2

dt
5 4 ?

x1

50
2 3 ?

x2

50
2 1 ?

x2

50

5
2

25
x1 2

2

25
x2.

Thus we obtain the linear system

 
dx1

dt
5 2 

2

25
 x1 1

1

50
x2

(3)
 
dx2

dt
5  

2

25
x1 2

2

25
x2.
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. MODELING WITH SYSTEMS OF FIRSTORDER DES 109

Observe that the foregoing system is accompanied by the initial conditions x1(0) 5 25, 
x2(0) 5 0.

A PREDATORPREY MODEL Suppose that two different species of animals interact 
within the same environment or ecosystem, and suppose further that the �rst species eats 
only vegetation and the second eats only the �rst species. In other words, one species is 
a predator, and the other is a prey. For example, wolves hunt grass-eating caribou, sharks 
devour little �sh, and the snowy owl pursues an arctic rodent called the lemming. For the 
sake of discussion, let us imagine that the predators are foxes and the prey are rabbits.

Let x(t) and y(t) denote the fox and rabbit populations, respectively, at time t. If 
there were no rabbits, then one might expect that the foxes, lacking an adequate food 
supply, would decline in number according to

dxdxd

dt
5 2ax, a . 0. (4)

When rabbits are present in the environment, however, it seems reasonable that the 
number of encounters or interactions between these two species per unit time is jointly 
proportional to their populations x and x and x y—that is, proportional to the product xy. Thus 
when rabbits are present, there is a supply of food, so foxes are added to the system at a 
rate bxy, b . 0. Adding this last rate to (4) gives a model for the fox population:

dxdxd

dt
5 2ax 1 bxbxb y. (5)

On the other hand, if there were no foxes, then the rabbits would, with an added 
assumption of unlimited food supply, grow at a rate that is proportional to the number 
of rabbits present at time t:

dydyd

dt
5 dydyd , d . 0. (6)

But when foxes are present, a model for the rabbit population is (6) decreased by 
cxy, c . 0—that is, decreased by the rate at which the rabbits are eaten during their 
encounters with the foxes:

dydyd

dt
5 dydyd 2 cxcxc y. (7)

Equations (5) and (7) constitute a system of nonlinear differential equations

dx

dt
5 2ax 1 bxy 5 x(2a 1 by)

(8)
dy

dt
5 dy 2 cxy 5 y(d 2 cx),

where a, b, c, and d are positive constants. This famous system of equations is known d are positive constants. This famous system of equations is known d
as the Lotka-Volterra predator-prey model.

Except for two constant solutions, x(t) 5 0, y(t) 5 0 and x(t) 5 dyc, y(t) 5 ayb, 
the nonlinear system (8) cannot be solved in terms of elementary functions. However, 
we can analyze such systems quantitatively and qualitatively. See Chapter 9, 
“Numerical Solutions of Ordinary Differential Equations,” and Chapter 10, “Systems 
of Nonlinear First-Order Differential Equations.”*

 EXAMPLE 1  Predator-Prey Model

Suppose
dxdxd

dt
5 20.16x 1 0.08xy

dydyd

dt
5 4.5y 2 0.9xy

*Chapters 10–15 are in the expanded version of this text, Differential Equations with Boundary-Value 
Problems.
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110 CHAPTER  MODELING WITH FIRSTORDER DIFFERENTIAL EQUATIONS

represents a predator-prey model. Because we are dealing with populations, we have 
x(t) $ 0, y(t) $ 0. Figure 3.3.2, obtained with the aid of a numerical solver, shows 
typical population curves of the predators and prey for this model superimposed 
on the same coordinate axes. The initial conditions used were x(0) 5 4, y(0) 5 4. 
The curve in red represents the population x(t) of the predators (foxes), and the blue 
curve is the population y(t) of the prey (rabbits). Observe that the model seems to 
predict that both populations x(t) and y(t) are periodic in time. This makes intuitive 
sense because as the number of prey decreases, the predator population eventually 
decreases because of a diminished food supply; but attendant to a decrease in the 
number of predators is an increase in the number of prey; this in turn gives rise to an 
increased number of predators, which ultimately brings about another decrease in the 
number of prey. .

COMPETITION MODELS Now suppose two different species of animals occupy 
the same ecosystem, not as predator and prey but rather as competitors for the same 
resources (such as food and living space) in the system. In the absence of the other, 
let us assume that the rate at which each population grows is given by

dxdxd

dt
5 ax and

dydyd

dt
5 cy, (9)

respectively.
Since the two species compete, another assumption might be that each of these 

rates is diminished simply by the in�uence, or existence, of the other population. 
Thus a model for the two populations is given by the linear system

dx

dt
5 ax 2 by

(10)
dy

dt
5 cy 2 dx,

where a, b, c, and d are positive constants.d are positive constants.d
On the other hand, we might assume, as we did in (5), that each growth rate in 

(9) should be reduced by a rate proportional to the number of interactions between 
the two species:

dx

dt
5 ax 2 bxy

(11)
dy

dt
5 cy 2 dxy.

Inspection shows that this nonlinear system is similar to the Lotka-Volterra predator-
prey model. Finally, it might be more realistic to replace the rates in (9), which 
indicate that the population of each species in isolation grows exponentially, with 
rates indicating that each population grows logistically (that is, over a long time the 
population is bounded):

dxdxd

dt
5 a1x 2 b1x2 and

dydyd

dt
5 a2y 2 b2y2. (12)

When these new rates are decreased by rates proportional to the number of interac-
tions, we obtain another nonlinear model:

dx

dt
5 a1x 2 b1x2 2 c1xy 5 x(a1 2 b1x 2 c1y)

(13)
dy

dt
5 a2y 2 b2y2 2 c2xy 5 y(a2 2 b2y 2 c2x),

t

po
pu

la
tio

n
x, y

time

predators

prey

FIGURE 3.3.2 Populations of predators 
(red) and prey (blue) in Example 1
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where all coef�cients are positive. The linear system (10) and the nonlinear systems 
(11) and (13) are, of course, called competition models.

NETWORKS An electrical network having more than one loop also gives rise to 
simultaneous differential equations. As shown in Figure 3.3.3, the current i1(t) splits 
in the directions shown at point B1, called a branch point of the network. By branch point of the network. By branch point
Kirchhoff’s �rst law we can write

i1(t) 5 i2(t) 1 i3(t). (14)

We can also apply Kirchhoff’s second law to each loop. For loop A1B1B2A2A2 2A2A2 1, 
summing the voltage drops across each part of the loop gives

E(t) 5 i1R1 1 L1
di2
dt

1 i2R2. (15)

Similarly, for loop A1B1C1C2C2C B2A2A2 2A2A2 1 we �nd

E(t) 5 i1R1 1 L2
di3
dt

. (16)

Using (14) to eliminate i1 in (15) and (16) yields two linear �rst-order equations for 
the currents i2(t) and i3(t):

L1 
di2
dt

1  (R1 1 R2)i2 1 R1i3 5 E(t)

(17)

L2 
di3
dt

1  R1i2 1 R1i3 5 E(t).

We leave it as an exercise (see Problem 16 in Exercises 3.3) to show that the 
system of differential equations describing the currents i1(t) and i2(t) in the network 
containing a resistor, an inductor, and a capacitor shown in Figure 3.3.4 is

L 

di1
dt

1 Ri2  5 E(t)

(18)

RC 

di2
dt

1 i2 2 i1 5 0.

FIGURE 3.3.3 Network whose model is 
given in (17)

A1

L1

R1

R2

A2

B1

B2

C1

C2C2C

i1 i2

i3

L2E

i1 L

R C

i2

i3

E

FIGURE 3.3.4 Network whose model is 
given in (18)

EXERCISES 3.3

Radioactive Series
1. We have not discussed methods by which systems of �rst-order 

differential equations can be solved. Nevertheless, systems such 
as (2) can be solved with no knowledge other than how to solve 
a single linear �rst-order equation. Find a solution of (2) subject 
to the initial conditions x(0) 5 x0, y(0) 5 0, z(0) 5 0.

2. In Problem 1 suppose that time is measured in days, that the 
decay constants are k1 5 20.138629 and k2 5 20.004951, and 
that x0 5 20. Use a graphing utility to obtain the graphs of the 
solutions x(t), y(t), and z(t) on the same set of coordinate axes. 
Use the graphs to approximate the half-lives of substances X
and Y.

3. Use the graphs in Problem 2 to approximate the times when the 
amounts x(t) and y(t) are the same, the times when the amounts 
x(t) and z(t) are the same, and the times when the amounts y(t) 
and z(t) are the same. Why does the time that is determined when 
the amounts y(t) and z(t) are the same make intuitive sense?

4. Construct a mathematical model for a radioactive series of four 
elements W,W,W  X, Y, and  Y, and  Y Z, where Z is a Z is a Z stable element.

5. Potassium-40 Decay The chemical element potassium is a 
soft metal that can be found extensively throughout the Earth’s 
crust and oceans. Although potassium occurs naturally in the 
form of three isotopes, only the isotope potassium-40 (K-40) 
is radioactive. This isotope is also unusual in that it decays by 
two different nuclear reactions. Over time, by emitting beta 
particles a great percentage of an initial amount K0K0K  of K-40 
decays into the stable isotope calcium-40 (Ca-40), whereas 
by electron capture a smaller percentage of K0K0K  decays into the 
stable isotope argon-40 (Ar-40). Because the rates at which 
the amounts C(t) of Ca-40 and A(t) of Ar-40 increase are 
proportional to the amount K(K(K t) of potassium present, and the 
rate at which K(K(K t) decays is also proportional to K(K(K t), we obtain 
the system of linear �rst-order equations

dC

dt
5 �1K

dAdAd

dt
5 �2K

dKdKd

dt
5 2(�1 1 �2)K,

Answers to selected odd-numbered problems begin on page ANS-4.
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112 CHAPTER  MODELING WITH FIRSTORDER DIFFERENTIAL EQUATIONS

where l1 and l2 are positive constants of proportionality. 
By proceeding as in Problem 1 we can solve the foregoing 
mathematical model.

(a) From the last equation in the given system of differential 
equations �nd K(K(K t) if K(0) K(0) K 5 K0K0K . Then use K(K(K t) to �nd C(t) 
and A(t) from the �rst and second equations. Assume that 
C(0) 5 0 and A(0) 5 0.

(b) It is known that l1 5 4.7526 3 10210 and l2 5
0.5874 3 10210. Find the half-life of K-40.

(c) Use C(t) and A(t) found in part (a) to determine the percent-
age of an initial amount K0K0K  of K-40 that decays into Ca-40 
and the percentage that decays into Ar-40 over a very long 
period of time.

6. Potassium-Argon Dating The knowledge of how K-40 
decays can be used to determine the age of very old igneous 
rocks. See Figure 3.3.5. 

(a) Use the solutions obtained in part (a) of Problem 5 to �nd 
the ratio A(t)yK(K(K t).

(b) Use A(t)yK(K(K t) found in part (a) to show that 

t 5
1

�1 1 �2
ln 31 1

�1 1 �2

�2

A(t)

K(K(K t)4.

(c) Suppose it is determined that each gram of an igneous 
rock sample contains 8.5 3 1027 grams of Ar-40 and 
5.4 3 1026 grams of K-40. Use the result in part (b) to �nd 
the approximate age of the rock.

FIGURE 3.3.5 Igneous rocks are formed through solidi�cation 
of volcanic lava
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Mixtures
7. Consider two tanks A and B, with liquid being pumped in 

and out at the same rates, as described by the system of 
equations (3). What is the system of differential equations 
if, instead of pure water, a brine solution containing 2 pounds 
of salt per gallon is pumped into tank A?

8. Use the information given in Figure 3.3.6 to construct 
a mathematical model for the number of pounds of salt 
x1(t), x2(t), and x3(t) at time t in tanks A, B, and C, 
respectively.

mixture
5 gal/min

mixture
6 gal/min

mixture
4 gal/min

pure water
4 gal/min

B
100 gal

C
100 gal

A
100 gal

mixture
2 gal/min

mixture
1 gal/min

FIGURE 3.3.6 Mixing tanks in Problem 8

9. Two very large tanks A and B are each partially �lled with 
100 gallons of brine. Initially, 100 pounds of salt is dissolved in the 
solution in tank A and 50 pounds of salt is dissolved in the solution 
in tank B. The system is closed in that the well-stirred liquid is 
pumped only between the tanks, as shown in Figure 3.3.7.

(a) Use the information given in the �gure to construct a math-
ematical model for the number of pounds of salt x1(t) and 
x2(t) at time t in tanks t in tanks t A and B, respectively.

(b) Find a relationship between the variables x1(t) and x2(t)  
that holds at time t. Explain why this relationship makes 
intuitive sense. Use this relationship to help �nd the amount 
of salt in tank B at t 5 30 min.

mixture
2 gal/min

mixture
3 gal/min

B
100 gal

A
100 gal

FIGURE 3.3.7 Mixing tanks in Problem 9

10. Three large tanks contain brine, as shown in Figure 3.3.8. Use 
the information in the �gure to construct a mathematical model 
for the number of pounds of salt x1(t), x2(t), and x3(t) at time  
t in tanks t in tanks t A, B, and C, respectively. Without solving the system, 
predict limiting values of x1(t), x2(t), and x3(t) as t : `.

mixture
4 gal/min

mixture
4 gal/min

mixture
4 gal/min

pure water
4 gal/min

B
150 gal

C
100 gal

A
200 gal

FIGURE 3.3.8 Mixing tanks in Problem 10
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Predator-Prey Models
11. Consider the Lotka-Volterra predator-prey model de�ned by

dxdxd

dt
5 20.1x 1 0.02xy

dy

dt
5 0.2y 2 0.025xy,

where the populations x(t) (predators) and t) (predators) and t y(t) (prey) are measured t) (prey) are measured t
in thousands. Suppose x(0) 5 6 and y(0) 5 6. Use a numerical 
solver to graph x(t) and t) and t y(t). Use the graphs to approximate the t). Use the graphs to approximate the t
time t . 0 when the two populations are �rst equal. Use the 
graphs to approximate the period of each population.

Competition Models
12. Consider the competition model de�ned by

dxdxd

dt
5 x(2 2 0.4x4x4 2 0.3y)

dy

dt
5 y(1 2 0.1y 2 0.3x),

where the populations x(t) and y(t) are measured in thousands 
and t in years. Use a numerical solver to t in years. Use a numerical solver to t analyze the populations 
over a long period of time for each of the following cases:

(a) x(0) 5 1.5, y(0) 5 3.5

(b) x(0) 5 1, y(0) 5 1

(c) x(0) 5 2, y(0) 5 7

(d) x(0) 5 4.5, y(0) 5 0.5

13. Consider the competition model de�ned by

dxdxd

dt
5 x(1 2 0.1x 2 0.05y)

dy

dt
5 y(1.7 2 0.1y 2 0.15x),

where the populations x(t) and y(t) are measured in thousands 
and t in years. Use a numerical solver to t in years. Use a numerical solver to t analyze the populations 
over a long period of time for each of the following cases:

(a) x(0) 5 1, y(0) 5 1

(b) x(0) 5 4, y(0) 5 10

(c) x(0) 5 9, y(0) 5 4

(d) x(0) 5 5.5, y(0) 5 3.5

Networks
14. Show that a system of differential equations that describes 

the currents i2(t) and i3(t) in the electrical network shown in 
Figure 3.3.9 is

L
di2
dt

1 L
di3
dt

1 R1i2 5 E(t)

2R1
di2
dt

1 R2
di3
dt

1
1

C
i3 5 0.

R1E

i1 L i2
i3

C

R2

FIGURE 3.3.9 Network in Problem 14

15. Determine a system of �rst-order differential equations that 
describes the currents i2(t) and i3(t) in the electrical network 
shown in Figure 3.3.10.

i1 i2

i3R1

R2 R3

E L1 L2

FIGURE 3.3.10 Network in Problem 15

16. Show that the linear system given in (18) describes the currents i1(t) t) t
and i2(t) in the network shown in Figure 3.3.4. [t) in the network shown in Figure 3.3.4. [t Hint) in the network shown in Figure 3.3.4. [Hint) in the network shown in Figure 3.3.4. [ : dqydt 5 i3.]

Additional Nonlinear Models
17. SIR Model A communicable disease is spread throughout a 

small community, with a �xed population of n people, by contact 
between infected individuals and people who are susceptible to 
the disease. Suppose that everyone is initially susceptible to the 
disease and that no one leaves the community while the epidemic 
is spreading. At time t, let s(t), i(t), and r(t) denote, in turn, the 
number of people in the community (measured in hundreds) 
who are susceptible to the disease but not yet infected with it, 
the number of people who are infectedinfectedin  with the disease, and the fected with the disease, and the fected
number of people who have recovered from the disease. Explain ecovered from the disease. Explain ecovered
why the system of differential equations

dsdsd

dt
5 2k1si

di

dt
5 2k2i 1 k1si

dr

dt
5 k2i,

where k1 (called the infection rate) and k2 (called the removal 
rate) are positive constants, is a reasonable mathematical 
model, commonly called a SIR model, for the spread of the 
epidemic throughout the community. Give plausible initial 
conditions associated with this system of equations.

18. (a) In Problem 17, explain why it is suf�cient to analyze only

dsdsd

dt
5 2k1si

di

dt
5 2k2i 1 k1si.
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(b) Suppose k1 5 0.2, k2 5 0.7, and n 5 10. Choose various 
values of i(0) 5 i0, 0 , i0 , 10. Use a numerical solver to 
determine what the model predicts about the epidemic in 
the two cases s0 . k2yk1 and s0 # k2yk1. In the case of an 
epidemic, estimate the number of people who are eventu-
ally infected.

19. Concentration of a Nutrient Suppose compartments A and 
B shown in Figure 3.3.11 are �lled with �uids and are separated 
by a permeable membrane. The �gure is a compartmental 
representation of the exterior and interior of a cell. Suppose, 
too, that a nutrient necessary for cell growth passes through 
the membrane. A model for the concentrations x(t) and y(t) of 
the nutrient in compartments A and B, respectively, at time t is t is t
given by the linear system of differential equations

dxdxd

dt
5

�

VAVAV
(y 2 x)

dy

dt
5

�

VBVBV
(x 2 y) ,

  where VAVAV  and VBVBV  are the volumes of the compartments, and 
k . 0 is a permeability factor. Let x(0) 5 x0 and y(0) 5 y0

denote the initial concentrations of the nutrient. Solely on 
the basis of the equations in the system and the assumption 
x0 . y0 . 0, sketch, on the same set of coordinate axes, 
possible solution curves of the system. Explain your 
reasoning. Discuss the behavior of the solutions over a long 
period of time.

BA

membrane

�uid at
concentration

x(t)

�uid at
concentration

y(t)

FIGURE 3.3.11 Nutrient �ow through a membrane in Problem 19

20. The system in Problem 19, like the system in (2), can be 
solved with no advanced knowledge. Solve for x(t) and y(t) 
and compare their graphs with your sketches in Problem 19. 
Determine the limiting values of x(t) and y(t) as t : `. Explain 
why the answer to the last question makes intuitive sense.

21. Mixtures Solely on the basis of the physical description 
of the mixture problem on page 108 and in Figure 3.3.1, 
discuss the nature of the functions x1(t) and x2(t). What is 
the behavior of each function over a long period of time? 
Sketch possible graphs of x1(t) and x2(t). Check your 
conjectures by using a numerical solver to obtain numerical 
solution curves of (3) subject to the initial conditions 
x1(0) 5 25, x2(0) 5 0.

22. Newton’s Law of Cooling/WarmingWarming As shown in 
Figure 3.3.12, a small metal bar is placed inside container A, 
and container A then is placed within a much larger container 
B. As the metal bar cools, the ambient temperature TATAT (t) of the 
medium within container A changes according to Newton’s 
law of cooling. As container A cools, the temperature of the 
medium inside container B does not change signi�cantly and 
can be considered to be a constant TBTBT . Construct a mathematical 
model for the temperatures T(T(T t) and TATAT (t), where T(T(T t) is 
the temperature of the metal bar inside container A. As in 
Problems 1, 5, and 20, this model can be solved by using prior 
knowledge. Find a solution of the system subject to the initial 
conditions T(0)T(0)T 5 T0T0T , TATAT (0) 5 T1.

TA TA T (t)

container A

container B

TBTBT   5 constant

metal
bar

FIGURE 3.3.12 Container within a container in Problem 22

Answer Problems 1 and 2 without referring back to the text. Fill in 
the blank or answer true or false.

1. If P(t) 5 P0e0.15t gives the population in an environment at time t gives the population in an environment at time t

t, then a differential equation satis�ed by P(t) is . 

2. If the rate of decay of a radioactive substance is proportional to 
the amount A(t) remaining at time t, then the half-life of the 
substance is necessarily T 5 2(ln 2)yk. The rate of decay of the 
substance at time t 5 T is one-half the rate of decay at T is one-half the rate of decay at T t 5 0. 

3. In March 1976 the world population reached 4 billion. At that 
time, a popular news magazine predicted that with an average 

yearly growth rate of 1.8%, the world population would be 
8 billion in 45 years. How does this value compare with the 
value predicted by the model that assumes that the rate of 
increase in population is proportional to the population present 
at time t?

4. Air containing 0.06% carbon dioxide is pumped into  a room 
whose volume is 8000 ft3. The air is pumped in at a rate of 
2000 ft3/min, and the circulated air is then pumped out at the 
same rate. If there is an initial concentration of 0.2% carbon 
dioxide in the room, determine the subsequent amount in the 
room at time t. What is the concentration of carbon dioxide 
at 10 minutes? What is the steady-state, or equilibrium, 
concentration of carbon dioxide?

Chapter 3 In Review Answers to selected odd-numbered problems begin on page ANS-4.
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5. Ötzi the Iceman In September of 1991 two German tourists 
found the well-preserved body of a man partially frozen in a 
glacier in the Ötztal Alps on the border between Austria and 
Italy. See Figure 3.R.1. Through the carbon-dating technique 
it was found that the body of Ötzi the iceman—as he came to 
be called—contained 53% as much C-14 as found in a living 
person. Assume that the iceman was carbon dated in 1991. Use 
the method illustrated in Example 3 of Section 3.1 to �nd the 
approximate date of his death. 

FIGURE 3.R.1 Ötzi the iceman in Problem 5
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6. In the treatment of cancer of the thyroid, the radioactive liquid 
Iodine-131 is often used. Suppose that after one day in storage, 
analysis shows that an initial amount A0 of iodine-131 in a 
sample has decreased by 8.3%. 

(a) Find the amount of iodine-131 remaining in the sample 
after 8 days. 

(b) Explain the signi�cance of the result in part (a).

7. Solve the differential equation

dy

dxdxd
5 2

y

ÏaÏaÏ 2 2 y2

of the tractrix. See Problem 28 in Exercises 1.3. Assume that 
the initial point on the y-axis in (0, 10) and that the length of the 
rope is x 5 10 ft.

8. Suppose a cell is suspended in a solution containing a solute 
of constant concentration CsCsC . Suppose further that the cell has 
constant volume V and that the area of its permeable membrane V and that the area of its permeable membrane V
is the constant A. By Fick’s law the rate of change of its 
mass m is directly proportional to the area A and the difference 
CsCsC 2 C(t), where C(t) is the concentration of the solute inside 
the cell at time t. Find C(t) if m 5 V ? C(t) and C(0) 5 C0C0C . See 
Figure 3.R.2.

concentrationconcentrationconcentrationconcentration
C(t)

concentration
CsCsC

molecules of solute
diffusing throughdiffusing throughdif
cell membrane

FIGURE 3.R.2 Cell in Problem 8

9. Suppose that as a body cools, the temperature of the 
surrounding medium increases because it completely absorbs 
the heat being lost by the body. Let T(T(T t) and TmTmT (t) be the 
temperatures of the body and the medium at time t, respectively. 

If the initial temperature of the body is T1T1T  and the initial 
temperature of the medium is T2T2T , then it can be shown in this 
case that Newton’s law of cooling is dTydTydT dt 5 k(T 2 TmTmT ), k , 0, 
where TmTmT 5 T2T2T 1 B(T1 2 T ), B . 0 is a constant.

(a) The foregoing DE is autonomous. Use the phase portrait 
concept of Section 2.1 to determine the limiting value of 
the temperature T(T(T t) as t : `. What is the limiting value of 
TmTmT (t) as t : `?

(b) Verify your answers in part (a) by actually solving the  
differential equation.

(c) Discuss a physical interpretation of your answers in 
part (a).

10. According to Stefan’s law of radiation the absolute 
temperature T of a body cooling in a medium at constant T of a body cooling in a medium at constant T
absolute temperature TmTmT  is given by

dT

dt
5 k(T 4 2 T 4

m ),

where k is a constant. Stefan’s law can be used over a greater k is a constant. Stefan’s law can be used over a greater k
temperature range than Newton’s law of cooling.

(a) Solve the differential equation.

(b) Show that when T 2 TmTmT  is small in comparison to TmTmT  then 
Newton’s law of cooling approximates Stefan’s law. [Hint: 
Think binomial series of the right-hand side of the DE.]

11. Suppose an RC-series circuit has a variable resistor. If the 
resistance at time t is de�ned by t is de�ned by t R(t) 5 k1 1 k2t, where k1 and 
k2 are known positive constants, then the differential equation in 
(9) of Section 3.1 becomes

(k1 1 k2t)
dqdqd

dt
1

1

C
q 5 E(t),

where C is a constant. If C is a constant. If C E(t) 5 E0E0E  and q(0) 5 q0, where E0E0E  and 
q0 are constants, then show that

q(t) 5 E0E0E C 1 (q0 2 E0E0E C )S k1

k1 1 k2t
D1yCkCkC 2

.

12. A classical problem in the calculus of variations is to �nd the 
shape of a curve  such that a bead, under the in�uence of 
gravity, will slide from point A(0, 0) to point B(x1, y1) in the 
least time. See Figure 3.R.3. It can be shown that a nonlinear 
differential for the shape y(x) of the path is y[1 1 (y9)2] 5 k, 
where k is a constant. First solve for k is a constant. First solve for k dxdxd  in terms of y and 
dy, and then use the substitution y 5 k sink sink 2u to obtain a 
parametric form of the solution. The curve  turns out to be a 
cycloid.

x

y

B(x1, y1)

A(0, 0)

bead

mg

FIGURE 3.R.3 Sliding bead in Problem 12
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13. A model for the populations of two interacting species of animals is

dxdxd

dt
5 k1x (� 2 x)

dy

dt
5 k2xy.

Solve for x and x and x y in terms of t.

14. Initially, two large tanks A and B each hold 100 gallons of 
brine. The well-stirred liquid is pumped between the tanks as 
shown in Figure 3.R.4. Use the information given in the �gure 
to construct a mathematical model for the number of pounds of 
salt x1(t) and x2(t) at time t in tanks t in tanks t A and B, respectively.

2 lb/gal
7 gal/min

mixture
5 gal/min

A
100 gal

B
100 gal

mixture
3 gal/min

mixture
1 gal/min

mixture
4 gal/min

FIGURE 3.R.4 Mixing tanks in Problem 14

When all the curves in a family G(x(x( , y, c1) 5 0 intersect 
orthogonally all the curves in another family H(H(H x(x( , y, c2) 5 0, the 
families are said to be orthogonal trajectories of each other. See 
Figure 3.R.5. If dyydx 5 f (x(x( , y) is the differential equation of one 
family, then the differential equation for the orthogonal trajectories 
of this family is dyydx 5 21yfyfy (x(x( , y). In Problems 15–18 �nd 
the differential equation of the given family by computing dyydx
and eliminating c1 from this equation. Then �nd the orthogonal 
trajectories of the family. Use a graphing utility to graph both 
families on the same set of coordinate axes.

tangents

H(x, y, c2) 50

G(x, y, c1) 5 0

FIGURE 3.R.5 Orthogonal families

15. y 5 c1x 16. x2 2 2y2 5 c1

17. y 5 c1ex 18. y 5
1

x 1 c1

19. With the identi�cations a 5 r, b 5 ryK, and ayb 5 K,
Figures 2.1.7 and 3.2.2 show that the logistic population 
model, (3) of Section 3.2, predicts that for an initial population 
P0, 0 , P0 , K, regardless of how small P0 is, the population 
increases over time but does not surpass the carrying capacity 
K. Also, for P0 . K the same model predicts that a population 
cannot sustain itself over time, so it decreases but yet never 
falls below the carrying capacity K of the ecosystem. The K of the ecosystem. The K
American ecologist Warder Clyde Allee (1885–1955) showed 
that by depleting certain �sheries beyond a certain level, the 
�sh population never recovers. How would you modify the 
differential equation (3) to describe a population P that has 
these same two characteristics of (3) but additionally has a 
threshold level A, 0 , A , K, below which the population 
cannot sustain itself and approaches extinction over time.  
[Hint: Construct a phase portrait of what you want and then 
form a differential equation.]

20. Sawing Wood A long uniform piece of wood (cross sections 
are the same) is cut through perpendicular to its length by a 
vertical saw blade. See Figure 3.R.6. If the friction between 
the sides of the saw blade and the wood through which the 
blade passes is ignored, then it can be assumed that the rate 
at which the saw blade moves through the piece of wood is 

xx

w(x)

a

Width
Cutting edge
is vertical Cut is made perpendicular to length

Cutting edge of
saw blade moving
left to right

b

y

(a) cross section (b) log pro�le (c) cross section

FIGURE 3.R.6 Sawing a log in Problem 20
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inversely proportional to the width of the wood in contact 
with its cutting edge.  As the blade advances through the wood 
(moving, say, left to right) the width of a cross section changes 
as a nonnegative continuous function w. If a cross section of the 
wood is described as a region in the xy-plane de�ned over an 
interval [a, b] then, as shown in Figure 3.R.6(c), the position x
of the saw blade is a function of time t and the vertical cut made t and the vertical cut made t
by the blade can be represented by a vertical line segment. The 
length of this vertical line is the width w(x) of the wood at that 
point. Thus the position x(t) of the saw blade and the rate dxydt
at which it moves to the right are related to w(x) by 

w(x)
dxdxd

dt
5 k, x(0) 5 a.

  Here k represents the number of square units of the material k represents the number of square units of the material k
removed by the saw blade per unit time. 

(a) Suppose the saw is computerized and can be programmed 
so that k 5 1. Find an implicit solution of the foregoing implicit solution of the foregoing implicit
initial-value problem when the piece of wood is a circular 
log. Assume a cross section is a circle of radius 2 centered 
at (0, 0). [Hint: To save time see formula 41 in the table of 
integrals given on the right inside page of the front cover.]

(b) Solve the implicit solution obtained in part (b) for time t
as a function of x. Graph the function t(x). With the aid of 
the graph, approximate the time that it takes the saw to cut 
through this piece of wood. Then �nd the exact value of 
this time.

21. Solve the initial-value problem in Problem 20 when a cross 
section of a uniform piece of wood is the triangular region 
given in Figure 3.R.7. Assume again that k 5 1. How long does 
it take to cut through this piece of wood?   

y

x

2
2

2

Ï

Ï

FIGURE 3.R.7 Triangular cross section in Problem 21

22. Chemical Kinetics Suppose a gas consists of molecules of 
type A. When the gas is heated a second substance B is formed 
by molecular collision. Let A(t) and B(t) denote, in turn, the 
number of molecules of types A and B present at time t $ 0. 
A mathematical model for the rate at which the number of 
molecules of type A decreases is

dAdAd

dt
5 2kAkAk 2, k . 0.

(a) Determine A(t) if A(0) 5 A0.

(b) Determine the number of molecules of substance B present 
at time t if it is assumed that t if it is assumed that t A(t) 1 B(t) 5 A0.

(c) By hand, sketch rough graphs of A(t) and B(t) for t $ 0.
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 4.1 Preliminary Theory—Linear Equations
 4.2 Reduction of Order
 4.3 Homogeneous Linear Equations with Constant Coefficients
 4.4 Undetermined Coefficients—Superposition Approach
 4.5 Undetermined Coefficients—Annihilator Approach
 4.6 Variation of Parameters
 4.7 Cauchy-Euler Equations
 4.8 Green’s Functions
 4.9 Solving Systems of Linear DEs by Elimination
 4.10 Nonlinear Differential Equations

C H A P T E R  4  I N  R E V I E W

W e turn now to the solution of ordinary differential equations of order 

two or higher. In the �rst seven sections of this chapter we examine 

the underlying theory and solution methods for certain kinds of linear 

DEs. The chapter concludes with a brief examination of solution methods for 

nonlinear higher-order equations.

Higher-Order Differential Equations

4
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INTRODUCTION In Chapter 2 we were able to solve a few �rst-order differential 
equations by recognizing them as separable, linear, exact, or having homogeneous 
coef�cients. Even though the solutions obtained were in the form of a one-parameter 
family, this family, with one exception, did not represent the general solution of the 
differential equation. Recall that a general solution is a family of solutions de�ned 
on some interval I that contains I that contains I all solutions of the DE that are de�ned on all solutions of the DE that are de�ned on all I. Only 
in the case of linear �rst-order differential equations were we able to obtain general linear �rst-order differential equations were we able to obtain general linear
solutions by paying close attention to certain continuity conditions imposed on 
the coef�cients in the equation. Because our primary goal in this chapter is to �nd 
general solutions of linear higher-order DEs, we �rst need to examine some of the 
basic theory of linear equations.

4.1.1  INITIALVALUE AND BOUNDARYVALUE 
PROBLEMS

INITIALVALUE PROBLEM In Section 1.2 we de�ned an initial-value problem 
for a general nth-order differential equation. For a linear differential equation an 
nth-order initial-value problem (IVP) is

Solve: an(x) 
dny

dxn 1 an21(x) 
dn21y

dxn21 1 Á 1 a1(x) 
dy

dx
1 a0(x)y 5 g(x)

Subject to: y(x0) 5 y0, y9(x0) 5 y1 , . . . , y(n21)(x0) 5 yn21.

(1)

Recall that for a problem such as this one we seek a function de�ned on some interval 
I, containing x0, that satis�es the differential equation and the n initial conditions 
speci�ed at x0: y(x(x( 0) = y0, y9(x(x( 0) = y1, . . . , y(n−1)(x(x( 0) = yn−1. We have already seen 
that in the case of a second-order initial-value problem a solution curve must pass 
through the point (xthrough the point (xthrough the point ( 0, y0) and have slope y1 at this point.

EXISTENCE AND UNIQUENESS In Section 1.2 we stated a theorem that gave 
conditions under which the existence and uniqueness of a solution of a �rst-order 
initial-value problem were guaranteed. The theorem that follows gives suf�cient 
conditions for the existence of a unique solution of the problem in (1).

4.1 Preliminary Theory—Linear Equations

Reread (v i ) of the R e m a r k s  in 
Section 1.1 and page 57 of 
Section 2.3.

THEOREM 4.1.1 Existence of a Unique Solution

Let an(x(x( ), an−1(x(x( ), . . . , a1(x(x( ), a0(x(x( ) and g(x(x( ) be continuous on an interval I and let I and let I
an(x(x( ) Þ 0 for every x in this interval. If x in this interval. If x x = x0 is any point in this interval, then a 
solution y(x(x( ) of the initial-value problem (1) exists on the interval and is unique.

EXAMPLE 1  Unique Solution of an IVP

The initial-value problem

3y- 1 5y0 2 y9 1 7y 5 0, y(1) 5 0, y9(1) 5 0, y0(1) 5 0

possesses the trivial solution y = 0. Because the third-order equation is linear with 
constant coef�cients, it follows that all the conditions of Theorem 4.1.1 are ful�lled. 
Hence y = 0 is the only solution on any interval containing x = 1. .

4.1 PRELIMINARY THEORYLINEAR EQUATIONS 119
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FIGURE 4.1.1 Solution curves of a BVP 
that pass through two points

I

solutions of the DE

(b, y1)

(a, y0)

x

y

EXAMPLE 2  Unique Solution of an IVP

You should verify that the function y = 3e2x + e−2x − 3x is a solution of the initial-x is a solution of the initial-x
value problem

y0 2 4y 5 12x, y(0) 5 4, y9(0) 5 1.

Now the differential equation is linear, the coef�cients as well as g(x) = 12x are x are x
continuous, and a2(x) = 1 Þ 0 on any interval I containing I containing I x = 0. We conclude from 
Theorem 4.1.1 that the given function is the unique solution on I. .

The requirements in Theorem 4.1.1 that ai(x), i = 0, 1, 2, . . . , n be continuous 
and an(x) Þ 0 for every x in x in x I are both important. Speci�cally, if I are both important. Speci�cally, if I an(x) = 0 for some 
x in the interval, then the solution of a linear initial-value problem may not be unique x in the interval, then the solution of a linear initial-value problem may not be unique x
or even exist. For example, you should verify that the function y = cx2 + x + 3 is a 
solution of the initial-value problem

x2y0 2 2xy9 1 2y 5 6, y(0) 5 3, y9(0) 5 1

on the interval (−`, `) for any choice of the parameter c. In other words, there is no 
unique solution of the problem. Although most of the conditions of Theorem 4.1.1 
are satis�ed, the obvious dif�culties are that a2(x) = x2 is zero at x = 0 and that the 
initial conditions are also imposed at x = 0.

BOUNDARYVALUE PROBLEM Another type of problem consists of solving a 
linear differential equation of order two or greater in which the dependent variable y
or its derivatives are speci�ed at different points. A problem such as

Solve: a2(x) 
d2y

dx2 1 a1(x) 
dy

dx
1 a0(x)y 5 g(x)

Subject to: y(a) 5 y0, y(b) 5 y1

is called a boundary-value problem (BVP). The prescribed values y(a) = y0 and 
y(b) = y1 are called boundary conditions (BC). A solution of the foregoing problem 
is a function satisfying the differential equation on some interval I, containing a and 
b, whose graph passes through the two points (a, y0) and (b, y1). See Figure 4.1.1.

For a second-order differential equation other pairs of boundary conditions 
could be

y9(a) 5 y0, y(b) 5 y1

y(a) 5 y0, y9(b) 5 y1

y9(a) 5 y0, y9(b) 5 y1,

where y0 and y1 denote arbitrary constants. These three pairs of conditions are just 
special cases of the general boundary conditions

�1y(a) 1 �1y9(a) 5 �1

�2y2y2 (b) 1 �2y2y2 9(b) 5 �2.

The next example shows that even when the conditions of Theorem 4.1.1 are 
ful�lled, a boundary-value problem may have several solutions (as suggested in 
Figure 4.1.1), a unique solution, or no solution at all.

EXAMPLE 3  A BVP Can Have Many, One, or No Solutions

In Example 9 of Section 1.1 we saw that the two-parameter family of solutions of the 
differential equation x0 + 16x = 0 is

x 5 c1 cos 4t 1 c2 sin 4t. (2)

120 CHAPTER 4 HIGHERORDER DIFFERENTIAL EQUATIONS
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FIGURE 4.1.2 Solution curves for BVP in 
part (a) of Example 3
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(a) Suppose we now wish to determine the solution of the equation that further 
satis�es the boundary conditions x(0) = 0, x(�y2) = 0. Observe that the �rst 
condition 0 = c1 cos 0 + c2 sin 0 implies that c1 = 0, so x = c2 sin 4t. But when 
t = �y2, 0 = c2 sin 2� is satis�ed for any choice of � is satis�ed for any choice of � c2, since sin 2� = 0. Hence the 
boundary-value problem

x0 1 16x 5 0, x(0) 5 0, x 1�

2 2 5 0 (3)

has in�nitely many solutions. Figure 4.1.2 shows the graphs of some of the 
members of the one-parameter family x = c2 sin 4t that pass through the two points t that pass through the two points t
(0, 0) and (�y2, 0).

(b) If the boundary-value problem in (3) is changed to

x0 1 16x 5 0, x(0) 5 0, x 1�

8 2 5 0, (4)

then x(0) = 0 still requires c1 = 0 in the solution (2). But applying x(�y8) = 0 to 
x = c2 sin 4t demands that 0t demands that 0t = c2 sin(�y2) = c2 ? 1. Hence x = 0 is a solution of 
this new boundary-value problem. Indeed, it can be proved that x = 0 is the only
solution of (4).

(c) Finally, if we change the problem to

x0 1 16x 5 0, x(0) 5 0, x 1�

2 2 5 1, (5)

we �nd again from x(0) = 0 that c1 = 0, but applying x(�y2) = 1 to x = c2 sin 4t
leads to the contradiction 1 = c2 sin 2� = c2 ? 0 = 0. Hence the boundary-value 
problem (5) has no solution. .

4.1.2 HOMOGENEOUS EQUATIONS
A linear nth-order differential equation of the form

an(x) 
dny

dxdxd n 1 an21(x) 
dn21y

dxdxd n21 1 Á 1 a1(x) 
dydyd

dxdxd
1 a0(x)y 5 0 (6)

is said to be homogeneous, whereas an equation

an(x) 
dny

dxdxd n 1 an21(x) 
dn21y

dxdxd n21 1 Á 1 a1(x) 
dydyd

dxdxd
1 a0(x)y 5 g(x), (7)

with g(x) not identically zero, is said to be nonhomogeneous. For example, 
2y0 + 3y9 − 5y = 0 is a homogeneous linear second-order differential equation, 
whereas x3y- + 6y9 + 10y = ex is a nonhomogeneous linear third-order differential x is a nonhomogeneous linear third-order differential x

equation. The word homogeneous in this context does not refer to coef�cients that are 
homogeneous functions, as in Section 2.5.

We shall see that to solve a nonhomogeneous linear equation (7), we must �rst 
be able to solve the associated homogeneous equation (6).

To avoid needless repetition throughout the remainder of this text, we shall, as a 
matter of course, make the following important assumptions when stating de�nitions 
and theorems about linear equations (1). On some common interval I,

 ● the coef�cient functions ai(x), i = 0, 1, 2, . . . , n and g(x) are continuous;
 ● an(x) Þ 0 for every x in the interval.x in the interval.x

DIFFERENTIAL OPERATORS In calculus differentiation is often denoted by the 
capital letter D—that is, dyydx = Dy. The symbol D is called a differential operator
because it transforms a differentiable function into another function. For example, 

Please remember these two 
assumptions.

4.1 PRELIMINARY THEORYLINEAR EQUATIONS 121
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D(cos 4x) = −4 sin 4x and x and x D(5x3 − 6x2) = 15x2 − 12x.12x.12  Higher-order derivatives 
can be expressed in terms of D in a natural manner:

d

dxdxd 1dydyd

dxdxd 2 5
d2y

dxdxd 2 5 D(DyDyD ) 5 D2y2y2 and, in general,
dny

dxdxd n 5 Dny,

where y represents a suf�ciently differentiable function. Polynomial expressions 
involving D, such as D + 3, D2 + 3D − 4, and 5x3D3 − 6x2D2 + 4xD + 9, are also 
differential operators. In general, we de�ne an nth-order differential operator or 
polynomial operator to be

L = an(x)Dn + an−1(x)Dn−1 + ? ? ? + a1(x)D + a0(x). (8)

As a consequence of two basic properties of differentiation, D(cf (x)) = cDf (x), c is a 
constant, and D{f{f{ (x) + g(x)} = Df (x) + Dg(x), the differential operator L possesses L possesses L
a linearity property; that is, L operating on a linear combination of two differentiable L operating on a linear combination of two differentiable L
functions is the same as the linear combination of L operating on the individual funcL operating on the individual funcL -
tions. In symbols this means that

L{� f (x) + �g(x)} = �L( f (x)) + �L(g(x)), (9)

where � and � are constants. Because of (9) we say that the nth-order differential 
operator L is a L is a L linear operator.

DIFFERENTIAL EQUATIONS Any linear differential equation can be expressed in 
terms of the D notation. For example, the differential equation y0 + 5y9 + 6y = 5x − 3 
can be written as D2y2y2 + 5Dy + 6y = 5x − 3 or (D2 + 5D + 6)y = 5x − 3. Using 
(8), we can write the linear nth-order differential equations (6) and (7) compactly as

L(y) 5 0 and L(y) 5 g(x),

respectively.

SUPERPOSITION PRINCIPLE In the next theorem we see that the sum, or super-super
position, of two or more solutions of a homogeneous linear differential equation is 
also a solution.

THEOREM 4.1.2 Superposition Principle—Homogeneous Equations

Let y1, y2, . . . , yk be solutions of the homogeneous k be solutions of the homogeneous k nth-order differential 
equation (6) on an interval I. Then the linear combination

y 5 c1y1(x) 1 c2y2y2 2(x) 1 Á 1 ckykyk k(x),

where the ci, i = 1, 2, . . . , k are arbitrary constants, is also a solution on the k are arbitrary constants, is also a solution on the k
interval.

COROLLARIES TO THEOREM 4.1.2

(A) A constant multiple y = c1y1(x) of a solution y1(x) of a homogeneous 
linear differential equation is also a solution.

(B) A homogeneous linear differential equation always possesses the trivial 
solution y = 0.

PROOF We prove the case k = 2. Let L be the differential operator de�ned in (8), L be the differential operator de�ned in (8), L
and let y1(x) and y2(x) be solutions of the homogeneous equation L(y) = 0. If we 
de�ne y = c1y1(x) + c2y2y2 2(x), then by linearity of L we haveL we haveL

L( y) 5 L{c1y1(x) 1 c2y2y2 2(x)} 5 c1 L(y1) 1 c2 L(y2) 5 c1 ? 0 1 c2 ? 0 5 0.
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FIGURE 4.1.3 Set consisting of f1f1f  and 
f2f2f  is linearly independent on (−`, `)

f1 f1 f 5x

x

y

f 2 f 2 f 

x

y

(a)

(b)

5|  |x|  |x

EXAMPLE 4  Superposition—Homogeneous DE

The functions y1 = x2 and y2 = x2 ln x are both solutions of the homogeneous linear x are both solutions of the homogeneous linear x
equation x3y- − 2xy9 + 4y = 0 on the interval (0, `). By the superposition principle 
the linear combination

y 5 c1x2 1 c2x2 ln x

is also a solution of the equation on the interval. .

The function y = e7x is a solution of x is a solution of x y0 − 9y9 + 14y = 0. Because the differen-
tial equation is linear and homogeneous, the constant multiple y = ce7x is also a x is also a x

solution. For various values of c we see that y = 9e7x, y = 0, y 5 2Ï5Ï e7x, . . .  are all 
solutions of the equation.

LINEAR DEPENDENCE AND LINEAR INDEPENDENCE The next two concepts 
are basic to the study of linear differential equations.

DEFINITION 4.1.1 Linear Dependence/Independence

A set of functions f1f1f (x), f2f2f (x), . . . , fnfnf (x) is said to be linearly dependent on an 
interval I if there exist constants I if there exist constants I c1, c2, . . . , cn, not all zero, such that

c1 f1f1f (x) 1 c2 f2f2f (x) 1 Á 1 cn fnfnf (x) 5 0

for every x in the interval. If the set of functions is not linearly dependent on x in the interval. If the set of functions is not linearly dependent on x
the interval, it is said to be linearly independent.

In other words, a set of functions is linearly independent on an interval I if the only I if the only I
constants for which

c1 f1f1f (x) 1 c2 f2f2f (x) 1 Á 1 cn fnfnf (x) 5 0

for every x in the interval are x in the interval are x c1 5 c2 5 Á 5 cn 5 0.
It is easy to understand these de�nitions for a set consisting of two functions 

f1f1f (x) and f2f2f (x). If the set of functions is linearly dependent on an interval, then 
there exist constants c1 and c2 that are not both zero such that for every x in the x in the x
interval, c1 f1f1f (x) + c2 f2f2f (x) = 0. Therefore if we assume that c1 Þ 0, it follows that 
f1f1f (x) = (−c2yc1) f2f2f (x); that is, if a set of two functions is linearly dependent, then one 
function is simply a constant multiple of the other. Conversely, if f1f1f (x) = c2 f2f2f (x) 
for some constant c2, then (−1) ? f1f1f (x) + c2 f2f2f (x) = 0 for every x  in the interval. x  in the interval. x
Hence the set of functions is linearly dependent because at least one of the constants 
(namely, c1 =−1) is not zero. We conclude that a set of two functions f1a set of two functions f1a set of two functions f (x) and f2f2f (x) 
is linearly independent when neither function is a constant multiple of the otheris linearly independent when neither function is a constant multiple of the otheris linearly independent when neither function is a constant multi  on ple of the other on ple of the other
the interval. For example, the set of functions f1f1f (x) = sin 2x, f2 f2 f (x) = sin x cos x cos x x is x is x
linearly dependent on (−`, `) because f1f1f (x) is a constant multiple of f2f2f (x). Recall 
from the double-angle formula for the sine that sin 2x = 2 sin x cos x cos x x. On the other 
hand, the set of functions f1f1f (x) = x, f2 f2 f (x) = ux u is linearly independent on (−`, `). 
Inspection of Figure 4.1.3 should convince you that neither function is a constant 
multiple of the other on the interval.

It follows from the preceding discussion that the quotient f2f2f (x)yfyfy 1f1f (x) is not a con-
stant on an interval on which the set f1f1f (x), f2f2f (x) is linearly independent. This little fact 
will be used in the next section.

 EXAMPLE 5  Linearly Dependent Set of Functions

The set of functions f1f1f (x) = cos2x, f2 f2 f (x) = sin2x, f3 f3 f (x) = sec2x, f4 f4 f (x) = tan2x is x is x
linearly dependent on the interval (−�y2, �y2) because

c1 cos2x2x2 1 c2 sin2x2x2 1 c3 sec2x2x2 1 c4 tan2x2x2 5 0
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for every real number x in the interval when x in the interval when x c1 = c2 = 1, c3 = −1, c4 = 1. We 
used here cos2x + sin2x = 1 and 1 + tan2x = sec2x. .

A set of n functions f1f1f (x), f2f2f (x), Á , fnfnf (x) is linearly dependent on an interval 
I if at least one of the functions can be expressed as a linear combination of the I if at least one of the functions can be expressed as a linear combination of the I
remaining functions. For example, three functions f1f1f (x), f2f2f (x), and f3f3f (x) are linearly 
dependent on I if at least one of these functions is a linear combination of the other I if at least one of these functions is a linear combination of the other I
two, say,

f3f3f (x) 5 c1 f1f1f (x) 1 c2 f2f2f (x)

for all x in x in x I. A set of n functions is linearly independent on I if no one function is a I if no one function is a I
linear combination of the other functions.

 EXAMPLE 6  Linearly Dependent Set of Functions

The set of functions f1f1f (x) 5 ÏxÏxÏÏ 1 5, f2f2f (x) 5 ÏxÏxÏÏ 1 5x, f3f3f (x) = x − 1, f4f4f (x) = x2 is 
linearly dependent on the interval (0, `) because f2f2f  can be written as a linear combi-
nation of f1f1f , f3f3f , and f4f4f . Observe that

f2f2f (x) 5 1 ? f1f1f (x) 1 5 ? f3f3f (x) 1 0 ? f4f4f (x)

for every x in the interval (0, x in the interval (0, x `). .

SOLUTIONS OF DIFFERENTIAL EQUATIONS We are primarily interested We are primarily interested W
in linearly independent functions or, more to the point, linearly independent 
solutions of a linear differential equation. Although we could always apear differential equation. Although we could always apear dif -
peal directly to De�nition 4.1.1, it turns out that the question of whether the set 
of n solutions y1, y2, . . . , yn of a homogeneous linear nth-order differential equa-
tion (6) is linearly independent can be settled somewhat mechanically by using 
a determinant.

DEFINITION 4.1.2 Wronskian

Suppose each of the functions f1f1f (x), f2f2f (x), . . . , fnfnf (x) possesses at least n − 1 
derivatives. The determinant

W( f1, f2, Á ,  fn) 5 *
   f1  f2 Á  fn
   f 91  f 92 Á  f 9n

   o  o  o
  f1(n21)  f2(n21) Á fn(n21)

* ,

where the primes denote derivatives, is called the Wronskian of the functions.

The Wronskian determinant is named after the Polish philosopher and mathema-
tician Jósef Maria Hoëné-Wronski (1778–1853).

THEOREM 4.1.3 Criterion for Linearly Independent Solutions

Let y1, y2, . . . , yn be n solutions of the homogeneous linear nth-order differential differential dif
equation (6) on an interval I. Then the set of solutions is linearly independent
on I if and only if I if and only if I W(y1, y2, . . . , yn) Þ 0 for every x in the x in the x interval.
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It follows from Theorem 4.1.3 that when y1, y2, Á , yn are n solutions of (6) on 
an interval I, the Wronskian W(W(W y1, y2, Á , yn) is either identically zero or never zero 
on the interval. Thus, if we can show that W(W(W y1, y2, Á , yn) Þ 0 for some x0 in I, then 
the solutions y1, y2, Á , yn are linearly independent on I. For example, the functions 

y1(x) 5
cos(2 ln x)

x3 , y2(x) 5
sin(2 ln x)

x3

and solutions of the differential equation 

x2y0 1 7xyxyx 9 1 13y 5 0

on the interval (0, `) . Note that the coef�cient functions a2(x) 5 x2, a1(x) 5 7x, and 
a0(x) 5 13 are continuous on (0, `) and that a2(x) Þ 0 for every value of x in the 
interval. The Wronskian is

W(W(W y1(x), y2(x))5 *
cos(2 ln x)

x3

sin(2 ln x)

x3

22x2x2 2 sin(2 ln x)23x2 cos(2 ln x)

x6

2x2x2 2 cos(2 ln x)23x2 sin(2 ln x)

x6
*.

Rather than expanding this unwieldy determinant, we choose x 5 1 in the interval 
(0, `) and �nd

W(W(W y1(1), y2(1)) 5 * 1 0

23 2* 5 2.

The fact that W(W(W y1(1), y2(1)) 5 2 Þ 0 is suf�cient to conclude that y1(x) and y2(x) are 
linearly independent on (0, `) .

A set of n linearly independent solutions of a homogeneous linear nth-order 
differential equation is given a special name.

DEFINITION 4.1.3 Fundamental Set of Solutions

Any set y1, y2, . . . , yn of n linearly independent solutions of the homogeneous 
linear nth-order differential equation (6) on an interval I is said to be a I is said to be a I funda-
mental set of solutions on the interval.

The basic question of whether a fundamental set of solutions exists for a linear 
equation is answered in the next theorem.

THEOREM 4.1.4 E4.1.4 E4.1.4 xistence of a Fundamental Set

There exists a fundamental set of solutions for the homogeneous linear nth-
order differential equation (6) on an interval I.

Analogous to the fact that any vector in three dimensions can be expressed as a 
linear combination of the linearly independent vectors linearly independent vectors linearly independent i, j, k, any solution of an nth-
order homogeneous linear differential equation on an interval I can be I can be I expressed as a 
linear combination of n linearly independent solutions on I. In other words, n linearly 
independent solutions y1, y2, . . . , yn are the basic building blocks for the general 
solution of the equation.
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THEOREM 4.1.5 General Solution—Homogeneous Equations

Let y1, y2, . . . , yn be a fundamental set of solutions of the homogeneous linear 
nth-order differential equation (6) on an interval I. Then the general solution
of the equation on the interval is

y 5 c1y1(x) 1 c2y2y2 2(x) 1 Á 1 cnynyn n(x),

where ci, i = 1, 2, . . . , n are arbitrary constants.

Theorem 4.1.5 states that if Y(Y(Y x) is any solution of (6) on the interval, then con-
stants C1, C2C2C , . . . , CnCnC  can always be found so that

Y(Y(Y x) 5 C1y1(x) 1 C2C2C y2y2 2(x) 1 Á 1 CnCnC ynyn n(x).

We will prove the case when n = 2.

PROOF Let Y be a solution and let Y be a solution and let Y y1 and y2 be linearly independent solutions of 
a2y2y2 0 + a1y9 + a0y0y0 = 0 on an interval I. Suppose that x = t is a point in t is a point in t I for which I for which I
W(W(W y1(t), y2(t)) Þ 0. Suppose also that Y(Y(Y t) = k1 and Y9(t) = k2. If we now examine 
the equations

C1y1(t) 1 C2C2C y2y2 2(t) 5 k1

C1y91(t) 1 C2C2C y2y2 92(t) 5 k2,

it follows that we can determine C1 and C2C2C  uniquely, provided that the determinant of 
the coef�cients satis�es

* y1(t)

y19(t)

y2(t)

y29(t)* Þ 0.

But this determinant is simply the Wronskian evaluated at x = t, and by assumption, 
W Þ 0. If we de�ne G(x) = C1y1(x) + C2C2C y2y2 2(x), we observe that G(x) satis�es the 
differential equation since it is a superposition of two known solutions; G(x) satis�es 
the initial conditions

G(t) 5 C1y1(t) 1 C2C2C y2y2 2(t) 5 k1 and G9(t) 5 C1y91(t) 1 C2C2C y2y2 92(t) 5 k2;

and Y(Y(Y x) satis�es the same linear equation and the same initial conditions. Because 
the solution of this linear initial-value problem is unique (Theorem 4.1.1), we have 
Y(Y(Y x) = G(x) or Y(Y(Y x) = C1y1(x) + C2C2C y2y2 2(x).

EXAMPLE 7  General Solution of a Homogeneous DE

The functions y1 = e3x and x and x y2 = e−3x are both solutions of the homogeneous linear x are both solutions of the homogeneous linear x

equation y0 − 9y = 0 on the interval (−`, `). By inspection the solutions are lin-
early independent on the x-axis. This fact can be corroborated by observing that the 
Wronskian

W(W(W e3x, e23x) 5 * e3x

3e3x

e23x

23e23x* 5 26 Þ 0

for every x. We conclude that y1 and y2 form a fundamental set of solutions, and 
consequently, y = c1e3x + c2e−3x is the general solution of the equation on the 
interval. .
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EXAMPLE 8  A Solution Obtained from a General Solution

The function y = 4sinh 3x − 5e−3x is a solution of the differential equation in x is a solution of the differential equation in x

Example 7. (Verify this.) In view of Theorem 4.1.5 we must be able to obtain this 
solution from the general solution y = c1e3x + c2e−3x. Observe that if we choose 
c1 = 2 and c2 = −7, then y = 2e3x − 7e−3x can be rewritten asx can be rewritten asx

y 5 2e3x 2 2e23x 2 5e23x 5 41e3x 2 e23x

2 2 2 5e23x.

The last expression is recognized as y = 4 sinh 3x − 5e−3x. .

EXAMPLE 9  General Solution of a Homogeneous DE

The functions y1 = ex, y2 = e2x, and y3 = e3x satisfy the third-order equation
y- − 6y0 + 11y9 − 6y = 0. Since

W(W(W ex, e2x, e3x) 5 *ex

ex

ex

e2x

2e2x

4e2x

e3x

3e3x

9e3x* 5 2e6x Þ 0

for every real value of x, the functions y1, y2, and y3 form a fundamental set of solu-
tions on (−`, `). We conclude that y = c1ex + c2e2x + c3e3x is the general solution x is the general solution x

of the differential equation on the interval. .

4.1.3 NONHOMOGENEOUS EQUATIONS
Any function ypypy , free of arbitrary parameters, that satis�es (7) is said to be a 
particular solution of the equation. For example, it is a straightforward task to show 
that the constant function ypypy = 3 is a particular solution of the nonhomogeneous 
equation y0 + 9y = 27.

Now if y1, y2, . . . , yk are solutions of (6) on an interval k are solutions of (6) on an interval k I and I and I ypypy  is any particular 
solution of (7) on I, then the linear combination

y 5 c1y1(x) 1 c2y2(x) 1 Á 1 ckyk(x) 1 ypypy (x) (10)

is also a solution of the nonhomogeneous equation (7). If you think about it, this makes 
sense, because the linear combination c1y1(x(x( ) + c2y2y2 2(x(x( ) + ? ? ? + ckykyk k(x(x( ) is trans-
formed into 0 by the operator L = anDn + an−1Dn−1 + ? ? ? + a1D + a0, whereas ypypy  is 
transformed into g(x(x( ). If we use k = n linearly independent solutions of the nth-order 
equation (6), then the expression in (10) becomes the general solution of (7).

THEOREM 4.1.6 General Solution—Nonhomogeneous Equations

Let ypypy  be any particular solution of the nonhomogeneous linear nth-order dif-th-order dif-th-order dif
ferential equation (7) on an interval I, and let y1, y2, . . . , yn be a fundamental 
set of solutions of the associated homogeneous differential equation (6) on I. 
Then the general solution of the equation on the interval is

y 5 c1y1(x) 1 c2y2y2 2(x) 1 Á 1 cn yn(x) 1 ypypy (x),

where the ci, i = 1, 2, . . . , n are arbitrary constants.

PROOF Let L be the differential operator de�ned in (8) and let L be the differential operator de�ned in (8) and let L Y(x) and ypypy (x) 
be particular solutions of the nonhomogeneous equation L(y) = g(x). If we de�ne 
u(x) = Y(x) − ypypy (x), then by linearity of L we haveL we haveL

L(u) = L{Y(Y(Y x) − ypypy (x)} = L(Y(Y(Y x)) − L(ypypy (x)) = g(x) − g(x) = 0.
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This shows that u(x) is a solution of the homogeneous equation L(y) = 0. Hence by 
Theorem 4.1.5, u(x) 5 c1y1(x) 1 c2y2y2 2(x) 1 Á 1 cnynyn n(x), and so

Y(Y(Y x) 2 ypypy (x) 5 c1y1(x) 1 c2y2y2 2(x) 1 Á 1 cnynyn n(x)

or Y(Y(Y x) 5 c1y1(x) 1 c2y2y2 2(x) 1 Á 1 cnynyn n(x) 1 ypypy (x).

COMPLEMENTARY FUNCTION We see in Theorem 4.1.6 that the general solu-
tion of a nonhomogeneous linear equation consists of the sum of two functions:

y 5 c1y1(x) 1 c2y2(x) 1 Á 1 cnyn(x) 1 ypypy (x) 5 yc(x) 1 ypypy (x).

The linear combination yc(x) 5 c1y1(x) 1 c2y2(x) 1 Á 1 cnyn(x), which is the 
general solution of (6), is called the complementary function for equation (7). In 
other words, to solve a nonhomogeneous linear differential equation, we �rst solve the 
associated homogeneous equation and then �nd any particular solution of the nonho-
mogeneous equation. The general solution of the nonhomogeneous equation is then

 y = complementary function + any particular solution 
 = yc + yp.

EXAMPLE 10  General Solution of a Nonhomogeneous DE

By substitution the function ypypy 5 211
12 2 1

2 x is readily shown to be a particular solu-
tion of the nonhomogeneous equation

y- 2 6y0 1 11y9 2 6y 5 3x. (11)

To write the general solution of (11), we must also be able to solve the associated 
homogeneous equation

y- 2 6y0 1 11y9 2 6y 5 0.

But in Example 9 we saw that the general solution of this latter equation on the 
interval (−`, `) was yc = c1ex + c2e2x + c3e3x. Hence the general solution of (11) 
on the interval is

y 5 yc 1 ypypy 5 c1ex 1 c2e2x 1 c3e3x 2
11

12
2

1

2
x. .

ANOTHER SUPERPOSITION PRINCIPLE The last theorem of this discussion 
will be useful in Section 4.4 when we consider a method for �nding particular solu-
tions of nonhomogeneous equations.

THEOREM 4.1.7  Superposition Principle—Nonhomogeneous 
Equations

Let ypypy 1, ypypy 2, . . . , ypypy k be k particular solutions of the nonhomogeneous linear k particular solutions of the nonhomogeneous linear k
nth-order differential equation (7) on an interval I corresponding, in turn, to I corresponding, in turn, to I k
distinct functions g1, g2, . . . , gk. That is, suppose ypypy i denotes a particular solu-
tion of the corresponding differential equation

ansxdy(n) 1 an21(x)y(n21) 1 Á 1 a1(x)y9 1 a0(x)y 5 gi(x), (12)

where i = 1, 2, . . . , k. Then

ypypy (x) 5 ypypy 1(x) 1 ypypy 2(x) 1 Á 1 ypypy k(x) (13)

is a particular solution of

an(x)y(n) 1 an21(x)y(n21) 1 Á 1 a1(x)y9 1 a0(x)y

5 g1(x) 1 g2(x) 1 Á 1 gk(x). (14)
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PROOF We prove the case k = 2. Let L be the differential operator de�ned in (8) L be the differential operator de�ned in (8) L
and let ypypy 1(x) and ypypy 2(x) be particular solutions of the nonhomogeneous equations 
L(y) = g1(x) and L(y) = g2(x), respectively. If we de�ne ypypy (x) 5 ypypy 1(x) 1 ypypy 2(x), 
we want to show that ypypy  is a particular solution of L(y) = g1(x) + g2(x). The result 
follows again by the linearity of the operator L:

L(ypypy ) 5 L{ypypy 1(x) 1 ypypy 2(x)} 5 L( ypypy 1(x)) 1 L( ypypy 2(x)) 5 g1(x) 1 g2(x).

 EXAMPLE 11  Superposition—Nonhomogeneous DE

You should verify that

ypypy 1 5 24x2 is a p a p a articular solution of y0 2 3y9 1 4y 5 216x2 1 24x 2 8,

ypypy 2 5 e2x is a p a p a articular solution of y0 2 3y9 1 4y 5 2e2x,

   ypypy 3 5 xex is a p a p a articular solution of y0 2 3y9 1 4y 5 2xex 2 ex.

It follows from (13) of Theorem 4.1.7 that the superposition of ypypy 1, ypypy 2, and ypypy 3,

y 5 ypypy 1 1 ypypy 2 1 ypypy 3 5 24x2 1 e2x 1 xex,

is a solution of

y 0 2 3y9 1 4y 5 216x2 1 24x 2 8 1 2e2x2x2 1 2xe 2xe 2 x 2 ex.

g1(x) g3(x)g2(x) .

NOTE If the ypypy i are particular solutions of (12) for i = 1, 2, . . . , k, then the linear 
combination

ypypy 5 c1ypypy 1 1 c2ypypy 2 1 Á 1 ckykyk pypy k,

where the ci are constants, is also a particular solution of (14) when the right-hand 
member of the equation is the linear combination

c1g1(x) 1 c2g2(x) 1 Á 1 ckgkgk k (x).

Before we actually start solving homogeneous and nonhomogeneous linear 
differential equations, we need one additional bit of theory, which is presented in the 
next section.

REMARKS

This remark is a continuation of the brief discussion of dynamical systems 
given at the end of Section 1.3.

A dynamical system whose rule or mathematical model is a linear 
nth-order differential equation

an(t)y(n) 1 an21(t)y(n21) 1 Á 1 a1(t)y9 1 a0(t)y 5 g(t)

is said to be an nth-order linear system. The n time-dependent functions 
y(t), y9(t), . . . , y(n−1)(t) are the state variables of the system. Recall that their 
values at some time t give the t give the t state of the system. The function g is called the 
input function or forcing function.or forcing function.or  A solution y(t) of the differential equation 
is said to be the output or response of the system. Under the conditions stated 

(continued)continued)continued
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EXERCISES 4.1

4.1.1  Initial-Value and Boundary-Value Problems

In Problems 1–4 the given family of functions is the general solution 
of the differential equation on the indicated interval. Find a member 
of the family that is a solution of the initial-value problem.

1. y = c1ex + c2e−x, (−`, `);

y0 − y = 0, y(0) = 0, y9(0) = 1

2. y = c1e4x + c2e−x, (−`, `);

y0 − 3y9 − 4y4y4 = 0, y(0) = 1, y9(0) = 2

3. y = c1x + c2x2x2  ln x ln x x, (0, `); 

x2y0 − xy9 + y = 0, y(1) = 3, y9(1) =−1

4. y = c1 + c2 cos x + c3 sin x, (−`, `); 

y- + y9 = 0, y(�) = 0, y9(�) = 2, y0(�) = −1

5. Given that y = c1 + c2x2x2
2 is a two-parameter family of solutions 

of xy0 − y9 = 0 on the interval (−`, `), show that constants c1

and c2 cannot be found so that a member of the family satis�es 
the initial conditions y(0) = 0, y9(0) = 1. Explain why this does 
not violate Theorem 4.1.1.

6. Find two members of the family of solutions in Problem 5 that 
satisfy the initial conditions y(0) = 0, y9(0) = 0.

7. Given that x(t) = c1 cos �t + c2 sin �t is the general solution 
of x0 + �2x = 0 on the interval (−`, `), show that a solution 
satisfying the initial conditions x(0) = x0, x9(0) = x1 is 
given by

x(t) 5 x0 cos �t 1
x1

�
sin �t.

8. Use the general solution of x0 + �2x2x2 = 0 given in  
Problem 7 to show that a solution satisfying the initial 
conditions x(t0t0t ) = x0, x9(t0t0t ) = x1 is the solution given in 
Problem 7 shifted by an amount t0t0t :

x(t) 5 x0 cos �(t 2 t0t0t ) 1
x1

�
sin �(t 2 t0t0t ).

In Problems 9 and 10 �nd an interval centered about x = 0 for which 
the given initial-value problem has a unique solution.

9. (x − 2)y0 + 3y = x, y(0) = 0, y9(0) = 1

10. y0 + (tan x)y = ex, y(0) = 1, y9(0) = 0

11. (a) Use the family in Problem 1 to �nd a solution of y0 − y = 0 
that satis�es the boundary conditions y(0) = 0, y(1) = 1.

(b) The DE in part (a) has the alternative general solution 
y = c3 cosh x + c4 sinh x on (x on (x −`, `). Use this family to 
�nd a solution that satis�es the boundary conditions in 
part (a).

(c) Show that the solutions in parts (a) and (b) are equivalent

12. Use the family in Problem 5 to find a solution of 
xy 0 − y9 = 0 that satisfies the boundary conditions 
y(0) = 1, y9(1) = 6.

In Problems 13 and 14 the given two-parameter family is a solution 
of the indicated differential equation on the interval (−`, `). Deter-
mine whether a member of the family can be found that satis�es the 
boundary conditions.

13. y = c1ex cos x cos x x + c2ex sin x sin x x; y0 − 2y9 + 2y = 0

(a) y(0) = 1, y9(�) = 0

(b) y(0) = 1, y(�) = −1

(c) y(0) = 1, y(�y2) 5 1

(d) y(0) = 0, y(�) = 0.

14. y = c1x2 + c2x2x2
4 + 3; x2y2y2 0 − 5xy9 + 8y = 24

(a) y(−1) = 0, y(1) = 4

(b) y(0) = 1, y(1) = 2

(c) y(0) = 3, y(1) = 0

(d) y(1) = 3, y(2) = 15

4.1.2 Homogeneous Equations

In Problems 15–22 determine whether the given set of functions is 
linearly independent on the interval (−`, `).

15. f1f1f (x) = x, f2f2f (x) = x2, f3f3f (x) = 4x − 3x2

16. f1f1f (x) = 0, f2f2f (x) = x, f3f3f (x) = ex

Answers to selected odd-numbered problems begin on page ANS-4.

in Theorem 4.1.1, the output or response y(t) is uniquely determined by the 
input and the state of the system prescribed at a time t0t0t —that is, by the initial 
conditions y(t0t0t ), y9(t0t0t ), . . . , y(n−1)(t0).

For a dynamical system to be a linear system, it is necessary that the 
superposition principle (Theorem 4.1.7) holds in the system; that is, the 
response of the system to a superposition of inputs is a superposition of out-
puts. We have already examined some simple linear systems in Section 3.1 
(linear �rst-order equations); in Section 5.1 we examine linear systems in 
which the mathematical models are second-order differential equations.

130 CHAPTER 4 HIGHERORDER DIFFERENTIAL EQUATIONS

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



17. f1f1f (x) = 5, f2f2f (x) = cos2x, f3f3f (x) = sin2x

18. f1f1f (x) = cos 2x, f2f2f (x) = 1, f3f3f (x) = cos2x

19. f1f1f (x) = x, f2f2f (x) = x − 1, f3f3f (x) = x + 3

20. f1f1f (x) = 2 + x, f2f2f (x) = 2 + ux u

21. f1f1f (x) = 1 + x, f2f2f (x) = x, f3f3f (x) = x2

22. f1f1f (x) = ex, f2f2f (x) = e−x, f3f3f (x) = sinh x

In Problems 23–30 verify that the given functions form a fundamen-
tal set of solutions of the differential equation on the indicated inter-
val. Form the general solution.

23. y0 − y9 − 12y = 0; e−3x, e4x, (−`, `)

24. y0 − 4y = 0; cosh 2xcosh 2xcosh 2 , sinh 2x, sinh 2x, sinh 2 , (−`, `)

25. y0 − 2y9 + 5y = 0; ex cos 2x cos 2x x cos 2x cos 2 , ex sin 2x sin 2x x sin 2x sin 2 , (−`, `)

26. 4y0 − 4y9 + y = 0; ex/2x/2x , xex/2x/2x , (−`, `)

27. x2y2y2 0 − 6xy9 + 12y = 0; x3, x4, (0, `)

28. x2y2y2 0 + xy9 + y = 0; cos(ln x), sin(ln x), (0, `)

29. x3y- + 6x2y2y2 0 + 4xy9 − 4y = 0; x, x−2, x−2 ln x, (0, `)

30. y(4) + y0 = 0; 1, x, cos x, sin x, (−`, `)

4.1.3 Nonhomogeneous Equations

In Problems 31–34 verify that the given two-parameter family of 
functions is the general solution of the nonhomogeneous differential 
equation on the indicated interval.

31. y0 − 7y9 + 10y = 24ex;

y = c1e2x2x2 + c2e5x + 6ex, (−`, `)

32. y0 + y = sec x;

y = c1 cos x + c2 sin x + x sin x + (cos x) ln(cos x), (−�y2, �y2)

33. y0 − 4y9 + 4y = 2e2x + 4x − 12;
y = c1e2x + c2xe2x + x2e2x + x − 2, (−`, `)

34. 2x2x2 2y2y2 0 + 5xy9 + y = x2 − x;

y 5 c1x21/2 1 c2x21 1 1
15xx2 2 1

6xx, (0, `)

35. (a) Verify that ypypy 1 5 3e2x and ypypy 2 5 x2 1 3x are, respectively, 
particular solutions of

y0 2 6y9 1 5y 5 29e2x

and y0 2 6y9 1 5y 5 5x2 1 3x 2 16.

(b) Use part (a) to �nd particular solutions of

y0 2 6y9 1 5y 5 5x2 1 3x 2 16 2 9e2x

and y0 2 6y9 1 5y 5 210x2 2 6x 1 32 1 e2x.

36. (a) By inspection �nd a particular solution of 

y0 + 2y = 10.

(b) By inspection �nd a particular solution of 

y0 + 2y = −4x.

(c) Find a particular solution of y0 + 2y = −4x + 10.

(d) Find a particular solution of y0 + 2y = 8x + 5.

Discussion Problems
37. Let n = 1, 2, 3, . . . . Discuss how the observations Dnxnxn n−1 = 0 

and Dnxnxn n = n! can be used to �nd the general solutions of the 
given differential equations.

(a) y0 = 0  (b) y- = 0  (c) y(4) = 0

(d) y0 = 2 (e) y- = 6 (f) y(4) = 24

38. Suppose that y1 = ex and x and x y2 = e−x are two solutions of x are two solutions of x

a homogeneous linear differential equation. Explain why 
y3 = cosh x and x and x y4 = sinh x are also solutions of the  x are also solutions of the  x
equation.

39. (a)  Verify that y1 = x3 and y2 = u x u3 are linearly independent 
solutions of the differential equation x2y2y2 0 − 4xy9 + 6y = 0 
on the interval (−`, `).

(b) For the functions y1 and y2 in part (a), show that 
W(W(W y1, y2) 5 0 for every real number x. Does this result  
violate Theorem 4.1.3? Explain.

(c) Verify that Y1 = x3 and Y2Y2Y = x2 are also linearly 
independent solutions of the differential equation in part (a) 
on the interval (−`, `).

(d) Besides the functions y1, y2, Y1Y1Y , and Y2Y2Y  in parts (a) and (c), 
�nd a solution of the differential equation that satis�es 
y(0) 5 0, y9(0) 5 0.

(e) By the superposition principle, Theorem 4.1.2, both linear 
combinations y = c1y1 + c2y2y2 2 and Y = c1Y1 + c2Y2Y2Y  are 
solutions of the differential equation. Discuss whether 
one, both, or neither of the linear combinations is a 
general solution of the differential equation on the 
interval (−`, `).

40. Is the set of functions f1f1f (x) = ex+2, f2f2f (x) = ex−3 linearly 
dependent or linearly independent on (−`, `)? Discuss.

41. Suppose y1, y2, . . . , yk are k linearly independent solutions 
on (−`, `) of a homogeneous linear nth-order differential 
equation with constant coef�cients. By Theorem 4.1.2 it 
follows that yk+1 = 0 is also a solution of the differential 
equation. Is the set of solutions y1, y2, . . . , yk, yk+1

linearly dependent or linearly independent on (−`, `)? 
Discuss.

42. Suppose that y1, y2, . . . , yk are k are k k nontrivial solutions of a k nontrivial solutions of a k
homogeneous linear nth-order differential equation with 
constant coef�cients and that k = n + 1. Is the set of solutions 
y1, y2, . . . , yk linearly dependent or linearly independent on k linearly dependent or linearly independent on k

(−`, `)? Discuss.
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INTRODUCTION In the preceding section we saw that the general solution of a 
homogeneous linear second-order differential equation

a2(x)y0 1 a1(x)y9 1 a0(x)y 5 0 (1)

is a linear combination y = c1y1 + c2y2y2 2, where y1 and y2 are solutions that constitute 
a linearly independent set on some interval I. Beginning in the next section, we 
examine a method for determining these solutions when the coef�cients of the 
differential equation in (1) are constants. This method, which is a straightforward 
exercise in algebra, breaks down in a few cases and yields only a single solution y1

of the DE. It turns out that we can construct a second solution y2 of a homogeneous 
equation (1) (even when the coef�cients in (1) are variable) provided that we know 
a nontrivial solution y1 of the DE. The basic idea described in this section is that 
equation (1) can be reduced to a linear �rst-order DE by means of a substitution
involving the known solution y1. A second solution y2 of (1) is apparent after this 
�rst-order differential equation is solved.

REDUCTION OF ORDER Suppose that y1 denotes a nontrivial solution of (1) 
and that y1 is de�ned on an interval I. We seek a second solution y2 so that the set 
consisting of y1 and y2 is linearly independent on I. Recall from Section 4.1 that if 
y1 and y2 are linearly independent, then their quotient y2yy1 is nonconstant on I—that I—that I
is, y2(x)yy1(x) = u(x) or y2(x) = u(x)y1(x). The function u(x) can be found by 
substituting y2(x) = u(x)y1(x) into the given differential equation. This method is 
called reduction of order because we must solve a linear �rst-order differential 
equation to �nd u.

EXAMPLE 1  A Second Solution by Reduction of Order

Given that y1 = ex is a solution of x is a solution of x y0 − y = 0 on the interval (−`, `), use reduction 
of order to �nd a second solution y2.

SOLUTION If y = u(x)y1(x) = u(x)ex, then the Product Rule gives

y9 5 uex 1 exu9, y0 5 uex 1 2exu9 1 exu0,

and so y0 2 y 5 ex(u0 1 2u9) 5 0.

Since ex Þ 0, the last equation requires u0 + 2u9 = 0. If we make the substitution 
w = u9, this linear second-order equation in u becomes w9 + 2w = 0, which is  a 
linear �rst-order equation in w. Using the integrating factor e2x, we can write 
d

linear �rst-order equation in 
d

linear �rst-order equation in 

dxdxd
 [ [e2xw] 5 0. After integrating, we get w = c1e−2x or x or x u9 = c1e−2x. Integrating again 

then yields u 5 21
2 c1e22x 1 c2. Thus

y 5 u(x)ex 5 2
c1

2
e2x 1 c2ex. (2)

By choosing c2 = 0 and c1 = −2, we obtain the desired second solution, y2 = e−x. 
Because W(W(W ex, e−x) Þ 0 for every x, the solutions are linearly independent on 
(−`, `). .

Since we have shown that y1 = ex and x and x y2 = e−x are linearly independent solux are linearly independent solux -
tions of a linear second-order equation, the expression in (2) is actually the general 
solution of y0 − y = 0 on (−`, `).

4.2 R Reduction of Order
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GENERAL CASE Suppose we divide by a2(x) to put equation (1) in the standard 
form

y0 1 P(x)y9 1 Q(x)y 5 0, (3)

where P(x) and Q(x) are continuous on some interval I. Let us suppose further that 
y1(x) is a known solution of (3) on I and that I and that I y1(x) Þ 0 for every x in the interval. If x in the interval. If x
we de�ne y = u(x)y1(x), it follows that

y9 5 uy91 1 y1u9, y0 5 uy01 1 2y91u9 1 y1u0

y 0 1 Py9 1 Qy 5 u[y1 1 Py1 1 Qy1] 1 y1u0 1 (2y1 1 Py1)u9 5 0.0 910 91 Py0 9Py 9

zero

This implies that we must have

y1u0 1 (2y91 1 Py1)u9 5 0 or y1w9 1 (2y91 1 Py1)w 5 0, (4)

where we have let w = u9. Observe that the last equation in (4) is both linear and 
separable. Separating variables and integrating, we obtain

dw
w

1 2
y91
y1

dxdxd 1 P dxdxd 5 0

lnuwy1
2u 5 2#P dxdxd 1 c or wy1

2 5 c1e2eP dx.

We solve the last equation for w, use w = u9, and integrate again:

u 5 c1 # e2eP dx

y1
2 dxdxd 1 c2.

By choosing c1 = 1 and c2 = 0, we �nd from y = u(x)y1(x) that a second solution of 
equation (3) is

y2 5 y1(x) # 
e2eP(x) dx

y1
2(x)

 dx. (5)

It makes a good review of differentiation to verify that the function y2(x) de�ned in 
(5) satis�es equation (3) and that y1 and y2 are linearly independent on any interval 
on which y1(x) is not zero.

 EXAMPLE 2  A Second Solution by Formula (5)

The function y1 = x2 is a solution of x2y2y2 0 − 3xy9 + 4y = 0. Find the general solution 
of the differential equation on the interval (0, `).

SOLUTION From the standard form of the equation,

y0 2
3
x

y9 1
4

x2 y 5 0,

we �nd from (5) y2 5 x2 #e3e dx/x/x x

x4 dxdxd d e3e  dx/x 5 eln x3
5 x3

5 x2 #dxdxd
x

5 x2 ln x.

The general solution on the interval (0, `) is given by y = c1y1 + c2y2; that is, 
y = c1x2 + c2x2 ln x. .
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REMARKS

(i) The derivation and use of formula (5) have been illustrated here because this 
formula appears again in the next section and in Sections 4.7 and 6.3. We use (5) 
simply to save time in obtaining a desired result. Your instructor will tell you 
whether you should memorize (5) or whether you should know the �rst princi-
ples of reduction of order.

(ii) Reduction of order can be used to �nd the general solution of a nonhomo-
geneous equation a2(x)y0 + a1(x)y9 + a0(x)y = g(x) whenever a solution y1

of the associated homogeneous equation is known. See Problems 17–20 in 
Exercises 4.2.

(iii) The integral in (5) may be nonelementary. In this case we simply write the 
second solution in terms of an integral-de�ned function:

y2(x) 5 y1(x)#x

x
#

x
#

0

e2eP(t)dt

y2
1(t)

dt, 

where we assume that the integrand is continuous on the interval fx0, xg . See 
Problems 21 and 22 in Exercises 4.2.

EXERCISES 4.2 Answers to selected odd-numbered problems begin on page ANS-4.

In Problems 1–16 the indicated function y1(x) is a solution of the 
given differential equation. Use reduction of order or formula (5), as 
instructed, to �nd a second solution y2(x).

1. y0 − 4y9 + 4y = 0; y1 = e2x2x2

2. y0 + 2y9 + y = 0; y1 = xe−x

3. y0 + 16y = 0; y1 = cos 4x

4. y0 + 9y = 0; y1 = sin 3x

5. y0 − y = 0; y1 = cosh x

6. y0 − 25y = 0; y1 = e5x

7. 9y0 − 12y9 + 4y = 0; y1 = e2x2x2 /3x/3x

8. 6y0 + y9 − y = 0; y1 = ex/3x/3x

9. x2y2y2 0 − 7xy9 + 16y = 0; y1 = x4

10. x2y2y2 0 + 2xy2xy2 9 − 6y = 0; y1 = x2

11. xy0 + y9 = 0; y1 = ln x

12. 4x2y2y2 0 + y = 0; y1 = x1/2 ln x

13. x2y2y2 0 − xy9 + 2y = 0; y1 = x sin(ln x sin(ln x x)

14. x2y2y2 0 − 3xy9 + 5y = 0; y1 = x2 cos(ln x)

15. (1 − 2x2x2 − x2)y0 + 2(1 + x)y9 − 2y = 0; y1 = x + 1

16. (1 − x2)y0 + 2xy2xy2 9 = 0; y1 = 1

In Problems 17 –20 the indicated function y1(x) is a solution of 
the associated homogeneous equation. Use the method of  reduc-
tion of order to �nd a second solution y2(x) of the homogeneous 

equation and a particular solution ypypy (x) of the given nonhomoge-
neous equation.

17. y0 − 4y = 2; y1 = e−2x2x2

18. y0 + y9 = 1; y1 = 1

19. y0 − 3y9 + 2y = 5e3x; y1 = ex

20. y0 − 4y9 + 3y = x; y1 = ex

In Problems 21 and 22 the indicated function y1sxd is a solution of 
the given differential equation. Use formula (5) to �nd a second solu-
tion y2sxd expressed in terms of an integral-de�ned function. See (iii) 
in the Remarks.

21. x2y2y2 0 1 (x2 2 x)y9 1 (1 2 x)y 5 0; y1 5 x

22. 2x2x2 yxyx 0 2 (2x2x2 1 1)y9 1 y 5 0; y1 5 ex

Discussion Problems

23. (a) Give a convincing demonstration that the second-order 
equation ay0 + by9 + cy = 0, a, b, and c constants, always 
possesses at least one solution of the form y1 5 em1x, m1 a 
constant.

(b) Explain why the differential equation in part (a) must then 
have a second solution either of the form y2 5 em2x2x2  or of 
the form y2 5 xem1x, m1 and m2 constants.

(c) Reexamine Problems 1–8. Can you explain why the  
statements in parts (a) and (b) above are not contradicted by 
the answers to Problems 3–5?
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24. Verify that y1(x) = x is a solution of xy0 − xy9 + y = 0. 
Use reduction of order to �nd a second solution y2(x) in the 
form of an in�nite series. Conjecture an interval of de�nition 
for y2(x).

Computer Lab Assignments
25. (a)  Verify that y1(x) = ex is a solution of x is a solution of x

xy0 − (x + 10)y9 + 10y = 0.

(b) Use (5) to �nd a second solution y2(x). Use a CAS to carry 
out the required integration.

(c) Explain, using Corollary (A) of Theorem 4.1.2, why the 
second solution can be written compactly as

y2(x) 5 o
10

n50

1

n!
xn.

INTRODUCTION As a means of motivating the discussion in this section, let us 
return to �rst-order differential equations—more speci�cally, to homogeneous linear 
equations ay9 + by = 0, where the coef�cients a Þ 0 and b are constants. This type 
of equation can be solved either by separation of variables or with the aid of an 
integrating factor, but there is another solution method, one that uses only algebra. 
Before illustrating this alternative method, we make one observation: Solving 
ay9 + by = 0 for y9 yields y9 = ky, where k is a constant. This observation reveals k is a constant. This observation reveals k
the nature of the unknown solution y; the only nontrivial elementary function whose 
derivative is a constant multiple of itself is an exponential function emx. Now the new 
solution method: If we substitute y = emx and y9 = memx into ay9 + by = 0, we get

amemx 1 bemx 5 0 or emx (am 1 b) 5 0.

Since emx is never zero for real values of mx is never zero for real values of mx x, the last equation is satis�ed only when 
m is a solution or root of the �rst-degree polynomial equation am + b = 0. For this 
single value of m, y = emx is a mx is a mx solution of the DE. To illustrate, consider the constant-
coef�cient equation 2ycoef�cient equation 2ycoef�cient equation 2 9 + 5y = 0. It is not necessary to go through the differentiation 
and substitution of y = emx into the DE; we merely have to form the equation mx into the DE; we merely have to form the equation mx

2m + 5 = 0 and solve it for m. From m 5 25
2 we conclude that y 5 e25x/x/x 2 is a solution 

of 2yof 2yof 2 9 + 5y = 0, and its general solution on the interval (−`, `) is y 5 c1e25x/x/x 2.
In this section we will see that the foregoing procedure can produce exponential 

solutions for homogeneous linear higher-order DEs,

anynyn
(n) 1 an21y(n21) 1 Á 1 a2y2y2 0 1 a1y9 1 a0y0y0 5 0, (1)

where the coef�cients ai, i = 0, 1, . . . , n are real constants and an Þ 0.

AUXILIARY EQUATION We begin by considering the special case of the second-
order equation

ay0 1 by9 1 cy 5 0, (2)

where a, b, and c are constants. If we try to �nd a solution of the form y = emx, then 
after substitution of y9 = memx and mx and mx y0 = m2emx, equation (2) becomes

am2emx 1 bmemx 1 cemx 5 0 or emx(am2 1 bm 1 c) 5 0.

As in the introduction we argue that because emx Þ 0 for all x, it is apparent that the 
only way y = emx can satisfy the differential equation (2) is when mx can satisfy the differential equation (2) is when mx m is chosen as a 
root of the quadratic equation

am2 1 bm 1 c 5 0. (3)

4.3    Homogeneous Linear Equations 
with Constant Coefficients
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This last equation is called the auxiliary equation of the differential equa-
tion (2). Since the two roots of (3) are m1 5 (2b 1 ÏbÏbÏ 2 2 4acÏ )y2a and
m2 5 (2b 2 ÏbÏbÏ 2 2 4acÏ )y2a, there will be three forms of the general solution of 
(2) corresponding to the three cases:

 ● m1 and m2 real and distinct (b2 − 4ac > 0),
 ● m1 and m2 real and equal (b2 − 4ac = 0), and
 ● m1 and m2 conjugate complex numbers (b2 − 4ac < 0).

We discuss each of these cases in turn.

CASE I: DISTINCT REAL ROOTS Under the assumption that the auxiliary equa-
tion (3) has two unequal real roots m1 and m2, we �nd two solutions, y1 5 em1x and 
y2 5 em2 x. We see that these functions are linearly independent on (−`, ̀ ) and hence 
form a fundamental set. It follows that the general solution of (2) on this interval is

y 5 c1em1x 1 c2em2x. (4)

CASE II: REPEATED REAL ROOTS When m1 = m2, we necessarily obtain only 
one exponential solution, y1 5 em1x. From the quadratic formula we �nd that 
m1 = −by2a since the only way to have m1 = m2 is to have b2 − 4ac = 0. It follows 
from (5) in Section 4.2 that a second solution of the equation is

y2 5 em1x # e2m1x

e2m1x
dxdxd 5 em1x #dxdxd 5 xem1x. (5)

In (5) we have used the fact that −bya = 2m1. The general solution is then

y 5 c1em1x 1 c2xem1x. (6)

CASE III: CONJUGATE COMPLEX ROOTS If m1 and m2 are complex, then we can 
write m1 = � + i� and m2 = � − i�, where � and � > 0 are real and i2 = −1. 
Formally, there is no difference between this case and Case I, and hence

y 5 C1e(�1i�)x 1 C2C2C e(�2i�)x.

However, in practice we prefer to work with real functions instead of complex 
exponentials. To this end we use Euler’s formula:

ei� 5 cos � 1 i sin �,

where � is any real number.* It follows from this formula that

ei�x 5 cos �x 1 i sin �x and e2i�x 5 cos �x 2 i sin �x, (7)

where we have used cos(−�x) = cos �x and sin(x and sin(x −�x) = −sin �x. Note that by �rst 
adding and then subtracting the two equations in (7), we obtain, respectively,

ei�x 1 e2i�x 5 2 cos �x and ei�x 2 e2i�x 5 2i sin �x.

Since y = C1e(�+i�)x + C2C2C e(�−i�)x is a solution of (2) for any choice of the constants x is a solution of (2) for any choice of the constants x C1

and C2, the choices C1 = C2 = 1 and C1 = 1, C2 = −1 give, in turn, two solutions:

y1 5 e(�1i�)x 1 e(�2i�)x and y2 5 e(�1i�)x 2 e(�2i�)x.

But y1 5 e�x(ei�x 1 e2i�x) 5 2e�x cos �x

and y2 5 e�x(ei�x 2 e2i�x) 5 2ie�x sin �x.

*A formal derivation of Euler’s formula can be obtained from the Maclaurin series ex 5 o
`

n50

xn

n!
 by by

substituting x 5 i�, using i2 5 21, i3 5 2i, . . . , and then separating the series into real and imaginary 
parts. The plausibility thus established, we can adopt cos � 1 i sin � as the de�nition of ei�.
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Hence from Corollary (A) of Theorem 4.1.2 the last two results show that e�x cos x cos x �x
and e�x sin x sin x �x are x are x real solutions of (2). Moreover, these solutions form a fundamental real solutions of (2). Moreover, these solutions form a fundamental real
set on (−`, `). Consequently, the general solution is

y 5 c1e�x cos �x 1 c2e�x sin �x 5 e�x(c1 cos �x 1 c2 sin �x). (8)

EXAMPLE 1  Second-Order DEs

Solve the following differential equations.

(a) 2y0 − 5y9 − 3y = 0 (b) y0 − 10y9 + 25y = 0 (c) y0 + 4y9 + 7y = 0

SOLUTION We give the auxiliary equations, the roots, and the corresponding gen-
eral solutions.

(a) 2m2 − 5m − 3 = (2m + 1)(m − 3) = 0, m1 5 21
2, m2 = 3

From (4), y = c1e−x/2 + c2e3x.

(b) m2 − 10m + 25 = (m − 5)2 = 0, m1 = m2 = 5
From (6), y = c1e5x + c2xe5x.

(c) m2 1 4m 1 7 5 0, m1 5 22 1 Ï3Ï i, m2 5 22 2 Ï3Ï i

From (8) with � 5 22, � 5 Ï3Ï , y 5 e22x_c1 cos Ï3x 1 c2 sin Ï3x+. .

 EXAMPLE 2  An Initial-Value Problem

Solve 4y0 + 4y9 + 17y = 0, y(0) = −1, y9(0) = 2.

SOLUTION By the quadratic formula we �nd that the roots of the auxil-
iary equation  4m2 + 4m + 17 = 0 are m1 5 21

2 1 2i and m2 5 21
2 2 2i. Thus 

from (8) we  have y = e−x/2x/2x (c1 cos 2x cos 2x cos 2 + c2 sin 2x sin 2x sin 2 ). Applying the condition 
y(0) = −1, we see from e0(c1 cos 0 + c2 sin 0) = −1 that c1 = −1. Differentiating 
y = e−x/2x/2x (−cos 2x2x2 + c2 sin 2x2x2 ) and then using y9(0) = 2 gives 2c2 + 1

2 = 2 or c2 = 3
4. 

Hence the solution of the IVP is y = e−x/2(−cos 2x + 3
4 sin 2x). In Figure 4.3.1 we 

see that the solution is oscillatory, but y : 0 as x : `. .

TWO EQUATIONS WORTH KNOWING The two differential equations

y0 1 k2y 5 0 and y0 2 k2y 5 0,

where k is real, are important in applied mathematics. For k is real, are important in applied mathematics. For k y0 + k2y2y2 = 0 the auxiliary 
equation m2 + k2 = 0 has imaginary roots m1 = ki and m2 = −ki. With � = 0 and 
� = k in (8) the general solution of the DE is seen to bek in (8) the general solution of the DE is seen to bek

y 5 c1 cos kxkxk 1 c2 sin kxkxk . (9)

On the other hand, the auxiliary equation m2 − k2 = 0 for y0 − k2y = 0 has distinct 
real roots m1 = k and k and k m2 = −k, and so by (4) the general solution of the DE is

y 5 c1ekx 1 c2e2kx. (10)

Notice that if we choose c1 5 c2 5 1
2 and c1 5 1

2, c2 5 21
2 in (10), we get the particu-

lar solutions y 5 1
2 (ekx 1 e2kx) 5 cosh kx ax ax nd y 5 1

2 (ekx 2 e2kx) 5 sinh kx. Since 
cosh kx and sinh kx and sinh kx kx are linearly independent on any interval of the kx are linearly independent on any interval of the kx x-axis, an alterna-
tive form for the general solution of y0 − k2y2y2 = 0 is

y 5 c1 cosh kx 1 c2 sinh kx. (11)

See Problems 41 and 42 in Exercises 4.3.

FIGURE 4.3.1 Solution curve of IVP in 
Example 2
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HIGHERORDER EQUATIONS In general, to solve an nth-order differential equa-
tion (1), where the ai, i = 0, 1, . . . , n are real constants, we must solve an nth-degree 
polynomial equation

anmn 1 an21mn21 1 Á 1 a2m2 1 a1m 1 a0 5 0. (12)

If all the roots of (12) are real and distinct, then the general solution of (1) is

y 5 c1em1x 1 c2em2x 1 Á 1 cnemnx.

It is somewhat harder to summarize the analogues of Cases II and III because the 
roots of an auxiliary equation of degree greater than two can occur in many combi-
nations. For example, a �fth-degree equation could have �ve distinct real roots, or 
three distinct real and two complex roots, or one real and four complex roots, or �ve 
real but equal roots, or �ve real roots but two of them equal, and so on. When m1 is 
a root of multiplicity k of an k of an k nth-degree auxiliary equation (that is, k roots are equal k roots are equal k
to m1), it can be shown that the linearly independent solutions are

em1x, xem1x, x2em1x, . . . , xk21em1x

and the general solution must contain the linear combination

c1em1x 1 c2xem1x 1 c3x2em1x 1 Á 1 ckxk21em1x.

Finally, it should be remembered that when the coef�cients are real, complex 
roots of an auxiliary equation always appear in conjugate pairs. Thus, for example, 
a cubic polynomial equation can have at most two complex roots.

EXAMPLE 3  Third-Order DE

Solve y- + 3y0 − 4y = 0.

SOLUTION It should be apparent from inspection of m3 + 3m2 − 4 = 0 that one 
root is m1 = 1, so m − 1 is a factor of m3 + 3m2 − 4. By division we �nd

m3 1 3m2 2 4 5 (m 2 1)(m2 1 4m 1 4) 5 (m 2 1)(m 1 2)2,

so the other roots are m2 = m3 = −2. Thus the general solution of the DE is
y = c1ex + c2e−2x + c3xe−2x. .

 EXAMPLE 4  Fourth-Order DE

Solve 
d4y

dxdxd 4 1 2
d 2y

dxdxd 2 1 y 5 0.

SOLUTION The auxiliary equation m4 + 2m2 + 1 = (m2 + 1)2 = 0 has roots 
m1 = m3 = i and m2 = m4 = −i. Thus from Case II the solution is

y 5 C1eix 1 C2C2C e2ix 1 C3xeix 1 C4C4C xe2ix.

By Euler’s formula the grouping C1eix + C2C2C e−ix can be rewritten asix can be rewritten asix

c1 cos x 1 c2 sin x

after a relabeling of constants. Similarly, x(C3eix + C4C4C e−ix) can be expressed as 
x(c3 cos x + c4 sin x). Hence the general solution is

y 5 c1 cos x 1 c2 sin x 1 c3x cx cx os x 1 c4x sx sx in x. .

Example 4 illustrates a special case when the auxiliary equation has repeated 
complex roots. In general, if m1 = � + i�, � > 0 is a complex root of multiplicity k
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of an auxiliary equation with real coef�cients, then its conjugate m2 = � − i� is also 
a root of multiplicity k. From the 2k complex-valued solutionsk complex-valued solutionsk

e(�1i�)x, xe(�1i�)x, x2e(�1i�)x, Á , xk21e(�1i�)x,

e(�2i�)x, xe(�2i�)x, x2e(�2i�)x, . . . , xk21e(�2i�)x,

we conclude, with the aid of Euler’s formula, that the general solution of the corre-
sponding differential equation must then contain a linear combination of the 2k real k real k
linearly independent solutions

e�x cos �x,  xe�x cos �x,  x2e�x cos �x,  . . . ,  xk21e�x cos �x,

 e�x sin �x,  xe�x sin �x,  x2e�x sin �x,   . . . ,  xk21e�x sin �x.

In Example 4 we identify k = 2, � = 0, and � = 1.

RATIONAL ROOTS Of course the most dif�cult aspect of solving constant-
coef�cient differential equations is �nding roots of auxiliary equations of degree 
greater than two. Something we can try is to test the auxiliary equation for rational 
roots. Recall from precalculus mathematics, if m1 5 pyq is a rational root (expressed 
in lowest terms) of a polynomial equation anmn 1 Á 1 a1m 1 a0 5 0 with integer 
coef�cients, then the integer p is a factor of the constant term a0 and the integer q is 
a factor of the leading coef�cient an .

EXAMPLE 5 Finding Rational Roots

Solve 3y- 1 5y0 1 10y0y0 9 2 4y 5 0.

SOLUTION To solve the equation we must solve the cubic polynomial auxiliary 
equation 3m3 1 5m2 1 10m 2 4 5 0. With the identi�cations a0 5 24 and a3 5 3
then the integer factors of a0 and a3 are, respectively, p:61, 62, 64 and q: 61, 63.
So the possible rational roots of the cubic equation are 

p
q

: 61, 62, 64, 6
1

3
, 6

2

3
, 6

4

3
. 

Each of these numbers can then be tested—say, by synthetic division. In this way we 
discover both the root m1 5 1

3 and the factorization 

3m3 1 5m2 1 10m 2 4 5 _m 2 1
3+(3m2 1 6m 1 12) . 

The quadratic formula applied to 3m2 1 6m 1 12 5 0 then yields the remaining two 
roots m2 5 21 2 Ï3Ï i and m3 5 21 1 Ï3Ï i . Therefore the general solution of the 
given differential equation is y 5 c1exy3 1 e2x(c2 cosÏ3x  1   c3 sinÏ3x) . .

USE OF COMPUTERS Finding roots or approximation of roots of auxil-
iary  equations is a routine problem with an appropriate calculator or computer 
software. Polynomial equations (in one variable) of degree less than �ve can be 
solved by means of algebraic formulas using the solve commands in Mathematica
and Maple. For auxiliary equations of degree �ve or greater it might be necessary 
to resort to numerical commands such as NSolve and FindRoot in Mathematica.
Because of their capability of solving polynomial equations, it is not surprising 
that these computer algebra systems are also able, by means of their dsolve com-
mands, to provide explicit solutions of homogeneous linear constant-coef�cient 
differential equations.

There is more on this in the S R M .
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In the classic text Differential Equations by Ralph Palmer Agnew* (used by the 
author as a student) the following statement is made:

It is not reasonable to expect students in this course to have computing skill 
and equipment necessary for ef�cient solving of equations such as

4.317 
d4y

dx4 1 2.179 
d3y

dx3 1 1.416 
d2y

dx2 1 1.295 
dy

dx
1 3.169y 5 0. (13)

Although it is debatable whether computing skills have improved in the intervening 
years, it is a certainty that technology has. If one has access to a computer algebra 
system, equation (13) could now be considered reasonable. After simpli�cation 
and some relabeling of output, Mathematica yields the (approximate) general 
solution

y 5 c1e20.728852x cos(0.618605x) 1 c2e20.728852x sin(0.618605x)

1 c3e0.476478x cos(0.759081x) 1 c4e0.476478x sin(0.759081x).

Finally, if we are faced with an initial-value problem consisting of, say, a fourth-
order equation, then to �t the general solution of the DE to the four initial conditions, 
we must solve four linear equations in four unknowns (the c1, c2, c3, c4 in the general 
solution). Using a CAS to solve the system can save lots of time. See Problems 69 
and 70 in Exercises 4.3 and Problem 45 in Chapter 4 in Review.

*McGraw-Hill, New York, 1960.

EXERCISES 4.3
In Problems 1–14 �nd the general solution of the given second-order 
differential equation.

1. 4y0 + y9 = 0 2. y0 − 36y = 0

3. y0 − y9 − 6y = 0 4. y0 − 3y9 + 2y = 0

5. y0 + 8y9 + 16y = 0 6. y0 − 10y9 + 25y = 0

7. 12y0 − 5y9 − 2y = 0 8. y0 + 4y9 − y = 0

9. y0 + 9y = 0 10. 3y0 + y = 0

11. y0 − 4y9 + 5y = 0 12. 2y0 + 2y9 + y = 0

13. 3y0 + 2y9 + y = 0 14. 2y0 − 3y9 + 4y = 0

In Problems 15–28 �nd the general solution of the given higher-
order differential equation.

15. y- − 4y0 − 5y9 = 0

16. y- − y = 0

17. y- − 5y0 + 3y9 + 9y = 0

18. y- + 3y0 − 4y9 − 12y = 0

19.
d3u

dt3
1

d2u

dt2
2 2u 5 0

20.
d 3x

dt 3 2
d 2x2x2

dt 2 2 4x 5 0

21. y- 1 3y0 1 3y9 1 y 5 0

22. y- − 6y0 + 12y9 − 8y = 0

23. y(4) + y- + y0 = 0

24. y(4) − 2y0 + y = 0

25. 16
d 4y

dxdxd 4 1 24
d 2y

dxdxd 2 1 9y 5 0

26.
d 4y

dxdxd 4 2 7
d2y

dxdxd 2 2 18y 5 0

27.
d 5u

dr 5
1 5

d 4u

dr 4 2 2
d 3u

dr 3 2 10
d 2u

dr 2 1
du

dr
1 5u 5 0

28. 2
d 5x

ds5
2 7

d 4x4x4

ds4 1 12
d3x

ds3 1 8
d2x2x2

ds2 5 0

In Problems 29–36 solve the given initial-value problem.

29. y0 + 16y = 0, y(0) = 2, y9(0) = −2

30.
d 2y

d�2 1 y 5 0, y(�y3) 5 0, y9(�y3) 5 2

31.
d2y

dt2
2 4

dy

dt
2 5y 5 0, y(1) 5 0, y9(1) 5 2

32. 4y0 − 4y9 − 3y = 0, y(0) = 1, y9(0) = 5

Answers to selected odd-numbered problems begin on page ANS-4.
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33. y0 + y9 + 2y = 0, y(0) = y9(0) = 0

34. y0 − 2y9 + y = 0, y(0) = 5, y9(0) = 10

35. y- + 12y12y12 0 + 36y36y36 9 = 0, y(0) = 0, y9(0) = 1, y0(0) =−7

36. y- + 2y2y2 0 − 5y9 − 6y6y6 = 0, y(0) = y9(0) = 0, y0(0) = 1

In Problems 37–40 solve the given boundary-value problem.

37. y0 − 10y9 + 25y = 0, y(0) = 1, y(1) = 0

38. y0 + 4y = 0, y(0) = 0, y(�) = 0

39. y0 1 y 5 0, y9(0) 5 0, y9(�y2) 5 0

40. y0 − 2y9 + 2y = 0, y(0) = 1, y(�) = 1

In Problems 41 and 42 solve the given problem �rst using the form 
of the general solution given in (10). Solve again, this time using the 
form given in (11).

41. y0 − 3y = 0, y(0) = 1, y9(0) = 5

42. y0 − y = 0, y(0) = 1, y9(1) = 0

In Problems 43–48 each �gure represents the graph of a particular 
solution of one of the following differential equations:

(a) y0 − 3y9 − 4y = 0 (b) y0 + 4y = 0

(c) y0 + 2y9 + y = 0 (d) y0 + y = 0

(e) y0 + 2y9 + 2y = 0 (f) y0 − 3y9 + 2y = 0

Match a solution curve with one of the differential equations. Explain 
your reasoning.

43.

44.

45.

x

y

FIGURE 4.3.2 Graph for Problem 43

x

y

FIGURE 4.3.3 Graph for Problem 44

x

y

FIGURE 4.3.4 Graph for Problem 45

46.

47.

48.

In Problems 49–58 �nd a homogeneous linear differential equation with 
constant coef�cients whose general solution is given.

49. y 5 c1ex 1 c2e5x 50. y 5 c1e24x4x4 1 c2e23x

51. y 5 c1 1 c2e2x2x2 52. y 5 c1e10x10x10 1 c2xe2xe2
10x10x10

53. y 5 c1 cos 3x 1 c2 sin 3x 54. y 5 c1cosh 7x 1 c2 sinh 7x

55. y 5 c1e2xcos x 1 c2e2xsin x

56. y 5 c1 1 c2e2x2x2 cos 5x 1 c3e2x2x2 sin 5x

57. y 5 c1 1 c2x2x2 1 c3e8x

58. y 5 c1 cos x 1 c2 sin x 1 c3 cos 2 x 1 c4 sin 2 x

Discussion Problems
59. Two roots of a cubic auxiliary equation with real coef�Two roots of a cubic auxiliary equation with real coef�T cients 

are m1 5 21
2 and m2 5 3 1 i. What is the corresponding 

homogeneous linear differential equation? Discuss: Is your homogeneous linear differential equation? Discuss: Is your homogeneous linear dif
answer unique?

60. Find the general solution of 2y2y2 - 1 7y0 1 4y9 2 4y 5 0 if 
m1 5 1

2 is one root of its auxiliary equation.

61. Find the general solution of y- + 6y0 + y9 − 34y = 0 if it is 
known that y1 = e−4x cos x cos x x is one solution.x is one solution.x

p x

y

FIGURE 4.3.6 Graph for Problem 47

x

y

FIGURE 4.3.5 Graph for Problem 46

p x

y

FIGURE 4.3.7 Graph for Problem 48
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62. To solve y(4) 1 y 5 0, we must �nd the roots of m4 1 1 5 0. 
This is a trivial problem using a CAS but can also be done 
by hand working with complex numbers. Observe that 
m4 + 1 = (m2 + 1)2 − 2m2. How does this help? Solve the 
differential equation.

63. Verify that y 5 sinh x 2 2 cos (x 1 �y6) is a particular
solution of y(4) − y = 0. Reconcile this particular solution with 
the general solution of the DE.

64. Consider the boundary-value problem y0 + �y = 0, y(0) = 0, 
y(�y2) = 0. Discuss: Is it possible to determine real values of �
so that the problem possesses (a) trivial solutions? (b) nontrivial 
solutions?

Computer Lab Assignments
In Problems 65–68 use a computer either as an aid in solving the 
auxiliary equation or as a means of directly obtaining the general 
solution of the given differential equation. If you use a CAS to obtain 

the general solution, simplify the output and, if necessary, write the 
solution in terms of real functions.

65. y- − 6y0 + 2y9 + y = 0

66. 6.11y- + 8.59y0 + 7.93y9 + 0.778y = 0

67. 3.15y(4) − 5.34y0 + 6.33y9 − 2.03y = 0

68. y(4) + 2y0 − y9 + 2y = 0

In Problems 69 and 70 use a CAS as an aid in solving the auxiliary 
equation. Form the general solution of the differential equation. Then 
use a CAS as an aid in solving the system of equations for the coef-use a CAS as an aid in solving the system of equations for the coef-use a CAS as an aid in solving the system of equations for the coef
�cients ci, i = 1, 2, 3, 4 that results when the initial conditions are 
applied to the general solution.

69. 2y(4) + 3y- − 16y0 + 15y9 − 4y = 0,
y(0) = −2, y9(0) = 6, y0(0) = 3, y-(0) = 1

2

70. y(4) − 3y- + 3y0 − y9 = 0, 
y(0) = y9(0) = 0, y0(0) = y-(0) = 1

INTRODUCTION To solve a nonhomogeneous linear differential equation

an y(n) 1 an21 y(n21) 1 Á 1 a1y9 1 a0y 5 g(x), (1)

we must do two things: 

 ● �nd the complementary function yc and 
 ● �nd any particular solution ypypy  of the nonhomogeneous equation (1). 

Then, as was discussed in Section 4.1, the general solution of (1) is y = yc + ypypy . The 
complementary function yc is the general solution of the associated homogeneous 
DE of (1), that is,

an y(n) 1 an21 y(n21) 1 Á 1 a1 y9 1 a0y 5 0. 

In Section 4.3 we saw how to solve these kinds of equations when the coef�cients 
were constants. Our goal in the present section is to develop a method for obtaining 
particular solutions.

METHOD OF UNDETERMINED COEFFICIENTS The �rst of two ways we shall 
consider for obtaining a particular solution ypypy  for a nonhomogeneous linear DE is 
called the method of undetermined coef�cients. The underlying idea behind this 
method is a conjecture about the form of ypypy , an educated guess really, that is motivated 
by the kinds of functions that make up the input function g(x). The general method is 
limited to linear DEs such as (1) where

 ● the coef�cients ai, i = 0, 1, . . . , n are constants and
 ● g(x(x( ) is a constant k, a polynomial function, an exponential function e�x, a sine or 

cosine function sin �x or cos x or cos x �x, or �nite sums and products of these functions.

4.4  U  Undetermined Coefficients—Superposition 
Approach*

*Note to the Instructor: In this section the method of undetermined coef�cients is developed from the 
viewpoint of the superposition principle for nonhomogeneous equations (Theorem 4.1.7). In Section 4.5 
an entirely different approach will be presented, one utilizing the concept of differential annihilator 
operators. Take your pick.
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NOTE Strictly speaking, g(x) = k (constant) is a polynomial function. Since a conk (constant) is a polynomial function. Since a conk -
stant function is probably not the �rst thing that comes to mind when you think 
of polynomial functions, for emphasis we shall continue to use the redundancy 
“constant functions, polynomials, . . . . ”

The following functions are some examples of the types of inputs g(x) that are 
appropriate for this discussion:

g(x) 5 10, g(x) 5 x2 2 5x, g(x) 5 15x 2 6 1 8e2x,

g(x) 5 sin 3x 2 5x cx cx os 2x, g(x) 5 xex sin x 1 (3x2 2 1)e24x.

That is, g(x) is a linear combination of functions of the type

P(x) 5 an xn 1 an21 xn21 1 Á 1 a1x 1 a0 ,  P(x) e�x,  P(x) e�x sin �x, and P(x) e�x cos �x,

where n is a nonnegative integer and � and � are real numbers. The method of 
undetermined coef�cients is not applicable to equations of form (1) when

g(x) 5 ln x, g(x) 5
1
x

, g(x) 5 tan x, g(x) 5 sin21x,

and so on. Differential equations in which the input g(x) is a function of this last kind 
will be considered in Section 4.6.

The set of functions that consists of constants, polynomials, exponentials 
e�x, sines, and cosines has the remarkable property that derivatives of their sums 
and products are again sums and products of constants, polynomials, exponen-
tials e�x, sines, and cosines. Because the linear combination of derivatives 
anynyn

(n)
p 1 an21 yp

(n21) 1 Á 1 a1 ypypy9 1 a0 yp must be identical to g(x), it seems 
reasonable to assume that ypypy has the same form as g(x).

The next two examples illustrate the basic method.

EXAMPLE 1  General Solution Using Undetermined Coefficients

Solve y0 1 4y9 2 2y 5 2x2 2 3x 1 6. (2)

SOLUTION Step 1. We �rst solve the associated homogeneous equation 
y0 + 4y9 − 2y = 0. From the quadratic formula we �nd that the roots of the aux-
iliary equation m2 + 4m − 2 = 0 are m1 5 22 2 Ï6Ï  and m2 5 22 1 Ï6Ï . Hence 
the complementary function is

yc 5 c1e2_21Ï6 +x 1 c2e_221Ï6Ï +x.

Step 2. Now, because the function g(x) is a quadratic polynomial, let us assume a 
particular solution that is also in the form of a quadratic polynomial:

ypypy 5 Ax2 1 BxBxB 1 C.

We seek to determine speci�c coef�cients A, B, and C for which C for which C ypypy  is a solution 
of (2). Substituting yp and the derivatives

y9pypy 5 2Ax 1 B and y0pypy 5 2A

into the given differential equation (2), we get

y0pypy 1 4y9pypy 2 2ypypy 5 2A 1 8Ax 1 4B 2 2Ax2 2 2BxBxB 2 2C 5 2x2 2 3x 1 6.
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Because the last equation is supposed to be an identity, the coef�cients of like powers 
of x must be equal:x must be equal:x

equal

22A2A2 x2 1 8A 2 2B x 1 2A 2A 2 1 4B 2 2C 5 2x2x2 2 2 3x 1 6

That is, 22A 5 2, 8A 2 2B 5 23, 2A 1 4B 2 2C 5 6.

Solving this system of equations leads to the values A = −1, B 5 25
2, and C = −9. 

Thus a particular solution is

ypypy 5 2x2 2
5

2
x 2 9.

Step 3. The general solution of the given equation is

y 5 yc 1 ypypy 5 c1e2_21Ï6Ï +x 1 c2e_221Ï6Ï +x 2 x2 2
5

2
x 2 9. .

EXAMPLE 2  Particular Solution Using Undetermined Coefficients

Find a particular solution of y0 − y9 + y = 2 sin 3x.

SOLUTION A natural �rst guess for a particular solution would be A sin 3x. But 
because successive differentiations of sin 3x produce sin 3x produce sin 3x x and cos 3x and cos 3x and x, we  are 
prompted instead to assume a particular solution that includes both of these terms:

ypypy 5 A cos 3x 1 B sin 3x.

Differentiating yp and substituting the results into the differential equation gives, 
after regrouping,

y0pypy 2 y9pypy 1 ypypy 5 (28A 2 3B) cos 3x 1 (3A 2 8B) sin 3x 5 2 sin 3x

or

equal

28A 2 3B cos 3x 1 3A 2 8B sin 3x 5 0 cos 3x 1 2 sin 3x.

From the resulting system of equations,

28A 2 3B 5 0, 3A 2 8B 5 2,

we get A 5 6
73 and B 5 216

73. A particular solution of the equation is

yp 5
6

73
 c cos 3x 2

16

73
 s sin 3x. .

As we mentioned, the form that we assume for the particular solution yp is 
an educated guess; it is not a blind guess. This educated guess must take into 
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consideration not only the types of functions that make up g(x) but also, as we shall 
see in Example 4, the functions that make up the complementary function yc.

EXAMPLE 3  Forming ypypy by Superposition

Solve y0 2 2y9 2 3y 5 4x 2 5 1 6xe2x. (3)

SOLUTION Step 1. First, the solution of the associated homogeneous equation 
y0 − 2y9 − 3y = 0 is found to be yc = c1e−x + c2e3x.

Step 2. Next, the presence of 4x − 5 in g(x) suggests that the particular solution 
includes a linear polynomial. Furthermore, because the derivative of the product 
xe2x produces 2xe2x and e2x, we also assume that the particular solution includes 
both xe2x and e2x. In other words, g is the sum of two basic kinds of functions:

g(x) 5 g1(x) 1 g2(x) 5 polylyl nomial 1 expxpx onentials.

Correspondingly, the superposition principle for nonhomogeneous equations 
(Theorem 4.1.7) suggests that we seek a particular solution

ypypy 5 ypypy 1 1 ypypy 2,

where ypypy 1 5 Ax 1 B and ypypy 2 5 CxCxC e2x 1 Ee2x. Substituting

ypypy 5 Ax 1 B 1 CxCxC e2x 1 Ee2x

into the given equation (3) and grouping like terms gives

y0pypy 2 2y9pypy 2 3ypypy 5 23Ax 2 2A 2 3B 2 3CxCxC e2x 1 (2C 2 3E )e2x 5 4x 2 5 1 6xe2x. (4)

From this identity we obtain the four equations

23A 5 4, 22A 2 3B 5 25, 23C 5 6, 2C 2 3E 5 0.

The last equation in this system results from the interpretation that the coef�cient of 
e2x in the right member of (4) is zero. Solving, we �nd x in the right member of (4) is zero. Solving, we �nd x A 5 24

3, B 5 23
9 , C = −2, and 

E 5 24
3. Consequently,

ypypy 5 2
4

3
x 1

23

9
2 2xe2x 2

4

3
e2x.

Step 3. The general solution of the equation is

y 5 c1e2x 1 c2e3x 2
4

3
x 1

23

9
2 12x2x2 1

4

32 e2x. .

In light of the superposition principle (Theorem 4.1.7) we can also approach 
Example 3 from the viewpoint of solving two simpler problems. You should verify 
that substituting

ypypy 1 5 Ax 1 B into y0 2 2y9 2 3y 5 4x 2 5

and ypypy 2 5 CxCxC e2x 1 Ee2x into y0 2 2y9 2 3y 5 6xe2x

yields, in turn, ypypy 1 5 24
3 x 1 23

9  and ypypy 2 5 2_2x 1 4
3+e2x. A particular solution of (3) 

is then ypypy 5 ypypy 1 1 ypypy 2.
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The next example illustrates that sometimes the “obvious” assumption for the 
form of ypypy  is not a correct assumption.

EXAMPLE 4  A Glitch in the Method

Find a particular solution of y0 − 5y9 + 4y = 8ex.

SOLUTION Differentiation of ex produces no new functions. Therefore proceeding x produces no new functions. Therefore proceeding x

as we did in the earlier examples, we can reasonably assume a particular solution of 
the form ypypy = Aex. But substitution of this expression into the differential equation 
yields the contradictory statement 0 = 8ex, so we have clearly made the wrong 
guess for ypypy .

The dif�culty here is apparent on examining the complementary function 
yc = c1ex + c2e4x. Observe that our assumption Aex is already present in x is already present in x yc. This 
means that ex is a solution of the associated homogeneous differential equation, and x is a solution of the associated homogeneous differential equation, and x

a constant multiple Aex when substituted into the differential equation necessarily x when substituted into the differential equation necessarily x

produces zero.
What then should be the form of ypypy ? Inspired by Case II of Section 4.3, let’s see 

whether we can �nd a particular solution of the form

ypypy 5 Axex.

Substituting y9pypy 5 Axex 1 Aex and y0p 5 Axex 1 2Aex into the differential equation 
and simplifying gives

y0pypy 2 5y9pypy 1 4ypypy 5 23Aex 5 8ex.

From the last equality we see that the value of A is now determined as A = −8
3. 

Therefore a particular solution of the given equation is yp 5 28
3xex. .

The difference in the procedures used in Examples 1–3 and in Example 4 
suggests that we consider two cases. The �rst case re�ects the situation in 
Examples 1–3.

CASE I No function in the assumed particular solution is a solution of the asso-
ciated homogeneous differential equation.

In Table 4.4.1 we illustrate some speci�c examples of g(x) in (1) along with the 
corresponding form of the particular solution. We are, of course, taking for granted 
that no function in the assumed particular solution ypypy  is duplicated by a function in 
the complementary function yc.

TABLE 4.4.1 T r i al  Par t i c ul ar  Sol ut i ons

g(x(x( ) Form of yp

1. 1 (any constant) A
2. 5x 1 7 Ax 1 B
3. 3x2 2 2 Ax2 1 Bx 1 C
4. x3 2 x 1 1 Ax3 1 Bx2 1 Cx 1 E
5. sin 4x A cos 4x 1 B sin 4x
6. cos 4x A cos 4x 1 B sin 4x
7. e5x Ae5x

8. (9x 2 2)e5x (A(A( x 1 B)e5x

9. x2e5x (Ax(Ax( 2 1 Bx 1 C)e5x

10. e3x sin 4x sin 4x x Ae3x cos 4x cos 4x x 1 Be3x sin 4x sin 4x x
11. 5x2 sin 4x (Ax(Ax( 2 1 Bx 1 C) cos 4x 1 (Ex2 1 Fx 1 G ) sin 4x
12. xe3x cos 4x cos 4x x (A(A( x 1 B)e3x cos 4x cos 4x x 1 (Cx 1 E)e3x sin 4x sin 4x x
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EXAMPLE 5  Forms of Particular Solutions — Case I

Determine the form of a particular solution of

(a) y0 − 8y9 + 25y = 5x3e−x − 7e−x (b) y0 + 4y = x cos x cos x x

SOLUTION (a) We can write g(x) = (5x3 − 7)e−x. Using entry 9 in Table 4.4.1 as
a model, we assume a particular solution of the form

yp 5 (A(A( x3 1 BxBxB 2 1 CxCxC 1 E)e2x.

Note that there is no duplication between any of the terms in ypypy  and the terms in the 
complementary function yc = e4x(c1 cos 3x + c2 sin 3x).

(b) The function g(x) = x cos x cos x x is similar to entry 11 in Table 4.4.1 except, of course, x is similar to entry 11 in Table 4.4.1 except, of course, x
that we use a linear rather than a quadratic polynomial and cos x and sin x and sin x x instead of x instead of x
cos 4x and sin 4x and sin 4x x in the form of x in the form of x yp:

ypypy 5 (Ax 1 B) cos x 1 (CxCxC 1 E) sin x.

Again observe that there is no duplication of terms between yp and 
yc = c1 cos 2x + c2 sin 2x. .

If g(x) consists of a sum of, say, m terms of the kind listed in the table, then (as in 
Example 3) the assumption for a particular solution ypypy  consists of the sum of the trial 
forms ypypy 1, ypypy 2, . . . , ypypy m corresponding to these terms:

ypypy 5 ypypy 1 1 ypypy 2 1 Á 1 ypypy m.

The foregoing sentence can be put another way.

Form Rule for Case I The form of yp is a linear combination of all linearly 
independent functions that are generated by repeated differentiations of g( x) .

 EXAMPLE 6  Finding y py py  by Superposition—Case I

Determine the form of a particular solution of

y0 2 9y9 1 14y 5 3x2 2 5 sin 2x2x2 1 8xe6x .

SOLUTION The right-hand side of the equation g(x) 5 3x2 2 5 sin 2x2x2 1 8xe6x con-
sists of three different types of functions: x2, sin 2x2x2 , and xe6x . The derivatives of these 
functions yield, in turn, the additional functions x, 1; cos 2x2x2 ; and e6x . Therefore: 

corresponding to x2 we assume ypypy 1 5 Ax2 1 BxBxB 1 C,

corresponding to sin 2x2x2  we assume ypypy 2 5 E cos 2x2x2 1 F sin 2x2x2 ,

corresponding to xe6x we assume ypypy 3 5 GxGxG e6x 1 HeHeH 6x.

The assumption for a particular solution of the given nonhomogeneous differential 
equation is then

ypypy 5 ypypy 1 1 ypypy 2 1 ypypy 3 5 Ax2 1 BxBxB 1 C 1 Ecos 2x2x2 1 F sin 2x2x2 1 sGxGxG 1 HdHdH e6x .

Note that none of the seven terms in this assumption for ypypy  duplicates a term in the 
complementary function yc 5 c1e2x 1 c2e7x . .

CASE II A function in the assumed particular solution is also a solution of the 
associated homogeneous differential equation.

The next example is similar to Example 4.
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EXAMPLE 7  Particular Solution —Case II

Find a particular solution of y0 − 2y9 + y = ex.

SOLUTION The complementary function is yc = c1ex + c2xex. As in Example 4, 
the assumption yp = Aex will fail, since it is apparent from x will fail, since it is apparent from x yc that ex is a solution of x is a solution of x

the associated homogeneous equation y0 − 2y9 + y = 0. Moreover, we will not be 
able to �nd a particular solution of the form yp = Axex, since the term xex is also x is also x

duplicated in yc. We next try

ypypy 5 Ax2ex.

Substituting into the given differential equation yields 2AeSubstituting into the given differential equation yields 2AeSubstituting into the given differential equation yields 2 x = ex, so A 5 1
2. Thus a 

particular solution is yp 5 1
2  
x2ex. .

Suppose again that g(x) consists of m terms of the kind given in Table 4.4.1, and 
suppose further that the usual assumption for a particular solution is

ypypy 5 ypypy 1 1 ypypy 2 1 Á 1 ypypy m,

where the ypypy i, i 5 1, 2, . . . , m are the trial particular solution forms corresponding 
to these terms. Under the circumstances described in Case II, we can make up the 
following general rule.

Multiplication Rule for Case II If any ypi contains terms that duplicate terms 
in yc, then that ypi must be multiplied by xn, where n is the smallest positive 
 integer that eliminates that duplication.

EXAMPLE 8  An Initial-Value Problem

Solve y0 + y = 4x + 10 sin x, y(�) = 0, y9(�) = 2.

SOLUTION The solution of the associated homogeneous equation y0 + y = 0 
is yc = c1 cos x + c2 sin x. Because g(x) = 4x + 10 sin x is the sum of a linear x is the sum of a linear x
polynomial and a sine function, our normal assumption for ypypy , from entries 2 and 5 
of Table 4.4.1, would be the sum of ypypy 1 5 Ax 1 B and ypypy 2 5 C cC cC os x 1 E sE sE in x:

ypypy 5 Ax 1 B 1 C cC cC os x 1 E sE sE in x. (5)

But there is an obvious duplication of the terms cos x and sin x and sin x x in this assumed form x in this assumed form x
and two terms in the complementary function. This duplication can be eliminated by 
simply multiplying ypypy 2 by x. Instead of (5) we now use

ypypy 5 Ax 1 B 1 Cx cx cx os x 1 ExExE  sx sx in x. (6)

Differentiating this expression and substituting the results into the differential 
equation gives

y0pypy 1 ypypy 5 Ax 1 B 2 2C sC sC in x 1 2E cE cE os x 5 4x 1 10 sin x,

and so A = 4, B = 0, −2C = 10, and 2E = 0. The solutions of the system are 
immediate: A = 4, B = 0, C = −5, and E = 0. Therefore from (6) we obtain 
yp = 4x − 5x cos x cos x x. The general solution of the given equation is

y 5 yc 1 ypypy 5 c1 cos x 1 c2 sin x 1 4x 2 5x cos x.

We now apply the prescribed initial conditions to the general solution of the equation. 
First, y(�) = c1 cos � + c2 sin � + 4� − 5� cos � cos � � = 0 yields c1 = 9�, since 
cos � = −1 and sin � = 0. Next, from the derivative

y9 5 29� s� s� in x 1 c2 cos x 1 4 1 5x sx sx in x 2 5 cos x
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and y9(�) 5 29� s� s� in � 1 c2 cos � 1 4 1 5� s� s� in � 2 5 cos � 5 2

we �nd c2 = 7. The solution of the initial-value is then

y 5 9� c� c� os x 1 7 sin x 1 4x 2 5x cx cx os x. .

EXAMPLE 9  Using the Multiplication Rule

Solve y0 − 6y9 + 9y = 6x2 + 2 − 12e3x.

SOLUTION The complementary function is yc = c1e3x + c2xe2xe2
3x. And so, based on 

entries 3 and 7 of Table 4.4.1, the usual assumption for a particular solution would be

ypypy 5 Ax2 1 Bx 1 C 1 Ee3x.

ypypy
1

ypypy
2

Inspection of these functions shows that the one term in ypypy 2 is duplicated in yc. If 
we multiply ypypy 2 by x, we note that the term xe3x is still part of x is still part of x yc. But multiplying 
ypypy 2 by x2 eliminates all duplications. Thus the operative form of a particular 
solution is

ypypy 5 Ax2 1 Bx 1 C 1 Ex2e3x.

Differentiating this last form, substituting into the differential equation, and collecting 
like terms gives

y0pypy 2 6y9pypy 1 9ypypy 5 9A9A9 x2 1 (212A 1 9B)x 1 2A 2 6B 1 9C 1 2Ee3x 5 6x2 1 2 2 12e3x.

It follows from this identity that A = 2
3, B = 8

9, C = 2
3, and E =−6. Hence the general

solution y = yc + yp is y = c1e3x + c2xe3x + 23 x2 + 89 x + 23 − 6x2e3x. .

 EXAMPLE 10  Third-Order DE—Case I

Solve y- + y0 = ex cos x cos x x.

SOLUTION From the characteristic equation m3 + m2 = 0 we �nd m1 = m2 = 0 
and m3 = −1. Hence the complementary function of the equation is 
yc = c1 + c2x + c3e−x. With g(x) = ex cos x cos x x, we see from entry 10 of Table 4.4.1 
that we should assume that

ypypy 5 Aex cos x 1 Bex sin x.

Because there are no functions in yp that duplicate functions in the complementary 
solution, we proceed in the usual manner. From

y09pypy 1 y0pypy 5 (22A 1 4B)ex cos x 1 (24A 2 2B)ex sin x 5 ex cos x

we get −2A + 4B = 1 and −4A − 2B = 0. This system gives A 5 2 1
10 and B 5 1

5, 
so a particular solution is ypypy 5 2 1

10 ex cos x 1 1
5 ex sin x. The general solution of the 

equation is

y 5 yc 1 ypypy 5 c1 1 c2x 1 c3e2x 2
1

10
ex cos x 1

1

5
ex sin x. .

 EXAMPLE 11  Fourth-Order DE—Case II

Determine the form of a particular solution of y(4) + y- = 1 − x2e−x.
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SOLUTION Comparing yc = c1 + c2x2x2 + c3x2 + c4e−x with our normal assumption x with our normal assumption x

for a particular solution

ypypy 5 A 1 Bx2e2x 1 Cxe2x 1 Ee2x,

ypypy
1

ypypy
2

we see that the duplications between yc and yp are eliminated when ypypy 1 is multiplied 
by x3 and ypypy 2 is multiplied by x. Thus the correct assumption for a particular solution
is yp = Ax3 + Bx3e−x + Cx2e−x + Exe−x. .

EXERCISES 4.4
In Problems 1–26 solve the given differential equation by undeter-
mined coef�cients.

1. y0 + 3y9 + 2y = 6

2. 4y0 + 9y = 15

3. y0 − 10y9 + 25y = 30x30x30 + 3

4. y0 + y9 − 6y = 2x

5.
1

4
yy0 + y9 + y = x2 − 2x

6. y0 − 8y9 + 20y = 100x2 − 26xex

7. y0 + 3y = −48x2e3x

8. 4y0 − 4y9 − 3y = cos 2x

9. y0 − y9 = −3

10. y0 + 2y9 = 2x + 5 − e−2x

11. y0 2 y9 1
1

4
y 5 3 1 ex /2

12. y0 − 16y = 2e4x

13. y0 + 4y = 3 sin 2x

14. y0 − 4y = (x2 − 3) sin 2x

15. y0 + y = 2x sin x sin x x

16. y0 − 5y9 = 2x3 − 4x2 − x + 6

17. y0 − 2y9 + 5y = ex cos 2x cos 2x x

Answers to selected odd-numbered problems begin on page ANS-5.

REMARKS

(i) In Problems 27–36 in Exercises 4.4 you are asked to solve initial-value 
problems, and in Problems 37–40 you are asked to solve boundary-value 
problems. As illustrated in Example 8, be sure to apply the initial conditions or 
the boundary conditions to the general solution y = yc + ypypy . Students often 
make the mistake of applying these conditions only to the complementary 
function yc because it is that part of the solution that contains the constants 
c1, c2, . . . , cn.

(ii) From the “Form Rule for Case I” on page 147 of this section you see why 
the method of undetermined coef�cients is not well suited to nonhomogeneous 
linear DEs when the input function g(x) is something other than one of the four 
basic types highlighted in color on page 143. For example, if P(x) is a polyno-
mial, then continued differentiation of P(x)e�x sin x sin x �x will generate an indepenx will generate an indepenx -
dent set containing only a �nite number of functions—all of the same type, 
namely, a polynomial times e�x sin x sin x �x or a polynomial times x or a polynomial times x e�x cos x cos x �x. On 
the other hand, repeated differentiation of input functions such as g(x) = ln x
or g(x) = tan−1x generates an independent set containing an x generates an independent set containing an x in�nite number 
of functions:

derivatives ofofo   lf  lf n x:
1
x

, 21

x2
, 2

x3
, Á ,

derivatives ofofo   tf  tf an21 x:
1

1 1 x2
, 22x

(1 1 x2)2
, 22 1 6x2

(1 1 x2)3
, . . . .
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18. y0 2 2y9 1 2y 5 e2x(cos x 2 3 sin x)

19. y0 + 2y9 + y = sin x + 3 cos 2x

20. y0 + 2y9 − 24y = 16 − (x + 2)e4x

21. y- − 6y0 = 3 − cos x

22. y- − 2y0 − 4y9 + 8y = 6xe2x

23. y- − 3y0 + 3y9 − y = x − 4ex

24. y- − y0 − 4y9 + 4y = 5 − ex + e2x

25. y(4) + 2y0 + y = (x − 1)2

26. y(4) − y0 = 4x + 2xe−x

In Problems 27–36 solve the given initial-value problem.

27. y0 + 4y = −2, y(�y�y� 8) 5 1
2, y9(�y�y� 8) 5 2

28. 2y2y2 0 + 3y9 − 2y2y2 = 14x2 − 4x − 11, y(0) = 0, y9(0) = 0

29. 5y0 + y9 = −6x, y(0) = 0, y9(0) = −10

30. y0 + 4y9 + 4y = (3 + x)e−2x, y(0) = 2, y9(0) = 5

31. y0 + 4y9 + 5y = 35e−4x, y(0) = −3, y9(0) = 1

32. y0 − y = cosh x, y(0) = 2, y9(0) = 12

33.
d 2x2x2

dt 2 1 �2x2x2 5 F0F0F sin �t, x(0) = 0, x9(0) = 0

34.
d 2x2x2

dt 2 1 �2x2x2 5 F0F0F cos �t, x(0) = 0, x9(0) = 0

35. y- − 2y0 + y9 = 2 − 24ex + 40e5x5x5 , y(0) 5 1
2, y9(0) 5 5

2,
y0(0) 5 29

2

36. y- + 8y = 2x − 5 + 8e−2x, y(0) = −5, y9(0) = 3, 
y0(0) = −4

In Problems 37–40 solve the given boundary-value problem.

37. y0 + y = x2 + 1, y(0) = 5, y(1) = 0

38. y0 − 2y9 + 2y = 2x − 2, y(0) = 0, y(�) = �

39. y0 + 3y = 6x, y(0) = 0, y(1) + y9(1) = 0

40. y0 + 3y = 6x, y(0) + y9(0) = 0, y(1) = 0

In Problems 41 and 42 solve the given initial-value problem in which 
the input function g(x) is discontinuous. [Hint: Solve each problem 
on two intervals, and then �nd a solution so that y and y9 are continu-
ous at x = �y2 (Problem 41) and at x = � (Problem 42).]� (Problem 42).]�

41. y0 + 4y = g(x), y(0) = 1, y9(0) = 2, where

g(x) 5 5sin x, 0 # x # �y2

0, x . �y2

42. y0 − 2y9 + 10y = g(x), y(0) = 0, y9(0) = 0, where

g(x) 5 520, 0 # x # �

0, x . �

Discussion Problems
43. Consider the differential equation ay0 + by9 + cy = ekx,  

where a, b, c, and k are constants. The auxiliary k are constants. The auxiliary k equation of the 
associated homogeneous equation is am2 + bm + c = 0.

(a) If k is not a root of the auxiliary equation, show that we k is not a root of the auxiliary equation, show that we k
can �nd a particular solution of the form ypypy = Aekx, where 
A = 1y(ak2 + bk + c).

(b) If k is a root of the auxiliary equation of multiplicity one, k is a root of the auxiliary equation of multiplicity one, k
show that we can �nd a particular solution of the form 
yp = Axekx, where A = 1y(2ak + b). Explain how we 
know that k Þ −by(2a).

