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Preface

“No happy phrase of ours is ever quite original with us; there is nothing of our own in
it except some slight change born of our temperament, character, environment,
teachings and associations.”

Mark Twain

This textbook is designed for chemical engineering students from the sophomore level to the first
year of graduate school. The approach blends molecular perspective with principles of
thermodynamics to build intuitive reasoning regarding the behavior of species in chemical
engineering processes and formulations. The molecular perspective is represented by descriptions
encompassing: the relation of kinetic energy to temperature; the origin and consequences of
intermolecular potentials; molecular acidity and basicity; methods used to incorporate molecular
properties into molecular simulations; and the impact of molecular properties on macroscopic energy
and entropy. This text is distinctive in making molecular perspectives accessible at the introductory
level and connecting properties with practical implications.

This second edition offers enhanced coverage of biological, pharmaceutical, and electrolyte
applications including osmotic pressure, solid solubility, and coupled reactions. Throughout the text,
topics are organized to implement hierarchical instruction with increasing levels of detail. Content
requiring deeper levels of theory is clearly delineated in separate sections and chapters. Less
complex empirical model approaches have been moved forward to provide introductory practice
with concepts and to provide motivation for understanding models more fully. The approach also
provides more instructor flexibility in selecting topics to cover. Learning objectives have been
clearly stated for each chapter along with chapter summaries including “important equations” to
enhance student focus. Every chapter includes practice problems with complete solutions available
online, as well as numerous homework problems. Online supplements include practice tests spanning
many years, coursecasts describing difficult concepts or how to use computational tools, ConcepTests
to quickly check comprehension, and objective lists that can be customized for greater detail. We also
recommend the related resources available at the www.learncheme.com.

Unique features of the text include the level of pedagogical development of excess function models
and electrolytes. For mixture models, the key assumptions and derivation steps are presented,
stimulating readers to consider how the molecular phenomena are represented. For electrolytes and
biological systems, the text makes connections between pH and speciation and provides tools for
rapidly estimating concentrations of dissociated species. We emphasize speciation and problem
solving in this introduction, instead of focusing on advanced theories of electrolyte activity. The
material is written at an intermediate level to bridge students from the introductions in chemistry to
the more complex models of electrolytes provided by process simulators.

We have created a number of homework problems with many variants, intending that different parts
can be assigned to different classes or groups, not intending that each student work all parts.

Notes to Students
Thermodynamics is full of terminology and defined properties. Please note that the textbook

provides a glossary and a summary of notation just before Unit I. Also consider the index a resource.
We consider the examples to be an integral part of the text, and we use them to illustrate important

http://www.learncheme.com


points. Examples are often cross-referenced and are therefore listed in the table of contents. We
enclose important equations in boxes and we use special notation by equation numbers: (*) means that
the equation assumes temperature-independent heat capacity; (ig) means the equation is limited to
ideal gases. We include margin notes to highlight important concepts or supplemental information.

Computer programs facilitate the solutions to homework problems, but they should not be used to
replace an understanding of the material. Computers are tools for calculating, not for thinking. To
evaluate your understanding, we recommend that you know how to solve the problem by hand
calculations. If you do not understand the formulas in the programs it is a good indication that you
need to do more studying before using the program so that the structure of the program makes sense. It
is also helpful to rework example problems from the text using the software.
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Glossary

Adiabatic—condition of zero heat interaction at system boundaries.
Association—description of complex formation where all molecules in the complex are of
the same type.
Azeotrope—mixture which does not change composition upon vapor-liquid phase change.
Barotropy—the state of a fluid in which surfaces of constant density (or temperature) are
coincident with surfaces of constant pressure.
Binodal—condition of binary phase equilibrium.
Dead state—a description of the state of the system when it is in equilibrium with the
surroundings, and no work can be obtained by interactions with the surroundings.
Diathermal—heat conducting, and without thermal resistance, but impermeable to mass.
Efficiency—see isentropic efficiency, thermal efficiency, thermodynamic efficiency.
EOS—Equation of state.
Fugacity—characterizes the escaping tendency of a component, defined mathematically.
Heteroazeotrope—mixture that is not completely miscible in all proportions in the liquid
phase and like an azeotrope cannot be separated by simple distillation. The
heteroazeotropic vapor condenses to two liquid phases, each with a different composition
than the vapor. Upon partial or total vaporization, the original vapor composition is
reproduced.
Infinite dilution—description of a state where a component’s composition approaches
zero.
Irreversible—a process which generates entropy.
Isenthalpic—condition of constant enthalpy.
Isentropic—condition of constant entropy.
Isentropic efficiency—ratio characterizing actual work relative to ideal work for an
isentropic process with the same inlet (or initial) state and the same outlet (or final)
pressure. See also thermodynamic efficiency, thermal efficiency.
Isobaric—condition of constant pressure.
Isochore—condition of constant volume. See isosteric.
Isopiestic—constant or equal pressure.
Isopycnic—condition of equal or constant density.
Isolated—A system that has no interactions of any kind with the surroundings (e.g. mass,
heat, and work interactions) is said to be isolated.
Isosteric—condition of constant density. See isochore.
Isothermal—condition of constant temperature.
LLE—liquid-liquid equilibria.
Master equation—U(V,T).



Measurable properties—variables from the set {P, V, T, CP, CV} and derivatives
involving only {P, V, T}.
Metastable—signifies existence of a state which is non-equilibrium, but not unstable, e.g.,
superheated vapor, subcooled liquid, which may persist until a disturbance creates
movement of the system towards equilibrium.
Nozzle—a specially designed device which nearly reversibly converts internal energy to
kinetic energy. See throttling.
Polytropic exponent—The exponent n in the expression PVn = constant.
Quality—the mass fraction of a vapor/liquid mixture that is vapor.
rdf—radical distribution function.
Reference state—a state for a pure substance at a specified (T,P) and type of phase
(S,L,V). The reference state is invariant to the system (P,T) throughout an entire
thermodynamic problem. A problem may have various standard states, but only one
reference state. See also standard state.
Sensible heat changes—heat effects accompanied by a temperature change.
Specific heat—another term for CP or CV with units per mass.

Specific property—an intensive property per unit mass.
SLE—solid-liquid equilibria.
Solvation—description of complex formation where the molecules involved are of a
different type.
Spinodal—condition of instability, beyond which metastability is impossible.
Standard conditions—273.15 K and 0.1 MPa (IUPAC), standard temperature and
pressure.
Standard state—a state for a pure substance at a specified (T,P) and type of phase (S,L,V).
The standard state T is always at the T of interest for a given calculation within a problem.
As the T of the system changes, the standard state T changes. The standard state P may be a
fixed P or may be the P of the system. Gibbs energies and chemical potentials are
commonly calculated relative to the standard state. For reacting systems, enthalpies and
Gibbs energies of formation are commonly tabulated at a fixed pressure of 1 bar and
298.15 K. A temperature correction must be applied to calculate the standard state value at
the temperature of interest. A problem may have various standard states, but only one
reference state. See also reference state.
State of aggregation—solid, liquid, or gas.
Steady-state—open flow system with no accumulation of mass and where state variables
do not change with time inside system boundaries.
STP—standard temperature and pressure, 273.15 K and 1 atm. Also referred to as
standard conditions.
Subcooled—description of a state where the temperature is below the saturation
temperature for the system pressure, e.g., subcooled vapor is metastable or unstable,
subcooled liquid is stable relative to the bubble-point temperature; superheated vapor is



stable, superheated liquid is metastable or unstable relative to the dew-point temperature;
subcooled liquid is metastable or unstable relative to the fusion temperature.
Superheated—description of a state where the temperature is above the saturation
temperature for the system pressure. See subcooled.
Thermal efficiency—the ratio or work obtained to the heat input to a heat engine. No
engine may have a higher thermal efficiency than a Carnot engine.
Thermodynamic efficiency—ratio characterizing actual work relative to reversible work
obtainable for exactly the same change in state variables for a process. The heat transfer for
the reversible process will differ from the actual heat transfer. See also isentropic
efficiency, thermal efficiency.
Throttling—a pressure drop without significant change in kinetic energy across a valve,
orifice, porous plug, or restriction, which is generally irreversible. See nozzle.
Unstable—a state that violates thermodynamic stability, and cannot persist. See also
metastable, spinodal.
VLE—vapor-liquid equilibrium.
Wet steam—a mixture of water vapor and liquid.
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Unit I: First and Second Laws

Aristotle, 384–322 BC
The ancient Greeks thought that there were only four elements: earth, air, fire, and water. As a

matter of fact, you can explain a large number of natural phenomena with little more. The first and
second laws of thermodynamics can be developed and illustrated quite completely with just solid
blocks (earth), ideal gases (air), steam property tables (water), and heat (fire). Without significantly
more effort, we can include a number of other “elements”: methane, carbon dioxide, and several
refrigerants. These additional species are quite common, and charts that are functionally equivalent to
the steam property tables are readily available.

The first and second laws provide the foundation for all of thermodynamics, and their importance
should not be underestimated. Many engineering disciplines typically devote an entire semester to the
“earth, air, fire, and water” concepts. This knowledge is so fundamental and so universal that it is
essential to any applied scientist. Nevertheless, chemical engineers must quickly lay this foundation
and move on to other issues covered in Units II, III, and IV. The important thing for chemical
engineers to anticipate as they move through Unit I is that the principles are at the core of the entire
text and it will be necessary to integrate information from Unit I in the later units. The key is to follow
the methods of applying systematically the first law (energy balance) and the second law (entropy
balance). Watch carefully how the general equations are quickly reduced to the specific problem at
hand. Especially watch how the systems of equations are developed to match the unknown variables
in the problem. Learn to perform similar reductions quickly and accurately for yourself. It takes
practice, but thorough knowledge of that much will help immensely when it comes to Unit II.



Chapter 1. Basic Concepts

“Aside from the logical and mathematical sciences, there are three great branches of
natural science which stand apart by reason of the variety of far reaching deductions
drawn from a small number of primary postulates. They are mechanics,
electromagnetics, and thermodynamics.

These sciences are monuments to the power of the human mind; and their intensive
study is amply repaid by the aesthetic and intellectual satisfaction derived from a
recognition of order and simplicity which have been discovered among the most complex
of natural phenomena... Yet the greatest development of applied thermodynamics is still
to come. It has been predicted that the era into which we are passing will be known as
the chemical age; but the fullest employment of chemical science in meeting the various
needs of society can be made only through the constant use of the methods of
thermodynamics.”

Lewis and Randall (1923)

Lewis and Randall eloquently summarized the broad significance of thermodynamics as long ago
as 1923. They went on to describe a number of the miraculous scientific developments of the time and
the relevant roles of thermodynamics. Historically, thermodynamics has guided the development of
steam engines, refrigerators, nuclear power plants, and rocket nozzles, to name just a few. The
principles remain important today in the refinement of alternative refrigerants, heat pumps, and
improved turbines, and also in technological advances including computer chips, superconductors,
advanced materials, fermentations, biological cycles, and bioengineered pharmaceuticals. These
latter-day “miracles” might appear to have little to do with power generation and refrigeration cycles
at first thought. Nevertheless, as Lewis and Randall point out, the implications of the postulates of
thermodynamics are far-reaching and will continue to be important in the development of even newer
technologies. Much of modern thermodynamics focuses on characterization of the properties of
mixtures, as their constituents partition into stable phases or inhomogeneous domains, and react. The
capacity of thermodynamics to bring “quantitative precision in place of the old, vague ideas”1 is as
germane today as it was then.

Before overwhelming you with the details that comprise thermodynamics, we outline a few
“primary postulates” as clearly as possible and put them into the context of what we will refer to as
classical equilibrium thermodynamics. In casual terms, our primary premises can be expressed as
follows:

1. You can’t get something for nothing. (Energy is conserved.)
2. Maintaining order requires work. (Entropy generation leads to lost work.)2

Occasionally, it may seem that we are discussing principles that are much more sophisticated. But
the fact is that all of our discussions can be reduced to these fundamental principles. The first
principle is a casual statement of the first law of thermodynamics (conservation of energy) which
will be introduced in Chapters 2 and 3. The second principle is a casual statement of the second law
of thermodynamics (entropy balance) which will be introduced in Chapter 4. When you find yourself
in the midst of a difficult problem, it may be helpful to remember the underlying principles. We will
see that coupling these two principles with some slightly sophisticated reasoning (mathematics



included) leads to many clear and reliable insights about a wide range of subjects from energy crises
to high-tech materials, from environmental remediation to biosynthesis. The bad news is that the level
of sophistication required is not likely to be instantly assimilated by the average student. The good
news is that many students have passed this way before, and the proper trail is about as well marked
as one might hope.

There is less-than-universal agreement on what comprises “thermodynamics.” If we simply take the
word apart, “thermo” sounds like “thermal,” which ought to have something to do with heat,
temperature, or energy. “Dynamics” ought to have something to do with movement. And if we could
just leave the identification of thermodynamics as the study of “energy movements,” it would be
sufficient for the purposes of this text. Unfortunately, such a definition would not clarify what
distinguishes thermodynamics from, say, transport phenomena or kinetics, so we should spend some
time clarifying the definition of thermodynamics in this way before moving on to the definitions of
temperature, heat, energy, and so on.

The definition of thermodynamics as the study of energy movements has evolved considerably to
include classical equilibrium thermodynamics, quantum thermodynamics, statistical thermodynamics,
and irreversible thermodynamics as well as nonequilibrium thermodynamics. Classical
thermodynamics has the general connotation of referring to the implications of constraints related to
multivariable calculus as developed by J.W. Gibbs. We spend a significant effort applying these
insights in developing generalized equations for the thermodynamic properties of pure substances.
Statistical thermodynamics focuses on the idea that knowing the precise states of 1023 atoms is not
practical and prescribes ways of computing the average properties of interest based on very limited
measurements. We touch on this principle in our introduction to entropy, in our kinetic theory and
molecular dynamics, and in the formulation of the internal energy relative to the intermolecular
potential energy. We generally refrain from detailed formulation of all the statistical averages,
however, maintaining the focus on simple concepts of molecular interactions. Irreversible
thermodynamics and nonequilibrium thermodynamics emphasize the ways that local concentrations of
atoms and energy evolve over periods of time. At this point, it becomes clear that such a broad
characterization of thermodynamics would overlap with transport phenomena and kinetics in a way
that would begin to be confusing at the introductory level. Nevertheless, these fields of study
represent legitimate subtopics within the general realm of thermodynamics.

1.1. Introduction
These considerations should give you some idea of the potential range of applications possible

within the general study of thermodynamics. This text will try to find a happy medium. One general
unifying principle about the perspective offered by thermodynamics is that there are certain properties
that are invariant with respect to time. For example, the process of diffusion may indicate some
changes in the system with time, but the diffusion coefficient is a property which only depends on a
temperature, density, and composition profile. A thermodynamicist would consider the diffusion
process as something straightforward given the diffusion coefficient, and focus on understanding the
diffusion coefficient. A transport specialist would just estimate the diffusion coefficient as best as he
could and get on with it. A kineticist would want to know how fast the diffusion was relative to other
processes involved. In more down-to-earth terms, if we were touring about the countryside, the
thermodynamicists would want to know where we were going, the transport specialists would want
to know how long it takes to get there, and the kineticists would want to know how fast the fuel was



running out.
In thermodynamics we utilize a few basic concepts: energy, entropy, and equilibrium. The ways in

which these are related to one another and to temperature, pressure, and density are best understood
in terms of the connections provided by molecular mechanisms. These connections, in turn, can be
summarized by the thermodynamic model (e.g., ideal gas), our quantitative description of the
substance. Showing how energy and entropy couple with molecular characteristics to impact
chemical process applications is the primary goal of this text. These insights should stick with you
long after you have forgotten how to estimate any particular thermodynamic property, a heat capacity
or activity coefficient, for example. We will see how assuming a thermodynamic model and applying
the rules of thermodynamics leads to precise and extremely general insights relevant to many
applications. A general theme throughout the text (and arguably throughout engineering) is: observe,
predict, test, and evaluate. The prediction phase usually involves a model equation. Testing and
evaluation expose limitations of the prospective model, which leads to a new cycle of observation,
prediction... We terminate this hierarchy at an introductory level, but it never really ends. Extending
this hierarchy is the source of innovation that must serve you for the next 50 years.

Chapter Objectives: You Should Be Able to...
1. Explain the definitions and relations between temperature, molecular kinetic energy,
molecular potential energy and macroscopic internal energy, including the role of
intermolecular potential energy and how it is modeled. Explain why the ideal gas internal
energy depends only on temperature.
2. Explain the molecular origin of pressure.
3. Apply the vocabulary of thermodynamics with words such as the following: work,
quality, interpolation, sink/reservoir, absolute temperature, open/closed system,
intensive/extensive property, subcooled, saturated, superheated.
4. Explain the advantages and limitations of the ideal gas model.
5. Sketch and interpret paths on a P-V diagram.
6. Perform steam table computations like quality determination, double interpolation.

1.2. The Molecular Nature of Energy, Temperature, and Pressure
Energy is a term that applies to many aspects of a system. Its formal definition is in terms of the

capability to perform work. We will not quantify the potential for work until the next chapter, but you
should have some concept of work from your course in introductory physics. Energy may take the
form of kinetic energy or potential energy, and it may refer to energy of a macroscopic or a molecular
scale.

Energy is the sum total of all capacity for doing work that is associated with
matter: kinetic, potential, submolecular (i.e., molecular rearrangements by reaction),
or subatomic (e.g., ionization, fission).

Kinetic energy is the energy associated with motion of a system. Motion can be
classified as translational, rotational, or vibrational.

Temperature is related to the “hotness” of a substance, but is fundamentally related
to the kinetic energy of the constituitive atoms.
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Potential energy is the energy associated with a system due to its position in a
force field.

In the study of “energy movements,” we will continually ask, “How much energy is here now, and
how much is there?” In the process, we need to establish a point for beginning our calculations.
According to the definition above, we might intuitively represent zero internal energy by a perfect
vacuum. But then, knowing the internal energy of a single proton inside the vacuum would require
knowing how much energy it takes to make a proton from nothing. Since this is not entirely practical,
this intuitive choice is not a good engineering choice usually. This is essentially the line of reasoning
that gives rise to the convention of calculating energy changes relative to a reference state. Thus,
there is no absolute reference point that is always the most convenient; there are only changes in
energy from one state to another. We select reference conditions that are relevant throughout any
particular process of interest. Depending on the complexity of the calculation, reference conditions
may vary from, say, defining the enthalpy (to be defined later) of liquid water to be zero at 0.01°C (as
in the steam tables) to setting it equal to zero for the molecular hydrogen and oxygen at 1 bar and
298.15 K (as in the heat of reaction), depending on the situation. Since this text focuses on changes in
kinetic energy, potential energy, and energies of reaction, we need not specify reference states any
more fundamental than the elements, and thus we do not consider subatomic particles.

 Energy will be tabulated relative to a convenient reference state.

Kinetic Energy and Temperature

Kinetic energy is commonly introduced in detail during introductory physics as ½ mv2, where m is
the mass of the object and v is the object velocity. Atomic species that make up solids are frozen in
localized positions, but they are continuously vibrating with kinetic energy. Fluids such as liquids and
gases are not frozen into fixed positions and move through space with kinetic energy and collide with
one another.

 Temperature primarily reflects the kinetic energy of the molecules.

The most reliable definition of temperature is that it is a numerical scale for uniquely ordering the
“hotness” of a series of objects.3 However, this “hotness” is coupled to the molecular kinetic energy
of the constituent molecules in a fundamental way. The relation between kinetic energy and
temperature is surprisingly direct. When we touch a hot object, the kinetic energy of the object is
transferred to our hand via the atoms vibrating at the surface. Temperature is proportional to the
average molecular kinetic energy. The expression is easiest to use in engineering on a molar basis.
For a monatomic substance

where <> brackets denote an average, and Mw is the molecular weight. We use a subscript for the
temperature of 2D motion to avoid confusion with the more common 3D motion. The differences
between 2D and 3D temperature are explained on page 22. For a polyatomic molecule, the
temperature is coupled to the average velocity of the individual atoms, but some of the motion of the
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bonded atoms results in vibrations and rotations rather than a direct translation of the center of mass
and thus it is not directly related to the velocity of the center of mass. (See Section 7.10 on page 276.)

 Check your units when using this equation.

Eqn. 1.1 is applicable to any classical monatomic system, including liquids and solids. This means
that for a pure system of a monatomic ideal gas in thermal equilibrium with a liquid, the average
velocities of the molecules are independent of the phase in which they reside. We can infer this
behavior by envisioning gas atoms exchanging energy with the solid container walls and then the
solid exchanging energy with the liquid. At equilibrium, all exchanges of energy must reach the same
kinetic energy distribution. The liquid molecular environment is different from the gas molecular
environment because liquid molecules are confined to move primarily within a much more crowded
environment where the potential energies are more significant. When a molecule’s kinetic energy is
insufficient to escape the potential energy (we discuss the potential energy next) due to molecular
attractiveness, the atoms simply collide with a higher frequency in their local environment. What
happens if the temperature is raised such that the liquid molecules can escape the potential energies of
the neighbors? We call this phenomenon “boiling.” Now you can begin to understand what
temperature is and how it relates to other important thermodynamic properties.

We are guaranteed that a universal scale of temperature can be developed because of the zeroth
law of thermodynamics: If two objects are in equilibrium with a third, then they are in equilibrium
with one another as we discussed in the previous paragraph. The zeroth law is a law in the sense that
it is a fact of experience that must be regarded as an empirical fact of nature. The significance of the
zeroth law is that we can calibrate the temperature of any new object by equilibrating it with objects
of known temperature. Temperature is therefore an empirical scale that requires calibration according
to specific standards. The Celsius and Fahrenheit scales are in everyday use. The conversions are:

When we perform thermodynamic calculations, we must usually use absolute temperature in
Kelvin or Rankine. These scales are related by

(T in K) = (T in °C) + 273.15
(T in °R) = (T in °F) + 459.67

(T in R) = 1.8 · (T in K)

 Thermodynamic calculations use absolute temperature in °R or K.

The absolute temperature scale has the advantage that the temperature can never be less than
absolute zero. This observation is easily understood from the kinetic perspective. The kinetic energy
cannot be less than zero; if the atoms are moving, their kinetic energy must be greater than zero.

Potential Energy
Solids and liquids exist due to the intermolecular potential energy (molecular “stickiness’) of

atoms. If molecules were not “sticky” all matter would be gases or solids. Thus, the principles of
molecular potential energy are important for developing a molecular perspective on the nature of
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liquids, solids, and non-ideal gases. Potential energy is associated with the “work” of moving a
system some distance through a force field. On the macroscopic scale, we are well aware of the
effect of gravity. As an example, the Earth and the moon are two spherical bodies which are attracted
by a force which varies as r–2. The potential energy represents the work of moving the two bodies
closer together or farther apart, which is simply the integral of the force over distance. (The force is
the negative derivative of potential with respect to distance.) Thus, the potential function varies as r–

1. Potential energies are similar at the microscopic level except that the forces vary with position
according to different laws. The gravitational attraction between two individual atoms is insignificant
because the masses are so small. Rather, the important forces are due to the nature of the atomic
orbitals. For a rigorous description, the origin of the intermolecular potential is traced back to the
solution of Schrödinger’s quantum mechanics for the motions of electrons around nuclei. However,
we do not need to perform quantum mechanics to understand the principles.
Intermolecular Potential Energy

Atoms are composed of dense nuclei of positive charge with electron densities of negative charge
built around the nucleus in shells. The outermost shell is referred to as the valence shell. Electron
density often tends to concentrate in lobes in the valence orbitals for common elements like C, N, O,
F, S, and Cl. These lobes may be occupied by bonded atoms that are coordinated in specific
geometries, such as the tetrahedron in CH4, or they may be occupied by unbonded electron pairs that
fill out the valence as in NH3 or H2O, or they may be widely “shared” as in a resonance or aromatic
structure. These elements (H, C, N, O, F, S, Cl) and some noble gases like He, Ne, and Ar provide
virtually all of the building blocks for the molecules to be considered in this text.

 Engineering model potentials permit representation of attractive and repulsive forces
in a tractable form.

By considering the implications of atomic structure and atomic collisions, it is possible to develop
the following subclassifications of intermolecular forces:

1. Electrostatic forces between charged particles (ions) and between permanent dipoles,
quadrupoles, and higher multipoles.
2. Induction forces between a permanent dipole (or quadrupole) and an induced dipole.
3. Forces of attraction (dispersion forces) due to the polarizability of electron clouds and
repulsion due to prohibited overlap.
4. Specific (chemical) forces leading to association and complex formation, especially
evident in the case of hydrogen bonding.

 Attractive forces and potential energies are negative. Repulsive forces and potential
energies are positive.

Attractive forces are quantified by negative numerical values, and repulsive forces will be
characterized by positive numerical values. To a first approximation, these forces can be
characterized by a spherically averaged model of the intermolecular potential (aka. “potential”

Neha


Neha


Neha




model). The potential, u(r), is the work (integral of force over distance) of bringing two
molecules from infinite distance to a specific distance, r. When atoms are far apart (as in a low-
pressure gas), they do not sense one another and interaction energy approaches zero. When the atoms
are within about two diameters, they attract, resulting in a negative energy of interaction. Because
they have finite size, as they are brought closer, they resist overlap. Thus, at very close distances, the
forces are repulsive and create very large positive potential energies. These intuitive features are
illustrated graphically in Fig. 1.1. The discussion below provides a brief background on why these
forces exist and how they vary with distance.

Figure 1.1. Schematics of three engineering models for pair potentials on a dimensionless
basis.

Electrostatic Forces

The force between two point charges described by Coulomb’s Law is very similar to the law of
gravitation and should be familiar from elementary courses in chemistry and physics,
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where qi and qj are the charges, and r is the separation of centers. Upon integration, u = ∫Fdr, the
potential energy is proportional to inverse distance,

If all molecules were perfectly spherical and rigid, the only way that these electrostatic
interactions could come into play is through the presence of ions. But a molecule like NH3 is not
perfectly spherical. NH3 has three protons on one side and a lobe of electron density in the unbonded
valence shell electron pair. This permanent asymmetric distribution of charge density is modeled
mathematically with a dipole (+ and – charge separation) on the NH3 molecule.4 This means that
ammonia molecules lined up with the electrons facing one another repel while molecules lined up
with the electrons facing the protons will attract. Since electrostatic energy drops off as r–1, one
might expect that the impact of these forces would be long-range. Fortunately, with the close
proximity of the positive charge to the negative charge in a molecule like NH3, the charges tend to
cancel one another as the molecule spins and tumbles about through a fluid. This spinning and
tumbling makes it reasonable to consider a spherical average of the intermolecular energy as a
function of distance that may be constructed by averaging over all orientations between the molecules
at each distance. In a large collection of molecules randomly distributed relative to one another, this
averaging approach gives rise to many cancellations, and the net impact is approximately

where k = R/NA is Boltzmann’s constant, related to the gas constant, R, and Avogadro’s
number, NA. This surprisingly simple result is responsible for a large part of the attractive energy
between polar molecules. This energy is attractive because the molecules tend to spend somewhat
more time lined up attractively than repulsively, and the r–6 power arises from the averaging that
occurs as the molecules tumble and the attractive forces decrease with separation. A key feature of
dipole-dipole forces is the temperature dependence.
Induction Forces

When a molecule with a permanent dipole approaches a molecule with no dipole, the positive
charge of the dipolar molecule will tend to pull electron density away from the nonpolar molecule
and “induce” a dipole moment into the nonpolar molecule. The magnitude of this effect depends on
the strength of the dipole and how tightly the orbitals of the nonpolar molecule constrain the electrons
spatially in an electric field, characterized by the “polarizability.”5 For example, the pi bonding in
benzene makes it fairly polarizable. A similar consideration of the spherical averaging described in
relation to electrostatic forces results again in a dependence of r–6 as approximately

Disperse Attraction Forces (Dispersion Forces)



When two nonpolar molecules approach, they may also induce dipoles into one another owing to
fluctuating distributions of electrons. Their dependence on radial distance may be analyzed and gives
the form for the attractive forces:

 The r–6 dependence of attractive forces has a theoretical basis.

Note that dipole-dipole, induction, and dispersion forces all vary as r–6.
Repulsive Forces

The forces become repulsive rapidly as radial distance decreases, and quickly outweighs the
attractive force as the atoms are forced into the same space. A common empirical equation is

Engineering Potential Models

Based on the forms of these electrostatic, induction, and dispersion forces, it should be easy to
appreciate the form of the Lennard-Jones potential in Fig. 1.1. Other approximate models of the
potential function are possible, such as the square-well potential or the Sutherland potential also
shown in Fig. 1.1. These simplified potential models are accurate enough for many applications.

The key features of all of these potential models are the representation of the size of the molecule
by the parameter σ and the attractive strength (i.e. “stickiness”) by the parameter ε. We can gain
considerable insight about the thermodynamics of fluids by intuitively reasoning about the relatively
simple effects of size and stickiness. For example, if we represent molecules by lumping together all
the atomic sites, a large molecule like buckminsterfullerene (solid at room temperature) would have a
larger value for σ and ε than would methane (gas at room temperature). Water and methane are about
the same size, but their difference in boiling temperature indicates a large difference in their
stickiness. Considering the molecular perspective, it should become apparent that water has a higher
boiling temperature because it sticks to itself more strongly than does methane. With these simple
insights, you should be able to understand the molecular basis for many macroscopic phenomena.
Example 1.1 illustrates several computations for intermolecular potential energy.

Example 1.1. The energy derived from intermolecular potentials
We can develop further appreciation for internal energy by computing the intermolecular potential

energy for a well-defined system of molecules. Assume the Lennard-Jones potential model with σ =
0.36 nm and ε = 1.38E-21 J:

a. Compute the potential energy for two molecules located at positions (0,0) and (0, 0.4
nm).
b. Suppose a third molecule was located at (0.5,0). Compute the potential energy for the
system.
c. To develop a very crude insight on the methods of averaging, we can think of the average



potential energy as defining an average distance between the molecules. As the volume
expands, the average distance between molecules increases and the magnitude of the
average potential energy decreases in accordance with the Lennard-Jones model. For the
potential energy from (b), compute the average distance, <r>, that corresponds to the
average potential energy for this system of molecules.
d. Suppose the volume of the system in (c) expands by a factor of two. How would that
affect the average distance, <r>, and what would you estimate as the new intermolecular
energy?
e. Assume approximately four molecules can fit around a central molecule in a liquid
before it is too crowded and another layer starts to build up. Assuming the Lennard-Jones
energy is practically zero beyond the first layer (i.e. ignore all but the first layer), and the
average distance between the central molecule and its four neighbors is <r> = 0.55 nm,
estimate the intermolecular energy around one single molecule and that for one mole of
similar molecules.

Solution
a. The distance is r12 = [(0 – 0)2 + (0.4 – 0)2]½ = 0.4 nm.
u(r12) = 4(1.38E-21)[(0.36/0.40)12 – (0.36/0.40)6] = –1.375E-21

b. The distance r13 = [(0.5 – 0)2 + (0.5 – 0)2]½ = 0.5. So u(r13) = –0.662E-21.
But wait, there’s more! r23 = [(0.5 – 0)2 + (0 – 0.4)2]½ = 0.6403. So, u(r23) = –0.169E-21.
The total intermolecular energy is: –(1.375+0.662+0.169)(1E-21) = –2.206E-21J.
c. The average intermolecular energy for these three pairs is:
<u> = –2.206E-21/3 = –0.735E-21J.
Matching this value of <u> by using a solver to adjust <r> in the Lennard-Jones model
gives <r> = 0.4895 nm.
d. Volume is related to the cubic of length. Expanding the volume by a factor of 2 changes
the r-coordinates by a factor of 21/3. So, <r> = 0.4895(21/3) = 0.6167, and <u> = –0.210E-
21J.
e. For <r> = 0.55, <u(r)> = -0.400E-21J and u1 = 4(–0.400E-21) = –1.600E-21 per atom.
For Avogadro’s number of such molecules, the summed intermolecular energy becomes uNA
= NA<u> = (602.22E21)(–1.600E-21) = –963 J/mole.

When we sum the potential energy for a collection of molecules, we often call the sum
configurational energy to differentiate quantity from the potential energy which is commonly used
when discussing atoms or sites.

 Configurational energy is the potential energy of a system of molecules in their
“configuration.”

Note that we would need a more complicated potential model to represent the shape of the



molecule. Typically, molecules of different shapes are represented by binding together several
potentials like those above with each potential site representing one molecular segment. For example,
n-butane could be represented by four Lennard-Jones sites that have their relative centers located at
distances corresponding to the bond-lengths in n-butane. The potential between two butane molecules
would then be the sum of the potentials between each of the individual Lennard-Jones sites on the
different molecules. In similar fashion, potential models for very complex molecules can be
constructed.
Potentials in Mixtures

Our discussion of intermolecular potentials has focused on describing single molecules, but it is
actually more interesting to contemplate the potential models for different molecules that are mixed
together. Note that the square-well model provides a simple way for use to consider only the
potential energy of the closest neighbors. We can use the square-well potential as the basis for this
analysis and focus simply on the size (σij) and stickiness (εij) of each potential model, where the
subscript ij indicates an interaction of molecule i with molecule j. Commonly, we assume that λ = 1.5
in discussions of the square-well potential, unless otherwise specified. For example, ε11 would be the
stickiness of molecule 1 to itself, and ε12 would be its stickiness to a molecule of type 2 and ε21=ε12.
We often calculate the interactions of dissimilar molecules by using combining rules that relate the
interaction to the parameters of the sites. Commonly we use combining rules developed by Lorentz
and Bertholet. The size parameter for interaction between different molecules is reasonably well
represented by

This rule simply states that the distance between two touching molecules is equal to the radius of
the first one plus the radius of the second one. The estimation of the stickiness parameter for
interaction between different molecules requires more empirical reasoning. It is conventional to
estimate the stickiness by a geometric mean, but to permit flexibility to adjust the approximate rule by
adding an adjustable constant that can be refined using experimental measurements, or sometimes
using theories like quantum mechanical simulation. For historical reasons, this constant is typically
referred to as “kij” or the binary interaction parameter, and defined through the following rule:

The default value is k12 = 0.

Specific (Chemical) Forces Like Hydrogen Bonding

What happens when the strength of interaction between two molecules is so strong at certain
orientations that it does not make sense to spherically average over it? Hydrogen bonding is an
example of such an interaction, as you probably know from an introductory chemistry or biology
course. For instance, it would not make sense to spherically average when two atoms preferentially
interact in a specific orientation. But, if they were covalently bonded, we would call that a chemical
reaction and handle it in a different way. An interesting problem arises when the strength of
interaction is too strong to be treated entirely by spherically averaging and too weak to be treated as a
normal chemical reaction which forms permanent stable chemical species. Clearly, this problem is
difficult and it would be tempting to try to ignore it. In fact, most of this course will deal with theories



that treat only what can be derived by spherically averaging. But it should be kept in mind that these
specific forces are responsible for some rather important properties, especially in the form of
hydrogen bonding. Since many systems are aqueous or contain amides or alcohols, ignoring hydrogen
bonding entirely would substantially undermine the accuracy of our conceptual foundation.
Furthermore, the concept of favorable energetic interactions between acids and bases can lend broad
insights into the mysteries of chemical formulations. As an engineering approach, we can make large
adjustments to the spherical nature of these forces such that we can often approximate them with a
single characteristic constant to obtain a workable engineering model. Example 1.2 illustrates the
concept of combining rules that pervades the entirety of mixture thermodynamics.

Example 1.2. Intermolecular potentials for mixtures
Methane (CH4) has fewer atoms than benzene (C6H6), so it is smaller. Roughly, the diameter of

methane is 0.36 nm and that of benzene is 0.52 nm. Similarly, methane’s boiling temperature is lower
so its stickiness must be smaller in magnitude. A crude approximation is ε/k = Tc/1.25, where Tc is
the critical temperature listed on the back flap. Not knowing what to assume for k12, we may consider
three possibilities: k12 = 0, k12 < 0, k12 > 0. To illustrate, sketch on the same pair of axes the
potential models for methane and benzene, assuming that the k12 parameter is given by: (a) k12 = 0 (b)
k12 = –0.2 (c) k12 = +0.2. In each case, describe in words what is represented by each numerical
value (e.g., favorable interactions, or unfavorable interactions...) Assume the square-well potential
with λ = 1.5.

Solution
Following the suggested estimation formula, ε/k = 190.6/1.25 = 152.5 for methane and 562.2/1.25

= 449.8 for benzene. Applying Eqns. 1.7 and Eqn. 1.8, we obtain Fig. 1.2 where k12 = 0.0 refers to
case (a); –0.2 refers to the well location for case (b); and +0.2 refers to case (c).

Figure 1.2. Sketch of intermolecular square-well potential models for a mixture of methane
and benzene for λ = 1.5 as explained in Example 1.1.

Description of the interactions:
Case (a) corresponds to the molecular interactions being relatively neutral towards one another.

This is the default assumption (i.e. k12 = 0). This would be the best description of methane + benzene



(among these three choices) because both are nonpolar.
Case (b) corresponds to extremely favorable interactions, as indicated by the deep attractive well

and strongly exothermic interaction. An Lewis acid might interact with a Lewis base in this way.
Case (c) corresponds to unfavorable interactions. The interactions are not zero exactly, so the

molecules do attract one another, but the well for the 1-2 interactions is not as deep as expected from
the 1-1 and 1-2 interactions. The molecules greatly prefer their own company. A mixture with this
type of interaction may lead to liquid-liquid splitting, like oil and water.

Internal Energy
We have taken considerable time to develop the molecular aspects of kinetic and potential energy.

These molecular properties are of great importance, but for large-scale macroscopic process system
calculations, these microscopic energies are combined and we consider kinetic and configurational
energy collectively as the internal energy of the system, which is given the symbol U. It may be
somewhat confusing that kinetic and potential energy exist on the macroscopic level and the
microscopic level. The potential energy (gravitational potential energy) and kinetic energy of the
center of mass of the system are accounted for separately. The internal energy is a function of the
temperature and density (the latter for non-ideal gases) of the system, and it does not usually change if
the entire system is placed on, say, an airplane where the kinetic and potential energy of the center of
mass differ considerably from a stationary position on the ground. This is the convention followed
throughout the remainder of Unit I. In Units II and III, we reexamine the molecular potentials as to
how they affect the bulk fluid properties. Thus, throughout the remainder of Unit I, when we refer to
kinetic and potential energy of a body of fluid as a system, we are referring to the kinetic energy of the
center of mass of the system and the gravitational potential energy of the center of mass of the system.

 The sum of microscopic random kinetic energy and intermolecular potential energies
comprises the internal energy.

1.3. The Molecular Nature of Entropy
To be fair to both of the central concepts of thermodynamics, we must mention entropy at this point,

in parallel with the mention of energy. Unfortunately, there is no simple analogy that can be drawn for
entropy like that for potential energy using the gravitational forces between the Earth and moon. The
study of entropy is fairly specific to the study of thermodynamics.

What we can say at this point is that entropy has been conceived to account for losses in the
prospect of performing useful work. The energy can take on many forms and be completely accounted
for without contemplating how much energy has been “wasted” by converting work into something
like warm water. To picture how much work this would take, imagine yourself stirring water in a bath
tub until the temperature rises by 5°C. Entropy accounts for this kind of wastefulness. It turns out that
the generation of such waste can be directly related to the degree of disorder involved in conducting
our process. Thus, generation of disorder results in lost work. Furthermore, work that is lost by not
maintaining order cannot be converted into useful work. To see the difference between energy and
entropy, consider the following example. Oxygen and nitrogen are mixed as ideal gases at room
temperature and pressure. How much energy is involved in the mixing process? How much (energy)
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work must be exerted to separate them again? To completely answer the first question we must
understand the ideal gas mixture more completely (Chapter 4). We note that ideal gases are point
masses with no potential energy to affect the mixing. Thus, the answer to the first question is that no
energy is involved. For the answer to the second question regarding work to separate them, however,
we must acknowledge that a considerable effort would be involved. The minimum amount required
can be calculated as we will show in Chapter 4. To avoid introducing too many concepts at one time,
we defer the quantitative development of the topic until Chapter 4.

1.4. Basic Concepts
The System

A system is that portion of the universe which we have chosen to study.
A closed system is one in which no mass crosses the system boundaries.
An open system is one in which mass crosses the system boundaries. The system may gain or lose

mass or simply have some mass pass through it.
An isolated system is one devoid of interactions of any kind with the surroundings (including mass

exchange, heat, and work interactions).
System boundaries are established at the beginning of a problem, and simplification of balance

equations depends on whether the system is open or closed. Therefore, the system boundaries should
be clearly identified. If the system boundaries are changed, the simplification of the mass and
energy balance equations should be performed again, because different balance terms are likely to
be necessary. These guidelines become more apparent in Chapter 2. In many textbooks, especially
those dealing with fluid mechanics, the system is called the control volume. The two terms are
synonymous.

 The placement of system boundaries is a key step in problem solving.

Equilibrium
A system is in equilibrium when there is no driving force for a change of intensive variables within

the system. The system is “relaxed” relative to all forces and potentials.6

An isolated system moves spontaneously to an equilibrium state. In the equilibrium state there are
no longer any driving forces for spontaneous change of intensive variables.

The Mass Balance
Presumably, students in this course are familiar with mass balances from an introductory course in

material and energy balances. The relevant relation is simply:
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 The mass balance.

where .  and  are the absolute values of mass flow rates entering and leaving,
respectively.

We may also write

where mass differentials dmin and dmout are always positive. When all the flows of mass are
analyzed in detail for several subsystems coupled together, this simple equation may not seem to fully
portray the complexity of the application. The general study of thermodynamics is similar in that
regard. A number of simple relations like this one are coupled together in a way that requires some
training to understand. In the absence of chemical reactions, we may also write a mole balance by
replacing mass with moles in the balance.

Heat – Sinks and Reservoirs
Heat is energy in transit between the source from which the energy is coming and a destination

toward which the energy is going. When developing thermodynamic concepts, we frequently assume
that our system transfers heat to/from a reservoir or sink. A heat reservoir is an infinitely large
source or destination of heat transfer. The reservoir is assumed to be so large that the heat transfer
does not affect the temperature of the reservoir. A sink is a special name sometimes used for a
reservoir which can accept heat without a change in temperature. The assumption of constant
temperature makes it easier to concentrate on the thermodynamic behavior of the system while making
a reasonable assumption about the part of the universe assigned to be the reservoir.

 A reservoir is an infinitely large source or destination for heat transfer.

The mechanics of heat transfer are also easy to picture conceptually from the molecular kinetics
perspective. In heat conduction, faster-moving molecules collide with slower ones, exchanging
kinetic energy and equilibrating the temperatures. In this manner, we can imagine heat being
transferred from the hot surface to the center of a pizza in an oven until the center of the pizza is
cooked. In heat convection, packets of hot mass are circulated and mixed, accelerating the
equilibration process. Heat convection is important in getting the heat from the oven flame to the
surface of the pizza. Heat radiation, the remaining mode of heat transfer, occurs by an entirely
different mechanism having to do with waves of electromagnetic energy emitted from a hot body that
are absorbed by a cooler body. Radiative heat transfer is typically discussed in detail during courses
devoted to heat transfer.

Work
Work is a familiar term from physics. We know that work is a force acting through a distance.

There are several ways forces may interact with the system which all fit under this category,
including pumps, turbines, agitators, and pistons/cylinders. We will discuss the details of how we
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calculate work and determine its impact on the system in the next chapter.

Density
Density is a measure of the quantity per unit volume and may be expressed on a molar basis (molar

density) or a mass basis (mass density). In some situations, it is expressed as the number of particles
per unit volume (number density).

Intensive Properties
Intensive properties are those properties which are independent of the size of the system. For

example, in a system at equilibrium without internal rigid/insulating walls, the temperature and
pressure are uniform throughout the system and are therefore intensive properties. Specific
properties are the total property divided by the mass and are intensive. For example, the molar
volume ([≡] length3/mole), mass density ([≡] mass/length3), and specific internal energy ([≡]
energy/mass) are intensive properties. In this text, intensive properties are not underlined.

 The distinction between intensive and extensive properties is key in selecting and
using variables for problem solving.

Extensive Properties

Extensive properties depend on the size of the system, for example the volume ([≡] length3) and
energy ([≡] energy). Extensive properties are underlined; for example, U = nU, where n is the number
of moles and U is molar internal energy.

States and State Properties – The Phase Rule
Two state variables are necessary to specify the state of a single-phase pure fluid, that is, two

from the set P, V, T, U. Other state variables to be defined later in the text which also fit in this
category are molar enthalpy, molar entropy, molar Helmholtz energy, and molar Gibbs energy. State
variables must be intensive properties. As an example, specifying P and T permits you to find the
specific internal energy and specific volume of steam. Note, however, that you need to specify only
one variable, the temperature or the pressure, if you want to find the properties of saturated vapor or
liquid. This reduction in the needed specifications is referred to as a reduction in the “degrees of
freedom.” As another example in a ternary, two-phase system, the temperature and the mole fractions
of two of the components of the lower phase are state variables (the third component is implicit in
summing the mole fractions to unity), but the total number of moles of a certain component is not a
state variable because it is extensive. In this example, the pressure and mole fractions of the upper
phase may be calculated once the temperature and lower-phase mole fractions have been specified.
The number of state variables needed to completely specify the state of a system is given by the Gibbs
phase rule for a non-reactive system,7:

where F is the number of state variables that can be varied while P phases exist in a system where
C is the number of components (F is also known as the number of degrees of freedom). More details
on the Gibbs phase rule are given in Chapter 16.
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 The Gibbs phase rule provides the number of state variables (intensive properties) to
specify the state of the system.

Steady-State Open Systems
The term steady state is used to refer to open systems in which the inlet and outlet mass flow rates

are invariant with time and there is no mass accumulation. In addition, steady state requires that state
variables at all locations are invariant with respect to time. Note that state variables may vary with
position. Steady state does not require the system to be at equilibrium. For example, in a heat
exchanger operating at steady state with a hot and cold stream, each stream has a temperature gradient
along its length, and there is always a driving force for heat transfer from the hotter stream to the
colder stream. Section 2.13 describes this process in more detail.

 Steady-state flow is very common in the process industry.

The Ideal Gas Law
The ideal gas is a “model” fluid where the molecules have no attractive potential energy and no

size (and thus, no repulsive potential energy). Properties of the ideal gas are calculated from the ideal
gas model:

 The ideal gas law is a model that is not always valid, but gives an initial guess.

 An equation of state relates the P-V-T properties of a fluid.

Note that scientists who first developed this formula empirically termed it a “law” and the name
has persisted, but it should be more appropriately considered a “model.” In the terminology we
develop, it is also an equation of state, relating the P-V-T properties of the ideal gas law to one
another as shown in Eqn. 1.12 and Fig. 1.3. We know that real molecules have potential energy of
attraction and repulsion. Due to the lack of repulsive forces, ideal gas particles can “pass through”
one another. Ideal gas molecules are sometimes called “point masses” to communicate this behavior.
While the assumptions may seem extreme, we know experimentally that the ideal gas model
represents many compounds, such as air, nitrogen, oxygen, and even water vapor at temperatures and
pressures near ambient conditions. Use of this model simplifies calculations while the concepts of the
energy and entropy balances are developed throughout Unit I. This does not imply that the ideal gas
model is applicable to all vapors at all conditions, even for air, oxygen, and nitrogen. Analysis using
more complex fluid models is delayed until Unit II. We rely on thermodynamic charts and tables until
Unit II to obtain properties for gases that may not be considered ideal gases.
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Figure 1.3. Ideal gas behavior at five temperatures.

Because kinetic energy is the only form of energy for an ideal gas, the internal energy of a
monatomic ideal gas is given by summing the kinetic energy of the atoms and then relating this to
temperature (c.f. Eqn. 1.1):

The proportionality constant between temperature and internal energy is known as the ideal gas
heat capacity at constant volume, denoted CV. Eqn 1.13 shows that CV = 1.5R for a monatomic ideal
gas. If you refer to the tables of constant pressure heat capacities (CP) on the back flap of the text and
note that CP = CV + R for an ideal gas, you may be surprised by how accurate this ultrasimplified
theory actually is for species like helium, neon, and argon at 298 K.8

While the equality in Eqn. 1.13 is valid for monatomic fluids only, the functionality Uig = Uig(T) is
universal for all ideal gases. For more multi-atom molecules, the heat capacity depends on
temperature because vibrations hold some energy in a manner that depends on temperature. However,
the observation that Uig = Uig(T) is true for any ideal gas, not only for ultrasimplified, monatomic
ideal gases. We build on this relation in Chapters 6–8, where we show how to compute changes in
energy for any fluid at any temperature and density by systematically correcting the relatively simple
ideal gas result. Let us explore more completely the assumptions of the ideal gas law by investigating
the molecular origins of pressure.

Pressure
Pressure is the force exerted per unit area. We will be concerned primarily with the pressure

exerted by the molecules of fluids upon the walls of their containers. Briefly, when molecules collide
with the container walls, they must change momentum. The change in momentum creates a force on the
wall. As temperature increases, the particles have more kinetic energy (and momentum) when they
collide, so the pressure increases. We can understand this more fully with an ultrasimplified analysis
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of kinetic theory as it relates to the ideal gas law.
Suppose we have two hard spherical molecules in a container that are bouncing back and forth

with 1D velocity in the x-direction only and not contacting one another. We wish to quantify the
forces acting on each wall. Since the particles are colliding only with the walls at A1 and A2 in our
idealized motion, these are the only walls we need to consider. Let us assume that particles bounce
off the wall with the same speed which they had before striking the wall, but in the opposite direction
(a perfectly elastic collision where the wall is perfectly rigid and absorbs no momentum).

Thus, the kinetic energy of the particles is fixed. If  is the initial velocity of the particle (recall that
 is a vector quantity and notation v represents a scalar) before it strikes a wall, the change in velocity

due to striking the wall is –2 . The change in velocity of the particle indicates the presence of
interacting forces between the wall and the particle. If we quantify the force necessary to change the
velocity of the particle, we will also quantify the forces of the particle on the wall by Newton’s third
principle. To quantify the force, we may apply Newton’s second principle stated in terms of
momentum: The time rate of change of the momentum of a particle is equal to the resultant force
acting on the particle and is in the direction of the resultant force.

The application of this formula directly is somewhat problematic since the change in direction is
instantaneous, and it might seem that the time scale is important. This can be avoided by determining
the time-averaged force,9  exerted on the wall during time ∆t,

where  is the total change in momentum during time ∆t. The momentum change for each collision
is  where m is the mass per particle. Collision frequency can be related easily to the
velocity. Each particle will collide with the wall every ∆t seconds, where ∆t = 2 L/v, where L is the
distance between A1 and A2. The average force is then

where  is the velocity before the collision with the wall. Pressure is the force per unit area, and
the area of a wall is L2, thus
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where the subscripts denote the particles. If you are astute, you will recognize L3 as the volume of
the box and the kinetic energy which we have shown earlier to relate to the temperature.

 P is proportional to the number of particles in a volume and to the kinetic energy of
the particles.

If the particle motions are generalized to motion in arbitrary directions, collisions with additional
walls in the analysis does not complicate the problem dramatically because each component of the
velocity may be evaluated independently. To illustrate, consider a particle bouncing around the
centers of four walls in a horizontal plane. From the top view, the trajectory would appear as below:

For the same velocity as the first case, the force of each collision would be reduced because the
particle strikes merely a glancing blow. The time of collisions between walls is now dependent on
the component of velocity perpendicular to the walls. We have chosen a special case to illustrate
here, where the box is square and the particle impacts at a 45° angle in the center of each wall. The x-
component of the force can be related to the magnitude of the velocity by noting that vx = vy, such that
v = (vx

2 + vy
2)½ = vx2½. The time between collisions with wall A1 would be 4L/(v2½). The formula

for the average force in two dimensions then becomes:

and the pressure due to two particles that do not collide with one another in two dimensions
becomes:

(More complicated impact angles and locations will provide the same results but require more
tedious derivations.) The extension to three dimensions is more difficult to visualize, but comparing
Eqn. 1.17 to Eqn. 1.19, you should not be surprised to learn that the pressure in three dimensions is:

The problem gets more complicated when collisions between particles occur. We ignored that
possibility here because the ideal gases being considered are point masses that do not collide with
one another. Including molecular collisions is a straightforward implementation of “billiard ball”
physics. This subject is discussed further in Section 7.10 on page 276 and with great interactive



graphics in the discontinuous molecular dynamics (DMD) module at Etomica.org.
We see a relation developing between P and kinetic energy. When we insert the relation between

temperature and kinetic energy (Eqn. 1.1) into Eqn. 1.20 we find that the ideal gas law results for a
spherical (monatomic) molecule in 3D,

 Check your units when using this equation. 1J = 1kg-m2/s2.

where m is the mass per particle and Mw is the molecular weight. A similar derivation with Eqn.
1.19 gives the results for motions restricted to 2D,10

1.5. Real Fluids and Tabulated Properties

 A 3D steam diagram is available as a MATLAB file called PVT.m. The diagram can
be rotated to view the 2-D projections.

The thermodynamic behavior of real fluids differs from the behavior of ideal gases in most cases.
Real fluids condense, evaporate, freeze, and melt. Characterization of the volume changes and energy
changes of these processes is an important skill for the chemical engineer. Many real fluids do behave
as if they are ideal gases at typical process conditions. P-V behavior of a very common real fluid
(i.e., water) and an ideal gas can be compared in Figs. 1.3 and 1.4. Application of the ideal gas law
simplifies many process calculations for common gases; for example, air at room temperature and
pressures below 10 bars. However, you must always remember that the ideal gas law is an
approximation (sometimes an excellent approximation) that must be applied carefully to any fluid.
The behaviors are presented along isotherms (lines of constant temperature) and the deviations from
the ideal gas law for water are obvious. Water is one of the most common substances that we work
with, and water vapor behaves nearly as an ideal gas at 100°C (Psat = 0.1014 MPa), where
experimentally the vapor volume is 1.6718 m3/kg (30,092 cm3/mol) and by the ideal gas law we may
calculate V = RT/P = 8.314 · 373.15 / 0.1014 = 30,595 cm3/mol. However, the state is the normal
boiling point, and we are well aware that a liquid phase can co-exist at this state. This is because
there is another density of water at these conditions that is also stable.11



Figure 1.4. P-V-T behavior of water at the same temperatures used in Fig. 1.3. The plot is
prepared from the steam tables in Appendix E.