(c) If k is a root of the auxiliary equation of multiplicity two, k is a root of the auxiliary equation of multiplicity two, k
show that we can �nd a particular solution of the form 
y = Ax2ekx, where A = 1y(2a).

44. Discuss how the method of this section can be used to �nd a 
particular solution of y0 + y = sin x cos 2x cos 2x x. Carry out your idea.

In Problems 45–48 without solving, match a solution curve of 
y0 + y = f (x) shown in the �gure with one of the following functions:

(i) f (x) = 1, (ii) f (x) = e−x,

(iii) f (x) = ex, (iv) f (x) = sin 2x,

(v) f (x) = ex sin x sin x x,  (vi) f (x) = sin x.

Brie�y discuss your reasoning.

45.

46.

47.

48.

FIGURE 4.4.2 Graph for Problem 46

x

y

xx

y

FIGURE 4.4.1 Graph for Problem 45

FIGURE 4.4.3 Graph for Problem 47

x

y

FIGURE 4.4.4 Graph for Problem 48

x

y
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Computer Lab Assignments

In Problems 49 and 50 �nd a particular solution of the given 
differential equation. Use a CAS as an aid in carrying out dif-differential equation. Use a CAS as an aid in carrying out dif-differential equation. Use a CAS as an aid in carrying out dif
ferentiations, simpli�cations, and algebra.

49. y0 − 4y9 + 8y = (2x2 − 3x)e2x cos 2x cos 2x x

+ (10x2 − x − 1)e2x sin 2x sin 2x x

50. y(4) + 2y0 + y = 2 cos x − 3x sin x sin x x

INTRODUCTION We saw in Section 4.1 that an nth-order differential equation can 
be written

anDny 1 an21Dn21y 1 Á 1 a1Dy 1 a0y 5 g(x), (1)

where Dkykyk = dkykyk ydxdxd k, k = 0, 1, . . . , n. When it suits our purpose, (1) is also written as 
L(y) = g(x(x( ), where L denotes the linear L denotes the linear L nth-order differential, or polynomial, operator

anDn 1 an21Dn21 1 Á 1 a1D 1 a0. (2)

Not only is the operator notation a helpful shorthand, but also on a very practical 
level the application of differential operators enables us to justify the somewhat mind-
numbing rules for determining the form of particular solution ypypy  that were presented 
in the preceding section. In this section there are no special rules; the form of ypypy
follows almost automatically once we have found an appropriate linear differential 
operator that annihilates g(x) in (1). Before investigating how this is done, we need 
to examine two concepts.

FACTORING OPERATORS When the coef�cients ai, i = 0, 1, . . . , n are real con-
stants, a linear differential operator (1) can be factored whenever the characteristic 
polynomial anmn + an−1mn−1 + ? ? ?+ a1m + a0 factors. In other words, if r1 is a 
root of the auxiliary equation

anmn 1 an21mn21 1 Á 1 a1m 1 a0 5 0,

then L = (D − r1) P(D), where the polynomial expression P(D) is a linear differen-
tial operator of order n − 1. For example, if we treat D as an algebraic quantity, then 
the operator D2 + 5D + 6 can be factored as (D + 2)(D + 3) or as (D + 3)(D + 2). 
Thus if a function y = f (x) possesses a second derivative, then

(D2 1 5D 1 6)y 5 (D 1 2)(D 1 3)y 5 (D 1 3)(D 1 2)y.

This illustrates a general property:

Factors of a linear differential operator with constant coef�cients commute.

A differential equation such as y0 + 4y9 + 4y = 0 can be written as

(D2 + 4D + 4)y = 0 or (D + 2)(D + 2)y = 0 or (D + 2)2y2y2 = 0.

ANNIHILATOR OPERATOR If L is a linear differential operator with coL is a linear differential operator with coL nstant 
coef�cients and f is a suf�ciently differentiable function such thatf is a suf�ciently differentiable function such thatf

L( f (x)) 5 0,

then L is said to be an L is said to be an L annihilator of the function. For example, a constant func-
tion y = k is annihilated by k is annihilated by k D, since Dk = 0. The function y = x is annihilated by x is annihilated by x

4.5  U  Undetermined Coefficients—Annihilator 
Approach
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the differential operator D2 since the �rst and second derivatives of x are 1 and 0, x are 1 and 0, x
respectively. Similarly, D3x2 = 0, and so on.

The differential operator Dn annihilates each of the functions

1, x, x2, . . . , xn−1. (3)

As an immediate consequence of (3) and the fact that differentiation can be done 
term by term, a polynomial

c0 1 c1x 1 c2x2 1 Á 1 cn21xn21 (4)

can be annihilated by �nding an operator that annihilates the highest power of x.
The functions that are annihilated by a linear nth-order differential operator L

are simply those functions that can be obtained from the general solution of the 
homogeneous differential equation L(y) = 0.

The differential operator (D − �)n annihilates each of the functions

e�x, xe�x, x2e�x, . . . , xn−1e�x. (5)

To see this, note that the auxiliary equation of the homogeneous equation
(D − �)ny = 0 is (m − �)n = 0. Since � is a root of multiplicity n, the general 
solution is

y 5 c1e�x 1 c2xe�x 1 Á 1 cnxn21e�x. (6)

EXAMPLE 1  Annihilator Operators

Find a differential operator that annihilates the given function.

(a) 1 − 5x2 + 8x3 (b) e−3x (c) 4e2x − 10xe2x

SOLUTION (a) From (3) we know that D4x3 = 0, so it follows from (4) that

D4(1 2 5x2 1 8x3) 5 0.

(b) From (5), with � = −3 and n = 1, we see that

(D 1 3)e23x 5 0.

(c) From (5) and (6), with � = 2 and n = 2, we have

(D 2 2)2(4e2x 2 10xe2x) 5 0. .

When � and �, � > 0 are real numbers, the quadratic formula reveals that 
[m2 − 2�m + (�2 + �2)]n = 0 has complex roots � + i�, � − i�, both of multi-
plicity n. From the discussion at the end of Section 4.3 we have the next result.

The differential operator [D2 − 2�D + (�2 + �2)]n annihilates each of the 
functions

e�x cos �x, xe�x cos �x, x2e�x cos �x, . . . , xn21e�x cos �x,

e�x sin �x, xe�x sin �x,  x2e�x sin �x, . . . , xn21e�x sin �x.
(7)
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EXAMPLE 2  Annihilator Operator

Find a differential operator that annihilates 5e−x cos 2x cos 2x x − 9e−x sin 2x sin 2x x.

SOLUTION Inspection of the functions e−x cos 2x cos 2x x cos 2x cos 2  and x and x e−x sin 2x sin 2x x sin 2x sin 2  shows that x shows that x
� = −1 and � = 2. Hence from (7) we conclude that D2 + 2D + 5 will annihilate 
each function. Since D2 + 2D + 5 is a linear operator, it will annihilate any linear 
combination of these functions such as 5e−x cos 2x cos 2x x cos 2x cos 2 − 9e−x sin 2x sin 2x x. sin 2x. sin 2 .

When � = 0 and n = 1, a special case of (7) is

(D2 1 �2) 5cos �x

sin �x
5 0. (8)

For example, D2 + 16 will annihilate any linear combination of sin 4x and cos 4x and cos 4x x.
We are often interested in annihilating the sum of two or more func-

tions. As we have just seen in Examples 1 and 2, if L is a linear differential operaL is a linear differential operaL -
tor such that L(y1) = 0 and L(y2) = 0, then L will annihilate the linear combination L will annihilate the linear combination L
c1y1(x) + c2y2y2 2(x). This is a direct consequence of Theorem 4.1.2. Let us now suppose 
that L1 and L2 are linear differential operators with constant coef�cients such that L1

annihilates y1(x) and L2 annihilates y2(x), but L1(y2) Þ 0 and L2(y1) Þ 0. Then the 
product of differential product of differential product operators L1L2 annihilates the sum c1y1(x) + c2y2y2 2(x). We can 
easily demonstrate this, using linearity and the fact that L1L2 = L2L1:

L1L2(y1 1 y2) 5 L1L2(y1) 1 L1L2(y2)

5 L2L1(y1) 1 L1L2(y2)

5 L2[L1(y1)] 1 L1[L2(y2)] 5 0. 

zero zero

For example, we know from (3) that D2 annihilates 7 − x and from (8) that D2 + 16 
annihilates sin 4x. Therefore the product of operators D2(D2 + 16) will annihilate 
the linear combination 7 − x + 6 sin 4x.

NOTE The differential operator that annihilates a function is not unique. We saw 
in part (b) of Example 1 that D + 3 will annihilate e−3x, but so will differential 
operators of higher order as long as D + 3 is one of the factors of the operator. For 
example, (D + 3)(D + 1), (D + 3)2, and D3(D + 3) all annihilate e−3x. (Verify this.) 
As a matter of course, when we seek a differential annihilator for a function y = f (x), 
we want the operator of lowest possible order that does the job.lowest possible order that does the job.lowest possible order

UNDETERMINED COEFFICIENTS This brings us to the point of the preced-
ing discussion. Suppose that L(y) = g(x) is a linear differential equation with con-
stant coef�cients and that the input g(x) consists of �nite sums and products of the 
functions listed in (3), (5), and (7)—that is, g(x) is a linear combination of functions 
of the form

k (constant), xm, xme�x, xme�x cos �x, and xme�x sin �x,

where m is a nonnegative integer and � and � are real numbers. We  now 
know that  such a function g(x) can be annihilated by a differential 
operator L1 of lowest order, consisting of a product of the operators Dn, (D − �)n, 
and (D2 − 2�D + �2 + �2)n. Applying L1 to both sides of the equation L(y) = g(x) 
yields L1L(y) = L1(g(x)) = 0. By solving the homogeneous higher-order equation 
L1L(y) = 0, we can discover the form of a particular solution ypypy  for the original 
nonhomogeneous equation L(y) = g(x). We then substitute this assumed form into 
L(y) = g(x) to �nd an explicit particular solution. This procedure for determining 
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ypypy , called the method of undetermined coef�cients, is illustrated in the next 
several examples.

Before proceeding, recall that the general solution of a nonhomogeneous 
linear differential equation L(y) = g(x) is y = yc + ypypy , where yc is the comple-
mentary function —that is, the general solution of the associated homogeneous 
equation L(y) = 0. The general solution of each equation L(y) = g(x) is de�ned 
on the interval (−`, `).

 EXAMPLE 3  General Solution Using Undetermined Coefficients

Solve y0 1 3y9 1 2y 5 4x2. (9)

SOLUTION Step 1. First, we solve the homogeneous equation y0 + 3y9 + 2y = 0. 
Then, from the auxiliary equation m2 + 3m + 2 = (m + 1)(m + 2) = 0 we �nd 
m1 = −1 and m2 = −2, and so the complementary function is

yc = c1e−x + c2e−2x.

Step 2. Now, since 4x2 is annihilated by the differential operator D3, we see that 
D3(D2 + 3D + 2)y = 4D3x2 is the same as

D3(D2 + 3D + 2)y = 0. (10)

The auxiliary equation of the �fth-order equation in (10),

m3(m2 + 3m + 2) = 0 or m3(m + 1)(m + 2) = 0,

has roots m1 = m2 = m3 = 0, m4 = −1, and m5 = −2. Thus its general solution 
must be

y = c1 + c2x + c3x2 + c4e2x 1 c5e22x . (11)

The terms in the shaded box in (11) constitute the complementary function of the 
original equation (9). We can then argue that a particular solution ypypy  of (9) should 
also satisfy equation (10). This means that the terms remaining in (11) must be the 
basic form of ypypy :

ypypy 5 A 1 Bx 1 CxCxC 2, (12)

where, for convenience, we have replaced c1, c2, and c3 by A, B, and C, respectively. 
For (12) to be a particular solution of (9), it is necessary to �nd speci�c coef�cients 
A, B, and C. Differentiating (12), we have

y9pypy 5 B 1 2Cx, y0pypy 5 2C,

and substitution into (9) then gives

y0pypy 1 3y9pypy 1 2ypypy 5 2C 1 3B 1 6CxCxC 1 2A 1 2BxBxB 1 2CxCxC 2 5 4x2.

Because the last equation is supposed to be an identity, the coef�cients of like powers 
of x must be equal:x must be equal:x

equal

2C x2 1 2B 1 6C x 1 2A 2A 2 1 3B 1 2C 5 4x2 1 0x0x0 1 0.

That is 2C 5 4, 2B 1 6C 5 0, 2A 1 3B 1 2C 5 0. (13)
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Solving the equations in (13) gives A = 7, B = −6, and C = 2. Thus 
ypypy = 7 − 6x + 2x2.

Step 3. The general solution of the equation in (9) is y = yc + ypypy  or

y 5 c1e2x 1 c2e22x 1 7 2 6x 1 2x2. .

 EXAMPLE 4  General Solution Using Undetermined Coefficients

Solve y0 2 3y9 5 8e3x 1 4 sin x. (14)

SOLUTION Step 1. The auxiliary equation for the associated homogeneous equa-
tion y0 − 3y9 = 0 is m2 − 3m = m(m − 3) = 0, so yc = c1 + c2e3x.

Step 2. Now, since (D − 3)e3x = 0 and (D2 + 1) sin x = 0, we apply the differen-
tial operator (D − 3)(D2 + 1) to both sides of (14):

(D 2 3)(D2 1 1)(D2 2 3D)y 5 0. (15)

The auxiliary equation of (15) is

(m 2 3)(m2 1 1)(m2 2 3m) 5 0 or m(m 2 3)2(m2 1 1) 5 0.

Thus y = c1 1 c2e3x 1 c3xe3x 1 c4 cos x 1 c5 sin x.

After excluding the linear combination of terms in the box that corresponds to yc, we 
arrive at the form of ypypy :

ypypy 5 Axe3x 1 B cos x 1 C sC sC in x.

Substituting ypypy  in (14) and simplifying yield

y0pypy 2 3y9pypy 5 3Ae3x 1 (2B 2 3C) cos x 1 (3B 2 C) sin x 5 8e3x 1 4 sin x.

Equating coef�cients gives 3A = 8, −B − 3C = 0, and 3B − C = 4. We �nd A 5 8
3, 

B 5 6
5, and C 5 22

5, and consequently,

ypypy 5
8

3
xe3x 1

6

5
 c cos x 2

2

5
 s sin x.

Step 3. The general solution of (14) is then

y 5 c1 1 c2e3x 1
8

3
xe3x 1

6

5
 c cos x 2

2

5
 s sin x. .

 EXAMPLE 5  General Solution Using Undetermined Coefficients

Solve y0 1 y 5 x cx cx os x 2 cos x. (16)

SOLUTION The complementary function is yc = c1 cos x + c2 sin x. Now by com-
paring cos x and x and x x cos x cos x x with the functions in the �rst row of (7), we see that x with the functions in the �rst row of (7), we see that x � = 0 
and n = 1, and so (D2 + 1)2 is an annihilator for the right-hand member of the equa-
tion in (16). Applying this operator to the differential equation gives

(D2 1 1)2 (D2 1 1)y 5 0 or (D2 1 1)3y 5 0.

Since i and −i are both complex roots of multiplicity 3 of the auxiliary equation of 
the last differential equation, we conclude that

y = c1 cos x 1 c2 sin x 1 c3x cx cx os x 1 c4x sx sx in x 1 c5x2 cos x 1 c6x2 sin x.
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We substitute

ypypy 5 Ax cx cx os x 1 BxBxB  sx sx in x 1 CxCxC 2 cos x 1 ExExE 2 sin x

into (16) and simplify:

y0pypy 1 ypypy 5 4 ExExE  cx cx os x 2 4 CxCxC  sx sx in x 1 (2B 1 2C) cos x 1 (22A2A2 1 2E) sin x

5 x cx cx os x 2 cos x.

Equating coef�cients gives the equations 4E = 1, −4C = 0, 2B + 2C = −1, and 
−2A2A2 + 2E = 0, from which we �nd A 5 1

4, B 5 21
2, C = 0, and E 5 1

4. Hence the 
general solution of (16) is

y 5 c1 cos x 1 c2 sin x 1
1

4
x cx cx os x 2

1

2
x sx sx in x 1

1

4
x2 sin x. .

 EXAMPLE 6  Form of a Particular Solution

Determine the form of a particular solution for

y0 2 2y9 1 y 5 10e22x cos x. (17)

SOLUTION The complementary function for the given equation is yc = c1ex + c2xe2xe2
x.

Now from (7), with � = −2, � = 1, and n = 1, we know that

(D2 1 4D 1 5)e22x cos x 5 0.

Applying the operator D2 + 4D + 5 to (17) gives

(D2 1 4D 1 5)(D2 2 2D 1 1)y 5 0. (18)

Since the roots of the auxiliary equation of (18) are −2 − i, −2 + i, 1, and 1, we 
see from

y = c1ex 1 c2xex 1 c3e22x cos x 1 c4e22x sin x

that a particular solution of (17) can be found with the form

ypypy 5 Ae22x cos x 1 Be22x sin x. .

 EXAMPLE 7  Form of a Particular Solution

Determine the form of a particular solution for

y09 2 4y0 1 4y9 5 5x2 2 6x 1 4x2e2x 1 3e5x. (19)

SOLUTION Observe that

D3(5x2 2 6x) 5 0, (D 2 2)3x2e2x 5 0, and (D 2 5)e5x 5 0.

Therefore D3(D − 2)3(D − 5) applied to (19) gives

D3(D 2 2)3(D 2 5)(D3 2 4D2 1 4D)y 5 0

or D4(D 2 2)5(D 2 5)y 5 0.

The roots of the auxiliary equation for the last differential equation are easily seen to 
be 0, 0, 0, 0, 2, 2, 2, 2, 2, and 5. Hence

y = c1 + c2x + c3x2 + c4x3 + c55e2x + c66xe2x + c7x2e2x + c8x3e2x + c9x4e2x + c10e5x.    (20)

4.5 UNDETERMINED COEFFICIENTSANNIHILATOR APPROACH 157

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Because the linear combination c1 1 c5e2x 1 c6xe2x corresponds to the complemen-
tary function of (19), the remaining terms in (20) give the form of a particular solu-
tion of the differential equation:

ypypy 5 Ax 1 BxBxB 2 1 CxCxC 3 1 ExExE 2e2x 1 FxFxF 3e2x 1 GxGxG 4e2x 1 HeHeH 5x. .

SUMMARY OF THE METHOD For your convenience the method of undetermined 
coef�cients is summarized as follows.

Undetermined Coefficients—Annihilator Approach

The differential equation L(y) = g(x) has constant coef�cients, and the func-
tion g(x) consists of �nite sums and products of constants, polynomials, expo-
nential functions e�x, sines, and cosines.

(i) Find the complementary solution yc for the homogeneous equation 
L(y(y( ) = 0.

(ii) Operate on both sides of the nonhomogeneous equation L(y) = g(x) 
with a differential operator L1 that annihilates the function g(x).

(iii) Find the general solution of the higher-order homogeneous differential 
equation L1L(y) = 0.

(iv) Delete from the solution in step (iii) all those terms that are duplicated 
in the complementary solution yc found in step (i). Form a linear 
combination ypypy  of the terms that remain. This is the form of a particular 
solution of L(y) = g(x(x( ).

(v) Substitute ypypy  found in step (iv) into L(y) = g(x). Match coef�cients 
of the various functions on each side of the equality, and solve the 
resulting system of equations for the unknown coef�cients in ypypy .

(vi) With the particular solution found in step (v), form the general solution 
y = yc + ypypy  of the given differential equation.

EXERCISES 4.5
In Problems 1–10 write the given differential equation in the form 
L(y) = g(x), where L is a linear differential operator with constant L is a linear differential operator with constant L
coef�cients. If possible, factor L.

1. 9y0 − 4y = sin x 2. y0 − 5y = x2 − 2x

3. y0 − 4y9 − 12y = x − 6 4. 2y0 − 3y9 − 2y = 1

5. y- + 10y0 + 25y9 = ex

6. y- 1 4y9 5 ex cos 2x cos 2x x cos 2x cos 2

7. y- + 2y0 − 13y9 + 10y = xe−x

8. y- + 4y0 + 3y9 = x2 cos x − 3x

9. y(4) + 8y9 = 4

10. y(4) − 8y0 + 16y = (x3 − 2x)e4x

Answers to selected odd-numbered problems begin on page ANS-5.

REMARKS

The method of undetermined coef�cients is not applicable to linear differential 
equations with variable coef�cients nor is it applicable to linear equations with 
constant coef�cients when g(x) is a function such as

g(x) 5 ln x, g(x) 5
1
x

, g(x) 5 tan x, g(x) 5 sin21 x,

and so on. Differential equations in which the input g(x) is a function of this 
last kind will be considered in the next section.
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In Problems 11–14 verify that the given differential operator annihi-
lates the indicated functions.

11. D4; y = 10x3 − 2x 12. 2D − 1; y = 4ex/2

13. (D − 2)(D + 5); y = e2x2x2 + 3e−5x

14. D2 + 64; y = 2 cos 8x − 5 sin 8x

In Problems 15–26 �nd a linear differential operator that annihilates 
the given function.

15. 1 + 6x − 2x2x2 3 16. x3(1 − 5x)

17. 1 + 7e2x2x2 18. x + 3xe6x

19. cos 2xcos 2xcos 2 20. 1 + sin x

21. 13x + 9x2 − sin 4x 22. 8x − sin x + 10 cos 5x

23. e−x + 2xex − x2ex 24. (2 − ex)2

25. 3 + ex cos 2x cos 2x x cos 2x cos 2 26. e−x sin x sin x x − e2x2x2  cos x cos x x

In Problems 27–34 �nd linearly independent functions that are 
annihilated by the given differential operator.

27. D5 28. D2 + 4D

29. (D − 6)(2D + 3) 30. D2 − 9D − 36

31. D2 + 5 32. D2 − 6D + 10

33. D3 − 10D2 + 25D 34. D2(D − 5)(D − 7)

In Problems 35–64 solve the given differential equation by undeter-
mined coef�cients.

35. y0 − 9y = 54 36. 2y0 − 7y9 + 5y = −29

37. y0 + y9 = 3 38. y- + 2y0 + y9 = 10

39. y0 + 4y9 + 4y = 2x + 6

40. y0 + 3y9 = 4x − 5

41. y- + y0 = 8x2 42. y0 − 2y9 + y = x3 + 4x

43. y0 − y9 − 12y = e4x 44. y0 + 2y9 + 2y = 5e6x

45. y0 − 2y9 − 3y = 4ex − 9 46. y0 + 6y9 + 8y = 3e−2x + 2x

47. y0 + 25y = 6 sin x

48. y0 1 4y 5 4 cos x 1 3 sin x 2 8

49. y0 + 6y9 + 9y = −xe4x

50. y0 + 3y9 − 10y = x(ex + 1)

51. y0 − y = x2ex + 5

52. y0 + 2y9 + y = x2e−x

53. y0 − 2y9 + 5y = ex sin x sin x x

54. y0 1 y9 1
1

4
y 5 ex(sin 3x 2 cos 3x)

55. y0 + 25y = 20 sin 5x 56. y0 + y = 4 cos x − sin x

57. y0 + y9 + y = x sin x sin x x 58. y0 + 4y = cos2x

59. y- + 8y0 = −6x2 + 9x + 2

60. y- − y0 + y9 − y = xex − e−x + 7

61. y- − 3y0 + 3y9 − y = ex − x + 16

62. 2y- − 3y0 − 3y9 + 2y = (ex + e−x)2

63. yy(4) − 2y- + y0 = ex + 1

64.  y  y  (4) − 4y0 = 5x2 − e2x2x2

In Problems 65–72 solve the given initial-value problem.

65. y0 − 64y = 16, y(0) = 1, y9(0) = 0

66. y0 + y9 = x, y(0) = 1, y9(0) = 0

67. y0 − 5y9 = x − 2, y(0) = 0, y9(0) = 2

68. y0 + 5y9 − 6y = 10e2x, y(0) = 1, y9(0) = 1

69. y0 + y = 8 cos 2x − 4 sin x, y(�y2) 521, y9(�y2) 5 0

70. y- − 2y0 + y9 = xex + 5, y(0) = 2, y9(0) = 2, 
y0(0) = −1

71. y0 − 4y9 + 8y = x3, y(0) = 2, y9(0) = 4

72. y(4) − y- = x + ex, y(0) = 0, y9(0) = 0, y0(0) = 0, 
y-(0) = 0

Discussion Problems
73. Suppose L is a linear differential operator that factors but has L is a linear differential operator that factors but has L

variable coef�cients. Do the factors of L commute? Defend L commute? Defend L
your answer.

INTRODUCTION We pointed out in the discussions in Sections 4.4 and 4.5 that the 
method of undetermined coef�cients has two inherent weaknesses that limit its wider 
application to linear equations: The DE must have constant coef�cients and the input 
function g(x) must be of the type listed in Table 4.4.1. In this section we examine a 
method for determining a particular solution ypypy  of a nonhomogeneous linear DE that 
has, in theory, no such restrictions on it. This method, due to the eminent astronomer 
and mathematician Joseph Louis Lagrange (1736–1813), is known as variation of 
parameters.

Before examining this powerful method for higher-order equations we revisit the 
solution of linear �rst-order differential equations that have been put into standard 
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form. The discussion under the �rst heading in this section is optional and is intended 
to motivate the main discussion of this section that starts under the second heading. If 
pressed for time this motivational material could be assigned for reading.

LINEAR FIRSTORDER DES REVISITED In Section 2.3 we saw that the general 
solution of a linear �rst-order differential equation a1(x)y9 1 a0(x)y 5 g(x) can be 
found by �rst rewriting it in the standard form

dydyd

dxdxd
1 P(x)y 5 f (x) (1)

and assuming that P(x) and f (x) are continuous on a common interval I. Using the 
integrating factor method, the general solution of (1) on the interval I, was found 
to be

y 5 c1e2eP(x(x( )dx 1 e2eP(x(x( )dx #eeP(x(x( )dx f (x) dxdxd .

The foregoing solution has the same form as that given in Theorem 4.1.6, namely, 
y 5 yc 1 ypypy . In this case yc 5 c1e2eP(x(x( )dxdxd  is a solution of the associated homogeneous 
equation

dydyd

dxdxd
1 P(x)y 5 0 (2)

and ypypy 5 e2eP(x(x( )dx#eeP(x(x( )dxdxd f (x) dxdxd   (3)

is a particular solution of the nonhomogeneous equation (1). As a means of moti-
vating a method for solving nonhomogeneous linear equations of higher-order we 
propose to rederive the particular solution (3) by a method known as variation of 
parameters. 

Suppose that y1 is a known solution of the homogeneous equation (2), that is, 

dydyd 1

dxdxd
1 P(x)y1 5 0. (4)

It is easily shown that y1 5 e2eP(x(x( )dxdxd  is a solution of (4) and because the equation is x is a solution of (4) and because the equation is x

linear, c1y1(x) is its general solution. Variation of parameters consists of �nding a par-
ticular solution of (1) of the form yp 5 u1(x)y1(x). In other words, we have replaced 
the parameter c1 by a function u1.

Substituting ypypy 5 u1y1 into (1) and using the Product Rule gives

d

dxdxd
 [ [u1y1] 1 P(x)u1y1 5 f (x)

u1
dydyd 1

dxdxd
1 y1

du1

dxdxd
1 P(x)u1y1 5 f (x) 

0 because of (4)4

u13dydyd 1

dxdxd
1 P(x)y14 1 y1

du1

dxdxd
5 f (x)

so y1
du1

dxdxd
5 f (x).

The basic procedure is 
that used in Section 4.2.

See (4) of Section 2.3.
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By separating variables and integrating, we �nd u1:

du1 5
f (x)

y1(x)
dxdxd      yx     yx ields     u1 5# f (x)

y1(x)
dxdxd .

Hence the sought-after particular solution is

ypypy 5 u1y1 5 y1# f (x)

y1(x)
dxdxd .

From the fact that y1 5 e2eP(x(x( ) dxdxd  we see the last result is identical to (3).

LINEAR SECONDORDER DES Next we consider the case of a linear second-
order equation

a2(x)y0 1 a1(x)y9 1 a0(x)y 5 g(x), (5)

although, as we shall see, variation of parameters extends to higher-order equations. 
The method again begins by putting (5) into the standard form 

y0 1 P(x)y9 1 Q(x)y 5 f (x) (6)

by dividing by the leading coef�cient a2(x). In (6) we suppose that coef�cient func-
tions P(x), Q(x), and f (x) are continuous on some common interval I. As we have 
already seen in Section 4.3, there is no dif�culty in obtaining the complementary 
solution yc 5 c1y1(x) 1 c2y2y2 2(x), the general solution of the associated homogeneous 
equation of (6), when the coef�cients are constants. Analogous to the preceding dis-
cussion, we now ask: Can the parameters c1 and c2 in yc can be replaced with func-
tions u1 and u2, or “variable parameters,” so that

yp(x) 5 u1(x)y1(x) 1 u2(x)y2(x) (7)

is a particular solution of (6)? To answer this question we substitute (7) into (6). 
Using the Product Rule to differentiate ypypy  twice, we get

y9pypy 5 u1y91 1 y1u91 1 u2y92 1 y2u92

y0pypy 5 u1y01 1 y91u91 1 y1u01 1 u91y91 1 u2y2y2 02 1 y92u92 1 y2u02 1 u92y2y2 92.

Substituting (7) and the foregoing derivatives into (6) and grouping terms yields
zero zero

4 4
y0pypy 1 P(x)y9pypy 1 Q(x)ypypy 5 u1[y01 1 Py91 1 Qy1] 1 u2[y02 1 Py92 1 Qy2] 1 y1u01 1 u91y91

1 y2u02 1 u92y2y2 92 1 P[y1u91 1 y2u92] 1 y91u91 1 y92u92

5
d

dxdxd
 [ [y1u91] 1

d

dxdxd
 [ [y2u92] 1 P[y1u91 1 y2u92] 1 y91u91 1 y92u92

5
d

dxdxd
 [ [y1u91 1 y2u92] 1 P[y1u91 1 y2u92] 1 y91u91 1 y92u92 5 f (x). (8)

Because we seek to determine two unknown functions u1 and u2, reason dictates that 
we need two equations. We can obtain these equations by making the further assump-
tion that the functions u1 and u2 satisfy y1u91 1 y2u92 5 0. This assumption does not 
come out of the blue but is prompted by the �rst two terms in (8), since if we de-
mand that y1u91 1 y2u92 5 0, then (8) reduces to y91u91 1 y92u92 5 f (x). We now have our 
desired two equations, albeit two equations for determining the derivatives u91 and u92.
By Cramer’s Rule, the solution of the system

y1u91 1 y2u92 5 0

y91u91 1 y92u92 5 f (x)
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can be expressed in terms of determinants:

u91 5
W1

W
5 2

y2 f (x)

W
and u92 5

W2

W
5

y1 f (x)

W
, (9)

where W 5 *y1

y91

y2

y92*,  W1 5 * 0

f (x)

y2

y92*,  W2 5 *y1

y91

0

f (x)*. (10)

The functions u1 and u2 are found by integrating the results in (9). The determinant 
W is recognized as the Wronskian of W is recognized as the Wronskian of W y1 and y2. By linear independence of y1 and y2

on I, we know that W(y1(x), y2(x)) Þ 0 for every x in the interval.x in the interval.x

SUMMARY OF THE METHOD Usually, it is not a good idea to memorize for-
mulas in lieu of understanding a procedure. However, the foregoing procedure is 
too long and complicated to use each time we wish to solve a differential equation. 
In this case it is more ef�cient to simply use the formulas in (9). Thus to solve 
a2y2y2 0 + a1y9 + a0y0y0 = g(x), �rst �nd the complementary function yc = c1y1 + c2y2y2 2

and then compute the Wronskian W(W(W y1(x), y2(x)). By dividing by a2, we put the equa-
tion into the standard form y0 + Py9 + Qy = f (x) to determine f (x). We �nd u1 and 
u2 by integrating u91 5 W1yW  and u92 5 W2W2W yW , where W1 and W2W2W  are de�ned as in 
(10). A particular solution is ypypy = u1y1 + u2y2y2 2. The general solution of the equation 
is then y = yc + ypypy .

 EXAMPLE 1  General Solution Using Variation of Parameters

Solve y0 − 4y9 + 4y = (x + 1)e2x.

SOLUTION From the auxiliary equation m2 − 4m + 4 = (m − 2)2 = 0 we have 
yc = c1e2x2x2 + c2xe2xe2

2x2x2 . With the identi�cations y1 = e2x2x2  and x and x y2 = xe2x2x2 , we next compute 
the Wronskian:

W(W(W e2x, xe2x) 5 * e2x

2e2x

xe2x

2xe2x 1 e2x* 5 e4x.

Since the given differential equation is already in form (6) (that is, the coef�cient of 
y0 is 1), we identify f (x) = (x + 1)e2x. From (10) we obtain

W1 5 *          0

(x 1 1)e2x

  xe2x

2xe2x 1 e2x* 5 2(x 1 1)xe4x, W2W2W 5 *   e2x

2e2x

  0

(x 1 1)e2x* 5 (x 1 1)e4x,

and so from (9)

u91 5 2
(x 1 1)xe4x

e4x 5 2x2 2 x, u92 5
(x 1 1)e4x

e4x 5 x 1 1.

Integrating the foregoing derivatives gives

u1 5 2
1

3
x3 2

1

2
x2 and u2 5

1

2
x2 1 x.

Hence from (7) we have

ypypy 5 12 1

3
x3 2

1

2
x22e2x 1 11

2
x2 1 x2xe2x 5

1

6
x3e2x 1

1

2
x2e2x

and y 5 yc 1 ypypy 5 c1e2x 1 c2xe2x 1
1

6
x3e2x 1

1

2
x2e2x. .
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EXAMPLE 2  General Solution Using Variation of Parameters

Solve 4y0 + 36y = csc 3x.

SOLUTION We �rst put the equation in the standard form (6) by dividing by 4:

y0 1 9y 5
1

4
 c csc 3x.

Because the roots of the auxiliary equation m2 + 9 = 0 are m1 = 3i and m2 =−3i, the 
complementary function is yc = c1 cos 3x + c2 sin 3x. Using y1 = cos 3x, y2 = sin 3x, 
and f (x) 5 1

4 csc 3x, we obtain

W(cW(cW os 3x, sin 3x) 5 * cos 3x

23 sin 3x

sin 3x

3 cos 3x* 5 3,

W1 5 * 0
1
4 csc 3x

   sin 3x

3 cos 3x*5 2
1

4
, W2W2W 5 *       cos 3x

23 sin 3x

0
1
4 csc 3x*5

1

4

cos 3x

sin 3x
.

Integrating u91 5
W1

W
5 2

1

12
and u92 5

W2W2W

W
5

1

12

cos 3x

sin 3x

gives 

u1 5 2
1

12
x and u2 5

1

36
 l ln usin 3x u.

Thus from (7) a particular solution is

ypypy 5 2
1

12
x cx cx os 3x 1

1

36
 (s (sin 3x) lnusin 3x u.

The general solution of the equation is

y 5 yc1ypypy 5c1 cos 3x 1 c2 s2 s2 in 3x 2
1

12
x cx cx os 3x 1

1

36
 (s (sin 3x) lnusin 3x u. (11) .

Equation (11) represents the general solution of the differential equation on, say, 
the interval (0, �y6).

CONSTANTS OF INTEGRATION When computing the inde�nite integrals of u91
and u92, we need not introduce any constants. This is because

y 5 yc 1 ypypy 5 c1y1 1 c2y2y2 2 1 (u1 1 a1)y1 1 (u2 1 b1)y2

5 (c1 1 a1)y1 1 (c2 1 b1)y2 1 u1y1 1 u2y2y2 2

5 C1y1 1 C2y2y2 2 1 u1y1 1 u2y2y2 2.

INTEGRALDEFINED FUNCTIONS We have seen several times in the preceding 
sections and chapters that when a solution method involves integration we may en-
counter nonelementary integrals. As the next example shows, sometimes the best we 
can do in constructing a particular solution (7) of a linear second-order differential 
equation is to use the integral-de�ned functions 

u1(x) 5 2#x

x
#

x
#

0

y2(t) f (t)

W(W(W t)
dtt and u2sxd 5 #x

x
#

x
#

0

y1(t) f (t)

W(W(W t)
dt .

Here we assume that the integrand is continuous on the interval fx0, xg .
See Problems 23–26 in Exercises 4.6.
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EXAMPLE 3  General Solution Using Variation of Parameters

Solve y0 2 y 5
1
x

.

SOLUTION The auxiliary equation m2 − 1 = 0 yields m1 = −1 and m2 = 1. There-
fore yc = c1ex + c2e−x. Now W(W(W ex, e−x) = −2, and

u91 5 2
e2x(1yx)

22
, u92 5

e2x(1yx)

22

u1 5
1

2#
x

x
#

x
#

0

et

t
dt, u2 5 2

1

2#
x

x
#

x
#

0

et

t
dt .

Since the foregoing integrals are nonelementary, we are forced to write

ypypy 5
1

2
ex # x

x
#

x
#

0

e2t

t
dt 2

1

2
e2x #x

x
#

x
#

0

et

t
dt,

and so y 5 yc 1 ypypy 5 c1ex 1 c2e2x 1
1

2
ex #x

x
#

x
#

0

e2t

t
dt 2

1

2
e2x #x

x
#

x
#

0

et

t
dt. (12) .

In Example 3 we can integrate on any interval [xIn Example 3 we can integrate on any interval [xIn Example 3 we can integrate on any interval [ 0, x] that does not contain the origin. 
We will solve the equation in Example 3 by an alternative method in Section 4.8.

HIGHERORDER EQUATIONS The method that we have just examined for non-
homogeneous second-order differential equations can be generalized to linear nth-
order equations that have been put into the standard form

y(n) 1 Pn21(x)y(n21) 1 Á 1 P1(x)y9 1 P0(x)y 5 f (x). (13)

If yc = c1y1 + c2y2y2 2 + ? ? ? + cnynyn n is the complementary function for (13), then a 
particular solution is

yp(x) 5 u1(x)y1(x) 1 u2(x)y2(x) 1 Á 1 un (x)yn(x),

where the u9k, k = 1, 2, . . . , n are determined by the n equations

y1u91 1 y2u92 1 Á 1 ynu9n 5 0

y91u91 1 y92u92 1 Á 1 y9nu9n 5 0

o o (14)

y1
(

1
(

1
n21)u91 1 y2

(
2
(

2
n21)u92 1 Á 1 yn

(n21)u9n 5 f (x).

The �rst n − 1 equations in this system, like y1u91 1 y2u92 5 0 in (8), are assump-
tions that are made to simplify the resulting equation after ypypy = u1(x)y1(x) + ? ? ? +
un(x)yn(x) is substituted in (13). In this case Cramer’s Rule gives

u9k 5
Wk

W
, k 5 1, 2, . . . , n,

where W is the Wronskian of W is the Wronskian of W y1, y2, . . . , yn and WkWkW  is the determinant obtained by k is the determinant obtained by k

replacing the kth column of the Wronskian by the column consisting of the right-
hand side of (14) —that is, the column consisting of (0, 0, . . . , f (x)). When n = 2, 
we get (9). When n = 3, the particular solution is ypypy = u1y1 + u2y2 + u3y3, where 
y1, y2, and y3 constitute a linearly independent set of solutions of the associated 
homogeneous DE and u1, u2, u3 are determined from

u91 5
W1

W
,  u92 5

W2

W
,  u93 5

W3

W
, (15)

W 5 *
y1

y91
y01

y2

y92
y02

y3

y93
y03
* , W1 5 *

0

0

f (x)

y2

y92
y02

y3

y93
y03
* , W2 5 *

y1

y91
y01

0

0

f (x)

y3

y93
y03
* ,    W3 5 *

y1

y91
y01

y2

y92
y02

0

0

f(x)* .

See Problems 29–32 in Exercises 4.6.
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EXERCISES 4.6
In Problems 1–18 solve each differential equation by variation of 
parameters.

1. y0 + y = sec x 2. y0 + y = tan x

3. y0 + y = sin x 4. y0 + y = sec � tan �

5. y0 + y = cos2x2x2 6. y0 + y = sec2x2x2

7. y0 − y = cosh x 8. y0 − y = sinh 2xsinh 2xsinh 2

9. y0 2 9y 5
9x

e3x 10. 4y0 2 y 5 exy2 1 3

11. y0 1 3y9 1 2y 5
1

1 1 ex

12. y0 2 2y9 1 y 5
ex

1 1 x2

13. y0 + 3y9 + 2y = sin ex

14. y0 − 2y9 + y = et arctan t arctan t t

15. y0 + 2y9 + y = e−t ln t ln t t

16. 2y2y2 0 1 y9 5 6x

17. 3y0 − 6y9 + 6y = ex sec x sec x x

18. 4y0 2 4y9 1 y 5 ex/2Ï1 2 x2Ï

In Problems 19–22 solve each differential equation by variation of 
parameters, subject to the initial conditions y(0) = 1, y9(0) = 0.

19. 4y0 − y = xex/2

20. 2y0 + y9 − y = x + 1

21. y0 + 2y9 − 8y = 2e−2x − e−x

22. y0 − 4y9 + 4y = (12x2 − 6x)e2x

In Problems 23–26 proceed as in Example 3 and solve each differen-
tial equation by variation of parameters.

23. y0 1 y 5 ex2
24. y0 2 4y 5

e2x2x2

x

25. y0 1 y9 2 2y2y2 5 ln x 26. 2y2y2 0 1 2y9 1 y 5 4ÏxÏxÏÏ

In Problems 27 and 28 the indicated functions are known linearly 
independent solutions of the associated homogeneous differential 
equation on (0, `). Find the general solution of the given nonhomo-
geneous equation.

27. x2y0 1 xy9 1 _x_x_ 2 2 1
4+y 5 x3/2;

y1 = x−1/2 cos x, y2 = x−1/2 sin x

28. x2y0 + xy9 + y = sec(ln x);

y1 = cos(ln x), y2 = sin(ln x)

In Problems 29–32 solve the given third-order differential equation 
by variation of parameters.

29. y- + y9 = tan x

30. y- + 4y9 = sec 2xsec 2xsec 2

31. y- 2 2y2y2 0 2 y9 1 2y2y2 5 e4x4x4

32. y- 2 3y0 1 2y9 5
e2x2x2

1 1 ex

Discussion Problems
In Problems 33 and 34 discuss how the methods of undetermined 
coef�cients and variation of parameters can be combined to solve the 
given differential equation. Carry out your ideas.

33. 3y0 − 6y9 + 30y = 15 sin x + ex tan 3x tan 3x x

34. y0 − 2y9 + y = 4x2 − 3 + x−1ex

35. What are the intervals of de�nition of the general solutions 
in Problems 1, 7, 15, and 18? Discuss why the interval of 
de�nition of the general solution in Problem 28 is not (0, not (0, not `).

36. Find the general solution of x4y0 + x3y9 − 4x2y = 1 given 
that y1 = x2 is a solution of the associated homogeneous 
equation.

Answers to selected odd-numbered problems begin on page ANS-5.

REMARKS

(i) Variation of parameters has a distinct advantage over the method of 
undetermined coef�cients in that it will always yield a particular solution ypypy
provided that the associated homogeneous equation can be solved. The present 
method is not limited to a function f (x) that is a combination of the four types 
listed on page 143. As we shall see in the next section, variation of parameters, 
unlike undetermined coef�cients, is applicable to linear DEs with variable 
coef�cients.

(ii) In the problems that follow, do not hesitate to simplify the form of ypypy . 
Depending on how the antiderivatives of u91 and u92 are found, you might not 
obtain the same ypypy  as given in the answer section. For example, in Problem 3 
in Exercises 4.6 both yp yp y = 1

2 sin x − 1
2 x cos x and x and x ypypy = 1

4 sin x − 1
2 x cos x

are  valid answers. In either case the general solution y = yc + ypypy  simpli�es 
to y = c1 cos x + c2 sin x − 1

2 x cos x. Why?
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INTRODUCTION The same relative ease with which we were able to �nd explicit 
solutions of higher-order linear differential equations with constant coef�cients in 
the preceding sections does not, in general, carry over to linear equations with 
variable coef�cients. We shall see in Chapter 6 that when a linear DE has variable 
coef�cients, the best that we can usually expect is to �nd a solution in the form 
of an in�nite series. However, the type of differential equation that we consider 
in this section is an exception to this rule; it is a linear equation with variable 
coef�cients whose general solution can always be expressed in terms of powers 
of x, sines, cosines, and logarithmic functions. Moreover, its method of solution is 
quite similar to that for constant-coef�cient equations in that an auxiliary equation 
must be solved.

CAUCHYEULER EQUATION A linear differential equation of the form

anxnxn
n dnynyn

dxdxd n 1 an21xn21 dn21y

dxdxd n21 1 Á 1 a1x
dydyd

dxdxd
1 a0y 5 g(x), (1)

where the coef�cients an, an−1, . . . , a0 are constants, is known as a Cauchy-Euler 
equation. The differential equation is named in honor of two of the most proli�c 
mathematicians of all time, Augustin-Louis Cauchy (French, 1789–1857) and 
Leonhard Euler (Swiss, 1707–1783). The observable characteristic of this type of 
equation is that the degree k = n, n − 1, . . . , 1, 0 of the monomial coef�cients xk

matches the order k of k of k differentiation dkykyk ydxdxd k:

anxn 1 an21xn21 1 Á.
dnynyn
––––
dxn

dn21y
––––––
dxn21

same same

As in Section 4.3, we start the discussion with a detailed examination of the 
forms of the general solutions of the homogeneous second-order equation

ax2 
d2y

dx2 1 bx 
dy

dx
1 cy 5 0. (2)

The solution of higher-order equations follows analogously. Also, we can solve the 
nonhomogeneous equation ax2y0 + bxy9 + cy = g(x) by variation of parameters, 
once we have determined the complementary function yc.

NOTE The lead coef�cient anxn of any Cauchy-Euler equation (1) is zero at x 5 0.
Hence in order to guarantee that the fundamental results of Theorem 4.1.1 are appli-
cable to a Cauchy-Euler equation we will focus our attention on �nding general solu-
tions de�ned on the interval s0, `d . The interval s2`, 0d can also be used.

METHOD OF SOLUTION We try a solution of the form y = xm, where m is to be 
determined. Analogous to what happened when we substituted emx into a linear equamx into a linear equamx -
tion with constant coef�cients, when we substitute xm, each term of a Cauchy-Euler 
equation becomes a polynomial in m times xm, since

akxk dky

dxdxd k 5 akxkxk
km(m 2 1)(m 2 2) Á (m 2 k 1 1)xm2k 5 akm(m 2 1)(m 2 2) Á (m 2 k 1 1)xm.

For example, when we substitute y = xm, the second-order equation (2) becomes

ax2 d2y

dxdxd 2 1 bx
dydyd

dxdxd
1 cy 5 am(m 2 1)xm 1 bmxm 1 cxm 5 (am(m 2 1) 1 bm 1 c)xm 5 0.

4.7 Cauchy-Euler Equations
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Thus y 5 xm is a solution of the differential equation whenever m is a solution of the 
auxiliary equation

am(m 2 1) 1 bm 1 c 5 0 or am2 1 (b 2 a)m 1 c 5 0. (3)

There are three different cases to be considered, depending on whether the roots of 
this quadratic equation are real and distinct, real and equal, or complex. In the last 
case the roots appear as a conjugate pair.

CASE I: DISTINCT REAL ROOTS Let m1 and m2 denote the real roots of (3) such 
that m1 Þ m2. Then y1 5 xm1 and y2 5 xm2 form a fundamental set of solutions. Hence 
the general solution of (2) is

y 5 c1xm1 1 c2xm2. (4)

EXAMPLE 1  Distinct Roots

Solve x2 d2y

dxdxd 2 2 2x
dydyd

dxdxd
2 4y 5 0.

SOLUTION Rather than just memorizing equation (3), it is preferable to assume 
y= xmxmx  as the solution a few times to understand the origin and the difference between this m as the solution a few times to understand the origin and the difference between this m

new form of the auxiliary equation and that obtained in Section 4.3. Differentiate twice,

dydyd

dxdxd
5 mxm21,

d2y

dxdxd 2 5 m(m 2 1)xm22,

and substitute back into the differential equation:

x2 d2y

dxdxd 2 2 2x
dydyd

dxdxd
2 4y 5 x2 ? m(m 2 1)xm22 2 2x ? mxm21 2 4xm

5 xm(m(m 2 1) 2 2m 2 4) 5 xm(m2 2 3m 2 4) 5 0

if m2 − 3m − 4 = 0. Now (m + 1)(m − 4) = 0 implies m1 = −1, m2 = 4, so the 
general solution is y = c1x−1 + c2x4. .

CASE II: REPEATED REAL ROOTS If the roots of (3) are repeated (that is, 
m1 = m2), then we obtain only one solution—namely, y 5 xm1. When the roots of the 
quadratic equation am2 + (b − a)m + c = 0 are equal, the discriminant of the coef-0 are equal, the discriminant of the coef-0 are equal, the discriminant of the coef
�cients is necessarily zero. It follows from the quadratic formula that the root must 
be m1 = −(b − a)y2a.

Now we can construct a second solution y2, using (5) of Section 4.2. We �rst 
write the Cauchy-Euler equation in the standard form

d2y

dxdxd 2 1
b
ax

dydyd

dxdxd
1

c

ax2 y 5 0

and make the identi�cations P(x) = byax and x and x e(byaxaxa ) dxdxd 5 (bya) ln x. Thus

y2 5 xm1# e2(b/a) ln x

x2m1
dx

5 xm1 # x2b/a ? x22m1 dxdxd d e2(b /a) ln x 5 eln x2b / a
5 x2b /a

5 xm1 # x2b/a ? x(b2a)/a dxdxd d 22m1 5 (b 2 a)/a

5 xm1# dxdxd
x

5 xm1 ln x.
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The general solution of (2) is then

y 5 c1xm1 1 c2xm1 ln x. (5)

EXAMPLE 2 Repeated Roots

Solve 4x2 d2y

dxdxd 2 1 8x
dydyd

dxdxd
1 y 5 0.

SOLUTION The substitution y = xm yields

4x2 d2y

dxdxd 2 1 8x
dydyd

dxdxd
1 y 5 xm(4m(m 2 1) 1 8m 1 1) 5 xm(4m2 1 4m 1 1) 5 0

when 4m2 + 4m + 1 = 0 or (2m + 1)2 = 0. Since m1 5 21
2, it follows from (5) that 

the general solution is y = c1x−1/2 + c2x−1/2 ln x. .

For higher-order equations, if m1 is a root of multiplicity k, then it can be shown that

xm1, xm1 ln x, xm1(ln x)2, . . . , xm1(ln x)k21

are k linearly independent solutions. Correspondingly, the general solution of the difk linearly independent solutions. Correspondingly, the general solution of the difk - linearly independent solutions. Correspondingly, the general solution of the dif- linearly independent solutions. Correspondingly, the general solution of the dif
ferential equation must then contain a linear combination of these k solutions.k solutions.k

CASE III: CONJUGATE COMPLEX ROOTS If the roots of (3) are the conjugate 
pair m1 = � + i�, m2 = � − i�, where � and � > 0 are real, then a solution is

y 5 C1x�1i� 1 C2C2C x�2i�.

But when the roots of the auxiliary equation are complex, as in the case of equations 
with constant coef�cients, we wish to write the solution in terms of real functions 
only. We note the identity

xi� 5 (eln x)i� 5 ei� ln x,

which, by Euler’s formula, is the same as

xi� = cos(� ln x) + i sin(� ln x).

Similarly, x−i� = cos(� ln x) − i sin(� ln x).

Adding and subtracting the last two results yields

xi� + x−i� = 2 cos(� ln x) and xi� − x−i� = 2i sin(� ln x),

respectively. From the fact that y = C1x�+i� + C2C2C x�−i� is a solution for any values of 
the constants, we see, in turn, for C1 = C2C2C = 1 and C1 = 1, C2C2C = −1 that

y1 5 x�(xi� 1 x2i�) and y2 5 x�(xi� 2 x2i� )

or y1 5 2x�cos(� ln x) and y2 5 2ix� sin (� ln x)

are also solutions. Since W(x� cos(� ln x), x� sin(� ln x)) = �x2�−1 Þ 0, � > 0 on 
the interval (0, `), we conclude that

y1 5 x� cos(� ln x) and y2 5 x� sin(� ln x)

constitute a fundamental set of real solutions of the differential equation. Hence the 
general solution of (2) is

y 5 x�[c1 cos(� ln x) 1 c2 sin(� ln x)]. (6)
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EXAMPLE 3  An Initial-Value Problem

Solve 4x2y0 1 17y 5 0, y(1) 5 21, y9(1) 5 21
2.

SOLUTION The y9 term is missing in the given Cauchy-Euler equation; neverthe-
less, the substitution y = xm yields

4x2y0 1 17y 5 xm(4m(m 2 1) 1 17) 5 xm(4m2 2 4m 1 17) 5 0

when 4m2 − 4m + 17 = 0. From the quadratic formula we �nd that the roots are 
m1 5 1

2 1 2i and m2 5 1
2 2 2i. With the identi�cations � 5 1

2 and � = 2 we see from 
(6) that the general solution of the differential equation is

y 5 x1/2[c1 cos(2 ln x) 1 c2 sin(2 ln x)].

By applying the initial conditions y(1) 5 21, y9(1) 5 21
2 to the foregoing solution  to the foregoing solution 

and using ln 1 = 0, we then �nd, in turn, that c1 =−1 and c2 = 0. Hence the solution 
of the initial-value problem is y = −x1/2 cos(2 ln x). The graph of this function, 
obtained with the aid of computer software, is given in Figure 4.7.1. The particular 
solution is seen to be oscillatory and unbounded as x S `. .

The next example illustrates the solution of a third-order Cauchy-Euler 
equation.

EXAMPLE 4  Third-Order Equation

Solve x3 d3y

dxdxd 3 1 5x2 d2y

dxdxd 2 1 7x
dydyd

dxdxd
1 8y 5 0.

SOLUTION The �rst three derivatives of y = xm are

dydyd

dxdxd
5 mxmxm m21,

d2y

dxdxd 2 5 m(m 2 1)xm22,
d3y

dxdxd 3 5 m(m 2 1)(m 2 2)xm23,

so the given differential equation becomes

x3 d3y

dxdxd 3 1 5x2 d2y

dxdxd 2 1 7x
dydyd

dxdxd
1 8y 5 x3m(m 2 1)(m 2 2)xm23 1 5x2m(m 2 1)xm22 1 7xmxm21 1 8xm

5 xm(m(m 2 1)(m 2 2) 1 5m(m 2 1) 1 7m 1 8)

5 xm(m3 1 2m2 1 4m 1 8) 5 xm(m 1 2)(m2 1 4) 5 0.

In this case we see that y = x m will be a solution of the differential equa-
tion for m1 = −2, m2 = 2i, and m3 = −2i. Hence the general solution is 
y = c1x−2 + c2 cos(2 ln x) + c3 sin(2 ln x). .

NONHOMOGENEOUS EQUATIONS The method of undetermined coef�cients 
described in Sections 4.4 and 4.5 does not carry over, in general, to nonhomoge-
neous linear differential equations with variable coef�cients. Consequently, in our 
next example the method of variation of parameters is employed.

EXAMPLE 5  Variation of Parameters

Solve x2y0 − 3xy9 + 3y = 2x4ex.

SOLUTION Since the equation is nonhomogeneous, we �rst solve the associated 
homogeneous equation. From the auxiliary equation (m − 1)(m − 3) = 0 we �nd 
yc = c1x + c2x2x2

3. Now before using variation of parameters to �nd a particular so-
lution ypypy = u1y1 + u2y2y2 2, recall that the formulas u91 5 W1yW  and u92 5 W2W2W yW , 

x

y

21

0

1

1

x 

y

25 50 75

10

5

100

(a) solution for 0 , #x , #x , #1 

(b) solution for 0 , #x , #x , #100 

FIGURE 4.7.1 Solution curve of IVP in 
Example 3

4.7 CAUCHYEULER EQUATIONS 169

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



where W1, W2W2W , and W are the determinants de�ned on page 162, were derived under W are the determinants de�ned on page 162, were derived under W
the assumption that the differential equation has been put into the standard form 
y0 + P(x)y9 + Q(x)y = f (x). Therefore we divide the given equation by x2, and from

y0 2
3
x

y9 1
3

x2 y 5 2x2ex

we make the identi�cation f (x) = 2x2ex. Now with y1 = x, y2 = x3, and

W 5 * x

1

x3

3x2*5 2x3, W1 5 * 0

2x2ex

x3

3x2*5 22x5ex, W2W2W 5 *x

1

0

2x2ex*5 2x3ex,

we �nd u91 5 2
2x5ex

2x3 5 2x2ex and u92 5
2x3ex

2x3 5 ex.

The integral of the last function is immediate, but in the case of u91 we integrate 
by parts twice. The results are u1 = −x2ex + 2xex − 2ex and x and x u2 = ex. Hence 
ypypy = u1y1 + u2y2 is

ypypy 5 (2x2ex 1 2xex 2 2ex)x 1 exx3 5 2x2ex 2 2xex.

Finally, y 5 yc 1 yp 5 c1x 1 c2x3 1 2x2ex 2 2xex. .

REDUCTION TO CONSTANT COEFFICIENTS The similarities between the 
forms of solutions of Cauchy-Euler equations and solutions of linear equations with 
constant coef�cients are not just a coincidence. For example, when the roots of the 
auxiliary equations for ay0 + by9 + cy = 0 and ax2y2y2 0 + bxy9 + cy = 0 are distinct 
and real, the respective general solutions are

y 5 c1em1x 1 c2em2x and y 5 c1xm1 1 c2xm2, x . 0. (7)

In view of the identity eln x = x, x > 0, the second solution given in (7) can be 
expressed in the same form as the �rst solution:

y 5 c1em1 ln x 1 c2em2 ln x 5 c1em1t 1 c2em2 t,

where t = ln x. This last result illustrates the fact that any Cauchy-Euler equation can 
always be rewritten as a linear differential equation with constant coef�cients by 
means of the substitution x = et. The idea is to solve the new differential equation 
in terms of the variable t, using the methods of the previous sections, and, once the 
general solution is obtained, resubstitute t = ln x. This method, illustrated in the last 
example, requires the use of the Chain Rule of differentiation.

 EXAMPLE 6  Changing to Constant Coefficients

Solve x2y0 − xy9 + y = ln x.

SOLUTION With the substitution x = et or t or t t = ln x, it follows that

dydyd

dxdxd
5

dydyd

dt

dt

dxdxd
5

1
x

dydyd

dt
d Chain Rule

d2d2d y

dxdxd 2 5
1
x

d

dxdxd 1dydyd

dt 2 1
dydyd

dt 12 1

x22 d Product Rule and Chain Rule

5
1
x 1d2d2d y

dt2
1
x2 1

dydyd

dt 12 1

x22 5
1

x2 1d2d2d y

dt2
2

dydyd

dt 2.
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Substituting in the given differential equation and simplifying yields

d2y

dt2
2 2 

dy

dt
1 y 5 t.

Since this last equation has constant coef�cients, its auxiliary equation isSince this last equation has constant coef�cients, its auxiliary equation isSince this last equation has constant coef
m2 − 2m + 1 = 0, or (m − 1)2 = 0. Thus we obtain yc = c1et + c2tet.

By undetermined coef�cients we try a particular solution of the form 
ypypy = A + Bt. This assumption leads to −2B + A + Bt = t, so A = 2 and B = 1. 
Using y = yc + ypypy , we get

y 5 c1et 1 c2tet 1 2 1 t.

By resubstituting et = x and x and x t = ln x we see that the general solution of the original x we see that the general solution of the original x
differential equation on the interval (0, `) is y = c1x + c2x ln x + 2 + ln x. .

SOLUTIONS FOR x  , 0 In the preceding discussion we have solved Cauchy-Euler 
equations for x . 0. One way of solving a Cauchy-Euler equation for x , 0 is to 
change the independent variable by means of the substitution t 5 2x (which implies 
t . 0) and using the Chain Rule:

dy

dx
5

dy

dt

dt

dx
5 2

dy

dt
and

d2y2y2

dx2 5
d

dt 12
dy

dt 2 dt

dx
5

d2y

dt2 .

See Problems 37 and 38 in Exercises 4.7.

A DIFFERENT FORM A second-order equation of the form

a(x 2 x0)2 
d 2y

dx2 1 b(x 2 x0) 

dy

dx
1 cy 5 0 (8)

is also a Cauchy-Euler equation. Observe that (8) reduces to (2) when x0 5 0.
We can solve (8) as we did (2), namely, seeking solutions of y 5 (x 2 x0)m and 

using

dy

dx
5 m(x 2 x0)m21 and

d2y2y2

dx2 5 m(m 2 1)(x 2 x0)m22.  

Alternatively, we can reduce (8) to the familiar form (2) by means of the change of 
independent variable t 5 x 2 x0, solving the reduced equation, and resubstituting. 
See Problems 39–42 in Exercises 4.7.

EXERCISES 4.7
In Problems 1–18 solve the given differential equation.

1. x2y2y2 0 − 2y = 0 2. 4x2y2y2 0 + y = 0

3. xy0 + y9 = 0 4. xy0 − 3y9 = 0

5. x2y2y2 0 + xy9 + 4y = 0 6. x2y2y2 0 + 5xy9 + 3y = 0

7. x2y2y2 0 − 3xy9 − 2y = 0 8. x2y2y2 0 + 3xy9 − 4y = 0

9. 25x2y0 + 25xy9 + y = 0 10. 4x4x4 2y0 + 4xy4xy4 9 − y = 0

11. x2y0 + 5xy9 + 4y = 0 12. x2y0 + 8xy9 + 6y = 0

13. 3x2y0 + 6xy9 + y = 0 14. x2y0 − 7xy9 + 41y = 0

15. x3y- − 6y = 0 16. x3y- + xy9 − y = 0

17. xy(4) + 6y- = 0

18. x4y4y4 (4) + 6x3y- + 9x2y2y2 0 + 3xy9 + y = 0

In Problems 19–24 solve the given differential equation by variation 
of parameters.

19. xy0 − 4y9 = x4

20. 2x2x2 2y2y2 0 + 5xy9 + y = x2 − x

21. x2y2y2 0 − xy9 + y = 2x2x2 22. x2y2y2 0 − 2xy2xy2 9 + 2y = x4ex

23. x2y2y2 0 + xy9 − y = ln x 24. x2y0 1 xy9 2 y 5
1

x 1 1

Answers to selected odd-numbered problems begin on page ANS-5.
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In Problems 25–30 solve the given initial-value problem. Use a 
graphing utility to graph the solution curve.

25. x2y0 + 3xy9 = 0, y(1) = 0, y9(1) = 4

26. x2y0 − 5xy9 + 8y = 0, y(2) = 32, y9(2) = 0

27. x2y0 + xy9 + y = 0, y (1) = 1, y9(1) = 2

28. x2y0 − 3xy9 + 4y = 0, y(1) = 5, y9(1) = 3

29. xy0 1 y9 5 x, y(1) 5 1, y9(1) 5 21
2

30. x2y0 2 5xy9 1 8y 5 8x6, y _1
2+ 5 0, y9_1

2+ 5 0

In Problems 31–36 use the substitution x = et to transform the given t to transform the given t

Cauchy-Euler equation to a differential equation with constant co-
ef�cients. Solve the original equation by solving the new equation 
using the procedures in Sections 4.3–4.5.

31. x2y0 + 9xy9 − 20y = 0

32. x2y0 − 9xy9 + 25y = 0

33. x2y0 + 10xy9 + 8y = x2

34. x2y0 − 4xy9 + 6y = ln x2

35. x2y0 − 3xy9 + 13y = 4 + 3x

36. x3y- − 3x2y0 + 6xy9 − 6y = 3 + ln x3

In Problems 37 and 38 use the substitution t 5 2x to solve the given x to solve the given x
initial-value problem on the interval (2`, 0).

37. 4x2y0 + y = 0, y(−1) = 2, y9(−1) = 4

38. x2y0 − 4xy9 + 6y = 0, y(−2) = 8, y9(−2) = 0

In Problems 39 and 40 use y 5 (x 2 x0)m to solve the given differ-
ential equation.

39. (x 1 3)2 y0 2 8(x 1 3)y9 1 14y 5 0

40. (x 2 1)2y2y2 0 2 (x 2 1)y9 1 5y 5 0

In Problems 41 and 42 use the substitution t 5 x 2 x0 to solve the 
given differential equation.

41. (x 1 2)2y0 1 (x 1 2)y9 1 y 5 0

42. (x 2 4)2y2y2 0 2 5(x 2 4)y9 1 9y 5 0

Discussion Problems
43. Give the largest interval over which the general solution of 

Problem 42 is de�ned.

44. Can a Cauchy-Euler differential equation of lowest order with 
real coef�cients be found if it is known that 2 and 1 − i are 
roots of its auxiliary equation? Carry out your ideas.

45. The initial-conditions y(0) = y0, y9(0) = y1 apply to each of the 
following differential equations:

x2y0 = 0,

x2y0 − 2xy9 + 2y = 0,

x2y0 − 4xy9 + 6y = 0.

For what values of y0 and y1 does each initial-value problem 
have a solution?

46. What are the x-intercepts of the solution curve shown in 
Figure 4.7.1? How many x-intercepts are there for 0 , x , 1

2?

Mathematical Model 
47. Bending of a Circular Plate In the analysis of the bending 

of a uniformly loaded circular plate, the equation w(r) of 
the de�ection curve of the plate can be shown to satisfy the 
differential equation

d 3w

dr3 1
1
r

d 2w

dr2 2
1

r 2

dw

dr
5

q

2D
r, (9)

where q and D are constants. Here r is the radial distance from r is the radial distance from r
a point on the circular plate to its center.  

(a) Use the method of this section along with variation of  
parameters as given in (15) of Section 4.6 to �nd the  
general solution of equation (9).

(b) Find a solution of (9) that satis�es the boundary 
conditions

w9s0d 5 0, wsad 5 0, w9sad 5 0,

where a . 0 is the radius of the plate. [Hint: The condition 
w9(0) 5 0 is correct. Use this condition to determine one of the 
constants in the general solution found in part (a).]

48. In the engineering textbook where equation (9) was found, the 
author states that the differential equation is readily solved by 
integration. True, but a big hint is required.

(a) Verify that equation (9) can be written in the alternative 
form 

d

dr 31
r

d

drSr
dwdwd

drD4 5
q

2D
r. (10)

(b) Solve equation (10) using only integration with respect to 
r. Show your result is equivalent to the solution obtained in 
part (a) of Problem 47.

Computer Lab Assignments
In Problems 49–52 solve the given differential equation by using a 
CAS to �nd the (approximate) roots of the auxiliary equation.

49. 2x3y- − 10.98x2y0 + 8.5xy9 + 1.3y = 0

50. x3y- + 4x2y0 + 5xy9 − 9y = 0

51. x4y(4) + 6x3y- + 3x2y0 − 3xy9 + 4y = 0

52. x4y(4) − 6x3y- + 33x2y0 − 105xy9 + 169y = 0

53. Solve x3y- − x2y0 − 2xy9 + 6y = x2 by variation of parameters. 
Use a CAS as an aid in computing roots of the auxiliary equation 
and the determinants given in (15) of Section 4.6.
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INTRODUCTION We will see in Chapter 5 that the linear second-order differential 
equation

a2(x)
d2y2y2

dxdxd 2 1 a1(x) 
dydyd

dxdxd
1 a0(x)y 5 g(x) (1)

plays an important role in many applications. In the mathematical analysis of physical 
systems it is often desirable to express the response or output y(x) of (1) subject 
to either initial conditions or boundary conditions directly in terms of the forcing 
function or input g(x). In this manner the response of the system can quickly be 
analyzed for different forcing functions.

To see how this is done, we start by examining solutions of initial-value problems 
in which the DE (1) has been put into the standard form

y0 1 P(x)y9 1 Q(x)y 5 f (x) (2) 

by dividing the equation by the lead coef�cient a2(x). We also assume throughout 
this section that the coef�cient functions P(x), Q(x), and f (x) are continuous on some 
common interval I. 

4.8.1 INITIALVALUE PROBLEMS 
THREE INITIALVALUE PROBLEMS We will see as the discussion unfolds that 
the solution y(x) of the second order initial-value problem

y0 1 P(x)y9 1 Q(x)y 5 f(x),   y(x0) 5 y0,  y9(x0) 5 y1 (3)

can be expressed as the superposition of two solutions: 

y(x) 5 yh(x) 1 ypypy (x), (4)

where yh(x) is the solution of the associated homogeneous DE with nonhomogeneous 
initial conditions 

y0 1 P(x)y9 1 Q(x)y 5 0,   y(x0) 5 y0,  y9(x0) 5 y1 (5)

and ypypy (x) is the solution of the nonhomogeneous DE with homogeneous (that is, 
zero) initial conditions 

y0 1 P(x)y9 1 Q(x)y 5 f (x),   y(x0) 5 0,  y9(x0) 5 0. (6)

In the case where the coef�cients P and P and P Q are constants the solution of the IVP (5) 
presents no dif�culties: We use the method of Section 4.3 to �nd the general solu-
tion of the homogeneous DE and then use the given initial conditions to determine 
the two constants in that solution. So we will focus on the solution of the IVP (6). 
Because of the zero initial conditions, the solution of (6) could describe a physical 
system that is initially at rest and so is sometimes called a rest solution.

GREEN’S FUNCTION If y1(x) and y2(x) form a fundamental set of solutions on the 
interval I of the associated homogeneous form of (2), then a particular solution of the I of the associated homogeneous form of (2), then a particular solution of the I
nonhomogeneous equation (2) on the interval I can be found by variation of parameI can be found by variation of parameI -
ters. Recall from (3) of Section 4.6, the form of this solution is

ypypy (x) 5 u1(x)y1(x) 1 u2(x)y2(x). (7)

Here at least one of the numbers 
y 0y 0y  or y 1 is assumed to be nonzero. 
If both y 0y 0y  and y1 are 0, then the 
solution of the IVP is y 5 0.

4.8 G Green’s Functions
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The variable coef�cients u1(x) and u2(x) in (7) are de�ned by (9) of Section 4.6:

u91(x) 5 2
y2(x)f)f) (x)

W
,    u92(x) 5

y1(x)f)f) (x)

W
. (8)

The linear independence of y1(x) and y2(x) on the interval I guarantees that the WronI guarantees that the WronI -
skian W 5 W(W(W y1(x), y2(x)) Þ 0 for all x in x in x I. If x and x and x x0 are numbers in I, then integrat-
ing the derivatives u91(x) and u92(x) in (8) on the interval [x0, x] and substituting the 
results into (7) give 

ypypy (x) 5 y1(x)  #x

x
#

x
#

0

2y2(t)f)f) (t)

W(W(W t)
dt 1 y2(x) #x

x
#

x
#

0

y1(t)f)f) (t)

W(W(W t)
dt

5 #x

x
#

x
#

0

2y1(x)y2(t)

W(W(W t)
f (t) dt  t  t 1   #x

x
#

x
#

0

y1(t)y2(x)

W(W(W t)
f (t) dt,

(9) 

where W(W(W t) 5 W(W(W y1(t), y2(t)) 5 * y1(t)

y91(t)

y2(t)

y92y2y (t) *
From the properties of the de�nite integral, the two integrals in the second line of (9) 
can be rewritten as a single integral

yp(x) 5 #x

x0

G(x, t) f (t) dt. (10) 

The function G(x, t) in (10),

G(x, t) 5
y1(t)y2(x) 2 y1(x)y2(t)

W(t)
(11)

is called the Green’s function for the differential equation (2). 
Observe that a Green’s function (11) depends only on the fundamental solutions 

y1(x) and y2(x) of the associated homogeneous differential equation for (2) and not
on the forcing function f (x). Therefore all linear second-order differential equations 
(2) with the same left-hand side but with different forcing functions have the same 
Green’s function. So an alternative title for (11) is the Green’s function for the 
second-order differential operator L 5 D2 1 P(x)D 1 Q(x).

EXAMPLE 1  Particular Solution

Use (10) and (11) to �nd a particular solution of y0 2 y 5 f (x).

SOLUTION The solutions of the associated homogeneous equation y0 2 y 5 0 are 
y1 5 ex, y2 5 e2x, and W(W(W y1(t), y2(t)) 5 22. It follows from (11) that the Green’s 
function is

G(x, t) 5
ete2x 2 exe2t

22
5

ex2t 2 e2(x(x( 2t)

2
5 sinhnhn (x 2 t). (12)

Thus from (10), a particular solution of the DE is

ypypy (x) 5#x

x
#

x
#

0

sinhnhn (x 2 t) f (t) dt. (13)   .

 EXAMPLE 2  General Solutions

Find the general solution of following nonhomogeneous differential equations.

(a) y0 2 y 5 1yx (b) y0 2 y 5 e2x

Because y 1(x(x( ) and x) and x y 2y 2y (x(x( ) are x) are x
constant with respect to the 
integration on t , we can move t , we can move t
these functions inside the definite 
intergrals.

Important. Read this paragraph a 
second time.
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SOLUTION From Example 1, both DEs possess the same complementary function 
yc 5 c1e2x 1 c2ex. Moreover, as pointed out in the paragraph preceding Example 1, 
the Green’s function for both differential equations is (12).

(a) With the identi�cations f (x) 5 1yx and x and x f(f(f t) 5 1yt we see from (13) that a partict we see from (13) that a partict -

ular solution of y0 2 y 5 1yx is ypypy (x) 5 #x

x
#

x
#

0

sinh(x 2 t)

t
dt. Thus the general solution 

y 5 yc 1 ypypy  of the given DE on any interval 
0

 of the given DE on any interval 
0

[x0, x] not containing the origin is 

y 5 c1ex 1 c2e2x 1 #x

x
#

x
#

0

sinh(x 2 t)

t
dt.  (14)

You should compare this solution with that found in Example 3 of Section 4.6.

(b) With f(f(f x) 5 e2x in (13), a particular solution of y0 2 y 5 e2x is ypypy (x) 5
ex

xexe
0
sinh(x 2 t) e2t dt. The general solution y 5 yc 1 ypypy  is then

y 5 c1ex 1 c2e2x 1 #x

x
#

x
#

0

sinhnhn (x 2 t) e2t dt. (15) .

Now consider the special initial-value problem (6) with homogeneous initial 
conditions. One way of solving the problem when f (x) Þ 0 has already 
been illustrated in Sections 4.4 and 4.6, that is, apply the initial conditions 
y(x0) 5 0,  y9(x0) 5 0 to the general solution of the nonhomogeneous DE. But 
there is no actual need to do this because we already have a solution of the IVP 
at hand; it is the function de�ned in (10). 

THEOREM 4.8.1 Solution of the IVP (6)

The function ypypy (x) de�ned in (10) is the solution of the initial-value problem (6).

PROOF By construction we know that ypypy (x) in (10) satis�es the nonhomogeneous 
DE. Next, because a de�nite integral has the property ea

aeae 5 0 we have

ypypy (x0) 5 #x0

x
#

x
#

0

G(x0, t) f (t) dt 5 0.

Finally, to show that y9pypy (x0) 5 0 we utilize the Leibniz formula* for the derivative 
of an integral:

0 from (11)
2

y9pypy (x) 5 G(x, x)f)f) (f(f x) 1 #x

x
#

x
#

0

y1(t)y92(x) 2 y91(x)y2(t)

W(W(W t)
f (t) dt. 

Hence, y9pypy (x0) 5#x0

x
#

x
#

0

y1(t)y92(x0) 2 y91(x0)y2(t)

W(W(W t)
f (t) dt 5 0.

EXAMPLE 3  Example 2 Revisited

Solve the initial-value problems

(a) y0 2 y 5 1yx,   y(1) 5 0, y9(1) 5 0 (b) y0 2 y 5 e2x,   y(0) 5 0, y9(0) 5 0

*See Appendix A.
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SOLUTION (a) With x0 5 1 and f (t) 5 1yt, it follows from (14) of Example 2 and 
Theorem 4.8.1 that the solution of the initial-value problem is

ypypy (x) 5 #x

1
#

1
# sinh (x 2 t)

t
dt,

where [1, x], x . 0.

(b) Identifying x0 5 0 and f (t) 5 e2t, we see from (15) that the solution of the IVP is

ypypy (x) 5#x

0
#

0
# sinh (x 2 t) e2t dt. (16) .

In part (b) of Example 3, we can carry out the integration in (16), but bear in 
mind that x is held constant throughout the integration with respect to x is held constant throughout the integration with respect to x t:

ypypy (x) 5 #x

0
#

0
# sinh(x 2 t) e2t dt 5 #x

0
#

0
# ex2t 2 e2(x(x( 2t)

2
e2t dt

5 1
2 ex#x

0
#

0
# et dt 2 1

2 e2x2x2 #x

0
#

0
# e3t dt

5 1
3 e2x 2 1

2 ex 1 1
6 e2x.

 EXAMPLE 4  Using (10) and (11)

Solve the initial-value problem

y0 1 4y 5 x,   y(0) 5 0, y9(0) 5 0.

SOLUTION We begin by constructing the Green’s function for the given differential We begin by constructing the Green’s function for the given differential W
equation.

The two linearly independent solutions of y0 1 4y 5 0 are y1(x) 5 cos 2x andx andx

y2(x) 5 sin 2x. From (11), with W(cos 2W(cos 2W t, sin 2t) 5 2, we �nd 

G(x, t) 5
cos 2t sint sint 2x2x2 2 cos 2x2x2  sinx sinx 2t

2
5 1

2 sin 2(x 2 t).

With the further identi�cations x0 5 0 and f (t) 5 t in (10) we see that a solution of t in (10) we see that a solution of t
the given initial-value problem is

ypypy (x) 5 1
2#x

0
#

0
# t sin2(x 2 t) dt.

If we wish to evaluate the integral, we �rst write 

ypypy (x) 5 1
2 sin 2x2x2 #x

0
#

0
# t cos2t dt 2 1

2 cos 2x2x2 #x

0
#

0
# t sin 2t dt

and then use integration by parts:

ypypy (x) 5 1
2 sin 2x2x2 f1

2 t sin 2t 1 1
4 cos 2tgx

0
2 1

2 cos 2x2x2 f21
2 t cost cost 2t 1 1

4 sin 2tgx

0

or ypypy (x) 5 1
4 x 2 1

8 sin 2xsin 2xsin 2 . .

INITIALVALUE PROBLEMSCONTINUED Finally, we are now in a position to 
make use of Theorem 4.8.1 to �nd the solution of the initial-value problem posed in 
(3). It is simply the function already given in (4).

Here we have used the 
trigonometric identity 
sin(2x 2 2t ) t ) t 5
sin 2x cos 2x cos 2x t 2 cos 2x sin 2x sin 2x t
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THEOREM 4.8.2 Solution of the IVP (3)

If yh(x) is the solution of the initial-value problem (5) and ypypy (x) is the solu-
tion (10) of the initial-value problem (6) on the interval I, then 

y(x) 5 yh(x) 1 yp(x) (17)

is the solution of the initial-value problem (3).

PROOF Because yh(x) is a linear combination of the fundamental solutions, it 
follows from (10) of Section 4.1 that y 5 yh 1 ypypy  is a solution of the nonhomoge-
neous DE. Moreover, since yh satis�es the initial conditions in (5) and ypypy  satis�es the 
initial conditions in (6), we have, 

y(x0) 5 yh(x0) 1 ypypy (x0) 5 y0 1 0 5 y0

y9(x0) 5 y9h(x0) 1 y9pypy (x0) 5 y1 1 0 5 y1.

Keeping in mind the absence of a forcing function in (5) and the presence of such 
a term in (6), we see from (17) that the response y(x) of a physical system described 
by the initial-value problem (3) can be separated into two different responses:

y(x) 5 yh(x) 1 ypypy (x) (18)3 3
response of system response of system 
due to initial conditions due to the forcing
y(x0) 5 y0, y(x0) 5 y1 function f

If you wish to peek ahead, the following initial-value problem represents a pure 
resonance situation for a driven spring/mass system. See page 207.

EXAMPLE 5  Using Theorem 4.8.2

Solve the initial-value problem

y0 1 4y 5 sin 2x, y(0) 5 1, y9(0) 5 22.

SOLUTION We solve two initial-value problems. 
First, we solve y0 1 4y 5 0, y(0) 5 1, y9(0) 5 22. By applying the initial con-

ditions to the general solution y(x) 5 c1cos 2x 1 c2 sin 2x of the homogeneous DE, 
we �nd that c1 5 1 and c2 5 21. Therefore, yh(x) 5 cos 2x 2 sin 2x.

Next we solve y0 1 4y 5 sin 2x, y(0) 5 0, y9(0) 5 0. Since the left-hand side 
of the differential equation is the same as the DE in Example 4, the Green’s function 
is the same, namely, G(x, t) 5 1

2 sin 2(x 2 t). With f (t) 5 sin 2t we see from (10) that 
the solution of this second problem is yp(x) 5 1

2 ex
0 sin 2(x 2 t)sin 2t dt.

Finally, in view of (17) in Theorem 4.8.2, the solution of the original IVP is

y(x) 5 yh(x) 1 ypypy (x) 5 cos2x2x2 2 sin2x2x2 1 1
2#x

0
#

0
# sin2(x 2 t)sin2t dt. (19) .

If desired, we can integrate the de�nite integral in (19) by using the trigonomet-
ric identity

sinAsinB 5 1
2[cos(A(A( 2 B) 2 cos (A (A ( 1 B)]

with A 5 2(x 2 t) and B 5 2t:

ypypy (x) 5 1
2#x

0
#

0
# sin2(x 2 t)sin 2t dt

5 1
4#x

0
#

0
# [cos(2x(2x(2 2 4t) 2 cos 2x2x2 ] dt (20)

5 1
4 f21

4 sin(2x(2x(2 2 4t) 2 t cos 2x2x2 gx

0

5 1
8 sin 2x2x2 2 1

4 x cos 2x.
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Hence, the solution (19) can be rewritten as

y(x) 5 yh(x) 1 ypypy (x) 5 cos 2x2x2 2 sin 2x2x2 1 _18 sin 2x2x2 2 1
4 x cos 2x2x2 +,

or y(x) 5 cos 2x2x2 2 7
8 sin 2x2x2 2 1

4 x cos 2x. (21)

Note that the physical signi�cance indicated in (18) is lost in (21) after combining 
like terms in the two parts of the solution y(x) 5 yh(x) 1 ypypy (x).

The beauty of the solution given in (19) is that we can immediately write 
down the response of a system if the initial conditions remain the same, but 
the forcing function is changed. For example, if the problem in Example 5 is 
changed to

y0 1 4y 5 x, y(0) 5 1, y9(0) 5 22,

we simply replace sin 2t in the integral in (19) by t in the integral in (19) by t t and the solution is then t and the solution is then t

y(x) 5 yh(x) 1 ypypy (x)

5 cos 2x2x2 2 sin 2x2x2 1 1
2#x

0
#

0
# t sin 2(x 2 t) dt d see Example 4

5 1
4 x 1 cos 2x 2 9

8 sin 2x.

Because the forcing function f is isolated in the particular solution f is isolated in the particular solution f
ypypy (x) 5ex

xexe
0
G(x, t) f (t) dt, the solution in (17) is useful when f is piecewise de�ned. f is piecewise de�ned. f

The next example illustrates this idea.

EXAMPLE 6  An Initial-Value Problem

Solve the initial-value problem

y0 1 4y 5 f (x), y(0) 5 1, y9(0) 5 22,

where the forcing function f is piecewise de�ned:f is piecewise de�ned:f

f (x) 5 5
0,        x , 0

sin 2x 2x 2 ,   0 # x # 2�

0, x . 2�.

SOLUTION From (19), with sin 2t replaced by t replaced by t f (t), we can write

y(x) 5 cos 2x2x2 2 sin 2x 1 1
2#x

0
#

0
# sin 2(x 2 t) f (t) dt.

Because f is de�ned in three pieces, we consider three cases in the evaluation of the f is de�ned in three pieces, we consider three cases in the evaluation of the f
de�nite integral. For x , 0,

ypypy (x) 5 1
2#x

0
#

0
# sin2(x 2 t) 0 dt 5 0,

for 0 # x # 2,

ypypy (x) 5 1
2#x

0
#

0
# sin 2(x 2 t) sin 2t dt d using the integration in (20)

5 1
8 sin 2x 2 1

4 x cos 2x,
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and �nally for x . 2�, we can use the integration following Example 5:

ypypy (x) 5 1
2#2�

0
#

0
# sin 2(x 2 t) sin 2t dt 1 1

2#x

2
#

2
#

�
sin 2(x 2 t) 0 dt

5 1
2�#2�

0
#

0
# sin 2(x 2 t) sin 2t dt

5 1
4f21

4sin (2x (2x (2 2 4t) 2 tcos 2x 2x 2 g2�

0
d using the integration in (20)

5 2 1
16 sin(2x(2x(2 2 8�) 2 1

2 �cos 2x 2x 2 1 1
16sin 2x 2x 2 d sin(2x 2 8�) 5 sin 2x

5 21
2�cos 2x.

Hence ypypy (x) is 

ypypy (x) 5 5
0,                          x , 0
1
8 sin 2x 2 1

4 x cos 2x2x2 , 0 # x # 2�

21
2 � cos 2x2x2 ,               x . 2�.

and so 

y(x) 5 yh(x) 1 ypypy (x) 5 cos 2x2x2 2 sin 2x2x2 1 ypypy (x).

Putting all the pieces together we get

y(x) 5 5
cos 2x 2x 2 2 sin 2x 2x 2 , x , 0

_1 2 1
4 x+ cos 2x2x2 2 7

8 sin 2x 2x 2 , 0 # x # 2�

_1 2 1
2 �+cos 2x2x2 2 sin 2x2x2 , x . 2�.

The three parts of y(x) are shown in different colors in Figure 4.8.1. .

We next examine how a boundary value problem (BVP) can be solved using a 
different kind of Green’s function.

4.8.2 BOUNDARYVALUE PROBLEMS 
In contrast to a second-order IVP, in which y(x) and y9(x) are speci�ed at the same 
point, a BVP for a second-order DE involves conditions on y(x) and y9(x) that are 
speci�ed at two different points x 5 a and x 5 b. Conditions such as

y(a) 5 0, y(b) 5 0; y(a) 5 0,    y9(b) 5 0; y9(a) 5 0, y9(b) 5 0

are just special cases of the more general homogeneous boundary conditions:

A1y(a) 1 B1y9(a) 5 0 (22)

A2y2y2 (b) 1 B2y2y2 9(b) 5 0, (23)

where A1, A2, B1, and B2 are constants. Speci�cally, our goal is to �nd an integral 
solution ypypy (x) that is analogous to (10) for nonhomogeneous boundary-value problems 
of the form

 y0 1 P(x)y9 1 Q(x)y 5 f (x),

A1y(a) 1 B1y9(a) 5 0 (24)

A2y(b) 1 B2y9(b) 5 0.   

In addition to the usual assumptions that P(x), Q(x), and f (x) are continuous on 
[a, b], we assume that the homogeneous problem

y0 1 P(x)y9 1 Q(x)y 5 0,

A1y(a) 1 B1y9(a) 5 0

A2y2y2 (b) 1 B2y2y2 9(b) 5 0,   

21

3�2��2�

11

2� 3�

y

x

FIGURE 4.8.1 Graph of y(x) in Example 6
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possesses only the trivial solution y 5 0. This latter assumption is suf�cient to guarantee 
that a unique solution of (24) exists and is given by an integral ypypy (x) 5eb

aeae G(x, t) f (t) dt,
where G(x, t) is a Green’s function. 

The starting point in the construction of G(x, t) is again the variation of parame-
ters formulas (7) and (8).

ANOTHER GREEN’S FUNCTION Suppose y1(x) and y2(x) are linearly inde-
pendent solutions on [a, b] of the associated homogeneous form of the DE in 
(24) and that x is a number in the interval [a, b]. Unlike the construction of (9) 
where we started by integrating the derivatives in (8) over the same interval, we 
now integrate the �rst equation in (8) on [b, x] and the second equation in (8) on 
[a,  x]:

u1(x) 5 2#x

b
#

b
# y2(t) f (t)

W(W(W t)
dt and u2(x) 5 #x

a
#

a
# y1(t) f (t)

W(W(W t)
dt. (25)

The reason for integrating u91(x) and u29(x) over different intervals will become clear 
shortly. From (25), a particular solution ypypy (x) 5 u1(x)y1(x) 1 u2(x)y2(x) of the DE is

here we used the minus 
sign in (25) to reverse 

the limits of integration
 $11%11&

ypypy (x) 5 y1(x) #b

x
#

x
# y2(t) f (t)

W(W(W t)
dt 1 y2(x) #x

a
#

a
# y1(t) f (t)

W(W(W t)
dt

oror ypypy (x) 5 #x

a
#

a
# y2(x)y1(t)

W(W(W t)
ff (t) dt 1 #b

x
#

x
# y1(x)y2(t)

W(W(W t)
ff (t) dt. (26)

The right-hand side of (26) can be written compactly as a single integral

yp(x) 5 #b

a
G(x, t) f (t) dt, (27)

where the function G(x, t) is 

G(x, t) 5 5
y1(t)y2(x)

W(t)
, a # t # x

y1(x)y2(t)

W(t)
, x # t # b.

(28)

The piecewise-de�ned function (28) is called a Green’s function for the boundary-
value problem (24). It can be proved that G(x, t) is a continuous function of x on the x on the x
interval [a, b].

Now if the solutions y1(x) and y2(x) used in the construction of G(x, t) in (28) are 
chosen in such a manner that at x 5 a, y1(x) satis�es A1y1(a) 1 B1y91(a) 5 0, and at 
x 5 b, y2(x) satis�es A2y2(b) 1 B2y2y2 92(b) 5 0, then, wondrously, ypypy (x) de�ned in (27) 
satis�es both homogeneous boundary conditions in (24).

To see this we will need

ypypy (x) 5 u1(x)y1(x) 1 u2(x)y2(x) (29)

and y9pypy (x) 5 u1(x)y91(x) 1 y1(x)u91(x) 1 u2(x)y92(x) 1 y2(x)u92(x)

5 u1(x)y91(x) 1 u2(x)y92(x).
(30)

The second line in (30) results 
from the fact that

y 1(x(x( )x)x u 91(x(x( )x)x 1 y 2(x(x( )x)x u 92(x(x( )x)x 5 0.

See the discussion in Section 4.6 
following (4).
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Before proceeding, observe in (25) that u1(b) 5 0 and u2(a) 5 0. In view of the 
second of these two properties we can show that ypypy (x) satis�es (22) whenever y1(x)
satis�es the same boundary condition. From (29) and (30) we have

0 0
2 2

A1ypypy (a) 1 B1y9pypy (a) 5 A1[u1(a)y1(a) 1 u2(a)y2(a)] 1 B1[u1(a)y91(a) 1 u2(a)y92(a)]

5 u1(a)[A)[A)[ 1y1(a) 1 B1y91(a)] 5 0.
 (1111)1111*
 0 from (22)

Likewise, u1(b) 5 0 implies that whenever y2(x) satis�es (23) so does ypypy (x):

 0 0
 2 2

A2y2y2 pypy (b) 1 B2y2y2 9p(b) 5 A2[u1(b)y1(b) 1 u2(b)y2(b)] 1 B2[u1(b)y91(b) 1 u2(b)y92(b)]

 5 u2(b)[A)[A)[ 2y2(b) 1 B2y92 (b)] 5 0.
 (1111)1111*
 0 from (22)

The next theorem summarizes these results.

THEOREM 4.8.3 Solution of the BVP (24)

Let y1(x) and y2(x) be linearly independent solutions of

y0 1 P(x)y9 1 Q(x)y 5 0

on [a,  b], and suppose y1(x) and y2(x) satisfy (22) and (23), respectively. Then the 
function ypypy (x) de�ned in (27) is a solution of the boundary-value problem (24).

EXAMPLE 7  Using Theorem 4.8.3

Solve the boundary-value problem

y0 1 4y 5 3, y9(0) 5 0, y(�y2) 5 0.

SOLUTION The solutions of the associated homogeneous equation y0 1 4y 5 0 are 
y1(x) 5 cos 2x 2x 2  and y2(x) 5 sin 2x 2x 2  and y1(x) satis�es y9(0) 5 0 whereas y2(x) satis-
�es y(�y2) 5 0. The Wronskian is W(W(W y1, y2) 5 2, and so from (28) we see that the 
Green’s function for the boundary-value problem is

G(x, t) 5 5
1
2 cos 2t st st in 2x 2x 2 , 0 # t # x

1
2 cos 2x 2x 2  sx sx in 2t, x # t # �y2.

It follows from Theorem 4.8.3 that a solution of the BVP is (27) with the identi�ca-
tions a 5 0, b 5 �y2, and f (t) 5 3:

ypypy (x) 5 3#�y2

0
#

0
# G(x, t) dt

5 3 ? 1
2 sin 2x 2x 2 #x

0
#

0
# cos 2t dt 1 3 ? 1

2 cos 2x 2x 2 #�y2

x
#

x
# sin 2t dt,

or, after evaluating the de�nite integrals, yp(x) 5 3
4 1 3

4 cos 2x. .

Don’t infer from the preceding example that the demand that y1(x) satisfy (22) 
and y2(x) satisfy (23) uniquely determines these functions. As we see in the last 
example, there is a certain arbitrariness in the selection of these functions. 

The boundary condition y 9(0) 5 0 
is a special case of (22) with a 5 0, 
A 1 5 0, and B 1 5 1. The boundary 
condition y (�/2) �/2) � 5 0 is a special 
case of (23) with b 5 �/2, �/2, � A 2 5 1, 
B 2 5 0.
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EXAMPLE 8  A Boundary-Value Problem

Solve the boundary-value problem

x2y2y2 0 2 3xyxyx 9 1 3y 5 24x5, y(1) 5 0, y(2) 5 0.

SOLUTION The differential equation is recognized as a Cauchy-Euler DE. From 
the auxiliary equation m(m 2 1) 2 3m 1 3 5 (m 2 1)(m 2 3) 5 0 the general so-
lution of the associated homogeneous equation is y 5 c1x 1 c2x2x2

3. Applying y(1) 5 0
to this solution implies c1 1 c2 5 0 or c1 5 2c2. By choosing c2 5 21 we get 
c1 5 1 and y1 5 x 2 x3. On the other hand, y(2) 5 0 applied to the general solution 
shows 2c1 1 8c2 5 0 or c1 5 24c2. The choice c2 5 21 now gives c1 5 4 and so 
y2(x) 5 4x 2 x3. The Wronskian of these two functions is

W(W(W y1(x), y2(x)) 5 *x 2 x3 4x 2 x3

1 2 3x2 4 2 3x2* 5 6x3.

Hence the Green’s function for the boundary-value problem is

G(x, t) 5 5
(t 2 t3)(4x 2 x3)

6t3 ,   1 # t # x

(x 2 x3)(4t 2 t3)

6t3 ,   x # t # 2.

In order to identify the correct forcing function f we must write the DE in standard f we must write the DE in standard f
form:

y0 2
3
x

y9 1
3

x2 y 5 24x3.

From this equation we see that f (t) 5 24t3 and so ypypy (x) in (27) becomes

ypypy (x) 5 24#2

1
#

1
# G(x, t) t3dt

5 4(4x 2 x3)#x

1
#

1
# (t 2 t3) dt 1 4(x 2 x3)#2

x
#

x
# (4t 2 t3) dt.

Straightforward de�nite integration and algebraic simpli�cation yield the solution 
yp(x) 5 3x5 2 15x3 1 12x. .Verify y py py (x(x( ) that satisfies the x) that satisfies the x

differential equation and the two 
boundary conditions.

EXERCISES 4.8

4.8.1 Initial-Value Problems

In Problems 1–6 proceed as in Example 1 to �nd a particular solution 
ypypy (x) of the given differential equation in the integral form (10). 

1. y0 2 16y 5 f (x) 2. y0 1 3y9 2 10y0y0 5 f (x)

3. y0 1 2y2y2 9 1 y 5 f (x) 4. 4y0 2 4y9 1 y 5 f (x)

5. y0 1 9y 5 f (x) 6. y0 2 2y2y2 9 1 2y2y2 5 f (x)

In Problems 7–12 proceed as in Example 2 to �nd the general solu-
tion of the given differential equation. Use the results obtained in 
Problems 1–6. Do not evaluate the integral that de�nes ypypy (x).

7. y0 2 16y 5 xe22x 8. y0 1 3y9 2 10y0y0 5 x2

9. y0 1 2y2y2 9 1 y 5 e2x 10. 4y0 2 4y9 1 y 5 arctan x

11. y0 1 9y 5 x 1 sin x 12. y0 2 2y2y2 9 1 2y2y2 5 cos2x2x2

Answers to selected odd-numbered problems begin on page ANS-6.

REMARKS

We have barely scratched the surface of the elegant, albeit complicated, theory 
of Green’s functions. Green’s functions can also be constructed for linear 
second-order partial differential equations, but we leave coverage of the latter 
topic to an advanced course. 
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In Problems 13–18 proceed as in Example 3 to �nd a solution of the 
given initial-value problem. Evaluate the integral that de�nes ypypy (x).

13. y0 2 4y 5 e2x2x2 , y(0) 5 0, y9(0) 5 0

14. y0 2 y9 5 1, y(0) 5 0, y9(0) 5 0

15. y0 2 10y0y0 9 1 25y 5 e5x, y(0) 5 0, y9(0) 5 0

16. y0 1 6y9 1 9y 5 x, y(0) 5 0, y9(0) 5 0

17. y0 1 y 5 csc x cot x, y(�y2) 5 0, y9(�y2) 5 0

18. y0 1 y 5 sec2x2x2 , y(�) 5 0, y9(�) 5 0

In Problems 19–30 proceed as in Example 5 to �nd a solution of the 
given initial-value problem.

19. y0 2 4y 5 e2x, y(0) 5 1, y9(0) 5 24

20. y0 2 y9 5 1, y(0) 5 10, y9(0) 5 1

21. y0 2 10y0y0 9 1 25y 5 e5x, y(0) 5 21, y9(0) 5 1

22. y0 1 6y9 1 9y 5 x, y(0) 5 1, y9(0) 5 23

23. y0 1 y 5 csc x cot x, y(�y2) 5 2�y2, y9(�y2) 5 21

24. y0 1 y 5 sec2x2x2 , y(�) 5 1
2, y9(�) 5 21

25. y0 1 3y9 1 2y2y2 5 sin ex, y(0) 5 21, y9(0) 5 0

26. y0 1 3y9 1 2y2y2 5
1

1 1 ex, y(0) 5 0, y9(0) 5 1

27. x2y2y2 0 2 2x2x2 yxyx 9 1 2y2y2 5 x, y(1) 5 2, y9(1) 5 21

28. x2y2y2 0 2 2x2x2 yxyx 9 1 2y2y2 5 x ln x, y(1) 5 1, y9(1) 5 0

29. x2y2y2 0 2 6y 5 ln x, y(1) 5 1, y9(1) 5 3

30. x2y2y2 0 2 xyxyx 9 1 y 5 x2, y(1) 5 4, y9(1) 5 3

In Problems 31–34 proceed as in Example 6 to �nd a solution of 
the initial-value problem with the given piecewise-de�ned forcing 
function.

31. y0 2 y 5 f (x), y(0) 5 8, y9(0) 5 2,

where f (x) 5 521, x , 0

1, x $ 0

32. y0 2 y 5 f (x), y(0) 5 3, y9(0) 5 2,

where f (x) 5 50, x , 0

x, x $ 0

33. y0 1 y 5 f (x), y(0) 5 1, y9(0) 5 21,

where f (x) 5 50, x , 0

10, 0 # x # 3�

0, x . 3�

34. y0 1 y 5 f (x), y(0) 5 0, y9(0) 5 1,

where f (x) 5 5
0, x , 0

cos x, 0 # x # 4�

0, x . 4�

4.8.2 Boundary-Value Problems

In Problems 35 and 36, (a) use (27) and (28) to �nd a solution of the 
boundary-value problem. (b) Verify that the function ypypy (x) satis�es 
the differential equations and both boundary-conditions.

35. y0 5 f (x), y(0) 5 0, y(1) 5 0

36. y0 5 f (x), y(0) 5 0, y(1) 1 y9(1) 5 0

37. In Problem 35 �nd a solution of the BVP when f (x) 5 1.

38. In Problem 36 �nd a solution of the BVP when f (x) 5 x.

In Problems 39–44 proceed as in Examples 7 and 8 to �nd a solution 
of the given boundary-value problem.

39. y0 1 y 5 1, y(0) 5 0, y(1) 5 0

40. y0 1 9y 5 1, y(0) 5 0, y9(�) 5 0

41. y0 2 2y2y2 9 1 2y2y2 5 ex, y(0) 5 0, y(�y2) 5 0

42. y0 2 y9 5 e2x2x2 , y(0) 5 0, y(1) 5 0

43. x2y2y2 0 1 xyxyx 9 5 1, y(e21) 5 0, y(1) 5 0

44. x2y2y2 0 2 4x4x4 yxyx 9 1 6y 5 x4, y(1) 2 y9(1) 5 0, y(3) 5 0

4.9  S  Solving Systems of Linear DEs 
by Eby Eby limination

INTRODUCTION Simultaneous ordinary differential equations involve two or 
more equations that contain derivatives of two or more dependent variables—the 
unknown functions—with respect to a single independent variable. The method of 
systematic elimination for solving systems of differential equations with constant 
coef�cients is based on the algebraic principle of elimination of variables. We shall 
see that the analogue of multiplying an algebraic equation by a constant is operating
on an ODE with some combination of derivatives.

SYSTEMATIC ELIMINATION The elimination of an unknown in a system of 
linear differential equations is expedited by rewriting each equation in the system 

4.9 SOLVING SYSTEMS OF LINEAR DES BY ELIMINATION 183

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



in differential operator notation. Recall from Section 4.1 that a single linear 
equation

any(n) 1 an21y(n21) 1 Á 1 a1y9 1 a0y 5 g(t),

where the ai, i = 0, 1, . . . , n are constants, can be written as

(anDn 1 an21D(n21) 1 Á 1 a1D 1 a0)y 5 g(t).

If the nth-order differential operator anDn 1 an21D(n21) 1 Á 1 a1D 1 a0 factors 
into differential operators of lower order, then the factors commute. Now,  for 
example, to rewrite the system

x0 1 2x9 1 y0 5 x 1 3y 1 sin t

x9 1 y9 5 24x 1 2y 1 e2t

in terms of the operator D, we �rst bring all terms involving the dependent variables 
to one side and group the same variables:

x0 1 2x9 2 x 1 y0 2 3y 5 sin t

x9 1 4x 1 y9 2 2y 5 e2t is the same as
(D2 1 2D 2 1)x 1 (D2 2 3)y 5 sin t

(D 1 4)x 1 (D 2 2)y 5 e2t.

SOLUTION OF A SYSTEM A solution of a system of differential equations is a set 
of suf�ciently differentiable functions x = �1(t), y = �2(t), z = �3(t), and so on that 
satis�es each equation in the system on some common interval I.

METHOD OF SOLUTION Consider the simple system of linear �rst-order 
equations

dxdxd

dt
5 3y

dydyd

dt
5 2x

or, equivalently,
DxDxD 2 3y 5 0

2x 2 Dy 5 0.
(1)

Operating on the �rst equation in (1) by D while multiplying the second by −3 and 
then adding eliminates y from the system and gives D2x − 6x = 0. Since the roots of 
the auxiliary equation of the last DE are m1 5 Ï6Ï  and m2 5 2Ï6Ï , we obtain

x(t) 5 c1e2Ï6Ï t 1 c2eÏ6Ï t. (2)

Multiplying the �rst equation in (1) by 2 while operating on the second by D and 
then subtracting gives the differential equation for y, D2y2y2 − 6y = 0. It follows 
immediately that

y(t) 5 c3e2Ï6Ï t 1 c4eÏ6Ï t. (3)

Now (2) and (3) do not satisfy the system (1) for every choice of c1, c2, c3, and 
c4 because the system itself puts a constraint on the number of parameters in a solu-
tion that can be chosen arbitrarily. To see this, observe that substituting x(t) and y(t) 
into the �rst equation of the original system (1) gives, after simpli�cation,

_2Ï6Ï c1 2 3c3+e2Ï6Ï t 1 _Ï6Ï c2 2 3c4+eÏ6Ï t 5 0.

Since the latter expression is to be zero for all values of t, we must have 
2Ï6c1 2 3c3 5 0 and Ï6c2 2 3c4 5 0. These two equations enable us to write c3

as a multiple of c1 and c4 as a multiple of c2:

c3 5 2
Ï6Ï
3

c1 and c4 5
Ï6Ï
3

c2. (4)
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Hence we conclude that a solution of the system must be

x(t) 5 c1e2Ï6Ï t 1 c2eÏ6Ï t, y(t) 5 2
Ï6Ï
3

c1e2Ï6Ï t 1
Ï6Ï
3

c2eÏ6Ï t.

You are urged to substitute (2) and (3) into the second equation of (1) and verify 
that the same relationship (4) holds between the constants.

 EXAMPLE 1 Solution by Elimination

Solve Dx 1 (D 1 2)y 5 0
(D 2 3)x 2 2y 5 0.

(5)

SOLUTION Operating on the �rst equation by D − 3 and on the second by D and 
then subtracting eliminates x from the system. It follows that the differential equation x from the system. It follows that the differential equation x
for y is

[(D 2 3)(D 1 2) 1 2D]y 5 0 or (D2 1 D 2 6)y 5 0.

Since the characteristic equation of this last differential equation is 
m2 + m − 6 = (m − 2)(m + 3) = 0, we obtain the solution

y(t) 5 c1e2t 1 c2e23t. (6)

Eliminating y in a similar manner yields (D2 + D − 6)x = 0, from which we �nd

x(t) 5 c3e2t 1 c4e23t. (7)

As we noted in the foregoing discussion, a solution of (5) does not contain four in-
dependent constants. Substituting (6) and (7) into the �rst equation of (5) gives

(4c1 1 2c3)e2t 1 (2c2 2 3c4)e23t 5 0.

From 4c1 + 2c3 = 0 and −c2 − 3c4 = 0 we get c3 = −2c1 and c4 5 21
3 c2. Accord-

ingly, a solution of the system is

x(t) 5 22c1e2t 2
1

3
c2e23t, y(t) 5 c1e2t 1 c2e23t. .

Because we could just as easily solve for c3 and c4 in terms of c1 and c2, the 
solution in Example 1 can be written in the alternative form

x(t) 5 c3e2t 1 c4e23t, y(t) 5 2
1

2
c3e2t 2 3c4e23t.

It sometimes pays to keep one’s eyes open when solving systems. Had we solved 
for x �rst in Example 1, then x �rst in Example 1, then x y could be found, along with the relationship between 
the constants, using the last equation in the system (5). You should verify that sub-
stituting x(t) into y 5 1

2 (DxDxD 2 3x) yields y 5 21
2 c3e2t 2 3c4e23t. Also note in the 

initial discussion that the relationship given in (4) and the solution y(t) of (1) could 
also have been obtained by using x(t) in (2) and the �rst equation of (1) in the form

y 5 1
3 DxDxD 5 21

3 Ï6Ï c1e2Ï6Ï t 1 1
3 Ï6Ï c2eÏ6Ï t.

 EXAMPLE 2  Solution by Elimination

Solve x9 2 4x 1 y0 5 t2t2t
x9 1 x 1 y9 5 0.

(8)

SOLUTION First we write the system in differential operator notation:

 (D 2 4)x 1 D2y 5 t2t2t

  (D 1 1)x 1 Dy 5 0.
(9)

This might save you some time.
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Then, by eliminating x, we obtain

 [(D 1 1)D2 2 (D 2 4)D]y 5 (D 1 1)t2 2 (D 2 4)0

or  (D3 1 4D)y 5 t2t2t 1 2t.

Since the roots of the auxiliary equation m(m2 + 4) = 0 are m1 = 0, m2 = 2i, and 
m3 =−2i, the complementary function is yc = c1 + c2 cos 2t + c3 sin 2t. To deter-
mine the particular solution ypypy , we use undetermined coef�cients by assuming that 
ypypy = At 3 + Bt2 + Ct. Therefore y9pypy 5 3At2 1 2Bt 1 C, y0pypy 5 6At 1 2B, y09pypy 5 6A6A6 ,

y-pypy 1 4y9p 5 12At2 1 8Bt 1 6A 1 4C 5 t2t2t 1 2t.

The last equality implies that 12A = 1, 8B = 2, and 6A + 4C = 0; hence 
A 5 1

12, B 5 1
4, and C 5 21

8. Thus

y 5 yc 1 ypypy 5 c1 1 c2 cos 2t 1 c3 sin 2t 1
1

12
t3 1

1

4
t2t2t 2

1

8
t. (10)

Eliminating y from the system (9) leads to

[(D 2 4) 2 D(D 1 1)]x 5 t2t2t or (D2 1 4)x 5 2t2t2t .

It should be obvious that xc = c4 cos 2t + c5 sin 2t and that undetermined coef�cients t and that undetermined coef�cients t
can be applied to obtain a particular solution of the form xpxpx = At2 + Bt + C. In 
this case the usual differentiations and algebra yield xpxpx 5 21

4 t2t2t 1 1
8, and so

x 5 xc 1 xpxpx 5 c4 cos 2t 1 c5 sin 2t 2
1

4
t2t2t 1

1

8
. (11)

Now c4 and c5 can be expressed in terms of c2 and c3 by substituting (10) 
and (11) into either equation of (8). By using the second equation, we �nd, after com-
bining terms,

(c5 2 2c4 2 2c2) sin 2t 1 (2c5 1 c4 1 2c3) cos 2t 5 0,

so c5 − 2c4 − 2c2 = 0 and 2c5 + c4 + 2c3 = 0. Solving for c4 and c5 in terms of c2

and c3 gives c4 = −1
5 (4c2 + 2c3) and c5 = 1

5 (2c2 − 4c3). Finally, a solution of (8) 
is found to be

x(t) 5 2
1

5
 (4 (4c2 1 2c3) cos 2t 1

1

5
 (2 (2c2 2 4c3) sin 2t 2

1

4
t2t2t 1

1

8
,

y(t) 5 c1 1 c2 cos 2t 1 c3 sin 2t 1
1

12
t3 1

1

4
t2t2t 2

1

8
t. .

 EXAMPLE 3  A Mixture Problem Revisited

In (3) of Section 3.3 we saw that the system of linear �rst-order differential equations

dxdxd 1

dt
5 2

2

25
x1 1

1

50
x2

dxdxd 2

dt
5

2

25
x1 2

2

25
x2

is a model for the number of pounds of salt x1(t) and x2(t) in brine mixtures in tanks 
A and B, respectively, shown in Figure 3.3.1. At that time we were not able to solve 
the system. But now, in terms of differential operators, the foregoing system can be 
written as

1D 1
2

252x1 2
1

50
x2 5 0

2
2

25
x1 1 1D 1

2

252x2 5 0.
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Operating on the �rst equation by D 1 2
25, multiplying the second equation by 1

50, 
adding, and then simplifying gives (625D2 + 100D + 3)x1 = 0. From the auxiliary 
equation

625m2 1 100m 1 3 5 (25m 1 1)(25m 1 3) 5 0

we see immediately that x1(t) = c1e−t/25 + c2e−3t/25. We can now obtain x2(t) by
using the �rst DE of the system in the form x2 5 50_D 1 2

25+x1. In this manner we
�nd the solution of the system to be

x1(t) 5 c1e2t/25 1 c2e23t/25, x2(t) 5 2c1e2t/25 2 2c2e23t/25.

In the original discussion on pages 108–109 we assumed that the initial conditions 
were x1(0) = 25 and x2(0) = 0. Applying these conditions to the solution yields 
c1 + c2 = 25 and 2c1 − 2c2 = 0. Solving these equations simultaneously gives 
c1 5 c2 5 25

2 . Finally, a solution of the initial-value problem is

x1(t) 5
25

2
e2t/25 1

25

2
e23t/25, x2(t) 5 25e2t/25 2 25e23t/25.

The graphs of both of these equations are given in Figure 4.9.1. Consistent with the 
fact that pure water is being pumped into tank A we see in the �gure that x1(t) : 0 
and x2(t) : 0 as t : `. .

FIGURE 4.9.1 Pounds of salt in tanks A
and B in Example 3
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EXERCISES 4.9
In Problems 1–20 solve the given system of differential equations by 
systematic elimination.

1.
dxdxd

dt
5 2x 2 y 2.

dxdxd

dt
5 4x 1 7y

dy

dt
5 x

dy

dt
5 x 2 2y

3.
dxdxd

dt
5 2y 1 t 4.

dxdxd

dt
2 4y 5 1

dy

dt
5 x 2 t

dy

dt
1 x 5 2

5. (D2 + 5)x − 2y = 0

−2x + (D2 + 2)y = 0

6. (D + 1)x + (D − 1)y = 2

3x + (D + 2)y = −1

7.
d 2x

dt 2 5 4y 1 et 8.
d 2x

dt2 1
dy

dt
5 25x

d 2y

dt 2 5 4x 2 et dxdxd

dt
1

dy

dt
5 2x 1 4y

9.          Dx +    D2y = e3t

(D + 1)x + (D − 1)y = 4e3t

10. D2x − Dy = t

(D + 3)x + (D + 3)y = 2

11. (D2 − 1)x − y = 0

 (D − 1)x + Dy = 0

12. (2D2 − D − 1)x − (2D + 1)y = 1

(D − 1)x + Dy = −1

13. 2
dxdxd

dt
2 5x 1

dy

dt
5 et

dxdxd

dt
2 x 1

dy

dt
5 5et

14.
dxdxd

dt
1

dy

dt
5 et

2
d2d2d x

dt2
1

dxdxd

dt
1 x 1 y 5 0

15. (D − 1)x + (D2 + 1)y = 1

(D2 − 1)x + (D + 1)y = 2

16. D2x − 2(D2 + D)y = sin t

x + Dy = 0

17. Dx = y 18. Dx + z = et

Dy = z (D − 1)x + Dy + Dz = 0

Dz = x x + 2y + Dz = et

19.
dxdxd

dt
5 6y 20.

dx

dt
5 2x 1 z

dy

dt
5 x 1 z

dy

dt
5 2y 1 z

dz

dt
5 x 1 y

dz

dt
5 2x 1 y

In Problems 21 and 22 solve the given initial-value problem.

21.
dxdxd

dt
5 25x 2 y 22.

dxdxd

dt
5 y 2 1

dy

dt
5 4x 2 y

dy

dt
5 23x 1 2y

x(1) 5 0, y(1) 5 1 x(0) = 0, y(0) = 0

Answers to selected odd-numbered problems begin on page ANS-6.
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Mathematical Models
23. Projectile Motion A projectile shot from a gun has weight 

w = mg and velocity v tangent to its path of motion. Ignoring air 
resistance and all other forces acting on the projectile except its 
weight, determine a system of differential equations that describes 
its path of motion. See Figure 4.9.2. Solve the system. [Hint: Use 
Newton’s second law of motion in the x and x and x y directions.]

24. Projectile Motion with Air Resistance Determine a 
system of differential equations that describes the path of 
motion in Problem 23 if air resistance is a retarding force k
(of magnitude k) acting tangent to the path of the projectile 
but opposite to its motion. See Figure 4.9.3. Solve the system. 
[Hint: k is a multiple of velocity, say, �v.]

Discussion Problems
25. Examine and discuss the following system:

DxDxD 2 2Dy 5 t2

(D 1 1)x 2 2(D 1 1)y 5 1.

Computer Lab Assignments
26. Reexamine Figure 4.9.1 in Example 3. Then use a root-�nding 

application to determine when tank B contains more salt than 
tank A.

27. (a) Reread Problem 10 of Exercises 3.3. In that problem you 
were asked to show that the system of differential equations

dxdxd 1

dt
5 2

1

50
x1

dxdxd 2

dt
5

1

50
x1 2

2

75
x2

dxdxd 3

dt
5

2

75
x2 2

1

25
x3

is a model for the amounts of salt in the connected mixing 
tanks A, B, and C shown in Figure 3.3.8. Solve the system C shown in Figure 3.3.8. Solve the system C
subject to x1(0) = 15, x2(0) = 10, x3(0) = 5.

(b) Use a CAS to graph x1(t), x2(t), and x3(t) in the same coor-
dinate plane (as in Figure 4.9.1) on the interval [0, 200].

(c) Because only pure water is pumped into Tank A, it stands to 
reason that the salt will eventually be �ushed out of all three 
tanks. Use a root-�nding application of a CAS to determine 
the time when the amount of salt in each tank is less than or 
equal to 0.5 pound. When will the amounts of salt x1(t), x2(t), 
and x3(t) be simultaneously less than or equal to 0.5 pound?

FIGURE 4.9.2 Path of projectile in Problem 23
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x

mg

v

FIGURE 4.9.3 Forces in Problem 24
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INTRODUCTION The dif�culties that surround higher-order nonlinear differential nonlinear differential nonlinear
equations and the few methods that yield analytic solutions are examined next. Two 
of the solution methods considered in this section employ a change of variable to 
reduce a nonlinear second-order DE to a �rst-order DE. In that sense these methods 
are analogous to the material in Section 4.2.

SOME DIFFERENCES There are several signi�cant differences between linear 
and nonlinear differential equations. We saw in Section 4.1 that homogeneous lin-
ear equations of order two or higher have the property that a linear combination of 
solutions is also a solution (Theorem 4.1.2). Nonlinear equations do not possess this 
property of superposability. See Problems 1, 2, and 22 in Exercises 4.10. We can �nd 
general solutions of linear �rst-order DEs and higher-order equations with constant 
coef�cients. Even when we can solve a nonlinear �rst-order differential equation 
in the form of a one-parameter family, this family does not, as a rule, represent a 
general solution. Stated another way, nonlinear �rst-order DEs can possess singular 
solutions, whereas linear equations cannot. But the major difference between linear 
and nonlinear equations of order two or higher lies in the realm of solvability. Given 
a linear equation, there is a chance that we can �nd some form of a solution that we 
can look at—an explicit solution or perhaps a solution in the form of an in�nite series 
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(see Chapter 6). On the other hand, nonlinear higher-order differential equations vir-
tually defy solution by analytical methods. Although this might sound disheartening, 
there are still things that can be done. As was pointed out at the end of Section 1.3, 
we can always analyze a nonlinear DE qualitatively and numerically.

Let us make it clear at the outset that nonlinear higher-order differential equa-
tions are important—dare we say even more important than linear equations?—
because as we �ne-tune the mathematical model of, say, a physical system, we also 
increase the likelihood that this higher-resolution model will be nonlinear.

We begin by illustrating an analytical method that occasionally enables us to 
�nd explicit/implicit solutions of special kinds of nonlinear second-order differential 
equations.

REDUCTION OF ORDER Nonlinear second-order differential equations F(x(x( , y9, y0) = 0, 
where the dependent variable y is missing, and y is missing, and y F(y(y( , y9, y0) = 0, where the independent 
variable x is missing, can sometimes be solved by using �rst-order methods. Each x is missing, can sometimes be solved by using �rst-order methods. Each x
equation can be reduced to a �rst-order equation by means of the substitution u = y9.

DEPENDENT VARIABLE MISSING The next example illustrates the substitution 
technique for an equation of the form F(x, y9, y0) = 0. If u = y9, then the differential 
equation becomes F(x, u, u9) = 0. If we can solve this last equation for u, we can �nd 
y by integration. Note that since we are solving a second-order equation, its solution 
will contain two arbitrary constants. 

EXAMPLE 1  Dependent Variable y Is Missing

Solve y0 = 2x(y9)2.

SOLUTION If we let u = y9, then duydx = y0. After substituting, the second-order 
equation reduces to a �rst-order equation with separable variables; the independent 
variable is x and the dependent variable is x and the dependent variable is x u:

du

dxdxd
5 2xu2  or

du

u2 5 2x dxdxd

# u22 du 5 # 2x dxdxd

2u21 5 x2 1 c1
2.

The constant of integration is written as c1
2 for convenience. The reason should be 

obvious in the next few steps. Because u−1 = 1yy9, it follows that

dydyd

dxdxd
5 2

1

x2 1 c1
2

,

and so y 5 2# dxdxd

x2 1 c1
2 or y 5 2

1
c1

 t tan21 x
c1

1 c2. .

INDEPENDENT VARIABLE MISSING Next we show how to solve an equation 
that has the form F(y, y9, y0) = 0. Once more we let u = y9, but because the indepen-
dent variable x is missing, we use this substitution to transform the differential equax is missing, we use this substitution to transform the differential equax -
tion into one in which the independent variable is y and the dependent variable is u.
To this end we use the Chain Rule to compute the second derivative of y:

y0 5
du

dxdxd
5

du

dydyd

dy

dx
5 u

du

dydyd
.

In this case the �rst-order equation that we must now solve is

F 1y, u, u 
du

dy2 5 0.
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EXAMPLE 2  Independent Variable x Is Missing

Solve yy0 = ( y9)2.

SOLUTION With the aid of u = y9, the Chain Rule shown above, and separation of 
variables, the given differential equation becomes

y1u du

dydyd 2 5 u2 or
du
u

5
dydyd

y
.

Integrating the last equation then yields ln uu u = ln uy u + c1, which, in turn, gives u= c2y2y2 , 
where the constant 6ec1 has been relabeled as c2. We now resubstitute u = dyydx, 
separate variables once again, integrate, and relabel constants a second time:

# dydyd

y
5 c2 # dxdxd or lnu y u 5 c2x 1 c3 or y 5 c4ec2x. .

USE OF TAYLOR SERIES In some instances a solution of a nonlinear initial-value 
problem, in which the initial conditions are speci�ed at x0, can be approximated by a 
Taylor series centered at x0.

 EXAMPLE 3  Taylor Series Solution of an IVP

Let us assume that a solution of the initial-value problem

y0 5 x 1 y 2 y2, y(0) 5 21, y9(0) 5 1 (1)

exists. If we further assume that the solution y(x) of the problem is analytic at 0, then 
y(x) possesses a Taylor series expansion centered at 0:

y(x) 5 y(0) 1
y9(0)

1!
x 1

y0(0)

2!
x2 1

y-(0)

3!
x3 1

y(4)(0)

4!
x4 1

y(5)(0)

5!
x5 1 Á . (2)

Note that the values of the first and second terms in the series (2) are known 
since those values are the specified initial conditions y(0) = −1, y9(0) = 1. 
Moreover, the differential equation itself de�nes the value of the second  derivative 
at 0: y0(0) = 0 + y(0) − y(0)2 = 0 + (−1) − (−1)2 = −2. We can then �nd 
expressions for the higher derivatives y-, y(4), . . . by calculating the successive 
derivatives of the differential equation:

y-(x) 5
d

dxdxd
 ( (x 1 y 2 y2) 5 1 1 y9 2 2yy9 (3)

y(4)(x) 5
d

dxdxd
 (1 (1 1 y9 2 2yy9) 5 y0 2 2yy0 2 2(y9)2 (4)

y(5)(x) 5
d

dxdxd
 ( (y0 2 2yy0 2 2(y9)2) 5 y- 2 2yy- 2 6y9y0 (5)

and so on. Now using y(0) =−1 and y9(0) = 1, we �nd from (3) that y-(0) = 4. From 
the values y(0) =−1, y9(0) = 1, and y0(0) =−2 we �nd y(4)(0) =−8 from (4). With 
the additional information that y-(0) = 4, we then see from (5) that y(5)(0) = 24. 
Hence from (2) the �rst six terms of a series solution of the initial-value problem (1) are

y(x) 5 21 1 x 2 x2 1
2

3
x3 2

1

3
x4 1

1

5
x5 1 Á . .

USE OF A NUMERICAL SOLVER Numerical methods, such as Euler’s method or 
the Runge-Kutta method, are developed solely for �rst-order differential equations 
and then are extended to systems of �rst-order equations. To analyze an nth-order 
initial-value problem numerically, we express the nth-order ODE as a system of n
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�rst-order equations. In brief, here is how it is done for a second-order initial-value 
problem: First, solve for y0—that is, put the DE into normal form y0 = f (x, y, y9)—
and then let y9 = u. For example, if we substitute y9 = u in

d2y

dxdxd 2 5 f (x, y, y9), y(x0) 5 y0, y9(x0) 5 u0, (6)

then y0 = u9 and y9(x0) = u(x0), so the initial-value problem (6) becomes

Solve: 5y9 5 u

u9 5 f(x, y, u)
Subject to: y(x0) 5 y0, u(x0) 5 u0.

However, it should be noted that a commercial numerical solver might not require* might not require* might not
that you supply the system.

 EXAMPLE 4  Graphical Analysis of Example 3

Following the foregoing procedure, we �nd that the second-order initial-value prob-
lem in Example 3 is equivalent to

dydyd

dxdxd
5 u

du

dxdxd
5 x 1 y 2 y2

with initial conditions y(0) =−1, u(0) = 1. With the aid of a numerical solver we get 
the solution curve shown in blue in Figure 4.10.1. For comparison the graph of the 
�fth-degree Taylor polynomial T5T5T (x) 5 21 1 x 2 x2 1 2

3x3 2 1
3x4 1 1

5x5 is shown 
in  red. Although we do not know the interval of convergence of the Taylor series 
obtained in Example 3, the closeness of the two curves in a neighborhood of the ori-
gin suggests that the power series may converge on the interval (−1, 1). .

QUALITATIVE QUESTIONS The blue numerical solution curve in Figure 4.10.1 
raises some questions of a qualitative nature: Is the solution of the original initial-value 
problem oscillatory as x S `? The graph generated by a numerical solver on the larger 
interval shown in Figure 4.10.2 would seem to suggest that the answer is yes. But this suggest that the answer is yes. But this suggest
single example—or even an assortment of examples—does not answer the basic ques-
tion as to whether all solutions of the differential equation all solutions of the differential equation all y0 = x + y − y2 are oscilla-
tory in nature. Also, what is happening to the solution curve in Figure 4.10.2 when x is x is x
near −1? What is the behavior of solutions of the differential equation as x S 2`? 
Are solutions bounded as x S `? Questions such as these are not easily answered, in 
general, for nonlinear second-order differential equations. But certain kinds of second-
order equations lend themselves to a systematic qualitative analysis, and these, like 
their �rst-order relatives encountered in Section 2.1, are the kind that have no explicit 
dependence on the independent variable. Second-order ODEs of the form

F(y, y9, y0) 5 0 or
d2y

dxdxd 2 5 f (y, y9),

equations free of the independent variable x, are called autonomous. The differen-
tial equation in Example 2 is autonomous, and because of the presence of the x term 
on its right-hand side, the equation in Example 3 is nonautonomous. For an in-depth 
treatment of the topic of stability of autonomous second-order differential equations 
and autonomous systems of differential equations, refer to Chapter 10 in Differential 
Equations with Boundary-Value Problems.

FIGURE 4.10.2 Numerical solution curve 
for the IVP in (1)

y

10 20

x

FIGURE 4.10.1 Comparison of two 
approximate solutions in Example 3

y

x

TaylorTaylorT
polynomial

solution curve
generated by a
numerical solver

*Some numerical solvers require only that a second-order differential equation be expressed in normal 
form y0 5 f (x, y, y9). The translation of the single equation into a system of two equations is then built 
into the computer program, since the �rst equation of the system is always y9 5 u and the second equa-
tion is u9 5 f (x, y, u).
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EXERCISES 4.10
In Problems 1 and 2 verify that y1 and y2 are solutions of the given 
differential equation but that y = c1y1 + c2y2 is, in general, not a 
solution.

1. (y0)2 = y2; y1 = ex, y2 = cos x

2. yy0 5
1

2
( y9)2; y1 5 1, y2 5 x2

In Problems 3–6 the dependent variable y is missing in the given dif- is missing in the given dif- is missing in the given dif
ferential equation. Proceed as in Example 1 and solve the equation by 
using the substitution u 5 y9.

3. y0 1 sy9d2 1 1 5 0 4. y0 5 1 1 sy9d2

5. x2y2y2 0 1 sy9d2 5 0 6. e2xyxyx 0 5 sy9d2

In Problems 7–10 the independent variable x is missing in the given x is missing in the given x
differential equation. Proceed as in Example 2 and solve the equation 
by using the substitution u 5 y9.

7. yyyyy 0 1 sy9d2 1 1 5 0 8. sy 1 1dy0 5 sy9d2

9. y0 1 2y2y2 sy9d3 5 0 10. y2y2y2 0 5 y9

In Problems 11 and 12 solve the given initial-value problem.

11. 2y2y2 9y0 5 1, y(0) 5 2, y9(0) 5 1

12. y0 1 x(y9)2 5 0, y(1) 5 4, y9(1) 5 2

13. Consider the initial-value problem

y0 + yy9 = 0, y(0) = 1, y9(0) = −1.

(a) Use the DE and a numerical solver to graph the solution 
curve.

(b) Find an explicit solution of the IVP. Use a graphing utility 
to graph this solution.

(c) Find an interval of de�nition for the solution in part (b).

14. Find two solutions of the initial-value problem

( y0)2 1 ( y9)2 5 1, y1�

2 2 5
1

2
, y91�

2 2 5
Ï3Ï

2
.

Use a numerical solver to graph the solution curves.

In Problems 15 and 16 show that the substitution u = y9 leads to a 
Bernoulli equation. Solve this equation (see Section 2.5).

15. xy0 = y9 + (y9)3 16. xy0 = y9 + x(y9)2

In Problems 17–20 proceed as in Example 3 and obtain the �rst six 
nonzero terms of a Taylor series solution, centered at 0, of the given 
initial-value problem. Use a numerical solver and a graphing utility to 
compare the solution curve with the graph of the Taylor polynomial.

17. y0 = x + y2, y(0) = 1, y9(0) = 1

18. y0 + y2 = 1, y(0) = 2, y9(0) = 3

19. y0 = x2 + y2 − 2y9, y(0) = 1, y9(0) = 1

20. y0 = ey, y(0) = 0, y9(0) = −1

21. In calculus the curvature of a curve that is de�ned by a function 
y = f (x) is de�ned as

� 5
y0

[1 1 ( y9)2]3/2.

Find y = f (x) for which � = 1. [Hint: For simplicity, ignore 
constants of integration.]

Discussion Problems
22. In Problem 1 we saw that cos x and x and x ex were solutions of the x were solutions of the x

nonlinear equation (y0)2 − y2 = 0. Verify that sin x and x and x e−x

are also solutions. Without attempting to solve the differential 
equation, discuss how these explicit solutions can be found 
by using knowledge about linear equations. Without 
attempting to verify, discuss why the linear combinations 
y = c1ex + c2e−x + c3 cos x + c4 sin x and x and x y = c2e−x + c4

sin x are not, in general, x are not, in general, x solutions, but the two special linear 
combinations y = c1ex + c2e−x and x and x y = c3 cos x + c4 sin x must
satisfy the differential equation.

23. Discuss how the method of reduction of order considered 
in this section can be applied to the third-order differential 
equation y- 5 Ï1 1 (y0)2Ï . Carry out your ideas and solve 
the equation.

24. Discuss how to �nd an alternative two-parameter family of 
solutions for the nonlinear differential equation y0 = 2x( y9)2 in 
Example 1. [Hint: Suppose that 2c1

2 is used as the constant of 
integration instead of 1c1

2.]

Mathematical Models
25. Motion in a Force Field A mathematical model for the 

position x(t) of a body moving rectilinearly on the x-axis in an 
inverse-square force �eld is given by

d 2x

dt2
5 2

k2

x2.

Suppose that at t = 0 the body starts from rest from the 
position x = x0, x0 > 0. Show that the velocity of the body 
at time t is given by t is given by t v2 = 2k2(1yx − 1yx0). Use the last 
expression and a CAS to carry out the integration to express 
time t in terms of t in terms of t x.

26. A mathematical model for the position x(t) of a moving 
object is

d 2x

dt2 1 sin x 5 0.

Use a numerical solver to graphically investigate the solutions 
of the equation subject to x(0) = 0, x9(0) = x1, x1 $ 0. Discuss 
the motion of the object for t $ 0 and for various choices of x1. 
Investigate the equation

d 2x

dt2 1
dxdxd

dt
1 sin x 5 0

in the same manner. Give a possible physical interpretation of 
the dxydt term.t term.t

Answers to selected odd-numbered problems begin on page ANS-6.
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Answer Problems 1–10 without referring back to the text. Fill in the 
blank or answer true or false.

1. The only solution of the initial-value problem  
y0 + x2y2y2 = 0, y(0) = 0, y9(0) = 0 is .

2. For the method of undetermined coef�cients, the assumed form 
of the particular solution ypypy  for y0 − y = 1 + ex is x is x .

3. A constant multiple of a solution of a linear differential 
equation is also a solution. 

4. If the set consisting of two functions f1f1f  and f2f2f  is linearly 
independent on an interval I, then the Wronskian  
W(W(W f(f( 1f1f , f2f2f ) Þ 0 for all x in x in x I.

5. If y 5 sin 5x is a solution of a homogeneous linear  
second-order differential with constant coef�cients, then the 
general solution of the DE is .

6. If y 5 1 2 x 1 6x2 1 3ex is a solution of a homoge-
neous fourth-order linear differential equation with constant 
coef�cients, then the roots of the auxiliary equation are 

.

7. If y 5 c1x2 1 c2x2 ln x, x . 0, is the general solution of a 
homogeneous second-order Cauchy-Euler equation, then the 
DE is .

8. ypypy 5 Ax2 is particular solution of y- 1 y0 5 1 for A 5
.

9. If ypypy 1 5 x is a particular solution of y0 1 y 5 x and ypypy 2 5 x2 2 2
is a particular solution of y0 1 y 5 x2, then a particular solution 
of y0 1 y 5 x2 1 x is .

10. If y1 5 ex and x and x y2 5 e2x are solutions of homogeneous linear x are solutions of homogeneous linear x

differential equation, then necessarily y 5 25e2x 1 10ex is also x is also x

a solution of the DE. 

11. Give an interval over which the set of two functions f1f1f (x) = x2

and f2f2f (x) = xux u  is linearly independent. Then give an 
interval over which the set consisting of f1f1f  and f2f2f  is linearly 
dependent.

12. Without the aid of the Wronskian, determine whether the given 
set of functions is linearly independent or linearly dependent on 
the indicated interval.

(a) f1f1f (x) = ln x, f2 f2 f (x) = ln x2, (0, `)

(b) f1f1f (x) = xn, f2f2f (x) = xn+1, n = 1, 2, . . . , (−`, `)

(c) f1f1f (x) = x, f2 f2 f (x) = x + 1, (−`, `)

(d) f1f1f (x) 5 cos1x 1
�

2 2, f2f2f (x) 5 sin x, (2`, `)

(e) f1f1f (x) = 0, f2f2f (x) = x, (−5, 5)

(f) f1f1f (x) = 2, f2f2f (x) = 2x, (−`, `)

(g) f1f1f (x) = x2, f2f2f (x) = 1 − x2, f3f3f (x) = 2 + x2, (−`, `)

(h) f1f1f (x) = xex+1, f2f2f (x) = (4x − 5)ex, 
f3f3f (x) = xex, (−`, `)

Chapter 4 In Review Answers to selected odd-numbered problems begin on page ANS-7.

13. Suppose m1 = 3, m2 = −5, and m3 = 1 are roots of multiplicity 
one, two, and three, respectively, of an auxiliary equation. Write 
down the general solution of the corresponding homogeneous 
linear DE if it is

(a) an equation with constant coef�cients,

(b) a Cauchy-Euler equation.

14. Consider the differential equation ay0 + by9 + cy = g(x(x( ), where 
a, b, and c are constants. Choose the input functions g(x(x( ) for 
which the method of undetermined coef�cients is applicable 
and the input functions for which the method of variation of 
parameters is applicable.

(a) g(x) = ex ln x ln x x (b) g(x) = x3 cos x

(c) g(x) 5
sin x

ex (d) g(x) = 2x−2ex

(e) g(x) = sin2x (f ) g(x) 5
ex

sin x

In Problems 15 and 16 �nd a homogeneous second-order Cauchy-
Euler equation with real coef�cients if the given numbers are roots 
of its auxiliary equation.

15. m1 5 4, m2 5 21 16. m1 5 i

In Problems 17–32 use the procedures developed in this chapter to 
�nd the general solution of each differential equation.

17. y0 − 2y9 − 2y = 0

18. 2y0 + 2y9 + 3y = 0

19. y- + 10y0 + 25y9 = 0

20. 2y- + 9y0 + 12y9 + 5y = 0

21. 3y- + 10y0 + 15y9 + 4y = 0

22. 2y(4) + 3y- + 2y0 + 6y9 − 4y = 0

23. y0 − 3y9 + 5y = 4x3 − 2x

24. y0 − 2y9 + y = x2ex

25. y- − 5y0 + 6y9 = 8 + 2 sin x

26. y- − y0 = 6

27. y0 − 2y9 + 2y = ex tan x tan x x

28. y0 2 y 5
2ex

ex 1 e2x

29. 6x2y0 + 5xy9 − y = 0

30. 2x3y- + 19x2y0 + 39xy9 + 9y = 0

31. x2y0 − 4xy9 + 6y = 2x4 + x2

32. x2y0 − xy9 + y = x3

In Problems 33 and 34 write down the form of the general solution 
y = yc + ypypy  of the given differential equation in the two cases � Þ �
and � = �. Do not determine the coef�cients in ypypy .

33. y0 + �2y = sin �xx 34. y0 − �2y = e�x
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35. Given that y = sin x is a solution ofx is a solution ofx

y(4) + 2y- + 11y0 + 2y9 + 10y = 0,

�nd the general solution of the DE without the aid of a 
calculator or a computer.

36. Find a linear second-order differential equation with constant 
coef�cients for which y1 = 1 and y2 = e−x are solutions of x are solutions of x

the associated homogeneous equation and ypypy 5 1
2xx2 2 x is a x is a x

particular solution of the nonhomogeneous equation.

37. (a)  Write the general solution of the fourth-order DE 
y(4) − 2y0 + y = 0 entirely in terms of hyperbolic 
functions.

(b) Write down the form of a particular solution of  
y(4) − 2y0 + y = sinh x.

38. Consider the differential equation 

x2y0 − (x2 + 2x)y9 + (x + 2)y = x3.

Verify that y1 = x is one solution of the associated x is one solution of the associated x
homogeneous equation. Then show that the method of reduction 
of order discussed in Section 4.2 leads to a second solution y2

of the homogeneous equation as well as a particular solution 
ypypy  of the nonhomogeneous equation. Form the general solution 
of the DE on the interval (0, `).

In Problems 39–44 solve the given differential equation subject to 
the indicated conditions.

39. y0 2 2y2y2 9 1 2y2y2 5 0, y (�y2) 5 0, y(�) 5 21

40. y0 + 2y9 + y = 0, y(−1) = 0, y9(0) = 0

41. y0 − y = x + sin x, y(0) = 2, y9(0) = 3

42. y0 1 y 5 sec3x, y(0) 5 1, y9(0) 5 1
2

43. y9y0 = 4x, y(1) = 5, y9(1) = 2

44. 2y0 = 3y2, y(0) = 1, y9(0) = 1

45. (a) Use a CAS as an aid in �nding the roots of the auxiliary 
equation for

12y(4) + 64y- + 59y0 − 23y9 − 12y = 0.

Give the general solution of the equation.

(b) Solve the DE in part (a) subject to the initial conditions 
y(0) = −1, y9(0) = 2, y0(0) = 5, y-(0) = 0. Use a CAS as 
an aid in solving the resulting systems of four equations in 
four unknowns.

46. Find a member of the family of solutions of xy0 1 y9 1 ÏxÏxÏÏ 5 0
whose graph is tangent to the x-axis at x = 1. Use a graphing 
utility to graph the solution curve.

In Problems 47–50 use systematic elimination to solve the given 
system.

47.
dxdxd

dt
1

dy

dt
5 2x 1 2y2y2 1 1

dxdxd

dt
1 2

dy

dt
5 y 1 3

48.
dxdxd

dt
5 2x 1 y 1 t 2 2

dy

dt
5 3x 1 4y 2 4t

49. (D 2 2)x 2y 5 2et

23x 1 (D 2 4)y 5 27et

50. (D 1 2)x 1 (D 1 1)y 5 sin 2t

5x 1 (D 1 3)y 5 cos 2t
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5
Modeling with Higher-Order 
Differential Equations 

 5.1 Linear Models: Initial-Value Problems 
 5.2 Linear Models: Boundary-Value Problems 
 5.3 Nonlinear Models

C H A P T E R  5  I N  R E V I E W

W e have seen that a single differential equation can serve as a 

mathematical model for diverse physical systems. Forms of the  

linear second-order equation 

a
d2y2y2

dt2 1 b
dydyd

dt
1 cycyc 5 g(t),

appear in the analysis of problems in many different areas of science and 

engineering. In Section 5.1 we see that except for terminology and physical 

interpretations of the four terms in this differential equation the mathematics of, 

say, an electrical series circuit is identical to that of a vibrating spring/mass system.

Brian A Jackson/Shutterstock.com
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INTRODUCTION In this section we are going to consider several linear dynamical 
systems in which each mathematical model is a second-order differential equation 
with constant coef�cients along with initial conditions speci�ed at a time that we 
shall take to be t 5 0:

a
d2y

dt2 1 b
dydyd

dt
1 cy 5 g(t), y(0) 5 y0, y9(0) 5 y1.

The function g is variously called the driving function, forcing function, or input of 
the system. A solution y(t) of the differential equation on an interval I containing I containing I t 5 0
that satis�es the initial conditions is called the response or output of the system.output of the system.output

5.1.1  SPRING/MASS SYSTEMS:  
FREE UNDAMPED MOTION

HOOKE’S LAW Suppose that a �exible spring is suspended vertically from a rigid 
support and then a mass m is attached to its free end. The amount of stretch, or 
elongation, of the spring will of course depend on the mass; masses with different 
weights stretch the spring by differing amounts. By Hooke’s law the spring itself 
exerts a restoring force F opposite to the direction of elongation and proportional to F opposite to the direction of elongation and proportional to F
the amount of elongation s. Simply stated, F 5 2ks, where k . 0 is a constant of 
proportionality called the spring constant. The spring is essentially characterized by 
the number k. Using uF u 5 kusu, we see that if a mass weighing 10 pounds stretches a 
spring 12 foot, then 10 5 k _12+ implies k 5 20 lb/ft. Necessarily then, a mass weighing, 
say, 8 pounds stretches the same spring only 25 foot.

NEWTON’S SECOND LAW When a mass m is attached to the lower end of 
a spring of negligible mass, it stretches the spring by an amount s and attains an 
equilibrium position (or rest position) at which its weight W is balanced by the W is balanced by the W
restoring force ksksk  of the spring. Recall that weight is de�ned by W 5 mg, where m
is measured in slugs, kilograms, or grams and g is the acceleration due to gravity
s32 ft /s2, 9.8 m/s2, or 980 cm/s2d. As indicated in Figure 5.1.1 the condition of equi-
librium is mg 5 ksksk  or mg 2 ksksk 5 0. Now suppose the mass on the spring is set in 
motion by giving it an initial displacement (an elongation or a compression) and an 
initial velocity. Let us assume that the motion takes place in a vertical line, that the 
displacements x(t) of the mass are measured along this line such that x 5 0 corre-
sponds to the equilibrium position, and that displacements measured below the equi-
librium position are positive. See Figure 5.1.2. To construct a mathematical model 
that describes this dynamic case, we employ Newton’s second law of motion: the 
net or resultant force on a moving body of mass m is given by oFkFkF 5 ma, where 
a 5 d2d2d x2x2 ydt2 is its acceleration. If we further assume that the mass vibrates free of all 
other external forces—free motion—then Newton’s second law gives

m
d2x2x2

dt2 5 2ksx 1 sd 1 mg 5 2kxkxk 1 mg 2 ksksk 5 2kxkxk . (1)

 net force zero

The �rst term F1 5 2k(x 1 s) on the right-hand side of equation (1) is the restoring 
force of the spring; the negative sign indicates that this force acts opposite to the 
direction of motion. The second term F2F2F 5 mg is the weight of the mass which 
always acts in the downward or positive direction.

6

5.1 Linear Models: Initial-Value Problems

6

m

(a) (b) (c)

unstretched

rigid
support

motion

l

equilibrium
position

mg2ks 5 0

m

l
l 1s

s

x

FIGURE 5.1.1 Spring/mass system

m

x 5 0

x, 0

x. 0

FIGURE 5.1.2 Direction below the 
equilibrium position is positive
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DE OF FREE UNDAMPED MOTION By dividing (1) by the mass m, we obtain the 
second-order differential equation d2x2x2 ydt2 1 (kym)x 5 0, or

d2x

dt2 1 �2x 5 0, (2)

where �2 5 kym. Equation (2) is said to describe simple harmonic motion or 
free undamped motion. Two obvious initial conditions associated with (2) are 
x(0) 5 x0 and x9(0) 5 x1, the initial displacement and initial velocity of the mass, 
respectively. For example, if x0 . 0, x1 , 0, the mass starts from a point below the 
equilibrium position with an imparted upward velocity. When upward velocity. When upward x9(0) 5 0, the mass is 
said to be released from rest. For example, if x0 , 0, x1 5 0, the mass is released 
from rest from a point rest from a point rest Zx0Z units above the equilibrium position.

EQUATION OF MOTION To solve equation (2), we note that the solutions of its 
auxiliary equation m2 1 �2 5 0 are the complex numbers m1 5 �i, m2 5 2�i. Thus 
from (8) of Section 4.3 we �nd the general solution of (2) to be

x(t) 5 c1 cos �t 1 c2 sin �t. (3)

The period of motion described by (3) is T 5 2�y�. The number T represents T represents T
the time (measured in seconds) it takes the mass to execute one cycle of mo-
tion. A cycle is one complete oscillation of the mass, that is, the mass m mov-
ing from, say, the lowest point below the equilibrium position to the point highest 
above the equilibrium position and then back to the lowest point. From a graphi-
cal viewpoint T 5 2�y� seconds is the length of the time interval between two 
successive maxima (or minima) of x(t). Keep in mind that a maximum of x(t) is 
a positive displacement corresponding to the mass attaining its greatest distance 
below the equilibrium position, whereas a minimum of x(t) is negative displace-
ment corresponding to the mass attaining its greatest height above the equilib-
rium position. We refer to either case as an extreme displacement of the mass. 
The frequency of motion is f 5 1yT 5 �y2� and is the number of cycles com-
pleted each second. For example, if x(t) 5 2 cos 3�t 2 4 sin 3�t, then the period 
is T 5 2�y3� 5 2y3 s, and the frequency is f 5 3y2 cycles/s. From a graphical 
viewpoint the graph of x(t) repeats every 2

3 second, that is, x_
2 cycles/s. From a graphical 

_
2 cycles/s. From a graphical 

t 1 2
3+

2 cycles/s. From a graphical 
+

2 cycles/s. From a graphical 
5 x(t), and 3

2
cycles of the graph are completed each second (or, equivalently, three cycles of the 
graph are completed every 2 seconds). The number � 5 ÏkÏkÏ ymÏ  (measured in radi-
ans per second) is called the circular frequency of the system. Depending on which 
text you read, both f 5 �y2� and � are also referred to as the natural frequency
of the system. Finally, when the initial conditions are used to determine the con-
stants c1 and c2 in (3), we say that the resulting particular solution or response is the 
equation of motion.

EXAMPLE 1 Free Undamped Motion

A mass weighing 2 pounds stretches a spring 6 inches. At t 5 0 the mass is released 
from a point 8 inches below the equilibrium position with an upward velocity of 
4
3 ft /s. Determine the equation of motion.

SOLUTION Because we are using the engineering system of units, the measure-
ments given in terms of inches must be converted into feet: 6 in. 5 1

2 ft; 8 in. 5 2
3 ft. 

In addition, we must convert the units of weight given in pounds into units of mass. 
From m 5 WyWyW g we have m 5 2

32 5 1
16 slug. Also, from Hooke’s law, 2 5 k _

In addition, we must convert the units of weight given in pounds into units of mass. 
_

In addition, we must convert the units of weight given in pounds into units of mass. 
1
2+

In addition, we must convert the units of weight given in pounds into units of mass. 
+

In addition, we must convert the units of weight given in pounds into units of mass. 
implies 

that the spring constant is k 5 4 lb/ft. Hence (1) gives

1

16

d2x2x2

dt2 5 24x or
d2x2x2

dt2 1 64x 5 0.
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The initial displacement and initial velocity are x(0) 5 2
3, x9(0) 5 24

3, where the neg-
ative sign in the last condition is a consequence of the fact that the mass is given an 
initial velocity in the negative, or upward, direction.

Now �2 5 64 or � 5 8, so the general solution of the differential equation is

x(t) 5 c1 cos 8t 1 c2 sin 8t. (4)

Applying the initial conditions to x(t) and x9(t) gives c1 5 2
3 and c2 5 21

6. Thus the 
equation of motion is

x (t) 5
2

3
 c cos 8t 2

1

6
 s sin 8t. (5) .

ALTERNATIVE FORMS OF x t When c1 ± 0 and c2 ± 0, the actual amplitude A
of free vibrations is not obvious from inspection of equation (3). For example, 
although the mass in Example 1 is initially displaced 2

3 foot beyond the equilibrium 
position, the amplitude of vibrations is a number larger than 23. Hence it is often con-
venient to convert a solution of form (3) to the simpler form

x(t) 5 A sin(�t 1 �), (6)

where A 5 Ïc1
2 1 c2

2 and � is a phase angle de�ned by

sin � 5
c1

A

cos � 5
c2

A
6 tan � 5

c1

c2
. (7)

To verify this, we expand (6) by the addition formula for the sine function:

A sin �t ct ct os � 1 A cos �t st st in � 5 (A(A(  sin �) cos �t 1 (A(A(  cos �) sin �t. (8)

It follows from Figure 5.1.3 that if � is de�ned by

sin � 5
c1

Ïc1
2 1 c2

2Ï
5

c1

A
, cos � 5

c2

Ïc1
2 1 c2

2Ï
5

c2

A
,

then (8) becomes

A
c1

A
 c cos �t 1 A

c2

A
 s sin �t 5 c1 cos �t 1 c2 sin �t 5 x(t).

 EXAMPLE 2 Alternative Form of Solution (5)

In view of the foregoing discussion we can write solution (5) in the alternative form 
x(t) 5 A sin(8t 1 �). Computation of the amplitude is straightforward,

A 5Î12

32
2

1 121

62
2Î 5Î17Î36Î < 0.69 ft, 

but some care should be exercised in computing the phase angle � de�ned by 
(7). With c1 5 2

3 and c2 5 21
6 we �nd tan  � 5 24, and a calculator then gives 

tan21(24) 5 21.326 rad. This is not the phase angle, since tannot the phase angle, since tannot 21(24) is located in 
the fourth quadrant and therefore contradicts the fact that sin fourth quadrant and therefore contradicts the fact that sin fourth quadrant � . 0 and cos � , 0 
because c1 . 0 and c2 , 0. Hence we must take � to be the second-quadrant angle second-quadrant angle second-quadrant
� 5 � 1 (21.326) 5 1.816 rad. Thus (5) is the same as

x(t) 5
Ï17Ï

6
 s sin(8t 1 1.816). (9)

The period of this function is T 5 2�y8 5 �y4 s. .

c1

c2

f

c1 c2
22

1

FIGURE 5.1.3 A relationship between 
c1 . 0, c2 . 0 and phase angle �
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You should be aware that some instructors in science and engineering prefer that 
(3) be expressed as a shifted cosine function 

x(t) 5 A cos(�t 2 �), (69)

where A 5 Ïc2
1 1 c2

2. In this case the radian measured angle � is de�ned in a slightly 
different manner than in (7):

sin � 5
c2

A

cos � 5
c1

A
6 tan � 5

c2

c1
. (79)

For example, in Example 2 with c1 5 2
3 and c2 5 21

6, (79) indicates that tan � 5 21
4. 

Because sin � , 0 and cos � . 0 the angle � lies in the fourth quadrant and so 
rounded to three decimal places � 5 tan21(21

4) 5 20.245 rad. From (69) we obtain 
a second alternative form of solution (5):

x(t) 5
Ï17Ï

6
 c cos(8t 2 (20.245)) or x(t) 5

Ï17Ï
6

 c cos(8t 1 0.245).

GRAPHICAL INTERPRETATION Figure 5.1.4(a) illustrates the mass in Example 2 
going through approximately two complete cycles of motion. Reading left to right, the 
�rst �ve positions (marked with black dots) correspond to the initial position of the 
mass below the equilibrium position _
�rst �ve positions (marked with black dots) correspond to the initial position of the 

_
�rst �ve positions (marked with black dots) correspond to the initial position of the 

x_x_ 5 2
3+

�rst �ve positions (marked with black dots) correspond to the initial position of the 
+

�rst �ve positions (marked with black dots) correspond to the initial position of the 
, the mass passing through the equi-

librium position for the �rst time heading upward (x 5 0), the mass at its extreme 

x 5 2
6
17

x2
3

x 5

x negativex negativex

x positivex positivex

(a)

(b)

x

t

(0, )2
3

period
4
p

amplitude

A 5
6
17

5
6
17

x negativex negativex

x positivex positivex

x 5 0

x 5 0

x 5 0 x 5 0

FIGURE 5.1.4 Simple harmonic motion
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displacement above the equilibrium position (x 5 2Ï17Ï y6), the mass at the equi-
librium position for the second time heading downward (x 5 0), and the mass at its 
extreme displacement below the equilibrium position (x 5 Ï17Ï y6). The black dots 
on the graph of (9), given in Figure 5.1.4(b), also agree with the �ve positions just 
given. Note, however, that in Figure 5.1.4(b) the positive direction in the tx-plane 
is the usual upward direction and so is opposite to the positive direction indicated 
in Figure 5.1.4(a). Hence the solid blue graph representing the motion of the mass 
in Figure 5.1.4(b) is the re�ection through the t-axis of the blue dashed curve in 
Figure 5.1.4(a).

Form (6) is very useful because it is easy to �nd values of time for which the graph 
of x(t) crosses the positive t-axis (the line x 5 0). We observe that sin(�t 1 �) 5 0 
when �t 1 � 5 n�, where n is a nonnegative integer.

DOUBLE SPRING SYSTEMS Suppose two parallel springs, with constants parallel springs, with constants parallel k1 and 
k2, are attached to a common rigid support and then to a single mass m as shown in 
Figure 5.1.5. If the mass is displaced from its equilibrium position, the displacement 
x is the same for both springs and so the net restoring force of the spring in (1) is x is the same for both springs and so the net restoring force of the spring in (1) is x
simply 2k1x 2 k2x2x2 5 2(k1 1 k2)x. We say that 

keff 5 k1 1 k2

is the effective spring constant of the system.
On the other hand, suppose two springs supporting a single mass m are in series, 

that is, the springs are attached end to end as shown in Figure 5.1.6. In this case, a 
displacement x of the mass from its equilibrium consists of the sum x of the mass from its equilibrium consists of the sum x x 5 x1 1 x2,
where x1 and x2 are the displacements of the respective springs. But the restoring 
force is the same for both springs, so if kekek fffff  is the effective spring constant of the 
system we have 

2kekek fffff sx1 1 x2d 5 2k1x1 5 2k2x2x2 2.

From k1x1 5 k2x2x2 2 we see x1 5 (k2yk1)x2 and so 2kekek fffff (x1 1 x2) 5 2k2x2x2 2 is the 
same as

kekek fffff Sk2

k1
x2 1 x2D 5 k2x2x2 2. 

Solving the last equation for kekek fffff  yields 

keff 5
k1k2

k1 1 k2
.

So in either of the above cases, the differential equation of motion is (1) with k
replaced by kekek fffff . See Problems 13–18 in Exercises 5.1.

SYSTEMS WITH VARIABLE SPRING CONSTANTS In the model discussed above 
we assumed an ideal world—a world in which the physical characteristics of the 
spring do not change over time. In the nonideal world, however, it seems reasonable 
to expect that when a spring/mass system is in motion for a long period, the spring 
will weaken; in other words, the “spring constant” will vary—or, more speci�cally, 
decay—with time. In one model for the aging spring the spring constant k in (1) is rek in (1) is rek -
placed by the decreasing function K(K(K t) 5 ke2�t, k . 0, � . 0. The linear differential 
equation mx0 1 ke2�txtxt 5 0 cannot be solved by the methods that were considered in 
Chapter 4. Nevertheless, we can obtain two linearly independent solutions using the 
methods in Chapter 6. See Problem 19 in Exercises 5.1 and Example 5 in Section 6.4.

When a spring/mass system is subjected to an environment in which the 
temperature is rapidly decreasing, it might make sense to replace the constant 
k with k with k K(K(K t) 5 kt, k . 0, a function that increases with time. The resulting model, 
mx0 1 ktx 5 0, is a form of Airy’s differential equation. Like the equation for 
an aging spring, Airy’s equation can be solved by the methods of Chapter 6. See 
Problem 20 in Exercises 5.1.

m

k2

k1

rigid
support

FIGURE 5.1.6 Springs in series

FIGURE 5.1.5 Parallel springs

m

k2k1

rigid
support
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5.1.2  SPRING/MASS SYSTEMS: FREE DAMPED MOTION
The concept of free harmonic motion is somewhat unrealistic, since the motion 
described by equation (1) assumes that there are no retarding forces acting on the mov-
ing mass. Unless the mass is suspended in a perfect vacuum, there will be at least a re-
sisting force due to the surrounding medium. As Figure 5.1.7 shows, the mass could be 
suspended in a viscous medium or connected to a dashpot damping device.

DE OF FREE DAMPED MOTION In the study of mechanics, damping forces 
acting on a body are considered to be proportional to a power of the instantaneous 
velocity. In particular, we shall assume throughout the subsequent discussion that 
this force is given by a constant multiple of dxydt. When no other external forces are 
impressed on the system, it follows from Newton’s second law that

m
d2x

dt2 5 2k x 2 �
dxdxd

dt
, (10)

where � is a positive damping constant and the negative sign is a consequence of the damping constant and the negative sign is a consequence of the damping constant
fact that the damping force acts in a direction opposite to the motion.

Dividing (10) by the mass m, we �nd that the differential equation of free 
damped motion is 

d2x2x2

dt2 1
�

m
dxdxd

dt
1

k
m

xx 5 0

or
d2x

dt2 1 2�
dx

dt
1 �2x 5 0, (11)

where 2� 5
�

m
, �2 5

k
m

. (12)

The symbol 2� is used only for algebraic convenience because the auxiliary equation 
is m2 1 2�m 1 �2 5 0, and the corresponding roots are then

m1 5 2� 1 Ï�Ï�Ï 2 2 �2Ï , m2 5 2� 2 Ï�Ï�Ï 2 2 �2Ï .

We can now distinguish three possible cases depending on the algebraic sign of 
�2 2 �2. Since each solution contains the damping factor e2�t, � . 0, the displace-
ments of the mass become negligible as time t increases.t increases.t

CASE I: l2 2 v2 . 0 In this situation the system is said to be overdamped
because the damping coef�cient � is large when compared to the spring constant k.
The corresponding solution of (11) is x(t) 5 c1 em1t 1 c2 em2 t or

x(t) 5 e2�t _c1eÏ�2 2 �2t 1 c2e2Ï�2 2 �2t+. (13)

This equation represents a smooth and nonoscillatory motion. Figure 5.1.8 shows 
two possible graphs of x(t).

CASE II: l2 2 v2 5 0 The system is said to be critically damped because any 
slight decrease in the damping force would result in oscillatory motion. The general 
solution of (11) is x(t) 5 c1em1t 1 c2tem1t ort ort

x(t) 5 e2�t(c1 1 c2t). (14)

Some graphs of typical motion are given in Figure 5.1.9. Notice that the motion is 
quite similar to that of an overdamped system. It is also apparent from (14) that the 
mass can pass through the equilibrium position at most one time.

m

(a)

(b)

m

FIGURE 5.1.7 Damping devices

t

x

FIGURE 5.1.8 Motion of an  
overdamped system

t

x

FIGURE 5.1.9 Motion of a critically 
damped system
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CASE III: l2 2 v2 , 0 In this case the system is said to be underdamped, since 
the damping coef�cient is small in comparison to the spring constant. The roots m1

and m2 are now complex:

m1 5 2� 1 Ï�2 2 �2Ï i, m2 5 2� 2 Ï�2 2 �2Ï i.

Thus the general solution of equation (11) is

x(t) 5 e2�t _c1 cos Ï�2 2 �2 t 1 c2 sin Ï�2 2 �2 t+. (15)

As indicated in Figure 5.1.10, the motion described by (15) is oscillatory; but 
because of the coef�cient e2�t, the amplitudes of vibration S 0 as t S `.

EXAMPLE 3 Overdamped Motion

It is readily veri�ed that the solution of the initial-value problem

d2x2x2

dt2 1 5
dxdxd

dt
1 4x 5 0, x(0) 5 1, x9(0) 5 1

is x(t) 5
5

3
e2t 2

2

3
e24t. (16)

The problem can be interpreted as representing the overdamped motion of a mass on 
a spring. The mass is initially released from a position 1 unit below the equilibrium 
position with a downward velocity of 1downward velocity of 1downward ft/s.

To graph x(t), we �nd the value of t for which the function has an t for which the function has an t extremum—
that is, the value of time for which the �rst derivative (velocity) is zero. 
Differentiating (16) gives x9(t) 5 25

3 e2t 1 8
3 e24t, so x9(t) 5 0 implies that e3t 5 8

5
or t 5 1

3 ln 8
5 5 0.157. It follows from the �rst derivative test, as well as our physical 

intuition, that x(0.157) 5 1.069 ft is actually a maximum. In other words, the mass 
attains an extreme displacement of 1.069 feet below the equilibrium position.

We should also check to see whether the graph crosses the t-axis—that is, 
whether the mass passes through the equilibrium position. This cannot happen in 
this instance because the equation x(t) 5 0, or e3t 5 2

5, has the physically irrelevant 
solution t 5 1

3 ln 2
5 5 20.305.

The graph of x(t), along with some other pertinent data, is given in
Figure 5.1.11. .

EXAMPLE 4 Critically Damped Motion

A mass weighing 8 pounds stretches a spring 2 feet. Assuming that a damping force 
numerically equal to 2 times the instantaneous velocity acts on the system, determine 
the equation of motion if the mass is initially released from the equilibrium position 
with an upward velocity of 3 ft/s.

SOLUTION From Hooke’s law we see that 8 5 k(2) gives k 5 4 lb/ft and that 
W 5 mg gives m 5 8

32 5 1
4 slug. The differential equation of motion is then

1

4

d2x

dt2 5 24x 2 2
dxdxd

dt
or

d2x

dt2 1 8
dxdxd

dt
1 16x 5 0. (17)

The auxiliary equation for (17) is m2 1 8m 1 16 5 (m 1 4)2 5 0, so m1 5 m2 5 2 4. 
Hence the system is critically damped, and

x(t) 5 c1e24t 1 c2te24t. (18)

Applying the initial conditions x(0) 5 0 and x9(0) 5 23, we �nd, in turn, that c1 5 0 
and c2 5 23. Thus the equation of motion is

x(t) 5 23te24t. (19)

underdamped
undamped

t

x

FIGURE 5.1.10 Motion of an 
underdamped system

1 31 321 3 t

x
5
3x 5 e t e2 2t2 2t e2 2e2 4t2

3

t x(t)t)t

1 0.601
1.5 0.370
2 0.225
2.5 0.137
3 0.083

(a)

(b)

FIGURE 5.1.11 Overdamped system  
in Example 3
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To graph x(t), we proceed as in Example 3. From x9(t) 5 23e24t(1 2 4t) 
we see  that x9(t) 5 0 when t 5 1

4. The corresponding extreme displacement 
is x _14+ 5 23_14+e21 5 20.276 ft. As shown in Figure 5.1.12, we interpret this 
value to mean that the mass reaches a maximum height of 0.276 foot above the 
equilibrium position. .

 EXAMPLE 5 Underdamped Motion

A mass weighing 16 pounds is attached to a 5-foot-long spring. At equilibrium the 
spring measures 8.2 feet. If the mass is initially released from rest at a point 2 feet 
above the equilibrium position, �nd the displacements x(t) if it is further known that 
the surrounding medium offers a resistance numerically equal to the instantaneous 
velocity.

SOLUTION The elongation of the spring after the mass is attached is 8.2 2 5 5 3.2 ft, 
so it follows from Hooke’s law that 16 5 k(3.2) or k 5 5 lb/ft. In  addition, 
m 5 16

32 5 1
2 slug, so the differential equation is given by

1

2

d2d2d x2x2

dt2
5 25x 2

dxdxd

dt
or

d2d2d x2x2

dt2
1 2

dxdxd

dt
1 10x0x0 5 0. (20)

Proceeding, we �nd that the roots of m2 1 2m 1 10 5 0 are m1 5 21 1 3i and 
m2 5 21 2 3i, which then implies that the system is underdamped, and

x(t) 5 e2t(c1 cos 3t 1 c2 sin 3t). (21)

Finally, the initial conditions x(0) 5 22 and x9(0) 5 0 yield c1 5 22 and c2 5 22
3, 

so the equation of motion is

x(t) 5 e2t 122 cos 3t 2
2

3
 s sin 3t2. (22) .

ALTERNATIVE FORM OF x t In a manner identical to the procedure used on 
page 199, we can write any solution

x(t) 5 e2�t _c1 cos Ï�2 2 �2Ï t 1 c2 sin Ï�2 2 �2Ï t+

in the alternative form

x(t) 5 Ae2�t  sin_Ï�2 2 �2t 1 �+, (23)

where A 5 Ïc1
2 1 c2

2Ï  and the phase angle � is determined from the equations

sin � 5
c1

A
, cos � 5

c2

A
, tan � 5

c1

c2
.

The coef�cient Ae2�t is sometimes called the t is sometimes called the t damped amplitude of vibrations. 
Because (23) is not a periodic function, the number 2� yÏ�2 2 �2Ï  is called the 
quasi period and Ï�2 2 �2Ï y2� is the quasi frequency. The quasi period is 
the time interval between two successive maxima of x(t). You should verify, for 
the equation of motion in Example 5, that A 5 2Ï10Ï y3 and � 5 4.391. Therefore 
an equivalent form of (22) is

x(t) 5
2Ï10Ï

3
e2t st st in(3t 1 4.391).

5.1.3 SPRING/MASS SYSTEMS: DRIVEN MOTION
DE OF DRIVEN MOTION WITH DAMPING Suppose we now take into con-
sideration an external force f (t) acting on a vibrating mass on a spring. For example, 

20.276

t

x
t 5

maximum
height above

equilibrium position

1
4

FIGURE 5.1.12 Critically damped system 
in Example 4
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f (t) could represent a driving force causing an oscillatory vertical motion of the 
support of the spring. See Figure 5.1.13. The inclusion of f (t) in the formulation of 
Newton’s second law gives the differential equation of driven or forced motion:

m
d2x2x2

dt2
5 2kx 2 �

dxdxd

dt
1 f(f(f t). (24)

Dividing (24) by m gives

d2x

dt2
1 2�

dx

dt
1 �2x 5 F(t), (25)

where F(t) 5 f (t)ym and, as in the preceding section, 2� 5 �ym, �2 5 kym. To solve 
the latter nonhomogeneous equation, we can use either the method of undetermined 
coef�cients or variation of parameters.

 EXAMPLE 6 Interpretation of an Initial-Value Problem

Interpret and solve the initial-value problem

1

5

d2x2x2

dt2
1 1.2

dxdxd

dt
1 2x 5 5 cos 4t, x(0) 5

1

2
, x9(0) 5 0. (26)

SOLUTION We can interpret the problem to represent a vibrational system consist-
ing of a mass (m 5 1

5 slug or kilogram) attached to a spring (k 5 2 lb/ft or N/m). 
The mass is initially released from rest 1

2 unit (foot or meter) below the equilibrium 
position. The motion is damped (� 5 1.2) and is being driven by an external periodic 
(T 5 �y2 s) force beginning at t 5 0. Intuitively, we would expect that even with 
damping, the system would remain in motion until such time as the forcing function 
was “turned off,” in which case the amplitudes would diminish. However, as the 
problem is given, f (t) 5 5 cos 4t will remain “on” forever.t will remain “on” forever.t

We �rst multiply the differential equation in (26) by 5 and solve

dxdxd 2

dt2
1 6

dxdxd

dt
1 10x 5 0

by the usual methods. Because m1 5 23 1 i, m2 5 23 2 i, it follows that 
xc(t) 5 e23t(c1 cos t 1 c2 sin t). Using the method of undetermined coef�cients, we 
assume a particular solution of the form xpxpx (t) 5 A cos 4t 1 B sin 4t. Differentiating 
xpxpx (t) and substituting into the DE gives

x0p 1 6x9p 1 10xpxpx 5 (26A6A6 1 24B) cos 4t 1 (224A4A4 2 6B) sin 4t 5 25 cos 4t.

The resulting system of equations

26A6A6 1 24B 5 25, 224A4A4 2 6B 5 0

yields A 5 2 25
102 and B 5 50

51. It follows that

x(t) 5 e23t(c1 cos t 1 c2 sin t) 2
25

102
 c cos 4t 1

50

51
 s sin 4t. (27)

When we set t 5 0 in the above equation, we obtain c1 5 38
51. By differentiating 

the  expression and then setting t 5 0, we also �nd that c2 5 286
51. Therefore the 

equation of motion is

x(t) 5 e23t138

51
 c cos t 2

86

51
 s sin t2 2

25

102
 c cos 4t 1

50

51
 s sin 4t. (28) .

m

FIGURE 5.1.13 Oscillatory vertical 
motion of the support

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



206 CHAPTER  MODELING WITH HIGHERORDER DIFFERENTIAL EQUATIONS 

TRANSIENT AND STEADYSTATE TERMS When F is a periodic function, such as F is a periodic function, such as F
F(t) 5 F0F0F  sin �t or t or t F(t) 5 F0F0F  cos �t, the general solution of (25) for � . 0 is the sum 
of a nonperiodic function xc(t) and a periodic function xpxpx (t). Moreover, xc(t) dies off 
as time increases—that is, limt S` xc(t) 5 0. Thus for large values of time, the dis-
placements of the mass are closely approximated by the particular solution xpxpx (t). The 
complementary function xc(t) is said to be a transient term or transient solution,or transient solution,or
and the function xpxpx (t), the part of the solution that remains after an interval of time, is 
called a steady-state term or steady-state solution. Note therefore that the effect 
of the initial conditions on a spring/mass system driven by F is F is F transient. In the 

particular solution (28), e23t _38
51 cos t 2 86

51 sin t+ is a transient term, and xpxpx (t) 5

2 25
102 cos 4t 1 50

51 sin 4t is a steady-state term. The graphs of these two terms and the t is a steady-state term. The graphs of these two terms and the t
solution (28) are given in Figures 5.1.14(a) and 5.1.14(b), respectively.

EXAMPLE 7 Transient/Steady-State Solutions

The solution of the initial-value problem

d2x

dt2
1 2

dxdxd

dt
1 2x 5 4 cos t 1 2 sin t, x(0) 5 0, x9(0) 5 x1,

where x1 is constant, is given by

x(t) 5 (x1 2 2) e2t sin t 1 2 sin t.

transient steady-state

Solution curves for selected values of the initial velocity x1 are shown in 
Figure 5.1.15. The graphs show that the in�uence of the transient term is negligible 
for about t . 3�y2. .

DE OF DRIVEN MOTION WITHOUT DAMPING With a periodic impressed force 
and no damping force, there is no transient term in the solution of a problem. Also, 
we shall see that a periodic impressed force with a frequency near or the same as the 
frequency of free undamped vibrations can cause a severe problem in any oscillatory 
mechanical system.

 EXAMPLE 8 Undamped Forced Motion

Solve the initial-value problem

d2x

dt2
1 �2x2x2 5 F0F0F sin �t, x(0) 5 0, x9(0) 5 0, (29)

where F0F0F  is a constant and � ± �.

SOLUTION The complementary function is xc(t) 5 c1 cos �t 1 c2 sin �t. To obtain 
a particular solution, we assume xpxpx (t) 5 A cos �t 1 B sin �t so thatt so thatt

x 0p 1 �2x2x2
pxpx 5 A(�2 2 �2) cos �t 1 B(�2 2 �2) sin �t 5 F0F0F  sin �t.

Equating coef�cients immediately gives A 5 0 and B 5 F0F0F y(�2 2 �2). Therefore

xpxpx (t) 5
F0F0F

�2 2 �2 s sin �t.

Applying the given initial conditions to the general solution

x(t) 5 c1 cos �t 1 c2 sin �t 1
F0F0F

�2 2 �2 s sin �t

t

x

steady state
xpxpx (t)

transient
21

1

�/2�/2�

(a)

(b)

t

x

x(t) 5 transient
1 steady state

21

1

�/2

FIGURE 5.1.14 Graph of solution in  
(28) of Example 6

x

2��

x1 5 7
x1 5 3
x1 5 0

x1 5 23

t

FIGURE 5.1.15 Graph of solution in 
Example 7 for various initial velocities x1
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yields c1 5 0 and c2 5 2�F0F0F y�(�2 2 �2). Thus the solution is

x(t) 5
F0F0F

�(�2 2 �2)
(2� s� s� in �t 1 � sin �t), � Þ �. (30) .

PURE RESONANCE Although equation (30) is not de�ned for � 5 �, it is 
interesting to observe that its limiting value as � S � can be obtained by applying 
L’Hôpital’s Rule. This limiting process is analogous to “tuning in” the frequency 
of the driving force (�y2�) to the frequency of free vibrations (�y2�). Intuitively, 
we expect that over a length of time we should be able to substantially increase the 
amplitudes of vibration. For � 5 � we de�ne the solution to be

x(t) 5 lim
� S �

F0F0F
2� s� s� in �t 1 � sin �t

�(�2 2 �2)
5 F0F0F lim

� S �

d

d�
 ( (2� s� s� in �t 1 � sin �t)

d

d�
(�3 2 ��2)

5 F0F0F  lim
� S �

2sin �t 1 �t ct ct os �t

22��
(31)

5 F0F0F
2sin �t 1 �t ct ct os �t

22�2

5
F0F0F

2�2 s sin �t 2
F0F0F

2�
t ct ct os �t.

As suspected, when t S `, the displacements become large; in fact, ux(tntnt )u S ` when 
tntnt 5 n�y�, n 5 1, 2, . . . . The phenomenon that we have just described is known as 
pure resonance. The graph given in Figure 5.1.16 shows typical motion in this case.

In conclusion it should be noted that there is no actual need to use a limiting 
process on (30) to obtain the solution for � 5 �. Alternatively, the last equation in 
(31) can be obtained by solving the initial-value problem

d2x2x2

dt2 1 �2x 5 F0F0F  sin �t, x(0) 5 0, x9(0) 5 0

directly by the methods of undetermined coef�cients or variation of parameter.
If the displacements of a spring/mass system were actually described by a func-

tion such as (31), the system would necessarily fail. Large oscillations of the mass 
would eventually force the spring beyond its elastic limit. One might argue too that 
the resonating model presented in Figure 5.1.16 is completely unrealistic because it 
ignores the retarding effects of ever-present damping forces. Although it is true that 
pure resonance cannot occur when the smallest amount of damping is taken into con-
sideration, large and equally destructive amplitudes of vibration (although bounded 
as t S `) can occur. See Problem 47 in Exercises 5.1.

5.1.4 SERIES CIRCUIT ANALOGUE

L R C SERIES CIRCUITS As was mentioned in the introduction to this chapter, many 
different physical systems can be described by a linear second-order differential 
equation similar to the differential equation of forced motion with damping:

m
d2x

dt2 1 �
dxdxd

dt
1 kx 5 f(f(f t). (32)

If i(t) denotes current in the LRC-series electrical circuit shown in Figure 5.1.17, 
then the voltage drops across the inductor, resistor, and capacitor are as shown in 
Figure 1.3.4. By Kirchhoff’s second law the sum of these voltages equals the voltage 
E(t) impressed on the circuit; that is,

L
di

dt
1 Ri 1

1

C
q 5 E(t). (33)

x

t

FIGURE 5.1.16 Pure resonance

C

L
E RE RE R

L
E R

L
E RE RE RE R

FIGURE 5.1.17 LRC-series circuit
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But the charge q(t) on the capacitor is related to the current i(t) by i 5 dqydt, so 
(33) becomes the linear second-order differential equation

L
d2q

dt2 1 R 
dq

dt
1

1

C
q 5 E(t). (34)

The nomenclature used in the analysis of circuits is similar to that used to 
describe spring/mass systems.

If E(t) 5 0, the electrical vibrations of the circuit are said to be free. Because 
the auxiliary equation for (34) is Lm2 1 Rm 1 1yC 5 0, there will be three forms of 
the solution with R ± 0, depending on the value of the discriminant R2 2 4LyC. We 
say that the circuit is

overdamped if R2 2 4L /C . 0,

critically damped if R2 2 4L /C 5 0,

and underdamped if R2 2 4L /C , 0.

In each of these three cases the general solution of (34) contains the factor e2Rt/2Rt/2Rt L, so 
q(t) S 0 as t S `. In the underdamped case when q(0) 5 q0, the charge on the 
capacitor oscillates as it decays; in other words, the capacitor is charging and dis-
charging as t S `. When E(t) 5 0 and R 5 0, the circuit is said to be undamped, 
and the electrical vibrations do not approach zero as t increases without bound; the t increases without bound; the t
response of the circuit is simple harmonic.

EXAMPLE 9 Underdamped Series Circuit

Find the charge q(t) on the capacitor in an LRC-series circuit when L 5 0.25 
henry (h), R 5 10 ohms (V), C 5 0.001 farad (f), E(t) 5 0, q(0) 5 q0 coulombs (C), 
and i(0) 5 0.

SOLUTION Since 1yC 5 1000, equation (34) becomes

1

4
q0 1 10q9 1 1000q 5 0 or q0 1 40q9 1 4000q 5 0.

Solving this homogeneous equation in the usual manner, we �nd that the circuit is 
underdamped and q(t) 5 e220t(c1 cos 60t 1 c2 sin 60t). Applying the initial condi-
tions, we �nd c1 5 q0 and c2 5 1

3 q0. Thus

q(t) 5 q0e220t1cos 60t 1
1

3
 s sin 60t2.

Using (23), we can write the foregoing solution as

q(t) 5
q0Ï10Ï

3
e220t st st in(60t 1 1.249). .

When there is an impressed voltage E(t) on the circuit, the electrical vibrations 
are said to be forced. In the case when R ± 0, the complementary function qc(t) of 
(34) is called a transient solution. If E(t) is periodic or a constant, then the particular 
solution qpqpq (t) of (34) is a steady-state solution.

EXAMPLE 10 Steady-State Current

Find the steady-state solution qpqpq (t) and the steady-state current in an LRC-series 
circuit when the impressed voltage is E(t) 5 E0E0E  sin �t.

SOLUTION The steady-state solution qpqpq (t) is a particular solution of the differential 
equation

L
d2q

dt2 1 R
dq

dt
1

1

C
q 5 E0E0E  sin �t.
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Using the method of undetermined coef�cients, we assume a particular solution of 
the form qpqpq (t) 5 A sin �t 1 B cos �t. Substituting this expression into the differential 
equation, simplifying, and equating coef�cients gives

A 5

E0E0E 1L� 2
1

C�2
2� 1L2�2 2

2L

C
1

1

C2C2C � 2 1 R22
, B 5

E0E0E R

2� 1L2�2 2
2L

C
1

1

C2C2C � 2 1 R22
.

It is convenient to express A and B in terms of some new symbols.

If X 5 L� 2
1

C�
, then X2 5 L2�2 2

2L

C
1

1

C2�2
.

If Z 5 ÏXÏXÏ 2 1 R2Ï , then Z2 5 L2�2 2
2L

C
1

1

C2�2 1 R2.

Therefore A 5 E0E0E X0X0 yXyX (2�Z�Z� 2) and B 5 E0E0E Ry(2�Z�Z� 2), so the steady-state charge is

qpqpq (t) 5 2
E0E0E X

�Z2  s sin �t 2
E0E0E R

�Z2 c cos �t.

Now the steady-state current is given by ipipi (t) 5 q9p(t):

ipipi (t) 5
E0E0E

Z 1R

Z
 s sin �t 2

X

Z
 c cos �t2. (35) .

The quantities X 5 L� 2 1yC� and � and � Z 5 ÏXÏXÏ 2X2X 1 R2Ï  de�ned in Example 10 are 
called the reactance and impedance, respectively, of the circuit. Both the reactance 
and the impedance are measured in ohms.

EXERCISES 5.1 Answers to selected odd-numbered problems begin on page ANS-7.

5.1.1 Spring/Mass Systems: Free Undamped Motion

1. A mass weighing 4 pounds is attached to a spring whose spring 
constant is 16 lb/ft. What is the period of simple harmonic 
motion?

2. A 20-kilogram mass is attached to a spring. If the frequency 
of simple harmonic motion is 2y� cycles/s, what is the spring 
constant k? What is the frequency of simple harmonic motion 
if the original mass is replaced with an 80-kilogram mass?

3. A mass weighing 24 pounds, attached to the end of a spring, 
stretches it 4 inches. Initially, the mass is released from rest 
from a point 3 inches above the equilibrium position. Find the 
equation of motion.

4. Determine the equation of motion if the mass in Problem 3 is 
initially released from the equilibrium position with a downward 
velocity of 2 ft/s.

5. A mass weighing 20 pounds stretches a spring 6 inches.  
The mass is initially released from rest from a point 6 inches 
below the equilibrium position.

(a) Find the position of the mass at the times t 5 �y12, �y8, 
�y6, �y4, and 9�y32 s.

(b) What is the velocity of the mass when t 5 3�y16 s? In 
which direction is the mass heading at this instant?

(c) At what times does the mass pass through the equilibrium 
position?

6. A force of 400 newtons stretches a spring 2 meters. A mass of 
50 kilograms is attached to the end of the spring and is initially 
released from the equilibrium position with an upward velocity 
of 10 m/s. Find the equation of motion.

7. Another spring whose constant is 20 N/m is suspended  
from the same rigid support but parallel to the spring/mass 
system in Problem 6. A mass of 20 kilograms is attached  
to the second spring, and both masses are initially released from 
the equilibrium position with an upward velocity of 10 m/s.

(a) Which mass exhibits the greater amplitude of motion?

(b) Which mass is moving faster at t 5 �y4 s? At �y2 s?

(c) At what times are the two masses in the same position? 
Where are the masses at these times? In which directions 
are the masses moving?

8. A mass weighing 32 pounds stretches a spring 2 feet. 
Determine the amplitude and period of motion if the mass is 
initially released from a point 1 foot above the equilibrium 
position with an upward velocity of 2 ft/s. How many 
complete cycles will the mass have completed at the end 
of 4� seconds?
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9. A mass weighing 8 pounds is attached to a spring. When set in 
motion, the spring/mass system exhibits simple harmonic motion.

(a) Determine the equation of motion if the spring constant is 
1 lb/ft and the mass is initially released from a point 
6 inches below the equilibrium position with a downward 
velocity of 32 ftftf /t/t s.

(b) Express the equation of motion in the form given in (6).

(c) Express the equation of motion in the form given in (69).

10. A mass weighing 10 pounds stretches a spring 14 foot. This 
mass is removed and replaced with a mass of 1.6 slugs, which 
is initially released from a point 13 foot above the equilibrium 
position with a downward velocity of 54 ftftf /t/t s.

(a) Express the equation of motion in the form given in (6).

(b) Express the equation of motion in the form given in (69) 

(c) Use one of the solutions obtained in parts (a) and (b) to  
determine the times the mass attains a displacement below 
the equilibrium position numerically equal to 12 the  
amplitude of motion.

11. A mass weighing 64 pounds stretches a spring 0.32 foot. 
The mass is initially released from a point 8 inches above the 
equilibrium position with a downward velocity of 5 ft/s.

(a) Find the equation of motion.

(b) What are the amplitude and period of motion?

(c) How many complete cycles will the mass have completed 
at the end of 3� seconds?� seconds?�

(d) At what time does the mass pass through the equilibrium 
position heading downward for the second time?

(e) At what times does the mass attain its extreme 
displacements on either side of the equilibrium position?

(f) What is the position of the mass at t 5 3 s?

(g) What is the instantaneous velocity at t 5 3 s?

(h) What is the acceleration at t 5 3 s?

(i) What is the instantaneous velocity at the times when the 
mass passes through the equilibrium position?

(j) At what times is the mass 5 inches below the equilibrium 
position?

(k) At what times is the mass 5 inches below the equilibrium 
position heading in the upward direction?

12. A mass of 1 slug is suspended from a spring whose spring 
constant is 9 lb/ft. The mass is initially released from a point  
1 foot above the equilibrium position with an upward velocity 
of Ï3Ï ftftf /s. Find the times at which the mass is heading 
downward at a velocity of 3 ft/s.

13. A mass weighing 20 pounds stretches a spring 6 inches and 
another spring 2 inches. The two springs are then attached 
in parallel to a common rigid support in the manner shown 
in Figure 5.1.5. Determine the effective spring constant of 
the double-spring system. Find the equation of motion if the 
mass is initially released from the equilibrium position with a 
downward velocity of 2 ft/s.

14. A certain mass stretches one spring 13 foot and another spring 
1
2 foot. The two springs are then attached in parallel to a common 
rigid support in the manner shown in Figure 5.1.5. The �rst mass 
is set aside, and a mass weighing 8 pounds is attached to the 
double-spring arrangement, and the system is set in motion. If 
the period of motion is �y15 second, determine how much the 
�rst mass weighs. 

15. Solve Problem 13 again, but this time assume that the springs 
are in series as shown in Figure 5.1.6.

16. Solve Problem 14 again, but this time assume that the springs 
are in series as shown in Figure 5.1.6.

17. Find the effective spring constant of the parallel-spring system 
shown in Figure 5.1.5 when both springs have the spring 
constant k. Give a physical interpretation of this result.

18. Find the effective spring constant of the series-spring system 
shown in Figure 5.1.6 when both springs have the spring 
constant k. Give a physical interpretation of this result.

19. A model of a spring/mass system is 4x0 1 e20.1txtxt 5 0. By 
inspection of the differential equation only, discuss the behavior 
of the system over a long period of time.

20. A model of a spring/mass system is 4x0 1 tx 5 0. By inspection 
of the differential equation only, discuss the behavior of the 
system over a long period of time.

5.1.2  Spring/Mass Systems: Free Damped Motion

In Problems 21–24 the given �gure represents the graph of an equa-
tion of motion for a damped spring/mass system. Use the graph to 
determine

(a) whether the initial displacement is above or below the 
equilibrium position and

(b) whether the mass is initially released from rest, heading 
downward, or heading upward.

21.

t

x

FIGURE 5.1.18 Graph for Problem 21

t

x

FIGURE 5.1.19 Graph for Problem 22

22.
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23. (b) Express the equation of motion in the form given in (23).

(c) Find the �rst time at which the mass passes through the 
equilibrium position heading upward.

30. After a mass weighing 10 pounds is attached to a 5-foot spring, 
the spring measures 7 feet. This mass is removed and replaced 
with another mass that weighs 8 pounds. The entire system 
is placed in a medium that offers a damping force that is 
numerically equal to the instantaneous velocity.

(a) Find the equation of motion if the mass is initially released 
from a point 12 foot below the equilibrium position with a 
downward velocity of 1 ft/s.

(b) Express the equation of motion in the form given in (23).

(c) Find the times at which the mass passes through the  
equilibrium position heading downward.

(d) Graph the equation of motion.

31. A mass weighing 10 pounds stretches a spring 2 feet. The  
mass is attached to a dashpot device that offers a damping  
force numerically equal to � (� . 0) times the instantaneous 
velocity. Determine the values of the damping constant � so 
that the subsequent motion is (a) overdamped, (b) critically 
damped, and (c) underdamped.

32. A mass weighing 24 pounds stretches a spring 4 feet. The 
subsequent motion takes place in medium that offers a damping 
force numerically equal to � (� . 0) times the instantaneous 
velocity. If the mass is initially released from the equilibrium 
position with an upward velocity of 2 ft/s, show that when 
� . 3Ï2Ï  the equation of motion is

x(t) 5
23

Ï�Ï�Ï 2 2 18Ï
e22�t/t/t 3 sinh

2

3
Ï�Ï�Ï 2 2 18Ï t.

5.1.3 Spring/Mass Systems: Driven Motion

33. A mass weighing 16 pounds stretches a spring 83 feet. The mass 
is initially released from rest from a point 2 feet below the 
equilibrium position, and the subsequent motion takes place in 
a medium that offers a damping force that is numerically equal 
to 12 the instantaneous velocity. Find the equation of motion if 
the mass is driven by an external force equal to f (t) 5 10 cos 3t.

34. A mass of 1 slug is attached to a spring whose constant is 5 lb/ft. 
Initially, the mass is released 1 foot below the equilibrium 
position with a downward velocity of 5 ft/s, and the subsequent 
motion takes place in a medium that offers a damping force that 
is numerically equal to 2 times the instantaneous velocity.

(a) Find the equation of motion if the mass is driven by an  
external force equal to f (t) 5 12 cos 2t 1 3 sin 2t.

(b) Graph the transient and steady-state solutions on the same 
coordinate axes.

(c) Graph the equation of motion.

35. A mass of 1 slug, when attached to a spring, stretches it 2 feet 
and then comes to rest in the equilibrium position. Starting at 
t 5 0, an external force equal to f (t) 5 8 sin 4t is applied to the t is applied to the t
system. Find the equation of motion if the surrounding medium 
offers a damping force that is numerically equal to 8 times the 
instantaneous velocity.

t

x

FIGURE 5.1.21 Graph for Problem 24

t

x

FIGURE 5.1.20 Graph for Problem 23

24.

25. A mass weighing 4 pounds is attached to a spring whose constant 
is 2 lb/ft. The medium offers a damping force that is numerically 
equal to the instantaneous velocity. The mass is initially released 
from a point 1 foot above the equilibrium position with a 
downward velocity of 8 ft/s. Determine the time at which the mass 
passes through the equilibrium position. Find the time at which 
the mass attains its extreme displacement from the equilibrium 
position. What is the position of the mass at this instant?

26. A 4-foot spring measures 8 feet long after a mass weighing 8 
pounds is attached to it. The medium through which the mass 
moves offers a damping force numerically equal to Ï2Ï  times 
the instantaneous velocity. Find the equation of motion if the 
mass is initially released from the equilibrium position with a 
downward velocity of 5 ft/s. Find the time at which the mass 
attains its extreme displacement from the equilibrium position. 
What is the position of the mass at this instant?

27. A 1-kilogram mass is attached to a spring whose constant is 
16 N/m, and the entire system is then submerged in a liquid 
that imparts a damping force numerically equal to 10 times the 
instantaneous velocity. Determine the equations of motion if

(a) the mass is initially released from rest from a point 1 meter 
below the equilibrium position, and then

(b) the mass is initially released from a point 1 meter below the 
equilibrium position with an upward velocity of 12 m/s.

28. In parts (a) and (b) of Problem 27 determine whether the mass 
passes through the equilibrium position. In each case �nd the 
time at which the mass attains its extreme displacement from 
the equilibrium position. What is the position of the mass at 
this instant?

29. A force of 2 pounds stretches a spring 1 foot. A mass weighing 
3.2 pounds is attached to the spring, and the system is then 
immersed in a medium that offers a damping force that is 
numerically equal to 0.4 times the instantaneous velocity.

(a) Find the equation of motion if the mass is initially released 
from rest from a point 1 foot above the equilibrium position.
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36. In Problem 35 determine the equation of motion if the external 
force is f (t) 5 e2t sin 4t sin 4t t. Analyze the displacements for t S `.

37. When a mass of 2 kilograms is attached to a spring whose 
constant is 32 N/m, it comes to rest in the equilibrium position. 
Starting at t 5 0, a force equal to f (t) 5 68e22t cos 4t cos 4t t is applied t is applied t
to the system. Find the equation of motion in the absence of 
damping.

38. In Problem 37 write the equation of motion in the form 
x(t) 5 Asin(�t 1 �) 1 Be22tsin(4t 1 �). What is the amplitude 
of vibrations after a very long time?

39. A mass m is attached to the end of a spring whose constant 
is k. After the mass reaches equilibrium, its support begins 
to oscillate vertically about a horizontal line L according to 
a formula h(t). The value of h represents the distance in feet 
measured from L. See Figure 5.1.22.

(a) Determine the differential equation of motion if the entire 
system moves through a medium offering a damping force 
that is numerically equal to �(dxydt).

(b) Solve the differential equation in part (a) if the spring is 
stretched 4 feet by a mass weighing 16 pounds and � 5 2, 
h(t) 5 5 cos t, x(0) 5 x9(0) 5 0.

43. (a) Show that the solution of the initial-value problem

d 2x2x2

dt2 1 �2x2x2 5 F0F0F cos �t, x(0) 5 0, x9(0) 5 0

is x(t) 5
F0F0F

�2 2 �2 (cos �t 2 cos �t).

(b) Evaluate lim
� S �

F0F0F

�2 2 �2 (cos �t 2 cos �t).

44. Compare the result obtained in part (b) of Problem 43 with 
the solution obtained using variation of parameters when the 
external force is F0F0F  cos �t.

45. (a)  Show that x(t) given in part (a) of Problem 43 can be 
written in the form

x(t) 5
22F0F0F

�2 2 �2 sin
1

2
(� 2 �)t sin

1

2
(� 1 �)t.

(b) If we de�ne « 5 1
2 (� 2 �), show that when « is small an 

approximate solution is

x(t) 5
F0F0F

2«�
sin «t sin �t.

When « is small, the frequency �y2� of the � of the � impressed force 
is close to the frequency �y2� of free vibrations. When � of free vibrations. When �
this occurs, the motion is as indicated in Figure 5.1.23. 
Oscillations of this kind are called beats and are due to the 
fact that the frequency of sin «t is quite small in comparit is quite small in comparit son 
to the frequency of sin �t. The dashed curves, or envelope 
of the graph of x(t), are obtained from the graphs of t), are obtained from the graphs of t
6(F0F0F y2«�) sin «t. Use a graphing utility with various 
values of F0F0F , «, and � to verify the graph in Figure 5.1.23.� to verify the graph in Figure 5.1.23.�

40. A mass of 100 grams is attached to a spring whose constant is 
1600 dynes/cm. After the mass reaches equilibrium, its support 
oscillates according to the formula h(t) 5 sin 8t, where h
represents displacement from its original position. See  
Problem 39 and Figure 5.1.22.

(a) In the absence of damping, determine the equation of 
motion if the mass starts from rest from the equilibrium 
position.

(b) At what times does the mass pass through the equilibrium 
position?

(c) At what times does the mass attain its extreme displacements?

(d) What are the maximum and minimum displacements?

(e) Graph the equation of motion.

In Problems 41 and 42 solve the given initial-value problem.

41.
d 2x

dt2 1 4x 5 25 sin 2t 1 3 cos 2t,

x(0) 5 21, x9(0) 5 1

42.
d2x2x2

dt2 1 9x 5 5 sin 3t, x(0) 5 2, x9(0) 5 0

L

support

h(t)

FIGURE 5.1.22 Oscillating support in Problem 39

t

x

FIGURE 5.1.23 Beats phenomenon in Problem 45

Computer Lab Assignments
46. Can there be beats when a damping force is added to the model 

in part (a) of Problem 43? Defend your position with graphs 
obtained either from the explicit solution of the problem

d2x2x2

dt2 1 2�
dxdxd

dt
1 �2x2x2 5 F0F0F cos �t, x(0) 5 0, x9(9(9 0) 5 0

or from solution curves obtained using a numerical solver.

47. (a) Show that the general solution of

d2x2x2

dt2 1 2�
dxdxd

dt
1 �2x2x2 5 F0F0F sin �t

is

x(t) 5 Ae2�t sinsÏ�2 2 �2Ï t 1 �d

1
F0F0F

Ï(�2 2 �2)2 1 4�2�2Ï
sin(�t 1 �),
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5.2 Linear Models: Boundary-Value Problems

INTRODUCTION The preceding section was devoted to systems in which a 
second-order mathematical model was accompanied by initial conditions—that is, 
side conditions that are speci�ed on the unknown function and its �rst derivative at 
a single point. But often the mathematical description of a physical system demands 

where A 5 Ïc1
2 1 c2

2Ï  and the phase angles � and � are, 
respectively, de�ned by sin � 5 c1yAyAy , cos � 5 c2yAyAy  and

sin � 5
22��

Ï(�2 2 �2)2 1 4�2�2Ï
,

cos � 5
�2 2 �2

Ï(�2 2 �2)2 1 4�2�2Ï
.

(b) The solution in part (a) has the form x(t) 5 xc(t) 1 xpxpx (t). 
Inspection shows that xc(t) is transient, and hence for  
large values of time, the solution is approximated by 
xpxpx (t) 5 g(�) sin(�t 1 �), where

g(y) 5
F0F0F

Ï(�2 2 �2)2 1 4�2�2Ï
.

Although the amplitude g(�) of xpxpx (t) is bounded as t S `,

show that the maximum oscillations will occur at the value 

�1 5 Ï�2 2 2�2Ï . What is the maximum value of g?  

The number Ï�2 2 2�2Ï /2� is said to be the resonance  
frequency of the system.

(c) When F0F0F 5 2, m 5 1, and k 5 4, g becomes

g(�) 5
2

Ï(4 2 �2)2 1 �2�2Ï
.

Construct a table of the values of �1 and g(�1) correspond-
ing to the damping coef�cients � 5 2, � 5 1, � 5 3

4, � 5 1
2, 

and � 5 1
4. Use a graphing utility to obtain the graphs of  

g corresponding to these damping coef�cients. Use the  
same coordinate axes. This family of graphs is called the 
resonance curve or frequency response curve of the  
system. What is �1 approaching as � S 0? What is 
happening to the resonance curve as � S 0?

48. Consider a driven undamped spring/mass system described by 
the initial-value problem

d 2x2x2

dt2
1 �2x 5 F0F0F sinn �t, x(0) 5 0, x9(0) 5 0.

(a) For n 5 2, discuss why there is a single frequency �1y2��
at which the system is in pure resonance.

(b) For n 5 3, discuss why there are two frequencies �1y2�
and �2y2� at which the system is in pure � at which the system is in pure � resonance.

(c) Suppose � 5 1 and F0F0F 5 1. Use a numerical solver to 
obtain the graph of the solution of the initial-value problem 
for n 5 2 and � 5 �1 in part (a). Obtain the graph of the 
solution of the initial-value problem for n 5 3 corresponding, 
in turn, to � 5 �1 and � 5 �2 in part (b).

5.1.4 Series Circuit Analogue

49. Find the charge on the capacitor in an LRC-series circuit at 
t 5 0.01 s when L 5 0.05 h, R 5 2 V, C 5 0.01 f, E(t) 5 0 V, 
q(0) 5 5 C, and i(0) 5 0 A. Determine the �rst time at which 
the charge on the capacitor is equal to zero.

50. Find the charge on the capacitor in an LRC-series circuit when 
L 5 1

4 h, R 5 20 V, C 5 1
300 f, E(t) 5 0 V, q(0) 5 4 C, and 

i(0) 5 0 A. Is the charge on the capacitor ever equal to zero?

In Problems 51 and 52 �nd the charge on the capacitor and the cur-
rent in the given LRC-series circuit. Find the maximum charge on 
the capacitor.

51. L 5 5
3 h, R 5 10 V, C 5 1

30 f, E(t) 5 300 V, q(0) 5 0 C, 
i(0) 5 0 A

52. L 5 1 h, R 5 100 V, C 5 0.0004 f, E(t) 5 30 V, q(0) 5 0 C, 
i(0) 5 2 A

53. Find the steady-state charge and the steady-state current in an 
LRC-series circuit when L 5 1 h, R 5 2 V, C 5 0.25 f, and 
E(t) 5 50 cos t V.t V.t

54. Show that the amplitude of the steady-state current in the  
LRC-series circuit in Example 10 is given by E0E0E yZ, where Z is Z is Z
the impedance of the circuit.

55. Use Problem 54 to show that the steady-state current in an 
LRC-series circuit when L 5 1

2 h, R 5 20 V, C 5 0.001 f, and 
E(t) 5 100 sin 60t V, is given by ipipi (t) 5 4.160 sin(60t 2 0.588).

56. Find the steady-state current in an LRC-series circuit when 
L 5 1

2 h, R 5 20 V, C 5 0.001 f, and E(t) 5 100 sin 60t 1
200 cos 40t V.t V.t

57. Find the charge on the capacitor in an LRC-series circuit when 
L 5 1

2 h, R 5 10 V, C 5 0.01 f, E(t) 5 150 V, q(0) 5 1 C, and 
i(0) 5 0 A. What is the charge on the capacitor after a long time?

58. Show that if L, R, C, and E0E0E  are constant, then the amplitude 
of the steady-state current in Example 10 is a maximum when 
� 5 1yÏLÏLÏ CÏ . What is the maximum amplitude?

59. Show that if L, R, E0 E0 E , and � are constant, then the � are constant, then the � amplitude of 
the steady-state current in Example 10 is a maximum when the 
capacitance is C 5 1yL�2.

60. Find the charge on the capacitor and the current in an LC-series 
circuit when L 5 0.1 h, C 5 0.1 f, E(t) 5 100 sin �t V, t V, t
q(0) 5 0 C, and i(0) 5 0 A.

61. Find the charge on the capacitor and the current in an LC-series 
circuit when E(t) 5 E0E0E  cos �t V, t V, t q(0) 5 q0 C, and i(0) 5 i0 A.

62. In Problem 61 �nd the current when the circuit is in resonance.
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that we solve a linear differential equation subject to boundary conditions—that is, 
conditions speci�ed on the unknown function, or on one of its derivatives, or even 
on a linear combination of the unknown function and one of its derivatives at two (or 
more) different points.

DEFLECTION OF A BEAM Many structures are constructed by using girders 
or beams, and these beams de�ect or distort under their own weight or under the 
in�uence of some external force. As we shall now see, this de�ection y(x) is governed 
by a relatively simple linear fourth-order differential equation.

To begin, let us assume that a beam of length L is homogeneous and has L is homogeneous and has L uniform 
cross sections along its length. In the absence of any load on the beam (including its 
weight), a curve joining the centroids of all its cross sections is a straight line called 
the axis of symmetry. See Figure 5.2.1(a). If a load is applied to the beam in a verti-
cal plane containing the axis of symmetry, the beam, as shown in Figure 5.2.1(b), 
undergoes a distortion, and the curve connecting the centroids of all cross sections is 
called the de�ection curve or elastic curve. The de�ection curve approximates the 
shape of the beam. Now suppose that the x-axis coincides with the axis of symmetry 
and that the de�ection y(x), measured from this axis, is positive if downward. In the 
theory of elasticity it is shown that the bending moment M(x) at a point x along the x along the x
beam is related to the load per unit length w(x) by the equation

d2M

dxdxd 2 5 w(x). (1)

In addition, the bending moment M(x) is proportional to the curvature � of the 
elastic curve

M(x) 5 EIEIE �I�I , (2)

where E and E and E I are constants; I are constants; I E is Young’s modulus of elasticity of the material of the E is Young’s modulus of elasticity of the material of the E
beam, and I is the moment of inertia of a cross section of the beam (about an axis I is the moment of inertia of a cross section of the beam (about an axis I
known as the neutral axis). The product EI is called the EI is called the EI �exural rigidity of the beam.

Now, from calculus, curvature is given by � 5 y0y[1 1 (y9)2]3/2. When the 
de�ection y(x) is small, the slope y9 < 0, and so [1 1 (y9)2]3/2 < 1. If we let � < y0, 
equation (2) becomes M 5 EI y0. The second derivative of this last expression is

d2M

dxdxd 2 5 EIEIE
d2

dxdxd 2 y0 5 EIEIE
d4y

dxdxd 4 . (3)

Using the given result in (1) to replace d2M2M2 ydx2 in (3), we see that the de�ection y(x) 
satis�es the fourth-order differential equation

EI
 
 
d4y

dx4 5 w(x). (4)

Boundary conditions associated with equation (4) depend on how the ends of the 
beam are supported. A cantilever beam is embedded or clamped at one end and free 
at the other. A diving board, an outstretched arm, an airplane wing, and a balcony 
are common examples of such beams, but even trees, �agpoles, skyscrapers, and the 
George Washington Monument can act as cantilever beams because they are embedded 
at one end and are subject to the bending force of the wind. For a cantilever beam the 
de�ection y(x(x( ) must satisfy the following two conditions at the embedded end x 5 0:

 ● y(0) 5 0 because there is no de�ection, and
 ● y9(0) 5 0 because the de�ection curve is tangent to the x-axis (in other 

words, the slope of the de�ection curve is zero at this point).

At x 5 L the free-end conditions areL the free-end conditions areL

 ● y0(L) 5 0 because the bending moment is zero, and
 ● y-(L) 5 0 because the shear force is zero.

axis of symmetry

de�ection curve

(a)

(b)

FIGURE 5.2.1 De�ection of a  
homogeneous beam
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The function F(x) 5 dMydx 5 EI d3yydx3 is called the shear force. If an end of 
a  beam is simply supported or hinged (also called pin supported and fulcrum 
supported) then we must have y 5 0 and y0 5 0 at that end. Table 5.2.1 summarizes 
the boundary conditions that are associated with (4). See Figure 5.2.2.

EXAMPLE 1 An Embedded Beam

A beam of length L is embedded at both ends. Find the de�ection of the beam if a conL is embedded at both ends. Find the de�ection of the beam if a conL -
stant load w0 is uniformly distributed along its length—that is, w(x) 5 w0, 0 , x , L.

SOLUTION From (4) we see that the de�ection y(x) satis�es

EIEIE
d4y4y4

dxdxd 4 5 w0.

Because the beam is embedded at both its left end (x 5 0) and its right end (x 5 L), 
there is no vertical de�ection and the line of de�ection is horizontal at these points. 
Thus the boundary conditions are

y(0) 5 0, y9(0) 5 0, y(L) 5 0, y9(L) 5 0.

We can solve the nonhomogeneous differential equation in the usual manner (�nd yc

by observing that m 5 0 is root of multiplicity four of the auxiliary equation m4 5 0 
and then �nd a particular solution ypypy  by undetermined coef�cients), or we can simply 
integrate the equation d4y4y4 ydx4 5 w0yEI four times in succession. Either way, we �nd EI four times in succession. Either way, we �nd EI
the general solution of the equation y 5 yc 1 ypypy  to be

y(x) 5 c1 1 c2x 1 c3x2 1 c4x3 1
w0

24EIEIE
x4.

Now the conditions y(0) 5 0 and y9(0) 5 0 give, in turn, c1 5 0 and c2 5 0, whereas the

remaining conditions y(L) 5 0 and y9(L) 5 0 applied to y(x) 5 c3x2 1 c4x3 1
w0

24EIEIE
x4

yield the simultaneous equations 

c3 L2 1 c4 L3 1
w0

24EIEIE
L4 5 0

 2c3 L 1 3c4 L2 1
w0

6EIEIE
L3 5 0.

Solving this system gives c3 5 w0L2y24EI and EI and EI c4 5 2w0Ly12EI. Thus the de�ection is

y(x) 5
w0L2

24EIEIE
x2 2

w0L

12EIEIE
x3 1

w0

24EIEIE
x4

or y(x) 5
w0

24EI
 x2 (x 2 L)2. By choosing w0 5 24EI, and L 5 1, we obtain the 

de�ection curve in Figure 5.2.3. .

EIGENVALUES AND EIGENFUNCTIONS Many applied problems demand that 
we solve a two-point boundary-value problem (BVP) involving a linear differential 
equation that contains a parameter �. We seek the values of � for which the 
boundary-value problem has nontrivial, that is, nonzero, solutions.

EXAMPLE 2 Nontrivial Solutions of a BVP

Solve the boundary-value problem

y0 1 �y 5 0, y(0) 5 0, y(L) 5 0.

x 5 0

x 5 0

x 5 0

x 5 L

x 5 L

x 5 L

(a) embedded at both ends

(b) cantilever beam: embedded at
the left end, free at the right end

(c) simply supported at both ends

FIGURE 5.2.2 Beams with various  
end conditions

TABLE 5.2.1

Ends of  
the Beam Boundary Conditions

embedded y 5 0, y9 5 0
free y0 5 0, y- 5 0
simply 
supported  
or hinged y 5 0, y0 5 0

x

y

1

0.5

FIGURE 5.2.3 De�ection curve for  
BVP in Example 1
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SOLUTION We shall consider three cases: � 5 0, � , 0, and � . 0.

Case I: For � 5 0 the solution of y0 5 0 is y 5 c1x 1 c2. The conditions y(0) 5 0 
and y(L) 5 0 applied to this solution imply, in turn, c2 5 0 and c1 5 0. Hence for 
� 5 0 the only solution of the boundary-value problem is the trivial solution y 5 0.

Case II: For � , 0 it is convenient to write � 5 2�2, where � denotes a posi-
tive number. With this notation the roots of the auxiliary equation m2 2 �2 5 0 are 
m1 5 � and m2 5 2�. Since the interval on which we are working is �nite, we 
choose to write the general solution of y0 2 �2y2y2 5 0 as y 5 c1 cosh �x 1 c2 sinh �x.
Now y(0) is

y(0) 5 c1 cosh 0 1 c2 sinh 0 5 c1 ? 1 1 c2 ? 0 5 c1,

and so y(0) 5 0 implies that c1 5 0. Thus y 5 c2 sinh �x. The second condition, 
y(L) 5  0, demands that c2 sinh �L 5 0. For � ± 0, sinh �L ± 0; consequently, 
we are forced to choose c2 5 0. Again the only solution of the BVP is the trivial 
solution y 5 0.

Case III: For � . 0 we write � 5 �2, where � is a positive number. Because the 
auxiliary equation m2 1 �2 5 0 has complex roots m1 5 i� and m2 5 2i�, the gen-
eral solution of y0 1 �2y2y2 5 0 is y 5 c1 cos �x 1 c2 sin �x. As before, y(0) 5 0 yields 
c1 5 0, and so y 5 c2 sin �x. Now the last condition y(L) 5 0, or

c2 sin �L 5 0,

is satis�ed by choosing c2 5 0. But this means that y 5 0. If we require c2 ± 0, then 
sin �L 5 0 is satis�ed whenever �L is an integer multiple of L is an integer multiple of L �.

�L 5 n� or � 5
n�

L
or �n 5 �n

2 5 1n�

L 2
2

, n 5 1, 2, 3, . . . .

Therefore for any real nonzero c2, yn(x) 5 c2 sin(n�xyL) is a solution of the problem 
for each positive integer n. Because the differential equation is homogeneous, any 
constant multiple of a solution is also a solution, so we may, if desired, simply take 
c2 5 1. In other words, for each number in the sequence

�1 5
�2

L2 , �2 5
4�2

L2 , �3 5
9�2

L2 , . . . ,

the corresponding function in the sequence

y1 5 sin
�

L
x, y2 5 sin

2�

L
x, y3 5 sin

3�

L
x, . . .

is a nontrivial solution of the problem y0 1 �nynyn 5 0, y(0) 5 0, y(L) 5 0 for 
n 5 1, 2, 3, . . . , respectively. .

The numbers �n 5 n2�2yL2, n 5 1, 2, 3, . . . for which the boundary-value prob-
lem in Example 2 possesses nontrivial solutions are known as eigenvalues. The non-
trivial solutions that depend on these values of �n, yn(x) 5 c2 sin(n�x�x� yL) or simply 
yn(x) 5 sin(n�x�x� yL), are called eigenfunctions. The graphs of the eigenfunctions for 
n 5 1, 2, 3, 4, 5 are shown in Figure 5.2.4. Note that each graph passes through the 
two points (0, 0) and (0, L).

 EXAMPLE 3 Example 2 Revisited

It follows from Example 2 and the preceding disucussion that the boundary-value 
problem

y0 1 5y 5 0, y(0) 5 0, y(L) 5 0

possesses only the trivial solution y 5 0 because 5 is not an eigenvalue.not an eigenvalue.not .

Note that we use hyperbolic 
functions here. Reread “Two 
Equations Worth Knowing” on 
page 137.

21

1 n 5 2 n 5 1

n 5 4n 5 4 n 5 5

n 5 3

y

x
L

FIGURE 5.2.4 Graphs of  
eigenfunctions yn 5 sin(n�x�x� yL),
fofof r n 5 1, 2, 3, 4, 5
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BUCKLING OF A THIN VERTICAL COLUMN In the eighteenth century Leonhard 
Euler was one of the �rst mathematicians to study an eigenvalue problem in 
analyzing how a thin elastic column buckles under a compressive axial force.

Consider a long, slender vertical column of uniform cross section and length L. 
Let y(x) denote the de�ection of the column when a constant vertical compressive 
force, or load, P is applied to its top, as shown in Figure 5.2.5. By comparing bending 
moments at any point along the column, we obtain

EIEIE
d2y2y2

dxdxd 2 5 2PyPyP or EI  
d2y

dx2 1 Py 5 0, (5)

where E is Young’s modulus of elasticity and E is Young’s modulus of elasticity and E I is the moment of inertia of a cross I is the moment of inertia of a cross I
section about a vertical line through its centroid.

EXAMPLE 4 The Euler Load

Find the de�ection of a thin vertical homogeneous column of length L subjected to a L subjected to a L
constant axial load P if the column is simply supported or hinged at both ends.

SOLUTION The boundary-value problem to be solved is

EIEIE
d2y

dxdxd 2 1 Py 5 0, y(0) 5 0, y(L) 5 0.

First note that y 5 0 is a perfectly good solution of this problem. This solution has 
a  simple intuitive interpretation: If the load P is not great enough, there is no 
de�ection. The question then is this: For what values of P will the column bend? In 
mathematical terms: For what values of P does the given boundary-value problem 
possess nontrivial solutions?

By writing � 5 PyEI, we see that

y0 1 �y 5 0, y(0) 5 0, y(L) 5  0

is identical to the problem in Example 2. From Case III of that discussion we see 
that the de�ections are yn(x) 5 c2 sin(n�xyL) corresponding to the eigenvalues 
�n 5 PnyEI 5 n2�2yL2, n 5 1, 2, 3, . . . . Physically, this means that the  col-
umn will buckle or de�ect only when the compressive force is one of the values 
Pn 5 n2�2EIyEIyEI L2, n 5 1, 2, 3, . . . . These different forces are called critical loads. The 
de�ection corresponding to the smallest critical load P1 5 �2EIyEIyEI L2, called the Euler 
load, is y1(x) 5 c2 sin(�x�x� yL) and is known as the �rst buckling mode. .

The de�ection curves in Example 4 corresponding to n 5 1, n 5 2, and n 5 3 
are shown in Figure 5.2.6. Note that if the original column has some sort of physical 
restraint put on it at x 5 Ly2, then the smallest critical load will be P2 5 4�2EIyEIyEI L2, 
and the de�ection curve will be as shown in Figure 5.2.6(b). If restraints are put on 
the column at x 5 Ly3 and at x 5 2Ly3, then the column will not buckle until the 
critical load P3 5 9�2EIyEIyEI L2 is applied, and the de�ection curve will be as shown in 
Figure 5.2.6(c). See Problem 25 in Exercises 5.2.

ROTATING STRING The simple linear second-order differential equation

y0 1 �y 5 0 (6)

occurs again and again as a mathematical model. In Section 5.1 we saw (6) in the 
forms d2x2x2 ydt2 1 (kym)x 5 0 and d2qydt2 1 (1yLC)q 5 0 as models for, respec-
tively, the simple harmonic motion of a spring/mass system and the simple harmonic 
response of a series circuit. It is apparent when the model for the de�ection of a thin 
column in (5) is written as d2y2y2 ydx2 1 (PyEI)EI)EI y 5 0 that it is the same as (6). We 
encounter the basic equation (6) one more time in this section: as a model that de�nes 
the de�ection curve or the shape y(x) assumed by a rotating string. The physical 

L

(a) (b)

P

x 5 0

x

y

x 5 L

FIGURE 5.2.5 Elastic column  
buckling under a compressive force

L LL LL LL LL LL L

x

(b)

y

L LL LL LL LL LL L

x

(c)

y

x

L

(a)

y

FIGURE 5.2.6 De�ection curves  
corresponding to compressive forces  
P1, P2, P3
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situation is analogous to when two people hold a jump rope and twirl it in a synchro-
nous manner. See Figures 5.2.7(a) and 5.2.7(b).

Suppose a string of length L with constant linear density L with constant linear density L � (mass per unit length) 
is stretched along the x-axis and �xed at x 5 0 and x 5 L. Suppose the string is then 
rotated about that axis at a constant angular speed �. Consider a portion of the string 
on the interval [x, x 1 Dx], where Dx is small. If the magnitude x is small. If the magnitude x T of the tension T of the tension T T, 
acting tangential to the string, is constant along the string, then the desired differen-
tial equation can be obtained by equating two different formulations of the net force 
acting on the string on the interval [x, x 1 Dx]. First, we see from Figure 5.2.7(c) that 
the net vertical force is

F 5 T sT sT in �2 2 T sT sT in �1. (7)

When angles �1 and �2 (measured in radians) are small, we have sin �2 < tan �2 and 
sin �1 < tan �1. Moreover, since tan �2 and tan �1 are, in turn, slopes of the lines con-
taining the vectors T2 and T1, we can also write

tan �2 5 y9(x 1 Dx) and tan �1 5 y9(x).

Thus (7) becomes

F < T [ y9(x 1 Dx) 2 y9(x)]. (8)

Second, we can obtain a different form of this same net force using Newton’s second 
law, F 5 ma. Here the mass of the string on the interval is m 5 � Dx; the centripetal 
acceleration of a body rotating with angular speed � in a circle of radius r is r is r a 5 r�2. 
With Dx small we take x small we take x r 5 y. Thus the net vertical force is also approximated by

F < 2(� Dx)y�2, (9)

where the minus sign comes from the fact that the acceleration points in the direction 
opposite to the positive y-direction. Now by equating (8) and (9), we have

(10)

For Dx close to zero the difference quotient in (10) is approximately the second x close to zero the difference quotient in (10) is approximately the second x
derivative d2yydx2. Finally, we arrive at the model

T d
2y

dx2 1 ��2y 5 0. (11)

Since the string is anchored at its ends x 5 0 and x 5 L, we expect that the solution y(x(x( ) 
of equation (11) should also satisfy the boundary conditions y(0) 5 0 and y(L) 5 0.

y9(x 1 Dx) 2 y9(x)
–––––––––––––––––

Dx
T [y9(x 1 Dx) 2 y9(x)] 5 2(�Dx)y�2 T 1 ��2y2y2 5 0.or

difference quotient

(a)

(b)

(c)

y (x)

xx x x

1u u2

T2

T1

v

=

1

x 5 0 x 5 L

FIGURE 5.2.7 Rotating string and forces 
acting on it

REMARKS

(i) Eigenvalues are not always easily found as they were in Example 2. You may 
have to approximate roots of equations such as cos x cosh x cosh x x 5 1 or tan x 5 2x. 
See Problems 32 and 38 in Exercises 5.2.

(ii) Boundary conditions applied to a general solution of a linear differential 
equation can lead to a homogeneous algebraic system of linear equations in 
which the unknowns are the coef�cients ci in the general solution. A homoge-
neous algebraic system of linear equations is always consistent because it 
possesses at least a trivial solution. But a homogeneous system of n linear 
equations in n unknowns has a nontrivial solution if and only if the deter-
minant of the coef�cients equals zero. You might need to use this last fact in 
Problems 21, 22, and 32 in Exercises 5.2.
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EXERCISES 5.2

Deflection of a Beam
In Problems 1–5 solve equation (4) subject to the appropriate 
boundary conditions. The beam is of length L, and w0 is a constant.

1. (a) The beam is embedded at its left end and free at its right 
end, and w(x) 5 w0, 0 , x , L.

(b) Use a graphing utility to graph the de�ection curve when 
w0 5 24EI and EI and EI L 5 1.

2. (a) The beam is simply supported at both ends, and  
w(x) 5 w0, 0 , x , L.

(b) Use a graphing utility to graph the de�ection curve when 
w0 5 24EI and EI and EI L 5 1.

3. (a) The beam is embedded at its left end and simply supported 
at its right end, and w(x) 5 w0, 0 , x , L.

(b) Use a graphing utility to graph the de�ection curve when 
w0 5 48EI and EI and EI L 5 1.

4. (a) The beam is embedded at its left end and simply supported 
at its right end, and w(x) 5 w0 sin(�x�x� yL), 0 , x , L.

(b) Use a graphing utility to graph the de�ection curve when 
w0 5 2�3EI and EI and EI L 5 1.

(c) Use a root-�nding application of a CAS (or a graphic  
calculator) to approximate the point in the graph in part (b) 
at which the maximum de�ection occurs. What is the  
maximum de�ection?

5. (a) The beam is simply supported at both ends, and 
w(x) 5 w0x, 0 , x , L.

(b) Use a graphing utility to graph the de�ection curve when 
w0 5 36EI and EI and EI L 5 1.

(c) Use a root-�nding application of a CAS (or a graphic  
calculator) to approximate the point in the graph in part (b) 
at which the maximum de�ection occurs. What is the  
maximum de�ection?

6. (a) Find the maximum de�ection of the cantilever beam in 
Problem 1.

(b) How does the maximum de�ection of a beam that is half as 
long compare with the value in part (a)?

(c) Find the maximum de�ection of the simply supported beam 
in Problem 2.

(d) How does the maximum de�ection of the simply supported 
beam in part (c) compare with the value of maximum  
de�ection of the embedded beam in Example 1?

7. A cantilever beam of length L is embedded at its right end, and L is embedded at its right end, and L
a horizontal tensile force of P pounds is applied to its free left 
end. When the origin is taken at its free end, as shown in  
Figure 5.2.8, the de�ection y(x) of the beam can be shown  
to satisfy the differential equation

EIEIE yIyI 0 5 Py 2 w(x)
x

2
.

Find the de�ection of the cantilever beam if w(x(x( ) 5 w0x0x0 , 0 , x , L, 
and y(0) 5 0, y9(L(L( ) 5 0.

Answers to selected odd-numbered problems begin on page ANS-8.

8. When a compressive instead of a tensile force is applied at the 
free end of the beam in Problem 7, the differential equation of 
the de�ection is

EIEIE yIyI 0 5 2Py 2 w(x)
x

2
.

  Solve this equation if w(x) 5 w0x0x0 , 0 , x , L, and  
y(0) 5 0, y9(L) 5 0.

Eigenvalues and Eigenfunctions
In Problems 9–20 �nd the eigenvalues and eigenfunctions for the 
given boundary-value problem.

9. y0 1 �y 5 0, y(0) 5 0, y(�) 5 0

10. y0 1 �y 5 0, y(0) 5 0, y(�y4) 5 0

11. y0 1 �y 5 0, y9(0) 5 0, y(L) 5 0

12. y0 1 �y 5 0, y(0) 5 0, y9(�y2) 5 0

13. y0 1 �y 5 0, y9(0) 5 0, y9(�) 5 0

14. y0 1 �y 5 0, y(2�) 5 0, y(�) 5 0

15. y0 1 2y9 1 (� 1 1)y 5 0, y(0) 5 0, y(5) 5 0

16. y0 1 (� 1 1)y 5 0, y9(0) 5 0, y9(1) 5 0

17. x2y2y2 0 1 xy9 1 �y 5 0, y(1) 5 0, y(e�) 5 0

18. x2y2y2 0 1 xy9 1 �y 5 0, y9(e21) 5 0, y(1) 5 0

19. x2y2y2 0 1 xyxyx 9 1 �y 5 0, y9(1) 5 0, y9(e2) 5 0

20. x2y2y2 0 1 xyxyx 9 1 �y 5 0, ys1d 5 0, y9sed 5 0

In Problems 21 and 22 �nd the eigenvalues and eigenfunctions 
for the given boundary-value problem. Consider only the case 
� 5 �4, � . 0. [Hint: Read (ii) in the Remarks.]

21. y(4) 2 �y 5 0, y(0) 5 0, y0(0) 5 0, y(1) 5 0, y0(1) 5 0

22. y(4) 2 �y 5 0, y9(0) 5 0, y-(0) 5 0, y(�) 5 0, y0(�) 5 0

Buckling of a Thin Column
23. Consider Figure 5.2.6. Where should physical restraints be 

placed on the column if we want the critical load to be P4? 
Sketch the de�ection curve corresponding to this load.

xxOO
P

y
L

x

w0x

FIGURE 5.2.8 De�ection of cantilever beam in Problem 7 
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24. The critical loads of thin columns depend on the end conditions 
of the column. The value of the Euler load P1 in Example 4 was 
derived under the assumption that the column was hinged at 
both ends. Suppose that a thin vertical homogeneous column is 
embedded at its base (x 5 0) and free at its top (x 5 L) and that 
a constant axial load P is applied to its free end. This load either 
causes a small de�ection � as shown in Figure 5.2.9 or does not 
cause such a de�ection. In either case the differential equation 
for the de�ection y(x) is

EI
d2y

dxdxd 2 1 Py 5 P�.

For constant T and T and T �, de�ne the critical speeds of angular 
rotation �n as the values of � for which the boundary-value 
problem has nontrivial solutions. Find the critical speeds �n

and the corresponding de�ections yn(x).

28. When the magnitude of tension T is not constant, then a model T is not constant, then a model T
for the de�ection curve or shape y(x) assumed by a rotating 
string is given by

d

dxdxd 3T(T(T x)
dydyd

dxdxd 4 1 ��2y2y2 5 0.

  Suppose that 1 , x , e and that T(T(T x) 5 x2.

(a) If y(1) 5 0, y(e) 5 0, and ��2 . 0.25, show that the critical 
speeds of angular rotation are �n 5 1

2 Ï(4n2�2 1 1)y�Ï  and  
the corresponding de�ections are 

yn(x) 5 c2x2x2
21/2 sin(n� ln x), n 5 1, 2, 3, . . . .

(b) Use a graphing utility to graph the de�ection curves on the 
interval [1, e] for n 5 1, 2, 3. Choose c2 5 1.

Additional Boundary-Value Problems
29. Temperature in a Temperature in a T Sphere Consider two concentric 

spheres of radius r 5 a and r 5 b, a , b. See Figure 5.2.10. 
The temperature u(r) in the region between the spheres is 
determined from the boundary-value problem

r
d 2u

dr 2 1 2
du

dr
5 0, u(a) 5 u0, u(b) 5 u1,

where u0 and u1 are constants. Solve for u(r).

y

P

d

x

x 5 0

x 5 L

FIGURE 5.2.9 De�ection of vertical column in Problem 24

(a) What is the predicted de�ection when � 5 0?

(b) When � ± 0, show that the Euler load for this column is  
one-fourth of the Euler load for the hinged column in  
Example 4.

25. As was mentioned in Problem 24, the differential equation (5) 
that governs the de�ection y(x) of a thin elastic column subject 
to a constant compressive axial force P is valid only when 
the ends of the column are hinged. In general, the differential 
equation governing the de�ection of the column is given by

d2

dx 2 1EIEIE
d 2y

dx 22 1 P
d 2y

dx 2 5 0.

Assume that the column is uniform (EI is a constant) and that EI is a constant) and that EI
the ends of the column are hinged. Show that the solution of 
this fourth-order differential equation subject to the boundary 
conditions y(0) 5 0, y0(0) 5 0, y(L) 5 0, y0(L) 5 0 is 
equivalent to the analysis in Example 4.

26. Suppose that a uniform thin elastic column is hinged at the end 
x 5 0 and embedded at the end x 5 L.

(a) Use the fourth-order differential equation given in  
Problem 25 to �nd the eigenvalues �n, the critical loads  
Pn, the Euler load P1, and the de�ections yn(x).

(b) Use a graphing utility to graph the �rst buckling mode.

Rotating String
27. Consider the boundary-value problem introduced in the 

construction of the mathematical model for the shape of  
a rotating string:

T
d2y2y2

dxdxd 2 1 ��2y2y2 5 0, y(0) 5 0, y(L) 5 0.

u 5

5

u1

u u0

FIGURE 5.2.10 Concentric spheres in Problem 29

30. Temperature in a Temperature in a T Ring The temperature u(r) in the circular 
ring shown in Figure 5.2.11 is determined from the boundary-
value problem

r
d2u

dr 2 1
du

dr
5 0, u(a) 5 u0, u(b) 5 u1,

FIGURE 5.2.11 Circular ring in Problem 30

a

u u1

u 5

5
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where u0 and u1 are constants. Show that

u(r) 5
u0 ln(ryb) 2 u1 ln(rya)

ln(ayb)
.

31. Rotation of a Shaft Suppose the x-axis on the interval  
f0, Lg is the geometric center of a long straight shaft, such as 
the propeller shaft of a ship. See Figure 5.2.12. When the shaft 
is rotating at a constant angular speed � about this axis the 
de�ection y(x) of the shaft satis�es the differential equation

EI
d4y

dxdxd 4 2 ��2y 5 0,

where � is its density per unit length. If the shaft is simply 
supported, or hinged, at both ends the boundary conditions  
are then 

y(0) 5 0, y0(0) 5 0, y(L) 5 0, y0(L) 5 0.

(a) If � 5 �4 5 ��2yEIEIE , then �nd the eigenvalues and  
eigenfunctions for this boundary-value problem.

(b) Use the eigenvalues �n in part (a) to �nd corresponding 
angular speeds �n . The values �n are called critical speeds. 
The value �1 is called the fundamental critical speed and, 
analogous to Example 4, at this speed the shaft changes 
shape from y 5 0 to a de�ection given by y1sxd.
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FIGURE 5.2.12 Propeller shaft of the battleship USS Missouri 

velocity v0, it will then pass through the equilibrium position at 
t 5 1 second. How many times will each mass mn pass through 
the equilibrium position in the time interval 0 , t , 1?

34. Damped Motion Assume that the model for the spring/mass 
system in Problem 33 is replaced by 

mx0 1 2x2x2 9 1 kx 5 0.

In other words, the system is free but is subjected to damping 
numerically equal to 2 times the instantaneous velocity. With the 
same initial conditions and spring constant as in Problem 33, 
investigate whether a mass m can be found that will pass 
through the equilibrium position at t 5 1 second.

In Problems 35 and 36 determine whether it is possible to �nd values 
y0 and y1 (Problem 35) and values of L . 0 (Problem 36) so that 
the given boundary-value problem has (a) precisely one nontrivial 
solution, (b) more than one solution, (c) no solution, (d) the trivial 
solution.

35. y0 1 16y 5 0, y(0) 5 y0, y(�y2) 5 y1

36. y0 1 16y 5 0, y(0) 5 1, y(L) 5 1

37. Consider the boundary-value problem

y0 1 �y 5 0, y(2�) 5 y(�), y9(2�) 5 y9(�).

(a) The type of boundary conditions speci�ed are called 
periodic boundary conditions. Give a geometric 
interpretation of these conditions.

(b) Find the eigenvalues and eigenfunctions of the problem.

(c) Use a graphing utility to graph some of the eigenfunctions. 
Verify your geometric interpretation of the boundary  
conditions given in part (a).

38. Show that the eigenvalues and eigenfunctions of the boundary-
value problem 

y0 1 �y 5 0, y(0) 5 0, y(1) 1 y9(1) 5 0

are �n 5 � 2
n and yn(x) 5 sin �nxnxn , respectively, where  

�n, n 5 1, 2, 3, . . . are the consecutive positive roots of the 
equation tan � 5 2�.

Computer Lab Assignments
39. Use a CAS to plot graphs to convince yourself that the equation 

tan � 5 2� in Problem 38 has an in�nite number of roots. 
Explain why the negative roots of the equation can be ignored. 
Explain why � 5 0 is not an eigenvalue even though � 5 0 is 
an obvious solution of the equation tan � 5 2�.

40. Use a root-�nding application of a CAS to approximate 
the �rst four eigenvalues �1, �2, �3, and �4 for the BVP in 
Problem 38.

41. Use a CAS to approximate the eigenvalues �1, �2, �3, and �4 of 
the boundary-value problem:

y0 1 �y 5 0, y(0) 5 0, y(1) 2 1
2 y9(1) 5 0.

Give the corresponding approximate eigenfunctions y1(x), y2(x),
y3(x), and y4(x).

42. Use a CAS to approximate the eigenvalues �1, �2, �3, and �4

de�ned by the equation in part (a) of Problem 32.

32. In Problem 31 suppose L 5 1. If the shaft is �xed at both ends 
then the boundary conditions are

y(0) 5 0, y9(0) 5 0, y(1) 5 0, y9(1) 5 0.

(a) Show that the eigenvalues �n 5 �4
n are de�ned by the positive 

roots of cos � cosh � 5 1. [Hint: See the instructions to 
Problems 21 and 22.]

(b) Show that the eigenfunctions are 

yn(x) 5 (2sin �n 1 sinh �n)(cos �nxnxn 2 cosh �n x)

1(cos �n 2 cosh �n)(sin �nxnxn 2 sinh �n x).

Discussion Problems
33. Simple Harmonic Motion The model mx0 1 kx 5 0 for 

simple harmonic motion, discussed in Section 5.1, can be 
related to Example 2 of this section.

Consider a free undamped spring/mass system for which 
the spring constant is, say, k 5 10 lb/ft. Determine those masses 
mn that can be attached to the spring so that when each mass 
is released at the equilibrium position at t 5 0 with a nonzero 
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INTRODUCTION In this section we examine some nonlinear higher-order 
mathematical models. We are able to solve some of these models using the 
substitution method (leading to reduction of the order of the DE) introduced on 
page 189. In some cases in which the model cannot be solved, we show how a 
nonlinear DE can be replaced by a linear DE through a process called linearization.

NONLINEAR SPRINGS The mathematical model in (1) of Section 5.1 has the form

m 
d2x

dt2
1 F(x) 5 0, (1)

where F(x) 5 kx. Because x denotes the displacement of the mass from its equilibx denotes the displacement of the mass from its equilibx -
rium position, F(x) 5 kx is Hooke’s law—that is, the force exerted by the spring that kx is Hooke’s law—that is, the force exerted by the spring that kx
tends to restore the mass to the equilibrium position. A spring acting under a linear 
restoring force F(x) 5 kx is naturally referred to as a kx is naturally referred to as a kx linear spring. But springs 
are seldom perfectly linear. Depending on how it is constructed and the material 
that is used, a spring can range from “mushy,” or soft, to “stiff,” or hard, so its 
restorative force may vary from something below to something above that given by 
the linear law. In the case of free motion, if we assume that a nonaging spring has 
some nonlinear characteristics, then it might be reasonable to assume that the restor-
ative force of a spring—that is, F(x) in (1)—is proportional to, say, the cube of the 
displacement x of the mass beyond its equilibrium position or that x of the mass beyond its equilibrium position or that x F(x) is a linear 
combination of powers of the displacement such as that given by the nonlinear func-
tion F(x) 5 kx 1 k1x3. A spring whose mathematical model incorporates a nonlinear 
restorative force, such as

m
d2x2x2

dt2 1 kxkxk 3 5 0 or m
d2x2x2

dt2 1 kxkxk 1 k1x3 5 0, (2)

is called a nonlinear spring. In addition, we examined mathematical models in which 
damping imparted to the motion was proportional to the instantaneous velocity dxydt
and the restoring force of a spring was given by the linear function F(x) 5 kx. But these 
were simply assumptions; in more realistic situations damping could be proportional to 
some power of the instantaneous velocity dxydt. The nonlinear differential equation

m
d2x2x2

dt2 1 u dxdxd

dt u dxdxd

dt
1 kxkxk 5 0 (3)

is one model of a free spring/mass system in which the damping force is proportional 
to the square of the velocity. One can then envision other kinds of models: linear 
damping and nonlinear restoring force, nonlinear damping and nonlinear restoring 
force, and so on. The point is that nonlinear characteristics of a physical system lead 
to a mathematical model that is nonlinear.

Notice in (2) that both F(x) 5 kx3 and F(x) 5 kx 1 k1x3 are odd functions of x.
To see why a polynomial function containing only odd powers of x provides a x provides a x
reasonable model for the restoring force, let us express F as a power series centered F as a power series centered F
at the equilibrium position x 5 0:

F(x) 5 c0 1 c1x 1 c2x2 1 c3x3 1 Á .

When the displacements x are small, the values of x are small, the values of x xn are negligible for n suf�-
ciently large. If we truncate the power series with, say, the fourth term, then 
F(x) 5 c0 1 c1x 1 c2x2x2

2 1 c3x3. For the force at x . 0,

F(x) 5 c0 1 c1x 1 c2x2 1 c3x3,

5.3 N Nonlinear Models
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and for the force at 2x , 0,

F(2x) 5 c0 2 c1x 1 c2x2 2 c3x3

to have the same magnitude but act in the opposite direction, we must have 
F(2x) 5 2F(x). Because this means that F is an odd function, we must have F is an odd function, we must have F c0 5 0 
and c2 5 0, and so F(x) 5 c1x 1 c3x3. Had we used only the �rst two terms in the 
series, the same argument yields the linear function F(x) 5 c1x. A restoring force 
with mixed powers, such as F(x) 5 c1x 1 c2x2x2

2, and the corresponding vibrations are 
said to be unsymmetrical. In the next discussion we shall write c1 5 k and k and k c3 5 k1.

HARD AND SOFT SPRINGS Let us take a closer look at the equation in (1) in the 
case in which the restoring force is given by F(x) 5 kx 1 k1x3, k . 0. The spring is 
said to be hard if k1 . 0 and soft if k1 , 0. Graphs of three types of restoring forces 
are illustrated in Figure 5.3.1. The next example illustrates these two special cases of 
the differential equation md2xydt2 1 kx 1 k1x3 5 0, m . 0, k . 0.

 EXAMPLE 1 Comparison of Hard and Soft Springs

The differential equations

d2x

dt2 1 x 1 x3 5 0 (4)

and
d2x

dt2 1 x 2 x3 5 0 (5)

are special cases of the second equation in (2) and are models of a hard spring 
and a soft spring, respectively. Figure 5.3.2(a) shows two solutions of (4) and 
Figure  5.3.2(b) shows two solutions of (5) obtained from a numerical solver. 
The curves shown in red are solutions that satisfy the initial conditions x(0) 5 2, 
x9(0) 5 23; the two curves in blue are solutions that satisfy x(0) 5 2, x9(0) 5 0. 
These solution curves certainly suggest that the motion of a mass on the hard 
spring is oscillatory, whereas motion of a mass on the soft spring appears to be non-
oscillatory. But we must be careful about drawing conclusions based on a couple of 
numerical solution curves. A more complete picture of the nature of the solutions of 
both of these equations can be obtained from the qualitative analysis discussed in 
Chapter 10. .

NONLINEAR PENDULUM Any object that swings back and forth is called a 
physical pendulum. The simple pendulum is a special case of the physical pendu-
lum and consists of a rod of length l to which a mass l to which a mass l m is attached at one end. In 
describing the motion of a simple pendulum in a vertical plane, we make the simpli-
fying assumptions that the mass of the rod is negligible and that no external damping 
or driving forces act on the system. The displacement angle � of the pendulum, 
measured from the vertical as shown in Figure 5.3.3, is considered positive when 
measured to the right of OP and negative to the left of OP. Now recall the arc s of a 
circle of radius l is related to the central angle l is related to the central angle l � by the formula s 5 l�. Hence angu-
lar acceleration is

a 5
d2s

dt2 5 l
d2�

dt2 .

From Newton’s second law we then have

F 5 ma 5 ml
d2�

dt2 .

From Figure 5.3.3 we see that the magnitude of the tangential component of the force 
due to the weight W is W is W mg sin �. In direction this force is 2mg sin � because it points 

F
linear spring

hard
spring

soft spring

x

FIGURE 5.3.1 Hard and soft springs

(a) hard spring

(b) soft spring

x

  x(0) 5 2,
x'(0) 5 23

tt

x(0) 5 2,
x'(0) 5 23

t

x

x(0) 5 2,
x'(0) 5 0

x(0) 5 2,
x'(0) 5 0

FIGURE 5.3.2 Numerical solution curves

O

P
W 5mg

mg cos �

mg sin �

l

�

�

FIGURE 5.3.3 Simple pendulum
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to the left for � . 0 and to the right for � , 0. We equate the two different versions 
of the tangential force to obtain ml d2�ydt2 5 2mg sin �, or

d2�

dt2 1
g

l
sin � 5 0. (6)

LINEARIZATION Because of the presence of sin �, the model in (6) is non-linear. 
In an attempt to understand the behavior of the solutions of nonlinear higher-order 
differential equations, one sometimes tries to simplify the problem by replacing 
nonlinear terms by certain approximations. For example, the Maclaurin series for 
sin � is given by

sin � 5 � 2
�3

3!
1

�5

5!
2 . . .

so if we use the approximation sin � < � 2 �3y6, equation (6) becomes

d2�

dt2 1
g

l
� 2

g

6l
�3 5 0.

Observe that this last equation is the same as the second nonlinear equation in (2) 
with m 5 1, k 5 gyl, and k1 5 2gy6l. However, if we assume that the displacements 
� are small enough to justify using the replacement sin � < �, then (6) becomes

d2�

dt2 1
g

l
 � 5 0. (7)

See Problem 25 in Exercises 5.3. If we set �2 5 gyl, we recognize (7) as the differen-
tial equation (2) of Section 5.1 that is a model for the free undamped vibrations of a lin-
ear spring/mass system. In other words, (7) is again the basic linear equation 
y0 1 �y 5 0 discussed on pages 215–216 of Section 5.2. As a consequence we say 
that equation (7) is a linearization of equation (6). Because the general solution of 
(7) is �(t) 5 c1 cos �t 1 c2 sin �t, this linearization suggests that for initial condi-
tions amenable to small oscillations the motion of the pendulum described by (6) 
will be periodic.

EXAMPLE 2 Two Initial-Value Problems

The graphs in Figure 5.3.4(a) were obtained with the aid of a numerical solver and 
represent approximate or numerical solution curves of (6) when �2 5 1. The blue 
curve depicts the solution of (6) that satis�es the initial conditions �(0) 5 1

2, �9(0) 5 1
2, 

whereas the red curve is the solution of (6) that satis�es �(0) 5 1
2, �9(0) 5 2. The blue 

(c)

(0) 5 ,u
9u (0) 5 2

1
2

(b)

(0) 5 ,
9(0) 5

u
u

1
2

1
2t

2pp

(0) 5   , (0) 5 2

(0) 5   , (0) 5

(a)

u

u

u 9u

9u

1
25   25   5   

1
25   25   5   

1
2

FIGURE 5.3.4 In Example 2, oscillating pendulum in (b); whirling pendulum in (c)
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curve represents a periodic solution—the pendulum oscillating back and forth as 
shown in Figure 5.3.4(b) with an apparent amplitude A # 1. The red curve shows 
that � increases without bound as time increases—the pendulum, starting from the 
same initial displacement, is given an initial velocity of magnitude great enough 
to send it over the top; in other words, the pendulum is whirling about its pivot 
as shown in Figure 5.3.4(c). In the absence of damping, the motion in each case is 
continued inde�nitely. .

TELEPHONE WIRES The �rst-order differential equation dyydx 5 WyWyW T1 is 
equation (16) of Section 1.3. This differential equation, established with the aid 
of  Figure 1.3.8 on page 28, serves as a mathematical model for the shape of a 
�exible cable suspended between two vertical supports when the cable is carrying 
a vertical load. In Section 2.2 we solved this simple DE under the assumption that 
the vertical load carried by the cables of a suspension bridge was the weight of a 
horizontal roadbed distributed evenly along the x-axis. With W 5 �x�x� , � the weight 
per unit length of the roadbed, the shape of each cable between the vertical supports 
turned out to be parabolic. We are now in a position to determine the shape of a 
uniform �exible cable hanging only under its own weight, such as a wire strung 
between two telephone posts. See Figure 5.3.5. The vertical load is now the wire 
itself, and so if � is the linear density of the wire (measured, say, in pounds per feet) 
and s is the length of the segment P1P2 in Figure 1.3.8 then W 5 �s. Hence

dydyd

dxdxd
5

�s

T1
. (8)

Since the arc length between points P1 and P2 is given by

s 5 #x

0
#

0
# Î1 1 1dydyd

dxdxd 2
2Î dxdxd , (9)

it follows from the Fundamental Theorem of Calculus that the derivative of (9) is

dsdsd

dxdxd
5Î1 1 1dydyd

dxdxd 2
2Î . (10)

Differentiating (8) with respect to x and using (10) lead to the second-order equationx and using (10) lead to the second-order equationx

d2y2y2

dxdxd 2 5
�

T1

dsdsd

dxdxd
or

d2y

dx2 5
�

T1
 Î1 1 1dy

dx2
2

. (11)

In the example that follows we solve (11) and show that the curve assumed by 
the suspended cable is a catenary. Before proceeding, observe that the nonlinear 
second-order differential equation (11) is one of those equations having the form 
F(x, y9, y0) 5 0 discussed in Section 4.10. Recall that we have a chance of solving an 
equation of this type by reducing the order of the equation by means of the substitu-
tion u 5 y9.

EXAMPLE 3 A Solution of (11)

From the position of the y-axis in Figure 1.3.8 it is apparent that initial conditions 
associated with the second differential equation in (11) are y(0) 5 a and y9(0) 5 0.

If we substitute u 5 y9, then the equation in (11) becomes 
du

dxdxd
5

�

T1
Ï1 1 u2Ï . 

Separating variables, we �nd that

# du

Ï1 1 u2Ï
5

�

T1
# dxdxd gives sinh21u 5

�

T1
x 1 c1.

FIGURE 5.3.5 Shape of hanging 
telephone wires is a catenary
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Now, y9(0) 5 0 is equivalent to u(0) 5 0. Since sinh21 0 5 0, c1 5 0, so 
u 5 sinh (�x�x� yT1). Finally, by integrating both sides of

dydyd

dxdxd
5 sinh

�

T1
x, we get y 5

T1

�
cosh

�

T1
x 1 c2.

Using y(0) 5 a, cosh 0 5 1, the last equation implies that c2 5 a 2 T1y�. 
Thus we see that the shape of the hanging wire is given by 
y 5 (T1y�) cosh(�xy T1) 1 a 2 T1y�. .

In Example 3, had we been clever enough at the start to choose a 5 T1y�, 
then  the solution of the problem would have been simply the hyperbolic cosine 
y 5 (T1y�) cosh (�x�x� yT1).

ROCKET MOTION In (12) of Section 1.3 we saw that the differential equation of a 
free-falling body of mass m near the surface of the Earth is given by

m
d2s

dt2 5 2mg or simply
d2s

dt2 5 2g,

where s represents the distance from the surface of the Earth to the object and the 
positive direction is considered to be upward. In other words, the underlying 
assumption here is that the distance s to the object is small when compared with the 
radius R of the Earth; put yet another way, the distance y from the center of the Earth 
to the object is approximately the same as R. If, on the other hand, the distance y to 
the object, such as a rocket or a space probe, is large when compared to R, then 
we combine Newton’s second law of motion and his universal law of gravitation to 
derive a differential equation in the variable y.

Suppose a rocket is launched vertically upward from the ground as shown in 
Figure 5.3.6. If the positive direction is upward and air resistance is ignored, then the 
differential equation of motion after fuel burnout is

m
d2y2y2

dt2
5 2k

MmMmM

y2 or
d2y2y2

dt2 5 2k
M

y2, (12)

where k is a constant of proportionality, k is a constant of proportionality, k y is the distance from the center of the 
Earth to the rocket, M is the mass of the Earth, and M is the mass of the Earth, and M m is the mass of the rocket. To 
determine the constant k, we use the fact that when y 5 R, kMmyR2 5 mg or 
k 5 gR2yM. Thus the last equation in (12) becomes

d2y

dt2 5 2g
R2

y2 . (13)

See Problem 14 in Exercises 5.3.

VARIABLE MASS Notice in the preceding discussion that we described the motion 
of the rocket after it has burned all its fuel, when presumably its mass m is constant. 
Of course, during its powered ascent the total mass of the rocket varies as its fuel is 
being expended. We saw in (17) of Exercises 1.3 that the second law of motion, as 
originally advanced by Newton, states that when a body of mass m moves through a 
force �eld with velocity v, the time rate of change of the momentum mv of the body 
is equal to applied or net force F acting on the body:F acting on the body:F

F 5
d

dt
(mv). (14)

If m is constant, then (14) yields the more familiar form F 5 m dvydt 5 ma, where 
a is acceleration. We use the form of Newton’s second law given in (14) in the next 
example, in which the mass m of the body is variable.

v0

y

center ofcenter ofcenter of
EarthEarthEarth

RRR

FIGURE 5.3.6 Distance to rocket is large 
compared to R.
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EXAMPLE 4 Chain Pulled Upward by a Constant Force

A uniform 10-foot-long chain is coiled loosely on the ground. One end of the chain 
is pulled vertically upward by means of constant force of 5 pounds. The chain weighs 
1 pound per foot. Determine the height of the end above ground level at time t. See 
Figure 5.3.7.

SOLUTION Let us suppose that x 5 x(t) denotes the height of the end of the chain in 
the air at time t, v 5 dxydt, and the positive direction is upward. For the portion of the 
chain that is in the air at time t we have the following variable quantities:t we have the following variable quantities:t

weight: W 5 (x ftx ftx ) ? (1 lb/ft) 5 x,

mass: m 5 WyWyW g 5 xy32,

net fofof rce: F 5 5 2 W 5 5 2 x.

Thus from (14) we have

Product Rule

1 v 5  160 2 32x 32x 32 .x( v) 5 5 2 x or
x

–––
3232

d
–––
dt

dv
–––
dt

dx
–––
dt (15)

Because v 5 dxydt, the last equation becomes

x
d2x

dt2
1 1dxdxd

dt 2
2

1 32x 5 160. (16)

The nonlinear second-order differential equation (16) has the form F(x, x9, x0) 5 0, 
which is the second of the two forms considered in Section 4.10 that can possibly 
be solved by reduction of order. To solve (16), we revert back to (15) and use v 5 x9

along with the Chain Rule. From 
dv

dt
5

dv

dxdxd

dxdxd

dt
5 v

dv

dxdxd
 the second equation in (15) 

can be rewritten as

xv
dvdvd

dxdxd
1 v2 5 160 2 32x2x2 . (17)

On inspection (17) might appear intractable, since it cannot be characterized as any 
of the �rst-order equations that were solved in Chapter 2. However, by rewriting 
(17) in differential form M(x, v) dx 1 N(N(N x, v)dv 5 0, we observe that although the 
equation

(v2 1 32x 2 160) dxdxd 1 xv dv 5 0 (18)

is not exact, it can be transformed into an exact equation by multiplying it by an 
integrating factor. From (MvMvM 2 NxNxN )yN 5 1yx we see from (13) of Section 2.4 that for x we see from (13) of Section 2.4 that for x

x . 0 an integrating factor is ee dxyx 5 eln x 5 x. When (18) is multiplied by �(x) 5 x, 
the resulting equation is exact (verify). By identifying −f−f− yfyf −x 5 xv2 1 32x32x32 2 2 160x160x160 , 
−f−f− yfyf −v 5 x2v and then proceeding as in Section 2.4, we obtain

1

2
x2v2 1

32

3
x3 2 80x2 5 c1. (19)

Since we have assumed that all of the chain is on the �oor initially, we have 
x(0) 5 0. This last condition applied to (19) yields c1 5 0. By solving the algebraic 
equation 1

2 x2v2 1 32
3 x3 2 80x2 5 0 for v 5 dxydt . 0, we get another �rst-order 

differential equation,

dxdxd

dt
5Î160 2

64

3
xÎ .

x(t)

5 lb
upward
force

FIGURE 5.3.7 Chain pulled upward by a 
constant force in Example 4
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The last equation can be solved by separation of variables. You should verify that

2
3

32 1160 2
64

3
x2

1/2

5 t 1 c2. (20)

This time the initial condition x(0) 5 0 implies that c2 5 23Ï10Ï y8. Finally, by 
squaring both sides of (20) and solving for x, we arrive at the desired result,

x(t) 5
15

2
2

15

2 11 2
4Ï10Ï

15
t2

2

. (21)

The graph of (21) given in Figure 5.3.8 should not, on physical grounds, be taken at 
face value. See Problem 15 in Exercises 5.3. .

0.5

1

8
7
6
5
4
3
2

1
t

x

1.5 2 2.50

FIGURE 5.3.8 Graph of (21) in Example 4

EXERCISES 5.3
To the Instructor In addition to Problems 24 and 25, all or portions 
of Problems 1–6, 8–13, 15, 20, and 21 could serve as Computer Lab 
Assignments.

Nonlinear Springs
In Problems 1–4 the given differential equation is a model of an 
undamped spring/mass system in which the restoring force F(x) in 
(1) is nonlinear. For each equation use a numerical solver to plot the 
solution curves that satisfy the given initial conditions. If the solutions 
appear to be periodic use the solution curve to estimate the period 
T of oscillations.T of oscillations.T

1.
d 2x

dt2 1 x3 5 0,

x(0) 5 1, x9(0) 5 1; x (0) 5 1
2, x9(0) 5 21

2.
d 2x

dt2
1 4x 2 16x3 5 0,

x(0) 5 1, x9(0) 5 1; x(0) 5 22, x9(0) 5 2

3.
d 2x

dt2
1 2x 2 x2 5 0,

x(0) 5 1, x9(0) 5 1; x(0) 5 3
2, x9(0) 5 21

4.
d 2x

dt2
1 xe0.01x 5 0,

x(0) 5 1, x9(0) 5 1; x(0) 5 3, x9(0) 5 21

5. In Problem 3, suppose the mass is released from the initial 
position x(0) 5 1 with an initial velocity x9(0) 5 x1. Use a 
numerical solver to estimate the smallest value of ux1u at which 
the motion of the mass is nonperiodic.

6. In Problem 3, suppose the mass is released from an initial 
position x(0) 5 x0 with the initial velocity x9(0) 5 1. Use a 
numerical solver to estimate an interval a # x0 # b for which 
the motion is oscillatory.

7. Find a linearization of the differential equation in Problem 4.

8. Consider the model of an undamped nonlinear spring/mass 
system given by x0 1 8x 2 6x3 1 x5 5 0. Use a numerical 

Answers to selected odd-numbered problems begin on page ANS-8.

solver to discuss the nature of the oscillations of the system 
corresponding to the initial conditions:

x(0) 5 1, x9(0) 5 1; x(0) 5 22, x9(0) 5 1
2;

x(0) 5 Ï2Ï , x9(0) 5 1; x(0) 5 2, x9(0) 5 1
2;

x(0) 5 2, x9(0) 5 0; x (0) 5 2Ï2Ï , x9(0) 5 21.

In Problems 9 and 10 the given differential equation is a model of a 
damped nonlinear spring/mass system. Predict the behavior of each 
system as t S `. For each equation use a numerical solver to obtain 
the solution curves satisfying the given initial conditions.

9.
d 2x

dt2 1
dxdxd

dt
1 x 1 x3 5 0,

x(0) 5 23, x9(0) 5 4; x(0) 5 0, x9(0) 5 28

10.
d 2x

dt2
1

dxdxd

dt
1 x 2 x3 5 0,

x(0) 5 0, x9(0) 5 3
2; x(0) 5 21, x9(0) 5 1

11. The model mx0 1 kx 1 k1x3 5 F0F0F cos �t of an t of an t undamped 
periodically driven spring/mass system is called Duf�ng’s 
differential equation. Consider the initial-value problem 
x0 1 x 1 k1x3 5 5 cos t, x(0) 5 1, x9(0) 5 0. Use a numerical 
solver to investigate the behavior of the system for values 
of k1 . 0 ranging from k1 5 0.01 to k1 5 100. State your 
conclusions.

12. (a) Find values of k1 , 0 for which the system in Problem 11 is 
oscillatory.

(b) Consider the initial-value problem

x0 1 x 1 k1x3 5 cos 3
2 t, x(0) 5 0, x9(0) 5 0.

Find values for k1 , 0 for which the system is  
oscillatory.

Nonlinear Pendulum
13. Consider the model of the free damped nonlinear pendulum 

given by

d2d2d �

dt2
1 2�

d�

dt
1 �2 sin � 5 0.
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Use a numerical solver to investigate whether the motion 
in the two cases �2 2 �2 . 0 and �2 2 �2 , 0 corre-
sponds, respectively, to the overdamped and underdamped 
cases discussed in Section 5.1 for spring/mass systems. For 
�2 2 �2 . 0, use � 5 2, � 5 1, �(0) 5 1, and �9(0) 5 2. For 
�2 2 �2 , 0, use � 5 1

3, � 5 1, �(0) 5 22, and �9(0) 5 4.

Rocket Motion
14. (a) Use the substitution v 5 dyydt to solve (13) for dt to solve (13) for dt v in terms 

of y. Assuming that the velocity of the rocket at burnout is 
v 5 v0 and y < R at that instant, show that the approximate 
value of the constant c of integration is c 5 2gR 1 1

2 v0
2.

(b) Use the solution for v in part (a) to show that the escape 
velocity of the rocket is given by v0 5 Ï2gRÏ . [Hint: Take 
y S ` and assume v . 0 for all time t.]

(c) The result in part (b) holds for any body in the Solar  
System. Use the values g 5 32 ft/s2 and R 5 4000 mi 
to show that the escape velocity from the Earth is 
(approximately) v0 5 25,000 mi/h.

(d) Find the escape velocity from the Moon if the acceleration 
of gravity is 0.165g and R 5 1080 mi.

Variable Mass
15. (a) In Example 4, how much of the chain would you intuitively 

expect the constant 5-pound force to be able to lift?

(b) What is the initial velocity of the chain?

(c) Why is the time interval corresponding to x(t) $ 0 given in 
Figure 5.3.7 not the interval I of de�nition of the solution I of de�nition of the solution I
(21)? Determine the interval I. How much chain is actually 
lifted? Explain any difference between this answer and your 
prediction in part (a).

(d) Why would you expect x(t) to be a periodic solution?

16. A uniform chain of length L, measured in feet, is held vertically 
so that the lower end just touches the �oor. The chain weighs 
2 lb/ft. The upper end that is held is released from rest at t 5 0 
and the chain falls straight down. If x(t) denotes the length of 
the chain on the �oor at time t, air resistance is ignored, and the 
positive direction is taken to be downward, then

(L 2 x)
d 2x

dt2 2 1dxdxd

dt 2
2

5 Lg.

(a) Solve for v in terms of x. Solve for x in terms of x in terms of x t. Express v
in terms of t.

(b) Determine how long it takes for the chain to fall completely 
to the ground.

(c) What velocity does the model in part (a) predict for the  
upper end of the chain as it hits the ground?

Additional Mathematical Models
17. Pursuit Curve In a naval exercise a ship S1 is pursued by a 

submarine S2S2S  as shown in Figure 5.3.9. Ship S1 departs point (0, 0) 
at t 5 0 and proceeds along a straight-line course (the y-axis) 
at a constant speed v1. The submarine S2 keeps ship S1 in visual 
contact, indicated by the straight dashed line L in the �gure, L in the �gure, L

while traveling at a constant speed v2 along a curve C. Assume 
that ship S2 starts at the point (a, 0), a . 0, at t 5 0 and that L is L is L
tangent to C.

(a) Determine a mathematical model that describes the curve C.

(b) Find an explicit solution of the differential equation. For 
convenience de�ne r 5 v1yv2. 

(c) Determine whether the paths of S1 and S2 will ever intersect 
by considering the cases r . 1, r , 1, and r 5 1. [Hint: 
dt

dxdxd
5

dt

ds

ds

dxdxd
, where s is arc length measured along C.]

S2

x

y

S1

L

C

FIGURE 5.3.9 Pursuit curve in Problem 17

18. Pursuit Curve In another naval exercise a destroyer S1

pursues a submerged submarine S2. Suppose that S1 at (9, 0) on 
the x-axis detects S2 at (0, 0) and that S2 simultaneously detects 
S1. The captain of the destroyer S1 assumes that the submarine 
will take immediate evasive action and conjectures that its 
likely new course is the straight line indicated in Figure 5.3.10. 
When S1 is at (3, 0), it changes from its straight-line course 
toward the origin to a pursuit curve C. Assume that the speed 
of the destroyer is, at all times, a constant 30 mi/h and that the 
submarine’s speed is a constant 15 mi/h.

(a) Explain why the captain waits until S1 reaches (3, 0) before 
ordering a course change to C.

(b) Using polar coordinates, �nd an equation r 5 f (�) for the 
curve C.

(c) Let T denote the time, measured from the initial T denote the time, measured from the initial T detection, 
at which the destroyer intercepts the submarine. Find an  
upper bound for T.

S2

L

x

y

S1

C

(3, 0) (9, 0)

u

FIGURE 5.3.10 Pursuit curve in Problem 18
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19. The Ballistic Pendulum Historically, in order to maintain 
quality control over munitions (bullets) produced by an assembly 
line, the manufacturer would use a ballistic pendulum to 
determine the muzzle velocity of a gun, that is, the speed of a 
bullet as it leaves the barrel. Invented in 1742 by the English 
engineer Benjamin Robins, the ballistic pendulum is simply a 
plane pendulum consisting of a rod of negligible mass to which a 
block of wood of mass mw is attached. The system is set in motion 
by the impact of a bullet which is moving horizontally at the 
unknown velocity vb; at the time of the impact, which we take as 
t 5 0, the combined mass is mw 1 mb, where mb is the mass of the 
bullet imbedded in the wood. In (7) of this section, we saw that in 
the case of small oscillations, the angular displacement �(t) of a 
plane pendulum shown in Figure 5.3.3 is given by the linear DE 
�0 1 (gyl )� 5 0, where � . 0 corresponds to motion to the right 
of vertical. The velocity vb can be found by measuring the height 
h of the mass mw 1 mb at the maximum displacement angle �max

shown in Figure 5.3.11.
Intuitively, the horizontal velocity V of the combined mass V of the combined mass V

(wood plus bullet) after impact is only a fraction of the velocity 
vb of the bullet, that is,

V 5 1 mb

mw 1 mb
2 vb.

Now recall, a distance s traveled by a particle moving along a 
circular path is related to the radius l and central angle l and central angle l � by the 
formula s 5 l�. By differentiating the last formula with respect 
to time t, it follows that the angular velocity � of the mass 
and its linear velocity v are related by v 5 l�. Thus the initial 
angular velocity �0 at the time t at which the bullet impacts the t at which the bullet impacts the t
wood block is related to V by V by V V 5 l�0 or 

�0 5 1 mb

mw 1 mb
2 vb

l
.

(a) Solve the initial-value problem

d2�

dt2 1
g

l
� 5 0, �(0) 5 0, �9(0) 5 �0.

(b) Use the result from part (a) to show that

vb 5 1mw 1 mb

mb
2 ÏlgÏ �max.

(c) Use Figure 5.3.11 to express cos �max in terms of l and l and l h. 
Then use the �rst two terms of the Maclaurin series for  
cos � to express �max in terms of l and l and l h. Finally, show that 
vb is given (approximately) by

vb 5 1mw 1 mb

mb
2 Ï2ghÏ .

(d) Use the result in part (c) to �nd vb and mb 5 5 g, mw 5 1 kg, 
and h 5 6 cm.

20. Relief Supplies As shown in Figure 5.3.12, a plane �ying 
horizontally at a constant speed v0 drops a relief supply pack 
to a person on the ground. Assume the origin is the point 
where the supply pack is released and that the positive x-axis 
points forward and that positive y-axis points downward. 
Under the assumption that the horizontal and vertical 
components of the air resistance are proportional to (dxdxd ydt)2

and (dydyd ydt)2, respectively, and if the position of the supply 
pack is given by r(t) 5 x(t)i 1 y(t)j)j) , then its velocity is 
v(t) 5 (dxdxd ydt)i 1 (dydyd ydt)j)j) . Equating components in the vector 
form of Newton’s second law of motion,

m
dvdvd

dt
5 mg 2 k31dxdxd

dt 2
2

i 1 1dydyd

dt 2
2

j4
gives

m
d2x

dt2 5 mg 2 k1dxdxd

dt 2
2

, x (0) 5 0, x9(0) 5 v0

m
d2y

dt2 5 mg 2 k 1dy

dt 2
2

, y(0) 5 0, y9(0) 5 0.

(a) Solve both of the foregoing initial-value problems by 
means of the substitutions u 5 dxdxd ydt, w 5 dydyd ydt, and  
separation of variables. [Hint: See the Remarks at the end 
of Section 3.2.]

(b) Suppose the plane �les at an altitude of 1000 ft and that 
its constant speed is 300 mi/h. Assume that the constant of 
proportionality for air resistance is k 5 0.0053 and that the 
supply pack weighs 256 lb. Use a root-�nding application 
of a CAS or a graphic calculator to determine the horizontal 
distance the pack travels, measured from its point of release 
to the point where it hits the ground.

V

h

l

mb vb

max

mw

m b
1

m w

u

FIGURE 5.3.11 Ballistic pendulum in Problem 19

Discussion Problems
21. Discuss why the damping term in equation (3) is written as

� u dxdxd

dt u dxdxd

dt
instead of � 1dxdxd

dt 2
2

.

22. (a) Experiment with a calculator to �nd an interval 0 # � , �1, 
where � is measured in radians, for which you think  
sin � < � is a fairly good estimate. Then use a graphing 
utility to plot the graphs of y 5 x and x and x y 5 sin x on the same x on the same x
coordinate axes for 0 # x # �y2. Do the graphs con�rm 
your observations with the calculator?

supply
pack

target

FIGURE 5.3.12 Airplane drop in Problem 20
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(b) Use a numerical solver to plot the solution curves of the 
initial-value problems

d2�

dt2 1 sin � 5 0, �(0) 5 �0, �9(0) 5 0

and
d2�

dt2 1 � 5 0, �(0) 5 �0, �9(0) 5 0

for several values of �0 in the interval 0 # � , �1 found  
in part (a). Then plot solution curves of the initial-value  
problems for several values of �0 for which �0 . �1.

23. Pendulum Motion on the Moon Does a pendulum of length 
l oscillate faster on the Earth or on the Moon?l oscillate faster on the Earth or on the Moon?l

(a) Take l 5 3 and g 5 32 for the acceleration of gravity on 
Earth. Use a numerical solver to generate a numerical  
solution curve for the nonlinear model (6) subject to the  
initial conditions �(0) 5 1, �9(0) 5 2. Repeat using the 
same values but use 0.165g for the acceleration of gravity 
on the Moon.

(b) From the graphs in part (a), determine which pendulum 
oscillates faster. Which pendulum has the greater amplitude 
of motion?

24. Pendulum Motion on the Moon-Continued Repeat the 
two parts of Problem 23 this time using the linear model (7).

Computer Lab Assignments
25. Consider the initial-value problem

d2�

dt2 1 sin � 5 0, �(0) 5
�

12
, �9(0) 5 2

1

3

for a nonlinear pendulum. Suppose we wish to determine 
the �rst time t1 . 0 for which the pendulum in Figure 5.3.3, 
starting from its initial position to the right, reaches the position 
OP—that is, the �rst positive root of �(t) 5 0. In this problem 
and the next we examine several ways to proceed.

(a) Approximate t1 by solving the linear problem 

d2�

dt2 1� 5 0, �(0) 5
�

12
, �9(0) 5 2

1

3
.

(b) Use the method illustrated in Example 3 of Section 4.10 to 
�nd the �rst four nonzero terms of a Taylor series solution 
�(t) centered at 0 for the nonlinear initial-value problem. 
Give the exact values of all coef�cients.

(c) Use the �rst two terms of the Taylor series in part (b) to  
approximate t1.

(d) Use the �rst three terms of the Taylor series in part (b) to 
approximate t1.

(e) Use a root-�nding application of a CAS or a graphic  
calculator and the �rst four terms of the Taylor series in 
part (b) to approximate t1.

(f) In this part of the problem you are led through the  
commands in Mathematica that enable you to approximate 
the root t1. The procedure is easily modi�ed so that any  
root of �(t) 5 0 can be approximated. (If you do not have  
Mathematica, adapt the given procedure by �nding the  
corresponding syntax for the CAS you have on hand.)  
Reproduce and then, in turn, execute each line in the given 
sequence of commands.

sol 5 NDSolve [{y0[t] 1 Sin[y[t]] 55 0,  
y[0] 55 Pi/12, y9[0] 55 21/3},  
y, {t, 0, 5}]//Flatten

solution 5 y[t]/.sol
Clear[y]
y[t_]: 5 Evaluate[solution]
y[t]
gr1 5 Plot[y[t], {t, 0, 5}]
root 5 FindRoot[y[t] 55 0, {t, 1}]

(g) Appropriately modify the syntax in part (f) and �nd the 
next two positive roots of �(t) 5 0.

26. Consider a pendulum that is released from rest from an 
initial displacement of �0 radians. Solving the linear model 
(7) subject to the initial conditions �(0) 5 �0, �9(0) 5 0 
gives �(t) 5 �0 cos ÏgÏgÏ /lÏ t. The period of oscillations 
predicted by this model is given by the familiar formula 
T 5 2�y�y� ÏgÏgÏ /lÏ 5 2� Ïl/l/l g/g/Ï . The interesting thing about this 
formula for T is that it does not depend on the magnitude of T is that it does not depend on the magnitude of T
the initial displacement �0. In other words, the linear model 
predicts that the time it would take the pendulum to swing 
from an initial displacement of, say, �0 5 �y2 (5 90°) 
to 2�y2 and back again would be exactly the same as the 
time it would take to cycle from, say, �0 5 �y360 (5 0.5°) 
to 2�y360. This is intuitively unreasonable; the actual period 
must depend on �0.

If we assume that g 5 32 ft/s2 and l 5 32 ft, then the period 
of oscillation of the linear model is T 5 2� s. Let us compare 
this last number with the period predicted by the nonlinear model 
when �0 5 �y4. Using a numerical solver that is capable of 
generating hard data, approximate the solution of

d2�

dt2 1 sin �5 0, �(0) 5
�

4
, �9(0) 5 0

on the interval 0 # t # 2. As in Problem 25, if t1 denotes the 
�rst time the pendulum reaches the position OP in Figure 
5.3.3, then the period of the nonlinear pendulum is 4t1. Here 
is another way of solving the equation �(t) 5 0. Experiment 
with small step sizes and advance the time, starting at t 5 0 and 
ending at t 5 2. From your hard data observe the time t1 when 
�(t) changes, for the �rst time, from positive to negative. Use 
the value t1 to determine the true value of the period of the non-
linear pendulum. Compute the percentage relative error in the 
period estimated by T 5 2�.
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Answer Problems 1–8 without referring back to the text. Fill in the 
blank or answer true/false.

1. If a mass weighing 10 pounds stretches a spring 2.5 feet, a mass 
weighing 32 pounds will stretch it  feet.

2. The period of simple harmonic motion of mass weighing  
8 pounds attached to a spring whose constant is 6.25 lb/ft is 

 seconds.

3. The differential equation of a spring/mass system is 
x0 1 16x 5 0. If the mass is initially released from a point 1 
meter above the equilibrium position with a downward velocity 
of 3 m/s, the amplitude of vibrations is  meters.

4. Pure resonance cannot take place in the presence of a damping 
force. 

5. In the presence of a damping force, the displacements of a mass 
on a spring will always approach zero as t S `. 

6. A mass on a spring whose motion is critically damped can 
possibly pass through the equilibrium position twice. 

7. At critical damping any increase in damping will result in an 
 system.

8. If simple harmonic motion is described by x 5 (Ï2Ï y2)
sin(2t 1 �), the phase angle � is  when the initial 
conditions are x(0) 5 21

2 and x9(0) 5 1. 

In Problems 9 and 10 the eigenvalues and eigenfunctions of the 
boundary-value problem y0 1 �y 5 0, y9(0) 5 0, y9(�) 5 0 are 
�n 5 n2, n 5 0, 1, 2, . . . , and y 5 cos nx, respectively. Fill in the 
blanks.

9. A solution of the BVP when � 5 8 is y 5
because .

10. A solution of the BVP when � 5 36 is y 5
because .

11. A free undamped spring/mass system oscillates with a period 
of 3 seconds. When 8 pounds are removed from the spring, the 
system has a period of 2 seconds. What was the weight of the 
original mass on the spring?

12. A mass weighing 12 pounds stretches a spring 2 feet. The mass 
is initially released from a point 1 foot below the equilibrium 
position with an upward velocity of 4 ft/s.

(a) Find the equation of motion.

(b) What are the amplitude, period, and frequency of the  
simple harmonic motion?

(c) At what times does the mass return to the point 1 foot  
below the equilibrium position?

(d) At what times does the mass pass through the equilibrium 
position moving upward? Moving downward?

(e) What is the velocity of the mass at t 5 3�y16 s?

(f) At what times is the velocity zero?

Chapter 5 In Review Answers to selected odd-numbered problems begin on page ANS-8.

13. A force of 2 pounds stretches a spring 1 foot. With one end held 
�xed, a mass weighing 8 pounds is attached to the other end. The 
system lies on a table that imparts a frictional force numerically 
equal to 32 times the instantaneous velocity. Initially, the mass is 
displaced 4 inches above the equilibrium position and released 
from rest. Find the equation of motion if the motion takes place 
along a horizontal straight line that is taken as the x-axis.

14. A mass weighing 32 pounds stretches a spring 6 inches. The 
mass moves through a medium offering a damping force that 
is numerically equal to � times the instantaneous velocity. 
Determine the values of � . 0 for which the spring/mass 
system will exhibit oscillatory motion.

15. A spring with constant k 5 2 is suspended in a liquid that offers 
a damping force numerically equal to 4 times the instantaneous 
velocity. If a mass m is suspended from the spring, determine 
the values of m for which the subsequent free motion is 
nonoscillatory.

16. The vertical motion of a mass attached to a spring is described 
by the initial-value problem

1
4 x0 1 x9 1 x 5 0, x(0) 5 4, x9(0) 5 2. 

Determine the maximum vertical displacement of the mass.

17. A mass weighing 4 pounds stretches a spring 18 inches. A 
periodic force equal to f (t) 5 cos �t 1 sin �t is t is t impressed on the 
system starting at t 5 0. In the absence of a damping force, for 
what value of � will the system be in a state of pure resonance?� will the system be in a state of pure resonance?�

18. Find a particular solution for x0 1 2�x9 1 �2x2x2 5 A, where A is 
a constant force.

19. A mass weighing 4 pounds is suspended from a spring whose 
constant is 3 lb/ft. The entire system is immersed in a �uid 
offering a damping force numerically equal to the instantaneous 
velocity. Beginning at t 5 0, an external force equal to 
f (t) 5 e2t is impressed on the t is impressed on the t system. Determine the equation 
of motion if the mass is initially released from rest at a point  
2 feet below the equilibrium position.

20. (a) A mass weighing W pounds stretches a spring W pounds stretches a spring W 1
2 foot and 

stretches a different spring 14 foot. The two springs are 
attached in series and the mass is then attached to the 
double spring as shown in Figure 5.1.6. Assume that the 
motion is free and that there is no damping force present. 
Determine the equation of motion if the mass is initially 
released at a point 1 foot below the equilibrium position 
with a downward velocity of 23 ftftf /s.

(b) Show that the maximum speed of the mass is 23 Ï3g 1 1Ï .

21. A series circuit contains an inductance of L 5 1 h, a 
capacitance of C 5 1024 f, and an electromotive force of 
E(t) 5 100 sin 50t V. Initially, the charge q and current i are zero.

(a) Determine the charge q(t).

(b) Determine the current i(t).

(c) Find the times for which the charge on the capacitor is zero.
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22. (a) Show that the current i(t) in an LRC-series circuit satis�es 

L
d 2i

dt2
1 R

di

dt
1

1

C
i 5 E9(t), 

where E9(t) denotes the derivative of E(t).

(b) Two initial conditions i(0) and i9(0) can be speci�ed for the 
DE in part (a). If i(0) 5 i0 and q(0) 5 q0, what is i9(0)?

23. Consider the boundary-value problem

y0 1 �y 5 0, y(0) 5 y(2�), y9(0) 5 y9(2�).

Show that except for the case � 5 0, there are two independent 
eigenfunctions corresponding to each eigenvalue.

24. A bead is constrained to slide along a frictionless rod of length L.
The rod is rotating in a vertical plane with a constant angular 
velocity � about a pivot P �xed at the midpoint of the rod, 
but the design of the pivot allows the bead to move along the 
entire length of the rod. Let r(t) denote the position of the bead 
relative to this rotating coordinate system as shown in  
Figure 5.R.1. To apply Newton’s second law of motion to this 
rotating frame of reference, it is necessary to use the fact that 
the net force acting on the bead is the sum of the real forces 
(in this case, the force due to gravity) and the inertial forces 
(coriolis, transverse, and centripetal). The resulting differential 
equation for r is:r is:r

m
d2r

dt2 5 m�2r 2 mg sin �t.

(a) Solve the foregoing DE subject to the initial conditions 
r(0) 5 r0r0r , r9(0) 5 v0.

(b) Determine the initial conditions for which the bead exhibits 
simple harmonic motion. What is the minimum length L of L of L
the rod for which it can accommodate simple harmonic mo-
tion of the bead?

(c) For initial conditions other than those obtained in part (b), 
the bead must eventually �y off the rod. Explain using the 
solution r(t) in part (a).

(d) Suppose � 5 1 rad/s. Use a graphing utility to graph the 
solution r(t) for the initial conditions r(0) 5 0, r9(0) 5 v0, 
where v0 is 0, 10, 15, 16, 16.1, and 17.

(e) Suppose the length of the rod is L 5 40 ft. For each pair of 
initial conditions in part (d), use a root-�nding application 
to �nd the total time that the bead stays on the rod.