We will frequently find it convenient to work mathematically in terms of molar density or mass
density, which is inversely related to molar volume or mass volume, ρ = 1/V. Plotting the isotherms in
terms of density yields a P-ρ diagram that qualitatively looks like the mirror image of the P-V
diagram. Density is convenient to use because it always stays finite as P→0, whereas V diverges.
Examples of P-ρ diagrams are shown in Fig. 7.1 on page 254.

 Real fluids have saturation conditions, bubble points, and dew points.

The conditions where two phases coexist are called saturation conditions. The terms “saturation
pressure” and “saturation temperature” are used to refer to the state. The volume (or density) is called
the saturated volume (or saturated density). Saturation conditions are shown in Fig. 1.4 as the “hump”
on the diagram. The hump is called the phase envelope. Two phases coexist when the system
conditions result in a state inside or on the envelope. The horizontal lines inside the curves are called
tie lines that show the two volumes (saturated liquid and saturated vapor) that can coexist. The
curve labeled “Sat’d Liquid” is also called the bubble line, since it represents conditions where
boiling (bubbles) can occur in the liquid. The curve labeled “Sat’d Vapor” is also called a dew line,
since it is the condition where droplets (dew) can occur in the vapor. Therefore, saturation is a term
that can refer to either bubble or dew conditions. When the total volume of a system results in a
system state on the saturated vapor line, only an infinitesimal quantity of liquid exists, and the state is
indicated by the term “saturated vapor.” Likewise, when a system state is on the saturated liquid line,
only an infinitesimal quantity of vapor exists, and the state is indicated by the term “saturated liquid.”
When the total volume of the system results in a system in between the saturation vapor and saturation
liquid volumes, the system will have vapor and liquid phases coexisting, each phase occupying a
finite fraction of the overall system. Note that each isotherm has a unique saturation pressure. This
pressure is known as the saturation pressure or vapor pressure. Although the vapor pressure is



often used to characterize a pure liquid’s bubble point, recognize that it also represents the dew point
for the pure vapor.

Following an isotherm from the right side of the diagram along a path of decreasing volume, the
isotherm starts in the vapor region, and the pressure rises as the vapor is isothermally compressed.
As the volume reaches the saturation curve at the vapor pressure, a liquid phase begins to form.
Notice that further volume decreases do not result in a pressure change until the system reaches the
saturated liquid volume, after which further decreases in volume require extremely large pressure
changes. Therefore, liquids are often treated as incompressible even though the isotherms really do
have a finite rather than infinite slope. The accuracy of the incompressible assumption varies with the
particular application.

 Liquids are quite incompressible.

As we work problems involving processes, we need to use properties such as the internal energy
of a fluid.12 Properties such as these are available for many common fluids in terms of a table or
chart. For steam, both tables and charts are commonly used, and in this section we introduce the steam
tables available in Appendix E. An online supplement is available to visualize the P-V and P-T
representations in MATLAB permitting the user to interactively rotate the surface.

Steam Tables
When dealing with water, some conventions have developed for referring to the states which can

be confusing if the terms are not clearly understood. Steam refers to a vapor state, and saturated
steam is vapor at the dew point. For water, in the two-phase region, the term “wet steam” is used to
indicate a vapor + liquid system.

Steam properties are divided into four tables. The first table presents saturation conditions indexed
by temperature. This table is most convenient to use when the temperature is known. Each row lists
the corresponding saturation values for pressure (vapor pressure), internal energy, volume, and two
other properties we will use later in the text: enthalpy and entropy. Special columns represent the
internal energy, enthalpy, and entropy of vaporization. These properties are tabulated for
convenience, although they can be easily calculated by the difference between the saturated vapor
value and the saturated liquid value. Notice that the vaporization values decrease as the saturation
temperature and pressure increase. The vapor and liquid phases are becoming more similar as the
saturation curve is followed to higher temperatures and pressures. At the critical point, the phases
become identical. Notice in Fig. 1.4 that the two phases become identical at the highest temperature
and pressure on the saturation curve, so this is the critical point. For a pure fluid, the critical
temperature is the temperature at which vapor and liquid phases are identical on the saturation
curve, and is given the notation Tc. The pressure at which this occurs is called the critical pressure,
and is given the symbol Pc. A fluid above the critical temperature is often called supercritical.

 The critical temperature and critical pressure are key characteristic properties of a
fluid.



The second steam table organizes saturation properties indexed by pressure, so it is easiest to use
when the pressure is known. Like the temperature table, vaporization values are presented. The table
duplicates the saturated temperature table, that is, plotting the saturated volumes from the two tables
would result in the same curves. The third steam table is the largest portion of the steam tables,
consisting of superheated steam values. Superheated steam is vapor above its saturation temperature
at the given pressure. The adjective “superheated” specifies that the vapor is above the saturation
temperature at the system pressure. The adjective is usually used only where necessary for clarity.
The difference between the system temperature and the saturation temperature, (T – Tsat), is termed
the degrees of superheat. The superheated steam tables are indexed by pressure and temperature.
The saturation temperature is provided at the top of each pressure table so that the superheat may be
quickly determined without referring to the saturation tables.

 Superheat.

The fourth steam table has liquid-phase property values at temperatures below the critical
temperature and above each corresponding vapor pressure. Liquid at these states is sometimes called
subcooled liquid to indicate that the temperature is below the saturation temperature for the specified
pressure. Another common way to describe these states is to identify the system as compressed
liquid, which indicates that the pressure is above the saturation pressure at the specified temperature.
The adjectives “subcooled” and “compressed” are usually only used where necessary for clarity.
Notice by scanning the table that pressure has a small effect on the volume and internal energy of
liquid water. By looking at the saturation conditions together with the general behavior of Fig. 1.4 in
our minds, we can determine the state of aggregation (vapor, liquid, or mixture) for a particular
state.

 Subcooled, compressed.

Example 1.3. Introduction to steam tables
For the following states, specify if water exists as vapor, liquid, or a mixture: (a) 110°C and 0.12

MPa; (b) 200°C and 2 MPa; (c) 0.8926 MPa and 175°C.

Solution
a. Looking at the saturation temperature table, the saturation pressure at 110°C is 0.143
MPa. Below this pressure, water is vapor (steam).
b. From the saturation temperature table, the saturation pressure is 1.5549 MPa; therefore,
water is liquid.
c. This is a saturation state listed in the saturation temperature table. The water exists as
saturated liquid, saturated vapor, or a mixture.

Linear Interpolation
Since the information in the steam tables is tabular, we must interpolate to find values at states that
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are not listed. To interpolate, we assume the property we desire (e.g., volume, internal energy) varies
linearly with the independent variables specified (e.g., pressure, temperature). The assumption of
linearity is almost always an approximation, but is a close estimate if the interval of the calculation is
small. Suppose we seek the value of volume, V, at pressure, P, and temperature, T, but the steam
tables have only values of volume at P1 and P2 which straddle the desired pressure value as shown in
Fig. 1.5. The two points represent values available in the tables and the solid line represents the true
behavior. The dotted line represents a linear fit to the tabulated points.

Figure 1.5. Illustration of linear interpolation.

 Linear interpolation is a necessary skill for problem solving using thermodynamic
tables.

If we fit a linear segment to the tabulated points, the equation form is y = mx + b, where y is the
dependent variable (volume in this case), x is the independent variable (pressure in this case), m is
the slope m = ∆y/∆x = (V2 – V1)/(P2 – P1), and b is the intercept. We can interpolate to find V
without directly determining the intercept. Since the point we desire to calculate is also on the line
with slope m, it also satisfies the equation m = ∆y/∆x = (V – V1)/(P – P1). We can equate the two
expressions for m to find the interpolated value of V at P.

There are two quick ways to think about the interpolation. First, since the interpolation is linear,
the fractional change in V relative to the volume interval is equal to the fractional change in P relative
to the pressure interval. In terms of variables:

For example, (V – V1) is 10% of the volume interval (V2 – V1), when (P – P1) is 10% of (P2 – P1).
We can rearrange this expression to find:

If we consider state “1” as the base state, we can think of this expression in words as
V = base V + (fractional change in P) · (volume interval size)
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Another way to think of Eqn. 1.23 is by arranging it as:

which in words is
V = base V + slope · (change in P from base state)

Note that subscripts for 1 and 2 can be interchanged in any of the formulas if desired, provided that
all subscripts are interchanged. In general, interpolation can be performed for any generic property M
such that (modifying Eqn. 1.23)

where M represents the property of interest (e.g., V) and x is the property you know (e.g., P).

Example 1.4. Interpolation
Find the volume and internal energy for water at: (a) 5 MPa and 325°C and (b) 5 MPa and 269°C.

Solution
a. Looking at the superheated steam table at 5 MPa, we find the saturation temperature in
the column heading as 263.9°C; therefore, the state is superheated. Values are available at
300°C and 350°C. Since we are halfway in the temperature interval, by interpolation the
desired U and V will also be halfway in their respective intervals (which may be found by
the average values):

U = (2699.0 + 2809.5)/2 = 2754.3 kJ/kg
V = (0.0453 + 0.0520)/2 = 0.0487 m3/kg

b. For this state, we are between the saturation temperature (263.9°C) and 300°C, and we
apply the interpolation formula:

Double Interpolation
Occasionally, we must perform double or multiple interpolation to find values. The following

example illustrates these techniques.

Example 1.5. Double interpolation
For water at 160°C and 0.12 MPa, find the internal energy.
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Solution
By looking at the saturation tables at 160°C, water is below the saturation pressure, and will exist

as superheated vapor, but superheated values at 0.12 MPa are not tabulated in the superheated table.
If we tabulate the available values, we find

We may either interpolate the first and third columns to find the values at 160°C, followed by an
interpolation in the second row at 160°C, or interpolate the first and third rows, followed by the
second column. The values found by the two techniques will not be identical because of the non-
linearities of the properties we are interpolating. Generally, the more precise interpolation should be
done first, which is over the smaller change in U, which is the pressure interpolation. The pressure
increment is 20% of the pressure interval [(0.12 – 0.1)/(0.2 – 0.1)]; therefore, interpolating in the
first row,

U = 2582.9 + 0.2 · (2577.1 – 2582.9) = 2581.7 kJ/kg
and in the third row,

U = 2658.2 + 0.2 · (2654.6 – 2658.2) = 2657.5 kJ/kg
and then interpolating between these values, using the value at 150°C as the base value,

U = 2581.7 + 0.2 · (2657.5 – 2581.7) = 2596.9 kJ/kg
The final results are tabulated in the boldface cells in the following table:

We also may need to interpolate between values in different tables, like the saturated tables and
superheated tables. This is also straightforward as shown in the following example.

Example 1.6. Double interpolation using different tables
Find the internal energy for water at 0.12 MPa and 110°C.

Solution
We found in Example 1.3 on page 25 that this is a superheated state. From the superheated table we

can interpolate to find the internal energy at 110°C and 0.1 MPa:
U = 2506.2 + 0.2 · (2582.9 – 2506.2) = 2521.5 kJ/kg

At 0.2 MPa, 110°C is not found in the superheated table because the saturation temperature is
120.3°C, so the values at this pressure cannot be used. Therefore, we can find the desired internal
energy by interpolation using the value above and the saturation value at 110°C and 0.143 MPa from



the saturation temperature table:

Computer-Aided Interpolation
Occasionally, interpolation must be performed when the T and P are both unknown. Computers or

spreadsheets can be helpful as shown in the next example.

Example 1.7. Double interpolation using Excel
Steam undergoes a series of state changes and is at a final state where U = 2650 kJ/kg and V =

0.185 m3/kg. Find the T and P.

Solution
Scanning the steam tables, the final state is in the range 1.0 MPa < P < 1.2 MPa, 200°C < T <

250°C. The final state requires a double interpolation using U and V. One easy method is to set up the
table in Excel. In each of the tables below, the pressure interpolation is performed first in the top and
bottom rows, dependent on the pressure variable in the top of the center column, which can be set at
any intermediate pressure to start. The temperature interpolation is then entered in the center cell of
each table using the temperature variable. The formulas in both tables reference a common
temperature variable cell and a common pressure variable cell. Solver is started and T and P are
adjusted to make U = 2650 kJ/kg subject to the constraint V = 0.185 m3/kg. (See Appendix A for
Solver instructions.) The converged result is shown at T = 219.6°C and P = 1.17 MPa.

 Example use of Excel for double interpolation.

Extrapolation
Occasionally, the values we seek are not conveniently between points in the table and we can

apply the “interpolation” formulas to extrapolate as shown in Fig. 1.6. In this case, T lies outside the
interval. Extrapolation is much less certain than interpolation since we frequently do not know “what
curve lies beyond” that we may miss by linear approximation. The formulas used for extrapolation
are identical to those used for interpolation. With the steam tables, extrapolation is generally not
necessary at normal process conditions and should be avoided if possible.



Figure 1.6. Illustration of linear extrapolation.

Phase Equilibrium and Quality
Along the saturation curve in Fig. 1.4 on page 23, there is just one degree of freedom (F = C – P

+ 2 = 1 – 2 + 2 = 1). If we seek saturation, we may choose either a Tsat or a Psat, and the other is
determined. The vapor pressure increases rapidly with temperature as shown in Fig. 1.7. A plot of ln
Psat versus 1/Tsat is nearly linear and over large intervals, so for accurate interpolations, vapor
pressure data should be converted to this form before interpolation. However, the steam tables used
with this text have small enough intervals that direct interpolation can be applied to Psat and Tsat

without appreciable error.

Figure 1.7. P-T representation of real fluid behavior. Note that only vapor and liquid behavior
is shown in Fig. 1.4 on page 23.

The saturation volume values of the steam tables were used to generate the phase diagram of Fig.
1.4 on page 23. Note that as the critical point is approached, the saturation vapor and liquid values
approach one another. The same occurs for internal energy and two properties that will be used in
upcoming chapters, enthalpy, H, and entropy, S. When a mixture of two phases exists, we must
characterize the fraction that is vapor, since the vapor and liquid property values differ significantly.

The mass percentage that is vapor is called the quality and given the symbol q. The properties V,



U, H, and S, may be represented with a generic variable M. The overall value of the state variable M
is

which may be rearranged as
M = ML + q(MV – ML)

but (MV – ML) is just ∆Mvap and for internal energy, enthalpy, and entropy, it is tabulated in
columns of the saturation tables. The value of overall M is

 Quality is the vapor mass percentage of a vapor/liquid mixture.

Look carefully at Eqn. 1.27 in comparison with Eqn. 1.25; it may be helpful to recognize a quality
calculation as an interpolation between saturated liquid and saturated vapor. Two examples help
demonstrate the importance of quality calculations.

Example 1.8. Quality calculations
Two kg of water coexists as vapor and liquid at 280°C in a 0.05 m3 rigid container. What is the

pressure, quality, and overall internal energy of the mixture?

Solution
The overall mass volume is V = 0.05 m3/2 kg = 0.025 m3/kg. From the saturation temperature table,

the pressure is 6.417 MPa. Using the saturation volumes at this condition to find q,
0.025 = 0.001333 + q (0.0302 – 0.0013) m3/kg

which leads to q = 0.82. The overall internal energy is
U = 1228.33 + 0.82 · 1358.1 = 2342 kJ/kg

Example 1.9. Constant volume cooling
Steam is initially contained in a rigid cylinder at P = 30 MPa and V = 102.498cm3/mole. The

cylinder is allowed to cool to 300°C. What is the pressure, quality, and overall internal energy of the
final mixture?

Solution
The overall mass volume is V = 102.498cm3-mole–1 · 10–6(m3/cm3)/(18.02E-3kg/mole) = 0.01747

m3/kg. From the superheated steam table at 30 MPa, the initial temperature is 900°C. When the
cylinder is cooled to 300°C, the path is shown in Fig. 1.8 below. You should notice that there is no
pressure in the superheated steam tables that provides a volume of V = 0.01747 m3/kg. Look hard,
they are all too large. (Imagine yourself looking for this on a test when you are in a hurry.) Now look



in the saturated steam tables at 300°C. Notice that the saturated vapor volume is 0.0217 m3/kg. Since
that is higher than the desired volume, but it is the lowest vapor volume at this temperature, we must
conclude that our condition is somewhere between the saturated liquid and the saturated vapor at a
pressure of 8.588 MPa. (When you are in a hurry, it is advisable to check the saturated tables first.)
Using the saturation volumes at 300°C condition to find q,

0.01747 = 0.001404 + q (0.0217 – 0.001404) m3/kg
which leads to q = (0.01747 – 0.001404)/(0.0217 – 0.001404) = 0.792. The overall internal

energy is
U = 1332.95 + 0.792 · 1230.67 = 2308 kJ/kg

Figure 1.8. P-V-T behavior of water illustrating a quality calculation.

1.6. Summary
Years from now you may have some difficulty recalling the details presented in this text. On the

other hand, the two basic premises outlined in this introductory section are so fundamental to
technically educated people that you really should commit them to long-term memory as soon as
possible. Formally, we may state our two basic premises as the first and second “laws” of
thermodynamics.13

First Law: Overall energy is conserved (you can’t get something for nothing).
Second Law: Overall entropy changes are greater than or equal to zero (generation

of disorder results in lost work).
The first law is further developed in Chapters 2 and 3. The concepts of entropy and the second law

are developed in Chapter 4 and process applications in Chapter 5. The exact relationship between the
two basic premises and these two laws may not become apparent until some time later in this text, but
you should begin to absorb and contemplate these fundamentals now. There are times when the
endeavor to apply these simple laws seems daunting, but the answer appears simple in retrospect,
once obtained. By practicing adaptation of the basic principles to many specific problems, you



slowly grasp the appropriate connection between the basic premises and finding the details. Try not
to be distracted by the vocabulary or the tedious notation that goes into keeping all the coupled
systems classified in textbook fashion. Keep in mind that other students have passed through this and
found the detailed analysis to be worth the effort.

Important Equations
The content of this chapter is primarily about laying down the fundamental concepts more than

deriving equations. Nevertheless, three concepts that we refer to repeatedly can be expressed by
equations. Of course, the ideal gas law is important, but an implication of it that may be new is:

This equation conveys that temperature is closely related to molecular kinetic energy. Although
derived with the ideal gas assumption, it turns out to be true for real fluids as well. Every time you
alter the temperature, you should think about the implications for molecular kinetic energy. Another
important equation relates to deviations from the ideal gas law:

This is the square well potential model, the simplest characterization of how real molecules attract
and repel. As you add energy to the system, real fluids may absorb that energy by moving molecules
from inside the square well to outside, converting potential energy into kinetic energy without altering
the temperature as an ideal gas would. A simple example is boiling. Ideal gases cannot boil, but real
fluids can. This interplay between kinetic energy, temperature, and potential energy pervades many
discussions throughout the text.

Finally, we can write a generic equation that symbolizes the procedure for interpolation:

A similar equation is used for quality calculations which can be viewed as an interpolation
between saturated liquid and saturated vapor. Throughout Unit I, we refer extensively to the steam
tables and interpolation to account for deviations from the ideal gas law.

Test Yourself
1. Draw a sketch of the force model implied by the square-well potential, indicating the
position(s) where the force between two atoms is zero and the positions where it is
nonzero.
2. Explain in words how the pressure of a fluid against the walls of its container is related
to the velocity of the molecules.
3. What is it about molecules that requires us to add heat to convert liquids to gases?
4. If the kinetic energy of pure liquid and vapor molecules at phase equilibrium must be the



same, and the internal energy of a system is the sum of the kinetic and potential energies,
what does this say about the intensive internal energy of a liquid phase compared with the
intensive internal energy of the gas phase?
5. Explain the terms “energy,” “potential energy,” “kinetic energy,” and “internal energy.”
6. How is the internal energy of a substance related to the intermolecular pair potentials of
the molecules?
7. Are T and P intensive properties? Name two intensive properties and two extensive
properties.
8. How many degrees of freedom exist when a pure substance coexists as a liquid and gas?
9. Can an ideal gas condense? Can real fluids that follow the ideal gas law condense?
10. Give examples of bubble, dew, saturation, and superheated conditions. Explain what is
meant when wet steam has a quality of 25%.
11. Create and solve a problem that requires double interpolation.

1.7. Practice Problems
P1.1. Estimate the average speed (mph) of hydrogen molecules at 200 K and 3 bars. (ANS.
3532)
P1.2. Estimate the entropy (J/g-K) of steam at 27.5MPa and 425C. (ANS. 5.1847)

1.8. Homework Problems
Note: Some of the steam table homework problems involve enthalpy, H, which is

defined for convenience using properties discussed in this chapter, H ≡ U + PV.
The enthalpy calculations can be performed by reading the tabulated enthalpy
values from the tables in an analogous manner used for internal energy. We expect
that students will be introduced to this property in course lectures in parallel with
the homework problems that utilize H.

1.1. In each of the following, sketch your estimates of the intermolecular potentials between
the given molecules and their mixture on the same pair of axes.

a. Chloroform is about 20% larger than acetone and about 10% stickier, but
chloroform and acetone stick to one another much more strongly than they stick to
themselves.
b. You have probably heard that “oil and water don’t mix.” What does that mean
in molecular terms? Let’s assume that oil can be characterized as benzene and
that benzene is four times larger than water, but water is 10% stickier than
benzene. If the ε12 parameter is practically zero, that would represent that the
benzene and water stick to themselves more strongly than to one another. Sketch
this.

1.2. For each of the states below, calculate the number of moles of ideal gas held in a three
liter container.

a. T = 673 K, P = 2 MPa
b. T = 500 K, P = 0.7 MPa



c. T = 450 K, P = 1.5 MPa
1.3. A 5 m3 outdoor gas storage tank warms from 10°C to 40°C on a sunny day. If the initial
pressure was 0.12 MPa at 10°C, what is the pressure at 40°C, and how many moles of gas
are in the tank? Use the ideal gas law.
1.4. An automobile tire has a pressure of 255 kPa (gauge) in the summer when the tire
temperature after driving is 50°C. What is the wintertime pressure of the same tire at 0°C if
the volume of the tire is considered the same and there are no leaks in the tire?
1.5. A 5 m3 gas storage tank contains methane. The initial temperature and pressure are P =
1 bar, T = 18°C. Using the ideal gas law, calculate the P following each of the successive
steps.

a. 1 m3 (at standard conditions) is withdrawn isothermally.
b. The sun warms the tank to 40°C.
c. 1.2 m3 (at standard conditions) is added to the tank and the final temperature is
35°C.
d. The tank cools overnight to 18°C.

1.6. Calculate the mass density of the following gases at 298 K and 1 bar.
a. Nitrogen
b. Oxygen
c. Air (use average molecular weight)
d. CO2

e. Argon
1.7. Calculate the mass of air (in kg) that is contained in a classroom that is 12m × 7m × 3m
at 293 K and 0.1 MPa.
1.8. Five grams of the specified pure solvent is placed in a variable volume piston. What is
the volume of the pure system when 50% and 75% have been evaporated at: (i) 30°C, (ii)
50°C? Use the Antoine equation (Appendix E) to relate the saturation temperature and
saturation pressure. Use the ideal gas law to model the vapor phase. Show that the volume
of the system occupied by liquid is negligible compared to the volume occupied by vapor.

a. Hexane (ρL = 0.66 g/cm3)
b. Benzene (ρL = 0.88 g/cm3)
c. Ethanol (ρL = 0.79 g/cm3)
d. Water without using the steam tables (ρL = 1 g/cm3)
e. Water using the steam tables

1.9. A gasoline spill is approximately 4 liters of liquid. What volume of vapor is created at
1 bar and 293 K when the liquid evaporates? The density of regular gasoline can be
estimated by treating it as pure isooctane (2,2,4-trimethylpentane ρL = 0.692 g/cm3) at 298
K and 1 bar.

1.10. The gross lifting force of a balloon is given by (ρair – ρgas)Vballoon. What is the gross



lifting force (in kg) of a hot air balloon of volume 1.5E6 L, if the balloon contains gas at 100°C
and 1 atm? The hot gas is assumed to have an average molecular weight of 32 due to carbon
dioxide from combustion. The surrounding air has an average molecular weight of 29 and is at
25°C and 1 atm.
1.11. LPG is a useful fuel in rural locations without natural gas pipelines. A leak during the
filling of a tank can be extremely dangerous because the vapor is denser than air and drifts to
low elevations before dispersing, creating an explosion hazard. What volume of vapor is created
by a leak of 40L of LPG? Model the liquid before leaking as propane with ρL = 0.24 g/cm3.
What is the mass density of pure vapor propane after depressurization to 293 K and 1 bar?
Compare with the mass density of air at the same conditions.
1.12. The gas phase reaction A → 2R is conducted in a 0.1 m3 spherical tank. The initial
temperature and pressure in the tank are 0.05 MPa and 400 K. After species A is 50% reacted,
the temperature has fallen to 350 K. What is the pressure in the vessel?
1.13. A gas stream entering an absorber is 20 mol% CO2 and 80 mol% air. The flowrate is 1
m3/min at 1 bar and 360 K. When the gas stream exits the absorber, 98% of the incoming CO2
has been absorbed into a flowing liquid amine stream.

a. What are the gas stream mass flowrates on the inlet and outlets in g/min?
b. What is the volumetric flowrate on the gas outlet of the absorber if the stream
is at 320 K and 1 bar?

1.14. A permeation membrane separates an inlet air stream, F, (79 mol% N2, 21 mol% O2), into
a permeate stream, M, and a reject stream, J. The inlet stream conditions are 293 K, 0.5 MPa,
and 2 mol/min; the conditions for both outlet streams are 293 K and 0.1 MPa. If the permeate
stream is 50 mol% O2, and the reject stream is 13 mol% O2, what are the volumetric flowrates
(L/min) of the two outlet streams?
1.15.

a. What size vessel holds 2 kg water at 80°C such that 70% is vapor? What are
the pressure and internal energy?
b. A 1.6 m3 vessel holds 2 kg water at 0.2 MPa. What are the quality,
temperature, and internal energy?

1.16. For water at each of the following states, determine the internal energy and enthalpy using
the steam tables.

1.17. Determine the temperature, volume, and quality for one kg water under the following
conditions:

a. U = 3000 kJ/kg, P = 0.3 MPa



b. U = 2900 kJ/kg, P = 1.7 MPa
c. U = 2500 kJ/kg, P = 0.3 MPa
d. U = 350 kJ/kg, P = 0.03 MPa

1.18. Two kg of water exist initially as a vapor and liquid at 90°C in a rigid container of volume
2.42 m3.

a. At what pressure is the system?
b. What is the quality of the system?
c. The temperature of the container is raised to 100°C. What is the quality of the
system, and what is the pressure? What are ∆H and ∆U at this point relative to
the initial state?
d. As the temperature is increased, at what temperature and pressure does the
container contain only saturated vapor? What is ∆H and ∆U at this point relative
to the initial state?
e. Make a qualitative sketch of parts (a) through (d) on a P-V diagram, showing
the phase envelope.

1.19. Three kg of saturated liquid water are to be evaporated at 60°C.
a. At what pressure will this occur at equilibrium?
b. What is the initial volume?
c. What is the system volume when 2 kg have been evaporated? At this point,
what is ∆U relative to the initial state?
d. What are ∆H and ∆U relative to the initial state for the process when all three
kg have been evaporated?
e. Make a qualitative sketch of parts (b) through (d) on a P-V diagram, showing
the phase envelope.



Chapter 2. The Energy Balance

When you can measure what you are speaking about, and express it in numbers, you
know something about it. When you cannot measure it, your knowledge is meager and
unsatisfactory.

Lord Kelvin

The energy balance is based on the postulate of conservation of energy in the universe. This
postulate is known as the first law of thermodynamics. It is a “law” in the same sense as Newton’s
laws. It is not refuted by experimental observations within a broadly defined range of conditions, but
there is no mathematical proof of its validity. Derived from experimental observation, it
quantitatively accounts for energy transformations (heat, work, kinetic, potential). We take the first
law as a starting point, a postulate at the macroscopic level, although the conservation of energy in
elastic collisions does suggest this inference in the absence of radiation. Facility with computation of
energy transformations is a necessary step in developing an understanding of elementary
thermodynamics. The first law relates work, heat, and flow to the internal energy, kinetic energy, and
potential energy of the system. Therefore, we precede the introduction of the first law with discussion
of work and heat.

 The energy balance is also known as the first law of thermodynamics.

Chapter Objectives: You Should Be Able to...
1. Explain why enthalpy is a convenient property to define and tabulate.
2. Explain the importance of assuming reversibility in making engineering calculations of
work.
3. Calculate work and heat flow for an ideal gas along the following pathways: isothermal,
isochoric, adiabatic.
4. Simplify the general energy balance for problems similar to the homework problems,
textbook examples, and practice problems.
5. Properly use heat capacity polynomials and latent heats to calculate changes in U, H for
ideal gases and condensed phases.
6. Calculate ideal gas or liquid properties relative to an ideal gas or liquid reference state,
using the ideal gas law for the vapor phase properties and heats of vaporization.

2.1. Expansion/Contraction Work
There is a simple way that a force on a surface may interact with the system to cause

expansion/contraction of the system in volume. This is the type of surface interaction that occurs if we
release the latch of a piston, and move the piston in/out while holding the cylinder in a fixed location.
Note that a moving boundary is not sufficient to distinguish this type of work—there must be
movement of the system boundaries relative to one another. For expansion/contraction interactions,
the size of the system must change. This distinction becomes significant when we contrast
expansion/contraction work to flow work in Section 2.3.
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How can we relate this amount of work to other quantities that are easily measured, like volume
and pressure? For a force applied in the x direction, the work done on our system is

dW = Fapplied dx = –Fsystem dx
where we have used Newton’s principle of equal and opposite forces acting on a boundary to

relate the applied and system forces. Since it is more convenient to use the system force in
calculations, we use the latter form, and drop the subscript with the understanding that we are
calculating the work done on the system and basing the calculation on the system force. For a constant
force, we may write

W = – F∆x
If F is changing as a function of x then we must use an integral of F,

For a fluid acting on a surface of constant area A, the system force and pressure are related,

where the subscript EC refers to expansion/contraction work.
In evaluating this expression, a nagging question of perspective comes up. It would be a trivial

question except that it causes major headaches when we later try to keep track of positive and
negative signs. The question is essentially this: In the discussion above, is positive work being done
on the system, or is negative work being done by the system? When we add energy to the system, we
consider it a positive input into the system; therefore, putting work into the system should also be
considered as a positive input. On the other hand, when a system does work, the energy should go
down, and it might be convenient to express work done by the system as positive. The problem is that
both perspectives are equally valid—therefore, the choice is arbitrary. Since various textbooks
choose differently, there is always confusion about sign conventions. The best we can hope for is to
be consistent during our own discussions. We hereby consider work to be positive when performed
on the system. Thus, energy put into the system is positive. Because volume decreases when
performing work of compression, the sign on the integral for work is negative,

where P and V are of the system. Clarification of “reversible” is given in Section 2.4 on page 42.
By comparing Eqn. 2.3 with the definitions of work given by Eqns. 2.1 and 2.2, it should be obvious
that the dV term results from expansion/contraction of the boundary of the system. The P results from
the force of the system acting at the boundary. Therefore, to use Eqn. 2.3, the pressure in the integral
is the pressure of the system at the boundary, and the boundary must move. A system which does not
have an expanding/contracting boundary does not have expansion/contraction work.1

 Expansion/Contraction work is associated with a change in system size.



2.2. Shaft Work
In a flowing system, we know that a propeller-type device can be used to push a fluid through

pipes—this is the basis of a centrifugal pump. Also, a fluid flowing through a similar device could
cause movement of a shaft—this is the basis for hydroelectric power generation and the water wheels
that powered mills in the early twentieth century. These are the most commonly encountered forms of
shaft work in thermodynamics, but there is another slight variation. Suppose an impeller was inserted
into a cylinder containing cookie batter and stirred while holding the piston at a fixed volume. We
would be putting work into the cylinder, but the system boundaries would neither expand nor contract.
All of these cases exemplify shaft work. The essential feature of shaft work is that work is being
added or removed without a change in volume of the system. We show in Section 2.8, page 54, that
shaft work for a reversible flow process can be computed from

Note that Eqns. 2.3 and 2.4 are distinct and should not be interchanged. Eqn. 2.4 is restricted to
shaft work in an open system and Eqn. 2.3 is for expansion/contraction work in a closed system. We
later show how selection of the system boundary in a flow system relates the two types of terms on
page 54.

 Shaft work characterizes the work of a turbine or pump.

2.3. Work Associated with Flow
In engineering applications, most problems involve flowing systems. This means that materials

typically flow into a piece of equipment and then flow out of it, crossing well-defined system
boundaries in the process. Thus, we need to introduce an additional characterization of work: the
work interaction of the system and surroundings when mass crosses a boundary. For example, when a
gas is released out of a tank through a valve, the exiting gas pushes the surrounding fluid, doing work
on the surroundings. Likewise, when a tank valve is opened to allow gas from a higher pressure
source to flow inward, the surroundings do work on the gas already in the system. We calculate the
work in these situations most easily by first calculating the rate at which work is done.

Let us first consider a fluid entering a system as shown in Fig. 2.1. We have dW = Fdx, and the
work interaction of the system is positive since we are pushing fluid into the system. The rate of work
is , but  is velocity, and F = P·A. Further rearranging, recognizing , and that the
volumetric flow rate may be related to the mass specific volume and the mass flow rate, ,

 Work associated with fluid flowing in/out of boundaries is called flow work.



Figure 2.1. Schematic illustration of flow work.

where PV are the properties of the fluid at the point where it crosses the boundary, and  is the
absolute value of the mass flow rate across the boundary. When fluid flows out of the system, work is
done on the surroundings and the work interaction of the system is

where  is the absolute value of the mass flow across the boundary, and since work is being
done on the surroundings, the work interaction of the system is negative. When flow occurs both in
and out, the net flow work is the difference:

where  and  are absolute values of the mass flow rates. For more streams, we simply follow
the conventions established, and add inlet streams and subtract outlet streams.

2.4. Lost Work versus Reversibility

 Real processes involve “lost work.”

In order to properly understand the various characteristic forms that work may assume, we must
address an issue which primarily belongs to the upcoming chapter on entropy. The problem is that the
generation of disorder reflected by entropy change results in conversion of potentially useful work
energy into practically useless thermal energy. If “generation of disorder results in lost work,” then
operating in a disorderly fashion results in the lost capability to perform useful work, which we
abbreviate by the term: “lost work.” It turns out that the most orderly manner of operating is a
hypothetical process known as a reversible process. Typically, this hypothetical, reversible process
is applied as an initial approximation of the real process, and then a correction factor is applied to
estimate the results for the actual process. It was not mentioned in the discussion of
expansion/contraction work, but we implicitly assumed that the process was performed reversibly, so
that all of the work on the system was stored in a potentially useful form. To see that this might not
always be the case, and how this observation relates to the term “reversible,” consider the problem
of stirring cookie batter. Does the cookie batter become unmixed if you stir in the reverse direction?
Of course not. The shaft work of stirring has been degraded to effect the randomness of the
ingredients. It is impossible to completely recover the work lost in the randomness of this
irreversible process. Any real process involves some degree of stirring or mixing, so lost work
cannot be eliminated, but we can hope to minimize unnecessary losses if we understand the issue
properly.

Consider a process involving gas enclosed in a piston and cylinder. Let the piston be oriented



upward so that an expansion of the gas causes the piston to move upward. Suppose that the pressure
in the piston is great enough to cause the piston to move upward when the latch is released. How can
the process be carried out so that the expansion process yields the maximum work? First, we know
that we must eliminate friction to obtain the maximum movement of the piston.

Friction decreases the work available from a process. Frequently we neglect friction to
perform a calculation of maximum work.

 Friction results in “lost work.”

If we neglect friction, what will happen when we release the latch? The forces are not balanced.
Let us take z as our coordinate in the vertical direction, with increasing values in the upward
direction. The forces downward on the piston are the force of atmospheric pressure (–Patm · A, where
A is the cross-sectional area of the piston) and the force of gravity (–m·g). These forces will be
constant throughout movement of the piston. The upward force is the force exerted by the gas (P · A).
Since the forces are not balanced, the piston will begin to accelerate upward (F = ma). It will
continue to accelerate until the forces become balanced.2 However, when the forces are balanced, the
piston will have a non-zero velocity. As it continues to move up, the pressure inside the piston
continues to fall, making the upward force due to the inside pressure smaller than the downward
force. This causes the piston to decelerate until it eventually stops. However, when it stops at the top
of the travel, it is still not in equilibrium because the forces are again not balanced. It begins to move
downward. In fact, in the absence of dissipative mechanisms we have set up a perpetual motion.3 A
reversible piston would oscillate continuously between the initial state and the state at the top of
travel. This would not happen in a real system. One phenomenon which we have failed to consider is
viscous dissipation (the effect of viscosity).

Let us consider how velocity gradients dissipate linear motion. Consider two diatomic molecules
touching one another which both have exactly the same velocity and are traveling in exactly the same
direction. Suppose that neither is rotating. They will continue to travel in this direction at the same
velocity until they interact with an external body. Now consider the same two molecules in contact,
again moving in exactly the same direction, but one moving slightly faster. Now there is a velocity
gradient. Since they are touching one another, the fact that one is moving a little faster than the other
causes one to begin to rotate clockwise and the other counter-clockwise because of friction as one
tries to move faster than the other. Naturally, the kinetic energy of the molecules will stay constant,
but the directional velocities are being converted to rotational (directionless) energies. This is an
example of viscous dissipation in a shear situation. In the case of the oscillating piston, the viscous
dissipation prevents complete transfer of the internal energy of the gas to the piston during expansion,
resulting in a stroke that is shorter than a reversible stroke. During compression, viscous dissipation
results in a fixed internal energy rise for a shorter stroke than a reversible process. In both expansion
and compression, the temperature of the gas at the end of each stroke is higher than it would be for a
reversible stroke, and each stroke becomes successively shorter.

Velocity gradients lead to dissipation of directional motion (kinetic energy) into random
motion (internal energy) due to the viscosity of a fluid. Frequently, we neglect viscous
dissipation to calculate maximum work. A fluid would need to have zero viscosity for this
mechanism of dissipation to be non-existent. Pressure gradients within a viscous fluid



lead to velocity gradients; thus, one type of gradient is associated with the other.

 Velocity gradients in viscous fluids lead to lost work.

We can see that friction and viscosity play an important role in the loss of capability to perform
useful work in real systems. In our example, these forces cause the oscillations to decrease somewhat
with each cycle until the piston comes to rest. Another possibility of motion that might occur with a
piston is interaction with a stop, which limits the travel of the piston. As the piston travels upward, if
it hits the stop, it will have kinetic energy which must be absorbed. In a real system, this kinetic
energy is converted to internal energy of the piston, cylinder, and gas.

Kinetic energy is dissipated to internal energy when objects collide inelastically, such as
when a moving piston strikes a stop. Frequently we imagine systems where the cylinder and
piston can neither absorb nor transmit heat; therefore, the lost kinetic energy is returned to
the gas as internal energy.

 Inelastic collisions result in lost work.

So far, we have identified three dissipative mechanisms. Additional mechanisms are diffusion
along a concentration gradient and heat conduction along a temperature gradient, which will be
discussed in Chapter 4. Velocity, temperature, and concentration gradients are always associated
with losses of work. If we could eliminate them, we could perform maximum work (but it would
require infinite time).

A process without dissipative losses is called reversible. A process is reversible if the
system may be returned to a prior state by reversing the motion. We can usually determine
that a system is not reversible by recognizing when dissipative mechanisms exist.

 A reversible process avoids lost work.

Approaching Reversibility
We can approach reversibility by eliminating gradients within our system. To do this, we can

perform motion by differential changes in forces, concentrations, temperatures, and so on. Let us
consider a piston with a weight on top, at equilibrium. If we slide the weight off to the side, the
change in potential energy of the weight is zero, and the piston rises, so its potential energy increases.
If the piston hits a stop, kinetic energy is dissipated. Now let us subdivide the weight into two
portions. If we move off one-half of the weight, the piston strikes the stop with less kinetic energy
than before, and in addition, we have now raised half of the weight. If we repeat the subdivision
again we would find that we could move increasing amounts of weight by decreasing the weight we
initially move off the piston. In the limit, our weight would become like a pile of sand, and we would
remove one grain at a time. Since the changes in the system are so small, only infinitesimal gradients
would ever develop, and we would approach reversibility. The piston would never develop kinetic
energy which would need to be dissipated.

Reversibility by a Series of Equilibrium States



When we move a system differentially, as just discussed, the system is at equilibrium along each
step of the process. To test whether the system is at equilibrium at a particular stage, we can imagine
freezing the process at that stage. Then we can ask whether the system would change if we left it at
those conditions. If the system would remain static (i.e., not changing) at those conditions, then it must
be at equilibrium. Because it is static, we could just as easily go one way as another ය “reversible.”
Thus, reversible processes are the result of infinitesimal driving forces.

Reversibility by Neglecting Viscosity and Friction
Real processes are not done infinitely slowly. In the previous examples we have used idealized

pistons and cylinders for discussion. Real systems can be far from ideal and may have much more
complex geometry. For example, projectiles can be fired using gases to drive them, and we need a
method to estimate the velocities with which they are projected into free flight. One application of
this is the steam catapult used to assist airplanes in becoming airborne from the short flight decks of
aircraft carriers. Another application would be determination of the exit velocity of a bullet fired
from a gun. These are definitely not equilibrium processes, so how can we begin to calculate the exit
velocities? Another case would be the centrifugal pump. The pump works by rapidly rotating a
propeller-type device. The pump simply would not work at low speed without velocity gradients! So
what do we do in these cases? The answer is that we perform a calculation ignoring viscosity and
friction. Then we apply an efficiency factor to calculate the real work done. The efficiency factors are
determined empirically from our experience with real systems of a similar nature to the problem at
hand. Efficiencies are introduced in Chapter 4. In the remainder of this chapter, we concentrate on the
first part of the problem, calculation of reversible work.

 Viscosity and friction are frequently ignored for an estimation of optimum work, and
an empirical efficiency factor is applied based on experience with similar systems.

Example 2.1. Isothermal reversible compression of an ideal gas
Calculate the work necessary to isothermally perform steady compression of two moles of an ideal

gas from 1 to 10 bar and 311 K in a piston. An isothermal process is one at constant temperature. The
steady compression of the gas should be performed such that the pressure of the system is always
practically equal to the external pressure on the system. We refer to this type of compression as
“reversible” compression.

Solution
System: closed; Basis: one mole



WEC = –8.314 J/mol-K · 311 K ln(1/10) = 5954 J/mol

WEC = 2(5954) = 11,908 J
Note: Work is done on the gas since the sign is positive. This is the sign

convention set forth in Eqn. 2.3. If the integral for Eqn. 2.3 is always written as
shown with the initial state as the lower limit of integration and the P and V
properties of the system, the work on the gas will always result with the correct
sign.

2.5. Heat Flow
A very simple experiment shows us that heat transport is also related to energy. If two steel blocks

of different temperature are placed in contact with one another, but otherwise are insulated from their
surroundings, they will come to equilibrium at a common intermediate temperature. The warmer
block will be cooled, and the colder block will be warmed.

Qblock 1 = –Qblock 2

Heat is transferred at a boundary between the blocks. Therefore, heat is not a property of the
system. It is a form of interaction at the boundary which transfers internal energy. If heat is added to a
system for a finite period of time, then the energy of the system increases because the kinetic energy of
the molecules is increased. When an object feels hot to our touch, it is because the kinetic energy of
molecules is readily transferred to our hand.

Since the rate of heating may vary with time, we must recognize that the total heat flows must be
summed (or integrated) over time. In general, we can represent a differential contribution by

We can also relate the internal energy change and heat transfer for either block in a differential
form:

An idealized system boundary that has no resistance to heat transfer but is impervious to mass is
called a diathermal wall.

 Diathermal.

2.6. Path Properties and State Properties
In the previous example, we have used an isothermal path. It is convenient to define other terms

which describe pathways concisely. An isobaric path is one at constant pressure. An isochoric path is
one at constant volume. An adiabatic path is one without heat transfer.

 The terms “isothermal,” “isobaric,” “isochoric,” and “adiabatic,” describe pathways.

The heat and work transfer necessary for a change in state are dependent on the pathway taken



between the initial and final states. A state property is one that is independent of the pathway taken.
For example, when the pressure and temperature of a gas are changed and the gas is returned to its
initial state, the net change in temperature, pressure, and internal energy is zero, and these properties
are therefore state properties. However, the net work and net heat transfer will not necessarily be
zero; their values will depend on the path taken. Also, it is helpful to recall that heat and work are not
properties of the system; therefore, they are not state properties.

 The work and heat transfer necessary for a change in state are dependent on the
pathway taken between the initial and final state.

Example 2.2. Work as a path function
Consider 1.2 moles of an ideal gas in a piston at 298 K and 0.2 MPa and at volume V1. The gas is

expanded isothermally to twice its original volume, then cooled isobarically to V1. It is then heated at
constant volume back to T1. Demonstrate that the net work is non-zero, and that the work depends on
the path.

Solution
First sketch the process on a diagram to visualize the process as shown in Fig. 2.2. Determine the

initial volume:

Figure 2.2. Schematic for Example 2.2.

1. Isothermally expand that gas:

2. Isobarically cool down to V1:



3. Heat at constant volume back to T1:

යWEC = 0 (because dV = 0 over entire step)
We have returned the system to its original state and all state properties have returned to their

initial values. What is the total work done on the system?

Therefore, we conclude that work is a path function, not a state function.

Exercise: If we reverse the path, the work will be different; in fact, it will be positive instead of
negative (+573.6 J). If we change the path to isobarically expand the gas to double the volume (W = –
2973 J), cool to T1 at constant volume (W = 0 J), then isothermally compress to the original volume
(W = –2060 J), the work will be –913 J.

Note: Heat was added and removed during the process of Example 2.2 which has not been
accounted for above. The above process transforms work into heat, and all we have done is computed
the amount of work. The amount of heat is obviously equal in magnitude and opposite in sign, in
accordance with the first law. The important thing to remember is that work is a path function, not a
state function.

 Work and heat are path properties.

2.7. The Closed-System Energy Balance
A closed system is one in which no mass flows in or out of the system, as shown in Fig. 2.3. The

introductory sections have discussed heat and work interactions, but we have not yet coupled these to
the energy of the system. In the transformations we have discussed, energy can cross a boundary in the
form of expansion/contraction work (–∫ PdV), shaft work (WS), and heat (Q)4. There are only two
ways a closed system can interact with the surroundings, via heat and work interactions. If we put
both of these possibilities into one balance equation, then developing the balance for a given
application is simply a matter of analyzing a given situation and deleting the balance terms that do not
apply. The equation terms can be thought of as a check list.



Figure 2.3. Schematic of a closed system.

 A closed system interacts with the surroundings only through heat and work.

Experimentally, scientists discovered that if heat and work are measured for a cyclical process
which returns to the initial state, the heat and work interactions together always sum to zero. This is
an important result! This means that, in non-cyclical processes where the sum of heat and work is
non-zero, the system has stored or released energy, depending on whether the sum is positive or
negative. In fact, by performing enough experiments, scientists decided that the sum of heat and work
interactions in a closed system is the change in energy of the system! To develop the closed-system
energy balance, let us first express the balance in terms of words.

Energy within the system is composed of the internal energy (e.g., U), and the kinetic (mu2/2gc) and
potential energy (mgz/gc) of the center of mass. For closed systems, the “check list” equation is:

The left-hand side summarizes changes occurring within the system boundaries and the right-
hand side summarizes changes due to interactions at the boundaries. It is a recommended practice
to always write the balance in this convention when starting a problem. We will follow this
convention throughout example problems in Chapters 2–4 and relax the practice subsequently. The
kinetic and potential energy of interest in Eqn. 2.15 is for the center of mass, not the random kinetic
and potential energy of molecules about the center of mass. The balance could also be expressed in
terms of molar quantities, but if we do so, we need to introduce molecular weight in the potential and
kinetic energy terms. Since the mass is constant in a closed system, we may divide the above equation



by m,

 Closed-system balance. The left-hand side summarizes changes inside the boundaries,
and the right-hand side summarizes interactions at the boundaries.

where heat and work interactions are summed for multiple interactions at the boundaries. We can
integrate Eqn. 2.16 to obtain

We may also express the energy balance in terms of rates of change,

where ,  and  Frequently, the kinetic and potential energy
changes are small (as we will show in Example 2.9), in a closed system shaft work is not common,
and the balance simplifies to

Example 2.3. Internal energy and heat
In Section 2.5 on page 46 we discussed that heat flow is related to the energy of system, and now

we have a relation to quantify changes in energy. If 2000 J of heat are passed from the hot block to the
cold block, how much has the internal energy of each block changed?

Solution
First choose a system boundary. Let us initially place system boundaries around each of the blocks.

Let the warm block be block1 and the cold block be block2. Next, eliminate terms which are zero or
are not important. The problem statement says nothing about changes in position or velocity of the
blocks, so these terms can be eliminated from the balance. There is no shaft involved, so shaft work
can be eliminated. The problem statement doesn’t specify the pressure, so it is common to assume that
the process is at a constant atmospheric pressure of 0.101 MPa. The cold block does expand slightly
when it is warmed, and the warm block will contract; however, since we are dealing with solids, the
work interaction is so small that it can be neglected. For example, the blocks together would have to
change 10 cm3 at 0.101 MPa to equal 1 J out of the 2000 J that are transferred.

Therefore, the energy balance for each block becomes:



We can integrate the energy balance for each block:

The magnitude of the heat transfer between the blocks is the same since no heat is transferred to the
surroundings, but how about the signs? Let’s explore that further. Now, placing the system boundary
around both blocks, the energy balance becomes:

Note that the composite system is an isolated system since all heat and work interactions across
the boundary are negligible. Therefore, ∆U = 0 or by dividing in subsystems, ∆Ublock1 + ∆Ublock2 = 0
which becomes ∆Ublock1 = –∆Ublock2. Notice that the signs are important in keeping track of which
system is giving up heat and which system is gaining heat. In this example, it would be easy to keep
track, but other problems will be more complicated, and it is best to develop a good bookkeeping
practice of watching the signs. In this example the heat transfer for the initially hot system will be
negative, and the heat transfer for the other system will be positive. Therefore, the internal energy
changes are ∆Ublock1 = –2000 J and ∆Ublock2 = 2000 J.

Although very simple, this example has illustrated several important points.
1. Before simplifying the energy balance, the boundary should be clearly described by a
statement and/or a sketch.
2. A system can be subdivided into subsystems. The composite system above is isolated,
but the subsystems are not. Many times, problems are more easily solved, or insight is
gained by looking at the overall system. If the subsystem balances look difficult to solve, try
an overall balance.
3. Positive and negative energy signs are important to use carefully.
4. Simplifications can be made when some terms are small relative to other terms.
Calculation of the expansion contraction work for the solids is certainly possible above,
but it has a negligible contribution. However, if the two subsystems had included gases,
then this simplification would have not been reasonable.

 Four important points about solving problems.

2.8. The Open-System, Steady-State Balance
Having established the energy balance for a closed system, and, from Section 2.3, the work

associated with flowing fluids, let us extend these concepts to develop the energy balance for a
steady-state flow system. The term steady-state means the following:

1. All state properties throughout the system are invariant with respect to time. The



properties may vary with respect to position within the system.
2. The system has constant mass, that is, the total inlet mass flow rate equals the total outlet
mass flow rates, and all flow rates are invariant with respect to time.
3. The center of mass for the system is fixed in space. (This restriction is not strictly
required, but will be used throughout this text.)

To begin, we write the balance in words, by adding flow to our previous closed-system balance.
There are only three ways the surroundings can interact with the system: flow, heat, and work. A
schematic of an open steady-state system is shown in Fig. 2.4. In consideration of the types of work
encountered in steady-state flow, recognize that expansion/contraction work is rarely involved, so
this term is omitted at this preliminary stage. This is because we typically apply the steady-state
balance to systems of rigid mechanical equipment, and there is no change in the size of the system.
Therefore, the expansion/contraction work term is set to 0.

Figure 2.4. Schematic of a steady-state flow system.

 Steady-state flow systems are usually fixed size, so WEC = 0.

The balance in words becomes time-dependent since we work with flow rates:

Again, we follow the convention that the left-hand side quantifies changes inside our system.
Consider the change of energy inside the system boundary given by the left-hand side of the equation.
Due to the restrictions placed on the system by steady-state, there is no accumulation of energy within
the system boundaries, so the left-hand side of Eqn. 2.20 becomes 0.



As a result,

where heat and work interactions are summed over all boundaries. The flow work from Eqn. 2.7
may be inserted and summed over all inlets and outlets,

and combining flow terms:

Enthalpy
Note that the quantity (U + PV) arises quite naturally in the analysis of flow systems. Flow systems

are very common, so it makes sense to define a single symbol that denotes this quantity:
H ≡ U + PV

Thus, we can tabulate precalculated values of H and save steps in calculations for flow systems.
We call H the enthalpy.

 Enthalpy is a mathematical property defined for convenience in problem solving.

The open-system, steady-state balance is then,

 Open-system, steady-state balance.

where the heat and work interactions are summations of the individual heat and work interactions
over all boundaries.

Note: Q is positive when the system gains heat energy; W is positive when the
system gains work energy;  and  are always positive; and 



is positive when the systems gains mass and zero for steady-state flow. Mass may be
replaced with moles in a non-reactive system with appropriate care for unit
conversion.