25. Suppose a mass m lying on a �at dry frictionless surface is 
attached to the free end of a spring whose constant is k. In 
Figure 5.R.2(a) the mass is shown at the equilibrium position  
x 5 0, that is, the spring is neither stretched nor compressed. As 
shown in Figure 5.R.2(b), the displacement x(t) of the mass to 
the right of the equilibrium position is positive and negative to 
the left. Determine a differential equation for the displacement 
x(t) of the freely sliding mass. Discuss the difference between 
the derivation of this DE and the analysis leading to (1) of 
Section 5.1.

bead

P

r (
t)

tv

FIGURE 5.R.1 Rotating rod in Problem 24

rigid
support

frictionless surface

x 5 0

x(t) , 0 x(t) . 0

m

m

(a) equilibrium

(b) motion

FIGURE 5.R.2 Sliding spring/mass system in Problem 25

26. Suppose the mass m on the �at, dry, frictionless surface in 
Problem 25 is attached to two springs as shown Figure 5.R.3. 
If the spring constants are k1 and k2, determine a differential 
equation for the displacement x(t) of the freely sliding mass.

rigid
support

rigid
support

k1 k2

m

FIGURE 5.R.3 Double spring system in Problem 26

27. Suppose the mass m in the spring/mass system in 
Problem 25 slides over a dry surface whose coef�cient of 
sliding friction is � . 0. If the retarding force of kinetic 
friction has the constant magnitude fkfkf 5 �mg, where mg is 
the weight of the mass, and acts opposite to the direction of 
motion, then it is known as coulomb friction. By using the 
signum function

sgn(x9) 5 521, x9 , 0 (motion to leftftf )

1, x9 . 0 (motion to right)

determine a piecewise-de�ned differential equation for the 
displacement x(t) of the damped sliding mass.

28. For simplicity, let us assume in Problem 27 that m 5 1, k 5 1,
and fkfkf 5 1.

(a) Find the displacement x(t) of the mass if it is released 
from rest from a point 5.5 units to the right of the 
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equilibrium position, that is, the initial conditions are 
x(0) 5 5.5, x9(0) 5 0. When released, intuitively the motion 
of the mass will be to the left. Give a time interval [0, t1]
over which this solution is de�ned. Where is the mass at 
time t1?

(b) For t . t1 assume that the motion is now to the right. Using 
initial conditions at t1, �nd x(t) and give a time interval  
[t1, t2] over which this solution is de�ned. Where is the 
mass at time t2? 

(c) For t . t2 assume that the motion is now to the left. Using 
initial conditions at t2, �nd x(t) and give a time interval  
[t2, t3] over which this solution is de�ned. Where is the 
mass at time t3?

(d) Using initial conditions at t3, show that the model predicts 
that there is no furthere motion for t . t3.

(e) Graph the displacement x(t) on the interval [0, t3].

29. Use a Maclaurin series to show that a power series solution of 
the initial-value problem 

d2�

dt2 1
g

l
sin � 5 0, �(0) 5

�

6
, �9(0) 5 0

is given by

�(t) 5
�

6
2

g

4l
t2 1

Ï3Ï g2

96l2 t4 1 Á .

[Hint: See Example 3 in Section 4.10.]

30. Spring Pendulum The rotational form of Newton’s second 
law of motion is:

  The time rate of change of angular momentum about a point is 
equal to the moment of the resultant force (torque).

In the absence of damping or other external forces, an analogue 
of (14) in Section 5.3 for the pendulum shown in Figure 5.3.3 
is then

d

dtSml2 d�

dtD 5 2mglsin �.  (1)

(a) When m and l are constant show that (1) reduces to (6) of l are constant show that (1) reduces to (6) of l
Section 5.3.

(b) Now suppose the rod in Figure 5.3.3 is replaced with a 
spring of negligible mass. When a mass m is attached to 
its free end the spring hangs in the vertical equilibrium 
position shown in Figure 5.R.4 and has length l0. When 

the spring pendulum is set in motion we assume that the 
motion takes place in a vertical plane and the spring is stiff 
enough not to bend. For t . 0 the length of the spring is 
then lstd 5 l0 1 xstd, where x is the displacement from the x is the displacement from the x
equilibrium position. Find the differential equation for the 
displacement angle �std de�ned by (1). 

31. Suppose a pendulum is formed by attaching a mass m to the 
end of a string of negligible mass and length l. At t 5 0 the 
pendulum is released from rest at a small displacement angle 
�0 . 0 to the right of the vertical equilibrium position OP. See 
Figure 5.R.5. At time t1 . 0 the string hits a nail at a point N on N on N
OP a distance 34l from O, but the mass continues to the left as 
shown in the �gure. 

(a) Construct and solve a linear initial-value problem for the 
displacement angle �1std shown in the �gure. Find the  
interval f0, t1g on which �1std is de�ned. 

(b) Construct and solve a linear initial-value problem for the 
displacement angle �2std shown in the �gure. Find the  
interval ft1, t2g on which �2std is de�ned, where t2 is  
the time that m returns to the vertical line NP. 

FIGURE 5.R.4 Spring pendulum in Problem 30
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FIGURE 5.R.5 Pendulum in Problem 31

32. Galloping Gertie Bridges are good examples of vibrating 
mechanical systems that are constantly subjected to external 
forces, from cars driving on them, water pushing against their 
foundation, and wind blowing across their superstructure. On 
November 7, 1940, only four months after its grand opening, 
the Tacoma Narrows Suspension Bridge at Puget Sound in 
the state of Washington collapsed during a windstorm. See 
Figure 5.R.6. The crash came as no surprise since “Galloping 
Gertie,” as the bridge was called by local residents, was famous 
for a vertical undulating motion of its roadway which gave 
many motorists a very exciting crossing. For many years it 
was conjectured that the poorly designed superstructure of the 
bridge caused the wind blowing across it to swirl in a periodic 
manner and that when the frequency of this force approached 
the natural frequency of the bridge, large upheavals of the 
lightweight roadway resulted. In other words, it was thought the 
bridge was a victim of mechanical resonance. But as we have 
seen on page 207, resonance is a linear phenomenon which 
can occur only in the complete absence of damping. In recent 
years the resonance theory has been replaced with mathematical 
models that can describe large oscillations even in the presence 
of damping. In his project, The Collapse of the Tacoma 
Narrows Suspension Bridge, that appeared in the last edition of 
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this text, Gilbert N. Lewis examines simple piecewise-de�ned 
models describing the driven oscillations of a mass (a portion 
of the roadway) attached to a spring (a vertical support cable) 
for which the amplitudes of oscillation increase over time. In 
this problem you are guided through the solution of one of the 
models discussed in that project. 

The differential equation with a piecewise-de�ned restoring 
force, 

d2x2x2

dt2 1 Fsxd 5 sin 4t, Fsxd 5 54x4x4 , x $ 0

x, x , 0

  is a model for the displacement xstd of a unit mass in a driven 
spring/mass system. As in Section 5.1 we assume that the 
motion takes place along a vertical line, the equilibrium 
position is x 5 0, and the positive direction is downward. 
The restoring force acts opposite to the direction of motion: 
a restoring force 4x when the mass is below x when the mass is below x sx . 0d the 
equilibrium position and a restoring force x when the mass is x when the mass is x
above sx , 0d the equilibrium position.

(a) Solve the initial-value problem

d 2x2x2

dt 2 1 4x4x4 5 sin 4t, x (0) 5 0, x9(0) 5 v0 . 0. (2)

The initial conditions indicate that the mass is released 
from the equilibrium position with a downward velocity. 
Use the solution to determine the �rst time t1 . 0 when 
xstd 5 0, that is, the �rst time that the mass returns to the 
equilibrium position after release. The solution of (2) is de-
�ned on the interval f0, t1g. [Hint: The double-angle formula 
sin 4t 5 2 sin 2t cos 2t will be helpful.] 

(b) For a time interval on which t . t1 the mass is above the 
equilibrium position and so we must now solve the new  
differential equation

d2x2x2

dt2 1 x 5 sin 4t. (3)

One initial condition is xst1d 5 0. Find x9st1d using the solu-
tion of (2) in part (a). Find a solution of equation (3) subject 

to these new initial conditions. Use the solution to determine 
the second time t2 . t1 when xstd 5 0. The solution of (3) is 
de�ned on the interval ft1, t2g. [Hint: Use the double-angle 
formula for the sine function twice.]

(c) Construct and solve another initial-value problem to �nd 
xstd de�ned on the interval ft2, t3g, where t3 . t2 is the third 
time when xstd 5 0.

(d) Construct and solve another initial-value problem to �nd 
xstd de�ned on the interval ft3, t4t4t g, where t4t4t . t3 is the 
fourth time when xstd 5 0.

(e) Because of the assumption that v0 . 0 one down-up
cycle of the mass is completed on the intervals 
f0, t2g, [t2, t4t4t g, [t4t4t , t6g, and so on. Explain why the ampli-
tudes of oscillation of the mass must increase over time. 
[Hint: Examine the velocity of the mass at the beginning  
of each cycle.]

(f) Assume in (2) that v0 5 0.01. Use the four solutions on the 
intervals in parts (a), (b), (c), and (d) to construct a continuous 
piecewise-de�ned function xstd de�ned on the interval f0, t4t4t g.
Use a graphing utility to obtain a graph of xstd on [0, t4t4t g.

FIGURE 5.R.6 Collapse of the Tacoma Narrows Suspension Bridge
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 6.1 Review of Power Series
 6.2 Solutions About Ordinary Points
 6.3 Solutions About Singular Points
 6.4 Special Functions

C H A P T E R  6  I N  R E V I E W

S o far in our study of linear differential equations of order two (or higher) 

we have primarily solved equations with constant coef�cients. The Cauchy-

Euler equation in Section 4.7 was the only exception. In applications, linear 

high-order equations with variable coef�cients are just as important, if not more 

than, DEs with constant coef�cients. As pointed out in Section 4.7 even a simple 

linear second-order equation such as y0 2 xyxyx 5 0 does not possess solutions 

that are elementary functions. But this is not to say we can’t �nd two linearly 

independent solutions of y0 2 xyxyx 5 0; we can. In Sections 6.2 and 6.4 we will see 

that solutions of this equation are functions that are de�ned by in�nite series.

6

Todd Dalton/Shutterstock.com

Series Solutions of Linear Equations
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INTRODUCTION In Section 4.3 we saw that solving a homogeneous linear DE 
with constant coef�cients was essentially a problem in algebra. By �nding the roots 
of the auxiliary equation, we could write a general solution of the DE as a linear 
combination of the elementary functions e�x, xke�x, xke�xcos �x, and xke�xsin �x. 
But as was pointed out in the introduction to Section 4.7, most linear higher-order 
DEs with variable coef�cients cannot be solved in terms of elementary functions. A 
usual course of action for equations of this sort is to assume a solution in the form 
of an in�nite series and proceed in a manner similar to the method of undetermined 
coef�cients (Section 4.4). In Section 6.2 we consider linear second-order DEs with 
variable coef�cients that possess solutions in the form of a power series, and so it is 
appropriate that we begin this chapter with a review of that topic.

POWER SERIES Recall from calculus that power series in x 2 a is an in�nite 
series of the form

o
`

n50
cn(x 2 a)n 5 c0 1 c1(x 2 a) 1 c2(x 2 a)2 1 . . ..

Such a series is also said to be a power series centered at a. For example, the power 
series o`

n50(x 1 1)n is centered at a 5 21. In the next section we will be concerned 
principally with power series in x, in other words, power series that are centered at 
a 5 0. For example, 

o
`

n50
2nxnxn n 5 1 1 2x2x2 1 4x2 1 . . .

is a power series in x.

IMPORTANT FACTS The following bulleted list summarizes some important facts 
about power series o`

n50 cn(x 2 a)n.

 ● Convergence A power series is convergent at a speci�ed value of x if  x if  x
its sequence of partial sums {SNSNS (x)} converges, that is, lim

N S `
SNSNS (x) 5

lim
N S `

oN
n50 cn (x 2 a)n exists. If the limit does not exist at x, then the series is

said to be divergent.
 ● Interval of Convergence Every power series has an interval of convergence.

The interval of convergence is the set of all real numbers all real numbers all x for which the series x for which the series x
converges. The center of the interval of convergence is the center a of the series.

 ● Radius of Convergence The radius R of the interval of convergence of a  
power series is called its radius of convergence. If R . 0, then a power 
series converges for ux 2 au , R and diverges for ux 2 au . R. If the series 
converges only at its center a, then R 5 0. If the series converges for all x, 
then we write R 5 `. Recall, the absolute-value inequality ux 2 au , R is 
equivalent to the simultaneous inequality a 2 R , x , a 1 R. A power 
series may or may not converge at the endpoints a 2 R and a 1 R of this 
interval.

 ● Absolute Convergence In the interior of its interval of convergence a 
power series converges absolutely. In other words, if x is in the interval x is in the interval x
of convergence and is not an endpoint of the interval, then the series of 
absolute values o`

n50ucn(x 2 a)nu converges. See Figure 6.1.1.

6.1 Review of Power Series

x
a a 1 Ra 2 R

divergencedivergence
absolute

convergence

series may
converge or diverge

at endpoints

FIGURE 6.1.1 Absolute convergence 
within the interval of convergence and 
divergence outside of this interval

The index of summation need not 
start at n  5 0.
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 ● Ratio Test Convergence of power series can often be determined by the 
ratio test. Suppose cn Þ 0 for all n in o`

n50cn(x 2 a)n, and that

lim
n S `* cn11(x 2 a)n11

cn(x 2 a)n *5 u x 2 a u lim
n S `* cn11

cn * 5 L.

If L , 1, the series converges absolutely; if L . 1 the series diverges; and 
if L 5 1 the test is inconclusive. The ratio test is always inconclusive at an 
endpoint a 6 R.

EXAMPLE 1  Interval of Convergence

Find the interval and radius of convergence for o
`

n51

(x 2 3)n

2nn
.

SOLUTION The ratio test gives

lim
n S `*

(x 2 3)n11

2n11(n 1 1)

(x 2 3)n

2nn
*5 u x 2 3u lim

n S `

n 1 1

2n
5

1

2
u x 2 3u.

The series converges absolutely for 1
2 ux 2 3u , 1 or ux 2 3u , 2 or 1 , x , 5. This 

last inequality de�nes the open interval of convergence. The series  interval of convergence. The series  interval of con diverges for
ux 2 3u . 2, that is, for x . 5 or x , 1. At the left endpoint x 5 1 of the open inter-
val of convergence, the series of constants o`

n51 ((21)nyn) is convergent by the alter-
nating series test. At the right endpoint x 5 5, the series o`

n51(1yn) is the divergent 
harmonic series. The interval of convergence of the series is [1, 5), and the radius of 
convergence is convergence is con R 5 2. .

 ● A Power Series De�nes a Function A power series de�nes a function, 
that is, f (x) 5 o`

n50 cn(x 2 a)n whose domain is the interval of 
convergence of the series. If the radius of convergence is R . 0 or R 5 `,
then f is continuous, differf is continuous, differf entiable, and integrable on the intervals 
(a 2 R, a 1 R) or (2`, `), respectively. Moreover, f 9(x) and efefe (x) dx can 
be found by term-by-term differentiation and integration. Convergence 
at an endpoint may be either lost by differentiation or gained through 
integration. If

y 5 o
`

n51
cnxnxn

n 5 c0 1 c1x 1 c2x2x2
2 1 c3x3 1 . . .

is a power series in x, then the �rst two derivatives are y9 5 o`
n50 nxnxn n21 and 

y0 5 o`
n50 n(n 2 1)xn22. Notice that the �rst term in the �rst derivative and 

the �rst two terms in the second derivative are zero. We omit these zero  
terms and write

y9 5 o
`

n51
 
cnnxn21 5 c1 1 2c2x 1 3c3x2 1 4c4x3 1 . . .

y0 5 o
`

n52
cnn(n 2 1)xn22 5 2c2 1 6c3x 1 12c4x2 1 . . ..

(1)

 Be sure you understand the two results given in (1); especially note where  
the index of summation starts in each series. These results are important and 
will be used in all examples in the next section.

 ● Identity Property If o`
n5 0 cn(x 2 a)n 5 0, R . 0, for all numbers x in x in x

some open interval, then cn 5 0 for all n.
 ● Analytic at a Point A function f is said to be f is said to be f analytic at a point a if 

it can be represented by a power series in x 2 a with either a positive 
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or an in�nite radius of convergence. In calculus it is seen that in�nitely  
differentiable functions such as ex, sin x, cos x, ex ln(1 1 x), and so on, can 
be represented by Taylor series

o
`

n50

f (n)(a)

n!
(x 2 a)n 5 f (a) 1

f 9(a)

1!
(x 2 a) 1

f 0(a)

1!
(x 2 a)2 1 . . .

or by a Maclaurin series

o
`

n50

f (n)(0)

n!
xn 5 f (0) 1

f 9(0)

1!
x 1

f 0(0)

1!
x2 1 . . ..

You might remember some of the following Maclaurin series representations.

Maclaurin Series
Interval  

of Convergence

ex 5 1 1
x

1!
1

x2

2!
1

x3

3!
1 . . . 5 o

`

n50

1

n!
xn

cos x 5 1 2
x2

2!
1

x4

4!
2

x6

6!
1 . . . 5 o

`

n50

(21)n

(2n)!
x2n

sin x 5 x 2
x3

3!
1

x5

5!
2

x7

7!
1 . . . 5 o

`

n50

(21)n

(2n 1 1)!
x2n11

tan21 x 5 x 2
x3

3
1

x5

5
2

x7

7
1 . . . 5 o

`

n50

(21)n

2n 1 1
x2n 11

cosh x 5 1 1
x2

2!
1

x4

4!
1

x6

6!
1 . . . 5 o

`

n50

1

(2n)!
x2n

sinh x 5 x 1
x3

3!
1

x5

5!
1

x7

7!
1 . . . 5 o

`

n50

1

(2n 1 1)!
x2n11

ln(1 1 x) 5 x 2
x2

2
1

x3

3
2

x4

4
1 . . . 5 o

`

n51

(21)n 11

n
xn

1

1 2 x
5 1 1 x 1 x2 1 x3 1 . . . 5 o

`

n50
xn

(2`, `)

(2`, `)

(2`, `)

[21, 1] (2)

(2`, `)

(2`, `)

(21, 1]

(21, 1)

These results can be used to obtain power series representations of other 
functions. For example, if we wish to �nd the Maclaurin series representation 
of, say, ex2

 we need only replace x in the Maclaurin series for x in the Maclaurin series for x ex:

ex2
5 1 1

x2

1!
1

x4

2!
1

x6

3!
1 . . . 5 o

`

n50

1

n!
x2n.

Similarly, to obtain a Taylor series representation of ln x centered at a 5 1
we replace x by x by x x 2 1 in the Maclaurin series for ln(1 1 x):

ln x 5 ln(1 1 (x 2 1)) 5 (x 2 1) 2
(x 2 1)2

2
1

(x 2 1)3

3
2

(x 2 1)4

4
1 . . . 5 o

`

n51

(21)n11

n
 ( (x 2 1)n.

The interval of convergence for the power series representation of ex2
 is the same 

2
 is the same 

2

as that of ex, that is, (2`, `). But the interval of convergence of the Taylor 
series of ln x is now x is now x (0, 2]; this interval is (21, 1] shifted 1 unit to the right.

 ● Arithmetic of Power Series Power series can be combined through the 
operations of addition, multiplication, and division. The procedures for 
powers series are similar to the way in which two polynomials are added, 
multiplied, and divided—that is, we add coef�cients of like powers of x, 
use the distributive law and collect like terms, and perform long division. 

You can also verify that the interval 
of convergence is (0, 2] by using 
the ratio test.
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EXAMPLE 2  Multiplication of Power Series

Find a power series representation of exsin x.

SOLUTION We use the power series for ex and sin x:

exsin x 5 11 1 x 1
x2

2
1

x3

6
1

x4

24
1 . . .21x 2

x3

6
1

x5

120
2

x7

5040
1 Á 2

5 (1) x 1 (1) x2 1 121

6
1

1

2 2 x3 1 121

6
1

1

62x4 1 1 1

120
2

1

12
1

1

242x5 1 . . .

5 x 1 x2 1
x3

3
2

x5

30
1 Á .

Since the power series of ex and sin x both converge on (2`, `), the product series 
converges on the same interval. Problems involving multiplication or division of 
power series can be done with minimal fuss using a computer algebra system. .

SHIFTING THE SUMMATION INDEX For the three remaining sections of this 
chapter, it is crucial that you become adept at simplifying the sum of two or more 
power series, each series expressed in summation notation, to an expression with 
a single o. As the next example illustrates, combining two or more summations 
as a single summation often requires a reindexing, that is, a shift in the index of 
summation.

EXAMPLE 3  Addition of Power Series

Write

o
`

n52
n(n 2 1)cnxn22 2 o

`

n50
cnxn11

as one power series.

SOLUTION In order to add the two series given in summation notation, it is neces-
sary that both indices of summation start with the same number and that the powers 
of x in each series be “in phase,” in other words, if one series starts with a multiple x in each series be “in phase,” in other words, if one series starts with a multiple x
of, say, x to the �rst power, then we want the other series to start with the same power. x to the �rst power, then we want the other series to start with the same power. x
Note that in the given problem, the �rst series starts with x0 whereas the second series 
starts with x1. By writing the �rst term of the �rst series outside of the summation 
notation,

series starts
with x
for n 5 3

series starts
with x
for n 5 0

o n(n 2 1)cnxn22 2 o cnxn11 5 2 ? 1c2x 0 1 o n(n 2 1)cnxn22 2 o cnxn11

n52

`

n50

`

n53

`

n50

`

(3)

we see that both series on the right side start with the same power of x, namely, x1.  
Now to get the same summation index we are inspired by the exponents of x; we let 
k 5 n 2 2 in the �rst series and at the same time let k 5 n 1 1 in the second series. 
For n 5 3 in k 5 n 2 2 we get k 5 1, and for n 5 0 in k 5 n 1 1 we get k 5 1, and 
so the right-hand side of (3) becomes

same

same

2c2 1 o (k 1 2)(k 1 1)ck12x2x2
k 2 o ck21xk.

k51

`

k51

`

(4)
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Remember the summation index is a “dummy” variable; the fact that k 5 n 2 2 in 
one case and k 5 n 1 1 in the other should cause no confusion if you keep in mind 
that it is the value of the summation index that is important. In both cases k takes k takes k
on the same successive values k 5 1, 2, 3, . . . when n takes on the values 
n 5 2, 3, 4, . . . for k 5 n 2 1 and n 5 0, 1, 2, . . . for k 5 n 1 1. We are now in a 
position to add the series in (4) term-by-term:

o
`

n52
n(n21)cnxnxn

n22 2 o
`

n50
cnxnxn

n11 5 2c2 1o
`

k51
[(k 1 2)(k 1 1)ck12 2 ck21]xk. (5) .

If you are not totally convinced of the result in (5), then write out a few terms on 
both sides of the equality. 

A PREVIEW The point of this section is to remind you of the salient facts about 
power series so that you are comfortable using power series in the next section to 
�nd solutions of linear second-order DEs. In the last example in this section we tie 
up many of the concepts just discussed; it also gives a preview of the method that 
will be used in Section 6.2. We purposely keep the example simple by solving a 
linear �rst-order equation. Also suspend, for the sake of illustration, the fact that you 
already know how to solve the given equation by the integrating-factor method in 
Section 2.3.

 EXAMPLE 4  A Power Series Solution

Find a power series solution y 5 o
`

n50
cnxnxn

n of the differential equation y9 1 y 5 0.

SOLUTION We break down the solution into a sequence of steps.

(i) First calculate the derivative of the assumed solution:

y9 5 o
`

n51
cnnxnxn n21 d see the first line in (1)

(ii) Then substitute y and y9 into the given DE: 

y9 1 y 5 o
`

n51
cnnxn21 1 o

`

n50
cnxn.

(iii) Now shift the indices of summation. When the indices of summation have the 
same starting point and the powers of x agree, combine the summations:x agree, combine the summations:x

y9 1 y 5 o
`

n51
cnnxn21 1 o

`

n50
cnxn5 5

k 5 n21       k 5 n

5 o
`

k50
ck11(k 1 1)xk 1 o

`

k50
ckxk

5 o
`

k50
[ck11(k 1 1) 1 ck]xk.

(iv) Because we want y9 1 y 5 0 for all x in some interval, x in some interval, x

o
`

k50
[ck11(k 1 1) 1 ck]xk 5 0

is an identity and so we must have ck11(k 1 1) 1 ck 5 0, or

ck11 5 2
1

k 1 1
ck, k 5 0, 1, 2, . . . .
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(v)     By letting k take on successive integer values starting with k take on successive integer values starting with k k 5 0, we �nd

c1 5 2
1

1
c0 5 2c0

c2 5 2
1

2
c1 5 2

1

2
(2c0) 5

1

2
c0

c3 5 2
1

3
c2 5 2

1

3 11

2
c02 5 2

1

3 ? 2
c0

c4 5 2
1

4
c2 5 2

1

4 12 1

3 ? 2
c02 5

1

4 ? 3 ? 2
c0

and so on, where c0 is arbitrary.

(vi) Using the original assumed solution and the results in part (v) we obtain a formal 
power series solution 

y 5 c0 1 c1x 1 c2x2 1 c3x3 1 c4x4 1 . . .

5 c0 2 c0x 1
1

2
c0x2 2 c0

1

3 ? 2
x3 1 c0

1

4 ? 3 ? 2
x4 2 . . .

5 c031 2 x 1
1

2
x2 2

1

3 ? 2
x3 1

1

4 ? 3 ? 2
x4 2 . . .4.

It should be fairly obvious that the pattern of the coef�cients in part (v) is 
ck 5 c0(21)kyk!, k 5 0, 1, 2, . . . . so that in summation notation we can write

y 5 c0 o
`

k50

(21)k

k!
xk. (8) .

From the �rst power series representation in (2) the solution in (8) is recognized 
as y 5 c0e2x. Had you used the method of Section 2.3, you would have found that 
y 5 ce2x is a solution of y9 1 y 5 0 on the interval (2`, `). This interval is also the 
interval of convergence of the power series in (8).

EXERCISES 6.1
In Problems 1–10 �nd the interval and radius of convergence for the 
given power series.

1. o
`

n51

(21)n

n
x n    2. o

`

n51

1

n2 x n

3. o
`

n51

2n

n
x n    4. o

`

n50

5n

n!
x n

5. o
`

k51

(21)k

10k
(x 2 5)k 6. o

`

k50
k!(x 2 1)k

7. o
`

k51

1

k2 1 k
(3x 2 1)k 8. o

`

k50
32k(4x4x4 2 5)k

9. o
`

k51

25k

52k 1x

32
k

10. o
`

n50

(21)n

9n x2n11

In Problems 11–16 use an appropriate series in (2) to �nd the 
Maclaurin series of the given function. Write your answer in sum-
mation notation.

11. e2xy2 12. xe3x

13.
1

2 1 x
14.

x

1 1 x2

15. ln(1 2 x) 16. sin x2

In Problems 17 and 18 use an appropriate series in (2) to �nd the 
Taylor series of the given function centered at the indicated value 
of a. Write your answer in summation notation.

17. sin x, a 5 2� [Hint: Use periodicity.]

18. ln x; a 5 2 [Hint: x 5 2[1 1 (x 2 2)y2]]

In Problems 19 and 20 the given function is analytic at a 5 0.
Use appropriate series in (2) and multiplication to �nd the �rst four 
nonzero terms of the Maclaurin series of the given function.

19. sin x cos x 20. e2xcos x

In Problems 21 and 22 the given function is analytic at a 5 0. Use 
appropriate series in (2) and long division to �nd the �rst four non-
zero terms of the Maclaurin series of the given function.

21. sec x 22. tan x

Answers to selected odd-numbered problems begin on page ANS-9.

If desired we could switch back to 
n  as the index of summation.
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In Problems 23 and 24 use a substitution to shift the summation 
index so that the general term of given power series involves xk.

23. o
`

n51
ncnxn12

24. o
`

n53
(2n 2 1)cnxn23

In Problems 25–30 proceed as in Example 3 to rewrite the given 
expression using a single power series whose general term 
involves xk.

25. o
`

n51
ncnxn21 2 o

`

n50
cnxn

26. o
`

n51
ncnxn21 1 3o

`

n50
cnxn12

27. o
`

n51
2ncnxn21 1 o

`

n50
6cnxn11

28. o
`

n52
n(n 2 1)cnxn22 1 o

`

n50
cnxn12

29. o
`

n52
n(n 2 1)cnxn22 2 2o

`

n51
ncnxn 1 o

`

n50
cnxn

30. o
`

n52
n(n 2 1)cnxn 1 2o

`

n52
n(n 2 1)cnxn22 1 3o

`

n51
ncnxn

In Problems 31–34 verify by direct substitution that the given power 
series is a solution of the indicated differential equation. [Hint: For a 
power x2n11 let k 5 n 1 1.]

31. y 5 o
`

n50

(21)n

n!
x2n, y9 1 2xy 5 0

32. y 5 o
`

n50
(21)nxnxn 2n, (1 1 x2)y9 1 2xy 5 0

33. y 5 o
`

n51

(21)n11

n
xn, (x 1 1)y0 1 y9 5 0

34. y 5 o
`

n50

(21)n

22n(n!)2 x2n, xy0 1 y9 1 xy 5 0

In Problems 35–38 proceed as in Example 4 and �nd a 

power series solution y 5 o
`

n50
cnxn of the given linear �rst- 

order differential equation.

35. y9 2 5y 5 0 36. 4y9 1 y 5 0

37. y9 5 xyxyx 38. (1 1 x)y9 1 y 5 0

Discussion Problems
39. In Problem 19, �nd an easier way than multiplying two power 

series to obtain the Maclaurin series representation of sin x cos x.

40. In Problem 21, what do you think is the interval of convergence 
for the Maclaurin series of sec x?

6.2 Solutions About Ordinary Points

INTRODUCTION In the last example of the preceding section we illustrated how 
to obtain a power series solution of a linear �rst-order differential equation. In this 
section we turn to the more important problem of �nding power series solutions of 
linear second-order equations. More to the point, we are going to �nd solutions of 
linear second-order equations in the form of power series whose center is a number x0

that is an ordinary point of the DE. We begin with the de�nition of an ordinary point.ordinary point of the DE. We begin with the de�nition of an ordinary point.ordinary point

A DEFINITION If we divide the homogeneous linear second-order differential 
equation 

a2(x)y0 1 a1(x)y9 1 a0(x)y 5 0 (1)

by the lead coef�cient a2(x) we obtain the standard form

y0 1 P(x)y9 1 Q(x)y 5 0. (2)

We have the following de�nition.

DEFINITION 6.2.1 Ordinary and Singular Points

A point x 5 x0 is said to be an ordinary point of the differential of the 
differential equation (1) if both coef�cients P(x) and Q(x) in the standard 
form (2) are analytic at x0. A point that is not an ordinary point of (1) is said to not an ordinary point of (1) is said to not
be a singular point of the DE.
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EXAMPLE 1  Ordinary Points

(a) A homogeneous linear second-order differential equation with constant coef�cients, 
such as

y0 1 y 5 0 and y0 1 3y9 1 2y 5 0,

can have no singular points. In other words, every �nite value* of x is an ordinary x is an ordinary x
point of such equations.

(b) Every �nite value of x is an ordinary point of the differential equationx is an ordinary point of the differential equationx

y0 1 exyxyx 9 1 (sin x)y 5 0.

Speci�cally x 5 0 is an ordinary point of the DE, because we have already seen in 
(2) of Section 6.1 that both ex and sin x are analytic at this point. .

The negation of the second sentence in De�nition 6.2.1 stipulates that if at least 
one of the coef�cient functions P(x) and Q(x) in (2) fails to be analytic at x0, then x0

is a singular point.

EXAMPLE 2  Singular Points

(a) The differential equation

y0 1 xy9 1 (ln x)y 5 0

is already in standard form. The coef�cient functions are

P(x) 5 x and Q(x) 5 ln x.

Now P(x) 5 x is analytic at every real number, and Q(x) 5 ln x is analytic at every 
positive real number. However, since Q(x) 5 ln x is discontinuous at x 5 0 it can-
not be represented by a power series in x, that is, a power series centered at 0. We 
conclude that x 5 0 is a singular point of the DE. 

(b) By putting xy0 1 y9 1 xy 5 0 in the standard form

y0 1
1
x

y9 1 y 5 0,

we see that P(x) 5 1yx fails to be analytic at x 5 0. Hence x 5 0 is a singular point 
of the equation. .

POLYNOMIAL COEFFICIENTS We will primarily be interested in the case when 
the coef�cients a2(x), a1(x), and a0(x) in (1) are polynomial functions with no com-
mon factors. A polynomial function is analytic at any value of x, and a rational func-
tion is analytic except at points where its denominator is zero. Thus, in (2) both 
coef�cients 

P(x) 5
a1(x)

a2(x)
and Q(x) 5

a0(x)

a2(x)

*For our purposes, ordinary points and singular points will always be �nite points. It is possible for an 
ODE to have, say, a singular point at in�nity.
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are analytic except at those numbers for which a2(x) 5 0. It follows, then, that

A number x 5 x0 is an ordinary point of (1) if a2(x0) Þ 0, whereas x 5 x0 is a 
singular point of (1) if a2(x0) 5 0. 

 EXAMPLE 3  Ordinary and Singular Points

(a) The only singular points of the differential equation

(x2 2 1)y0 1 2xy9 1 6y 5 0

are the solutions of x2 2 1 5 0 or x 5 61. All other values of x are ordinary points.x are ordinary points.x

(b) Inspection of the Cauchy-Euler

Ta2(x) 5 x2 5 0 at x 5 0

x2y2y2 0 1 y 5 0

shows that it has a singular point at x 5 0. All other values of x are ordinary points.x are ordinary points.x

(c) Singular points need not be real numbers. The equation

(x2 1 1)y0 1 xy9 2 y 5 0

has singular points at the solutions of x2 1 1 5 0—namely, x 5 6i. All other values 
of x, real or complex, are ordinary points. .

We state the following theorem about the existence of power series solutions 
without proof.

THEOREM 6.2.1 Existence of Power Series Solutions

If x 5 x0 is an ordinary point of the differential equation (1), we can always 
�nd two linearly independent solutions in the form of a power series centered 
at x0, that is,

y 5 o
`

n50
 
cn(x 2 x0)n.

A power series solution converges at least on some interval de�ned by 
ux 2 x0u , R, where R is the distance from x0 to the closest singular point.

A solution of the form y 5 o`
n50 cn(x 2 x0)n is said to be a solution about the 

ordinary point x0. The distance R in Theorem 6.2.1 is the minimum value or lower 
bound for the radius of convergence.bound for the radius of convergence.bound

EXAMPLE 4  Minimum Radius of Convergence

Find the minimum radius of convergence of a power series solution of the second-
order differential equation

(x2 2 2x2x2 1 5)y0 1 xyxyx 9 2 y 5 0

(a) about the ordinary point x 5 0, (b) about the ordinary point x 5 21.
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SOLUTION By the quadratic formula we see from x2 2 2x 1 5 5 0 that the singular 
points of the given differential equation are the complex numbers 1 6 2i.

(a) Because x 5 0 is an ordinary point of the DE, Theorem 6.2.1 guarantees that 
we can �nd two power series solutions centered at 0. That is, solutions that look like 
y 5 o`

n50 cnxnxn
n and, moreover, we know without actually �nding these solutions that 

each series must converge at least for at least for at least ux u , Ï5Ï , where R 5 Ï5 is the distance in the 
complex plane from either of the numbers 1 1 2i (the point i (the point i (1, 2)) or 1 2 2i (the point i (the point i
(1, 2 2)) to the ordinary point 0 (the point (0, 0)). See Figure 6.2.1. 

(b) Because x 5 21 is an ordinary point of the DE, Theorem 6.2.1 guarantees that 
we can �nd two power series solutions that look like y 5 o`

n5 0cn(x 1 1)n. Each of 
the power series converges at least for ux 1 1u , 2Ï2Ï  since the distance from each 
of the singular points to 21 (the point (21, 0)) is R 5 Ï8 5 2Ï2. .

In part (a) of Example 4, one of the two power series solutions centered at 0 
of the differential equation is valid on an interval much larger than (2Ï5Ï , Ï5Ï ); in 
actual fact this solution is valid on the interval (2`, `) because it can be shown that 
one of the two solutions about 0 reduces to a polynomial.

NOTE In the examples that follow as well as in the problems of Exercises 6.2 we 
will, for the sake of simplicity, �nd only power series solutions about the ordinary 
point x 5 0. If it is necessary to �nd power series solutions of an ODE about an 
ordinary point x0 Þ 0, we can simply make the change of variable t 5 x 2 x0 in the 
equation (this translates x 5 x0 to t 5 0), �nd solutions of the new equation of the 
form y 5 o`

n50cntn, and then resubstitute t 5 x 2 x0.

FINDING A POWER SERIES SOLUTION Finding a power series solution of a ho-
mogeneous linear second-order ODE has been accurately described as “the method 
of undetermined series coef�cients” since the procedure is quite analogous to what 
we did in Section 4.4. In case you did not work through Example 4 of Section 6.1 
here, in brief, is the idea. Substitute y 5 o`

n5 0cnxnxn
n into the differential equation, 

combine series as we did in Example 3 of Section 6.1, and then equate the all coef-combine series as we did in Example 3 of Section 6.1, and then equate the all coef-combine series as we did in Example 3 of Section 6.1, and then equate the all coef
�cients to the right-hand side of the equation to determine the coef�cients cn. But be-
cause the right-hand side is zero, the last step requires, by the identity property in the 
bulleted list in Section 6.1, that all coef�cients of x must be equated to zero. No, x must be equated to zero. No, x
this does not mean that all coef�cients not mean that all coef�cients not are zero; this would not make sense, after all 
Theorem 6.2.1 guarantees that we can �nd two solutions. We will see in Example 5 
how the single assumption that y 5 o`

n50cnxn 5 c0 1 c1x 1 c2x2 1 . . . leads to 
two sets of coef�cients so that we have two distinct power series y1(x) and y2(x),
both expanded about the ordinary point x 5 0. The general solution of the 
differential equation is y 5 C1y1(x) 1 C2C2C y2y2 2(x); indeed, it can be shown that C1 5 c0

and C2C2C 5 c1.

 EXAMPLE 5  Power Series Solutions

Solve y0 2 xyxyx 5 0.

SOLUTION Since there are no singular points, Theorem 6.2.1 guarantees two power 
series solutions centered at 0 that converge for uxu , `. Substituting y 5 o`

n50 cnxn

and the second derivative y0 5 o`
n52 n(n 2 1)cnxnxn

n22 (see (1) in Section 6.1) into the 
differential equation give

y0 2 xyxyx 5 o
`

n52
cnn(n 2 1) xn22 2 xo

`

n50
cnxn 5 o

`

n52
cnn(n 2 1) xn22 2o

`

n50
cnxn11. (3)

Before working through this 
example, we recommend that you 
reread Example 4 of Section 6.1.

FIGURE 6.2.1 Distance from singular 
points to the ordinary point 0 in Example 4

y

x1

1 1 2i

1 2 2i

i ÏÏ5Ï5Ï

ÏÏ5Ï5Ï
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We have already added the last two series on the right-hand side of the equality in (3) 
by shifting the summation index. From the result given in (5) of Section 6.1

y0 2 xyxyx 5 2c2 1 o
`

k51
[(k 1 1)(k 1 2) ck12 2 ck21] xk 5 0. (4)

At this point we invoke the identity property. Since (4) is identically zero, it is nec-
essary that the coef�cient of each power of x be set equal to zero—that is, 2x be set equal to zero—that is, 2x c2 5 0 
(it is the coef�cient of x0), and

(k 1 1)(k 1 2)ck12 2 ck21 5 0, k 5 1, 2, 3, . . . . (5)

Now 2c2 5 0 obviously dictates that c2 5 0. But the expression in (5), called a 
recurrence relation, determines the ck in such a manner that we can choose a k in such a manner that we can choose a k certain 
subset of the set of coef�cients to be nonzero. Since (k 1 1)(k 1 2) Þ 0 for all values 
of k, we can solve (5) for ck12 in terms of ck21:

ck12 5
ck21

(k 1 1)(k 1 2)
 , k 5 1, 2, 3, . . . . (6)

This relation generates consecutive coef�cients of the assumed solution one at a time 
as we let k take on the successive integers indicated in (6):k take on the successive integers indicated in (6):k

k 5 1,     c3 5
c0

2 ? 3

k 5 2,     c4 5
c1

3 ? 4

k 5 3,     c5 5
c2

4 ? 5
5 0 d c2 is zero

k 5 4,     c6 5
c3

5 ? 6
5

1

2 ? 3 ? 5 ? 6
c0

k 5 5,     c7 5
c4

6 ? 7
5

1

3 ? 4 ? 6 ? 7
c1

k 5 6,     c8 5
c5

7 ? 8
5 0 d c5 is zero

k 5 7,     c9 5
c6

8 ? 9
5

1

2 ? 3 ? 5 ? 6 ? 8 ? 9
c0

k 5 8,     c10 5
c7

9 ? 10
5

1

3 ? 4 ? 6 ? 7 ? 9 ? 10
c1

k 5 9,     c11 5
c8

10 ? 11
5 0 d c8 is zero

and so on. Now substituting the coef�cients just obtained into the original assumption

y 5 c0 1 c1x 1 c2x2x2
2 1 c3x3 1 c4x4 1 c5x5 1 c6x6 1 c7x7 1 c8x8 1 c9x9 1 c10x10 1 c11x11 1 Á ,

we get

y 5 c0 1 c1x 1 0 1
c0

2 ? 3
x3 1

c1

3 ? 4
x4 1 0 1

c0

2 ? 3 ? 5 ? 6
x6

1
c1

3 ? 4 ? 6 ? 7
x7 1 0 1

c0

2 ? 3 ? 5 ? 6 ? 8 ? 9
x9 1

c1

3 ? 4 ? 6 ? 7 ? 9 ? 10
x10 1 0 1 Á .
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After grouping the terms containing c0 and the terms containing c1, we obtain 
y 5 c0y0y0 1(x) 1 c1y2(x), where

(x 2 1 1) o n(n 2 1)cnxn22 1 x o ncnxn21 2 o cnxn

n52

`

n51

`

n50

`

5 o n(n 2 1)cnxn 1 o n(n 2 1)cnxn22 1 o ncnxn 2 o cnxn

n52

`

n52

`

n51

`

n50

`

5 2c2 2 c0 1 6c3x 1 o [k(k 2 1)ck 1 (k 1 2)(k 1 1)ck12 1 kck 2 ck]xk

k52

`

5 2c2 2 c0 1 6c3x 1 o [(k 1 1)(k 2 1)ck 1 (k 1 2)(k 1 1)ck12]xk 5 0.
k52

`

1 o n(n 2 1)cnxn22 1 o ncnxn 2 o cnxn

n54

`

n52

`

n52

`

5 2c2x 0 2 c0x 0 1 6c3x 1 c1x 2 c1x 1 o n(n 2 1)cnxn

n52

`

k5n

k5n22 k5n k5n

From this identity we conclude that 2c2 2 c0 5 0, 6c3 5 0, and

(k 1 1)(k 2 1) ck 1 (k 1 2)(k 1 1) ck12 5 0.

y1(x) 5 11
1

2 ? 3
x3 1

1

2 ? 3 ? 5 ? 6
x6 1

1

2 ? 3 ? 5 ? 6 ? 8 ? 9
x9 1 Á 5 1 1 o

`

k51

1

2 ? 3 Á (3k 2 1)(3k)
x3k

y2(x) 5 x 1
1

3 ? 4
x4 1

1

3 ? 4 ? 6 ? 7
x7 1

1

3 ? 4 ? 6 ? 7 ? 9 ? 10
x10 1 Á 5 x 1 o

`

k51

1

3 ? 4 Á (3k)(3k 1 1)
x3k11.

Because the recursive use of (6) leaves c0 and c1 completely undetermined, 
they can be chosen arbitrarily. As was mentioned prior to this example, the linear 
combination y 5 c0y0y0 1(x) 1 c1y2(x) actually represents the general solution of the dif-) actually represents the general solution of the dif-) actually represents the general solution of the dif
ferential equation. Although we know from Theorem 6.2.1 that each series solution 
converges for uxu , `, that is, on the interval (2`, `). This fact can also be veri�ed 
by the ratio test. .

The differential equation in Example 5 is called Airy’s equation and is named 
after the English mathematician and astronomer George Biddel Airy (1801–1892). 
Airy’s differential equation is encountered in the study of diffraction of light, diffrac-
tion of radio waves around the surface of the Earth, aerodynamics, and the de�ection 
of a uniform thin vertical column that bends under its own weight. Other forms of 
Airy’s equation are y0 1 xy 5 0 and y0 6 �2xy2xy2 5 0. See Problem 43 in Exercises 6.4 
for an application of the last equation.

 EXAMPLE 6   Power Series Solution

Solve (x2 1 1)y0 1 xy9 2 y 5 0.

SOLUTION As we have already seen on page 245, the given differential equation has 
singular points at x 5 6i, and so a power series solution centered at 0 will converge 
at least for uxu , 1, where 1 is the distance in the complex plane from 0 to either i
or 2i. The assumption y 5 o`

n50 cnxnxn
n and its �rst two derivatives lead to
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Thus c2 5
1

2
c0

c3 5 0

ck12 5
1 2 k

k 1 2
ck,        k 5 2, 3, 4, Á .

Substituting k 5 2, 3, 4, . . . into the last formula gives

c4 5 2
1

4
c2 5 2

1

2 ? 4
c0 5 2

1

222!
c0

c5 5 2
2

5
c3 5 0 d c3 is zero

c6 5 2
3

6
c4 5

3

2 ? 4 ? 6
c0 5

1 ? 3

233!
c0

c7 5 2
4

7
c5 5 0 d c5 is zero

c8 5 2
5

8
c6 5 2

3 ? 5

2 ? 4 ? 6 ? 8
c0 5 2

1 ? 3 ? 5

244!
c0

c9 5 2
6

9
c7 5 0, d c7 is zero

c10 5 2
7

10
c8 5

3 ? 5 ? 7

2 ? 4 ? 6 ? 8 ? 10
c0 5

1 ? 3 ? 5 ? 7

255!
c0,

and so on. Therefore

y 5 c0 1 c1x 1 c2x2x2
2 1 c3x3 1 c4x4x4

4 1 c5x5 1 c6x6 1 c7x7 1 c8x8 1 c9x9 1 c10 x10 1 Á

5 c031 1
1

2
x2 2

1

222!
x4 1

1 ? 3

233!
x6 2

1 ? 3 ? 5

244!
x8 1

1 ? 3 ? 5 ? 7

255!
x10 2 Á4 1 c1x

5 c0y0y0 1(x) 1 c1y2(x).

The solutions are the polynomial y2(x) 5 x and the power seriesx and the power seriesx

y1(x) 5 1 1
1

2
x2 1 o

`

n52
(21)n211 ? 3 ? 5 Á s2n 2 3d

2nn!
x2n, uxu , 1. .

 EXAMPLE 7  Three-Term Recurrence Relation

If we seek a power series solution y 5 o`
n50 cnxnxn

n for the differential equation

y0 2 (1 1 x)y 5 0,

we obtain c2 5 1
2 c0 and the three-term recurrence relation

ck12 5
ck 1 ck21

(k 1 1)(k 1 2)
,         k 5 1, 2, 3, . . . .

It follows from these two results that all coef�cients cn, for n $ 3, are expressed 
in terms of both c0 and c1. To simplify life, we can �rst choose c0 Þ 0, c1 5 0; this 
yields coef�cients for one solution expressed entirely in terms of c0. Next, if 
we  choose c0 5 0, c1 Þ 0, then coef�cients for the other solution are expressed 
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and so on. Finally, we see that the general solution of the equation is 
y 5 c0y0y0 1(x) 1 c1y2(x), where

y1(x) 5 1 1
1

2
x2 1

1

6
x3 1

1

24
x4 1

1

30
x5 1 Á

and y2(x) 5 x 1
1

6
x3 1

1

12
x4 1

1

120
x5 1 Á .

Each series converges for all �nite values of x. .

NONPOLYNOMIAL COEFFICIENTS The next example illustrates how to �nd a 
power series solution about the ordinary point x0 5 0 of a differential equation when 
its coef�cients are not polynomials. In this example we see an application of the 
multiplication of two power series.

EXAMPLE 8  DE with Nonpolynomial Coefficients

Solve y0 1 (cos x)y 5 0.

SOLUTION We see that x 5 0 is an ordinary point of the equation because, as we 
have already seen, cos x is analytic at that point. Using the Maclaurin series for cos x is analytic at that point. Using the Maclaurin series for cos x x
given in (2) of Section 6.1, along with the usual assumption y 5 o`

n50 cnxnxn
n and the 

results in (1) of Section 6.1 we �nd

y0 1 (cos x)y 5 o
`

n52
n(n 2 1) cnxn22 1 11 2

x2

2!
1

x4

4!
2

x6

6!
1 Á2 o

`

n50
cnxn

5 2c2 1 6c3x 1 12c4x2 1 20c5x3 1 Á 1 11 2
x2

2!
1

x4

4!
1 Á2(c0 1 c1x 1 c2x2 1 c3x3 1 Á)

5 2c2 1 c0 1 (6c3 1 c1)x 1 112c4 1 c2 2
1

2
c02x2 1 120c5 1 c3 2

1

2
c12x3 1 Á 5 0.

It follows that

2c2 1 c0 5 0, 6c3 1 c1 5 0, 12c4 1 c2 2
1

2
c0 5 0, 20c5 1 c3 2

1

2
c1 5 0,

and so on. This gives c2 5 21
2 c0, c3 5 21

6 c1, c4 5 1
12 c0, c5 5 1

30 c1, . . . . By group-
ing terms, we arrive at the general solution y 5 c0y0y0 1(x) 1 c1y2(x), where

y1(x) 5 1 2
1

2
x2 1

1

12
x4 2 Á and y2(x) 5 x 2

1

6
x3 1

1

30
x5 2 Á .

c0 Þ 0, c1 5 0

c2 5
1

2
c0

c3 5
c1 1 c0

2 ? 3
5

c0

2 ? 3
5

c0

6

c4 5
c2 1 c1

3 ? 4
5

c0

2 ? 3 ? 4
5

c0

24

c5 5
c3 1 c2

4 ? 5
5

c0

4 ? 5 31

6
1

1

24 5
c0

30

c0 5 0, c1 Þ 0

c2 5
1

2
c0 5 0

c3 5
c1 1 c0

2 ? 3
5

c1

2 ? 3
5

c1

6

c4 5
c2 1 c1

3 ? 4
5

c1

3 ? 4
5

c1

12

c5 5
c3 1 c2

4 ? 5
5

c1

4 ? 5 ? 6
5

c1

120

in  terms of c1. Using c2 5 1
2 c0 in both cases, the recurrence relation for

k 5 1, 2, 3, . . . gives
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Because the differential equation has no �nite singular points, both power series 
converge for uxu , `. .

SOLUTION CURVES The approximate graph of a power series solution y(x) 5

o`
n50 cnxnxn

n can be obtained in several ways. We can always resort to graphing the 
terms in the sequence of partial sums of the series—in other words, the graphs 
of the polynomials SNSNS (x) 5 oN

n50 cnxnxn
n. For large values of N,N,N  SN SN S (x) should give us 

an indication of the behavior of y(x) near the ordinary point x 5 0. We can also 
obtain an approximate or numerical solution curve by using a solver as we did in 
Section 4.10. For example, if you carefully scrutinize the series solutions of Airy’s 
equation in Example 5, you should see that y1(x) and y2(x) are, in turn, the solutions 
of the initial-value problems

y0 2 xyxyx 5 0, y(0) 5 1, y9(0) 5 0,

  y0 2 xyxyx 5 0, y(0) 5 0, y9(0) 5 1.
(7)

The speci�ed initial conditions “pick out” the solutions y1(x) and y2(x) from 
y 5 c0y0y0 1(x) 1 c1y2(x), since it should be apparent from our basic series assumption 
y 5 o`

n50 cnxnxn
n that y(0) 5 c0 and y9(0) 5 c1. Now if your numerical solver requires a 

system of equations, the substitution y9 5 u in y0 2 xy 5 0 gives y0 5 u9 5 xy, and 
so a system of two �rst-order equations equivalent to Airy’s equation is

y9 5 u

u9 5 xyxyx .
(8)

Initial conditions for the system in (8) are the two sets of initial conditions in (7) 
rewritten as y(0) 5 1, u(0) 5 0, and y(0) 5 0, u(0) 5 1. The graphs of y1(x) and y2(x) 
shown in Figure 6.2.2 were obtained with the aid of a numerical solver. 
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FIGURE 6.2.2 Numerical solution curves 
for Airy’s DE

EXERCISES 6.2
In Problems 1 and 2 without actually solving the given differential 
equation, �nd the minimum radius of convergence of power series 
solutions about the ordinary point x 5 0. About the ordinary point 
x 5 1.

1. (x2 2 25)y0 1 2x2x2 yxyx 9 1 y 5 0

2. (x2 2 2x2x2 1 10)y0 1 xyxyx 9 2 4y 5 0

In Problems 3–6 �nd two power series solutions of the given dif-In Problems 3–6 �nd two power series solutions of the given dif-In Problems 3–6 �nd two power series solutions of the given dif
ferential equation about the ordinary point x 5 0. Compare the series 
solutions with the solutions of the differential equations obtained 
using the method of Section 4.3. Try to explain any differences 
between the two forms of the solutions.

3. y0 1 y 5 0 4. y0 2 y 5 0

5. y0 2 y9 5 0 6. y0 1 2y2y2 9 5 0

Answers to selected odd-numbered problems begin on page ANS-9.

REMARKS

(i) In the problems that follow, do not expect to be able to write a solution in 
terms of summation notation in each case. Even though we can generate as 
many terms as desired in a series solution y 5 o`

n50 cnxn either through the use 
of a recurrence relation or, as in Example 8, by multiplication, it might not be 
possible to deduce any general term for the coef�cients cn. We might have to 
settle, as we did in Examples 7 and 8, for just writing out the �rst few terms 
of the series.

(ii) A point x0 is an ordinary point of a nonhomogeneous linear second-order 
DE y0 1 P(x(x( )y9 1 Q(x(x( )y 5 f (x(x( ) if P(x(x( ), Q(x(x( ), and f (x(x( ) are analytic at x0. More-
over, Theorem 6.2.1 extends to such DEs; in other words, we can �nd power 
series solutions y 5 o`

n50 cn(x 2 x0)n of nonhomogeneous linear  DEs in the 
same manner as in Examples 5–8. See Problem 26 in Exercises 6.2.
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In Problems 7–18 �nd two power series solutions of the given 
differential equation about the ordinary point x 5 0.

7. y0 1 xyxyx 5 0 8. y0 1 x2y2y2 5 0

9. y0 2 2x2x2 yxyx 9 1 y 5 0  10. y0 2 xyxyx 9 1 2y2y2 5 0

11. y0 1 x2y2y2 9 1 xyxyx 5 0 12. y0 1 2x2x2 yxyx 9 1 2y2y2 5 0

13. (x 2 1)y0 1 y9 5 0 14. (x 1 2)y0 1 xyxyx 9 2 y 5 0

15. y02(x 1 1)y9 2 y 5 0

16. (x2 1 1)y0 2 6y 5 0

17. (x2 1 2)y0 1 3xyxyx 9 2 y 5 0

18. (x2 2 1)y0 1 xyxyx 9 2 y 5 0

In Problems 19–22 use the power series method to solve the given 
initial-value problem. 

19. (x 2 1)y0 2 xyxyx 9 1 y 5 0, y(0) 5 22, y9(0) 5 6

20. (x 1 1)y0 2 (2 2 x)y9 1 y 5 0, y(0) 5 2, y9(0) 5 21

21. y0 2 2x2x2 yxyx 9 1 8y 5 0, y(0) 5 3, y9(0) 5 0

22. (x2 1 1)y0 1 2x2x2 yxyx 9 5 0, y(0) 5 0, y9(0) 5 1

In Problems 23 and 24 use the procedure in Example 8 to �nd two 
power series solutions of the given differential equation about the 
ordinary point x 5 0.

23. y0 1 (sin x)y 5 0

24. y0 1 exyxyx 9 2 y 5 0

Discussion Problems
25. Without actually solving the differential equation 

(cos x)y0 1 y9 1 5y 5 0, �nd the minimum radius of 
convergence of power series solutions about the ordinary point 
x 5 0. About the ordinary point x 5 1.

26. How can the power series method be used to solve the 
nonhomogeneous equation y0 2 xyxyx 5 1 about the ordinary 

point x 5 0? Of y0 2 4x4x4 yxyx 9 2 4y 5 ex? Carry out your ideas by 
solving both DEs.

27. Is x 5 0 an ordinary or a singular point of the differential 
equation xyxyx 0 1 (sin x)y 5 0? Defend your answer with sound 
mathematics. [Hint: Use the Maclaurin series of sin x and 
then examine (sin x)yx.]

28. Is x 5 0 an ordinary point of the differential equation 
y0 1 5xyxyx 9 1 ÏxÏxÏ yxyxÏ 5 0?

Computer Lab Assignments
29. (a) Find two power series solutions for y0 1 xy9 1 y 5 0 and 

express the solutions y1(x) and y2(x) in terms of summation 
notation.

(b) Use a CAS to graph the partial sums SNSNS (x) for y1(x). Use 
N 5 2, 3, 5, 6, 8, 10. Repeat using the partial sums SNSNS (x) 
for y2(x).

(c) Compare the graphs obtained in part (b) with the curve 
obtained by using a numerical solver. Use the initial-
conditions y1(0) 5 1, y91(0) 5 0, and y2(0) 5 0, y92(0) 5 1.

(d) Reexamine the solution y1(x) in part (a). Express this series 
as an elementary function. Then use (5) of Section 4.2 to 
�nd a second solution of the equation. Verify that this 
second solution is the same as the power series 
solution y2(x).

30. (a) Find one more nonzero term for each of the solutions y1(x) 
and y2(x) in Example 8.

(b) Find a series solution y(x) of the initial-value problem 
y0 1 (cos x)y 5 0, y(0) 5 1, y9(0) 5 1.

(c) Use a CAS to graph the partial sums SNSNS (x) for the solution 
y(x) in part (b). Use N 5 2, 3, 4, 5, 6, 7.

(d) Compare the graphs obtained in part (c) with the curve  
obtained using a numerical solver for the initial-value  
problem in part (b).

6.3 Solutions About Singular Points

INTRODUCTION The two differential equations

y0 2 xy 5 0 and xy0 1 y 5 0 

are similar only in that they are both examples of simple linear second-order DEs 
with variable coef�cients. That is all they have in common. Since x 5 0 is an 
ordinary point of ordinary point of ordinary point y0 2 xy 5 0, we saw in Section 6.2 that there was no problem in 
�nding two distinct power series solutions centered at that point. In contrast, because 
x 5 0 is a singular point of singular point of singular point xy0 1 y 5 0, �nding two in�nite series—notice that we 
did not say power series—solutions of the equation about that point becomes a more 
dif�cult task.

The solution method that is discussed in this section does not always yield two 
in�nite series solutions. When only one solution is found, we can use the formula 
given in (5) of Section 4.2 to �nd a second solution.
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A DEFINITION A singular point x0 of a linear differential equation

a2(x)y0 1 a1(x)y9 1 a0(x)y 5 0 (1)

is further classi�ed as either regular or irregular. The classi�cation again depends on 
the functions P and Q in the standard form

y0 1 P(x)y9 1 Q(x)y 5 0. (2)

DEFINITION 6.3.1 Regular and Irregular Singular Points

A singular point x 5 x0 is said to be a regular singular point of the differential 
equation (1) if the functions p(x) 5 (x 2 x0) P(x) and q(x) 5 (x 2 x0)2Q(x) are 
both analytic at x0. A singular point that is not regular is said to be an irregular 
singular point of the equation.

The second sentence in De�nition 6.3.1 indicates that if one or both of the func-
tions p(x) 5 (x 2 x0) P(x) and q(x) 5 (x 2 x0)2Q(x) fail to be analytic at x0, then x0 is 
an irregular singular point.

POLYNOMIAL COEFFICIENTS As in Section 6.2, we are mainly interested in 
linear equations (1) where the coef�cients a2(x(x( ), a1(x(x( ), and a0(x(x( ) are polynomials with 
no common factors. We have already seen that if a2(x(x( 0) 5 0, then x 5 x0 is a singu-
lar point of (1), since at least one of the rational functions P(x(x( ) 5 a1(x(x( )ya2(x(x( ) and 
Q(x(x( ) 5 a0(x(x( )ya2(x(x( ) in the standard form (2) fails to be analytic at that point. But since 
a2(x(x( ) is a polynomial and x0 is one of its zeros, it follows from the Factor Theorem 
of algebra that x 2 x0 is a factor of a2(x(x( ). This means that after a1(x(x( )ya2(x(x( ) and 
a0(x(x( )ya2(x(x( ) are reduced to lowest terms, the factor x 2 x0 must remain, to some posi-
tive integer power, in one or both denominators. Now suppose that x 5 x0 is a singular 
point of (1) but both the functions de�ned by the products p(x(x( ) 5 (x(x( 2 x0)P(x(x( ) and 
q(x(x( ) 5 (x(x( 2 x0)2Q(x(x( ) are analytic at x0. We are led to the conclusion that multiplying 
P(x(x( ) by x 2 x0 and Q(x(x( ) by (x) by (x) by ( 2 x0)2 has the effect (through cancellation) that x 2 x0

no longer appears in either denominator. We can now determine whether x0 is regular 
by a quick visual check of denominators:

If x 2 x 0  appears at most to the �rst power in the denominator of P(x) and at 
most to the second power in the denominator of Q(x), then x 5 x0 is a regular 
singular point.

Moreover, observe that if x 5 x0 is a regular singular point and we multiply (2) by 
(x 2 x0)2, then the original DE can be put into the form

 (x 2 x0)2y2y2 0 1 (x 2 x0)p)p) (x)y9 1 q(x)y 5 0, (3)

where p and q are analytic at x 5 x0.

 EXAMPLE 1  Classification of Singular Points

It should be clear that x 5 2 and x 5 22 are singular points of

(x2 2 4)2y2y2 0 1 3(x 2 2)y9 1 5y 5 0.

After dividing the equation by (x2 2 4)2 5 (x 2 2)2(x 1 2)2 and reducing the 
coef�cients to lowest terms, we �nd that

P(x) 5
3

(x 2 2)(x 1 2)2 and Q(x) 5
5

(x 2 2)2(x 1 2)2.

We now test P(x) and Q(x) at each singular point.
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For x 5 2 to be a regular singular point, the factor x 2 2 can appear at most to the 
�rst power in the denominator of P(x) and at most to the second power in the denom-
inator of Q(x). A check of the denominators of P(x) and Q(x) shows that both these 
conditions are satis�ed, so x 5 2 is a regular singular point. Alternatively, we are led 
to the same conclusion by noting that both rational functions

p(x) 5 (x 2 2) P(x) 5
3

(x 1 2)2 and q(x) 5 (x 2 2)2Q(x) 5
5

(x 1 2)2

are analytic at x 5 2.
Now since the factor x 2 (22) 5 x 1 2 appears to the second power in the 

denominator of P(x), we can conclude immediately that x 5 22 is an irregular 
singular point of the equation. This also follows from the fact that

p(x) 5 (x 1 2) P(x) 5
3

(x 2 2)(x 1 2)

is not analytic at x 5 22. .

In Example 1, notice that since x 5 2 is a regular singular point, the original 
equation can be written as

(x 2 2)2y2y2 0 1 (x 2 2) y 9 1 y 5 0.

p(x) analytic
at x 5 2

q(x) analytic
at x 5 2

3
––––––––
(x 1 2)2

5
––––––––
(x 1 2)2

As another example, we can see that x 5 0 is an irregular singular point 
of  x3y0 2 2xy2xy2 9 1 8y 5 0 by inspection of the denominators of P(x) 5 22yx2

and  Q(x) 5 8yx3. On the other hand, x 5 0 is a regular singular point of 
xy0 2 2xy2xy2 9 1 8y 5 0, since x 2 0 and (x 2 0)2 do not even appear in the respec-
tive denominators of P(x) 5 22 and Q(x) 5 8yx. For a singular point x 5 x0 any 
nonnegative power of x 2 x0 less than one (namely, zero) and any nonnegative power 
less than two (namely, zero and one) in the denominators of P(x) and Q(x), respec-
tively, imply that x0 is a regular singular point. A singular point can be a complex 
number. You should verify that x 5 3i and x 5 23i are two regular singular points 
of (x2 1 9)y0 2 3xy9 1 (1 2 x)y 5 0.

NOTE Any second-order Cauchy-Euler equation ax2y2y2 0 1 bxy9 1 cy 5 0, where 
a, b, and c are real constants, has a regular singular point at x 5 0. You should verify 
that two solutions of the Cauchy-Euler equation x2y2y2 0 2 3xy9 1 4y4y4 5 0 on the interval 
(0, `) are y1 5 x2 and y2 5 x2 ln x. If we attempted to �nd a power series solution 
about the regular singular point x 5 0 (namely, y 5 o`

n50 cnxnxn
n), we would succeed in 

obtaining only the polynomial solution y1 5 x2. The fact that we would not obtain the 
second solution is not surprising because ln x (and consequently x (and consequently x y2 5 x2 ln x) is not an-
alytic at x 5 0—that is, y2 does not possess a Taylor series expansion centered at x 5 0.

METHOD OF FROBENIUS To solve a differential equation (1) about a regular 
singular point, we employ the following theorem due to the eminent German math-
ematician Ferdinand Georg Frobenius (1849–1917).

THEOREM 6.3.1 Frobenius’ Theorem

If x 5 x0 is a regular singular point of the differential equation (1), then there 
exists at least one solution of the form

y 5 (x 2 x0)r o
`

n50
 
cn(x 2 x0)n 5o

`

n50
 
cn(x 2 x0)n1r, (4)

where the number r is a constant to be determined. The series will converge at r is a constant to be determined. The series will converge at r
least on some interval 0 , x 2 x0 , R.
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Notice the words at least in the �rst sentence of Theorem 6.3.1. This means at least in the �rst sentence of Theorem 6.3.1. This means at least
that in contrast to Theorem 6.2.1, Theorem 6.3.1 gives us no assurance that two
series solutions of the type indicated in (4) can be found. The method of Frobenius,
�nding series solutions about a regular singular point x0, is similar to the power-
series method in the preceding section in that we substitute y 5 o`

n50 cn(x 2 x0)n1r

into the given differential equation and determine the unknown coef�cients cn by a 
recurrence relation. However, we have an additional task in this procedure: Before 
determining the coef�cients, we must �nd the unknown exponent r. If r is found r is found r
to be a number that is not a nonnegative integer, then the corresponding solution 
y 5 o`

n50 cn(x 2 x0)n1r is not a power series.
As we did in the discussion of solutions about ordinary points, we shall always 

assume, for the sake of simplicity in solving differential equations, that the regular 
singular point is x 5 0.

EXAMPLE 2  Two Series Solutions

Because x 5 0 is a regular singular point of the differential equation

 3xyxyx 0 1 y9 2 y 5 0, (5)

we try to �nd a solution of the form y 5 o`
n50 cnxnxn

n1r. Now

y9 5o
`

n50
 (n 1 r)cnxnxn

n1r21 and y0 5o
`

n50
(n 1 r)(n 1 r 2 1)cnxnxn

n1r22,     

so

3xyxyx 0 1 y9 2 y 5 3o
`

n50
(n 1 r)(n 1 r 2 1)cn xn1r21 1o

`

n50
(n 1 r)cnxnxn

n1r21 2o
`

n50
cnxnxn

n1r

5 o
`

n50
(n 1 r)(3n 1 3r 2 2)cnxnxn

n1r21 2o
`

n50
cnxnxn

n1r

5 xr3r(3r 2 2)c0x0x0
21 1o

`

n51
(n 1 r)(3n 1 3r 2 2)cnxnxn

n21 2o
`

n50
cnxnxn

n4

5 xr3r(3r 2 2)c0x21 1o
`

k50
[(k 1 r 1 1)(3k 1 3r 1 1)ck11 2 ck]xk4 5 0,

which implies that r(3r 2 2)c0 5 0

and (k 1 r 1 1)(3k 1 3r 1 1)ck11 2 ck 5 0, k 5 0, 1, 2, . . . .

Because nothing is gained by taking c0 5 0, we must then have

r (3r 2 2) 5 0 (6)

and ck11 5
ck

(k 1 r 1 1)(3k 1 3r 1 1)
, k 5 0, 1, 2, . . . . (7)

When substituted in (7), the two values of r that satisfy the quadratic equation r that satisfy the quadratic equation r
(6), r1 5 2

3 and r2r2r 5 0, give two different recurrence relations:

r1 5 2
3, ck11 5

ck

(3k 1 5)(k 1 1)
, k 5 0, 1, 2, . . . (8)

r2r2r 5 0, ck11 5
ck

(k 1 1)(3k 1 1)
, k 5 0, 1, 2, . . . . (9)

¯˚˚˚˚˚˘˚˚˚˚˚  ̇ ¯˘˙
k 5 n 2 1          k 5 n
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Here we encounter something that did not happen when we obtained solutions 
about  an ordinary point; we have what looks to be two different sets of coef�-
cients, but each set contains the same multiple c0. If we omit this term, the series 
solutions are

y1(x) 5 x2/331 1 o
`

n51

1

n!5 ? 8 ? 11 Á (3n 1 2)
xn4 (10)

y2(x) 5 x031 1 o
`

n51

1

n!1 ? 4 ? 7 Á (3n 2 2)
xn4. (11)

By the ratio test it can be demonstrated that both (10) and (11) converge for all values 
of x—that is,x—that is,x ux u , `. Also, it should be apparent from the form of these solutions 
that neither series is a constant multiple of the other, and therefore y1(x) and y2(x) 
are linearly independent on the entire x-axis. Hence by the superposition principle, -axis. Hence by the superposition principle, -axis. Hence by the super
y 5 C1y1(x) 1 C2C2C y2y2 2(x) is another solution of (5). On any interval that does not con-
tain the origin, such as (0, `), this linear combination represents the general solution 
of the differential equation. .

INDICIAL EQUATION Equation (6) is called the indicial equation of the problem, 
and the values r1 5 2

3 and r2r2r 5 0 are called the indicial roots, or exponents, of 
the singularity x 5 0. In general, after substituting y 5 o`

n50 cnxn1r into the given 
differential equation and simplifying, the indicial equation is a quadratic equation 
in r that results from equating the r that results from equating the r total coef�cient of the lowest power of x to zero. 
We solve for the two values of r and substitute these values into a recurrence relation r and substitute these values into a recurrence relation r
such as (7). Theorem 6.3.1 guarantees that at least one solution of the assumed series 
form can be found.

It is possible to obtain the indicial equation in advance of substituting 
y 5 o`

n50 cnxn1r into the differential equation. If x 5 0 is a regular singular point of 
(1), then by De�nition 6.3.1 both functions p(x) 5 xP(x) and q(x) 5 x2Q(x), where 
P and Q are de�ned by the standard form (2), are analytic at x 5 0; that is, the power 
series expansions

p(x) 5 xPxPx (x) 5 a0 1 a1x 1 a2x2x2
2 1 Á and q(x) 5 x2Q(x) 5 b0 1 b1x 1 b2x2x2

2 1 Á (12)

are valid on intervals that have a positive radius of convergence. By multiplying 
(2) by x2, we get the form given in (3):

x2y2y2 0 1 x[xPxPx (x)]y9 1 [x2Q(x)]y 5 0. (13)

From (8) we find

c1 5
c0

5 ? 1

c2 5
c1

8 ? 2
5

c0

2!5 ? 8

c3 5
c2

11 ? 3
5

c0

3!5 ? 8 ? 11

c4 5
c3

14 ? 4
5

c0

4!5 ? 8 ? 11 ? 14
. . .

cn 5
c0

n!5 ? 8 ? 11 Á (3n 1 2)
.

From (9) we find

c1 5
c0

1 ? 1

c2 5
c1

2 ? 4
5

c0

2!1 ? 4

c3 5
c2

3 ? 7
5

c0

3!1 ? 4 ? 7

c4 5
c3

4 ? 10
5

c0

4!1 ? 4 ? 7 ? 10
. . .

cn 5
c0

n!1 ? 4 ? 7 Á (3n 2 2)
.
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After substituting y 5 o`
n50 cnxnxn

n1r and the two series in (12) into (13) and carrying r and the two series in (12) into (13) and carrying r

out the multiplication of series, we �nd the general indicial equation to be

r(r 2 1) 1 a0r 1 b0 5 0, (14)

where a0 and b0 are as de�ned in (12). See Problems 13 and 14 in Exercises 6.3.

EXAMPLE 3  Two Series Solutions

Solve 2xy2xy2 0 1 (1 1 x)y9 1 y 5 0.

SOLUTION Substituting y 5 o`
n50 cnxn1r gives

which implies that r (2r 2 1) 5 0 (15)

and  (k 1 r 1 1)(2k 1 2r 1 1)ck11 1 (k 1 r 1 1)ck 5 0, (16)

k 5 0, 1, 2, . . . . From (15) we see that the indicial roots are r1 5 1
2 and r2r2r 5 0.

For r1 5 1
2 we can divide by k 1 3

2 in (16) to obtain

ck11 5
2ck

2(k 1 1)
, k 5 0, 1, 2, . . . , (17)

whereas for r2r2r 5 0, (16) becomes

ck11 5
2ck

2k 1 1
, k 5 0, 1, 2, . . . . (18)

2xy2xy2 0 1 (1 1 x)y9 1 y 5 2 o (n 1 r)(n 1 r 2 1)cnxn1r21 1 o (n 1 r )cnxn1r21

n50

`

n50

`

5 o (n 1 r)(2n 1 2r 2 1)cnxn1r21 1 o (n 1 r 1 1)cnxn1r

n50

`

n50

`

5 xr [r(2r 2 1)c0x21 1 o [(k 1 r 1 1)(2k 1 2r 1 1)ck11 1 (k 1 r 1 1)ck]xk],
k50

`

1 o (n 1 r)cnxn1r 1 o cnxn1r

n50

`

n50

`

5 xr [r(2r 2 1)c0x21 1 o (n 1 r)(2n 1 2r 2 1)cnxn21 1 o (n 1 r 1 1)cnxn]
n51

`

n50

`

k5n21 k5n

From (17) we �nd

c1 5
2c0

2 ? 1

c2 5
2c1

2 ? 2
5

c0

22 ? 2!

c3 5
2c2

2 ? 3
5

2c0

23 ? 3!

c4 5
2c3

2 ? 4
5

c0

24 ? 4!
. 
. 
.

cn 5
(21)nc0

2nn!
 .

From (18) we �nd

c1 5
2c0

1

c2 5
2c1

3
5

c0

1 ? 3

c3 5
2c2

5
5

2c0

1 ? 3 ? 5

c4 5
2c3

7
5

c0

1 ? 3 ? 5 ? 7
. 
. 
.

cn 5
(21)nc0

1 ? 3 ? 5 ? 7 Á (2n 2 1)
 .
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Thus for the indicial root r1 5 1
2 we obtain the solution

y1(x) 5 x1/231 1 o
`

n51

(21)n

2nn!
xxn4 5 o

`

n50

(21)n

2nn!
xxn11/2,

where we have again omitted c0. The series converges for x $ 0; as given, the series 
is not de�ned for negative values of x because of the presence of x because of the presence of x x1/2. For r2r2r 5 0 a 
second solution is

y2(x) 5 1 1 o
`

n51

(21)n

1 ? 3 ? 5 ? 7 Á (2n 2 1)
xn, uxu , `.

On the interval (0, `) the general solution is y 5 C1y1(x) 1 C2C2C y2y2 2(x). .

EXAMPLE 4  Only One Series Solution

Solve xy0 1 y 5 0.

SOLUTION From xP(x) 5 0, x2Q(x) 5 x and the fact that 0 and x and the fact that 0 and x x are their own x are their own x
power series centered at 0 we conclude that a0 5 0 and b0 5 0, so from (14) the 
indicial equation is r(r 2 1) 5 0. You should verify that the two recurrence relations 
corresponding to the indicial roots r1 5 1 and r2r2r 5 0 yield exactly the same set of 
coef�cients. In other words, in this case the method of Frobenius produces only a 
single series solution

y1(x) 5 o
`

n50

(21)n

n!(n 1 1)!
xn11 5 x 2

1

2
x2 1

1

12
x3 2

1

144
x4 1 Á . .

THREE CASES For the sake of discussion let us again suppose that x 5 0 is a regular 
singular point of equation (1) and that the indicial roots r1 and r2r2r  of the singularity are 
real. When using the method of Frobenius, we distinguish three cases corresponding 
to the nature of the indicial roots r1 and r2r2r . In the �rst two cases the symbol r1 denotes 
the largest of two distinct roots, that is, r1 . r2r2r . In the last case r1 5 r2r2r .

CASE I: If r1 and r2r2r  are distinct and the difference r1 2 r2r2r  is not a positive integer, 
then there exist two linearly independent solutions of equation (1) of the form

y1(x) 5o
`

n50
cn xn1r1, c0 Þ 0,  y2(x) 5o

`

n50
bn xn1r2, b0 Þ 0.

This is the case illustrated in Examples 2 and 3.
Next we assume that the difference of the roots is N, where N, where N N is a positive N is a positive N integer. 

In this case the second solution may contain a logarithm.

CASE II: If r1 and r2r2r  are distinct and the difference r1 2 r2r2r  is a positive integer, then 
there exist two linearly independent solutions of equation (1) of the form

y1(x) 5o
`

n50

 
cnxn1r1, c0 Þ 0, (19)

y2(x) 5 C y1(x) ln x 1o
`

n50
 bnxn1r2,  b0 Þ 0, (20)

where C is a constant that could be zero.C is a constant that could be zero.C
Finally, in the last case, the case when r1 5 r2r2r , a second solution will always

contain a logarithm. The situation is analogous to the solution of a Cauchy-Euler 
equation when the roots of the auxiliary equation are equal.
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CASE III: If r1 and r2r2r  are equal, then there always exist two linearly independent 
solutions of equation (1) of the form

y1(x) 5o
`

n50
cnxn1r1, c0 Þ 0, (21)

y2(x) 5 y1(x) ln x 1o
`

n51
bnxn1r1. (22)

FINDING A SECOND SOLUTION When the difference r1 2 r2r2r  is a positive 
integer (Case II), we may or may not be able to �nd two solutions having the form may not be able to �nd two solutions having the form may not
y 5 o`

n50 cnxnxn
n1r. This is something that we do not know in advance but is determined 

after we have found the indicial roots and have carefully examined the recurrence 
relation that de�nes the coef�cients cn. We just may be lucky enough to �nd two so-
lutions that involve only powers of x, that is, y1(x) 5 o`

n50 cnxnxn
n1r1 (equation (19)) and 

y2(x) 5 o`
n50 bnxnxn

n1r2 (equation (20) with C 5 0). See Problem 31 in Exercises 6.3. 
On the other hand, in Example 4 we see that the difference of the indicial roots is a 
positive integer (r1 2 r2r2r 5 1) and the method of Frobenius failed to give a second 
series solution. In this situation equation (20), with C Þ 0, indicates what the sec-
ond solution looks like. Finally, when the difference r1 2 r2r2r  is a zero (Case III), the 
method of Frobenius fails to give a second series solution; the second solution (22) 
always contains a logarithm and can be shown to be equivalent to (20) with C 5 1. 
One way to obtain the second solution with the logarithmic term is to use the fact that

y2(x) 5 y1(x) # e2eP(x(x( ) dxdxd

y2
1(x)

dxdxd (23)

is also a solution of y0 1 P(x)y9 1 Q(x)y 5 0 whenever y1(x) is a known solution. We 
illustrate how to use (23) in the next example.

EXAMPLE 5 Example 4 Revisited Using a CAS

Find the general solution of xy0 1 y 5 0.

SOLUTION From the known solution given in Example 4,

y1(x) 5 x 2
1

2
x2 1

1

12
x3 2

1

144
x4 1 Á ,

we can construct a second solution y2(x) using formula (23). Those with the time, 
energy, and patience can carry out the drudgery of squaring a series, long division, 
and integration of the quotient by hand. But all these operations can be done with 
relative ease with the help of a CAS. We give the results:

y2(x) 5 y1(x) # e2e0 dx

[y1(x)]2 dxdxd 5 y1(x) # dxdxd

3x 2
1

2
x2 1

1

12
x3 2

1

144
x4 1 Á4

2

5 y1(x) # dxdxd

3 x2 2 x3 1
5

12
x4 2

7

72
x5 1 Á4

5 y1(x) # 3 1

x2 1
1
x

1
7

12
1

19

72
x 1 Á4 dxdxd

5 y1(x) 32
1
x

1 ln x 1
7

12
x 1

19

144
x2 1 Á4

5 y1(x) ln x 1 y1(x) 32
1
x

1
7

12
x 1

19

144
x2 1 Á4,

; after squaring

; after long division

; after integrating
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or  or  or     y2(x) 5 y1(x) ln x 1 321 2
1

2
x 1

1

2
x2 1 Á4.

On the interval (0, `) the general solution is y 5 C1y1(x) 1 C2C2C y2y2 2(x). .

Note that the �nal form of y2 in Example 5 matches (20) with C 5 1; the series 
in the brackets corresponds to the summation in (20) with r2r2r 5 0.

; after multiplying out

EXERCISES 6.3
In Problems 1–10 determine the singular points of the given differ-
ential equation. Classify each singular point as regular or irregular.

1. x3y0 1 4x2y2y2 9 1 3y 5 0

2. x(x 1 3)2y2y2 0 2 y 5 0

3. (x2 2 9)2y2y2 0 1 (x 1 3)y9 1 2y 5 0

4. y0 2
1
x

y9 1
1

(x 2 1)3 y 5 0

5. (x3 1 4x)y0 2 2x2x2 yxyx 9 1 6y 5 0

6. x2(x 2 5)2y2y2 0 1 4xy9 1 (x2 2 25)y 5 0

7. (x2 1 x 2 6)y0 1 (x 1 3)y9 1 (x 2 2)y 5 0

8. x(x2 1 1)2y2y2 0 1 y 5 0

9. x3(x2 2 25)(x 2 2)2y2y2 0 1 3x(x 2 2)y9 1 7(x 1 5)y 5 0

10. (x3 2 2x2x2 2 1 3x)2y2y2 0 1 x(x 2 3)2y2y2 9 2 (x 1 1)y 5 0

In Problems 11 and 12 put the given differential equation into form 
(3) for each regular singular point of the equation. Identify the func-
tions p(x) and q(x).

11. (x2 2 1)y0 1 5(x 1 1)y9 1 (x2 2 x)y 5 0

12. xy0 1 (x 1 3)y9 1 7x2y2y2 5 0

In Problems 13 and 14, x 5 0 is a regular singular point of  the 
given differential equation. Use the general form of the indicial equa-
tion in (14) to �nd the indicial roots of the singularity. Without solv-
ing, discuss the number of series solutions you would expect to �nd 
using the method of Frobenius.

13. x2y2y2 0 1 _53 x 1 x2+y9 2 1
3 y 5 0

14. xy0 1 y9 1 10y 5 0

In Problems 15–24, x 5 0 is a regular singular point of the given dif-gular singular point of the given dif-gular singular point of the given dif
ferential equation. Show that the indicial roots of the singularity do 
not differ by an integer. Use the method of Frobenius to obtain two 
linearly independent series solutions about x 5 0. Form the general 
solution on (0, `).

15. 2xy2xy2 0 2 y9 1 2y 5 0

16. 2xy2xy2 0 1 5y9 1 xy 5 0

17. 4xy4xy4 0 1 1
2yy9 1 y 5 0

18. 2x2x2 2y2y2 0 2 xy9 1 (x2 1 1)y 5 0

19. 3xy0 1 (2 2 x)y9 2 y 5 0

20. x2y0 2 _x_x_ 2 2
9+y 5 0

21. 2xy2xy2 0 2 (3 1 2x2x2 )y9 1 y 5 0

Answers to selected odd-numbered problems begin on page ANS-9.

REMARKS

(i) The three different forms of a linear second-order differential equation in 
(1), (2), and (3) were used to discuss various theoretical concepts. But on a 
practical level, when it comes to actually solving a differential equation using 
the method of Frobenius, it is advisable to work with the form of the DE given 
in (1).

(ii) When the difference of indicial roots r1 2 r2r2r  is a positive integer (r1 . r2r2r ), 
it sometimes pays to iterate the recurrence relation using the smaller root r2r2r
�rst. See Problems 31 and 32 in Exercises 6.3.

(iii) Because an indicial root r is a solution of a quadratic equation, it could be r is a solution of a quadratic equation, it could be r
complex. We shall not, however, investigate this case.

(iv) If x 5 0 is an irregular singular point, then we might not be able to �nd any
solution of the DE of form y 5 o`

n50 cnxnxn
n1r.
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22. x2y2y2 0 1 xyxyx 9 1 _x_x_ 2 2 4
9+y 5 0

23. 9x2y2y2 0 1 9x2y2y2 9 1 2y 5 0

24. 2x2x2 2y2y2 0 1 3xy9 1 (2x(2x(2 2 1)y 5 0

In Problems 25–30, x 5 0 is a regular singular point of the given dif-0 is a regular singular point of the given dif-0 is a regular singular point of the given dif
ferential equation. Show that the indicial roots of the singularity differ 
by an integer. Use the method of Frobenius to obtain at least one series 
solution about x 5 0. Use (23) where necessary and a CAS, if instructed, 
to �nd a second solution. Form the general solution on (0, `).

25. xy0 1 2y9 2 xy 5 0

26. x2y2y2 0 1 xyxyx 9 1 _x_x_ 2 2 1
4+y 5 0

27. xy0 2 xy9 1 y 5 0 28. y0 1
3
x

y9 2 2y2y2 5 0

29. xy0 1 (1 2 x)y9 2 y 5 0 30. xy0 1 y9 1 y 5 0

In Problems 31 and 32, x 5 0 is a regular singular point of the given 
differential equation. Show that the indicial roots of the singularity 
differ by an integer. Use the recurrence relation found by the method 
of Frobenius �rst with the larger root r1. How many solutions did you 
�nd? Next use the recurrence relation with the smaller root r2r2r . How 
many solutions did you �nd?

31. xy0 1 (x 2 6)y9 2 3y 5 0

32. x(x 2 1)y0 1 3y9 2 2y 5 0

33. (a) The differential equation x4y4y4 0 1 �y 5 0 has an irregular 
singular point at x 5 0. Show that the substitution  
t 5 1yx yields the DEx yields the DEx

d2y2y2

dt2
1

2

t

dydyd

dt
1 �y 5 0,

which now has a regular singular point at t 5 0.

(b) Use the method of this section to �nd two series solutions 
of the second equation in part (a) about the regular singular 
point t 5 0.

(c) Express each series solution of the original equation in 
terms of elementary functions.

Mathematical Model
34. Buckling of a Tapered Tapered T Column In Example 4 of Section 5.2 

we saw that when a constant vertical compressive force or load 
P was applied to a thin column of uniform cross section, the 
de�ection y(x) was a solution of the boundary-value problem

EIEIE
d2y

dxdxd 2 1 PyPyP 5 0, y(0) 5 0, y(L) 5 0. (24)

The assumption here is that the column is hinged at both ends. 
The column will buckle or de�ect only when the compressive 
force is a critical load Pn.

(a) In this problem let us assume that the column is of length 
L, is hinged at both ends, has circular cross sections, and 
is tapered as shown in Figure 6.3.1(a). If the column, 
a truncated cone, has a linear taper y 5 cx as shown in 
cross section in Figure 6.3.1(b), the moment of inertia of 
a cross section with respect to an axis perpendicular to the 
xy-plane is I 5 1

4 �r4r4r , where r 5 y and y 5 cx. Hence we 
can write I(I(I x(x( ) 5 I0I0I (x(x( yb)4, where I0I0I 5 I(I(I b) 5 1

4 �(cb)4.
Substituting I(I(I x(x( ) into the differential equation in (24), we see 
that the de�ection in this case is determined from the BVP

x4
d2y2y2

dxdxd 2 1 �y 5 0, y(a) 5 0, y(b) 5 0,

where � 5 Pb4yEI0EI0EI . Use the results of Problem 33 to 
�nd the critical loads Pn for the tapered column. Use an 
appropriate identity to express the buckling modes yn(x) as 
a single function.

(b) Use a CAS to plot the graph of the �rst buckling mode 
y1(x) corresponding to the Euler load P1 when b 5 11 
and a 5 1.

Discussion Problems
35. Discuss how you would de�ne a regular singular point for the 

linear third-order differential equation

a3(x)y- 1 a2(x)y0 1 a1(x)y9 1 a0(x)y 5 0.

36. Each of the differential equations

x3y0 1 y 5 0 and x2y2y2 0 1 (3x 2 1)y9 1 y 5 0

has an irregular singular point at x 5 0. Determine whether the 
method of Frobenius yields a series solution of each differential 
equation about x 5 0. Discuss and explain your �ndings.

37. We have seen that x 5 0 is a regular singular point of any 
Cauchy-Euler equation ax2y2y2 0 1 bxy9 1 cy 5 0. Are the indicial 
equation (14) for a Cauchy-Euler equation and its auxiliary 
equation related? Discuss.

x 5 a

y

P

x 5 b

y 5 cx
b 2 a 5 L

L

(a) (b)

x

FIGURE 6.3.1 Tapered column in Problem 34
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6.4 Special Functions

INTRODUCTION In the Remarks at the end of Section 2.3 we mentioned the branch 
of mathematics called special functions. Perhaps a better title for this �eld of applied 
mathematics might be named functions because many of the functions studied bear 
proper names: Bessel functions, Legendre functions, Airy functions, Chebyshev 
polynomials, Hermite polynomials, Jacobi polynomials, Laguerre polynomials, 
Gauss’ hypergeometric function, Mathieu functions, and so on. Historically, special 
functions were often the by-product of necessity: Someone needed a solution of a 
very specialized differential equation that arose from an attempt to solve a physical 
problem. In effect, a special function was determined or de�ned by the differential 
equation and many properties of the function could be discerned from the series form 
of the solution.

In this section we use the methods of Sections 6.2 and 6.3 to �nd solutions of 
two differential equations

x2y0 1 xy9 1 (x2 2 �2)y 5 0 (1)

(1 2 x2)y0 2 2xy9 1 n(n 1 1)y 5 0 (2)

that arise in the advanced studies of applied mathematics, physics, and engineering. 
Equation (1) is called Bessel’s equation of order n and is named after the noted German 
astronomer and mathematician Friedrich Wilhelm Bessel (1784–1846), who was the 
�rst person to determine the accurate distance from the Sun to another star. Bessel �rst 
encountered a special form of equation (1) in his study of elliptical planetary motion and 
eventually carried out a systematic study of the properties of the solutions of the general 
equation. Differential equation (2) is known as Legendre’s equation of order n and is 
named after the French mathematician Adrien-Marie Legendre (1752–1833). When 
we solve (1) we will assume that � $ � $ � 0; whereas in (2) we will consider only the case 
where n is a nonnegative integer.

SOLUTION OF BESSEL’S EQUATION Because x 5 0 is a regular singular point 
of Bessel’s equation, we know that there exists at least one solution of the form 
y 5 o`

n50 cnxn1r. Substituting the last expression into (1) gives

x2y2y2 0 1 xyxyx 9 1 (x2 2 �2)y 5 o
`

n50
cn(n 1 r)(n 1 r 2 1)xn1r 1 o

`

n50
cn(n 1 r)xn1r 1 o

`

n50
cnxn1r12 2 �2 o

`

n50
cnxn1r

5 c0(r2r2r 2 r 1 r 2 � 2)xr 1 xr o
`

n51
cn[(n 1 r)(n 1 r 2 1) 1 (n 1 r) 2 �2]xn 1 xr o

`

n50
cnxnxn

n12

5 c0(r2r2r 2 � 2)xr 1 xr o
`

n51
cn[(n 1 r)2 2 �2]xn 1 xr o

`

n50
cnxnxn

n12. (3)

From (3) we see that the indicial equation is r2r2r 2 �2 5 0, so the indicial roots are 
r1 5 � and r2r2r 5 2�. When r1 5 �, (3) becomes

x� o cnn(n 1 2�)xn 1 x� o cnxn12

n51

`

n50

`

5 x� [(1 1 2�)c1x 1x 1x o [(k 1 2)(k 1 2 1 2�)ck12 1 ck]xk12] 5 0.
k50

`

5 x� [(1 1 2�)c1x 1x 1x o cnn(n 1 2�)xn 1 o cnxn12]
n52

`

n50

`

k 5 n 2 2 k 5 n
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Therefore by the usual argument we can write (1 1 2�)c1 5 0 and

(k 1 2)(k 1 2 1 2�)ck12 1 ck 5 0

or ck12 5
2ck

(k 1 2)(k 1 2 1 2�)
, k 5 0, 1, 2, . . . . (4)

The choice c1 5 0 in (4) implies that c3 5 c5 5 c7 5 Á 5 0, so for k 5 0, 2, 4, . . .
we �nd, after letting k 1 2 5 2n, n 5 1, 2, 3, . . . , that

c2n 5 2
c2n22

22n(n 1 �)
. (5)

Thus c2 5 2
c0

22 ? 1 ? (1 1 �)

c4 5 2
c2

22 ? 2(2 1 �)
5

c0

24 ? 1 ? 2(1 1 �)(2 1 �)

c6 5 2
c4

22 ? 3(3 1 �)
5 2

c0

26 ? 1 ? 2 ? 3(1 1 �)(2 1 v)(3 1 �)

o

c2n 5
(21)nc0

22nn!(1 1 �)(2 1 �) Á (n 1 �)
, n 5 1, 2, 3, . . . . (6)

It is standard practice to choose c0 to be a speci�c value, namely,

c0 5
1

2�G(1 1 �)
,

where G(1 1 �) is the gamma function. See Appendix A for a de�nition of the 
gamma function. Since this latter function possesses the convenient property 
G(1 1 �) 5 �G(�), we can reduce the indicated product in the denominator of (6) to 
one term. For example,

G(1 1 � 1 1) 5 (1 1 �)G(1 1 �)

G(1 1 � 1 2) 5 (2 1 �)G(2 1 �) 5 (2 1 �)(1 1 �)G(1 1 �).

Hence we can write (6) as

c2n 5
(21)n

22n1�n!(1 1 �)(2 1 �) Á (n 1 �)G(1 1 �)
5

(21)n

22n1�n!G(1 1 � 1 n)

for n 5 0, 1, 2, . . . .

BESSEL FUNCTIONS OF THE FIRST KIND Using the coef�cients c2n just n just n obtained 
and r 5 �, a series solution of (1) is y 5 o`

n50 c2n x2n1�. This solution is usually 
denoted by J�J�J (x):

J� (x) 5o
`

n50

 (21)n

n!G(1 1 � 1 n)
 1x

22
2n1�

. (7)

If � $ 0, the series converges at least on the interval [0, `). Also, for the second 
exponent r2r2r 5 2� we obtain, in exactly the same manner,

J2�(x) 5o
`

n50

 (21)n

n!G(1 2 � 1 n)
 1x

22
2n2�

. (8)
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The functions J�J�J (x) and J2�(x) are called Bessel functions of the �rst kind of order �
and 2�, respectively. Depending on the value of �, (8) may contain negative powers 
of x and hence converges on (0, x and hence converges on (0, x `).*

Now some care must be taken in writing the general solution of (1). When � 5 0, 
it is apparent that (7) and (8) are the same. If � . 0 and r1 2 r2r2r 5 � 2 (2�) 5 2� is not � is not �
a positive integer, it follows from Case I of Section 6.3 that J�J�J (x(x( ) and J2�(x(x( ) are lin-
early independent solutions of (1) on (0, `), and so the general solution on the interval 
is y 5 c1J�J�J (x(x( ) 1 c2J2�(x(x( ). But we also know from Case II of Section 6.3 that when 
r1 2 r2r2r 5 2� is a positive integer, a second series solution of (1) � is a positive integer, a second series solution of (1) � may exist. In this second may exist. In this second may
case we distinguish two possibilities. When � 5 m 5 positive integer, J2m(x(x( ) de�ned by 
(8) and JmJmJ (x(x( ) are not linearly independent solutions. It can be shown that J2m is a constant m is a constant m

multiple of JmJmJ  (see Property (m (see Property (m i) on page 267). In addition, r1 2 r2r2r 5 2� can be a positive � can be a positive �
integer when � is half an odd positive integer. It can be shown in this latter event that � is half an odd positive integer. It can be shown in this latter event that � J�J�J (x(x( ) 
and J2�(x(x( ) are linearly independent. In other words, the general solution of (1) on (0, ̀ ) is

y 5 c1J�(x) 1 c2J2�(x),  � Þ integer. (9)

The graphs of y 5 J0J0J (x) and y 5 J1(x) are given in Figure 6.4.1.

 EXAMPLE 1  Bessel’s Equation of Order 12

By identifying �2 5 1
4 and � 5 1

2, we can see from (9) that the general solution of the

equation x2y2y2 0 1 xyxyx 9 1 _x_x_ 2 2 1
4+y 5 0 on (0, `) is y 5 c1J1/2(x) 1 c2J21/2(x). .

BESSEL FUNCTIONS OF THE SECOND KIND If � Þ integer, the function de�ned 
by the linear combination

Y�(x) 5
cos ��J�(x) 2 J2�(x)

 sin ��
(10)

and the function J�J�J (x) are linearly independent solutions of (1). Thus another form 
of the general solution of (1) is y 5 c1J�J�J (x) 1 c2Y�Y�Y (x), provided that � Þ integer. As 
v S m, m an integer, (10) has the indeterminate form 0/ an integer, (10) has the indeterminate form 0/ an integer, (10) has the indeterminate form 0 0. However, it can be shown /0. However, it can be shown /
by L’Hôpital’s Rule that limvSm Y�Y�Y (x) exists. Moreover, the function

YmYmY (x) 5 lim
� S m

Y�Y�Y (x)

and JmJmJ (x) are linearly independent solutions of x2y2y2 0 1 xy9 1 (x2 2 m2)y 5 0. Hence 
for any value of � the general solution of (1) on (0, `) can be written as

y 5 c1J�(x) 1 c2Y�(x). (11)

Y�Y�Y (x) is called the Bessel function of the second kind of order �. Figure 6.4.2 shows 
the graphs of Y0Y0Y (x) and Y1(x).

 EXAMPLE 2  Bessel’s Equation of Order 3

By identifying �2 5 9 and � 5 3, we see from (11) that the general solution of the 
equation x2y2y2 0 1 xy9 1 (x2 2 9)y 5 0 on (0, `) is y 5 c1J3(x) 1 c2Y3(x). .

DEs SOLVABLE IN TERMS OF BESSEL FUNCTIONS Sometimes it is possible to 
transform a differential equation into equation (1) by means of a change of variable. 
We can then express the solution of the original equation in terms of Bessel func-
tions. For example, if we let t 5 �x, � . 0, in

x2y0 1 xy9 1 (�2x2 2 v2)y 5 0, (12)

*When we replace x by x by x uxu, the series given in (7) and (8) converge for 0 , uxu , `.

2 4 6 8
20.4

0.2
0.4
0.6
0.8

1

20.2

x

y

J1

J0J0J

FIGURE 6.4.1 Bessel functions of the �rst 
kind for n 5 0, 1, 2, 3, 4

2 4 6 8

1

23
22.5

22
21.5

21
20.5

0.5
x

y

Y0Y0Y Y1

FIGURE 6.4.2 Bessel functions of 
the second kind for n 5 0, 1, 2, 3, 4
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then by the Chain Rule,

dydyd

dxdxd
5

dydyd

dt

dt

dxdxd
5 �

dydyd

dt
       and       

d2y

dxdxd 2 5
d

dt 1
dydyd

dxdxd 2 dt

dxdxd
5 �2 d2y

dt2  .

Accordingly, (12) becomes

1 t
�2

2

�2 d2y2y2

dt2 1 1 t
�2�

dydyd

dt
1 (t2 2 �2)y 5 0      or     t2 d2y2y2

dt2 1 t
dydyd

dt
1 (t2 2 � 2)y 5 0.

The last equation is Bessel’s equation of order � with solution � with solution � y 5 c1J�J�J (t) 1 c2Y�Y�Y (t). By 
resubstituting t 5 �x in the last expression, we �nd that the general x in the last expression, we �nd that the general x solution of (12) is

y 5 c1J�(�x) 1 c2Y�(�x). (13)

Equation (12), called the parametric Bessel equation of order n, and its general 
solution (13) are very important in the study of certain boundary-value problems 
involving partial differential equations that are expressed in cylindrical coordinates.

MODIFIED BESSEL FUNCTIONS Another equation that bears a resemblance to (1) 
is the modi�ed Bessel equation of order n,

x2y0 1 xy9 2 (x2 1 �2)y 5 0. (14)

This DE can be solved in the manner just illustrated for (12). This time if we let 
t 5 ixixi , where i2 5 21, then (14) becomes

t2
d2d2d y

dt2
1 t

dydyd

dt
1 (t2 2 �2)y 5 0.

Because solutions of the last DE are J�J�J (t) and Y�Y�Y (t), complex-valued solutions of complex-valued solutions of complex-valued
(14) are J�J�J (ix) and Y�Y�Y (ix). A real-valued solution, called the modi�ed Bessel function 
of the �rst kind of order �, is de�ned in terms of J�J�J (ix):

I�I�I (x) 5 i2�J�J�
�J�J (ixixi ).

See Problem 21 in Exercises 6.4.
The general solution of (14) is

y 5 c1I�I�I (x) 1 c2 I2�(x),  � Þ integer . (15)

When � is an integer n the functions InInI (x) and I2n(x) are not linearly independent on 
the interval (0, `). So analogous to (10) we de�ne the modi�ed Bessel function of 
the second kind of order � Þ integer to be

K�K�K (x) 5
�

2

I2�(x) 2 I�I�I (x)

sin ��
, (16)

and for integer � 5 n,

KnKnK (x) 5 lim
� S n

K�K�K (x).

Because I�I�I  and K�K�K  are linearly independent on the interval (0, `) for any value of 
�, the general solution of (14) on that interval is

y 5 c1I�(x) 1 c2K�(x). (17)

The graphs of y 5 I0I0I (x), y 5 I1(x), and y 5 I2I2I (x) are given in Figure 6.4.3 and 
the graphs of y 5 K0K0K (x), y 5 K1(x), and y 5 K2K2K (x) are given in Figure 6.4.4. Unlike 
the Bessel functions of the �rst and second kinds, the modi�ed Bessel functions 
of the �rst and second kind are not oscillatory. Figures 6.4.3 and 6.4.4 also illustrate 

1 2 3

1
1.5

2
2.5

3

0.5
x

y

I0I0I

I1 I2I2I

FIGURE 6.4.3 Modi�ed Bessel functions 
of the �rst kind for n 5 0, 1, 2
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FIGURE 6.4.4 Modi�ed Bessel functions 
of the second kind for n 5 0, 1, 2
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the fact that the modi�ed Bessel functions InInI (x) and KnKnK (x), n 5 0, 1, 2, . . . have no 
real zeros in the interval (0, `). Also notice that the modi�ed Bessel functions of 
the second kind KnKnK (x) like the Bessel functions of the second kind YnYnY (x) become 
unbounded as x S 01.

A change of variable in (14) gives us the parametric form of the modi�ed 
Bessel equation of order n:

x2y0 1 xy9 2 (�2x2 1 �2)y 5 0. (18)

The general solution of the last equation on the interval (0, `) is

y 5 c1I�(�x) 1 c2K�(�x). (19)

EXAMPLE 3  Parametric Modified Bessel Equation

By identifying �2 5 25,  �2 5 4,  � 5 5, and � 5 2 it follows from (19) that the 
general solution of the equation x2y2y2 0 1 xyxyx 9 2 (25x2 1 4)y 5 0 on (0,  `) is
y 5 c1I2(5xd 1 c2K2s5xd . .

Yet another equation, important because many DEs �t into its form by appro-
priate choices of the parameters, is

y0 1
1 2 2a

x
 y9 1 1b2c2x2c22 1

a2 2 p2c2

x2 2y 5 0,   p $ 0. (20)

Although we shall not supply the details, the general solution of (20),

y 5 xa3c1Jp(bxc) 1 c2Yp(bxc)4, (21)

can be found by means of a change in both the independent and the dependent

variables: z 5 bxbxb c, y(x) 5 1z

b2
a/c

w(z). If p is not an integer, then YpYpY  in (21) can be

replaced by J2p.

EXAMPLE 4  Using (20)

Find the general solution of xy0 1 3y9 1 9y 5 0 on (0, `).

SOLUTION By writing the given DE as

y0 1
3
x

y9 1
9
x

y 5 0,

we can make the following identi�cations with (20):

1 2 2a 5 3, b2c2 5 9, 2c 2 2 5 21, and a2 2 p2c2 5 0.

The �rst and third equations imply that a 5 21 and c 5 1
2. With these values the 

second and fourth equations are satis�ed by taking b 5 6 and p 5 2. From  (21) 
we  �nd that the general solution of the given DE on the interval (0, `) is 
y 5 x21[c1J2(6x1/2) 1 c2Y2(6x1/2)]. .

 EXAMPLE 5  The Aging Spring Revisited

Recall that in Section 5.1 we saw that one mathematical model for the free undamped 
motion of a mass on an aging spring is given by mx0 1 ke2�txtxt 5 0, � . 0. We are 
now in a position to �nd the general solution of the equation. It is left as a problem  
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to show that the change of variables s 5
2
� Î kÎmÎ e2�t/t/t 2 transforms the differential 

equation of the aging spring into

s2 d2d2d x2x2

dsdsd 2 1 s
dxdxd

dsdsd
1 s2x2x2 5 0.

The last equation is recognized as (1) with � 5 0 and where the symbols x
and  s  play  the roles of y and x, respectively. The general solution of the new
equation is x 5 c1J0J0J (s) 1 c2Y0Y0Y (s). If we resubstitute s, then the general solution of 
mx0 1 ke2�txtxt 5 0 is seen to be

x(t) 5 c1J0J0J 12
� Î kÎmÎ e2�t/t/t 22 1 c2Y0Y0Y 12

� Î kÎmÎ e2�t/t/t 22.
See Problems 35 and 41 in Exercises 6.4. .

The other model that was discussed in Section 5.1 of a spring whose character-
istics change with time was mx0 1 ktx 5 0. By dividing through by m, we see that 

the equation x0 1
k
m

txtxt 5 0 is one form of Airy’s differential equation. See page 248.

The general solution of Airy’s differential equation can also be written in terms of 
Bessel functions. See Problems 36, 37, and 42 in Exercises 6.4.

PROPERTIES We list below a few of the more useful properties of Bessel functions 
of order m, m 5 0, 1, 2, . . .:

(i) J2J2J m(x) 5 (21)mJmJmJ (x), (ii) JmJmJ (2x) 5 (21)mJmJmJ (x),

(iii) JmJmJ (0) 5 50,

1,

m . 0

m 5 0,
(iv)  lim

xS01
YmYmY (x) 5 2`.

Note that Property (ii) indicates that JmJmJ (x) is an even function if m is an even 
integer and an odd function if m is an odd integer. The graphs of Y0Y0Y (x) and Y1(x) 
in Figure 6.4.2 illustrate Property (iv), namely, YmYmY (x) is unbounded at the origin. 
This last fact is not obvious from (10). The solutions of the Bessel equation of 
order 0 can be obtained by using the solutions y1(x) in (21) and y2(x) in (22) of 
Section 6.3. It can be shown that (21) of Section 6.3 is y1(x) 5 J0J0J (x), whereas (22) 
of that section is

y2(x) 5 J0J0J (x) ln x 2 o
`

k51

(21)k

(k!)2 11 1
1

2
1 Á 1

1

k21x

22
2k

.

The Bessel function of the second kind of order 0, Y0Y0Y (x), is then de�ned to be the

linear combination Y0Y0Y (x) 5
2
�

 ( (� 2 ln 2)y1(x) 1
2
�

y2(x) for x . 0. That is,

Y0Y0Y (x) 5
2
�

J0J0J (x)3� 1 ln
x

24 2
2
� o

`

k51

(21)k

(k!)2 11 1
1

2
1 Á 1

1

k21x

22
2k

,

where � 5 0.57721566 . . . is Euler’s constant. Because of the presence of the 
logarithmic term, it is apparent that Y0Y0Y (x) is discontinuous at x 5 0.

NUMERICAL VALUES The �rst �ve nonnegative zeros of J0J0J (x), J1(x), Y0Y0Y (x), and 
Y1(x) are given in Table 6.4.1. Some additional function values of these four func-
tions are given in Table 6.4.2.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



268 CHAPTER  SERIES SOLUTIONS OF LINEAR EQUATIONS

DIFFERENTIAL RECURRENCE RELATION Recurrence formulas that relate Bessel 
functions of different orders are important in theory and in applications. In the next 
example we derive a differential recurrence relation.

EXAMPLE 6  Derivation Using the Series Definition

Derive the formula xJ9�J�J (x) 5 �J�J� �J�J (x) 2 xJxJx �J�J 11(x).

SOLUTION It follows from (7) that

xJ�xJ�xJ (x) 5o ( )2n1�
9

n50

`

k 5 n 2 1

(21)n(2n 1 �)
–––––––––––––––
n! (1 1 � 1 n)

x
–
2

L

5 �J�J� �J�J (x) 1 xo ( )2n1�21

n51

` (21)n

–––––––––––––––––––––
(n 2 1)! (1 1 � 1 n)

x
–
2

L

5 �o ( )2n1�

n50

` (21)n

–––––––––––––––
n! (1 1 � 1 n)

x
–
2

L 1 2 o ( )2n1�

n50

` (21)nn
––––––––––––––––––––––––––––––––––––––
n! (1 1 � 1 n)

x
–
2

L

5 �J�J� �J�J (x) 2 xx o 5 �J�J� �J�J (x) 2 xJ�xJ�xJ 11(x).( )2k1�11

k50

` (21)k

–––––––––––––––
k! (2 1 � 1 k)

x
–
2

L
.

The result in Example 6 can be written in an alternative form. Dividing 
xJxJx 9�J�J (x) 2 �J�J� �J�J (x) 5 2xJxJx �J�J 11(x) by x givesx givesx

J�J�J 9(x) 2
�

x
J�J�J (x) 5 2J�J�J 11(x).

This last expression is recognized as a linear �rst-order differential equation in J�J�J (x). 
Multiplying both sides of the equality by the integrating factor x2� then yields

d

dx
[x2�J�(x)] 5 2x2�J�11(x). (22)

TABLE 6.4.2  N u m e r i c al  V al u e s  of  J0J0J , J1 , Y0Y0Y , an d  Y1Y1Y

x J0J0J (x(x( ) J1(x(x( ) Y0Y0Y (x(x( ) Y1Y1Y (x(x( )

0 1.0000 0.0000 — —
1 0.7652 0.4401 0.0883 20.7812
2 0.2239 0.5767 0.5104 20.1070
3 20.2601 0.3391 0.3769 0.3247
4 20.3971 20.0660 20.0169 0.3979
5 20.1776 20.3276 20.3085 0.1479
6 0.1506 20.2767 20.2882 20.1750
7 0.3001 20.0047 20.0259 20.3027
8 0.1717 0.2346 0.2235 20.1581
9 20.0903 0.2453 0.2499 0.1043

10 20.2459 0.0435 0.0557 0.2490
11 20.1712 20.1768 20.1688 0.1637
12 0.0477 20.2234 20.2252 20.0571
13 0.2069 20.0703 20.0782 20.2101
14 0.1711 0.1334 0.1272 20.1666
15 20.0142 0.2051 0.2055 0.0211

TABLE 6.4.1 Z e r os  of J0J0J , J1 , Y0Y0Y , and Y1Y1Y

J0J0J (x) J1J1J (x) Y0Y0Y (x) Y1Y1Y (x)

2.4048 0.0000 0.8936 2.1971
5.5201 3.8317 3.9577 5.4297
8.6537 7.0156 7.0861 8.5960

11.7915 10.1735 10.2223 11.7492
14.9309 13.3237 13.3611 14.8974
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It can be shown in a similar manner that

d

dx
 [x�J�(x)] 5 x�J�21(x). (23)

See Problem 27 in Exercises 6.4. The differential recurrence relations (22) and 
(23) are also valid for the Bessel function of the second kind Y�Y�Y (x). Observe that 
when � 5 0, it follows from (22) that

d

dxdxd
J0J0J (x) 5 2J1(x)       and       

d

dxdxd
Y0Y0Y (x) 5 2Y1(x) . (24)

An application of these derivatives is given in Problem 41 in Exercises 6.4. Results 
similar to (24) also hold for the modi�ed Bessel functions of the �rst and second kind 
of order � 5 0:

d

dxdxd
I0I0I (x) 5 I1(x)       and

d

dxdxd
K0K0K (x) 5 2K1(x) . (25)

See Problem 27 in Chapter 6 in Review for an application of the derivatives in (25).

BESSEL FUNCTIONS OF HALFINTEGRAL ORDER When the order is half an 
odd integer, that is, 61

2, 63
2, 65

2, . . . , Bessel functions of the �rst and second kinds 
can be expressed in terms of the elementary functions sin x, cos x, and powers of x. 
Let’s consider the case when � 5 1

2. From (7)

J1/2(x) 5 o
`

n50

(21)n

n!G_1 1 1
2 1 n+ 1

x

22
2n11/2

. 

In view of the property G(1 1 �) 5 �G(a) and the fact that G_12+ 5 Ï� the values� the values�

of G(1 1 1
2 1 n) for n 5 0, n 5 1, n 5 2, and n 5 3 are, respectively,

G _32+ 5 G _1 1 1
2+ 5 1

2 G _12+ 5 1
2 Ï�Ï

G _52+ 5 G _1 1 3
2+ 5 3

2 G _32+ 5
3

22 Ï�Ï

G _72+ 5 G_1 1 5
2+ 5 5

2 G _52+ 5
5 ? 3

23 Ï�Ï 5
5 ? 4 ? 3 ? 2 ? 1

234 ? 2
Ï�Ï 5

5!

252!
Ï�Ï

G_92+ 5 G_1 1 7
2+ 5 7

2 G_72+ 5
7 ? 5

26 ? 2!
Ï�Ï 5

7 ? 6 ? 5!

26 ? 6 ? 2!
Ï�Ï 5

7!

273!
Ï�Ï .

In general, G_1 1 1
2 1 n+ 5

(2n 1 1)!

22n11n!
Ï�Ï .

Hence J1y2sxd 5 o
`

n50

s21dn

n!
s2n 1 1d!
22n11n!

Ï�Ï
1x

22
2n11y2

5Î 2Î�x�x�Î o
`

n50

s21dn

s2n 1 1d!
x2n11.

From (2) of Section 6.1 the in�nite series in the last line is recognized as the 
Maclaurin series for sin x, and so we have shown that

J1/2(x) 5Î 2
�x sin x. (26)

We leave it as an exercise to show that

J21/2(x) 5Î 2
�x cos x. (27)

See Figure 6.4.5 and Problems 31, 32, and 40 in Exercises 6.4.

2 4 6 8 10 12 14

0

0.5

1

20.5

x

y

J21/2

J1/2

FIGURE 6.4.5 Bessel functions of order 
1
2 (blue) and order 21

2 (red)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203
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If n is an integer, then � 5 n 1 1
2 is half an odd integer. Because cos(n 1 1

2)� 5 0
and sin(n 1 1

2)� 5 cos n� 5 (21)n, we see from (10) that

Yn11y2(x) 5 (21)n11 J2(n11y2)(x).

For n 5 0 and n 5 21 we have, in turn, Y1y2(x) 5 2J21y2(x) and Y21y2(x) 5 J1y2(x).
In view of (26) and (27) these results are the same as

Y1y2(x) 5 2Î 2
�x

 cos x (28)

and Y21y2(x) 5 Î 2
�x

 sin x. (29)

SPHERICAL BESSEL FUNCTIONS Bessel functions of half-integral order are 
used to de�ne two more important functions: 

jn(x) 5Î�Î2x2x2Î JnJnJ 11y2(x) and yn(x) 5Î�Î2x2x2Î YnYnY 11y2(x). (30)

The function jn(x) is called the spherical Bessel function of the �rst kind and yn(x)
is the spherical Bessel function of the second kind. For example, for n 5 0 the 
expressions in (30) become 

j0(x) 5Î�Î2x2x2Î J1y2(x) 5Î�Î2x2x2Î Î 2Î�x�x�Î sin x 5
sin x

x

and y0(x) 5Î �Î2xÎ Y1y2(x) 5 2Î�Î2x2x2Î Î 2Î�x�x�Î cos x 5 2
cos x

x
.

It is apparent from (30) and Figure 6.4.2 for n $ 0 the spherical Bessel of the second 
kind yn(x) becomes unbounded as x S 01.

Spherical Bessel functions arise in the solution of a special partial differential 
equation expressed in spherical coordinates. See Problem 56 in Exercises 6.4 and 
Problem 13 in Exercises 13.3.

SOLUTION OF LEGENDRE’S EQUATION Since x 5 0 is an ordinary point of 
Legendre’s equation (2), we substitute the series y 5 o`

k50 ckxk, shift summation 
indices, and combine series to get

(1 2 x2)y0 2 2x2x2 yxyx 9 1 n(n 1 1)y 5 [n(n 1 1)c0 1 2c2] 1 [(n 2 1)(n 1 2)c1 1 6c3]x

1 o
`

j52
 [(j [(j [( 1 2)(j)(j)( 1 1)cjcjc 12 1 (n 2 j)(n 1 j 1 1)cjcjc ]xjxjx 5 0

which implies that n(n 1 1)c0 1 2c2 5 0

(n 2 1)(n 1 2)c1 1 6c3 5 0

( j 1 2)( j 1 1)cjcjc 12 1 (n 2 j)(n 1 j 1 1)cjcjc 5 0

or c2 5 2
n(n 1 1)

2!
c0

c3 5 2
(n 2 1)(n 1 2)

3!
c1

cjcjc 12 5 2
(n 2 j)(n 1 j 1 1)

( j 1 2)( j 1 1)
cjcjc , j 5 2, 3, 4, . . . . (31)
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If we let j take on the values 2, 3, 4, . . . , the recurrence relation (31) yields

c4 5 2
(n 2 2)(n 1 3)

4 ? 3
c2 5

(n 2 2)n(n 1 1)(n 1 3)

4!
c0

c5 5 2
(n 2 3)(n 1 4)

5 ? 4
c3 5

(n 2 3)(n 2 1)(n 1 2)(n 1 4)

5!
c1

c6 5 2
(n 2 4)(n 1 5)

6 ? 5
c4 5 2

(n 2 4)(n 2 2)n(n 1 1)(n 1 3)(n 1 5)

6!
c0

c7 5 2
(n 2 5)(n 1 6)

7 ? 6
c5 5 2

(n 2 5)(n 2 3)(n 2 1)(n 1 2)(n 1 4)(n 1 6)

7!
c1

and so on. Thus for at least ux u , 1 we obtain two linearly independent power series 
solutions:

y1(x) 5 c031 2
n(n 1 1)

2!
x2 1

(n 2 2)n(n 1 1)(n 1 3)

4!
x4

2
(n 2 4)(n 2 2)n(n 1 1)(n 1 3)(n 1 5)

6!
x6 1 Á 4

y2(x) 5 c13x 2
(n 2 1)(n 1 2)

3!
x3 1

(n 2 3)(n 2 1)(n 1 2)(n 1 4)

5!
x5

(32)

2
(n 2 5)(n 2 3)(n 2 1)(n 1 2)(n 1 4)(n 1 6)

7!
x7 1 Á 4.

Notice that if n is an even integer, the �rst series terminates, whereas y2(x) is an 
in�nite series. For example, if n 5 4, then

y1(x) 5 c031 2
4 ? 5

2!
x2 1

2 ? 4 ? 5 ? 7

4!
x44 5 c031 2 10x0x0 2 1

35

3
x44.

Similarly, when n is an odd integer, the series for y2(x) terminates with xn; that is, 
when n is a nonnegative integer, we obtain an nth-degree polynomial solution of 
Legendre’s equation.

Because we know that a constant multiple of a solution of Legendre’s equation 
is also a solution, it is traditional to choose speci�c values for c0 or c1, depending 
on whether n is an even or odd positive integer, respectively. For n 5 0 we choose 
c0 5 1, and for n 5 2, 4, 6, . . .

c0 5 (21)n/2 1 ? 3 Á ( n 2 1)

2 ? 4 Á n
,

whereas for n 5 1 we choose c1 5 1, and for n 5 3, 5, 7, . . .

c1 5 (21)(n21)/2 1 ? 3 Á n

2 ? 4 Á (n 2 1)
.

For example, when n 5 4, we have

y1(x) 5 (21)4/2 1 ? 3

2 ? 4 31 2 10x0x0 2 1
35

3
x44 5

1

8
 (3 (35x4 2 30x0x0 2 1 3).

LEGENDRE POLYNOMIALS These speci�c nth-degree polynomial solutions are 
called Legendre polynomials and are denoted by Pn(x). From the series for y1(x) 
and y2(x) and from the above choices of c0 and c1 we �nd that the �rst six Legendre 
polynomials are

P0(x) 5 1, P1(x) 5 x,

P2(x) 5
1

2
 (3x2 2 1), P3(x) 5

1

2
 (5x3 2 3x), (33)

P4(x) 5
1

8
 (35x4 2 30x2 1 3), P5(x) 5

1

8
 (63x5 2 70x3 1 15x).
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Remember, P0(x), P1(x), P2(x), P3(x), . . . are, in turn, particular solutions of the 
differential equations

n 5 0: (1 2 x2)y0 2 2x2x2 yxyx 9 5 0,

n 5 1: (1 2 x2)y0 2 2x2x2 yxyx 9 1 2y 5 0,

n 5 2: (1 2 x2)y0 2 2x2x2 yxyx 9 1 6y 5 0, (34)

n 5 3: (1 2 x2)y0 2 2x2x2 yxyx 9 1 12y 5 0,

o o

The graphs, on the interval [21, 1], of the six Legendre polynomials in (33) are 
given in Figure 6.4.6.

PROPERTIES You are encouraged to verify the following properties using the 
Legendre polynomials in (33).

(i) Pn(2x) 5 (21)nPn(x)

(ii) Pn(1) 5 1 (iii) Pn(21) 5 (21)n

(iv) Pn(0) 5 0,  n odd (v) P9nPnP (0) 5 0,  n even

Property (i) indicates, as is apparent in Figure 6.4.6, that Pn(x) is an even or odd 
function according to whether n is even or odd.

RECURRENCE RELATION Recurrence relations that relate Legendre polynomials 
of different degrees are also important in some aspects of their applications. We state, 
without proof, the three-term recurrence relation

(k 1 1)Pk11(x) 2 (2k 1 1)xPk(x) 1 kPk21(x) 5 0, (35)

which is valid for k 5 1, 2, 3, . . . . In (33) we listed the �rst six Legendre poly-
nomials. If, say, we wish to �nd P6(x), we can use (35) with k 5 5. This rela-
tion expresses P6(x) in terms of the known P4(x) and P5(x). See Problem 47 in 
Exercises 6.4.

Another formula, although not a recurrence relation, can generate the Legendre 
polynomials by differentiation. Rodrigues’ formula for these polynomials is

Pn(x) 5
1

2nn!
  

dn

dxn  (x2 2 1)n,   n 5 0, 1, 2, . . . . (36)

See Problem 50 in Exercises 6.4.

x

y

121
21

20.5

0.5

1

20.5 0.5

P1

P0

P2

FIGURE 6.4.6 Legendre polynomials for 
n 5 0, 1, 2, 3, 4, 5

REMARKS

Although we have assumed that the parameter n in Legendre’s differential 
equation (1 2 x2)y0 2 2xy9 1 n(n 1 1)y 5 0, represented a nonnegative in-
teger, in a more general setting n can represent any real number. Any solution 
of Legendre’s equation is called a Legendre function. If n is not a  nonnot a  nonnot -
negative integer, then both Legendre functions y1(x) and y2(x) given in (32) 
are in�nite series convergent on the open interval (21, 1) and divergent 
(unbounded) at x 5 61. If n is a nonnegative integer, then as we have just 
seen one of the Legendre functions in (32) is a polynomial and the other 
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EXERCISES 6.4

Bessel’s Equation
In Problems 1–6 use (1) to �nd the general solution of the given 
differential equation on (0, `).

1. x2y2y2 0 1 xyxyx 9 1 _x_x_ 2 2 1
9+y 5 0

2. x2y2y2 0 1 xy9 1 (x2 2 1)y 5 0

3. 4x2y2y2 0 1 4xy9 1 (4x2 2 25)y 5 0

4. 16x2y2y2 0 1 16xy9 1 (16x2 2 1)y 5 0

5. xy0 1 y9 1 xy 5 0

6.
d

dxdxd
[xyxyx 9] 1 1x 2

4
x2y 5 0

In Problems 7 and 8 use (12) to �nd the general solution of the given 
differential equation on (0, `).

7. x2y2y2 0 1 xy9 1 (9x2 2 4)y 5 0

8. x2y2y2 0 1 xyxyx 9 1 _36x2 2 1
4+y 5 0

In Problems 9 and 10 use (18) to �nd the general solution of the given 
differential equation on (0, `).

9. x2y2y2 0 1 xyxyx 9 2 _16x2 1 4
9+y 5 0

10. x2y2y2 0 1 xyxyx 9 2 s2x2x2 2 1 64dy 5 0

In Problems 11 and 12 use the indicated change of variable to �nd the 
general solution of the given differential equation on (0, `).

11. x2y2y2 0 1 2xy2xy2 9 1 �2x2x2 2y2y2 5 0; y 5 x21/2�(x)

12. x2y2y2 0 1 _�2x2x2 2 2 �2 1 1
4+y 5 0; y 5 ÏxÏxÏÏ �(x)

In Problems 13–20 use (20) to �nd the general solution of the given 
differential equation on (0, `).

13. xy0 1 2y9 1 4y 5 0

14. xy0 1 3y9 1 xy 5 0

15. xy0 2 y9 1 xy 5 0

16. xy0 2 5y9 1 xy 5 0

17. x2y2y2 0 1 (x2 2 2)y 5 0

18. 4x2y2y2 0 1 (16x2 1 1)y 5 0

19. xy0 1 3y9 1 x3y 5 0

20. 9x2y2y2 0 1 9xy9 1 (x6 2 36)y 5 0

21. Use the series in (7) to verify that I�I�I (x) 5 i2� J�J�J (ix) is a real 
function.

22. Assume that b in equation (20) can be pure imaginary, that is, 
b 5 bibib , � . 0, i2 5 21. Use this assumption to express the 
general solution of the given differential equation in terms of 
the modi�ed Bessel functions InInI  and KnKnK .

(a) y0 2 x2y2y2 5 0

(b) xy0 1 y9 2 7x3y 5 0

In Problems 23–26 �rst use (20) to express the general solution of 
the given differential equation in terms of Bessel functions. Then use 
(26) and (27) to express the general solution in terms of elementary 
functions.

23. y0 1 y 5 0

24. x2y2y2 0 1 4xy9 1 (x2 1 2)y 5 0

25. 16x2y2y2 0 1 32xy32xy32 9 1 (x4 2 12)y 5 0

26. 4x2y2y2 0 2 4xy9 1 (16x2 1 3)y 5 0

27. (a) Proceed as in Example 6 to show that

xJ9�(x) 5 2�J�J� �J�J (x) 1 xJ�xJ�xJ 21(x).

[Hint: Write 2n 1 � 5 2(n 1 �) 2 �.]

(b) Use the result in part (a) to derive (23).

28. Use the formula obtained in Example 6 along with part (a) of 
Problem 27 to derive the recurrence relation

2�J�J� �J�J (x) 5 xJ�xJ�xJ 11(x) 1 xJ�xJ�xJ 21(x).

In Problems 29 and 30 use (22) or (23) to obtain the given result.

29. #x

0
#

0
# rJrJr 0J0J (r)dr 5 xJxJx 1(x) 30. J90(x) 5 J21(x) 5 2J1(x)

31. Proceed as on page 269 to derive the elementary form of 
J21/2(x) given in (27).

32. Use the recurrence relation in Problem 28 along with (26) and 
(27) to express J3/2J3/2J (x), J23/2(x), J5/2J5/2J (x), and J25/2(x) in terms of 
sin x, cos x, and powers of x.

Answers to selected odd-numbered problems begin on page ANS-10.

is an in�nite series convergent for 21 , x , 1. You should be aware of 
the fact that Legendre’s equation possesses solutions that are bounded on the 
closed interval [closed interval [closed 21, 1] only in the case when n 5 0, 1, 2, . . . . More to the 
point, the only Legendre functions that are bounded on the closed interval 
[21, 1] are the Legendre polynomials Pn(x) or constant multiples of these 
polynomials. See Problem 49 in Exercises 6.4 and Problem 24 in Chapter 6 
in Review.
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33. (a) Use the �rst formula in (30) and Problem 32 to �nd the 
spherical Bessel functions j1(x) and j2(x). 

(b) Use a graphing utility to plot the graphs of j1(x) and j2(x) in 
the same coordinate plane.

34. (a)  Use the second formula in (30) and Problem 32 to �nd the 
spherical Bessel functions y1(x) and y2(x).

(b) Use a graphing utility to plot the graphs of y1(x) and y2(x) 
in the same coordinate plane.

35. Use the change of variables s 5
2
� Î k

mÎ e2�t/t/t 2 to show

that the differential equation of the aging spring  
mx0 1 ke2�txtxt 5 0, � . 0, becomes

s2 d2x2x2

dsdsd 2 1 s
dxdxd

dsdsd
1 s2x2x2 5 0.

36. Show that y 5 x1y2w _23 �x3y2+ is a solution of the given form  
of Airy’s differential equation whenever w is a solution of 
the indicated Bessel’s equation. [Hint: After differentiating, 
substituting, and simplifying, then let t 5 2

3 �x3y2 .g

(a) y0 1 �2x2x2 y 5 0, x . 0; t 2w0 1 twtwt 9 1 (t2 2 1
9)w 5 0, t . 0

(b) y0 2 �2xy 5 0, x . 0; t 2w0 1 twtwt 9 2 (t2 1 1
9)w 5 0, t . 0

37. Use the result in parts (a) and (b) of Problem 36 to express the 
general solution on (0, `) of each of the two forms of Airy’s 
equation in terms of Bessel functions.

38. Use Table 6.4.1 to �nd the �rst three positive eigenvalues and 
corresponding eigenfunctions of the boundary-value problem

xyxyx 0 1 y9 1 �xyxyx 5 0,

y(x), y9(x) bounded as x S 01, y(2) 5 0.

[Hint: By identifying � 5 �2, the DE is the parametric Bessel 
equation of order zero.]

39. (a) Use (20) to show that the general solution of the differential 
equation xy0 1 �y 5 0 on the interval (0, `) is

y 5 c1ÏxÏxÏÏ J1_2Ï�Ï�Ï xÏ + 1 c2ÏxÏxÏÏ Y1Y1Y _2Ï�Ï�Ï xÏ +.

(b) Verify by direct substitution that y 5 ÏxÏxÏÏ JxJx 1(2ÏxÏxÏÏ ) is a  
particular solution of the DE in the case � 5 1.

Computer Lab Assignments
40. Use a CAS to graph J3/2J3/2J (x), J23/2(x), J5/2J5/2J (x), and J25/2(x).

41. (a) Use the general solution given in Example 5 to solve the IVP

4x4x4 0 1 e20.1txtxt 5 0, x(0) 5 1, x9(0) 5 21
2.

Also use J90(x) 5 2J1(x) and Y90(x) 5 2Y1Y1Y (x) along with 
Table 6.4.1 or a CAS to evaluate coef�cients.

(b) Use a CAS to graph the solution obtained in part (a) for 
0 # t , `.

42. (a)  Use the general solution obtained in Problem 37 to solve 
the IVP

4x4x4 0 1 txtxt 5 0, x(0.1) 5 1, x9(0.1) 5 21
2.

Use a CAS to evaluate coef�cients.

(b) Use a CAS to graph the solution obtained in part (a) for 
0 # t # 200.

43. Column Bending Under Its Own Weight A uniform 
thin column of length L, positioned vertically with one end 
embedded in the ground, will de�ect, or bend away, from the 
vertical under the in�uence of its own weight when its length 
or height exceeds a certain critical value. It can be shown that 
the angular de�ection �(x) of the column from the vertical at a 
point P(x) is a solution of the boundary-value problem:

EIEIE
d2�

dxdxd 2 1 �g(L 2 x)� 5 0, �(0) 5 0, �9(L) 5 0,

where E is Young’s modulus, E is Young’s modulus, E I is the cross-sectional moment I is the cross-sectional moment I
of inertia, � is the constant linear density, and x is the distance x is the distance x
along the column measured from its base. See Figure 6.4.7. 
The column will bend only for those values of L for which the L for which the L
boundary-value problem has a nontrivial solution.

(a) Restate the boundary-value problem by making the change 
of variables t 5 L 2 x. Then use the results of a problem 
earlier in this exercise set to express the general solution of 
the differential equation in terms of Bessel functions.

(b) Use the general solution found in part (a) to �nd a solu-
tion of the BVP and an equation which de�nes the critical 
length L, that is, the smallest value of L for which the  L for which the  L
column will start to bend.

(c) With the aid of a CAS, �nd the critical length L of a L of a L
solid steel rod of radius r 5 0.05 in., �g 5 0.28 A lb/in., 
E 5 2.6 3 107 lb/in.2, A 5 �r2r2r , and I 5 1

4�r4r4r .

44. Buckling of a Thin Vertical Vertical V Column In Example 4 of 
Section 5.2 we saw that when a constant vertical compressive 
force, or load, P was applied to a thin column of uniform cross 
section and hinged at both ends, the de�ection y(x(x( ) is a solution 
of the BVP:

EIEIE
d 2y

dxdxd 2 1 PyPyP 5 0, y(0) 5 0, y(L) 5 0.

(a) If the bending stiffness factor EI is proportional to EI is proportional to EI x, then 
EI(EI(EI x) 5 kx, where k is a constant of k is a constant of k proportionality. If 
EI(EI(EI L) 5 kL 5 M is the maximum stiffness factor, then M is the maximum stiffness factor, then M
k 5 MyL and so L and so L EI(EI(EI x) 5 MxyL. Use the information in 
Problem 39 to �nd a solution of

M
x

L

d 2y

dxdxd 2 1 PyPyP 5 0, y(0) 5 0, y(L) 5 0

if it is known that ÏxÏxÏÏ Y1Y1Y (2Ï�Ï�Ï xÏ ) is not zero at not zero at not x 5 0.

x 5 0

x

P(x)

ground

�

FIGURE 6.4.7 Beam in Problem 43
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(b) Use Table 6.4.1 to �nd the Euler load P1 for the column.

(c) Use a CAS to graph the �rst buckling mode y1(x) corre-
sponding to the Euler load P1. For simplicity assume that 
c1 5 1 and L 5 1.

45. Pendulum of Varying Varying V Length For the simple pendulum 
described on page 223 of Section 5.3, suppose that the rod 
holding the mass m at one end is replaced by a �exible wire and 
that the wire is fed by a pulley through the horizontal support at 
point O in Figure 6.4.8. In this manner, while it is in motion in 
a vertical plane, the mass m can be raised or lowered. In other 
words, the length lstd of the pendulum varies with time. Under 
the same assumptions leading to equation (6) in Section 5.3, 
it follows from (1) in Chapter 5 in Review that the differential 
equation for the displacement angle �std is now

l
d2d2d �

dt2
1 2

dl

dt

d�

dt
1 g sin � 5 0.

(a) If l increases at a constant rate l increases at a constant rate l v and ls0d 5 l0, then show 
that a linearization of the foregoing differential equation is

(l0 1 vt)
d 2�

dt2 1 2v
d�

dt
1 g � 5 0. (37)

(b) Make the change of variables x 5 (l0 1 vt)yv and show that 
(37) becomes

d 2�

dxdxd 2 1
2
x

d�

dxdxd
1

g

vx
� 5 0.

(c) Use part (b) and (20) to express the general solution of 
equation (37) in terms of Bessel functions.

(d) Use the general solution obtained in part (c) to solve the 
initial-value problem consisting of equation (37) and the 
initial conditions �(0) 5 �0, �9(0) 5 0. [Hints: To sim-
plify calculations, use a further change of variable 

u 5
2
v

ÏgÏgÏ (l0 1 vt)Ï 5 2Î
plify calculations, use a further change of variable 

Î
plify calculations, use a further change of variable 

g

v

plify calculations, use a further change of variable 

Î
plify calculations, use a further change of variable 

Î
plify calculations, use a further change of variable 

x1/2. Also, recall that (22) 

holds for both J1(u) and Y1(u). Finally, the identity

J1(u)Y2Y2Y (u) 2 J2J2J (u)Y1Y1Y (u) 5 2
2

�u

will be helpful.]

(e) Use a CAS to graph the solution �(t) of the IVP in part (d)  
when l0 5 1 ft, �0 5 1

10 radian, and v 5 1
60 ftftf /t/t s. Experiment 

with the graph using differwith the graph using differwith the graph using dif ent time intervals such as  
[0, 10], [0, 30], and so on.

(f) What do the graphs indicate about the displacement angle 
�(t) as the length l of the wire increases with time?l of the wire increases with time?l

Legendre’s Equation
46. (a)  Use the explicit solutions y1(x) and y2(x) of Legendre’s 

equation given in (32) and the appropriate choice of c0 and 
c1 to �nd the Legendre polynomials P6(x) and P7(x).

(b) Write the differential equations for which P6(x) and P7(x) 
are particular solutions.

47. Use the recurrence relation (35) and P0(x) 5 1, P1(x) 5 x, to 
generate the next six Legendre polynomials.

48. Show that the differential equation

sin �
d2y

d�2 1 cos �
dydyd

d�
1 n(n 1 1)(sin �)y 5 0

can be transformed into Legendre’s equation by means of the 
substitution x 5 cos �.

49. Find the �rst three positive values of � for which the problem

(1 2 x2)y0 2 2x2x2 yxyx 9 1 �y 5 0,

y(0) 5 0, y(x), y9(x) bounded on [21, 1]

has nontrivial solutions.

Computer Lab Assignments
50. For purposes of this problem ignore the list of Legendre 

polynomials given on page 271 and the graphs given in 
Figure 6.4.6. Use Rodrigues’ formula (36) to generate the 
Legendre polynomials P1(x), P2(x), . . . , P7(x). Use a CAS to 
carry out the differentiations and simpli�cations.

51. Use a CAS to graph P1(x(x( ), P2(x(x( ), . . . , P7P7P (x(x( ) on the interval [21, 1].

52. Use a root-�nding application to �nd the zeros of  
P1(x), P2(x), . . . , P7(x). If the Legendre polynomials  
are built-in functions of your CAS, �nd zeros of Legendre 
polynomials of higher degree. Form a conjecture about the 
location of the zeros of any Legendre polynomial Pn(x), and 
then investigate to see whether it is true.

Additional Differential Equations
53. The differential equation

y0 2 2x2x2 yxyx 9 1 2�y 5 0

is known as Hermite’s equation of order a after the French 
mathematician Charles Hermite (1822–1901). Show that the 
general solution of the equation is y(x) 5 c0y0y0 1(x) 1 c1y2(x), where 

y1(x) 5 1 1 o
`

k51
(21)k 2k�(� 2 2) Á (� 2 2k 1 2)

(2k)!
x2k

y2(x) 5 x 1 o
`

k51
(21)k 2k(�21)(�23) Á (�22k11)

(2k 1 1)!
x2k 1 1

are power series solutions centered at the ordinary point 0.

�exible
wire

O

pulley

l(t)

m

�

FIGURE 6.4.8 Pendulum of varying length in Problem 45
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54. (a) When � 5 n is a nonnegative integer, Hermite’s differential 
equation always possesses a polynomial solution of degree n. 
Use y1(x), given in Problem 53, to �nd polynomial 
solutions for n 5 0, n 5 2, and n 5 4. Then use y2(x) to 
�nd polynomial solutions for n 5 1, n 5 3, and n 5 5.

(b) A Hermite polynomial HnHnH (x) is de�ned to be the nth 
degree polynomial solution of Hermite’s equation multiplied 
by an appropriate constant so that the coef�cient of xn in 
HnHnH (x) is 2n. Use the polynomial solutions in part (a) to 
show that the �rst six Hermite polynomials are

H0H0H (x) 5 1

H1(x) 5 2x2x2

H2H2H (x) 5 4x4x4 2 2 2

H3H3H (x) 5 8x3 2 12x2x2

H4H4H (x) 5 16x4 2 48x2 1 12

H5H5H (x) 5 32x2x2 5 2 160x0x0 3 1 120x0x0 .

55. The differential equation

 (1 2 x2)y0 2 xyxyx 9 1 �2y2y2 5 0,

where � is a parameter, is known as Chebyshev’s equation after 
the Russian mathematician Pafnuty Chebyshev (1821–1894). 
When � 5 n is a nonnegative integer, Chebyshev’s differential 
equation always possesses a polynomial solution of degree n. 
Find a �fth degree polynomial solution of this differential 
equation.

56. If n is an integer, use the substitution R(x) 5 (�x)21y2Z(Z(Z x) to 
show that the general solution of the differential equation

x2R0 1 2x2x2 RxRx 9 1 [�2x2x2 2 2 n(n 1 1)]R 5 0

on the interval (0, `) is R(x) 5 c1 jn(�x) 1 c2 yn(�x), where 
jn(�x) and yn(�x) are the spherical Bessel functions of the �rst 
and second kind de�ned in (30).

In Problems 1 and 2 answer true or false without referring back to 
the text.

1. The general solution of x2y2y2 0 1 xy9 1 (x2 2 1)y 5 0 is 
y 5 c1J1(x) 1 c2J21(x). 

2. Because x 5 0 is an irregular singular point of  
x3y0 2 xy9 1 y 5 0, the DE possesses no solution  
that is analytic at x 5 0. 

3. Both power series solutions of y0 1 ln(x 1 1)y9 1 y 5 0 
centered at the ordinary point x 5 0 are guaranteed to converge 
for all x in which x in which x one of the following intervals?

(a) (2`, `) (b) (21, `)

(c) [21
2, 12] (d) [21, 1]

4. x 5 0 is an ordinary point of a certain linear differential 
equation. After the assumed solution y 5 o`

n50 cnxnxn
n is 

substituted into the DE, the following algebraic system is 
obtained by equating the coef�cients of x0, x1, x2, and x3

to zero:

2c2 1 2c1 1 c0 5 0

6c3 1 4c2 1 c1 5 0

12c4 1 6c3 1 c2 2 1
3c1 5 0

20c5 1 8c4 1 c3 2 2
3c2 5 0.

Bearing in mind that c0 and c1 are arbitrary, write down the �rst 
�ve terms of two power series solutions of the differential  
equation.

5. Suppose the power series o`
k50 ck(x 2 4)k is known to converge 

at 22 and diverge at 13. Discuss whether the series converges 
at 27, 0, 7, 10, and 11. Possible answers are does, does not, 
might.

Chapter 6 In Review Answers to selected odd-numbered problems begin on page ANS-10.

6. Use the Maclaurin series for sin x and cosx and cosx x along with long x along with long x
division to �nd the �rst three nonzero terms of a power series  

in x for the function x for the function x f (x) 5
si

division to �nd the �rst three nonzero terms of a power series  
i

division to �nd the �rst three nonzero terms of a power series  
n x

cos x
.

In Problems 7 and 8 construct a linear second-order differential 
equation that has the given properties.

7. A regular singular point at x 5 1 and an irregular singular point 
at x 5 0

8. Regular singular points at x 5 1 and at x 5 23

In Problems 9–14 use an appropriate in�nite series method about 
x 5 0 to �nd two solutions of the given differential equation.

9. 2xy2xy2 0 1 y9 1 y 5 0 10. y0 2 xy9 2 y 5 0

11. (x 2 1)y0 1 3y 5 0  12. y0 2 x2y2y2 9 1 xy 5 0

13. xy0 2 (x 1 2)y9 1 2y 5 0 14. (cos x)y0 1 y 5 0

In Problems 15 and 16 solve the given initial-value problem.

15. y0 1 xy9 1 2y 5 0, y(0) 5 3, y9(0) 5 22

16. (x 1 2)y0 1 3y 5 0, y(0) 5 0, y9(0) 5 1

17. Without actually solving the differential equation  
(1 2 2 sin x)y0 1 xy 5 0, �nd a lower bound for the radius  
of convergence of power series solutions about the ordinary 
point x 5 0.

18. Even though x 5 0 is an ordinary point of the differential 
equation, explain why it is not a good idea to try to �nd a 
solution of the IVP

y0 1 xyxyx 9 1 y 5 0, y(1) 5 26, y9(1) 5 3

of the form y 5 o`
n50 cnxnxn

n. Using power series, �nd a better 
way to solve the problem.
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In Problems 19 and 20 investigate whether x 5 0 is an ordinary point, 
singular point, or irregular singular point of the  given differential 
equation. [Hint: Recall the Maclaurin series for cos x and x and x ex.]

19. xy0 1 (1 2 cos x)y9 1 x2y2y2 5 0

20. (ex 2 1 2 x)y0 1 xy 5 0

21. Note that x 5 0 is an ordinary point of the differential equation 
y0 1 x2y2y2 9 1 2xy2xy2 5 5 2 2x2x2 1 10x10x10 3. Use the assumption 
y 5 o`

n50 cnxnxn
n to �nd the general solution y 5 yc 1 ypypy  that 

consists of three power series centered at x 5 0.

22. The �rst-order differential equation dyydx 5 x2 1 y2 cannot be 
solved in terms of elementary functions. However, a solution 
can be expressed in terms of Bessel functions.

(a) Show that the substitution y 5 2
1
u

du

dxdxd
 leads to the  leads to the 

equation u0 1 x2u 5 0.

(b) Use (20) in Section 6.4 to �nd the general solution of 
u0 1 x2u 5 0.

(c) Use (22) and (23) in Section 6.4 in the forms

J�J�J9(x) 5
�

x
J�J�J (x) 2 J�J�J 11(x)

and J�J�J9(x) 5 2
�

x
J�J�J (x) 1 J�J�J 21(x)

as an aid to show that a one-parameter family of solutions 
of dyydx 5 x2 1 y2 is given by

y 5 x
J3J3J /4/4/ _ 1

2xx2+ 2 cJ23/4/4/ _12xx2+

cJ1/4/4/ _ 1
2xx2+ 1 J21/4/4/ _12xx2+

.

23. (a) Use (10) of Section 6.4 and Problem 32 of Exercises 6.4 to 
show that

Y3Y3Y /2(x) 5 2Î 2
�x�x�Î 1cos x

x
1 sin x2

(b) Use the de�nition I�I�I (x) 5 i2�J�J�
�J�J (ix) to show that

I1/2(x) 5Î 2
�x�x�Î sinh x and I21/2(x) 5Î 2

�x�x�Î cosh x.

(c) Use (16) of Section 6.4 and part (b) to show that

K1/2(x) 5Î�

2x2x2Î e2x.

24. (a) From (33) and (34) of Section 6.4 we know that  
when n 5 0, Legendre’s differential equation  
(1 2 x2)y0 2 2xy2xy2 9 5 0 has the polynomial solution 
y 5 P0(x) 5 1. Use (5) of Section 4.2 to show that a second 
Legendre function satisfying the DE for 21 , x , 1 is

y 5
1

2
ln11 1 x

1 2 x2.
(b) We also know from (33) and (34) of Section 6.4 

that when n 5 1, Legendre’s differential equation 
(1 2 x2)y0 2 2xy9 1 2y 5 0 possesses the polynomial 
solution y 5 P1(x) 5 x. Use (5) of Section 4.2 to show 
that a second Legendre function satisfying the DE 
for 21 , x , 1 is

y 5
x

2
ln11 1 x

1 2 x2 2 1.

(c) Use a graphing utility to graph the logarithmic Legendre 
functions given in parts (a) and (b).

25. (a) Use binomial series to formally show that

(1 2 2x2x2 t 1 t2t2t )21/2 5 o
`

n50
Pn(x) tn.

(b) Use the result obtained in part (a) to show that Pn(1) 5 1 and 
Pn(21) 5 (21)n. See Properties (ii) and (iii) on page 272.

26. Express the general solution of the given differential equation 
on the interval (0, `) in terms of Bessel functions.

(a) 4x2y2y2 0 1 4xy9 1 (64x2 2 25)y 5 0

(b) x2y2y2 0 1 xy9 2 (18x2 1 9)y 5 0

27. Cooling Fin A cooling �n is an outward projection from 
a mechanical or electronic device from which heat can be 
radiated away from the device into the surrounding medium 
(such as air). See Figure 6.R.1. An annular, or ring-shaped, 
cooling �n is normally used on cylindrical surfaces such as 
a circular heating pipe. See Figure 6.R.2. In the latter case, 
let r denote the radial distance measured from the center line r denote the radial distance measured from the center line r
of the pipe and �(r) the temperature within the �n de�ned 
for r0 # r # r1. It can be shown that �(r) satis�es the 
differential equation 

d

dr 1r dT

dr 2 5 a2r (T 2 TmTmT ),

where a2 is a constant and TmTmT  is the constant air temperature. 
Suppose r0r0r 5 1, r1 5 3, and TmTmT 5 70. Use the substitution 
wsrd 5 TsTsT rd 2 70 to show that the solution of the given 
differential equation subject to the boundary conditions

T(T(T 1) 5 160, T9(3) 5 0

is T(T(T r) 5 70 1 90
K1(3a)I0I0I (ar) 1 I1(3a)K0K0K (ar)

K1(3a)I0I0I (a) 1 I1(3a)K0K0K (a)
,

where and I0I0I sxd and K0K0K sxd are the modi�ed Bessel functions 
of the �rst and second kind. You will also have to use the 
derivatives given in (25) of Section 6.4.

28. Solve the differential equation in Problem 27 if the boundary 
conditions are 

T(T(T 1) 5 160, T(T(T 3) 5 90.

FIGURE 6.R.1 Cooling �ns on a motorcycle 
engine

r1r0r0r

cooling
�n

circular
pipe

FIGURE 6.R.2 Annular 
cooling �n
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7

 7.1 Definition of the Laplace Transform
 7.2 Inverse Transforms and Transforms of Derivatives
 7.3 Operational Properties I
 7.4 Operational Properties II
 7.5 The Dirac Delta Function
 7.6 Systems of Linear Differential Equations

C H A P T E R  7  I N  R E V I E W

I n the linear mathematical models for a physical system such as a spring/mass 

system or a series electrical circuit, the right-hand member, or driving function, 

of the differential equations mxmxm 0 1 �x9 1 kxkxk 5 f (t) or L q0 1 Rq9 1 qyC 5 E(t)

represents either an external force f (t) or an impressed voltage E(t) . In Section 5.1 

we solved problems in which the functions f and f and f E were continuous. However, in E were continuous. However, in E

practice discontinuous driving functions are not uncommon. Although we have 

solved piecewise-linear differential equations using the techniques of Chapters 2 

and 4, the Laplace transform discussed in this chapter is an especially valuable tool 

that simpli�es the solution of such equations.

The Laplace Transform

Raimundas/Shutterstock.com
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. DEFINITION OF THE LAPLACE TRANSFORM 279

INTRODUCTION In elementary calculus you learned that differentiation and 
integration  are transforms; this means, roughly speaking, that these operations 
transform a function into another function. For example, the function f (x) 5 x2 is 
transformed, in turn, into a linear function and a family of cubic polynomial functions 
by the operations of differentiation and integration:

d

dx
x2 5 2x  and  #x#x# 2 dxdxd 5

1

3
x3 1 c.

Moreover, these two transforms possess the linearity property that the transform 
of a linear combination of functions is a linear combination of the transforms. For 
� and � constants

d

dx
 [ [� f (x) 1 � g(x)] 5 � f 9(x) 1 � g9(x)

and #[� f (x) 1 � g(x)] dx 5 �#f#f# (x) dx 1 �#g(x) dx

provided that each derivative and integral exists. In this section we will examine 
a special type of integral transform called the Laplace transform. In addition to 
possessing the linearity property the Laplace transform has many other interesting 
properties that make it very useful in solving linear initial-value problems.

INTEGRAL TRANSFORM If fIf fIf (x, y) is a function of two variables, then a de�nite in-
tegral of f with respect to one of the variables leads to a function of the other variable. f with respect to one of the variables leads to a function of the other variable. f
For example, by holding y constant, we see that e2

1 2xy2 dx 5 3y2. Similarly, a de�-
nite integral such as eb

a K(K(K s, t) f (t) dt transforms a function t transforms a function t f of the f of the f variable t into a t into a t
function F of the variable F of the variable F s. We are particularly interested in an integral transform,
where the interval of integration is the unbounded interval [0, `). If f (t) is de�ned for 
t $ 0, then the improper integral e`

0 K(K(K s, t) f (t) dt is t is t de�ned as a limit:

#`

0
#

0
# K(K(K s, t) f (t) dt 5 lim

b S` #
b

0
#

0
# K(K(K s, t) f (t) dt. (1)

If the limit in (1) exists, then we say that the integral exists or is convergent; if the 
limit does not exist, the integral does not exist and is divergent. The limit in (1) will, 
in general, exist for only certain values of the variable s.

A DEFINITION The function K(s, t) in (1) is called the kernel of the transform. 
The choice K(s, t) 5 e2st as the kernel gives us an especially important integral st as the kernel gives us an especially important integral st

transform.

We will assume throughout that s
is a real variable.

7.1 Definition of the Laplace Transform

DEFINITION 7.1.1 Laplace Transform

Let f be a function de�ned for f be a function de�ned for f t $ 0. Then the integral

+{ f (t)} 5 #`

0
e2st f (t) dt (2)

is said to be the Laplace transform of f, provided that the integral converges.f, provided that the integral converges.f
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280 CHAPTER  THE LAPLACE TRANSFORM

The Laplace transform is named in honor of the French mathematician and 
astronomer Pierre-Simon Marquis de Laplace (1749–1827).

When the de�ning integral (2) converges, the result is a function of s. In general 
discussion we shall use a lowercase letter to denote the function being transformed 
and the corresponding capital letter to denote its Laplace transform—for example,

+{ f (t)} 5 F(s),  +{g(t)} 5 G(s),  +{y(t)} 5 Y(s).

As the next four examples show, the domain of the function F(s) depends on the 
function f (t).

EXAMPLE 1  Applying Definition 7.1.1

Evaluate  +{1}.

SOLUTION From (2),

+{1} 5 #`

0
#

0
# e2st(1) dt 5 lim

b S `
#b

0
#

0
# e2st dt

5 lim
b S `

2e2st

s u
0

b

5 lim
b S `

2e2sb 1 1
s

5
1
s

provided that s . 0. In other words, when s . 0, the exponent 2sb is negative, and 
e2sb S 0 as b S `. The integral diverges for s , 0. ■

The use of the limit sign becomes somewhat tedious, so we shall adopt the 
notation u`0 as a shorthand for writing limb:` ( ) ub0. For example,

+{1} 5 #`

0
#

0
# e2st (1) dt 5

2e2st

s u
`

0
5

1
s
, s . 0.

At the upper limit, it is understood that we mean e2st S 0 as t S ` for s . 0.

EXAMPLE 2  Applying Definition 7.1.1

Evaluate  +{t}.

SOLUTION From De�nition 7.1.1 we have +{t} 5 e`
0 e2st t dt. Integrating by parts 

and using lim
tS`

te2st 5 0, s . 0, along with the result from Example 1, we obtain

+{t} 5
2te2st

s u
`

0
1

1
s#

`

0
#

0
# e2st dt 5

1
s

+{1} 5
1
s 11

s2 5
1

s2. ■

 EXAMPLE 3  Applying Definition 7.1.1

Evaluate (a) +{e23t} (b) +{e5t}

SOLUTION In each case we use De�nition 7.1.1.

(a) +{e23t} 5 #`

0
#

0
# e23t e2st dt 5 #`

0
#

0
# e2(s 1 3)t dt

5
2e2(s 1 3)t

s 1 3 u
0

`

5
1

s 1 3
.
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The last result is valid for s . 23 because in order to have limt : ` e2(s13)t 5 0 we 
must require that s 1 3 . 0 or s . 23.

(b) +{e5t} 5 #`

0
#

0
# e5t e2st dt 5 #`

0
#

0
# e2(s25)t dt

5
2e2(s25)t

s 2 5 u
0

`

5
1

s 2 5
.

In contrast to part (a), this result is valid for s . 5 because lim t : ` e2(s25)t 5 0 
demands s 2 5 . 0 or s . 5. ■

EXAMPLE 4  Applying Definition 7.1.1

Evaluate  +{sin 2t}.

SOLUTION From De�nition 7.1.1 and two applications of integration by parts we obtain

lim e2st cos 2st cos 2st t 5 0, s . 0
t     `

Laplace transform of sin 2t

2e2st sin 2st sin 2st t
––––––––––––

s
2
–s

2
–s

+{sin 2t} 5 E e2st sin 2st sin 2st t dt 5

+{sin 2t}.

u   1 E e2st cos 2st cos 2st t dt
`E`E
0
E

0
E `u   `u   u   

0
u   `E`E

0
E

0
E

2e2st cos 2st cos 2st t
––––––––––––

s
2
–su   22

–s5

2
––
s25

4
––
s22

[ E   e2st sin 2st sin 2st t dt]`u   `u   u   
0

u   `E`E
0
E

0
E

5 E   e2st cos 2st cos 2st t dt,        s . 0
`E`E
0
E

0
E

t  

At this point we have an equation with +{sin 2t} on both sides of the equality. 
Solving for that quantity yields the result

+{sin 2t} 5
2

s2 1 4
, s . 0. ■

+ IS A LINEAR TRANSFORM For a linear combination of functions we can write

#`

0
#

0
# e2st[� f (t) 1 �g(t)] dt 5 � #`

0
#

0
# e2stftft (t) dt 1 � #`

0
#

0
# e2stgtgt (t) dt

whenever both integrals converge for s . c. Hence it follows that

+{� f (t) 1 � g(t)} 5 �  +{ f (t)} 1 �  +{g(t)} 5 � F(s) 1 � G(s). (3)

Because of the property given in (3), + is said to be a linear transform.

 EXAMPLE 5  Linearity of the Laplace Transform

In this example we use the results of the preceding examples to illustrate the linear-
ity of the Laplace transform.

(a) From Examples 1 and 2 we have for s . 0,

+ {1+ {1+ 1 5t} 5 + {1+ {1+ } 1 5+ {+ {+ t} 5
1
s

1
5

s2.

(b) From Examples 3 and 4 we have for s . 5,

+ h4e5t 2 10 sin 2t j 5 4+4+4 he5tj 2 10 + {sin 2t} 5
4

s 2 5
2

20

s2 1 4
.
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(c) From Examples 1, 2, and 3 we have for s . 0,

+ {2+ {2+ 0e23232 t 1 7t 2 9} 5 20+0+0  {+ {+ e23232 t} 1 7+ {+ {+ t} 2 9+9+9  {1+ {1+ }

5
20

s 1 3
1

7

s2 2
9
s
. ■

We state the generalization of some of the preceding examples by means of the 
next theorem. From this point on we shall also refrain from stating any restrictions on s; 
it is understood that s is suf�ciently restricted to guarantee the convergence of the 
appropriate Laplace transform.

THEOREM 7.1.1 Transforms of Some Basic Functions

(a) +{1} 5
1
s

(b) +{tn} 5
n!

sn11, n 5 1, 2, 3, . . . (c) +{eat} 5
1

s 2 a

(d) +{sin kt} 5
k

s2 1 k2 (e) +{cos kt} 5
s

s2 1 k2

(f ) +{sinh kt} 5
k

s2 2 k2 (g) +{cosh kt} 5
s

s2 2 k2

This result in (b) of Theorem 7.1.1 can be formally justi�ed for n a positive 
integer using integration by parts to �rst show that

+{t n} 5
n
s
  +{t n21}.

Then for n 5 1, 2, and 3, we have, respectively,

+{t} 5
1
s

? + {1+ {1+ } 5
1
s

?
1
s

5
1

s2

+{t 2} 5
2
s

? +{t} 5
2
s

?
1

s2 5
2 ? 1

s3

+{t3} 5
3
s

? +{t 2} 5
3
s

?
2 ? 1

s3 5
3 ? 2 ? 1

s4

If we carry on in this manner, you should be convinced that

+{t n} 5
n . . . 3 ? 2 ? 1

sn11 5
n!

sn11.

SUFFICIENT CONDITIONS FOR EXISTENCE OF +  f  t The integral that de�nes 
the Laplace transform does not have to converge. For example, neither +{1yt} nor 
+{et2

} exists. Suf�cient conditions guaranteeing the existence of +{ f (t)} are that f
be piecewise continuous on [0, `) and that f be of exponential order for t . T. Recall 
that a function f is f is f piecewise continuous on [0, `) if, in any interval 0 # a # t # b, 
there are at most a �nite number of points tk, k 5 1, 2, . . . , n (tk21 , tk) at which f
has �nite discontinuities and is continuous on each open interval (tk21, tk). See 
Figure 7.1.1. The concept of exponential order is de�ned in the following manner.

t

f(f(f t)

bt1 t3t2a

FIGURE 7.1.1 Piecewise continuous 
function

DEFINITION 7.1.2 Exponential Order

A function f is said to be of f is said to be of f exponential order if there exist constants c,
M . 0, and T . 0 such that u f (t) u # Mect for all ct for all ct t . T.
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If f is an f is an f increasing function, then the condition u f (t) u # Mect, t . T, simply T, simply T
states that the graph of f on the interval (f on the interval (f T, T, T `) does not grow faster than the graph 
of the exponential function Mect, where c is a positive constant. See Figure 7.1.2. 
The functions f (t) 5 t, f (t) 5 e2t, and f (t) 5 2 cos t are all of exponential order t are all of exponential order t
because for c 5 1, M 5 1, T 5 0 we have, respectively, for t . 0

ut u # et, ue2t u # et, and u2 cos t u # 2et.

A comparison of the graphs on the interval [0, `) is given in Figure 7.1.3.

t

e2t

2 cos t

et

(a) (b) (c)

t

et

t

2et

f (t)t)t f (t)t)t
f (t)t)t

t

FIGURE 7.1.3 Three functions of exponential order

A positive integral power of t is always of exponential order, since, for t is always of exponential order, since, for t c . 0,

utnu # Mect or u tn

ect u # M for t . T

is equivalent to showing that limt S ` tntnt yect is �nite for t is �nite for t n 5 1, 2, 3, . . . . The result 
follows from n applications of L’Hôpital’s rule. A function such as f (t) 5 et2t2t  is not of 
exponential order since, as shown in Figure 7.1.4, et2t2t  grows faster than any positive 
linear power of e for t . c .  0. This can also be seen from

ue
t2t2t

ect u 5 et2t2t 2ct 5 et(t2c) S ` as t S `

for any value of c. By the same reasoning e2stet2t2t S ` as t S ` for any s and so the 
improper integral e`

0 e2stet2t2t dt diverges. That is, t diverges. That is, t + het2t2t j does not exist.

f(t)

tT

Mect (ct (ct c . 0)f(f(f t)

FIGURE 7.1.2 f is of exponential f is of exponential f
order

et2

t

f(f(f t)

c

ect

FIGURE 7.1.4 et2
 is not of 

exponential order

THEOREM 7.1.2 Sufficient Conditions for Existence

If f is piecewise continuous on [0, f is piecewise continuous on [0, f `) and of exponential order, then +{ f (t)}
exists for s . c.

PROOF By the additive interval property of de�nite integrals we can write

+{ f (t)} 5 #T

0
#

0
# e2st f (t) dt 1 #`

T
#

T
# e2st f (t) dt 5 I1 1 I2I2I .

The integral I1 exists because it can be written as a sum of integrals over intervals 
on which e2st f (t) is continuous. Now since f is of exponential order, there exist f is of exponential order, there exist f
constants c, M . 0, T . 0 so that u f (t) u # Mect for ct for ct t . T. We can then write

uI2I2I u # #`

T
#

T
# ue2stftft (t)u dt # M #`

T
#

T
# e2stect dt 5 M #`

T
#

T
# e2(s2c)t dt 5 M

e2(s2c)T

s 2 c

for s . c. Since e`
T MeMeM 2(s2c)t dt converges, the integral e`

T ue2st f (t)u dt converges 
by the comparison test for improper integrals. This, in turn, implies that I2I2I  exists 
for s . c. The existence of I1 and I2 implies that +{ f (t)} 5 e`

0 e2st f (t) dt exists 
for s . c. ■

See (i) in the Remarks.
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EXAMPLE 6  Transform of a Piecewise Continuous Function

Evaluate +{ f (t)} where f (t) 5 50, 0 # t , 3

2,    t $ 3.

SOLUTION The function f, shown in Figure 7.1.5, is piecewise continuous and of f, shown in Figure 7.1.5, is piecewise continuous and of f
exponential order for t . 0. Since f is de�ned in two pieces, f is de�ned in two pieces, f +{ f (t)} is expressed as 
the sum of two integrals:

+{ f (t)} 5 #`

0
#

0
# e2st f (t) dt 5 #3

0
#

0
# e2st (0) dt 1 #`

3
#

3
# e2st (2) dt

5 0 1
2e2st

2s u
`

3

5
2e23s

s
, s . 0. ■

We conclude this section with an additional bit of theory related to the types of 
functions of s that we will, generally, be working with. The next theorem indicates that 
not every arbitrary function of s is a Laplace transform of a piecewise continuous func-
tion of exponential order.

t

y

3

2

FIGURE 7.1.5 Piecewise continuous 
function in Example 6

THEOREM 7.1.3 Behavior of F(s) as s : `

If f is piecewise continuous on [0, f is piecewise continuous on [0, f `) and of exponential order and 
F(s) 5 +{ f (t)}, then limt)}, then limt

s:`
F(s) 5 0.

PROOF Since f is of exponential order, there exist constants f is of exponential order, there exist constants f �, M1 . 0, and T . 0 so 
that u f (t)t)t u # M1e�t for t for t t . T. Also, since f is piecewise continuous for 0 f is piecewise continuous for 0 f # t # T, it T, it T
is necessarily bounded on the interval; that is, u f (t)t)t u # M2M2M 5 M2M2M e0t. If M denotes the 
maximum of the set {M1, M2M2M } and c denotes the maximum of {0, �}, then

uF(s) u # #`

0
#

0
# e2stu f (t) u dt # M #`

0
#

0
# e2stect dt 5 M #`

0
#

0
# e2(s2c)t dt 5

M
s 2 c

for s . c. As s S `, we have uF(s)u S 0, and so F(s) 5 +{ f (t)} : 0. ■

(i) Throughout this chapter we shall be concerned primarily with functions 
that are both piecewise continuous and of exponential order. We note, however, 
that these two conditions are suf�cient but not necessary for the existence of 
a Laplace transform. The function f (t) 5 t21/2 is not piecewise continuous on 
the interval [0, ̀ ), but its Laplace transform exists. The function f (t) 5 2tet2t2t  cos et2t2t

is not of exponential order, but it can be shown that its Laplace transform 
exists. See Problems 43 and 53 in Exercises 7.1.

(ii) As a consequence of Theorem 7.1.3 we can say that functions of s such as 
F1(s) 5 1 and F2F2F (s) 5 sy(s 1 1) are not the Laplace transforms of piecewise 
continuous functions of exponential order, since F1(s) S/S/S 0 and F2F2F (s) S/S/S 0 as 
s S `. But you should not conclude from this that F1(s) and F2F2F (s) are not
Laplace transforms. There are other kinds of functions.

REMARKS
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EXERCISES 7.1
In Problems 1–18 use De�nition 7.1.1 to �nd +{ f (t)}.

1. f (t) 5 521,

1,

0 # t , 1

t $ 1

2. f (t) 5 54,

0,

0 # t , 2

t $ 2

3. f (t) 5 5 t,

1,

0 # t , 1

t $ 1

4. f (t) 5 52t 1 1,

0,

0 # t , 1

t $ 1

5. f (t) 5 5sin t,

0,

0 # t , �

t $ �

6. f (t) 5 50,

cos t,

0 # t , �y2

t $ �y2

7.

t

f (t)
(2, 2)

1

1

FIGURE 7.1.6 Graph 
for Problem 7

9.

t

f(t)

1

1

FIGURE 7.1.8 Graph for 
Problem 9

8.

t

f (t)
(2, 2)

1

1

FIGURE 7.1.7 Graph for 
Problem 8

10. f (t)

a

c

b t

FIGURE 7.1.9 Graph for 
Problem 10

11. f (t) 5 et17 12. f (t) 5 e22t25

13. f (t) 5 te4t 14. f (t) 5 t2e22t

15. f (t) 5 e2t sin t sin t t 16. f (t) 5 et cos t cos t t

17. f (t) 5 t cos t cos t t 18. f (t) 5 t sin t sin t t

In Problems 19–36 use Theorem 7.1.1 to �nd +{ f (t)}.

19. f (t) 5 2t4 20. f (t) 5 t5

21. f (t) 5 4t 2 10 22. f (t) 5 7t 1 3

23. f (t) 5 t2 1 6t 2 3 24. f (t) 5 24t2 1 16t 1 9

25. f (t) 5 (t 1 1)3 26. f (t) 5 (2t 2 1)3

27. f (t) 5 1 1 e4t 28. f (t) 5 t2 2 e29t 1 5

29. f (t) 5 (1 1 e2t)2 30. f (t) 5 (et 2 e2t)2

31. f (t) 5 4t2 2 5 sin 3t 32. f (t) 5 cos 5t 1 sin 2t

33. f (t) 5 sinh kt 34. f (t) 5 cosh kt

35. f (t) 5 et sinh t sinh t t 36. f (t) 5 e2t cosh t cosh t t

In Problems 37–40 �nd +{ f (t)} by �rst using a trigonometric identity.

37. f (t) 5 sin 2t cos 2t cos 2t t 38. f (t) 5 cos2t

39. f (t) 5 sin(4t 1 5) 40. f (t) 5 10 cos1t 2
�

6 2
41. We have encountered the gamma function G(�) in our study 

of Bessel functions in Section 6.4 (page 263). One de�nition of 
this function is given by the improper integral

G(�) 5 #`

0
#

0
# t �21e2t dt, � . 0.

Use this de�nition to show that G(� 1 1) 5 �G(�) . When � 5 n
is a positive integer the last property can be used to show that 
G(n 1 1) 5 n!. See Appendix A.

42. Use Problem 41 and the change of variable u 5 st to obtain the 
generalization

+{t�t�t } 5
G(� 1 1)

s�11 , � . 21,

of the result in Theorem 7.1.1(b).

In Problems 43–46 use Problems 41 and 42 and the fact that G_12+ 5Ï�Ï
to �nd the Laplace transform of the given function.

43. f (t) 5 t21/2 44. f (t) 5 t1/2

45. f (t) 5 t3/2 46. f (t) 5 2t1/2 1 8t5/2

Discussion Problems
47. Suppose that +{ f1f1f (t)} 5 F1(s) for s . c1 and that 

+{ f2f2f (t)} 5 F2F2F (s) for s . c2. When does 

+{f{f{ 1f1f (t) 1 f2f2f (t)} 5 F1(s) 1 F2F2F (s)?

48. Figure 7.1.4 suggests, but does not prove, that the function 
f (t) 5 et 2

 is not of exponential order. How does the 
observation that t2 . ln M 1 ct, for M . 0 and t suf�ciently t suf�ciently t
large, show that et 2

. Mect for any c?

49. Use part (c) of Theorem 7.1.1 to show that 

+{e(a1ib)t} 5
s 2 a 1 ib

(s 2 a)2 1 b2, 

where a and b are real and i2 5 21. Show how Euler’s formula 
(page 136) can then be used to deduce the results

+{eat cos bt} 5
s 2 a

(s 2 a)2 1 b2

+{eat sin bt} 5
b

(s 2 a)2 1 b2.

50. Under what conditions is a linear function  
f (x) 5 mx 1 b, m Þ 0, a linear transform?

51. Explain why the function

f (t) 5 5
t, 0 # t , 2

4, 2 , t , 5

1y(t 2 5), t . 5

is not piecewise continuous on [0, `).

52. Show that the function f (t) 5 1yt2 does not possess a Laplace 
transform. [Hint: Write +{1yt2} as two improper integrals:

+{1yt 2} 5 #1

0
#

0
# e2st

t2
dt 1 #`

1
#

1
# e2st

t2
dt 5 I1 1 I2I2I .

Show that I1 diverges.]

Answers to selected odd-numbered problems begin on page ANS-11.
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53. The function f (t) 5 2tet2t2t cos t2 is not of exponential order. 
Nevertheless, show that the Laplace transform +{2tet2

coset2
}

exists. [Hint: Start with integration by parts.]

54. If +{ f (t)} 5 F(s) and a . 0 is a constant, show that

+{ f (at)} 5
1
a

F1s

a2. 

This result is known as the change of scale theorem.

In Problems 55–58 use the given Laplace transform and the result in 
Problem 54 to �nd the indicated Laplace transform. Assume that a
and k are positive constants.k are positive constants.k

55. +{et} 5
1

s 2 1
; +{eat} 56. +{sin t} 5

1

s2 1 1
; +{sin kt}

57. +{1 2 cos t} 5
1

s(s2 1 1)
; +{1 2 cos kt}

58. +{sin t sinh t} 5
2s

s4 1 4
; +{sin kt sinh kt}

7.2 Inverse Transforms and Transforms 
of Derivatives

INTRODUCTION In this section we take a few small steps into an investigation 
of how the Laplace transform can be used to solve certain types of equations for an 
unknown function. We begin the discussion with the concept of the inverse Laplace 
transform or, more precisely, the inverse of a Laplace transform F(s). After some 
important preliminary background material on the Laplace transform of derivatives 
f 9(t), f 99(t), . . . , we then illustrate how both the Laplace transform and the inverse 
Laplace transform come into play in solving some simple ordinary differential 
equations.

7.2.1  INVERSE TRANSFORMS
THE INVERSE PROBLEM If F(s) represents the Laplace transform of a function
f (t), that is, +{ f(t)} 5 F(s), we then say f (t) is the inverse Laplace transform of
F(s) and write f(t) 5 + 21{F(s)}. For example, from Examples 1, 2, and 3 of Sec-
tion 7.1 we have, respectively,

T r ans f or m I nve r s e  T r ans f or m

+{1} 5
1
s 1 5 + 2151

s6
+{t} 5

1

s2 t 5 + 2151

s26
+{e23t} 5

1

s 1 3 e23t 5 + 215 1

s 1 36
We shall see shortly that in the application of the Laplace transform to equa-
tions we are not able to determine an unknown function f (t) directly; rather, we 
are able to solve for the Laplace transform F(s) of f (t); but from that knowledge 
we ascertain f by computing f by computing f f (t) 5 + 21{F(s)}. The idea is simply this: Suppose 

F(s) 5
22s 1 6

s2 1 4
 is a Laplace transform; �nd a function  is a Laplace transform; �nd a function f (t) such that t) such that t +{f{f{ (t)} 5 F(s).

We shall show how to solve this problem in Example 2.
For future reference the analogue of Theorem 7.1.1 for the inverse transform is 

presented as our next theorem.
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In evaluating inverse transforms, it often happens that a function of s under con-
sideration does not match exactly the form of a Laplace transform F(s) given in a 
table. It may be necessary to “�x up” the function of s by multiplying and dividing 
by an appropriate constant.

EXAMPLE 1 Applying Theorem 7.2.1

Evaluate (a) + 2151

s56 (b) + 215 1

s2 1 76.

SOLUTION (a) To match the form given in part (b) of Theorem 7.2.1, we identify 
n 1 1 5 5 or n 5 4 and then multiply and divide by 4!:

+ 215 1

s56 5
1

4!
+ 2154!

s56 5
1

24
t4.

(b) To match the form given in part (d) of Theorem 7.2.1, we identify k2 5 7, so 
k 5 Ï7Ï7ÏÏ . We �x up the expression by multiplying and dividing by Ï7Ï7ÏÏ :

+215 1

s2 1 76 5
1

Ï7
+ 215 Ï7

s2 1 76 5
1

Ï7Ï7ÏÏ
sinÏ7Ï7ÏÏ t. ■

+21 IS A LINEAR TRANSFORM The inverse Laplace transform is also a linear 
transform; that is, for constants � and �

+ 21{� F(s) 1 � G (s)} 5 �  + 21{F(s)} 1 �  + 21{G (s)}, (1)

where F and F and F G are the transforms of some functions G are the transforms of some functions G f and f and f g. Like (3) of Section 7.1, 
(1) extends to any �nite linear combination of Laplace transforms.

 EXAMPLE 2 Termwise Division and Linearity

Evaluate + 21522s 1 6

s2 1 4 6.

SOLUTION We �rst rewrite the given function of s as two expressions by means of 
termwise division and then use (1):

THEOREM 7.2.1 Some Inverse Transforms

(a) 1 5 + 2151
s6

(b) tntnt 5 + 215 n!

sn116, n 5 1, 2, 3, . . . (c) eat 5 + 215 1
s 2 a6

(d) sin kt 5 + 215 k

s2 1 k26 (e) cos kt 5 + 215 s

s2 1 k26
(f ) sinh kt 5 + 215 k

s2 2 k26 (g) cosh kt 5 + 215 s

s2 2 k26
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(2)   

PARTIAL FRACTIONS Partial fractions play an important role in �nding inverse 
Laplace transforms. The decomposition of a rational expression into component 
fractions can be done quickly by means of a single command on most com-
puter algebra systems. Indeed, some CASs have packages that implement Laplace 
transform and inverse Laplace transform commands. But for those of you without 
access to such software, we will review in this and subsequent sections some of the 
basic algebra in the important cases in which the denominator of a Laplace trans-
form F(s) contains distinct linear factors, repeated linear factors, and quadratic 
polynomials with no real factors. Although we shall examine each of these cases 
as this chapter develops, it still might be a good idea for you to consult either a 
calculus text or a current precalculus text for a more comprehensive review of this 
theory.

The following example illustrates partial fraction decomposition in the case 
when the denominator of F(s) is factorable into distinct linear factors.

EXAMPLE 3 Partial Fractions: Distinct Linear Factors

Evaluate  + 215 s2 1 6s 1 9

(s 2 1)(s 2 2)(s 1 4)6.

SOLUTION There exist unique real constants A, B, and C so thatC so thatC

s2 1 6s 1 9

(s 2 1)(s 2 2)(s 1 4)
5

A

s 2 1
1

B

s 2 2
1

C

s 1 4

5
A(s 2 2)(s 1 4) 1 B(s 2 1)(s 1 4) 1 C(s 2 1)(s 2 2)

(s 2 1)(s 2 2)(s 1 4)
.

Since the denominators are identical, the numerators are identical:

s2 1 6s 1 9 5 A(s 2 2)(s 1 4) 1 B(s 2 1)(s 1 4) 1 C(s 2 1)(s 2 2). (3)

By comparing coef�cients of powers of s on both sides of the equality, we know that 
(3) is equivalent to a system of three equations in the three unknowns A, B, and C. 
However, there is a shortcut for determining these unknowns. If we set s 5 1, s 5 2, 
and s 5 24 in (3), we obtain, respectively,

16 5 A(21)(5), 25 5 B(1)(6), and 1 5 C(25)(26),

and so A 5 216
5 , B 5 25

6 , and C 5 1
30. Hence the partial fraction decomposition is

s2 1 6s 1 9

(s 2 1)(s 2 2)(s 1 4)
5 2

16y5

s 2 1
1

25y6

s 2 2
1

1y30

s 1 4
, (4)

and thus, from the linearity of +21 and part (c) of Theorem 7.2.1,

+ 215 s2 1 6s 1 9

(s 2 1)(s 2 2)(s 1 4)6 5 2
16

5
+ 215 1

s 2 16 1
25

6
+ 215 1

s 2 26 1
1

30
+ 215 1

s 1 46
5 2

16

5
et 1

25

6
e2t 1

1

30
e24t. (5) ■ 

termwise
division

parts (e) and (d)
of Theorem 7.2.1 with k 5 2

linearity and �xing
up constants

6
–
2

+21{ }2{ }22{ }2s { }s 1{ }1 6{ } 6
–––––––––{ }–––––––––
s{ }s2{ }2 1{ }1 4{ } 4

5 +21{
5 22 cos 2t 1 3 sin 2t.

} 5 22 +21{ +21{} 122s
–––––––
s2 1 4

6
–––––––
s2 1 4 }2

–––––––
s2 1 4

s
–––––––
s2 1 4

1

■

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



. INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 289

7.2.2 TRANSFORMS OF DERIVATIVES
TRANSFORM A DERIVATIVE As was pointed out in the introduction to this chap-
ter, our immediate goal is to use the Laplace transform to solve differential equations. 
To that end we need to evaluate quantities such as +{dydyd ydt} and +{d2yydt2}. For 
example, if f 9 is continuous for t $ 0, then integration by parts gives

+{ f9(t)} 5 #`

0
#

0
# e2st f9(t) dt 5 e2st f(f(f t) u

0

`

1 s #`

0
#

0
# e2stftft (f(f t) dt

5 2f2f2 (0) 1 s+s+s { f (t)}

or  +{ f9(t)} 5 sF(s) 2 f (0). (6)

Here we have assumed that e2st f(f(f t) S 0 as t S `. Similarly, with the aid of (6),

+{ f 0(t)} 5 #`

0
#

0
# e2st f 0(t) dt 5 e2st f 9(t) u

`

0
1 s #`

0
#

0
# e2st f 9(t) dt

5 2f2f2 9(0) 1 s+s+s { f9(t)}

5 s[sF(s) 2 f (0)] 2 f 9(0) ; from (6)

or +{ f 0(t)} 5 s2F(s) 2 sf (0) 2 f9(0). (7)

In like manner it can be shown that

+{ f -(t)} 5 s3F(s) 2 s2f (0) 2 sf9(0) 2 f 0(0). (8)

The recursive nature of the Laplace transform of the derivatives of a function f
should be apparent from the results in (6), (7), and (8). The next theorem gives the 
Laplace transform of the nth derivative of f.

THEOREM 7.2.2 Transform of a Derivative

If f,f,f  f 9, . . . , f (n21) are continuous on [0, `) and are of exponential order and if 
f (n)(t) is piecewise continuous on [0, t) is piecewise continuous on [0, t `), then

+{ f (n)(t)} 5 snF(s) 2 sn21f (0) 2 sn22f 9(0) 2 Á 2 f (n21)(0),

where F(s) 5 +{ f (t)}.

SOLVING LINEAR ODES It is apparent from the general result given in 
Theorem 7.2.2 that +{dnyydtn} depends on Y(Y(Y s) 5 +{y(t)} and the n 2 1 derivatives 
of y(t) evaluated at t 5 0. This property makes the Laplace transform ideally suited 
for solving linear initial-value problems in which the differential equation has 
constant coef�cients. Such a differential equation is simply a linear combination of 
terms y, y9, y0, . . . , y(n):

an
dny

dtn 1 an21
dn21y

dtn21 1 Á 1 a0y 5 g(t),

y(0) 5 y0, y9(0) 5 y1, . . . , y(n21)(0) 5 yn21,

where the ai, i 5 0, 1, . . . , n and y0, y1, . . . , yn21 are constants. By the linearity prop-
erty the Laplace transform of this linear combination is a linear combination of 
Laplace transforms:

an +5dny

dtn 6 1 an21+5d n21y

dtn21 6 1 Á 1 a0 +{y} 5 +{g(t)}. (9)
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From Theorem 7.2.2, (9) becomes

an[snY(s) 2 sn21y(0) 2 Á 2 y(n21)(0)]

1 an21[sn21Y(Y(Y s) 2 sn22y2y2 (0) 2 Á 2 y(n22)(0)] 1 Á 1 a0Y(Y(Y s) 5 G(s),
(10)

where +{y(t)} 5 Y(s) and +{g(t)} 5 G(s). In other words, 

The Laplace transform of a  linear differential equation with constant 
 coef�cients becomes an algebraic equation in Y(s). 

If we solve the general transformed equation (10) for the symbol Y(s), we �rst obtain 
P(s)Y(s) 5 Q(s) 1 G(s) and then write

Y(s) 5
Q(s)

P(s)
1

G(s)

P(s)
, (11)

where P(s) 5 ansn 1 an21sn21 1 Á 1 a0, Q(s) is a polynomial in s of degree 
less than or equal to n 2 1 consisting of the various products of the coef�cients 
ai, i 5 1, . . . , n and the prescribed initial conditions y0, y1, . . . , yn21, and G(s) is 
the Laplace transform of g(t).* Typically, we put the two terms in (11) over the least 
common denominator and then decompose the expression into two or more par-
tial fractions. Finally, the solution y(t) of the original initial-value problem is 
y(t) 5 +21{Y(s)}, where the inverse transform is done term by term.

The procedure is summarized in the diagram in Figure 7.2.1.

Apply Laplace
transform  

Apply inverse Laplace
transform      

Find unknown y(t)
that satis�es DE

and initial conditions

Transformed DE
becomes an algebraic

equation in Y(s)

Solve transformed
equation for Y(s) 

Solution y(t)
of original IVP 21transform      

FIGURE 7.2.1 Steps in solving an IVP by the Laplace transform

The next example illustrates the foregoing method of solving DEs, as well as 
partial fraction decomposition in the case when the denominator of Y(s) contains a 
quadratic polynomial with no real factors.

 EXAMPLE 4 Solving a First-Order IVP

Use the Laplace transform to solve the initial-value problem

dydyd

dt
1 3y 5 13 sin 2t, y(0) 5 6.

SOLUTION We �rst take the transform of each member of the differential equation:

+5dydyd

dt6 1 3+{y} 5 13 +{sin 2t}. (12)

From (6), +{dydyd ydt} 5 sY(s) 2 y(0) 5 sY(s) 2 6, and from part (d) of Theorem 7.1.1, 
+{sin 2t} 5 2y(s2 1 4), so (12) is the same as

sY(s) 2 6 1 3Y(s) 5
26

s2 1 4
or (s 1 3)Y(s) 5 6 1

26

s2 1 4
.

*The polynomial P(s) is the same as the nth-degree auxiliary polynomial in (12) in Section 4.3 with the 
usual symbol m replaced by s.
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Solving the last equation for Y(s), we get

Y(s) 5
6

s 1 3
1

26

(s 1 3)(s2 1 4)
5

6s2 1 50

(s 1 3)(s2 1 4)
. (13)

Since the quadratic polynomial s2 1 4 does not factor using real numbers, its assumed 
numerator in the partial fraction decomposition is a linear polynomial in s:

6s2 1 50

(s 1 3)(s2 1 4)
5

A

s 1 3
1

Bs 1 C

s2 1 4
.

Putting the right-hand side of the equality over a common denominator and equating 
numerators gives 6s2 1 50 5 A(s2 1 4) 1 (Bs 1 C )(s 1 3). Setting s 5 23 then 
immediately yields A 5 8. Since the denominator has no more real zeros, we equate 
the coef�cients of s2 and s: 6 5 A 1 B and 0 5 3B 1 C. Using the value of A in the 
�rst equation gives B 5 22, and then using this last value in the second equation 
gives C 5 6. Thus

Y(s) 5
6s2 1 50

(s 1 3)(s2 1 4)
5

8

s 1 3
1

22s 1 6

s2 1 4
.

We are not quite �nished because the last rational expression still has to be written as 
two fractions. This was done by termwise division in Example 2. From (2) of that 
example,

y(t) 5 8 + 215 1

s 1 36 2 2 + 215 s

s2 1 46 1 3 +215 2

s2 1 46.

It follows from parts (c), (d), and (e) of Theorem 7.2.1 that the solution of the initial-
value problem is y(t) 5 8e23t 2 2 cos 2t 1 3 sin 2t. ■

 EXAMPLE 5 Solving a Second-Order IVP

Solve  y0 2 3y9 1 2y 5 e24t, y(0) 5 1, y9(0) 5 5.

SOLUTION Proceeding as in Example 4, we transform the DE. We take the sum of 
the transforms of each term, use (6) and (7), use the given initial conditions, use (c) of 
Theorem 7.1.1, and then solve for Y(Y(Y s):

+5d2y

dt26 2 3+5dydyd

dt6 1 2 +{y} 5 +{e24t}

s2Y(s) 2 sy(0) 2 y9(0) 2 3[sY(s) 2 y(0)] 1 2Y(s) 5
1

s 1 4

(s2 2 3s 1 2)Y(s) 5 s 1 2 1
1

s 1 4

Y(s) 5
s 1 2

s2 2 3s 1 2
1

1

(s2 2 3s 1 2)(s 1 4)
5

s2 1 6s 1 9

(s 2 1)(s 2 2)(s 1 4)
. (14)

The details of the partial fraction decomposition of Y(s) in (14) have already been 
carried out in Example 3. In view of the results in (4) and (5) we have the solution 
of the initial-value problem

y(t) 5 +21{Y(s)} 5 2
16

5
et 1

25

6
e2t 1

1

30
e24t. ■

Examples 4 and 5 illustrate the basic procedure for using the Laplace transform 
to solve a linear initial-value problem, but these examples may appear to demonstrate 
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a method that is not much better than the approach to such problems outlined in 
Sections 2.3 and 4.3–4.6. Don’t draw any negative conclusions from only two 
examples. Yes, there is a lot of algebra inherent in the use of the Laplace transform, 
but observe that we do not have to use variation of parameters or worry about the but observe that we do not have to use variation of parameters or worry about the but
cases and algebra in the method of undetermined coef�cients. Moreover, since 
the method incorporates the prescribed initial conditions directly into the solution, 
there is no need for the separate operation of applying the initial conditions to the 
general solution y 5 c1y1 1 c2y2 1 Á 1 cn yn 1 ypypy  of the DE to �nd speci�c 
constants in a particular solution of the IVP.

The Laplace transform has many operational properties. In the sections that fol-
low we will examine some of these properties and see how they enable us to solve 
problems of greater complexity.

REMARKS

(i) The inverse Laplace transform of a function F(s) may not be unique; in other 
words, it is possible that +{ f1f1f (t)} 5 +{ f2f2f (t)} and yet f1f1f Þ f2f2f . For our purposes 
this is not anything to be concerned about. If f1f1f  and f2f2f  are piecewise continuous 
on [0, `) and of exponential order, then f1f1f  and f2f2f  are essentially the same. See essentially the same. See essentially
Problem 50 in Exercises 7.2. However, if f1f1f  and f2f2f  are continuous on [0, `) and 
+{ f1f1f (t)} 5 +{ f2f2f (t)}, then f1f1f 5 f2f2f  on the interval.

(ii) This remark is for those of you who will be required to do partial fraction 
decompositions by hand. There is another way of determining the coef�cients in 
a partial fraction decomposition in the special case when +{ f (t)} 5 F(s) is a ra-
tional function of s and the denominator of F is a product of F is a product of F distinct linear factors. distinct linear factors. distinct
Let us illustrate by reexamining Example 3. Suppose we multiply both sides of the 
assumed decomposition

s2 1 6s 1 9

(s 2 1)(s 2 2)(s 1 4)
5

A

s 2 1
1

B

s 2 2
1

C

s 1 4
(15)

by, say, s 2 1, simplify, and then set s 5 1. Since the coef�cients of B and C
on the right-hand side of the equality are zero, we get

s2 1 6s 1 9

(s 2 2)(s 1 4) u
s51

5 A or A 5 2
16

5
.

Written another way,

s2 1 6s 1 9

(s 2 1) (s 2 2)(s 1 4) u
s51

5 2
16

5
5 A,

where we have shaded, or covered up, the factor that canceled when the left-
hand side was multiplied by s 2 1. Now to obtain B and C, we simply evaluate 
the left-hand side of (15) while covering up, in turn, s 2 2 and s 1 4:

s2 1 6s 1 9
––––––––––––––––––––––
(s 2 1)(s 2 2)(s 1 4)

s2 1 6s 1 9
––––––––––––––––––––––
(s 2 1)(s 2 2)(s 1 4)

25

6

1

30

u
s52

5 5–––5 5––– B

u
s524 

5 5–––5 5––– C.and

The desired decomposition (15) is given in (4). This special technique for 
determining coef�cients is naturally known as the cover-up method.
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EXERCISES 7.2

7.2.1 Inverse Transforms

In Problems 1–30 use appropriate algebra and Theorem 7.2.1 to �nd 
the given inverse Laplace transform.

1. + 215 1

s36 2. + 215 1

s46
3. + 215 1

s2 2
48

s5 6 4. + 21512
s

2
1

s32
2

6
5. + 215(s 1 1)3

s4 6 6. + 215(s 1 2)2

s3 6
7. + 215 1

s2 2
1
s

1
1

s 2 26 8. + 2154
s

1
6

s5
2

1

s 1 86

9. + 215 1

4s 1 16 10. + 215 1

5s 2 26
11. + 215 5

s2 1 496 12. + 215 10s

s2 1 166
13. + 215 4s

4s2 1 16 14. + 215 1

4s2 1 16
15. + 2152s 2 6

s2 1 96 16. + 215 s 1 1

s2 1 26
17. + 215 1

s2 1 3s6 18. + 215 s 1 1

s2 2 4s6
19. + 215 s

s2 1 2s 2 36 20. + 215 1

s2 1 s 2 206

Answers to selected odd-numbered problems begin on page ANS-11.

(iii) In this remark we continue our introduction to the terminology of 
dynamical systems. Because of (9) and (10) the Laplace trans-
form is well adapted to linear dynamical systems. The polynomial linear dynamical systems. The polynomial linear
P(s) 5 ansn 1 an21sn21 1 Á 1 a0 in (11) is the total coef�cient of Y(s) in 
(10) and is simply the left-hand side of the DE with the derivatives dkyydt k

replaced by powers sk, k 5 0, 1, . . . , n. It is usual practice to call the recipro-
cal of P(s) —namely, W(s) 5 1yP(s) —the transfer function of the system 
and write (11) as

Y(Y(Y s) 5 W(W(W s)Q(s) 1 W(W(W s)G(s). (16)

In this manner we have separated, in an additive sense, the effects on the response 
that are due to the initial conditions (that is, W(s)Q(s)) from those due to the 
input function g (that is, W(s)G(s)). See (13) and (14). Hence the response y(t) of 
the system is a superposition of two responses:

y(t) 5 + 21{W(s)Q(s)} 1 + 21{W(s)G(s)} 5 y0(t) 1 y1(t).

If the input is g(t)t)t 5 0, then the solution of the problem is y0(t) 5 +21{W(s)Q(s)}. 
This solution is called the zero-input response of the system. On the other hand, zero-input response of the system. On the other hand, zero-input response
the function y1(t) 5 +21{W(s)G(s)} is the output due to the input g(t). Now t). Now t
if the initial state of the system is the zero state (all the initial conditions are zero), 
then Q(s) 5 0, and so the only solution of the initial-value problem is y1(t). The t). The t
latter solution is called the zero-state response of the system. Both zero-state response of the system. Both zero-state response y0(t) and t) and t y1(t) t) t
are particular solutions: y0(t) is a t) is a t solution of the IVP consisting of the associated 
homogeneous equation with the given initial conditions, and y1(t) is a solution of t) is a solution of t
the IVP consisting of the nonhomogeneous equation with zero initial conditions. In 
Example 5 we see from (14) that the transfer function is W(W(W s) 5 1y(s2 2 3s 1 2), 
the zero-input response is

y0(t) 5 +215 s 1 2

(s 2 1)(s 2 2)6 5 23et 1 4e2t,

and the zero-state response is

y1(t) 5 +215 1

(s 2 1)(s 2 2)(s 1 4)6 5 2
1

5
et 1

1

6
e2t 1

1

30
e24t.

Verify that the sum of y0(t) and y1(t) is the solution y(t) in Example 5 and that 
y0(0) 5 1, y90y0y (0) 5 5, whereas y1(0) 5 0, y91(0) 5 0.
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21. + 215 0.9s

(s 2 0.1)(s 1 0.2)6
22. + 215 s 2 3

ss 2 Ï3Ï dss 1 Ï3Ï d6
23. + 215 s

(s 2 2)(s 2 3)(s 2 6)6
24. + 215 s2 1 1

s(s 2 1)(s 1 1)(s 2 2)6
25. + 215 1

s3 1 5s6 26. + 215 s

(s 1 2)(s2 1 4)6
27. + 215 2s 2 4

(s2 1 s)(s2 1 1)6 28. + 215 1

s4 2 96
29. + 215 1

(s2 1 1)(s2 1 4)6 30. + 215 6s 1 3

s4 1 5s2 1 46
In Problems 31–34 �nd the given inverse Laplace transform by 
�nding the Laplace transform of the indicated function f.f.f

31. +215 1

(s 2 a)2 2 b26; f (t) 5 eat sinh btt

32. +215 1

s2(s2 1 a2)6; f (t) 5 at 2 sin at

33. +215 1

(s2 1 a2)(s2 1 b2)6; f (t) 5 a sin bt 2 b sin at

34. +215 s

(s2 1 a2)(s2 1 b2)6; f (t) 5 cos bt 2 cos at

7.2.2 Transforms of Derivatives

In Problems 35–44 use the Laplace transform to solve the given 
initial-value problem.

35.
dy

dt
2 y 5 1, y (0) 5 0

36. 2
dy

dt
1 y 5 0, y (0) 5 23

37. y9 1 6y 5 e4t, y(0) 5 2

38. y9 2 y 5 2 cos 5t, y(0) 5 0

39. y0 1 5y9 1 4y 5 0, y(0) 5 1, y9(0) 5 0

40. y0 2 4y9 5 6e3t 2 3e2t, y(0) 5 1, y9(0) 5 21

41. y0 1 y 5 Ï2Ï sin Ï2Ï t, y(0) 5 10, y9(0) 5 0

42. y0 1 9y 5 et, y(0) 5 0, y9(0) 5 0

43. 2y2y2 - 1 3y0 2 3y9 2 2y2y2 5 e2t, y(0) 5 0, y9(0) 5 0, y0(0) 5 1

44. y- 1 2y2y2 0 2 y9 2 2y2y2 5 sin 3t, y(0) 5 0, y9(0) 5 0, y0(0) 5 1

The inverse forms of the results in Problem 49 in Exercises 7.1 are

+ 215 s 2 a

(s 2 a)2 1 b26 5 eat cos bt

+ 215 b

(s 2 a)2 1 b26 5 eat sin bt.

In Problems 45 and 46 use the Laplace transform and these inverses 
to solve the given initial-value problem.

45. y9 1 y 5 e23t cos 2t cos 2t t, y(0) 5 0

46. y0 2 2y9 1 5y 5 0, y(0) 5 1, y9(0) 5 3

In Problems 47 and 48 use one of the inverse Laplace transforms 
found in Problems 31–34 to solve the given initial-value problem. 

47. y0 1 4y 5 10 cos 5t, y(0) 5 0, y9(0) 5 0

48. y0 1 2y2y2 5 4t, y(0) 5 0, y9(0) 5 0

Discussion Problems
49. (a) With a slight change in notation the transform in (6) is the 

same as

+{ f 9(t)} 5 s+s+s { f (t)} 2 f (0).

With f (t) 5 teat, discuss how this result in conjunction with 
(c) of Theorem 7.1.1 can be used to evaluate +{teat}.

(b) Proceed as in part (a), but this time discuss how to use 
(7) with f (t) 5 t sin t sin t kt in conjunction with (d) and (e) of kt in conjunction with (d) and (e) of kt
Theorem 7.1.1 to evaluate +{t sin kt}.

50. Make up two functions f1f1f  and f2f2f  that have the same Laplace 
transform. Do not think profound thoughts.

51. Reread (iii) in the Remarks on page 293. Find the zero-input 
and the zero-state response for the IVP in Problem 40.

52. Suppose f (t) is a function for which f 9(t) is piecewise 
continuous and of exponential order c. Use results in this 
section and Section 7.1 to justify

f (0) 5 lim
s S `

sF(s),

where F(s) 5 +{ f (t)}. Verify this result with f (t) 5 cos kt.

INTRODUCTION It is not convenient to use De�nition 7.1.1 each time we wish to �nd 
the Laplace transform of a function f (t). For example, the integration by parts involved 
in evaluating, say, +{ett2 sin 3t} is formidable, to say the least. In this section and the 
next we present several labor-saving operational properties of the Laplace transform 

7.3 O Operational Properties I
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that enable us to build up a more extensive list of transforms (see the table in Appendix C) 
without having to resort to the basic de�nition and integration.

7.3.1 TRANSLATION ON THE SAXIS
A TRANSLATION Evaluating transforms such as +{e5tt3} and +{e22t cos 4t}
is straightforward provided that we know (and we do) +{t3} and +{cos 4t}. In 
general, if we know the Laplace transform of a function f, f, f +{ f (t)} 5 F(s), it is 
possible to compute the Laplace transform of an exponential multiple of f, that is, f, that is, f
+{eat f (t)}, with no additional effort other than translating, or shifting, the transform 
F(s) to F(s 2 a). This result is known as the �rst translation theorem or �rst 
shifting theorem.

THEOREM 7.3.1 First Translation Theorem

If +{ f (t)} 5 F(s) and a is any real number, then

+{eat f(t)} 5 F(s 2 a).

PROOF The proof is immediate, since by De�nition 7.1.1

+{eat ft ft (t)} 5 #`

0
#

0
# e2steat f (t) dt 5 #`

0
#

0
# e2(s2a)t ft ft (t) dt 5 F(s 2 a). ■

If we consider s a real variable, then the graph of F(s 2 a) is the graph of F(s) 
shifted on the s-axis by the amount ua u. If a . 0, the graph of F(s) is shifted a units to 
the right, whereas if a , 0, the graph is shifted ua u units to the left. See Figure 7.3.1.

For emphasis it is sometimes useful to use the symbolism

+{eat f (t)} 5 +{ f (t)}usS s2a ,

where s S s 2 a means that in the Laplace transform F(s) of f (t) we replace the 
symbol s wherever it appears by s 2 a.

EXAMPLE 1 Using the First Translation Theorem

Evaluate (a) +{e5tt3} (b) +{e22t cos 4t}.

SOLUTION The results follow from Theorems 7.1.1 and 7.3.1.

(a) +{e5tt3} 5 +{t3}u sS s25 5
3!

s4 u
sSs25

5
6

(s 2 5)4

(b) +{e22t cos 4t} 5 +{cos 4t} u sSs2(22) 5
s

s2 1 16 u
sSs12

5
s 1 2

(s 1 2)2 1 16
■

INVERSE FORM OF THEOREM 7.3.1 To compute the inverse of F(s 2 a), we 
must recognize F(s), �nd f (t) by taking the inverse Laplace transform of F(s), and 
then multiply f (t) by the exponential function eat. This procedure can be summarized 
symbolically in the following manner:

+ 21{F(s 2 a)} 5 + 21{F(s)u sSs2a} 5 eat f (t), (1)

where f (t) 5 +21{F(s)}.

s

F(s)

s 5 a, a . 0

F

F(s 2 a)

FIGURE 7.3.1 Shift on s-axis
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The �rst part of the next example illustrates partial fraction decomposition in the 
case when the denominator of Y(s) contains repeated linear factors.

EXAMPLE 2  Partial Fractions: Repeated Linear Factors

Evaluate (a) +215 2s 1 5

(s 2 3)26 (b) +215 sy2 1 5y3

s2 1 4s 1 66.

SOLUTION (a) A repeated linear factor is a term (s 2 a)n, where a is a real number 
and n is a positive integer $ 2. Recall that if (s 2 a)n appears in the denominator of a 
rational expression, then the assumed decomposition contains n partial fractions 
with  constant numerators and denominators s 2 a, (s 2 a)2, . . . , (s 2 a)n. Hence 
with a 5 3 and n 5 2 we write

2s 1 5

(s 2 3)2 5
A

s 2 3
1

B

(s 2 3)2.

By putting the two terms on the right-hand side over a common denominator, we obtain the 
numerator 2s 1 5 5 A(s 2 3) 1 B, and this identity yields A 5 2 and B 5 11. Therefore

2s 1 5

(s 2 3)2 5
2

s 2 3
1

11

(s 2 3)2 (2)

and +215 2s 1 5

(s 2 3)26 5 2 +215 1

s 2 36 1 11 +215 1

(s 2 3)26. (3)

Now 1y(s 2 3)2 is F(s) 5 1ys2 shifted three units to the right. Since +21{1ys2} 5 t, 
it follows from (1) that

+215 1

(s 2 3)26 5 +2151

s2 u
sSs23

6 5 e3tt.

Finally, (3) is +215 2s 1 5

(s 2 3)26 5 2e3t 1 11e3tt. (4)

(b) To start, observe that the quadratic polynomial s2 1 4s 1 6 has no real zeros and 
so has no real linear factors. In this situation we complete the square:

s y2 1 5y3

s2 1 4s 1 6
5

sy2 1 5y3

(s 1 2)2 1 2
. (5)

Our goal here is to recognize the expression on the right-hand side as some Laplace 
transform F(s) in which s has been replaced throughout by s 1 2. What we are 
trying to do is analogous to working part (b) of Example 1 backwards. The denom-
inator in (5) is already in the correct form—that is, s2 1 2 with s replaced by s 1 2. 
However, we must �x up the numerator by manipulating the constants: 
1
2 s 1 5

3 5 1
2 (s 1 2) 1 5

3 2 2
2 5 1

2 (s 1 2) 1 2
3.

Now by termwise division, the linearity of +21, parts (d) and (e) of Theorem 7.2.1, 
and �nally (1),

s y2 1 5y 3

(s 1 2)2 1 2
5

1
2 (s 1 2) 1 2

3

(s 1 2)2 1 2
5

1

2

s 1 2

(s 1 2)2 1 2
1

2

3

1

(s 1 2)2 1 2

+215 sy2 1 5y3

s2 1 4s 1 66 5
1

2
+215 s 1 2

(s 1 2)2 1 26 1
2

3
+215 1

(s 1 2)2 1 26
5

1

2
+215 s

s21 2 u
sS s12

61
2

3Ï2
+21 5 Ï2

s21 2 u
sS s12

6 (6)

5
1

2
e22t ct ct os Ï2Ï t 1

Ï2Ï
3

e22t st st in Ï2Ï t. (7) ■
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EXAMPLE 3  An Initial-Value Problem

Solve y0 2 6y9 1 9y 5 t2e3t, y(0) 5 2, y9(0) 5 17.

SOLUTION Before transforming the DE, note that its right-hand side is similar to the 
function in part (a) of Example 1. After using linearity, Theorem 7.3.1, and the initial 
conditions, we simplify and then solve for Y(Y(Y s) 5 +{ f (t)}:

+{y0} 2 6+6+6 {y9} 1 9+9+9 {y} 5 +{t2e3t}

s2Y(Y(Y s) 2 sy(0) 2 y9(0) 2 6[sY(s) 2 y(0)] 1 9Y(s) 5
2

(s 2 3)3

(s2 2 6s 1 9)Y(s) 5 2s 1 5 1
2

(s 2 3)3

(s 2 3)2Y(s) 5 2s 1 5 1
2

(s 2 3)3

Y(s) 5
2s 1 5

(s 2 3)2 1
2

(s 2 3)5.

The �rst term on the right-hand side was already decomposed into individual partial 
fractions in (2) in part (a) of Example 2:

Y(s) 5
2

s 2 3
1

11

(s 2 3)2 1
2

(s 2 3)5.

Thus y(t) 5 2 +215 1

s 2 36 1 11+215 1

(s 2 3)26 1
2

4!
+215 4!

(s 2 3)56. (8)

From the inverse form (1) of Theorem 7.3.1, the last two terms in (8) are

+215 1

s2 u
sSs23

6 5 te3t and +2154!

s5 u
sSs23

6 5 t4t4t e3t.

Thus (8) is y(t) 5 2e3t 1 11te3t 1 1
12t4e3t. ■

EXAMPLE 4  An Initial-Value Problem

Solve y0 1 4y9 1 6y 5 1 1 e2t, y(0) 5 0, y9(0) 5 0.

SOLUTION       +{y0} 1 4+4+4 {y9} 1 6+6+6 {y} 5 +{1} 1 +{e2t}

s2Y(s) 2 sy(0) 2 y9(0) 1 4[sY(s) 2 y(0)] 1 6Y(s) 5
1
s

1
1

s 1 1

(s2 1 4s 1 6)Y(s) 5
2s 1 1

s(s 1 1)

Y(s) 5
2s 1 1

s(s 1 1)(s2 1 4s 1 6)

Since the quadratic term in the denominator does not factor into real linear factors, 
the partial fraction decomposition for Y(Y(Y s) is found to be

Y(s) 5
1y6

s
1

1y3

s 1 1
2

sy2 1 5y3

s2 1 4s 1 6
.

Moreover, in preparation for taking the inverse transform we already manipulated the 
last term into the necessary form in part (b) of Example 2. So in view of the results 
in (6) and (7) we have the solution
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. ■

7.3.2 TRANSLATION ON THE tAXIS
UNIT STEP FUNCTION In engineering, one frequently encounters functions that are 
either “off” or “on.” For example, an external force acting on a mechanical system or a 
voltage impressed on a circuit can be turned off after a period of time. It is convenient, 
then, to de�ne a special function that is the number 0 (off) up to a certain time t 5 a and 
then the number 1 (on) after that time. This function is called the unit step function or the
Heaviside function, named after the English polymath Oliver Heaviside (1850–1925).Oliver Heaviside (1850–1925).Oliver Heaviside

y(t) 5
1

6
+21H1

sJ 1
1

3
+21H 1

s 1 1J 2
1

2
+21H s 1 2

(s 1 2)2 1 2J 2
2

3Ï2
+21H Ï2

(s 1 2)2 1 2J
5

1

6
1

1

3
e2t 2

1

2
e22t ct ct os Ï2Ï t 2

Ï2Ï
3

e22t sin Ï2Ï t

DEFINITION 7.3.1 Unit Step Function

The unit step function 8(t 2 a) is de�ned to be

8(t 2 a) 5 50,

1,

 0 # t , a   t $ a.

Notice that we de�ne 8(t 2 a) only on the nonnegative t-axis, since this is all 
that we are concerned with in the study of the Laplace transform. In a broader sense 
8(t 2 a) 5 0 for t , a. The graph of 8(t 2 a) is given in Figure 7.3.2. In the case 
when a 5 0, we take 8(t) 5 1 for t $ 0.

When a function f de�ned for f de�ned for f t $ 0 is multiplied by 8(t 2 a), the unit step function 
“turns off” a portion of the graph of that function. For example, consider the function 
f (t) 5 2t 2 3. To “turn off” the portion of the graph of f for 0f for 0f # t , 1, we simply form 
the product (2t 2 3)8(t 2 1). See Figure 7.3.3. In general, the graph of f (t) 8(t 2 a)
is 0 (off ) for 0 # t , a and is the portion of the graph of f (on) for f (on) for f t $ a.

The unit step function can also be used to write piecewise-de�ned functions in a 
compact form. For example, if we consider 0 # t , 2, 2 # t , 3, and t $ 3 and the 
corresponding values of 8(t 2 2) and 8(t 2 3), it should be apparent that the piecewise-
de�ned function shown in Figure 7.3.4 is the same as f (t) 5 2 2 38(t 2 2) 1 8(t 2 3). 
Also, a general piecewise-de�ned function of the type

f(f(f t) 5 5g(t),

h(t),

0 # t , a

t $ a
(9)

is the same as

f (t) 5 g(t) 2 g(t) 8(t 2 a) 1 h(t) 8(t 2 a). (10)

Similarly, a function of the type

f (t) 5 5
0,

g(t),

0,

0 # t , a

a # t , b

t $ b

(11)

can be written

f (t) 5 g(t)[8(t 2 a) 2 8(t 2 b)]. (12)

 EXAMPLE 5  A Piecewise-Defined Function

Express f(f(f t) 5 520t,

0,

0 # t , 5

t $ 5
in terms of unit step functions. Graph.

t

1

a

FIGURE 7.3.2 Graph of unit step function

1

y

t

FIGURE 7.3.3 Function is 
f(t) 5 (2t 2 3) 8(t 2 1)

21

2

t

f(t)

FIGURE 7.3.4 Function is 
f (t) 5 2 2 38(t 2 2) 1 8(t 2 3)
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SOLUTION   The graph of f is given in Figure 7.3.5. Now from (9) and (10) with f is given in Figure 7.3.5. Now from (9) and (10) with f
a 5 5, g(t) 5 20t, and h(t) 5 0 we get f (t) 5 20t 2 20t 8(t 2 5). ■

Consider a general function y 5 f(f(f t) de�ned for t) de�ned for t t $ 0. The piecewise-de�ned function

f(f(f t 2 a) 8(t 2 a) 5 50,

f(f(f t 2 a),

0 # t , a

t $ a
(13)

plays a signi�cant role in the discussion that follows. As shown in Figure 7.3.6, for 
a . 0 the graph of the function y 5 f(f(f t 2 a) 8(t 2 a) coincides with the graph of 
y 5 f(f(f t 2 a) for t $ a (which is the entire graph of y 5 f(f(f t), t $ 0 shifted a units to 
the right on the t-axis), but is identically zero for 0 # t , a.

We saw in Theorem 7.3.1 that an exponential multiple of f (t) results in a transla-
tion of the transform F(s) on the s-axis. As a consequence of the next theorem we see 
that whenever F(s) is multiplied by an exponential function e2as, a . 0, the inverse 
transform of the product e2as F(s) is the function f shifted along the f shifted along the f t-axis in the man-
ner illustrated in Figure 7.3.6(b). This result, presented next in its direct transform 
version, is called the second translation theorem or second shifting theorem.

100

5

f (t)

t

FIGURE 7.3.5 Function f in Example 5f in Example 5f

(a) f(f(f t), t $ 0

(b) f(f(f t 2 a) (t 2 a)

t

f(t)

t

f(t)

a

) (

FIGURE 7.3.6 Shift on t-axis

THEOREM 7.3.2 Second Translation Theorem

If F(s) 5 +{ f (t)} and a . 0, then

+{ f (t 2 a) 8(t 2 a)} 5 e2asF(s).

PROOF By the additive interval property of integrals,

#
`

0
#

0
# e2st f(f(f t 2 a) 8(t 2 a) dt

can be written as two integrals:

zero for
0 # t , a

one for
t $ a

+{ f (t 2 a) (t a)} E e f (t a) (t 2 a) dt 1 E e2stfstfst (t 2 a) (t 2 a) dt 5 E e2stfstfst (t 2 a) dt.8 8(8 8(t8 8t 28 82 a8 8a)} 8 8)} 58 85 E8 8E e8 8e28 82st8 8stf8 8fstfst8 8stfst (8 8(t8 8t 28 82 a8 8a) 8 8) (8 8( 8(8(
aEaE
0
E

0
E `E`E

a
E

a
E `E`E

a
E

a
E

Now if we let v 5 t 2 a, dv 5 dt in the last integral, thendt in the last integral, thendt

■

We often wish to �nd the Laplace transform of just a unit step function. This can be 
from either De�nition 7.1.1 or Theorem 7.3.2. If we identify f (t)t)t 5 1 in Theorem 7.3.2, 
then f (t 2 a) 5 1, F(s) 5 +{1} 5 1ys, and so

+{8(t 2 a)} 5
e2as

s
. (14)

 EXAMPLE 6  Figure 7.3.4 Revisited

Find the Laplace transform of the function f in Figure 7.3.4.f in Figure 7.3.4.f

SOLUTION We use f expressed in terms of the unit step functionf expressed in terms of the unit step functionf

f (t) 5 2 2 38 (t 2 2) 1 8 (t 2 3)

and the result given in (14):

+{ f(f(f t)} 5 2+{1} 2 3+{8(t 2 2)} 1 +{8(t 2 3)}

5
2
s

2 3
e22s

s
1

e23s

s
. ■

+{ f(f(f t 2 a) 8(t 2 a)} 5 #`

0
#

0
# e2s(v1a) f(f(f v) dvdvd 5 e2as#`

0
#

0
# e2sv f(f(f v) dvdvd 5 e2as+s+s { f(f(f t)}.
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INVERSE FORM OF THEOREM 7.3.2 If f (t) 5 +21{F(s)}, the inverse form of 
Theorem 7.3.2, a . 0, is

+21{e2asF(s)} 5 f (t 2 a) 8(t 2 a). (15)

EXAMPLE 7  Using Formula (15)

Evaluate (a) +215 1

s 2 4
e22s6 (b) +215 s

s2 1 9
e2�s/26.

SOLUTION (a)  With the three identi�cations a 5 2, F(s) 5 1y(s 2 4), and 
+21{F(s)}5 e4t, we have from (15)

+215 1

s 2 4
e22s6 5 e4(t22) 8(t 2 2).

(b) With a 5 �y2, F(s) 5 sy(s2 1 9), and +21{F(s)} 5 cos 3t, (15) yields

+215 s

s2 1 9
e2�s/26 5 cos 31t 2

�

22 81t 2
�

22.

The last expression can be simpli�ed somewhat by using the addition formula for 

the cosine. Verify that the result is the same as 2sin 3t 81t 2
�

22. ■

ALTERNATIVE FORM OF THEOREM 7.3.2 We are frequently confronted with 
the problem of �nding the Laplace transform of a product of a function g and a 
unit  step  function 8(t 2 a) where the function g lacks the precise shifted form
f(f(f t 2 a) in Theorem 7.3.2. To �nd the Laplace transform of g(t)8(t 2 a), it is 
possible to �x  up g(t) into the required form f(f(f t 2 a) by algebraic manipula-
tions. For example,  if we wanted to use Theorem 7.3.2 to �nd the Laplace trans-
form of t28(t 2 2), we would have to force g(t) 5 t2 into the form f(f(f t 2 2). You 
should work through the details and verify that t2 5 (t 2 2)2 1 4(t 2 2) 1 4 is an 
identity. Therefore

+{t28(t 2 2)} 5 +{(t 2 2)2 8(t 2 2) 1 4(t 2 2) 8(t 2 2) 1 48(t 2 2)},

where each term on the right-hand side can now be evaluated by Theorem 7.3.2. But 
since these manipulations are time consuming and often not obvious, it is simpler to 
devise an alternative version of Theorem 7.3.2. Using De�nition 7.1.1, the de�nition 
of 8(t 2 a), and the substitution u 5 t 2 a, we obtain

+{g(t) 8(t 2 a)} 5 #`

a
#

a
# e2st g(t) dt 5 #`

0
#

0
# e2s(u1a) g(u 1 a) du.

That is, +{g(t)8(t 2 a)} 5 e2as +{g(t 1 a)}. (16)

 EXAMPLE 8  Second Translation Theorem—Alternative Form

Evaluate  +{cos t 8(t 2 �)}.

SOLUTION With g(t) 5 cos t and t and t a 5 �, then g(t 1 �) 5 cos(t 1 �) 5 2cos t by t by t
the addition formula for the cosine function. Hence by (16),

+{cos t 8(t 2 �)} 5 2e2�s +{cos t} 5 2
s

s2 1 1
e2�s. ■

In the next two examples we solve, in turn, an initial-value problem and a boundary-
value problem involving a piecewise-linear differential equation.
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EXAMPLE 9  An Initial-Value Problem

Solve  y9 1 y 5 f (t), y(0) 5 5, where f (t) 5 50,

3 cos t,

0 # t , �

t $ �.

SOLUTION The function f can be written as f can be written as f f (t) 5 3 cos t 8(t 2 �), so by linearity, 
the results of Example 7, and the usual partial fractions, we have

+{y9} 1 +{y} 5 3 +{cos t 8(t 2 �)}

sY(s) 2 y(0) 1 Y(s) 5 23
s

s2 1 1
e2�s

(s 1 1)Y(s) 5 5 2
3s

s2 1 1
e2�s

Y(s) 5
5

s 1 1
2

3

2 32
1

s 1 1
e2�s 1

1

s2 1 1
e2�s 1

s

s2 1 1
e2�s4. (17)

Now proceeding as we did in Example 7, it follows from (15) with a 5 � that the � that the �
inverses of the terms inside the brackets are

+215 1

s 1 1
e2�s6 5 e2(t2�) 8(t 2 �), +215 1

s2 1 1
e2�s6 5 sin(t 2 �) 8(t 2 �),

and +215 s

s2 1 1
e2�s6 5 cos(t 2 �) 8(t 2 �).

Thus the inverse of (17) is

5 5e2t 1
3

2
[e2(t2�) 1 sin t 1 cos t] 8(t 2 �) d trigonometric identities

5 55e2t,

5e2t 1
3

2
e2(t2�) 1

3

2
sin t 1

3

2
cos t,

0 # t , �

t $ �.

(18)

We obtained the graph of (18) shown in Figure 7.3.7 by using a graphing utility. ■

BEAMS In Section 5.2 we saw that the static de�ection y(x) of a uniform beam 
of length L carrying load L carrying load L w(x) per unit length is found from the linear fourth-order 
differential equation

EI
d4y

dx4 5 w(x), (19)

where E is Young’s modulus of elasticity and E is Young’s modulus of elasticity and E I is a moment of inertia of a cross secI is a moment of inertia of a cross secI -
tion of the beam. The Laplace transform is particularly useful in solving (19) when 
w(x) is piecewise-de�ned. However, to use the Laplace transform, we must tacitly 
assume that y(x) and w(x) are de�ned on (0, `) rather than on (0, L). Note, too, that 
the next example is a boundary-value problem rather than an initial-value problem.

EXAMPLE 10  A Boundary-Value Problem

A beam of length L is embedded at both ends, as shown in Figure 7.3.8. Find the L is embedded at both ends, as shown in Figure 7.3.8. Find the L
de�ection of the beam when the load is given by

w(x) 5 5w011 2
2

L
x2,

0,

0 , x , Ly2

Ly2 , x , L.

y(t) 5 5e2t 1
3

2
e2(t2�) 8(t 2 �) 2

3

2
sin(t 2 �) 8(t 2 �) 2

3

2
cos(t 2 �) 8(t 2 �)

wall

x

y

L

w(x)

FIGURE 7.3.8 Embedded beam with 
variable load in Example 10

22

1
2
3
4
5

21

t

y

2� 3��

FIGURE 7.3.7 Graph of function (18) in 
Example 9
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SOLUTION Recall that because the beam is embedded at both ends, the boundary 
conditions are y(0) 5 0, y9(0) 5 0, y(L) 5 0, y9(L) 5 0. Now by (10) we can express 
w(x) in terms of the unit step function:

w(x) 5 w011 2
2

L
x2 2 w011 2

2

L
x2 81x 2

L

22
5

2w0

L 3L

2
2 x 1 1x 2

L

22 81x 2
L

224.

Transforming (19) with respect to the variable x givesx givesx

EIEIE ss4Y(Y(Y s) 2 s3y(0) 2 s2y2y2 9(0) 2 sy0(0) 2 y90(0)d 5
2w0

L 3Ly2
s

2
1

s2 1
1

s2 e2Ls/24
or s4Y(Y(Y s) 2 sy0(0) 2 y-(0) 5

2w0

EILEILE 3Ly2
s

2
1

s2 1
1

s2 e2Ls/24.

If we let c1 5 y0(0) and c2 5 y-(0), then

Y(s) 5
c1

s3 1
c2

s4 1
2w0

EILEILE 3Ly2

s5 2
1

s6 1
1

s6 e2Ls/24,

and consequently

y(x) 5
c1

2!
+2152!

s36 1
c2

3!
+2153!

s46 1
2w0

EILEILE 3Ly2

4!
+2154!

s56 2
1

5!
+2155!

s66 1
1

5!
+2155!

s6 e2Ls/264

Applying the conditions y(L) 5 0 and y9(L) 5 0 to the last result yields a system of 
equations for c1 and c2:

c1
L2

2
1 c2

L3

6
1

49w0L4

1920EIEIE
5 0

c1 L 1 c2
L2

2
1

85w0L3

960EIEIE
5 0.

Solving, we �nd c1 5 23w0L2y(960EI) and EI) and EI c2 5 29w0Ly(40EI)EI)EI . Thus the de�ection 
is given by

y(x) 5
23w0L2

1920EIEIE
x2 2

3w0L

80EIEIE
x3 1

w0

60EILEILE 35L

2
x4 2 x5 1 1x 2

L

22
5

81x 2
L

224. ■

5
c1

2
x2 1

c2

6
x3 1

w0

60 EILEILE 35L

2
x4 2 x5 1 1x 2

L

22
5

81x 2
L

224.

1

tba

P(t)

FIGURE 7.3.9 Boxcar function

Outside the discussion of the Laplace transform, the unit step function is 
de�ned on the interval (2`, `), that is,

8(t 2 a) 5 50, t , a

1, t $ a.

Using this slight modi�cation of De�nition 7.3.1, a special case of (12) when 
g(t) 5 1 is sometimes called the boxcar function and denoted by

Pstd 5 8st 2 ad 2 8st 2 bd.
See Figure 7.3.9.

REMARKS
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EXERCISES 7.3

7.3.1 Translation on the s -Axis

In Problems 1–20 �nd either F(s) or f (t), as indicated.

1. +{te10t} 2. +{te26t}

3. +{t3e22t} 4. +{t10e27t}

5. +{t(et 1 e2t)2} 6. +{e2t(t 2 1)2}

7. +{et sin 3t}  8. +{e22t cos 4t}

9. +{(1 2 et 1 3e24t) cos 5t}

10. +5e3t19 2 4t 1 10 sin
t

226
11. +215 1

(s 1 2)36 12. +215 1

(s 2 1)46
13. +215 1

s2 2 6s 1 106 14. +215 1

s2 1 2s 1 56
15. +215 s

s2 1 4s 1 56 16. +215 2s 1 5

s2 1 6s 1 346
17. +215 s

(s 1 1)26 18. +215 5s

(s 2 2)26
19. +215 2s 2 1

s2(s 1 1)36 20. +215(s 1 1)2

(s 1 2)46
In Problems 21–30 use the Laplace transform to solve the given 
initial-value problem.

21. y9 1 4y 5 e24t, y(0) 5 2

22. y9 2 y 5 1 1 tet, y(0) 5 0

23. y0 1 2y9 1 y 5 0, y(0) 5 1, y9(0) 5 1

24. y0 2 4y9 1 4y 5 t3e2t, y(0) 5 0, y9(0) 5 0

25. y0 2 6y9 1 9y 5 t, y(0) 5 0, y9(0) 5 1

26. y0 2 4y9 1 4y 5 t3, y(0) 5 1, y9(0) 5 0

27. y0 2 6y9 1 13y 5 0, y(0) 5 0, y9(0) 5 23

28. 2y0 1 20y9 1 51y 5 0, y(0) 5 2, y9(0) 5 0

29. y0 2 y9 5 et cos t cos t t, y(0) 5 0, y9(0) 5 0

30. y0 2 2y9 1 5y 5 1 1 t, y(0) 5 0, y9(0) 5 4

In Problems 31 and 32 use the Laplace transform and the procedure 
outlined in Example 10 to solve the given boundary-value problem.

31. y0 1 2y9 1 y 5 0, y9(0) 5 2, y(1) 5 2

32. y0 1 8y9 1 20y 5 0, y(0) 5 0, y9(�) 5 0

33. A 4-pound weight stretches a spring 2 feet. The weight is 
released from rest 18 inches above the equilibrium position, 
and the resulting motion takes place in a medium offering a 

damping force numerically equal to 78 times the instantaneous 
velocity. Use the Laplace transform to �nd the equation of 
motion x(t).

34. Recall that the differential equation for the instantaneous charge 
q(t) on the capacitor in an LRC-series circuit is given by

  L
d 2q

dt2 1 R
dq

dt
1

1

C
q 5 E(t). (20)

See Section 5.1. Use the Laplace transform to �nd q(t) when 
L 5 1 h, R 5 20 V, C 5 0.005 f, E(t) 5 150 V, t . 0, q(0) 5 0, 
and i(0) 5 0. What is the current i(t)?

35. Consider a battery of constant voltage E0 that charges the 
capacitor shown in Figure 7.3.10. Divide equation (20) by L and L and L
de�ne 2�de�ne 2�de�ne 2 5 RyL and L and L �2 5 1yLC. Use the Laplace transform to 
show that the solution q(t) of t) of t q0 1 2�q9 1 �2q 5 E0yL subject to L subject to L
q(0) 5 0, i(0) 5 0 is

q(t) 5

¯
˚

¯
˚

¯
˚

˚
˚

˚
˘

˚
˘

˚
˚
˘

˚
˚

˚
˘

˚
˚

˘
˚

˙˚˙˚

E

¯

E

¯

0E0E C31 2 e2�t _cosh Ï�Ï�Ï 2 2 �2Ï t

1
�

Ï�Ï�Ï 2 2 �2Ï
sinh Ï�Ï�Ï 2 2 �2Ï t+4, � . �,

E0E0E C[1 2 e2�t(1 1 �t)], � 5 �,

E0E0E C31 2 e2�t _cos Ï�2 2 �2Ï t

˙

1
�

Ï�2 2 �2Ï
sin Ï�2 2 �2Ï t+4, � , �.

E0 R

C

L

FIGURE 7.3.10 Series circuit in Problem 35

36. Use the Laplace transform to �nd the charge q(t) in an RC
series circuit when q(0) 5 0 and E(t) 5 E0e2kt, k . 0. 
Consider two cases: k ± 1yRC and RC and RC k 5 1yRC.

7.3.2 Translation on the t-Axis

In Problems 37–48 �nd either F(s) or f (t), as indicated.

37. +{(t 2 1)8(t 2 1)} 38. +{e22t 8(t 2 2)}

39. +{t 8(t 2 2)} 40. +{(3t 1 1) 8(t 2 1)}

41. +{cos 2t 8(t 2 �)} 42. +5sin t 81t 2
�

2 26
43. +215e22s

s3 6 44. +215(1 1 e22s)2

s 1 2 6
45. +215 e2�s

s2 1 16 46. + 215se2�s/2

s2 1 46
47. +215 e2s

s(s 1 1)6 48. +215 e22s

s2(s 2 1)6

Answers to selected odd-numbered problems begin on page ANS-11.
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In Problems 49–54 match the given graph with one of the functions 
in (a)–(f). The graph of f (t) is given in Figure 7.3.11.

(a) f (t) 2 f (t) 8(t 2 a)

(b) f (t 2 b) 8(t 2 b)

(c) f (t) 8(t 2 a)

(d) f (t) 2 f (t) 8(t 2 b)

(e) f (t) 8(t 2 a) 2 f (t) 8(t 2 b)

(f) f (t 2 a) 8(t 2 a) 2 f (t 2 a) 8(t 2 b)

t

f(t)

a b

FIGURE 7.3.11 Graph for Problems 49–54

49.

t

f(t)

a b

FIGURE 7.3.12 Graph for Problem 49

50.

t

f(t)

a b

FIGURE 7.3.13 Graph for Problem 50

51.

t

f (t)

a b

FIGURE 7.3.14 Graph for Problem 51

52.

t

f (t)

a b

FIGURE 7.3.15 Graph for Problem 52

53.

t

f (t)

a b

FIGURE 7.3.16 Graph for Problem 53

54.

t

f (t)

a b

FIGURE 7.3.17 Graph for Problem 54

In Problems 55 – 62 write each function in terms of unit step 
functions. Find the Laplace transform of the given function.

55. f (t) 5 52,

22,

0 # t , 3

t $ 3

56. f (t) 5 5
1,

0,

1,

0 # t , 4

4 # t , 5

t $ 5

57. f (t) 5 50,

t2,

0 # t , 1

t $ 1

58. f (t) 5 50,

sin t,

0 # t , 3�y2

t $ 3�y2

59. f (t) 5 5 t,

0,

0 # t , 2

t $ 2

60. f (t) 5 5sin t,

0,

0 # t , 2�

t $ 2�

61.

1

rectangular pulse

tba

f(t)

FIGURE 7.3.18 Graph for Problem 61

62.

3

2

1

staircase function

t

f(t)

1 2 3 4

FIGURE 7.3.19 Graph for Problem 62

In Problems 63–70 use the Laplace transform to solve the given 
initial-value problem.

63. y9 1 y 5 f (t),t),t y(0) 5 0, where 

f (t)t)t 5 50,

5,

0 # t , 1

t $ 1

64. y9 1 y 5 f (t), y(0) 5 0, where

f (t) 5 5 1,

21,

0 # t , 1

t $ 1
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65. y9 1 2y2y2 5 f (t), y(0) 5 0, where

ff (t) 5 5 t,

0,

0 # t , 1

t $ 1

66. y 0 1 4y 5 f (t), y(0) 5 0, y9(0) 5 21, where

f (t) 5 51,

0,

0 # t , 1

t $ 1

67. y 0 1 4y 5 sin t 8(t 2 2�), y(0) 5 1, y9(0) 5 0

68. y0 2 5y9 1 6y 5 8(t 2 1), y(0) 5 0, y9(0) 5 1

69. y0 1 y 5 f (t), y(0) 5 0, y9(0) 5 1, where

f (t) 5 50,

1,

0,

0 # t , �

� # t , 2�

t $ 2�

70. y0 1 4y4y4 9 1 3y 5 1 2 8(t 2 2) 2 8(t 2 4) 1 8(t 2 6),
y(0) 5 0, y9(0) 5 0

71. Suppose a 32-pound weight stretches a spring 2 feet. If the weight 
is released from rest at the equilibrium position, �nd the equation 
of motion x(t) if an impressed force t) if an impressed force t f (t) t) t 5 20t acts on the system t acts on the system t
for 0 # t , 5 and is then removed (see Example 5). Ignore any 
damping forces. Use a graphing utility to graph x(t) on the t) on the t interval 
[0, 10].

72. Solve Problem 71 if the impressed force f (t) 5 sin t acts on the t acts on the t
system for 0 # t , 2� and is then removed.� and is then removed.�

In Problems 73 and 74 use the Laplace transform to �nd the charge 
q(t) on the capacitor in an RC-series circuit subject to the given 
conditions.

73. q(0) 5 0, R 5 2.5 V, C 5 0.08 f, E(t) given in Figure 7.3.20

t

E(t)

3

5

FIGURE 7.3.20 E(t) in Problem 73

74. q(0) 5 q0, R 5 10 V, C 5 0.1 f, E(t) given in Figure 7.3.21

t

E(t)

1.5

30

30et

FIGURE 7.3.21 E(t) in Problem 74

75. (a) Use the Laplace transform to �nd the current 
i(t) in a single-loop LR-series circuit when i(0) 5 0, 
L 5 1 h, R 5 10 V, and E(t) is as given in 
Figure 7.3.22.

(b) Use a graphing utility to graph i(t) for 0 # t # 6. Use the 
graph to estimate imax and imin, the maximum and minimum 
values of the current.

/2

1

21

t

E(t)

3 /2

sin t, 0 # t , 3�/2

�� �

FIGURE 7.3.22 E(t) in Problem 75

76. (a) Use the Laplace transform to �nd the charge q(t) on the 
capacitor in an RC-series circuit when q(0) 5 0, R 5 50 V, 
C 5 0.01 f, and E(t) is as given in Figure 7.3.23.

(b) Assume that E0 5 100 V. Use a graphing utility to graph 
q(t) for 0 # t # 6. Use the graph to estimate qmax, the 
maximum value of the charge.

t31

E(t)

E0

FIGURE 7.3.23 E(t) in Problem 76

77. A cantilever beam is embedded at its left end and free at its 
right end. Use the Laplace transform to �nd the de�ection y(x) 
when the load is given by

w(x) 5 5w0,

0,

0 , x , Ly2

Ly2 # x , L.

78. Solve Problem 77 when the load is given by

w(x) 55 0,

w0,

0,

0 , x , Ly3

Ly3 , x , 2Ly3

2Ly3 , x , L.

79. Find the de�ection y(x) of a cantilever beam embedded at its 
left end and free at its right end when the load is as given in 
Example 10.

80. A beam is embedded at its left end and simply supported at its 
right end. Find the de�ection y(x(x( ) when the load is as given in 
Problem 77.

Mathematical Model
81. Cake Inside an Oven Reread Example 4 in Section 3.1 

on the cooling of a cake that is taken out of an oven.

(a) Devise a mathematical model for the temperature of a cake 
while it is inside the oven based on the following assump-
tions: At t 5 0 the cake mixture is at the room temperature 
of 70°; the oven is not preheated, so at t 5 0, when the 
cake mixture is placed into the oven, the temperature inside 
the oven is also 70°; the temperature of the oven increases 
linearly until t 5 4 minutes, when the desired temperature 
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of 300° is attained; the oven temperature is a constant 300° 
for t $ 4.

(b) Use the Laplace transform to solve the initial-value 
problem in part (a).

Discussion Problems
82. Discuss how you would �x up each of the following functions so 

that Theorem 7.3.2 could be used directly to �nd the given Laplace 
transform. Check your answers using (16) of this section.

(a) +{(2t 1 1) 8(t 2 1)} (b) +{et 8(t 2 5)}

(c) +{cos t 8(t 2 �)} (d) +{(t2 2 3t)8(t 2 2)}

83. (a) Assume that Theorem 7.3.1 holds when the symbol a is 
replaced by ki, where k is a real number and k is a real number and k i2 5 21. Show 
that +{tekti} can be used to deduce

+{t cos kt} 5
s2 2 k2

(s2 1 k2)2

+{t sin kt} 5
2ksksk

(s2 1 k2)2.

(b) Now use the Laplace transform to solve the initial- 
value problem x0 1 �2x 5 cos �t, x(0) 5 0, x9(0) 5 0.

7.4  O  Operational Properties II

INTRODUCTION In this section we develop several more operational properties 
of the Laplace transform. Speci�cally, we shall see how to �nd the transform of a 
function f (t) that is multiplied by a monomial t n, the transform of a special type of 
integral, and the transform of a periodic function. The last two transform properties 
allow us to solve some equations that we have not encountered up to this point: 
Volterra integral equations, integrodifferential equations, and ordinary differential 
equations in which the input function is a periodic piecewise-de�ned function.

7.4.1 DERIVATIVES OF A TRANSFORM
MULTIPLYING A FUNCTION BY tn  The Laplace transform of the product of a 
function f (t) with t can be found by differentiating the Laplace transform of t can be found by differentiating the Laplace transform of t f (t). To 
motivate this result, let us assume that F(s) 5 +{ f (t)} exists and that it is possible 
to interchange the order of differentiation and integration. Then

d

dsdsd
F(s) 5

d

dsdsd #`

0
#

0
# e2st f (t) dt 5 #`

0
#

0
# −

−s
 [ [e2st f (t)] dt 5 2#`

0
#

0
# e2st t ft ft (t) dt 5 2+{t ft ft (t)};

that is, +{t ft ft (t)} 5 2
d

dsdsd
+{ f (t)}.

We can use the last result to �nd the Laplace transform of t2f2f2 (t):

+{t2t2t f2 f2 (t)} 5 +{t ? t ft ft (t)} 5 2
d

dsdsd
+{tftft (t)} 5 2

d

dsdsd 12 d

dsdsd
+{ f (t)}2 5

d 2

dsdsd 2 +{ f (t)}.

The preceding two cases suggest the general result for +{tntnt f (t)}.

THEOREM 7.4.1 Derivatives of Transforms

If F(s) 5 +{ f (t)} and n 5 1, 2, 3, . . . , then

+{tn 
f (t)} 5 (21)n dn

dsn
 F(s).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



. OPERATIONAL PROPERTIES II 307

EXAMPLE 1  Using Theorem 7.4.1

Evaluate  +{t st st in kt}.

SOLUTION With f (t) 5 sin kt, F(s) 5 ky(s2 1 k2), and n 5 1, Theorem 7.4.1 gives

+{t st st in kt} 5 2
d

dsdsd
+{sin kt} 5 2

d

dsdsd 1 k

s2 1 k22 5
2ksksk

(s2 1 k2)2. ■

If we want to evaluate +{t2t2t sin kt} and +{t3 sin kt}, all we need do, in turn, is 
take the negative of the derivative with respect to s of the result in Example 1 and 
then take the negative of the derivative with respect to s of +{t2 sin kt}.

NOTE To �nd transforms of functions tneat we can use either Theorem 7.3.1 or at we can use either Theorem 7.3.1 or at

Theorem 7.4.1. For example,

Theorem 7.3.1: +{te3t} 5 +{t}sSs23 5
1

s2 u
sSs23

5
1

(s 2 3)2.

Theorem 7.4.1: +{te3t} 5 2
d

dsdsd
+{e3t} 5 2

d

dsdsd

1

s 2 3
5 (s 2 3)22 5

1

(s 2 3)2.

EXAMPLE 2  An Initial-Value Problem

Solve  x0 1 16x 5 cos 4t, x(0) 5 0, x9(0) 5 1.

SOLUTION The initial-value problem could describe the forced, undamped, and 
resonant motion of a mass on a spring. The mass starts with an initial velocity of 
1 ft/s in the downward direction from the equilibrium position.

Transforming the differential equation gives

(s2 1 16) X(s) 5 1 1
s

s2 1 16
or X(s) 5

1

s2 1 16
1

s

(s2 1 16)2.

Now we just saw in Example 1 that

+215 2ksksk

(s2 1 k2)26 5 t st st in kt, (1)

and so with the identi�cation k 5 4 in (1) and in part (d) of Theorem 7.2.1, we obtain

x(t) 5
1

4
+215 4

s2 1 166 1
1

8
+215 8s

(s2 1 16)26
5

1

4
 s sin 4t 1

1

8
t st st in 4t. ■

7.4.2 TRANSFORMS OF INTEGRALS
CONVOLUTION If functions f and f and f g are piecewise continuous on the interval 
[0, `), then the convolution of f and f and f g, denoted by the symbol f * g, is a function 
de�ned by the integral 

f * g 5 #t

0
f (�)g(t 2 �) d� . (2)

Because we are integrating in (2) with respect to the variable � (the lower case Greek 
letter tau), the convolution f * g is a function of t. To emphasize this fact, (2) is also 
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written ( f * g)(t) . As the notation f * g suggests, the convolution (2) is often inter-
preted as a generalized product of two functions generalized product of two functions generalized product f and f and f g.

EXAMPLE 3  Convolution of Two Two T Functions

Evaluate (a) et
*sin t (b) +h+h+ et

* sin tjtjt .

SOLUTION (a) With the identi�cations 

f (t) 5 et, g(t) 5 sin t and f (�) 5 e�, g(t 2 �) 5 sin(t 2 �),

it follows from (2) and integration by parts that

et
* sin t 5 #t

0
#

0
# e�sin(t 2 �) d�

5
1

2
fe� sinst 2 �d 1 e�cos(t 2 �)g t

0

5
1

2
(2sin t 2 cos t 1 et) . (3)

(b) Then from (3) and parts (c), (d), and (e) of Theorem 7.1.1 we �nd

+h+h+ et
* sin tjtjt 5 2

1

2
+h+h+ sin tjtjt 2

1

2
+h+h+ cos tjtjt 1

1

2
+h+h+ etj

5 2
1

2

1

s2 1 1
2

1

2

s

s2 1 1
1

1

2

1

s 2 1

5
1

(s 2 1)(s2 1 1)
. ■

It is left as an exercise to show that

#t

0
#

0
# f (�)g(t 2 �) d� 5 #t

0
#

0
# f (t 2 �)g(�) d�,

that is, f * g 5 g * f . In other words, the convolution of two functions is commutative.

CONVOLUTION THEOREM We have seen that if f and f and f g are both piecewise con-
tinuous for t $ 0, then the Laplace transform of a sum f 1 g is the sum of the individ-
ual Laplace transforms. While it is not true that the Laplace transform of the product not true that the Laplace transform of the product not
fgfgf  is the product of the Laplace transforms, we see in the next theorem—called the 
convolution theorem—that the Laplace transform of the generalized product f * g
is the product of the Laplace transforms of f and f and f g.

THEOREM 7.4.2 Convolution Theorem

If f (t) and g(t) are piecewise continuous on [0, `) and of exponential 
order, then

+{ f * g} 5 +{ f (t)} +{g(t)} 5 F(s)G(s).

PROOF Let F(s) 5 +{ f(f(f t)} 5 #
`

0
#

0
# e2s�f�f� (f(f �) d�

and G(s) 5 +{g(t)} 5 #
`

0
#

0
# e2s�g(�) d�d�d .
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Proceeding formally, we have

F(s)G(s) 5 1#`

0
#

0
# e2s�f�f� (�) d�2 1#`

0
#

0
# e2s�g(�) d�d�d 2

5 #`

0
#

0
# #`

0
#

0
# e2s(�1�) f (�)g(�) d� d�d�d

5 #`

0
#

0
# f (�) d�#`

0
#

0
# e2s(�1�)g(�) d�d�d .

Holding � �xed, we let � �xed, we let � t 5 � 1 �, dt 5 d�d�d , so that

F(s)G(s) 5 #`

0
#

0
# f (�) d� #`

�
#

�
# e2stgtgt (t 2 �) dt.

In the t�-plane we are integrating over the shaded region in Figure 7.4.1. Since f and f and f
g are piecewise continuous on [0, `) and of exponential order, it is possible to inter-
change the order of integration:

■

Theorem 7.4.2 shows that we can �nd the Laplace transform of the convolution 
f * g of two functions without actually evaluating the de�nite integral et

0e0e f (�)g(t 2 �) d�
as we did in (3). The next example illustrates the idea.

EXAMPLE 4  Using Theorem 7.4.2

Evaluate  + 5#t

0
#

0
# e� sin(t 2 �) d�6 .

SOLUTION This is the same as the transform +h+h+ et
* sin tjtjt  that we found in part (b) 

of Example 3. This time we use Theorem 7.4.2 that the Laplace transform of the 
convolution of f and f and f g is the product of their Laplace transforms:

+ 5#t

0
#

0
# e� sin(t 2 �) d�6 5 + het

* sin tjtjt

5 + hetj ? + hsin tjtjt

5
1

s 2 1
?

1

s2 1 1

5
1

(s 2 1)(s2 1 1)
. ■

INVERSE FORM OF THEOREM 7.4.2 The convolution theorem is sometimes use-
ful in �nding the inverse Laplace transform of the product of two Laplace transforms. 
From Theorem 7.4.2 we have

+21{F(s)G(s)} 5 f * g. (4)

Many of the results in the table of Laplace transforms in Appendix C can be derived 
using (4). For example, in the next example we obtain entry 25 of the table:

+{sin kt 2 kt ct ct os kt} 5
2k3

(s2 1 k2)2. (5)

EXAMPLE 5  Inverse Transform as a Convolution

Evaluate  +215 1

(s2 1 k2)26.

SOLUTION Let F(s) 5 G(s) 5
1

s2 1 k2 so that so that

f(f(f t) 5 g(t) 5
1

k
+215 k

s2 1 k26 5
1

k
 s sin kt.

F(s) G(s) 5 #`

0
#

0
# e2stdtdt t #t

0
#

0
# f (�)g(t 2 �) d� 5 #`

0
#

0
# e2st 5#t

0
#

0
# f (�)g(t 2 �) d�6 dt 5 +{ f * g}.

t

5 t

: 0 to t

t:  to `

FIGURE 7.4.1 Changing order of 
integration from t �rst to t �rst to t � �rst� �rst�
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In this case (4) gives

+215 1

(s2 1 k2)26 5
1

k2 #
t

0
#

0
# sin k� s� s� in k(t 2 �) d�. (6)

With the aid of the product-to-sum trigonometric identity

sin A sin B 5
1

2
[cos(A(A( 2 B) 2 cos(A(A( 1 B)]

and the substitutions A 5 k� and � and � B 5 k(t 2 �) we can carry out the integration in (6):

+215 1

(s2 1 k2)26 5
1

2k2 #
t

0
#

0
# [cos k(2� 2 t) 2 cos kt] d�

5
1

2k2 3 1

2k
 s sin k(2� 2 t) 2 � c� c� os kt4

t

0

5
sin kt 2 kt ct ct os kt

2k3 .

Multiplying both sides by 2k3 gives the inverse form of (5). ■

TRANSFORM OF AN INTEGRAL When g(t) 5 1 and +{g(t)} 5 G(s) 5 1ys, the 
convolution theorem implies that the Laplace transform of the integral of f isf isf

+ H#t

0
 f(�) d�J 5

F(s)
s

. (7)

The inverse form of (7),

#t

0
 f(�) d� 5 +215F(s)

s 6, (8)

can be used in lieu of partial fractions when sn is a factor of the denominator and 
f (t) 5 +21{F(s)} is easy to integrate. For example, we know for f (t) 5 sin t that t that t
F(s) 5 1y(s2 1 1), and so by (8)

+215 1

s(s2 1 1)6 5 +2151y(s2 1 1)
s 6 5 #t

0
#

0
# sin � d� 5 1 2 cos t

+215 1

s2(s2 1 1)6 5 +2151ys(s2 1 1)
s 6 5 #t

0
#

0
# (1 2 cos�) d� 5 t 2 sin t

+215 1

s3(s2 1 1)6 5 +2151ys2(s2 1 1)
s 6 5 #t

0
#

0
# (� 2 sin�) d� 5 1

2 t2 2 1 1 cos t

and so on.

VOLTERRA INTEGRAL EQUATION The convolution theorem and the result in (7) 
are useful in solving other types of equations in which an unknown function appears un-
der an integral sign. In the next example we solve a Volterra integral equation for f(f(f t),t),t

f(t) 5 g(t) 1 #t

0
 f(�) h(t 2 �) d�. (9)

The functions g(t) and h(t) are known. Notice that the integral in (9) has the convo-
lution form (2) with the symbol h playing the part of g.

EXAMPLE 6  An Integral Equation

Solve  f(f(f t) 5 3t2 2 e2t 2 #t

0
#

0
# f (�) et2� d�  fo�  fo� r f (t).
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SOLUTION In the integral we identify h(t 2 �) 5 et2� so that � so that � h(t) 5 et. We take the 
Laplace transform of each term; in particular, by Theorem 7.4.2 the transform of the 
integral is the product of +{ f (t)} 5 F(s) and +{et} 5 1y(s 2 1):

F(s) 5 3 ?
2

s3 2
1

s 1 1
2 F(s) ?

1

s 2 1
.

After solving the last equation for F(s) and carrying out the partial fraction 
decomposition, we �nd

F(s) 5
6

s3 2
6

s4 1
1
s

2
2

s 1 1
.

The inverse transform then gives

f(f(f t) 5 3+2152!

s36 2 +2153!

s46 1 +2151
s6 2 2+2+2 215 1

s 1 16
5 3t2 2 t3 1 1 2 2e2t. ■

SERIES CIRCUITS In a single-loop or series circuit, Kirchhoff’s second law states 
that the sum of the voltage drops across an inductor, resistor, and capacitor is equal to 
the impressed voltage E(t). Now it is known that the voltage drops across an inductor, 
resistor, and capacitor are, respectively,

L
di

dt
, Ri(t), and

1

C #t

0
#

0
# i(�) d�,

where i(t) is the current and L, R, and C are constants. It follows that the current in C are constants. It follows that the current in C
a circuit, such as that shown in Figure 7.4.2, is governed by the integrodifferential 
equation

L 

di

dt
1 R i(t) 1

1

C
 #t

0 
i(�) d� 5 E(t). (10)

 EXAMPLE 7  An Integrodifferential Equation

Determine the current i(t) in a single-loop LRC-series circuit when L 5 0.1 h, 
R 5 2 V, C 5 0.1 f, i(0) 5 0, and the impressed voltage is

E(t) 5 120t 2 120t 8(t 2 1).

SOLUTION With the given data equation (10) becomes

0.1
di

dt
1 2i 1 10#t

0
#

0
# i(�) d� 5 120t 2 120t 8(t 2 1).

Now by (7), +het
0e0e i(�) d�j�j� 5 I(I(I s)ys, where I(I(I s) 5 +{i(t)}. Thus the Laplace transform 

of the integrodifferential equation is

0.1sI(s) 1 2I(s) 1 10
I(s)

s
5 120 31

s2 2
1

s2
 e2s 2

1
s

 e2s4.  ; by (16) of Section 7.3

Multiplying this equation by 10s, using s2 1 20s 1 100 5 (s 1 10)2, and then solv-
ing for I(I(I s) gives

I(s) 5 1200 3 1

s(s 1 10)2 2
1

s(s 1 10)2 e2s 2
1

(s 1 10)2 e2s4.

By partial fractions,

I(s) 5 1200 31y100
s

2
1y100

s 1 10
2

1y10

(s 1 10)2 2
1y100

s
e2s

1
1y100

s 1 10
e2s 1

1y10

(s 1 10)2 e2s 2
1

(s 1 10)2 e2s4.

C

L
E R

L
E R

L
E RE RE RE R

FIGURE 7.4.2 LRC-series circuit
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From the inverse form of the second translation theorem, (15) of Section 7.3, we 
�nally obtain

i(t) 5 12[1 2 8(t 2 1)] 2 12[e210t 2 e210(t21)8(t 2 1)]

2 120te210t 2 1080(t 2 1)e210(t21) 8(t 2 1).

Written as a piecewise-de�ned function, the current is

i(t) 5 512 2 12e210t 2 120te210t,

212e210t 1 12e210(t21) 2 120te210t 2 1080(t 2 1)e210(t21),

0 # t , 1

        t $ 1.

Using this last expression and a CAS, we graph i(t) on each of the two intervals 
and then combine the graphs. Note in Figure 7.4.3 that even though the input E(t) is 
discontinuous, the output or response i(t) is a continuous function. ■

POST SCRIPTGREEN’S FUNCTIONS REDUX By applying the Laplace trans-
form to the initial-value problem

y0 1 ay9 1 by 5 f (t), y(0) 5 0, y9(0) 5 0,

where a and b are constants, we �nd that the transform of y(t) is

Y(Y(Y s) 5
F(s)

s2 1 as 1 b
,

where F(s) 5 +{ f (t)}. By rewriting the foregoing transform as the product

Y(Y(Y s) 5
1

s2 1 as 1 b
FF(s)

we can use the inverse form of the convolution theorem (4) to write the solution of 
the IVP as

y(t) 5 #t

0
#

0
# g(t 2 �) f (�) d�, (11)

where +215 1

s2 1 as 1 b6 5 g(t) and +21{F(s)} 5 f (t). On the other hand, we know 

from (10) of Section 4.8 that the solution of the IVP is also given by

y(t) 5 #t

0
#

0
#G(t, �) f(f(f �) d�, (12)

where G(t, �)�)�  is the Green’s function for the differential equation.
By comparing (11) and (12) we see that the Green’s function for the differen-

tial equation is related to +215
By comparing (11) and (12) we see that the Green’s function for the differen

5
By comparing (11) and (12) we see that the Green’s function for the differen

1

s2 1 as 1 b6
By comparing (11) and (12) we see that the Green’s function for the differen

6
By comparing (11) and (12) we see that the Green’s function for the differen

5 g(t) by

G(t,  �) 5 g(t 2 �). (13)

For example, for the initial-value problem y0 1 4y 5 f (t), y(0) 5 0, y9(0) 5 0 we 

�nd

+215 1

s2 1 46 5 1
2 sin 2t 5 g(t).

Thus from (13) we see that the Green’s function for the DE y0 1 4y 5 f (t) is 
G(t, �) 5 g(t 2 �) 5 1
Thus from (13) we see that the Green’s function for the DE 

1
Thus from (13) we see that the Green’s function for the DE 

2 sin 2(t 2 �). See Example 4 in Section 4.8.

10.5 21.5 2.5

20

10

230

220

210

t

i

FIGURE 7.4.3 Graph of current i(t) in 
Example 7

Optional material if Section 4.8 
was covered.

In Example 4 of Section 4.8, the 
roles of the symbols x and x and x t  are t  are t
played by t  and t  and t � in this discussion.� in this discussion.�
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7.4.3 TRANSFORM OF A PERIODIC FUNCTION
PERIODIC FUNCTION If a periodic function has period T,T,T  T . 0, then f (t 1 T)T)T 5 f (t). t). t
The next theorem shows that the Laplace transform of a periodic function can be ob-
tained by integration over one period.

THEOREM 7.4.3 Transform of a Periodic Function

If f (t) is piecewise continuous on [0, t) is piecewise continuous on [0, t `), of exponential order, and periodic with 
period T, thenT, thenT

+{ f (t)} 5
1

1 2 e2sT #T

0
e2st f (t) dt.

PROOF Write the Laplace transform of f as two integrals:f as two integrals:f

+{f (t)} 5 #T

0
#

0
# e2st ft ft (t) dt 1 #`

T
#

T
# e2st ft ft (t) dt.

When we let t 5 u 1 T, the last integral becomesT, the last integral becomesT

#`

T
#

T
# e2st ft ft (t) dt 5 #`

0
#

0
# e2s(u1T)T)T f)f) (u 1 T ) du 5 e2sT #`

0
#

0
# e2su fu fu (u) du 5 e2sT+T+T { f (t)}.

Although the Laplace transform was known for a long time prior to the twen-
tieth century, it was not used to solve differential equations. The fact that we 
use the Laplace transform today to solve a variety of equations is due to Oli-
ver Heaviside (see page 298). In 1893 Heaviside invented an operational cal-
culus for solving differential equations encountered in electrical engineering. 
Heaviside was no mathematician, and his procedures for solving differential 
equations were formal manipulations or procedures lacking mathematical jus-
ti�cation. Nonetheless these procedures worked. In an attempt to put his op-
erational calculus on a sound foundation, mathematicians discovered that the 
rules of his calculus matched many properties of the Laplace transform. Over 
time, Heaviside’s operation calculus disappeared to be replaced by the theory 
and applications of the Laplace transform.

You should verify either by substitution in the equation or by the meth-
ods of Section 2.3 that y(t) 5 e2tet

0e0e eu21u du is a perfectly good solution of the 
linear initial-value problem y9 1 y 5 et2t2t , y(0) 5 0. We now solve the same 
equation with a formal application of the Laplace transform. If we denote 
+ hyhyh (t)j 5 Y(Y(Y s) and + het2t2t j 5 F(s), then the transform of the equation is

sY(Y(Y s) 2 y(0) 1 Y(Y(Y s) 5 F(s) or Y(Y(Y s) 5
F(s)

s 1 1
.

Using +21hF(s)j 5 et2t2t and +215 1

s 1 16 5 e2t it follows from the int it follows from the int verse form  it follows from the inverse form  it follows from the in

(4) of the convolution theorem that the solution of the initial-value problem is

y(t) 5 +215F(s) ?
1

s 1 16 5 #t

0
#

0
# e�2

? e2(t2�) d� 5 e2t#t

0
#

0
# e� 21� d� .

With � playing the part of u, this is the solution as �rst given. What’s wrong 
here? 

REMARKS
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Therefore +{ f (t)} 5#T

0
#

0
# e2st ft ft (t) dt 1 e2sT +{ f (t)}.

Solving the equation in the last line for +{ f (t)} proves the theorem. ■

EXAMPLE 8  Transform of a Periodic Function

Find the Laplace transform of the periodic function shown in Figure 7.4.4.

SOLUTION The function E(t) is called a square wave and has period T 5 2. For 
0 # t , 2, E(t) can be de�ned by

E(t) 5 51,

0,

0 # t , 1

1 # t , 2

and outside the interval by E(t 1 2) 5 E(t). Now from Theorem 7.4.3

+{E(t)} 5
1

1 2 e22s #
2

0
#

0
# e2stEtEt (t) dt 5

1

1 2 e22s 3#1

0
#

0
# e2st ? 1 dt 1 #2

1
#

1
# e2st ? 0 dt4

5
1

1 2 e22s

1 2 e2s

s
d 1 2 e22s 5 (1 1 e2s)(1 2 e2s)

5
1

s (1 1 e2s)
. (14) ■

 EXAMPLE 9  A Periodic Impressed Voltage

The differential equation for the current i(t) in a single-loop LR-series circuit is

L
di

dt
1 Ri 5 E(t). (15)

Determine the current i(t) when i(0) 5 0 and E(t) is the square wave function given 
in Figure 7.4.4.

SOLUTION If we use the result in (14) of the preceding example, the Laplace trans-
form of the DE is

LsI(I(I s) 1 RI(I(I s) 5
1

s(1 1 e2s)
or I(I(I s) 5

1yL

s(s 1 RyL)
?

1

1 1 e2s. (16)

To �nd the inverse Laplace transform of the last function, we �rst make use of geo-
metric series. With the identi�cation x 5 e2s, s . 0, the geometric series

1

1 1 x
5 1 2 x 1 x2 2 x3 1 Á becomes

1

1 1 e2s 5 1 2 e2s 1 e22s 2 e23s 1 Á .

From
1

s(s 1 RyL)
5

LyR
s

2
LyR

s 1 RyL

we can then rewrite (16) as

t

E(t)

1

4321

FIGURE 7.4.4 Square wave in Example 8

I(I(I s) 5
1

R 11
s

2
1

s 1 RyL2(1 2 e2s 1 e22s 2 e23s 1 Á )

5
1

R 11
s

2
e2s

s
1

e22s

s
2

e23s

s
1 Á2 2

1

R 1 1

s 1 RyL
2

1

s 1 RyL
e2s 1

e22s

s 1 RyL
2

e23s

s 1 RyL
1 Á2Á2Á .
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By applying the form of the second translation theorem to each term of both series, 
we obtain

2
1

R
(e2Rt/t/t L/L/ 2 e2R(t21)/L/L/ 8(t 2 1) 1 e2R(t22)/L/L/ 8(t 2 2) 2 e2R(t23)/L/L/ 8(t 2 3) 1 Á) 

or, equivalently,

i(t) 5
1

R
(1 2 e2Rt/t/t L/L/ ) 1

1

R o
`

n51
(21)n(12e2R(t2n)/L/L/ ) 8(t 2 n).

To interpret the solution, let us assume for the sake of illustration that R 5 1, L 5 1, 
and 0 # t , 4. In this case

i(t) 5 1 2 e2t 2 (1 2 et21) 8(t 2 1) 1 (1 2 e2(t22)) 8(t 2 2) 2 (1 2 e2(t23)) 8(t 2 3);

in other words,

i(t) 5 5
1 2 e2t,

2e2t 1 e2(t21),

1 2 e2t 1 e2(t21) 2 e2(t22),

2e2t 1 e2(t21) 2 e2(t22) 1 e2(t23),

0 # t , 1

1 # t , 2

2 # t , 3

3 # t , 4.

The graph of i(t) for 0 # t , 4, given in Figure 7.4.5, was obtained with the help of 
a CAS. ■

1 321 32 4

2

1.5

1

0.5

t

i

FIGURE 7.4.5 Graph of current i(t) in 
Example 9

i(t) 5
1

R
(1 2 8(t 2 1) 1 8(t 2 2) 2 8(t 2 3) 1 Á )

EXERCISES 7.4

7.4.1 Derivatives of a Transform

In Problems 1–8 use Theorem 7.4.1 to evaluate the given Laplace 
transform.

1. +{te210t} 2. +{t3et}

3. +{t cos 2t} 4. +{t sinh 3t}

5. +{t2 sinh t} 6. +{t2 cos t}

7. +{te2t sin 6t} 8. +{te23t cos 3t}

In Problems 9–14 use the Laplace transform to solve the given initial-
value problem. Use the table of Laplace transforms in Appendix C as 
needed.

9. y9 1 y 5 t sin t sin t t, y(0) 5 0

10. y9 2 y 5 tet sin t sin t t, y(0) 5 0

11. y0 1 9y 5 cos 3t, y(0) 5 2, y9(0) 5 5

12. y0 1 y 5 sin t, y(0) 5 1, y9(0) 5 21

13. y0 1 16y 5 f (t), y(0) 5 0, y9(0) 5 1, where

f (t) 5 5cos 4t,

0,

0 # t , �

t $ �

14. y0 1 y 5 f (t), y(0) 5 1, y9(0) 5 0, where

f (t) 5 51,

sin t,

0 # t , �y2

t $ �y2

In Problems 15 and 16 use a graphing utility to graph the indicated 
solution.

15. y(t) of Problem 13 for 0 # t , 2�

16. y(t) of Problem 14 for 0 # t , 3�

In some instances the Laplace transform can be used to solve 
linear differential equations with variable monomial coef�cients. In 
Problems 17 and 18 use Theorem 7.4.1 to reduce the given differ-
ential equation to a linear �rst-order DE in  the transformed func-
tion Y(Y(Y s) 5 +{y(t)}. Solve the �rst-order DE for Y(s) and then �nd 
y(t) 5 +21{Y(Y(Y s)}.

17. ty0 2 y9 5 2t2, y(0) 5 0

18. 2y0 1 ty9 2 2y 5 10, y(0) 5 y9(0) 5 0

7.4.2 Transforms of Integrals

In Problems 19–22 proceed as in Example 3 and �nd the convolu-
tion f * g of the given functions. After integrating �nd the Laplace 
transform of f * g .

19. f (t) 5 4t, g(t) 5 3t2 20. f (t) 5 t, g(t) 5 e2t

21. f (t) 5 e2t, g(t) 5 et 22. f (t) 5 cos 2t, g(t) 5 et

In Problems 23–34 proceed as in Example 4 and �nd the Laplace 
transform of f * g using Theorem 7.4.2. Do not evaluate the convolu-
tion integral before transforming.

23. +{1 * t3} 24. +{t2 * tet}

25. +{e2t
* et cos t} 26. +{e2t

* sin t}

Answers to selected odd-numbered problems begin on page ANS-12.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



316 CHAPTER  THE LAPLACE TRANSFORM

27. +5#t

0
#

0
# e� d�6 28. +5#t

0
#

0
# cos � d�6

29. +5#t

0
#

0
# e2� cos � d�6 30. +5#t

0
#

0
# � sin � d�6

31. +5#t

0
#

0
# � et2� d�6 32. +5#t

0
#

0
# sin � cos (t 2 �) d�6

33. +5t#t

0
#

0
# sin � d�6 34. +5t #t

0
#

0
# � e2� d�6

In Problems 35–38 use (8) to evaluate the given inverse transform.

35. +215 1

s(s 2 1)6 36. +215 1

s2(s 2 1)6
37. +215 1

s3(s 2 1)6 38. +215 1

s(s 2 a)26
39. The table in Appendix C does not contain an entry for

+215 8k3s

(s2 1 k2)36.

(a) Use (4) along with the results in (5) to evaluate this inverse 
transform. Use a CAS as an aid in evaluating the convolu-
tion integral.

(b) Reexamine your answer to part (a). Could you have  
obtained the result in a different manner?

40. Use the Laplace transform and the results of Problem 39 to 
solve the initial-value problem

y0 1 y 5 sin t 1 t sin t, y(0) 5 0, y9(0) 5 0.

Use a graphing utility to graph the solution.

In Problems 41–50 use the Laplace transform to solve the given  
integral equation or integrodifferential equation.

41. f (t) 1 #t

0
#

0
# (t 2 �) f (�) d� 5 t

42. f (t) 5 2t 2 4 #t

0
#

0
# sin � f (t 2 �) d�

43. f (t) 5 tet 1 #t

0
#

0
# � f (t 2 �) d�

44. f (t) 1 2 #t

0
#

0
# f (�) cos (t 2 �) d� 5 4e2t 1 sin t

45. f (t) 1 #t

0
#

0
# f (�) d� 5 1

46. f (t) 5 cos t 1 #t

0
#

0
# e2� f (t 2 �) d�

47. f (t) 5 1 1 t 2
8

3#
t

0
#

0
# (� 2 t)3 f (�) d�

48. t 2 2 f2 f2 (t) 5 #t

0
#

0
# (e� 2 e2�) f (t 2 �) d�

49. y9(t) 5 1 2 sin t 2 #t

0
#

0
# y(�) d�, y(0) 5 0

50.
dydyd

dt
1 6y(t) 1 9 #t

0
#

0
# y(�) d� 5 1, y(0) 5 0

In Problems 51 and 52 solve equation (10) subject to i(0) 5 0  
with L, R, C, and E(t) as given. Use a graphing utility to graph the 
solution for 0 # t # 3.

51. L 5 0.1 h, R 5 3 V, C 5 0.05 f,

E(t) 5 100[8(t 2 1) 2 8(t 2 2)]

52. L 5 0.005 h, R 5 1 V, C 5 0.02 f,

E(t) 5 100[t 2 (t 2 1)8(t 2 1)]

7.4.3 Transform of a Periodic Function

In Problems 53–58 use Theorem 7.4.3 to �nd the Laplace transform 
of the given periodic function.

53.

1

meander function

t2aa

f(t)

3a 4a

1

FIGURE 7.4.6 Graph for Problem 53

54.

1

square wavesquare wavesquare wa

t2aa

f(t)

3a 4a

FIGURE 7.4.7 Graph for Problem 54

55.

sawtooth function

t2bb

a

f (t)

3b 4b

FIGURE 7.4.8 Graph for Problem 55

56.

1

triangular wave

t2

f(t)

3 41

FIGURE 7.4.9 Graph for Problem 56

57.

1

full-wave recti�cation of sin t

t

f(t)

432 ����

FIGURE 7.4.10 Graph for Problem 57
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58.

432

1

half-wave recti�cation of sin t

t

f(t)

� � � �

FIGURE 7.4.11 Graph for Problem 58

In Problems 59 and 60 solve equation (15) subject to i(0) 5  0 
with E(t) as given. Use a graphing utility to graph the solution for 
0 # t # 4 in the case when L 5 1 and R 5 1.

59. E(t) is the meander function in Problem 53 with amplitude 1 
and a 5 1.

60. E(t) is the sawtooth function in Problem 55 with amplitude 1 
and b 5 1.

In Problems 61 and 62 solve the model for a driven spring/mass system 
with damping

m
d2d2d x2x2

dt2
1 �

dxdxd

dt
1 kxkxk 5 f (t), x(0) 5 0, x9(0) 5 0,

where the driving function f is as speci�ed. Use a graphing utility to f is as speci�ed. Use a graphing utility to f
graph x(t) for the indicated values of t.

61. m 5 1
2, � 5 1, k 5 5, f is the meander function in f is the meander function in f Problem 53 

with amplitude 10, and a 5 �, 0 # t # 2�.

62. m 5 1, � 5 2, k 5 1, f is the square wave in Problem 54 with f is the square wave in Problem 54 with f
amplitude 5, and a 5 �, 0 # t # 4�.

Discussion Problems
63. Discuss how Theorem 7.4.1 can be used to �nd

+215ln
s 2 3

s 1 16.

64. In Section 6.4 we saw that ty0 1 y9 1 ty 5 0 is Bessel’s 
equation of order � 5 0. In view of (24) of that section 
and Table 6.4.1 a solution of the initial-value problem 
ty0 1 y9 1 ty 5 0, y(0) 5 1, y9(0) 5 0, is y 5 J0J0J (t). Use this 
result and the procedure outlined in the instructions to Problems 
17 and 18 to show that

+{J0J0J (t)} 5
1

ÏsÏsÏ 2 1 1Ï
.

[Hint: You might need to use Problem 52 in Exercises 7.2.]

65. (a) Laguerre’s differential equation

ty0 1 (1 2 t)y9 1 ny 5 0 

is known to possess polynomial solutions when n is 
a nonnegative integer. These solutions are naturally called 
Laguerre polynomials and are denoted by Ln(t). Find 
y 5 Ln(t), for n 5 0, 1, 2, 3, 4 if it is known that Ln(0) 5 1.

(b) Show that

+5 et

n!

dndnd

dtn tntnt e2t6 5 Y(Y(Y s),

where Y(Y(Y s) 5 +{y} and y 5 Ln(t) is a polynomial solution 
of the DE in part (a). Conclude that

Ln(t) 5
et

n!

dndnd

dtntnt
tntnt e2t, n 5 0, 1, 2, . . . .

This last relation for generating the Laguerre polynomials 
is the analogue of Rodrigues’ formula for the Legendre 
polynomials. See (36) in Section 6.4.

66. The Laplace transform +{e2t2t2t } exists, but without �nding  
it solve the initial-value problem y0 1 y 5 e2t2t2t , y(0) 5 0,
y9(0) 5 0.

67. Solve the integral equation

f (t) 5 et 1 et #t

0
#

0
# e2� f (�) d�.

68. (a)  Show that the square wave function E(t) given in Figure 7.4.4 
can be written

E(t) 5 o
`

k50
(21)k 8(t 2 k).

(b) Obtain (14) of this section by taking the Laplace transform 
of each term in the series in part (a).

69. Use the Laplace transform as an aide in evaluating the
improper integral e`

0 te22t sin 4t dt.

70. If we assume that +{f{f{ (t)yt} exists and +{f{f{ (t)} 5 F(s), then

+ 5f5f5 (t)

t 6 5 #`

s
#

s
# F(u) du.

Use this result to �nd the Laplace transform of the given 
function. The symbols a and k are positive constants.

(a) f (t) 5
sin at

t
(b) f (t) 5

2(1 2 cos kt)

t

71. Transform of the Logarithm Because f (t) 5 ln t has an 
in�nite discontinuity at t 5 0 it might be assumed that +{ln t}
does not exist; however, this is incorrect. The point of this 
problem is to guide you through the formal steps leading to 
the Laplace transform of f (t) 5 ln t, t . 0.

(a) Use integration by parts to show that

+ {ln t} 5 s + {t ln t} 2
1
s
.

(b) If +{ln t} 5 Y(Y(Y s), use Theorem 7.4.1 with n 5 1 to show 
that part (a) becomes 

s
dY

dsdsd
1 Y 5 2

1
s

.

Find an explicit solution Y(Y(Y s) of the foregoing differential 
equation.

(c) Finally, the integral de�nition of Euler’s constant
(sometimes called the Euler-Mascheroni constant) is 
� 5 2e`

0 e2t ln t dt, where � 5 0.5772156649. . . . Use 
Y(Y(Y 1) 5 2� in the solution in part (b) to show that� in the solution in part (b) to show that�

+ {ln t} 5 2
�

s
2

ln s

s
, s . 0.
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Computer Lab Assignments
72. In this problem you are led through the commands in 

Mathematica that enable you to obtain the symbolic Laplace 
transform of a differential equation and the solution of the 
initial-value problem by �nding the inverse transform. In 
Mathematica the Laplace transform of a function y(t) is 
obtained using LaplaceTransform [y[t], t, s]. In line two of the 
syntax we replace LaplaceTransform [y[t], t, s] by the symbol 
Y. (If you do not have Mathematica, then adapt the given 
procedure by �nding the corresponding syntax for the CAS you 
have on hand.)

Consider the initial-value problem

y0 1 6y9 1 9y 5 t sin t, y(0) 5 2, y9(0) 5 21.

Load the Laplace transform package. Precisely reproduce and 
then, in turn, execute each line in the following sequence of 
commands. Either copy the output by hand or print out the 
results.

diffequat 5 y 0 [t] 1 6y9[t] 1 9y[t] 55 t Sin[t]
transformdeq 5 LaplaceTransform [diffequat, t, s] /.

{y[0] 2 . 2, y9[0] 2 . 21, 
LaplaceTransform [y[t], t, s] 2 . Y}

soln 5 Solve[transformdeq, Y]//Flatten
Y 5 Y/.soln
InverseLaplaceTransform[Y, s, t]

73. Appropriately modify the procedure of Problem 72 to �nd a 
solution of

y- 1 3y9 2 4y 5 0,

y(0) 5 0, y9(0) 5 0, y0(0) 5 1.

74. The charge q(t) on a capacitor in an LC-series circuit is 
given by

d2d2d q2q2

dt2
1 q 5 1 2 48(t 2 �) 1 68(t 2 3�),

q(0) 5 0, q9(0) 5 0.

Appropriately modify the procedure of Problem 72 to �nd q(t). 
Graph your solution.

7.5    The Dirac Delta Function

INTRODUCTION In the last paragraph on page 284, we indicated that as an 
immediate consequence of Theorem 7.1.3, F(s) 5 1 cannot be the Laplace transform 
of a function f that is piecewise continuous on [0, f that is piecewise continuous on [0, f `) and of exponential order. In the 
discussion that follows we are going to introduce a function that is very different 
from the kinds that you have studied in previous courses. We shall see that there does 
indeed exist a function—or, more precisely, a generalized function—whose Laplace 
transform is F(s) 5 1.

UNIT IMPULSE Mechanical systems are often acted on by an external force (or 
electromotive force in an electrical circuit) of large magnitude that acts only for a 
very short period of time. For example, a vibrating airplane wing could be struck by 
lightning, a mass on a spring could be given a sharp blow by a ball peen hammer, and 
a ball (baseball, golf ball, tennis ball) could be sent soaring when struck violently by 
some kind of club (baseball bat, golf club, tennis racket). See Figure 7.5.1. The graph 
of the piecewise-de�ned function

�a(t 2 t0t0t ) 5 5
0, 

1

2a
,

0,

0 # t , t0t0t 2 a

t0t0t 2 a # t , t0t0t 1 a

t $ t0t0t 1 a,

(1)

a . 0, t0t0t . 0, shown in Figure 7.5.2(a), could serve as a model for such a force. 
For a small value of a, �a (t 2 t0t0t ) is essentially a constant function of large magnitude 
that is “on” for just a very short period of time, around t0. The behavior of �a(t 2 t0t0t ) 
as a S 0 is illustrated in Figure 7.5.2(b). The function �a(t 2 t0t0t ) is called a unit 
impulse, because it possesses the integration property e`

0 �a(t 2 t0t0t ) dt 5 1.

FIGURE 7.5.1 A golf club applies a force 
of large magnitude on the ball for a very 
short period of time
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DIRAC DELTA FUNCTION In practice it is convenient to work with another type 
of unit impulse, a “function” that approximates �a(t 2 t0t0t ) and is de�ned by the limit

�(t 2 t0) 5 lim
a S 0 

�a(t 2 t0). (2)

The latter expression, which is not a function at all, can be characterized by the two 
properties

(i) �(t 2 t0t0t ) 5 5`,

0,

t 5 t0t0t

t Þ t0t0t
and  (ii) #`

0
#

0
# �(t 2 t0t0t ) dt 5 1.

The unit impulse �(t � t0t0t ) is called the Dirac delta function.
It is possible to obtain the Laplace transform of the Dirac delta function by the for-

mal assumption that +{�(t 2 t0t0t )} 5 lima S 0 +{�a(t 2 t0t0t )}.