Note that the relevant potential and kinetic energies are for the fluid entering and leaving the
boundaries, not for the fluid which is inside the system boundaries. When only one inlet and one
outlet stream are involved, the steady-state flow rates must be equal, and

 Several common ways the steady-state balance can be written.

When kinetic and potential energy changes are negligible, we may write

where ∆H = Hout – Hin. We could use molar flow rates for Eqns. 2.24 through 2.26 with the usual
care for unit conversions of kinetic and potential energy. For an open steady-state system meeting the
restrictions of Eqn. 2.26, we may divide through by the mass flow rate to find

In common usage, it is traditional to relax the convention of keeping only system properties on the
left side of the equation. More simply we often write:

Compare Eqns. 2.19 and 2.28. Energy and enthalpy do not come from different energy balances,
where the “closed system” balance uses U and WEC and the “open system” balance uses H and Ws.
Rather, the terms result from logically simplifying the generalized energy balance shown in the next
section.

Comment on ∆ Notation

 Explanation of the use of ∆.

In a closed system we use the ∆ symbol to denote the change of a property from initial state to final
state. In an open, steady-state system, the left-hand side of the energy balance is zero. Therefore, we
frequently write ∆ as a shorthand notation to combine the first two flow terms on the right-hand side
of the balance, with the symbol meaning “outlet relative to inlet” as shown above. You need to learn
to recognize which terms of the energy balance are zero or insignificant for a particular problem,



whether a solution is for a closed or open system, and whether the ∆ symbol denotes “outlet relative
to inlet” or “final relative to initial.”

Understanding Enthalpy and Shaft Work
Consider steady-state, adiabatic, horizontal operation of a pump, turbine, or compressor. It is

possible to conceive of a closed packet of fluid as the system while it flows through the equipment.
After analyzing the system from this perspective, we can switch to the open-system perspective to
gain insight about the relation between open systems and closed systems, energy and enthalpy, and EC
work and shaft work. As a bonus, we obtain a handy relation for estimating pump work and the
enthalpy of compressed liquids.

In the conception of a closed-system fluid packet, no mass moves across the system boundary. The
system, as we have chosen it, does not include a shaft even though it will move past the shaft. If you
have trouble seeing this, remember that the system boundaries are defined by the conceived packet of
mass. Since the system boundary does not contain the shaft before the packet enters, or after the
packet exits, it cannot contain the shaft as it moves through the turbine. The system simply deforms to
envelope the shaft. Therefore, all work for this closed system is technically expansion/contraction
work; the closed-system expansion/contraction work is composed of the flow work and shaft work
that we have seen from the open-system perspective. It is difficult to describe exactly what happens to
the system at every point, but we can say something about how it begins and how it ends. This
observation leads to what is called an integral method of analysis.

System: closed, adiabatic; Basis: packet of mass m. The kinetic and potential energy changes are
negligible:

 Note that this derivation neglects kinetic and potential energy changes.

Integrating from the inlet (initial) state to the outlet (final) state:
Uout – Uin = WEC

We may change the form of the integral representing work via integration by parts:

We recognize the term PV as representing the work done by the flowing fluid entering and leaving
the system; it does not contribute to the work of the device. Therefore, the work interaction with the

turbine is the remaining integral, . Substitution gives,

Switching to the open-system perspective, Eqn. 2.28 gives



Recalling that H = U + PV and comparing the last two equations means Ws = ∫VdP is the work
done using the pump, compressor, or turbine as the system. Furthermore, the appearance of the PV
contribution in combination with U occurs naturally as part of the integration by parts. Physically,
work is always “force times distance.” Though this derivation has been restricted to an adiabatic
device, the result is general to devices including heat transfer as we show later in Section 5.7.

Note: The shaft work given by dWS = VdP is distinct from expansion/contraction
work, dWEC = PdV. Moreover, both are distinct from flow work, dWflow = PVdm.

 Shaft work for a pump or turbine where kinetic and potential energy changes are
small.

Several practical issues may be considered in light of Eqn. 2.31. First, the work done on the system
is negative when the pressure change is negative, as in proceeding through a turbine or expander. This
is consistent with our sign convention. Second, when considering gas flow, the integration may seem
daunting if an ideal gas is not involved because of the complicated manner that V changes with T and
P. Rather, for gases, we can frequently work with the enthalpy for a given state change. The enthalpy
values for a state change read from a table or chart lead to Ws directly using Eqn. 2.30. For liquids,
however, the integral can be evaluated quickly. Volume can often be approximated as constant,
especially when Tr < 0.75. In that case, we obtain by integration an equation for estimating pump
work:

 Shaft work for a liquid pump or turbine where kinetic and potential energy changes
are small and Tr < 0.75 so that the fluid is incompressible.

Example 2.4. Pump work for compressing H2O
Use Eqn. 2.31 to estimate the work of compressing 20°C H2O from a saturated liquid to 5 and 50

MPa. Compare to the values obtained using the compressed liquid steam tables.

Solution
For H2O, Tr = 0.75 corresponds to 212°C, so we are safe on that count. We can calculate the pump

work from Eqn. 2.31, reading Psat = 0.00234 MPa and VL = 1.002 cm3/g from the saturation tables at
20°C:



ය ∆H ≈ VL∆P = 1.002 cm3/g(50 MPa – 0.00234 MPa) = 50.1 MPa-cm3/g for 50 MPa
ය ∆H ≈ VL∆P = 1.002 cm3/g(100 MPa – 0.00234 MPa) = 100.2 MPa-cm3/g for 100 MPa
A convenient way of converting units for these calculations is to multiply and divide by the gas

constant, noting its different units. This shortcut is especially convenient in this case, e.g.,
∆H = 50.1 MPa-cm3/g ·(8.314 J/mole-K)/(8.314 MPa-cm3/mole-K) = 50.1 kJ/kg
∆H = 100.2 MPa-cm3/g ·(8.314 J/mole-K)/(8.314 MPa-cm3/mole-K) = 100.2 kJ/kg
Note that, for water, the change in enthalpy in kJ/kg is roughly equal to the pressure rise in MPa

because the specific volume is so close to one and Psat << P. That is really handy.
The saturation enthalpy is read from the saturation tables as 83.95 kJ/kg. The values given in the

compressed liquid table (at the end of the steam tables) are 88.6 kJ/kg at 5 MPa and 130 kJ/kg at 50
MPa, corresponding to estimated work values of 4.65 and 46.1 kJ/kg. The estimation error in the
computed work is about 7 to 9%, and smaller for lower pressures. This degree of precision is
generally satisfactory because the pump work itself is usually small relative to other work and terms
(like the work produced by a turbine in a power cycle).

2.9. The Complete Energy Balance
An open-system that does not meet the requirements of a steady-state system is called an unsteady-

state open-system as shown in Fig. 2.5. The mass-in may not equal the mass-out, or the system state
variables (e.g., temperature) may change with time, so the system itself may gain in internal energy,
kinetic energy, or potential energy. An example of this is the filling of a tank being heated with a
steam jacket. Another example is the inflation of a balloon, where there is mass flow in and the
system boundary expands. These considerations lead to a general equation which is applicable to
open or closed systems,



Figure 2.5. Schematic of a general system.

 Complete energy balance.

where the heat and work interactions are summations of the individual heat and work interactions
over all boundaries. We also may write this with the time dependence implied:

Note: The signs and conventions are the same as presented following Eqn. 2.24.
Usually, the closed-system or the steady-state equations are sufficient by themselves. But for

unsteady-state open systems, the entire equation must be considered. Fortunately, even when the entire
energy balance is applied, some of the terms are usually not necessary for a given problem, so fewer
terms are usually needed than shown in Eqn. 2.33. An objective of this text is to build your ability to
recognize which terms apply to a given problem.

2.10. Internal Energy, Enthalpy, and Heat Capacities
Before we proceed with more examples, we need to add another thermodynamic tool.

Unfortunately, there are no “internal energy” or “enthalpy” meters. In fact, these state properties must
be “measured” indirectly by other state properties. The Gibbs phase rule tells us that if two state
variables are fixed in a pure single-phase system, then all other state variables will be fixed.
Therefore, it makes sense to measure these properties in terms of P, V, and T. In addition, if this
relation is developed, it will enable us to find P, V, and/or T changes for a given change in ∆U or
∆H. In Example 2.3, where a warm and cold steel blocks were contacted, we solved the problem
without calculating the change in temperature for each block. However, if we had a relation between
U and T, we could have calculated the temperature changes. The relations that we seek are the



definitions of the heat capacities.

Constant Volume Heat Capacity
The constant of proportionality between the internal energy change at constant volume and the

temperature change is known as the constant volume heat capacity. The constant volume heat capacity
is defined by:

Since temperature changes are easily measured, internal energy changes can be calculated once CV
is known. CV is not commonly tabulated, but, as shown below, it can be easily determined from the
constant pressure heat capacity, which is commonly available.

 Definition of CV.

Constant Pressure Heat Capacity
In the last two sections, we have introduced enthalpy, and we can relate the change in enthalpy of a

system to temperature in a manner analogous to the method used for internal energy. This relationship
will involve a new heat capacity, the heat capacity at constant pressure defined by:

where H is the enthalpy of the system.

 Definition of CP.

The use of two heat capacities, CV and CP, forces us to think of constant volume or constant
pressure as the important distinction between these two quantities. The important quantities are really
internal energy versus enthalpy. You simply must convince yourself to remember that CV refers to
changes in U at constant volume, and CP refers to changes in H at constant pressure.

Relations between Heat Capacities, U and H
We have said that CV values are not readily available; therefore, how do we determine internal

energy changes? Also, how do we determine enthalpy changes at constant volume or internal energy
changes at constant pressure? We will return to the details of these questions in Chapters 6–8 and
handle them rigorously, but the details have been rigorously followed by developers of
thermodynamic charts and tables. Therefore, for relating the internal energy or enthalpy to
temperature and pressure, a thermodynamic chart or table is preferred. If none is available, or
properties are not tabulated in the state of interest, some exact relations and some approximate rules
of thumb must be applied. The relations are also useful for introductory calculations while focus is on
the energy balance rather than the property relations.

For an ideal gas,



 CP, CV and relation between ∆U and ∆H for an ideal gas.

Constant pressure heat capacities for ideal gases are tabulated in Appendix E. Constant volume
heat capacities for ideal gases can readily be determined from Eqn. 2.38. For ideal gases, internal
energy and enthalpy are independent of pressure as we implied with Eqn. 1.21. For real gases and for
liquids, the relation between CP and CV is more complex, and derivatives of P-V-T properties must
be used as shown rigorously in Examples 6.1, 6.6, and 6.9 and implemented thereafter. We will use
thermodynamic tables and charts for real gases until these relations are developed.

For liquids or solids, we typically calculate ∆H and correct the calculation if necessary as
explained below. For liquids, it has been experimentally determined that internal energy is only very
weakly dependent on pressure below Tr = 0.75. In addition, the molar volume is insensitive to
pressure below Tr = 0.75. We demonstrated in Example 2.4 that,

 Pressure dependence of H for condensed phases.

 is the reduced temperature calculated by dividing the absolute temperature by the critical
temperature. (A rigorous evaluation is considered in Example 6.1 on page 233.) The relations for
solids and liquids are important because frequently the properties have not been measured, or the
measurements available in charts and tables are not available at the pressures of interest. We may
then summarize the relations of internal energy and enthalpy with temperature.



 Useful formula for relating T, P to U and H in the absence of phase changes.

Note: These formulas do not account for phase changes which may occur.
Note that the heat capacity of a monatomic ideal gas can be obtained by differentiating the internal

energy as given in Chapter 1, resulting in CV = 3/2 R and CP = 5/2 R. Heat capacities for diatomics
are larger, CP = 7/2 R, and CV = 5/2 R near room temperature, and polyatomics are larger still.
According to classical theory, each degree of freedom5 contributes 1/2R to CV. Kinetic and potential
energy each contribute a degree of freedom in each dimension. A monatomic ideal gas has only three
kinetic energy degrees of freedom, thus CV = 3/2 R. Diatomic molecules are linear so they have two
additional degrees of freedom for the linear (one-dimensional) bond that has kinetic and potential
energy both. In complicated molecules, the vibrations are characterized by modes. See the endflap to
make a quick comparison. Monatomic solids have three degrees of freedom each for kinetic and
vibrational energy, one for each principle direction, thus the law of Dulong and Petit, CV

S = 3R is a
first approximation. Low-temperature heat capacities of monatomic solids are explored more in
Example 6.8. If you become curious about the manner in which the heat capacities of polyatomic
species differ from those of the spherical molecules discussed in Chapter 1, you will find
introductions to statistical thermodynamics explain the contributions of translation, rotation, and
vibration. For polyatomic molecules, the heat capacity increases with molecular weight due to the
increased number of degrees of freedom for each bond. In this text, ideal gas heat capacity values at
298 K are summarized inside the back cover of the book, and may be assumed to be independent of
temperature over small temperature ranges near room temperature. The increase in heat capacity with
temperature for diatomics and polyatomics is dominated by the vibrational contribution. The
treatment of heat capacity by statistical thermodynamics is particularly interesting because it is a
theory6 that often gives more accurate results than experimental calorimetric measurements.
Commonly, engineers correlate ideal gas heat capacities with expressions like polynomials.

 Whenever we assume heat capacity to be temperature independent in this text, we
mark the equation with a (*) symbol near the right margin.

We will frequently ignore the heat capacity dependence on T to make an approximate calculation.
Whenever we assume heat capacity to be temperature independent in this text, we mark the
equation with a (*) symbol near the right margin. Heat capacities represented as polynomials of
temperature are available in Appendix E. The heat capacity depends on the state of aggregation. For
example, water has a different heat capacity when solid (ice), liquid, or vapor (steam). The
contribution of the heat capacity integral to the energy balance is frequently termed the sensible heat
to communicate its contribution relative to latent heat (due to phase changes) or heat of reaction to
be discussed later. Note that these are called “heats” even though they are enthalpy changes.



 The heat capacity of a substance depends on the state of aggregation.

Example 2.5. Enthalpy change of an ideal gas: Integrating CP
ig(T)

Propane gas undergoes a change of state from an initial condition of 5 bar and 105°C to 25 bar and
190°C. Compute the change in enthalpy using the ideal gas law.

Solution
The ideal gas change is calculated via Eqn. 2.41 and is independent of pressure. The heat capacity

constants are obtained from Appendix E.

Example 2.6. Enthalpy of compressed liquid
The compressed liquid tables are awkward to use for compressed liquid enthalpies because the

pressure intervals are large. Using saturated liquid enthalpy values for water and hand calculations,
estimate the enthalpy of liquid water at 20°C H2O and 5 and 50 MPa. Compare to the values obtained
using the compressed liquid steam tables.

Solution
This is a common calculation needed for working with power plant condensate streams at high

pressure. The relevant equation is Eqn. 2.42, but we can eliminate the temperature integral by
selecting saturated water at the same temperature and then applying the pressure correction, i.e.,
applying Eqn. 2.39, ∆H ≈ V∆P relative to the saturation condition, giving H = Hsat + V∆P. The
numerical calculations have already been done in Example 2.4 on page 55. Both calculations use the
same approximation, even though the paths are slightly different. A more rigorous analysis is shown
later in Example 6.1.

 This is a common calculation needed for working with power plant condensate
streams at high pressure.



Example 2.7. Adiabatic compression of an ideal gas in a piston/cylinder
Nitrogen is contained in a cylinder and is compressed adiabatically. The temperature rises from

25°C to 225°C. How much work is performed? Assume that the heat capacity is constant (CP/R =
7/2), and that nitrogen follows the ideal gas law.

Solution
System is the gas. Closed system, system size changes, adiabatic.

Note that because the temperature rise is specified, we do not need to know if the process was
reversible.

Relation to Property Tables/Charts
In Section 1.4, we used steam tables to find internal energies of water as liquid or vapor. Tables or

charts usually contain enthalpy and internal energy information, which means that these properties can
be read from the source for these compounds, eliminating the need to apply Eqns. 2.40–2.43. This is
usually more accurate because the pressure dependence of the properties that Eqns. 2.40–2.43 neglect
has been included in the table/chart, although the pressure correction method applied in the previous
example for liquids is generally accurate enough for liquids. Energy and enthalpy changes spanning
phase transitions can be determined directly from the tables since energies and enthalpies of phase
transitions are implicitly included in tabulated values.

Estimation of Heat Capacities
If heat capacity information cannot be located from appendices in this text, from the NIST

Chemistry WebBook7, or from reference handbooks, it can be estimated by several techniques offered
in the Chemical Engineer’s Handbook8 and The Properties of Gases and Liquids.9

Phase Transitions (Liquid-Vapor)
Enthalpies of vaporization are tabulated in Appendix E for selected substances at their normal

boiling temperatures (their saturation temperatures at 1.01325 bar). In the case of the steam tables,
Section 1.4 shows that the energies and enthalpies of vaporization of water are available along the



entire saturation curve. Complete property tables for some other compounds are available in the
literature or online, however, most textbooks present charts to conserve space, and we follow that
trend. In the cases where tables or charts are available, their use is preferred for phase transitions
away from the normal boiling point, although a hypothetical path that passes through the normal
boiling point can usually be constructed easily.

The energy of vaporization is more difficult to find than the enthalpy of vaporization. It can be
calculated from the enthalpy of vaporization and the P-V-T properties. Since U = H – PV,

∆Uvap = ∆Hvap – ∆(PV)vap = ∆Hvap – (PsatV)V – (PsatV)L = ∆Hvap – Psat(VV – VL)
Far from the critical point, the molar volume of the vapor is much larger than the molar volume of

the liquid. Further, at the normal boiling point (the saturation temperature at 1.01325 bar), the ideal
gas law is often a good approximation for the vapor volume,

 Relation between ∆Uvap and ∆Hvap when the vapor follows the ideal gas law.

Estimation of Enthalpies of Vaporization

If the enthalpy of vaporization cannot be located in the appendices or a standard reference book, it
may be estimated by several techniques offered and reviewed in the Chemical Engineer’s Handbook
and The Properties of Gases and Liquids. One particularly convenient correlation is10

 Generalized correlation for ∆Hvap.

where Tr is reduced temperature, ω is the acentric factor (to be described in Chapter 7), also
available on the back flap. If accurate vapor pressures are available, the enthalpy of vaporization can
be estimated far from the critical point (i.e., Tr < 0.75) by the Clausius–Clapeyron equation:

The background for this equation is developed in Section 9.2. Vapor pressure is often represented
by the Antoine equation, logPsat = A – B/(T + C). If Antoine parameters are available, they may be
used to estimate the derivative term of Eqn. 2.46,

where T is in °C, and B and C are Antoine parameters for the common logarithm of pressure. For
Antoine parameters intended for other temperature or pressure units, the equation must be carefully



converted. The temperature limits for the Antoine parameters must be carefully followed because the
Antoine equation does not extrapolate well outside the temperature range where the constants have
been fit. If Antoine parameters are unavailable, they can be estimated to roughly 10% accuracy by the
shortcut vapor pressure (SCVP) model, discussed in Section 9.3,

where the units of Pc match the units of Psat, Tc is in K, and T is in °C.

Phase Transitions (Solid-Liquid)
Enthalpies of fusion (melting) are tabulated for many substances at the normal melting

temperatures in the appendices as well as handbooks. Internal energies of fusion are not usually
available, however the volume change on melting is usually very small, resulting in internal energy
changes that are nearly equal to the enthalpy changes:

Unlike the liquid-vapor transitions, where Tsat depends on pressure, the melting (solid-liquid)
transition temperature is almost independent of pressure, as illustrated schematically in Fig. 1.7.

 Relation between ∆Ufus and ∆Hfus.

2.11. Reference States
Notice that our heat capacities do not permit us to calculate absolute values of internal energy or

enthalpy; they simply permit us to calculate changes in these properties. Therefore, when is internal
energy or enthalpy equal to zero—at a temperature of absolute zero? Is absolute zero a reasonable
place to assign a reference state from which to calculate internal energies and enthalpies? Actually,
we don’t usually solve this problem in engineering thermodynamics for the following two reasons:11

1) for a gas, there would almost always be at least two phase transitions between room temperature
and absolute zero that would require knowledge of energy changes of phase transitions and heat
capacities of each phase; and 2) even if phase transitions did not occur, the empirical fit of the heat
capacity represented by the constants in the appendices are not valid down to absolute zero!
Therefore, for engineering calculations, we arbitrarily set enthalpy or internal energy equal to zero at
some convenient reference state where the heat capacity formula is valid. We calculate changes
relative to this state. The actual enthalpy or internal energy is certainly not zero, it just makes our
reference state location clear. If we choose to set the value of enthalpy to zero at the reference state,
then HR = 0, and UR = HR – (PV)R where we use subscript R to denote the reference state. Note that
UR and HR cannot be precisely zero simultaneously at the reference state. The reference state for
water (in the steam tables) is chosen to set enthalpy of water equal to zero at the triple point. Note
that PV is negligible at the reference state so that it appears that UR is also zero to the precision of the
tabulated values, which is not rigorously correct. (Can you verify this in the steam tables? Which
property is set to zero, and for which state of aggregation?). To clearly specify a reference state we
must specify:

1. The composition which may or may not be pure.



 Reference states permit the tabulation of values for U, H.

2. The state of aggregation (S, L, or V).
3. The pressure.
4. The temperature.

As you will notice in the following problems, reference states are not necessary when working
with a pure fluid in a closed system or in a steady-state flow system with a single stream. The
numerical values of the changes in internal energy or enthalpy will be independent of the reference
state.

 Reference states are not required for steady-state flow systems with only a few
streams, but are recommended when many streams are present.

When multiple components are involved, or many inlet/outlet streams are involved, definition of
reference states is recommended since flow rates of the inlet and outlet streams will not necessarily
match one-to-one. The reference state for each component may be different, so the reference
temperature, pressure, and state of aggregation must be clearly designated.

For unsteady-state open systems that accumulate or lose mass, reference states are imperative
when values of ∆U or ∆H changes of the system or surroundings are calculated as the numerical
values depend on the reference state. It is only when the changes for the system and surroundings are
summed together that the reference state drops out for unsteady-state open systems.

 Reference states are required for unsteady-state changes in U, H when mass
accumulation is present.

Ideal Gas Properties

For an ideal gas, we must specify only the reference T and P.12 An ideal gas cannot exist as a
liquid or solid, and this fact completely specifies the state of our system. In addition, we need to set
HR or UR (but not both!) equal to zero.

Also at all states, including the reference state, .
The ideal gas approximation is reliable when contributions from intermolecular potential energy are
relatively small. A convenient guideline is, in term of reduced temperature Tr = T/Tc, and reduced
pressure Pr = P/Pc, where Pc is the critcal pressure.



State Properties Including Phase Changes
Problems will often involve phase changes. Throughout a problem, since the thermodynamic

properties must always refer to the same reference state, phase changes must be incorporated into
state properties relative to the state of aggregation of the reference state. To calculate a property for a
fluid at T and P relative to a reference state in another phase, a sketch of the pathway from the
reference state is helpful to be sure all steps are included. Several pathways are shown in Fig. 2.6 for
different reference states. Note that the ideal gas reference state with the generalized correlation for
the heat of vaporization (option (c)) is convenient because it does not require liquid heat capacities.
The accuracy of the method depends on the accuracy of the generalized correlation or the technique
used to estimate the heat of vaporization. Option (c) is frequently used in process simulators. In some
cases the user may have flexibility in specifying the correlation used to estimate the heat of
vaporization.

Figure 2.6. Illustrations of state pathways to calculate properties involving liquid/vapor phase
changes. The examples are representative, and modified paths would apply for states above the
normal boiling point, Tb. Similar pathways apply for solid/liquid or solid/vapor transformations.

Note that a generalized correlation is used for ∆Hvap which differs from the normal boiling point
value. The method is intended to be used at subcritical conditions. Pressure corrections are not

illustrated for any paths here.

Example 2.8. Acetone enthalpy using various reference states
Calculate the enthalpy values for acetone as liquid at 20°C and vapor at 90°C and the difference in

enthalpy using the following reference states: (a) liquid at 20°C; (b) ideal gas at 25°C and ∆Hvap at
the normal boiling point; (c) ideal gas at 25°C and the generalized correlation for ∆Hvap at 20°C.
Ignore pressure corrections and treat vapors as ideal gases.

Solution
Heat capacity constants are available in Appendix E. For all cases, 20°C is 293.15K, 90°C is



363.15K, and the normal boiling point is Tb = 329.15K.

a. HL = 0 because the liquid is at the reference state. The vapor enthalpy is calculated
analogous to Fig. 2.6, pathway (a). The three terms of pathway (a) are HV = 4639 + 30200
+ 2799 = 37,638 J/mol. The difference in enthalpy is ∆H = 37,638 J/mol.
b. HL will use a path analogous to Fig. 2.6, pathway (b). The three terms of pathway (b) are
HL = 2366 – 30200 – 4638 = –32472 J/mol. HV is calculated using Eqn. 2.50, HV = 5166
J/mol. The difference is ∆H = 5166 + 32472 = 37,638 J/mol, same as part (a).
c. HL will use a path analogous to Fig. 2.6, pathway (c). The generalized correlation of
Eqn. 2.45 predicts a heat of vaporization at Tb of 29,280 J/mol, about 3% low. At 20°C, the
heat of vaporization is predicted to be 31,420 J/mol. The two steps in Fig. 2.6 (c) are HL =
–365 – 31420 = –31785 J/mol. The enthalpy of vapor is the same calculated in part (b), HV

= 5166 J/mol. The enthalpy difference is ∆H = 5166 + 31785 = 36,950 J/mol, about 2%
low relative to part (b).

2.12. Kinetic and Potential Energy
The development of the energy balance includes potential and kinetic energy terms for the system

and for streams crossing the boundary. When temperature changes occur, the magnitude of changes of
U and H are typically so much larger than changes in kinetic and potential energy that the latter terms
can be dropped. The next example demonstrates how this is justified.

Example 2.9. Comparing changes in kinetic energy, potential energy, internal energy, and
enthalpy

For a system of 1 kg water, what are the internal energy and enthalpy changes for raising the
temperature 1°C as a liquid and as a vapor from 24°C to 25°C? What are the internal energy enthalpy
changes for evaporating from the liquid to the vapor state? How much would the kinetic and potential
energy need to change to match the magnitudes of these changes?

Solution
The properties of water and steam can be found from the saturated steam tables, interpolating

between 20°C and 25°C. For saturated water or steam being heated from 24°C to 25°C, and for
vaporization at 25°C:

Of these values, the values for ∆U of steam are lowest and can serve as the benchmark. How much
would kinetic and potential energy of a system have to change to be comparable to 1000 J?

Kinetic energy: If ∆KE = 1000 J, and if the kg is initially at rest, then the velocity change must be,



This corresponds to a velocity change of 161 kph (100 mph). A velocity change of this order of
magnitude is unlikely in most applications except nozzles (discussed below). Therefore, kinetic
energy changes can be neglected in most calculations when temperature changes occur.

Potential energy: If ∆PE = 1000 J, then the height change must be,

This is equivalent to about one football field in position change. Once again this is very unlikely in
most process equipment, so it can usually be ignored relative to heat and work interactions. Further,
when a phase change occurs, these changes are even less important relative to heat and work
interactions.

 Velocity and height changes must be large to be significant in the energy balance when
temperature changes also occur.

Example 2.9 demonstrates that kinetic and potential energy changes of a fluid are usually negligible
when temperature changes by a degree or more. Moreover, kinetic and potential energy changes are
closely related to one another in the design of piping networks because the temperature changes are
negligible. The next example helps illustrate the point.

Example 2.10. Transformation of kinetic energy into enthalpy
Water is flowing in a straight horizontal pipe of 2.5 cm ID with a velocity of 6.0 m/s. The water

flows steadily into a section where the diameter is suddenly increased. There is no device present for
adding or removing energy as work. What is the change in enthalpy of the water if the downstream
diameter is 5 cm? If it is 10 cm? What is the maximum enthalpy change for a sudden enlargement in
the pipe? How will these changes affect the temperature of the water?

Solution
A boundary will be placed around the expansion section of the piping. The system is fixed volume,

( ), adiabatic without shaft work. The open steady-state system is under steady-state flow, so
the left side of the energy balance is zero.

Simplifying: 
Liquid water is incompressible, so the volume (density) does not change from the inlet to the outlet.



Letting A represent the cross-sectional area, and letting D represent the pipe diameter,
,

D2/D1 = 2 ය ∆H = –6.02 m2/s2 (1J/1kg-m2/s2) (½4–1)/2 = 17 J/kg

D2/D1 = 4 ය ∆H = 18 J/kg

D2/D1 = ∞ ය ∆H = 18 J/kg

To calculate the temperature rise, we can relate the enthalpy change to temperature since they are
both state properties. From Eqn. 2.42, neglecting the effect of pressure,

Example 2.10 shows that the temperature rise due to velocity changes is very small. In a real
system, the measured temperature rise will be slightly higher than our calculation presented here
because irreversibilities are caused by the velocity gradients and swirling in the region of the sudden
enlargement that we haven’t considered. These losses increase the temperature rise. In fluid
mechanics, irreversible losses due to flow are characterized by a quantity known as the friction
factor. The losses of a valve, fitting, contraction, or enlargement can be characterized empirically by
the equivalent length of straight pipe that would result in the same losses. We will introduce these
topics in Section 5.7. However, we conclude that from the standpoint of the energy balance, the
temperature rise is still small and can be neglected except in the most detailed analysis such as the
design of the piping network. In Example 2.10 the velocity decreases, and enthalpy increases due to
greater flow work on the inlet than the outlet. Note that the above result for a liquid does not depend
on whether the enlargement is rapid or gradual. A gradual taper will give the same temperature
change since the energy balance relates the enthalpy change to the initial and final velocities, but not
on the manner in which the change occurs.

Applications where kinetic and potential energy changes are important include solids such as
projectiles, where the temperature changes of the solids are negligible and the purpose of the work is
to cause accelerate or elevate the system. One example of this application is a steam catapult used to
assist in take-off from aircraft carriers. A steam-filled piston + cylinder device is expanded, and the
piston drags the plane to a velocity sufficient for the jet engines to lift the plane. While the kinetic and
potential energy changes for the steam are negligible, the work done by the steam causes important
kinetic energy changes in the piston and plane because of their large masses.

2.13. Energy Balances for Process Equipment
Several types of equipment are ubiquitous throughout industry, and facile abilities with the energy

balance for these processes will permit more rapid analysis of composite systems where these units



are combined. In this brief section we introduce valves and throttles used to regulate flow, nozzles,
heat exchangers, adiabatic turbines and expanders, adiabatic compressors, and pumps.

Valves and Throttles
A throttling device is used to reduce the pressure of a flowing fluid without extracting any shaft

work and with negligible fluid acceleration. Throttling is also known as Joule-Thomson expansion
in honor of the scientists who originally studied the thermodynamics. An example of a throttle is the
kitchen faucet. Industrial valves are modeled as throttles. Writing the balance for a boundary around
the throttle valve, it is conventional to neglect any accumulation within the device since it is small
relative to flow rates through the device, so the left-hand side is zero. At steady-state flow,

Changes in kinetic and potential energy are small relative to changes in enthalpy as we just
discussed. When in doubt, the impact of changes in velocity can be evaluated as described in
Example 2.9. The amount of heat transfer is negligible in a throttle. The boundaries are not expanding,
and there is also no mechanical device for transfer of work, so the work terms vanish. Therefore, a
throttle is isenthalpic:

Nozzles
Nozzles are specially designed devices utilized to convert pressure drop into kinetic energy.

Common engineering applications involve gas flows. An example of a nozzle is a booster rocket.
Nozzles are also used on the inlets of impulse turbines to convert the enthalpy of the incoming stream
to a high velocity before it encounters the turbine blades.13 ∆u is significant for nozzles. A nozzle is
designed with a specially tapered neck on the inlet and sometimes the outlet as shown schematically
in Fig. 2.7. Nozzles are optimally designed at particular velocities/pressures of operation to minimize
viscous dissipation.

Figure 2.7. Illustration of a converging-diverging nozzle showing the manner in which inlets
and outlets are tapered.

The energy balance is written for a boundary around the nozzle. Any accumulation of energy in the
nozzle is neglected since it is small relative to flow through the device and zero at steady state.
Velocity changes are significant by virtue of the design of the nozzle. However, potential energy
changes are negligible. Heat transfer and work terms are dropped as justified in the discussion of
throttles. Reducing the energy balance for a nozzle shows the following:



Properly designed nozzles cause an increase in the velocity of the vapor and a decrease in the
enthalpy. A nozzle can be designed to operate nearly reversibly. Example 4.12 on page 162 describes
a typical nozzle calculation.

Throttles are much more common in the problems we will address in this text. The meaning of
“nozzle” in thermodynamics is much different from the common devices we term “nozzles” in
everyday life. Most of the everyday devices we call nozzles are actually throttles.

Assessing when simplifications are justified requires testing the implications of eliminating
assumptions. For example, to test whether a particular valve is acting more like a throttle or a nozzle,
infer the velocities before and after the nozzle and compare to the enthalpy change. If the kinetic
energy change is negligible relative to the enthalpy change then call it a throttle. Take note of the
magnitude of the terms in the calculation so that you can understand how to anticipate a similar
conclusion. For example, the volume change of a liquid due to a pressure drop is much smaller than
that of a gas. With less expansion, the liquids accelerate less, making the throttle approximation more
reasonable. This kind of systematic analysis and reasoning is more important than memorizing, say,
that throttles are for liquids.

Heat Exchangers
Heat exchangers are available in a number of flow configurations. For example, in an industrial

heat exchanger, a hot stream flows over pipes that carry a cold stream (or vice versa), and the
objective of operation is to cool one of the streams and heat the other. A generic tube-in-shell heat
exchanger can be illustrated by a line diagram as shown in Fig. 2.8. Tube-in-shell heat exchangers
consist of a shell (or outer sleeve) through which several pipes pass. (The figure just has one pipe for
simplicity.) One of the process streams passes through the shell, and the other passes through the
tubes. Stream A in our example passes through the shell, and Stream B passes through the tubes. The
streams are physically separated from one another by the tube walls and do not mix. Let’s suppose
that Stream A is the hot stream and Stream B is the cold stream. In the figure, both streams flow from
left to right. This type of flow pattern is called concurrent. The temperatures of the two streams will
approach one another as they flow to the right. With this type of flow pattern, we must be careful that
the hot stream temperature that we calculate is always higher than the cold stream temperature at
every point in the heat exchanger.14 If we reverse the flow direction of Stream A, a countercurrent
flow pattern results. With a countercurrent flow pattern, the outlet temperature of the cold stream can
be higher than the outlet temperature of the hot stream (but still must be lower than the inlet
temperature of the hot stream). The hot stream temperature must always be above the cold stream
temperature at all points along the tubes in this flow pattern also.



Figure 2.8. Illustration of a generic heat exchanger with a concurrent flow pattern. The tube
side usually consists of a set of parallel tubes which are illustrated as a single tube for

convenience.

So far, our discussion has assumed that there are no phase transitions occurring in the heat
exchanger. If Stream A is a hot stream, and Stream B is converted from liquid at the inlet to vapor at
the outlet, we call the heat exchanger a boiler to bring attention to the phase transition occurring
inside. The primary difference in the operation of a boiler to that of a generic heat exchanger is that
the cold stream temperature change might be small or even zero. This is because the phase change
will occur isothermally at the saturation temperature of the fluid corresponding to the boiler pressure,
absorbing large amounts of heat. In a similar fashion, we could have Stream A be cooling water and
Stream B be an incoming vapor which is condensed. We would call this heat exchanger a condenser,
to clearly bring attention to the phase change occurring inside. In this case, the temperature change of
the hot stream might be small. Another type of heat exchanger that we will use in Chapter 5 is the
superheater. A superheater takes a vapor that is saturated and superheats it.

There are two more important points to keep in your mind as you perform thermodynamic
calculations. For the purposes of this text we will neglect pressure drops in the heat exchangers; the
outlet pressure will match the inlet pressure of Stream A, and a similar statement applies for Stream
B. Note that this does not imply that streams A and B are at the same pressure. Also, we neglect heat
transfer to or from the surroundings unless specified. Therefore, all heat transfer occurs inside the
heat exchanger, not at the boundaries of the heat exchanger and the surroundings.

There are other configurations of heat exchangers such as kettle-type reboilers and plate-and-frame
configurations; however, for thermodynamic purposes, only the flow pattern is important, not the
details of material construction that lead to the flow pattern. Thus, the tube-in-shell concepts will be
adequate for our needs.

The energy balance that we write depends on how we choose our system. Since the streams are
physically separated from one another, we may write a balance for each of the streams independently,
or we may place the system boundary around the entire heat exchanger and write a balance for both
streams. Let us take the system to be Stream B and let us suppose that Stream B is boiled. In this case,
there is just one inlet and outlet. There is no shaft work or expansion/contraction work. Even though
the process fluid is expanding as it evaporates, the system boundaries are not expanding; expansion
effects will be automatically included in the energy balance by the enthalpy terms which have the
flow work embedded in them. If the system is operating at steady state, the left-hand side of the
energy balance is zero,

 The energy balance for a heat exchanger may be written in several ways.

which simplifies to



where  is the rate of heat transfer from the hot stream. On a molar (or mass) basis,

If we take the system boundaries to be around the entire heat exchanger, then there are multiple
streams, and all heat transfer occurs inside, resulting in

which simplifies to

Since Eqns. 2.55 and 2.57 look quite different for the same process, it is important that you
understand the placement of boundaries and their implications on the balance expression.

Adiabatic Turbines or Adiabatic Expanders
A turbine or expander is basically a sophisticated windmill as shown in Fig. 2.9. The term

“turbine” implies operation by steam and the term “expander” implies operation by a different
process fluid, perhaps a hydrocarbon, although the term “turbine” is used sometimes for both. The
objective of operation is to convert the kinetic energy from a gas stream to rotary motion of a shaft to
produce work (shaft work). The enthalpy of the high-pressure inlet gas is converted to kinetic energy
by special stators (stationary blades) or nozzles inside the turbine shell. The high-velocity gas drives
the rotor. Turbines are designed to be adiabatic, although heat losses can occur. When heat losses are
present, they decrease the output that would have otherwise been possible for the turbine. Therefore,
when calculations are performed, we assume that turbines or expanders operate adiabatically, unless
otherwise noted.

Figure 2.9. Illustration of a turbine. The rotor (shaft) turns due to the flow of gas. The blades
connected to the shell are stationary (stators), and are sometimes curved shapes to perform as

nozzles. The stator blades are not shown to make the rotors more clear.

The energy balance for the turbine only involves the kinetic energy change for the entering and
exiting fluid, not for the changes occurring inside the turbine. Since the nozzles which cause large



kinetic energy changes are inside the turbine unit, these changes are irrelevant to the balance around
the unit. Recall from the development of our energy balance that we are only interested in the values
of enthalpy, kinetic, and potential energy for streams as they cross the boundaries of our system. The
energy balance for a steady-state turbine involving one inlet and one outlet is:

which becomes

 Adiabatic turbine or expander.

and on a mass or molar basis becomes

When we calculate values for the ∆H and work, they will be negative values.

Adiabatic Compressors
Adiabatic compressors can be constructed in a manner qualitatively similar to adiabatic turbines

with stationary vanes (stators). This type of compressor is called an axial compressor. The main
differences between turbines and axial compressors are: 1) the details of the construction of the vanes
and rotors, which we won’t be concerned with; 2) the direction of flow of the fluid; and 3) the fact
that we must put work into the compressor rather than obtaining work from it. Thus, the energy
balance is the same as the turbine (Eqns. 2.58 and 2.59). When we calculate values for the ∆H and
work, they will be positive values, where they were negative values for a turbine. Compressors may
also be constructed as reciprocating (piston/cylinder) devices. This modification has no impact on
our energy balance, so it remains the same. Analogous to turbines, it is conventional to assume that
compressors are adiabatic unless otherwise noted.

Pumps
Pumps are used to move liquids by creating the pressure necessary to overcome the resistance to

flow. They are in principle just like compressors, except the liquid will not change density the way a
gas does when it is compressed. Again, the energy balance will be the same as a turbine or
compressor (Eqns. 2.58 and 2.59). The primary difference we will find in application of the energy
balance is that tabulated enthalpies are difficult to find for compressed liquids. Therefore, if we want
to calculate the work needed for a pump, we can find it from the energy balance after we have
calculated or determined the enthalpy change.

 Compressors and pumps usually have the same energy balance as turbines.

Calculation of Shaft Work
Adiabatic steady-state turbines, compressors, and pumps all share a common energy balance,



showing that the shaft work is related to the enthalpy change as shown on page 54. Often, it is helpful
to calculate the shaft work directly and use the value of the shaft work to find the enthalpy change.

When the work is to calculated, the adiabatic shaft work may, in principle, be analyzed using ∆H
or Eqn 2.60. For gases, it is usually easier to use other constraints to find the enthalpy change and then
calculate the work by equality, though in principle the integral can be evaluated. For the special case
of liquids, Eqn 2.60 can be replaced by Eqn. 2.61.

2.14. Strategies for Solving Process Thermodynamics Problems
Before we start several more complicated example problems, it will be helpful to outline the

strategies which will be applied. We provide these in a step form to make them easier to use. Many
of these steps will seem obvious, but if you become stuck when working through a problem, it is
usually because one of these steps was omitted or applied inconsistently with system boundaries.

1. Choose system boundaries; decide whether this boundary location will make the system
open or closed.
2. Identify all given state properties of fluids in system and crossing boundaries. Identify
which are invariant with time. Identify your system as steady or unsteady state. (For
unsteady-state pumps, turbines, or compressors, the accumulation of energy within the
device is usually neglected.) For open, steady-state systems, write the mass balance and
solve if possible.
3. Identify how many state variables are unknown for the system. Recall that only two
state variables are required to specify the state of a pure, single-phase fluid. The
number of unknowns will equal the number of independent equations necessary for a
solution. (Remember in a system of known total volume V, that if n is known, the state
variable V is known.)

 The phase rule is important in determining the required number of equations.

4. Write the mass balance and the energy balance. These are the first equations to be
used in the solution. Specify reference states for all fluids if necessary. Simplify energy
balance to eliminate terms which are zero for the system specified in step 1.15 Combine
the mass balance and the energy balance for open systems.

For unsteady-state problems:
a. Identify whether the individual terms in the energy balance may be integrated
directly without combining with other energy balance terms. Often the answer is
obtained most easily this way. This is almost always possible for closed-system
problems.



b. If term-by-term integration of the energy balance is not possible, rearrange the
equation to simplify as much as possible before integration.

 Always consider the overall balance.

5. Look for any other information in the problem statement that will provide additional
equations if unknowns remain. Look for key words such as adiabatic, isolated, throttling,
nozzle, reversible, and irreversible. Using any applicable constraints of throttling devices,
nozzles, and so on, relate stream properties for various streams to one another and to the
system state properties. Constraints on flow rates, heat flow, and so on. provide additional
equations. With practice, many of these constraints may be recognized immediately before
writing the energy balance in steps 3 and 4.

 Look for key words.

6. Introduce the thermodynamic properties of the fluid (the equation of state). This provides
all equations relating P, V, T, U, H, CP, and CV. The information will consist of either 1)
the ideal gas approximation; 2) a thermodynamic chart or table; or 3) a volumetric equation
of state (which will be introduced in Chapter 7). Using more than one of these sources of
information in the same problem may introduce inconsistencies in the properties used in the
solution, depending on the accuracy of the methods used.

Combine the thermodynamic information with the energy balance. Work to minimize
the number of state variables which remain unknown. Many problems are solved at
this point.

 Use the same property method throughout the problem if possible.

7. Do not hesitate to move your system boundary and try again if you are stuck. Do not
forget to try an overall balance (frequently, two open systems can be combined to give an
overall closed system, and strategy 4a can be applied). Make reasonable assumptions.

 Try different system boundaries.

8. After an answer is obtained, verify assumptions that were made to obtain the solution.

 Make sure answers seem reasonable.

2.15. Closed and Steady-State Open Systems
Several types of systems are quite common in chemical engineering practice. You need to be

familiar with the results of their analysis and benefit if you memorize these results for rapid recall.
You must simultaneously recall the assumptions underlying each simple model, however, to avoid



incorrect applications.

Example 2.11. Adiabatic, reversible expansion of an ideal gas
Suppose an ideal gas in a piston + cylinder is adiabatically and reversibly expanded to twice its

original volume. What will be the final temperature?

Solution
First consider the energy balance. The system will be the gas in the cylinder. The system will be

closed. Since a basis is not specified, we can choose 1 mole. Since there is no mass flow, heat
transfer, or shaft work, the energy balance becomes:

In this case, as we work down to step 4 in the strategy, we see that we cannot integrate the sides
independently since P depends on T. Therefore, we need to combine terms before integrating.

The technique that we have performed is called separation of variables. All of the temperature
dependence is on the left-hand side of the equation and all of the volume dependence is on the right-
hand side. Now, if we assume a constant heat capacity for simplicity, we can see that this integrates
to

 These boxed equations relate state variables for adiabatic reversible changes of an
ideal gas in a closed system.

Although not required, several rearrangements of this equation are useful for other problems. Note
that we may insert the ideal gas law to convert to a formula relating T and P. Using V = RT/P,

Rearranging,



which becomes

We may also insert the ideal gas law into Eqn. 2.63 to convert to a formula relating P and V. Using
T = PV/R,

which may be written

The analysis of a piston+cylinder implied the assumption of a closed system. This might be a
reasonable approximation for a single stroke of a combustion engine, but most chemical engineering
applications involve continuous operation. Nevertheless, we can apply the lessons learned from the
analysis of the closed system when extending to steady-state systems, as exemplified below.

Example 2.12. Continuous adiabatic, reversible compression of an ideal gas
Suppose 1 kmol/h of air at 5 bars and 298 K is adiabatically and reversibly compressed in a

continuous process to 25 bars. What will be the outlet temperature and power requirement for the
compressor in hp?

Solution
Note that air is composed primarily of oxygen and nitrogen and these both satisfy the stipulations

for diatomic gases with their reduced temperatures high and their reduced pressures low. In other
words, the ideal gas approximation with CP/R = 7/2 is clearly applicable. Next consider the energy
balance. The system is the compressor. The system is open. Since it is a steady-state process with no
heat transfer, the simplification of the energy balance has been discussed on page 73 and shown on
page 72, and the energy balance becomes:

We can adapt Eqn. 2.31 for an ideal gas as follows:
dWS = dH = VdP



In this case, as we work down to step 4 in the strategy, we see that we cannot integrate the sides
independently since P depends on T. Therefore, we need to combine terms before integrating.

Once again, we have performed separation of variables. The rest of the derivation is entirely
analogous to Example 2.11, and, in fact, the resultant formula is identical.

 Steady-state adiabatic, reversible processing of an ideal gas results in the same
relations as Example 2.11.

Note that this formula comes up quite often as an approximation for both open and closed systems.
Making the appropriate substitutions,

Adapting the adiabatic energy balance and assuming CP
ig = constant,

 Steady-state adiabatic, reversible compression of an ideal gas.

Substituting, WS = 3.5·8.314·(472–298) = 5063 J/mole

At the given flow rate, and reiterating that this problem statement specifies a reversible process:
WS

rev = 5063 J/mole·[1000mole/hr]·[1hr/3600sec]·[1hp/(745.7J/s)] = 1.9hp

We have systematically extended our analysis from a single step of a closed system, to a
continuous system with no heat loss. Let’s consider isothermal operation.

Example 2.13. Continuous, isothermal, reversible compression of an ideal gas
Repeat the compression from the previous example, but consider steady-state isothermal

compression. What will be the heat removal rate and power requirement for the compressor in hp?

Solution
Let’s return to the perspective of the section ‘Understanding Enthalpy and Shaft Work’ on page 54



and analyze the EC work and flow work for an ideal gas packet of unit mass. The WEC is,

For an isothermal, ideal gas, V2/V1 = P1/P2. Noting the reciprocal and negative logarithm,

This is the work to isothermally squeeze an ideal gas packet of unit mass to a given pressure. The
flow work performed on an ideal gas packet of unit mass is,

Therefore, the total requirement for isothermally compressing an ideal gas packet of unit mass is,

At the given flow rate, and reiterating that this problem statement specifies a reversible process,
WS

rev = 3987 J/mole·[1000mole/hr]·[1hr/3600sec]·[1hp/745.7J/s] = 1.5 hp

Compared to adiabatic compression, the isothermal compressor requires less work. This happens
because cooling withdraws energy from the system. It is difficult to achieve perfectly adiabatic or
isothermal operation in practice, but adiabatic operation is usually a better approximation because
compression is so rapid that there is insufficient time for heat transfer. Usually fluids are cooled after
compression as we discuss in later chapters.

Here is a brain teaser. Suppose the process fluid had been steam instead of an ideal gas. How
would you have solved the problem then? Note, for steam V ≠ RT/P and . We illustrate the
answer in Example 4.16 on page 173.

Example 2.14. Heat loss from a turbine
High-pressure steam at a rate of 1100 kg/h initially at 3.5 MPa and 350°C is expanded in a turbine

to obtain work. Two exit streams leave the turbine. Exiting stream (2) is at 1.5 MPa and 225°C and
flows at 110 kg/h. Exiting stream (3) is at 0.79 MPa and is known to be a mixture of saturated vapor
and liquid. A fraction of stream (3) is bled through a throttle valve to 0.10 MPa and is found to be
120°C. If the measured output of the turbine is 100 kW, estimate the heat loss of the turbine. Also,
determine the quality of the steam in stream (3).

Solution
First draw a schematic. Designate boundaries. Both System A and System B are open steady-state

systems.



The mass balance gives . Next, determine which streams are completely specified:
Streams (1), (2), and (4) are fully specified. Since Stream (3) is saturated, the temperature and
pressure and specific enthalpies of the saturated vapor and liquid can be found, but the quality needs
to be calculated to determine the overall molar enthalpy of the stream. From the steam tables we find
H1 directly. For H2 we use linear interpolation. The value H(1.5 MPa, 225°C) is not available
directly, so we need to first interpolate at 1.4 MPa between 200°C and 250°C to find H(1.4 MPa,
225°C) and then interpolate between this value and the value at 1.6 MPa:

Then to find H2: H2 = 0.5·(2865.5 + 2854.5) = 2860.0 kJ/kg. For H4 we can interpolate in the
superheated steam tables:

Recognize System B as a throttle valve; therefore, H3 = H4 = 2716.1 kJ/kg. We make a table to
summarize the results so that we can easily find values:

The energy balance for System A gives, using  given in the problem statement,

To find the quality of stream (3), 

At 0.79 MPa from the sat’d P table, HL = 718.5 kJ/kg and ∆HV = 2049 kJ/kg.



The energy balance for a non-adiabatic turbine is identical to the balance for an isothermal
compressor, but the conclusions are entirely different. In the compressor, we want to minimize work,
so the heat loss works to our advantage. For the turbine, we want to maximize work, so any loss of
energy should be avoided.

The examples in this section comprise several important common scenarios, but they also illustrate
a procedure for analyzing systems with systematically increasing sophistication. In the context of
certain simplifying assumptions, like the ideal gas model, we can derive final working equations
applicable to process calculations. When those assumptions are invalid, however, we can still apply
the energy balance, but we are more careful in the generality of the results we obtain. Processes
involving steam, for example, require something more than the ideal gas model, and additional tools
are required to develop a general analysis.

2.16. Unsteady-State Open Systems
In principle, most real systems are unsteady and open. A few systems couple the unsteady-state

operation with flow across boundaries in a way that requires simultaneous analysis. We illustrate
how to treat those systems with examples of leaking and filling tanks.

Example 2.15. Adiabatic expansion of an ideal gas from a leaky tank
An ideal gas is leaking from an insulated tank. Relate the change in temperature to the change in

pressure for gas leaking from a tank. Derive an equation for ∆U for the tank.

Solution
Let us choose our system as the gas in the tank at any time. This will be an open, unsteady-state

system. There is no inlet stream and one outlet stream. The mass balance gives dn = – dnout.
We can neglect kinetic and potential energy changes. Although the gas is expanding, the system size

remains unchanged, and there is no expansion/contraction work. The energy balance becomes (on a
molar basis):

Since the enthalpy of the exit stream matches the enthalpy of the tank, Hout = H. d(nU) = –Houtdnout

= Hdn. Now H depends on temperature, which is changing, so we are not able to apply hint 4(a) from
the problem-solving strategy. It will be necessary to combine terms before integrating. By the product
rule of differentiation, the left-hand side expands to d(nU) = ndU + Udn. Collecting terms in the
energy balance,

ndU = (H – U)dn
Performing some substitutions, the energy balance can be written in terms of T and n,



The volume of the tank is constant, (V = constant); therefore,

substituting,

Recognizing the relation between CV and CP, defining γ≡ Cp/Cv (=1.4 for an ideal diatomic gas),
note R/Cp = (Cp – CV)/CP = 1 – (1/γ) = (γ – 1)/γ:

Through the ideal gas law (PV = RT), we can obtain other arrangements of the same formula.

The numerical value for the change in internal energy of the system depends on the reference state
because the reference state temperature will appear in the result:

 For fluid exiting from an adiabatic tank, the results are the same as a closed system as
in Example 2.11.

At first glance, one might expect to use the same equation for a filling tank, but simply change the
pressure ratio. Careful analysis shows that the energy balance is similar, but the final result is quite
different.

Example 2.16. Adiabatically filling a tank with an ideal gas
Helium at 300 K and 3000 bar is fed into an evacuated cylinder until the pressure in the tank is

equal to 3000 bar. Calculate the final temperature of the helium in the cylinder (CP/R = 5/2).

Solution
The system will be the gas inside the tank at any time. The system will be an open, unsteady-state

system. The mass balance is dn = dnin. The energy balance becomes:



We recognize that Hin will be constant throughout the tank filling. Therefore, by hint 4a from the
problem-solving strategy, we can integrate terms individually. We need to be careful to keep the
superscript since the incoming enthalpy is at a different state than the system. The right-hand side of
the energy balance can be integrated to give

The left-hand side of the energy balance becomes
∆(Un) = Ufnf – Uini = Ufnf

Combining the result with the definition of enthalpy,

And with our definition of heat capacity, we can find temperatures:

Note that the final temperature is independent of pressure for the case considered here.