THEOREM 7.5.1 Transform of the Dirac Delta Function

For t0 . 0, +{�(t 2 t0)} 5 e2st0. (3)

PROOF To begin, we can write �a(t 2 t0t0t ) in terms of the unit step function by virtue 
of (11) and (12) of Section 7.3:

�a(t 2 t0t0t ) 5
1

2a
[8(t 2 (t0t0t 2 a)) 2 8(t 2 (t0t0t 1 a))].

By linearity and (14) of Section 7.3 the Laplace transform of this last expression is

+{�a(t 2 t0t0t )} 5
1

2a 3e2s(t0t0t 2a)

s
2

e2s(t0t0t 1a)

s 4 5 e2st0t0t 1esa 2 e2sa

2sa 2. (4)

Since (4) has the indeterminate form 0y0 as a S 0, we apply L’Hôpital’s Rule:

+{�(t 2 t0t0t )} 5 lim
a S 0

+{�a(t 2 t0t0t )} 5 e2st0t0t lim
a S 0 1esa 2 e2sa

2sa 2 5 e2st0t0t . ■

Now when t0 5 0, it seems plausible to conclude from (3) that

+{�(t)} 5 1.

The last result emphasizes the fact that �(t) is not the usual type of function that 
we have been considering, since we expect from Theorem 7.1.3 that +{f (t)} : 0 
as s : `.

 EXAMPLE 1  Two Initial-Value Problems

Solve  y0 1 y 5 4 �(t 2 2�) subject to

(a) y(0) 5 1, y9(0) 5 0 (b) y(0) 5 0, y9(0) 5 0.

The two initial-value problems could serve as models for describing the motion of 
a mass on a spring moving in a medium in which damping is negligible. At t 5 2�
the mass is given a sharp blow. In (a) the mass is released from rest 1 unit below the 
equilibrium position. In (b) the mass is at rest in the equilibrium position.

SOLUTION (a) From (3) the Laplace transform of the differential equation is

s2Y(Y(Y s) 2 s 1 Y(Y(Y s) 5 4e22�s or Y(Y(Y s) 5
s

s2 1 1
1

4e22�s

s2 1 1
.

(b) behavior of δa as a → 0

tt0

y

t

2a
1/2a

t0

y

t0t0t 1 at0 2 a

(a) graph of δa(t 2 t0t0t )

FIGURE 7.5.2 Unit impulse
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Using the inverse form of the second translation theorem, (15) of Section 7.3, we �nd

y(t) 5 cos t 1 4 sin (t 2 2�) 8(t 2 2�).

Since sin(t 2 2�) 5 sin t, the foregoing solution can be written as

y(t) 5 5cos t, 0 # t , 2�

cos t 1 4 sin t, t $ 2�.
(5)

In Figure 7.5.3 we see from the graph of (5) that the mass is exhibiting simple 
harmonic motion until it is struck at t 5 2�. The in�uence of the unit impulse is to 
increase the amplitude of vibration to Ï17Ï  for t . 2�.

(b) In this case the transform of the equation is simply

Y(s) 5
4e22�s

s2 1 1
,

and so y(t) 5 4 sin (t 2 2�) 8(t 2 2�)

5 50, 0 # t , 2�

4 sin t, t $ 2�.
(6)

The graph of (6) in Figure 7.5.4 shows, as we would expect from the initial conditions 
that the mass exhibits no motion until it is struck at t 5 2�. ■

t

y

2� 4�

1

21

FIGURE 7.5.4 No motion until mass is 
struck at t 5 2� in part (b) of Example 1� in part (b) of Example 1�

t

y

1

21 2 42 4� �

FIGURE 7.5.3 Mass is struck at t 5 2� in 
part (a) of Example 1

(i) If �(t 2 t0) were a function in the usual sense, then property (i) on page 319 
would imply e`

0 �(t 2 t0t0t ) dt 5 0 rather than e`

0 �(t 2 t0t0t ) dt 5 1. Because the 
Dirac delta function did not “behave” like an ordinary function, even though 
its users produced correct results, it was met initially with great scorn by 
mathematicians. However, in the 1940s Dirac’s controversial function was 
put on a rigorous footing by the French mathematician Laurent Schwartz in 
his book Théorie des distributions, and this, in turn, led to an entirely new 
branch of mathematics known as the theory of distributions or generalized 
functions. In this theory (2) is not an accepted de�nition of �(t 2 t0), nor 
does one speak of a function whose values are either ` or 0. Although we 
shall not pursue this topic any further, suf�ce it to say that the Dirac delta 
function is best characterized by its effect on other functions. If f is a continuf is a continuf -
ous function, then

#`

0
#

0
# f (t) � (t 2 t0t0t ) dt 5 f (t0t0t ) (7)

can be taken as the de�nition of �(t 2 t0). This result is known as the sifting 
property, since �(t 2 t0) has the effect of sifting the value f (t0) out of the 
set  of values of f on [0, f on [0, f `). Note that property (ii) (with f (t) 5 1) and (3) 
(with f (t) 5 e2st) are consistent with (7).

(ii) In (iii) in the Remarks at the end of Section 7.2 we indicated that the trans-
fer function of a general linear nth-order differential equation with constant 
coef�cients is W(s) 5 1yP(s), where P(s) 5 ansn 1 an21sn21 1 Á 1 a0. The 
transfer function is the Laplace transform of function w(t), called the weight 
function of a linear system. But w(t) can also be characterized in terms of the 

REMARKS
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EXERCISES 7.5
In Problems 1–12 use the Laplace transform to solve the given initial-
value problem.

1. y9 2 3y 5 �(t 2 2), y(0) 5 0

2. y9 1 y 5 �(t 2 1), y(0) 5 2

3. y0 1 y 5 �(t 2 2�), y(0) 5 0, y9(0) 5 1

4. y0 1 16y 5 �(t 2 2�), y(0) 5 0, y9(0) 5 0

5. y0 1 y 5 �_t 2 1
2�+ 1 �_t 2 3

2�+, y(0) 5 0, y9(0) 5 0

6. y0 1 y 5 �(t 2 2�) 1 �(t 2 4�), y(0) 5 1, y9(0) 5 0

7. y0 1 2y9 5 �(t 2 1), y(0) 5 0, y9(0) 5 1

8. y0 2 2y9 5 1 1 �(t 2 2), y(0) 5 0, y9(0) 5 1

9. y0 1 4y9 1 5y 5 �(t 2 2�), y(0) 5 0, y9(0) 5 0

10. y0 1 2y9 1 y 5 �(t 2 1), y(0) 5 0, y9(0) 5 0

11. y0 1 4y4y4 9 1 13y 5 �(t 2 �) 1 �(t 2 3�), y(0) 5 1, y9(0) 5 0

12. y0 2 7y9 1 6y6y6 5 et 1 �(t 2 2) 1 �(t 2 4), y(0) 5 0, y9(0) 5 0

In Problems 13 and 14 use the Laplace transform to solve the given 
initial-value problem. Graph your solution on the interval f0, 8�g .

13. y0 1 y 5o
`

k51
�(t 2 k�), y(0) 5 0, y9(0) 5 1

14. y0 1 y 5o
`

k51
�(t 2 2k�), y(0) 5 0, y9(0) 5 1  

In Problems 15 and 16 a uniform beam of length L carries a con-
centrated load w0 at x 5 1

2L . See Figure 7.5.5 (Problem 15) and 
Figure 7.5.6 (Problem 16). Use the Laplace transform to solve the 
differential equation

EIEIE
d 4y4y4

dxdxd 4 5 w0 �_x_x_ 2 1
2 L+, 0 , x , L,

subject to the given boundary conditions.

15. y(0) 5 0, y9(0) 5 0, y0(L) 5 0, y-(L) 5 0

x

y

L

w0

FIGURE 7.5.5 Beam embedded at its left end and free at its right end

16. y(0) 5 0, y9(0) 5 0, y(L) 5 0, y9(L) 5 0

L

w0

y

x

FIGURE 7.5.6 Beam embedded at both ends

Discussion Problems
17. Someone tells you that the solutions of the two IVPs

y0 1 2y2y2 9 1 10y0y0 5 0,

y0 1 2y2y2 9 1 10y0y0 5 �(t),

  y(0) 5 0, y9(0) 5 1  y(0) 5 0, y9(0) 5 0

are exactly the same. Do you agree or disagree? Defend your 
answer.

18. Reread (i) in the Remarks at the end of this section. Then use 
the Laplace transform to solve the initial-value problem:

y0 1 4y9 1 3y 5 et�t�t (t 2 1), y(0) 5 0, y9(0) 5 2.

Use a graphing utility to graph y(t) for 0 # t # 5.

Answers to selected odd-numbered problems begin on page ANS-12.

discussion at hand. For simplicity let us consider a second-order linear system 
in which the input is a unit impulse at t 5 0:

a2y2y2 0 1 a1y9 1 a0y0y0 5 �(t), y(0) 5 0, y9(0) 5 0.

Applying the Laplace transform and using +{� (t)} 5 1 shows that the trans-
form of the response y in this case is the transfer function

Y(Y(Y s) 5
1

a2s2 1 a1s 1 a0
5

1

P(s)
5 W(W(W s) and so y 5 +215 1

P(s)6 5 w(t).

From this we can see, in general, that the weight function y 5 w(t) of an t) of an t nth-order 
linear system is the zero-state response of the system to a unit impulse. For this 
reason w(t) is also called the t) is also called the t impulse response of the system.
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INTRODUCTION When initial conditions are speci�ed, the Laplace transform of 
each equation in a system of linear differential equations with constant coef�cients 
reduces the system of DEs to a set of simultaneous algebraic equations in the 
transformed functions. We solve the system of algebraic equations for each of the 
transformed functions and then �nd the inverse Laplace transforms in the usual 
manner.

COUPLED SPRINGS Two masses m1 and m2 are connected to two springs A and 
B of negligible mass having spring constants k1 and k2, respectively. In turn the two 
springs are attached as shown in Figure 7.6.1. Let x1(t) and x2(t) denote the vertical 
displacements of the masses from their equilibrium positions. When the system is 
in motion, spring B is subject to both an elongation and a compression; hence its 
net elongation is x2 2 x1. Therefore it follows from Hooke’s law that springs A and 
B exert forces 2k1x1 and k2(x2 2 x1), respectively, on m1. If no external force is 
impressed on the system and if no damping force is present, then the net force on 
m1 is 2k1x1 1 k2(x2 2 x1). By Newton’s second law we can write

m1
d2x1

dt2
5 2k1k1k x1 1 k2(x2 2 x1).

Similarly, the net force exerted on mass m2 is due solely to the net elongation of 
B; that is, 2k2(x2 2 x1). Hence we have

m2
d2x2

dt2
5 2k2k2k (x2 2 x1).

In other words, the motion of the coupled system is represented by the system of 
simultaneous second-order differential equations

m1x01 5 2k1x1 1 k2(x2 2 x1)

m2x02 5 2k2(x2 2 x1).
(1)

In the next example we solve (1) under the assumptions that k1 5 6, k2 5 4, 
m1 5 1, m2 5 1, and that the masses start from their equilibrium positions with 
opposite unit velocities.

 EXAMPLE 1  Coupled Springs

Solve x01 1 10x0x0 1 2 4x2 5 0

24x1x1x 1 x02 1 4x2 5 0
(2)

subject to x1(0) 5 0, x91(0) 5 1, x2(0) 5 0, x92(0) 5 21.

SOLUTION The Laplace transform of each equation is

s2X1(s) 2 sx1(0) 2 x19(0) 1 10X1(s) 2 4X2X2X (s) 5 0

24X1X1X (s) 1 s2X2X2X (s) 2 sx2(0) 2 x29 (0) 1 4X2X2X (s) 5 0,

where X1(s) 5 +{x1(t)} and X2X2X (s) 5 +{x2(t)}. The preceding system is the same as

(s2 1 10) X1(s) 2             4X2X2X (s) 5 1

24 X1(s) 1 (s2 1 4) X2X2X (s) 5 21.
(3)

7.6 S Systems of Linear Differential Equations

m2

k1

k2

k1

k (x2 2 x1)2

k (x2 2 x1)2

x2

x2 5 0

x1 5 0
x1

x1

A

m1

B m1

m2m2

(a) equilibrium (b) motion (c) forces

m1

FIGURE 7.6.1 Coupled spring/mass 
system
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Solving (3) for X1(s) and using partial fractions on the result yields

X1(s) 5
s2

(s2 1 2)(s2 1 12)
5 2

1y5

s2 1 2
1

6y5

s2 1 12
,

and therefore

x1(t) 5 2
1

5Ï2
+215 Ï2

s2 1 26 1
6

5Ï12
+215 Ï12

s2 1 126
5 2

Ï2Ï
10

 s sin Ï2Ï t 1
Ï3Ï
5

 s sin 2Ï3Ï t.

Substituting the expression for X1(s) into the �rst equation of (3) gives

X2X2X (s) 5 2
s2 1 6

(s2 1 2)(s2 1 12)
5 2

2y5

s2 1 2
2

3y5

s2 1 12

and x2(t) 5 2
2

5Ï2
+215 Ï2

s2 1 26 2
3

5Ï12
+215 Ï12

s2 1 126
5 2

Ï2Ï
5

 s sin Ï2Ï t 2
Ï3Ï
10

 s sin 2Ï3Ï t.

Finally, the solution to the given system (2) is

x1(t) 5 2
Ï2Ï
10

 s sin Ï2Ï t 1
Ï3Ï
5

 s sin 2Ï3Ï t

x2(t) 5 2
Ï2Ï
5

 s sin Ï2Ï t 2
Ï3Ï
10

 s sin 2Ï3Ï t.

(4)

The graphs of x1 and x2 in Figure 7.6.2 reveal the complicated oscillatory motion of 
each mass. ■

NETWORKS In (18) of Section 3.3 we saw the currents i1(t) and i2(t) in the network 
shown in Figure 7.6.3, containing an inductor, a resistor, and a capacitor, were gov-
erned by the system of �rst-order differential equations

L 
di1
dt

1 Ri2 5 E(t)

RC 
di2
dt

1 i2 2 i1 5 0.

(5)

We solve this system by the Laplace transform in the next example.

 EXAMPLE 2  An Electrical Network

Solve the system in (5) under the conditions  E(t)t)t 5 60 V, L 5 1 h, R 5 50 V, C 5 1024 f, 
and the currents i1 and i2 are initially zero.

SOLUTION We must solve

di1
dt

1 50i2 5 60

50(1024) 
di2
dt

1 i2 2 i1 5 0

subject to i1(0) 5 0, i2(0) 5 0.

FIGURE 7.6.2 Displacements of the two 
masses in Example 1

52.5 107.5 1512.5

20.4

0.2

0.4

20.2

t

x1

(a) plot of x1(t)

(b) plot of x2(t)

52.5 107.5 1512.5

20.4

0.2

0.4

20.2

t

x2

FIGURE 7.6.3 Electrical network

R

i1 L i2
i3

CE
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Applying the Laplace transform to each equation of the system and simplifying gives

        sI1(s) 1             50I2I2I (s) 5
60
s

2200I1(s) 1 (s 1 200)I2I2I (s) 5 0,

where I1(s) 5 +{i1(t)} and I2I2I (s) 5 +{i2(t)}. Solving the system for I1 and I2I2I  and 
decomposing the results into partial fractions gives

I1(s) 5
60s 1 12,000

s(s 1 100)2 5
6y5

s
2

6y5

s 1 100
2

60

(s 1 100)2

I2I2I (s) 5
12,000

s(s 1 100)2    5
6y5

s
2

6y5

s 1 100
2

120

(s 1 100)2.

Taking the inverse Laplace transform, we �nd the currents to be

i1(t) 5
6

5
2

6

5
e2100t 2 60te2100t

i2(t) 5
6

5
2

6

5
e2100t 2 120te2100t. ■

Note that both i1(t) and i2(t) in Example 2 tend toward the value EyR 5 6
5 as t : `. 

Furthermore, since the current through the capacitor is i3(t)t)t 5 i1(t)t)t 2 i2(t)t)t 5 60te2100t, 
we observe that i3(t) S 0 as t S `.

DOUBLE PENDULUM Consider the double-pendulum system consisting of a 
pendulum attached to a pendulum shown in Figure 7.6.4. We assume that the system 
oscillates in a vertical plane under the in�uence of gravity, that the mass of each rod 
is negligible, and that no damping forces act on the system. Figure 7.6.4 also shows 
that the displacement angle �1 is measured (in radians) from a vertical line extending 
downward from the pivot of the system and that �2 is measured from a vertical line extend-
ing downward from the center of mass m1. The positive direction is to the right; the nega-
tive direction is to the left. As we might expect from the analysis leading to equation (6) 
of Section 5.3, the system of differential equations describing the motion is nonlinear:

But if the displacements �1(t) and �2(t) are assumed to be small, then the approxima-
tions cos(�1 2 �2) < 1, sin(�1 2 �2) < 0, sin �1 < �1, sin �2 < �2 enable us to replace 
system (6) by the linearization

(m1 1 m2)l12�10 1 m2l1l2�20 1 (m1 1 m2)l1g�1 5 0

m2l22�20 1 m2l1l2�10 1 m2l2g�2 5 0.
(7)

 EXAMPLE 3  Double Pendulum

It is left as an exercise to �ll in the details of using the Laplace transform to solve 
system (7) when m1 5 3, m2 5 1, l1 5 l2 5 16, �1(0) 5 1, �2(0) 5 21, �91(0) 5 0, 
and �92(0) 5 0. You should �nd that

�1(t) 5
1

4
 c cos

2

Ï3Ï
t 1

3

4
 c cos 2t

�2(t) 5
1

2
 c cos

2

Ï3Ï
t 2

3

2
 c cos 2t.

(8)

With the aid of a CAS the positions of the two masses at t 5 0 and at subsequent 
times are shown in Figure 7.6.5. See Problem 21 in Exercises 7.6.

(m1 1 m2)l12�10 1 m2l1l2�20 cos (�1 2 �2) 1 m2l1l2(�29 )2 sin (�1 2 �2) 1 (m1 1 m2)l1g sin �1 5 0

m2l22�20 1 m2l1l2�10cos (�1 2 �2) 2 m2l1l2(�19)2 sin (�1 2 �2) 1 m2l2g sin �2 5 0.
(6)

1

2

l1

m1

m2

l2

�

�

FIGURE 7.6.4 Double pendulum
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(a) t 5 0 (b) t 5 1.4 (c) t 5 2.5 (d) t 5 8.5

FIGURE 7.6.5 Positions of masses on double pendulum at various times in Example 3 ■

EXERCISES 7.6
In Problems 1–12 use the Laplace transform to solve the given sys-
tem of differential equations.

1.
dxdxd

dt
5 2x 1 y 2.

dxdxd

dt
5 2y 1 et

dy

dt
5 2x2x2

dy

dt
5 8x 2 t

x(0) 5 0, y(0) 5 1 x(0) 5 1, y(0) 5 1

3.
dxdxd

dt
5 x 2 2y2y2 4.

dxdxd

dt
1 3x 1

dy

dt
5 1

dy

dt
5 5x 2 y

dxdxd

dt
2 x 1

dy

dt
2 y 5 et

x(0) 5 21, y(0) 5 2 x(0) 5 0, y(0) 5 0

5. 2
dxdxd

dt
1

dy

dt
2 2x 5 1 6.

dxdxd

dt
1 x 2

dy

dt
1 y 5 0

dxdxd

dt
1

dy

dt
2 3x 2 3y 5 2

dxdxd

dt
1

dy

dt
1 2y 5 0

x(0) 5 0, y(0) 5 0 x(0) 5 0, y(0) 5 1

7.
d 2x

dt2
1 x 2 y 5 0 8.

d 2x2x2

dt2
1

dxdxd

dt
1

dy

dt
5 0

d 2y

dt2
1 y 2 x 5 0

d 2y

dt2
1

dy

dt
2 4

dxdxd

dt
5 0

x(0) 5 0, x9(0) 5 22, x(0) 5 1, x9(0) 5 0,

y(0) 5 0, y9(0) 5 1 y(0) 5 21, y9(0) 5 5

9.
d 2x

dt2
1

d 2y

dt2
5 t2 10.

dxdxd

dt
2 4x 1

d 3y

dt3
5 6 sin t

d 2x

dt2
2

d 2y

dt2
5 4t

dxdxd

dt
1 2x 2 2

d 3y

dt3
5 0

x(0) 5 8, x9(0) 5 0, x(0) 5 0, y(0) 5 0,

y(0) 5 0, y9(0) 5 0 y9(0) 5 0, y0(0) 5 0

11.
d 2x

dt2
1 3

dy

dt
1 3y 5 0

d 2x2x2

dt2
1 3y 5 te2t

x(0) 5 0, x9(0) 5 2, y(0) 5 0

12.
dxdxd

dt
5 4x4x4 2 2y2y2 1 28(t 2 1)

dydyd

dt
5 3x 2 y 1 8(t 2 1)

x(0) 5 0, y(0) 5 1
2

13. Solve system (1) when k1 5 3, k2 5 2, m1 5 1, m2 5 1 and 
x1(0) 5 0, x91(0) 5 1, x2(0) 5 1, x92(0) 5 0.

14. Derive the system of differential equations describing the 
straight-line vertical motion of the coupled springs shown in 
Figure 7.6.6. Use the Laplace transform to solve the system 
when k1 5 1, k2k2k 5 1, k3k3k 5 1, m1 5 1, m2 5 1 and x1(0) 5 0, 
x91(0) 5 21, x2(0) 5 0, x92(0) 5 1.

k

m2

k2

3

x2 5 0

x1 5 0 m1

k1

FIGURE 7.6.6 Coupled springs in Problem 14

15. (a) Show that the system of differential equations for the 
currents i2(t) and i3(t) in the electrical network shown in 
Figure 7.6.7 is

L1
di2
dt

1 Ri2 1 Ri3 5 E(t)

L2
di3
dt

1 Ri2 1 Ri3 5 E(t).

(b) Solve the system in part (a) if R 5 5 V, L1 5 0.01 h, 
L2 5 0.0125 h, E 5 100 V, i2(0) 5 0, and i3(0) 5 0.

(c) Determine the current i1(t).

Answers to selected odd-numbered problems begin on page ANS-12.
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L1

R

E

i1 i2
i3

L2

FIGURE 7.6.7 Network in Problem 15

16. (a) In Problem 12 in Exercises 3.3 you were asked to show that 
the currents i2(t) and i3(t) in the electrical network shown 
in Figure 7.6.8 satisfy

L
di2
dt

1 L
di3
dt

1 R1i2 5 E(t)

2R1
di2
dt

1 R2
di3
dt

1
1

C
i3 5 0.

Solve the system if R1 5 10 V, R2 5 5 V, L 5 1 h, 
C 5 0.2 f,

E(t) 5 5120,

0,

0 # t , 2

t $ 2,

i2(0) 5 0, and i3(0) 5 0.

(b) Determine the current i1(t).

R1E

i1 L i2
i3

C

R2

FIGURE 7.6.8 Network in Problem 16

17. Solve the system given in (17) of Section 3.3 when R1 5 6 V, 
R2 5 5 V, L1 5 1 h, L2 5 1 h, E(t)t)t 5 50 sin t V, t V, t i2(0) 5 0, and 
i3(0) 5 0.

18. Solve (5) when E 5 60 V, L 5 1
2 h, R 5 50 V, C 5 1024 f, 

i1(0) 5 0, and i2(0) 5 0.

19. Solve (5) when E 5 60 V, L 5 2 h, R 5 50 V, C 5 1024 f, 
i1(0) 5 0, and i2(0) 5 0.

20. (a) Show that the system of differential equations for the charge 
on the capacitor q(t) and the current i3(t) in the electrical 
network shown in Figure 7.6.9 is

R1
dq

dt
1

1

C
q 1 R1i3 5 E(t)

L
di3
dt

1 R2i3 2
1

C
q 5 0.

(b) Find the charge on the capacitor when L 5 1 h, R1 5 1 V, 
R2 5 1 V, C 5 1 f,

E(t) 5 50,

50e2t,

0 , t , 1

t $ 1,

i3(0) 5 0, and q(0) 5 0.

R1

E

i1 i2

i3

LC

R2

FIGURE 7.6.9 Network in Problem 20

Computer Lab Assignments
21. (a) Use the Laplace transform and the information given in 

Example 3 to obtain the solution (8) of the system given 
in (7).

(b)  Use a graphing utility to graph �1(t) and �2(t) in the 
t�-plane. Which mass has extreme displacements of 
greater magnitude? Use the graphs to estimate the �rst 
time that each mass passes through its equilibrium 
position. Discuss whether the motion of the pendulums is 
periodic.

(c) Graph �1(t) and �2(t) in the �1�2-plane as parametric 
equations. The curve de�ned by these parametric equations 
is called a Lissajous curve.

(d) The positions of the masses at t 5 0 are given in 
Figure 7.6.5(a). Note that we have used 1 radian < 57.3°. 
Use a calculator or a table application in a CAS to 
construct a table of values of the angles �1 and �2 for 
t 5 1, 2, . . . , 10 s. Then plot the positions of the two 
masses at these times.

(e) Use a CAS to �nd the �rst time that �1(t) 5 �2(t) and 
compute the corresponding angular value. Plot the positions 
of the two masses at these times.

(f) Utilize the CAS to draw appropriate lines to simulate 
the pendulum rods, as in Figure 7.6.5. Use the animation 
capability of your CAS to make a “movie” of the motion 
of the double pendulum from t 5 0 to t 5 10 using a 
time increment of 0.1. [Hint: Express the coordinates 
(x1(t), y1(t)) and (x2(t), y2(t)) of the masses m1 and m2, 
respectively, in terms of �1(t) and �2(t).]
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In Problems 1 and 2 use the de�nition of the Laplace transform to 
�nd +{ f (t)}.

1. f (t) 5 5t,

2 2 t,

0 # t , 1

t $ 1

2. f (t) 5 5
0,

1,

0,

0 # t , 2

2 # t , 4

t $ 4

In Problems 3–24 �ll in the blanks or answer true or false.

3. If f is not piecewise continuous on [0, f is not piecewise continuous on [0, f `), then +{ f (t)} will not 
exist. _______

4. The function f (t) 5 (et)10 is not of exponential order. _______

5. F(s) 5 s2y(s2 1 4) is not the Laplace transform of a function 
that is piecewise continuous and of exponential order. _______

6. If +{ f (t)} 5 F(s) and +{g(t)} 5 G(s), then 

+21{F(s)G(s)} 5 f (t)g(t). _______

7. +{e27t} 5 _______ 8. +{te27t} 5 _______

9. +{sin 2t} 5 _______ 10. +{e23t sin 2t} 5 _______

11. +{t sin 2t} 5 _______

12. +{sin 2t 8(t 2 �)} 5 _______

13. +21520

s6 6 5 _______

14. +215 1

3s 2 16 5 _______

15. +215 1

(s 2 5)36 5 _______

16. +215 1

s2 2 56 5 _______

17. +215 s

s2 2 10s 1 296 5 _______

18. +215e25s

s2 6 5 _______

19. +215 s 1 �

s2 1 �2 e2s6 5 _______

20. +215 1

L2s2 1 n2� 26 5 _______

21. +{e25t} exists for s . _______.

22. If +{ f (t)} 5 F(s), then +{te8t f (t)} 5 _______.

23. If +{ f (t)} 5 F(s) and k . 0, then 

+{eatft ft (t 2 k) 8(t 2 k)} 5 _______.

Chapter 7 In Review Answers to selected odd-numbered problems begin on page ANS-13.

24. +{et
0 ea� f (�) d�} 5 _______ whereas 

+{eat et
0 f (�) d�} 5 _______.

In Problems 25–28 use the unit step function to �nd an equation for 
each graph in terms of the function y 5 f (t), whose graph is given in 
Figure 7.R.1.

t0t0t
t

y

y 5 f(f(f t)

FIGURE 7.R.1 Graph for Problems 25–28

25.

t0t0t
t

y

FIGURE 7.R.2 Graph for Problem 25

26.

t0t0t
t

y

FIGURE 7.R.3 Graph for Problem 26
27.

t0
t

y

FIGURE 7.R.4 Graph for Problem 27

28.

FIGURE 7.R.5 Graph for Problem 28

t0t0t
t

y

t1

In Problems 29–32 express f in terms of unit step functions. Find f in terms of unit step functions. Find f
+{ f (t)} and +{et f (t)}.

29.

1

1

2 3 4 t

f (t)

FIGURE 7.R.6 Graph for Problem 29
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30.

2

1

21
t

f (t)

3

y 5 sin t,  � # t # 3�

� � �

FIGURE 7.R.7 Graph for Problem 30

31.

1 2 3

2

1

t

f (t)
(3, 3)

FIGURE 7.R.8 Graph for Problem 31

32.

1 2

1

t

f (t)

FIGURE 7.R.9 Graph for Problem 32

In Problems 33 and 34 sketch the graph of the given function. Find 
+h+h+ f (t)j .

33. f (t) 5 21 1 2 o
`

k51
(21)k118(t 2 k)

34. f (t) 5 o
`

k50
(2k 1 1 2 t)f8(t 2 2k) 2 8(t 2 2k 2 1)g

In Problems 35–42 use the Laplace transform to solve the given 
equation.

35. y0 2 2y9 1 y 5 et, y(0) 5 0, y9(0) 5 5

36. y0 2 8y9 1 20y 5 tet, y(0) 5 0, y9(0) 5 0

37. y0 1 6y9 1 5y 5 t 2 t  8t  8t  (t 2 2), y(0) 5 1, y9(0) 5 0

38. y9 2 5y 5 f (t), where 

f (t) 5 5t2,

0,

0 # t , 1

t $ 1
, y(0) 5 1

39. y9 1 2y2y2 5 f (t), y(0) 5 1, where f (t) is given in Figure 7.R.10.

1 2 3

1

t

f (t)

FIGURE 7.R.10 Graph for Problem 39

40. y0 1 5y9 1 4y 5 f (t), y(0) 5 0, y9(0) 5 3, where

f (t) 5 12 o
`

k50
(21)k8(t 2 k).

41. y9(t) 5 cos t 1 #t

0
#

0
# y(�) cos(t 2 �) d�, y(0) 5 1

42. #t

0
#

0
# f (�) f (t 2 �) d� 5 6t3

In Problems 43 and 44 use the Laplace transform to solve each system.

43.    x9 1 y 5 t 44.   x0 1 y0 5    e2t

4x 1 y9 5 0 2x9 1 y0 5 2e2t

  x(0) 5 1, y(0) 5 2 x(0) 5 0, y(0) 5 0,

x9(0) 5 0, y9(0) 5 0

45. The current i(t) in an RC-series circuit can be determined from 
the integral equation

Ri 1
1

C #t

0
#

0
# i(�) d� 5 E(t),

where E(t) is the impressed voltage. Determine i(t) when  
R 5 10 V, C 5 0.5 f, and E(t) 5 2(t2 1 t).

46. A series circuit contains an inductor, a resistor, and a capacitor 
for which L 5 1

2 h, R 5 10 V, and C 5 0.01 f, respectively. The 
voltage

E(t) 5 510,

0,

0 # t , 5

t $ 5

is applied to the circuit. Determine the instantaneous charge q(t) 
on the capacitor for t . 0 if q(0) 5 0 and q9(0) 5 0.

47. A uniform cantilever beam of length L is embedded at its left 
end (x 5 0) and free at its right end. Find the de�ection y(x) 
if the load per unit length is given by

w(x) 5
2w0

L 3L

2
2 x 1 1x 2

L

22 81x 2
L

224.

48. When a uniform beam is supported by an elastic foundation, the 
differential equation for its de�ection y(x) is

EIEIE
d 4y

dxdxd 4 1 ky 5 w(x),

where k is the modulus of the foundation and k is the modulus of the foundation and k 2ky is the restor-
ing force of the foundation that acts in the direction opposite to 
that of the load w(x). See Figure 7.R.11. For algebraic conve-
nience suppose that the differential equation is written as

d 4y

dxdxd 4 1 4a4y 5
w(x)

EI
,

where a 5 (ky4EI)1/4. Assume L 5 � and � and � a 5 1. Find the de�ec-
tion y(x(x( ) of a beam that is supported on an elastic foundation when

(a) the beam is simply supported at both ends and a constant 
load w0 is uniformly distributed along its length,

(b) the beam is embedded at both ends and w(x) is a  
concentrated load w0 applied at x 5 �y2. [Hint: In  
both parts of this problem use the table of Laplace  
transforms in Appendix C and the fact that 
s4 1 4 5 ss2 2 2s 1 2dss2 1 2s 1 2d.]

0 x

y

L

w(x)

elastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundationelastic foundation

FIGURE 7.R.11 Beam on elastic foundation in Problem 48
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49. (a) Suppose two identical pendulums are coupled by means of 
a spring with constant k. See Figure 7.R.12. Under the same 
assumptions made in the discussion preceding Example 3 
in Section 7.6, it can be shown that when the displacement 
angles �1(t) and �2(t) are small, the system of linear 
differential equations describing the motion is

�10 1
g

l
�1 5 2

k

m
(�1 2 �2)

�20 1
g

l
�2 5

k

m
(�1 2 �2).

Use the Laplace transform to solve the system when 
�1(0) 5 �0, �19(0) 5 0, �2(0) 5 �0, �29(0) 5 0, where �0 and 
�0 are constants. For convenience let �2 5 gyl, K 5 kym.

(b) Use the solution in part (a) to discuss the motion of the 
coupled pendulums in the special case when the initial con-
ditions are �1(0) 5 �0, �19(0) 5 0, �2(0) 5 �0, �29(0) 5 0.  
When the initial conditions are �1(0) 5 �0, �19(0) 5 0, 
�2(0) 5 2�0, �29(0) 5 0.

1

2

m

ll

m

�
�

FIGURE 7.R.12 Coupled pendulums in Problem 49

50. Coulomb Friction Revisited In Problem 27 in Chapter 5 in 
Review we examined a spring/mass system in which a mass 
m slides over a dry horizontal surface whose coef�cient of 
kinetic friction is a constant �. The constant retarding force 
fkfkf 5 �mg of the dry surface that acts opposite to the direction 
of motion is called Coulomb friction after the French physicist 
Charles-Augustin de Coulomb (1736–1806). You were asked 
to show that the piecewise-linear differential equation for the 
displacement x(t) of the mass is given by 

m
d2x2x2

dt2 1 kx 5 5f5f5 kfkf , x9 , 0 (motion to leftftf )

2f2f2 kfkf , x9 . 0 (motion to right).

(a) Suppose that the mass is released from rest from a point 
x(0) 5 x0 . 0 and that there are no other external forces. 
Then the differential equations describing the motion of the 
mass m are 

x0 1 �2x2x2 5 F, 0 , t , TyTyT 2

x0 1 �2x2x2 5 2F, TyTyT 2 , t , T

x0 1 �2x2x2 5 F, T , t , 3TyTyT 2,

and so on, where �2 5 kym, F 5 fkfkf ym 5 �g, g 5 32, 
and T 5 2�y�. Show that the times 0, TyTyT 2, T,T,T 3TyTyT 2, . . .
correspond to x9(t) 5 0. 

(b) Explain why, in general, the initial displacement must 
satisfy �2 k x0 k . F.

(c) Explain why the interval 2Fy�2 # x # Fy�2 is 
appropriately called the “dead zone” of the system.

(d) Use the Laplace transform and the concept of the meander 
function to solve for the displacement x(t) fofof r t $ 0.

(e) Show that in the case m 5 1, k 5 1, fkfkf 5 1, and x0 5 5.5
that on the interval [0, 2�) your solution agrees with parts 
(a) and (b) of Problem 28 in Chapter 5 in Review.

(f) Show that each successive oscillation is 2Fy�2 shorter than 
the preceding one.

(g) Predict the long-term behavior of the system.

51. Range of a Projectile—No Air Resistance (a) A projectile, 
such as the canon ball shown in Figure 7.R.13, has weight 
w 5 mg and initial velocity v0 that is tangent to its path 
of motion. If air resistance and all other forces except its 
weight are  ignored, we saw in Problem 23 of Exercises 4.9 
that motion of the projectile is described by the system of 
linear differential equations

m
d 2x2x2

dt 2 5 0

m
d 2y2y2

dt 2 5 2mg.

Use the Laplace transform to solve this system subject to 
the initial conditions 

x(0) 5 0, x9(0) 5 v0 cos �, y(0) 5 0, y9(0) 5 v0 sin �,

where v0 5 uv0u is constant and � is the constant angle 
of elevation shown in Figure 7.R.13 on page 330. The 
solutions x(t) and y(t) are parametric equations of the 
trajectory of the projectile.

(b) Use x(t) in part (a) to eliminate the parameter t in t in t y(t). Use 
the resulting equation for y to show that the horizontal 
range R of the projectile is given by

R 5
v2

0

g
sin 2�.

(c) From the formula in part (b), we see that R is a maximum 
when sin 2� 5 1 or when � 5 �y4. Show that the same 
range—less than the maximum—can be attained by 
�ring the gun at either of two complementary angles �
and �y2 2 �. The only difference is that the smaller angle 
results in a low trajectory whereas the larger angle gives a 
high trajectory.

(d) Suppose g 5 32 ftftf /s2, � 5 388, and v0 5 300 ftftf /s. Use part 
(b) to �nd the horizontal range of the projectile. Find the 
time when the projectile hits the ground.

(e) Use the parametric equations x(t) and y(t) in part (a) along 
with the numerical data in part (d) to plot the ballistic curve 
of the projectile. Repeat with � 5 528 and v0 5 300 ftftf /s.
Superimpose both curves on the same coordinate system.
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52. Range of a Projectile—With Air Resistance (a) Now 
suppose that air resistance is a retarding force tangent 
to the path but acts opposite to the motion. If we take 
air resistance to be proportional to the velocity of the 
projectile, then we saw in Problem 24 of Exercises 4.9 that 
motion of the projectile is describe by the system of linear 
differential equations

m
d 2x2x2

dt 2 5 2�
dxdxd

dt

m
d 2y2y2

dt 2 5 2mg 2 �
dydyd

dt
,

where � . 0. Use the Laplace transform to solve this system 
subject to the initial conditions x(0) 5 0, x9(0) 5 v0 cos �,
y(0) 5 0, y9(0) 5 v0 sin �, where v0 5 uv0u and � are 
constant.

(b) Suppose m 5 1
4 slug, g 5 32 ftftf /s2, � 5 0.02, � 5 388, and 

v0 5 300 ftftf /t/t s. Use a CAS to �nd the time when the 
projectile hits the ground and then compute its 
corresponding horizontal range.

(c) Repeat part (b) using the complementary angle � 5 528
and compare the range with that found in part (b). Does 
the property in part (c) of Problem 51 hold?

(d) Use the parametric equations x(t) and y(t) in part (a)  
along with the numerical data in part (b) to plot the ballistic 
curve of the projectile. Repeat with the same numerical 
data in part (b) but take � 5 528. Superimpose both curves 
on the same coordinate system. Compare these curves with 
those obtained in part (e) of Problem 51.

x

y

R
horizontal range

v0v0v

�

FIGURE 7.R.13 Projectile in Problem 51
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 8.1 Preliminary Theory–Linear Systems
 8.2 Homogeneous Linear Systems
 8.3 Nonhomogeneous Linear Systems
 8.4 Matrix Exponential

C H A P T E R  8  I N  R E V I E W 

W e encountered systems of ordinary differential equations in 

Sections 3.3, 4.9, and 7.6 and were able to solve some systems using 

either systematic elimination or the Laplace transform. In this chapter 

we focus only on systems of linear �rst-order differential equations. We will 

see that the general theory of systems of linear DEs and the solution procedure 

is similar to that of linear higher-order equations considered in Chapter 4. This 

material is fundamental to the analysis of systems of nonlinear �rst-order equations 

in Chapter 10. 

Matrix notation and properties are used extensively throughout this chapter. If 

you are unfamiliar with these concepts, review Appendix B or a linear algebra text.

Systems of Linear First-Order  
Differential Equations

8

Pavel L Photo and Video/Shutterstock.com
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INTRODUCTION Recall that in Section 4.9 we illustrated how to solve systems of 
n linear differential equations in n unknowns of the form

P11(D)x1 1 P12(D)x2 1 Á 1 P1n(D)xn 5 b1(t)

P21(D)x1 1 P22(D)x2 1 Á 1 P2n(D)xn 5 b2(t)

Pn1(D)x1 1 Pn2(D)x2 1 Á 1 Pnn(D)xn 5 bn(t),
o o

(1)

where the Pij were polynomials of various degrees in the differential operator D. In 
this chapter we con�ne our study to systems of �rst-order DEs that are special cases 
of systems that have the normal form

5 g1(t,  x1,  x2,  #  #  #  ,  xn)

5 g2(t,  x1,  x2,  #  #  #  ,  xn)

dx1–––
dt

dx2–––
dt

dxn–––
dt

5 gn(t,  x1,  x2,  #  #  #  ,  xn).

o o

(2)

A system such as (2) of n �rst-order equations is called a �rst-order system.

LINEAR SYSTEMS When each of the functions g1, g2, . . . , gn in (2) is linear 
in the dependent variables x1, x2, . . . , xn, we get the normal form of a first-order 
system of linear equations:

5 a11(t)x1 1 a12(t)x2 1 Á 1 a1n(t)xn 1 f1(t)

5 a21(t)x1 1 a22(t)x2 1 Á 1 a2n(t)xn 1 f2(t)

dx1–––
dt

dx2–––
dt

dxn–––
dt

5 an1(t)x1 1 an2(t)x2 1 Á 1 ann(t)xn 1 fn(t).

o o

(3)

We refer to a system of the form given in (3) simply as a linear system. We 
assume that the coefficients aij as well as the functions fifif  are continuous on a com-
mon interval I. When fifif (t) = 0, i = 1, 2, . . . , n, the linear system (3) is said to be 
homogeneous; otherwise, it is nonhomogeneous.

MATRIX FORM OF A LINEAR SYSTEM If X, A(t), and F(t) denote the respective 
matrices

x1(t)

x2(t)

xn(t)

X 5 ( ) ,

a11(t)

a21(t)

an1(t)

a1n(t)

a2n(t)

ann(t)

a12(t)

a22(t)

an2(t)

A(t) 5 ( ) ,

f1f1f (t)

f2f2f (t)

fnfnf (t)

F(t) 5 ( ) ,
o o o o

Á
Á

Á

8.1 Preliminary Theory—Linear Systems
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then the system of linear �rst-order differential equations (3) can be written as

(d
––
dt

x1

x2

xn

)
a11(t)

a21(t)

an1(t)

a1n(t)

a2n(t)

ann(t)

a12(t)

a22(t)

an2(t)

5 ( (
x1

x2

xn

) 1 ()  )  
f1f1f (t)

f2f2f (t)

fnfnf (t)
)

Á
Á

Á
o o o o o

or simply X9 5 AX 1 F. (4)

If the system is homogeneous, its matrix form is then

X9 5 AX. (5)

EXAMPLE 1  Systems Written in Matrix Notation

(a) If X 5 1x

y2, then the matrix form of the homogeneous linear system

dxdxd

dt
5 3x 1 4y

dydyd

dt
5 5x 2 7y

 is X9 5 135 4

272X.

(b) If X 5 1x

y

z
2, then the matrix form of the nonhomogeneous linear system

dxdxd

dt
5 6x 1 y 1 z 1 t

dydyd

dt
5 8x 1 7y 2 z 110t

dz

dt
5 2x 1 9y 2 z 1 6t

 is X9 5 16

8

2

1

7

9

1

21

21
2X 1 1 t

10t

6t
2.

.

DEFINITION 8.1.1 Solution Vector

A solution vector on an interval I is any column matrixI is any column matrixI

x1(t)

x2(t)

xn(t)

X 5 ( )o

whose entries are differentiable functions satisfying the system (4) on the 
interval.

A solution vector of (4) is, of course, equivalent to n scalar equations 
x1 = �1(t), x2 = �2(t), . . . , xn = �n(t) and can be interpreted geometrically as a 
set of parametric equations of a space curve. In the important case n = 2 the equa-
tions x1 = �1(t), x2 = �2(t) represent a curve in the x1x2-plane. It is common prac-
tice to call a curve in the plane a trajectory and to call the x1x2-plane the phase 
plane. We will come back to these concepts and illustrate them in the next section.
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EXAMPLE 2  Verification of Solutions

Verify that on the interval (−`, `)

X1 5 1 1

212e22t 5 1 e22t

2e22t 2 and X2 5 1352e6t 5 13e6t

5e6t2
are solutions of X9 5 115 3

32X. (6)

SOLUTION From X91 5 122e22t

2e22t2 and X92 5 118e6t

30e6t2 we see that

AX1 5 115 3

321 e22t

2e22t2 5 1 e22t 2 3e22t

5e22t 2 3e22t2 5 122e22t

2e22t2 5 X91,

and AX2 5 115 3

3213e6t

5e6t2 5 1 3e6t 1 15e6t

15e6t 1 15e6t2 5 118e6t

30e6t2 5 X92 . .

Much of the theory of systems of n linear first-order differential equations is 
similar to that of linear nth-order differential equations.

INITIALVALUE PROBLEM Let t0t0t  denote a number in an interval I andI andI

x1(t0t0t )

x2(t0t0t )

xn(t0t0t )

X(t0t0t ) 5 ( and)
�1

�2

�n

X0 5 ( ) ,
o o

where the �i, i = 1, 2, . . . , n are given constants. Then the problem

Solve: X9 5 A(t)X 1 F(t)

Subjbjb ect to:       X(t0) 5 X0

(7)

is an initial-value problem on the interval.

THEOREM 8.1.1 Existence of a Unique Solution

Let the entries of the matrices A(t) and F(t) be functions continuous on a 
common interval I that contains the point I that contains the point I t0. Then there exists a unique solu-
tion of the initial-value problem (7) on the interval.

HOMOGENEOUS SYSTEMS In the next several definitions and theorems we 
are concerned only with homogeneous systems. Without stating it, we shall always 
assume that the aij and the fifif  are continuous functions of t on some common interval t on some common interval t I.

SUPERPOSITION PRINCIPLE The following result is a superposition principle
for solutions of linear systems.

THEOREM 8.1.2 Superposition Principle

Let X1, X2, . . . , Xk be a set of solution vectors of the homogeneous system (5) k be a set of solution vectors of the homogeneous system (5) k

on an interval I. Then the linear combination

X 5 c1X1 1 c2X2 1 Á 1 ckXk,

where the ci, i = 1, 2, . . . , k are arbitrary constants, is also a solution of the k are arbitrary constants, is also a solution of the k
system on the interval.
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It follows from Theorem 8.1.2 that a constant multiple of any solution vector of 
a homogeneous system of linear first-order differential equations is also a solution.

EXAMPLE 3  Using the Superposition Principle

You should practice by verifying that the two vectors

X1 5 1 cos t

21
2 cos t 1 1

2 sin t

2cos t 2 sin t
2 and X2 5 10

et

0
2

are solutions of the system

X9 5 1
1

1

22

0

1

0

1

0

212X. (8)

By the superposition principle the linear combination

X 5 c1X1 1 c2X2 5 c11
cos t

21
2 cos t 1 1

2 sin t

2cos t 2 sin t 2 1 c21
0

et

02
is yet another solution of the system. .

LINEAR DEPENDENCE AND LINEAR INDEPENDENCE We are primarily inter-
ested in linearly independent solutions of the homogeneous system (5).

DEFINITION 8.1.2 Linear Dependence/Independence

Let X1, X2, . . . , Xk be a set of solution vectors of the homogeneous k be a set of solution vectors of the homogeneous k system (5) 
on an interval I. We say that the set is linearly dependent on the interval if 
there exist constants c1, c2, . . . , ck, not all zero, such that

c1X1 1 c2X2 1 Á 1 ckXk 5 0

for every t in the interval. If the set of vectors is not linearly dependent on the t in the interval. If the set of vectors is not linearly dependent on the t
interval, it is said to be linearly independent.

The case when k = 2 should be clear; two solution vectors X1 and X2 are lin-
early dependent if one is a constant multiple of the other, and conversely. For k > 2 
a set of solution vectors is linearly dependent if we can express at least one solution 
vector as a linear combination of the remaining vectors.

WRONSKIAN As in our earlier consideration of the theory of a single ordinary 
differential equation, we can introduce the concept of the Wronskian determinant 
as a test for linear independence. We state the following theorem without proof.

THEOREM 8.1.3 Criterion for Linearly Independent Solutions

Let X1 5 (
x11

x21

xn1

x12

x22

xn2

) , X2 5 ( #  #  #  ,) , 
x1n

x2n
Xn 5 ( )

xnn

o o o

336 CHAPTER 8 SYSTEMS OF LINEAR FIRSTORDER DIFFERENTIAL EQUATIONS 

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



be n solution vectors of the homogeneous system (5) on an interval I. Then the set 
of solution vectors is linearly independent on I if and only if the I if and only if the I Wronskian

W(W(W X1, X2, Á , Xn) 5 Z ÞZx11

x21

xn1

x1n

x2n

xnn

x12

x22

xn2

0
o o

Á
Á

Á

(9)

for every t in the interval.t in the interval.t

It can be shown that if X1, X2, . . . , Xn are solution vectors of (5), then for every 
t in t in t I either I either I W(W(W X1, X2, . . . , Xn) Þ 0 or W(W(W X1, X2, . . . , Xn) 5 0. Thus if we can 
show that W ? 0 for some t0t0t  in I, then W ? 0 for every t, and hence the solutions are 
linearly independent on the interval.

Notice that, unlike our definition of the Wronskian in Section 4.1, here the 
definition of the determinant (9) does not involve differentiation.

 EXAMPLE 4  Linearly Independent Solutions

In Example 2 we saw that X1 5 1 1

212e22t and t and t X2 5 1352e6t are solutions of system (6). t are solutions of system (6). t

Clearly, X1 and X2 are linearly independent on the interval (−`, `), since neither 
vector is a constant multiple of the other. In addition, we have

W(W(W X1, X2) 5 * e22t

2e22t

3e6t

5e6t* 5 8e4t Þ 0

for all real values of t. .

DEFINITION 8.1.3 Fundamental Set of Solutions

Any set X1, X2, . . . , Xn of n linearly independent solution vectors of the 
homogeneous system (5) on an interval I is said to be a I is said to be a I fundamental set of 
solutions on the interval.

THEOREM 8.1.4 Existence of a Fundamental Set

There exists a fundamental set of solutions for the homogeneous system (5) 
on an interval I.

The next two theorems are the linear system equivalents of Theorems 4.1.5 
and 4.1.6.

THEOREM 8.1.5 General Solution — Homogeneous Systems

Let X1, X2, . . . , Xn be a fundamental set of solutions of the homogeneous 
system (5) on an interval I. Then the general solution of the system on the 
interval is

X 5 c1X1 1 c2X2 1 Á 1 cnXn,

where the ci, i = 1, 2, . . . , n are arbitrary constants.
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EXAMPLE 5  General Solution of System (6)

From Example 2 we know that X1 5 1 1

212e22t and t and t X2 5 1352e6t are linearly t are linearly t

independent solutions of (6) on (−`, `). Hence X1 and X2 form a fundamental set 
of solutions on the interval. The general solution of the homogeneous system on 
the interval is then

X 5 c1X1 1 c2X2 5 c11 1

212e22t 1 c21352e6t. (10) .

EXAMPLE 6  General Solution of System (8)

The vectors

X1 5 1
cos t

21
2 cos t 1 1

2 sin t

2cos t 2 sin t 2, X2 5 1
0

1

02et, X3 5 1
sin t

21
2 sin t 2 1

2 cos t

2sin t 1 cos t 2
are solutions of the system (8) in Example 3 (see Problem 16 in Exercises 8.1). Now

W(W(W X1, X2, X3) 5 * cos t

21
2 cos t 1 1

2sin t

2cos t 2 sin t

0

et

0

sin t

21
2 sin t 2 1

2 cos t

2sin t 1 cos t
* 5 et Þ 0

for all real values of t. We conclude that X1, X2, and X3 form a fundamental set of 
solutions on (−`, `). Thus the general solution of the homogeneous system on the 
interval is the linear combination X = c1X1 + c2X2 + c3X3; that is,

X 5 c11
cos t

21
2 cos t 1 1

2 sin t

2cos t 2 sin t 2 1 c21
0

1

02 et 1 c31
sin t

21
2 sin t 2 1

2 cos t

2sin t 1 cos t 2. .

NONHOMOGENEOUS SYSTEMS For nonhomogeneous systems a particular 
solution Xpsolution Xpsolution X  on an interval I is any vector, free of arbitrary parameters, whose I is any vector, free of arbitrary parameters, whose I entries 
are functions that satisfy the system (4).

THEOREM 8.1.6 General Solution — Nonhomogeneous Systems

Let XpXpX  be a given solution of the nonhomogeneous system (4) on an interval I
and let

Xc 5 c1X1 1 c2X2 1 Á 1 cnXn

denote the general solution on the same interval of the associated homo-
geneous system (5). Then the general solution of the nonhomogeneous system 
on the interval is

X 5 Xc 1 XpXpX .

The general solution Xc of the associated homogeneous system (5) is called 
the complementary function of the nonhomogeneous system (4).
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EXAMPLE 7  General Solution—Nonhomogeneous System

The vector XpXpX 5 1 3t 2 4

25t 1 62 is a particular solution of the nonhomogeneous system

X9 5 115 3

32X 1 112t 2 11

23 2 (11)

on the interval (−`, `). (Verify this.) The complementary function of (11) on the 

same interval, or the general solution of X9 5 1
). (Verify this.) The complementary function of (11) on the 

1
). (Verify this.) The complementary function of (11) on the 

1

5

3

32
). (Verify this.) The complementary function of (11) on the 

2
). (Verify this.) The complementary function of (11) on the 

X, was seen in (10) of Example 5

to be Xc 5 c11 1

212e22t 1 c21352e6t. Hence by Theorem 8.1.6

X 5 Xc 1 XpXpX 5 c11 1

212 e22t 1 c21352e6t 1 1 3t 2 4

25t 1 62
is the general solution of the nonhomogeneous system (11) on (−`, `). .

EXERCISES 8.1
In Problems 1–6 write the given linear system in matrix form.

1.
dxdxd

dt
5 3x 2 5y 2.

dxdxd

dt
5 4x4x4 2 7y

dy

dt
5 4x4x4 1 8y

dy

dt
5 5x

3.
dxdxd

dt
5 23x 1 4y 2 9z 4.

dxdxd

dt
5 x 2 y

dy

dt
5 6x 2 y

dy

dt
5 x 1 2z

dzdzd

dt
5 10x0x0 1 4y 1 3z

dzdzd

dt
5 2x 1 z

5.
dxdxd

dt
5 x 2 y 1 z 1 t 2 1

dy

dt
5 2x 1 y 2 z 2 3t2

dzdzd

dt
5 x 1 y 1 z 1 t2 2 t 1 2

6.
dxdxd

dt
5 23x 1 4y 1 e2t sin 2t

dy

dt
5 5x 1 9z 1 4e2t cos 2t

dzdzd

dt
5 y 1 6z 2 e2t

In Problems 7–10 write the given linear system without the use 
of matrices.

7. X9 5 1 4

21

2

32X 1 1 1

212et

8. X9 5 1
7

4

0

5

1

22

29

1

32X 1 1
0

2

12e5t 2 1
8

0

32e22t

9.
d

dt 1x

y

z
2 5 1 1

3

22

21

24

5

2

1

6
21x

y

z
2 1 11

2

2
2e2t 2 1 3

21

1
2t

10.
d

dt 1x

y2 5 131 27

121x

y2 1 1482sin t 1 1 t 2 4

2t 1 12e4t

In Problems 11–16 verify that the vector X is a solution of the given 
homogeneous linear system.

11.
dxdxd

dt
5 3x 2 4y

dy

dt
5 4x4x4 2 7y; X 5 1122e25t

12.
dxdxd

dt
5 22x2x2 1 5y

dydyd

dt
5 22x2x2 1 4y; X 5 1 5 cos t

3 cos t 2 sin t2et

13. X9 5 121

1

1
4

212X; X 5 121

22e23t/2

14. X9 5 1 2

21

1

02X; X 5 1132et 1 1 4

242 tet

15. X9 5 1
1

6

21

2

21

22

1

0

212X; X 5 1
1

6

2132
16. X9 5 1

1

1

22

0

1

0

1

0

212X; X 5 1
sin t

21
2 sin t 2 1

2 cos t

2sin t 1 cos t 2

Answers to selected odd-numbered problems begin on page ANS-13.
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In Problems 17–20 the given vectors are solutions of a system 
X9 = AX. Determine whether the vectors form a fundamental set on 
the interval (−`, `).

17. X1 5 1112e22t, X2 5 1 1

212e26t

18. X1 5 1 1

212et, X2 5 1262et 1 1 8

282 tet

19. X1 5 1
1

22

42 1 t1
1

2

22, X2 5 1
1

22

42,

X3 5 1
3

26

122 1 t1
2

4

42
20. X1 5 1

1

6

2132, X2 5 1
1

22

212e24t, X3 5 1
2

3

222e3t

In Problems 21–24 verify that the vector XpXpX  is a particular solution 
of the given nonhomogeneous linear system.

21.
dxdxd

dt
5 x 1 4y 1 2t 2 7

dy

dt
5 3x 1 2y2y2 2 4t 2 18; XpXpX 5 1 2

212t 1 1512
22. X9 5 121 1

212X 1 125

22; XpXpX 5 1132

23. X9 5 123 1

42X 2 1172et; XpXpX 5 1112et 1 1 1

212 tet

24. X9 5 1
1

24

26

2

2

1

3

0

02X 1 1
21

4

32sin 3t; XpXpX 5 1
sin 3t

0

cos 3t2
25. Prove that the general solution of the homogeneous linear 

system

X9 5 1
0

1

1

6

0

1

0

1

02X

on the interval (−`, `) is

X 5 c11
6

21

252e2t 1 c21
23

1

12e22t 1 c31
2

1

12e3t.

26. Prove that the general solution of the nonhomogeneous linear 
system

X9 5 121

21

21

12X 1 1112 t2 1 1 4

262 t 1 121

52
on the interval (−`, `) is

X 5 c11 1

21 2 Ï2Ï 2eÏ2Ï t 1 c21 1

21 1 Ï2Ï 2e2Ï2Ï t

1 1102 t2 1 122

42 t 1 1 1

02.

INTRODUCTION We saw in Example 5 of Section 8.1 that the general solution of 

the homogeneous system X9 5 1
We saw in Example 5 of Section 8.1 that the general solution of 

1
We saw in Example 5 of Section 8.1 that the general solution of 

1

5

3

32
We saw in Example 5 of Section 8.1 that the general solution of 

2
We saw in Example 5 of Section 8.1 that the general solution of 

X is

X 5 c1X1 1 c2X2 5 c11 1

212e22t 1 c21352e6t. 

Because the solution vectors X1 and X2 have the form 

Xi 5 1k1

k2
2e�it, i = 1, 2, 

where k1, k2, �1, and �2 are constants, we are prompted to ask whether we can always 
�nd a solution of the form

X 5 ( k1

k2

knknk
)e�t 5 Ke�t

o
(1)

for the general homogeneous linear �rst-order system

X9 5 AX, (2)

where A is an n × n matrix of constants.

8.2 Homogeneous Linear Systems
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EIGENVALUES AND EIGENVECTORS If (1) is to be a solution vector of the homo-
geneous linear system (2), then X9 = K�e�t, so the system becomes K�e�t = AKe�t. 
After dividing out e�t and rearranging, we obtain t and rearranging, we obtain t AK = �K or AK − �K = 0. Since 
K = IK, the last equation is the same as

(A 2 �I)K 5 0. (3)

The matrix equation (3) is equivalent to the simultaneous algebraic equations

(a11 2 �)k1 1 a12k2 1 Á 1 a1nknknk 5 0

a2nknknk 5 0a21k1 1 (a22 2 �)k2 1 Á 1

an1k1 1            an2k2 1 Á 1 (ann 2 �)knknk 5 0.
o o

Thus to �nd a nontrivial solution X of (2), we must �rst �nd a nontrivial solu-
tion of the foregoing system; in other words, we must �nd a nontrivial vector K
that satis�es (3). But for (3) to have solutions other than the obvious solution 
k1 5 k2 5 Á 5 knknk 5 0, we must have

det(A 2 �I) 5 0.

This polynomial equation in � is called the characteristic equation of the matrix A; 
its solutions are the eigenvalues of A. A solution K ? 0 of (3) corresponding to an 
eigenvalue � is called an eigenvector of A. A solution of the homogeneous system (2) 
is then X = Ke�t.

In the discussion that follows we examine three cases: real and distinct eigen-
values (that is, no eigenvalues are equal), repeated eigenvalues, and, finally, complex 
eigenvalues.

8.2.1 DISTINCT REAL EIGENVALUES
When the n × n matrix A possesses n distinct real eigenvalues �1, �2, . . . , �n, then a 
set of n linearly independent eigenvectors K1, K2, . . . , Kn can always be found, and

X1 5 K1e�1t, X2 5 K2e�2t,       . . . ,       Xn 5 Kne�nt

is a fundamental set of solutions of (2) on the interval (−`, `).

THEOREM 8.2.1 General Solution—Homogeneous Systems

Let �1, �2, . . . , �n be n distinct real eigenvalues of the coefficient matrix A
of the homogeneous system (2) and let K1, K2, . . . , Kn be the corresponding 
eigenvectors. Then the general solution of (2) on the interval (−`, `) is 
given by

X 5 c1K1e�1t 1 c2K2e�2 t 1 Á 1 cnKne�n t.

EXAMPLE 1 Distinct Eigenvalues

Solve
dxdxd

dt
5 2x 1 3y

dydyd

dt
5 2x 1 y.

(4)

SOLUTION We first find the eigenvalues and eigenvectors of the matrix of 
coefficients.
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From the characteristic equation

det(A 2 �I) 5 *2 2 �

2

3

1 2 �*5 �2 2 3� 2 4 5 (� 1 1)(� 2 4) 5 0

we see that the eigenvalues are �1 = −1 and �2 = 4.
Now for �1 = −1, (3) is equivalent to

3k1 1 3k2 5 0

2k1 1 2k2 5 0.

Thus k1 = −k2. When k2 = −1, the related eigenvector is

K1 5 1 1

212.
For �2 = 4 we have 22k1 1 3k2 5 0

2k1 2 3k2 5 0

so k1 5 3
2 k2; therefore with k2 = 2 the corresponding eigenvector is

K2 5 1322.
Since the matrix of coefficients A is a 2 × 2 matrix and since we have found two 
linearly independent solutions of (4),

X1 5 1 1

212e2t       at       at nd X2 5 1322e4t,

we conclude that the general solution of the system is

X 5 c1X1 1 c2X2 5 c11 1

212e2t 1 c21322e4t. (5) .

PHASE PORTRAIT You should keep firmly in mind that writing a solution of a 
system of linear first-order differential equations in terms of matrices is simply an 
alternative to the method that we employed in Section 4.9, that is, listing the indi-
vidual functions and the relationship between the constants. If we add the vectors on 
the right-hand side of (5) and then equate the entries with the corresponding entries 
in the vector on the left-hand side, we obtain the more familiar statement

x 5 c1e2t 1 3c2e4t,        y 5 2c1e2t 1 2c2e4t.

As was pointed out in Section 8.1, we can interpret these equations as parametric 
equations of curves in the xy-plane or phase plane. Each curve, corresponding to 
speci�c choices for c1 and c2, is called a trajectory. For the choice of constants 
c1 = c2 = 1 in the solution (5) we see in Figure 8.2.1 the graph of x(t) in the 

FIGURE 8.2.1 A solution from (5) yields three different curves in three different planes

(c) trajectory de�ned by
x 5 e2t 1 3e4

ajectory
4

ajectory
t, y 5 2e2t 1 2e4t

in the phase plane

22
24
26
28

210
12.5 15105 7.52.5

2
4

x

y

123 223 2213 2123 2223 22 313 213 2

(b) graph of y 5 2e2t 1 2e4t

22

24

26

2

4

6

t

y

123 223 2213 2123 2223 22 313 213 2

1

2

3

4

5

6

t

x

(a) graph of x 5 e2t 1 3e4t

342 CHAPTER 8 SYSTEMS OF LINEAR FIRSTORDER DIFFERENTIAL EQUATIONS 

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



x

y

X1
X2

FIGURE 8.2.2 A phase portrait of 
system (4)

tx-plane, the graph of y(t) in the ty-plane, and the trajectory consisting of the points 
(x(t), y(t)) in the phase plane. A collection of representative trajectories in the phase 
plane, as shown in Figure 8.2.2, is said to be a phase portrait of the given lin-
ear system. What appears to be two red lines in Figure 8.2.2 are actually four red four red four
half-half-half lines de�ned parametrically in the �rst, second, third, and fourth quadrants 
by  the solutions X2, −X1, −X2, and X1, respectively. For example, the Cartesian 
equations y 5 2

3 x, x . 0, and y = −x, x > 0, of the half-lines in the �rst and fourth 
quadrants were obtained by eliminating the parameter t in the solutions t in the solutions t x = 3e4t, 
y = 2e4t, and x = e−t, y = −e−t, respectively. Moreover, each eigenvector can be 
visualized as a two-dimensional vector lying along one of these half-lines. The

eigenvector K2 5 1
visualized as a two-dimensional vector lying along one of these half-lines. The

1
visualized as a two-dimensional vector lying along one of these half-lines. The

3

22
visualized as a two-dimensional vector lying along one of these half-lines. The

2
visualized as a two-dimensional vector lying along one of these half-lines. The

 lies along y 5 2
3 x in the �rst quadrant, and K1 5 1

visualized as a two-dimensional vector lying along one of these half-lines. The

1
visualized as a two-dimensional vector lying along one of these half-lines. The

1

212
visualized as a two-dimensional vector lying along one of these half-lines. The

2
visualized as a two-dimensional vector lying along one of these half-lines. The

 lies

along y = −x in the fourth quadrant. Each vector starts at the origin; x in the fourth quadrant. Each vector starts at the origin; x K2 terminates 
at the point (2, 3), and K1 terminates at (1, −1).

The origin is not only a constant solution x = 0, y = 0 of every 2 × 2 homoge-
neous linear system X9 = AX, but also an important point in the qualitative study 
of such systems. If we think in physical terms, the arrowheads on each trajectory 
in Figure 8.2.2 indicate the direction that a particle with coordinates (x(t), y(t)) on 
that trajectory at time t moves as time increases. Observe that the arrowheads, with t moves as time increases. Observe that the arrowheads, with t
the exception of only those on the half-lines in the second and fourth quadrants, 
indicate that a particle moves away from the origin as time t increases. If we imagine t increases. If we imagine t
time ranging from −` to `, then inspection of the solution x = c1e−t + 3c2e4t, 
y = −c1e−t + 2c2e4t, c1 ? 0, c2 ? 0 shows that a trajectory, or moving particle, 
“starts” asymptotic to one of the half-lines defined by X1 or −X1 (since e4t is neglit is neglit -
gible for t S 2`) and “finishes” asymptotic to one of the half-lines defined by X2

and −X2 (since e−t is negligible for t is negligible for t t S `).
We note in passing that Figure 8.2.2 represents a phase portrait that is typical of 

all 2all 2all × 2 homogeneous linear systems X9 = AX with real eigenvalues of opposite 
signs. See Problem 19 in Exercises 8.2. Moreover, phase portraits in the two cases 
when distinct real eigenvalues have the same algebraic sign are typical of all such 
2 × 2 linear systems; the only difference is that the arrowheads indicate that a par-
ticle moves away from the origin on any trajectory as t S ` when both �1 and �2

are positive and moves toward the origin on any trajectory when both �1 and �2 are 
negative. Consequently, we call the origin a repeller in the case �1 > 0, �2 > 0 and 
an attractor in the case �1 < 0, �2 < 0. See Problem 20 in Exercises 8.2. The origin 
in Figure 8.2.2 is neither a repeller nor an attractor. Investigation of the remaining 
case when � = 0 is an eigenvalue of a 2 × 2 homogeneous linear system is left as an 
exercise. See Problem 53 in Exercises 8.2.

 EXAMPLE 2  Distinct Eigenvalues

Solve
dxdxd

dt
5 24x 1 y 1 z

dxdxd

dt
5 x 1 5y 2 z (6)

dz

dt
5 y 2 3z.

SOLUTION Using the cofactors of the third row, we find

det(A 2 �I) 5 *24 2 �

1

0

1

5 2 �

1

1

21

23 2 �
* 5 2(� 1 3)(� 1 4)(� 2 5) 5 0,

and so the eigenvalues are �1 = −3, �2 = −4, and �3 = 5.
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For �1 = −3 Gauss-Jordan elimination gives

(A 1 3I Z0) 5 ( Z21

1

0

1

21

0

0

0

0

1

8

1
) ( Z1

0

0

21

0

0

0

0

0

0

1

0
).) () () () (row) () (operations) (

Therefore k1 = k3 and k2 = 0. The choice k3 = 1 gives an eigenvector and corre-
sponding solution vector

K1 5 1
1

0

12, X1 5 1
1

0

12e23t. (7)

Similarly, for �2 = −4

(A 1 4I Z0) 5 ( Z0

1

0

1

21

1

0

0

0

1

9

1
) ( Z1

0

0

210

1

0

0

0

0

0

1

0
)row

operations

implies that k1 = 10k3 and k2 = −k3. Choosing k3 = 1, we get a second eigenvector 
and solution vector

K2 5 1
10

21

12, X2 5 1
10

21

12e24t. (8)

Finally, when �3 = 5, the augmented matrices

(A 2 5I Z0) 5 ( Z29

1

0

1

21

28

0

0

0

1

0

1
) ( Z1

0

0

21

28

0

0

0

0

0

1

0
)) () () () (row) () (operations) (

yield K3 5 1
1

8

12, X3 5 1
1

8

12e5t. (9)

The general solution of (6) is a linear combination of the solution vectors in (7), 
(8), and (9):

X 5 c111

0

1
2e23t 1 c21 10

21

1
2e24t 1 c311

8

1
2e5t. .

USE OF COMPUTERS Software packages such as MATLAB, Mathematica, 
and Maple can be real time savers in finding eigenvalues and eigenvectors of a  can be real time savers in finding eigenvalues and eigenvectors of a  can be real time savers in finding eigenvalues and eigen
matrix A.

8.2.2 REPEATED EIGENVALUES
Of course, not all of the n eigenvalues �1, �2, . . . , �n of an n × n matrix A need be 
distinct; that is, some of the eigenvalues may be repeated. For example, the charac-
teristic equation of the coef�cient matrix in the system

X9 5 132 218

292X (10)
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is readily shown to be (� + 3)2 = 0, and therefore �1 = �2 = −3 is a root of multi-
plicity two. For this value we �nd the single eigenvector

K1 5 1312,        so X1 5 1312e23t (11)

is one solution of (10). But since we are obviously interested in forming the general 
solution of the system, we need to pursue the question of �nding a second solution.

In general, if m is a positive integer and (� − �1)m is a factor of the characteristic 
equation while (� − �1)m+1 is not a factor, then �1 is said to be an eigenvalue of 
multiplicity m. The next three examples illustrate the following cases:

(i) For some n × n matrices A it may be possible to �nd m linearly inde-
pendent eigenvectors K1, K2, . . . , Km corresponding to an eigenvalue �1 of 
multiplicity m # n. In this case the general solution of the system contains 
the linear combination

c1K1e�1t 1 c2K2e�1t 1 Á 1 cmKme�1t.

(ii) If there is only one eigenvector corresponding to the eigenvalue �1 of 
multiplicity m, then m linearly independent solutions of the form

X1 5 K11e�1t

X2 5 K21te�1t 1 t 1 t K22e�1t

Xm 5 Km1 e�1t 1 t 1 t Km2 e�1t 1t 1t Á 1 Kmme�1t,
tm21

––––––––
((mm 2 1)! 1)!

tm22
––––––––
((mm 2 2)! 2)!

o

where Kij are column vectors, can always be found.

EIGENVALUE OF MULTIPLICITY TWO We begin by considering eigenvalues of 
multiplicity two. In the first example we illustrate a matrix for which we can find two 
distinct eigenvectors corresponding to a double eigenvalue.

EXAMPLE 3  Repeated Eigenvalues

Solve X9 5 1
1

22

2

22

1

22

2

22

12X.

SOLUTION Expanding the determinant in the characteristic equation

det(A 2 �I) 5 *1 2 �

22

2

22

1 2 �

22

   2

22

1 2 �
* 5 0

yields −(� + 1)2(� − 5) = 0. We see that �1 = �2 = −1 and �3 = 5.
For �1 = −1 Gauss-Jordan elimination immediately gives

(A 1 I Z0) 5 ( Z2

22

2

2

22

2

0

0

0

22

2

22
) ( Z1

0

0

21

0

0

0

0

0

1

0

0
).) () () () (row) () (operations) (

The first row of the last matrix means k1 − k2 + k3 = 0 or k1 = k2 − k3. The choices 
k2 = 1, k3 = 0 and k2 = 1, k3 = 1 yield, in turn, k1 = 1 and k1 = 0. Thus two 
eigenvectors corresponding to �1 = −1 are

K1 5 1
1

1

02       and K2 5 1
0

1

12.
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Since neither eigenvector is a constant multiple of the other, we have found two 
linearly independent solutions,

X1 5 1
1

1

02e2t        at        at nd X2 5 1
0

1

12e2t,

corresponding to the same eigenvalue. Lastly, for �3 = 5 the reduction

(A 2 5I Z0) 5 ( Z24

22

2

2

22

24

0

0

0

22

24

22
) ( Z1

0

0

21

1

0

0

0

0

0

1

0
)) () () () (row) () (operations) (

implies that k1 = k3 and k2 = −k3. Picking k3 = 1 gives k1 = 1, k2 = −1; thus a third 
eigenvector is

K3 5 1
1

21

12.

We conclude that the general solution of the system is

X 5 c11
1

1

02e2t 1 c21
0

1

12e2t 1 c31
1

21

12e5t. .

The matrix of coefficients A in Example 3 is a special kind of matrix known 
as  a symmetric matrix. An n × n matrix A is said to be symmetric if its trans-
pose AT (where the rows and columns are interchanged) is the same as T (where the rows and columns are interchanged) is the same as T A —that 
is, if AT = A. It can be proved that if the matrix A in the system X9 = AX is sym-
metric and has real entries, then we can always find n linearly independent eigen-
vectors K1, K2, . . . , Kn, and the general solution of such a system is as given in 
Theorem 8.2.1. As illustrated in Example 3, this result holds even when some of the 
eigenvalues are repeated.

SECOND SOLUTION Now suppose that �1 is an eigenvalue of multiplicity two 
and that there is only one eigenvector associated with this value. A second solution 
can be found of the form

X2 5 Kte�1t 1 Pe�1t, (12)

where and)K 5 (
k1

k2

knknk
) .P 5 (

p1

p2

pn

o o

To see this, we substitute (12) into the system X9 = AX and simplify:

(AK 2 �1K)te�1t 1 (AP 2 �1P 2 K)e�1t 5 0.

Since this last equation is to hold for all values of t, we must have

(A 2 �1I)K 5 0 (13)

and (A 2 �1I)P 5 K. (14)

Equation (13) simply states that K must be an eigenvector of A associated with �1. 
By solving (13), we �nd one solution X1 5 Ke�1t. To �nd the second solution X2, we 
need only solve the additional system (14) for the vector P.
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x

y

X1

FIGURE 8.2.3 A phase portrait of 
system (10)

EXAMPLE 4  Repeated Eigenvalues

Find the general solution of the system given in (10).

SOLUTION From (11) we know that �1 = −3 and that one solution is 

X1 5 1312e23t. Identifying K 5 1312 and P 5 1p1

p2
2, we find from (14) that we must 

now solve

(A 1 3I)P 5 K         or        
6p6p6 1 2 18p8p8 2 5 3

2p2p2 1 2 6p6p6 2 5 1.

Since this system is obviously equivalent to one equation, we have an infinite 
number of choices for p1 and p2. For example, by choosing p1 = 1, we find p2 5 1

6.

However, for simplicity we shall choose p1 5 1
2 so that p2 = 0. Hence P 5 1

1
2

02.
Thus from (12) we find X2 5 1312 te23t 1 1

1
2

02e23t. The general solution of (10) is  

then X = c1X1 + c2X2 or

X 5 c11312e23t 1 c231312 te23t 1 1
1
2

02e23t4. .

By assigning various values to c1 and c2 in the solution in Example 4, we can 
plot trajectories of the system in (10). A phase portrait of (10) is given in Figure 8.2.3. 
The solutions X1 and −X1 determine two half-lines y 5 1

3 x, x . 0 and y 5 1
3 x, x , 0, 

respectively, shown in red in the figure. Because the single eigenvalue is negative 
and e23t S 0 as t S ` on every trajectory, we have (x(t), y(t)) S (0, 0) as t S `. 
This is why the arrowheads in Figure 8.2.3 indicate that a particle on any trajectory 
moves toward the origin as time increases and why the origin is an attractor in this 
case. Moreover, a moving particle or trajectory x 5 3c1e23t 1 c2(3te23t 1 1

2e23t), 
y 5 c1e23t 1 c2te23t, c2 Þ 0, approaches (0, 0) tangentially to one of the half-lines as 
t S `. In contrast, when the repeated eigenvalue is positive, the situation is reversed 
and the origin is a repeller. See Problem 23 in Exercises 8.2. Analogous to Figure 8.2.2, 
Figure 8.2.3 is typical of all 2all 2all × 2 homogeneous linear systems X9 = AX that have 
two repeated negative eigenvalues. See Problem 34 in Exercises 8.2.

EIGENVALUE OF MULTIPLICITY THREE When the coefficient matrix A has only 
one eigenvector associated with an eigenvalue �1 of multiplicity three, we can find a 
second solution of the form (12) and a third solution of the form

X3 5 K 
t2

2
e�1 t 1 Pte�1t 1 Qe�1t, (15)

where and),K 5 (
k1

k2

knknk
),P 5 (

p1

p2

pn

).Q 5 (
q1

q2

qn

o o o

By substituting (15) into the system X9 = AX, we �nd that the column vectors K, P, 
and Q must satisfy

(A 2 �1I)K 5 0 (16)

(A 2 �1I)P 5 K (17)

and (A 2 �1I)Q 5 P. (18)

Of course, the solutions of (16) and (17) can be used in forming the solutions X1

and X2.
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*When the characteristic equation has real coef�cients, complex eigenvalues always appear in conjugate 
pairs.

EXAMPLE 5  Repeated Eigenvalues

Solve X9 5 1
2

0

0

1

2

0

6

5

22X.

SOLUTION The characteristic equation (� − 2)3 = 0 shows that �1 = 2 is an eigen-
value of multiplicity three. By solving (A − 2I)K = 0, we find the single eigenvector

K 5 1
1

0

02.

We next solve the systems (A − 2I)P = K and (A − 2I)Q = P in succession and 
find that

P 5 1
0

1

02       and Q 5 1
0

26
5
1
5
2.

Using (12) and (15), we see that the general solution of the system is

X 5 c11
1

0

02e2t 1 c231313
1

0

02 te2t 11
0

1

02e2t4t4t 1 c331313
1

0

02 t2

2
e2t 11

0

1

02 te2t 11
0

2121 6
5
1
5
2e2t4t4t . .

8.2.3 COMPLEX EIGENVALUES
If �1 = � + �i and �2 = � − �i, � > 0, i2 = −1 are complex eigenvalues of the 
coef�cient matrix A, we can then certainly expect their corresponding eigenvectors 
to also have complex entries.*

For example, the characteristic equation of the system

dxdxd

dt
5 6x 2 y

dydyd

dt
5 5x 1 4y

(19)

is det(A 2 �I) 5 u6 2 �

5

21

4 2 �u 5 �2 2 10� 1 29 5 0.

From the quadratic formula we �nd �1 = 5 + 2i, �2 = 5 − 2i.

REMARKS

When an eigenvalue �1 has multiplicity m, either we can �nd m linearly 
independent eigenvectors or the number of corresponding eigenvectors is 
less than m. Hence the two cases listed on page 345 are not all the possi-
bilities under which a repeated eigenvalue can occur. It can happen, say, that 
a 5 ×  5  matrix has an eigenvalue of multiplicity �ve and there exist three 
corresponding linearly independent eigenvectors. See Problems 33 and 54 in 
Exercises 8.2.
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Now for �1 = 5 + 2i we must solve

(1 2 2i)k1 2 k2 5 0

5k1 2 (1 1 2i) k2 5 0.

Since k2 = (1 − 2i)k1,* the choice k1 = 1 gives the following eigenvector and 
corresponding solution vector:

K1 5 1 1

1 2 2i2,        X1 5 1 1

1 2 2i2e(5 1 2i)t.

In like manner, for �2 = 5 − 2i we �nd

K2 5 1 1

1 1 2i2,        X2 5 1 1

1 1 2i2e(5 2 2i)t.

We can verify by means of the Wronskian that these solution vectors are linearly 
independent, and so the general solution of (19) is

X 5 c11 1

1 2 2i2e(512i )t 1 c21 1

1 1 2i2e(522i )t. (20)

Note that the entries in K2 corresponding to �2 are the conjugates of the entries 
in K1 corresponding to �1. The conjugate of �1 is, of course, �2. We write this as 
�2 5 �1 and K2 5 K1. We have illustrated the following general result.

THEOREM 8.2.2 Solutions Corresponding to a Complex Eigenvalue

Let A be the coefficient matrix having real entries of the homogeneous 
system (2), and let K1 be an eigenvector corresponding to the complex eigen-
value �1 = � + i�, � and � real. Then

K1e�1t  and  K1e�1t

are solutions of (2).

*Note that the second equation is simply (1 + 2i) times the �rst.

It is desirable and relatively easy to rewrite a solution such as (20) in terms of 
real functions. To this end we first use Euler’s formula to write

e(5 1 2i )t 5 e5te2ti 5 e5t(cos 2t 1 i sin 2t)

e(5 2 2i )t 5 e5te22ti 5 e5t(cos 2t 2 i sin 2t).

Then, after we multiply complex numbers, collect terms, and replace c1 + c2 by C1

and (c1 − c2)i by C2C2C , (20) becomes

X 5 C1X1 1 C2C2C X2 , (21)

where X1 5 31112cos 2t 2 1 0

222sin 2t4e5t

and X2 5 31 0

222cos 2t 1 1112sin 2t4e5t.

It is now important to realize that the vectors X1 and X2 in (21) constitute a linearly 
independent set of real solutions of the original system. Consequently, we are justireal solutions of the original system. Consequently, we are justireal -
�ed in ignoring the relationship between C1, C2C2C  and c1, c2, and we can regard C1 and 
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FIGURE 8.2.4 A phase portrait of 
system (19)

x

y

C2C2C  as completely arbitrary and real. In other words, the linear combination (21) is 
an alternative general solution of (19). Moreover, with the real form given in (21) we 
are able to obtain a phase portrait of the system in (19). From (21) we �nd x(t) and 
y(t) to be

x 5 C1e5t cos 2t 1 C2C2C e5t sin 2t

y 5 (C1 2 2C2C2C )e5t cos 2t 1 (2C1 1 C2C2C )e5t sin 2t.

By plotting the trajectories (xBy plotting the trajectories (xBy plotting the trajectories ( (t), t), t y(t)) for various values of t)) for various values of t C1 and C2C2C , we obtain the 
phase portrait of (19) shown in Figure 8.2.4. Because the real part of �1 is 5 > 0, e5t S `
as t S `. This is why the arrowheads in Figure 8.2.4 point away from the origin; a 
particle on any trajectory spirals away from the origin as t S `. The origin is a repeller.

The process by which we obtained the real solutions in (21) can be gener-
alized. Let K1 be an eigenvector of the coefficient matrix A (with real entries) 
corresponding to the complex eigenvalue �1 = � + i�. Then the solution vectors in 
Theorem 8.2.2 can be written as

K1e�1t 5 K1e�tei�t 5 K1e�t(cos �t 1 i sin �t)

K1e�1t 5 K1e�te2i�t 5 K1e�t(cos �t 2 i sin �t).

By the superposition principle, Theorem 8.1.2, the following vectors are also 
solutions:

X1 5
1

2
(K1e�1t 1 K1e�1t ) 5

1

2
(K1 1 K1)e�t ct ct os �t 2

i

2
(2K1 1 K1)e�t st st in �t

X2 5
i

2
(2K1e�1t 1 K1e�1t ) 5

i

2
(2K1 1 K1)e�t ct ct os �t 1

1

2
(K1 1 K1)e�t st st in �t.

Both 1
2 (z 1 z ) 5 a and 1

2 i(2z 1 z ) 5 b are real numbers for real numbers for real any complex number 
z = a + ib. Therefore, the entries in the column vectors 1

2 (K1 1 K1) and 
1
2 i(2K1 1 K1) are real numbers. By de�ning

B1 5
1

2
(K1 1 K1)        and        B2 5

i

2
(2K1 1 K1), (22)

we are led to the following theorem.

THEOREM 8.2.3  Real Solutions Corresponding to a Complex 
Eigenvalue

Let �1 = � + i� be a complex eigenvalue of the coefficient matrix A in the 
homogeneous system (2) and let B1 and B2 denote the column vectors defined 
in (22). Then

X1 5 [B1 cos �t 2 B2 sin �t]e�t

X2 5 [B2 cos �t 1 B1 sin �t]e�t
(23)

are linearly independent solutions of (2) on (−`, `).

The matrices B1 and B2 in (22) are often denoted by

B1 5 Re(K1)        and B2 5 Im(K1) (24)

since these vectors are, respectively, the real and real and real imaginary parts of the eigenvector K1. 
For example, (21) follows from (23) with

K1 5 1 1

1 2 2i2 5 1112 1 i1 0

222,

B1 5 Re(K1) 5 1112     and B2 5 Im(K1) 5 1 0

222.
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EXAMPLE 6  Complex Eigenvalues

Solve the initial-value problem

X9 5 1 2

21

8

222X,   X(0) 5 1 2

212. (25)

SOLUTION First we obtain the eigenvalues from

det(A 2 �I ) 5 *2 2 �

21

8

22 2 �* 5 �2 1 4 5 0.

The eigenvalues are �1 = 2i and �2 5 �1 5 22i. For �1 the system

(2 2 2i)k1 1 8k2 5 0

2k1 1 (22 2 2i)k2 5 0

gives k1 = −(2 + 2i)k2. By choosing k2 = −1, we get

K1 5 12 1 2i

21 2 5 1 2

212 1 i1202.
Now from (24) we form

B1 5 Re(K1) 5 1 2

212          and B2 5 Im(K1) 5 1202.
Since � = 0, it follows from (23) that the general solution of the system is

X 5 c131 2

212cos 2t 2 1202sin 2t4 1 c231202cos 2t 1 1 2

212sin 2t4
5 c112 cos 2t 2 2 sin 2t

2cos 2t 2 1 c212 cos 2t 1 2 sin 2t

2sin 2t 2. (26)

Some graphs of the curves or trajectories defined by solution (26) of the system 
are  illustrated in the phase portrait in Figure 8.2.5. Now the initial condition

X(0) 5 1 2

212 or, equivalently, x(0) = 2 and y(0) = −1 yields the algebraic system

2c1 + 2c2 = 2, −c1 = −1, whose solution is c1 = 1, c2 = 0. Thus the solution 

to the problem is X 5 12 cos 2t 2 2 sin 2t

2cos 2t 2. The specific trajectory defined 

parametrically by the particular solution x = 2 cos 2t − 2 sin 2t, y = −cos 2t is the t is the t
red curve in Figure 8.2.5. Note that this curve passes through (2, −1). .

FIGURE 8.2.5 A phase portrait of (25) in 
Example 6

x

y

(2, 21)

REMARKS

In this section we have examined exclusively homogeneous �rst-order systems 
of linear equations in normal form X9 = AX. But often the mathematical model 
of a dynamical physical system is a homogeneous second-order system whose 
normal form is X0 = AX. For example, the model for the coupled springs 
in (1) of Section 7.6,

m1x01 5 2k1x1 1 k2(x2 2 x1)

m2x02 5 2k2(x2 2 x1),
(27)

can be written as MX 0 5 KX,

(continued)continued)continued
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EXERCISES 8.2

8.2.1 Distinct Real Eigenvalues

In Problems 1–12 �nd the general solution of the given system.

1.
dxdxd

dt
5 x 1 2y 2.

dxdxd

dt
5 2x 1 2y2y2

dy

dt
5 4x 1 3y

dy

dt
5 x 1 3y

3.
dxdxd

dt
5 24x 1 2y2y2 4.

dxdxd

dt
5 2

5

2
x 1 2y2y2

dy

dt
5 2

5

2
x 1 2y2y2

dy

dt
5

3

4
x 2 2y2y2

5. X9 5 110

8

25

2122X 6. X9 5 126

23

2

12X

7.
dxdxd

dt
5 x 1 y 2 z 8.

dxdxd

dt
5 2x 2 7y

dy

dt
5 2y2y2

dy

dt
5 5x 1 10y 1 4z

dzdzd

dt
5 y 2 z

dzdzd

dt
5 5y 1 2z

9. X9 5 1
21

1

0

1

2

3

0

1

212X

10. X9 5 1
1

0

1

0

1

0

1

0

12X

11. X9 5 1
21

3
4
1
8

21

23
2
1
4

0

3

21
2
2X

12. X9 5 1
21

4

0

4

21

0

2

22

62X

In Problems 13 and 14 solve the given initial-value problem.

13. X9 5 1
1
2

1

0

21
2
2X, X(0) 5 1352

14. X9 5 1
1

0

1

1

2

1

4

0

12X, X(0) 5 1
1

3

02

Answers to selected odd-numbered problems begin on page ANS-13.

where

M 5 1m1

0

0

m2
2,        K 5 12k1 2 k2

k2

k2

2k2
2,        and X 5 1x1(t)

x2(t)2.
Since M is nonsingular, we can solve for X0 as X0 = AX, where A = M−1K.
Thus (27) is equivalent to

X 0 5 12
k1

m1
2

k2

m1

k2

m2

k2

m1

2
k2

m2

2X. (28)

The methods of this section can used to solve (28) by transforming it into 
a �rst-order system by means of substitutions. If we let x91 5 x3 and x92 5 x4,
then x93 5 x01 and x94 5 x02 and so (28) is equivalent to a system of four linear four linear four
�rst-order DEs:

x91 5 x3

x92 5 x4

x93 5 21 k1

m1
1

k2

m12x1 1
k2

m1
x2 or X9= 1

 0

 0

2121 k1

m1
2

k2

m1

k2

m2

0

0

k2

m1

2
k2

m2

1

0

0

0

0

1

0

0
2X. (29)

x94 5
k2

m2
x1 2

k2

m2
x2

By �nding the eigenvalues and eigenvectors of the coef�cient matrix A in (29), 
we see that the solution of this �rst-order system gives the complete state of 
the physical system—the positions of the masses relative to the equilibrium 
positions (x1 and x2) as well as the velocities of the masses (x3 and x4) at time t. 
See Problem 52 in Exercises 8.2.
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15. As shown in Figure 8.2.6 two large connected mixing tanks A
and B initially contain 100 gallons of brine. Liquid is pumped 
in and out of the tanks as indicated in the �gure; the mixture 
pumped between and out of a tank is assumed to be well-stirred.

(a) Construct a mathematical model in the form of a linear system 
of �rst-order differential equations for the number of pounds 
x1(t) and x2(t) of salt in tanks A and B, respectively, at time t. 
Write the system in matrix form. [Hint:  Review Section 3.3.]

(b) Use the eigenvalue method of this section to solve the  
linear system in part (a) subject to x1(0) 5 20, x2(0) 5 5.

(c) Use a graphing utility or CAS to plot the graphs of 
x1(t) and x2(t) in the same coordinate plane.

(d) Suppose the system of mixing tanks is to be turned off 
when the number of pounds of salt in tank B equals that in 
tank A. Use a root-�nding application of a CAS or calcula-
tor to approximate that time. 

FIGURE 8.2.6 Mixing tanks in Problem 15

mixture
1 gal/min

mixture
1 gal/min

mixture
2 gal/min

BA

pure water
2 gal/min

mixture
1 gal/min

16. In Problem 27 of Exercises 4.9 you were asked to solve the 
following linear system

dxdxd 1

dt
5 2

1

50
x1

dxdxd 2

dt
5

1

50
x1 2

2

75
x2

dxdxd 3

dt
5

2

75
x2 2

1

25
x3

using elimination techniques. This system is a mathematical 
model for the number of pounds of salt x1(t), x2(t), and x3(t) in 
the connected mixing tanks A, B, and C shown in Figure 3.3.8 C shown in Figure 3.3.8 C
on page 112.

(a) Use the eigenvalue method of this section to solve the  
system subject to x1(0) 5 15, x2(0) 5 10, x3(0) 5 5.

(b) What are lim
t S `

x1(t), lim
t S `

x2(t), and lim
t S `

x3(t)? Interpret this 
result.

Computer Lab Assignments
In Problems 17 and 18 use a CAS or linear algebra software as an aid 
in �nding the general solution of the given system.

17. X9 5 1
0.9

0.7

1.1

2.1

6.5

1.7

3.2

4.2

3.42X

18. X9 5 1
1

0

1

0

22.8

0

5.1

2

1

0

2

0

23

23.1

0

21.8

21

0

4

1.5

0

3

0

0

1
2X

19. (a) Use computer software to obtain the phase portrait of the 
system in Problem 5. If possible, include arrowheads as in 
Figure 8.2.2. Also include four half-lines in your phase portrait.

(b) Obtain the Cartesian equations of each of the four half-lines 
in part (a).

(c) Draw the eigenvectors on your phase portrait of the system.

20. Find phase portraits for the systems in Problems 2 and 4. For 
each system �nd any half-line trajectories and include these 
lines in your phase portrait.

8.2.2 Repeated Eigenvalues

In Problems 21–30 �nd the general solution of the given system.

21.
dxdxd

dt
5 3x 2 y 22.

dxdxd

dt
5 26x 1 5y

dy

dt
5 9x 2 3y

dy

dt
5 25x 1 4y

23. X9 5 121

23

3

52X 24. X9 5 112

4

29

02X

25.
dxdxd

dt
5 3x 2 y 2 z 26.

dxdxd

dt
5 3x 1 2y2y2 1 4z

dy

dt
5 x 1 y 2 z

dy

dt
5 2x 1 2z

dzdzd

dt
5 x 2 y 1 z

dzdzd

dt
5 4x 1 2y2y2 1 3z

27. X9 5 1
5

1

0

24

0

2

0

2

52X 28. X9 5 1
1

0

0

0

3

21

0

1

12X

29. X9 5 1
1

2

0

0

2

1

0

21

02X 30. X9 5 1
4

0

0

1

4

0

0

1

42X

In Problems 31 and 32 solve the given initial-value problem.

31. X9 5 1 2

21

4

62X, X(0) 5 121

62

32. X9 5 10

0

1

0

1

0

1

0

0
2X, X(0) 5 1

1

2

52
33. Show that the 5 × 5 matrix

A 5 1
2

0

0

0

0

1

2

0

0

0

0

0

2

0

0

0

0

0

2

0

0

0

0

1

2
2

has an eigenvalue �1 of multiplicity 5. Show that three linearly 
independent eigenvectors corresponding to �1 can be found.
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Computer Lab Assignments
34. Find phase portraits for the systems in Problems 22 and 23. For 

each system �nd any half-line trajectories and include these 
lines in your phase portrait.

8.2.3 Complex Eigenvalues

In Problems 35–46 �nd the general solution of the given system.

35.
dxdxd

dt
5 6x 2 y 36.

dxdxd

dt
5 x 1 y

dy

dt
5 5x 1 2y2y2

dy

dt
5 22x 2 y

37.
dxdxd

dt
5 5x 1 y 38.

dxdxd

dt
5 4x4x4 1 5y

dy

dt
5 22x 1 3y

dy

dt
5 22x 1 6y

39. X9 5 145 25

242X 40. X9 5 111 28

232X

41.
dxdxd

dt
5 z 42.

dxdxd

dt
5 2x 1 y 1 2z

dy

dt
5 2z

dy

dt
5 3x 1 6z

dzdzd

dt
5 y

dzdzd

dt
5 24x 2 3z

43. X9 5 1
1

21

21

21

1

0

2

0

12X 44. X9 5 1
4

0

24

0

6

0

1

0

42X

45. X9 5 1 2

25

0

5

26

0

1

4

22X 46. X951 2

21

21

4

22

0

4

0

222X

In Problems 47 and 48 solve the given initial-value problem.

47. X9 5 11

1

1

212

2

1

214

23

22
2X, X(0) 5 1 4

6

27
2

48. X9 5 165 21

42X, X(0) 5 122

82
49. The system of mixing tanks shown in Figure 8.2.7 is a closed 

system. The tanks A, B, and C initially contain the number of C initially contain the number of C
gallons of brine indicated in the �gure. 

(a) Construct a mathematical model in the form of a linear sys-
tem of �rst-order differential equations for the number of 
pounds of salt x1(t), x2(t), and x3(t) in the tanks A, B, and C
at time t, respectively. Write the system in matrix form.

(b) Use the eigenvalue method of this section to  
solve the linear system in part (a) subject to 
x1(0) 5 30, x2(0) 5 20, x3(0) 5 5.

50. For the linear system in Problem 49:

(a) Show that x1(t) 1 x2(t) 1 x3(t) 5 55. Interpret this result.

(b) What are lim
t S `

x1(t), lim
t S `

x2(t), and lim
t S `

x3(t) . Interpret this 
result.

Computer Lab Assignments
51. Find phase portraits for the systems in Problems 38, 39, 

and 40.

52. Solve (2) of Section 7.6 using the method outlined in the 
Remarks (page 351)—that is, express (2) of Section 7.6 as 
a �rst-order system of four linear equations. Use a CAS or 
linear algebra software as an aid in �nding eigenvalues and 
eigenvectors of a 4 × 4 matrix. Then apply the initial conditions 
to your general solution to obtain (4) of Section 7.6.

Discussion Problems
53. Solve each of the following linear systems.

(a) X9 5 111 1

12X (b) X9 5 1 1

21

1

212X

Find a phase portrait of each system. What is the geometric 
signi�cance of the line y = −x in each portrait?x in each portrait?x

54. Consider the 5 × 5 matrix given in Problem 33. Solve the system 
X9 = AX without the aid of matrix methods, but write the 
general solution using matrix notation. Use the general solution 
as a basis for a discussion of how the system can be solved using 
the matrix methods of this section. Carry out your ideas.

55. Obtain a Cartesian equation of the curve de�ned parametrically 
by the solution of the linear system in Example 6. Identify the 
curve passing through (2, −1) in Figure 8.2.5. [Hint: Compute 
x2, y2, and xy.]

56. Examine your phase portraits in Problem 51. Under what 
conditions will the phase portrait of a 2 × 2 homogeneous 
linear system with complex eigenvalues consist of a family of 
closed curves? Consist of a family of spirals? Under what 
conditions is the origin (0, 0) a repeller? An attractor?

FIGURE 8.2.7 Mixing tanks in Problem 49

mixture
5 gal/min

mixture
5 gal/min

B
100 gal

C
50 gal

A
100 gal

mixture
5 gal/min
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8.3 N Nonhomogeneous Linear Systems

INTRODUCTION In Section 8.1 we saw that the general solution of a 
nonhomogeneous linear system X9 = AX + F(t) on an interval I is I is I X = Xc + XpXpX , 
where Xc 5 c1X1 1 c2X2 1 Á 1 cnXn is the complementary function or general 
solution of the associated homogeneous linear system X9 = AX and XpXpX  is any 
particular solution of the nonhomogeneous system. In Section 8.2 we saw how 
to obtain Xc when the coef�cient matrix A was an n × n matrix of constants. In the 
present section we consider two methods for obtaining XpXpX .

The methods of undetermined coef�cients and variation of parameters used 
in Chapter 4 to �nd particular solutions of nonhomogeneous linear ODEs can both 
be adapted to the solution of nonhomogeneous linear systems X9 = AX + F(t). Of 
the two methods, variation of parameters is the more powerful technique. However, 
there are instances when the method of undetermined coef�cients provides a quick 
means of �nding a particular solution.

8.3.1 UNDETERMINED COEFFICIENTS
THE ASSUMPTIONS As in Section 4.4, the method of undetermined coefficients 
consists of making an educated guess about the form of a particular solution vector 
XpXpX ; the guess is motivated by the types of functions that make up the entries of the 
column matrix F(t). Not surprisingly, the matrix version of undetermined coefficients 
is applicable to X9 = AX + F(t) only when the entries of A are constants and the 
entries of F(t) are constants, polynomials, exponential functions, sines and cosines, 
or finite sums and products of these functions.

 EXAMPLE 1  Undetermined Coefficients

Solve the system X9 5 121

21

2

12X 1 128

32 on (−`, `).

SOLUTION We first solve the associated homogeneous system

X9 5 121

21

2

12X.

The characteristic equation of the coefficient matrix A,

det(A 2 �I ) 5 u21 2 �

21

2

1 2 �u 5 �2 1 1 5 0,

yields the complex eigenvalues �1 = i and �2 5 �1 5 2i. By the procedures of 
Section 8.2 we find

Xc 5 c11cos t 1 sin t

cos t 2 1 c21cos t 2 sin t

2sin t 2.
Now since F(t) is a constant vector, we assume a constant particular solution vector

XpXpX 5 1a1

b1
2. Substituting this latter assumption into the original system and equating 

entries leads to

0 5 2a1 1 2b1 2 8

0 5 2a1 1 b1 1 3.
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Solving this algebraic system gives a1 = 14 and b1 = 11, and so a particular solution

is XpXpX 5 1
Solving this algebraic system gives 

1
Solving this algebraic system gives 

14

112
Solving this algebraic system gives 

2
Solving this algebraic system gives 

. The general solution of the original system of DEs on the interval

(−`, `) is then X = Xc + Xp or

X 5 c11cos t 1 sin t

cos t 2 1 c21cos t 2 sin t

2sin t 2 1 114

112. .

 EXAMPLE 2  Undetermined Coefficients

Solve the system X9 5 164 1

32X 1 1 6t

210t 1 42 on (−`, `).

SOLUTION The eigenvalues and corresponding eigenvectors of the associated

homogeneous system X9 5 164 1

32X are found to be �1 = 2, �2 = 7, K1 5 1 1

242,

and K2 5 1112. Hence the complementary function is

Xc 5 c11 1

242e2t 1 c21112e7t.

Now because F(t) can be written F(t) 5 1 6

2102 t 1 1042, we shall try to find a

particular solution of the system that possesses the same form:

XpXpX 5 1a2

b2
2 t 1 1a1

b1
2.

Substituting this last assumption into the given system yields

1a2

b2
2 5 164 1

3231a2

b2
2 t 1 1a1

b1
24 1 1 6

2102 t 1 1042
or 1002 5 1 (6a2 1 b2 1 6)t 1 6a1 1 b1 2 a2

(4a2 1 3b2 2 10)t 1 4a1 1 3b1 2 b2 1 42.
From the last identity we obtain four algebraic equations in four unknowns

6a2 1 b2 1 6 5 0

4a2 1 3b2 2 10 5 0
         and

6a1 1 b1 2 a2 5 0

4a1 1 3b1 2 b2 1 4 5 0.

Solving the first two equations simultaneously yields a2 = −2 and b2 = 6. We then 
substitute these values into the last two equations and solve for a1 and b1. The results 
are a1 5 24

7, b1 5 10
7 . It follows, therefore, that a particular solution vector is

XpXpX 5 122

62 t 1 124
7

10
7 2.

The general solution of the system on (−`, `) is X = Xc + XpXpX  or

X 5 c11   1

242e2t 1 c21112e7t 1 122

62 t 1 124
7

10
7
2. .

356 CHAPTER 8 SYSTEMS OF LINEAR FIRSTORDER DIFFERENTIAL EQUATIONS 

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



EXAMPLE 3  Form of Xp

Determine the form of a particular solution vector XpXpX  for the system

dxdxd

dt
5 5x 1 3y 2 2e2t 1 1

dydyd

dt
5 2x 1 y 1 e2t 2 5t 1 7.

SOLUTION Because F(t) can be written in matrix terms as

F(t) 5 122

12e2t 1 1 0

252 t 1 1172
a natural assumption for a particular solution would be

XpXpX 5 1a3

b3
2 e2t 1 1a2

b2
2 t 1 1a1

b1
2. .

8.3.2 VARIATION OF PARAMETERS
A FUNDAMENTAL MATRIX If X1, X2, . . . , Xn is a fundamental set of solutions 
of the homogeneous system X9 = AX on an interval I, then its general solution on the 
interval is the linear combination X 5 c1X1 1 c2X2 1Á1 cnXn or

x11

x21

xn1

X 5 c1( ) 1 c2( )
x

( )
x12( )12

x( )x22( )22

x
( )
xn

( )
n2

( )
2

1 Á 1 cn(
x1n

x2n

xnn

Á 
Á 

Á ) 5 ( )
c

( )
c1( )1x( )

x11( )11 1

( )
1 c

( )
c2( )2x

( )
x12( )12 1

( )
1 Á 

( )
Á 1

( )
1 c

( )
cn( )nx

( )
x1( )1n( )n

c( )c1( )1x( )x21( )21 1( )1 c( )c2( )2x( )x22( )22 1( )1 Á ( )Á 1( )1 c( )cn( )nx( )x2( )2n( )n

c
( )
c1

( )
1x

( )
xn

( )
n1

( )
1 1

( )
1 c

( )
c2

( )
2x

( )
xn

( )
n2

( )
2 1

( )
1 Á ( )Á 1

( )
1 c

( )
cn

( )
nx

( )
xnn

( )
nn

.
o o o o

(1)

REMARKS

The method of undetermined coef�cients for linear systems is not as straightfor-
ward as the last three examples would seem to indicate. In Section 4.4 the form 
of a particular solution ypypy  was predicated on prior knowledge of the comple-
mentary function yc. The same is true for the formation of Xp. But there are 
further dif�culties: The special rules governing the form of ypypy  in Section 4.4 do 
not quite carry to the formation of Xp. For example, if F(t) is a constant vector, 
as in Example 1, and � = 0 is an eigenvalue of multiplicity one, then Xc con-
tains a constant vector. Under the Multiplication Rule on page 148 we would 

ordinarily try a particular solution of the form XpXpX 5 1a1

b1
2 t. This is not the 

proper assumption for linear systems; it should be XpXpX 5 1a2

b2
2 t 1 1a1

b1
2.

Similarly, in Example 3, if we replace e−t in t in t F(t) by e2t (t (t � = 2 is an eigenvalue), 
then the correct form of the particular solution vector is

XpXpX 5 1a4

b4
2 te2t 1 1a3

b3
2e2t 1 1a2

b2
2 t 1 1a1

b1
2.

Rather than delving into these dif�culties, we turn instead to the method of 
variation of parameters.
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The last matrix in (1) is recognized as the product of an n × n matrix with an 
n × 1 matrix. In other words, the general solution (1) can be written as the product

X 5 F(t)C, (2)

where C is an n × 1 column vector of arbitrary constants c1, c2, . . . , cn and the n × n
matrix, whose columns consist of the entries of the solution vectors of the system 
X9 = AX,

x11

x21

xn1

F(t) 5 ( ),
x1n

x2n

xnn

x12

x22

xn2

Á
Á

Á
o o

is called a fundamental matrix of the system on the interval.
In the discussion that follows we need to use two properties of a fundamental 

matrix:

 ● A fundamental matrix F(t) is nonsingular.
 ● If F(t) is a fundamental matrix of the system X9 = AX, then

F9(t) 5 AF(t). (3)

A reexamination of (9) of Theorem 8.1.3 shows that det F(t) is the same as the 
Wronskian W(W(W X1, X2, . . . , Xn). Hence the linear independence of the columns 
of F(t) on the interval I guarantees that det I guarantees that det I F(t) Þ 0 for every t in the interval. Since t in the interval. Since t
F(t) is nonsingular, the multiplicative inverse F21(t) exists for every t in the interval. t in the interval. t
The result given in (3) follows immediately from the fact that every column of F(t)
is a solution vector of X9 = AX.

VARIATION OF PARAMETERS Analogous to the procedure in Section 4.6 we ask 
whether it is possible to replace the matrix of constants C in (2) by a column matrix 
of functions

u1(t)

u2(t)
U(t) 5 ( XpXpX 5 F(t)U(t)so)

un(t)

o
(4)

is a particular solution of the nonhomogeneous system

X9 5 AX 1 F(t). (5)

By the Product Rule the derivative of the last expression in (4) is

X9p 5 F(t)U9(t) 1 F9(t)U(t). (6)

Note that the order of the products in (6) is very important. Since U(t) is a column 
matrix, the products U9(t)F(t) and U(t)F9(t) are not de�ned. Substituting (4) and (6) 
into (5) gives

F(t)U9(t) 1 F9(t)U(t) 5 AF(t)U(t) 1 F(t). (7)

Now if we use (3) to replace F9(t), (7) becomes

F(t)U9(t) 1 AF(t)U(t) 5 AF(t)U(t) 1 F(t)

or F(t)U9(t) 5 F(t). (8)

Multiplying both sides of equation (8) by F21(t) gives

U9(t) 5 F21(t)F(t)        and so U(t) 5 #F21(t)F(t) dt.
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Since XpXpX 5 F(t)U(t), we conclude that a particular solution of (5) is

Xp 5 F(t)#F21(t)F(t) dt. (9)

To calculate the inde�nite integral of the column matrix F21(t)F(t) in (9), we inte-
grate each entry. Thus the general solution of the system (5) is X = Xc + XpXpX  or

X 5 F(t)C 1 F(t)#F21(t)F(t) dt. (10)

Note that it is not necessary to use a constant of integration in the evaluation of 
eF21(t)F(t) dt for the same reasons stated in the discussion of variation of paramet for the same reasons stated in the discussion of variation of paramet -
ters in Section 4.6.

 EXAMPLE 4  Variation of Parameters

Solve the system

X9 5 123

2

1

242X 1 1 3t

e2t2 (11)

on (−`, `).

SOLUTION We first solve the associated homogeneous system

X9 5 123

2

1

242X. (12)

The characteristic equation of the coefficient matrix is

det(A 2 �I) 5 *23 2 �

2

1

24 2 �* 5 (� 1 2)(� 1 5) 5 0,

so the eigenvalues are �1 = −2 and �2 = −5. By the usual method we find that the

eigenvectors corresponding to �1 and �2 are, respectively, K1 5 1112 and

K2 5 1 1

222. The solution vectors of the homogeneous system (12) are then

X1 5 1112e22t 5 1e
22t

e22t2 and X2 5 1 1

222e25t 5 1 e25t

22e25t2.
The entries in X1 form the first column of F(t), and the entries in X2 form the second 
column of F(t). Hence

F(t) 5 1e
22t

e22t

e25t

22e25t2 and F21(t) 5 1
2
3e2t

1
3 e5t

1
3 e2t

21
3 e5t2.

From (9) we obtain the particular solution

XpXpX 5 F(t)#F21(t)F(t) dt 5 1e
22t

e22t

e25t

22e25t2 # 1
2
3e2t

1
3e5t

1
3e2t

21
3e5t21 3t

e2t2 dt

5 1e
22t

e22t

e25t

22e25t2 #1 2te2t 1 1
3et

te5t 2 1
3e4t2 dt

5 1e
22t

e22t

e25t

22e25t21 te2t 2 1
2e2t 1 1

3et

1
5te5t 2 1

25e5t 2 1
12e4t2

5 1
6
5t 2 27

50 1 1
4e2t

3
5t 2 21

50 1 1
2e2t2.
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Hence from (10) the general solution of (11) on the interval (−`, `) is

X 5 1e
22t

e22t

e25t

22e25t21c1

c2
2 1 1

6
5t 2 27

50 1 1
4e2t

3
5t 2 21

50 1 1
2e2t2

5 c11112e22t 1 c21 1

222e25t 1 1
6
5
3
5
2 t 2 1

27
50
21
50
2 1 1

1
4
1
2
2e2t. .

INITIALVALUE PROBLEM The general solution of (5) on an interval can be writ-
ten in the alternative manner

X 5 F(t)C 1 F(t) #t#
t
#

0
#

0
##

t
#

0
#

t
# F21(s)F(s) dsdsd , (13)

where t and t and t t0t0t  are points in the interval. This last form is useful in solving (5) sub-
ject to an initial condition X(t0t0t ) = X0, because the limits of integration are chosen 
so that the particular solution vanishes at t = t0t0t . Substituting t = t0t0t  into (13) yields 
X0 5 F(t0t0t )C from which we get C 5 F21(t0t0t )X0. Substituting this last result into 
(13) gives the following solution of the initial-value problem:

X 5 F(t)F21(t0t0t )X0 1 F(t) #t#
t
#

0
#

0
##

t
#

0
#

t
# F21(s)F(s) dsdsd . (14)

EXERCISES 8.3

8.3.1 Undetermined Coefficients

In Problems 1–8 use the method of undetermined coef�cients to 
solve the given nonhomogeneous system.

1.
dxdxd

dt
5 2x 1 3y 2 7

dy

dt
5 2x 2 2y2y2 1 5

2.
dxdxd

dt
5 5x 1 9y 1 2

dy

dt
5 2x 1 11y 1 6

3. X9 5 113 3

12X 1 122t2

t 1 52
4. X9 5 114 24

12X 1 14t 1 9e6t

2t 1 e6t2
5. X9 5 149

1
3

62X 1 123

102et

6. X9 5 121

21

5

12X 1 1 sin t

22 cos t2

7. X9 5 11

0

0

1

2

0

1

3

5
2X 1 1 1

21

2
2e4t

8. X9 5 10

0

5

0

5

0

5

0

0
2X 1 1 5

210

40
2

In Problems 9 and 10, solve the given initial-value problem.

9. X9 5 121 22

3 42X 1 1332, X(0) 5 1 2 4

52
10. X9 5 11 21

1 32X 1 1 t

t112, X(0) 5 1322
11. Consider the large mixing tanks shown in Figure 8.3.1. Suppose 

that both tanks A and B initially contain 100 gallons of brine. 
Liquid is pumped in and out of the tanks as indicated in the 
�gure; the mixture pumped between and out of the tanks is 
assumed to be well-stirred.

(a) Construct a mathematical model in the form of a linear system 
of �rst-order differential equations for the number of pounds 
x1(t) and x2(t) of salt in tanks A and B, respectively, at time t. 
Write the system in matrix form. [Hint: Review Section 3.3.]

(b) Use the method of undetermined coef�cients to solve the 
linear system in part (a) subject to x1(0) 5 60, x2(0) 5 10.

(c) What are lim
t S `

x1(t) and lim
t S `

x2(t)?  Interpret this result.

(d) Use a graphing utility to plot the graphs of x1(t) and x2(t) on 
the same coordinate axes.

Answers to selected odd-numbered problems begin on page ANS-14.

FIGURE 8.3.1 Mixing tanks in Problem 11

mixture
3 gal/min

mixture
1 gal/min

mixture
2 gal/min

BA

pure water
2 gal/min

mixture
1 gal/min

½ lb/gal
2 gal/min
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12. (a) The system of differential equations for the currents i2(t) 
and i3(t) in the electrical network shown in Figure 8.3.2 is

d

dt 1i2i32 5 S2R1yL1 2R1yL1

2R1yL2 2(R1 1 R2)yL2
21i2i32 1 1EyL1

EyL2
2.

Use the method of undetermined coef�cients to solve 
the system if R1 = 2 V, R2 = 3 V, L1 = 1 h, L2 = 1 h, 
E = 60 V, i2(0) = 0, and i3(0) = 0.

(b) Determine the current i1(t).

8.3.2 Variation of Parameters

In Problems 13–32 use variation of parameters to solve the given 
nonhomogeneous system.

13.
dxdxd

dt
5 3x 2 3y 1 4

dy

dt
5 2x 2 2y2y2 2 1

14.
dxdxd

dt
5 2x 2 y

dy

dt
5 3x 2 2y2y2 1 4t

15. X9 5 133
4

25

212X 1 1 1

212et/2

16. X9 5 124 21

22X 1 1 sin 2t

2 cos 2t2e2t

17. X9 5 1 0

21

2

32X 1 1 1

212et

18. X9 5 1 0

21

2

32X 1 1 2

e23t2
19. X9 5 111 8

212X 1 112

122 t

20. X9 5 111 8

212X 1 1e
2t

tet 2
21. X9 5 1 3

22

2

212X 1 12e2t

e2t 2
22. X9 5 1 3

22

2

212X 1 1112
23. X9 5 101 21

02X 1 1sec t

0 2
24. X9 5 111 21

12X 1 1332et

FIGURE 8.3.2 Network in Problem 12

R1 R2

L1 L2

i1
i2

i3

E

25. X9 5 111 21

12X 1 1cos t

sin t2et

26. X9 5 128 22

262X 1 1132 e22t

t

27. X9 5 1 0

21

1

02X 1 1 0

sec t tan t2
28. X9 5 1 0

21

1

02X 1 1 1

cot t2
29. X9 5 1 1

21
2

2

12X 1 1csc t

sec t2et

30. X9 5 111 22

212X 1 1tan t

1 2

31. X9 5 11

1

0

1

1

0

0

0

3
2X 1 1 et

e2t

te3t2
32. X9 5 13

1

1

21

1

21

21

21

1
2X 1 1 0

t

2et2
In Problems 33 and 34 use (14) to solve the given initial-value 
problem.

33. X9 5 1 3

21

21

32X 1 14e2t

4e4t2, X(0) 5 1112
34. X9 5 111 21

212X 1 11yt

1yt2, X(1) 5 1 2

212
35. The system of differential equations for the currents i1(t) and 

i2(t) in the electrical network shown in Figure 8.3.3 is

d

dt 1i1i22 5 12(R1 1 R2)yL2

R2yL1

R2yL2

2R2yL1
21i1i22 1 1EyL2

0 2.
Use variation of parameters to solve the system if R1 = 8 V, 
R2 = 3 V, L1 = 1 h, L2 = 1 h, E(t) = 100 sin t V, t V, t i1(0) = 0, and 
i2(0) = 0.

Discussion Problems
36. If y1 and y2 are linearly independent solutions of the associated 

homogeneous DE for y0 + P(x)y9 + Q(x)y = f (x), show in 
the case of a nonhomogeneous linear second-order DE that 
(9) reduces to the form of variation of parameters discussed in 
Section 4.6.

FIGURE 8.3.3 Network in Problem 35

i1
i2

i3R1

R2E L1

L2
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Computer Lab Assignments
37. Solving a nonhomogeneous linear system X9 = AX + F(t) by 

variation of parameters when A is a 3 × 3 (or larger) matrix is 
almost an impossible task to do by hand. Consider the system

X9 5 1
2

21

0

0

22

3

0

0

2

0

4

2

1

3

22

21
2X 1 1

tet

e2t

e2t

1
2.

(a) Use a CAS or linear algebra software to �nd the eigenval-
ues and eigenvectors of the coef�cient matrix.

(b) Form a fundamental matrix F(t) and use the computer to 
�nd F21(t).

(c) Use the computer to carry out the computations of: 
F21(t)F(t), eF21(t)F(t) dt, F(t)eF21(t)F(t) dt,
F(t)C, and F(t)C 1 eF21(t)F(t) dt, where C is a column 
matrix of constants c1, c2, c3, and c4.

(d) Rewrite the computer output for the general solu-
tion of the system in the form X = Xc + XpXpX , where 
Xc = c1X1 + c2X2 + c3X3 + c4X4.

INTRODUCTION Matrices can be used in an entirely different manner to solve a 
system of linear �rst-order differential equations. Recall that the simple linear �rst-
order differential equation x9 = ax, where a is constant, has the general solution 
x = ceat, where c is a constant. It seems natural then to ask whether we can de�ne a 
matrix exponential function eAt, where A is a matrix of constants, so that a solution 
of the linear system X9 = AX is eAt.

HOMOGENEOUS SYSTEMS We shall now see that it is possible to define a ma-
trix exponential eAt so thatt so thatt

X 5 eAtC (1)

is a solution of the homogeneous system X9 = AX. Here A is an n × n matrix of 
constants, and C is an n × 1 column matrix of arbitrary constants. Note in (1) that 
the matrix C post multiplies eAt because we want t because we want t eAt to be an t to be an t n × n matrix. While the 
complete development of the meaning and theory of the matrix exponential would 
require a thorough knowledge of matrix algebra, one way of de�ning eAt is inspired t is inspired t

by the power series representation of the scalar exponential function eat:

eat 5 1 1 at 1
(at)2

2!
1 Á 1

(at)k

k!
1 Á

 (2)

5 1 1 at 1 a2 t2

2!
1 Á 1 �k t k

k!
1 Á 5 o

`

k50

�k tk

k!
.

The series in (2) converges for all t. Using this series, with 1 replaced by the identity 
matrix I and the constant a replaced by an n × n matrix A of constants, we arrive at 
a de�nition for the n × n matrix eAt.

8.4 M Matrix Exponential

DEFINITION 8.4.1 Matrix Exponential

For any n × n matrix A,

eAt 5 I 1 At 1 A2 
t2

2!
1 Á 1 Ak tk

k!
1 Á 5 o

`

k50

Ak 
tk

k!
. (3)

It can be shown that the series given in (3) converges to an n × n matrix for 
every value of t. Also, A2 = AA, A3 = A(A2), and so on.
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EXAMPLE 1  Matrix Exponential Using (3)

Compute eAt for the matrix

A 5 120 0

32.
SOLUTION From the various powers

A2 5 12
2

0

0

322, A3 5 12
3

0

0

332, A4 5 12
4

0

0

342, . . . , An 5 12
n

0

0

3n2, . . . ,
we see from (3) that

eAt 5 I 1 At 1 A2 t2

2!
1 . . .

5 110 0

12 1 120 0

32t 1 12
2

0

0

322 t2

2!
1 . . . 1 12

n

0

0

3n2 t n

n!
1 . . .

5 11 1 2t 1 22 t2

2!
1 . . .

0

0

1 1 3t 1 32 t2

2!
1 . . .2.

In view of (2) and the identi�cations a 5 2 and a 5 3, the power series in the �rst 
and second rows of the last matrix represent, respectively, e2t and e3t and so we havet and so we havet

eAt 5 1e
2t

0

0

e3t2. .

The matrix in Example 1 is an example of a 2 3 2 diagonal matrix. In general, 
an n 3 n matrix A is a diagonal matrix if all its entries off the main diagonal are 
zero, that is,

A 5 1
a11

0

o
0

0

a22

o
0

Á
Á

Á

0

0

o
ann

2.

Hence if A is any n 3 n diagonal matrix it follows from Example 1 that

eAt 5 1
ea11t

0

o
0

0

ea22t

o
0

Á
Á

Á

0

0

o
eannt
2.

DERIVATIVE OF e At The derivative of the matrix exponential is analogous to the

differentiation property of the scalar exponential 
d

The derivative of the matrix exponential is analogous to the
d

The derivative of the matrix exponential is analogous to the

dt
eat 5 aeat. To justify

d

dt
 eAt 5 AeAt, (4)

we differentiate (3) term by term: 

d

dt
eAt 5

d

dt 3I 1 At 1 A2 t2

2!
1 Á 1 Ak tk

k!
1 Á4 5 A 1 A2t 1

1

2!
A3t2 1 Á

5 A3I 1 At 1 A2 t2

2!
1 Á4 5 AeAt.

Because of (4), we can now prove that (1) is a solution of X9 = AX for every n × 1 
vector C of constants:

X9 5
d

dt
eAtC 5 AeAtC 5 A(eAtC) 5 AX.
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e At IS A FUNDAMENTAL MATRIX If we denote the matrix exponential eAt

by the symbol C(t), then (4) is equivalent to the matrix differential equation 
C9(t) = AC(t) (see (3) of Section 8.3). In addition, it follows immediately from 
Definition 8.4.1 that C(0) = eA0 = I, and so det C(0) Þ 0. It turns out that these 
two properties are sufficient for us to conclude that C(t) is a fundamental matrix of the t) is a fundamental matrix of the t
system X9 = AX.

NONHOMOGENEOUS SYSTEMS We saw in (4) of Section 2.3 that the general 
solution of the single linear first-order differential equation x9 = ax + f (t), where a
is a constant, can be expressed as

x 5 ceat 1 eat#t

t
#

t
#

0t0t
e2asfsfs (s) dsdsd .

For a nonhomogeneous system of linear �rst-order differential equations it can be 
shown that the general solution of X9 = AX + F(t), where A is an n × n matrix of 
constants, is

X 5 eAtC 1 eAt#t

t0
e2AsF(s) ds. (5)

Since the matrix exponential eAt is a fundamental matrix, it is always nonsingular and t is a fundamental matrix, it is always nonsingular and t

e−As = (eAs)−1. In practice, e−As can be obtained from eAt by simply replacing t by simply replacing t t by t by t −s.

COMPUTATION OF e At The definition of eAt given in (3) can, of course, always t given in (3) can, of course, always t

be used to compute eAt. However, the practical utility of (3) is limited by the fact that 
the entries in eAt are power series in t are power series in t t. With a natural desire to work with simple and 
familiar things, we then try to recognize whether these series define a closed-form 
function. Fortunately, there are many alternative ways of computing eAt; the follow-
ing discussion shows how the Laplace transform can be used.

USE OF THE LAPLACE TRANSFORM We saw in (5) that X = eAt is a solution of t is a solution of t

X9 = AX. Indeed, since eA0 = I, X = eAt is a solution of the initial-value problemt is a solution of the initial-value problemt

X9 5 AX, X(0) 5 I. (6)

If x(s) 5 +{X(t)} 5 +{eAt}, then the Laplace transform of (6) is

sx(s) 2 X(0) 5 Ax(s) or (sI 2 A)x(s) 5 I.

Multiplying the last equation by (sI − A)−1 implies that x(s) = (sI − A)−1

I = (sI − A)−1. In other words, +{eAt} 5 (sI 2 A)21 or 

eAt 5 +21{(sI 2 A)21}. (7)

 EXAMPLE 2  Matrix Exponential Using (7)

Use the Laplace transform to compute eAt for t for t A 5 112 21

222.
SOLUTION First we compute the matrix sI − A and find its inverse:

sI 2 A 5 1s 2 1

22

1

s 1 22,

(sI 2 A)21 5 1s 2 1

22

1

s 1 22
21

5 1
s 1 2

s(s 1 1)

2

s(s 1 1)

21

s(s 1 1)

s 2 1

s(s 1 1)
2.
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Then we decompose the entries of the last matrix into partial fractions:

(sI 2 A)21 5 1
2
s

2
1

s 1 1

2
s

2
2

s 1 1

2
1
s

1
1

s 1 1

2
1
s

1
2

s 1 1
2. (8)

It follows from (7) that the inverse Laplace transform of (8) gives the desired result,

eAt 5 12 2 e2t

2 2 2e2t

21 1 e2t

21 1 2e2t2. .

USE OF COMPUTERS For those who are willing to momentarily trade understand-
ing for speed of solution, eAt can be computed with the aid of computer software. See t can be computed with the aid of computer software. See t

Problems 27 and 28 in Exercises 8.4.

EXERCISES 8.4

In Problems 1 and 2 use (3) to compute eAt and t and t e−At.

1. A 5 110 0

22 2. A 5 101 1

02
In Problems 3 and 4 use (3) to compute eAt.

3. A 5 1 1

1

22

1

1

22

1

1

22
2

4. A 5 10

3

5

0

0

1

0

0

0
2

In Problems 5–8 use (1) to �nd the general solution of the given 
system.

5. X9 5 110 0

22X 6. X9 5 101 1

02X

7. X9 5 1 1

1

22

1

1

22

1

1

22
2X 8. X9 5 10

3

5

0

0

1

0

0

0
2X

In Problems 9–12 use (5) to �nd the general solution of the given 
system.

9. X9 5 110 0

22X 1 1 3

212
10. X9 5 110 0

22X 1 1 t

e4t2
11. X9 5 101 1

02X 1 1112
12. X9 5 101 1

02X 1 1cosh t

sinh t2

13. Solve the system in Problem 7 subject to the initial condition

X(0) 5 1 1

24

6
2.

14. Solve the system in Problem 9 subject to the initial condition

X(0) 5 1432.
In Problems 15–18 use the method of Example 2 to compute eAt

for the coef�cient matrix. Use (1) to �nd the general solution of the 
given system.

15. X9 5 1 4

24

3

242X 16. X9 5 141 22

12X

17. X9 5 151 29

212X 18. X9 5 1 0

22

1

222X

Let P denote a matrix whose columns are eigenvectors  
K1, K2, . . . , Kn corresponding to distinct eigenvalues 
�1, �2, . . . , �n of an n × n matrix A. Then it can be shown  
that A = PDP−1, where D is a diagonal matrix de�ned by

D 5 ( )
�

( )
�1( )1

0( )0

0
( )

0

.( )
0

( )( )0( )( )
�

( )( )
n

( )( )
0

( )( )�( )( )2( )( )
0

( )
Á
Á

Á
o o o

(9)

In Problems 19 and 20 verify the foregoing result for the given 
matrix.

19. A 5 1 2

23

1

62 20. A 5 121 1

22

Answers to selected odd-numbered problems begin on page ANS-15.
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21. Suppose A = PDP−1, where D is de�ned as in (9). Use (3) to 
show that eAt = PeDtP−1.

22. If D is de�ned as in (9), then �nd eDt.

In Problems 23 and 24 use the results of Problems 19–22 to solve 
the given system.

23. X9 5 1 2

23

1

62X 24. X9 5 121 1

22X

Discussion Problems
25. Reread the discussion leading to the result given in (7). Does 

the matrix sI − A always have an inverse? Discuss.

26. A matrix A is said to be nilpotent if there exists some positive 
integer m such that Am = 0. Verify that

A 5 121

21

21

1

0

1

1

1

1
2

is nilpotent. Discuss why it is relatively easy to compute eAt

when A is nilpotent. Compute eAt and then use (1) to solve the t and then use (1) to solve the t

system X9 = AX.

Computer Lab Assignments
27. (a) Use (1) to �nd the general solution of X9 5 143 2

32X.

Use a CAS to �nd eAt. Then use the computer to �nd  
eigenvalues and eigenvectors of the coef�cient matrix 

A 5 143 2

32 and form the general solution in the manner 

of Section 8.2. Finally, reconcile the two forms of the gen-

eral solution of the system.

(b) Use (1) to �nd the general solution of X9 5 123

2

21

212X.

Use a CAS to �nd eAt. In the case of complex output, utilize 
the software to do the simpli�cation; for example, in  
Mathematica, if m 5 MatrixExp[A t] has complex entries, 
then try the command Simplify[ComplexExpand[m]].

28. Use (1) to �nd the general solution of

X9 5 1
24

0

21

0

0

25

0

3

6

0

1

0

0

24

0

2
2X.

Use MATLAB or a CAS to �nd eAt.

In Problems 1 and 2 �ll in the blanks.

1. The vector X 5 k1452 is a solution of

X9 5 112 4

212X 2 1812
for k = .

2. The vector X 5 c1121

12e29t 1 c21532e7t is a solution of t is a solution of t

the initial-value problem X9 5 116 10

232X, X(0) 5 1202
for c1 =  and c2 = .

3. Consider the linear system X9 5 1 4

1

21

6

3

24

6

2

23
2X.

Without attempting to solve the system, determine which one of 
the vectors

K1 5 10

1

1
2, K2 5 1 1

1

21
2, K3 5 1 3

1

21
2, K4 5 1 6

2

25
2

is an eigenvector of the coef�cient matrix. What is the solution 
of the system corresponding to this eigenvector?

4. Consider the linear system X9 = AX of two differential 
equations, where A is a real coef�cient matrix. What is the 
general solution of the system if it is known that

Chapter 8 In Review Answers to selected odd-numbered problems begin on page ANS-15.

�1 = 1 + 2i is an eigenvalue and K1 5 11i2 is a corresponding 
eigenvector?

In Problems 5–14 solve the given linear system.

5.
dxdxd

dt
5 2x2x2 1 y 6.

dxdxd

dt
5 24x4x4 1 2y2y2

dy

dt
5 2x

dy

dt
5 2x2x2 2 4y

7. X9 5 1 1

22

2

12X 8. X9 5 122

22

5

42X

9. X9 5 11

0

4

21

1

3

1

3

1
2X 10. X9 5 10

1

2

2

1

2

1

22

21
2X

11. X9 5 120 8

42X 1 1 2

16t2
12. X9 5 1 1

21
2

2

12X 1 1 0

et tan t2
13. X9 5 121

22

1

12X 1 1 1

cot t2
14. X9 5 1 3

21

1

12X 1 122

12e2t
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15. (a) Consider the linear system X9 = AX of three �rst-order 
differential equations, where the coef�cient matrix is

A 5 1 5

3

25

3

5

25

3

3

23
2

and � = 2 is known to be an eigenvalue of multiplicity two. 
Find two different solutions of the system corresponding 
to this eigenvalue without using a special formula (such as 
(12) of Section 8.2).

(b) Use the procedure of part (a) to solve

X9 5 11

1

1

1

1

1

1

1

1
2X.

16. Verify that X 5 1c1

c2
2et is a solution of the linear systemt is a solution of the linear systemt

X9 5 110 0

12X

for arbitrary constants c1 and c2. By hand, draw a phase portrait 
of the system.
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368

9.1 Euler Methods and Error Analysis
9.2 Runge-Kutta Methods
9.3 Multistep MethodsMultistep Methods
9.4 Higher-Order Equations and Systems
9.5 Second-Order Boundary-Value ProblemsSecond-Order Boundary-Value Problems

C H A P T E R  C H A P T E R  9  I N  R E V I E W 

E ven if a solution of a differential equation exists, we may not be able to 

exhibit it in explicit or implicit form. In many instances we have to be content 

with an approximation of the solution. If a solution exists, it represents a set 

of points in the Cartesian plane. In this chapter we continue to explore the basic 

idea introduced in Section 2.6, that is, using the differential equation to construct an 

algorithm to approximate the y-coordinates of points on the actual solution curve. 

Our concentration in this chapter is primarily on �rst-order initial-value problems, 

but it concludes with a method for approximating solutions of linear second-order 

boundary-value problems.

9
Numerical Solutions of Ordinary 
Differential Equations

Paul B. Moore/Shutterstock.com
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. EULER METHODS AND ERROR ANALYSIS 369

INTRODUCTION In Chapter 2 we examined one of the simplest numerical methods 
for approximating solutions of �rst-order initial-value problems y9 5 f (x, y), 
y(x0) 5 y0. Recall that the backbone of Euler’s method is the formula

yn11 5 yn 1 hf (xn, yn), (1)

where f is the function obtained from the differential equation f is the function obtained from the differential equation f y9 5 f (x, y). The 
recursive use of (1) for n 5 0, 1, 2, . . . yields the y-coordinates y1, y2, y3, . . . 
of points on successive “tangent lines” to the solution curve at x1, x2, x3, . . . or 
xn 5 x0 1 nh, where h is a constant and is the size of the step between xn and xn11. 
The values y1, y2, y3, . . . approximate the values of a solution y(x) of the IVP at 
x1, x2, x3, . . . . But whatever advantage (1) has in its simplicity is lost in the crudeness 
of its approximations.

A COMPARISON In Problem 4 in Exercises 2.6 you were asked to use Euler’s 
method to obtain the approximate value of y(1.5) for the solution of the initial-value 
problem y9 5 2xy, y(1) 5 1. You should have obtained the analytic solution y 5 ex221

and results similar to those given in Tables 9.1.1 and 9.1.2.

9.1 Euler Methods and Error Analysis

In this case, with a step size h 5 0.1 a 16% relative error in the calculation of 
the approximation to y(1.5) is totally unacceptable. At the expense of doubling the 
number of calculations, some improvement in accuracy is obtained by halving the 
step size to h 5 0.05.

ERRORS IN NUMERICAL METHODS In choosing and using a numerical method 
for the solution of an initial-value problem, we must be aware of the various sources 
of errors. For some kinds of computation the accumulation of errors might reduce the 
accuracy of an approximation to the point of making the computation useless. On the 
other hand, depending on the use to which a numerical solution may be put, extreme 
accuracy might not be worth the added expense and complication.

One source of error that is always present in calculations is round-off error. 
This error results from the fact that any calculator or computer can represent numbers results from the fact that any calculator or computer can represent numbers results from the f
using only a �nite number of digits. Suppose, for the sake of illustration, that we have 
a calculator that uses base 10 arithmetic and carries four digits, so that 13 is represented  is represented 

 TABLE 9.1.1   E ule r ’ s  M e thod w ith h 5 0.1

xn yn

Actual  
value

Abs. 
error

% Rel. 
error

1.00 1.0000 1.0000 0.0000 0.00
1.10 1.2000 1.2337 0.0337 2.73
1.20 1.4640 1.5527 0.0887 5.71
1.30 1.8154 1.9937 0.1784 8.95
1.40 2.2874 2.6117 0.3244 12.42
1.50 2.9278 3.4903 0.5625 16.12

 TABLE 9.1.2   E u l e r ’ s  M e t h od  w i t h  h 5 0.05

xn yn

Actual 
value

Abs. 
error

% Rel. 
error

1.00 1.0000 1.0000 0.0000 0.00
1.05 1.1000 1.1079 0.0079 0.72
1.10 1.2155 1.2337 0.0182 1.47
1.15 1.3492 1.3806 0.0314 2.27
1.20 1.5044 1.5527 0.0483 3.11
1.25 1.6849 1.7551 0.0702 4.00
1.30 1.8955 1.9937 0.0982 4.93
1.35 2.1419 2.2762 0.1343 5.90
1.40 2.4311 2.6117 0.1806 6.92
1.45 2.7714 3.0117 0.2403 7.98
1.50 3.1733 3.4903 0.3171 9.08
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in the calculator as 0.3333 and 19 is represented as 0.1111. If we use this calculator to 
compute _x_x_ 2 2 1

9+ y _x_x_ 2 1
3+ for x 5 0.3334, we obtain

(0.3334)2 2 0.1111

0.3334 2 0.3333
5

0.1112 2 0.1111

0.3334 2 0.3333
5 1.

With the help of a little algebra, however, we see that

x2 2 1
9

x 2 1
3

5
_x_x_ 2 1

3+_x_x_ 1 1
3+

x 2 1
3

5 x 1
1

3
,

so when x 5 0.3334, _x_x_ 2 2 1
9+ y _x_x_ 2 1

3+ < 0.3334 1 0.3333 5 0.6667. This example 
shows that the effects of round-off error can be quite serious unless some care is 
taken. One way to reduce the effect of round-off error is to minimize the number of 
calculations. Another technique on a computer is to use double-precision arithmetic 
to check the results. In general, round-off error is unpredictable and dif�cult to ana-
lyze, and we will neglect it in the error analysis that follows. We will concentrate on 
investigating the error introduced by using a formula or algorithm to approximate the 
values of the solution.

TRUNCATION ERRORS FOR EULER’S METHOD In the sequence of values 
y1, y2, y3, . . . generated from (1), usually the value of y1 will not agree with the 
actual solution at x1—namely, y(x1)—because the algorithm gives only a straight-
line approximation to the solution. See Figure 2.6.2. The error is called the local 
truncation error, formula error, or discretization error. It occurs at each step; 
that is, if we assume that yn is accurate, then yn11 will contain local truncation error.

To derive a formula for the local truncation error for Euler’s method, we use 
Taylor’s formula with remainder. If a function y(x) possesses k 1 1 derivatives that 
are continuous on an open interval containing a and x, then

y(x) 5 y(a) 1 y9(a) 
x 2 a

1!
1 Á 1 y(k)(a) 

(x 2 a)k

k!
1 y(k11)(c) 

(x 2 a)k11

(k 1 1)!
, 

where c is some point between a and x. Setting k 5 1, a 5 xn, and x 5 xn11 5 xn 1 h, 
we get

y(xn11) 5 y(xn) 1 y9(xn) 
h

1!
1 y0(c) 

h2

2!

or

yn11

y(xn11) 5 yn 1 hf (xn, yn) 1 y 0(c) .
h2

) .––) .
2!

) .
2!

) ..

Euler’s method (1) is the last formula without the last term; hence the local truncation 
error in yn11 is

y0(c) 
h2

2!
, where xn , c , xn11.

The value of c is usually unknown (it exists theoretically), so the exact error canexact error canexact -
not be calculated, but an upper bound on the absolute value of the error is MhMhM 2y2!,
where M 5 max

xn, x, xn11

uy0(x)u.

In discussing errors that arise from the use of numerical methods, it is helpful 
to use the notation O(hn). To de�ne this concept, we let e(h) denote the error in a 
numerical calculation depending on h. Then e(h) is said to be of order hn, denoted 
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by O(hn), if there exist a constant C and a positive integer C and a positive integer C n such that ue(h)u # Chn

for h suf�ciently small. Thus the local truncation error for Euler’s method is O(h2). 
We note that, in general, if e(h) in a numerical method is of order hn and h is halved, 
the new error is approximately C(hy2)n 5 Chny2n; that is, the error is reduced by a 
factor of 1y2n.

 EXAMPLE 1 Bound for Local Truncation Errors

Find a bound for the local truncation errors for Euler’s method applied to
y9 5 2xy, y(1) 5 1.

SOLUTION From the solution y 5 ex221 we get y0 5 (2 1 4x2)ex221, so the local 
truncation error is

y0(c) 
h2

2
5 (2 1 4c2)e(c221) h2

2
,

where c is between xn and xn 1 h. In particular, for h 5 0.1 we can get an upper 
bound on the local truncation error for y1 by replacing c by 1.1:

[2 1 (4)(1.1)2]e((1.1)221) (0.1)2

2
5 0.0422.

From Table 9.1.1 we see that the error after the �rst step is 0.0337, less than the value 
given by the bound.

Similarly, we can get a bound for the local truncation error for any of the �ve steps 
given in Table 9.1.1 by replacing c by 1.5 (this value of c gives the largest value of y0(c) 
for any of the steps and may be too generous for the �rst few steps). Doing this gives

[2 1 (4)(1.5)2]e((1.5)221) (0.1)2

2
5 0.1920 (2)

as an upper bound for the local truncation error in each step.

Note that if h is halved to 0.05 in Example 1, then the error bound is 0.0480, 
about one-fourth as much as shown in (2). This is expected because the local trunca-
tion error for Euler’s method is O(h2).

In the above analysis we assumed that the value of yn was exact in the calcula-
tion of yn11, but it is not because it contains local truncation errors from previous 
steps. The total error in yn11 is an accumulation of the errors in each of the previous 
steps. This total error is called the global truncation error. A complete analysis of 
the global truncation error is beyond the scope of this text, but it can be shown that 
the global truncation error for Euler’s method is O(h).

We expect that, for Euler’s method, if the step size is halved the error will 
be approximately halved as well. This is borne out in Tables 9.1.1 and 9.1.2 where 
the absolute error at x 5 1.50 with h 5 0.1 is 0.5625 and with h 5 0.05 is 0.3171, 
approximately half as large.

In general it can be shown that if a method for the numerical solution of a 
differential equation has local truncation error O(h�11), then the global truncation 
error is O(h�).

For the remainder of this section and in the subsequent sections we study meth-
ods that give signi�cantly greater accuracy than does Euler’s method.

IMPROVED EULER’S METHOD The numerical method de�ned by the formula

yn11 5 yn 1 h 
f (xn, yn) 1 f (xn11, y*n21)

2
, (3)

where y*n11 5 yn 1 h f (xn, yn) (4)
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is commonly known as the improved Euler’s method. To compute yn11 for 
n 5 0, 1, 2, . . . from (3), we must, at each step, �rst use Euler’s method (4) to obtain 
an initial estimate y*n11. For example, with n 5 0, (4) gives y*1 5 y0 1 hfhfh (x0, y0), and

then, knowing this value, we use (3) to get y1 5 y0 1 h
f (x0, y0) 1 f (x1, y*1 )

2
, where 

x1 5 x0 1 h. These equations can be readily visualized. In Figure 9.1.1, observe that 
m0 5 f (x(x( 0, y0) and m1 5 f (x1, y*1 ) are slopes of the solid straight lines shown passing 
through the points (xthrough the points (xthrough the points ( 0, y0) and (x1, y*1*1*), respectively. By taking an average of these

slopes, that is, mave 5
f (x0, y0) 1 f (x1, y1*1*1 )

2
, we obtain the slope of the parallel 

dashed skew lines. With the �rst step, rather than advancing along the line through 
(x(x( 0,  y0) with slope f (x(x( 0, y0) to the point with y-coordinate y*1  obtained by Euler’s 
method, we advance instead along the red dashed line through (xmethod, we advance instead along the red dashed line through (xmethod, we advance instead along the red dashed line through ( 0, y0) with slope 
mave until we reach x1. It seems plausible from inspection of the �gure that y1 is an 
improvement over y*1 .

In general, the improved Euler’s method is an example of a predictor-corrector 
method. The value of y*n11 given by (4) predicts a value of y(x(x( n), whereas the value of 
yn11 de�ned by formula (3) corrects this estimate.

 EXAMPLE 2 Improved Euler’s Method

Use the improved Euler’s method to obtain the approximate value of y(1.5) for the 
solution of the initial-value problem y9 5 2xy, y(1) 5 1. Compare the results for 
h 5 0.1 and h 5 0.05.

SOLUTION With x0 5 1, y0 5 1, f (xn, yn) 5 2x2x2 nynyn n, n 5 0, and h 5 0.1, we �rst 
compute (4):

y*1 5 y0 1 (0.1)(2x0y0) 5 1 1 (0.1)2(1)(1) 5 1.2.

We use this last value in (3) along with x1 5 1 1 h 5 1 1 0.1 5 1.1:

y1 5 y0 1 (0.1) 
2x0y0 1 2x1x1x y*1

2
5 1 1 (0.1) 

2(1)(1) 1 2(1.1)(1.2)

2
5 1.232.

The comparative values of the calculations for h 5 0.1 and h 5 0.05 are given in 
Tables 9.1.3 and 9.1.4, respectively.

(x1, y1)

(x1, y*
1)

mave

x

y

x0 x1

h

(x0, y0)

((((xxxx1111, , , , ))))

((((xxxx1111, , , , ))))

m0 5 f(x0, y0)

m1 5 f(x1, y*
1)

(x1, y(x1))

solution
curve

f(x0, y0) 1 f (x1, y*
1)

2mave5

FIGURE 9.1.1 Slope of red dashed line is 
the average of m0 and m1

TABLE 9.1.4 I m p r o v e d  E u l e r ’ s  M e t h o d  w i t h  h 5 0 . 0 5

xn yn

Actual 
value

Abs. 
error

% Rel. 
error

1.00 1.0000 1.0000 0.0000 0.00
1.05 1.1077 1.1079 0.0002 0.02
1.10 1.2332 1.2337 0.0004 0.04
1.15 1.3798 1.3806 0.0008 0.06
1.20 1.5514 1.5527 0.0013 0.08
1.25 1.7531 1.7551 0.0020 0.11
1.30 1.9909 1.9937 0.0029 0.14
1.35 2.2721 2.2762 0.0041 0.18
1.40 2.6060 2.6117 0.0057 0.22
1.45 3.0038 3.0117 0.0079 0.26
1.50 3.4795 3.4904 0.0108 0.31

TABLE 9.1.3 I mpr ove d E ule r ’ s  M e t hod w i t h h 5 0.1

xn yn

Actual 
value

Abs.  
error

% Rel. 
error

1.00 1.0000 1.0000 0.0000 0.00
1.10 1.2320 1.2337 0.0017 0.14
1.20 1.5479 1.5527 0.0048 0.31
1.30 1.9832 1.9937 0.0106 0.53
1.40 2.5908 2.6117 0.0209 0.80
1.50 3.4509 3.4904 0.0394 1.13

A brief word of caution is in order here. We cannot compute all the values of y*n
�rst and then substitute these values into formula (3). In other words, we cannot use 
the data in Table 9.1.1 to help construct the values in Table 9.1.3. Why not?

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



. EULER METHODS AND ERROR ANALYSIS 373

TRUNCATION ERRORS FOR THE IMPROVED EULER’S METHOD The local trun-
cation error for the improved Euler’s method is O(h3). The derivation of this result is 
similar to the derivation of the local truncation error for Euler’s method. Since the 
local truncation error for the improved Euler’s method is O(h3), the global truncation 
error is O(h2). This can be seen in Example 2; when the step size is halved from 
h 5 0.1 to h 5 0.05, the absolute error at x 5 1.50 is reduced from 0.0394 to 0.0108, 
a reduction of approximately _12+

2
0.05, the absolute error at 

2
0.05, the absolute error at 

5 1
4.

EXERCISES 9.1
In Problems 1–10 use the improved Euler’s method to obtain a four-
decimal approximation of the indicated value. First use h 5 0.1 and 
then use h 5 0.05.

1. y9 5 2x 2 3y 1 1, y(1) 5 5; y(1.5)

2. y9 5 4x 2 2y, y(0) 5 2; y(0.5)

3. y9 5 1 1 y2, y(0) 5 0; y(0.5)

4. y9 5 x2 1 y2, y(0) 5 1; y(0.5)

5. y9 5 e2y, y(0) 5 0; y(0.5)

6. y9 5 x 1 y2, y(0) 5 0; y(0.5)

7. y9 5 (x 2 y)2, y(0) 5 0.5; y(0.5)

8. y9 5 xy 1 ÏyÏyÏÏ , y(0) 5 1; y(0.5)

9. y9 5 xy2 2
y
x, y(1) 5 1; y(1.5)

10. y9 5 y 2 y2, y(0) 5 0.5; y(0.5)

11. Consider the initial-value problem y9 5 (x 1 y 2 1)2, y(0) 5 2. 
Use the improved Euler’s method with h 5 0.1 and h 5 0.05 to 
obtain approximate values of the solution at x 5 0.5. At each 
step compare the approximate value with the actual value of the 
analytic solution.

12. Although it might not be obvious from the differential equation, 
its solution could “behave badly” near a point x at which we x at which we x
wish to approximate y(x(x( ). Numerical procedures may give widely 
differing results near this point. Let y(x) be the solution of the 
initial-value problem y9 5 x2 1 y3, y(1) 5 1.

(a) Use a numerical solver to graph the solution on the interval 
[1, 1.4].

(b) Using the step size h 5 0.1, compare the results obtained 
from Euler’s method with the results from the improved 
Euler’s method in the approximation of y(1.4).

13. Consider the initial-value problem y9 5 2y, y(0) 5 1. The 
analytic solution is y 5 e2x.

(a) Approximate y(0.1) using one step and Euler’s method.

(b) Find a bound for the local truncation error in y1.

(c) Compare the error in y1 with your error bound.

(d) Approximate y(0.1) using two steps and Euler’s method.

(e) Verify that the global truncation error for Euler’s method is 
O(h) by comparing the errors in parts (a) and (d).

14. Repeat Problem 13 using the improved Euler’s method. Its 
global truncation error is O(h2).

15. Repeat Problem 13 using the initial-value problem y9 5 x 2 2y,
y(0) 5 1. The analytic solution is

y(x) 5 1
2 x 2 1

4 1 5
4 e22x.

16. Repeat Problem 15 using the improved Euler’s method. Its 
global truncation error is O(h2).

17. Consider the initial-value problem y9 5 2x 2 3y 1 1, y(1) 5 5. 
The analytic solution is

y(x) 5 1
9 1 2

3 x 1 38
9 e23(x21).

(a) Find a formula involving c and h for the local truncation 
error in the nth step if Euler’s method is used.

(b) Find a bound for the local truncation error in each step if 
h 5 0.1 is used to approximate y(1.5).

(c) Approximate y(1.5) using h 5 0.1 and h 5 0.05 with 
Euler’s method. See Problem 1 in Exercises 2.6.

(d) Calculate the errors in part (c) and verify that the global 
truncation error of Euler’s method is O(h).

18. Repeat Problem 17 using the improved Euler’s method, which 
has a global truncation error O(h2). See Problem 1. You might 
need to keep more than four decimal places to see the effect of 
reducing the order of the error.

19. Repeat Problem 17 for the initial-value problem y9 5 e2y, y(0) 5 0. 
The analytic solution is y(x(x( ) 5 ln(x 1 1). Approximate y(0.5). See 
Problem 5 in Exercises 2.6.

20. Repeat Problem 19 using the improved Euler’s method, which 
has global truncation error O(h2). See Problem 5. You might 
need to keep more than four decimal places to see the effect of 
reducing the order of error.

Discussion Problems
21. Answer the question “Why not?” that follows the three 

sentences after Example 2 on page 372.

Answers to selected odd-numbered problems begin on page ANS-15.
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9.2 Runge-Kutta Methods

INTRODUCTION Probably one of the more popular as well as most accurate 
numerical procedures used in obtaining approximate solutions to a �rst-order initial-
value problem y9 5 f (x, y), y(x(x( 0) 5 y0 is the fourth-order Runge-Kutta method. As 
the name suggests, there are Runge-Kutta methods of different orders.

RUNGEKUTTA METHODS Fundamentally, all Runge-Kutta methods are gener-
alizations of the basic Euler formula (1) of Section 9.1 in that the slope function f is f is f
replaced by a weighted average of slopes over the interval xn # x # xn11. That is,

weighted average

yn11 5 yn 1 h (w1k1 1 w2k2 1 Á 1 wmkmkmk ). (1)

Here the weights wi, i 5 1, 2, . . . , m, are constants that generally satisfy 
w1 1 w2 1 . . . 1 wm 5 1, and each ki, i 5 1, 2, . . . , m, is the function f evaluf evaluf -
ated at a selected point (x, y) for which xn # x # xn11. We shall see that the ki are 
de�ned recursively. The number m is called the order of the method. Observe that 
by taking m 5 1, w1 5 1, and k1 5 f (xn, yn), we get the familiar Euler formula 
yn11 5 yn 1 h f (xn, yn). Hence Euler’s method is said to be a �rst-order Runge-
Kutta method.

The average in (1) is not formed willy-nilly, but parameters are chosen so that 
(1) agrees with a Taylor polynomial of degree m. As we saw in the preceding section, 
if a function y(x) possesses k 1 1 derivatives that are continuous on an open interval 
containing a and x, then we can write

y(x) 5 y(a) 1 y9(a) 
x 2 a

1!
1 y0(a) 

(x 2 a)2

2!
1 Á 1 y(k11)(c) 

(x 2 a)k11

(k 1 1)!
,

where c is some number between a and x. If we replace a by xn and x by
xn11 5 xn 1 h, then the foregoing formula becomes

y(xn11) 5 y(xn 1 h) 5 y(xn) 1 hy9(xn) 1
h2

2!
y0(xn) 1 Á 1

hk11

(k 1 1)!
y(k11)(c),

where c is now some number between xn and xn11. When y(x) is a solution of 
y9 5 f (x, y) in the case k 5 1 and the remainder 1

2 h2y0(c) is close to 0, we see that 
a Taylor polynomial y(xn11) 5 y(xn) 1 hy9(xn) of degree one agrees with the 
approximation formula of Euler’s method

yn11 5 yn 1 hy9n 5 yn 1 h f (xn, yn).

A SECONDORDER RUNGEKUTTA METHOD To further illustrate (1), we con-
sider now a second-order Runge-Kutta procedure. This consists of �nding con-
stants or parameters w1, w2, �, and � so that the formula

yn11 5 yn 1 h(w1k1 1 w2k2), (2)

where k1 5 f (xn, yn)

k2 5 f(f(f xn 1 �h, yn 1 �hk1),

agrees with a Taylor polynomial of degree two. For our purposes it suf�ces to say that 
this can be done whenever the constants satisfy

w1 1 w2 5 1, w2� 5
1

2
, and w2� 5

1

2
. (3)
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This is an algebraic system of three equations in four unknowns and has in�nitely 
many solutions:

w1 5 1 2 w2, � 5
1

2w2
, and � 5

1

2w2
, (4)

where w2 Þ 0. For example, the choice w2 5 1
2 yields w1 5 1

2, � 5 1, and � 5 1, and 
so (2) becomes

yn11 5 yn 1
h

2
 ( (k1 1 k2),

where k1 5 f (xn, yn) and k2 5 f (xn 1 h, yn 1 hk1).

Since xn 1 h 5 xn11 and yn 1 hk1 5 yn 1 hf (xn, yn), the foregoing result is rec-
ognized to be the improved Euler’s method that is summarized in (3) and (4) of 
Section 9.1.

In view of the fact that w2 Þ 0 can be chosen arbitrarily in (4), there are many 
possible second-order Runge-Kutta methods. See Problem 2 in Exercises 9.2.

We shall skip any discussion of third-order methods in order to come to the 
principal point of discussion in this section.

A FOURTHORDER RUNGEKUTTA METHOD A fourth-order Runge-Kutta 
procedure consists of �nding parameters so that the formula

yn11 5 yn 1 h(w1k1 1 w2k2 1 w3k3 1 w4k4k4k ), (5)

where k1 5 f (xn, yn)

k2 5 f (xn 1 �1h, yn 1 �1hk1)

k3 5 f (xn 1 �2h, yn 1 �2hk1 1 �3hk2)

k4k4k 5 f (xn 1 �3h, yn 1 �4hk1 1 �5hk2 1 �6hk3),

agrees with a Taylor polynomial of degree four. This results in a system of 11 equa-
tions in 13 unknowns. The most commonly used set of values for the parameters 
yields the following result:

yn11 5 yn 1
h

6
 (k1 1 2k2 1 2k3 1 k4),

k1 5 f (xn, yn)

k2 5 f _xn 1 1
2h, yn 1 1

2hk1+ (6)

k3 5 f _xn 1 1
2h, yn 1 1

2hk2+
k4 5 f (xn 1 h, yn 1 hk3).

While other fourth-order formulas are easily derived, the algorithm summarized in (6) 
is so widely used and recognized as a valuable computational tool it is often referred to 
as the fourth-order Runge-Kutta method or the classical Runge-Kutta method. It is (6) the classical Runge-Kutta method. It is (6) the classical
that we have in mind, hereafter, when we use the abbreviation the RK4 method.

You are advised to look carefully at the formulas in (6); note that k2 depends on 
k1, k3 depends on k2, and k4 depends on k3. Also, k2 and k3 involve approximations 
to the slope at the midpoint xn 1 1

2 h of the interval de�ned by xn # x # xn11.

 EXAMPLE 1 RK4 Method

Use the RK4 method with h 5 0.1 to obtain an approximation to y(1.5) for the 
solution of y9 5 2xy, y(1) 5 1.
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SOLUTION For the sake of illustration let us compute the case when n 5 0. From (6) 
we �nd

k1 5 f (x0, y0) 5 2x0y0 5 2

k2 5 f _x_x_ 0 1 1
2 (0.1), y0 1 1

2 (0.1)2+
5 2_x_x_ 0 1 1

2 (0.1)+_y0 1 1
2 (0.2)+ 5 2.31

k3 5 f _x_x_ 0 1 1
2 (0.1), y0 1 1

2 (0.1)2.31+
5 2_x_x_ 0 1 1

2 (0.1)+_y0 1 1
2 (0.231)+ 5 2.34255

k4k4k 5 f (x0 1 (0.1), y0 1 (0.1)2.34255)

5 2(x0 1 0.1)(y0 1 0.234255) 5 2.715361

and therefore

y1 5 y0 1
0.1

6
 ( (k1 1 2k2 1 2k3 1 k4k4k )

5 1 1
0.1

6
 (2 (2 1 2(2.31) 1 2(2.34255) 1 2.715361) 5 1.23367435.

The remaining calculations are summarized in Table 9.2.1, whose entries are 
rounded to four decimal places.

Inspection of Table 9.2.1 shows why the fourth-order Runge-Kutta method is 
so popular. If four-decimal-place accuracy is all that we desire, there is no need 
to use a smaller step size. Table 9.2.2 compares the results of applying Euler’s, 
the improved Euler’s, and the fourth-order Runge-Kutta methods to the initial-value 
problem y9 5 2xy, y(1) 5 1. (See Tables 9.1.1–9.1.4.)

TABLE 9.2.1   R K4 M e thod w ith 
h 5 0.1

xn yn

Actual 
value

Abs. 
error

% Rel. 
error

1.00 1.0000 1.0000 0.0000 0.00
1.10 1.2337 1.2337 0.0000 0.00
1.20 1.5527 1.5527 0.0000 0.00
1.30 1.9937 1.9937 0.0000 0.00
1.40 2.6116 2.6117 0.0001 0.00
1.50 3.4902 3.4904 0.0001 0.00

TABLE 9.2.2   yy9 5 2 xy, y(1) 5 1

Comparison of numerical methods with h 5 0.1 Comparison of numerical methods with h 5 0.05

xn Euler
Improved 

Euler RK4
Actual 
value xn Euler

Improved 
Euler RK4

Actual 
value

1.00 1.0000 1.0000 1.0000 1.0000 1.00 1.0000 1.0000 1.0000 1.0000
1.10 1.2000 1.2320 1.2337 1.2337 1.05 1.1000 1.1077 1.1079 1.1079
1.20 1.4640 1.5479 1.5527 1.5527 1.10 1.2155 1.2332 1.2337 1.2337
1.30 1.8154 1.9832 1.9937 1.9937 1.15 1.3492 1.3798 1.3806 1.3806
1.40 2.2874 2.5908 2.6116 2.6117 1.20 1.5044 1.5514 1.5527 1.5527
1.50 2.9278 3.4509 3.4902 3.4904 1.25 1.6849 1.7531 1.7551 1.7551

1.30 1.8955 1.9909 1.9937 1.9937
1.35 2.1419 2.2721 2.2762 2.2762
1.40 2.4311 2.6060 2.6117 2.6117
1.45 2.7714 3.0038 3.0117 3.0117
1.50 3.1733 3.4795 3.4903 3.4904

TRUNCATION ERRORS FOR THE RK4 METHOD In Section 9.1 we saw that 
global truncation errors for Euler’s method and for the improved Euler’s method are, 
respectively, O(h) and O(h2). Because the �rst equation in (6) agrees with a Taylor 
polynomial of degree four, the local truncation error for this method is y(5)(c) h5y5! 
or O(h5), and the global truncation error is thus O(h4). It is now obvious why Euler’s 
method, the improved Euler’s method, and (6) are �rst-, second-, and fourth-order
Runge-Kutta methods, respectively.

 EXAMPLE 2 Bound for Local Truncation Errors

Find a bound for the local truncation errors for the RK4 method applied to 
y9 5 2xy, y(1) 5 1.
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SOLUTION By computing the �fth derivative of the known solution y(x) 5 ex221, 
we get

y(5)(c) 
h5

5!
5 (120c 1 160c3 1 32c5)ec221 h5

5!
. (7)

Thus with c 5 1.5, (7) yields a bound of 0.00028 on the local truncation error for 
each of the �ve steps when h 5 0.1. Note that in Table 9.2.1 the error in y1 is much 
less than this bound.

Table 9.2.3 gives the approximations to the solution of the initial-value problem 
at x 5 1.5 that are obtained from the RK4 method. By computing the value of the an-
alytic solution at x 5 1.5, we can �nd the error in these approximations. Because the 
method is so accurate, many decimal places must be used in the numerical solution 
to see the effect of halving the step size. Note that when h is halved, from h 5 0.1 to 
h 5 0.05, the error is divided by a factor of about 24 5 16, as expected.

ADAPTIVE METHODS We have seen that the accuracy of a numerical method for 
approximating solutions of differential equations can be improved by decreasing the 
step size h. Of course, this enhanced accuracy is usually obtained at a cost—namely, 
increased computation time and greater possibility of round-off error. In general, 
over the interval of approximation there may be subintervals where a relatively large 
step size suf�ces and other subintervals where a smaller step is necessary to keep the 
truncation error within a desired limit. Numerical methods that use a variable step 
size are called adaptive methods. One of the more popular of the adaptive routines is 
the Runge-Kutta-Fehlberg method. Because Fehlberg employed two Runge-Kutta 
methods of differing orders, a fourth- and a �fth-order method, this algorithm is fre-
quently denoted as the RKF45 method.*

*The Runge-Kutta method of order four used in RKF45 is not the same as that given in (6).not the same as that given in (6).not

TABLE 9.2.3 R K4 M e thod

h Approx. Error

0.1 3.49021064 1.32321089 3 1024

0.05 3.49033382 9.13776090 3 1026

1. Use the RK4 method with h 5 0.1 to approximate y(0.5), 
where y(x) is the solution of the initial-value problem 
y9 5 (x 1 y 2 1)2, y(0) 5 2. Compare this approximate 
value with the actual value obtained in Problem 11 in 
Exercises 9.1.

2. Assume that w2 5 3
4 in (4). Use the resulting second-order 

Runge-Kutta method to approximate y(0.5), where  
y(x) is the solution of the initial-value problem in Problem 1. 
Compare this approximate value with the approximate value 
obtained in Problem 11 in Exercises 9.1.

In Problems 3–12 use the RK4 method with h 5 0.1 to obtain a four-
decimal approximation of the indicated value.

3. y9 5 2x2x2 2 3y 1 1, y(1) 5 5; y(1.5)

4. y9 5 4x 2 2y, y(0) 5 2; y(0.5)

5. y9 5 1 1 y2, y(0) 5 0; y(0.5)

6. y9 5 x2 1 y2, y(0) 5 1; y(0.5)

7. y9 5 e2y, y(0) 5 0; y(0.5)

8. y9 5 x 1 y2, y(0) 5 0; y(0.5)

9. y9 5 (x 2 y)2, y(0) 5 0.5; y(0.5)

10. y9 5 xy 1 ÏyÏyÏÏ , y(0) 5 1; y(0.5)

11. y9 5 xy2 2
y

x
, y(1) 5 1; y(1.5)

12. y9 5 y 2 y2, y(0) 5 0.5; y(0.5)

13. If air resistance is proportional to the square of the instantaneous 
velocity, then the velocity v of a mass m dropped from a given 
height is determined from

m
dv

dt
5 mg 2 kv2,  k . 0.

Let v(0) 5 0, k 5 0.125, m 5 5 slugs, and g 5 32 ft/s2.

(a) Use the RK4 method with h 5 1 to approximate the 
velocity v(5).

(b) Use a numerical solver to graph the solution of the IVP on 
the interval [0, 6].

(c) Use separation of variables to solve the IVP and then �nd 
the actual value v(5).

14. A mathematical model for the area A (in cm2) that a colony of 
bacteria (B. dendroides) occupies is given by

dAdAd

dt
5 A(2.128 2 0.0432A).*

*See V. A. Kostitzin, Mathematical Biology (London: Harrap, 1939).

EXERCISES 9.2 Answers to selected odd-numbered problems begin on page ANS-16.
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Suppose that the initial area is 0.24 cm2.

(a) Use the RK4 method with h 5 0.5 to complete the  
following table:

t (days)t (days)t 1 2 3 4 5

A (observed) 2.78 13.53 36.30 47.50 49.40

A (approximated)

(b) Use a numerical solver to graph the solution of the initial-
value problem. Estimate the values A(1), A(2), A(3), A(4), 
and A(5) from the graph.

(c) Use separation of variables to solve the initial-value prob-
lem and compute the actual values A(1), A(2), A(3), A(4), 
and A(5).

15. Consider the initial-value problem y9 5 x2 1 y3, y(1) 5 1. See 
Problem 12 in Exercises 9.1.

(a) Compare the results obtained from using the RK4 method 
over the interval [1, 1.4] with step sizes h 5 0.1 and 
h 5 0.05.

(b) Use a numerical solver to graph the solution of the initial-
value problem on the interval [1, 1.4].

16. Consider the initial-value problem y9 5 2y, y(0) 5 1. The 
analytic solution is y(x) 5 e2x.

(a) Approximate y(0.1) using one step and the RK4 method.

(b) Find a bound for the local truncation error in y1.

(c) Compare the error in y1 with your error bound.

(d) Approximate y(0.1) using two steps and the RK4 method.

(e) Verify that the global truncation error for the RK4 method 
is O(h4) by comparing the errors in parts (a) and (d).

17. Repeat Problem 16 using the initial-value problem 
y9 5 22y 1 x, y(0) 5 1. The analytic solution is

y(x) 5 1
2 x 2 1

4 1 5
4 e22x.

18. Consider the initial-value problem y9 5 2x 2 3y 1 1, y(1) 5 5. 
The analytic solution is 

y(x) 5 1
9 1 2

3 x 1 38
9 e23(x21).

(a) Find a formula involving c and h for the local truncation 
error in the nth step if the RK4 method is used.

(b) Find a bound for the local truncation error in each step if 
h 5 0.1 is used to approximate y(1.5).

(c) Approximate y(1.5) using the RK4 method with h 5 0.1 
and h 5 0.05. See Problem 3. You will need to carry more 
than six decimal places to see the effect of reducing the 
step size.

19. Repeat Problem 18 for the initial-value problem y9 5 e2y, y(0) 5 0. 
The analytic solution is y(x(x( ) 5 ln(xln(xln( 1 1). Approximate y(0.5). See 
Problem 7.

Discussion Problems
20. A count of the number of evaluations of the function f used in f used in f

solving the initial-value problem y9 5 f (x, y), y(x0) 5 y0 is used 
as a measure of the computational complexity of a numerical 
method. Determine the number of evaluations of f required f required f
for each step of Euler’s, the improved Euler’s, and the RK4 
methods. By considering some speci�c examples, compare 
the accuracy of these methods when used with comparable 
computational complexities.

Computer Lab Assignments
21. The RK4 method for solving an initial-value problem over 

an interval [a, b] results in a �nite set of points that 
are supposed to approximate points on the graph of the 
exact solution. To expand this set of discrete points to an 
approximate solution de�ned at all points on the interval [a, b], 
we can use an interpolating function. This is a function, 
supported by most computer algebra systems, that agrees 
with the given data exactly and assumes a smooth transition 
between data points. These interpolating functions may be 
polynomials or sets of polynomials joined together smoothly. 
In Mathematica the command y 5 Interpolation[data] can 
be used to obtain an interpolating function through the points 
data 5 {{x0, y0}, {x1, y1}, . . . , {xn, yn}}. The interpolating interpolating inter
function y[x] can now be treated like any other function built 
into the computer algebra system.

(a) Find the analytic solution of the initial-value problem 
y9 5 2y 1 10 sin 3x; y(0) 5 0 on the interval [0, 2]. Graph 
this solution and �nd its positive roots.

(b) Use the RK4 method with h 5 0.1 to approximate a 
solution of the initial-value problem in part (a). Obtain 
an interpolating function and graph it. Find the positive 
roots of the interpolating function of the interval [0, 2].

9.3 Multistep Methods

INTRODUCTION Euler’s method, the improved Euler’s method, and the Runge-
Kutta methods are examples of single-step or starting methods. In these methods 
each successive value yn11 is computed based only on information about the 
immediately preceding value yn. On the other hand, multistep or continuing methods
use the values from several computed steps to obtain the value of yn11. There are a 
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large number of multistep method formulas for approximating solutions of DEs, but 
since it is not our intention to survey the vast �eld of numerical procedures, we will 
consider only one such method here.

ADAMSBASHFORTHMOULTON METHOD The multistep method that is 
discussed in this section is called the fourth-order Adams-Bashforth-Moulton 
method. Like the improved Euler’s method it is a predictor-corrector method—that 
is, one formula is used to predict a value y*n11, which in turn is used to obtain a 
corrected value yn11. The predictor in this method is the Adams-Bashforth formula

y*n11 5 yn 1
h

24
 (55y9n 2 59y9n21 1 37y9n22 2 9y9n23), (1)

  y9n 5 f (xn, yn)

y9n21 5 f (xn21, yn21)

y9n22 5 f (xn22, yn22)

y9n23 5 f (xn23, yn23)

for n $ 3. The value of y*n11 is then substituted into the Adams-Moulton corrector

yn11 5 yn 1
h

24
(9y9n11 1 19y9n 2 5y9n21 1 y9n22)

y9n11 5 f (xn11, y*n11).

(2)

Notice that formula (1) requires that we know the values of y0, y1, y2, and y3 to 
obtain y4. The value of y0 is, of course, the given initial condition. The local trunca-
tion error of the Adams-Bashforth-Moulton method is O(h5), the values of y1, y2, and 
y3 are generally computed by a method with the same error property, such as the 
fourth-order Runge-Kutta method.

 EXAMPLE 1 Adams-Bashforth-Moulton Method

Use the Adams-Bashforth-Moulton method with h 5 0.2 to obtain an approximation 
to y(0.8) for the solution of

y9 5 x 1 y 2 1, y(0) 5 1.

SOLUTION With a step size of h 5 0.2, y(0.8) will be approximated by y4. To get 
started, we use the RK4 method with x0 5 0, y0 5 1, and h 5 0.2 to obtain

y1 5 1.02140000, y2 5 1.09181796, y3 5 1.22210646.

Now with the identi�cations x0 5 0, x1 5 0.2, x2 5 0.4, x3 5 0.6, and 
f (x, y) 5 x 1 y 2 1, we �nd

y90 5 f (x0, y0) 5 (0) 1 (1) 2 1 5 0

y91 5 f (x1, y1) 5 (0.2) 1 (1.02140000) 2 1 5 0.22140000

y92 5 f (x2, y2) 5 (0.4) 1 (1.09181796) 2 1 5 0.49181796

y93 5 f (x3, y3) 5 (0.6) 1 (1.22210646) 2 1 5 0.82210646.

With the foregoing values the predictor (1) then gives

y*4 5 y3 1
0.2

24
 (5 (55y93 2 59y92 1 37y91 2 9y90) 51.42535975.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



380 CHAPTER  NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

To use the corrector (2), we �rst need

y94 5 f (x4, y*4) 5 0.8 1 1.42535975 2 1 5 1.22535975.

Finally, (2) yields 

y4 5 y3 1
0.2

24
 ( (9y94 1 19y93 2 5y92 1 y91) 5 1.42552788.

You should verify that the actual value of y(0.8) in Example 1 is 
y(0.8) 5 1.42554093. See Problem 1 in Exercises 9.3.

STABILITY OF NUMERICAL METHODS An important consideration in using nu-
merical methods to approximate the solution of an initial-value problem is the stabil-
ity of the method. Simply stated, a numerical method is stable if small changes in the 
initial condition result in only small changes in the computed solution. A numerical 
method is said to be unstable if it is not stable. The reason that stability considera-
tions are important is that in each step after the �rst step of a numerical technique we 
are essentially starting over again with a new initial-value problem, where the initial 
condition is the approximate solution value computed in the preceding step. Be-
cause of the presence of round-off error, this value will almost certainly vary at least 
slightly from the true value of the solution. Besides round-off error, another common 
source of error occurs in the initial condition itself; in physical applications the data 
are often obtained by imprecise measurements.

One possible method for detecting instability in the numerical solution of a spe-
ci�c initial-value problem is to compare the approximate solutions obtained when 
decreasing step sizes are used. If the numerical method is unstable, the error may 
actually increase with smaller step sizes. Another way of checking stability is to 
observe what happens to solutions when the initial condition is slightly perturbed 
(for example, change y(0) 5 1 to y(0) 5 0.999).

For a more detailed and precise discussion of stability, consult a numerical 
analysis text. In general, all of the methods that we have discussed in this chapter 
have good stability characteristics.

ADVANTAGES AND DISADVANTAGES OF MULTISTEP METHODS Many 
considerations enter into the choice of a method to solve a differential equation 
numerically. Single-step methods, particularly the RK4 method, are often chosen be-
cause of their accuracy and the fact that they are easy to program. However, a major 
drawback is that the right-hand side of the differential equation must be evaluated 
many times at each step. For instance, the RK4 method requires four function evalua-
tions for each step. On the other hand, if the function evaluations in the previous step 
have been calculated and stored, a multistep method requires only one new function 
evaluation for each step. This can lead to great savings in time and expense.

As an example, solving y9 5 ff (x, y), y(x0) 5 y0 numerically using n steps by the 
fourth-order Runge-Kutta method requires 4n function evaluations. The Adams-
Bashforth multistep method requires 16 function evaluations for the Runge-Kutta 
fourth-order starter and n 2 4 for the n Adams-Bashforth steps, giving a total of 
n 1 12 function evaluations for this method. In general the Adams-Bashforth multi-
step method requires slightly more than a quarter of the number of function evalua-
tions required for the RK4 method. If the evaluation of ff (x, y) is complicated, the 
multistep method will be more ef�cient.

Another issue that is involved with multistep methods is how many times the 
Adams-Moulton corrector formula should be repeated in each step. Each time 
the corrector is used, another function evaluation is done, and so the accuracy is 
increased at the expense of losing an advantage of the multistep method. In prac-
tice, the corrector is calculated once, and if the value of yn11 is changed by a large 
amount, the entire problem is restarted using a smaller step size. This is often 
the basis of the variable step size methods, whose discussion is beyond the scope 
of this text.
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EXERCISES 9.3
1. Find the analytic solution of the initial-value problem in Example 1. 

Compare the actual values of y(0.2), y(0.4), y(0.6), and y(0.8) with 
the approximations y1, y2, y3, and y4.

2. Write a computer program to implement the Adams-Bashforth-
Moulton method.

In Problems 3 and 4 use the Adams-Bashforth-Moulton method to ap-
proximate y(0.8), where y(x(x( ) is the solution of the given initial-value 
problem. Use h 5 0.2 and the RK4 method to compute y1, y2, and y3.

3. y9 5 2x2x2 2 3y 1 1, y(0) 5 1

4. y9 5 4x 2 2y, y(0) 5 2

In Problems 5–8 use the Adams-Bashforth-Moulton method to ap-
proximate y(1.0), where y(x(x( ) is the solution of the given initial-value 
problem. First use h 5 0.2 and then use h 5 0.1. Use the RK4 method 
to compute y1, y2, and y3.

5. y9 5 1 1 y2, y(0) 5 0

6. y9 5 y 1 cos x, y(0) 5 1

7. y9 5 (x 2 y)2, y(0) 5 0

8. y9 5 xy 1 ÏyÏyÏÏ , y(0) 5 1

Answers to selected odd-numbered problems begin on page ANS-16.

9.4 Higher-Order Equations and Systems

INTRODUCTION So far, we have focused on numerical techniques that 
can be used to approximate the solution of a �rst-order initial-value problem 
y9 5 f (x, y), y(x0) 5 y0. In order to approximate the solution of a second-order 
initial-value problem, we must express a second-order DE as a system of two �rst-
order DEs. To do this, we begin by writing the second-order DE in normal form by 
solving for y0 in terms of x, y, and y9.

SECONDORDER IVPs A second-order initial-value problem

y0 5 f (x, y, y9), y(x0) 5 y0, y9(x0) 5 u0 (1)

can be expressed as an initial-value problem for a system of �rst-order differen-
tial equations. If we let y9 5 u, the differential equation in (1) becomes the system

y9 5 u

u9 5 f (x, y, u).
(2)

Since y9(x0) 5 u(x0), the corresponding initial conditions for (2) are then y(x0) 5 y0, 
u(x(x( 0) 5 u0. The system (2) can now be solved numerically by simply applying a par-
ticular numerical method to each �rst-order differential equation in the system. For 
example, Euler’s method applied to the system (2) would be

yn11 5 yn 1 hun

un11 5 un 1 h f (xn, yn, un),
(3)

whereas the fourth-order Runge-Kutta method, or RK4 method, would be

yn11 5 yn 1
h

6
(m1 1 2m2 1 2m3 1 m4)

un11 5 un 1
h

6
(k1 1 2k2 1 2k3 1 k4)

(4)

where m1 5 un k1 5 f (xn, yn, un)

m2 5 un 1 1
2hk1 k2 5 f _xn 1 1

2 h, yn 1 1
2 hm1, un 1 1

2 hk1+
m3 5 un 1 1

2hk2 k3 5 f _xn 1 1
2 h, yn 1 1

2 hm2, un 1 1
2 hk2+

m4 5 un 1 hk3 k4 5 f (xn 1 h, yn 1 hm3, un 1 hk3).
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In general, we can express every nth-order differential equation
y(n) 5 f (x, y, y9, . . . , y(n21)) as a system of n �rst-order equations using the 
substitutions y 5 u1, y9 5 u2, y0 5 u3, . . . , y (n21) 5 un.

 EXAMPLE 1 Euler’s Method

Use Euler’s method to obtain the approximate value of y(0.2), where y(x) is the 
solution of the initial-value problem

y0 1 xy9 1 y 5 0, y(0) 5 1, y9(0) 5 2. (5)

SOLUTION In terms of the substitution y9 5 u, the equation is equivalent to the system

y9 5 u

u9 5 2xu 2 y.

Thus from (3) we obtain

yn11 5 yn 1 hun

un11 5 un 1 h[2xnun 2 yn].

Using the step size h 5 0.1 and y0 5 1, u0 5 2, we �nd

y1 5 y0 1 (0.1)u0 5 1 1 (0.1)2 5 1.2

  u1 5 u0 1 (0.1) [2x0u0 2 y0] 5 2 1 (0.1)[2(0)(2) 2 1] 5 1.9

y2 5 y1 1 (0.1)u1 5 1.2 1 (0.1)(1.9) 5 1.39

u2 5 u1 1 (0.1)[2x1u1 2 y1] 5 1.9 1 (0.1)[2(0.1)(1.9) 2 1.2] 5 1.761.

In other words, y(0.2) < 1.39 and y9(0.2) < 1.761.

With the aid of the graphing feature of a numerical solver, in Figure 9.4.1(a) we com-
pare the solution curve of (5) generated by Euler’s method (h 5 0.1) on the interval [0, 3] 
with the solution curve generated by the RK4 method (h 5 0.1). From Figure 9.4.1(b) it 
appears that the solution y(x(x( ) of (4) has the property that y(x) S 0 and x S `.

If desired, we can use the method of Section 6.2 to obtain two power series 
solutions of the differential equation in (5). But unless this method reveals that 
the DE possesses an elementary solution, we will still only be able to approximate 
y(0.2) using a partial sum. Reinspection of the in�nite series solutions of Airy’s 
differential equation y0 2 xy 5 0, given on page 246, does not reveal the oscilla-
tory behavior of the solutions y1(x) and y2(x) exhibited in the graphs in Figure 6.2.2. 
Those graphs were obtained from a numerical solver using the RK4 method with 
a step size of h 5 0.1.

SYSTEMS REDUCED TO FIRSTORDER SYSTEMS Using a procedure similar 
to that just discussed for second-order equations, we can often reduce a system of 
higher-order differential equations to a system of �rst-order equations by �rst solv-
ing for the highest-order derivative of each dependent variable and then making 
appropriate substitutions for the lower-order derivatives.

 EXAMPLE 2 A System Rewritten as a First-Order System

Write x0 2 x9 1 5x 1 2y0 5 et

22x 1 y0 1 2y 5 3t2

as a system of �rst-order differential equations.

x

y

21

2

1

0.2

Euler’s method

approximate
y(0.2)

(a) Euler’s method (red) and the
RK4 method (blue)

(b) RK4 method

x

y

205 1105 110 5

2

1

RK4 method

FIGURE 9.4.1 Numerical solution curves 
generated by different methods
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SOLUTION Write the system as

x0 1 2y0 5 et 2 5x 1 x9

y0 5 3t2 1 2x 2 2y

and then eliminate y0 by multiplying the second equation by 2 and subtracting. This 
gives

x0 5 29x 1 4y 1 x9 1 et 2 6t2.

Since the second equation of the system already expresses the highest-order derivative of 
y in terms of the remaining functions, we are now in a position to introduce new vari-
ables. If we let x9 5 u and y9 5 v, the expressions for x0 and y0 become, respectively,

u9 5 x0 5 29x 1 4y 1 u 1 et 2 6t2

v9 5 y0 5 2x 2 2y 1 3t2.

The original system can then be written in the form

x9 5 u

y9 5 v

u9 5 29x 1 4y 1 u 1 et 2 6t2

v9 5 2x 2 2y 1 3t2.

It might not always be possible to carry out the reductions illustrated in 
Example 2.

NUMERICAL SOLUTION OF A SYSTEM The solution of a system of the form

5 g1(t,  x1,  x2, Á ,  xn)

5 g2(t,  x1,  x2, Á ,  xn)

dx1–––
dt

dx2–––
dt

dxn–––
dt

o o

5 gn(t, x1,  x2, Á ,  xn)

can be approximated by a version of Euler’s, the Runge-Kutta, or the Adams-
Bashforth-Moulton method adapted to the system. For instance, the RK4 method 
applied to the system

x9 5 f (t, x, y)

y9 5 g(t, x, y) (6)

x(t0t0t ) 5 x0, y(t0t0t ) 5 y0,

looks like this:

xn11 5 xn 1
h

6
(m1 1 2m2 1 2m3 1 m4)

yn11 5 yn 1
h

6
(k1 1 2k2 1 2k3 1 k4),

(7)

where

m1 5 f (tn, xn, yn) k1 5 g(tn, xn, yn)

m2 5 f _tn 1 1
2 h, xn 1 1

2 hm1, yn 1 1
2 hk1+ k2 5 g_tn 1 1

2 h, xn 1 1
2 h m1, yn 1 1

2 h k1+

m3 5 f _tn 1 1
2 h, xn 1 1

2 hm2, yn 1 1
2 hk2+ k3 5 g_tn 1 1

2 h, xn 1 1
2 h m2, yn 1 1

2 h k2+
(8)

m4 5 f (tn 1 h, xn 1 hm3, yn 1  hk3) k4 5 g(tn 1 h, xn 1 hm3, yn 1 hk3).
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 EXAMPLE 3 RK4 Method

Consider the initial-value problem

x9 5 2x 1 4y

y9 5 2x 1 6y

x(0) 5 21, y(0) 5 6.

Use the RK4 method to approximate x(0.6) and y(0.6). Compare the results for 
h 5 0.2 and h 5 0.1.

SOLUTION We illustrate the computations of x1 and y1 with step size h 5 0.2. With 
the identi�cations f (t, x, y) 5 2x2x2 1 4y, g(t, x, y) 5 2x 1 6y, t0 t0 t 5 0, x0 5 21, and 
y0 5 6 we see from (8) that

m1 5 f (t0t0t , x0, y0) 5 f (0, 21, 6) 5 2(21) 1 4(6) 5 22

k1 5 g(t0t0t , x0, y0) 5 g(0, 21, 6) 5 21(21) 1 6(6) 5 37

m2 5 f _t0t0t 1 1
2h, x0 1 1

2 hm1, y0 1 1
2 hk1+ 5 f (0.1, 1.2, 9.7) 5 41.2

k2 5 g_t0t0t 1 1
2 h, x0 1 1

2 hm1, y0 1 1
2 hk1+ 5 g(0.1, 1.2, 9.7) 5 57

m3 5 f _t0t0t 1 1
2 h, x0 1 1

2 hm2, y0 1 1
2 hk2+ 5 f (0.1, 3.12, 11.7) 5 53.04

k3 5 g_t0t0t 1 1
2 h, x0 1 1

2 hm2, y0 1 1
2 hk2+ 5 g(0.1, 3.12, 11.7) 5 67.08

m4 5 f (t0t0t 1 h, x0 1 hm3, y0 1 hk3) 5 f (0.2, 9.608, 19.416) 5 96.88

k4k4k 5 g(t0t0t 1 h, x0 1 hm3, y0 1 hk3) 5 g(0.2, 9.608, 19.416) 5 106.888.

Therefore from (7) we get

x1 5 x0 1
0.2

6
 ( (m1 1 2m2 1 2m3 1 m4)

5 21 1
0.2

6
 (2 (22 1 2(41.2) 1 2(53.04) 1 96.88) 5 9.2453

y1 5 y0 1
0.2

6
 ( (k1 1 2k2 1 2k3 1 k4k4k )

5 6 1
0.2

6
 (3 (37 1 2(57) 1 2(67.08) 1 106.888) 5 19.0683,

where, as usual, the computed values of x1 and y1 are rounded to four decimal 
places. These numbers give us the approximation x1 < x(0.2) and y1 < y(0.2). 
The subsequent values, obtained with the aid of a computer, are summarized in 
Tables 9.4.1 and 9.4.2.

You should verify that the solution of the initial-value problem in Example 3 is 
given by x(t) 5 (26t 2 1)e4t, y(t) 5 (13t 1 6)e4t. From these equations we see that 
the actual values x(0.6) 5 160.9384 and y(0.6) 5 152.1198 compare favorably with 
the entries in the last line of Table 9.4.2. The graph of the solution in a neighborhood 
of t 5 0 is shown in Figure 9.4.2; the graph was obtained from a numerical solver 
using the RK4 method with h 5 0.1.

t

x, y

21

1 y(t)

x(t)

FIGURE 9.4.2 Numerical solution curves 
for IVP in Example 3

TABLE 9.4.1 h 5 0.2

tntnt xn yn

0.00 21.0000   6.0000
0.20 9.2453 19.0683
0.40 46.0327 55.1203
0.60 158.9430 150.8192

TABLE 9.4.2 h 5 0.1

tntnt xn yn

0.00 21.0000 6.0000
0.10   2.3840 10.8883
0.20 9.3379 19.1332
0.30 22.5541 32.8539
0.40 46.5103 55.4420
0.50 88.5729 93.3006
0.60 160.7563 152.0025
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In conclusion, we state Euler’s method for the general system (6):

 xn11 5 xn 1 h f(tn, xn, yn)

yn11 5 yn 1 hg(tn, xn, yn).

EXERCISES 9.4
1. Use Euler’s method to approximate y(0.2), where y(x) is the 

solution of the initial-value problem

y 0 2 4y9 1 4y 5 0, y (0) 5 22, y9(0) 5 1.

Use h 5 0.1. Find the analytic solution of the problem, and 
compare the actual value of y(0.2) with y2.

2. Use Euler’s method to approximate y(1.2), where y(x) is the 
solution of the initial-value problem

x2 y0 2 2xy9 1 2y 5 0, y(1) 5 4, y9(1) 5 9,

where x . 0. Use h 5 0.1. Find the analytic solution of the 
problem, and compare the actual value of y(1.2) with y2.

In Problems 3 and 4 repeat the indicated problem using the RK4 
method. First use h 5 0.2 and then use h 5 0.1.

3. Problem 1 4. Problem 2

5. Use the RK4 method to approximate y(0.2), where y(x) is the 
solution of the initial-value problem

y 0 2 2y9 1 2y 5 et cos t, y (0) 5 1, y9(0) 5 2.

First use h 5 0.2 and then use h 5 0.1.

6. When E 5 100 V, R 5 10 V, and L 5 1 h, the system of 
differential equations for the currents i1(t) and i3(t) in the 
electrical network given in Figure 9.4.3 is

di1
dt

5 220i1 1 10i3 1 100

di3
dt

5 10i1 2 20i3,

where i1(0) 5 0 and i3(0) 5 0. Use the RK4 method to 
approximate i1(t) and i3(t) at t 5 0.1, 0.2, 0.3, 0.4, and 0.5. 
Use h 5 0.1. Use a numerical solver to graph the solution for 
0 # t # 5. Use the graphs to predict the behavior of i1(t) and 
i3(t) as t S `.

In Problems 7 – 12 use the Runge-Kutta method to approximate 
x(0.2) and y(0.2). First use h 5 0.2 and then use h 5 0.1. Use a 
numerical solver and h 5 0.1 to graph the solution in a neighbor-
hood of t 5 0.

7. x9 5 2x2x2 2 y 8. x9 5 x 1 2y
y9 5 x y9 5 4x 1 3y
x(0) 5 6, y(0) 5 2  x(0) 5 1, y(0) 5 1

9. x9 5 2y 1 tt 10. x9 5 6x 1 y 1 6t
y9 5 x 2 tt y9 5 4x 1 3y 2 10t 1 4 
x(0) 5 23, y(0) 5 5 x(0) 5 0.5, y(0) 5 0.2

11. x9 1 4x 2 y9 5 7tt 12. x9 1 y95 4t
x9 1 y9 2 2y 5 3tt 2x9 1 y9 1 y 5 6t2t2t 1 10 
x(0) 5 1, y(0) 5 22 x(0) 5 3, y(0) 5 21

Answers to selected odd-numbered problems begin on page ANS-16.

9.5 Second-Order Boundary-Value Problems

INTRODUCTION We just saw in Section 9.4 how to approximate the solution of 
a second-order initial-value problem 

y0 5 f (x, y, y9), y(x0) 5 y0, y9(x0) 5 u0.

In this section we are going to examine two methods for approximating a solution of 
a second-order boundary-value problem

y0 5 f (x, y, y9), y(a) 5 �, y(b) 5 �.

Unlike the procedures that are used with second-order initial-value problems, the 
methods of second-order boundary-value problems do not require writing the second-
order DE as a system of �rst-order DEs.

FIGURE 9.4.3 Network in Problem 6

i1 i2

i3R

R

L LiL Li

RE
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FINITE DIFFERENCE APPROXIMATIONS The Taylor series expansion, centered 
at a point a, of a function y(x) is

y(x) 5 y(a) 1 y9(a) 
x 2 a

1!
1 y0(a) 

(x 2 a)2

2!
1 y- (a) 

(x 2 a)3

3!
1 Á .

If we set h 5 x 2 a, then the preceding line is the same as

y(x) 5 y(a) 1 y9(a) 
h

1!
1 y0(a) 

h2

2!
1 y- (a) 

h3

3!
1 Á .

For the subsequent discussion it is convenient then to rewrite this last expression in 
two alternative forms:

y(x 1 h) 5 y(x) 1 y9(x)h 1 y0(x) 
h2

2
1 y-(x) 

h3

6
1 Á (1)

and y(x 2 h) 5 y(x) 2 y9(x)h 1 y0(x) 
h2

2
2 y-(x) 

h3

6
1 Á . (2)

If h is small, we can ignore terms involving h4, h5, . . . since these values are neg-
ligible. Indeed, if we ignore all terms involving h2 and higher, then solving (1) and 
(2), in turn, for y9(x) yields the following approximations for the �rst derivative:

y9(x) <
1

h
 [ [y(x 1 h) 2 y(x)] (3)

y9(x) <
1

h
 [ [y(x) 2 y(x 2 h)]. (4)

Subtracting (1) and (2) also gives

y9(x) <
1

2h
 [ [ y(x 1 h) 2 y(x 2 h)]. (5)

On the other hand, if we ignore terms involving h3 and higher, then by adding (1) and 
(2), we obtain an approximation for the second derivative y0(x):

y0(x) <
1

h2 [ [y(x 1 h) 2 2y(x) 1 y(x 2 h)]. (6)

The right-hand sides of (3), (4), (5), and (6) are called difference quotients. The 
expressions

y(x 1 h) 2 y(x), y(x) 2 y(x 2 h), y(x 1 h) 2 y(x 2 h),

and y(x 1 h) 2 2y(x) 1 y(x 2 h)

are called �nite differences. Speci�cally, y(x(x( 1 h) 2 y(x(x( ) is called a forward difference,
y(x(x( ) 2 y(x(x( 2 h) is a backward difference, and both y(x(x( 1 h) 2 y(x(x( 2 h) and 
y(x(x( 1 h) 2 2y(x(x( ) 1 y(x(x( 2 h) are called central differences. The results given in (5) and 
(6) are referred to as central difference approximations for the derivatives y9 and y0.

FINITE DIFFERENCE METHOD Consider now a linear second-order boundary-
value problem

y0 1 P(x)y9 1 Q(x)y 5 f(x), y(a) 5 �, y(b) 5 �. (7)

Suppose a 5 x0 , x1 , x2 , Á , xn21 , xn 5 b represents a regular partition of 
the interval [a, b], that is, xi 5 a 1 ih, where i 5 0, 1, 2, . . . , n and h 5 (b 2 a)yn.
The points

x1 5 a 1 h, x2 5 a 1 2h, . . . , xn21 5 a 1 (n 2 1)h
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are called interior mesh points of the interval [a, b]. If we let

yi 5 y (xi ), Pi 5 P(xi ), Qi 5 Q (xi ), and fifif 5 f (xi )

and if y0 and y9 in (7) are replaced by the central difference approximations (5) and (6), 
we get

yi11 2 2 yi 1 yi21

h2 1 Pi
yi11 2 yi21

2 h
1 Qi yi 5 fifif

or, after simplifying,

11 1
h

2
Pi2yi11 1 (22 1 h2Qi ) yi 1 11 2

h

2
Pi2yi21 5 h2 fi . (8)

The last equation, known as a �nite difference equation, is an approximation 
to the differential equation. It enables us to approximate the solution y(x) of (7) 
at  the interior mesh points x1, x2, . . . , xn21 of the interval [a, b]. By letting i
take on the values 1, 2, . . . , n 2 1 in (8), we obtain n 2 1 equations in the n 2 1 
unknowns y1,  y2, . . . , yn21. Bear in mind that we know y0 and yn, since 
these  are  the prescribed boundary conditions y0 5 y(x0) 5 y(a) 5 � and 
yn 5 y(xn) 5 y(b) 5 �.

In Example 1 we consider a boundary-value problem for which we can compare 
the approximate values that we �nd with the actual values of an explicit solution.

 EXAMPLE 1 Using the Finite Difference Method

Use the difference equation (8) with n 5 4 to approximate the solution of the 
boundary-value problem y0 2 4y 5 0, y(0) 5 0, y(1) 5 5.

SOLUTION To use (8), we identify P(x) 5 0, Q(x) 5 24, f (x) 5 0, and  
h 5 (1 2 0)y4 5 1

4. Hence the difference equation is

yi11 2 2.25yi 1 yi21 5 0. (9)

Now the interior points are x1 5 0 1 1
4, x2 5 0 1 2

4, x3 5 0 1 3
4, so for i 5 1, 2, and 3, 

(9) yields the following system for the corresponding y1, y2, and y3:

y2 2 2.25y1 1 y0 5 0

y3 2 2.25y2 1 y1 5 0

y4 2 2.25y3 1 y2 5 0.

With the boundary conditions y0 5 0 and y4 5 5 the foregoing system becomes

22.25y1 1 y2        5 0

y1 2 2.25y2 1        y3 5 0

y2 2 2.25y3 5 25.

Solving the system gives y1 5 0.7256, y2 5 1.6327, and y3 5 2.9479.
Now the general solution of the given differential equation is y 5 c1 cosh 2x 1

c2 sinh 2x. The condition y(0) 5 0 implies that c1 5 0. The other boundary condition 
gives c2. In this way we see that a solution of the boundary-value problem is 
y(x) 5 (5 sinh 2x)ysinh 2. Thus the actual values (rounded to four decimal places) of 
this solution at the interior points are as follows: y(0.25) 5 0.7184, y(0.5) 5 1.6201, 
and y(0.75) 5 2.9354.

The accuracy of the approximations in Example 1 can be improved by using a 
smaller value of h. Of course, the trade-off here is that a smaller value of h necessitates 
solving a larger system of equations. It is left as an exercise to show that with h 5 1

8, 
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approximations to y(0.25), y(0.5), and y(0.75) are 0.7202, 1.6233, and 2.9386, respec-
tively. See Problem 11 in Exercises 9.5.

 EXAMPLE 2 Using the Finite Difference Method

Use the difference equation (8) with n 5 10 to approximate the solution of

y0 1 3y91 2y 5 4x2, y(1) 51, y(2) 5 6.

SOLUTION In this case we identify P(x) 5 3, Q(x) 5 2, ff (x) 5 4x2, and 
h 5 (2 2 1)y10 5 0.1, and so (8) becomes

1.15yi11 2 1.98yi 1 0.85yi21 5 0.04xi
2. (10)

Now the interior points are x1 5 1.1, x2 5 1.2, x3 5 1.3, x4 5 1.4, x5 5 1.5, x6 5 1.6, 
x7 5 1.7, x8 5 1.8, and x9 5 1.9. For i 5 1, 2, . . . , 9 and y0 5 1, y10 5 6, (10) gives a 
system of nine equations and nine unknowns:

1.15y2 2 1.98y1 5 20.8016

1.15y3 2 1.98y2 1 0.85y1 5 0.0576

1.15y4 2 1.98y3 1 0.85y2 5 0.0676

1.15y5 2 1.98y4 1 0.85y3 5 0.0784

1.15y6 2 1.98y5 1 0.85y4 5 0.0900

1.15y7 2 1.98y6 1 0.85y5 5 0.1024

1.15y8 2 1.98y7 1 0.85y6 5 0.1156

1.15y9 2 1.98y8 1 0.85y7 5 0.1296

2 1.98y9 1 0.85y8 526.7556.

We can solve this large system using Gaussian elimination or, with relative ease, 
by means of a computer algebra system. The result is found to be y1 5 2.4047, 
y2 5 3.4432, y3 5 4.2010, y4 5 4.7469, y5 5 5.1359, y6 5 5.4124, y7 5 5.6117, 
y8 5 5.7620, and y9 5 5.8855.

SHOOTING METHOD Another way of approximating a solution of a boundary-
value problem y0 5 f (x, y, y9), y(a) 5 �, y(b) 5 � is called the shooting method.
The starting point in this method is the replacement of the second-order boundary-
value problem by a second-order initial-value problem

y0 5 f (x, y, y9), y(a) 5 �, y9(a) 5 m1. (11)

The number m1 in (11) is simply a guess for the unknown slope of the solution curve at 
the known point (a, y(a)). We then apply one of the step-by-step numerical techniques 
to the second-order equation in (11) to �nd an approximation �1 for the value of y(b). If 
�1 agrees with the given value y(b) 5 � to some preassigned tolerance, we stop; other-
wise, the calculations are repeated, starting with a different guess y9(a) 5 m2 to obtain 
a second approximation �2 for y(b). This method can be continued in a trial-and-error 
manner, or the subsequent slopes m3, m4,…can be adjusted in some systematic way; 
linear interpolation is particularly successful when the differential equation in (11) is 
linear. The procedure is analogous to shooting (the “aim” is the choice of the initial 
slope) at a target until the bullseye y(b) is hit. See Problem 14 in Exercises 9.5.

Of course, underlying the use of these numerical methods is the assumption, 
which we know is not always warranted, that a solution of the boundary-value prob-
lem exists.
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EXERCISES 9.5
In Problems 1–10 use the �nite difference method and the indicated 
value of n to approximate the solution of the given boundary-value 
problem.

1. y0 1 9y 5 0, y(0) 5 4, y(2) 5 1; n 5 4

2. y0 2 y 5 x2, y(0) 5 0, y(1) 5 0; n 5 4

3. y0 1 2y9 1 y 5 5x, y(0) 5 0, y(1) 5 0; n 5 5

4. y0 2 10y9 1 25y 5 1, y(0) 5 1, y(1) 5 0; n 5 5

5. y0 2 4y9 1 4y 5 (x 1 1)e2x2x2 , 
y(0) 5 3, y(1) 5 0; n 5 6

6. y 0 1 5y9 5 4ÏxÏxÏÏ , y(1) 5 1, y(2) 5 21; n 5 6

7. x2y2y2 0 1 3xy9 1 3y 5 0, y(1) 5 5, y(2) 5 0; n 5 8

8. x2y2y2 0 2 xy9 1 y 5 ln x, y(1) 5 0, y(2) 5 22; n 5 8

9. y0 1 (1 2 x)y9 1 xy 5 x, y(0) 5 0, y(1) 5 2; n 5 10

10. y0 1 xy9 1 y 5 x, y(0) 5 1, y(1) 5 0; n 5 10

11. Rework Example 1 using n 5 8.

12. The electrostatic potential u between two concentric spheres of 
radius r 5 1 and r 5 4 is determined from

d 2u

dr2 1
2
r

du

dr
5 0, u(1) 5 50, u(4) 5 100.

Use the method of this section with n 5 6 to approximate the 
solution of this boundary-value problem.

13. Consider the boundary-value problem y0 1 xy 5 0, y9(0) 5 1, 
y(1) 5 21.

(a) Find the difference equation corresponding to the 
differential equation. Show that for i 5 0, 1, 2, . . . , n 2 1 
the difference equation yields n equations in n 1 1 
unknowns y21, y0, y1, y2, . . . , yn21. Here y21 and y0 are  
unknowns, since y21 represents an approximation to y at 
the exterior point x 5 2h and y0 is not speci�ed at x 5 0.

(b) Use the central difference approximation (5) to show that 
y1 2 y21 5 2h. Use this equation to eliminate y21 from the 
system in part (a).

(c) Use n 5 5 and the system of equations found in parts 
(a) and (b) to approximate the solution of the original 
boundary-value problem.

Computer Lab Assignments
14. Consider the boundary-value problem y0 5 y9 2 sin (xysin (xysin ( ), 

y(0) 5 1, y(1) 5 1.5. Use the shooting method to approximate 
the solution of this problem. (The approximation can be obtained 
using a numerical technique—say, the RK4 method with h 5 0.1; 
or, even better, if you have access to a CAS such as Mathematica
or Maple, the NDSolve function can be used.)

Answers to selected odd-numbered problems begin on page ANS-16.

The approximation method using �nite differences can be extended to boundary-
value problems in which the �rst derivative is speci�ed at a boundary—for 
example, a problem such as y0 5 ff (x(x( , y, y9), y9(a) 5 �, yy (b) 5 �. See Problem 13 in 
Exercises 9.5.

REMARKS

In Problems 1–4 construct a table comparing the indicated values 
of y(x) using Euler’s method, the improved Euler’s method, and the 
RK4 method. Compute to four rounded decimal places. First use 
h 5 0.1 and then use h 5 0.05.

1. y9 5 2 ln xy, y(1) 5 2; 
y(1.1), y(1.2), y(1.3), y(1.4), y(1.5)

2. y9 5 sin x2 1 cos y2, y(0) 5 0; 
y(0.1), y(0.2), y(0.3), y(0.4), y(0.5)

3. y9 5 ÏxÏxÏ 1 yÏ , y(0.5) 5 0.5;
y(0.6), y(0.7), y(0.8), y(0.9), y(1.0)

4. y9 5 xy 1 y2, y(1) 5 1; 
y(1.1), y(1.2), y(1.3), y(1.4), y(1.5)

5. Use Euler’s method to approximate y(0.2), where 
y(x) is the solution of the initial-value problem 

y 0 2 (2x 1 1)y 5 1, y(0) 5 3, y9(0) 5 1. First use one step 
with h 5 0.2 and then repeat the calculations using two 
steps with h 5 0.1.

6. Use the Adams-Bashforth-Moulton method to approximate 
y(0.4), where y(x) is the solution of the initial-value problem 
y9 5 4x 2 2y, y(0) 5 2. Use h 5 0.1 and the RK4 method to 
compute y1, y2, and y3.

7. Use Euler’s method with h 5 0.1 to approximate x(0.2) and 
y(0.2), where x(t), y(t) is the solution of the initial-value problem

x9 5 x 1 y

y9 5 x 2 y

x(0) 5 1, y(0) 5 2.

8. Use the �nite difference method with n 5 10 to approximate 
the solution of the boundary-value problem 

y0 1 6.55(1 1 x)y 5 1, y(0) 5 0, y(1) 5 0.

Chapter 9 In Review Answers to selected odd-numbered problems begin on page ANS-17.
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APP-3

Appendix A Integral-Defined Functions

INTRODUCTION Many important functions encountered in applied mathematics 
are defined in terms of an integral. There are several ways of doing this. In Sections 1.1, 
2.3, and 4.2 we have already seen that a solution of a differential equation may lead to 
a function of the form

F(x) 5 #x

a
g(t) dt. (1)

An integral-de�ned function can also be of the form

F(x) 5#b

a
g(x,  t) dt, (2)

where it is understood that x is a parameter, that is, x is a parameter, that is, x x is treated as a constant in the x is treated as a constant in the x
t-integration. In many cases, especially for functions with a name, the de�ning in-
tegral is nonelementary (review page 11). The integrand g in (2) could depend on 
several parameters, say, g(x, y, t) . In this case the integral (2) de�nes a function of two
variables x and x and x y. Moreover, (1) and (2) can also be an improper integral. For example, 
in (1) the lower limit of integration a could be 2` or the interval of integration could 
be chosen to be [x, `) . In (2), one or both of the limits of integration could be in�nite, 
or the integrand g(x, t) could have an in�nite discontinuity in the interval of integra-
tion [a, b] . The convergence of an improper integral will, in general, depend on values 
of the parameter x. See Examples 1, 2, and 3 in Section 7.1.

In Sections 2.3 and 14.1 we saw that the error function and complementary 
error function,

erf(x) 5
2

Ï�#
x

0
e2t2

 dt and erfc(x) 5
2

Ï�#
`

x
e2t2

 dt (3)

are both of the type given in (1) with the identi�cation g(t) 5 (2yÏ�Ï )e2t2t2t . As we 
have seen in Chapter 7, the Laplace transform of a function f (t) is the function 
F(s) 5 e`

0e0e e2st ft ft (t) dt . The last integral is of the type given in (2) with the symbol s
playing the part of x so that x so that x g(s, t) 5 e2st ft ft (t) . In Chapter 14, the Fourier transform 
F(�) 5 e`

2`
f (x) ei�xdx is also of the type given in (2) with the symbols x and x and x �

replacing t and t and t x, respectively, and g(�, x) 5 f (x)ei�x .
We begin our discussion of speci�c integral-de�ned functions with one of the 

form given in (2).

THE GAMMA FUNCTION On a short list of important functions in the study of 
special functions (such as the Bessel function) the gamma function would appear 
near the top. The integral definition of this function,

G(x) 5 #`

0
t x21e2t dt, (4)

was �rst given by the Swiss mathematician Leonhard Euler (1707–1783) in his text 
Institutiones calculi integralis published in 1768. 

GRAPHS AND PROPERTIES Convergence of the improper integral (4) requires 
that x 2 1 . 21 or x . 0. Although the integral (4) does not converge for x # 0,
it can be shown by alternative definitions that the domain of the gamma function 
can be expanded to the set of real numbers except the nonpositive integers: x 5 2n,
n 5 0, 1, 2, . . . . See Problem 28 in Exercises for Appendix A. Considered as a func-
tion of a real variable x, the graph of G(x) is given in Figure A.1. As seen in the �gure 
the dashed lines x 5 0, x 5 21, x 5 22, . . . are vertical asymptotes of the graph.

FIGURE A.1 Graph of the gamma 
function

y

G(x)

x1

1
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There is a remarkably simple and extremely useful connection between the 
value of the gamma function at a number x and its value at x and its value at x x 1 1. To obtain this 
relationship we replace x by x by x x 1 1 in (4) and integrate by parts: 

G(x 1 1) 5 #`

0
#

0
# t (x(x( 11)21e2t dt 5 #`

0
#

0
# t xe2tdt

5 lim
b S ` 32 t xe2t ub0 1 x#b

0
#

0
# t x21e2tdt4 (5)

5 x lim
b S`#

b

0
#

0
# t x21e2tdt . (6)

In (5), lim
b S `

t xe2t ub0 5 0 follows from the assumption that x . 0 and repeated appli-

cations of L’Hôpital’s rule. The limit in (6), lim
b S `

eb
0e0e t x21e2tdt, is the de�nition of the 

improper integral (4). Hence we have shown that 

G(x 1 1) 5 x G(x) . (7)

Equation (7) is called a recursion formula.
It is easy to �nd the value of G(x) when x is a positive integer. For example, when x is a positive integer. For example, when x

x 5 1 we see that (4) is an elementary integral: 

G(1) 5 #`

0
#

0
# e2t dt 5 lim

b S `#
b

0
#

0
# e2t dt 5 lim

b S `
(2e2b 1 1) 5 1.

From this single numerical value the repeated application of formula (7) gives:

G(2) 5 G(1 1 1) 5 1 ? G(1) 5 1
G(3) 5 G(2 1 1) 5 2 ? G(2) 5 2 ? 1

(8)
G(4) 5 G(3 1 1) 5 3 ? G(3) 5 3 ? 2 ? 1
G(5) 5 G(4 1 1) 5 4 ? G(4) 5 4 ? 3 ? 2 ? 1

and so on. In this manner it is seen that when n is a positive integer, 

G(n 1 1) 5 n! . (9)

Recall, n! (read “n factorial”) is de�ned as the product of consecutive integers from 
1 to n, that is, n! 5 n(n 2 1) Á 3 ? 2 ? 1 and is called the factorial function. For 
convenience it is customary to de�ne 0! 5 1. Because n! is a special case of (4), the 
gamma function is sometimes referred to as the generalized factorial function.

In the discussion of the Bessel functions of half-integral order in Section 6.4 we 
used the value of G _

In the discussion of the Bessel functions of half-integral order in Section 6.4 we 
_

In the discussion of the Bessel functions of half-integral order in Section 6.4 we 
1
2+

In the discussion of the Bessel functions of half-integral order in Section 6.4 we 
+

In the discussion of the Bessel functions of half-integral order in Section 6.4 we 
5 Ï�Ï . With x 5 1

2 we see that (4) becomes

G _12+ 5 #`

0
#

0
# t21y2e2t dt. (10)

Note that the foregoing integral is improper for two reasons: an in�nite limit of inte-
gration and the integrand has an in�nite discontinuity at 0. Nonetheless (10) can be ex-
plicitly evaluated. To that end, we begin with the substitutions t 5 u2 and dt 5 2u du:

G_12+ 5 #`

0
#

0
# u21e2u2

(2u du) 5 2#`

0
#

0
# e2u2

du . (11)

But e`

0e0e e2u2
du 5 e`

0e0e e2v2
dvdvd , so

fG_12+g2
5 12#`

0
#

0
# e2u2

du212#`

0
#

0
# e2v2

dv2 5 4#`

0
#

0
# #`

0
#

0
# e2(u21v2)du dv . 
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Switching to polar coordinates u 5 r cr cr os �, v 5 r sr sr in � enables us to evaluate the 
double integral:

4#`

0
#

0
# #`

0
#

0
# e2(u2 1 v2) du dvdvd 5 4#�y2

0
#

0
# #`

0
#

0
# e2r2

r dr d� 5 � .

Hence

fG_12+g2
5 � or G_12+ 5 Ï�. (12)

We used (11), 2 e`

0e0e e2u2
du 5 Ï�Ï , in the form (2yÏ�Ï )e`

0e0e e2u2
du 5 1 to derive the 

fundamental identity that relates the error function and complementary error func-
tion: erf(x) 1 erfc(x) 5 1. See Section 2.3.

Because of (7) and (12) the value of the gamma function for x equal to one half x equal to one half x
an odd integer, that is, x 5 n 1 1

2 where n 5 0, 61, 62, . . . , can be expressed in 

terms of G_12+ 5 Ï�Ï . The recursion formula (7) written as

G(x) 5
G(x 1 1)

x
(13)

is one way to extend the de�nition of the gamma function to negative real numbers 
with the negative integers being the only exception. Part (b) of the next example 
illustrates this idea.

 EXAMPLE 1 Using (7), (12), and (13)

Evaluate (a) G _32+ (b) G _21
2+ .

SOLUTION

(a) With x 5 1
2 and the result in (12) the recursion formula (7) yields 

G _32+ 5 G _12 1 1+ 5 1
2G _12+ 5 1

2Ï�Ï .

(b) If we choose x 5 21
2, then formula (13) gives

G _21
2+ 5

G_21
2 1 1+
21

2

5 22G _12+ 5 22Ï�Ï . .

THE BETA FUNCTION Analogous to (2) an integral of the type eb
aeae g(x, y, t) dt

defines a function of two variables x and x and x y. An example of this kind of integral is 

B(x,  y) 5#1

0
t x21(12t)y21 dt . (14)

The foregoing integral is known as the beta function and is closely related to the 
gamma function. The integrand of (14) can be discontinuous at 0 and at 1 for particu-
lar choices of x and x and x y, but it can be shown that of the integral exists for x . 0, y . 0.
Although we are not going to prove it, the beta function can be expressed in terms of 
the gamma function:

B(x, y) 5
G(x)G(y)

G(x 1 y)
, x . 0, y . 0. (15)

 EXAMPLE 2 Using (12) and (15)

Evaluate #1

0
#

0
# Î tÎ12tÎ dt .Note that the integrand has an 

infinite discontinuity at t 5 1.
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SOLUTION Even though the given integral is improper we can evaluate it straight 
away using (15). By rewriting the integral in the equivalent form

#1

0
#

0
# t1y2(1 2 t)21y2dt

we recognize it as (14) in the case x 5 3
2 and y 5 1

2 . From (15) it follows that,

#1

0
#

0
# t1y2(1 2 t)21y2dt 5 B _32, 1

2+ 5
G _32+G_12+

G(2)
5

�

2
,

where we have used the previously obtained values G _3
2+ 5 1

2 Ï�Ï , G _1
2+ 5 Ï�Ï , 

and G(2) 5 1. .

OTHER INTEGRALDEFINED FUNCTIONS We have barely touched the subject 
of integral-defined functions. Here are a few more functions that occur in mathemat-
ics, physics, and engineering:

Sine and cosine integral functions:

Si(x) 5 #x

0

sin t

t
 dt, Ci(x) 5 2#`

x
 

cos t

t
 dt (16)

Fresnel sine and cosine integral functions:

S(x) 5 #x

0
sin _12�t2+ dt, C(x) 5 #x

0
cos _12�t2+ dt (17)

Exponential integral function:

Ei(x) 5#x

2`

et

t
 dt (18)

Logarithmic integral function:

Li(x) 5#x

2
 

1

ln t
 dt (19)

Airy functions of �rst and second kind:

Ai(x) 5
1
� #`

0
cos _xt 1 1

3t3+ dt,       Bi(x) 5
1
�#

`

0
fext2 1

3 t3
1 sin _xt 1 1

3 t3+g dt (20)

The de�nitions of the functions in (16)–(20) vary slightly throughout the literature 
and websites. For example, the Fresnel integrals, which �rst appeared in the study of 
optics, are often de�ned without the factor 12� in the integrands. In the computer alge� in the integrands. In the computer alge� -

bra system Mathematica, the exponential integral is written Ei(x) 5 2e`

2`
(e2tyt) dt . 

Using the substitution t 5 2u it is easily shown this latter form is equivalent to (18). 

Finally, it should be noted that the sine integral function Si(x) 5 ex
0e0e sin t

t dt is not ret is not ret -

garded as an improper integral because the integrand f (t) 5 (sin t)yt has a removable t has a removable t
discontinuity at t 5 0, that is, the integrand should be interpreted as

f (t) 5 5
sin t

t
, t . 0

1,       t 5 0.

The graphs of the functions (16)–(20) are given in Figure A.2. 
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DERIVATIVE OF AN INTEGRALDEFINED FUNCTION The integral (1) and its 
derivative are encountered in the first semester of a course in calculus. Recall, one 
form of the form of the Fundamental Theorem of Calculus states that if g is continu-
ous on an interval and a is a number in the interval, then F(x) 5 ex

aeae g(t) dt is a differt is a differt -
entiable function and its derivative is

F9(x) 5
d

dx#
x

a
g(t) dt 5 g(x) . (21)

In the most general case of (2) where the limits of integration are functions of x,  

F(x) 5#v(x)

u(x)
g(x,  t) dt,

the derivative is given by Leibniz’s rule:

F9(x) 5
d

dx#
v(x)

u(x)
g(x,  t) dt 5 g(x,  v(x))  

dv

dx
2 g(x,  u(x))  

du

dx
1   #v(x)

u(x)

−

−x
 g(x,  t) dt . (22)

Ci(x)

C(x)Si(x)
S(x)

y

x210 25

211

22

1

2

5 15 10

(a) sine and cosine integral functions

(e) Airy functions of �rst and second kind

Ei(x)

y

x22 21

24

222

26

4

2

6

1 2

(c) exponential integral function

y

x24 22

220.50.50.5

21

0.5

1

2 4

(b) Fresnel sine and cosine integral functions

Li(x)

y

x2221010102151515 2225

20.5

0.50.5

1

5

Bi(x)

Ai(x)

y

x

24

22

26

4

2

6

1 2 3 41 2 3 4

(d) logarithmic integral function

FIGURE A.2 Graphs of Si(x), Ci(x), S(x), C(x), Ei(x), Li(x), Ai(x), and Bi(x)
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Without going into any details, it is usually assumed that u(x), v(x), u9(x), and v9(x)
are continuous on an interval and g(x, t), and gx(x, t) are continuous on some region 
of the xt{plane.

Two special cases of (22) are of particular interest. First, if the integrand g(x, t)
is replaced by g(t), then (−y−x)g(t) 5 0 and (22) reduces to 

F9(x) 5
d

dx #
v(x)

u(x)
g(t) dt 5 g(v(x))  

dv

dx
2 g(u(x))  

du

dx
. (23)

Second, if u 5 a and v 5 b denote constants, then u9 5 0 and v9 5 0 and (22) gives 
a rule for differentiating under an integral sign:

F9(x) 5
d

dx#
b

a
g(x,  t) dt 5#b

a

−

−x
 g(x,  t) dt . (24)

Under slightly more stringent conditions, the result in (24) is also valid when the 
interval of integration is [a, `) . The last result leads us back to differential equations. 
See Problems 49–52 in Exercises for Appendix A.

 EXAMPLE 3 Using (22), (23), and (24) 

Compute the derivative of the functions 

(a) F(x) 5#x3

x
#

x
#

2
sin(4xt2) dt (b) F(x) 5#x3

x
#

x
#

2
sin(4t2) dt (c) F(x) 5#1

0
#

0
# sin(4xt2) dt

SOLUTION

(a) From (22) with u 5 x2 and v 5 x3 we have

F9(x) 5
d

dxdxd #x3

x
#

x
#

2
sin(4xt2) dt

5 sin(4x(x3)2) ? 3x2 2 sin(4x(x2)2) ? 2x 1 4#x3

x
#

x
#

2
t2 cos(4xt2) dt

5 3x2sin(4x7) 2 2x sin(4x5) 1 4#x3

x
#

x
#

2
t2cos(4xt2) dt .

(b) From (23),

F9(x) 5
d

dxdxd #x3

x
#

x
#

2
sin(4t2) dt

5 sin(4(x3)2) ? 3x2 2 sin(4(x2)2) ? 2x

5 3x2sin(4x6) 2 2x sin(4x4) .

(c) From (24),

F9(x) 5
d

dxdxd #1

0
#

0
# sin(4xt2) dt 5 #1

0
#

0
# −

−x
sin(4xt2) dt 5 4#1

0
#

0
# t2cos(4xt2) dt . .

The result in (24) can sometimes be an aid in evaluating an integral that at �rst 
glance seems intractable. But the procedure usually involves formal manipulations 
and cleverness that cannot be taught. Problems 53–56 in Exercises for Appendix A 
give you a small sample of the idea.

This result also follows directly 
from (21) and the Chain Rule.
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EXERCISES FOR APPENDIX A Answers to odd-numbered problems begin on page ANS-30.

The Gamma Function
In Problems 1 and 2 evaluate the given quantity.

1. G(6)  2. G(8)

In Problems 3–6 use (7) and the known value G _1
2 + 5 Ï�Ï  to evaluate 

the given quantity.

3. G_52+ 4. G_72+
5. G _92+ 6. G _11

2 +

In Problems 7–10 use (13) and the known value G _21
2+ 5 22Ï�Ï  to 

evaluate the given quantity.

7. G _23
2 +  8. G _25

2+
9. G _27

2+ 10. G _29
2 +

In Problems 11–14 use (7) and the given numerical value to evaluate 
the indicated quantity.

11. G(0.2) 5 4.5908; G(1.2) 12. G(20.1) 5 210.6863; G(0.9)

13. G(20.3) 5 24.3269; G(1.7) 14. G(1.5) 5 0.8862; G(3.5)

15. Express G(x 1 4) in terms of G(x) .

16. For c . 0, x . 0, use a substitution to show that 

#`

0
#

0
# t x21e2ct dt 5 c2x G(x) .

In Problems 17–20 use the result in Problem 16 to express the given 
improper integral as a gamma function. Then evaluate the integral.

17. #`

0
#

0
# e22t

ÏtÏ
dt 18. #`

0
#

0
# t3y2e24t dt

19. #`

0
#

0
# t 4e26t dt 20. #`

0
#

0
# t3e2ty3 dt

In Problems 21–24 use the substitution t 5 2ln x and the result in x and the result in x
Problem 16 to express the given improper integral as a gamma func-
tion. Then evaluate the integral.   

21. #1

0
#

0
# x31ln1

x2
3

dxdxd 22. #1

0
#

0
# x41ln 1

x2
2

dxdxd

23. #1

0
#

0
# 11

x
ln

1
x2

1y2

dx 24. #1

0
#

0
# x1y21ln 1

x2
21y2

dx

In Problems 25 and 26 use the indicated substitution to express 
the given improper integral as a gamma function. Then evaluate the 
integral using the indicated numerical value.

25. #`

0
#

0
# x5e2x5

dxdxd ; t 5 x5, G_65+ 5 0.9182

26. #`

0
#

0
# x4e2x3

dx; t 5 x3, G _53+ 5 0.9027

27. (a) For x . 0 the gamma function possesses derivatives of 
all orders. Use Leibniz’s rule in the form given in (24) to 
show that

G9(x) 5 #`

0
#

0
# t x21e2t ln t d t

G0(x) 5 #`

0
#

0
# t x21e2t (ln t)2 dt .

(b) For x . 0, G(x) . 0 and G0(x) . 0. Without looking back 
at Figure A.1, what does this say about the graph of G(x)?

28. A definition of the gamma function given by Carl Friedrich 
Gauss in 1811 that is valid for all real numbers, except 
x 5 0, x 5 21, x 5 22, . . . , is  

G(x) 5 lim
nS`

n! nx

x(x 1 1)(x 1 2) Á (x 1 n)
.

Use this definition to give an alternative derivation of the recursion 
formula (7).

The Beta Function
In Problems 29 and 30 express the given improper integral as a beta 
function. Then evaluate the integral using (15) and known values of 
the gamma function.

29. #1

0
#

0
# 1

Ït (1 2 t)Ï
dt 30. #1

0
#

0
# ÏtÏ Ï(1 2 t)3Ï dt

In Problems 31 and 32 use the indicated substitution to express the 
given improper integral as a beta function. Then evaluate the integral 
using (15) and known values of the gamma function. 

31. #1

0
#

0
# x2

Ï1 2 x2Ï
dx; t 5 x2 32. #1

0
#

0
# x5

Ï1 2 x 4Ï
dx; t 5 x4

In Problems 33 and 34 use the substitution t 5 xy2 to express the 
given improper integral as a beta function. Then evaluate the integral 
using (15) and known values of the gamma function.

33. #2

0
#

0
# x21y2(2 2 x)5y2 dxdxd 34. #2

0
#

0
# x2

Ï2 2 xÏ
dxdxd

35. Show that the beta function is symmetric in x and x and x y, that is, 
B(x, y) 5 B(y, x) .

36. Show that if m 1 1 and n 1 1 are positive integers, then (15) 
becomes

B(m 1 1, n 1 1) 5
m!n!

(m 1 n 1 1)!
.

37. Use the substitution t 5 sin2 � to show that the beta function 
(14) can be expressed as

B(x, y) 5 2#�y2

0
#

0
# sin2x21 � cos2y21 d� .
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(b) Use the last result in part (a) to show that 

y 5 e2x2
2 2x2x2 #`

x
#

x
# e2t2t2t dt

is a solution of the differential equation y0 1 2x2x2 yxyx 9 2 2y2y2 5 0.

53. (a) Show that for x . 0,  

#`

0
#

0
# 1

x2 1 t 2 dt 5
�

2x
.

[Hint: See formula 43 in the table of integrals given on the 
right inside page of the front cover.]

(b) Use the result in part (a) and (24) to show that

#`

0
#

0
# 1

(x 2 1 t 2 )2 dt 5
�

4x 3 .

54. Consider the function

F(x) 5 #1

0
#

0
# tx 2 1

ln t
dt, x $ 0.

(a) Use (24) to find F9(x) as an integral. Evaluate this integral.

(b) Use the result in part (a) to find F(x) 5 eF9(x) dxdxd 1 C,
where C is a constant.C is a constant.C

(c) Use the result in part (b) and F(0) 5 0 to find an explicit 
function F(x) .

55. Consider the function

F(x) 5 #`

0
#

0
# 1 2 e2xt2

t2 dt, x $ 0.

(a) Use (24) to find F9(x) as an integral. Evaluate this 
integral using a substitution and the known result 
e`

0e0e e2u2
du 5 Ï�Ï y2. (See page APP-5.)

(b) Use the result in part (a) to find F(x) 5 eF9(x) dxdxd 1 C,
where C is a constant.C is a constant.C

(c) Use the result in part (b) and F(0) 5 0 to find an explicit 
function F(x) .

56. Consider the function

F(x) 5#`

0
#

0
# e2tx sin t

t
dt, x $ 0.

(a) Use (24) to find F9(x) as an integral. Evaluate this integral 
using integration by parts. 

(b) Use the result in part (a) to find F(x) 5 eF9(x) dx 1 C,
where C is a constant.C is a constant.C

(c) Use the result in part (b) and F(0) 5 �y2 to find an explicit 
function F(x) .

38. If m 5 2x2x2 2 1 and n 5 2y2y2 2 1, then show that the integral in 
Problem 37 can be written

#�y2

0
#

0
# sinm � cosn d� 5

G1m 1 1

2 2G1 n 1 1

2 2
2G1m 1 n 1 2

2 2
, m . 21, n . 21.

In Problems 39–42 use the result in Problem 38 to evaluate the given 
integral.

39. #�y2

0
#

0
# sin3 � cos3 � d� 40. #�y2

0
#

0
# sin6 �cos5 � d�

41. #�y2

0
#

0
# cos5 � d� 42. #�y2

0
#

0
# sin7�d�

Leibniz’s Rule
In Problems 43–48 use Leibniz’s rule in the forms given in (22) and 
(23) to find the derivative of the given function.

43. F(x) 5 #2 x3

x
#

x
# e2x3t2

dt 44. F(x) 5 #x2

0
#

0
# sin(x ÏtÏ )

t
dt

45. F(x) 5 #cos x

x
#

x
#

2
(x2 1 t2)10 dt 46. F(x) 5#sin 2x

Ï
#

Ï
#

3Ï x
ln(x2 1 t 2) dt

47. F(x) 5 #�2x

�
#

�
#

y2
e sin t sin(cos t) dt 48. F(x) 5#4ÏxÏxÏÏ

Ï
#

Ï
#

xÏxÏÏ
et2

dt

In Problems 49 and 50 use Leibniz’s rule in the form given in (24) 
to show that the indicated integral-defined function is a solution of 
the given second-order differential equation.  [Hint: After computing 
the first and second derivatives find a term in y9 that can be evaluated 
using integration by parts.]

49. xy0 1 y9 1 xy 5 0; y 5 #�

0
#

0
# cos(x cos t) dt

50. xy0 1 y9 2 xy 5 0; y 5 #�

0
#

0
# excos t dt

51. Assume that Leibniz’s rule (24) is valid for the improper 
integral 

y 5 e x2#`

0
#

0
# t2e2t2

cos 2xt d t .

Show that this integral-defined function is a solution of the 
second-order differential equation y0 1 2xy9 1 4y 5 0.
[Hint: After computing the first and second derivatives find a 
term in y0 that can be evaluated using integration by parts.]

52. (a) Find the derivative of the error function erf(f(f x) . Then use the 
identity erf (x) 1 erf x(x) 5 1 to find the derivative of the 
complementary error function erfcfcf (x) .
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Appendix B Matrices

B.1 BASIC DEFINITIONS AND THEORY

If a matrix has m rows and n columns, we say that its size is m by n
(written m 3 n). An n 3 n matrix is called a square matrix of order n.

The entry in the ith row and jth column of an m 3 n matrix A is written aij. 
An m 3 n matrix A is then abbreviated as A 5 (aij)m3n or simply A 5 (aij). 
A 1 3 1 matrix is simply one constant or function.

DEFINITION B.1 Matrix

A matrix A is any rectangular array of numbers or functions:

a11

a21

am1

a1n

a2n

amn

a12

a22

am2

A 5 ( .)o o

Á
Á

Á

(1)

DEFINITION B.3 Column Matrix

A column matrix X is any matrix having n rows and one column:

X 5 ( )b( )b11( )11

b( )b21( )21

b
( )
bn

( )
n1

( )
1

5 (bi1)n31.o

DEFINITION B.4 Multiples of Matrices

A multiple of a matrix A is defined to be

kAkAk 5 ( )ka( )ka11( )11

ka( )ka21( )21

ka
( )
kam

( )
m1

( )
1

ka( )ka1( )1n( )n

ka( )ka2( )2n( )n

ka
( )

kamn

( )
mn

ka( )ka12( )12

ka( )ka22( )22

ka
( )

kam

( )
m2

( )
2

5 (kaij)m3n,

Á
Á

Á
o o

where k is a constant or a function.k is a constant or a function.k

DEFINITION B.2 Equality of Matrices

Two m 3 n matrices A and B are equal if aij 5 bij for each i and j.

A column matrix is also called a column vector or simply a vector.
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EXAMPLE 1 Multiples of Matrices

(a) 5 12

4
1
5

23

21

6
2 5 110

20

1

215

25

30
2   (b) et 1 1

22

4
2 5 1 et

22et

4et2 .

We note in passing that, for any matrix A, the product kAkAk  is the same as Ak. For 
example,

e23t 1252 5 12e23t

5e23t2 5 1252e23t.

DEFINITION B.5 Addition of Matrices

The sum of two m 3 n matrices A and B is defined to be the matrix

A 1 B 5 (aij 1 bij)m3n.

In other words, when adding two matrices of the same size, we add the correspond-
ing entries.

EXAMPLE 2 Matrix Addition

The sum of A 5 S 2 21 3

0 4 6

26 10 25
D and B 5 S4 7 28

9 3 5

1 21 2
D is

A 1 B 5 S   2 1 4 21 1 7    3 1 (28)

   0 1 9    4 1 3    6 1 5

26 1 1  10 1 (21) 25 1 2
D 5 S   6 6 25

   9 7 11

25 9 23
D.

.

EXAMPLE 3 A Matrix Written as a Sum of Column Matrices

The single matrix S3t2 2 2et

t2 1 7t

5t
D can be written as the sum of three column vectors:

S3t2 2 2et

t2 1 7t

5t
D 5 S3t2

t2

0
D 1 S0

7t

5t
D 1 S22et

0

0
D 5 S3

1

0
Dt2 1 S0

7

5
Dt 1 S22

0

0
Det.

.

The difference of two m 3 n matrices is defined in the usual manner: 
A 2 B 5 A 1 (2B), where 2B 5 (21)B.
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Note carefully in Definition B.6 that the product AB 5 C is defined only when 
the number of columns in the matrix A is the same as the number of rows in B. The 
size of the product can be determined from

Am3n Bn3p 5 Cm3p.

Also, you might recognize that the entries in, say, the ith row of the final matrix AB
are formed by using the component definition of the inner, or dot, product of the ith 
row of A with each of the columns of B.

EXAMPLE 4 Multiplication of Matrices

(a) For A 5 14 7

3 52 and B 5 19 22

6 82,
AB 5 14 ? 9 1 7 ? 6 4 ? (22) 1 7 ? 8

3 ? 9 1 5 ? 6 3 ? (22) 1 5 ? 82 5 178 48

57 342.

(b) For A 5 S5 8

1 0

2 7
D and B 5 124 23

2 02,

AB 5 S5 ? (24) 1 8 ? 2 5 ? (23) 1 8 ? 0

1 ? (24) 1 0 ? 2 1 ? (23) 1 0 ? 0

2 ? (24) 1 7 ? 2 2 ? (23) 1 7 ? 0
D 5 S24 215

24 23

6 26
D.

.

In general, matrix multiplication is not commutative; that is, AB Þ BA.

Observe in part (a) of Example 4 that BA 5 130 53

48 822, whereas in part (b) the 

product BA is not defined, since Definition B.6 requires that the first matrix (in this 
case B) have the same number of columns as the second matrix has rows.

We are particularly interested in the product of a square matrix and a column 
vector.

c_______c

DEFINITION B.6 Multiplication of Matrices

Let A be a matrix having m rows and n columns and B be a matrix having 
n rows and p columns. We define the product AB to be the m 3 p matrix

AB 5 ( )( )( )( )a( )a11( )11

a( )a21( )21

a( )am
( )

m1
( )

1

a( )a1( )1n( )n

a( )a2( )2n( )n

a( )amn
( )

mn

a( )a12( )12

a( )a22( )22

a( )am
( )

m2
( )

2
( )( )( )( )( )b( )( )11( )( )b( )( )21( )( )b( )( )

n
( )( )

1
( )( )b( )( )1( )( )p( )( )b( )( )2( )( )p( )( )2( )p( )2( )( )b( )( )

np
( )( )b( )( )12( )( )b( )( )22( )( )b( )( )

n
( )( )

2
( )Á

Á

Á

Á
Á

Á
o o o o

5 ( )( )( )( )a( )a11( )11b( )b11( )11 1 ( )1 a( )a12( )12b( )b21( )21 1( )1
a( )a21( )21b( )b11( )11 1 ( )1 a( )a22( )22b( )b21( )21 1( )1

a
( )
am

( )
m1

( )
1b

( )
b11

( )
11 1 

( )
1 a

( )
am

( )
m2

( )
2b

( )
b21

( )
21 1

( )
1

1 ( )1 a( )a1( )1n( )nb( )bn( )n1( )1

1 ( )1 a( )a2( )2n( )nb( )bn( )n1( )1

1 
( )

1 a
( )

amn
( )

mnb
( )

bn
( )

n1
( )

1
( )a( )( )11( )( )b( )( )1( )( )p( )( )1 ( )( )a( )( )12( )( )b( )( )2( )( )p( )( )2( )p( )2( )( )1( )( )a( )( )21( )( )b( )( )1( )( )p( )( )1 ( )( )a( )( )22( )( )b( )( )2( )( )p( )( )2( )p( )2( )( )1( )( )

a
( )( )

m
( )( )

1
( )( )

b
( )( )

1
( )( )

p
( )( )

1 
( )( )

a
( )( )

m
( )( )

2
( )( )

b
( )( )

2
( )( )

p
( )( )

2
( )

p
( )

2
( )( )

1
( )( )1 ( )( )a( )( )1( )( )n( )( )b( )( )np( )( )1 ( )( )a( )( )2( )( )n( )( )b( )( )np( )( )

1 
( )( )

a
( )( )

mn
( )( )

b
( )( )

np
( )

Á
Á

Á

Á
Á

Á

Á
Á

Á
o o

5 ( o aikbkj)
m3p

.
k51

n

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



APP-14 APPENDIX B MATRICES

EXAMPLE 5 Multiplication of Matrices

(a) S2 21 3

0 4 5

1 27 9
DS23

6

4
D 5 S2 ? (23) 1 (21) ? 6 1 3 ? 4

0 ? (23) 1  4 ? 6 1 5 ? 4

1 ? (23) 1 (27) ? 6 1 9 ? 4
D 5 S 0

44

29
D

(b) 124 2

3 821xy2 5 124x 1 2y

3x 1 8y2 .

MULTIPLICATIVE IDENTITY For a given positive integer n the n 3 n matrix

I 5 ( )1( )1

0( )0

0
( )
0

0( )0

1( )1

0
( )

0

0( )0

0( )0

0
( )

0
( )0( )( )0( )( )

1
( )

Á
Á

Á
o o

is called the multiplicative identity matrix. It follows from Definition B.6 that for 
any n 3 n matrix A.

AI 5 IA 5 A.

Also, it is readily verified that, if X is an n 3 1 column matrix, then IX 5 X.

ZERO MATRIX A matrix consisting of all zero entries is called a zero matrix and 
is denoted by 0. For example,

0 5 1002, 0 5 10 0

0 02, 0 5 S0 0

0 0

0 0
D,

and so on. If A and 0 are m 3 n matrices, then

A 1 0 5 0 1 A 5 A.

ASSOCIATIVE LAW Although we shall not prove it, matrix multiplication is 
associative. If A is an m 3 p matrix, B a p 3 r matrix, and r matrix, and r C an r 3 n matrix, then

A(BC) 5 (AB)C

is an m 3 n matrix.

DISTRIBUTIVE LAW If all products are defined, multiplication is distributive
over addition:

A(B 1 C) 5 AB 1 AC and (B 1 C)A 5 BA 1 CA.

DETERMINANT OF A MATRIX Associated with every square matrix A of constants 
is a number called the determinant of the matrix, which is denoted by det A.

EXAMPLE 6 Determinant of a Square Matrix

For A 5 S 3 6 2

2 5 1

21 2 4
D we expand det A by cofactors of the first row:

det A 5 u 3  6  2

2  5  1

21  2  4
u 5 3u5 1

2 4u 2 6u 2 1

21 4u 1 2u 2 5

21 2u
5 3(20 2 2) 2 6(8 1 1) 1 2(4 1 5) 5 18. .
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EXAMPLE 7 Transpose of a Matrix

(a) The transpose of A 5 S 3 6 2

2 5 1

21 2 4
D is AT 5 S3 2 21

6 5 2

2 1 4
D.

(b) If X 5 S5

0

3
D, then XT 5 (5 0 3). .

It can be proved that a determinant det A can be expanded by cofactors using any 
row or column. If det A has a row (or a column) containing many zero entries, then 
wisdom dictates that we expand the determinant by that row (or column).

DEFINITION B.7 Transpose of a Matrix

The transpose of the m 3 n matrix (1) is the n 3 m matrix AT given byT given byT

AT 5 ( )
a

( )
a11( )11

a( )a12( )12

a
( )
a1

( )
1n

( )
n

a

( )
am( )m1( )1

a( )am( )m2( )2

a
( )

amn

( )
mn

a

( )
a21( )21

a( )a22( )22

a
( )

a2

( )
2n

( )
n

.

Á
Á

Á
o o

In other words, the rows of a matrix A become the columns of its transpose AT.

DEFINITION B.8 Multiplicative Inverse of a Matrix

Let A be an n 3 n matrix. If there exists an n 3 n matrix B such that

AB 5 BA 5 I,

where I is the multiplicative identity, then B is said to be the multiplicative 
inverse of A and is denoted by B 5 A21.

DEFINITION B.9 Nonsingular/Singular Matrices

Let A be an n 3 n matrix. If det A Þ 0, then A is said to be nonsingular. If 
det A 5 0, then A is said to be singular.

The following theorem gives a necessary and sufficient condition for a square 
matrix to have a multiplicative inverse.

THEOREM B.1 Nonsingularity Implies A Has an Inverse

An n 3 n matrix A has a multiplicative inverse A21 if and only if A is 
nonsingular.

The following theorem gives one way of finding the multiplicative inverse for 
a nonsingular matrix.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



APP-16 APPENDIX B MATRICES

Each Cij in Theorem B.2 is simply the cofactor (signed minor) of the corresponding 
entry aij in A. Note that the transpose is utilized in formula (2).

For future reference we observe in the case of a 2 3 2 nonsingular matrix

A 5 1a11 a12

a21 a22
2

that C11 5 a22, C12 5 2a21, C21C21C 5 2a12, and C22C22C 5 a11. Thus

A21 5
1

det A
 1 a22 2a21

2a12 a11
2

T

5
1

det A
 1 a22 2a12

2a21 a11
2. (3)

For a 3 3 3 nonsingular matrix

A 5 Sa11 a12 a13

a21 a22 a23

a31 a32 a33

D,

C11 5 ua22 a23

a32 a33
u, C12 5 2ua21 a23

a31 a33
u, C13 5 ua21 a22

a31 a32
u,

and so on. Carrying out the transposition gives

A21 5
1

det A
 SC11 C21 C31

C12 C22 C32

C13 C23 C33

D. (4)

 EXAMPLE 8 Inverse of a 2 3 2 Matrix

Find the multiplicative inverse for A 5 11 4

2 102.

SOLUTION Since det A 5 10 2 8 5 2 Þ 0, A is nonsingular. It follows from 
Theorem B.1 that A21 exists. From (3) we find

A21 5
1

2 1 10 24

22 12 5 1 5 22

21 1
2
2. .

Not every square matrix has a multiplicative inverse. The matrix A 5 12 2

3 32is singular, since det A 5 0. Hence A21 does not exist.

 EXAMPLE 9 Inverse of a 3 3 3 Matrix

Find the multiplicative inverse for A 5 S 2 2 0

22 1 1

3 0 1
D.

THEOREM B.2 A Formula for the Inverse of a Matrix

Let A be an n 3 n nonsingular matrix and let Cij 5 (21) i1j1j1 MijMijM , where MijMijM  is 
the determinant of the (n 2 1) 3 (n 2 1) matrix obtained by deleting the ith 
row and jth column from A. Then

A21 5
1

det A
 ( (Cijiji )T. (2)
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SOLUTION Since det A 5 12 Þ 0, the given matrix is nonsingular. The cofactors 
corresponding to the entries in each row of det A are

C11 5 u1 1

0 1u 5 1 C12 5 2u22 1

3 1u 5 5 C13 5 u22 1

3 0u 5 23

C2C2C 1 5 2u2 0

0 1u 5 22 C2C2C 2 5 u2 0

3 1u 5 2 C2C2C 3 5 2u2 2

3 0u 5 6

C31 5 u2 0

1 1u 5 2 C32 5 2u 2 0

22 1u 5 22 C33 5 u 2 2

22 1u 5 6.

If follows from (4) that

A21 5
1

12 S 1 22 2

5 2 22

23 6 6
D 5 S 1

12 21
6

1
6

5
12

1
6 21

6

21
4

1
2

1
2

D.

You are urged to verify that A21A 5 AA21 5 I. .

Formula (2) presents obvious difficulties for nonsingular matrices larger than 
3 3 3. For example, to apply (2) to a 4 3 4 matrix, we would have to calculate 
sixteen 3 3 3 determinants.* In the case of a large matrix there are more efficient 
ways of finding A21. The curious reader is referred to any text in linear algebra.

Since our goal is to apply the concept of a matrix to systems of linear first- order 
differential equations, we need the following definitions.

DEFINITION B.10 Derivative of a Matrix of Functions

If A(t) 5 (aij(t))m3n is a matrix whose entries are functions differentiable on a 
common interval, then

dAdAd

dt
5 1 d

dt
aijiji 2

m3n
.

DEFINITION B.11 Integral of a Matrix of Functions

If A(t) 5 (aij(t))m3n is a matrix whose entries are functions continuous on a 
common interval containing t and t and t t0t0t , then

#t#
t
#

0

A(s) dsdsd 5 1#t#
t
#

0
#

0
##

t
#

0
#

t
# aijiji (s) dsdsd 2

m3n
.

To differentiate (integrate) a matrix of functions, we simply differentiate 
(integrate) each entry. The derivative of a matrix is also denoted by A9(t).

 EXAMPLE 10 Derivative/Integral of a Matrix

If X(t) 5 S sin 2t

e3t

8t 2 1
D, then X9(t) 5 1

d

dt
 s sin 2t

d

dt
e3t

d

dt
(8t 2 1)

25 S2 cos 2t

3e3t

8
D

*Strictly speaking, a determinant is a number, but it is sometimes convenient to refer to a determinant as 
if it were an array.
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and #t

0
#

0
#X(s) ds 5 S et

0e0e sin 2s ds

et

0e0e e3s ds

et

0e0e (8s 2 1) ds
D 5 S21

2 cos 2t 1 1
2

1
3 e3t 2 1

3

4t2 2 t
D. .

B.2 GAUSSIAN AND  GAUSSJORDAN ELIMINATION
Matrices are an invaluable aid in solving algebraic systems of n linear equations in 
n variables or unknowns,

a11x1 1 a12x2 1 Á 1 a1nxn 5 b1

a21x1 1 a22x2 1 Á 1 a2nxn 5 b2

o o
an1x1 1 an2x2 1 Á 1 annxn 5 bn.

(5)

If A denotes the matrix of coefficients in (5), we know that Cramer’s rule could be used 
to solve the system whenever det A Þ 0. However, that rule requires a herculean 
effort if A is larger than 3 3 3. The procedure that we shall now consider has the 
distinct advantage of being not only an efficient way of handling large systems, but 
also a means of solving consistent systems (5) in which det A 5 0 and a means of 
solving m linear equations in n unknowns.

DEFINITION B.12 Augmented Matrix

The augmented matrix of the system (5) is the n 3 (n 1 1) matrix

a11

a21

an1

a1n

a2n

ann

a12

a22

an2 

( b1

b2

bn

) .ZÁ
Á

Á
o o

If B is the column matrix of the bi, i 5 1, 2, . . . , n, the augmented matrix of (5) 
is denoted by (AuB).

ELEMENTARY ROW OPERATIONS Recall from algebra that we can transform an 
algebraic system of equations into an equivalent system (that is, one having the same 
solution) by multiplying an equation by a nonzero constant, interchanging the posi-
tions of any two equations in a system, and adding a nonzero constant multiple of an 
equation to another equation. These operations on equations in a system are, in turn, 
equivalent to elementary row operations on an augmented matrix:

(i) Multiply a row by a nonzero constant.
(ii) Interchange any two rows.
(iii) Add a nonzero constant multiple of one row to any other row.

ELIMINATION METHODS To solve a system such as (5) using an augmented 
matrix, we use either Gaussian elimination or the Gauss-Jordan elimination 
method. In the former method, we carry out a succession of elementary row opera-
tions until we arrive at an augmented matrix in row-echelon form:

(i) The first nonzero entry in a nonzero row is 1.
(ii) In consecutive nonzero rows the first entry 1 in the lower row appears to 

the right of the first 1 in the higher row.
(iii) Rows consisting of all 0’s are at the bottom of the matrix.
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In the Gauss-Jordan method the row operations are continued until we obtain an 
augmented matrix that is in reduced row-echelon form. A reduced row-echelon 
matrix has the same three properties listed above in addition to the following one:

(iv) A column containing a first entry 1 has 0’s everywhere else.

EXAMPLE 11 Row-Echelon/Reduced Row-Echelon Form

(a) The augmented matrices

S1

0

0

5

1

0

0

0

0

2u 21

0
2 and 100 0

0

1

0

26

0

2

1 u 2

42

are in row-echelon form. You should verify that the three criteria are satisfied.

(b) The augmented matrices

S1

0

0

0

1

0

0

0

0

7u 21

0
2 and 100 0

0

1

0

26

0

0

1 u 26

42

are in reduced row-echelon form. Note that the remaining entries in the columns 
containing a leading entry 1 are all 0’s. .

Note that in Gaussian elimination we stop once we have obtained an augmented 
matrix in row-echelon form. In other words, by using different sequences of row 
operations we may arrive at different row-echelon forms. This method then requires 
the use of back-substitution. In Gauss-Jordan elimination we stop when we have 
obtained the augmented matrix in reduced row-echelon form. Any sequence of row 
operations will lead to the same augmented matrix in reduced row-echelon form. 
This method does not require back-substitution; the solution of the system will be 
apparent by inspection of the final matrix. In terms of the equations of the original 
system, our goal in both methods is simply to make the coefficient of x1 in the first 
equation* equal to 1 and then use multiples of that equation to eliminate x1 from other 
equations. The process is repeated on the other variables.

To keep track of the row operations on an augmented matrix, we utilize the 
following notation:

Sym bol M e ani n g

Rij Interchange rows i and j
cRi Multiply the ith row by the nonzero constant c
cRi 1 RjRjR Multiply the ith row by c and add to the jth row

 EXAMPLE 12 Solution by Elimination

Solve 2x1 1 6x2 1 x3 5 7

x1 1 2x2x2 2 2 x3 5 21

5x1 1 7x2 2 4x3 5 9

using (a) Gaussian elimination and (b) Gauss-Jordan elimination.

*We can always interchange equations so that the first equation contains the variable x1.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



APP-20 APPENDIX B MATRICES

SOLUTION (a) Using row operations on the augmented matrix of the system, we 
obtain

( Z2

1

5

1

21

24

7

21

9

6

2

7
) ( Z1

2

5

21

1

24

2

6

7
) () () () (R) () (12) ( 21

7

9
) ( Z1

0

0

21

3

1

2

2

23

21

9

14
)) () () () (2) () (2) () (R) () (1) () ( 1 ) () (R) () (2) () (2) () (5) () (R) () (1) () ( 1 ) () (R) () (3) (

( Z1

0

0

21

1

21

14

2

1

23
) ( Z1

0

0

212

1

0
) () () () (3) () (R) () (2) () ( 1 ) () (R) () (3) ( 21 ) ( Z1

0

0

21

1

2

1

0

21

5
).) () () (R2 ) (R) () (3) (1_

2 ) (2) () (__) () (11) (3_
2

9_
2

3_
2

11__
2

55__
2

9_
2

3_
2

9_
2

The last matrix is in row-echelon form and represents the system

x1 1 2x2x2 2 2 x3 5 21

x2 1
3

2
x3 5

9

2
x3 5 5.

Substituting x3 5 5 into the second equation then gives x2 5 23. Substituting both 
these values back into the first equation finally yields x1 5 10.
(b) We start with the last matrix above. Since the first entries in the second and third 
rows are 1’s, we must, in turn, make the remaining entries in the second and 
third columns 0’s:

( Z1

0

0

21

1

21

5

2

1

0
) ( Z1

0

0

24

1

0

1

0
) () () () (2) () (2) () (R) () (2) () ( 1 ) () (R) () (1) ( 210

5
) ( Z1

0

0

0

0

1

0

1

0

10

23

5
).) () () () () (4) () (R) () (3) () ( 1 ) () (R) () (1) () (2) () (R) () (3) () ( 1 ) () (R) () (2) () (3) () (_) () (2) (3_

2
9_
2

3_
2

9_
2

The last matrix is now in reduced row-echelon form. Because of what the 
matrix means in terms of equations, it is evident that the solution of the system is 
x1 5 10, x2 5 23, x3 5 5. .

EXAMPLE 13 Gauss-Jordan Elimination

Solve x 1 3y 2 2z 5 27

4x 1 y 1 3z 5 5

2x 2 5y 1 7z 5 19.

SOLUTION We solve the system using Gauss-Jordan elimination:

2 R2

2 R3
1__

11

1__
11

( Z1

4

2

22

3

7

27

5

19

3

1

25
) ( Z1

0

0

22

11

11

3

211

211
) () () ( 27

33

33
)) (2) () (4) () (R) () (1) () ( 1 ) () (R) () (2) () (2) () (2) () (R) () (1) () ( 1 ) () (R) () (3) (

( Z1

0

0

22

21

21

27

23

23

3

1

1
) ( Z1

0

0

1

21

0

0

1

0
) () () () (2) () (3) () (R) () (2) () ( 1 ) () (R) () (1) () (2) () (R) () (2) () ( 1 ) () (R) () (3) ( 1

23

0
).

In this case, the last matrix in reduced row-echelon form implies that the original 
system of three equations in three unknowns is really equivalent to two equations in 
three unknowns. Since only z is common to both equations (the nonzero rows), we can z is common to both equations (the nonzero rows), we can z
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assign its values arbitrarily. If we let z 5 t, where t represents any real number, then t represents any real number, then t
we see that the system has infinitely many solutions: x 5 2 2 t, y 5 23 1 t, z 5 t.t.t
Geometrically, these equations are the parametric equations for the line of intersection 
of the planes x 1 0y0y0 1 z 5 2 and 0x2 and 0x2 and 0 1 y 2 z 5 3. .

USING ROW OPERATIONS TO FIND AN INVERSE Because of the number of 
determinants that must be evaluated, formula (2) in Theorem B.2 is seldom used to find 
the inverse when the matrix A is large. In the case of 3 3 3 or larger matrices the 
method described in the next theorem is a particularly efficient means for finding A21.

THEOREM B.3 Finding A21 Using Elementary Row Operations

If an n 3 n matrix A can be transformed into the n 3 n identity I by a 
sequence of elementary row operations, then A is nonsingular. The same 
sequence of operations that transforms A into the identity I will also transform 
I into A21.

It is convenient to carry out these row operations on A and I simultaneously 
by means of an n 3 2n matrix obtained by augmenting A with the identity I as shown 
here:

(A Z I) 5 ( a11

a21

an1

a1n

a2n

ann

a12

a22

an2 

1

1

0

0

0

0

0

0

1
).ZÁ

Á

Á

Á
Á

Á
o o o o

The procedure for finding A21 is outlined in the following diagram:

( A Z  I  )  (I Z A21). 

Perform row operations
on A until I is obtained. This
means that A is nonsingular.

By simultaneously applying
the same row operations
to I, we get A21.

EXAMPLE 14 Inverse by Elementary Row Operations

Find the multiplicative inverse for A 5 S 2 0 1

22 3 4

25 5 6
D.

SOLUTION We shall use the same notation as we did when we reduced an augmented 
matrix to reduced row-echelon form:

( Z2

22

25

1

4

6

0

3

5

1

0

0

0

1

0

0

0

1
) ( Z1

22

25

4

6

0

3

5

0

0

0

1

0

0

0

1
)) () () () (R) () (1) ( 2R1 1 R2

5R1 1 R3) (1) () (_) () (2) (
1_
2

1_
2 ( Z1

0

0

5

0

3

5

1

0

1

0

0

0

1
)

1_
2

1_
2

17__
2

5_
2
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( Z1

0

0

0

1

1

0

0

0

0)R2

R3 2R2 1 R3
1_
5

1_
3

1_
2

1_
2

5_
3
17__
10

1_
3
1_
2

1_
3

1_
5

0

2

0

0)
1_
2

1_
3
1_
3

1_
5

( Z1

0

0

0

1

0

1_
2

5_
3

1_
3

1__
30

1_
6

( Z1

0

0 1

0

1

0 5
Z

0 5
Z

0 10 50 1

0

210

0

0

6
)30R3

2 R3 1 R1

2 R3 1 R2

1_
2

1_
3

1_
3

1_
2

5_
3 ( Z1

0

0

0

0

1

0

1

0

22

28

5

5

17

210

23

210

6
).5_

3

1_
3

Because I appears to the left of the vertical line, we conclude that the matrix to the 
right of the line is

A21 5 S22 5 23

28 17 210

5 210 6
D. .

If row reduction of (AuI) leads to the situation

(A Z I) (B Z C),) () () (

row
operations

) (
operations

) (

where the matrix B contains a row of zeros, then necessarily A is singular. Since fur-
ther reduction of B always yields another matrix with a row of zeros, we can never 
transform A into I.

B.3 THE EIGENVALUE PROBLEM
Gauss-Jordan elimination can be used to find the eigenvectors of a square matrix.

DEFINITION B.13 Eigenvalues and Eigenvectors

Let A be an n 3 n matrix. A number � is said to be an eigenvalue of A if there 
exists a nonzero solution vector K of the linear system

AK 5 �K. (6)

The solution vector K is said to be an eigenvector corresponding to the 
eigenvalue �.

The word eigenvalue is a combination of German and English terms adapted 
from the German word eigenwert, which, translated literally, is “proper value.” 
Eigenvalues and eigenvectors are also called characteristic values and character-
istic vectors, respectively.

EXAMPLE 15 Eigenvector of a Matrix

Verify that K 5 S 1

21

1
D is an eigenvector of the matrix

A 5 S 0 21 23

2 3 3

22 1 1
D.
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SOLUTION By carrying out the multiplication AK, we see that

AK 5 ( 0

2

22

23

3

1

21

3

1
) ( )1( )1

2( )21( )1

1
( )

1

5 ( )2( )22( )2

2( )2

2
( )
22
( )

2

5 (22) ( )1( )1

2( )21( )1

1
( )

1

5 (22)K.

eigenvalueeigenvalue

We see from the preceding line and Definition B.13 that � 5 22 is an 
eigenvalue of A. .

Using properties of matrix algebra, we can write (6) in the alternative form

(A 2 �I)K 5 0, (7)

where I is the multiplicative identity. If we let

K 5 1
k1

k2

o
knknk
2,

then (7) is the same as

(a11 2 �)k1 1

a21k1 1

an1k1 1

a12k2 1

(a22 2 �)k2 1

an2k2 1

1

1

1 (ann 2 �)knknk 5 0.

a1nkn 5 0

a2nkn 5 0

Á
Á

Á
o o

(8)

Although an obvious solution of (8) is k1 5 0, k2 5 0, . . . , knknk 5 0, we are seeking 
only nontrivial solutions. It is known that a homogeneous system of n linear equa-
tions in n unknowns (that is, bi 5 0, i 5 1, 2, . . . , n in (5)) has a nontrivial solution 
if and only if the determinant of the coefficient matrix is equal to zero. Thus to find 
a nonzero solution K for (7), we must have

det(A 2 �I) 5 0. (9)

Inspection of (8) shows that the expansion of det(A 2 �I) by cofactors results in an 
nth-degree polynomial in �. The equation (9) is called the characteristic equation
of A. Thus the eigenvalues of A are the roots of the characteristic equation. To find 
an eigenvector corresponding to an eigenvalue �, we simply solve the system of 
equations (A 2 �I)K 5 0 by applying Gauss-Jordan elimination to the augmented 
matrix (A 2 �I u0).

EXAMPLE 16 Eigenvalues/Eigenvectors

Find the eigenvalues and eigenvectors of A 5 S 1 2 1

6 21 0

21 22 21
D.

SOLUTION To expand the determinant in the characteristic equation, we use the 
cofactors of the second row:

det(A 2 �I) 5 u1 2 � 2 1

6 21 2 � 0

21 22 21 2 �
u 5 2�3 2 �2 1 12� 5 0.

From 2�3 2 �2 1 12� 5 2�(� 1 4)(� 2 3) 5 0 we see that the eigenvalues 
are �1 5 0, �2 5 24, and �3 5 3. To find the eigenvectors, we must now reduce 
(A 2 �I u0) three times corresponding to the three distinct eigenvalues.
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For �1 5 0 we have

6__
13

6__
13

1__
13

6

2 R2
1__
13

(A 2 0I Z 0) 5 ( 1

6

21

2

21

22

1

0

21

0

0

0
) () () () (2) (26) (6R) (R1) (1 1 ) ( 1 R) (R2) (2

R) (R1) (1 1 ) ( 1 R) (R3) (3 ZZ 1

0

0

1

26

0

0

0

0

2

213

0
)

2( Z1

0

0

2

1

0

1

0

0

0

0
) () () () (2) (22) (2R) (R2) (2 1 ) ( 1 R) (R1) (1 Z1

0

0 0

0

0

0

0

1

0 000 0
).

Thus we see that k1 5 2 1
13 k3 and k2 5 2 6

13 k3. Choosing k3 5 213, we get the 
eigenvector*

K1 5 S 1

6

213
D.

For �2 5 24,

(A 1 4I Z 0) 5 ( Z5

6

21

2

3

22

1

0

3

0

0

0
) () () () (2) (2R) (R3  ) (3  

R) (R31) (31 Z1

6

5

23

0

1

0

0

0

2

3

2
)

2 R2

2 R3

2( Z1

0

0

2

1

1

23

22

22

0

0

0
) () () () (2) (22) (2R) (R2) (2 1 ) ( 1 R) (R1) (1

2) (2R) (R2) (2 1 ) ( 1 R) (R3) (3 Z1

0

0

1

22

0

0

0

0

0

1

0
)26R1 1 R2

25R1 1 R3 ( Z1

0

0

23

18

16

0

0

0

2

29

28
)

1_
9
1_
8

implies that k1 5 2k3 and k2 5 2k3. Choosing k3 5 1 then yields the second 
eigenvector

K2 5 S21

2

1
D.

Finally, for �3 5 3 Gauss-Jordan elimination gives

(A 2 3I Z 0) 5 ( Z22

6

21

1

0

24

0

0

0

2

24

22
) ( Z1

0

0

1

0

0

0

0

0

1

0
),) () () () (row) () (operations) ( 3_

2

so k1 5 2k3 and k2 5 23
2 k3. The choice of k3 5 22 leads to the third eigenvector:

K3 5 S 2

3

22
D. .

When an n 3 n matrix A possesses n distinct eigenvalues �1, �2, . . . , �n, it can 
be proved that a set of n linearly independent† eigenvectors K1, K2, . . . , Kn can be 
found. However, when the characteristic equation has repeated roots, it may not be 
possible to find n linearly independent eigenvectors for A. If an n 3 n matrix A
possesses less than n linearly independent eigenvectors, it is said to be defective.

*Of course, k3 could be chosen as any nonzero number. In other words, a nonzero constant multiple of an 
eigenvector is also an eigenvector.
†Linear independence of column vectors is defined in exactly the same manner as for functions.
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EXAMPLE 17 Eigenvalues/Eigenvectors

Find the eigenvalues and eigenvectors of A 5 1 3 4

21 72.
SOLUTION From the characteristic equation

det(A 2 �I) 5 u3 2 � 4

21 7 2 �u 5 (� 2 5)2 5 0

we see that �1 5 �2 5 5 is an eigenvalue of multiplicity two. In the case of a 2 3 2 
matrix there is no need to use Gauss-Jordan elimination. To find the eigenvector(s) 
corresponding to �1 5 5, we resort to the system (A 2 5I u0) in its equivalent form

22k1 1 4k2 5 0

2k1 1 2k2 5 0.

It is apparent from this system that k1 5 2k2. Thus if we choose k2 5 1, we find the 
single eigenvector

K1 5 1212.
The matrix A is defective. .

EXAMPLE 18 Eigenvalues/Eigenvectors

Find the eigenvalues and eigenvectors of A 5 S9 1 1

1 9 1

1 1 9
D.

SOLUTION The characteristic equation

det(A 2 �I) 5 u9 2 � 1 1

1 9 2 � 1

1 1 9 2 �
u 5 2(� 2 11)(� 2 8)2 5 0

shows that �1 5 11 and that �2 5 �3 5 8 is an eigenvalue of multiplicity two. 
For �1 5 11 Gauss-Jordan elimination gives

(A 2 11I Z 0) 5 ( Z22

1

1

1

1

22

0

0

0

1

22

1
) ( Z1

0

0

21

21

0

0

0

0

0

1

0
).) () () () (row) () (operations) (

Hence k1 5 k3 and k2 5 k3. If k3 5 1, then

K1 5 S1

1

1
D.

Now for �2 5 8 we have

(A 2 8I Z 0) 5 ( Z1

1

1

1

1

1

0

0

0

1

1

1
) ( Z1

0

0

1

0

0

0

0

0

1

0

0
).) () () () (row) () (operations) (
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In the equation k1 1 k2 1 k3 5 0, we are free to select two of the variables arbitrar-
ily. Choosing, on the one hand, k2 5 1, k3 5 0 and, on the other, k2 5 0, k3 5 1, we 
obtain two linearly independent eigenvectors

K2 5 S21

1

0
D and K3 5 S21

0

1
D.

The matrix A is not defective.not defective.not .

EXERCISES FOR APPENDIX B Answers to selected odd-numbered problems begin on page ANS-30.

B.1 Basic Definitions and Theory

1. If A 5 1 4 5

26 92 and B 5 122 6

8 2102, find

(a) A 1 B  (b) B 2 A  (c) 2A 1 3B

2. If A 5 S22 0

4 1

7 3
D and B 5 S 3 21

0 2

24 22
D, find

(a) A 2 B (b) B 2 A (c) 2(A 1 B)

3. If A 5 1 2 23

25 42 and B 5 121 6

3 22, find

(a) AB (b) BA (c) A2 5 AA (d) B2 5 BB

4. If A 5 S1 4

5 10

8 12
D and B 5 124 6 23

1 23 22, find

(a) AB (b) BA

5. If A 5 1 1 22

22 42, B 5 16 3

2 12, and C 5 10 2

3 42, find

(a) BC (b) A(BC) (c) C(BA) (d) A(B 1 C)

6. If A 5 (5 26 7), B 5 S 3

4

21
D, and

C 5 S1 2 4

0 1 21

3 2 1
D, find

(a) AB (b) BA (c) (BA)C (d) (AB)C

7. If A 5 S 4

8

210
D and B 5 (2 4 5), find

(a) ATATAT (b) BTB (c) A 1 BT

8. If A 5 11 2

2 42 and B 5 122 3

5 72, find

(a) A 1 BT (b) 2AT 2 BT (c) AT(A 2 B)

9. If A 5 13 4

8 12 and B 5 1 5 10

22 252, find

(a) (AB)T (b) BTATAT T

10. If A 5 1 5 9

24 62 and B 5 123 11

27 22, find

(a) AT 1 BT (b) (A 1 B)T

In Problems 11–14 write the given sum as a single column matrix.

11. 4 121

22 2 2 1282 1 3 122

32

12. 3tS 2

t

21
D 1 (t 2 1)S21

2t

3
D 2 2S 3t

4

25t
D

13. 12 23

1 42122

52 2 121 6

22 32127

22

14. S1 23 4

2 5 21

0 24 22
D t12 t 2 1

2t
2 1 S2t

1

4
D 2 S 2

8

26
D

In Problems 15–22 determine whether the given matrix is singular 
or nonsingular. If it is nonsingular, find A21 using Theorem B.2.

15. A 5 123 6

22 42 16. A 5 12 5

1 42
17. A 5 1 4 8

23 252 18. A 5 17 10

2 22

19. A 5 S 2 1 0

21 2 1

1 2 1
D 20. A 5 S 3 2 1

4 1 0

22 5 21
D
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35. 2x 1 y 1 z 5 4 36. x 1 2z 5 8
10x 2 2y 1 2z 5 21 x 1 2y 2 2z 5 4
6x 2 2y 1 4z 5 8 2x 1 5y 2 6z 5 6

37.   x1 1 x2 2   x3 2 x4 5 21 38. 2x1 1  x2 1  x3 5 0
    x1 1 x2 1 x3 1 x4 5 3 x1 1 3x2 1 x3 5 0

  x1 2 x2 1 x3 2 x4 5 3 7x1 1 x2 1 3x3 5 0
4x1 1 x2 2 2x3 1 x4 5 0

In Problems 39 and 40 use Gauss-Jordan elimination to demonstrate 
that the given system of equations has no solution.

39. x 1 2y 1 4z 5 2 40. x1 1  x2 2  x3 1 3x4 5 1
2x 1 4y 1 3z 5 1 x2 2 x3 2 4x4 5 0
  x 1 2y 2 z 5 7 x1 1 2x2x2 2 2 2x3 2 x4 5 6

4x4x4 1 1 7x2 2 7x3      5 9

In Problems 41–46 use Theorem B.3 to find A21 for the given matrix 
or show that no inverse exists.

41. A 5 S 4 2 3

2 1 0

21 22 0
D 42. A 5 S2 4 22

4 2 22

8 10 26
D

43. A 5 S21 3 0

1 22 1

0 1 2
D 44. A 5 S1 2 3

0 1 4

0 0 8
D

45. A 5 1
1 2 3 1

21 0 2 1

2 1 23 0

1 1 2 1
2 46. A 5 1

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0
2

B.3 The Eigenvalue Problem

In Problems 47–54 find the eigenvalues and eigenvectors of the given 
matrix.

47. 121 2

27 82 48. 12 1

2 12
49. 128 21

16 02 50. 11 1
1
4 12

51. S5 21 0

0 25 9

5 21 0
D 52. S3 0 0

0 2 0

4 0 1
D

53. S 0 4 0

21 24 0

0 0 22
D 54. S1 6 0

0 2 1

0 1 2
D

In Problems 55 and 56 show that the given matrix has complex 
eigenvalues. Find the eigenvectors of the matrix.

55. 121 2

25 12 56. S2 21 0

5 2 4

0 1 2
D

21. A 5 S2 1 1

1 22 23

3 2 4
D 22. A 5 S 4 1 21

6 2 23

22 21 2
D

In Problems 23 and 24 show that the given matrix is nonsingular for 
every real value of t. Find A21(t) using Theorem B.2.

23. A(t) 5 12e2t e4t

4e2t 3e4t2

24. A(t) 5 12et sin t 22et cos t

et cos t et sin t 2
In Problems 25–28 find dXYdt.

25. X 5 S 5e2t

2e2t

27e2t
D 26. X 5 1

1
2 sin 2t 2 4 cos 2t

23 sin 2t 1 5 cos 2t2

27. X 5 2 1 1

212e2t 1 4 1212e23t 28. X 5 1 5te2t

t sin 3t2

29. Let A(t) 5 1e
4t cos �t

2t 3t 2 2 12. Find

(a)
dAdAd

dt
(b) #2

0
#

0
# A(t) dtt (c) #t

0
#

0
#A(s) dsdsd

30. Let A(t) 5 1
1

t 2 1 1
3t

t 2 t
2 and B(t) 5 1 6t 2

1yt 4t2. Find

(a)
dAdAd

dt
(b)

dB
dt

(c) #1

0
#

0
# A(t) dt (d) #2

1
#

1
# B(t) dt

(e) A(t)B(t) (f)
d

dt
A(t)B(t)

(g) #t

1
#

1
#A(s)B(s) dsdsd

B.2 Gaussian and Gauss-Jordan Elimination

In Problems 31–38 solve the given system of equations by either 
Gaussian elimination or Gauss-Jordan elimination.

31. x 1 y 2 2z 5 14 32. 5x 2 2y 1 4z 5 10
2x 2 y 1 z 5 0 x 1 y 1 z 5 9
6x 1 3y 1 4z 5 1 4x 2 3y 1 3z 5 1

33. y 1 z 5 25 34. 3x 1 y 1 z 5 4
5x 1 4y 2 16z 5 210 4x 1 2y 2 z 5 7
x 2 y 2 5z 5 7 x 1 y 2 3z 5 6
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61. Let A and B be n 3 n matrices. In general, is

(A 1 B)2 5 A2 1 2AB 1 B2?

62. A square matrix A is said to be a diagonal matrix if all its 
entries off the main diagonal are zero—that is, aij 5 0, i Þ j.
The entries aii on the main diagonal may or may not be zero. The ii on the main diagonal may or may not be zero. The ii

multiplicative identity matrix I is an example of a diagonal matrix.

(a) Find the inverse of the 2 3 2 diagonal matrix

A 5 1a11 0

0 a22
2

when a11 Þ 0, a22 Þ 0.

(b) Find the inverse of a 3 3 3 diagonal matrix A whose main 
diagonal entries aii are all nonzero.

(c) In general, what is the inverse of an n 3 n diagonal  
matrix A whose main diagonal entries aii are all nonzero?

Miscellaneous Problems
57. If A(t) is a 2 3 2 matrix of differentiable functions and X(t) is 

a 2 3 1 column matrix of differentiable functions, prove the 
product rule

d

dt
[A(t) X(t)] 5 A(t) X9(t) 1 A9(t) X(t).

58. Derive formula (3). [Hint: Find a matrix

B 5 1b11 b12

b21 b22
2

for which AB 5 I. Solve for b11, b12, b21, and b22. Then show 
that BA 5 I.]

59. If A is nonsingular and AB 5 AC, show that B 5 C.

60. If A and B are nonsingular, show that (AB)21 5 B21A21.
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Appendix C Laplace Transforms

f (t) + { f (t)} 5 F(s)

1. 1
1

s

2. t
1

s2

3. tntnt n!

sn11
, n a positive integer

4. t21/2 Î�Î sÎ
5. t1/2 Ï�Ï

2s3/2

6. t�t�t
G(� 1 1)

s�11
, � . 21

7. sin kt
k

s2 1 k2

8. cos kt
s

s2 1 k2

9. sin2 kt
2k2

s(s2 1 4k2)

10. cos2 kt
s2 1 2k2

s(s2 1 4k2)

11. eat 1

s 2 a

12. sinh kt k

s2 2 k2

13. cosh kt s

s2 2 k2

14. sinh2kt
2k2

s(s2 2 4k2)

15. cosh2kt
s2 2 2k2

s(s2 2 4k2)

16. teat
1

(s 2 a)2

17. tntnt eat
n!

(s 2 a)n11
, n a positive integer

18. eat sin at sin at kt
k

(s 2 a)2 1 k2

19. eat cos at cos at kt
s 2 a

(s 2 a)2 1 k2

20. eat sinh at sinh at kt
k

(s 2 a)2 2 k2

21. eat cosh at cosh at kt
s 2 a

(s 2 a)2 2 k2
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f (t) + { f (t)} 5 F(s)

22. t sin t sin t kt
2ks

(s2 1 k2)2

23. t cos t cos t kt
s2 2 k2

(s2 1 k2)2

24. sin kt 1 kt cos kt cos kt kt
2ks2

(s2 1 k2)2

25. sin kt 2 kt cos kt cos kt kt
2k3

(s2 1 k2)2

26. t sinh t sinh t kt
2ks

(s2 2 k2)2

27. t cosh t cosh t kt
s2 1 k2

(s2 2 k2)2

28.
eat 2 ebt

a 2 b

1

(s 2 a)(s 2 b)

29.
aeat 2 bebt

a 2 b

s

(s 2 a)(s 2 b)

30. 1 2 cos kt k2

s(s2 1 k2)

31. kt 2 sin kt
k3

s2(s2 1 k2)

32.
a sin bt 2 b sin at

ab(a2 2 b2)

1

(s2 1 a2)(s2 1 b2)

33.
cos bt 2 cos at

a2 2 b2

s

(s2 1 a2)(s2 1 b2)

34. sin kt sinh kt sinh kt kt 2k2s

s4 1 4k4k4k

35. sin kt cosh kt cosh kt kt k(s2 1 2k2)

s4 1 4k4k4k

36. cos kt sinh kt sinh kt kt k(s2 2 2k2)

s4 1 4k4k4k

37. cos kt cosh kt cosh kt kt s3

s4 1 4k4k4k

38. sin kt cosh kt cosh kt kt 1 cos kt sinh kt sinh kt kt 2ks2

s4 1 4k4k4k

39. sin kt cosh kt cosh kt kt 2 cos kt sinh kt sinh kt kt 4k3

s4 1 4k4k4k

40. sinh kt 2 sin kt 2k3

s4 2 k4

41. cosh kt 2 cos kt 2k2s

s4 2 k4k4k

42. J0J0J (kt) 1

ÏsÏsÏ 2 1 k2Ï
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f (t) + { f (t)} 5 F(s)

43.
ebt 2 eat

t
ln

s 2 a

s 2 b

44.
2(1 2 cos kt)

t
ln

s2 1 k2

s2

45.
2(1 2 cosh kt)

t
ln

s2 2 k2

s2

46.
sin at

t arctan 1a

s2
47.

sin at cos bt

t

1

2
arctan

a 1 b

s
1

1

2
arctan

a 2 b

s

48.
1

Ï�tÏ
e2a2/4/4/ t e2a ÏsÏsÏÏ

ÏsÏsÏÏ

49.
a

2Ï�t3Ï
e2a2/4/4/ t

e2aÏsÏsÏÏ

50. erfcfcf 1 a

2ÏtÏ 2 e2aÏsÏsÏÏ

s

51. 2Î tÎ�Î e2a2/4/4/ t 2 a erfc1 a

2ÏtÏ 2 e2aÏsÏsÏÏ

sÏsÏsÏÏ

52. eabeb2t erfcfcf 1bÏtÏ 1
a

2ÏtÏ 2 e2aÏsÏsÏÏ

ÏsÏsÏÏ (ÏsÏsÏÏ 1 b)

53. 2eabeb2t erfc 1bÏtÏ 1
a

2ÏtÏ 2 be2aÏsÏsÏÏ

s(ÏsÏsÏÏ 1 b)

1 erfcfcf 1 a

2ÏtÏ 2
54. eat f (t) F(s 2 a)

55. 8(t 2 a)
e2as

s

56. f (t 2 a) 8(t 2 a) e2asF(s)

57. g(t) 8(t 2 a) e2as+{g(t 1 a)}

58. f (n)(t) snF(s) 2 s(n21) f (0) 2 Á 2 f (n21)(0)

59. tn f (t) (21)n dn

dsdsd n F(s)

60. #t

0
#

0
# f (�)g(t 2 �) d� F(s)G(s)

61. �(t) 1

62. �(t 2 t0t0t ) e2st0st0st
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ANS-1

Answers for Selected Odd-Numbered Problems

EXERCISES 1.1 PAGE 12
1. linear, second order 3. linear, fourth order

5. nonlinear, second order  nonlinear, second order  nonlinear, second order 7. linear, third order

9. linear in x but nonlinear in x but nonlinear in x y

15. domain of function is [22, `); largest interval of de�nition for 
solution is (22, `)

17. domain of function is the set of real numbers except x 5 2 
and x 5 22; largest intervals of de�nition for solution are  
(2`, 22), (22, 2), or (2, `)

19. X 5
et 2 1

et 2 2
 de�ned on (2`, ln 2) or on (ln 2, `)

31. m 5 22 33. m 5 2, m 5 3 35. m 5 0, m 5 21

37. y 5 2 39. no constant solutions

EXERCISES 1.2 PAGE 19
1. y 5 1y(1 2 4e2x)

3. y 5 1y(x2 2 1); (1, `)

5. y 5 1y(x2 1 1); (2`, `)

7. x 5 2cos t 1 8 sin t

9. x 5 Ï3Ï
4 cos t 1 1

4 sin t 11. y 5 3
2 ex 2 1

2 e2x

13. y 5 5e2x21 15. y 5 0, y 5 x3

17. half-planes de�ned by either y . 0 or y , 0

19. half-planes de�ned by either x . 0 or x , 0

21. the regions de�ned by y . 2, y , 22, or 22 , y , 2

23. any region not containing (0, 0)

25. yes

27. no

29. (a) y 5 cx

(b) any rectangular region not touching the y-axis

(c) No, the function is not differentiable at x 5 0.