You should not get the impression that unsteady, open systems are limited to ideal gases. Energy
balances are independent of the type of operating fluid.

Example 2.17. Adiabatic expansion of steam from a leaky tank
An insulated tank contains 500 kg of steam and water at 215°C. Half of the tank volume is occupied

by vapor and half by liquid; 25 kg of dry vapor is vented slowly enough that temperature remains
uniform throughout the tank. What is the final temperature and pressure?

Solution
There are some similarities with the solution to Example 2.15 on page 81; however, we can no

longer apply the ideal gas law. The energy balance reduces in a similar way, but we note that the
exiting stream consists of only vapor; therefore, it is not the overall average enthalpy of the tank:

d(mU) = –Houtdmout = HV dm
The sides of the equation can be integrated independently if the vapor enthalpy is constant. Looking

at the steam table, the enthalpy changes only about 10 kJ/kg out of 2800 kJ/kg (0.3%) along the
saturation curve down to 195°C. Let us assume it is constant at 2795 kJ/kg making the integral of the
right-hand side simply HV∆m. Note that this procedure is equivalent to a numerical integration by
trapezoidal rule as given in Appendix B on page 822. Many students forget that analytical solutions
are merely desirable, not absolutely necessary. The energy balance then can be integrated using hint
4a on page 74.

∆U = mfUf – miUi = 2795(mf – mi) = 2795(–25) = –69,875 kJ
The quantity mf = 475, and miUi will be easy to find, which will permit calculation of Uf. For each



m3 of the original saturated mixture at 215°C,

Therefore,

So the tank volume, quality, and internal energy are:

Then, from the energy balance and mass balance,
Uf = (–69,875 + 469,400) kJ / 475 kg = 841.0 kJ/kg

Vf = 1.166 m3 / 475 kg = 0.00245 m3/kg
We need to find Pf and Tf which correspond to these state variables. The answer will be along the

saturation curve because the overall specific volume is intermediate between saturated vapor and
liquid values at lower pressures. We will guess Pf (and the corresponding saturation Tf), find q from
Vf, then calculate  and compare to Uf = 841.0 kJ/kg. If  is too high, the Pf (and Tf) guess will
be lowered.

Since V = VL + q(VV–VL),

To guide our first guess, we need UL < Uf = 841.0 kJ/kg. Our first guess is Tf = 195°C. Values for
the properties from the steam tables are shown in the table below. This initial guess gives Uf

calc =
845 kJ/kg; no further iteration is necessary. The HV at this state is 2789; therefore, our assumption of
Hout ≈ constant is valid.

Pf = 1.4 MPa, Tf = 195°C, ∆P = 0.7 MPa, ∆T = 20°C

2.17. Details of Terms in the Energy Balance
Generally, the strategies discussed in Section 2.14 are sufficient to simplify the energy balance.

Occasionally, in applying the energy balance to a new type of system, simplification of the balances



may require more detailed analysis of the background leading to the terms and/or details of
interactions at boundaries. This section provides an overall summary of the details for the principles
covered earlier in this chapter, and it is usually not necessary unless you are having difficulty
simplifying the energy balance and need details regarding the meaning of each term.

The universe frequently consists of three subsystems, as illustrated in Fig. 2.10. The container
(System 2) is frequently combined with System 1 (designated here as System (1 + 2)) or System 3
(designated here as System (2 + 3)). For every balance, all variables are of the system for which the
balance is written,

Figure 2.10. Schematic of a general system.

where superscripts “in” and “out” denote properties of the streams which cross the boundaries,
which may or may not be equal to properties of the system.

1. Non-zero heat interactions of Systems 1 and 3 are not equal unless the heat capacity or
mass of System 2 is negligible.
2. Hout, Hin account for internal energy changes and work done on the system due to flow
across boundaries.

3.  represents work done on the system due to expansion or
contraction of system size. Fboundary is the absolute value of the system force at the
boundary. (By Newton’s third principle, the forces are equal but act in opposite directions
at any boundary.) Note that system 1 and system 3 forces are not required to be equal.



Unequal forces create movement (acceleration) of any movable barrier (e.g., piston head).

4.  represents the work done on the system resulting from mechanical forces at the
surface of the system except work due to expansion/contraction or mass flow across
boundaries. Turbines and compressors are part of system 2; thus they are involved with
work interactions with the fluid in system 1. Note that piston movement is calculated as 

 for systems 1, 3, (1+2), or (2+3), but the movement is calculated as  for system 2
alone. When a balance for system 2 is considered, the movement of the piston is technically
shaft work, even though no shaft is involved. (The piston is a closed system, and it does not
expand or contract when it moves.) As another example of the general definition of shaft
work as it relates to forces at the surface of a system, consider the closed system of Fig. 2.3
on page 48 being raised 150 m or accelerated to 75 m/s. There is a work interaction at the
surface of the system required for these energy changes even though there is not a “rotating”
shaft.

5. Non-zero  or  interactions of systems 1 and 3 are not equal unless changes in
kinetic and potential energy of the moving portion of system 2 (e.g., piston head for  or
turbine for ) are negligible and the movement is reversible.
6. Frictional forces, if present, must be attributed to one of the systems shown above.
Irreversibility due to any cause does not require additional energy balance terms because
energy is always conserved, even when processes are irreversible.
7. Electrical and magnetic fields have not been included.
8. On the left-hand side of the equation, kinetic and potential energy changes are calculated
based on movement of the center of mass. In a composite system such as (1+2), they may
be calculated for each subsystem and summed.

2.18. Summary
We are trying to be very careful throughout this chapter to anticipate every possibility that might

arise. As a result, the verbiage gets very dense. Think of the complete energy balance as a checklist,
reminding you to consider whether each term may contribute significantly to a given problem, and
learning to translate key terms like “frictionless,” “reversible,” “continuous,” and “steady state” into
meaningful reductions of the balance.

Important Equations
If we relax the formality, we can summarize most of this chapter casually as follows:

Naturally, it is best to appreciate how these equations result from simplifications. Remember to
check the general energy balance for terms that may be significant in exceptional situations.

A summary of expansion/contraction work relations for ideal gases is also presented here,



however it is recommended that you become proficient in the manipulations leading to these formulas.
Section 2.4 summarizes factors that may make a process irreversible. The following formulas
represent reversible work done when the system pressure is inserted for the isothermal process. The
isobaric formula is the only one that can be used to directly calculate work done on the surroundings
in an irreversible process, and in that case the surrounding pressure is used instead of the system
pressure.

This last equation (for T2/T1) recurs frequently as we examine processes from various
perspectives and simplify them to ideal gases for preliminary consideration. You should commit it to
memory soon and learn to recognize when it is applicable.

Test Yourself
1. Write the energy balance without looking at the book. To help remember the terms, think
about the properties the terms represent rather than memorizing the symbols.
2. In the presentation of the text, which side of the balance represents the system and which
terms represent interactions at the boundaries?
3. Explain the terms “closed-system,” “open-system,” and “steady state” to a friend of the
family member who is not an engineer.
4. Explain how a reference state helps to solve problems. Select a reference state for water
that is different from the steam table reference state. Create a path starting from saturated
liquid below the normal boiling point, through the normal boiling point, and cooling down
to saturated vapor at the initial temperature. Use heat capacities and the latent heat at the
normal boiling point to estimate the heat of vaporization and compare it with the steam
table value.
5. Write a MATLAB, Excel, or calculator routine that will enable you to calculate heat
capacity integrals easily.
6. Think of as many types of paths as you can from memory (isothermal, adiabatic, etc.) and
try to derive the heat and work flow for a piston/cylinder system along each path.

2.19. Practice Problems



A. General Reductions of the Energy Balance
The energy balance can be developed for just about any process. Since our goal is to learn how to

develop model equations as well as to simply apply them, it is valuable practice to obtain the
appropriate energy balance for a broad range of odd applications. If you can deduce these energy
balances, you should be well prepared for the more common energy balances encountered in typical
chemical engineering processes.

P2.1. A pot of water is boiling in a pressure cooker when suddenly the pressure relief valve
becomes stuck, preventing any steam from escaping. System: the pot and its contents after the
valve is stuck. (ANS. )
P2.2. The same pot of boiling water as above. System: the pot and its contents before the valve
is stuck. (ANS. )
P2.3. An gas home furnace has been heating the house steadily for hours. System: the furnace.
(ANS. ) (gas furnace)
P2.4. An gas home furnace has been heating the house steadily for hours. System: the house and
all contents. (ANS. ) (gas furnace)
P2.5. A child is walking to school when he is hit by a snowball. He stops in his tracks. System:
the child. (ANS. ∆[mU + mV2 / 2gc] = msnow[H + v2 / (2gc)]snow)

P2.6. A sealed glass bulb contains a small paddle-wheel (Crookes radiometer). The paddles are
painted white on one side and black on the other. When placed in the sun, the paddle wheel
begins to turn steadily. System: the bulb and its contents. (ANS. ∆U = 0)
P2.7. A sunbather lays on a blanket. At 11:30 A.M., the sunbather begins to sweat. System: the
sunbather at noon. (ANS. )
P2.8. An inflated balloon slips from your fingers and flies across the room. System: balloon and
its contents. (ANS. d[mU + mv2balloon/2gc]/dt = [H + v2 / (2gc)]outdm/dt + WEC)

B. Numerical Problems
P2.9. Consider a block of concrete weighing 1 kg.

a. How far must it fall to change its potential energy by 1 kJ? (ANS. 100 m)
b. What would be the value of its velocity at that stage? (ANS. 44.7 m/s)

P2.10. A block of copper weighing 0.2 kg with an initial temperature of 400 K is dropped into 4
kg of water initially at 300 K contained in a perfectly insulated tank. The tank is also made of
copper and weighs 0.5 kg. Solve for the change in internal energy of both the water and the block
given CV = 4.184 J/g-K for water and 0.380 J/g-K for copper. (ANS. 7480 J, –7570 J)

P2.11. In the preceding problem, suppose that the copper block is dropped into the water from a
height of 50 m. Assuming no loss of water from the tank, what is the change in internal energy of
the block? (ANS. –7570 J)
P2.12. In the following take CV = 5 and CP = 7 cal/mol-K for nitrogen gas:

a. Five moles of nitrogen at 100°C is contained in a rigid vessel. How much heat
must be added to the system to raise its temperature to 300°C if the vessel has a



negligible heat capacity? (ANS. 5000 cal) If the vessel weighs 80 g and has a
heat capacity of 0.125 cal/g-K, how much heat is required? (ANS. 7000 cal)
b. Five moles of nitrogen at 300°C is contained in a piston/cylinder arrangement.
How much heat must be extracted from this system, which is kept at constant
pressure, to cool it to 100°C if the heat capacity of the piston and cylinder is
neglected? (ANS. 7000 cal)

P2.13. A rigid cylinder of gaseous hydrogen is heated from 300 K and 1 bar to 400 K. How
much heat is added to the gas? (ANS. 2080 J/mole)
P2.14. Saturated steam at 660°F is adiabatically throttled through a valve to atmospheric
pressure in a steady-state flow process. Estimate the outlet quality of the steam. (ANS. q = 0.96)
P2.15. Refer to Example 2.10 about transformation of kinetic energy to enthalpy. Instead of
water, suppose N2 at 1 bar and 298 K was flowing in the pipe. How would that change the
answers? In particular, how would the temperature rise change? (ANS. max ~0.001K)
P2.16. Steam at 150 bars and 600°C passes through process equipment and emerges at 100 bars
and 700°C. There is no flow of work into or out of the equipment, but heat is transferred.

a. Using the steam tables, compute the flow of heat into the process equipment
per kg of steam. (ANS. 288 kJ/kg)
b. Compute the value of enthalpy at the inlet conditions, Hin, relative to an ideal
gas at the same temperature, Hig. Consider steam at 1 bar and 600°C as an ideal
gas. Express your answer as (Hin – Hig)/RTin. (ANS. –0.305)

P2.17. A 700 kg piston is initially held in place by a removable latch above a vertical cylinder.
The cylinder has an area of 0.1 m2; the volume of the gas within the cylinder initially is 0.1 m3 at
a pressure of 10 bar. The working fluid may be assumed to obey the ideal gas equation of state.
The cylinder has a total volume of 0.25 m3, and the top end is open to the surrounding
atmosphere at 1 bar.

a. Assume that the frictionless piston rises in the cylinder when the latches are
removed and the gas within the cylinder is always kept at the same temperature.
This may seem like an odd assumption, but it provides an approximate result that
is relatively easy to obtain. What will be the velocity of the piston as it leaves the
cylinder? (ANS. 13.8 m/s)
b. What will be the maximum height to which the piston will rise? (ANS. 9.6 m)
c. What is the pressure behind the piston just before it leaves the cylinder? (ANS.
4 bar)
d. Now suppose the cylinder was increased in length such that its new total
volume is 0.588 m3. What is the new height reached by the piston? (ANS. ~13 m)
e. What is the maximum height we could make the piston reach by making the
cylinder longer? (ANS. ~13 m)

P2.18. A tennis ball machine fires tennis balls at 40 mph. The cylinder of the machine is 1 m
long; the installed compressor can reach about 50 psig in a reasonable amount of time. The
tennis ball is about 3 inches in diameter and weighs about 0.125 lbm. Estimate the initial volume



required in the pressurized firing chamber. [Hint: Note the tennis ball machine fires horizontally
and the tennis ball can be treated as a frictionless piston. Don’t be surprised if an iterative
solution is necessary and ln (V2/V1) = ln(1 + ∆V/V1)]. (ANS. 390 cm3)

P2.19. A 700 kg piston is initially held in place by a removable latch inside a horizontal
cylinder. The totally frictionless cylinder (assume no viscous dissipation from the gas also) has
an area of 0.1 m2; the volume of the gas on the left of the piston is initially 0.1 m3 at a pressure of
8 bars. The pressure on the right of the piston is initially 1 bar, and the total volume is 0.25 m3.
The working fluid may be assumed to follow the ideal gas equation of state. What would be the
highest pressure reached on the right side of the piston and what would be the position of the
piston at that pressure? (a) Assume isothermal; (b) What is the kinetic energy of the piston when
the pressures are equal?16 (partial ANS. 1.6 bars)

2.20. Homework Problems
2.1. Three moles of an ideal gas (with temperature-independent CP = (7/2)R, CV = (5/2)R)
is contained in a horizontal piston/cylinder arrangement. The piston has an area of 0.1 m2

and mass of 500 g. The initial pressure in the piston is 101 kPa. Determine the heat that
must be extracted to cool the gas from 375°C to 275°C at: (a) constant pressure; (b)
constant volume.
2.2. One mole of an ideal gas (CP = 7R/2) in a closed piston/cylinder is compressed from
Ti = 100 K, Pi = 0.1 MPa to Pf = 0.7 MPa by the following pathways. For each pathway,
calculate ∆U, ∆H, Q, and WEC: (a) isothermal; (b) constant volume; (c) adiabatic.

2.3. One mole of an ideal gas (CP = 5R/2) in a closed piston/cylinder is compressed from
Ti = 298 K, Pi = 0.1 MPa to Pf = 0.25 MPa by the following pathways. For each pathway,
calculate ∆U, ∆H, Q, and WEC: (a) isothermal; (b) constant volume; (c) adiabatic.

2.4. One mole of an ideal gas (CP = 7R/2) in a closed piston/cylinder is expanded from Ti =
700 K, Pi = 0.75 MPa to Pf = 0.1 MPa by the following pathways. For each pathway,
calculate ∆U, ∆H, Q, and WEC: (a) isothermal; (b) constant volume; (c) adiabatic.

2.5. One mole of an ideal gas (CP = 5R/2) in a closed piston/cylinder is expanded from Ti =
500 K, Pi = 0.6 MPa to Pf = 0.1 MPa by the following pathways. For each pathway,
calculate ∆U, ∆H, Q, and WEC: (a) isothermal; (b) constant volume; (c) adiabatic.

2.6.
a. What is the enthalpy change needed to change 3 kg of liquid water at 0°C to
steam at 0.1 MPa and 150°C?
b. What is the enthalpy change needed to heat 3 kg of water from 0.4 MPa and
0°C to steam at 0.1 MPa and 150°C?
c. What is the enthalpy change needed to heat 1 kg of water at 0.4 MPa and 4°C
to steam at 150°C and 0.4 MPa?
d. What is the enthalpy change needed to change 1 kg of water of a water-steam
mixture of 60% quality to one of 80% quality if the mixture is at 150°C?



e. Calculate the ∆H value for an isobaric change of steam from 0.8 MPa and
250°C to saturated liquid.
f. Repeat part (e) for an isothermal change to saturated liquid.
g. Does a state change from saturated vapor at 230°C to the state 100°C and 0.05
MPa represent an enthalpy increase or decrease? A volume increase or
decrease?
h. In what state is water at 0.2 MPa and 120.21°C? At 0.5 MPa and 151.83°C?
At 0.5 MPa and 153°C?
i. A 0.15 m3 tank containing 1 kg of water at 1 MPa and 179.88°C has how many
m3 of liquid water in it? Could it contain 5 kg of water under these conditions?
j. What is the volume change when 2 kg of H2O at 6.8 MPa and 93°C expands to
1.6 bar and 250°C?
k. Ten kg of wet steam at 0.75 MPa has an enthalpy of 22,000 kJ. Find the quality
of the wet steam.

2.7. Steam undergoes a state change from 450°C and 3.5 MPa to 150°C and 0.3 MPa.
Determine ∆H and ∆U using the following:

a. Steam table data.
b. Ideal gas assumptions. (Be sure to use the ideal gas heat capacity for water.)

2.8. Five grams of the specified pure solvent is placed in a variable volume piston. What
are the molar enthalpy and total enthalpy of the pure system when 50% and 75% have been
evaporated at: (i) 30°C, (ii) 50°C? Use liquid at 25°C as a reference state.

a. Benzene (ρL = 0.88 g/cm3)
b. Ethanol (ρL = 0.79 g/cm3)
c. Water without using the steam tables (ρL = 1 g/cm3)
d. Water using the steam tables

2.9. Create a table of T, U, H for the specified solvent using a reference state of H = 0 for
liquid at 25°C and 1 bar. Calculate the table for: (i) liquid at 25°C and 1 bar; (ii) saturated
liquid at 1 bar; saturated vapor at 1 bar; (iii) vapor at 110°C and 1 bar. Use the Antoine
equation (Appendix E) to relate the saturation temperature and saturation pressure. Use the
ideal gas law to model the vapor phase.

a. Benzene
b. Ethanol
c. Water without using the steam tables
d. Water using the steam tables

2.10. One kg of methane is contained in a piston/cylinder device at 0.8 MPa and 250°C. It
undergoes a reversible isothermal expansion to 0.3 MPa. Methane can be considered an ideal
gas under these conditions. How much heat is transferred?
2.11. One kg of steam in a piston/cylinder device undergoes the following changes of state.
Calculate Q and W for each step.



a. Initially at 350 kPa and 250°C, it is cooled at constant pressure to 150°C.
b. Initially at 350 kPa and 250°C, it is cooled at constant volume to 150°C.

2.12. In one stroke of a reciprocating compressor, helium is isothermally and reversibly
compressed in a piston + cylinder from 298 K and 20 bars to 200 bars. Compute the heat
removal and work required.
2.13. Air at 30°C and 2MPa flows at steady state in a horizontal pipeline with a velocity of 25
m/s. It passes through a throttle valve where the pressure is reduced to 0.3 MPa. The pipe is the
same diameter upstream and downstream of the valve. What is the outlet temperature and
velocity of the gas? Assume air is an ideal gas with a temperature-independent CP = 7R/2, and
the average molecular weight of air is 28.8.
2.14. Argon at 400 K and 50 bar is adiabatically and reversibly expanded to 1 bar through a
turbine in a steady process. Compute the outlet temperature and work derived per mole.
2.15. Steam at 500 bar and 500°C undergoes a throttling expansion to 1 bar. What will be the
temperature of the steam after the expansion? What would be the downstream temperature if the
steam were replaced by an ideal gas, CP/R = 7/2?

2.16. An adiabatic turbine expands steam from 500°C and 3.5 MPa to 200°C and 0.3 MPa. If the
turbine generates 750 kW, what is the flow rate of steam through the turbine?
2.17. A steam turbine operates between 500°C and 3.5 MPa to 200°C and 0.3 MPa. If the
turbine generates 750 kW and the heat loss is 100 kW, what is the flow rate of steam through the
turbine?
2.18. Valves on steam lines are commonly encountered and you should know how they work.
For most valves, the change in velocity of the fluid flow is negligible. Apply this principle to
solve the following problems.

a. A pressure gauge on a high-pressure steam line reads 80 bar absolute, but
temperature measurement is unavailable inside the pipe. A small quantity of
steam is bled out through a valve to atmospheric pressure at 1 bar. A
thermocouple placed in the bleed stream reads 400°C. What is the temperature
inside the high-pressure duct?
b. Steam traps are common process devices used on the lowest points of steam
lines to remove condensate. By using a steam trap, a chemical process can be
supplied with so-called dry steam, i.e., steam free of condensate. As condensate
forms due to heat losses in the supply piping, the liquid runs downward to the
trap. As liquid accumulates in the steam trap, it causes a float mechanism to
move. The float mechanism is attached to a valve, and when the float reaches a
control level, the valve opens to release accumulated liquid, then closes
automatically as the float returns to the control level. Most steam traps are
constructed in such a way that the inlet of the steam trap valve is always covered
with saturated liquid when opened or closed. Consider such a steam trap on a 7
bar (absolute) line that vents to 1 bar (absolute). What is the quality of the stream
that exits the steam trap at 1 bar?

2.19. An overall balance around part of a plant involves three inlets and two outlets which only
contain water. All streams are flowing at steady state. The inlets are: 1) liquid at 1MPa, 25°C, 



= 54 kg/min; 2) steam at 1 MPa, 250°C,  = 35 kg/min; 3) wet steam at 0.15 MPa, 90% quality, 
 = 30 kg/min. The outlets are: 1) saturated steam at 0.8 MPa,  = 65 kg/min; 2) superheated

steam at 0.2 MPa and 300°C,  = 54 kg/min. Two kW of work are being added to the portion of
the plant to run miscellaneous pumps and other process equipment, and no work is being
obtained. What is the heat interaction for this portion of the plant in kW? Is heat being added or
removed?
2.20. Steam at 550 kPa and 200°C is throttled through a valve at a flow rate of 15 kg/min to a
pressure of 200 kPa. What is the temperature of the steam in the outlet state, and what is the
change in specific internal energy across the value, (Uout – Uin)?
2.21. A 0.1 m3 cylinder containing an ideal gas (CP/R = 3.5) is initially at a pressure of 10 bar
and a temperature of 300 K. The cylinder is emptied by opening a valve and letting pressure
drop to 1 bar. What will be the temperature and moles of gas in the cylinder if this is
accomplished in the following ways:

a. Isothermally.
b. Adiabatically. (Neglect heat transfer between the cylinder walls and the gas.)

2.22. As part of a supercritical extraction of coal, an initially evacuated cylinder is fed with
steam from a line available at 20 MPa and 400°C. What is the temperature in the cylinder
immediately after filling?
2.23. A large air supply line at 350 K and 0.5 MPa is connected to the inlet of a well-insulated
0.002 m3 tank. The tank has mass flow controllers on the inlet and outlet. The tank is at 300 K
and 0.1 MPa. Both valves are rapidly and simultaneously switched open to a flow of 0.1
mol/min. Model air as an ideal gas with CP = 29.3 J/mol-K, and calculate the pressure and
temperature as a function of time. How long does it take until the tank is within 5 K of the
steady-state value?
2.24. An adiabatic tank of negligible heat capacity and 1 m3 volume is connected to a pipeline
containing steam at 10 bar and 200°C, filled with steam until the pressure equilibrates, and
disconnected from the pipeline. How much steam is in the tank at the end of the filling process,
and what is its temperature if the following occurs:

a. The tank is initially evacuated.
b. The tank initially contains steam at 1 bar and 150°C.



Chapter 3. Energy Balances for Composite Systems

A theory is the more impressive the greater the simplicity of its premises is, the more
different kinds of things it relates, and the more extended is its area of applicability.
Therefore the deep impression which classical thermodynamics made upon me.

Albert Einstein

Having established the principle of the energy balance for individual systems, it is straightforward
to extend the principle to a collection of several individual systems working together to form a
composite system. One of the simplest and most enlightening examples is the Carnot cycle which is a
benchmark system used to evaluate conversion of heat into work. The principle of the first law is
perhaps most powerful when applied from an overall perspective. In other words, it is not necessary
to deal with individual operations in order to draw conclusions about the overall system. Clever
selections of composite systems or subsystems can then permit valuable insights about key behaviors
and where to focus greater analysis. Implementing this overall perspective often requires dealing with
multicomponent and reacting systems. For example, calorie counting for dietary needs must consider
at least glucose, oxygen, CO2, and water. It is not necessary at this stage to have a precise estimate of
the mixture properties, but the reality of mixed systems must be acknowledged approximately. To
illustrate practical implications, we consider distillation systems, reacting systems, and biological
systems.

Chapter Objectives: You Should Be Able to...
1. Understand the steps of a Carnot engine and Carnot heat pump.
2. Analyze cycles to compute the work and heat input per cycle.
3. Apply the concepts of constant molar overflow in distillation systems.
4. Apply the concepts of ideal gas mixtures and ideal mixtures to energy balances.
5. Apply mole balances for reacting systems using reaction coordinates for a given feed
properly using the stoichiometric numbers for single and multiple reactions.
6. Properly determine the standard heat of reaction at a specified temperature.
7. Use the energy balance properly for a reactive system.

3.1. Heat Engines and Heat Pumps – The Carnot Cycle
In this section we introduce the Carnot cycle as a method to convert heat to work. Many power

plants work on the same general principle of using heat to produce work. In a power plant, heat is
generated by coal, natural gas, or nuclear energy. However, only a portion of this energy can be used
to generate electricity, and the Carnot cycle analysis will be helpful in understanding those
limitations. Before we start the analysis, let us define the ratio of net work produced to the heat input
as the thermal efficiency using the symbol ηθ:



 Thermal efficiency.

We wish to make the thermal efficiency as large as possible. We prove in the next chapter that the
Carnot engine matches the highest thermal efficiency for an engine operating between two isothermal
reservoirs. Maximizing thermal efficiency is a design goal that pervades Units I and II. We reconsider
the thermal efficiency each time we add a layer of sophistication in our analysis. The concept of
entropy in Chapter 4 will help us to generalize from ideal gases to steam or other fluids with
available tables and charts. The calculus of classical thermodynamics in Chapter 5 will help to
generalize to any substance, making our own tables and charts in Chapters 6–9. Evaluating the thermal
efficiency in many situations is a skill that any engineer should have. Chemical engineering embraces
a broad scope of ... “chemicals.”

The Carnot Engine
The Carnot cycle was conceived by Sadi Carnot as a route to convert heat into work. In the

previous chapter, we developed the energy balances and work calculations for reversible isothermal
and adiabatic processes. The Carnot engine combines them in a cycle. Consider a piston in the
vicinity of both a hot reservoir and a cold reservoir as illustrated in Fig. 3.1. The insulation on the
piston may be removed to transfer heat from the hot reservoir during one step of the process, and also
removed from the cold side to transfer heat to the cold reservoir during another step of the process.
Carnot conceived of the cycle consisting of the steps shown schematically on the P-V diagram
beginning from point a. Between points a and b, the gas undergoes an isothermal expansion,
absorbing heat from the hot reservoir. From point b to c, the gas undergoes an adiabatic expansion.
From point c to d, the gas undergoes an isothermal compression, rejecting heat to the cold reservoir.
From point d to a, the gas undergoes an adiabatic compression to return to the initial state.

Figure 3.1. Schematic of the Carnot engine, and the Carnot P-V cycle when using a gas as the
process fluid.

 The Carnot cycle is one method of constructing a heat engine.
Nicolas Léonard Sadi Carnot (1796–1832) was a French scientist who developed the

Carnot cycle to demonstrate the maximum conversion of heat into work.

Let us consider the energy balance for the gas in the piston. Because the process is cyclic and
returns to the initial state, the overall change in U is zero. The system is closed, so no flow work is



involved. This work performed, WEC = ∫PdV for the gas, is equal to the work done on the shaft plus
the expansion/contraction work done on the atmosphere for each step. By summing the work terms for
the entire cycle, the net work done on the atmosphere in a complete cycle is zero since the net
atmosphere volume change is zero. Therefore, the work represented by the shaded portion of the P-V
diagram is the useful work transferred to the shaft.

You can see from the shaded area in Fig. 3.1 that –WS, net > 0; therefore, since QH > 0 and QC < 0, 

. The ratio  is negative, and to maximize η we seek to make QC as small in magnitude
as possible.

The heat transferred and work performed in the various steps of the process are summarized in
Table 3.1. For this calculation we assume the gas within the piston follows the ideal gas law with
temperature-independent heat capacities. We calculate reversible changes in the system; thus, we
neglect temperature and velocity gradients within the gas (or we perform the process very slowly so
that these gradients do not develop).

Table 3.1. Illustration of Carnot Cycle Calculations for an Ideal Gas.a

a. The Carnot cycle calculations are shown here for an ideal gas. There are no requirements that the working fluid is an
ideal gas, but it simplifies the calculations.

Note: The temperatures TH and TC here refer to the hot and cold temperatures of
the gas, which are not required to be equal to the temperatures of the reservoirs for
the Carnot engine to be reversible. In Chapter 4 we will show that if these
temperatures do equal the reservoir temperatures, the work is maximized.

Comparing adiabats b → c and d → a, the work terms must be equal and opposite since the



temperature changes are opposite. The temperature change in an adiabatic process is related to the
volume change in Eqn. 2.63. In that equation, when the temperature ratio is inverted, the volume ratio
is inverted. Therefore, we reason that for the two adiabatic steps, Vb/Va = Vc/Vd. Using the ratio in
the formulas for the isothermal steps, the ratio of heat flows becomes

Inserting the ratio of heat flows into Eqn. 3.4 results in the thermal efficiency.

 The thermal efficiency of a heat engine is determined by the upper and lower
operating temperatures of the engine.

You must use absolute temperature when applying Eqn. 3.6. We can skip the conversion to
absolute temperature in the numerator of the last term because the subtraction means that the 273.15
(for units of K) in one term is canceled by the other. There is no such cancellation in the denominator.

Eqn. 3.6 indicates that we cannot achieve ηθ = 1 unless the temperature of the hot reservoir
becomes infinite or the temperature of the cold reservoir approaches 0 K. Such reservoir
temperatures are not practical for real applications. For real processes, we typically operate between
the temperature of a furnace and the temperature of cooling water. For a typical power-plant cycle
based on steam as the working fluid, these temperatures might be 900 K for the hot reservoir and 300
K for the cold reservoir, so the maximum thermal efficiency for the process is near 67%,
theoretically. Most real power plants operate with thermal efficiencies closer to 30% to 40% owing
to inherent inefficiencies in real processes.

Perspective on the Heat Engine
The Carnot cycle provides a quick and convenient guideline for processes that seek to convert heat

flow into work. The striking conclusion we will prove in Chapter 4 is that it is impossible to convert
all of the heat flow from the hot reservoir into work at reasonable temperatures. From an overall
perspective, the detailed steps of the Carnot engine can be ignored. The amount of work is given by
Eqn. 3.6. We can simply state that heat comes in, heat goes out, and the difference is the net work.
This situation is represented by Fig. 3.2(a). As an alternate perspective, any process with a finite
temperature gradient should produce work. If it does not, then it must be irreversible, and “wasteful.”
This situation is represented by Fig. 3.2(b). These observations are similar to previous statements
about gradients and irreversibility, but Eqn. 3.6 establishes a quantitative connection between the
temperature difference and the reversible work possible.



Figure 3.2. The price of irreversibility. (a) Overall energy balance perspective for the
reversible heat engine. (b) Zero work production in a temperature gradient without a heat

engine, QH = QC.

We will demonstrate in Chapter 4 that the Carnot thermal efficiency matches the upper limit
attainable by any feasible process using heat flow as the source of work. On the other hand, it is not
necessarily true that every engine is a heat engine. For instance, a fuel cell could conceivably convert
the chemical energy of gasoline into electricity and then power a motor from the electricity. Fuel cells
are not bound by the constraints of the Carnot cycle because they are not dependent on heat as the
energy source. Also, not all engines operate between constant temperature reservoirs, so the direct
comparison with the Carnot cycle is not possible.

Carnot Heat Pump
Suppose that we decided to reverse every step in the Carnot cycle. All the state variables would be

the same, but all the heat and work flows would change signs. Instead of producing work, the process
would require work, but it would absorb heat from a cold reservoir and reject heat to a warm
reservoir. A Carnot heat pump may be used as a refrigerator/freezer or as a heater depending on
whether the system of interest is on the cold or warm side of the heat pump. In a refrigeration system,
the goal is to remove heat from the cold area and reject it to the warmer surroundings. Heat pumps
can be purchased for home heating, and in that mode, they can extract heat from the colder outdoors
and “pump” it to the warmer house.

 A Carnot heat pump results from running a heat engine backwards.

For a given transfer of heat from the cold reservoir, a Carnot heat pump requires the minimum
amount of work for any conceivable process. The coefficient of performance, COP, is the ratio of
heat transferred from the cold reservoir to the work required. COP is a mirror image of thermal
efficiency, reappearing in Units I and II. We want to maximize COP when the objective is to cool a
refrigerator with as little work as possible.



Eqn. 3.5 has a subtle inversion of volumes that drops out:

Eqn. 3.3 still applies, and the COP is given by

 Coefficient of performance.

Example 3.1. Analyzing heat pumps for housing
Suppose your family is considering replacing your furnace with a heat pump. Work is necessary in

order to “pump” the heat from the low outside temperature up to the inside temperature. The best you
could hope for is if the heat pump acts as a reversible heat pump between a heat source (outdoors in
this case) and the heat sink (indoors). The average winter temperature is 4°C, and the building is to
be maintained at 21°C. The coils outside and inside for transferring heat are of such a size that the
temperature difference between the fluid inside the coils and the air is 5°C. We generally refer to this
as the approach temperature. What would be the maximum cost of electricity in ($/kW-h) for which
the heat pump would be competitive with conventional heating where a fuel is directly burned for
heat. Consider the cost of fuel as $7.00 per 109J, and electricity as $0.10 per kW-h. Consider only
energy costs.

Solution
The Carnot heat pump COP, Eqn. 3.9

where  is the heating requirement in kW. Heat pump operating ,
where θ is an arbitrary time and x is the cost.

Direct heating operating  For the maximum cost of electricity for
competitive heat pump operation, let heat pump cost = direct heating cost at the breakeven point.

Since the actual cost of electricity is given as $0.10/kW-h it might be worthwhile if the heat pump



is reversible and does not break down. (Purchase, installation, and maintenance costs have been
assumed equal in this analysis, although the heat pump is more complex.)

3.2. Distillation Columns
Roughly 80% of separations are conducted by distillation and a significant portion of the energy

involved in the global chemical process industries is devoted to distillation. Why are more
distillation columns needed than reactors? Reactors rarely run to 100% conversion and rarely
produce a single product with 100% purity. There may be a by-product of the primary reaction or a
solvent reaction medium. Additionally, there may be side reactions that can be minimized but not
eliminated. Altogether, the reactor effluent almost always contains several components, and products
need to be separated to high purity before they can be sent out of the process or recycled.

Analyzing distillation is important for a more philosophical reason as well. It is a common unit
operation that involves mass and energy balances, heat and mass transfer, and phase partitioning. This
kind of analysis pervades chemical engineering in general. The important consideration is the thought
process that leads to the model equations. That thought process can be applied to any system, no
matter how complex. As we proceed through the analysis distillation, try to imagine how you might
develop similar approximations for other systems. Challenge yourself to anticipate the next step in
every derivation. In the final analysis, your skill at developing simple models of complex phenomena
is more valuable than memorizing model equations developed by somebody else.

We will address the phase equilibrium aspects of distillation in Section 10.6 on page 390, and you
may wish to skim that section now. Briefly, the fraction with the lowest boiling point rises in the
column and the fraction with the highest boiling point flows to the bottom. In this section, the focus is
on mass and energy balances for distillation. A common model in distillation column screening is
called constant molar overflow. In this model, the actual enthalpy of vaporization of a mixture is
represented by the average enthalpy of vaporization, which can be assumed to be independent of
composition for the purposes of this calculation, . Also, all saturated liquid
streams are considered to have the same enthalpy, and all saturated vapor streams are considered to
have the same enthalpy. These assumptions may seem extreme, but the model provides an excellent
overview of key operating conditions.

In the constant molar overflow model for a column with one feed, the column may be represented
by five sections as shown in Fig. 3.3: a feed section where the feed enters; a rectifying section above
the feed zone; a condenser above the rectifying section which condenses the vapors and returns a
portion of the liquid condensate as reflux LR to ensure that liquid remains on the trays to induce the
liquid-vapor partitioning that enhances the compositions.; a stripping section below the feed section;
and a reboiler that creates vapors from the liquid flowing down the column.



Figure 3.3. (a) Overall schematic of a distillation column with a total condenser showing five
sections of a distillation column. and conventional labels; (b) a partial condenser; (c) schematic

of liquid levels on bubble cap trays with the downcomers used to maintain the liquid levels.

At the bottom of the column, heat is added in the reboiler, causing vapor to percolate up the column
until it reaches the condenser. The heat requirement in the reboiler is called the heating duty. B is
called the bottoms or bottoms product. The ratio VS/B is called the boilup ratio. The energy
requirement of the reboiler is known as the reboiler duty and is directly proportional to the moles of
vapor produced as shown in the figure.

At the top of the column, Fig. 3.3(a) shows a total condenser where the vapor from the top of the
column is totally condensed. The liquid flow rate leaving the condenser will be VR = (LR + D). D is
called the overhead product or distillate. LR is called the reflux. The proportion of reflux is
characterized by the reflux ratio, R = LR/D. A partial condenser may also be used as shown in (b),
and the overhead product leaves as a vapor and the condensed fraction is the reflux. The cooling
requirement of the condenser is called the condenser duty and the duty depends on whether the
condenser is total or partial as shown in the figure.

The rectifying and stripping sections of the column have either packing or trays to provide
retention of the liquid and contact with vapors. Trays are easier to introduce as shown in Fig. 3.3(c).
At steady state, each tray holds liquid and the vapor flows upwards through the liquid. The trays can
be constructed with holes (sieve trays) or bubble caps (bubble cap trays) or valves (valve trays). The
bubble caps sketched in the figure represent a short stub of pipe with a short inverted “cup” called the
“cap” with slots in the sides (slots are not shown) supported with spacing so that vapor can flow
upwards through the pipe and out through the slots in the cap. A downcomer controls the liquid level
on the tray as represented by a simple pipe extending above the surface of the tray in the figure. and in
an ideal column each tray creates a separation stage. Using multiple stages provides greater
separation. By stacking the stages, rising vapor from a lower stage boils the liquid on the next stage.
At steady state, streams VS and VR are assumed to be saturated vapor unless otherwise noted. Streams
B, LS, and LR are assumed to be saturated liquid unless otherwise noted. D is either assumed to be
either a saturated liquid or a vapor depending on whether the condenser is total or partial,



respectively. According to the constant molar overflow model, at steady state the vapor and liquid
flow rates are constant within the stripping and rectifying sections because all the internal streams in
contact are saturated, and change only at the feed section as determined by mass and energy balances
around the feed section.

One of the most challenging tasks in the undergraduate chemical engineering laboratory is to
explain the dynamics of the distillation column during start-up. Students tend to assume that the entire
distillation column starts working as soon as heat is applied to the reboiler. However, during column
start-up, the internal flows are not constant in the column sections. Heat moves up the column one tray
at a time as boiling vapor leaves one tray and enters another. Consider Fig. 3.3(c). When tray 12
starts to boil, rising vapors will be condensed by the cold liquid on tray 11 immediately above and by
the cold column. In principle, the vapor flow leaving the upper tray 11, V11, will be approximately
zero until the column and liquid on the tray reaches the saturation temperature of the liquid on tray 11.
Vapors reaching tray 11 are condensed and give up latent heat. Then tray 11 begins to warm. The
condensed vapors create liquid overflow of subcooled liquid from tray 11 back down to tray 12. The
lower tray 12 continues to boil, but the cool downcomer liquid causes the vapor rate V12 to be
smaller than V13. Tray 12 stays at a fairly constant temperature as it continues to boil because it stays
saturated. Finally, when tray 11 begins to boil, the process repeats for tray 10 and so on.

This introduction is not intended to explain every detail of distillation and energy balances, but it
should suffice for you to deduce the most important qualitative behaviors. An illustration of the kinds
of possible inferences is given in Example 3.2. Homework problem 3.4 provides additional exercises
related to steady-state distillation.

Example 3.2. Start-up for a distillation column
A particular bubble cap distillation column for methanol + water has 12 trays numbered from top

to bottom. Each tray is composed of 4 kg of materials and holds 1 kg of liquid. The heat capacity of
the tray materials is 6 J/g-K and the heat capacity of the liquid is 84 J/mol-K = 3.4 J/g-K. During
start-up, the feed is turned off. Roughly 15 minutes after the reboiler is started, tray 12 has started to
boil and the temperature on tray 11 begins to rise. The reboiler duty is 6 kW and the heat loss is
negligible. Tray 11 starts at 25 °C and the temperature of the liquid and the tray materials is assumed
the same during start-up. Assume the liquid inventory on Tray 11 is constant throughout start-up.

a. Tabulate and plot the temperature versus time for tray 11 until it starts to boil at 70 °C.
b. Plot the vapor flow V12 as a function of time.

Solution
a. First, recognize that V11 = 0 since tray 11 is subcooled. No liquid is flowing down to
tray 11. L10 = 0 since F = 0 and no vapors are being condensed yet (LR = 0), even though
the cooling water may be flowing.

Mass balance on tray 11 (all vapors from below are being condensed during start-
up, V11 = 0, L10 = 0):



Mass balance on boundary around tray 11 + tray 12 (V11 = 0, L10 = 0, during start-
up):

State 11 is subcooled during start-up and will warm until T11 = 70:

Energy balance on tray 11 during start-up (no work, no direct heat input, energy
input by flow of hot vapors, negligible heat loss):

where for the last equality we have inserted Eqn. 3.10 and then Eqn. 3.12.
An energy balance on tray 12 (which is at constant temperature) gives:

Using Eqn. 3.12 to eliminate H11, Eqn. 3.10 to eliminate L11, and Eqn. 3.11 to
eliminate L12,

Inserting Eqn. 3.15 into Eqn. 3.13, and recognizing the constant vapor flow rate
below tray 13,

where ‘mat’ indicates column material. Inserting values from the problem statement
gives,

The tray will require approximately (70 – 25)/13.1 = 3.4 min to reach saturation
temperature. The plot is shown below.

b. The vapor flow is given by Eqn. 3.13 using T11 = 25 + 13.1(t – 15). The average heat of
vaporization is (40.7 + 35/3)/2 = 38 kJ/mol. Between 15 and 18.4 min, the flow rate in
mol/min



Note that we neglect details like imperfect mixing or bypass heating (vapor that
does not get condensed) that would round the edges of the temperature profile.

Note that as soon as vapors start to reach tray 11 in Example 3.2 the net energy input is constant
even though the flow rate of hot vapors into the tray is increasing with time during start-up. Why? The
answer is that energy is also being transported away from the tray by the flow down the downcomer.
As the tray warms, this energy transport out is increasing at the same rate as the increased energy
transport into the stage by the increasing flow of vapor. Analysis of subtleties such as this will
deepen your understanding of physical phenomena and your appreciation for the utility of the energy
balance.

3.3. Introduction to Mixture Properties
The previous section used “average” properties for the streams. This level of approximation is too

crude for most calculations. We therefore need to understand how to estimate mixture properties.

Property Changes of Mixing
Communication of the property changes is facilitated by defining the property change of mixing as

the mixture property relative to the mole-fraction weighted sum of the component properties in the
unmixed state. Using x to be a generic composition variable, the energy of mixing is

The enthalpy of mixing is:

The volume of mixing is the volume of the mixture relative to the volumes of the components
before mixing.

Similar equations may be written for other properties that we will define later: entropy of mixing,
Gibbs energy of mixing, and Helmholtz energy of mixing – but these must reflect the increased
disorder inherent in creating mixtures from pure fluids. If the property change on mixing (e.g., ∆Hmix)
has been measured and correlated in a reference book or database, we can use it to calculate the



stream property at a later time:

3.4. Ideal Gas Mixture Properties
The ideal gas is a convenient starting point to introduce the calculation of mixture properties

because the calculations are simple. Since ideal gas molecules do not have intermolecular potentials,
the internal energy consists entirely of kinetic energy. When components are mixed at constant
temperature and pressure, the internal energy is simply the sum of the component internal energies
(kinetic energies), which can be written using y as a gas phase composition variable:

The total volume of a mixture is related to the number of moles by Amagat’s law:

We can thus see that the energy of mixing and the volume of mixing for an ideal gas are both zero.
Combining U and V to obtain the definition of H, H = U + PV, and using Eqns. 3.26 and 3.27,

Therefore the enthalpy of a mixture is given by the sum of the enthalpies of the components at the
same temperature and pressure and the enthalpy of mixing is zero. On a molar basis,

Furthermore, we can add the component enthalpies and internal energies for ideal gas mixtures
using the mole fractions as the weighting factors. The energy of mixing, volume change of mixing, and
enthalpy change of mixing are all zero.



 The enthalpy of mixing is zero for an ideal gas.

3.5. Mixture Properties for Ideal Solutions
Sometimes the simplest analysis deserves more consideration than it receives. Ideal solutions can

be that way. For an ideal solution, there are no synergistic effects of the components being mixed
together; each component operates independently. Thus, mixing will involve no energy change and no
volume change. Using x as a generic composition variable,

 The energy of mixing and volume of mixing are zero for an ideal solution.

Though these restrictions were also followed by ideal gas solutions, the volumes for ideal
solutions do not need to follow the ideal gas law, and can be liquids; thus, ideal gases are a subset of
ideal solutions. Examples of ideal solutions are all ideal gases mixtures and liquid mixtures of family
member pairs of similar size such as benzene + toluene, n-butanol + n-pentanol, and n-pentane +
n-hexane.

Since H ≡ U + PV, and because the U and V are additive, the enthalpy of the mixture will simply be
the sum of the pure component enthalpies times the number of moles of that component:

Therefore, an ideal solution has a zero energy of mixing, volume of mixing, and enthalpy of
mixing (commonly called the heat of mixing):

 The enthalpy of mixing is zero for an ideal solution.

The primary distinction between ideal gas mixtures and ideal solutions is the constraint of the ideal
gas law for the volume of the former. Let us apply the principles of ideal solutions and ideal gas
mixtures to an example that also integrates the principles of use of a reference state.

Example 3.3. Condensation of a vapor stream



A vapor stream of wt fractions 45% H2O, 40% benzene, 15% acetone flows at 90°C and 1 bar into
a condenser at 100 kg/h. The stream is condensed and forms two liquid phases. The water and
benzene can be considered to be totally immiscible in one another. The acetone partitions between the
benzene and water layer, such that the K-ratio, K = (wt. fraction in the benzene layer)/(wt. fraction in
the water layer) = 0.9.a The liquid streams exit at 20°C and 1 bar. Determine the cooling duty,  for
the condenser. Assume the feed is an ideal gas and the liquid streams are ideal solutions once the
immiscible component has been eliminated.

Solution
A schematic of the process is shown below. Using  as the flow rate of acetone in E and  as the

flow rate in stream B, the K-ratio constraint is

where the acetone mass balance has been inserted in the second equality.
Using the first and third arguments, a quadratic equation results, which leads to , and 

.

The energy balance for the process side of the dotted boundary is:

We are free to choose a reference state for each component. Note that if the reference state is
chosen as liquid at 20°C, then the enthalpies of E and B will both be zero since they are at the
reference state temperature and pressure and the enthalpy of mixing is zero for the ideal solution
assumption. This choice will greatly reduce the number of calculations. The energy balance with this
reference state simplifies to the following:

The enthalpy of F as an ideal gas is given by Eqn. 3.28:

Refer back to Fig. 2.6 on page 65 to review the paths for calculation relative to a reference state.
The path used here is similar to Fig. 2.6(a). To calculate the enthalpy for components in F, we can
construct a path between the reference state and the feed state going through the normal boiling point,
Tb, where the heat of vaporization is known.



The enthalpy of a component in the feed stream is a sum of the three steps, Hi,F = ∆HL + ∆Hvap +
∆HV. Note that Tb > 90°C for water. The ∆HV term is calculated with the same formula, but results in
a negative contribution as shown by the dotted line in the path calculation schematic. For benzene and
acetone, Tb < 90°C, so the path shown by the solid line is used for ∆HV. Note that, although the
system is below the normal boiling point of water at 1 bar, the water can exist as a component in a
mixture.

Using the heat capacity polynomials, and tabulating the three steps shown in the pathway schematic,
programming the enthalpy integrals into Excel or MATLAB provides

HF, H2O = 6058 + 40656 – 342 = 46372 J/mol

HF, benz = 8624 + 30765 + 994 = 40383 J/mol

HF, acet = 4639 + 30200 + 2799 = 37638 J/mol

Note that the last term in the sum is negative for water because the feed temperature of the mixture
is below the normal boiling temperature. The cooling duty for the condenser is

a. Throughout most of the text, we usually use K-ratios based on mole fraction ratio, not weight fraction. Nevertheless,
many references use K-ratios based on weight fractions. You must read carefully and convert as needed.

3.6. Energy Balance for Reacting Systems
Chemical engineers must be proficient at including reacting systems into energy balances, and there

are several key concepts that must be introduced. In reacting systems the number of moles is not
conserved unless the number of moles of products is the same as the number of moles of reactants.
Generally, the two best approaches for tracking species are to use an atom balance or to use the
reaction coordinate. Here we will introduce the method of the reaction coordinate because it is much
easier to incorporate into the energy balance. It is convenient to adopt the conventions of
stoichiometry,

v1C1 + v2C2 + v3C3 + v4C4 = 0
where the C’s represent the species, and reactants have negative v’s and products have positive

v’s. The v’s are called the stoichiometric numbers, and the absolute values are called the
stoichiometric coefficients. (e.g., CH4 + H2O  CO + 3H2, numbering from left to right),

ය v1 = –1; v2 = –1; v3 = +1; v4 = +3.

Consider what would happen if a certain amount of component 1 were to react with component 2 to
form products 3 and 4. We see dn1 = dn2 (v1 / v2) because v1 moles of component 1 requires v2
moles of component 2 in order to react. Rearranging:



Since all these quantities are equal, it is convenient to define a variable which represents this
quantity.

ξ is called the reaction coordinate1 and is related to the conversion.2 Integrating:

Or in a more useful form for any component i:

In a flowing system,  represents the outlet,  represents the inlet, and thus for component i,

where  represents the overall rate of species interconversion. Moles are not conserved in a
chemical reaction, which can be quantified by summing Eqn. 3.40 or 3.41 over all species—for a

flowing system,  and , thus,

In closed systems, the value of ξ is determined by chemical equilibria calculations; ξ may be

positive or negative. The only limit on ξ is that  for all i. The boundary values of ξ may be
determined in this manner before beginning an equilibrium calculation. Naturally, in a flowing

system, the same arguments apply to  and .

Example 3.4. Stoichiometry and the reaction coordinate
Five moles of hydrogen, two moles of CO, and 1.5 moles of CH3OH vapor are combined in a

closed system methanol synthesis reactor at 500 K and 1 MPa. Develop expressions for the mole
fractions of the species in terms of the reaction coordinate. The components are known to react with
the following stoichiometry:

2H2(g) + CO(g)  CH3OH(g)



Solution
Although the reaction is written as though it will proceed from left to right, the direction of the

actual reaction does not need to be known. If the reverse reaction occurs, this will be obvious in the
solution because a negative value of ξ will be found. The task at hand is to develop the mole balances
that would be used toward determining the value of ξ. The table below presents a convenient format.

The total number of moles at any time is 8.5 – 2ξ. The mole fractions are

To ensure that all , the acceptable upper limit of ξ is determined by CO, and the acceptable
lower limit is determined by CH3OH,

–1.5 ≤ ξ ≤ 2

Example 3.5. Using the reaction coordinates for simultaneous reactions
For each independent reaction, a reaction coordinate variable is introduced. When a component is

involved in two reactions, the moles are related to both reaction coordinates. This example is
available as an online supplement.

Standard State Heat of Reaction
When a reaction proceeds, bonds are broken, and others are formed. Because the bond energies

vary for each type of bond, there are energy and enthalpy changes on reaction. Bond changes have a
significant effect on the energy balance because they are usually larger than the sensible heat effects.
Because enthalpies are state properties, we can use Hess’s law to calculate the enthalpy change.
Hess’s law states that the enthalpy change of a reaction can be calculated by summing any component
reactions, or by calculating the reaction enthalpy along a convenient reaction pathway between the
reactants and products. To organize calculations of the changes, enthalpies of components are usually



available at a standard state. A standard state is slightly different from a reference state as
discussed on page 63. A standard state requires all the specifications of a reference state, except the
T is the temperature of the system. For reactions, the conventional standard state properties are at a
specified composition, state of aggregation, and pressure, but they change with temperature. By
combining Hess’s law with the standard state concept, we may calculate the standard state heat (or
enthalpy) of reaction. Suppose that we have the reaction of Fig. 3.4. For calculation of the heat of
reaction, a convenient pathway is “decompose” the reactants into the constituent elements in their
naturally occurring states at the standard state conditions, and then “reform” them into the products.
The enthalpy of forming each product from the constituent elements is known as the standard heat (or
enthalpy) of formation. The enthalpy change for “decomposing” the reactants is the negative of the
heat of formation.

Figure 3.4. Illustration of the calculation of the standard heat of reaction by use of standard
heats of formation.

We may write this mathematically using the stoichiometric numbers as:

 Standard heat of reaction.

where every term in the equation varies with temperature. Frequently, the standard state pressure is
1 bar. When a reaction is not at 1 bar, the usual practice is to incorporate pressure effects into the
energy balance as we will show later, rather than using a heat of reaction at the high pressure. If we
specify a reference temperature in addition to the other properties used for the standard state, we can
calculate the  at any temperature by using the heat capacity of the reactants and products,

where . A reaction with a negative value of  is called an exothermic reaction.
A reaction with a positive value of  is called an endothermic reaction. In this equation,  is
easily determined if the standard heat of reaction  is known at a single reference temperature and
1 bar.



This is Eqn. 3.43, with an additional specification of temperature which creates a reference state.
Almost always, the best reference state to use is TR = 298.15 K and 1 bar, because this is the
temperature where the standard state enthalpies (heats) of formation are commonly tabulated. The
heat of formation is taken as zero for elements that naturally exist as molecules at 298.15 K and 1 bar.
Then the zero value is set for the state of aggregation naturally occurring at 298.15 K and 1 bar. For
example, H exists naturally as H2(g), so  is zero for H2(g). Carbon is a solid, so the value of 

 is zero for C(s). The zero values for elements in the naturally occurring state are often
omitted in the tables in reference books. Enthalpies of formation are tabulated for many compounds in
Appendix E at 298.15 K and 1 bar.

The state of aggregation must be specified in the reaction and care should be used to obtain the
correct value from the tables. Some molecules, like water, commonly exist as vapor (g), or liquid (l).
Note that for water, the difference between  and  is nearly the heat of vaporization
at 298.15 K that can be obtained from the steam tables except that a minor pressure correction has
been applied to correct the values from the vapor pressure to 1 bar.

The full form of the integral of Eqn. 3.44 is tedious to calculate manually, e.g., if CP, i = ai + bi T +
ci T2 + di T3, Eqn. 3.44 becomes

where , and heat capacity constants b, c, and d are handled analogously. The value of
the constant J is found by using a known numerical value of ∆HR

o in the upper equation (e.g.,
298.15K) and setting the temperature to TR.

Energy Balances for Reactions
To calculate heat transfer to or from a reactor system, the energy balance used in earlier chapters

requires further consideration. To simplify the derivation of the energy balance for reactive systems,
consider a single inlet stream and single outlet stream flowing at steady state:

For either the inlet stream or the outlet stream, the total enthalpy can be calculated by summing the
enthalpy of the components plus the enthalpy of mixing at the stream temperature and pressure. To
properly use Eqn. 3.47, the enthalpies of the inlets and outlets need to be related to the reaction. Two
methods are used for energy balances, and both are equally valid. An overview of the concept
pathways is illustrated in Fig. 3.5. To make a thermodynamic connection with the reaction, the Heat
of Reaction method replaces the first two terms in Eqn. 3.47 with the negative sum of the three steps
shown by dashed lines in Fig. 3.5(a). In contrast, the Heat of Formation method uses an elemental
reference state for every component, and the enthalpies of each component include the heat of



formation as illustrated by each branch of Fig 3.5(b). The difference of enthalpies of the components
then includes the generalized steps of Fig. 3.4, and the heat of reaction is included implicitly when
taking the difference in the two branches of Eqn. 3.5(b). The difference in the two branches represents
the first two terms of Eqn. 3.47. The Heat of Reaction method is usually easiest for students to grasp,
because of the explicit term for the heat of reaction. An advantage of the method is that an
experimental heat of reaction can be readily used. Most process simulators use the Heat of Formation
method. If you think about it, the Heat of Formation method does not require specification of exactly
what reactions occur. Based on Hess’s law, the overall results can be related to the differences in the
heats of formation of the outlet and the inlet species. The notation and the manipulated energy
balances for the two methods look different, and the choice of the method depends on data available.
The numerical results are the same if the thermochemical data are reliable for each method.
Differences will be due to accuracies in the properties used for the pathways.

Figure 3.5. Concept pathways for (a) the Heat of Reaction method and (b) the Heat of
Formation method. Details for the steps are omitted as discussed in the text.

Either method requires manipulation of stream enthalpies relative to the reference conditions.
When discussing reference states in Section 2.11, convenient pathways were used. The reaction
balance calculations require that the inlets and outlets be related to the standard state TR and Po using
similar techniques, and often phase changes are necessary. Following our convention of hierarchical
learning, we will use a simplified balance that ignores some of these terms (which are frequently
small corrections anyway relative to the heat of reaction). In later chapters, we introduce methods to
calculate them. By comparing the magnitude of terms for a particular application, you will then be
able to evaluate their relative importance. Choices can be made for the route to calculate a stream
enthalpy. One choice is to mix all the components at an ideal gas state and then correct for non-
idealities of the mixture. Another route is to correct for non-ideal gas behavior of individual
components, and then mix them together at the system T and P. For a system without phase transitions
between TR and T, when calculating the mixing process after the pressure correction, the stream
enthalpy relative to species at the standard state looks like this,



 Enthalpy of a mixed stream where there are no phase changes between TR and T.

where  is the enthalpy of the species at the reference state, the pressure dependence of the
enthalpy and the heat of mixing have been assumed to be small relative to the heat of reaction. Details
on the pressure effects are developed in Chapters 6–8 and are expressed as an enthalpy departure;
they are usually small relative to heats of reaction for gases. When the standard state is an ideal gas
and liquid streams are involved, the correction is very important and –∆Hvap must be included in the
path. The principle extends to solids as well. Heats of mixing are introduced beginning in Sections
11.4 and 11.10 and are typically small relative to reaction heats unless dissolving/neutralizing
acids/bases or dissolving salts. Example 3.6 provides calculations including heats of vaporization for
the components.

Heat of Reaction Method
It might not be immediately obvious that Eqn. 3.47 includes the heat of reaction. Considering just

the flow terms of the energy balance, by plugging Eqn. 3.48 into Eqn. 3.47 the flow terms become

where the inlet temperature of all reactants is the same. The first term on the right of Eqn. 3.49 can
be related to the heat of reaction using Eqn. 3.41 to introduce ξ and Eqn. 3.45 to insert the heat of
reaction:

Therefore, the steady-state energy balance can be calculated using Eqn 3.51 and the balance is
known as the Heat of Reaction method:

If you consider the first two terms and the last term, you can see how they represent the negative of
the sum of the steps in Fig. 3.5(a). When multiple reactions occur, a reaction term can be used for
each reaction. To use this expression correctly, the enthalpies of the inlet and outlet streams must



be calculated relative to the same reference temperature where  is known and any phase
transitions at temperatures between the reference state and the inlet or outlet states must be included
in . Also, the variable  must be determined for the same basis as the molar flows. The
temperature of 298.15 K is almost always the reference temperature for balances involving chemical
reactions. There is less flexibility in choosing the reference temperature than for non-reactive
systems. This method is easiest to apply with one or two reactions where the stoichiometry is known.

 An online supplement is available to relate the notation here to other common
textbooks and includes other details.

Heat of Formation Method
The Heat of Formation method requires a reference state relative to the elements, and Eqn. 3.48 is

modified by adding the heat of formation for each species. The stream enthalpy when there are no
phase transitions between the reference state and the stream state looks like this:

 Enthalpy of a mixed stream where there are no phase changes between TR and T using
the Heat of Formation method.

When phase changes are involved, the steps along the pathway are included as illustrated by
several examples in Fig. Fig. 2.6 on page 65.

The energy balance is unmodified from Eqn. 3.47. The heat of reaction and the reaction coordinate
are not needed explicitly, but the reaction coordinate is often helpful in determining the molar flows
for the energy balance.

Work Effects
Usually shaft work and expansion/contraction work are negligible relative to other terms in the

energy balance of a reactive system. They may usually be neglected without significant error.

Example 3.6. Reactor energy balances
Acetone (A) is reacted in the liquid phase over a heterogeneous acid catalyst to form mesityl oxide

(MO) and water (W) at 80°C and 0.25 MPa. The reaction is 2A  MO + W. Conversion is to be 80%.
The heat capacity of mesityl oxide has been estimated to be CP

L (J/mol-K) = 131.16 + 0.2710T(K),
CP

V (J/mol-K) = 72.429 + 0.2645T(K), and the acentric factor is estimated to be 0.356. Other
properties can be obtained from Appendix E or webbook.nist.gov. Ignore pressure corrections and
assume ideal solutions.

http://webbook.nist.gov


a. Estimate the heat duty for a steady-state reaction with liquid feed (100 mol/h) and liquid
products. Use the Heat of Reaction method calculated using liquid heats of formation.
b. Estimate the heat duty for the same conditions as (a), but use the Heat of Formation
method incorporating heats of formation of ideal gases and Eqn 2.45 to estimate heat of
vaporization. (This method is used by process simulators.)
c. Repeat part (b) with the modification of using the experimental heat of vaporization.
d. Estimate the heat duty for the same conditions as (a), but use the Heat of Formation
method incorporating the heat of formation of liquids.

Solution

a. For MO and A, , –249.4 kJ/mol respectively, from NIST. The liquid
phase standard state heat of reaction is –221 – 285.8 – 2(–249.4) = –8 kJ/mol. Using a
reference state of the liquid species at 298.15 K and 1 bar, the enthalpy of the each

component is given by ; the results are {A, 7.265 kJ/mol}, {MO, 12.068}, {W,
4.161}. The mass balance for 100 mol/h A feed and 80% conversion gives an outlet of
100(1 – 0.8) = 20 mol/h A, then, .

The energy balance is , or 

b. The value of  is the same. The path to calculate the component liquid enthalpies
using the heat of formation for ideal gases is: form ideal gas at 298.15K → heat ideal gas to
353.15K → condense ideal gas at 353.15K (using Eqn. 2.45). For MO 

, from NIST. The enthalpies of each component will be tabulated
for each of the three steps: (A) –215.7 + 4.320 – 27.71 = –239.1 kJ/mol; (MO) –178.3 +
8.72 – 39.0 = –208.6 kJ/mol; (W) –241.8 + 1.86 – 42.7 = –282.6 kJ/mol. The energy
balance is

In principle, this method should have given the same result as (a), but the value
differs significantly. The method is sensitive to the accuracy of the prediction for the
heat of vaporization. When this method is used, the accuracy of the heat of
vaporization needs to be carefully evaluated.

c. To evaluate the effect of the prediction of the heat of vaporization, let us repeat with a
modified path through the normal boiling point of the species, using the experimental heat of
vaporization. The normal boiling point of MO from NIST is 403 K, and ∆Hvap = 42.7
kJ/mol. The component enthalpy path is modified to: form ideal gas at 298.15 K → heat



ideal gas to Tb → condense to liquid at Tb → change liquid to 353.15 K. The enthalpies of
each step and totals are: (A) –215.7 + 2.4 –30.2 + 3.3 = –240.2 kJ/mol; (MO) –178.3 +
17.3 – 42.7 – 11.6 = –215.3 kJ/mol; (W) –241.9 + 2.5 – 40.7 – 1.5 = –281.6 kJ/mol. The
energy balance is

Parts (b) - (c) result in different heat transfer compared to (a). Note the difference
in the heat of formation of vapor and liquid MO at 25°C matches the heat of
vaporization at the normal boiling point and the difference would be expected to be
larger. The original references for the thermochemical data should be consulted to
decide which is most reliable.

d. This modification will not require heats of vaporization. The component enthalpy path is:
form liquid at 298.15 K and heat liquid to 353.15 K. The sensible heat calculations are the
same as tabulated in part (a). The enthalpies for the two steps and sum for each component
are:

(A) –249.4 + 7.265 = –242.1 kJ/mol; (MO) –221 + 12.068 = –208.9; (W) –285.8 + 4.2 = –281.6.
The energy balance becomes:

Comparing with (a), the Heat of Formation method and the Heat of Reaction method give the same
results when the same properties are used.

Adiabatic Reactors

Suppose that a reactor is adiabatic . For the Heat of Reaction method, the energy balance
becomes (for a reaction without phase transformations between TR and the inlets or outlets),

and as before, any latent heats must be added to the flow terms. An exothermic heat of reaction will
raise the outlet temperature above the inlet temperature. For an endothermic heat of reaction, the
outlet temperature will be below the inlet temperature. At steady state, the system finds a temperature
where the heat of reaction is just absorbed by the enthalpies of the process streams. This temperature
is known as the adiabatic reaction temperature, and the maximum reactor temperature change is
dependent on the kinetics and reaction time, or on equilibrium. For fixed quantities and temperature of
feed, Eqn. 3.53 involves two unknowns, Tout and , and, if the reaction is not limited by equilibrium,
the kinetic model and reaction time determine these variables. If a reaction time is sufficiently large,
equilibrium may be approached. Equilibrium reactors will be considered in Chapter 17.

Graphical Visualization of the Energy Balance
The energy balance as presented by Method I (Eqn. 3.51) can be easily plotted for an adiabatic

reaction. Let us replace the heat capacity polynomials with average heat capacities that are
temperature independent. If we incorporate the material balance, Eqn. 3.41, the Heat of Reaction
steady-state energy balance after rearranging becomes



where  and c is frequently small. Neglecting c and dropping
heat for an adiabatic reactor,

Consider the case of an exothermic reaction. A schematic of the energy balance is shown in Fig.
3.6 for an exothermic reaction. In the plot, we have neglected  in the denominator which is often
small relative to the summation and introduces a slight curvature if included. Note that an endothermic
reaction will have an energy balance with a negative slope, making the plot for an endothermic
reaction a mirror image of Fig. 3.6 reflected across a vertical line at Tin.

Figure 3.6. Approximate energy balance for an adiabatic exothermic reaction. The dot
represents the outlet reaction coordinate value and the adiabatic outlet temperature. The plot

for an endothermic reaction will be a mirror image of this figure as explained in the text.

3.7. Reactions in Biological Systems
Living systems constantly metabolize food. In a sophisticated system such as a human, the digestive

system breaks down the carbohydrates (sugars and starches), protein (complex amino acids), and fats
(glycerol esters of fatty acids) into the building block molecules. There are exothermic reactions as
the chemical structure of the food is modified by breaking bonds. The small molecules that result can
be transported through the body as sugars, amino acids, and fatty acids. The body transforms these
basic molecules to create energy to constantly replace cells and also to provide the energy needed for
physical activity. The process more closely resembles fuel cell operation than a Carnot cycle, but the
concepts of the energy balance still apply.

A major reaction providing energy in the human body is the oxidation of sugars and starches. These
compounds are known to provide “quick energy” because they are easily burned. As an example,
consider the oxidation of glucose to CO2 and H2O. Oxygen taken in through the lungs is carried to the
cells where the reaction takes place. CO2 produced by the reaction is transported back to the lungs
where it can be expelled. Water produced by the reaction largely is left as liquid, though respiration
results in some transport. Although the actual process involves several intermediate steps, we know
by Hess’s law that the overall energy and enthalpy change depends on only the initial and final



structures, not the intermediate paths. The process for oxidation of glucose is

Like other combustion reactions, this reaction is exothermic. When intense physical activity occurs,
the body is not able to use oxidation quickly enough to produce energy. In this case the body can
convert glucose (or other sugars and starches) anaerobically to lactic acid as follows:

This is also an exothermic reaction, and there is no gas produced. This mechanism is used by
muscles to provide energy and a build-up of lactic acid causes the muscular aching during and after
vigorous exercise. Fats have higher energy content per mass and may be oxidized in a reaction
analogous to Eqn. 3.56. Fat is used by the body to store energy. To burn fat, the body usually needs to
be starved of the more easily metabolized starches and sugars.

The nervous system regulates body temperature so that when energy is burned, there is little change
in body temperature. Some energy is transported out via respiration, some through evaporation of
moisture through the skin, and some by heat transfer at the skin surface. Blood vessels in extremities
are flexible and change size to regulate the blood flow, which is used to modify the flow rates. On a
cold winter day, when our hands start to feel cold, our body is sensing a need to preserve body heat,
so the vessels contract to decrease blood flow, making our hands feel even colder! During exercise,
the vessels expand to increase cooling, and perspiration starts to provide evaporative cooling. In any
event, our core temperature is maintained at 37°C as much as possible. When the body temperature
drops the condition is called hypothermia. When the body is unable to eliminate heat, the condition is
called hyperthermia and results in heat exhaustion and heat stroke. Usually, the body is able to
regulate temperature, and the temperature is stable, so the body does not hold or loose energy by
temperature changes. In an adult, the mass is also constant except for the daily cycles of eating and
excretion that are very small perturbations of the total body mass.

The body adjusts the metabolic rate as the level of physical activity changes. Data collected by
performing energy balances on humans after 12 hours of fasting eliminate the heat effects due to
digestion (about 30% higher) and provide an accurate measure of the metabolic rates. Examples of
energy consumption are tabulated in Table 3.1.

Table 3.1. Summary of Energy Expenditure by Various Physical Activities for a 70 kg Persona



a. Vander, A.J., Serman, J.J., Luciano, D.S., 1985. Human Physiology: The Mechanisms of Body Function, 4th ed., ch.
15, New York: McGraw-Hill.

3.8. Summary
This chapter started by introducing the concept of heat engines and heat pumps to interconverted

heat and work, and the limitations in efficiency. As a cyclic process, the systems are simple, but
practice builds confidence in working with multistep processes. In the distillation section we
introduced quite a few terms because there are a lot of flow rates in the sections of a distillation
column. This section provided practice in working with choice of boundaries for balances and
working with many streams. Sorting out the streams that are relevant is a key step in the solution of
problems. We introduced ideal gas mixtures and ideal solutions, stressing that the energy of mixing
and volume of mixing are zero for both and so the enthalpy of a stream is the sum of the enthalpies of
the constituents. We then used reference states to solve an energy balance on a mixed stream including
a phase transition. In the section on reacting systems we set forth the procedures to properly account
for energy flows in and out of the system. Finally we demonstrated that the energy balance was
relevant for complex biochemical reactions. The energy balance for a reaction is independent of
whether it occurs biologically or in an industrial reactor. The goal of this section was to demonstrate
the breadth of applications and to build your confidence in solving problems. At this point most
students still do not have a grasp on reversibility and irreversibility, which should be clarified in the
next chapter as we build on this material.

Important Equations
Two equations that come up repeatedly are the Carnot efficiency (Eqn. 3.6) and Carnot COP (Eqn.

3.9). The Carnot efficiency teaches that the conversion of heat energy into mechanical energy cannot
be 100% efficient, even if every operation in the process is 100% efficient. This has major
implications throughout modern society, reflected in limitations on power plants and energy
management. Much of Units I and II is devoted to understanding the details of these kinds of problems
and how to solve them more precisely. The Carnot thermal efficiency and COP are benchmarks for
real processes, though real processes are not always operating between reservoirs. Common errors
applying the formulas are: (1) to interchange the formulas and use the COP formula when you want
the efficiency; and (2) to use relative temperature (°C or °F) instead of absolute temperature.

This chapter introduced the concept of ideal solutions and methods of solving energy balances with
mixtures, including phase transitions. Important equations are

We also introduced the concept of the reaction coordinate and that all species in a single reaction
can be related by

We finished with the energy balance, which is most often expressed in the approximate form for the
Heat of Reaction method:



If the enthalpy of formation is incorporated into the enthalpy of the components, the Heat of
Formation method looks unchanged from the energy balance of Chapter 2:

3.9. Practice Problems
P3.1. Dimethyl ether (DME) synthesis provides a simple prototype of many petrochemical
processes. Ten tonnes (10,000 kg) per hour of methanol are fed at 25°C. The entire process
operates at roughly 10 bar. It is 50% converted to DME and water at 250°C. The reactor effluent
is cooled to 75°C and sent to a distillation column where 99% of the entering DME exits the top
with 1% of the entering methanol and no water. This DME product stream is cooled to 45°C.
The bottoms of the first column are sent to a second column where 99% of the entering methanol
exits the top at 136°C, along with all the DME and 1% of the entering water, and is recycled.
The bottoms of the second column exit at 179°C and are sent for wastewater treatment. Use the
method of Example 3.6(b) to complete the following:

a. Calculate the enthalpy in GJ/h of the feed stream of methanol.
b. Calculate the enthalpy in GJ/h of the stream entering the first distillation
column.
c. Calculate the enthalpy in GJ/h of the DME product stream.
d. Calculate the enthalpy in GJ/h of the methanol recycle stream.
e. Calculate the enthalpy in GJ/h of the aqueous product stream.
f. Calculate the energy balance in GJ/h of the entire process. Does the process
involve a net energy need or surplus?

(ANS. -50, -106, -26, -51, -31, -7, i.e., energy surplus)

3.10. Homework Problems
3.1. Two moles of nitrogen are initially at 10 bar and 600 K (state 1) in a horizontal
piston/cylinder device. They are expanded adiabatically to 1 bar (state 2). They are then
heated at constant volume to 600 K (state 3). Finally, they are isothermally returned to state
1. Assume that N2 is an ideal gas with a constant heat capacity as given on the back flap of
the book. Neglect the heat capacity of the piston/cylinder device. Suppose that heat can be
supplied or rejected as illustrated below. Assume each step of the process is reversible.

a. Calculate the heat transfer and work done on the gas for each step and overall.
b. Taking state 1 as the reference state, and setting , calculate U and H for



the nitrogen at each state, and ∆U and ∆H for each step and the overall Q and
WEC.

c. The atmosphere is at 1 bar and 298 K throughout the process. Calculate the
work done on the atmosphere for each step and overall. (Hint: Take the
atmosphere as the system.) How much work is transferred to the shaft in each
step and overall?

3.2. One mole of methane gas held within a piston/cylinder, at an initial condition of 600 K
and 5 MPa, undergoes the following reversible steps. Use a temperature-independent heat
capacity of CP = 44 J/mol-K.

a. Step 1: The gas is expanded isothermally to 0.2 MPa, absorbing a quantity of
heat QH1. Step 2: The gas is cooled at constant volume to 300 K. Step 3. The gas
is compressed isothermally to the initial volume. Step 4: The gas is heated to the
initial state at constant volume requiring heat transfer QH2. Calculate ∆U, Q, and
WEC for each step and for the cycle. Also calculate the thermal efficiency that is

the ratio of total work obtained to heat furnished, .
b. Step 1: The gas is expanded to 3.92 MPa isothermally, absorbing a quantity of
heat QH1. Step 2: The gas is expanded adiabatically to 0.1 MPa. Step 3: The gas
is compressed isothermally to 0.128 MPa. Step 4: The gas is compressed
adiabatically to the initial state. Calculate ∆U, Q, WEC for each step and for the

cycle. Also calculate the thermal efficiency for the cycle, .
3.3. The Arrhenius model of global warming constitutes a very large composite system.3 It
assumes that a layer of gases in the atmosphere (A) absorbs infrared radiation from the
Earth’s surface and re-emits it, with equal amounts going off into space or back to the
Earth’s surface; 240 W/m2 of the solar energy reaching the Earth’s surface is reflected back
as infrared radiation (S). The “emissivity value” (λ) of the ground (G) is set equal to that of
A. λ characterizes the fraction of radiation that is not absorbed. For example, (1–λ) would
be the fraction of IR radiation that is absorbed by the ground, and the surface energy would
be S = Aλ + G(1–λ). A similar balance for the atmosphere gives, λG = 2λA. This balance
indicates that radiation received from G is balanced by that radiated from A. The factor of 2
on the right-hand side appears because radiation can be toward the ground or toward space.
The equations for radiation are given by the relations: G = σTG

4 and A = σTA
4 where σ =

Stefan-Boltzmann constant 5.6704 x 10-8 (W/m2-K4).
a. Noting that the average TG is 300 K, solve for λ.

b. Solve for TG when λ = 0. This corresponds to zero global warming.

c. Solve for TG when λ = 1. This corresponds to perfect global warming.

d. List at least three oversimplifications in the assumptions of this model. Discuss
whether these lead to underestimating or overestimating TG.



3.4. A distillation column with a total condenser is shown in Fig. 3.3. The system to be
studied in this problem has an average enthalpy of vaporization of 32 kJ/mol, an average 
of 146 J/mol°-C, and an average  of 93 J/mol°-C. Variable names for the various stream
flow rates and the heat flow rates are given in the diagram. The feed can be liquid, vapor,
or a mixture represented using subscripts to indicate the vapor and liquid flows, F = FV +
FL. The enthalpy flow due to feed can be represented as: for saturated liquid, FLHsatL; for
saturated vapor, FVHsatV; for subcooled liquid, FLHsatL + FLCP

L(TF – TsatL); for
superheated vapor, FVHsatV + FVCP

V(TF – TsatV); and for a mix of vapor and liquid, FLHsatL

+ FVHsatV.

a. Use a mass balance to show FV + VS – VR = LS – LR – FL.
[For parts (b)–(f), use the feed section mass and energy balances to show

the desired result.]
b. For saturated vapor feed, FL = 0. Show VR = VS + FV, LS = LR.

c. For saturated liquid feed, FV = 0. Show VS = VR, LS = LR + FL.

d. For subcooled liquid feed, FV = 0. Show VR – VS = FLCP(TF – Tsat)/∆Hvap.

e. For superheated vapor feed, FL = 0. Show LS – LR = –FVCP(TF – Tsat)/∆Hvap.

f. For a feed mixture of saturated liquid and saturated vapor. Show VR = VS + FV,
LS = LR + FL.

g. Use the mass and energy balances around the total condenser to relate the
condenser duty to the enthalpy of vaporization, for the case of streams LR and D
being saturated liquid.
h. Use the mass and energy balances around the reboiler to relate the reboiler
duty to the enthalpy of vaporization.
i. In the case of subcooled liquid streams LR and D, the vapor flows out of the top
of the column, and more variables are required.  (into the condenser) will be
smaller than the rectifying section flow rate VR. Also, the liquid flow rate in the
rectifying section, LR, will be larger than the reflux back to the column, . Using
the variables ,  to represent the flow rate out of the top of the column and the
reflux, respectively, relate VR to ,  and the degree of subcooling TL′, – TsatL.
[For parts (j)–(o), find all other flow rates and heat exchanger duties (Q values).]
j. F = 100 mol/hr (saturated vapor), B = 43, LR/D = 2.23.

k. F = 100 mol/hr (saturated vapor), D = 48, LS/VS = 2.5.

l. F = 100 mol/hr (saturated liquid), D = 53, LR/D = 2.5.

m. F = 100 mol/hr (half vapor, half liquid), B = 45, LS/VS = 1.5.

n. F = 100 mol/hr (60°C subcooled liquid), D = 53, LR/D = 2.5.



o. F = 100 mol/hr (60°C superheated vapor), D = 48, LS/VS = 1.5.

3.5. Allyl chloride (AC) synthesis provides a simple prototype of many petrochemical
processes. 869 kg per hour of propylene (C3) are fed with a 1% excess of chlorine (Cl2) at
25°C. The entire process operates at roughly 10 bar. Cl2 is recycled to achieve a 50%
excess of Cl2 at the reactor inlet. The reactor conversion is 100% of the propylene to AC
and hydrochloric acid (HCl) at 511°C.

The reactor effluent is cooled to 35°C and sent to a distillation column where 98%
of the entering AC exits the bottom with 1% of the entering Cl2 and no HCl. This AC
product stream exits at 57°C. The tops of the first column are sent to a second column
where 99% of the entering Cl2 exits the bottom at 36°C, along with 1% of the entering
HCl, all of the AC, and is recycled. The tops of the second column exit at -31°C and
are sent for waste treatment. Using the method of Heat of Formation method for the
energy balance and ideal gas reference states with Eqn. 2.45 to estimate the heat of
vaporization, complete the following.

a. Write a balanced stoichiometric equation for this reaction. (Hint: Check the
NIST WebBook for chemical names and formulas.)
b. Perform a material balance to determine compositions and flow rates for all
streams.
c. Using only streams (1), (6), (7), calculate the energy balance in MJ/h of the
entire process. Does the process involve a net energy need or surplus?
d. Determine the heat load on the reactor in MJ/h.
e. Calculate the enthalpies in MJ/h of the feed stream 1.
f. Calculate the enthalpy in MJ/h of the stream 4 entering the first distillation
column.
g. Calculate the enthalpy in MJ/h of the AC product stream 6.
h. Calculate the enthalpy in MJ/h of the Cl2 recycle stream 8.
i. Calculate the enthalpy in MJ/h of the HCl waste stream 7.

3.6. Chlorobenzene(l) is produced by reacting benzene(l) initially at 30°C with Cl2(g)
initially at 30°C in a batch reactor using AlCl3 as a catalyst. HCl(g) is a by-product. During
the course of the reaction, the temperature increases to 50°C. To avoid dichlorobenzenes,
conversion of benzene is limited to 30%. On the basis of 1 mol of benzene, and 0.5 mol
Cl2(g) feed, what heating or cooling is required using the specified method(s)? The NIST
WebBook reports the heats of formation for liquid benzene and chlorobenzene at 25°C as
49 kJ/mol and 11.5 kJ/mol, respectively. The heat capacities of liquid benzene and



chlorobenzene are 136 J/mol-K and 150 J/mol-K, respectively.
a. Use liquid reference states for the benzenes and the heat of reaction method for
the energy balance.
b. Follow part (a), but instead, use the heat of formation method for the energy
balance.
c. Use an ideal gas-phase reference state for the benzenes, Eqn. 2.45 to estimate
the heat of vaporization, and the Heat of Reaction method.

3.7. Benzene and benzyl chloride produced from the reaction described in problem 3.6 are
separated by distillation at 1 bar. The chlorine and HCl are removed easily and this
problem concerns only a binary mixture. Suppose the liquid flow to the reboiler is 90
mol% chlorobenzene and 10 mol% benzene at 121.9°C. The boilup ratio is 0.7 at 127.8°C,
and the vapor leaving the reboiler is 12.7 mol% benzene. The heat of vaporization of
chlorobenzene is 41 kJ/mol. Heat capacities for liquids are in problem 3.6(a). Determine
the heat duty for the reboiler.
3.8. In the process of reactive distillation, a reaction occurs in a distillation column
simultaneously with distillation, offering process intensification. Consider a reactive
distillation including the reaction: cyclohexene(l) + acetic acid(l)  cyclohexyl acetate(l). In a
reactive distillation two feeds are used, one for each reactant. In a small-scale column, the
flows, heat capacities, and temperatures are tabulated below in mol/min. Assume the heat
capacities are temperature-independent. All streams are liquids. Use data from the NIST
WebBook for heats of formation to estimate the net heat requirement for the column.

3.9. This problem considers oxidation of glucose as a model carbohydrate.
a. In the human body glucose is typically metabolized in aqueous solution.
Ignoring the enthalpy change due to dissolving glucose in the aqueous solution,
calculate the standard heat of reaction for Eqn. 3.56.
b. Using the standard heat of reaction calculated in part (a) together with the
steady-state energy expenditure for sitting at rest, determine the rate that glucose
is consumed (g/day). You may ignore sensible heats because the respiration
streams are very close to 298.15 K.
c. Compare the energy consumption in part (b) with a light bulb by putting the
energy consumption in terms of W, which is usually used to characterize light
bulbs. How many 70 kg humans collectively produce energy equivalent to a 1500
W hair dryer?
d. On a mass basis, all carbohydrates have about the same heat of reaction. A soft
drink has approximately 73 g carbohydrates (sugar) per 20 fluid oz. bottle and the



manufacturer’s label reports that the contents provide 275 kcal. (Note: A dietary
calorie is a thermodynamic kcal, so the conversion has already been made, and
the bottle is labeled 275 calories.) Convert the answer from part (a) to kcal/g and
compare with the manufacturer’s ratio.
e. What is the annual output of CO2 (kg) for a 70 kg human using the energy
expenditure for sitting as an average value?

3.10. Compressed air at room temperature (295 K) is contained in a 20-L tank at 2 bar. The
valve is opened and the tank pressure falls slowly and isothermally to 1.5 bar. The frictionless
piston-cylinder is isothermal and isobaric (P = 1.5 bar) during the movement. The surroundings
are at 1 bar. The volumes of the piping and valve are negligible. During the expansion, the piston
is pushing on external equipment and doing useful work such that the total resistance to the
expansion is equivalent to 1.5 bar. The entire system is then cooled until all of the air is back in
the original container. During the retraction of the piston, the piston must pull on the equipment,
and the resistance of the external equipment is equivalent to 0.1 bar, so the total force on the
piston is less than 1 bar, 1.0 – 0.1 = 0.9 bar. The valve is closed and the tank is heated back to
room temperature. (Air can be considered an ideal gas with a T-independent CP = 29 J/mol-K.)

a. The useful work done by the process is the total work done by the piston in the
expansion step less the amount of work done on the atmosphere. Calculate the
useful work done per expansion stroke in kJ.
b. Calculate the amount of heat needed during the expansion in kJ. Neglect the
heat capacity of the tank and cylinder.
c. Calculate the amount of cooling needed during the retraction of the cylinder in
kJ.

3.11. A well-insulated tank contains 1 mole of air at 2 MPa and 673 K. It is connected via a
closed valve to an insulated piston/cylinder device that is initially empty. The piston may be
assumed to be frictionless. The volumes of the piping and valve are negligible. The weight of the
piston and atmospheric pressure are such that the total downward force can be balanced with
gas pressure in the cylinder of 0.7 MPa. The valve between the tank and piston/cylinder is
cracked open until the pressure is uniform throughout. The temperature in the tank is found to be
499.6 K. Air can be assumed to be an ideal gas with a temperature-independent heat capacity CP
= 29.3 J/mol-K.

a. What is the number of moles left in the tank at the end of the process?
b. Write and simplify the energy balance for the process. Determine the final
temperature of the piston/cylinder gas.



3.12. A piston/cylinder has two chambers and includes a spring as illustrated below. The right-
hand side contains air at 20°C and 0.2 MPa. The spring exerts a force to the right of F = 5500x
N where x is the distance indicated in the diagram, and xi = 0.3 m. The piston has a cross-
sectional area of 0.1 m2. Assume that the piston/cylinder materials do not conduct heat, and that
the piston/cylinder and spring do not change temperature. After oscillations cease, what is the
temperature of the air in the right chamber and the final position of the piston, xf, for the cases
listed below? Use a temperature-independent heat capacity for air, CP = 7R/2.

a. The left chamber is evacuated and the plug remains in place.
b. The plug is removed so that the left-side pressure stays at 0.1 MPa throughout
the process.

3.13. We wish to determine the final state for the gas in an inflated balloon. Initially, the balloon
has a volume of Vi at rest. The volume of the balloon is related to the internal pressure by V =
a·P + b, where a and b are constants. The balloon is to be inflated by air from our lungs at Plung
and Tlung which are known and assumed to remain constant during inflation. Heat transfer
through the walls of the balloon can be ignored. The system is defined to be the gas inside the
balloon at any time. Starting with the general energy balance, simplify to write the balance in
terms of {CP, CV, Tlung, Plung, Ti, Tf, TR, PR} and either {Vi, Vf} or {Pi, Pf}. This will
demonstrate that measurement of Vf or Pf is sufficient to determine Tf. Assume air is an ideal
gas.



Chapter 4. Entropy

S = k ln W
L. Boltzmann

We have discussed energy balances and the fact that friction and velocity gradients cause the loss
of useful work. It would be desirable to determine maximum work output (or minimum work input)
for a given process. Our concern for accomplishing useful work inevitably leads to a search for what
might cause degradation of our capacity to convert any form of energy into useful work. As an
example, isothermally expanding an ideal gas from Vi to 2Vi can produce a significant amount of
useful work if carried out reversibly, or possibly zero work if carried out irreversibly. If we could
understand the difference between these two operations, we would be well on our way to
understanding how to minimize wasted energy in many processes. Inefficiencies are addressed by the
concept of entropy.

Entropy provides a measure of the disorder of a system. As we will see, increased “disorder of the
universe” leads to reduced capability for performing useful work. This is the second law of
thermodynamics. Conceptually, it seems reasonable, but how can we define “disorder”
mathematically? That is where Boltzmann showed the way:

S = klnW
where S is the entropy, W is the number of ways of arranging the molecules given a specific set of

independent variables, like T and V; k is known as Boltzmann’s constant.
For example, there are more ways of arranging your socks around the entire room than in a drawer,

basically because the volume of the room is larger than that of the drawer. We will see that ∆S =
Nkln(V2/V1) in this situation, where N is the number of socks and Nk = nR, where n is the number of
moles, V is the volume, and R is the gas constant. In Chapter 1, we wrote Uig = 1.5NkT without
thinking much about who Boltzmann was or how his constant became so fundamental to the molecular
perspective. This connection between the molecular and macroscopic scales was Boltzmann’s major
contribution.

Chapter Objectives: You Should Be Able to...
1. Explain entropy changes in words and with numbers at the microscopic and macroscopic
levels. Typical explanations involve turbines, pumps, heat exchangers, mixers, and power
cycles.
2. Simplify the complete entropy balance to its most appropriate form for a given situation
and solve for the productivity of a reversible process.
3. Sketch and interpret T-S, T-V, H-S, and P-H diagrams for typical processes.
4. Use inlet and outlet conditions and efficiency to determine work associated with
turbines/compressors.
5. Determine optimum work interactions for reversible processes as benchmarks for real
systems.
6. Sketch and interpret T-S, T-V, H-S, and P-H diagrams for typical processes.



4.1. The Concept of Entropy
Chapters 2 and 3 showed the importance of irreversibility when it comes to efficient energy

transformations. We noted that prospective work energy was generally dissipated into thermal energy
(stirring) when processes were conducted irreversibly. If we only had an “irreversibility meter,” we
could measure the irreversibility of a particular process and design it accordingly. Alternatively, we
could be given the efficiency of a process relative to a reversible process and infer the magnitude of
the irreversibility from that. For example, experience might show that the efficiency of a typical 1000
kW turbine is 85%. Then, characterizing the actual turbine would be simple after solving for the
reversible turbine (100% efficient).

In our initial encounters, entropy generation provides this measure of irreversibility. Upon studying
entropy further, however, we begin to appreciate its broader implications. These broader
implications are especially important in the study of multicomponent equilibrium processes, as
discussed in Chapters 8–16. In Chapters 5–7, we learn to appreciate the benefits of entropy being a
state property. Since its value is path independent, we can envision various ways of computing it,
selecting the path that is most convenient in a particular situation.

Entropy may be contemplated microscopically and macroscopically. The microscopic perspective
favors the intuitive connection between entropy and “disorder.” The macroscopic perspective favors
the empirical approach of performing systematic experiments, searching for a unifying concept like
entropy. Entropy was initially conceived macroscopically, in the context of steam engine design.
Specifically, the term “entropy” was coined by Rudolf Clausius from the Greek for transformation.1
To offer students connections with the effect of volume (for gases) and temperature, this text begins
with the microscopic perspective, contemplating the detailed meaning of “disorder” and then
demonstrating that the macroscopic definition is consistent.

 Entropy is a useful property for determining maximum/minimum work.
Rudolf Julius Emanuel Clausius (1822–1888), was a German physicist and

mathematician credited with formulating the macroscopic form of entropy to interpret the
Carnot cycle and developed the second law of thermodynamics.

To appreciate the distinction between the two perspectives on entropy, it is helpful to define the
both perspectives first. The macroscopic definition is especially convenient for solving problems
process problems, but the connection between this definition and disorder is not immediately
apparent.

Macroscopic definition—Intensive entropy is a state property of the system. For a differential
change in state of a closed simple system (no internal temperature gradients or composition gradients
and no internal rigid, adiabatic, or impermeable walls),2 the differential entropy change of the system
is equal to the heat absorbed by the system along a reversible path divided by the absolute
temperature of the system at the surface where heat is transferred.

where dS is the entropy change of the system. We will later show that this definition is consistent



with the microscopic definition.
Microscopic definition—Entropy is a measure of the molecular disorder of the system. Its value is

related to the number of microscopic states available at a particular macroscopic state. Specifically,
for a system of fixed energy and number of particles, N,

where pi is the number of microstates in the ith macrostate, k = R/NA. We define microstates and
macrostates in the next section.

The microscopic perspective is directly useful for understanding how entropy changes with volume
(for a gas), temperature, and mixing. It simply states that disorder increases when the number of
possible arrangements increases, like the socks and drawers mentioned in the introduction. Similarly,
molecules redistribute themselves when a valve is opened until the pressures have equilibrated. From
the microscopic approach, entropy is a specific mathematical relation related to the number of
possible arrangements of the molecule. Boltzmann showed that this microscopic definition is entirely
consistent with the macroscopic property inferred by Rudolf Clausius. We will demonstrate how the
approaches are equivalent.

Entropy is a difficult concept to understand, mainly because its influence on physical
situations is subtle, forcing us to rely heavily on the mathematical definition. We have
ways to try to make some physical connection with entropy, and we will discuss these to
give you every opportunity to develop a sense of how entropy changes. Ultimately, you
must reassure yourself that entropy is defined mathematically, and like enthalpy, can be
used to solve problems even though our physical connection with the property is
occasionally less than satisfying.

In Section 4.2, the microscopic definition of entropy is discussed. On the microscopic scale, S is
influenced primarily by spatial arrangements (affected by volume and mixing), and energetic
arrangements (occupation) of energy levels (affected by temperature). We clarify the meaning of the
microscopic definition by analyzing spatial distributions of molecules. To make the connection
between entropy and temperature, we outline how the principles of volumetric distributions extend to
energetic distributions. In Section 4.3, we introduce the macroscopic definition of entropy and
conclude with the second law of thermodynamics.

 The microscopic approach to entropy is discussed first, then the macroscopic
approach is discussed.

The second law is formulated mathematically as the entropy balance in Section 4.4. In this section
we demonstrate how heat can be converted into work (as in an electrical power plant). However, the
maximum thermal efficiency of the conversion of heat into work is less than 100%, as indicated by the
Carnot efficiency. The thermal efficiency can be easily derived using entropy balances. This simple
but fundamental limitation on the conversion of heat into work has a profound impact on energy
engineering. Section 4.5 is a brief section, but makes the key point that pieces of an overall process
can be reversible, even while the overall process is irreversible.



In Section 4.6 we simplify the entropy balance for common process equipment, and then use the
remaining sections to demonstrate applications of system efficiency with the entropy balance.
Overall, this chapter provides an understanding of entropy which is essential for Chapter 5 where
entropy must be used routinely for process calculations.

4.2. The Microscopic View of Entropy
Probability theory is nothing but common sense reduced to calculation.

LaPlace

To begin, we must recognize that the disorder of a system can change in two ways. First, disorder
occurs due to the physical arrangement (distribution) of atoms, and we represent this with the
configurational entropy.3 There is also a distribution of kinetic energies of the particles, and we
represent this with the thermal entropy. For an example of kinetic energy distributions, consider that
a system of two particles, one with a kinetic energy of 3 units and the other of 1 unit, is
microscopically distinct from the same system when they both have 2 units of kinetic energy, even
when the configurational arrangement of atoms is the same. This second type of entropy is more
difficult to implement on the microscopic scale, so we focus on the configurational entropy in this
section.4

 Configurational entropy is associated with spatial distribution. Thermal entropy is
associated with kinetic energy distribution.

Entropy and Spatial Distributions: Configurational Entropy
Given N molecules and M boxes, how can these molecules be distributed among the boxes? Is one

distribution more likely than another? Consideration of these issues will clarify what is meant by
microstates and macrostates and how entropy is related to disorder. Our consideration will focus on
the case of distributing particles between two boxes.

 Distinguishability of particles is associated with microstates. Indistinguishability is
associated with macrostates.

First, let us suppose that we distribute N = 2 ideal gas5 molecules in M = 2 boxes, and let us
suppose that the molecules are labeled so that we can identify which molecule is in a particular box.
We can distribute the labeled molecules in four ways, as shown in Fig. 4.1. These arrangements are
called microstates because the molecules are labeled. For two molecules and two boxes, there are
four possible microstates. However, a macroscopic perspective makes no distinction between which
molecule is in which box. The only macroscopic characteristic that is important is how many
particles are in a box, rather than which particle is in a certain box. For macrostates, we just need to
keep track of how many particles are in a given box, not which particles are in a given box. It might
help to think about connecting pressure gauges to the boxes. The pressure gauge could distinguish
between zero, one, and two particles in a box, but could not distinguish which particles are present.
Therefore, microstates α and δ are different macrostates because the distribution of particles is
different; however, microstates β and γ give the same macrostate. Thus, from our four microstates, we



have only three macrostates.

Figure 4.1. Illustration of configurational arrangements of two molecules in two boxes,
showing the microstates. Not that β and γ would have the same macroscopic value of pressure.

To find out which arrangement of particles is most likely, we apply the “principle of equal a priori
probabilities.” This “principle” states that all microstates of a given energy are equally likely. Since
all of the states we are considering for our non-interacting particles are at the same energy, they are
all equally likely.6 From a practical standpoint, we are interested in which macrostate is most likely.
The probability of a macrostate is found by dividing the number of microstates in the given
macrostate by the total number of microstates in all macrostates as shown in Table 4.1. For our
example, the probability of the first macrostate is 1/4 = 0.25. The probability of the evenly distributed
state is 2/4 = 0.5. That is, one-third of the macrostates possess 50% of the probability. The “most
probable distribution” is the evenly distributed case.

Table 4.1. Illustration of Macrostates for Two Particles and Two Boxes

What happens when we consider more particles? It turns out that the total number of microstates for
N particles in M boxes is MN, so the counting gets tedious. For five particles in two boxes, the
calculations are still manageable. There will be two microstates where all the particles are in one
box or the other. Let us consider the case of one particle in box A and four particles in box B. Recall
that the macrostates are identified by the number of particles in a given box, not by which particles
are in which box. Therefore, the five microstates for this macrostate appear as given in Table 4.2(a).

Table 4.2. Microstates for the Second and Third Macrostates for Five Particles Distributed in
Two Boxes



The counting of microstates for putting two particles in box A and three in box B is slightly more
tedious, and is shown in Table 4.2(b). It turns out that there are 10 microstates in this macrostate. The
distributions for (three particles in A) + (two in B) and for (four in A) + (one in B) are like the
distributions (two in A) + (three in B), and (one in A) + (four in B), respectively. These three cases
are sufficient to determine the overall probabilities. There are MN = 25 = 32 microstates total
summarized in the table below.

Note now that one-third of the macrostates (two out of six) possess 62.5% of the microstates. Thus,
the distribution is now more peaked toward the most evenly distributed states than it was for two
particles where one-third of the macrostates possessed 50% of the microstates. This is one of the
most important aspects of the microscopic approach. As the number of particles increases, it won’t be
long before 99% of the microstates are in one-third of the macrostates. The trend will continue, and
increasing the number of particles further will quickly yield 99% of the microstates in that one-tenth
of the macrostates. In the limit as N→∞ (the “thermodynamic limit”), virtually all of the microstates
are in just a few of the most evenly distributed macrostates, even though the system has a very slight
finite possibility that it can be found in a less evenly distributed state. Based on the discussion, and
considering the microscopic definition of entropy (Eqn. 4.2), entropy is maximized at equilibrium for
a system of fixed energy and total volume.7

 With a large number of particles, the most evenly distributed configurational state is
most probable, and the probability of any other state is small.

Generalized Microstate Formulas



To extend the procedure for counting microstates to large values of N (~1023), we cannot imagine
listing all the possibilities and counting them up. It would require 40 years to simply count to 109 if
we did nothing but count night and day. We must systematically analyze the probabilities as we
consider configurations and develop model equations describing the process.

How do we determine the number of microstates for a given macrostate for large N? For the first
step in the process, it is fairly obvious that there are N ways of moving one particle to box B, i.e., 1
came first, or 2 came first, and so on, which is what we did to create Table 4.2(a). However,
counting gets more complicated when we have two particles in a box. Since there are N ways of
moving the first particle to box B, and there are (N – 1) particles left, we begin with the same logic
for the (N – 1) remaining particles. For example, with five particles, there would then be five ways of
placing the first particle, then four ways of placing the second particle for a total of 20 possible ways
of putting two particles in box B. One way of writing this would be 5·4, which is equivalent to
(5·4·3·2·1)/(3·2·1), which can be generalized to N!/(N – m)!, where m is the number of particles we
have placed in the first box.8 (N! is read “N factorial,” and calculated as N·(N – 1)·(N – 2)......·2·1).
Our formula gives 20 ways, but Table 4.2(b) shows only 10 ways. What are we missing? Answer:
When we count this way, we are implicitly double counting some microstates. Note in Table 4.2(b)
that although there are two ways that we could put the first particle in box B, the order in which we
place them does not matter when we count microstates. Therefore, using N!/(N – m)! implicitly
distinguishes between the order in which particles are placed. For counting microstates, the history of
how a particular microstate was achieved does not interest us. Therefore, we say there are only 10
distinguishable microstates.

 Factorials are a quick tool for counting arrangements.

It turns out that it is fairly simple to correct for this overcounting. For two particles in a box, they
could have been placed in the order 1-2, or in the order 2-1, which gives two possibilities. For three
particles, they could have been placed 1-2-3, 1-3-2, 2-1-3, 2-3-1, 3-1-2, 3-2-1, for six possibilities.
For m particles in a box, without correction of the formula, we overcount by m!. Therefore, we
modify the above formula by dividing by m! to correct for overcounting. Finally, the number of
microstates for arranging N particles in two boxes, with m particles in one of the boxes, is:9

The general formula for M boxes is:10

 General formula for number of microstates for N particles in M boxes.



mij is the number of particles in the ith box at the jth macrostate. We will not derive this general
formula, but it is a straightforward extension of the formula for two boxes which was derived above.
Therefore, with 10 particles, and three in the first box, two in the second box and five in the third box,
we have 10!/(3!2!5!) = 3,628,800/(6·2·120) = 2520 microstates for this macrostate.

Recall the microscopic definition of entropy given by Eqn. 4.2. Let us use it to calculate the
entropy change for an ideal gas due to an isothermal change in volume. The statistics we have just
derived will apply since an ideal gas consists of non-interacting particles whose energy is
independent of their nearest neighbors. During an expansion like that described, the energy is constant
because the system is isolated. Therefore, the temperature is also constant because dU = CV dT for an
ideal gas.

Entropy and Isothermal Volume/Pressure Change for Ideal Gases
Suppose an insulated container, partitioned into two equal volumes, contains N molecules of an

ideal gas in one section and no molecules in the other. When the partition is withdrawn, the molecules
quickly distribute themselves uniformly throughout the total volume. How is the entropy affected? Let
subscript 1 denote the initial state and subscript 2 denote the final state. Here we take for granted that
the final state will be evenly distributed.

We can develop an answer by applying Eqn. 4.4, and noting that 0! = 1:

Substituting into Eqn. 4.2, and recognizing ,
∆S = S2 – S1 = kln(p2/p1) = k{ln(N!) – 2 In[(N/2)!]}

Stirling’s approximation may be used for ln(N!) when N > 100,

 Stirling’s approximation.

The approximation is a mathematical simplification, and not, in itself, related to thermodynamics.

Therefore, entropy of the system has increased by a factor of ln(2) when the volume has doubled at
constant T. Suppose the box initially with particles is three times as large as the empty box. In this
case the increase in volume will be 33%. Then what is the entropy change? The trick is to imagine
four equal size boxes, with three equally filled at the beginning.

 Entropy of a constant temperature system increases when volume increases.



A similar application of Stirling’s approximation gives,

We may generalize the result by noting the pattern with this result and the previous result,

where the subscript T indicates that this equation holds at constant T. For an isothermal ideal gas,
we also may express this in terms of pressure by substituting V = RT/P in Eqn. 4.6

 Formulas for isothermal entropy changes of an ideal gas.

Therefore, the entropy decreases when the pressure increases isothermally. Likewise, the entropy
decreases when the volume decreases isothermally. These concepts are extremely important in
developing an understanding of entropy, but by themselves, are not directly helpful in the initial
objective of this chapter—that of determining inefficiencies and maximum work. The following
example provides an introduction to how these conceptual points relate to our practical objectives.

Example 4.1. Entropy change and “lost work” in a gas expansion
An isothermal ideal gas expansion produces maximum work if carried out reversibly and less work

if friction or other losses are present. One way of generating “other losses” is if the force of the gas
on the piston is not balanced with the opposing force during the expansion, as shown in part (b)
below. Consider a piston/cylinder containing one mole of nitrogen at 5 bars and 300 K is expanded
isothermally to 1 bar.

a. Suppose that the expansion is reversible. How much work could be obtained and how
much heat is transferred? What is the entropy change of the gas?
b. Suppose the isothermal expansion is carried out irreversibly by removing a piston stop
and expanding against the atmosphere at 1 bar. Suppose that heat transfer is provided to
permit this to occur isothermally. How much work is done by the gas and how much heat is
transferred? What is the entropy change of the gas? How much work is lost compared to a
reversible isothermal process and what percent of the reversible work is obtained (the
efficiency)?

Solution
Basis: 1 mole, closed unsteady-state system.

a. The energy balance for the piston/cylinder is ∆U = Q + WEC = 0 because the gas is



isothermal and ideal. dWEC = –PdV = –(nRT/V)dV; WEC = –nRTln(V2/V1) =
–nRTln(P1/P2) = –(1)8.314(300)ln(5) = –4014J. By the energy balance Q = 4014J. The
entropy change is by Eqn. 4.7, ∆S = –nRln(P2/P1) = –(1)8.314ln(1/5) = 13.38 J/K.

b. The energy balance does not depend on whether the work is reversible and is the same.
Taking the atmosphere as the system, the work is WEC,atm = –Patm(V2,atm –V1,atm) = –WEC =
–Patm(V1–V2) = Patm(nRT/P2–nRT/P1) = nRT(Patm/P2–Patm/P1) ය WEC =
nRT(Patm/P1–Patm/P2) = (1)8.314(300)(1/5–1) = –1995J, Q = 1995J. The entropy change
depends on only the state change and this is the same as (a), 13.38 J/K. The amount of lost
work is Wlost = 4014 – 1995 = 2019J, the percent of reversible work obtained (efficiency)
is 1995/4014 · 100% = 49.7%.