31. (b) yy 5 1y(1 2 x) on (2`, 1); 
y 5 21y(x 1 1) on (21, `);

(c) y 5 0 on (2`, `)

39. y 5 3 sin 2x2x2

41. y 5 0

43. no solution

EXERCISES 1.3 PAGE 30

1.
dP

dt
5 kP 1 r;

dP

dt
5 kP 2 r

3.
dPdPd

dt
5 k1P 2 k2P2

7.
dxdxd

dt
5 kx (1000 2 x)

9.
dAdAd

dt
1

1

100
A 5 0; A(0) 5 50

11.
dAdAd

dt
1

7

600 2 t
A 5 6 13.

dhdhd

dt
5 2

c�

450
ÏhÏhÏÏ

15. L
di

dt
1 Ri 5 E(t) 17. m

dvdvd

dt
5 mg 2 kv2

19. m
d2d2d x2x2

dt2
5 2kxkxk

21. m
dvdvd

dt
1 v

dmdmd

dt
1 kv 5 2mg 1 R

23.
d2d2d r

dt2
1

gR2

r2 5 0  25.
dAdAd

dt
5 k(M 2 A), k . 0

27.
dxdxd

dt
1 kxkxk 5 r, k . 0 29.

dydyd

dxdxd
5

2x 1 ÏxÏxÏ 2 1 y2Ï
y

CHAPTER 1 IN REVIEW PAGE 34

1.
dydyd

dxdxd
5 10y0y0 3. y0 1 k2y2y2 5 0

5. y0 2 2y9 1 y 5 0 7. (a), (d)

9. (b) 11. (b)

13. y 5 c1 and y 5 c2ex, c1 and c2 constants

15. y9 5 x2 1 y2

17. (a) The domain is the set of all real numbers.

(b) either (2`, 0) or (0, `)

19. For x0 5 21 the interval is (2`, 0), and for x0 5 2 the interval 
is (0, `).

21. (c) y 5 52x2,

x2,

x , 0

x $ 0
23. (2`, `)

25. (0, `) 35. y 5 1
2 e3x 2 1

2 e2x 2 2x2x2

37. y 5 3
2 e3x23 1 9

2 e2x11 2 2x2x2 .

39. y0 5 23, y1 5 0

EXERCISES 2.1 (PAGE 44
21. 0 is asymptotically stable (attractor); 3 is unstable (repeller).

23. 2 is semi-stable.

25. 22 is unstable (repeller); 0 is semi-stable; 2 is asymptotically 
stable (attractor).

27. 21 is asymptotically stable (attractor); 0 is unstable (repeller).

39. 0 , P0 , hyk

41. ÏmÏmÏ gykÏ

EXERCISES 2.2 PAGE 52
1. y 5 21

5 cos 5x 1 c 3. y 5 1
3 e23x 1 c

5. y 5 cx4 7. 23e22y 5 2e3x 1 c

9. 1
3 x3 ln x 2 1

9 x3 5 1
2 y2 1 2y2y2 1 ln uyu 1 c

11. 4 cos y 5 2x2x2 1 sin 2xsin 2xsin 2 1 c

13. (ex 1 1)22 1 2(ey 1 1)21 5 c

15. S 5 cekr 17. P 5
cet

1 1 cet

19. (y 1 3)5 ex 5 c(x 1 4)5 ey 21. y 5 sin_12 x2 1 c+

A
nsw

ers for
 Selected O

dd-N
um

b
ered Prob

lem
s

C
H

A
PTER 2
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ANS-2 ANSWERS FOR SELECTED ODDNUMBERED PROBLEMS
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47. y 5 10x0x0 22 _Si(x) 2 Si(1)+

57. x 5 x0e2�1t, y 5
x0�1

�2 2 �1
e2�1t 1 1y0 2

x0�1

�2 2 �1
2e2�2 t

EXERCISES 2.4 PAGE 70
1. x2 2 x 1 3

2 y2 1 7y 5 c 3. 5
2 x2 1 4x4x4 yxyx 2 2y2y2 4 5 c

5. x2y2y2 2 2 3x 1 4y 5 c  7. not exact

9. xyxyx 3 1 y 2 cos x 2 1
2 x 2 5 c

11. not exact

13. xy 2 2xe2xe2 x 1 2ex 2 2x2x2 3 5 c

15. x3y3 2 tan21 3x 5 c

17. 2ln ucos x u 1 cos x sin y 5 c

19. t4y4y4 2 5t3 2 ty 1 y3 5 c

21. 1
3 x3 1 x2y2y2 1 xy2 2 y 5 4

3

23. 4ty 1 t2 2 5t 1 3y2 2 y 5 8

25. y2 sin x 2 x3y 2 x2 1 y ln y 2 y 5 0

27. k 5 10 29. x2y2 cos x 5 c

31. x2y2 1 x3 5 c 33. 3x2y3 1 y4 5 c

35. 22y2y2 e3x 1 10
3 e3x 1 x 5 c

37. ey2
(x2 1 4) 5 20

39. (c) y1(x) 5 2x2 2 ÏxÏxÏ 4 2 x3 1 4Ï

y2(x) 5 2x2 1 ÏxÏxÏ 4 2 x3 1 4Ï

45. (a) v(x) 5 8Îx

3
2

9

x2Î (b) 12.7 ftys

EXERCISES 2.5 PAGE 75
1. y 1 x ln ux u 5 cxcxc

3. (x 2 y) lnux 2 yu 5 y 1 c(x 2 y)

5. x 1 y lnuxu 5 cycyc

7. ln(x2 1 y2) 1 2 tan21(yyx) 5 c

9. 4x 5 y(lnuyu 2 c)2 11. y3 1 3x3 lnuxu 5 8x3

13. lnuxu 5 ey/x/x/ 2 1 15. y3 5 1 1 cx23

17. y23 5 x 1 1
3 1 ce3x 19. et/t/t y/y/ 5 ct

21. y23 5 29
5 x21 1 49

5 x26

23. y 5 2x 2 1 1 tan(x 1 c)

25. 2y 2 2x2x2 1 sin 2(x 1 y) 5 c

27. 4(y 2 2x2x2 1 3) 5 (x 1 c)2

29. 2cot(x 1 y) 1 csc(x 1 y) 5 x 1 Ï2Ï 2 1

35. (b) y 5
2
x

1 _21
4 x 1 cxcxc 23+21

EXERCISES 2.6 PAGE 80
1. y2 5 2.9800, y4 5 3.1151

3. y10 5 2.5937, y20 5 2.6533; y 5 ex

5. y5 5 0.4198, y10 5 0.4124

7. y5 5 0.5639, y10 5 0.5565

9. y5 5 1.2194, y10 5 1.2696

13. Euler: y10 5 3.8191, y20 5 5.9363

RK4: y10 5 42.9931, y20 5 84.0132

23. x 5 tan_4t 2 3
4 �+ 25. y 5

e2(111/x/x/ )

x

27. y 5 1
2 x 1 Ï3Ï

2 Ï1 2 x2Ï 29. y 5 eex
4e4e e2t 2

dt

31. y 5 2ÏxÏxÏ 2 1 x 2 1Ï ; _2`, 2
1 1 Ï5Ï

2 +

33. y 5 2ln(2 2 ex); (2`, ln 2)

35. (a) y 5 2, y 5 22, y 5 2
3 2 e4x4x4 21

3 1 e4x4x4 21

37. y 5 21 and y 5 1 are singular solutions of Problem 21; 
y 5 0 of Problem 22

39. y 5 1

41. y 5 1 1 1
10 tan_ 1

10 x+
45. y 5 tan x 2 sec x 1 c

47. y 5 [21 1 c(1 1 ÏxÏxÏÏ )]2

49. y 5 2ÏÏxÏxÏÏ eÏxÏxÏÏ 2 eÏxÏxÏÏ 1 4Ï
57. y(x) 5 (4hyL2)x2 1 a

EXERCISES 2.3 PAGE 62
1. y 5 ce5x, (2`, `)

3. y 5 1
4 e3x 1 ce2x, (2`, `); ce2x is transient

5. y 5 1
3 1 ce2x3

, (2`, `); ce2x3
 is transient

7. y 5 x21 ln x 1 cx21, (0, `); solution is transient

9. y 5 cx 2 x cos x cos x x, (0, `)

11. y 5 1
7 x3 2 1

5 x 1 cxcxc 24, (0, `); cxcxc 24 is transient

13. y 5 1
2 x22ex 1 cxcxc 22e2x, (0, `); cxcxc 22e2x is transient

15. x 5 2y6 1 cy4, (0, `)

17. y 5 sin x 1 c cos x, (2py2, py2)

19. (x 1 1)exyxyx 5 x2 1 c, (21, `); solution is transient

21. (sec u 1 tan u)r 5 u 2 cos u 1 c, (2py2, py2)

23. y 5 e23x 1 cx21e23x, (0, `); solution is transient

25. y 5 21
5 x 2 1

25 1 76
25 e5x; (2`, `)

27. y 5 x21ex 1 (2 2 e)x21; (0, `)

29. i 5
E

R
1 1i0 2

E

R2e2RtyL; (2`, `)

31. y 5 2x2x2 1 1 1 5yx; (0, `)

33. (x 1 1)y 5 x ln x 2 x 1 21; (0, `)

35. y 5 22 1 3e2cos x; (2`, `)

37. y 5 5
1
2 (1 2 e22x2x2 ),
1
2 (e6 2 1)e22x2x2 ,

0 # x # 3

x . 3

39. y 5 5
1
2 1 3

2 e2x2
,

_1
2 e 1 3

2+e2x2
,

0 # x , 1

x $ 1

41. y 5 52x2x2 2 1 1 4e22x2x2 ,

4x4x4 2 ln x 1 (1 1 4e22)x2,

0 # x # 1

x . 1

43. y 5 ex2 2 1 1 1
2 Ï�Ï ex2

(erf(f(f x) 2 erf(f(f 1))

45. y 5 e2ex#x

0
#

0
# eet

dt 1 e12ex
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39. (a) v(t) 5 0.024t2 1 0.2t (b) s(t) 5 0.008t3 1 0.1t2

41. (a) v(t) 5
�g

4k 1k
�

t 1 r0r0r 2 2
�gr0r0r

4k S r0r0r

k
�

t 1 r0r0r D3

(c) 331
3 seconds

43. (a) P(t) 5 P0e(k12k2)t

45. (a) As t S `, x(t) S ryk.

(b) x(t) 5 ryk 2 (ryk)e2kt; (ln 2)yk

49. (c) 1.988 ft

EXERCISES 3.2 PAGE 101
1. (a) N 5 2000

(b) N(N(N t) 5
2000 et

1999 1 et; N(N(N 10) 5 1834

3. 1,000,000; 52.9 mo

5. (b) P(t) 5
4(P0 2 1) 2 (P0 2 4)e23t

(P0 2 1) 2 (P0 2 4)e23t

(c) For 0 , P0 , 1, time of extinction is

t 5 2
1

3
ln

4(P0 2 1)

P0 2 4
.

7. P(t) 5
5

2
1

Ï3Ï
2

tan32
Ï3Ï

2
t 1 tan2112P0 2 5

Ï3Ï 24;

time of extinction is

t 5
2

Ï3Ï 3tan21 5

Ï3Ï
1 tan2112P0 2 5

Ï3Ï 24
9. 29.3 g; X S 60 as t S `; 0 g of A and 30 g of B

11. (a) h(t) 5 1ÏHÏHÏÏ 2
4A4A4 h

Aw
t2

2

; I is 0 # t # ÏHÏHÏÏ AHAH wy4A4A4 h

(b) 576 Ï10Ï s or 30.36 min

13. (a) approximately 858.65 s or 14.31 min

(b) 243 s or 4.05 min

15. (a) v(t) 5Îmg

kÎ tanh1Îkgkgk

mÎ t 1 c12
where c1 5 tanh211Î k

mgÎ v02
(b) Îmg

kÎ
(c) s(t) 5

m

k
ln cosh1Îkgkgk

mÎ t 1 c12 1 c2,

where c2 5 2(m/m/m k/k/ ) ln(cosh c1)

17. (a) m
dvdvd

dt
5 mg 2 kv2 2 �V,

where � is the weight density of water

(b) v(t) 5Îmg 2 �V

kÎ tanh1ÏkÏkÏ mkmk g 2 k�k�k VÏ
m

t 1 c12
(c) Îmg 2 �V

kÎ
19. (a) W 5 0 and W 5 2 (b) W(W(W x) 5 2 sech2(x 2 c1)

(c) W(W(W x) 5 2 sech2x2x2

CHAPTER 2 IN REVIEW PAGE 81
1. 2Ayk, a repeller for k . 0, an attractor for k , 0

3. true   5.
d 3y

dxdxd 3 5 x sin y

7. true 9. y 5 c1eex

11.
dydyd

dxdxd
1 (sin x)y 5 x 13.

dydyd

dxdxd
5 (y 2 1)2 (y 2 3)2

15. semi-stable for n even and unstable for n odd; semi-stable for  
n even and asymptotically stable for n odd.

19. 2x2x2 1 sin 2xsin 2xsin 2 5 2 ln(y2 1 1) 1 c

21. (6x 1 1)y3 5 23x3 1 c

23. Q 5 ct21 1 1
25 t4 (21 1 5 ln t)

25. y 5 1
4 1 c(x2 1 4)24

27. y 5 e22 sin x 1 1
2 e22sinx#x

0
#

0
# te2sin t dt

29. y 5
3

x2 1
1

x2#
x

1
#

1
# t2 et2

dt

31. y 5 5xe2x 1 5e2x, 0 # x , 1

6e2x, x $ 1

33. y 5 csc x, (p, 2p)

35. (b) y 5 1
4 (x 1 2ÏyÏyÏ 0Ï 2 x0)

2, (x0 2 2ÏyÏyÏ 0Ï , `)

EXERCISES 3.1 PAGE 91
1. 7.9 yr; 10 yr

3. 760; approximately 11 persons/yr

5. 11 h

7. 136.5 h

9. I(15)I(15)I 5 0.00098I0I0I  or approximately 0.1% of I0I0I

11. approximately 15,963 years

13. T(1)T(1)T 5 36.67° F; approximately 3.06 min

15. approximately 82.1 s; approximately 145.7 s

17. 390°

19. about 1.6 hours prior to the discovery of the body

21. A(t) 5 200 2 170e2t/50t/50t

23. A(t) 5 1000 2 1000e2t/100t/100t

25. A(t) 5 1000 2 10t 2 1
10 (100 2 t)2; 100 min

27. 64.38 lb

29. i(t) 5 3
5 2 3

5 e2500t; i S 3
5 as t S `

31. q(t) 5 1
100 2 1

100 e250t; i(t) 5 1
2 e250t

33. i(t) 5 560 2 60e2t/t/t 10, 0 # t # 20

60(e2 2 1)e2t/t/t 10, t . 20

35. (a) v(t) 5
mg

k
1 1v0 2

mg

k 2e2kt/t/t m/m/

(b) v S
mg

k
 as  as t S `

(c) s(t) 5
mg

k
t 2

m

k 1v0 2
mg

k 2e2kt/t/t m/m/

1
m

k 1v0 2
mg

k 2
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9. (2`, 2)

11. (a) y 5
e

e2 2 1
(ex 2 e2x) (b) y 5

sinh x

sinh 1

13. (a) y 5 ex cos x cos x x 2 ex sin x sin x x

(b) no solution

(c) y 5 ex cos x cos x x 1 e2�/2�/2� ex sin x sin x x

(d) y 5 c2ex sin x sin x x, where c2 is arbitrary

15. dependent 17. dependent

19. dependent 21. independent

23. The functions satisfy the DE and are linearly independent on 
the interval since W(W(W e23x, e4x) 5 7ex Þ 0; y 5 c1e23x 1 c2e4x.

25. The functions satisfy the DE and are linearly independent 
on the interval since W(W(W ex cos 2x cos 2x x cos 2x cos 2 , ex sin 2x sin 2x x sin 2x sin 2 ) 5 2e2x2x2 Þ 0; 
y 5 c1ex cos 2x cos 2x x cos 2x cos 2 1 c2ex sin 2x sin 2x x. sin 2x. sin 2

27. The functions satisfy the DE and are linearly independent on 
the interval since W(W(W x3, x4) 5 x6 Þ 0; y 5 c1x3 1 c2x2x2

4.

29. The functions satisfy the DE and are linearly independent  
on the interval since W(W(W x, x22, x22 ln x) 5 9x26 Þ 0; 
y 5 c1x 1 c2x2x2

22 1 c3x22 ln x.

35. (b) ypypy 5 x2 1 3x 1 3e2x2x2 ; ypypy 5 22x2x2 2 2 6x 2 1
3 e2x2x2

EXERCISES 4.2 PAGE 134
1. y2 5 xe2x2x2 3. y2 5 sin 4x

5. y2 5 sinh x 7. y2 5 xe2x2x2 /3x/3x

9. y2 5 x4 lnu x u 11. y2 5 1

13. y2 5 x cos(ln x cos(ln x x) 15. y2 5 x2 1 x 1 2

17. y2 5 e2x2x2 , ypypy 5 21
2 19. y2 5 e2x2x2 , ypypy 5 5

2 e3x

21. y2(x) 5 x#x

x
#

x
#

0

e2t

t
dt, x0 . 0

EXERCISES 4.3 PAGE 140
1. y 5 c1 1 c2e2x/4x/4x   3. y 5 c1e3x 1 c2e22x2x2

5. y 5 c1e24x 1 c2xe2xe2
24x 7. y 5 c1e2x2x2 /3x/3x 1 c2e2x/4x/4x

9. y 5 c1 cos 3x 1 c2 sin 3x

11. y 5 e2x2x2 (c1 cos x 1 c2 sin x)

13. y 5 e2x/x/x 3 _c1 cos 1
3 Ï2Ï x 1 c2 sin 1

3 Ï2Ï x+
15. y 5 c1 1 c2e2x 1 c3e5x

17. y 5 c1e2x 1 c2e3x 1 c3xe3x

19. u 5 c1et 1 e2t (t (t c2 cos t 1 c3 sin t)

21. y 5 c1e2x 1 c2xe2x 1 c3x2e2x

23. y 5 c1 1 c2x2x2 1 e2x/x/x 2 _c3 cos 1
2Ï3Ï x 1 c4 sin 1

2Ï3Ï x+
25. y 5 c1 cos 1

2Ï3Ï x 1 c2 sin 1
2Ï3Ï x

1 c3 x cos 1
2Ï3Ï x 1 c4 x sin 1

2Ï3Ï x

27. u 5 c1er 1 c2rer 1 c3e2r 1 c4re2r 1 c5e25r

29. y 5 2 cos 4x4x4 2 1
2 sin 4x4x4

31. y 5 21
3 e2(t21) 1 1

3 e5(t21)

33. y 5 0

35. y 5 5
36 2 5

36 e26x 1 1
6 xe26x

37. y 5 e5x 2 xe5x

39. y 5 0

21. (a) P(t) 5
1

(20.001350t 1 1020.01)100

(b) approximately 724 months

(c)  approximately 12,839 and 28,630,966

EXERCISES 3.3 PAGE 111
1. x(t) 5 x0e2�1t

y(t) 5
x0 �1

�2 2 �1
(e2�1t 2 e2�2t)

z(t) 5 x0 11 2
�2

�2 2 �1
e2�1t 1

�1

�2 2 �1
e2�2t2

3. 5, 20, 147 days. The time when y(t) and z(t) are the same makes 
sense because most of A and half of B are gone, so half of  
C should have been formed.C should have been formed.C

5. (a) K(K(K t) 5 K0K0K e2(�11�2)t, C(t) 5
�1

�1 1 �2
K0K0K f1 2 e2(�11�2)tg,

A(t) 5
�2

�1 1 �2
K0K0K f1 2 e2(�11�2)tg

(b) approximately 1.3 3 109 years

  (c) 89%, 11%

7.
dxdxd 1

dt
5 6 2 2

25 x1 1 1
50 x2

dxdxd 2

dt
5 2

25 x1 2 2
25 x2

9. (a)
dxdxd 1

dt
5 3

x2

100 2 t
2 2

x1

100 1 t
dxdxd 2

dt
5 2

x1

100 1 t
2 3

x2

100 2 t

(b) x1(t) 1 x2(t) 5 150; x2(30) ≈ 47.4 lb

15. L1
di2
dt

1 (R1 1 R2)i2 1 R1i3 5 E(t)

L2
di3
dt

1 R1i2 1 (R1 1 R3) i3 5 E(t)

17. i(0) 5 i0, s(0) 5 n 2 i0, r(0) 5 0

CHAPTER 3 IN REVIEW PAGE 114
1. dPydt 5 0.15P

3. P(45) 5 8.99 billion

5. approximately 3257 BCE

7. x 5 10 ln110 1 Ï100 2 y2Ï
y 2 2 Ï100 2 y2Ï

9. (a)
BT1T1T 1 T2T2T

1 1 B
,

BT1T1T 1 T2T2T

1 1 B

(b) T(T(T t) 5
BT1T1T 1 T2T2T

1 1 B
1

T1T1T 2 T2T2T

1 1 B
ek(11B)t

13. x(t) 5
�c1e�k1t

1 1 c1e�k1t
, y(t) 5 c2(1 1 c1e�k1t)k2/k1

15. x2 1 y2 5 c2 17. y2 1 2x2x2 5 c2 21. t 5 1
2

EXERCISES 4.1 PAGE 130

1. y 5 1
2 ex 2 1

2 e2x

3. y 5 3x 2 4x ln x
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41. y 5 c1 1 c2x2x2 1 c3e2x 1 2
3 x4 2 8

3 x3 1 8x2

43. y 5 c1e23x 1 c2e4x4x4 1 1
7 xe4x4x4

45. y 5 c1e2x 1 c2e3x 2 ex 1 3

47. y 5 c1 cos 5x 1 c2 sin 5x 1 1
4 sin x

49. y 5 c1e23x 1 c2x2x2 e23x 2 1
49 xe4x4x4 1 2

343 e4x4x4

51. y 5 c1e2x 1 c2ex 1 1
6 x3ex 2 1

4 x2ex 1 1
4 xex 2 5

53. y 5 ex (c1 cos 2x2x2 1 c2 sin 2x2x2 ) 1 1
3 ex sin x

55. y 5 c1cos 5x 1 c2sin 5x 2 2x2x2  cos 5x cos 5x x

57. y 5 e2x/x/x 21c1 cos
Ï3Ï

2
x 1 c2 sin

Ï3Ï
2

x2
1 sin x 1 2 cos x 2 x cos x cos x x

59. y 5 c1 1 c2x2x2 1 c3e28x 1 11
256 x2 1 7

32 x3 2 1
16 x4

61. y 5 c1ex 1 c2xex 1 c3x2e x 1 1
6 x3ex 1 x 2 13

63. y 5 c1 1 c2x 1 c3ex 1 c4xex 1 1
2 x2ex 1 1

2 x2

65. y 5 5
8 e28x 1 5

8 e8x 2 1
4

67. y 5 2 41
125 1 41

125 e5x 2 1
10 x2 1 9

25 x

69. y 5 2� cos x 2 11
3 sin x 2 8

3 cos 2x2x2 1 2x2x2 cos x

71. y 5 2e2x2x2 cos 2x2x2 2 3
64 e2x2x2 sin 2x2x2 1 1

8 x3 1 3
16 x2 1 3

32 x

EXERCISES 4.6 PAGE 165
1. y 5 c1 cos x 1 c2 sin x 1 x sin x 1 cos x lnucos x u
3. y 5 c1 cos x 1 c2 sin x 2 1

2 x cos x

5. y 5 c1 cos x 1 c2 sin x 1 1
2 2 1

6 cos 2x2x2

7. y 5 c1ex 1 c2e2x 1 1
2 x sinh x

9. y 5 c1e23x 1 c2e3x 2 3
4 x2e23x 2 1

4 xe23x

11. y 5 c1e2x 1 c2e22x 1 (e2x 1 e22x) ln(1 1 ex)

13. y 5 c1e22x 1 c2e2x 2 e22x sin x sin x ex

15. y 5 c1e2t 1 c2te2t 1 1
2 t2e2t ln t 2 3

4 t2e2t

17. y 5 c1e x sin x 1 c2ex cos x 1 1
3 xex sin x

1 1
3 ex cos x lnucos xu

19. y 5 1
4 e2x/x/x 2 1 3

4 ex/2 1 1
8 x2ex/2 2 1

4 xex/2

21. y 5 4
9 e24x4x4 1 25

36 e2x2x2 2 1
4 e22x2x2 1 1

9 e2x

23. y 5 c1 cos x 1 c2 sin x 2 cos x #x

x
#

x
#

0

et2t2t sin t dt 1 sin x #x

x
#

x
#

0

et2t2t cos t dt

25. y 5 c1e22x2x2 1 c2ex 2 1
3 e22x2x2 #x

x
#

x
#

0

e2t ln t dt 1 1
3 ex#x

x
#

x
#

0

e2t ln t dt, x0 . 0

27. y 5 c1x21/2 cos x 1 c2x21/2 sin x 1 x21/2

29. y 5 c1 1 c2 cos x 1 c3 sin x 2 lnucos x u
2 sin x lnusec x 1 tan xu

31. y 5 c1ex 2 c2e2x 1 c3e2x2x2 1 1
30 e4x4x4

EXERCISES 4.7 PAGE 171
1. y 5 c1x21 1 c2x2

3. y 5 c1 1 c2 ln x

5. y 5 c1 cos(2 ln x) 1 c2 sin(2 ln x)

7. y 5 c1x(22Ï6Ï ) 1 c2x2x2
(21Ï6Ï )

9. y 5 c1 cos_15 ln x+ 1 c2 sin_15 ln x+
11. y 5 c1x22 1 c2x2x2

22 ln x

13. y 5 x21/2fc1 cos_16 Ï3Ï ln x+ 1 c2 sin_16 Ï3Ï ln x+g

41. y 5
1

2 11 2
5

Ï3Ï 2 e2Ï3Ï x 1
1

2 11 1
5

Ï3Ï 2 eÏ3Ï x;

y 5 cosh Ï3Ï x 1
5

Ï3Ï
sinh Ï3Ï x

49. y0 2 6y9 1 5y 5 0 51. y0 2 2y9 5 0

53. y0 1 9y 5 0 55. y0 1 2y9 1 2y 5 0

57. y90 2 8y0 5 0

EXERCISES 4.4 PAGE 150

1. y 5 c1e2x 1 c2e22x2x2 1 3

3. y 5 c1e5x 1 c2 xe5x 1 6
5 x 1 3

5

5. y 5 c1e22x 1 c2 xe22x 1 x2 2 4x4x4 1 7
2

7. y 5 c1 cos Ï3Ï x 1 c2 sin Ï3Ï x 1 _24x4x4 2 1 4x4x4 2 4
3+e3x

9. y 5 c1 1 c2ex 1 3x

11. y 5 c1ex/x/x 2 1 c2x2x2 ex/x/x 2 1 12 1 1
2 x2ex/x/x 2

13. y 5 c1 cos 2x2x2 1 c2 sin 2x2x2 2 3
4 x cos 2x2x2

15. y 5 c1 cos x 1 c2 sin x 2 1
2 x2 cos x 1 1

2 x sin x

17. y 5 c1ex cos 2x2x2 1 c2ex sin 2x2x2 1 1
4 xex sin 2x2x2

19. y 5 c1e2x 1 c2x2x2 e2x 2 1
2 cos x

1 12
25 sin 2x2x2 2 9

25 cos 2x2x2

21. y 5 c1 1 c2x2x2 1 c3e6x 2 1
4 x2 2 6

37 cos x 1 1
37 sin x

23. y 5 c1ex 1 c2xex 1 c3 x2ex 2 x 2 3 2 2
3 x3ex

25. y 5 c1 cos x 1 c2 sin x 1 c3 x cos x cos x x 1 c4 x sin x sin x x

1 x2 2 2x2x2 2 3

27. y 5 Ï2Ï sin 2x2x2 2 1
2

29. y 5 2200 1 200e2x/5x/5x 2 3x2 1 30x30x30

31. y 5 210e22x2x2  cos x cos x x 1 9e22x sin x sin x x 1 7e24x

33. x 5
F0F0F

2�2 sin �t 2
F0F0F

2�
t cos �t

35. y 5 11 2 11ex 1 9xex 1 2x2x2 2 12x2x2 2ex 1 1
2 e5x

37. y 5 6 cos x 2 6(cot 1) sin x 1 x2 2 1

39. y 5
24 sin Ï3Ï x

sin Ï3Ï 1 Ï3Ï cos Ï3Ï
1 2x2x2

41. y 5 5cos 2x2x2 1 5
6 sin 2x2x2 1 1

3 sin x,
2
3 cos 2x2x2 1 5

6 sin 2x2x2 ,

0 # x # �y2

x . �y2

EXERCISES 4.5 PAGE 158
1. (3D 2 2)(3D 1 2)y 5 sin x

3. (D 2 6)(D 1 2)y 5 x 2 6

5. D(D 1 5)2y2y2 5 ex

7. (D 2 1)(D 2 2)(D 1 5)y 5 xe2x

9. D(D 1 2)(D2 2 2D 1 4)y 5 4

15. D4 17. D(D 2 2)

19. D2 1 4 21. D3(D2 1 16)

23. (D 1 1)(D 2 1)3 25. D(D2 2 2D 1 5)

27. 1, x, x2, x3, x4 29. e6x, e23x/2x/2x

31. cos Ï5Ï x, sin Ï5Ï x 33. 1, e5x, xe5x

35. y 5 c1e23x 1 c2e3x 2 6

37. y 5 c1 1 c2e2x 1 3x

39. y 5 c1e22x2x2 1 c2x2x2 e22x2x2 1 1
2 x 1 1
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35. ypypy (x) 5 (x 2 1)#x

0
#

0
# t ft ft (t) dt 1 x#1

x
#

x
# (t 2 1) f (t) dt

37. ypypy (x) 5 1
2 x2 2 1

2 x

39. ypypy (x) 5
sin(x 2 1)

sin1
2

sin x

sin1
1 1

41. ypypy (x) 5 2excos x 2 exsin x 1 ex

43. ypypy (x) 5 1
2 (lnx)2 1 1

2 lnx

EXERCISES 4.9 PAGE 187
1. x 5 c1et 1 c2tet

y 5 (c1 2 c2)et 1 c2tet

3. x 5 c1 cos t 1 c2 sin t 1 t 1 1
  y 5 c1 sin t 2 c2 cos t 1 t 2 1

5. x 5 1
2 c1 sin t 1 1

2 c2 cos t 2 2c3 sin Ï6Ï t 22c4 cos Ï6Ï t

y 5 c1 sin t 1 c2 cos t 1 c3 sin Ï6Ï t 1 c4 cos Ï6Ï t

7. x 5 c1e2t 1 c2e22t 1 c3 sin 2t 1 c4 cos 2t 1 1
5 et

y 5 c1e2t 1 c2e22t 2 c3 sin 2t 2 c4 cos 2t 2 1
5 et

9. x 5 c1 2 c2 cos t 1 c3 sin t 1 17
15 e3t

y 5 c1 1 c2 sin t 1 c3 cos t 2 4
15 e3t

11. x 5 c1et 1 c2e2t/t/t 2 cos 1
2 Ï3Ï t 1 c3e2t/t/t 2 sin 1

2 Ï3Ï t

y 5 _23
2 c2 2 1

2 Ï3Ï c3+e2t/t/t 2 cos 1
2 Ï3Ï t

1 _12 Ï3Ï c2 2 3
2 c3+e2t/t/t 2 sin 1

2 Ï3Ï t

13. x 5 c1e4t 1 4
3 et

y 5 23
4 c1e4t 1 c2 1 5et

15. x 5 c1 1 c2t 1 c3et 1 c4e2t 2 1
2 t2

y 5 (c1 2 c2 1 2) 1 (c2 1 1)t 1 c4e2t 2 1
2 t2

17. x 5 c1et 1 c2e2t/t/t 2 sin 1
2 Ï3Ï t 1 c3e2t/t/t 2 cos 1

2 Ï3Ï t

  y 5 c1et 1 _21
2 c2 2 1

2 Ï3Ï c3+e2t/t/t 2 sin 1
2 Ï3Ï t

1 _ 1
2 Ï3Ï c2 2 1

2 c3+e2t/t/t 2 cos 1
2 Ï3Ï t

z 5 c1et 1 _21
2 c2 1 1

2 Ï3Ï c3+e2t/t/t 2 sin 1
2 Ï3Ï t

1 _2 1
2 Ï3Ï c2 2 1

2 c3+e2t/t/t 2 cos 1
2 Ï3Ï t

19. x 5 26c1e2t 2 3c2e22t 1 2c3e3t

y 5 c1e2t 1 c2e22t 1 c3e3t

z 5 5c1e2t 1 c2e22t 1 c3e3t

21. x 5 e23t13 2 te23t13

y 5 2e23t13 1 2te23t13

23. mx0 5 0

my0 5 2mg;

x 5 c1t 1 c2

y 5 21
2 gt2 1 c3t 1 c4

EXERCISES 4.10 PAGE 192
3. y 5 lnucos (c1 2 x)u 1 c2

5. y 5
1

c2
1

lnuc1x 1 1u 2
1
c1

x 1 c2

7. (x 1 c2)2 1 y2 5 c1
2

9. 1
3 y3 2 c1y 5 x 1 c2

15. y 5 c1x3 1 c2 cos_Ï2Ï ln x+ 1 c3 sin_Ï2Ï ln x+
17. y 5 c1 1 c2x2x2 1 c3x2 1 c4x4x4

23

19. y 5 c1 1 c2x2x2
5 1 1

5 x5 ln x

21. y 5 c1x 1 c2x2x2  ln x ln x x 1 x(ln x)2

23. y 5 c1x21 1 c2x 2 ln x

25. y 5 2 2 2x22

27. y 5 cos(ln x) 1 2 sin(ln x)

29. y 5 3
4 2 ln x 1 1

4 x2

31. y 5 c1x210 1 c2x2

33. y 5 c1x21 1 c2x2x2
28 1 1

30 x2

35. y 5 x2[c1 cos(3 ln x) 1 c2 sin(3 ln x)] 1 4
13 1 3

10 x

37. y 5 2(2x)1/2 2 5(2x)1/2 ln(2x), x , 0

39. y 5 c1(x 1 3)2 1 c2(x 1 3)7

41. y 5 c1 cos[ln(x 1 2)] 1 c2 sin[ln(x 1 2)]

47. (a) w(r) 5 c1 1 c2 ln r 1 c3r2 1
q

64D
r4r4r

(b) w(r) 5
q

64D
(a2 2 r2)2

EXERCISES 4.8 PAGE 182

1. ypypy (x) 5 1
4#x

x
#

x
#

0

sinh 4(x 2 t) f (t) dt

3. ypypy (x) 5 #x

x
#

x
#

0

(x 2 t)e2(x2t) f) f) (t) dt

5. ypypy (x) 5 1
3#x

x
#

x
#

0

sin 3(x 2 t) f (t) dt

7. y 5 c1e24x4x4 1 c2e4x4x4 1 1
4#x

x
#

x
#

0

sinh 4(x 2 t)te22t dt

9. y 5 c1e2x 1 c2x2x2 e2x 1 #x

x
#

x
#

0

(x 2 t)e2(x2t)e2t dt

11. y 5 c1cos 3x 1 c2sin 3x 1 1
3#x

x
#

x
#

0

sin 3(x 2 t)(t 1 sint) dt

13. ypypy (x) 5 1
4 xe2x 2 1

16 e2x 1 1
16 e22x

15. ypypy (x) 5 1
2 x2e5x

17. ypypy (x) 5 2cos x 1
�

2
sin x 2 x sin x 2 cos x lnusin xu

19. y 5 25
16 e22x2x2 2 9

16 e2x 1 1
4 xe2x

21. y 5 2e5x 1 6xe5x 1 1
2 x2e5x

23. y 5 2x sin x 2 cos x lnusin xu
25. y 5 (cos1 2 2)e2x 1 (1 1 sin1 2 cos1)e22x2x2 2 e22x2x2 sin ex

27. y 5 4x4x4 2 2x2x2 2 2 x ln x

29. y 5 46
45 x3 2 1

20 x22 1 1
36 2 1

6 ln x

31. y(x) 5 5ex 1 3e2x 1 ypypy (x),

where ypypy (x) 5 51 2 cosh x, x , 0

21 1 cosh x, x $ 0

33. y 5 cos x 2 sin x 1 ypypy (x),

where ypypy (x) 5 50, x , 0

10 2 10cos x, 0 # x # 3�

220cos x, x . 3�
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(b) 4 ft/s; downward

(c) t 5
(2n 1 1)�

16
, n 5 0, 1, 2, . . .

7. (a) the 20-kg mass

(b) the 20-kg mass; the 50-kg mass

(c) t 5 np, n 5 0, 1, 2, . . . ; at the equilibrium position; the  
50-kg mass is moving upward whereas the 20-kg mass  
is moving upward when n is even and downward when  
n is odd.

9. (a) x(t) 5 1
2 cos 2t 1 3

4 sin 2t

(b) x(t) 5 Ï13Ï
4 sin(2t 1 0.588)

(c) x(t) 5 Ï13Ï
4 cos(2t 2 0.983)

11. (a) x(t) 5 22
3 cos 10t 1 1

2 sin 10t

5 5
6 sin(10t 2 0.927)

(b)
5

6
ftftf ;

�

5
(c) 15 cycles

(d) 0.721 s

(e)
(2n 1 1)�

20
1 0.0927, n 5 0, 1, 2, . . .

(f) x(3) 5 20.597 ft

(g) x9(3) 5 25.814 ft/s

(h) x0(3) 5 59.702 ft/s2

(i) 681
3 ftftf /s

(j) 0.1451 1
n�

5
; 0.3545 1

n�

5
, n 5 0, 1, 2, . . .

(k) 0.3545 1
n�

5
, n 5 0, 1, 2, . . .

13. kekek fffff 5 160 lbyftftf ; x(t) 5 1
8 sin 16t

15. kekek fffff 5 30 lbyftftf ; x(t) 5 Ï3Ï
6 sin 4 Ï3Ï t

17. keffkeffk 5 2k

21. (a) above

(b) heading upward

23. (a) below

(b) heading upward

25. 1
4 s; 1

2 s, x _12+ 5 e22; that is, the weight is approximately 0.14 ft 
below the equilibrium position.

27. (a) x(t) 5 4
3 e22t 2 1

3 e28t

(b) x(t) 5 22
3 e22t 1 5

3 e28t

29. (a) x(t) 5 e22t _2cos 4t 2 1
2 sin 4t+

(b) x(t) 5 Ï5Ï
2 e22t sin_4t 1 4.249+

(c) t 5 1.294 s

31. (a) � . 5
2   (b) � 5 5

2  (c) 0 , � , 5
2

33. x(t) 5 e2t/t/t 2 _24
3 cos Ï4Ï4Ï 7Ï

2 t 2 64

3Ï4Ï4Ï 7Ï
sin Ï4Ï4Ï 7Ï

2 t+

1 10
3 (cos 3t 1 sin 3t)

11. y 5 2
3(x 1 1)3y2 1 4

3

13. y 5 tan_14 � 2 1
2 x+, 21

2 � , x , 3
2 �

15. y 5 2
1
c1

Ï1 2 c2
1x2x2 2Ï 1 c2

17. y 5 1 1 x 1 1
2 x2 1 1

2 x3 1 1
6 x4 1 1

10 x5 1 Á

19. y 5 1 1 x 2 1
2 x2 1 2

3 x3 2 1
4 x4 1 7

60 x5 1 Á

21. y 5 2Ï1 2 x2Ï

CHAPTER 4 IN REVIEW PAGE 193
1. y 5 0

3. false

5. y 5 c1cos 5x 1 c2sin 5x    7. x2y2y2 0 2 3xyxyx 9 1 4y 5 0

9. ypypy 5 x2 1 x 2 2 11. (2`, `); (0, `)

13. (a) y 5 c1e3x 1 c2e25x 1 c3xe25x 1 c4ex 1 c5xex 1 c6x2ex

(b) y 5 c1x3 1 c2x25 1 c3x25 ln x 1 c4x 1 c5x ln x  
1 c6x (ln x)2

15. x2y2y2 0 2 2x2x2 yxyx 9 2 4y 5 0

17. y 5 c1e(11Ï3Ï )x 1 c2e(12Ï3Ï )x

19. y 5 c1 1 c2e25x 1 c3xe25x

21. y 5 c1e2x/x/x 3 1 e23x/x/x 2 _c2 cos 1
2 Ï7Ï7Ï x 1 c3 sin 1

2 Ï7Ï x+

23. y 5 e3x/2 _c2 cos 1
2 Ï11Ï x 1 c3 sin 1

2 Ï11Ï x+ 1 4
5 x 3 1 36

25 x2

1 46
125 x 2 222

625

25. y 5 c1 1 c2e2x2x2 1 c3e3x 1 1
5 sin x 2 1

5 cos x 1 4
3 x

27. y 5 ex (c1 cos x 1 c2 sin x)  

2 ex cos x lnusec x 1 tan xu
29. y 5 c1x21/3 1 c2x2x2

1/2

31. y 5 c1x2 1 c2x2x2
3 1 x4 2 x2 ln x

33. y 5 c1 cos �x 1 c2 sin �x 1 A cos �x

1 B sin �x, � Þ �;

y 5 c1 cos �x 1 c2 sin �x 1 Ax cos �x

1 BxBxB sin �x, � 5 �

35. y 5 c1 cos x 1 c2 sin x 1 e2x(c3 cos 3x 1 c4 sin 3x)

37. (a) y 5 c1cosh x 1 c2sinh x 1 c3 x cosh x
1 c4 x sinhx sinhx x

(b) ypypy 5 Ax2 cosh x 1 Bx2 sinh x

39. y 5 ex2� cos � cos � x

41. y 5 13
4 ex 2 5

4 e2x 2 x 2 1
2 sin x

43. y 5 x2 1 4

47. x 5 2c1et 2 3
2 c2e2t 1 5

2

y 5 c1et 1 c2e2t 2 3

49. x 5 c1et 1 c2e5t 1 tet

y 5 2c1et 1 3c2e5t 2 tet 1 2et

EXERCISES 5.1 PAGE 209

1.
Ï2Ï �

8
3. x(t) 5 21

4 cos 4Ï6Ï t

5. (a) x _�
12+ 5 21

4; x _�8 + 5 21
2; x _�6 + 5 21

4;

x _�4 + 5 1
2; x _9�

32 + 5 Ï2Ï
4
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13. ln 5 n2, n 5 0, 1, 2, . . . ; yn(x) 5 cos nx

15. �n 5
n2�2

25
, n 5 1, 2, 3, . . . ; yn(x) 5 e2x sin

n�x�x�

5

17. ln 5 n2, n 5 1, 2, 3, . . . ; yn(x) 5 sin(n ln x)

19. �n 5
n2�2

4
, n 5 0, 1, 2, 3, . . . ; yn(x) 5 cos1n�

2
lnx2

21. ln 5 n4p4p4p , n 5 1, 2, 3, . . . ; yn(x) 5 sin npxpxp

23. x 5 Ly4, x 5 Ly2, x 5 3 Ly4

27. �n 5
n� ÏTÏ
LÏ�Ï�ÏÏ

, n 5 1, 2, 3, . . . ; yn(x) 5 sin
n�x�x�

L

29. u(r) 5 1u0 2 u1

b 2 a 2 ab

r
1

u1b 2 u0a

b 2 a

31. (a) �n 5
n4�4

L4 , n 5 1, 2, 3, Á ; yn(x) 5 sin1n�x�x�

L 2
(b) �n 5

n2�2

L2 ÎEIEIE
�Î , n 5 1, 2, 3, Á

EXERCISE 5.3 PAGE 228

7.
d2d2d x2x2

dt2
1 x 5 0

15. (a) 5 ftft (b) 4Ï10Ï ftftf /t/t s (c) 0 # t # 3
8Ï10Ï ; 7.5 ft

17. (a) xyxyx 0 5 r Ï1 1 (y9)2Ï .

When t 5 0, x 5 a, y 5 0, dyydx 5 0.

(b) When r Þ 1,

y(x) 5
a

2 3 1

1 1 r 1x

a2
11r

2
1

1 2 r 1x

a2
12r

4 1
ar

1 2 r2r2r

When r 5 1,

y(x) 5
1

2 3 1

2a
(x2 2 a2) 1

1
a

ln
a

x4
(c) The paths intersect when r , 1.

19. (a) �(t) 5 �0Î l

gÎ sinÎg

lÎ t

(b) use at �max, sin ÏgÏgÏ ylÏ t 5 1

(c) use cos �max < 1 2 1
2 �2

max

(d) vb < 21,797 cm/m/m s

CHAPTER 5 IN REVIEW PAGE 232
1. 8 ftft 3. 5

4 m

5. False; there could be an impressed force driving the system.

7. overdamped

9. y 5 0 since l 5 8 is not an eigenvalue

11. 14.4 lb

13. x(t) 5 22
3e22t 1 1

3 e24t

15. 0 , m # 2

17. � 5 8
3 Ï3Ï

35. x(t) 5 1
4 e24t 1 te24t 2 1

4 cos 4t

37. x(t) 5 21
2 cos 4t 1 9

4 sin 4t 1 1
2 e22t cos 4t

2 2e22t sin 4t

39. (a) m
d 2x

dt2 5 2k(x 2 h) 2 �
dxdxd

dt
or

d 2x2x2

dt2 1 2�
dxdxd

dt
1 �2x2x2 5 �2h(t),

where 2lwhere 2lwhere 2 5 bym and v2 5 kym

(b) x(t) 5 e22t _256
13 cos 2t 2 72

13 sin 2t+ 1 56
13 cos t

1 32
13 sin t

41. x(t) 5 2cos 2t 2 1
8 sin 2t 1 3

4 t sin 2t 1 5
4 t cos 2t

43. (b)
F0F0F

2�
t sin �t

49. 4.568 C; 0.0509 s

51. q(t) 5 10 2 10e23t(cos 3t 1 sin 3t)

i(t) 5 60e23t sin 3t sin 3t t; 10.432 C

53. qpqpq 5 100
13 sin t 1 150

13 cos t

ipipi 5 100
13 cos t 2 150

13 sin t

57. q(t) 5 21
2 e210t (cos 10t 1 sin 10t) 1 3

2; 3
2 C

61. q(t) 5 1q0 2
E0E0E C

1 2 �2LC2 cos
t

ÏLÏLÏ CÏ

1 ÏLÏLÏ CÏ i0 sin
t

ÏLÏLÏ CÏ
1

E0E0E C

1 2 �2LC
cos �t

i(t) 5 i0 cos
t

ÏLÏLÏ CÏ
2

1

ÏLÏLÏ CÏ 1q0 2
E0E0E C

1 2 �2LC2 sin
t

ÏLÏLÏ CÏ

2
E0E0E C�

1 2 �2LC
sin �t

EXERCISES 5.2 PAGE 219

1. (a) y(x) 5
w0

24EI
(6L2x2x2 2 2 4Lx3 1 x4)

3. (a) y(x) 5
w0

48EI
(3L2x2 2 5Lx3 1 2x4)

5. (a) y(x) 5
w0

360EIEIE
(7L4x4x4 2 10L2x2x2 3 1 3x5)

(c) x < 0.51933, ymax < 0.234799

7. y(x) 5 2
w0EIEIE

P2 coshÎ P

EIEIEÎ x

1 1w0EIEIE

P2 sinhÎ P

EIEIEÎ L 2
w0LÏEÏEÏ IEIEÏ

PÏPÏPÏÏ 2
sinhÎ P

EIEIEÎ x

coshÎ P

EIEIEÎ L

1
w0

2P
x2 1

w0EIEIE

P2

9. ln 5 n2, n 5 1, 2, 3, . . . ; yn(x) 5 sin nx

11. �n 5
(2n 2 1)2�2

4L2 , n 5 1, 2, 3, . . . ;

yn(x) 5 cos
(2n 2 1)�x�x�

2L
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7. y1(x) 5 c0 3 1 2
1

2 ? 3
x3 1

1

2 ? 3 ? 5 ? 6
x6

2
1

2 ? 3 ? 5 ? 6 ? 8 ? 9
x9 1 Á4

y2(x) 5 c1 3 x 2
1

3 ? 4
x4 1

1

3 ? 4 ? 6 ? 7
x7

2
1

3 ? 4 ? 6 ? 7 ? 9 ? 10
x10 1 Á4

9. y1(x) 5 c0 31 2
1

2!
x2 2

3

4!
x4 2

21

6!
x6 2 Á4

y2(x) 5 c1 3x 1
1

3!
x3 1

5

5!
x5 1

45

7!
x7 1 Á4

11. y1(x) 5 c0 31 2
1

3!
x3 1

42

6!
x6 2

72 ? 42

9!
x9 1 Á4

y2(x) 5 c1 3x 2
22

4!
x4 1

52 ? 22

7!
x7

2
82 ? 52 ? 22

10!
x10 1 Á4

13. y1(x) 5 c0; y2(x) 5 c1o
`

n51

1
n

xn

15. y1(x) 5 c0 f1 1 1
2 x2 1 1

6 x3 1 1
6 x4 1 Ág

y2(x) 5 c1 fx 1 1
2 x2 1 1

2 x3 1 1
4 x4 1 Ág

17. y1(x) 5 c0 31 1
1

4
x2 2

7

4 ? 4!
x4 1

23 ? 7

8 ? 6!
x6 2 Á4

y2(x) 5 c13x 2
1

6
x3 1

14

2 ? 5!
x5 2

34 ? 14

4 ? 7!
x7 2 Á4

19. y(x) 5 22 31 1
1

2!
x2 1

1

3!
x3 1

1

4!
x4 1 Á4 1 6x

5 8x 2 2ex

21. y( x( x( ) 5 3 2 12x12x12 2 1 4x4

23. y1(x) 5 c0 f1 2 1
6 x3 1 1

120 x5 1 Ág
y2(x) 5 c1 fx 2 1

12 x4 1 1
180 x6 1 Ág

EXERCISES 6.3 PAGE 260
1. x 5 0, irregular singular point

3. x 5 23, regular singular point; 
x 5 3, irregular singular point

5. x 5 0, 2i, 22i, regular singular points

7. x 5 23, 2, regular singular points

9. x 5 0, irregular singular point; 
x 5 25, 5, 2, regular singular points

11. fofof r x 5 1: p(x) 5 5, q(x) 5
x(x 2 1)2

x 1 1

fofof r x 5 21: p(x) 5
5(x 1 1)

x 2 1
, q(x) 5 x2 1 x

19. x(t) 5 e24t _26
17 cos 2 Ï2Ï t 1 28

17 Ï2Ï sin 2 Ï2Ï t+ 1 8
17 e2t

21. (a) q(t) 5 2 1
150 sin 100t 1 1

75 sin 50t

(b) i(t) 5 22
3 cos 100t 1 2

3 cos 50t

(c) t 5
n�

50
, n 5 0, 1, 2, . . .

25. m
d2d2d x2x2

dt2
1 kxkxk 5 0

27. mxmxm 0 1 fkfkf sgn(x9) 1 kxkxk 5 0

31. (a) �1(t) 5 �0 cosÎg

lÎ t, 30,
�

2Î l

gÎ 4
(b) �2(t) 5 1

2�0 sin2Îg

lÎ t, 3�

2Î l

gÎ , �Î l

gÎ 4
EXERCISES 6.1 PAGE 242

1. (21, 1], R 5 1 3. f21
2, 1

2+, R 5 1
2

5. (25, 15), R 5 10 7. f0, 2
3g, R 5 1

3

9. _275
32, 75

32+, R 5 75
32 11. o

`

n50

(21)n

n!2n xn

13. o
`

n50

(21)n

2n11 xn 15. o
`

n51

21
n

xn

17. o
`

n50

(21)n

(2n 1 1)!
(x 2 2�)2n11

19. x 2 2
3 x3 1 2

15 x5 2 4
315 x7 1 . . .

21. 1 1 1
2 x2 1 5

24 x4 1 61
720 x6 1 Á , (2�y2, �y2)

23. o
`

k53
(k 2 2)ck 2 2x2x2

k 25. o
`

k50
[(k 1 1)ck 1 1 2 ck]xk

27. 2c1 1 o
`

k51
[2(k 1 1)ck11 1 6ck21]xk

29. c0 1 2c2 1 o
`

k51
[(k 1 2)(k 1 1)ck12 2 (2k 2 1)ck]xk

35. y 5 c0o
`

k50

1

k!
(5x)k 37. y 5 c0o

`

k50

1

k! 1x2

2 2
k

EXERCISES 6.2 PAGE 251
1. 5; 4

3. y1(x) 5 c0 31 2
1

2!
x2 1

1

4!
x4 2

1

6!
x6 1 . . .4

y2(x) 5 c1 3 x 2
1

3!
x3 1

1

5!
x5 2

1

7!
x7 1 . . .4

5. y1(x) 5 c0

y2(x) 5 c1 3 x 1
1

2!
x2 1

1

3!
x3 1

1

4!
x4 1 . . .4
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27. r1 5 1, r2r2r 5 0

y(x) 5 C1x 1 C2 f x ln x 2 1 1 1
2 x2

1 1
12 x3 1 1

72 x4 1 Ág
29. r1 5 r2r2r 5 0

y(x) 5 C1y(x) 1 C2 3y1(x) ln x 1 y1(x)12x 1
1

4
x2

2
1

3 ? 3!
x3 1

1

4 ? 4!
x4 2 Á24

where y1(x) 5 o
`

n50

1

n!
xn 5 ex

33. (b) y1(t) 5 o
`

n50

(21)n

(2n 1 1)!
_Ï�Ï�ÏÏ t+2n

5
sin_Ï�Ï�ÏÏ t+

Ï�Ï�ÏÏ t

y2(t) 5 t21 o
`

n50

(21)n

(2n)!
_Ï�Ï�ÏÏ t+2n

5
cos_Ï�Ï�ÏÏ t+

t

(c) y 5 C1x sin1Ï�Ï�ÏÏ
x 2 1 C2x2x2 cos1Ï�Ï�ÏÏ

x 2
EXERCISES 6.4 PAGE 273

1. y 5 c1J1/3(x) 1 c2J21/3(x)

3. y 5 c1J5/2J5/2J (x) 1 c2J25/2(x)

5. y 5 c1J0J0J (x) 1 c2Y0Y0Y (x)

7. y 5 c1J2J2J (3x) 1 c2Y2Y2Y (3x)

9. y 5 c1I2/3I2/3I (4x) 1 c2I22/3(4x)

11. y 5 c1x21/2J1/2(�x) 1 c2x2x2
21/2J21/2(�x)

13. y 5 x21/2 [c1J1(4x1/2) 1 c2Y1(4x1/2)]

15. y 5 x [c1J1(x) 1 c2Y1(x)]

17. y 5 x1/2 [c1J3/2J3/2J (x) 1 c2Y3/2Y3/2Y (x)]

19. y 5 x21fc1J1/2_12 x2+ 1 c2J21/2_12 x2+g
23. y 5 x1/2 [c1J1/2(x) 1 c2J21/2(x)]

5 C1 sin x 1 C2C2C  cos x

25. y 5 x21/2 fc1J1/2_18 x2+ 1 c2J21/2_18 x2+g
5 C1x23/2 sin_18 x2+ 1 C2x2x2

23/2 cos_18 x2+

33. (a) j1(x) 5
sin x

x2 2
cos x

x
, j2(x) 5 1 3

x3 2
1
x2sin x 2

3 cos x

x2

37. y 5 c1x1/2J1/3s2
3�x3/2d 1 c2x2x2

1/2J21/3s2
3�x3/2d,

y 5 c1x1/2I1/3s2
3�x3/2d 1 c2x2x2

1/2I21/3s2
3�x3/2d

47. P2(x), P3(x), P4(x), and P5(x) are given in the text,

P6(x) 5 1
16 (231x6 2 315x4 1 105x2 2 5),

P7(x) 5 1
16 (429x7 2 693x5 1 315x3 2 35x)

49. �1 5 2, �2 5 12, �3 5 30

55. y 5 x 24x4x4 3 1 16
5 xx5

CHAPTER 6 IN REVIEW PAGE 276
1. False

3. f21
2, 1

2g

13. r1 5 1
3, r2r2r 5 21

15. r1 5 3
2, r2r2r 5 0

y(x) 5 C1x3/2 3 1 2
2

5
x 1

22

7 ? 5 ? 2
x2

2
23

9 ? 7 ? 5 ? 3!
x3 1 Á4

1 C2 31 1 2x2x2 2 2x2x2 2 1
23

3 ? 3!
x3 2 Á4

17. r1 5 7
8, r2r2r 5 0

y(x) 5 c1x7/8 31 2
2

15
x 1

22

23 ? 15 ? 2
x2

2
23

31 ? 23 ? 15 ? 3!
x3 1 Á4

1 c2 31 2 2x2x2 1
22

9 ? 2
x2

2
23

17 ? 9 ? 3!
x3 1 Á4

19. r1 5 1
3, r2r2r 5 0

y(x) 5 C1x1/3 31 1
1

3
x 1

1

32 ? 2
x2

1
1

33 ? 3!
x3 1 Á4

1 C231 1
1

2
x 1

1

5 ? 2
x2 1

1

8 ? 5 ? 2
x3 1 Á 4

21. r1 5 5
2, r2r2r 5 0

y(x) 5 C1x5/2 31 1
2 ? 2

7
x 1

22 ? 3

9 ? 7
x2

1
23 ? 4

11 ? 9 ? 7
x3 1 Á4

1 C2 31 1
1

3
x 2

1

6
x2 2

1

6
x3 2 Á4

23. r1 5 2
3, r2r2r 5 1

3

y(x) 5 C1x2/3 f1 2 1
2 x 1 5

28 x2 2 1
21 x3 1 Ág

1 C2x2x2
1/3f1 2 1

2 x 1 1
5 x2 2 7

120 x3 1 Ág
25. r1 5 0, r2r2r 5 21

y(x) 5 C1 o
`

n50

1

(2n 1 1)!
x2n 1 C2x2x2

21 o
`

n50

1

(2n)!
x2n

5 C1x21 o
`

n50

1

(2n 1 1)!
x2n11 1 C2x2x2

21 o
`

n50

1

(2n)!
x2n

5
1
x

[C1 sinh x 1 C2 cosh x]
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EXERCISES 7.2 PAGE 293

1. 1
2 t 2 3. t 2 2t4

5. 1 1 3t 1 3
2 t2 1 1

6 t3 7. t 2 1 1 e2t

9. 1
4 e2t/t/t 4/4/ 11. 5

7 sin 7t

13. cos
t

2
15. 2 cos 3t 2 2 sin 3t

17. 1
3 2 1

3 e23t 19. 3
4 e23t 1 1

4 et

21. 0.3e0.1t 1 0.6e20.2t 23. 1
2 e2t 2 e3t 1 1

2 e6t

25. 1
5 2 1

5 cos Ï5Ï t 27. 24 1 3e2t 1 cos t 1 3 sin t

29. 1
3 sin t 2 1

6 sin 2t 35. y 5 21 1 et

37. y 5 1
10 e4t 1 19

10 e26t 39. y 5 4
3 e2t 2 1

3 e24t

41. y 5 10 cos t 1 2 sin t 2 Ï2Ï sin Ï2Ï t

43. y 5 28
9 e2t/t/t 2 1 1

9 e22t 1 5
18 et 1 1

2 e2t

45. y 5 1
4 e2t 2 1

4 e23t cos 2t 1 1
4 e23t sin 2t

47. y 5 10
21 cos 2t 2 10

21 cos 5t

EXERCISES 7.3 PAGE 303

1.
1

(s 2 10)2 3.
6

(s 1 2)4

5.
1

(s 2 2)2 1
2

(s 2 3)2 1
1

(s 2 4)2 7.
3

(s 2 1)2 1 9

9.
s

s2 1 25
2

s 2 1

(s 2 1)2 1 25
1 3

s 1 4

(s 1 4)2 1 25

11. 1
2 t2 e22t 13. e3t sin t sin t t

15. e22t cos t cos t t 2 2e22t sin t sin t t 17. e2t 2 te2t

19. 5 2 t 2 5e2t 2 4te2t 2 3
2 t2 e2t

21. y 5 te24t 1 2e24t 23. y 5 e2t 1 2te2t

25. y 5 1
9 t 1 2

27 2 2
27 e3t 1 10

9 te3t 27. y 5 23
2 e3t sin 2t

29. y 5 1
2 2 1

2 et cos t 1 1
2 et sin t

31. y 5 (e 1 1)te2t 1 (e 2 1)e2t

33. x(t) 5 2 3
2 e27t/t/t 2 cos Ï15Ï

2 t 2
7Ï15Ï

10 e27t/t/t 2 sin Ï15Ï
2 t

37.
e2s

s2 39.
e22s

s2 1 2
e22s

s

41.
s

s2 1 4
e2�s 43. 1

2 (t 2 2)2 8(t 2 2)

45. 2sin t 8(t 2 �) 47. 8(t 2 1) 2 e2(t21) 8(t 2 1)

49. (c) 51. (f ) 53. (a)

55. f (t) 5 2 2 4 8(t 2 3); +{ f (t)} 5
2
s

2
4
s

e23s

57. f (t) 5 t2 8(t 2 1); +{ f (t)} 5 2
e2s

s3 1 2
e2s

s2 1
e2s

s

59. f (t) 5 t 2 t 8(t 2 2); +{ f (t)} 5
1

s2 2
e22s

s2 2 2
e22s

s

61. f (t) 5 8(t 2 a) 2 8(t 2 b); +{ f (t)} 5
e2as

s
2

e2bs

s

63. y 5 [5 2 5e2(t21)] 8(t 2 1)

65. y 5 21
4 1 1

2 t 1 1
4 e22t 2 1

4 8(t 2 1)

2 1
2 (t 2 1) 8(t 2 1) 1 1

4 e22(t21) 8(t 2 1)

7. x2(x 2 1)y0 1 y9 1 y 5 0

9. r1 5 1
2, r2r2r 5 0

y1(x) 5 C1x1/2 f1 2 1
3 x 1 1

30 x2 2 1
630 x3 1 Ág

y2(x) 5 C2 f1 2 x 1 1
6 x2 2 1

90 x3 1 Ág
11. y1(x) 5 c0 f1 1 3

2 x2 1 1
2 x3 1 5

8 x4 1 Ág
y2(x) 5 c1 fx 1 1

2 x3 1 1
4 x4 1 Ág

13. r1 5 3, r2r2r 5 0

y1(x) 5 C1x3 f1 1 1
4 x 1 1

20 x2 1 1
120 x3 1 Ág

y2(x) 5 C2 f1 1 x 1 1
2 x2g

15. y(x) 5 3f1 2 x2 1 1
3 x4 2 1

15 x6 1 Ág
22 fx 2 1

2 x3 1 1
8 x5 2 1

48 x7 1 Ág
17. 1

6 �

19. x 5 0 is an ordinary point

21. y(x) 5 c0 31 2
1

3
x3 1

1

32 ? 2!
x6 2

1

33 ? 3!
x9 1 Á4

1 c1 3x 2
1

4
x4 1

1

4 ? 7
x7

2
1

4 ? 7 ? 10
x10 1 . . . 4 1 35

2
x2 2

1

3
x3

1
1

32 ? 2!
x6 2

1

33 ? 3!
x9 1 Á4

EXERCISES 7.1 PAGE 285

1.
2
s

e2s 2
1
s

5.
1 1 e2�s

s2 1 1

9.
1
s

2
1

s2 1
1

s2 e2s

13.
1

(s 2 4)2

17.
s2 2 1

(s2 1 1)2

21.
4

s2 2
10
s

25.
6

s4 1
6

s3 1
3

s2 1
1
s

29.
1
s

1
2

s 2 2
1

1

s 2 4

3.
1

s2 2
1

s2 e2s

7.
1
s

e2s 1
1

s2 e2s

11.
e7

s 2 1

15.
1

s2 1 2s 1 2

19.
48

s5

23.
2

s3 1
6

s2 2
3
s

27.
1
s

1
1

s 2 4

31.
8

s3 2
15

s2 1 9

33. Use sinh kt 5
ekt 2 e2kt

2
 and linearity to show that and linearity to show that

+{sinh kt} 5
k

s2 2 k2 .

35.
1

2(s 2 2)
2

1

2s
37.

2

s2 1 16

39.
4 cos 5 1 (sin 5)s

s2 1 16
43.  

Ï�Ï
s1y2

45.
3Ï�Ï
4s5y2
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47. f (t) 5 3
8 e2t 1 1

8 e22t 1 1
2 cos 2t 1 1

4 sin 2t

49. y(t) 5 sin t 2 1
2 t sin t

51. i(t) 5 100[e210(t21) 2 e220(t21)] 8(t 2 1)

2 100[e210(t22) 2 e220(t22)] 8(t 2 2)

53.
1 2 e2as

s(1 1 e2as)
55.

a

s 1 1

bs
2

1

ebs 2 12
57.

coth (�sy2)

s2 1 1

59. i(t) 5
1

R
_1 2 e2Rt/t/t L/L/ +

1
2

R o
`

n51
(21)n (1 2 e2R(t2n)/L/L/ ) 8(t 2 n)

61. x(t) 5 2(1 2 e2t cos 3t 2 1
3 e2t sin 3t)

1 4 o
`

n51
(21)n f1 2 e2(t2n�) cos 3(t 2 n�)

2 1
3 e2(t2n�) sin 3(t 2 n�)g 8(t 2 n�)

EXERCISES 7.5 PAGE 321

1. y 5 e3(t22) 8(t 2 2)
3. y 5 sin t 1 sin t 8(t 2 2�)

5. y 5 2cos t 8_t 2 �
2 + 1 cos t 8_t 2 3�

2 +
7. y 5 1

2 2 1
2 e22t 1 f1

2 2 1
2 e22(t21)g 8(t 2 1)

9. y 5 e22(t22�) sin t 8(t 2 2�)

11. y 5 e22t cos 3t 1 2
3 e22t sin 3t

1 1
3 e22(t2�) sin 3(t 2 �) 8(t 2 �)

1 1
3 e22(t23�) sin 3(t 2 3�) 8(t 2 3�)

13. y(t) 5 sin t 1 sin t o
`

k51
(21)k 8(t 2 k�)

15. y(x) 5 5
w0

EIEIE 1L

4
x2 2

1

6
x32, 0 # x ,

L

2
w0L2

4EIEIE 11

2
x 2

L

122, L

2
# x # L

EXERCISES 7.6 PAGE 325

1. x 5 21
3 e22t 1 1

3 et 3. x 5 2cos 3t 2 5
3 sin 3t

y 5 1
3 e22t 1 2

3 et y 5 2 cos 3t 2 7
3 sin 3t

5. x 5 22e3t 1 5
2 e2t 2 1

2 7. x 5 21
2 t 2 3

4 Ï2Ï sin Ï2Ï t

y 5 8
3 e3t 2 5

2 e2t 2 1
6 y 5 21

2 t 1 3
4 Ï2Ï sin Ï2Ï t

9. x 5 8 1
2

3!
t3 1

1

4!
t4

y 5 2
2

3!
t3 1

1

4!
t4

11. x 5 1
2 t2 1 t 1 1 2 e2t

y 5 21
3 1 1

3 e2t 1 1
3 te2t

13. x1 5
1

5
sin t 1

2Ï6Ï
15

sin Ï6Ï t 1
2

5
cos t 2

2

5
cos Ï6Ï t

x2 5
2

5
sin t 2

Ï6Ï
15

sin Ï6Ï t 1
4

5
cos t 1

1

5
cos Ï6Ï t

15. (b) i2 5 100
9 2 100

9 e2900t

i3 5 80
9 2 80

9 e2900t

(c) i1 5 20 2 20e2900t

67. y 5 cos 2t 2 1
6 sin 2(t 2 2�) 8(t 2 2�)

1 1
3 sin(t 2 2�) 8(t 2 2�)

69. y 5 sin t 1 [1 2 cos(t 2 �)]8(t 2 �)
2 [1 2 cos(t 2 2�)] 8(t 2 2�)

71. x(t) 5 5
4 t 2 5

16 sin 4t 2 5
4 (t 2 5) 8(t 2 5)

1 5
16 sin 4(t 2 5) 8(t 2 5) 2 25

4 8(t 2 5)

1 25
4 cos 4(t 2 5) 8(t 2 5)

73. q(t) 5 2
5 8(t 2 3) 2 2

5 e25(t23) 8(t 2 3)

75. (a) i(t) 5
1

101
e210 t 2

1

101
cos t 1

10

101
sin t

2
10

101
e210(t23�/�/� 2) 81t 2

3�

2 2
1

10

101
cos1t 2

3�

2 2 81t 2
3�

2 2
1

1

101
sin1t 2

3�

2 2 81t 2
3�

2 2
(b) imax < 0.1 at t < 1.7, imin < 20.1 at t < 4.7

77. y(x) 5
w0L2

16EIEIE
x2 2

w0L

12EIEIE
x3 1

w0

24EIEIE
x4

2
w0

24EIEIE 1x 2
L

22
4

81x 2
L

22
79. y(x) 5

w0L2

48EIEIE
x2 2

w0L

24EIEIE
x3

1
w0

60EIEIE LILI 35L

2
x4 2 x5 1 1x 2

L

22
5

81x 2
L

224
81. (a) 

dT

dt
5 k[T 2 70 2 57.5t 2 (230 2 57.5t)8(t 2 4)]

EXERCISES 7.4 PAGE 315

1.
1

(s 1 10)2 3.
s2 2 4

(s2 1 4)2

5.
6s2 1 2

(s2 2 1)3 7.
12s 2 24

[(s 2 2)2 1 36]2

9. y 5 21
2 e2t 1 1

2 cos t 2 1
2 t cos t 1 1

2 t sin t

11. y 5 2 cos 3t 1 5
3 sin 3t 1 1

6 t sin 3t

13. y 5 1
4 sin 4t 1 1

8 t sin 4t

2 1
8 (t 2 �) sin 4(t 2 �)8(t 2 �)

17. y 5 2
3 t3 1 c1t2 19.

24

s5

21.
1

s2 2 1
23.

6

s5

25.
s 2 1

(s 1 1)[(s 2 1)2 1 1]
27.

1

s(s 2 1)

29.
s 1 1

s[(s 1 1)2 1 1]
31.

1

s2(s 2 1)

33.
3s2 1 1

s2(s2 1 1)2 35. et 2 1

37. et 2 1
2 t2 2 t 2 1 41. f (t) 5 sin t

43. f (t) 5 21
8 e2t 1 1

8 et 1 3
4 tet 1 1

4 t2et 45. f (t) 5 e2t
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49. (a) �1(t) 5
�0 1 �0

2
cos �t 1

�0 2 �0

2
cos Ï�2 1 2KÏ t

�2(t) 5
�0 1 �0

2
cos �t 2

�0 2 �0

2
cos Ï�2 1 2KÏ t

51. (a) x(t) 5 (v0 cos �)t, y(t) 5 21
2 gt2 1 (v0 sin �)t

(b) y(x) 5 2
g

2v2
0 cos2 �

x2 1
sin �

cos �
x; solve y(x) 5 0

and use the double-angle formula for sin 2�

(d) approximately 2729 ft; approximately 11.54 s

EXERCISES 8.1 PAGE 339

1. X9 5 13 25

4 82X,  where X 5 1xy2

3. X9 5 S23

6

10

4

21

4

29

0

3
DX, where X 5 Sx

y

z
D

5. X95S1

2

1

21

1

1

1

21

1
DX1S 0

23t2

t2
D1S t

0

2t
D1S21

0

2
D,

  where X 5 Sx

y

z
D

7.
dxdxd

dt
5 4x4x4 1 2y2y2 1 et

dy

dt
5 2x 1 3y 2 et

9.
dxdxd

dt
5 x 2 y 1 2z 1 e2t 2 3t

  
dydyd

dt
5 3x 2 4y 1 z 1 2e2t 1 t

dzdzd

dt
5 22x2x2 1 5y 1 6z 1 2e2t 2 t

17. Yes; W(X1, X2) 5 22e28t Þ 0 implies that X1 and X2 are  
linearly independent on (2`, `).

19. No; W(X1, X2, X3) 5 0 for every t. The solution vectors are  
linearly dependent on (2`, `). Note that X3 5 2X1 1 X2.

EXERCISES 8.2 PAGE 352

1. X 5 c1 1122e5t 1 c2 121

12e2t

3. X 5 c1 1212e23t 1 c2 1252et

5. X 5 c1 1522e8t 1 c2 1142e210t

7. X 5 c1S1

0

0
Det 1 c2S2

3

1
De2t 1 c3S1

0

2
De2t

9. X 5 c1S21

0

1
De2t 1 c2S1

4

3
De3t 1 c3S 1

21

3
De22t

17. i2 5 220
13 e22t 1 375

1469 e215t 1 145
113 cos t 1 85

113 sin t

i3 5 30
13 e22t 1 250

1469 e215t 2 280
113 cos t 1 810

113 sin t

19. i15
6

5
2

6

5
e2100t cosh 50Ï2Ï t2

9Ï2Ï
10

e2100t sinh 50Ï2Ï t

i25
6

5
2

6

5
e2100tcosh 50Ï2Ï t 2

6Ï2Ï
5

e2100t sinh 50Ï2Ï t

CHAPTER 7 IN REVIEW PAGE 327

1.
1

s2 2
2

s2 e2s 3. false

5. true 7.
1

s 1 7

9.
2

s2 1 4
11.

4s

(s2 1 4)2

13. 1
6 t5 15. 1

2 t2 e5t

17. e5t cos 2t 1 5
2 e5t sin 2t

19. cos �(t 2 1) 8(t 2 1) 1 sin �(t 2 1) 8(t 2 1)

21. 25

23. e2k(s2a)F(s 2 a)

25. f (t)8(t 2 t0t0t )

27. f (t 2 t0t0t )8(t 2 t0t0t )

29. f (t) 5 t 2 (t 2 1) 8(t 2 1) 2 8(t 2 4);

+{ f (t)} 5
1

s2 2
1

s2 e2s 2
1
s

e24s;

+{etftft (t)} 5
1

(s 2 1)2 2
1

(s 2 1)2 e2(s21)

2
1

s 2 1
e24(s21)

31. f (t) 5 2 1 (t 2 2) 8(t 2 2);

+{ f (t)} 5
2
s

1
1

s2 e22s;

+{et f (t)} 5
2

s 2 1
1

1

(s 2 1)2 e22(s21)

33.
e2s 2 1

s(1 1 e2s)

35. y 5 5tet 1 1
2 t2 et

37. y 5 2 6
25 1 1

5 t 1 3
2 e2t 2 13

50 e25t 2 4
25 8(t 2 2)

2 1
5 (t 2 2) 8(t 2 2) 1 1

4 e2(t22) 8(t 2 2)

2 9
100 e25(t22) 8(t 2 2)

39. y(t) 5 e22t 1 f21
4 1 1

2 (t 2 1) 1 1
4 e22(t 2 1)g8(t 2 1)

2 2 f21
4 1 1

2 (t 2 2) 1 1
4 e22(t22)g8(t 2 2)

  1 f21
4 1 1

2 (t 2 3) 1 1
4 e22(t23) g8(t 2 3)

41. y 5 1 1 t 1 1
2 t2

43. x 5 21
4 1 9

8 e22t 1 1
8 e2t

y 5 t 1 9
4 e22t 2 1

4 e2t

45. i(t) 5 29 1 2t 1 9e2t/5t/5t

47. y(x) 5
w0

12EIEIE LILI 3 2
1

5
x5 1

L

2
x4 2

L2

2
x3 1

L3

4
x2

1
1

5 1x 2
L

22
5

81x 2
L

224
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43. X 5 c1S0

2

1
Det 1 c2Ssin t

cos t

cos t
Det 1 c3S cos t

2sin t

2sin t
Det

45. X 5 c1 S 28

25

25
De2t 1 c2 S4 cos 3t 2 3 sin 3t

25 cos 3t

0
De22t

1 c3S3 cos 3t 1 4 sin 3t

25 sin 3t

0
De22t

47. X 5 2S 25

27

6
Det 2 Scos 5t 2 5 sin 5t

cos 5t

cos 5t
D

1 6S5 cos 5t 1 sin 5t

sin 5t

sin 5t
D

49. (a) X9 5 12 1
20 0 1

10
1
20 2 1

20 0

0 1
20 2 1

10
2X

(b) X(X(X t) 5 2612cos 1
20 t 1 sin 1

20 t

2sin 1
20 t

cos 1
20 t

2e2t/10

2212cos 1
20 t 2 sin 1

20 t

cos 1
20 t

sin 1
20 t

2e2t/10 1 1112

2

1
2

EXERCISES 8.3 PAGE 360

1. X 5 c1121

12e2t 1 c2 123

12et 1 121

32
3. X 5 c11 1

212e22t 1 c2 1112e4t 1 12
1
4
3
4
2 t2

1 1
1
4

21
4
2t 1 122

3
4
2

5. X 5 c11 1

232e3t 1 c2 1192e7t 1 1
55
36

219
4
2et

7. X 5 c1S1

0

0
Det 1 c2S1

1

0
De2t 1 c3S1

2

2
De5t 2 S3

2
7
2

2
De4t

9. X 5 131 1

212et 1 2124

62e2t 1 129

62
11. (a) X9 5 12

3
100

1
100

1
50 2 1

25
2X 1 1012

(b) X(X(X t) 5 270
3 121

22e2t/20 1 80
3 1112e2t/50 1 110

302
(c) 10, 30

13. X 5 c11112 1 c2 1322et 2 111

112t 2 115

102

11. X 5 c1S 4

0

21
De2t 1 c2S212

6

5
De2t/t/t 2 1 c3S 4

2

21
De23t/t/t 2

13. X 5 31112et/2 1 21012e2t/2

15. (a) X9 5 12
3

100
1

100
1
50 2 1

50
2X

(b) X(X(X t) 5 235
3 121

12e2t/t/t 25 1 25
3 1122e2t/t/t 100

(d) approximately 34.3 minutes

21. X 5 c1 1132 1 c2 31132t 1 1
1
4

21
4
24

23. X 5 c11112e2t 1 c231112te2t 1 12
1
3

02e2t4

25. X 5 c1S1

1

1
Det 1 c2S1

1

0
De2t 1 c3S1

0

1
De2t

27. X 5 c1S24

25

2
D 1 c2S 2

0

21
De5t

1 c3 3S 2

0

21
Dte5t 1 S21

2

21
2

21
De5t4

29. X 5 c1S0

1

1
Det 1 c2 3S0

1

1
Dtet 1 S0

1

0
Det4

1 c3 3S0

1

1
D t2

2
et 1 S0

1

0
Dtet 1 S1

2

0

0
Det4

31. X 5 271212e4t 1 1312t 1 1

t 1 12e4t

33. Corresponding to the eigenvalue �1 5 2 of multiplicity �ve, the 
eigenvectors are

K1 5 1
1

0

0

0

0
2, K2 5 1

0

0

1

0

0
2, K3 5 1

0

0

0

1

0
2.

35. X 5 c11 cos t

2 cos t 1 sin t2e4t 1 c2 1 sin t

2 sin t 2 cos t2e4t

37. X 5 c11 cos t

2cos t 2 sin t2e4t 1 c2 1 sin t

2sin t 1 cos t2e4t

39. X 5 c11 5 cos 3t

4 cos 3t 1 3 sin 3t2 1 c2 1 5 sin 3t

4 sin 3t 2 3 cos 3t2

41. X 5 c1S1

0

0
D 1 c2S2cos t

cos t

sin t
D 1 c3S sin t

2sin t

cos t
D
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9. X 5 c3 1102et 1 c4 1012e2t 1 123
1
2
2

11. X 5 c11cosh t

sinh t 2 1 c2 1sinh t

cosh t2 2 1112

13. X 5 St 1 1

t

22t
D 2 4S t

t 1 1

22t
D 1 6S t

t

22t 1 1
D

15. eAt 5 1
3
2 e2t 2 1

2 e22t

2e2t 1 e22t

3
4 e2t 2 3

4 e22t

21
2 e2t 1 3

2 e22t2;
X 5 c11

3
2 e2t 2 1

2 e22t

2e2t 1 e22t 2 1 c2 1
3
4 e2t 2 3

4 e22t

21
2 e2t 1 3

2 e22t2 or

  X 5 c3 1 3

222e2t 1 c4 1 1

222e22t

17. eAt 5 1e
2t 1 3te2t

te2t

29te2t

e2t 2 3te2t2;
X 5 c111 1 3t

t 2e2t 1 c2 1 29t

1 2 3t2e2t

23. X 5 c11
3
2 e3t 2 1

2 e5t

3
2 e3t 2 3

2 e5t2 1 c2 121
2 e3t 1 1

2 e5t

21
2 e3t 1 3

2 e5t2 or

  X 5 c3 1112e3t 1 c4 1132e5t

CHAPTER 8 IN REVIEW PAGE 366

1. k 5 1
3

5. X 5 c11 1

212et 1 c2 31 1

212tet 1 1012et4
7. X 5 c11 cos 2t

2sin 2t2et 1 c2 1sin 2t

cos 2t2et

9. X 5 c1S22

3

1
De2t 1 c2S0

1

1
De4t 1 c3S 7

12

216
De23t

11. X 5 c11102e2t 1 c2 1412e4t 1 1 16

242t 1 1 11

212
13. X 5 c11 cos t

cos t 2 sin t2 1 c2 1 sin t

sin t 1 cos t2 2 1112
1 1 sin t

sin t 1 cos t2 lnucsc t 2 cot tu

15. (b) X 5 c1S21

1

0
D 1 c2S21

0

1
D 1 c3S1

1

1
De3t

EXERCISES 9.1 PAGE 373
1. for h 5 0.1, y5 5 2.0801; for h 5 0.05, y10 5 2.0592

3. for h 5 0.1, y5 5 0.5470; for h 5 0.05, y10 5 0.5465

5. for h 5 0.1, y5 5 0.4053; for h 5 0.05, y10 5 0.4054

7. for h 5 0.1, y5 5 0.5503; for h 5 0.05, y10 5 0.5495

9. for h 5 0.1, y5 5 1.3260; for h 5 0.05, y10 5 1.3315

15. X 5 c11212et/t/t 2 1 c2 110

32e3t/t/t 2 2 1
13
2
13
4
2tet/t/t 2 2 1

15
2
9
4
2et/t/t 2

17. X 5 c11212et 1 c21112e2t 1 1332et 1 1422tet

19. X 5 c11412e3t 1 c2 122

12e23t 1 1212

02t 2 1
4
3
4
3
2

21. X 5 c11 1

212et 1 c21 t
1
2 2 t2et 1 1

1
2

222e2t

23. X 5 c11cos t

sin t2 1 c2 1 sin t

2cos t2 1 1cos t

sin t2t
1 12sin t

cos t 2 lnucos tu

25. X 5 c11cos t

sin t2et 1 c2 1 sin t

2cos t2et 1 1cos t

sin t2tet

27. X 5 c11 cos t

2sin t2 1 c2 1sin t

cos t2 1 1 cos t

2sin t2t
1 1 2sin t

sin t tan t2 2 1sin t

cos t2 lnucos tu

29. X 5 c112 sin t

cos t 2et 1 c2 12 cos t

2sin t2et 1 13 sin t
3
2 cos t2tet

1 1 cos t

21
2 sin t2et ln usin tu 1 12 cos t

2sin t2et ln ucos tu

31. X 5 c1S 1

21

0
D 1 c2S1

1

0
De2t 1 c3S0

0

1
De3t

1 S 21
4 e2t 1 1

2 te2t

2et 1 1
4 e2t 1 1

2 te2t

1
2 t2e3t

D
33. X 5 1222te2t 1 121

12e2t 1 122

22te4t 1 1202e4t

35. 1i1i22 5 21132e22t 1
6

29 1 3

212e212t 2
4

29 119

422cos t

1
4

29 183

692 sin t

EXERCISES 8.4 PAGE 365

1. eAt 5 1e
t

0

0

e2t2; e2At 5 1e
2t

0

0

e22t2

3. eAt 5 St 1 1

t

22t

t

t 1 1

22t

t

t

22t 1 1
D

5. X 5 c11102et 1 c2 1012e2t

7. X 5 c1St 1 1

t

22t
D 1 c2S t

t 1 1

22t
D 1 c3S t

t

22t 1 1
D
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(d) If h 5 0.05, y2 5 0.82341363.

(e) Error with h 5 0.1 is 3.225 3 1026. Error with 
h 5 0.05 is 1.854 3 1027.

19. (a) y(5)(c)
h5

5!
5

24

(c 1 1)5

h5

5!

(b)
24

(c 1 1)5

h5

5!
# 24

(0.1)5

5!
5 2.0000 3 1026

(c) From calculation with h 5 0.1, y5 5 0.40546517. 
From calculation with h 5 0.05, y10 5 0.40546511.

EXERCISES 9.3 PAGE 381
1. y(x) 5 2x 1 ex; actual values are y(0.2) 5 1.0214, 

y(0.4) 5 1.0918, y(0.6) 5 1.2221, y(0.8) 5 1.4255; 
approximations are given in Example 1.

3. y4 5 0.7232

5. for h 5 0.2, y5 5 1.5569; for h 5 0.1, y10 5 1.5576

7. for h 5 0.2, y5 5 0.2385; for h 5 0.1, y10 5 0.2384

EXERCISES 9.4 PAGE 385
1. y(x) 5 22e2x2x2 1 5xe2x2x2 ; y(0.2) 5 21.4918,

y2 5 21.6800

3. y1 5 21.4928, y2 5 21.4919

5. y1 5 1.4640, y2 5 1.4640

7. x1 5 8.3055, y1 5 3.4199;

x2 5 8.3055, y2 5 3.4199

9. x1 5 23.9123, y1 5 4.2857;

x2 5 23.9123, y2 5 4.2857

11. x1 5 0.4179, y1 5 22.1824;

x2 5 0.4173, y2 5 22.1821

EXERCISES 9.5 PAGE 389
1. y1 5 25.6774, y2 5 22.5807, y3 5 6.3226

3. y1 5 20.2259, y2 5 20.3356, y3 5 20.3308,

y4 5 20.2167

5. y1 5 3.3751, y2 5 3.6306, y3 5 3.6448, y4 5 3.2355,

y5 5 2.1411

7. y1 5 3.8842, y2 5 2.9640, y3 5 2.2064, y4 5 1.5826,

y5 5 1.0681, y6 5 0.6430, y7 5 0.2913

9. y1 5 0.2660, y2 5 0.5097, y3 5 0.7357, y4 5 0.9471,

y5 5 1.1465, y6 5 1.3353, y7 5 1.5149, y8 5 1.6855,

y9 5 1.8474

11. y1 5 0.3492, y2 5 0.7202, y3 5 1.1363, y4 5 1.6233, 
y5 5 2.2118, y6 5 2.9386, y7 5 3.8490

13. (c) yy0 5 22.2755, y1 5 22.0755, y2 5 21.8589, 
y3 5 21.6126, y4 5 21.3275

11. for h 5 0.1, y5 5 3.8254; for h 5 0.05, y10 5 3.8840;

at x 5 0.5 the actual value is y(0.5) 5 3.9082.

13. (a) y1 5 1.2

(b) y0(c)
h2

2
5 4e2c (0.1)2

2
5 0.02e2c # 0.02e0.2 5 0.0244

(c) Actual value is y(0.1) 5 1.2214. Error is 0.0214.

(d) If h 5 0.05, y2 5 1.21.

(e) Error with h 5 0.1 is 0.0214. Error with h 5 0.05 is 0.0114.

15. (a) y1 5 0.8

(b) y0(c)
h2

2
5 5e22c (0.1)2

2
5 0.025e22c # 0.025

  for 0 # c # 0.1.

(c) Actual value is y(0.1) 5 0.8234. Error is 0.0234.

(d) If h 5 0.05, y2 5 0.8125.

(e) Error with h 5 0.1 is 0.0234. Error with h 5 0.05 is 0.0109.

17. (a) Error is 19h2e23(c21).

(b) y0(c)
h2

2
# 19(0.1)2(1) 5 0.19

(c) If h 5 0.1, y5 5 1.8207. 
If h 5 0.05, y10 5 1.9424.

(d) Error with h 5 0.1 is 0.2325. Error with h 5 0.05 is 0.1109.

19. (a) Error is 
1

(c 1 1)2

h2

2
.

(b) u y0(c)
h2

2 u # (1)
(0.1)2

2
5 0.005

(c) If h 5 0.1, y5 5 0.4198. If h 5 0.05, y10 5 0.4124.

(d) Error with h 5 0.1 is 0.0143. Error with h 5 0.05 is 0.0069.

EXERCISES 9.2 PAGE 377
1. y5 5 3.9078; actual value is y(0.5) 5 3.9082

3. y5 5 2.0533 5. y5 5 0.5463

7. y5 5 0.4055 9. y5 5 0.5493

11. y5 5 1.3333

13. (a) 35.7130

(c) v(t) 5Îmg

kÎ tanhÎkgkgk

mÎ t; v(5) 5 35.7678

15. (a)  for h 5 0.1, y4 5 903.0282; 
for h 5 0.05, y8 5 1.1 3 1015

17. (a) y1 5 0.82341667

(b) y(5)(c)
h5

5!
5 40e22c h5

5!
# 40e2(0) (0.1)5

5!

5 3.333 3 1026

(c) Actual value is y(0.1) 5 0.8234134413. Error is
3.225 3 1026 # 3.333 3 1026.
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43. F9(x) 5 6x2e24x9
2 e2x5

2 3x2#2x2x2 3

x
#

x
# t2e2x3t2

dt

45. F9(x) 5 2sin x(x2 1 cos2x2x2 )10 2 2x (x2 1 x4)10

1 20x0x0 #cosx

x
#

x
#

2
10(x2 1 t2)9 dt

47. F9(x) 5 esinx sin(cos x)  

55. (a)
Ï�Ï
2ÏxÏxÏÏ

(b) Ï�x�x�Ï 1 CC (c) Ï�x�x�Ï

EXERCISES FOR APPENDIX B PAGE APP26

1. (a) 122 11

212 (b) 126

14

1

2192
(c) 1 2

12

28

2122
3. (a) 1211

17

6

2222 (b) 1232

24

27

212
(c) 1 19

230

218

312 (d) 119

3

6

222
5. (a) 193 24

82 (b) 1 3

26

8

2162
(c) 100 0

02 (d) 124

8

25

102

7. (a) 180 (b) S 4

8

10

8

16

20

10

20

25
D (c) S 6

12

25
D

9. (a) S 7

10

38

75D (b) S 7

10

38

75D
11. 1214

12
13. 1238

222
15. singular

17. nonsingular; A21 5
1

4 125

3

28

42

19. nonsingular; A21 5
1

2 S 0

2

24

21

2

23

1

22

5
D

21. nonsingular; A21 5 2
1

9 S 22

213

8

22

5

21

21

7

25
D

23. A21(t) 5
1

2e3t 1 3e4t

24e2t

2e4t

2e2t2

25.
dX
dt

5 S25e2t

22e2t

7e2t
D

27.
dX
dt

5 4 1 1

212e2t 2 12 1212e23t

CHAPTER 9 IN REVIEW PAGE 389
1. Comparison of numerical methods with h 5 0.1:

xn E ule r
I mpr ove d 
E ule r R K4

1.10 2.1386 2.1549 2.1556
1.20 2.3097 2.3439 2.3454
1.30 2.5136 2.5672 2.5695
1.40 2.7504 2.8246 2.8278
1.50 3.0201 3.1157 3.1197

Comparison of numerical methods with h 5 0.05:

xn E ule r
I mpr ove d 
E ule r R K4

1.10 2.1469 2.1554 2.1556
1.20 2.3272 2.3450 2.3454
1.30 2.5409 2.5689 2.5695
1.40 2.7883 2.8269 2.8278
1.50 3.0690 3.1187 3.1197

3. Comparison of numerical methods with h 5 0.1:

xn E ule r
I mpr ove d 
E ule r R K4

0.60 0.6000 0.6048 0.6049
0.70 0.7095 0.7191 0.7194
0.80 0.8283 0.8427 0.8431
0.90 0.9559 0.9752 0.9757
1.00 1.0921 1.1163 1.1169

Comparison of numerical methods with h 5 0.05:

xn E ule r
I mpr ove d 
E ule r R K4

0.60 0.6024 0.6049 0.6049
0.70 0.7144 0.7193 0.7194
0.80 0.8356 0.8430 0.8431
0.90 0.9657 0.9755 0.9757
1.00 1.1044 1.1168 1.1169

5. h 5 0.2: y(0.2) < 3.2; h 5 0.1: y(0.2) < 3.23

7. x(0.2) < 1.62, y(0.2) < 1.84

EXERCISES FOR APPENDIX A PAGE APP9
1. 120 3. 3

4 Ï�Ï
5. 105

16 Ï�Ï 7. 4
3 Ï�Ï

9. 16
105 Ï�Ï 11. 0.9182

13. 0.9086 15. (x 1 3)(x 1 2)(x 1 1)x G(x)

17.Î�

2Î 19. 1
324

21. 3
128 23. Ï2�Ï

25. 0.1836 29. �

31. 1
4 � 33. 5

2�

39. 1
12 41. 8

15
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29. (a) 14e4t

2

2� sin �t

6t 2  (b) 1
1
4e8 2 1

4

4

0

62
(c) 1

1
4e4t 2 1

4

t2
(1/�) sin �t

t3 2 t 2
31. x 5 3, y 5 1, z 5 25

33. x 5 2 1 4t, y 5 25 2 t, z 5 t

35. x 5 21
2, y 5 3

2, z 5 7
2

37. x1 5 1, x2 5 0, x3 5 2, x4 5 0

41. A21 5 S0

0
1
3

2
3

21
3

22
3

1
3

22
3

0
D

43. A21 5 S 5

2

21

6

2

21

23

21

1
D

45. A21 5 S21
2

1

0

21
2

22
3
1
3

21
3

1

21
6
1
3

21
3
1
2

7
6

24
3
1
3
1
2

D

47. �1 5 6, �2 5 1, K1 5 1272, K2 5 1112
49. �1 5 �2 5 24, K1 5 1 1

242
51. �1 5 0, �2 5 4, �3 5 24,

K1 5 S 9

45

25
D, K2 5 S1

1

1
D, K3 5 S1

9

1
D

53. �1 5 �2 5 �3 5 22,

K1 5 S 2

21

0
D, K2 5 S0

0

1
D

55. �1 5 3i, �2 5 23i,

K1 5 11 2 3i

5 2, K2 5 11 1 3i

5 2
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Index

A
Absolute convergence of a power series, 237 
Absolute error, 78–79 
Acceleration due to gravity, 27, 197 
Adams-Bashforth-Moulton method, 379 
Adams-Bashforth predictor, 379 
Adams-Moulton corrector, 379 
Adaptive numerical method, 377 
Addition: 

of matrices, APP-12 
of power series, 239 

Aging spring, 201, 266–267, 274 
Agnew, Ralph Palmer, 140 
Air resistance: 

proportional to square of velocity, 31, 46, 103, 105, 377
proportional to velocity, 27, 46, 94 

Airy, George Biddel, 248 
Airy functions:

of the �rst kind, APP-6
graphs of �rst and second kind, APP-7
of the second kind, APP-6 

Airy’s differential equation:
de�nition of, 248 
numerical solution curves, 251 
power series solutions of, 247–248 
solution in terms of Bessel functions, 274 

Algebra of matrices, APP-11
Algebraic equations, methods for solving, APP-18 
Allee, Warder Clyde, 115
Alternative form of second translation theorem, 300 
Ambient temperature, 24, 87 
Amperes (A), 26 
Amplitude:

damped, 204 
of free vibrations, 199 

Analytic at a point, 238 
Annihilator approach method of undetermined  

coef�cients, 152 
Annihilator differential operator, 152–153 
Annular cooling �n, 277
Approaches to the study of differential equations:

analytical, 28–29 
numerical, 28–29 
qualitative, 28–29 

Archimedes’ principle, 31 
Arithmetic of power series, 239 
Associated homogeneous differential equation, 121 
Associated homogeneous system, 338 
Asymptotically stable critical point, 43 
Attractor, 43, 343 
Augmented matrix:

de�nition of, APP-18 
elementary row operations on, APP-18 
in reduced row-echelon form, APP-19 
in row-echelon form, APP-18 

Autonomous differential equation:
direction �eld of, 43
�rst-order, 39 
second-order, 191 
translation property of, 43 

Auxiliary equation:
for Cauchy-Euler equations, 167 
for linear equations with constant coef�cients,  

135, 138, 139 
roots of, 136, 139

Axis of symmetry of a beam, 214 

B
Backward difference, 386 
Ballistic pendulum, 230 
BC, 19, 120
Beams:

cantilever, 214, 215
de�ection curve of, 214 
embedded, 214 
free, 214 
simply supported, 215
static de�ection of, 301 
supported on an elastic foundation, 328 

Beats, 212 
Bending of a circular plate, 172
Bernoulli’s differential equation, 73
Bessel, Friedrich Wilhelm, 262
Bessel functions:

aging spring and, 266–267 
differential equations solvable in terms of, 266 
differential recurrence relations for, 268–269 
of the �rst kind, 264
graphs of, 264, 265 
of half-integral order, 269 
modi�ed of the �rst kind, 265 
modi�ed of the second kind, 265 
numerical values of, 267–268 
of order �, 264
of order 12, 269–270 
of order 21

2, 269–270
properties of, 267 
recurrence relation for, 273 
of the second kind, 264 
spherical, 270 
zeros of, 268 

Bessel’s differential equation: 
general solution of, 264 
modi�ed of order �, 265 
of order �, 262 
parametric modi�ed of order �, 266
parametric of order �, 265
solution of, 262

Beta function, APP-5
Boundary conditions, 19, 120, 179, 214, 215, 218 

Index
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Index

Boundary-value problem:
de�nition of, 19, 120 
numerical methods for ODEs, 385–388 
for an ordinary differential equation, 19, 120, 215–218 
shooting method for, 388 

Boxcar function, 302
Branch point, 111 
Buckling modes, 217
Buckling of a tapered column, 261 
Buckling of a thin vertical column, 274 
Buoyant force, 31 
BVP, 19, 120, 215 

C
Cable strung between two vertical supports, 28, 54, 225
Calculation of order hn, 370–371 
Cambridge half-life of C-14, 87
Cantilever beam, 214–215 
Capacitance, 26  
Carbon dating, 86 
Carrying capacity, 97 
Catenary, 225 
Cauchy, Augustin-Louis, 166
Cauchy-Euler differential equation: 

auxiliary equation for, 167 
de�nition of, 166, 171 
general solution of, 167–168
method of solution for, 166–167 
reduction to constant coef�cients, 170 

Center of a power series, 237 
Central difference, 386 
Central difference approximations, 387 
Chain pulled up by a constant force, 227
Change of scale theorem, 286 
Characteristic equation of a matrix, 341, APP-23 
Characteristic values, APP-22
Characteristic vectors, APP-22 
Chebyshev, Pafnuty, 276 
Chebyshev polynomials, 276 
Chebyshev’s differential equation, 276 
Chemical reactions: 

�rst-order, 24
second-order, 24–25, 100 

Circuits, differential equations of, 26, 90, 207–209 
Circular frequency, 198 
Clamped end of a beam, 214 
Classi�cation of critical points, 43 
Classi�cation of ordinary differential equations:

by linearity, 5 
by order, 4 
by type, 3 

Clepsydra, 106 
Cofactor, APP-14, APP-15, APP-16 
Column bending under its own weight, 274 
Column matrix, 334, APP-11 
Competition models, 110–111 
Competition term, 97 
Complementary error function:

de�nition of, 60, APP-3 
properties of, 60  

Complementary function:
for a homogeneous linear differential 

equation, 128 
for a homogeneous linear system, 338 

Concentration of a nutrient in a cell, 114  
Continuing method, 378 
Continuous compound interest, 23, 92 
Convergence of an improper integral, 279  
Convergence, interval of, 237
Convergence of a power series, 237 
Convolution of two functions, 307 
Convolution theorem, inverse form of, 309 
Convolution theorem, Laplace transform, 308
Cooling �n, temperature in a, 277
Cooling/Warming, Newton’s Law of, 24, 87–88 
Cosine integral function:

de�nition of, APP-6
graph of, APP-7

Coulomb, Charles Augustin de, 329 
Coulomb friction, 233, 329 
Coulombs (C), 26 
Coupled springs, 233, 322, 325 
Cover-up method, 292 
Cramer’s Rule, 161, 164 
Criterion for an exact differential, 65 
Critical loads, 217 
Critical point of an autonomous �rst-order differential 

equation: 
asymptotically stable, 43 
de�nition of, 39 
isolated, 46 
semi-stable, 43
unstable, 43 

Critical speeds, 221 
Critically damped series circuit, 208
Critically damped spring/mass system, 202 
Curvature, 192, 214 
Cycloid, 115

D
Damped amplitude, 204 
Damped motion, 202 
Damped nonlinear pendulum, 228–229 
Damping constant, 204 
Damping factor, 202 
Daphnia, 97 
DE, 3 
Dead Sea scrolls, 87 
Dead zone, 329 
Decay, radioactive, 23, 85, 86–87 
Decay constant, 86 
Defective matrix, APP-25, APP-26
De�nition, interval of, 6
De�ection of a beam, 214–215 
De�ection curve, 214 
De�ection of a rotating shaft, 221 
Density-dependent hypothesis, 97 
Derivative of an integral, 11, APP-7, APP-8 
Derivative notation, 4 
Derivatives of a Laplace transform, 306 
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Index

Determinant of a square matrix:
de�nition of, APP-14 
expansion by cofactors, APP-14

Diagonal matrix, 363 
Difference equation replacement for an ordinary differential 

equation, 387 
Difference quotients, 386 
Differences, �nite, 386 
Differential, exact, 65
Differential equation:

Airy, 248, 251, 274
autonomous, 39, 191 
Bernoulli, 73 
Bessel, 262
Cauchy-Euler, 166 
Chebyshev, 276 
de�nition of, 3 
differential form of, 4
exact, 65 
explicit solution of, 8 
families of solutions for, 9 
�rst order, 4, 5, 6, 36 
Hermite, 275 
higher order, 118
with homogeneous coef�cients, 72
homogeneous linear, 121 
implicit solution of, 8
Laguerre, 317 
Legendre, 262
linear, 5, 55, 119, 121
modi�ed Bessel, 265 
nonautonomous, 39, 191 
nonhomogeneous linear, 121 
nonlinear, 6 
normal form of, 5 
notation for, 4 
order of, 4 
ordinary, 3 
parametric Bessel, 264–265
parametric modi�ed Bessel, 266 
partial, 3 
particular solution of, 9
piecewise-linear, 59
Riccati, 76 
separable, 47 
singular points of, 243
solution of, 6 
standard form of, 55, 160, 161, 243, 253 
systems of, 10–11, 107, 183, 322, 332 
type of, 3

Differential equations as mathematical models, 22–28, 85, 
96, 107, 197, 213, 222 

Differential equations solvable in terms of Bessel functions, 
264–267 

Differential form of a �rst-order equation, 4, 64 
Differential of a function of two variables, 65 
Differential operator, 122, 152–153 
Differential recurrence relation, 268 
Differentiation notation, 4
Differentiation of a power series, 238 

Dirac delta function:
de�nition of, 318–319 
Laplace transform of, 319 

Direction �eld of a �rst-order differential equation: 
for an autonomous �rst-order differential equation, 43 
de�nition of, 37 
method of isoclines for, 39 
nullclines for, 45 

Discontinuous coef�cients, 59 
Discretization error, 370 
Distributions, theory of, 320 
Divergence of an improper integral, 279 
Divergence of a power series, 237 
Domain:

of a function, 7 
of a solution, 6–7 

Doomsday equation, 104 
Dot notation, 4 
Double pendulum, 324 
Double spring system, 201, 233, 322 
Draining of a tank, 26, 102–103, 106 
Driven motion, 204–207 
Driving function, 197 
Drosophila, 97 
Duf�ng’s differential equation, 228 
Dynamical system, 29, 127 

E
Effective spring constant, 201 
Eigenfunctions of a boundary-value problem, 215, 216 
Eigenvalues of a boundary-value problem, 215, 216 
Eigenvalues of a matrix: 

complex, 348 
de�nition of, 341, APP-22 
distinct real, 341 
of multiplicity m, 345 
of multiplicity three, 347 
of multiplicity two, 345
repeated, 344 

Eigenvectors of a matrix, 341 
Elastic curve, 214 
Electrical networks, 111, 323 
Electrical series circuits, analogy with spring/ 

mass systems, 207 
Electrical vibrations: 

forced, 208 
free, 208

Elementary functions, 11 
Elementary row operations:

de�nition of, APP-18 
notation for, APP-19 

Elimination methods:
for systems of algebraic equations, APP-18
for systems of ordinary differential equations, 183 

Embedded end of a beam, 214 
Emigration model, 99
Environmental carrying capacity, 97 
Equality of matrices, APP-11 
Equation of motion, 198 
Equilibrium point, 39 
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Equilibrium position of a spring/mass system, 197, 200 
Equilibrium solution, 40 
Error:

absolute, 78 
analysis, 369–371
discretization, 370 
formula, 370 
global truncation, 371 
local truncation, 370, 373 
percentage relative, 79 
relative, 79 
round off, 369 

Error function:
de�nition of, 60, APP-3
properties of, 60 

Escape velocity, 229 
Euler, Leonhard, 166, APP-3 
Euler load, 217 
Euler’s constant, 267, 317 
Euler’s formula, 136 
Euler’s method: 

for �rst-order differential equations, 78, 369 
improved, 371–372 
for second-order differential equations, 381 
for systems, 385 

Evaporating raindrop, 95
Evaporation, 104 
Exact differential:

criterion for, 65 
de�nition of, 65 

Exact differential equation:
de�nition of, 65
method of solution, 66 

Existence:
of a fundamental set of solutions, 125
interval of, 6, 18, 119 
of a Laplace transform, 282–283 
and uniqueness of a solution, 17–18, 119 

Explicit solution, 8 
Exponential growth and decay, 23, 85–86 
Exponential integral function:

de�nition of, APP-6
graph of, APP-7

Exponential matrix:
computation of, 362–363, 364
de�nition of, 362
derivative of, 363 

Exponential order, 282 
Exponents of a singularity, 256 
Extreme displacement, 198 

F
Factorial function, APP-4
Falling body, 26–27, 31, 94 
Falling chain, 71 
Falling raindrop, 34, 95, 106 
Family of solutions, 9 
Farads (f), 26 
Fick’s law, 115 

Finite difference approximations, 386–387 
Finite difference:

backward, 386 
central, 386
de�nition of, 386
equation, 387
forward, 386
quotients, 386

First buckling mode, 217 
First translation theorem:

form of, 295 
inverse form of, 295

First-order chemical reaction, 24, 85 
First-order differential equations:

applications of, 23–26, 27–28, 85, 96 
methods for solving, 47, 55, 64, 72

First-order initial-value problem, 15 
First-order Runge-Kutta method, 374 
First-order system, 333
First-order system of differential equations:

de�nition of, 11, 333 
linear system, 333 

Flexural rigidity, 214 
Folia of Descartes, 14
Forced electrical vibrations, 208 
Forced motion of a spring/mass system, 205
Forcing function, 129, 173, 204–205
Forgetfulness, 33
Formula error, 370 
Forward difference, 386 
Fourth-order Runge-Kutta method:

for �rst-order differential equations, 79, 375 
for second-order differential equations, 381 
for systems of �rst-order equations, 383 
truncation errors for, 376 

Free electrical vibrations, 208
Free motion of a spring/mass system: 

damped, 202 
undamped, 197–198

Freely falling body, 26–27, 31, 103
Frequency:

circular, 198
of simple harmonic motion, 198 
natural, 198 

Frequency response curve, 213 
Fresnel cosine integral:

de�nition of, APP-6
graph of, APP-7

Fresnel sine integral: 
de�nition of, 62, 63, APP-6 
graph of, APP-7 

Frobenius, Ferdinand Georg, 254 
Frobenius, method of, 254 
Frobenius’ theorem, 254 
Fulcrum supported end of a beam, 215 
Full-wave recti�cation of sine function, 316 
Functions de�ned by integrals, 11, APP-3 
Fundamental critical speed, 201
Fundamental matrix, 358, 364 
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Fundamental set of solutions:
existence of, 125, 337 
of a linear ordinary differential equation, 125
of a linear system, 337 

G 
g (acceleration due to gravity), 27 
Galileo Galilei, 27 
Galloping Gertie, 234–235 
Gamma function:

de�nition of, APP-3, APP-9
graph of, APP-3
recursion relation for, 263, 285, APP-4

Gauss’ hypergeometric function, 262 
Gaussian elimination, 388, APP-18 
Gauss-Jordan elimination, 344, 345, APP-18 
General form of a differential equation, 5 
General solution:

of Bessel’s differential equation, 264, 265 
of a Cauchy-Euler differential equation, 167–168 
of a differential equation, 12 
of a homogeneous linear differential equation, 126, 

136–137 
of a homogeneous system of linear differential  

equations, 337 
of  a linear �rst-order differential equation, 57
of the modi�ed Bessel’s differential equation, 265, 266
of a nonhomogeneous linear differential equation, 127 
of a nonhomogeneous system of linear differential 

equations, 338 
Generalized factorial function, APP-4 
Generalized functions, 320 
George Washington Monument, 214
Global truncation error, 371 
Gompertz, Benjamin, 100
Gompertz differential equation, 99–100 
Gospel of Judas, 87
Green’s function:

for a boundary-value problem, 180
for an initial-value problem, 173–174
relationship to Laplace transform, 312 
for a second-order differential operator, 174

Growth and decay, 23, 85 
Growth constant, 86 

H
Half-life: 

of carbon-14, 87 
de�nition of, 86
of plutonium-239, 86
of potassium-40, 112
of radium-226, 86 
of uranium-238, 86 

Half-wave recti�cation of sine function, 317 
Hard spring, 223 
Harvesting of a �shery, model of, 99
Heart pacemaker, model for, 64, 95
Heaviside, Oliver, 298 

Heaviside function, 298 
Henries (h), 26
Hermite, Charles, 275 
Hermite polynomials, 276 
Hermite’s differential equation, 275 
Higher-order differential equations, 118 
Hinged end of a beam, 215 
Hole through the Earth, 24–25 
Homogeneous boundary conditions, 173, 179
Homogeneous boundary-value problem 179
Homogeneous differential equation:

with homogeneous coef�cients, 72 
linear, 121, 136

Homogeneous function of degree �, 72
Homogeneous systems:

of algebraic equations, APP-23 
of linear �rst-order differential equations, 333 

Hoëné-Wronski, Jósef Maria, 124
Hooke’s law, 32, 197 

I
IC, 15
Iceman (Ötzi), 115
Identity matrix, APP-14 
Identity property of power series, 238
Immigration model, 99 
Impedance, 209 
Implicit solution of an ODE, 8 
Improved Euler method, 371–372 
Impulse response, 321 
Indicial equation, 256 
Indicial roots, 256 
Inductance, 26 
In�ection, points of, 46, 98 
Inhibition term, 97 
Initial condition(s): 

for an ordinary differential equation, 15, 119 
for a system of linear �rst-order differential equations, 335 

Initial-value problem:
de�nition of, 15
�rst-order, 15
geometric interpretation of, 15–16
for a linear system, 335
nth-order, 15, 119 
second-order, 15, 119, 173 

Input, 62, 129, 173, 197 
Integral-de�ned function, 11, 134, APP-3
Integral equation, 310 
Integral, Laplace transform of an, 310 
Integral transform(s):

de�nition of, 279 
inverse of a, 286 
kernel of, 279 
Laplace, 279 

Integrating factor(s):
for a linear �rst-order differential equation, 56 
for a nonexact �rst-order differential equation, 68–69 

Integration of a power series, 238 
Integrodifferential equation, 311 
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Interactions, number of, 24 
Interest compounded continuously, 92 
Interior mesh points, 387 
Interpolating function, 378 
Interval: 

of convergence, 237 
of de�nition, 6 
of existence, 6 
of existence and uniqueness, 18, 119 
of validity, 6

Inverse Laplace transform:
de�nition of, 286 
linearity of, 287 

Inverse matrix:
de�nition of, APP-15
by elementary row operations, APP-21 
formula for, APP-16 

Irregular singular point, 253 
Isoclines, 39, 45 
Isolated critical point, 46 
IVP, 15, 119

K
Kernel of an integral transform, 279 
Kinetic friction, 233  
Kirchhoff’s �rst law, 111 
Kirchhoff’s second law, 26, 111 

L
Lagrange, Joseph Louis, 159
Laguerre polynomials, 317 
Laguerre’s differential equation, 317 
Laplace, Pierre-Simon Marquis de, 280
Laplace transform: 

behavior as s S `, 284 
change of scale theorem for, 286
convolution theorem for, 308 
de�nition of, 279 
of a derivative, 289 
derivatives of, 306 
of Dirac delta function, 319 
existence, suf�cient conditions for, 282–283 
of an integral, 310 
inverse of, 286 
kernel of, 279 
of a linear initial-value problem, 289–290 
linearity of, 281 
of a periodic function, 313 
of systems of linear differential equations, 322–324 
tables of, 282, APP-29 
translation theorems for, 295, 299 
of unit step function, 299 

Lascaux cave paintings, dating of, 92 
Law of mass action, 100 
Leaking tanks, 26, 31, 103, 106
Least-squares line, 104 
Legendre, Adrien-Marie, 262 
Legendre function, 272 

Legendre polynomials:
�rst six, 271
graphs of, 272 
properties of, 272 
recurrence relation for, 272 
Rodrigues’ formula for, 272 

Legendre’s differential equation:
of order n, 262
solution of, 270 

Leibniz notation, 4 
Leibniz’s rule for differentiation of an integral, APP-7, 

APP-8 
Level curves, 50 
Level of resolution of a mathematical model, 22
Libby, Willard, 86 
Libby half-life, 87 
Lineal element, 37 
Linear dependence:

of functions, 123 
of solution vectors, 336 

Linear differential operator, 121–122, 152–153, 174 
Linear independence:

of eigenvectors, APP-24 
of functions, 123 
of solutions, 124 
of solution vectors, 336
and the Wronskian, 124, 336–337 

Linear operator, 122, 152 
Linear ordinary differential equation: 

applications of, 23–24, 25, 26–27, 64, 85–91, 197–209, 
215–215, 217–218 

associated homogeneous equation, 121
auxiliary equation for, 135–136, 167 
boundary-value problem for, 120, 213–218
complementary function for, 128 
de�nition of, 5, 55, 119, 120 
�rst order, 5, 55–56, 160 
fundamental set of solutions for, 125
general solution of, 126, 127 
homogeneous, 121
initial-value problem for, 15, 119, 197 
nonhomogeneous, 121 
particular solution of, 127 
solution of, 55, 135, 142, 152, 159, 166 
standard forms for, 55, 160, 161, 243, 253 
superposition principles for, 122, 128 

Linear regression, 104 
Linear second-order boundary-value problem, 120
Linear spring, 222 
Linear system, 129, 333 
Linear systems of algebraic equations, APP-18 
Linear systems of differential equations: 

de�nition of, 107, 333 
general solution of, 337, 338 
homogeneous, 333
matrix form of, 333–334 
method for solving, 341, 344, 348, 355, 357 
nonhomogeneous, 333 

Linear transform, 281 
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Linearity property: 
of differentiation, 279
of integration, 279
of the inverse Laplace transform, 287 
of the Laplace transform, 281 

Linearization:
of a differential equation, 224 
of a function of one variable at a point, 77 

Lissajous curve, 326  
Local truncation error, 370 
Logarithmic integral function:

de�nition of, APP-6
graph of, APP-7

Logistic curve, 97 
Logistic differential equation, 97 
Logistic function, 97 
Losing a solution, 49 
Lotka-Volterra predator-prey model, 109 
LR-series circuit, differential equation of, 90 
LRC-series circuit, differential equation of, 26 LRC-series circuit, differential equation of, 26 LRC

M
Malthus, Thomas, 23 
Mass action, law of, 100 
Mathematical model, constructing a, 22
Mathematical model(s): 

absolute temperature of a cooling body, 115 
aging spring, 201, 274
ballistic pendulum, 230
bending of a circular plate, 172
bobbing motion of a �oating barrel, 31 
box sliding down an inclined plane, 96 
buckling of a tapered column, 261
buckling of a thin vertical column, 217, 274 
cables of a suspension bridge, 28, 225
carbon dating, 86–87
chain pulled upward by a constant force, 227 
chemical reactions, 24–25, 46–47, 100
column bending under its own weight, 274
competition models, 110–111 
concentration of a nutrient in a cell, 115
constant harvest, 95 
continuous compound interest, 92
cooling cup of coffee, 93
cooling/warming, 24, 87
coupled pendulums, 324, 329 
coupled springs, 322 
de�ection of beams, 214–215, 217, 301 
de�ection of a rotating shaft, 221
doomsday for a population, 104
double pendulum, 324
double spring, 201, 233, 322
draining a tank, 26, 31 
dropping supplies from a plane, 230
drug infusion, 33
evaporating raindrop, 95 
evaporation, 104
extinction of a population, 104
falling body (with air resistance), 27, 31, 46, 94, 103

falling body (with no air resistance), 27, 94 
falling chain, 71
�rst-order reaction, 85
�uctuating population, 33
forgetfulness, 33 
growth and decay, 23, 85–86, 91 
hard spring, 223 
harvesting �sheries, 99 
heart pacemaker, 64, 95 
hole through the Earth, 32–33 
immigration, 99 
infusion of a drug, 33
interacting animal species, 109, 110 
leaking tanks, 26, 102–103, 106
learning theory, 33 
least time, 115
LR-series circuit, 31, 90 
LRC-series circuit, 26 LRC-series circuit, 26 LRC
memorization, 95 
mixtures, 25, 88–89, 108, 186–187, 353 
networks, 111, 361 
nutrient �ow through a membrane, 114
oscillating chain, 514
pendulum motion on the Earth, 223–224 
pendulum motion on the Moon, 231
pendulum of varying length, 275
population dynamics, 23, 30, 86, 96–99
potassium-argon dating, 87, 112
potassium-40 decay, 111
predator-prey, 109–110 
pursuit curves, 229
radioactive decay, 23, 107–108
radioactive decay series, 62, 107–108, 111
raindrops, 34, 95, 106 
range of a projectile, 329–330 
RC-series circuit, 31, 90 RC-series circuit, 31, 90 RC
re�ecting surface, 33 
resonance, 207, 213 
restocking �sheries, 99 
rocket motion, 32, 226 
rotating �uid, 33 
rotating pendulum, 423
rotating rod containing a sliding bead, 233
rotating string, 214 
second-order reaction, 25, 100
shape of a cable suspended between two vertical  

supports, 28, 54
skydiving, 94, 105 
sliding box, 96
snowplow problem, 34 
soft spring, 223
solar collector, 103 
spread of a disease, 24, 98–99, 113 
spring-coupled pendulums, 329
spring/mass systems, 197–207 
spring pendulum, 234
suspended cables, 28, 225–226 
swimming a river, 105–106
Tacoma Narrows Suspension Bridge, 234–235
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Mathematical model(s) (continued)continued)continued
temperature in an annular cooling �n, 277
temperature in cooling �n, 277
terminal velocity, 46, 94, 103
time of death, 93 
tractrix, 33 
tsunami, shape of, 103–104 
U.S. population, 102
variable mass, 32, 226–227
water clock, 106
wire hanging under its own weight, 26, 225 

Mathieu functions, 262 
Matrix: 

addition of, APP-12 
associative law of, APP-14
augmented, APP-18
characteristic equation of, APP-23 
column, APP-11
defective, APP-24, APP-25 
de�nition of, APP-11 
derivative of, APP-17 
determinant of, APP-14
diagonal, 363, APP-28
difference of, APP-12 
distributive law for, APP-14
eigenvalue of, APP-22 
eigenvector of, APP-22 
elementary row operations on, APP-18
entry of, APP-11 
equality of, APP-11 
exponential, 362 
form of a �rst-order system, 333–334 
fundamental, 357–358, 364 
integral of, APP-17 
inverse of, APP-16, APP-21 
multiples of, APP-11 
multiplication of, APP-13 
multiplicative identity, APP-14 
multiplicative inverse, APP-15 
nilpotent, 366 
nonsingular, APP-15 
product of, APP-13 
reduced row-echelon form of, APP-19 
row-echelon form of, APP-18 
singular, APP-15 
size, APP-11 
square, APP-11
sum of, APP-12
symmetric, 346 
transpose of, APP-15 
vector, APP-11 
zero, APP-14 

Matrix exponential: 
computation of, 364 
de�nition of, 362 
derivative of, 363
as a fundamental matrix, 364

Matrix form of a linear system, 333–334 
Meander function, 316

Memorization, mathematical model for, 95 
Method of Frobenius, 254 
Method of isoclines, 39, 45 
Method of separation of variables, 47–48 
Method of undetermined coef�cients, 142, 152
Minor, APP-16 
Mixtures:

multiple tanks, 108, 112
single tank, 25, 30 

Modeling process, steps in, 22–23 
Modi�ed Bessel equation:

general solution of, 265, 266
of order �, 265
parametric form of, 266

Modi�ed Bessel functions:
of the �rst kind, 265 
graphs of, 265
of the second kind, 265 

Movie, 326 
Multiplication:

of matrices, APP-13 
of power series, 239–240 

Multiplicative identity, APP-14
Multiplicative inverse, APP-15, APP-16, APP-21 
Multiplicity of eigenvalues, 344–348 
Multistep numerical method: 

advantages of, 380 
de�nition of, 378
disadvantages of, 380 

N
Named functions, 262 
Natural frequency of free undamped motion, 198
Networks, 111, 323–324 
Newton, Isaac, 26 
Newton’s dot notation for differentiation, 4 
Newton’s �rst law of motion, 26 
Newton’s law of cooling/warming:

with constant ambient temperature, 24, 87–88, 92–93 
with variable ambient temperature, 30, 92–93 

Newton’s second law of motion, 27, 234 
Newton’s second law of motion as the rate of change of 

momentum, 32, 226 
Newton’s universal law of gravitation, 32 
Nilpotent matrix, 366 
Nonelementary integral, 11
Nonhomogeneous boundary-value problem, 179
Nonhomogeneous linear ordinary differential  

equation:
de�nition of, 121
solving a, 121, 142, 152, 159 

Nonhomogeneous systems of linear �rst-order differential 
equations:

de�nition of, 333 
general solution of, 338
particular solution of, 338 

Nonlinear damping, 222 
Nonlinear ordinary differential equation:

de�nition of, 6
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solvable by �rst-order methods, 189–190 
Taylor series solution of, 190 

Nonlinear pendulum, 223–224 
Nonlinear spring:

de�nition of, 222 
hard, 223
soft, 223 

Nonlinear system of differential 
equations, 107 

Nonsingular matrix, APP-15
Normal form:

of a linear system, 333 
of an ordinary differential equation, 5 
of a system of �rst-order equations, 333 

Notation for derivatives, 4
n-parameter family of solutions, 9 
nth-order differential operator, 122, 152 
nth-order initial-value problem, 15, 119 
Nullcline, 45 
Numerical methods:

Adams-Bashforth-Moulton method, 379 
adaptive methods, 377 
applied to higher-order equations, 381
applied to systems, 381, 383, 385
continuing, 378 
errors in, 78–79 
Euler’s method, 77–78, 369 
�nite difference method, 386–387
improved Euler’s method, 371–372 
multistep, 378 
predictor-corrector method, 372, 379 
RK4 method, 381 
RKF45 method, 377 
shooting method, 388 
single-step, 378 
stability of, 380 
starting, 378 
truncation errors in, 370–371 

Numerical solution curve, 80 
Numerical solver, 79 
Nutrient �ow through a membrane, 114

O 
ODE, 3 
Ohms (V), 26 
Ohm’s law, 91 
One-dimensional phase portrait, 40 
One-parameter family of solutions, 9 
Order, exponential, 282 
Order of a differential equation, 4 
Order of a Runge-Kutta method, 374 
Ordinary differential equation, 3 
Ordinary point of a linear second-order differential 

equation:
de�nition of, 243, 251 
solution about, 245, 246 

Orthogonal trajectories, 116 
Ötzi (the iceman), 115 
Output, 62, 129, 173, 197 

Overdamped series circuit, 202 
Overdamped spring/mass system, 208 

P
Parallel springs, 201
Parametric form of  Bessel equation of  order �, 265
Parametric form of modi�ed Bessel equation of order �, 266
Partial differential equation, 3 
Partial fractions, 290, 292 
Particular solution:

de�nition of, 9
�nding a, 142, 152, 159
of a linear differential equation, 127 
of a system of linear differential equations, 338 

PDE, 3 
Pendulum:

ballistic, 230
double, 324 
free damped, 228–229
linear, 224
on the Moon, 231 
nonlinear, 223 
period of, 231 
physical, 223
simple, 223 
spring, 234
spring-coupled, 329 
of varying length, 275 

Pendulum motion on the Moon, 231
Percentage relative error, 79 
Period of simple harmonic motion, 198
Periodic boundary conditions, 221 
Periodic function, Laplace transform of, 313 
Phase angle, 199 
Phase line, 40 
Phase plane, 342 
Phase portrait(s): 

for �rst-order equations, 40 
for systems of two linear �rst-order differential  

equations, 343 
Physical pendulum, 223 
Piecewise-continuous functions, 59, 282 
Piecewise-linear differential equation, 59
Pin supported end of a beam, 215 
Points of in�ection, 46 
Polynomial differential operator, 122
Population growth, 23
Population models: 

birth and death, 20
doomsday, 104 
extinction, 45, 104
�uctuating, 95
harvesting, 95, 99, 102 
immigration, 99 
logistic, 97 
Malthusian, 23 
restocking, 99 

Potassium-argon method of dating, 87, 112 
Potassium-40 decay, 111
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Power series:
absolute convergence of, 237 
arithmetic of, 239 
center, 237 
convergence of, 237 
de�nes a function, 238 
de�nition of, 237 
differentiation of, 238
divergence of, 237 
identity property of, 238 
integration of, 238 
interval of convergence, 237 
Maclaurin, 239 
radius of convergence, 237 
ratio test for, 239 
represents a continuous function, 238 
represents an analytic function, 238 
review of, 237 
solutions of differential equations, 245 
Taylor, 239 

Power series solutions: 
existence of, 245 
method of �nding, 246 
solution curves of, 251 

Predator-prey interaction, 109 
Predator-prey model, 109 
Predictor-corrector method, 372, 379 
Prime notation, 4 
Projectile motion, 188, 323–324 
Proportional quantities, 23
Pure resonance, 207
Pursuit curve, 229 

Q
Qualitative analysis of a �rst-order differential  

equation, 37, 39 
Quasi frequency, 204 
Quasi period, 204 

R
Radioactive decay, 23, 85–87, 111–112 
Radioactive decay series, 107–108 
Radiometric dating techniques, 87
Radius of convergence of a power series, 237 
Radium decay, 23
Radon, 23
Raindrop, 34, 106 
Rate function, 37 
Ratio test, 238 
Rational roots of a polynomial equation, 139 
RC-series circuit, differential equation of, 90 RC-series circuit, differential equation of, 90 RC
Reactance, 209 
Reactions, chemical, 23, 24–25, 85, 100–101
Rectangular pulse, 304 
Recti�ed sine wave, 316 
Recurrence relation, 247, 249 
Recurrence relation, differential, 268 
Recursion formula for gamma function, 263, APP-4 
Reduced row-echelon form of a matrix, APP-19 

Reduction of order, 132–133 
Reduction to separation of variables, 74
Re�ecting surface, 33
Regular singular point, 253 
Regression line, 104 
Relative error, 79 
Relative growth rate, 96 
Repeller, 43, 343 
Resistance:

air, 27, 31, 46, 94 
electrical, 26, 90 

Resonance, pure, 207 
Resonance curve, 213 
Resonance frequency, 213
Response: 

impulse, 321
as a solution of a DE, 62, 129, 173 
of a system, 29, 90, 392 
zero-input, 293 
zero-state, 293 

Rest solution, 173 
Restocking of a �shery, model of, 99 
Riccati’s differential equation, 76 
RK4 method, 79, 375 
RKF45 method, 377 
Robins, Benjamin, 230
Rocket motion, 32, 94, 226 
Rodrigues’ formula, 272
Rotating �uid, shape of, 33 
Rotating rod and bead, 233 
Rotating shaft, 221
Rotating string, 217
Rotational form of Newton’s second law of  

motion, 234 
Round-off error, 369 
Row-echelon form, APP-18 
Row operations:

elementary, APP-18 
symbols for, APP-19 

Runge-Kutta-Fehlberg method, 377 
Runge-Kutta methods:

�rst-order, 374 
fourth-order, 79, 374, 375 
second-order, 374 
for systems, 381, 383 
truncation errors for, 377

Rutherford, Ernest, 87

S
Sawing a log, mathematical model for, 116–117
Sawtooth function, 316 
Schwartz, Laurent, 320 
Second-order boundary-value problem, 120, 385 
Second-order chemical reaction, 25, 100 
Second-order homogeneous linear system, 351 
Second-order initial-value problem, 15, 117 
Second-order ordinary differential equation as a  

system, 381 
Second-order Runge-Kutta method, 374 
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Second translation theorem: 
alternative form of, 300 
form of, 299 
inverse form of, 300 

Semi-stable critical point, 43 
Separation of variables, method of, 47 
Sequence of partial sums, 237 
Series: 

power, 237 
review of, 237–239 
solutions of ordinary differential equations, 245, 254 

Series circuits, differential equations of, 26, 90 
Shifting a summation index, 240 
Shifting theorems for Laplace transforms, 295, 299 
Shooting method, 388 
Shroud of Turin, dating of, 92 
Sifting property, 320 
Signum function, 233 
Simple harmonic electrical vibrations, 208 
Simple harmonic motion of a spring/mass system, 198 
Simple pendulum, 223 
Simply supported end of a beam, 215 
Sine integral function: 

de�nition of, 62, 63, APP-6
graph of, APP-7 

Single-step numerical method:
advantages of, 380 
de�nition of, 378
disadvantages of, 380 

Singular matrix, APP-15
Singular point:

at `, 244
irregular, 253 
of a linear �rst-order differential equation, 58 
of a linear second-order differential equation, 243, 253 
regular, 253 

Singular solution, 10
SIR model, 113 
Sky diving, 31, 94 
Sliding box on an inclined plane, 96 
Sliding friction, 96, 233 
Slope �eld, 37
Slope function, 37 
Snowplow problem, 34 
Soft spring, 223 
Solar collector, 103 
Solution curve, 7
Solution of an ordinary differential equation:

about an ordinary point, 245
about a singular point, 254–255
constant, 13, 39 
de�ned by an integral, 11, 51, 60–61, 63
de�nition of, 6 
equilibrium, 40 
explicit, 8 
general, 12, 57, 126, 127 
graph of, 7 
implicit, 8 
interval of de�nition for, 6 

n-parameter family of, 9 
number of, 9 
one-parameter family of, 9
particular, 9, 127
piecewise de�ned, 10 
singular, 10 
trivial, 7 

Solution of a system of ordinary differential  
equations:

de�ned, 11, 334 
general, 337, 338 
particular, 338 

Solution vector, 334
Special functions, 62, 262 
Speci�c growth rate, 96 
Spherical Bessel functions:

of the �rst kind, 270
of the second kind, 270

Spread of a communicable disease, 24, 99, 113 
Spring constant, 197 
Spring/mass systems, 197–207
Spring pendulum, 234 
Springs, coupled, 322–323
Springs, Hooke’s law for, 32, 197
Springs, linear, 222
Springs, nonlinear, 222
Springs, parallel, 201
Springs, in series, 201 
Square matrix, APP-11
Square wave, 314, 316
Stable numerical method, 380 
Staircase function, 304 
Standard form of a linear differential equation:

�rst order, 35, 160
second order, 161, 253 

Starting methods, 378 
State of a system, 29 
State variables, 29 
Stationary point, 39 
Steady-state current, 91 
Steady-state solution, 206 
Steady-state term, 91, 206
Stefan’s law of radiation, 115  
Step size, 77 
Streamlines, 71 
Subscript notation, 4 
Substitutions in an ordinary differential equation,  

72, 189 
Sum of two matrices, APP-12
Summation index, shifting of, 240 
Superposition principle:

for homogeneous linear differential equations, 122 
for homogeneous linear systems, 335 
for nonhomogeneous linear differential equations, 128 

Suspended cables, 28
Suspension bridge, 28, 225 
Symmetric matrix, 346 
Synthetic division, 139 
Systematic elimination, 183 
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Systems of linear differential equations, methods  
for solving: 

by Laplace transforms, 322 
by matrices, 340, 355, 362 
by systematic elimination, 183 

Systems of linear �rst-order differential equations:
complementary function for, 338 
de�nition of, 333 
existence of a unique solution for, 335
fundamental set of solutions for, 337 
general solution of, 337, 341 
homogeneous, 333 
initial-value problem for, 335
matrix form of, 333–334 
nonhomogeneous, 333, 340 
normal form of, 333
particular solution for, 338 
solution of, 334 
superposition principle for, 335
undetermined coef�cients for, 355–357 
variation of parameters for, 357–360 
Wronskian for, 337 

Systems of ordinary differential equations, 10–11, 107, 183, 
190–191, 322, 332 

Systems reduced to �rst-order systems, 382 

T
Table of Laplace transforms, 282, APP-29
Tacoma Narrows Suspension Bridge, 234–235
Tangent lines, use of, 37–38 
Taylor polynomial, 191, 374 
Taylor series, use of, 190 
Telephone wires, shape of, 28, 225 
Temperature in an annular cooling �n, 377
Terminal velocity of a falling body, 46, 94, 103 
Theory of distributions, 320 
Three-term recurrence relation, 249
Threshold level, 116
Time of death, 93 
Torricelli’s law, 26 
Tractrix, 33 
Trajectories:

orthogonal, 116 
parametric equations of, 334 
in the phase plane, 334, 342 

Transfer function, 293 
Transform of a derivative, 289 
Transient solution, 206
Transient term, 91, 206 
Translation property of an autonomous DE, 43 
Translation theorems for Laplace transform:

�rst, 295
inverse forms of, 295, 300 
second, 299 

Transpose of a matrix, APP-15 
Triangular wave, 316 
Trivial solution, 7 

Truncation error:
for Euler’s method, 370 
global, 371, 376 
for improved Euler’s method, 373 
local, 370 
for RK4 method, 376 

Tsunami, model for, 103 
Two-dimensional phase portrait, 342–343 

U
Undamped spring/mass system, 197–198 
Underdamped series circuit, 208 
Underdamped spring/mass system, 203 
Undetermined coef�cients for linear DEs:

annihilator approach, 152 
superposition approach, 142 

Undetermined coef�cients for linear systems, 355 
Uniqueness theorems, 17, 119, 335 
Unit impulse, 318 
Unit step function:

de�nition of, 298, 302 
graph of, 298 
Laplace transform of, 299 

Universal law of gravitation, 32
Unstable critical point, 43 
Unstable numerical method, 380 
Unsymmetrical vibrations of a spring, 223
USS Missouri, 221

V
Variable mass, 226–227 
Variable spring constant, 201 
Variables, separable, 47 
Variation of parameters:

for linear �rst-order differential equations, 160 
for linear higher-order differential equations, 159 
for systems of linear �rst-order differential  

equations, 357 
Vector, column, 334, APP-11 
Vectors, as solutions of systems of linear differential 

equations, 334 
Velocity of a falling raindrop, 106
Verhulst, P. F., 97 
Vibrations, spring/mass systems, 197–207
Virga, 34 
Viscous damping, 27 
Voltage drops, 26 
Volterra integral equation, 310 

W
Water clock, 106 
Weight, 27 
Weight function of a linear system, 320
Weighted average, 374
Whirling pendulum, 224 
Wire hanging under its own weight, 28, 225 
Wronski, Józef Maria Hoëné-, 124
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Wronskian determinant:
for a set of functions, 124 
for a set of solutions of a homogeneous linear differential 

equation, 124–125 
for a set of solution vectors of a homogeneous linear 

system, 337 

Y
Young’s modulus of elasticity, 214 

Z
Zero-input response, 293 
Zero matrix, APP-14 
Zero-state response, 293 
Zeros of Bessel functions, 268 
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