An important point is suggested by Example 4.1, even though the example is limited to ideal gas
constraints. We saw that the isothermal entropy change for the gas was the same for the reversible and
irreversible changes because the gas state change was the same. Though Eqn. 4.7 is limited to ideal
gases, the relation between entropy changes and state changes is generalizable as we prove later. We
will show later that case (b) always generates more entropy.

Entropy of Mixing for Ideal Gases
Mixing is another important process to which we may apply the statistics that we have developed.

Suppose that one mole of pure oxygen vapor and three moles of pure nitrogen vapor at the same
temperature and pressure are brought into intimate contact and held in this fashion until the nitrogen
and oxygen have completely mixed. The resultant vapor is a uniform, random mixture of nitrogen and
oxygen molecules. Let us determine the entropy change associated with this mixing process, assuming
ideal-gas behavior.

Since the Ti and Pi of both ideal gases are the same, Vi
N2 = 3Vi

O2 and Vi
tot = 4Vi

O2. Ideal gas
molecules are point masses, so the presence of O2 in the N2 does not affect anything as long as the
pressure is constant. The main effect is that the O2 now has a larger volume to access and so does N2.
The component contributions of entropy change versus volume change can be simply added. Entropy
change for O2:

∆S = nO2Rln(4) = ntotR[–xO2ln(0.25)] = ntotR[–xO2ln(xO2)]

Entropy change for N2:

Entropy change for total fluid:

 Ideal entropy of mixing.



This is an important result as it gives the entropy change of mixing for non-interacting
particles. Remarkably, it is also a reasonable approximation for ideal solutions where energy
and total volume do not change on mixing. This equation provides the underpinning for much of the
discussion of mixtures and phase equilibrium in Unit III.

The entropy of a mixed ideal gas or an ideal solution, here both denoted with a superscript “is:”

Note that these equations apply to ideal gases if we substitute y for x. In this section we have
shown that a system of ideal gas molecules at equilibrium is most likely to be found in the most
randomized (distributed) configuration because this is the macrostate with the largest fraction of
microstates. In other words, the entropy of a state is maximized at equilibrium for a system of fixed
U,V, and N.

But how can temperature be related to disorder? We consider this issue in the next subsection.

Entropy and Temperature Change: Thermal Entropy
One key to understanding the connection between thermal entropy and disorder is the appreciation

that energy is quantized. Thus, there are discrete energy levels in which particles may be arranged.
These energy levels are analogous to the boxes in the spatial distribution problem. The effect of
increasing the temperature is to increase the energy of the molecules and make higher energy levels
accessible.

To see how this affects the entropy, consider a system of three molecules and three energy levels
εo, ε1 = 2εo, ε3 = 3εo. Suppose we are at a low temperature and the total energy is U = 3εo. The only
way this can be achieved is by putting all three particles in the lowest energy level. The other energy
levels are not accessible, and S = So. Now consider raising the temperature to give the system U =
4εo. One macrostate is possible (one molecule in ε1 and two in εo), but there are now three
microstates, ∆S = kln(3). Can you show when U = 6εo that the macrostate with one particle in each
level results in ∆S = kln(6)? Real systems are much larger and the molecules are more complex, but
the same qualitative behavior is exhibited: increasing T increases the accessible energy levels which
increases the microstates, increasing entropy.

We can advance our understanding of thermal effects on entropy by contemplating the Einstein
solid.11 Albert Einstein’s (1907) proposal was that a solid could be treated as a large number of
identical vibrating monatomic sites, modeling the potential energies as springs that follow Hooke’s
law. The quantum mechanical analog to the energy balance is known as Shrödinger’s equation, which
relates the momentum (kinetic energy) and potential energy. An exact solution is possible only for
equally spaced energy levels, known as quantum levels. The equally spaced quantized states for each
oscillator are separated by hf where h is Planck’s constant and f is the frequency of the oscillator.
Thus, the system is described as a system of harmonic oscillators. Assuming that each oscillator and
each dimension (x,y,z) is independent, we can develop an expression for the internal energy and the
heat capacity.

Albert Einstein (1879 – 1955) was a German-born physicist. He contributed to an



understanding of quantum behavior and the general theory of relativity. He was awarded the
1921 Nobel Prize in physics.

The Einstein solid model was one of the earliest and most convincing demonstrations of the
limitations of classical mechanics. It serves today as a simple illustration of the manner in which
quantum mechanics and statistical mechanics lead to consistent and experimentally verifiable
descriptions of thermodynamic properties. The assumptions of the Einstein solid model are as
follows:

• The total energy in a solid is the sum of M harmonic oscillator energies where M/3 is the
number of atoms because the atoms oscillate independently in three dimensions. Since the energy
of each oscillator is quantized, we can say that the total internal energy is

where εq is the (constant) energy step for each quantum level, and qM gives the total
quantum multiplier for all oscillator quantum energies added. The term Mεq/2 represents
the ground state energy that oscillators have in the lowest energy level. It is often
convenient to relate the energy to the average quantum multiplier,

• Each oscillator in each dimension is independent, so we can allocate integer multiples of εq to
any oscillator as long as the total sum of multipliers is qM. Each independent specification
represents a microstate. For M = 3 oscillators, (3,1,1) specifies three units of energy in the first
oscillator and one unit in each of the other two for a total of qM = 5, U = 5εq + 3εq/2.
• Raising the magnitude of qM (by adding heat to raise T) makes more microstates accessible,
increasing the entropy.

For qM=3 units of energy distributed in an Einstein solid with M=4 oscillators, below is the
detailed listing of the possible distributions of the energy, a total of 20 different distributions for three
units of energy among four oscillators (a “multiplicity” of 20).

If we are trying to develop a description of a real solid with Avogadro’s number of oscillators,
enumeration is clearly impractical. Fortunately, mathematical expressions for the multiplicity make
the task manageable. Callen12 gives the general formula for the number of microstates as pi =
(qMi+Mi–1)!/[qMi!(Mi–1)!]. There is a clever way to understand this formula. Instead of distributing
qMi quanta among M oscillator “boxes,” consider that there are Mi – 1 “partitions” between oscillator
“boxes.” In the table above, there are four oscillators, but there are three row boundaries. Consider
that the quanta can be redistributed by all the permutations of the particles and boundaries (qMi+Mi–



1)!. However, the permutations overcount in that the qMi are indistinguishable, so we divide by qMi!,
and that the (Mi–1) boundaries are indistinguishable, so we divide by (Mi–1)!. To apply the formula
for qM=2, M=2:

For the case with qM = 3 and M = 4, pi = (3+4–1)!/[3!(3!)] = 20, as enumerated above.

Example 4.2. Stirling’s approximation in the Einstein solid
a. Show that Callen’s formula is consistent with enumeration for:

1. qM = 3, M = 3; (2) qM = 4, M = 3

b. Use the general formula to develop an expression for S = S(qM,M) when M > 100.
Express the answer in terms of the average quantum multiplier, <qM>.

c. Plot S/Mk versus <qM>. What does this indicate about entropy changes when heat is
added?

Solution
a.
1. (3,0,0),(0,3,0),(0,0,3),(2,1,0),(2,0,1),(1,2,0),(1,0,2),(0,2,1),(0,1,2),(1,1,1) = 10. Check.
2. (4,0,0), (0,4,0), (0,0,4), (3,1,0), (3,0,1), (1,3,0), (1,0,3), (0,3,1), (0,1,3), (2,1,1), (1,2,1),
(1,1,2), (2,0,2), (2,2,0), (0,2,2) = 15. Check.
b. Si = k ln(pi) = k { ln[(qMi+Mi–1)!] – ln[qMi!(Mi–1)!] }. Applying Stirling’s
approximation,

S/k = [(qM+M–1)ln(qM+M–1)–(qM+M–1)] – qMlnqM + qM – (M–1)ln(M–1) + M–1 = S/Mk =
(qM/M)ln[(qM+M–1)/qM] + [(M–1)/M]ln[(qM+M–1)/(M–1)]

S/Mk = <qM>ln(1+1/<qM>) + ln(<qM>+1)

c. Fig. 4.2 shows that S increases with <qM> = qM/M (=U/Mεq – ½). When T increases, U
will increase, meaning that <qM> and S increase. It would be nice to relate the change in
entropy quantitatively to the change in temperature, but a complete analysis of the entire
temperature range requires advanced derivative manipulations that distracts from the main
concepts at this stage. We return to this problem in Chapter 6.



Figure 4.2. Entropy of the Einstein solid with increasing energy and T as explained in
Example 4.2.

You should notice that we represented the interactions of the monatomic sites as if they were
connected by Hooke’s law springs in the solid phase. They are not rigorously connected this way, but
the simple model approximates the behavior of two interacting molecules in a potential energy well.
If the spring analogy were exact, the potential energy well would be a parabola (thus a harmonic
oscillator). Look back at the Lennard-Jones potential in Chapter 1 and you can see that the shape is a
good approximation if the atoms do not vibrate too far from the minimum in the well. The Einstein
model gives qualitatively the right behavior, but the Debye model that followed in 1912 is more
accurate because it represents collective waves moving through the solid. We omit discussion of the
Debye model because our objectives are met with the Einstein model.13 We briefly extend the
concept of the Einstein model in Chapter 6 where we develop more powerful methods for
manipulation of derivatives.

In the present day, the subtle relations between entropy and molecular distributions are complex
but approachable. Imagine how difficult gaining this understanding must have been for Boltzmann in
1880, before the advent of quantum mechanics. Many scientists at the time refused even to accept the
existence of molecules. Trying to explain to people the nature and significance of his discoveries
must have been extremely frustrating. What we know for sure is that Boltzmann drowned himself in
1903. Try not to take your frustrations with entropy quite so seriously.

Test Yourself
1. Does molar entropy increase, decrease, or stay about the same for an ideal gas if: (a)
volume increases isothermally?; (b) pressure increases isothermally?; (c) temperature
increases isobarically?; (d) the gas at the vapor pressure condenses?; (e) two pure gas
species are mixed?
2. Does molar entropy increase, decrease, or stay about the same for a liquid if: (a)
temperature increases isobarically?; (b) pressure increases isothermally?; (c) the liquid
evaporates at the vapor pressure?; (d) two pure liquid species are mixed?

4.3. The Macroscopic View of Entropy
In the introduction to this chapter, we alluded to the relation between entropy and maximum



process efficiency. We have shown that entropy changes with volume (pressure) and temperature.
How can we use entropy to help us determine maximum work output or minimum work input? The
answer is best summarized by a series of statements. These statements refer to the entropy of the
universe. This does not mean that we imagine measuring entropy all over the universe. It simply
means that entropy may decrease in one part of a system but then it must increase at least as much in
another part of a system. In assessing the reversibility of the overall system, we must sum all changes
for each process in the overall system and its surroundings. This is the relevant part of the universe
for our purposes.

Molar or specific entropy is a state property which will assist us in the following ways.
1. Irreversible processes will result in an increase in entropy of the universe. (Irreversible
processes will result in entropy generation.) Irreversible processes result in loss of
capability for performing work.
2. Reversible processes result in no increase in entropy of the universe. (Reversible
processes result in zero entropy generation. This principle will be useful for calculation of
maximum work output or minimum work input for a process.)
3. Proposed processes which would result in a decrease of entropy of the universe are
impossible. (Impossible processes result in negative entropy generation.)

These three principles are summarized in the second law of thermodynamics: Reversible processes
and/or optimum work interactions occur without entropy generation, and irreversible processes result
in entropy generation. The microscopic descriptions in the previous section teach us very effectively
about the relation between entropy and disorder, but it is not fair to say that any increase in volume
results in a loss of potentially useful work when the entropy of the system increases. (Note that it is
the entropy change of the universe that determines irreversibility, not the entropy change of the
system.) After all, the only way of obtaining any expansion/contraction work is by a change in
volume. To understand the relation between lost work and volume change, we must appreciate the
meaning of reversibility, and what types of phenomena are associated with entropy generation. We
will explore these concepts in the next sections.

 The entropy balance is the second law of thermodynamics.

Entropy Definition (Macroscopic)
Let us define the differential change in entropy of a closed simple system by the following

equation:

For a change in states, both sides of Eqn. 4.12 may be integrated,



where the following occurs:
1. The entropy change on the left-hand side of Eqn. 4.13 is dependent only on states 1 and 2
and not dependent on reversibility. However, to calculate the entropy change via the
integral, the integral may be evaluated along any convenient reversible pathway between
the actual states.
2. Tsys is the temperature of the system boundary where heat is transferred. Only if the
system boundary temperature is constant along the pathway may this term be taken out of the
integral sign.

A change in entropy is completely characterized for a pure single-phase fluid by any other two
state variables. It may be surprising that the integral is independent of the path since Q is a path-
dependent property. The key is to understand that the right-hand side integral is independent of the
path, as long as the path is reversible. Thus, a process between two states does not need to be
reversible to permit calculation of the entropy change, since we can evaluate it along any reversible
path of choice. If the actual path is reversible, then the actual heat transfer and pathway may be used.
If the process is irreversible, then any reversible path may be constructed for the calculation.

 Entropy is a state property. For a pure single-phase fluid, specific entropy is
characterized by two state variables (e.g., T and P).

Look back at Example 4.1 and note that the entropy change for the isothermal process was
calculated by the microscopic formula. However, look at the process again from the perspective of
Eqn. 4.13 and subsequent statement 2. Because the process was isothermal, the entropy change can be
calculated ∆S = Qrev/Tsys; try it! Note that the irreversible process in that example exhibits the same
entropy change, calculated by the reversible pathway.

Now, look back at the integral of Eqn. 4.13 and consider an adiabatic, reversible process; the
process will be isentropic (constant entropy, ∆S = 0). Let us consider how the entropy can be used as
a state property to identify the final state along a reversible adiabatic process. Further, the property
does not depend on the limitations of the ideal gas law. The ideal gas law was convenient to
introduce the property. Consider the adiabatic reversible expansion of steam, a non-ideal gas. We can
read S values from the steam tables.

Example 4.3. Adiabatic, reversible expansion of steam
Steam is held at 450°C and 4.5 MPa in a piston/cylinder. The piston is adiabatically and reversibly

expanded to 2.0 MPa. What is the final temperature? How much reversible work can be done?

Solution
The T, P are known in the initial state, and the value of S can be found in the steam tables. Steam is

not an ideal gas, but by Eqn. 4.12, the process is isentropic because it is reversible and adiabatic.
From the steam tables, the entropy at the initial state is 6.877 kJ/kgK. At 2 MPa, this entropy will be
found between 300°C and 350°C. Interpolating,



The P and Sf = Si are known in the final state and these two state properties can be used to find all
the other final state properties. The work is determined by the energy balance: ∆U = Q + WEC. The
initial value of U is 3005.8 kJ/kg. For the final state, interpolating U by using Sf at Pf, U = 2773.2 +
0.572(2860.5 – 2773.2) = 2823.1 kJ/kg, so

WEC = (2823.1 – 3005.8) = –182.7 kJ/kg

Let us revisit the Carnot cycle of Section 3.1 in light of this new state property, entropy. The Carnot
cycle was developed with an ideal gas, but it is possible to prove that the cycle depends only on the
combination of two isothermal steps and two adiabatic steps, not the ideal gas as the working fluid.14

Because the process is cyclic, the final state and initial state are identical, so the overall entropy
changes of the four steps must sum to zero, ∆S = 0. Because the reversible, adiabatic steps are
isentropic, ∆S = 0, the entropy change for the two isothermal steps must sum to zero. As we discussed
above, for an isothermal step Eqn. 4.13 becomes ∆S = Qrev/T. Therefore, an analysis of the Carnot
cycle from the viewpoint of entropy is

This can be inserted into the formula for Carnot efficiency, Eqn. 3.6. Note that this relation is not
constrained to an ideal gas! In fact, there are only three constraints for this balance: The process is
cyclic; all heat is absorbed at TH; all heat is rejected at TC. Example 4.4 shows how the Carnot cycle
can be performed with steam including phase transformations.

Example 4.4. A Carnot cycle based on steam
Fig. 4.3 shows the path of a Carnot cycle operating on steam in a continuous cycle that parallel the

two isothermal steps and two adiabatic steps of Section 3.1. First, saturated liquid at 5 MPa is boiled
isothermally to saturated vapor in step (a→b). In step (b→c), steam is adiabatically and reversibly
expanded from saturated vapor at 5 MPa to 1 MPa. In (c→d), heat is isothermally removed and the
volume drops during condensation. Finally, in step (d→a), the steam is adiabatically and reversibly
compressed to 5 MPa and saturated liquid. (Hint: Challenge yourself to solve the cycle without
looking at the solution.).

Figure 4.3. A T-S diagram illustrating a Carnot cycle based on steam.

a. Compute W(a→b) and QH.

b. Compute W(b→c).
c. Compute W(d→a). (The last step in the cycle).



d. Compute W(c→d) and QC. (The third step in the cycle).

e. For the cycle, compute the thermal efficiency by ηθ = –Wnet/QH and compare to Carnot’s
efficiency, ηθ = (TH – TL)/TH.

Solution
The entropy change is zero for the expansion and compression steps because these steps are

adiabatic and reversible, as indicated by the vertical line segments in Fig. 4.3.
a. E-balance: fixed P,T vaporization, QH = ∆U – WEC = (∆U + P∆V) = ∆Hvap = 1639.57
J/kg; WEC(a→b) = P∆V = 5(0.0394 – 0.001186)*1000 = 191.1 J/kg.

b. E-balance: isentropic, WEC(b→c) = ∆U; Ub = U(sat. vap., 5MPa) = 2596.98 kJ/kg; S-
balance: ∆S = 0; Sc = Sb = 5.9737 kJ/kg-K= qc(6.5850) + (1 – qc)2.1381; qc = 0.8625; Uc
= 0.8625(2582.75) + (1 – 0.8625)761.39 = 2332.31 kJ/kg; WEC(b→c) = 2332.31 –
2596.98 = –264.67 kJ/kg.
c. This is the last step. E-balance: isentropic. WEC(d→a) = ∆U; Ud = U(sat. liq., 5MPa) =
1148.21 kJ/kg; the quality at state d is not known, but we can use the entropy at state a to
find it. S-balance: ∆S = 0; Sd = Sa = 2.9210 kJ/kg-K= qd(6.5850) + (1 – qd)2.1381; qd =
0.1761; Ud = 0.1761(2582.75) + (1 – 0.1761)761.39 = 1082.13 kJ/kg; WEC(d→a) =
1082.13 – 1148.21 = –66.08 kJ/kg.
d. This is the third step using the quality for d calculated in part (c). This is a fixed T,P
condensation. E-balance: QC = ∆U – WEC = (∆U+P∆V) = ∆H; Hd = 762.52 +
0.1761(2014.59) = 1117.29 kJ/kg; Hc= 762.52 + 0.8625(2014.59) = 2500.10 kJ/kg; QC =
Hd – Hc = –1382.21 kJ/kg WEC = P∆V; Vc = 0.001127(1 – 0.8625) + 0.8625(0.1944) =
0.1678 m3/kg = 167.8 cm3/g Vd = 0.001127(1 – 0.1761)+0.1761(0.1944) = 0.0352 m3/kg =
35.2 cm3/g W(c→d) = 1.0(35.2 – 167.8) = –132.6 MPa-cm3/g = –132.6 kJ/kg
e. ηθ = –Wnet/QH; Wnet = (264.67–66.08+191.1–132.6) = 257.1 kJ/kg; ηθ = 257.1/1639.57
= 0.157; ηθ (Carnot) = (263.94–179.88)/(263.94+273.15) = 0.157. The actual cycle
matches the Carnot formula. Note that the cyclic nature of this process means that we could
have computed more quickly by Wnet = –(QC + QH) = 1382.21 – 1639.57 = 257.4 kJ/kg.

The macroscopic view of entropy can be bewildering when first studied because students strive to
understand the physical connection. The microscopic view of entropy is helpful for some students but
a significant disconnect often persists. In either case, if you review the definitions at the beginning of
the chapter, both are mathematical, not physical. In Chapter 2 we discussed that Q was a path-
dependent property, but now we are demonstrating that dividing the quantity by T and integrating
along a path results in a quantity that is independent of the path!15 Some students find it helpful to
accept this as a mathematical relationship with the name of “entropy.” In fact, development of the
macroscopic definition of entropy was not obvious to the scientists who eventually proved it to be a
state property. The scientific literature at the time of Carnot can be confusing to read because the
realization of the state nature of the integral was not obvious, but was developed by a significant



amount of diligence and insight by the scientists of the day.

 Entropy can be used to decouple heat and work.

Note that entropy does not depend directly on the work done on a system. Therefore, it may be used
to decouple heat and work in the energy balance for reversible processes. Also for reversible
processes, entropy provides a second property that may be used to determine unknowns in a process
as we have seen in the previous two examples. In fact, the power of this property is that it can be used
to evaluate reversibility of processes, and such understanding is critical as we search sustainable
energy management practices, such as CO2 sequestration. Let us investigate some convenient
pathways for the evaluation of entropy changes before we develop examples that utilize the pathways.

Calculation of Entropy Changes in Closed Systems
As with enthalpy and internal energy, tables and charts are useful sources for entropy information

for common fluids. Note the tabulation of S in the tables of Appendix E. These tables and charts are
calculated using the definition of entropy and procedures for non-ideal fluids that we will discuss in
upcoming chapters.

For manual calculations of entropy, we develop some simple procedures here, and more rigorous
procedures in Chapter 8. Since the integral of Eqn. 4.13 must be evaluated along a reversible path, let
us consider some easy choices for paths. For a closed reversible system without shaft work, the
energy balance in Eqn. 2.16 becomes,

Inserting Eqn. 2.3,

We now consider how this equation may be substituted in the integral of Eqn. 4.13 for calculating
entropy changes in several situations.
Constant Pressure (Isobaric) Pathway

Many process calculations involve state changes at constant pressure. Recognizing H = U + PV, dH
= dU + PdV + VdP. In the case at hand, dP happens to be zero; therefore, Eqn. 4.16 becomes

Since dH = CPdT at constant pressure, along a constant-pressure pathway, substituting for dQrev
in Eqn. 4.13, the entropy change is



 Constant pressure.

Constant Volume Pathway

For a constant volume pathway, Eqn. 4.16 becomes

Since dU = CVdT along a constant volume pathway, substituting for dQrev in Eqn. 4.13, the entropy
change is

 Constant volume.

Constant Temperature (Isothermal) Pathway

The behavior of entropy at constant temperature is more difficult to generalize in the absence of
charts and tables because dQrev depends on the state of aggregation. For the ideal gas, dU = 0 = dQ –
PdV, dQ = RTdV/V, and plugging into Eqn. 4.13,

 Isothermal.

For a liquid or solid, the effect of isothermal pressure of volume change is small as a first
approximation; the precise relations for detailed calculations will be developed in Chapters 6–8.
Looking at the steam tables at constant temperature, entropy is very weakly dependent on pressure for
liquid water. This result may be generalized to other liquids below Tr = 0.75 and also to solids. For
condensed phases, to a first approximation, entropy can be assumed to be independent of pressure (or
volume) at fixed temperature.
Adiabatic Pathway

A process that is adiabatic and reversible will result in an isentropic path. By Eqn. 4.13,



 Adiabatic and reversible.

Note that a path that is adiabatic, but not reversible, will not be isentropic. This is because a
reversible adiabatic process starting at the same state 1 will not follow the same path, so it will not
end at state 2, and reversible heat transfer will be necessary to reach state 2.
Phase Transitions

In the absence of property charts or tables, entropy changes due to phase transitions can be easily
calculated. Since equilibrium phase transitions for pure substances occur at constant temperature and
pressure, for vaporization

where Tsat is the equilibrium saturation temperature. Likewise for a solid-liquid transition,

where Tm is the equilibrium melting temperature. Since either transition occurs at constant pressure
if along a reversible pathway, we may include Eqn. 4.17, giving

 Phase transitions.

Now let us examine a process from Chapter 2 that was reversible, and study the entropy change.
We will show that the result is the same via two different paths, confirming that entropy is a state
function.

Example 4.5. Ideal gas entropy changes in an adiabatic, reversible expansion
In Example 2.11 on page 75, we derived the temperature change for a closed-system adiabatic

expansion of an ideal gas. How does the entropy change along this pathway, and what does this
example show about changes in entropy with respect to temperature?

Solution
Reexamine the equation (CV/T)dT = –(R/V)dV, which may also be written (CV/R)dln T = –dIn V.

We can sketch this path as shown by the diagonal line in Fig. 4.4. Since our path is adiabatic (dQ = 0)
and reversible, and our definition of entropy is dS = (dQrev)/T, we expect that this implies that the
path is also isentropic (a constant-entropy path). Since entropy is a state property, we can verify this



by calculating entropy along the other pathway of the figure consisting of a constant temperature (step
A) and a constant volume (step B)

Figure 4.4. Equivalence of an adiabatic and an alternate path on a T-V diagram.

For the reversible isothermal step we have

Thus,

Substituting the ideal gas law,

For the constant volume step, we have
dU = dQrev     or     CVdT = dQrev

Thus,

We could replace a differential step along the adiabat (adiabatic pathway) with the equivalent
differential steps along the alternate pathways; therefore, we can see that the change in entropy is
zero,

which was shown by the energy balance in Eqn. 2.62, and we verify that the overall expansion is
isentropic. Trials with additional pathways would show that ∆S is the same.

 The entropy change along the adiabatic, reversible path is the same as along (step A +
step B) illustrating that S is a state property.

The method of subdividing state changes into individual temperature and volume changes can be
generalized to any process, not just the adiabatic process of the previous example, giving



We may integrate steps A and B independently. We also could use temperature and pressure steps
to calculate entropy changes, resulting in an alternate formula:

 Formulas for an ideal gas.

As an exercise, you may wish to choose two states and find the change in S along two different
pathways: first with a step in T and then in P, and then by inverting the steps. The heat and work will
be different along the two paths, but the change in entropy will be the same.

Looking back at Eqn. 4.26, we realize that it does not depend on the ideal gas assumption, and it is
a general result,

 Temperature derivatives of entropy are related to CP and CV.

which provides a relationship between CV and entropy. Similarly, looking back at Eqn. 4.18,

Eqns. 4.30 and 4.31 are particularly easy to apply for ideal gases. In fact, the most common method
for evaluating entropy changes with temperature applies Eqn. 4.31 in this way, as shown below.

Example 4.6. Ideal gas entropy change: Integrating CP
ig(T)

Propane gas undergoes a change of state from an initial condition of 5 bar and 105°C to 25 bar and
190°C. Compute the change in enthalpy using the ideal gas law.

Solution
Because P and T are specified in each state, the ideal gas change is calculated most easily by

combining an isobaric temperature step, Eqns. 4.19, and an isothermal pressure change, Eqn. 4.22.
The heat capacity constants are obtained from Appendix E.



Entropy Generation
At the beginning of Section 4.3 on page 142, statement number one declares that irreversible

processes generate entropy. Now that some methods for calculating entropy have been presented, this
principle can be explored.

Example 4.7. Entropy generation and “lost work”
In Example 4.1 consider the surroundings at 300 K: (a) Consider the entropy change in the

surroundings and the universe for parts 4.1(a) and 4.1(b) and comment on the connection between
entropy generation and lost work; (b) How would entropy generation be affected if the surroundings
are at 310 K?

Solution
a. For 4.1(a) the entropy change of the surroundings is 

. This is equal and opposite to the entropy
change of the piston/cylinder, so the overall entropy change is ∆Suniverse = 0.

For part 4.1(b), the entropy change of the universe is ∆Ssurr = Q/300 = –1995/300 =
–6.65J/K. The total entropy change is ∆Suniverse = 13.38–6.65 = 6.73J/K > 0, thus
entropy is generated when work is lost.

b. If the temperature of the surroundings is raised to 310K, then for the reversible piston
cylinder expansion for 4.1(a), ∆Ssurr = –4014/310 = –12.948J/K, and ∆Suniverse = 13.38 –
12.95 = 0.43J/K > 0. This process now will have some ‘lost work’ due to the temperature
difference at the boundary even though the piston/cylinder and work was frictionless
without other losses. We will reexamine heat transfer in a gradient in a later example. For
case 4.1(b), the entropy generation is still greater, indicating more lost work, ∆Ssurr = –
1995/310 = –6.43J/K, ∆Suniverse = 13.38 – 6.43 = 6.95J/K > 0.

 This is an irreversible process because entropy is generated.

Note: When the entropy change for the universe is positive the process is



irreversible. Because entropy is a state property, the integrals that we calculate
may be along any reversible pathway, and the time dependence along that pathway
is unimportant.

We discussed in Chapter 2 that friction and velocity gradients result in irreversibilities and thus
entropy generation occurs. Entropy generation can also occur during heat transfer, so let us consider
that possibility.

Example 4.8. Entropy generation in a temperature gradient
A 500 mL glass of chilled water at 283 K is removed from a refrigerator. It slowly equilibrates to

room temperature at 298 K. The process occurs at 1 bar. Calculate the entropy change of the water,
∆Swater, the entropy change of the surroundings, ∆Ssurr, and the entropy change of the universe, ∆Suniv.
Neglect the heat capacity of the container. For liquid water CP = 4.184 J/g-K.

Solution
Water: The system is closed at constant pressure with Ti = 283 K and Tf = 298 K. We choose any

reversible pathway along which to evaluate Eqn. 4.13, a convenient path being constant-pressure
heating. Thus,

dQrev = dH = mCPdT
Substituting this into our definition for a change in entropy, and assuming a T-independent CP,

Surroundings: The surroundings also undergo a constant pressure process as a closed system;
however, the heat transfer from the glass causes no change in temperature—the surroundings act as a
reservoir and the temperature is 298 K throughout the process. The heat transfer of the surroundings is
the negative of the heat transfer of the water, so we have

Note that the temperature of the surroundings was constant, which simplified the integration.
Universe: For the universe we sum the entropy changes of the two subsystems that we have

defined. Summing the entropy change for the water and the surroundings we have

Entropy has been generated. The process is irreversible.

4.4. The Entropy Balance



In Chapter 2 we used the energy balance to track energy changes of the system by the three types of
interactions with the surroundings—flow, heat, and work. This method was extremely helpful because
we could use the balance as a checklist to account for all interactions. Therefore, we present a
general entropy balance in the same manner. To solve a process problem we can use an analogous
balance approach of starting with an equation including all the possible contributions that might occur
and eliminating the balance terms that do not apply for the situation under consideration.

Entropy change within a system boundary will be given by the difference between entropy which is
transported in and out, plus entropy changes due to the heat flow across the boundaries, and in
addition, since entropy may be generated by an irreversible process, an additional term for entropy
generation is added. A general entropy balance is

 General entropy balance.

Like the energy balance, the quantity to the left of the equals sign represents the entropy change of
the system. The term representing heat transfer should be applied at each location where heat is
transferred and the Tsys for each term is the system temperature at each boundary where the heat
transfer occurs. The heat transfer represented in the general entropy balance is the heat transfer which
occurs in the actual process. We may simplify the balance for steady-state or closed systems:

 Open, steady-state entropy balance.

 Closed system entropy balance.

The heat flow term(s) are always written in the balance with a “plus” from the perspective of the
system for which the balance is written.

Caution
The entropy balance provides us with an additional equation which may be used in

solving thermodynamic problems; however, in irreversible processes, the entropy
generation term usually cannot be calculated from first principles. Thus, it is an unknown in



Eqns. 4.32–4.34. The balance equation is not useful for calculating any other unknowns
when Sgen is unknown. In Example 4.8 the problem would have been difficult if we applied
the entropy balance to the water or the surroundings independently, because we did not
know how to calculate Sgen for each subsystem. However, we could calculate ∆S for each
subsystem along reversible pathways. Summing the entropy changes for the subsystems of
the universe, we obtain the entropy change of the universe. Consider the right-hand side of
the entropy balance when written for the universe in this example. There is no mass flow in
and out of the universe—it all occurs between the subsystems of the universe. In addition,
heat flow also occurs between subsystems of the universe, and the first three terms on the
right-hand side of the entropy balance are zero. Therefore, the entropy change of the
universe is equal to the entropy generated in the universe.

Caution
The criterion for the feasibility of a process is that the entropy generation term must be

greater than or equal to zero. The feasibility may not be determined unequivocally by ∆S
for the system unless the system is the universe.

Note: As we work examples for irreversible processes, note that we do not apply
the entropy balance to find entropy changes. We always calculate entropy changes
by alternative reversible pathways that reach the same states, then we apply the
entropy balance to find how much entropy was generated.

Alternatively, for reversible processes, we do apply the entropy balance because
we set the entropy generation term to zero.

Let us now apply the entropy balance—first to another heat conduction problem. In Example 4.8
we studied an unsteady-state system. Now let us consider steady-state heat transfer to show which
entropy balance terms are important in this application. In this example, we show that such heat
conduction results in entropy generation because entropy generation occurs where the temperature
gradient exists.

Example 4.9. Entropy balances for steady-state composite systems
Imagine heat transfer occurring between two reservoirs.

a. A steady-state temperature profile for such a system is illustrated in Fig. (a) below.
(Note that the process is an unsteady state with respect to the reservoirs, but the focus of the
analysis here is on the wall.) The entire temperature gradient occurs within the wall. In this
ideal case, there is no temperature gradient within either reservoir (therefore, the
reservoirs are not a source of entropy generation). Note that the wall is at steady state.
Derive the relevant energy and entropy balances, carefully analyzing three subsystems: the
hot reservoir, the cold reservoir, and the wall. Note that a superficial view of the
reservoirs and wall is shown in Fig. (b).
b. Suppose the wall was replaced by a reversible Carnot engine across the same
reservoirs, as illustrated in Fig. (c). Combine the energy and entropy balances to obtain the



thermal efficiency.

Note: Keeping track of signs and variables can be confusing when the universe is
divided into multiple subsystems. Heat flow on the hot side of the wall will be
negative for the hot reservoir, but positive for the wall. Since the focus of the
problem is on the wall or the engine, we will write all symbols from the perspective
of the wall or engine and relate to the reservoirs using negative signs and
subscripts.

Solution
a. Since the wall is at steady state, the energy balance for the wall shows that the heat flows
in and out are equal and opposite:

The entropy balance in each reservoir simplifies:

The entropy generation term drops out because there is no temperature gradient in
the reservoirs. Taking the hot reservoir as the subsystem and noting that we have
defined QH and QC to be based on the wall, we write:

where the heat fluxes are equated by the energy balance.
Now consider the entropy balance for the wall subsystem. Entropy is a state

property, and since no state properties throughout the wall are changing with time,
entropy of the wall is constant, and the left-hand side of the entropy balance is equal to
zero. Note that the entropy generation term is kept because we know there is a
temperature gradient:



Noting the relation between the heat flows in Eqn. 4.35, we may then write for the
wall:

Then the wall with the temperature gradient is a source of entropy generation.
Summarizing,

Hence we see that the wall is the source of entropy generation of the universe,
which is positive. Notice that inclusion of the wall is important in accounting for the
entropy generation by the entropy balance equations.

b. The overall energy balance relative for the engine is:

 Entropy is generated by a temperature gradient.

The the engine operates a steady-state cycle, dSengine/dt = 0 (it is internally
reversible):

As before,  and we have derived it using the entropy
balance. Note that the heat flows are no longer equal and are such that the entropy
changes of the reservoirs sum to zero.

We have concluded that heat transfer in a gradient results in entropy production. How can we
transfer heat reversibly? If the size of the gradient is decreased, the right-hand side of Eqn. 4.37
decreases in magnitude; coincidentally, heat conduction slows, through the following relation:16

A smaller temperature gradient decreases the rate of production of entropy, but from a practical
standpoint, it requires a longer time to transfer a fixed amount of heat. If we wish to transfer heat
reversibly from two reservoirs at finitely different temperatures, we must use a heat engine, as
described in part (b). In addition to transferring the heat reversibly, use of a heat engine generates
work.

Summary: This example has shown that boundaries (walls) between systems can
generate entropy. In this example, entropy was not generated in either reservoir because



no temperature profile existed. The entropy generation occurred within the wall.

 Entropy may be generated at system boundaries.

Note that we could have written the engine work of part (b) as follows:

Compare this to Eqn. 4.37, the result of the steady-state entropy generation. If we run the heat
transfer process without obtaining work, then the universe loses a quantity of work equal to the
following:

Note that TC, the colder temperature of our engine, is important in relating the entropy generation to
the lost work. TC can be called the temperature at which the work is lost. Lost work is explored more
completely in Section 4.12. Also note that we have chosen to operate the heat engine at temperatures
which match the reservoir temperatures. This is arbitrary, but is required to obtain the maximum
amount of work. The heat engine may be reversible without this constraint, but the entire process will
not be reversible. These details are clarified in the next section.

An entirely analogous analysis of heat transfer would apply if we ran the heat engine in reverse, as
a heat pump. Only the signs would change on the direction the heat and work were flowing relative to
the heat pump. Therefore, the use of entropy permits us to reiterate the Carnot formulas in the context
of all fluids, not just ideal gases.

 Carnot thermal efficiency.

 Carnot coefficient of performance.

4.5. Internal Reversibility
A process may be irreversible due to interactions at the boundaries (such as discussed in Example

4.9 on page 155) even when each system in the process is reversible. Such a process is called
internally reversible. Such a system has no entropy generation inside the system boundaries. We
have derived equations for Carnot engines and heat pumps, assuming that the devices operate between



temperatures that match the reservoir temperatures. While such restrictions are not necessary for
internal reversibility, we show here that the work is maximized in a Carnot engine at these conditions
and minimized in a Carnot heat pump. Note that in development of the Carnot devices, the only
temperatures of concern are the operating temperatures at the hot and cold portions of the cycle. In the
following illustrations, the internally reversible engine or pump operates between TH and TC, and the
reservoir temperatures are T2 and T1.

Heat Engine
A schematic for a Carnot engine is shown in Fig 4.5(a). Heat is being transferred from the

reservoir at T2 to the reservoir at T1, and work is being obtained as a result. In order for heat transfer
to occur between the reservoirs and the heat engine in the desired direction, we must satisfy T2 ≥ TH
>TC≥T1, and since the thermal efficiency is given by Eqn. 3.6, for maximum efficiency (maximum
work), TC should be as low as possible and TH as high as possible, i.e., set TH = T2, TC = T1.

Figure 4.5. Schematic of a heat engine (a) and heat pump (b). The temperatures of the
reservoirs are not required to match the reversible engine temperatures, but work is optimized

if they do, as discussed in the text.

 The operating temperatures of a reversible heat engine or heat pump are not
necessarily equal to the surrounding’s temperatures; however, the optimum work
interactions occur if they match the surrounding’s temperature because matching the
temperatures eliminates the finite temperature-driving force that generates entropy.

Heat Pump
A schematic for a Carnot heat pump is shown in Fig. 4.5(b). Heat is being transferred from a

reservoir at T1 to the reservoir at T2, and work is being supplied to achieve the transfer. In order for
heat transfer to occur between the reservoirs and the heat engine in the desired direction, we must
satisfy T2 ≤ TH > TC ≤ T1. Since the COP is given by Eqn. 4.44, for maximum COP (minimum work),
TC should be as high as possible and TH as low as possible, i.e., set TC = T1, TH = T2. Therefore,
optimum work interactions occur when the Carnot device operating temperatures match the
surrounding temperatures. We use this feature in future calculations without special notice.

4.6. Entropy Balances for Process Equipment
Before analysis involving multiple process units, it is helpful to consider the entropy balance for

common steady-state process equipment. Familiarity with these common units will facilitate rapid



analysis of situations with multiple units, because understanding these balances is a key step for the
calculation of reversible heat and work interactions.

Simple Closed Systems
Changes in entropy affect all kinds of systems. We have previously worked with piston/cylinders

and even a glass of water. You should be ready to adapt the entropy balance in creative ways to
everyday occurrences as well as sophisticated equipment.

Example 4.10. Entropy generation by quenching
A carbon-steel engine casting [CP = 0.5 kJ/kg°C] weighing 100 kg and having a temperature of 700

K is heat-treated to control hardness by quenching in 300 kg of oil [CP = 2.5 kJ/kg°C] initially at 298
K. If there are no heat losses from the system, what is the change in entropy of: (a) the casting; (b) the
oil; (c) both considered together; and (d) is this process reversible?

Solution
Unlike the previous examples, there are no reservoirs, and the casting and oil will both change

temperature. The final temperature of the oil and the steel casting is found by an energy balance. Let
Tf be the final temperature in K.

Energy balance: The total change in energy of the oil and steel is zero.
Heat lost by casting:
Q = mCp∆T = 100 (0.5) (700 – Tf)
Heat gained by oil:
Q = mCp∆T = 300 (2.5) (Tf – 298) ය balancing the heat flow, Tf = 323.1 K
Entropy balance: The entropy change of the universe will be the sum of the entropy changes of the

oil and casting. We will not use the entropy balance directly except to note that ∆Suniv = Sgen. We can
calculate the change of entropy of the casting and oil by any reversible pathway which begins and
ends at the same states. Consider an isobaric path:

a. Change in entropy of the casting:

b. Change in entropy of the oil (the oil bath is of finite size and will change temperature as
heat is transferred to it):

c. Total entropy change: Sgen = ∆Suniv = 60.65 – 38.7 = 21.9 kJ/K

d. Sgen > 0; therefore irreversible; compare the principles with Example 4.8 on page 152 to
note the similarities. The difference is that both subsystems changed temperature.



 Compare with Example 4.8 on page 152.

Heat Exchangers
The entropy balance for a standard two-stream heat exchanger is given by Eqn. 4.45. Since the unit

is at steady state, the left-hand side is zero. Applying the entropy balance around the entire heat
exchanger, there is no heat transfer across the system boundaries (in the absence of heat loss), so the
heat-transfer term is eliminated. Since heat exchangers operate by conducting heat across tubing walls
with finite temperature driving forces, we would expect the devices to be irreversible. Indeed, if the
inlet and outlet states are known, the flow terms may be evaluated, thus permitting calculation of
entropy generation.

We also may perform “paper” design of ideal heat transfer devices that operate reversibly. If we
set the entropy generation term equal to zero, we find that the inlet and outlet states are constrained.
Since there are multiple streams, the temperature changes of the streams are coupled to satisfy the
entropy balance. In order to construct such a reversible heat transfer device, the unit would need to be
impracticably large to only have small temperature gradients.

Example 4.11. Entropy in a heat exchanger
A heat exchanger for cooling a hot hydrocarbon liquid uses 10 kg/min of cooling H2O which enters

the exchanger at 25°C. Five kg/min of hot oil enters at 300°C and leaves at 150°C and has an average
specific heat of 2.51 kJ/kg-K.

a. Demonstrate that the process is irreversible as it operates now.
b. Assuming no heat losses from the unit, calculate the maximum work which could be
obtained if we replaced the heat exchanger with a Carnot device which eliminates the
water stream and transfers heat to the surroundings at 25°C

Solution
a. System is heat exchanger (open system in steady-state flow)

Energy balance:

10(4.184)(Tw
out – 25) + 5(2.51)(150 – 300) = 0; Tw

out = 70°C
Entropy balance:



The process is irreversible because entropy is generated.
b. The modified process is represented by the “device” shown below. Note that we avoid
calling the device a “heat exchanger” to avoid confusion with the conventional heat
exchanger. To simplify analysis, the overall system boundary is used.

By an energy balance around the overall system, . We can
only solve for the enthalpy term,

Since heat and work are both unknown, we need another equation. Consider the
entropy balance, which, since it is a reversible process, , gives

Now inserting these results into the overall energy balance gives the work,



Throttle Valves
Steady-state throttle valves are typically assumed to be adiabatic, but a finite pressure drop with

zero recovery of work or kinetic energy indicates that . Throttles are isenthalpic, and for an
ideal gas, they are thus isothermal, . For a real fluid, temperature
changes can be significant. The entropy increase is large for gases, and small, but nonzero for liquids.
It is important to recall that liquid streams near saturation may flash as they pass through throttle
valves, which also produces large entropy changes and significant cooling of the process fluid even
when the process is isenthalpic. Throttles involving flash are common in the liquefaction and
refrigeration processes discussed in the next chapter. Throttles are always irreversible.

Nozzles
Steady-state nozzles can be designed to operate nearly reversibly; therefore, we may assume 

, and Eqn. 4.47 applies. Under these conditions, thrust is maximized as enthalpy is converted
into kinetic energy. The distinction between a nozzle and a throttle is based on the reversibility of the
expansion. Recall from Chapter 2 that a nozzle is specially designed with a special taper to avoid
turbulence and irreversibilities. Naturally, any real nozzle will approximate a reversible one and a
poorly designed nozzle may operate more like a throttle. Proper design of nozzles is a matter of fluid
mechanics. We can illustrate the basic thermodynamic concepts of a properly designed nozzle with an
example.

Example 4.12. Isentropic expansion in a nozzle
Steam at 1000°C and 1.1 bars passes through a horizontal adiabatic converging nozzle, dropping to

1 bar. Estimate the temperature, velocity, and kinetic energy of the steam at the outlet assuming the
nozzle is reversible and the steam can be modeled with the ideal gas law under the conditions.
Consider the initial velocity to be negligible. The highest exit velocity possible in a converging
nozzle is the speed of sound. Use the NIST web sitea as a resource for the speed of sound in steam at
the exit conditions.

Solution

For an isentropic reversible expansion the temperature will drop. We will approximate the heat
capacity with an average value. Let us initially use a CP for 650 K. Estimating the heat capacity from
Appendix E at 650 K, the polynomial gives CP = 44.6 J/mol, R/CP ~ 8.314/44.6 = 0.186. The
following relation satisfies the entropy balance for an adiabatic, reversible, ideal gas (Eqn. 4.29):

The temperature change is small, so the constant heat capacity assumption is fine. The enthalpy
change is –∆H = –CP∆T = 44.6(1273 – 1250.5)(J/mol) = 1004 J/mol.

Assuming that the inlet velocity is low, v1 ~ 0 and converting the enthalpy change to the change in
velocity gives v2 = –2∆H/m = 2·1004J/mol(mol/18.01g)(1000g/kg)(1kg-m2/s2)/J = 111,500 m2/s2, or



v = 334 m/s. According to the NIST web site at 1250K and 0.1MPa, the speed of sound is 843 m/s.
The design is reasonable.

a. Lemmon, E.W., McLinden, M.O., Friend, D.G. “Thermophysical Properties of Fluid Systems.” in NIST Chemistry
WebBook , NIST Standard Reference Database Number 69, P.J. Linstrom, W.G. Mallard (eds.) National Institute of
Standards and Technology, Gaithersburg, MD. http://webbook.nist.gov, (retrieved November 12, 2011).

Adiabatic Turbine, Compressor, and Pump
The entropy balance for a steady-state adiabatic device is:

The left-hand side drops out because the system is at steady state. If the device is reversible,  is
zero. Further, these devices typically have a single inlet or outlet,17 and , thus,

 Adiabatic reversible turbine, compressor, and pump.

Therefore, if we know the inlet state, we can find Sin. The outlet pressure is generally given, so for
a pure fluid, the outlet state is completely specified by the two state variables Sout and Pout. We then
use thermodynamic relations to find the other thermodynamic variables at this state, and use the
energy balance at this state to find Wrev. Turbines, compressors, and pumps are very common
equipment in chemical processes. Guidelines exist for estimating the degree of irreversibility in each
piece of equipment based on experience. These guidelines take the form of an estimated efficiency.
For example, a large expensive turbine might be 85% efficient, but a small cheap one might be 65%
efficient. To apply these guidelines, we must formally define efficiency, then familiarize ourselves
with variations on how to characterize the capacity and operating conditions of these operations.

4.7. Turbine, Compressor, and Pump Efficiency
Our analysis of the Carnot devices supports statement 2 at the beginning of Section 4.3. We have

seen that work is maximized/minimized when the entropy generation is zero. Analysis of other
processes would verify this useful conclusion. Work is lost by processes which generate entropy. If a
device is not internally reversible, work will be lost within the device. Also, even if the device is
internally reversible, work may be lost by irreversible interactions with the surroundings. Therefore,
in setting up and solving problems to find maximum/minimum work, the objectives must be clear as to
whether the system is internally reversible or whether the entire process is reversible. When we
apply the entropy balance to a reversible process, the term representing entropy generation is zero.

In Chapter 2, both velocity gradients and friction were discussed as phenomena that lead to
irreversibilities. Indeed, entropy is generated by both of these phenomena as well as by heat
conduction along temperature gradients discussed in this chapter. Considering factors which affect
reversibility (generation of entropy), you may have challenged yourself to consider a practical way to
transfer heat with only infinitesimal temperature differences, or move fluid with only infinitesimal

http://webbook.nist.gov


velocity gradients. You are probably convinced that such a process would not be practical. Indeed,
the rate at which heat is transferred increases as the temperature driving forces increase, and we need
finite temperature differences to transfer heat practically. Likewise, a pump will have large velocity
gradients. Although we can measure changes in other properties by which we can calculate entropy
changes arising from irreversibilities, an a priori prediction of lost work (Wlost) or entropy generated
(Sgen) is extremely difficult and generally impractical. Direct evaluation of lost work in process
equipment, such as turbines and compressors, is far beyond routine calculation and determined by
empirical experience. It may seem that all of the effort to characterize reversible processes will be
difficult to relate to real processes.

However, we can use practical experience to relate real processes to the idealized reversible
processes. Therefore, in analyzing or designing processes involving operations of this nature, it is
often necessary to approximate the real situation with a reversible one in which (Wlost) = 0 (no
entropy generation). Past experience with many devices, such as compressors and turbines, often
permits the engineer to relate performance under hypothetical reversible conditions to actual
operation under real conditions. The relation is usually expressed by means of an efficiency factor.
Equipment manufacturers typically provide performance curves as a function of process conditions.
For introductory purposes, in this text we use a fixed factor. For devices such as pumps and
compressors which utilize work from the surroundings, efficiency is defined as

 Primes are used to denote reversible processes.

where the ′ denotes the reversible work. This notation will be used throughout the text when
irreversible and reversible calculations are performed in the same problem. For turbines and other
expansion devices that supply work to the surroundings, the definition is inverted to give

For adiabatic pumps, compressors, turbines, or expanders, the work terms may be calculated from
the reversible and irreversible enthalpy changes by application of the energy balance.

Note: The strategy is to first calculate the work involved in a reversible process,
then apply an efficiency which is empirically derived from previous experience with
similar equipment. The outlet pressure of an irreversible adiabatic turbine or pump is
always at the same pressure as a reversible device, but the enthalpy is always higher
for the same inlet state. This means that if the outlet of the reversible adiabatic
device is a single phase, the outlet of the irreversible adiabatic device will be at a
higher temperature. If the outlet of the reversible adiabatic device is a two-phase
mixture, the quality for the irreversible adiabatic device will be higher or the outlet
could potentially be a single phase.



4.8. Visualizing Energy and Entropy Changes
Turbines, compressors, and pumps occur so frequently that we need convenient tools to aid in

process calculations. Visualization of the state change is possible by plotting entropy on charts. This
technique also permits the charts to be used directly in the process calculations. One common
representation is the T-S chart shown in Fig. 4.6. The phase envelope appears as a fairly symmetrical
hump. A reversible turbine, compressor, or pump creates state changes along a vertical line on these
coordinates. Lines of constant enthalpy and pressure are also shown on these diagrams, as sketched in
the figure. Volumes are also usually plotted, but they lie so close to the pressure lines that they are not
illustrated in the figure here to ensure clarity.

Figure 4.6. Illustration of a T-S diagram showing lines of constant pressure and enthalpy.

 Visualizing state changes on charts will be helpful when using tables or computers for
physical properties.

 A 3D diagram for steam is available in PHT.m. The diagram can be rotated.

P-H diagrams shown in Fig. 4.7 are also useful; they are used frequently for refrigeration
processes. The phase envelope tends to lean to the right because the enthalpies of vapor and liquid
are both increasing along the saturation curve until the critical point is approached, where the vapor-
phase enthalpy decreases due to significant non-idealities. Lines of constant entropy on these plots are
slightly diagonal with a positive slope as shown in Fig. 4.7(a). For some hydrocarbons and
halogenated compounds, the phase envelope can lean more sharply than the isentropic lines as shown
in Fig. 4.7(b). A reversible compressor will operate along a line of constant entropy.



Figure 4.7. Illustration of a P-H diagram showing (a) lines of constant entropy for a species
where the saturation curve leans less than isentropes (e.g., water) and (b) illustration of a P-H
diagram showing lines of constant entropy for a species where the saturation curve leans more

than isentropes (e.g., hexane).

Another convenient representation of entropy is the H-S diagram (Mollier diagram). In this
diagram, lines of constant pressure are diagonal, and isotherms have a downward curvature as in Fig.
4.8. The saturation curve is quite skewed.

Figure 4.8. Illustration of an H-S (Mollier) diagram showing lines of constant entropy.

4.9. Turbine Calculations
For a reversible adiabatic turbine, the entropy balance in Section 4.6 shows that the outlet entropy

must equal the inlet entropy. For an irreversible turbine, the outlet entropy must be greater than the



inlet entropy. We may now visualize the state change on the diagrams sketched in Section 4.8. For
example, on a T-S diagram, the performance of a turbine can be visualized as shown in Fig. 4.9. Note
that the isobars are important in sketching the behavior because the outlet pressure must be the same
for the reversible and irreversible turbines, but the outlet enthalpies (not shown) and entropies must
be different.

Figure 4.9. Illustration of a reversible and actual (irreversible) turbine on a T-S diagram.

 The outlet entropy of an irreversible adiabatic turbine will be greater than the outlet
entropy of a reversible adiabatic turbine with the same outlet pressure.

Steam Quality Calculations

 The actual outlet state might be in the one-phase region when the reversible outlet
state is in the two-phase region.

A common problem encountered when adiabatically reducing the pressure of real fluids like steam,
methane, or refrigerants is the formation of a vapor-liquid mixture. Since the thermodynamic
properties change dramatically depending on the mass fraction that is vapor (the quality), it is
important to know how to calculate that fraction. The calculation procedure may differ from the case
shown in Fig. 4.9 where the outlets for the reversible and irreversible cases are both one phase.
Since the reversible adiabatic turbine is isentropic, the line representing the reversible process must
be vertical. As shown in Fig. 4.10, if the upstream entropy is less than the saturated vapor entropy at
the outlet pressure, the reversible outlet ends up inside the liquid-vapor region, to the left of the
saturated vapor curve. In this case, we must perform a quality calculation to determine the vapor
fraction. Since the actual turbine must have an outlet state of higher entropy, due to entropy
generation, the outlet state can lie inside the phase envelope, on the saturation curve, or outside the
phase envelope, depending on the proximity of the reversible outlet state to the saturation curve and
also depending on the turbine efficiency. A frequent question is, “How do I know when I need a
quality calculation?” The calculation is required if the inlet entropy is less than the saturation entropy
at the outlet pressure as illustrated in the figure. A quality calculation may also be required for the
actual state, if the actual enthalpy turns out to be less than the saturation enthalpy at the outlet
pressure.



Figure 4.10. Illustration of need for quality calculation on turbine outlet where the actual
outlet is saturated steam.

The best way to master turbine calculations is to practice; the examples in this section are designed
to facilitate your effort. Example 4.13 explores the inference of outlet conditions and proper
application of turbine efficiency. Example 4.14 illustrates calculation of turbine efficiency. Example
4.15 illustrates the determination of inlet conditions to match a desired outlet. The combinations of
inlet and outlet specifications are too many to enumerate. Therefore, you need to practice inferring the
necessary procedure for any given situation. Challenge yourself to repeat the examples without
looking at the steps. Several practice problems are also given at the end of the chapter, with detailed
solutions available at the textbook web site. As you practice, pay attention to the results and look for
generalities that broaden your comprehension.

Determining Turbine Outlet Conditions
Let us work a series of examples illustrating the various situations that may arise in calculation of

turbine outlets. Usually, the design of a turbine involves a given inlet state and outlet pressure. That
outlet pressure may be specified explicitly, or it may be implicit in a statement giving the outlet
temperature and the quality; it may be inferred then that the outlet pressure is the saturation pressure at
the given temperature. An important skill is to quickly determine whether the reversible turbine
follows Fig. 4.9 or whether it follows Fig. 4.10. Subsequently, for the cases that follow Fig. 4.10, the
outlet state may lie inside or outside the phase envelope. The determination depends on the efficiency
and the inlet entropy, with the following cases:

i. Reversible outlet one phase, actual outlet one phase;
ii. Reversible outlet two phase, actual outlet one phase;
iii. Reversible outlet two phase, actual outlet two phase.

This example, though long, comprehensively covers the solution methods to determine turbine
outlets for single-stage turbines from a known inlet state and specified pressure drop.

Example 4.13. Various cases of turbine outlet conditions
An adiabatic turbine inlet (state 1) is 500°C and 1.4 MPa. For each of the following outlet

conditions (state 2), determine the specified quantities.
a. P2 = 0.6 MPa, ηE = 0.85. Find WS, H2, S2, and T2.

b. P2 = 0.03 MPa, ηE = 0.85. Find WS, H2, S2, and T2.

c. P2 = 0.01 MPa, ηE = 0.9. Find WS, H2, S2, and T2.

Note that using a common inlet state for each of the cases will permit us to skip the steps to



determine the inlet state as we work the different alternatives.

Solution
First, the inlet properties are determined: H1 = 3474.8 kJ/kg, S1 = 7.6047 kJ/kg-K. The reversible

calculation is performed for each outlet condition, recognizing that a reversible turbine is isentropic.
a. S2′ = S1 = 7.6047 kJ/kg-K. Comparing with SsatV= 6.7593 kJ/kg-K at P2 = 0.6 MPa, S2′ >
SsatV, so the reversible outlet state is superheated and any irreversibility must lead to
greater entropy and greater superheat (case (i)). This is the case of Fig. 4.9.
Interpolating:

By similar interpolation, T2′ = 367.5°C.

∆H′ = WS′ = 3202.8 – 3474.8 = –272.0 kJ/kg
Applying ηE calculation, ∆H = WS = ηE∆H′ = 0.85(–272) = –231.2 kJ/kg,

H2 = H1 + ∆H = 3474.8 – 231.2 = 3243.6 kJ/kg
Preparing for interpolation:

By similar interpolation, T2 = 387.0°C. We see that irreversibility has warmed the
outlet, but not “heated” it, because it was adiabatic. With a one-phase outlet, T2 > T2′
if ηE < 1.

b. The pressure is lower than part (a), and the saturated vapor S will be larger, and
near the saturation boundary.

Recall that S2′ = S1 = 7.6047 kJ/kg-K. Comparing with SsatV= 7.7675 kJ/kg-K at P2

= 0.03 MPa, S2′ < SsatV, so the reversible outlet state is two-phase. This is the case of
Fig. 4.10 and we need to proceed further to determine if the actual state is inside or
outside the phase envelope. Interpolating using the saturation entropy values along
with the S2′ at T2′ = 69.1°C,

Using Eqn. 1.27:



H2′ = 289.27 + 0.976(2335.28) = 2568.5 kJ/kg

∆H′ = WS′ = 2568.5 – 3474.8 = – 906.3 kJ/kg
Applying ηE calculation, ∆H = WS = ηE ∆H′ = 0.85(–906.3) = –770.35 kJ/kg,

H2 = H1 + ∆H = 3474.8 – 770.35 = 2704.4 kJ/kg

Comparing H2 with HsatV = 2624.55 kJ/kg at P2 = 0.03 MPa, H2 > HsatV, so the
outlet state is superheated (outside the phase envelope). This is an instance of case
(ii).

To conclude the calculations, a double interpolation is required. Performing the
first interpolation between 0.01 and 0.05 MPa will bracket the outlet state. (Note:
0.03 MPa is halfway between 0.01 and 0.05 MPa, so tabulated values are obtained by
averaging rather than by a slower interpolation.)

Interpolating:

Similarly, by interpolation, T2 = 110.1°C.
Note: The reversible state is two-phase, and the actual outlet is one-phase for part

(b). Also, S2 > S2′ = S1 and H2 > H2′ which are always true for irreversible turbines.
T2 > T2′, which is a general result for one-phase output.

c. Very low-outlet pressures shifts the saturation value of S to even higher values,
making it more likely that the outlet will be two phase, case (iii).

S2′ = S1 = 7.6047 kJ/kg-K. Comparing with SsatV= 8.1488 kJ/kg-K at P2 = 0.01
MPa, S2′ < SsatV, so the reversible outlet state is two-phase. This is the case of Fig.
4.10 and we need to proceed further to determine if the actual state is inside or outside
the phase envelope. Interpolating at P = 0.01 MPa (T2′ = 45.81°C),

Using Eqn. 1.27,
H2′ = 191.81 + 0.9274(2392.05) = 2410.2 kJ/kg

∆H′ = WS′ = 2410.3 – 3474.8 = – 1064.6 kJ/kg
Applying ηE calculation, ∆H = WS = ηE ∆H′ = 0.90(–1064.6) = –958.1 kJ/kg,

H2 = H1 + ∆H = 3474.8 – 958.1 = 2516.7 kJ/kg.

Comparing H2 with HsatV = 2583.86 kJ/kg at P2 = 0.01 MPa, H2 < HsatV, so the
actual outlet state is two-phase as well as the reversible outlet (case (iii)). For the
actual outlet, H2 gives:



Using Eqn. 1.27,
S2 = 0.6492 + 0.972(7.4996) = 7.9388 kJ/kg

The actual outlet is wet steam at T2 = 45.81°C. The reversible outlet and the actual
outlet are both wet steam for part (c). Also, S2 > S2′ = S1 and H2 > H2′ which are
always true for irreversible turbines. For case (c), T2 = T2′, however q2 > q2′, a
general result for a two-phase outlet.

This example has exhaustively covered the possibilities that may occur when performing turbine
analysis given a specified pressure drop and known inlet condition. The actual outlet enthalpy and
entropy are always greater than the reversible values. The actual outlet T will be the same as the
reversible T if both states are wet steam. Note that many variations could generate calculations that
appear to be different from these cases, but are actually similar. For example, the quality could be
specified at the outlet instead of the efficiency. Similarly, the steam outlet H or S, etc. could be
specified rather than the quality. For any problem, the details of the interpolation may differ for a
given application depending on the region of the steam tables. Nevertheless, the overall procedures of
using entropy to identify the reversible state and then correcting for the actual state are always the
same. The following example illustrates a typical turbine calculation that might be used to
characterize the efficiency of a working turbine.

Example 4.14. Turbine efficiency calculation
An adiabatic turbine inlet is at 500°C and 1.4 MPa. Its outlet is at 0.01MPa and q = 99%.

a. Compute the work of the turbine.
b. Compute the work of a reversible turbine.
c. Compute the efficiency of the turbine and the entropy generation of the actual turbine.

Solution
The energy balance is ∆H = WS.

a. The inlet is the same as Example 4.13: H1 = 3474.8; S1 = 7.6047. At the outlet,

H2 = 191.81 + 0.99(2392.05) = 2559.9 kJ/kg

∆H = WS = 2559.9 – 3474.8 = –914.9 kJ/kg

b. Entropy balance: ∆S′ = 0 ය S2′ = S1 = 7.6047 kJ/kg-K.
It is slightly ambiguous whether we should match the outlet pressure or the

specification of quality. By convention, it is assumed that pressure is the desired
criterion (or temperature in a similar situation) because this pertains to the physical
constraints of the design. This means that the reversible work is the same as Example
4.13(c) and WS′ = –1064.6 kJ/kg.

c. The turbine efficiency is defined by ηE = WS/WS′ = 914.9/1064.6 = 85.9%. The entropy



generation is given by Sgen = S2 – S2′.

S2 = 0.6492 + 0.99(7.4996) = 8.0738 kJ/kg-K
Referring to the entropy balance, S2′ = S1 = 7.3046 so Sgen = 8.0738 – 7.6047 =

0.4691 J/g-K.

Another type of calculation involves determining a turbine inlet that will result in a certain outlet.
The procedure is to use the outlet state to estimate the inlet entropy as a crude guess, and then use trial
and error inlet conditions until the desired outlet state is matched.

Example 4.15. Turbine inlet calculation given efficiency and outlet
An adiabatic turbine outlet (state 2) is 99% quality steam at 0.01 MPa, ηE = 85%. The inlet

pressure has been specified as 0.6 MPa. An absolute pressure of 0.6 MPa is conventionally defined
as low pressure steam and is often applied in chemical processing. Find WS, H1, S1, and T1.

Solution
“Coincidentally,” the outlet properties were determined in Example 4.14: H2 = 2559.9; S2 =

8.0738. Referring to the superheated steam tables at 0.6 MPa, we seek an entropy value that is less
than 8.0738 kJ/kg-K because ηE < 100% means entropy is generated. This occurs around 500°C.
Trying 500°C, gives H1 = 3483.4 kJ/kg and S1 = 8.0041 kJ/kg-K. Then WS = –923.5 kJ/kg; q′ =
(8.0041 – 0.6492)/7.4996 = 0.9807;

So H1′ = 191.8 + 0.9807(2392)=2537.6 kJ/kg; WS′ = 2537.6 – 3483.4 = –945.8 kJ/kg;

Wlost = 945.8 – 923.5 = 22.3 kJ/kg; ηE = –923.5/(–923.5 – 22.3) = 97.7%.

Further trials generate the values tabulated below. The last temperature is estimated by
interpolation. (Hint: It would be great practice for you to compute these and check your answers.).

Multistage Turbines
Commonly, turbines are staged for several reasons that we explore in Chapter 5. Generally, some

steam is drawn off at intermediate pressures for other uses. The important point that needs to be
stressed now is that the convention used for characterizing efficiency is important. Consider the three-
stage turbine shown in Fig. 4.11 and the schematic that represents the overall reversible path and the
actual path. The isobars on the H-S diagram for water curve slightly upward, and are spaced slightly
closer together at the bottom of the diagram than at the top. The overall efficiency is given by 



, and the efficiency of an individual stage is given by . If we

consider the reversible work as ∆H′overall, that quantity must be smaller than . In fact,
because the isobar spacing is increasing to the right of the diagram, the vertical drop between any
isobars on the line marked as the overall reversible path must be smaller than the vertical drop
between the same two isobars starting along the actual path (except for the very first turbine).
Therefore, the efficiency calculated for the overall system must be higher than the efficiency for the
individual stages. This comparison does not imply that staging turbines alters their performance. The
difference in efficiencies is due to differences in what is considered to be the basis for the reversible
calculation. The cautionary note to retain from this discussion is that the distinction between overall
or individual efficiencies is important when communicating the performance of a staged turbine
system.

Figure 4.11. Illustration that overall efficiency of an adiabatic turbine will be higher than the
efficiency of the individual stages.

 Overall turbine efficiency will be greater than stage efficiencies for the same total
work output.

4.10. Pumps and Compressors
An irreversible, adiabatic pump or compressor generates entropy. If these devices are reversible,

they are isentropic. Examples of both are shown in Fig. 4.12. The calculations are generally
straightforward. Consider the case where the inlet state and the outlet pressure is known. First, the
reversible outlet state is determined based on the isentropic condition, and the enthalpy at the
reversible state is known. The most common estimate for compressors is described in Example 2.12
on page 76. Even though it is intended for ideal gases, it is convenient for many applications and often
provides a reasonable first approximation. The most common estimate for pumps is described in Eqn.
2.32 on page 55. These both pertain to reversible processes. The efficiency can then be used to
determine the actual outlet enthalpy and work, using Eqn. 4.46.



Figure 4.12. Illustrations of pathways for reversible and irreversible pumps and compressors.
The P-H diagram is for a system like Fig. 4.7(a).

Example 4.16. Isothermal reversible compression of steam
In Example 2.12 on page 76, we mentioned that computing the work for isothermal compression of

steam was different from computing the work for an ideal gas. Now that you know about the entropy
balance, use it to compute the work of continuously, isothermally, and reversibly compressing steam
from 5 bars and 224°C to 25 bars. Compare to the result of the ideal gas formula.

Solution
Energy balance: ∆H = Q + W. Entropy balance: ∆S = Q/T. Note that ∆S ≠ 0, even though this is a

reversible process. Sgen = 0, but the process is not adiabatic. From the steam tables, we note that
224°C and 25 bars is practically equal to the saturated vapor. For the vapor at 224°C and 25 bars,
interpolation gives H = 2910.5, S = 7.1709. Noting Q = T∆S, Q = (224 + 273.15)(6.2558 – 7.1709) =
–454.94; W = (2801.9 – 2910.5) + 454.94 = 346.3 J/g.

By the ideal gas formula, W = 8.314(4.04)(224 + 273.15)ln(5)/18 = 1493.1 J/g.
The work is less for the real vapor because of the intermolecular attractions. The difference was

particularly large in this case because the final pressure was fairly high (> 10 bars).

Multistage Compression
During adiabatic compression of vapors, the temperature rises. This can cause equipment problems

if the temperature rise or pressure ratio (Pout/Pin) is too large. To address this problem, interstage
cooling is used to lower the gas temperature between compression stages. Such operations are
common when high pressures need to be reached. A schematic of a compressor with interstage
cooling is shown in Fig. 4.13. The total work for multistage compression is generally given by
summing the work of each stage using Eqn. 2.69 on page 77. However, the ideal gas law becomes
less reliable as the stagewise inlet pressure increases. If the inlet pressure is above 10 bars and the
reduced temperature is less than 1.5, nonideality effects should be evaluated. Methods to evaluate gas
non-idealities and to calculate entropy for all manner of non-ideal gases are discussed in Unit II. For
common refrigerants, it is convenient to apply charts that are functionally equivalent to the steam
tables. The charts are difficult to read and precision is relatively low compared to using the steam
tables. Example 4.17 illustrates the procedure using the refrigerant R134a.



Figure 4.13. Illustration of a multistage compression and the corresponding P-H diagram. On
the P-H diagram, the compressors appear as the curves of increasing pressure and the heat

exchangers are the horizontal lines at constant pressure.

Example 4.17. Compression of R134a using P-H chart
A compressor operates on R134a. The inlet to the compressor is saturated vapor at –20°C. The

outlet of the compressor is at 7.7 bar and ηC = 0.8. Find the reversible and required work (kJ/kg) and
the outlet temperature of the compressor.

Solution
An inset of the P-H diagram from Appendix E is shown below. The axis labels and superheated

temperature labels have been translated on the inset diagram.

The inlet state is located at the intersection of the –20°C isotherm and the saturated vapor line. The
enthalpy is found by following the vertical lines to the axis and H = 386.5 kJ/kg. (Note: This accurate
value was found from the accompanying saturation table, but the schematic value is consistent, though
less accurate.) The reversible outlet state is found by following an isentropic state up to 7.7 bars. One
set of the diagonal lines are isentropes, and we visually interpolate to keep the same relative position
between the isentropes at 7.7 bar at the state labeled 2′. By following the vertical lines to the axis, H2′
= 424 kJ/kg. The reversible work is WS′ = 424 – 386.5 = 37.5 kJ/kg. The actual work is WS = WS′ /
0.8 = 47 kJ/kg. The actual outlet state is shifted to the right at 7.7 bar at an enthalpy value of H2 =
386.5 + 47 = 433.5 kJ/kg. The reversible outlet is just near 38°C. The actual outlet is near 48°C.

4.11. Strategies for Applying the Entropy Balance

 New key words have been defined that specify constraints.



When solving thermodynamic problems, usually the best approach is to begin by applying the
mass and energy balances. The entropy balance provides another balance, but it is not always
necessary for every problem. In this chapter, we have introduced some new terms which can specify
additional constraints when used in the problem statement, e.g., “isentropic,” “reversible,” “internally
reversible,” “irreversible,” “thermal efficiency,” and “turbine/expander or compressor/pump
efficiency.”

The entropy balance is useful to calculate maximum work available from a process or to evaluate
reversibility. The entropy balance should be introduced with care because it is often redundant with
the energy balance when simplified with information from step 5 from the strategies of Section 2.13.
(For example, the entropy balance applied to Example 2.11 on page 75 results in the same simplified
equation as the energy balance.) In general, if the pressures and temperatures of the process are
already known, the entropies at each point, and the entropy changes, can be determined without direct
use of the entropy balance. However, if either the pressure or the temperature is unknown for a
process, the entropy balance may be the key to the solution.

 In some cases, T and P are known, so S can be determined without the entropy
balance in a pure system.

Before beginning more examples, it is also helpful to keep in mind those processes which generate
entropy. This is important because, in the event that such processes arise, the entropy-generation term
cannot be set to zero unless we modify the process to eliminate the source of the generation. Entropy
is generated by the following processes.

1. Heat conduction along a temperature gradient.
2. Diffusion along a concentration gradient.
3. Mixing of substances of different composition.
4. Adiabatic mixing at constant system volume of identical substances initially at different
molar entropies due to (T, P) differences.
5. Velocity gradients within equipment. This is accounted for in pipe flow by the friction
factor developed in textbooks on fluid flow.
6. Friction.
7. Electrical resistance.
8. Chemical reactions proceeding at measurable rates.

In an open system, irreversibilities are always introduced when streams of different temperatures
are mixed at constant pressure (item 4 above) because we could have obtained work by operating a
heat engine between the two streams to make them isothermal before mixing. If the streams are
isothermal, but of different composition, mixing will still generate entropy (e.g., see Eqn. 4.8 on page
138), and we have not yet devised a general method to obtain work from motion on this molecular
scale.

 Problem statements will rarely explicitly point out entropy generation, so you will
need to look for causes.



As chemical engineers, it is important to recognize that all chemical reactions proceeding at a finite
rate generate entropy. The fundamental proof of this is provided in Section 17.16 and requires
discussion of the chemical potential discussed much later in the text. Like the other processes listed
here, reactions proceed spontaneously toward an equilibrium state due to finite driving forces. It is
possible to calculate the rate of entropy generation if the chemical potentials are known at the
reaction conditions. However, do not be deceived into thinking that a realistic reaction is
thermodynamically reversible. Reaction engineering literature refers to reactions as reversible if the
equilibrium constant (to be discussed later) is near 1 because the reaction can go “in either direction”
(forward/backward) depending on the driving forces. This type of reversibility is not the same as
thermodynamic reversibility. The reaction proceeding in either direction at measurable rates will
generate entropy and be thermodynamically irreversible.

When a situation requires the minimum work input, or the maximum work output, the system is
designed to minimize entropy generation, or make it zero if possible considering the limitations
discussed here. As we work examples, recall the comments from Section 3.4 which we repeat here:

Note: For irreversible processes, note that we do not apply the entropy balance to
find entropy changes. We always calculate the entropy change by an alternate
reversible pathway that reaches the final state, then we apply the entropy balance
to find how much entropy was generated, or we find the reversible work, apply an
efficiency factor, and identify the final state via the energy balance.

Alternately, for reversible processes, we do apply the entropy balance because we
set the entropy generation term to zero.

4.12. Optimum Work and Heat Transfer
Let us consider how to calculate the optimum work interactions for a general system. For an open

system where kinetic energy and potential energy changes are negligible,

where dSgen = 0 for an internally reversible process. If all the heat is transferred at a single
temperature Tsys, elimination of dQ in the first balance provides

If we wish to apply this balance to a process that is conceptually reversible, we must use care to
avoid any processes that are inherently irreversible (throttle valves, composition mixing processes,
mixing of streams with identical composition but different temperatures, standard heat exchangers,
chemical reactions at finite rates). Thus, if we consider a process that involves mixing compositions
or reactions, we must include realistic estimates of these terms before determining the optimum work
interaction. Once we recognize these limitations, we are ready to consider the general problem of



finding optimum work interactions.

Availability (Exergy)
Section 4.5 considered optimum work interactions between a closed system and reservoir and

found that optimum work interactions occur when the system temperature where heat transfer occurs
is equal to the reservoir temperature. Therefore, for optimum work interactions with the surroundings,
Tsys in Eqn. 4.52 should be replaced with the surrounding’s temperature To. Though it leads to
optimum work, it is an idealized condition because the rate of heat transfer is proportional to the
temperature difference (as studied in heat transfer courses), and the heat transfer with infinitesimal
temperature differences will be infinitesimally slow. The surrounding’s temperature and pressure (To
and Po) are often considered the dead state, because when the system reaches this T and P, energy
input of some type is necessary to obtain expansion/contraction work, shaft work, or heat transfer;
without energy input the process is dead. However, departures from this dead state do provide
opportunities for work and heat interactions. Further, it is desirable to give a name to the combination
of variables that results. For the combination of variables in the summations of Eqn. 4.52 modified
with To, we will use the term availability, or exergy, B,

where H and S are state properties of the system at T and P, but To is the temperature of the dead
state. The terms “availability” and “exergy” are both used in literature for this property. At a given T
and P, the availability changes with To, so B is somewhat different from other state properties used to
this point. Inserting the availability into Eqn. 4.52, and collecting the state changes of the system on
the left-hand side, results in a general balance (ignoring kinetic and potential energy like before),

Steady-State Flow
For a system at steady-state flow, all terms on the left-hand side drop out, resulting in

and we conclude that the difference in availability from the inlets to outlets is related to the
optimum shaft work. Note that TodSgen ≥ 0 and always subtracts from work input when dWS ≥ 0
which means work input for an irreversible process is always greater than a reversible process for a
given state change. Similarly, for a given state change producing work, an irreversible process will
always produce less work compared to a reversible process. The quantity ToSgen is called the lost
work and the reason for the term should now be obvious. To is ambiguous when no heat is transferred
to the surroundings and drops out for an adiabatic process such as an adiabatic turbine without any
loss in applicability of the equation,

Closed System



For a closed system, Eqn. 4.54 becomes

Josiah Willard Gibbs (1839–1903) was an American chemist, mathematician, and
physicist. Yale University awarded Gibbs the first American Ph.D. in Engineering in 1863
and Gibbs spent his career there. Gibbs is recognized for applying calculus to
thermodynamics and combining the first and second laws. Gibbs studied the concept of
chemical potential, the Gibbs phase rule, and many other relations.

For a constant-pressure closed system, VdP can be added to the left side (because it is zero in
magnitude), which then results in dU + PdV + VdP = dU + d(PV) = dH. Thus, the left-hand side can
be replaced with dB, though it is usually easier to calculate dH and TodS independently. We can
define the Gibbs energy G ≡ H – TS. Then dG = dU + PdV + VdP – TdS – SdT. Thus, if the pressure
is constant and the temperature is constant at To, then the change in Gibbs energy is related to the non-
expansion/contraction work. Another interesting analysis can be done if both work terms are on the
right-hand side of the equation:

Hermann Ludwig Ferdinand von Helmholtz (1821–1894) was a German physician and
physicist.
Besides studying optics of the eye, he studied the concept of conservation of energy.

We can define the Helmholtz energy A ≡ U – TS. Then dA = dU – TdS – SdT. When the system is
isothermal at To, then the change in Helmholtz energy is related to the sum of all forms of work.

Availability Analysis
As the world population grows and energy use increases, energy conservation will become

increasingly important. Not only is the energy balance important, but so is the wise use of existing
resources. Availability analysis can be used to determine how much entropy is generated by a
process. Availability analysis is sometimes used in process design analysis,18 and may be used more
widely in the future as we consider wise stewardship of energy resources.

Minimum Work for Separation
A key challenge in the development of a fermentation process is the titer, or yield from the

fermentation. Fermentation is used in the pharmaceutical industry to develop natural molecules. For
example, bacterial production of insulin is a feasible technology. Much of the cost of production
depends on the dilution level. We can estimate the minimum energy cost for concentrating a product
by combining the energy and entropy balances. Suppose that for a feed F we wish to obtain a pure
product P and by-product water, B, in an isothermal process. For continuous separation of a mixed
stream, the steady-state energy balance for a reversible separation is



Assuming an ideal solution, we can recognize that because the heat of mixing is zero the energy
balance becomes

The energy balance thus simplifies to

The steady-state entropy balance for reversible separation exchanging heat at T is:

The strategy will be to determine the heat transfer from the entropy balance and then use it in the
energy balance to find the work.

The entropy of the feed stream will be (using Eqn. 4.9)

Inserting,

which becomes

Let us suppose that component 2 is the desired species. On the basis of heat transfer per mole of
component 2,

Combining with the energy balance, the minimum work per mole of desired species is

Example 4.18. Minimum heat and work of purificationa

Products produced by biological systems can range over mole fractions from 10–1 to 10–9.
a. Estimate the minimum reversible heat and work requirement to purify one mole of
product at 298.15 K over this range.
b. To understand the concentrations in dilute mixtures, calculate the mole fraction of insulin
in 0.1wt% aqueous solution.



Solution
The work is from Eqn. 4.67, and the heat will have the opposite sign.

For x2 = 0.10, x1 = 0.9. At 298.15K,

Repeating the calculation for other values of x2:.

Note that heat must be rejected. If a process is envisioned that requires heat, then the rejected heat
must be increased by an equal amount. For example, if a solution of concentration x2 = 0.10 is
purified by adding 1 kJ of heat, then 9.1 kJ must be rejected.

(b) Searching for the molecular weight of insulin reveals a value of 5808 g/mol. Therefore, x1 =
0.001/5808 = 1.72(10-7). The point is that biomolecules are often large, and therefore their
concentrations can be quite small on a mole fraction basis.

a. This problem was suggested by O’Connell, J.P. et al. July 2010. NSF BioEMB Workshop, San Jose, CA

4.13. The Irreversibility of Biological Life
A fascinating feature of living systems is that they organize small molecules into large structures.

Towering pines grow with energy from the sun, CO2, water, and minerals extracted from the ground.
Mammals grow into sophisticated thinking creatures by consuming small bits of food, consuming
water, and breathing air. Small mindless flagella are known to swim “up” a concentration gradient
toward a food source in a process known as chemotaxis. All of biological life builds molecules that
are chiral rather than racemic. Don’t these processes violate the principles developed thus far in this
chapter where we indicated the tendency of a system to move toward randomness? A careful analysis
shows that the answer is no.

The key is that the feasibility of a process is determined by the entropy change of the universe, not
the system itself. If organisms build molecules with lower entropy than the reactants, then the
surroundings must increase in entropy by a larger amount. These changes can occur by control of the
flux of molecules in/out of the system or by heat transfer. Mammals in particular are warmblooded,
and are virtually isothermal. The body temperature of a healthy human being is universally 37°C (310
K). Rearrangement of the entropy balance for a human provides

Technically, if we assume T = 310K, we also should recognize that entropy is generated at the
boundary between the human and the surroundings (at a lower temperature) and this is not included.

Every biochemical reaction in the body continuously generates entropy. If the organism is fully
grown, we can approximate an adult as a steady-state process, so the first term on the left is nearly



zero. The second term on the left contributes a negative value because entropy is generated constantly
by the biochemical reactions. Ignoring transport terms initially, we can see that the heat transfer is
expected to be negative. The magnitude depends on the entropy flows entering and leaving the system.
Considering the other limiting possibility of negligible heat transfer, the entropy flow “in” must be
less than the entropy flow “out.” In practice, these fluxes are not sufficient to sustain life. For humans,
we know that our bodies reject heat at a rate of about 100 J/s. Thus, in addition to changing the
entropy of our food to waste products, our existence depends on the ability to reject heat to the
surroundings and thus contribute to increase the entropy of the surroundings via heat transfer. In the
event that the surrounding temperature rises, humans experience heat stroke because the biological
processes stop working when the heat transfer is not possible.

Trees and plants use photosynthesis to convert light energy (photons), to run the reaction

We have not explicitly included photons in our energy balance thus far, but it is a form of radiation
similar to heat. A key point is that this reaction is not spontaneous as written. We discuss the driving
forces for chemical reactions towards the end of the text, but a superficial discussion is relevant here.
This reaction is an oversimplification of the actual process. In fact, more than 100 steps are needed
for photosynthetic construction of glucose,19 but these steps drive the overall reaction above. To
create a forward reaction, biological systems have developed a complex series of steps, each
spontaneous and coupled such that carbohydrate production is possible. Plants are able to maintain
this reaction by increasing the entropy of the surroundings to a greater extent than this reaction
decreases the entropy when turning small molecules into carbohydrates.

Energy usage is inherently less efficient as we move up the food chain. When a herbivore or
omnivore eats plant material, the stomach and intestinal enzymes break down the carbohydrates to
simple sugars in catabolic reactions (a step that increases entropy). These sugars are then “burned”
to produce CO2 (increasing entropy) as we showed in the previous chapter and the energy is used to
maintain the life cycle and continuously produce new cells (anabolic reactions, decreasing
entropy20) to replace dying cells and maintain tissue. Also, ingested proteins are broken into amino
acids (increasing entropy) and then reassembled into new proteins (decreasing entropy2). As
discussed above, only a portion of the energy provided by glucose can be utilized for biological
maintenance; some must be rejected as heat. Each creature in the food chain repeats this “loss” of
energy as heat is rejected. As engineers grapple with the challenge to use energy efficiently, it is
helpful to keep in perspective that despite the complexity of living entities, the fundamentals of life
are governed by the same principles as those developed in this chapter. Furthermore, life is made
possible in humans by rejecting heat to the surroundings to drive the biological machinery. Despite
their complexity, humans are not able to use all the energy generated by burning sugars.

4.14. Unsteady-State Open Systems
We end the chapter by providing examples of unsteady-state open systems. The first example

shows that analysis of such systems can produce results quite consistent with expansion in a
piston/cylinder.

Example 4.19. Entropy change in a leaky tank



Consider air (an ideal gas) leaking from a tank. How does the entropy of the gas in the tank change?
Use this perspective to develop a relation between Tf and Pf and compare it to the expression we
obtained previously by the energy balance.

Solution
m-Balance: dn = – dnout

S-Balance: 
But physically, we know that the leaking fluid is at the same state as the fluid in the tank; therefore,

the S-balance becomes , or ∆S = 0.
For an ideal gas with a constant heat capacity:

Compare with Example 2.15 on page 81. The entropy balance and energy balance in this case are
not independent. Either can be used to derive the same result. This also shows that our analysis in
Example 2.15 was assumed to be reversible.

 Illustration that the energy and entropy balances may not be independent.

The next example builds on the first by adding a turbine to the tank. Note the method by which the
system is subdivided to solve the problem.

Example 4.20. An ideal gas leaking through a turbine (unsteady state)
A portable power supply consists of a 28-liter bottle of compressed helium, charged to 13.8 MPa

at 300 K, connected to a small turbine. During operation, the helium drives the turbine continuously
until the pressure in the bottle drops to 0.69 MPa. The turbine exhausts at 0.1 MPa. Neglecting heat
transfer, calculate the maximum possible work from the turbine. Assume helium to be an ideal gas
with CP = 20.9 J/mol-K.

Consider a balance on the tank only. The result of the balance will match the result of Example
4.19.



Writing an entropy balance for a reversible adiabatic turbine only,

which shows that the turbine also does not change the molar entropy. Thus, the molar entropy of the
exiting fluid is the same as the entropy in the tank, which is identical to the molar entropy at the start
of the process. Therefore, the molar entropy and the pressure of the exiting gas are fixed. Since only
two intensive properties fix all other intensive properties for a pure fluid, the exiting temperature is
also fixed. The relation for an ideal gas along a reversible adiabat gives:

Solution by overall energy balance:
d(nU) = Hout dn + dWS and Hout is fixed since Tout, Pout are fixed; therefore, we may apply hint

4(a) from Section 2.14.
Integrating this expression:

nfUf – niUi = Hout(nf – ni) + WS

Rearranging:

Determining variables in the equation:

Choose reference temperature, TR ≡ 300 K, ය setting UR = 0, then since HR = UR + (PV)R, and
since the fluid is an ideal gas, CV = CP – R = 20.9 – 8.314 = 12.586 J/mol-K:

Now, plugging into Eqn. 4.70:
WS = 25.5(–2629 + 2892) – 154.9(0 + 2892)

ය WS = –441,200 J

 Illustration using a reference state.

4.15. The Entropy Balance in Brief
In this section, we refer to a division of the universe into the same three subsystems described in

Section 2.14 on page 74.



1. T is the system temperature at the location where Q is transferred.
2. Sin, Sout are state variables, and any pathway may be used to calculate the change from
inlet to outlet. The pathway for calculation does not need to be the pathway for the actual
process.

3.  represents entropy generation due to irreversibilities within the system, e.g., internal
heat transfer or conduction, viscous dissipation or mixing of streams of differing
composition, or degradation of mechanical energy to thermal energy. Entropy generation at
system boundaries is not included in the balance.
4. Entropy generation may occur at container walls. The entropy generation of the universe
must be calculated by summing  for all three subsystems, not just system 1 and system 3.

Test Yourself

1. What are the constraints on the sign of ?
2. Consider two isothermal processes both rejecting heat at the same temperature. One
process is reversible and the other is irreversible. Which has a larger absolute value of
heat transfer?

4.16. Summary
We began the chapter introducing microscopic methods to calculate entropy. We demonstrated that

entropy increases when volume (for a gas) or temperature increases. Thermal energy is really a
means of representing the randomness due to accessible microstates, such that the concept is best
understood in terms of the microscopic definition of entropy. We showed that the macroscopic
definition was consistent with the microscopic definition. We showed that entropy is essential for
analysis of reversibility for processes, because irreversible processes generate entropy. We
demonstrated that reversible Carnot cycle thermal efficiency was easily evaluated using entropy. The
primary impact for pure-fluid applications is that compressors and turbines can be analyzed using
empirical efficiencies relative to reversible devices. On a broader scale, however, you should
appreciate the limitations of the conversion of heat into work.

This chapter is relatively long because mastering computations involving entropy can be
challenging. Students may be familiar with energy balances and heats of reaction from previous
courses, but entropy may seem new and abstract. Therefore, many examples have been provided.
Students are encouraged to review these and the practice problems at the end of the chapter. The best
way to develop a comfort level with entropy is to practice and learn by doing.

Important Equations
Entropy is a state change, and for an ideal gas,

For a condensed phase, the first term of the second equation should be used for a first



approximation using the heat capacity for the appropriate phase.
Of course, the most important equation of this chapter is the complete entropy balance, but it may

be convenient to remember some of its most common simplifications.
∆S = 0 for a fluid in an adiabatic reversible process, like across a steady-state adiabatic

reversible compressor or turbine or within an unsteady-state adiabatic reversible piston/cylinder.
∆S = Qrev/T for a fluid in any process, like an isothermal reversible compressor. For an

irreversible process, we design a reversible pathway to the actual final state.
∆S = 0 for a the entropy in a reversible adiabatic leaking tank.
Pay careful attention to the subtle distinctions between these equations. A common mistake is to

write ∆S = 0 whenever you see the word “reversible.” Remember that reversibility is coupled to
entropy generation, not directly to S or ∆S. For entropy changes of a fluid, a smart approach is to
write ∆S = Qrev/T always and then scratch a line through Qrev after you deliberately determine that the
process is adiabatic and reversible. A fluid in an irreversible adiabatic process will have an entropy
change (and Qrev) even though the actual heat transfer is zero. Note that the entropy balance uses the
actual heat transfer, Q, not Qrev. Only for a reversible process are they identical.

The distinction between ∆S = 0 and ∆S = 0 is perhaps subtler. By writing ∆S = 0, we emphasize
that only the specific entropy of the fluid remains constant. When ∆S = 0 for an open system, the
quantity ∆S = nfSf – niSi = S∆n will be non-zero whenever S is not at the reference state.

Disorder must increase if two different gases are mixed slowly and adiabatically, but it is difficult
to see how to compute the entropy change from the macroscopic definition of dS. For ideal solutions,
the relation developed from the microscopic approach is:

This equation is useful for estimating the effects of mixing in many situations, even beyond the
assumption of ideal gases from which it derives. Eqn. 4.8 also conveys how disorder and mixing are
not strictly related to heating, as one might infer from the macroscopic definition of entropy. The
entropy of mixing will be of major importance in Unit III in the discussion of mixtures.

4.17. Practice Problems
P4.1. Call placement of a particle in box A, “heads” and placement in box B, “tails.” Given one
particle, there are two ways of arranging it, H or T. For two particles, there are four ways of
arranging them, {HH,HT,TH,TT}. We can treat the microstates by considering each particle in
order. For example, {H T H H} means the first particle is in box A, the second in box B, the
third in box A, and the fourth in box A.

a. List and count the ways of arranging three particles. Now consider four
particles. What is the general formula for the number of arrangements versus the
number of particles? (ANS. 2N)
b. How many arrangements correspond to having two particles in box A and one
in box B? What is the probability of {2H,1T}? (ANS. 3/8)



c. How many arrangements correspond to {2H,2T}. {3H,2T}. {4H,2T}.
{3H,3T}? (ANS. N!/[(N – m)!m!])
d. List the macrostates and corresponding number of microstates for an eight-
particle, two-box system. What portion of all microstates are parts of either 5:3,
4:4, or 3:5 macrostates? (ANS. 71%)
e. What is the change of entropy in going from a 5:3 macrostate to a 4:4
macrostate? (ANS. 3.08E-24 J/K)
f. Use Stirling’s approximation to estimate the change of entropy in going from a
distribution of 50.1% of 6.022E23 in box A to a distribution of 50.001%, and
from 50.001% to 50.000%. (ANS. 1.2E18 J/K)

P4.2. Twenty molecules are contained in a piston + cylinder at low pressure. The piston moves
such that the volume is expanded by a factor of 4 with no work produced of any kind. Compute
∆S/k. (ANS. 23.19)
P4.3. Fifteen molecules are distributed as 9:4:2 between equal-sized boxes A:B:C, respectively.
The partitions between the boxes are removed, and the molecules distribute themselves evenly
between the boxes. Compute ∆S/k. (ANS. 11.23)
P4.4. Rolling two die (six-sided cubes with numbers between 1 and 6 on each side) is like
putting two particles in six boxes. Compute ∆S/k for going from double sixes to a four and three.
(ANS. 0.693)
P4.5. Estimate the change in entropy when one mole of nitrogen is compressed by a piston in a
cylinder from 300 K and 23 liters/mol to 400 K and 460 liters/mol. (CP = 7/2R) (ANS. 1.07
kJ/kgK)
P4.6. Steam at 400°C and 10 bar is left in an insulated 10 m3 cylinder. The cylinder has a small
leak, however. Compute the conditions of the steam after the pressure has dropped to 1 bar.
What is the change in the specific entropy of the steam in the cylinder? Is this a reversible
process? The mass of the cylinder is 600 kg, and its heat capacity is 0.1 cal/g-K. Solve the
problem with and without considering the heat capacity of the cylinder. (ANS. (a)~120°C; (b)
360°C)
P4.7. A mixture of 1CO:2H2 is adiabatically and continuously compressed from 5 atm and
100°F to 100 atm and 1100°F. Hint: For this mixture, CP = x1CP1 + x2CP2.

a. Estimate the work of compressing 1 ton/h of the gas. (CP = 7/2R) (ANS. 1.3E6
BTU/h)
b. Determine the efficiency of the compressor. (ANS. 76%)

P4.8. An adiabatic compressor is used to continuously compress nitrogen (CP/R = 7/2) from 2
bar and 300 K to 15 bar. The compressed nitrogen is found to have an outlet temperature of 625
K. How much work is required (kJ/kg)? What is the efficiency of the compressor? (ANS. 9.46
kJ/mol, 72%)
P4.9. An adiabatic compressor is used to continuously compress low-pressure steam from 0.8
MPa and 200°C to 4.0 MPa and 500°C in a steady-state process. What is the work required per
kg of steam through this compressor? Compute the efficiency of the compressor. (ANS. 606 J/g,
67%)



P4.10. An adiabatic turbine is supplied with steam at 2.0 MPa and 600°C and the steam exhausts
at 98% quality and 24°C. Compute the work output per kg of steam. Compute the efficiency of
the turbine. (ANS. 1.2E3 kJ, 85%)
P4.11. An adiabatic compressor has been designed to continuously compress 1 kg/s of saturated
vapor steam from 1 bar to 100 bar and 1100°C. Estimate the power requirement of this
compressor in horsepower. Determine the efficiency of the compressor. (ANS. 3000 hp, 60%)
P4.12. Ethylene gas is to be continuously compressed from an initial state of 1 bar and 20°C to a
final pressure of 18 bar in an adiabatic compressor. If compression is 70% efficient compared
with an isentropic process, what will be the work requirement and what will be the final
temperature of the ethylene? Assume the ethylene behaves as an ideal gas with CP = 44 J/mol-K.
(ANS. 13.4 kJ/mol, 596 K)
P4.13. Operating a wind tunnel for aircraft experiments begins with adiabatically and reversibly
compressing atmospheric air (300 K) into long cylinders comprising a total volume of 20 m3 at
200 bars. The cylinders are initially at 1 bar. Estimate the minimal amount of work required
(MJ) to perform the compression step. (ANS. online.)

a. Write the most appropriate energy balance(s) for this process. Clearly identify
the system(s) pertaining to your energy balance(s). Explain your reasoning
briefly.
b. Write the most appropriate entropy balance(s) for this process. Clearly
identify the system(s) pertaining to your entropy balance(s). Explain your
reasoning briefly.
c. Solve for the minimal amount of work required (MJ) to perform the
compression step.

P4.14. As part of a refrigeration cycle, Freon 134a is adiabatically compressed from the
saturated vapor at –60°C (note the negative sign on temperature) to 1017 kPa and 100°C.

a. How much work is required in kJ/kg?
b. Estimate the efficiency of the compressor.

(ANS. 121, 75%)
P4.15. Steam is produced at 30 bar and some unknown temperature. A small amount of steam is
bled off and goes through an adiabatic throttling valve to 1 bar. The temperature of the steam
exiting the throttling valve is 110°C. What is the value of the specific entropy of the steam before
entering the throttle? (ANS. 5.9736 J/g-K)
P4.16. Suppose the expansion in problem P2.19 was completely adiabatic instead of isothermal
and CP = 7 cal/(mol-K). How would the height of the piston be affected? Must we generate heat
or consume heat to maintain isothermal operation? (ANS. decrease, generate)
P4.17. It is desired to determine the volume of an initially evacuated tank by filling it from an 80
liter cylinder of air at 300 bar and 300 K. The final pressure of both tanks is 5 bars. Estimate the
volume in liters. (ANS. 4720 L)
P4.18. An insulated cylinder is fitted with a freely floating piston, and contains 0.5 kg of steam
at 9 bar and 90% quality. The space above the piston, initially 0.05m3, contains air at 300 K to
maintain the pressure on the steam. Additional air is forced into the upper chamber, forcing the



piston down and increasing the steam pressure until the steam has 100% quality. The final steam
pressure is 30 bars, and the work done on the steam is 360 kJ, but the air above the steam has not
had time to exchange heat with the piston, cylinder, or surroundings. The air supply line is at 50
bar and 300 K. What is the final temperature of the air in the upper chamber? (ANS. online)
P4.19. A well-insulated cylinder, fitted with a frictionless piston, initially contained 9 kg of
liquid water and 0.4 kg of water vapor at a pressure of 1.4 MPa. 2 kg of steam at 1.6 MPa was
admitted to the cylinder while the pressure was held constant by allowing the piston to expand.
(ANS. online)

a. Write the energy balance for this process.
b. If the final volume of the contents of the cylinder was six times the initial
volume, determine the temperature of the superheated steam that was admitted to
the cylinder.

P4.20. Many action movies show gas cylinders that have their caps knocked off. The tanks go
flying around wreaking havoc (only on the bad guys, of course). How much velocity could a tank
like that really generate? For an upper bound, consider a tank traveling horizontally on a
frictionless surface with an isentropic nozzle taking the place of the cap that has been knocked
off. Suppose the cylinder weighs 70 kg and holds 50 L of He at 100bar, 300 K.

a. Write the most appropriate energy balance(s) for this process. Clearly identify
the system(s) pertaining to your energy balance(s). Explain your reasoning
briefly.
b. Write the most appropriate entropy balance(s) for this process. Clearly
identify the system(s) pertaining to your entropy balance(s). Explain your
reasoning briefly.
c. Solve for the total kinetic energy (MJ) developed by the tank and its velocity.

4.18. Homework Problems
4.1. Extending Example 4.2 on page 141 from solids to gases is straightforward if you
recall the development of Eqn. 1.13 on page 19. Consider N2 for example. Being diatomic,
we should expect that Uig = 2(3NAkT/2) = 6RT/2 in the limit of classical vibrations.
Vibrational energy means that heat can be absorbed in the vibration of a bond. Since N2 has
only one bond, it can only absorb energy in one way, removing one degree of freedom. We
show in Eqn. 6.49 on page 240 that the change in energy due to vibration is ∆Uvib =
ε/[exp(—β ε) — 1]. For now, without concern for the proof, assume ∆Uvib as given.
Adapting Example 4.2 for N2 then gives: Uig = 5RT/2 + ε/[exp(—β ε) — 1].

a. Use the NIST WebBook to plot data for CV of N2 at 0.1 MPa and T = [150,
2000 K].
b. Derive an expression for CV based on above dissussion. Evaluate your
expression at 1000K assuming ε/k = 1000K.
c. Regress an optimal value for ε/k of N2 and plot a comparison of the calculated
results to experimental data. Show the calculated results as a curve with no



points.
4.2. An ideal gas, with temperature-independent CP = (7/2)R, at 15°C and having an initial
volume of 60 m3, is heated at constant pressure (P = 0.1013 MPa) to 30°C by transfer of
heat from a reservoir at 50°C. Calculate ∆Sgas, ∆Sheat reservoir, ∆Suniverse. What is the
irreversible feature of this process?
4.3. Steam undergoes a state change from 450°C and 3.5 MPa to 150°C and 0.3 MPa.
Determine ∆H and ∆S using the following:

a. Steam table data
b. Ideal gas assumptions (be sure to use the ideal gas heat capacity for water)

4.4. The following problems involve one mole of an ideal monatomic gas, CP = 5R/2, in a
variable volume piston/cylinder with a stirring paddle, an electric heater, and a cooling
coil through which refrigerant can flow (see figure). The piston is perfectly insulated. The
piston contains 1 gmole of gas. Unless specified, the initial conditions are: Ti = 25°C, Pi =
5 bar.

a. Status: Heater on; cooler off; paddle off; piston fixed. Five kJ are added by the
heater. Find ∆U, ∆S, ∆P, and ∆T.
b. Status: Heater off; cooler off; paddle off; piston moveable. What reversible
volume change will give the same temperature rise as in part (a)? Also find ∆U,
∆S, and ∆P.
c. Status: Heater off; cooler off; paddle on; piston fixed. What shaft work will
give the same ∆U, ∆S as part (a)?
d. Status: Heater off; cooler off; paddle on; piston fixed. The stirring motor is
consuming 55 watts and is 70% efficient. What rate is the temperature changing?
At what initial rates are U and S changing?
e. Status: Heater unknown; cooler unknown; paddle off; piston free. We wish to
perform a reversible isothermal compression until the volume is half of the initial
volume. If the volume is decreasing at 2.0 cm3/s, at what rate should we heat or
cool? Express your answer in terms of the instantaneous volume. What is the total
heat transfer necessary?

4.5. When a compressed gas storage tank fails, the resultant explosion occurs so rapidly
that the gas cloud can be considered adiabatic and assumed to not mix appreciably with the
surrounding atmosphere. Consider the failure of a 2.5-m3 air storage tank initially at 15 bar.
Atmospheric pressure is 1 bar, CP = 7R/2. Provide an estimate by assuming reversibility.

a. Calculate the work done on the atmosphere. Does the reversibility



approximation overestimate or under-estimate the actual work?
b. A detonation of 1 kg of TNT releases about 4.5 MJ of work. Calculate the
equivalent mass of TNT that performs the same work as in part (a).

4.6. Work problem 4.5 but consider a steam boiler that fails. The boiler is 250 L in size,
operating at 4 MPa, and half full of liquid.
4.7. An isolated chamber with rigid walls is divided into two equal compartments, one
containing gas at 600 K and 1 MPa and the other evacuated. The partition between the two
compartments ruptures. Compute the final T, P, and ∆S for the following:

a. An ideal gas with CP/R = 7/2

b. Steam.
4.8. An isolated chamber is divided into two equal compartments, one containing gas and
the other evacuated. The partition between the two compartments ruptures. At the end of the
process, the temperature and pressure are uniform throughout the chamber.

a. If the filled compartment initially contains an ideal gas at 25 MPa and 650 K,
what is the final temperature and pressure in the chamber? What is ∆S for the
process? Assume a constant heat capacity of CP/R = 4.041.

b. If the filled chamber initially contains steam at 25 MPa and 650 K, what is the
final temperature and pressure in the chamber? What is ∆S for the process? (Use
the steam tables.)

4.9. Airplanes are launched from aircraft carriers by means of a steam catapult. The
catapult is a well-insulated cylinder that contains steam, and is fitted with a frictionless
piston. The piston is connected to the airplane by a cable. As the steam expands, the
movement of the piston causes movement of the plane. A catapult design calls for 270 kg of
steam at 15 MPa and 450°C to be expanded to 0.4 MPa. How much work can this catapult
generate during a single stroke? Compare this to the energy required to accelerate a 30,000
kg aircraft from rest to 350 km per hour.

4.10. We have considered heat and work to be path-dependent. However, if all heat transfer
with surroundings is performed using a reversible heat transfer device (some type of reversible
Carnot-type device), work can be performed by the heat transfer device during heat transfer to
the surroundings. The net heat transferred to the surroundings and the net work done will be
independent of the path. Demonstrate this by calculating the work and heat interactions for the
system, the heat transfer device, and the sum for each of the following paths where the
surroundings are at Tsurr = 273 K. The state change is from state 1, P1 = 0.1 MPa, T1 = 298 K
and state 2, P2 = 0.5 MPa and T2 which will be found in part (a). CP = 7R/2.

a. Consider a state change for an ideal gas in a piston/cylinder. Find T2 by an
adiabatic reversible path. Find the heat and work such that no entropy is
generated in the universe. This is path a. Sketch path a qualitatively on a P-V
diagram.
b. Now consider a path consisting of step b, an isothermal step at T1, and step c,
an isobaric step at P2. Sketch and label the step on the same P-V diagram created
in (a). To avoid generation of entropy in the universe, use heat engines/pumps to



transfer heat during the steps. Calculate the WEC and WS as well as the heat
transfer with the surroundings for each of the steps and overall. Compare to part
(a) the total heat and work interactions with the surroundings.
c. Now consider a path consisting of step d, an isobaric step at P1, and step e, an
isothermal step at T2. Calculate the WEC and WS as well as the heat transfer with
the surroundings for each of the steps and overall. Compare to part (a) using this
pathway and provide the same documentation as in (b).

4.11. Consider the wintertime heating of a house with a furnace compared to addition of Carnot
heat engines/pumps. To compensate for heat losses to the surroundings, the house is maintained
at a constant temperature Thouse by a constant rate of heat transfer, . The furnace operates

at a constant temperature TF, and with direct heat transfer, the heat required from the furnace, 

is equal to .
a. Instead of direct heat transfer, if we utilize the surroundings, at TS, as an

additional heat source and include heat pump technology,  may be reduced by
generating work from a heat engine operating between TF and TS, then applying
that work energy to a heat pump operating between TS and Thouse. Given that TF =

800 K, T = 293 K, TS = 265 K, and  = 40 kJ/h, determine  utilizing heat
pump technology. No other sources of energy may be used.
b. Another option is to run a heat engine between TF and Thouse and the heat pump
between TS and Thouse. Compare this method with part (a).

4.12. An ideal gas enters a valve at 500 K and 3 MPa at a steady-state rate of 3 mol/min. It is
throttled to 0.5 MPa. What is the rate of entropy generation? Is the process irreversible?
4.13. SO2 vapor enters a heat exchanger at 100°C and at a flowrate of 45 mole/h. If heat is
transferred to the SO2 at a rate of 1,300 kJ/h, what is the rate of entropy transport in the gas at the
outlet relative to the inlet in kJ/K/h given by ?
4.14. An ideal gas stream (Stream A), CP = 5R/2, 50 mole/h, is heated by a steady-state heat
exchanger from 20°C to 100°C by another stream (Stream B) of another ideal gas, CP = 7R/2, 45
mole/h, which enters at 180°C. Heat losses from the exchanger are negligible.

a. For concurrent flow in the heat exchanger, calculate the molar entropy changes
(Sout – Sin) for each stream, and  for the heat exchanger.
b. For countercurrent flow in the heat exchanger, calculate the molar entropy
changes (Sout – Sin) for each stream, and  for the heat exchanger. Comment on
the comparison of results from parts (a) and (b).

4.15. An inventor has applied for a patent on a device that is claimed to utilize 1 mole/min of air
(assumed to be an ideal gas) with temperature independent CP = (7/2)R which enters at 500 K
and 2 bar, and leaves at 350 K and 1 bar. The process is claimed to produce 2000 J/min of work
and to require an undisclosed amount of heat transfer with a heat reservoir at 300 K. Should the



inventor be issued a patent on this device?
4.16. Two streams of air are mixed in a steady-state process shown below. Assume air is an
ideal gas with a constant heat capacity CP = 7R/2.

a. What is the temperature of the stream leaving the tank if the process is
adiabatic?
b. What is the rate of entropy generation within the tank if the process is
adiabatic?
c. If we duplicated the stream conditions (temperatures, pressures, and flowrates)
with an internally reversible process, what is the maximum rate at which work
could be obtained? If desirable, you are permitted to transfer heat to the
surroundings at the surroundings’ temperature of 295 K.

4.17. Air is flowing at steady state through a 5 cm diameter pipe at a flow rate of 0.35 mole/min
at P = 5 bar and T = 500 K. It flows through a throttle valve and exits at 1 bar. Assume air is an
ideal gas with CP = 29.1 J/mol-K. If the throttle valve was replaced by a reversible steady-state
flow device to permit exactly the same state change for the air in this steady-state process, at
what rate could work could be obtained? Heat transfer, if desired, can occur with the
surroundings at 298 K, which may be considered a reservoir.
4.18. A common problem in the design of chemical processes is the steady-state compression of
gases from a low pressure P1 to a much higher pressure P2. We can gain some insight about
optimal design of this process by considering adiabatic reversible compression of ideal gases
with stage-wise intercooling. If the compression is to be done in two stages, first compressing
the gas from P1 to P*, then cooling the gas at constant pressure down to the compressor inlet
temperature T1, and then compressing the gas to P2, what should the value of the intermediate
pressure be to accomplish the compression with minimum work?
4.19. Steam flowing at steady state enters a turbine at 400°C and 7 MPa. The exit is at 0.275
MPa. The turbine is 85% efficient. What is the quality of the exiting stream? How much work is
generated per kg of steam?
4.20. An adiabatic steam turbine inlet is to be 4 MPa. The outlet of the turbine is to operate at
0.01 MPa, and provide saturated steam. The turbine has an efficiency of 85%. Determine the
superheat which is required on the turbine inlet, and the work produced by the turbine.
4.21. Steam is fed to an adiabatic turbine at 4 MPa and 500°C. It exits at 0.1 MPa.

a. If the turbine is reversible, how much work is produced per kg of steam?
b. If the turbine is 80% efficient, how much work is produced per kg of steam?

4.22. Methane is compressed in a steady-state adiabatic compressor (87% efficient) to 0.4 MPa.
What is the required work per mole of methane in kJ? If the flow is to be 17.5 kmol/h, how much



work must be furnished by the compressor (in kW)? What is the rate of entropy generation (in
kJ/K/h)? (a) the inlet is at 0.1013 MPa and –240°F; (b) the inlet is 0.1013 MPa and 200 K.
4.23. Methane is to be compressed from 0.05 MPa and –120°F to 5 MPa in a two-stage
compressor. In between adiabatic, reversible stages, a heat exchanger returns the temperature to
–120°F. The intermediate pressure is 1.5 MPa.

a. What is the work required (kJ/kg) in the first compressor of methane?
b. What is the temperature at the exit of the first compressor (°C)?
c. What is the cooling requirement (kJ/kg) in the interstage cooler?

4.24. A steady stream (1000 kg/hr) of air flows through a compressor, entering at (300 K, 0.1
MPa) and leaving at (425 K, 1 MPa). The compressor has a cooling jacket where water flows at
1500 kg/hr and undergoes a 20 K temperature rise. Assuming air is an ideal gas, calculate the
work furnished by the compressor, and also determine the minimum work required for the same
state change of air.
4.25. Propane is to be compressed from 0.4 MPa and 360 K to 4 MPa using a two-stage
compressor. An interstage cooler returns the temperature of the propane to 360 K before it enters
the second compressor. The intermediate pressure is 1.2 MPa. Both adiabatic compressors have
a compressor efficiency of 80%.

a. What is the work required in the first compressor per kg of propane?
b. What is the temperature at the exit of the first compressor?
c. What is the cooling requirement in the interstage cooler per kg of propane?

4.26.
a. A steam turbine in a small electric power plant is designed to accept 5000
kg/h of steam at 60 bar and 500°C and exhaust the steam at 1 bar. Assuming that
the turbine is adiabatic and reversible, compute the exit temperature of the steam
and the power generated by the turbine.
b. If the turbine in part (a) is adiabatic but only 80% efficient, what would be the
exit temperature of the steam? At what rate would entropy be generated within
the turbine?
c. One simple way to reduce the power output of the turbine in part (a) (100%
efficient) is by adjusting a throttling valve that reduces the turbine inlet steam
pressure to 30 bar. Compute the steam temperature to the turbine, the rate of
entropy generation, and the power output of the turbine for this case. Is this a
thermodynamically efficient way of reducing the power output? Can you think of
a better way?

4.27. Steam is used in the following adiabatic turbine system to generate electricity; 15% of the
mass flow from the first turbine is diverted for other use.

a. How much work (in kJ/h) is generated by the first turbine which is 80%



efficient?
b. How much work (in kJ/h) is generated by the second turbine which is 80%
efficient?
c. Steam for the turbines is generated by a boiler. How much heat must be
supplied to the boiler (not shown) which has 300 kg/h of flow? The stream
entering the boiler is T = 170°C, P = 8 MPa. The stream exiting the boiler
matches the inlet to the first turbine.

4.28. Liquid nitrogen is useful for medical purposes and for research laboratories. Determine the
minimum shaft work needed to liquefy nitrogen initially at 298 K and 0.1013 MPa and ending
with saturated liquid at the normal boiling point, 77.4 K and 0.1013 MPa. The heat of
vaporization at the normal boiling point is 5.577 kJ/mol, and the surroundings are at 298 K. The
constant pressure heat capacity of gaseous nitrogen can be assumed to be independent of
temperature at 7/2R for the purpose of this calculation.

a. Consider nitrogen entering a flow device at 1 mol/min. Give shaft work in kW.
b. Consider nitrogen in a piston/cylinder device. Give the work in kJ per mole
liquefied.
c. Compare the minimum shaft work for the two processes. Is one of the
processes more advantageous than the other on a molar basis?

4.29. Propane flows into a steady-state process at 0.2 MPa and 280 K. The final product is to be
saturated liquid propane at 300 K. Liquid propane is to be produced at 1000 kg/h. The
surroundings are at 295 K. Using a propane property chart, determine the rate of heat transfer
and minimum work requirement if the process is to operate reversibly.
4.30. Propane (1000 kg/hr) is to be liquefied following a two-stage compression. The inlet gas
is to be at 300 K and 0.1 MPa. The outlet of the adiabatic compressor I is 0.65 MPa, and the
propane enters the interstage cooler where it exits at 320 K, then adiabatic compressor II raises
the propane pressure to 4.5 MPa. The final cooler lowers the temperature to 320 K before it is
throttled adiabatically to 0.1 MPa. The adiabatic compressors have an efficiency of 80%.

a. Determine the work required by each compressor.
b. If the drive motors and linkages are 80% efficient (taken together), what size
motors are required?
c. What cooling is required in the interstage cooler and the final cooler?
d. What percentage of propane is liquefied, and what is the final temperature of
the propane liquid?

4.31. A heat exchanger operates with the following streams: Water in at 20°C, 30 kg/hr; water
out at 70°C; Organic in at 100°C, 41.8 kg/hr; organic out at 40°C.

a. What is the maximum work that could be obtained if the flow rates and
temperatures of the streams remain the same, but heat transfer is permitted with
the surroundings at 298 K? (CPwater = 4.184 kJ/(kgK), CPorganic = 2.5 kJ/(kgK).)

b. What is the maximum work that could be obtained by replacing the heat
exchanger with a reversible heat transfer device, where the inlet flowrates and
temperatures are to remain the same, the organic outlet temperature remains the



same, and no heat transfer with the surroundings occurs?
4.32. Presently, benzene vapors are condensed in a heat exchanger using cooling water. The
benzene (100 kmol/h) enters at 0.1013 MPa and 120°C, and exits at 0.1013 MPa and 50°C.
Cooling water enters at 10°C and exits at 40°C.

a. What is the current demand for water (kg/h)?
b. To what flowrate could the water demand be lowered by introducing a
reversible heat transfer device that is adiabatic with the surroundings? The
temperature rise of water is to remain the same. What work could be obtained
from the new heat transfer device?

4.33. A Hilsch vortex tube is an unusual device that takes an inlet gas stream and produces a hot
stream and a cold stream without moving parts. A high-pressure inlet stream (A) enters towards
one end of the tube. The cold gas exits at outlet B on the end of the tube near the inlet where the
port is centered in the end cap. The hot stream exits at outlet C on the other end of the tube where
the exit is a series of holes or openings around the outer edge of the end cap.

The tube works in the following way. The inlet stream A enters tangent to the edge
of the tube, and swirls as it cools by expansion. Some of the cool fluid exits at port B.
The remainder of the fluid has high kinetic energy produced by the volume change
during expansion, and the swirling motion dissipates the kinetic energy back into
internal energy, so the temperature rises before the gas exits at port C.

Inlet A is at 5 bar and 310 K and 3.2 mol/min. Outlet B is at 1 bar and 260 K. Outlet
C is at 1 bar and 315 K. The tube is insulated and the fluid is air with CP = 7R/2.

a. Determine the flowrates of streams B and C.

b. Determine  for the Hilsch tube.
c. Suppose a reversible heat engine is connected between the outlet streams B
and C which is run to produce the maximum work possible. The proposed heat
engine may only exchange heat between the streams and not with the surroundings
as shown. The final temperature of streams B and C will be TB′ as they exit the
apparatus. What is TB′?



d. What work output is possible in W? What is  for the entire system including
the tube plus the heat engine?
e. Suppose that instead of using the heat engine, streams B and C were mixed
directly with one another to form a single outlet stream. What would this
temperature be, and how does it compare with TB′ from part (c)? Calculate 

and compare it with  from part (c). What do you conclude from the
comparison?

4.34. Methane gas is contained in a 0.65-m3 gas cylinder at 6.9 MPa and 300 K. The cylinder is
vented rapidly until the pressure falls to 0.5 MPa. The venting occurs rapidly enough that heat
transfer between the cylinder walls and the gas can be neglected, as well as between the
cylinder and the surroundings. What is the final temperature and the final number of moles of gas
in the tank immediately after depressurization? Assume the expansion within the tank is
reversible, and the following:

a. Methane is considered to be an ideal gas with CP/R = 4.298

b. Methane is considered to be a real gas with properties given by a property
chart.

4.35. A thermodynamically interesting problem is to analyze the fundamentals behind the product
called “fix-a-flat.” In reality, this product is a 500 mL can that contains a volatile compound
under pressure, such that most of it is liquid. Nevertheless, we can make an initial approximation
of this process by treating the contents of the can as an ideal gas. If the initial temperature of both
the compressed air and the air in the tire is 300 K, estimate the initial pressure in the
compressed air can necessary to reinflate one tire from 1 bar to 3 bar. Also, estimate the final
air temperature in the tire and in the can. For the purposes of this calculation you may assume:
air is an ideal gas with CP/R = 7/2, the tire does not change its size or shape during the inflation
process, and the inner tube of the tire has a volume of 40,000 cm3. We will reconsider this
problem with liquid contents, after discussing phase equilibrium in a pure fluid.
4.36. Wouldn’t it be great if a turbine could be put in place of the throttle in problem 4.35? Then
you could light a small bulb during the inflation to see what you were doing at night. How much
energy (J) could possibly be generated by such a turbine if the other conditions were the same as
in problem 4.35?
4.37. A 1 m3 tank is to be filled using N2 at 300 K and 20 MPa. Instead of throttling the N2 into
the tank, a reversible turbine is put in line to get some work out of the pressure drop. If the
pressure in the tank is initially zero, and the final pressure is 20 MPa, what will be the final
temperature in the tank? How much work will be accomplished over the course of the entire
process? (Hint: Consider the entropy balance carefully.)
4.38. Two well-insulated tanks are attached as shown in the figure below. The tank volumes are
given in the figure. There is a mass-flow controller between the two tanks. Initially, the flow
controller is closed. At t = 0, the mass flow controller is opened to a flow of 0.1 mol/s. After a
time of 500 seconds, what are the temperatures of the two tanks? Neglect the heat capacity of the
tanks and piping. No heat transfer occurs between the two tanks. (After 500 seconds, the
pressure in the left tank is still higher than the pressure in the right tank.) The working fluid is



nitrogen and the ideal gas law may be assumed. The ideal gas heat capacity CP = 7/2·R may be
assumed to be independent of T.

4.39. Two storage tanks (0.1 m3 each) contain air at 2 bar. They are connected across a small
reversible compressor. The tanks, connecting lines, and compressor are immersed in a constant
temperature bath at 280 K. The compressor will take suction from one tank, compress the gas,
and discharge it to the other tank. The gas is at 280 K at all times. Assume that air is an ideal gas
with CP = 29.3 J/mol-K.

a. What is the minimum work interaction required to compress the gas in one tank
to 3 bar?
b. What is the heat interaction with the constant temperature bath?

4.40. A constant pressure air supply is connected to a small tank (A) as shown in the figure
below. With valves B and C, the tank can be pressurized or depressurized. The initial conditions
are T = 300 K, P = 1.013 bar, CP = 29.3 J/(mol-K). Consider the system adiabatic.

a. The tank is pressurized with valve B open and valve C closed. What is the
final temperature of the tank? Neglect the heat capacity of the tank and valves.
b. Taking the system as the tank plus the valves, what is the entropy change of the
system due to pressurization? What is the entropy change of the air supply
reservoir? What is the entropy change of the universe? Use a reference state of
300 K and 1.013 bar.
c. During depressurization with valve B closed and valve C open, how does the
molar entropy entering valve C compare with the molar entropy leaving? What is
the temperature of the tank following depressurization?

4.41. The pressurization of problem 4.40 is performed by replacing the inlet valve with a
reversible device that permits pressurization that is internally reversible. The system is to
remain adiabatic with respect to heat transfer of the surroundings.

a. What is the final temperature of the tank?
b. How much work could be obtained?

4.42. A 2m3 tank is at 292 K and 0.1 MPa and it is desired to pressurize the tank to 3 MPa. The
gas is available from an infinite supply at 350 K and 5 MPa connected to the tank via a throttle
valve. Assume that the gas follows the ideal gas law with a constant heat capacity of CP = 29
J/(mol-K).

a. Modeling the pressurization as adiabatic, what is the final temperature in the
tank and the final number of moles when the pressure equals 3 MPa?



b. Identify factors included in the idealized calculation of part (a) that contribute
to irreversibilities.
c. Identify factors neglected in the analysis of part (a) that would contribute to
irreversibilities in a real process.
d. If the pressurization could be performed reversibly, the final temperature might
be different from that found in part (a). Clearly outline a procedure to calculate
the temperature indicating that enough equations are provided for all unknowns.
Also clearly state how you would use the equations. Additional equipment is
permissible provided that the process remains adiabatic with regard to heat
transfer to the surroundings.
e. In part (d), would work be added, removed, or not involved in making the
process reversible? Provide equations to calculate the work interaction.

4.43. Two gas storage tanks are interconnected through an isothermal expander. Tank 1 (V = 1
m3) is initially at 298 K and 30 bar. Tank 2 (V = 1 m3) is initially at 298 K and 1 bar. Reversible
heat transfer is provided between the tanks, the expander, and the surroundings at 298 K. What is
the maximum work that can be obtained from the expander when isothermal flow occurs from
tank 1 to tank 2?



Chapter 5. Thermodynamics of Processes

There cannot be a greater mistake than that of looking superciliously upon practical
applications of science. The life and soul of science is its practical application.

Lord Kelvin (William Thompson)

In the first four chapters, we have concentrated on applications of the first and second laws to
simple systems (e.g., turbine, throttle). The constraints imposed by the second law should be clear. In
this chapter, we show how the analyses we have developed for one or two operations at a time can
be assembled into complex processes. In this way, we provide several specific examples of ways
that operations can be connected to create power cycles, refrigeration cycles, and liquefaction cycles.
We can consider these processes as paradigms for general observations about energy and entropy
constraints.

Chapter Objectives: You Should Be Able to...
1. Write energy and entropy balances around multiple pieces of equipment using correct
notation including mass flow rates.
2. Simplify energy balances by recognizing when streams have the same properties (e.g.,
splitter) or flow rates (heat exchanger inlet/outlet).
3. Apply the correct strategy for working through a power cycle with multiple reheaters and
feedwater preheaters.
4. For ordinary vapor compression cycles, locate condenser/evaporator P or T given one
or the other and plot the process outlet and P-H diagram.
5. Successfully approach complex processes by simplifying the E-balance and S-balance,
solving for unknowns.

5.1. The Carnot Steam Cycle
We saw in Example 4.4 on page 145 how a Carnot cycle could be set up using steam as a working

fluid. The addition of heat at constant temperature and the macroscopic definition of entropy establish
a correspondence between temperature and heat addition/removal. Steam is especially well suited for
isothermal heat exchange because boiling and condensation are naturally isothermal and exchange
large amounts of heat. To review, we could plot this cycle in T-S coordinates and envision a flow
process with a turbine to produce work during adiabatic expansion and some type of compressor for
the adiabatic compression as shown in Fig. 5.1. The area inside the P-V cycle represents the work
done by the gas in one cycle, and the area enclosed by the T-S path is equal to the net intake of energy
as heat by the gas in one cycle.



Figure 5.1. Illustration of a Carnot cycle based on steam in T-S coordinates.

The Carnot cycle has a major advantage over other cycles. It operates at the highest temperature
available for as long as possible, reducing irreversibilities at the boundary because the system
approaches the reservoir temperature during the entire heat transfer. In contrast, other cycles may only
approach the hot reservoir temperature for a short segment of the heat transfer. A similar argument
holds regarding the low temperature reservoir. Unfortunately, it turns out that it is impossible to make
full use of the advantages of the Carnot cycle in practical applications. When steam is used as the
working fluid, the Carnot cycle is impractical for three reasons: 1) It is impractical to stay inside the
phase envelope because higher temperatures correlate with higher pressure. Higher pressures lead to
smaller heat of vaporization to absorb heat. Since the critical point of water is only ~374°C,
substantially below the temperatures from combustion, the temperature gradient between a fired
heater and the steam would be large; 2) expanding saturated vapor to low-quality (very wet) steam
damages turbine blades by rapid erosion due to water droplets; 3) compressing a partially condensed
fluid is much more complex than compressing an entirely condensed liquid. Therefore, most power
plants are based on modifications of the Rankine cycle, discussed below. Nevertheless, the Carnot
cycle is so simple that it provides a useful estimate for checking results from calculations regarding
other cycles.

5.2. The Rankine Cycle
In a Rankine cycle, the vapor is superheated before entering the turbine. The superheat is adjusted

to avoid the turbine blade erosion from low-quality steam. Similarly, the condenser completely
reduces the steam to a liquid that is convenient for pumping.

In Fig. 5.2, state 4′ is the outlet state for a reversible adiabatic turbine. We use the prime (′) to
denote a reversible outlet state as in the previous chapter. State 4 is the actual outlet state which is
calculated by applying the efficiency to the enthalpy change.

Figure 5.2. Rankine cycle.

 The prime denotes a reversible outlet state.

Because a real turbine always generates entropy, state 4 will always be to the right of 4′ on a T-S
diagram. States 4 and 4′ can be inside or outside the phase envelope. Efficiencies are greater if state
4 is slightly inside the phase envelope because the enthalpy change will be larger for the same
pressure drop due to the large enthalpy of vaporization; however, to avoid turbine blade damage,
quality is kept above 90% in most cases.



Note in Fig. 5.2 that the superheater between the boiler and the turbine is not drawn, and only a
single unit is shown. In actual power plants, separate superheaters are used; however, for the sake of
simplicity in our discussions the boiler/superheater steam generator combination will be represented
by a single unit in the schematic.

 Most plants will have separate boilers and superheaters. We show just a boiler for
simplicity.

Turbine calculation principles were covered in the last chapter. Now we recognize that the net
work is the sum of the work for the turbine and pump and that some of the energy produced by the
turbine is needed for the pump. In general, the thermal efficiency is given by:

The boiler input can be calculated directly from the enthalpy out of the pump and the desired
turbine inlet. The key steps are illustrated in Example 5.1.

Example 5.1. Rankine cycle
A power plant uses the Rankine cycle. The turbine inlet is 500°C and 1.4 MPa. The outlet is 0.01

MPa. The turbine has an efficiency of 85% and the pump has an efficiency of 80%. Determine:
a. The work done by the turbine (kJ/kg)
b. The work done by the pump, the heat required, and the thermal efficiency;
c. The circulation rate to provide 1 MW net power output.

Solution
We will refer to Fig. 5.2 for stream numbers. The recommended method for solving process

problems is to establish a table to record values as they are determined. In this text we will show
values in the tables with bold borders if they have been determined by balance calculations. The
turbine outlet can be read from the temperature table without interpolation. Cells with standard
borders refer to properties determined directly from the problem statement

 Boldfaced table cells show calculations that were determined by balances. We
follow this convention in the following examples.



Because the turbine inlet has two state variables specified, the remainder of the state properties are
found from the steam tables and tabulated in the property table. We indicate a superheated vapor with
“supV” compressed liquid with “compL.”

a. Stepping forward across the turbine involves the same specifications as part (c) of
Example 4.13 on page 168. The properties from 4 and 4′ are transferred from that example
to the property table. The work done is –959 kJ/kg.
b. The outlet of the condenser is taken as saturated liquid at the specified pressure, and
those values are entered into the table. We must calculate  and . So we need H6 and
WS,pump which are determined by calculating the adiabatic work input by the pump to
increase the pressure from state 5. Although the reversible calculation for the pump is
isentropic, we may apply Eqn. 2.61 without direct use of entropy, and then correct for
efficiency. For the pump,

Thus, the work of the pump is small, resulting in H6 = 191.8 + 1.8 = 193.6 kJ/kg.
The net work is W’S,net = –959.0 + 1.8 = 957.2 kJ/kg. The only source of heat for the
cycle is the boiler/superheater. All of the heat input is at the boiler/superheater. The
energy balance gives QH = (H3 – H6) = 3281.2 kJ/kg. The thermal efficiency is

If we neglected the pump work, the efficiency would 29.23%. Note that the pump
work has only a small effect on the thermal efficiency but is included for theoretical
rigor.

c. For 1 MW capacity, , the circulation rate is

The cycle in Fig. 5.2 is idealized from a real process because the inlet to the pump is considered
saturated. In a real process, it will be subcooled to avoid difficulties (e.g., cavitation1) in pumping. In
fact, real processes will have temperature and pressure changes along the piping between individual
components in the schematic, but these changes will be considered negligible in the Rankine cycle
and all other processes discussed in the chapter, unless otherwise stated. These simplifications allow
focus on the most important concepts, but the simplifications would be reconsidered in a detailed
process design.

5.3. Rankine Modifications
Two modifications of the Rankine cycle are in common use to improve the efficiency. A Rankine



cycle with reheat increases the boiler pressure but keeps the maximum temperature approximately the
same. The maximum temperatures of the boilers are limited by corrosion concerns. This modification
uses a two-stage turbine with reheat in-between. An illustration of the modified cycle is shown in Fig.
5.3. Crudely, adding multiple stages with reheat leads to the maximum temperature being applied as
much as possible, while avoiding extremely wet steam during expansion. This moves the process
efficiency in the direction of a Carnot cycle. The implication of this modification is shown in
Example 5.2.

Figure 5.3. Rankine cycle with reheat.

Example 5.2. A Rankine cycle with reheat
Consider a modification of Example 5.1. If we limit the process to a 500°C boiler/superheater with

reheat, we can develop a new cycle to investigate an improvement in efficiency and circulation rate.
Let us operate a cycle utilizing two reversible turbines with ηE = 0.85 and a pump with ηC = 0.8. Let
the feed to the first turbine be steam at 500°C and 6 MPa. Let the feed to the second stage be 1.4 MPa
and 500°C (the same as Example 5.1). Determine the improvement in efficiency and circulation rate
relative to Example 5.1.

Solution
Refer to Fig. 5.3 for stream numbers. First, let us find state 3. The inlet state values are entered in

the table. P4 = P5 because we neglect the heat exchanger pressure drop. Upon expansion through the
first reversible turbine, we look at the SsatV at 1.4 MPa and find it lower that S4’. Therefore, the
reversible state is superheated. Using {S,P} to find H,

Correcting for efficiency,
∆HI = WS, I = 0.85(3001.2 – 3423.1) = 0.85(–421.9) = –358.6 kJ/kg

H4 = 3423.1 – 358.6 = 3064.5 kJ/kg

State 5 was used in Example 5.1 (as state 3). Solving the energy balance for the reheater,



Qreheat = (H5 – H4) = 3474.8 – 3064.5 = 410.3 kJ/kg

Turbine II was analyzed in Example 5.1. We found WS,II = –959.0 kJ/kg and the total work output
is WS,turbines = (–358.6 –959.0) = –1317.6 kJ/kg. The pump must raise the pressure to 6 MPa. Using
Eqn. 2.61, and correcting for efficiency,

State 7 is the same as state 5 in Example 5.1 and has been tabulated in the property table. H8 = H7
+ WS,pump = 191.8 + 7.6 = 199.4 kJ/kg. The net work is thus

WS, net = –1317.6 + 7.6 = –1310 kJ/kg

The heat for the boiler/superheater is given by Qb/s = H3 – H8 = 3423.1 – 199.4 = 3223.7 kJ/kg.

The thermal efficiency is

The efficiency has improved by , and the circulation rate has been
decreased by 27%.

 Reheat improves thermal efficiency.

One variation of the Rankine cycle is for cogeneration as illustrated in Fig. 5.4. Most chemical
plants need process steam for heating distillation columns or reactors as well as electrical energy.
Therefore, they use steam at intermediate pressures, depending on the need, and circulate the
condensate back to the boiler. Another very common modification of the Rankine cycle is a
regenerative cycle using feedwater preheaters. A portion of high-pressure steam is used to preheat
the water as it passes from the pump back to the boiler. A schematic of such a process is shown in
Fig. 5.5 using closed feedwater preheaters. The economic favorability increases until about five
preheaters are used, then the improvements are not worth the extra cost. Three preheaters are more
common. As the condensate from each preheater enters the next preheater, it throttles through a valve
to the next lower pressure and partially or totally vaporizes as it throttles. It is also common to
withdraw some steam from turbine outlets for process use and heating. Often in actual processes,
open feedwater preheaters are used. In an open feedwater preheater, all of the incoming streams
mix. The advantage of this preheater is that dissolved oxygen in the returning condensate can be
removed by heating, and if provision is made to vent the non-condensables from the open feedwater
preheater, it may serve as a deaerator to remove dissolved air before feeding the boiler. A system
with an open feedwater preheater is shown in Fig. 5.6. The vent on the open feedwater preheater is
typically a small stream and omitted in the schematics and first order calculations. A regenerative
Rankine cycle is illustrated in Example 5.3.



Figure 5.4. Rankine cycle with side draws for process steam. Pumps and/or throttles may be
used in returning process steam to the boiler.

Figure 5.5. Regenerative Rankine cycle using closed feedwater preheaters.

Figure 5.6. Schematic for a system with a closed feedwater preheater, A, and an open
feedwater preheater, B.

Example 5.3. Regenerative Rankine cycle
Steam (1) exits a boiler/superheater at 500°C and 5 MPa. A process schematic is shown in Fig.

5.7. The first stage of the turbine exits (2, 3) at 1MPa and the second stage of the turbine exits (4) at
0.1 MPa. A feed preheater is used to exchange heat with a 5°C approach temperature between
streams 7 and 8. Find the net power output per kg of flow in stream 1.



Figure 5.7. Regenerative Rankine cycle for Example 5.3.

Solution
First, note that streams 2 and 8 are on the same side of the feedwater preheater and are thus at the

same pressure. Streams 7 and 6 must be at the boiler pressure by similar arguments. And stream 5
must likewise be at the condenser pressure. Stream 8 leaves as saturated liquid at the 1 MPa, thus we
find H8 = 762.5 kJ/kg, and T8 = 180°C. Stream 7 is thus at 175°C and 5 MPa. Following Example 2.6
for a compressed liquid, H7 = 741.02kJ/kg + (5–0.893MPa)(1.12cm3/g) = 745.6 kJ/kg. Often, one of
the key steps in working a problem involving a regenerative cycle is to solve for the fraction of each
flow diverted rather than solving for the individual flow rates.

 Solving for flowrate ratios in regenerative cycles can be helpful when the total
flowrate is unknown.

The flow rates of streams 7, 6, and 5 are equal to the flow rate of stream 1, and we may write the
energy balance around the feedwater preheater using the mass flow rate of stream 1 together with the
mass flow rate of stream 2, . Dividing by  and substituting values
gives , and .

The net work is given by , and on the basis of one kg

from the boiler/superheater, , and using enthalpies to
calculate the work of each turbine,



Referring to the tabulated values,

When you consider all combinations of reheat and regeneration, it is clear that the number of
configurations of turbine stages and heat exchangers is nearly endless. Practically speaking, one
approaches a point of diminishing returns with each added complexity. The best alternative may
depend on details of the specific application. Broadly speaking, Example 5.2 shows a clear 24% gain
in thermal efficiency by using reheat. Example 5.3 is not at the same conditions as Example 5.1, but
we can quickly estimate the thermal efficiency at the same conditions as ηθ = (3435 – 2617)/(3435 –
422) = 0.271, so regeneration alone offers just a 3% gain. A dedicated electric power facility would
definitely want to make the most of every gain, but a small power generator for a chemical facility in
an isolated rural area might be subject to other constraints. For example, the need for medium
pressure steam to run distillation columns might dictate the pressure for the intermediate stage and a
similar need for building heat could dictate a lower temperature requirement. In the final analysis, it
is up to the engineer to devise the best solution by adapting these examples and general observations
to any particular situation.

5.4. Refrigeration
Ordinary Vapor Compression Cycle

The Carnot cycle is not practical for refrigeration for the same reasons as discussed for power
production. Therefore, most refrigerators operate on the ordinary vapor-compression (OVC) cycle,
shown in Fig. 5.8.

Figure 5.8. OVC refrigeration cycle process schematic and T-S diagram.

 The ordinary vapor compression cycle is the most common refrigeration cycle.

As with the Rankine cycle, we make some simplifications that would have to be reevaluated in a
detailed engineering design. Again, we neglect pressure losses in piping. We assume that the vapor is
saturated at the inlet to the compressor, and that the outlet of the condenser is saturated liquid. Thus,
saturated vapor enters the compressor and exits heated above the condenser temperature, then cools
in the condenser until it condenses to a saturated liquid. In the cyclic process, the saturated liquid is



passed through a throttle valve at constant enthalpy and exits as a two-phase mixture. The evaporator
is assumed to be isothermal, and accepts heat at the colder temperature to complete the vaporization.
The OVC cycle is often characterized using a P-H diagram as shown in Fig. 5.9.

Figure 5.9. OVC refrigeration cycle plotted on the more commonly used P-H diagram. State
numbers correspond to Fig. 5.8.

The COP can be related to the conditions of the process streams.

 COP for ordinary vapor compression cycle.

Example 5.4. Refrigeration by vapor compression cycle
An industrial freezer room is to be maintained at –15°C by a cooling unit utilizing refrigerant

R134a as the working fluid. The evaporator coils should be maintained at –20°C to ensure efficient
heat transfer. Cooling water is available at 10°C from an on-site water well and can be warmed to
25°C in the condenser. The refrigerant temperature exiting the condenser is to be 30°C. The cooling
capacity of the freezer unit is to be 120,000 BTU/h (126,500 kJ/h); 12,650 kJ/h is known as one ton
of refrigeration because it is approximately the cooling rate (cooling duty) required to freeze one ton
of water at 0°C to one ton of ice at 0°C in 24 h. So this refrigerator represents a 10 ton refrigerator.
As a common frame of reference, typical home air conditioners are about 2–3 tons, but they typically
weigh less than 100 kg. Calculate the COP and recirculation rate (except part (a)) for the industrial
freezer in the following cases:

a. Carnot cycle.
b. Ordinary vapor compression cycle with a reversible compressor.
c. Vapor compression cycle with the throttle valve replaced with an expander.
d. Ordinary vapor compression cycle for which compressor is 80% efficient.

 12,650 kJ/h is known as a ton of refrigeration capacity.

Solution



We will refer to Fig. 5.8 for identifying state by number. The operating temperatures of the
refrigeration unit will be

a. Carnot cycle
Note that T3 will be higher than T4, but we use the condenser outlet T4 as the

benchmark temperature.

b. Ordinary VC cycle with reversible compressor
We will create a table to summarize results. Values determined from balances are

shown in boldfaced table cells. Other valves are from the R-134a chart in Appendix
E. State 2 is a convenient place to start since it is a saturated vapor and the
temperature is known. T2 = –20°C, from the chart, H2

satV = 386.5 kJ/kg and S2
satV =

1.7414 kJ/kg-K. The condenser outlet (state 4) is taken as saturated liquid at 30°C, so
the pressure of the condenser will be P4

sat (30°C) = 0.77 MPa, and H4 = 241.5 kJ/kg,
S4 = 1.1428 kJ/kg-K. Because the throttle valve is isenthalpic (Section 2.13), H1 = H4.

The compressor calculation has already been performed in Example 4.17 on page
174. If the process is reversible, the entropy at state 3′ will be the same as S2. Finding
H3′ from S3′ = 1.7414 kJ/kg-K and P3 = 0.77 MPa, using the chart, H3′ = 424 kJ/kg.
Note that the pressure in the condenser, not the condenser temperature, fixes the
endpoint on the isentropic line from the saturated vapor.

The required circulation rate is

c. VC cycle with turbine expansion
The throttle valve will be replaced by a reversible expander. Therefore, S1′ = S4 =

1.1428 kJ/kg-K. The saturation values at 253 K are SsatL = 0.8994 kJ/kg-K and SsatV =
1.7414 kJ/kg-K; therefore, S1′ = 1.1428 = q’·1.7414 + (1 – q’)0.8994, which gives q’
= 0.289.

Then, using the saturated enthalpy values and the quality, H1′ = 235.0 kJ/kg. In order
to calculate the COP, we must recognize that we are able to recover some work from
the expander, given by H1′ – H4.



The increase in COP requires a significant increase in equipment complexity and
cost, since a two-phase expander would probably have a short life due to erosion of
turbine blades by droplets.

d. Like (b) but with irreversible compressor
States 1, 2, and 4 are the same as in (b). The irreversibility simply changes state 3.

Refrigerant choice is dictated by several factors:
1. Environmental impact (Freon R-12 depletes ozone and has been phased out; Freon R-22
is being phased out). HFO1234yf is beginning to supersede R134a.
2. Vapor pressure ~ atmospheric at Tevap. Consequently, the driving force for leakage will
be small, but an evaporator pressure slightly above atmospheric pressure is desirable to
avoid air leaking into the cycle.
3. Vapor pressure not too high at TH so that the operating pressure is not too high; high
pressure increases compressor and equipment costs.
4. High heat of vaporization per unit mass.
5. Small CP/CV of vapor to minimize temperature rise and work of compressor.

6. High heat transfer coefficient in vapor and liquid.

Flash Chamber (Economizer) Intercooling
When the temperature difference between the condenser and evaporator is increased, the

compressor must span larger pressure ranges. If the compression ratio (Pout/Pin) becomes too large,
interstage cooling can be used to increase efficiency. Because the process temperatures are usually
below cooling water temperatures, a portion of the condensed refrigerant stream can be flashed to
provide the interstage cooling, as shown in Fig. 5.10. The interstage cooler is sometimes called an
economizer. The economizer is considered adiabatic unless otherwise specified, and serves to
disengage the liquid and vapor exiting the inlet valve. The quality out of the inlet valve is equal to 

.



Figure 5.10. Flash chamber intercooling.

 Flash chamber intercooling is a common method of increasing COP.

Cascade Refrigeration

 Cascade refrigeration is used to reach cryogenic temperatures.

In order to span extremely large temperature ranges, a single refrigerant becomes impractical,
because the compression ratio (Pout/Pin) becomes too high and the COP decreases. A typical
guideline is that the compression ratio should not be higher than about 8. Therefore, to span extremely
large ranges, binary vapor cycles or cascade vapor cycles are used. In a binary cycle, a refrigerant
with a normal boiling point below the coldest temperature is used on the cold cycle, and a refrigerant
that condenses at a moderate pressure is used on the hot cycle. The two cycles are coupled at the
condenser of the cold cycle and the evaporator of the hot cycle as shown in Fig. 5.11. Because the
heat of vaporization is coupled to the saturation temperature for any refrigerant, usually the operating
temperatures are selected, and the circulation rates are determined for each cycle. Certainly, there are
many variables to optimize in a process design of this type. For extremely large ranges, such as for
cryogenic processing of liquefied gases, cascade refrigeration can be used with multiple cycles. For
example, for the liquefaction of natural gas, the three cycles might be ammonia, ethylene, and
methane. Note that the evaporator in each cycle must be colder than the condenser of the cycle below
to ensure heat is transferred in the correct direction.



Figure 5.11. Binary cycle (left) and three-cycle cascade (right) refrigeration cycles. The
refrigerants do not mix in the evaporator/condensers.

5.5. Liquefaction
We have encountered liquefaction since our first quality calculation in dealing with turbines. In

refrigeration, throttling or isentropic expansion results in a partially liquid stream. The point of a
liquefaction process is simply to recover the liquid part as the primary product.

Linde Liquefaction

The Linde process works by throttling high-pressure vapor. The Joule-Thomson coefficient, ,
must be such that the gas cools on expansion,2 and the temperature must be low enough and the
pressure high enough to ensure that the expansion will end in the two-phase region. Since less than
100% is liquefied, the vapor phase is returned to the compressor, and the liquid phase is withdrawn.
Multistage compression is usually used in the Linde liquefaction process to achieve the required high
pressures. An example of the process pathways on a T-S diagram is shown in Fig. 5.12. The actual
state of the gas entering the multistage compressor depends on the state of the feed.

Figure 5.12. Linde liquefaction process schematic. The system boundaries shown on the left
are used in Example 5.5.



Example 5.5. Liquefaction of methane by the Linde process
Methane is to be liquefied in a simple Linde process. The feed and recycle are mixed, compressed

to 60 bar, and precooled to 300 K. The vapor then passes through a heat exchanger for additional
cooling before being throttled to 1 bar. The unliquefied fraction leaves the separator at the saturation
temperature, and passes through the heat exchanger, then exits at 295 K. (a) What fraction of the gas is
liquefied in the process; and (b) what is the temperature of the high-pressure gas entering the throttle
valve?

Solution
The schematic is shown in Fig. 5.12. To solve this problem, first recognize that states 3, 6, 7, and 8

are known. State 3 is at 300 K and 60 bar; state 6 is saturated liquid at 1 bar; state 7 is saturated
vapor at 1 bar; and state 8 is at 295 K and 1 bar. Use the furnished methane chart from Appendix E.

a. The System I energy balance is: H3 – [qH8 + (1 – q)H6] = 0

b. The energy balance for System II is: H4 – H3 = –q(H8 – H7) = –0.9286(1195 – 796.1) =
–370.5 ය H4 = 780

ය H4 = 780 @ 60 bar ය chart gives –95°F = 203 K

Claude Liquefaction
The throttling process between states 4 and 5 in the Linde process is irreversible. To improve this,

a reversible expansion is desirable; however, since the objective is to liquefy large fractions of the
inlet stream, turbines are not practical because they cannot handle low-quality mixtures. One
compromise, the Claude liquefaction, is to expand a portion of the high-pressure fluid in an expander
under conditions that avoid the two-phase region, as shown in Fig. 5.13. Only a smaller fraction of
the compressed gas enters the irreversible throttle valve, so the overall efficiency can be higher but
more sophisticated equipment is required.



Figure 5.13. The Claude liquefaction process.

5.6. Engines
Steam is not the only working fluid that can be used in a power producing cycle. A common

alternative is to use air, mixed with a small amount of fuel that is burned. The heat of combustion
provides energy to heat the gas mixture before it does work in an expansion step. A major benefit of
using air is that a physical loop is not necessary; we can imagine the atmosphere as the recycle loop.
This approach forms the basis for internal combustion engines like lawn mowers, jet engines, diesels,
and autos. An online supplement introduces the gas turbine, the turbofan jet engine, the internal
combustion engine, and the diesel engine.

5.7. Fluid Flow
This section is available as an on-line supplement and includes liquids and compressible gases.

We discuss the energy balance, the Bernoulli equation, friction factor, and lost work. We also

generalize that  is a general result for open system compressors that are not adiabatic.

5.8. Problem-Solving Strategies

 A review of common assumptions and hints.

As you set up more complex problems, use the strategies in Section 2.14 on page 74, and
incorporate the energy balances developed in Section 2.13 on page 68 for valves, nozzles, heat
exchangers, turbines, and pumps and entropy balances developed in Section 4.6 on page 159 for
turbines, compressors, and heat pumps/engines as you work through step 5 of the strategies. A stream
that exits a condenser is assumed to exit as saturated liquid unless otherwise specified. Likewise, a
stream that is vaporized in a boiler is assumed to exit saturated unless otherwise specified; however,
recall that in a Rankine cycle the steam is always superheated, and we omit the superheater unit in
schematics for simplicity. Read problem statements carefully to identify the outlet states of turbines.
Outlets of turbines are not required to be saturated or in the two-phase region, although operation
in this manner is common. In a multistage turbine without reheat, only the last stages will be near
saturation unless reheat is used. Unless specified, pressure drops are considered negligible in piping
and heat exchangers as a first approximation. Throttle valves are assumed to be adiabatic unless
otherwise stated, and they are always irreversible and do have an important pressure drop unless
otherwise stated. Recognize that the entropy balances for throttle valves or heat exchangers are
usually not helpful since, in practical applications, these devices are inherently irreversible and
generate entropy.

Recognize that the energy balance must be used often to find mass flow rates. In order to do this for
open steady-state flow systems, the enthalpies for all streams must be known in addition to the mass
flow rates for all but one stream. You can try moving the system boundary as suggested in step 7 of
the strategy in Section 2.14 on page 74 to search for balances that satisfy these conditions. Mass flow
rates can be found using the entropy balance also, but this is not done very often, since the entropy
balance is useful only if the process is internally reversible or if the rate of entropy generation is



known (i.e., no irreversible heat exchangers or throttle valves or irreversible turbines/compressors
inside the system boundary).

Basically, the energy and entropy balance and the P-V-T relation are the only equations that always
apply. While we have shown common simplifications, there are always new applications that can
arise, and it is wise to learn the principles involved in simplifying the balance to a given situation.

5.9. Summary
Similar to energy balances in Chapter 3, entropy balances can be applied to composite systems.

What is new in this chapter is the level of detail and the combination of the energy balance with the
entropy balance. Instead of abstract processes like the Carnot cycle, the entropy balance enables us to
compute the impacts of each individual step, whether isothermal, irreversible, or otherwise. This
leads to composite processes with innumerable combinations of heat exchangers, multiple stages, and
mixers, all striving to achieve the efficiency of the Carnot or Stirling cycles. For processes on the
scale of commercial production, an efficiency improvement of 0.1% can mean millions of dollars,
amply justifying an investment in clever engineering.

Important Equations
Once again the energy and entropy balances are the most important equations. We have

incorporated most of the previous chapters, using state properties, interpolations, efficiency
calculations, throttling, and so on. Carnot thermal efficiency and COP provide upper bounds on what
can be achieved with any process and these are important.

5.10. Practice Problems
P5.1. An ordinary vapor compression cycle is to operate a refrigerator on R134a between –
40°C and 40°C (condenser temperatures). Compute the coefficient of performance and the heat
removed from the refrigerator per day if the power used by the refrigerator is 9000 J per day.
(ANS. 1.76)
P5.2. An ordinary vapor compression cycle is to be operated on methane to cool a chamber to –
260°F. Heat will be rejected to liquid ethylene at –165°F. The temperatures in the condenser
and evaporator are –160°F and –280°F. Compute the coefficient of performance. (ANS. 0.86)
P5.3. A simple Rankine cycle is to operate on steam between 200°C and 99.6°C, with saturated
steam exhausting from the turbine. What is the maximum possible value for its thermodynamic
efficiency? (ANS. 7.8%)
P5.4. An ordinary vapor compression cycle is to be operated on methane to cool a chamber to
112 K. Heat is rejected to liquid ethylene at 160 K. The temperatures in the coils are 168 K and
100 K. (ANS. online)

a. Write the relevant energy and entropy balances for the compression step.
b. Estimate the minimal work requirement (J/g) for the compressor assuming the
ideal gas law.
c. Estimate the coefficient of performance (COP) for this OVC cycle.
d. Estimate the COP by the Carnot guideline.
e. Estimate the minimal work requirement for the compressor using the chart in



the text.
P5.5. A house has an effective heat loss of 100,000 Btu/hr. During the heating season of 160
days the average inside temperature should be 70°F while the outside is 45°F. Freon-134a is the
working fluid and an ordinary vapor-compression cycle is used. A 10°F approach on each side
may be assumed. Electricity costs $0.14/KW-hr.

a. What is the cost in $/hr if the compressor is 100% efficient?
b. What is the cost if the compressor is 80% efficient? (ANS. ~0.37, 0.45)

P5.6. An adiabatic turbine is supplied with steam at 300 psia and 550°F that exhausts at
atmospheric pressure. The quality of the exhaust steam is 95%.

a. What is the efficiency of the turbine? (ANS. 76%)
b. What would be the thermodynamic efficiency of a Rankine cycle operated
using this turbine at these conditions? (ANS. 17%)

5.11. Homework Problems
5.1. A steam power plant operates on the Rankine cycle according to the specified
conditions below. Using stream numbering from Fig. 5.2 on page 201, for each of the
options below, determine:

a. The work output of the turbine per kg of steam;
b. The work input of the feedwater pump per kg of circulated water;
c. The flowrate of steam required;
d. The heat input required in the boiler/superheater;
e. The thermal efficiency

5.2. A steam power plant operates on the Rankine cycle with reheat, using the specified
conditions below. Using stream numbering from Fig. 5.3 on page 203, for each of the
options below, determine

a. The work output of each turbine per kg of steam;
b. The work input of the feedwater pump per kg of circulated water;
c. The flowrate of steam required;
d. The heat input required in the boiler/superheater and reheater;
e. The thermal efficiency.



5.3. A modified Rankine cycle using a single feedwater preheater as shown in Fig. 5.7 on
page 206 has the following characteristics.

a. The inlet to the first turbine is at 500°C and 0.8 MPa.
b. The feedwater preheater reheats the recirculated water so that stream 7 is
140°C, and steam at 0.4 MPa is withdrawn from the outlet of the first turbine to
perform the heating.
c. The efficiency of each turbine and pump is 79%.
d. The output of the plant is to be 1 MW.
e. The output of the second turbine is to be 0.025 MPa.

Determine the flow rates of streams 1 and 8 and the quality of stream 9 entering the
condenser (after the throttle valve). Use the stream numbers from Fig. 5.7 on page 206
to label streams in your solution.

5.4. A modified Rankine cycle uses reheat and one closed feedwater preheater. The
schematic is a modification of Fig. 5.7 on page 206 obtained by adding a reheater between
the T-joint and turbine II. Letting stream 3 denote the inlet to the reheater, and stream 3a
denote the inlet to the turbine, the conditions are given below. The plant capacity is to be
80 MW. Other constraints are as follows: The efficiency of each turbine stage is 85%; the
pump efficiency is 80%; and the feedwater leaving the closed preheater is 5°C below the
temperature of the condensate draining from the bottom of the closed preheater. For the
options below, calculate:

a. The flowrate of stream 1;
b. The thermal efficiency of the plant;
c. The size of the feedwater pump (kW);

Options:
i. T1 = 500°C, P1 = 4 MPa, P2 = 0.8 MPa, T3a = 500°C, P4 = 0.01 MPa.

ii. T1 = 600°C, P1 = 4 MPa, P2 = 1.2 MPa, T3a = 600°C, P4 = 0.01 MPa.

5.5. A regenerative Rankine cycle uses one open feedwater preheater and one closed
feedwater preheater. Using the stream numbering from Fig. 5.6 on page 206, and the
specified conditions below, the plant capacity is to be 75 MW. Other constraints are as
follows: The efficiency of each turbine stage is 85%; the pump efficiencies are 80%; and
the feedwater leaving the closed preheater is 5°C below the temperature of the condensate
draining from the bottom of the closed preheater. For the options below, calculate

a. The flowrate of stream 1.



b. The thermal efficiency of the plant.
c. The size of the feedwater pumps (kW).

Options:
i. The conditions are T1 = 500°C, P1 = 4 MPa, P2 = 0.7 MPa, P3 = 0.12 MPa,
and P4 = 0.02 MPa.

ii. The conditions are T1 = 600°C, P1 = 4 MPa, P2 = 1.6 MPa, P3 = 0.8 MPa, and
P4 = 0.01 MPa.

5.6. A regenerative Rankine cycle utilized the schematic of Fig. 5.6 on page 206.
Conditions are as follows: stream 1, 450°C, 3 MPa; stream 2, 250°C, 0.4 MPa; stream 3,
150°C, 0.1 MPa; stream 4, 0.01 MPa; stream 9, 140°C, H = 592 kJ/kg.

a. Determine the pressures for streams 5, 6, 8, 9, and 10.
b. Determine .
c. Determine the enthalpies of streams 5 and 6 if the pump is 80% efficient.
d. Determine the efficiency of turbine stage I.
e. Determine the output of turbine stage III per kg of stream 4 if the turbine is
80% efficient.
f. Determine .
g. Determine the work output of the system per kg of stream 1 circulated.

5.7. A regenerative Rankine cycle uses three closed feedwater preheaters. Using the stream
numbering from Fig. 5.5 on page 205, and the specified conditions below, the plant
capacity is to be 80 MW. Other constraints are as follows: The efficiency of each turbine
stage is 88%; the pump efficiency is 80%; and the feedwater leaving each preheater is 5°C
below the temperature of the condensate draining from the bottom of each preheater. For the
options below, calculate:

a. The flowrate of stream 1
b. The thermal efficiency of the plant
c. The size of the feedwater pump (kW)

Options:
i. The conditions are T1 = 700°C, P1 = 4 MPa, P2 = 1 MPa, P3 = 0.3 MPa, P4 =
0.075 MPa, and P5 = 0.01 MPa.

ii. The conditions are T1 = 750°C, P1 = 4.5 MPa, P2 = 1.2 MPa, P3 = 0.4 MPa,
P4 = 0.05 MPa, and P5 = 0.01 MPa.

5.8. An ordinary vapor compression refrigerator is to operate on refrigerant R134a with
evaporator and condenser temperatures at –20°C and 35°C. Assume the compressor is
reversible.

a. Make a table summarizing the nature (e.g., saturated, superheated, temperature,
pressure, and H) of each point in the process.
b. Compute the coefficient of performance for this cycle and compare it to the



Carnot cycle value.
c. If the compressor in the cycle were driven by a 1 hp motor, what would be the
tonnage rating of the refrigerator? Neglect losses in the motor.

5.9. An ordinary vapor compression refrigeration cycle using R134a is to operate with a
condenser at 45°C and an evaporator at –10°C. The compressor is 80% efficient.

a. Determine the amount of cooling per kg of R134a circulated.
b. Determine the amount of heat rejected per kg of R134a circulated.
c. Determine the work required per kg of R134a circulated, and the COP.

5.10. An ordinary vapor compression cycle using propane operates at temperatures of 240 K in
the cold heat exchanger, and 280 K in the hot heat exchanger. How much work is required per kg
of propane circulated if the compressor is 80% efficient? What cooling capacity is provided per
kg of propane circulated? How is the cooling capacity per kg of propane affected by lowering
the pressure of the hot heat exchanger, while keeping the cold heat exchanger pressure the same?
5.11. The low-temperature condenser of a distillation column is to be operated using a propane
refrigeration unit. The evaporator is to operate at –20°C. The cooling duty is to be 10,000,000
kJ/hr. The compressor is to be a two-stage compressor with an adiabatic efficiency of 80%
(each stage). The compression ratio (Pout/Pin) for each stage is to be the same. The condenser
outlet is to be at 50°C. Refer to Fig. 5.8 on page 208 for stream numbers.

a. Find the condenser, evaporator, and compressor interstage pressures.
b. Find the refrigerant flowrate through each compressor.
c. Find the work input required for each compressor.
d. Find the cooling rate needed in the condenser.

5.12. Solve problem 5.11 using an economizer at the intermediate pressure and referring to Fig.
5.10 on page 211 for stream numbers.
5.13. A refrigeration process with interstage cooling uses refrigerant R134a. The outlet of the
condenser is to be saturated liquid at 40°C. The evaporator is to operate at –20°C, and the outlet
is saturated vapor. The economizer is to operate at 10°C. Refer to Fig. 5.10 on page 211 for
stream numbers in your solution.

a. Determine the required flowrate of stream 1 if the cooling capacity of the unit
is to be 8250 kJ/h.
b. Determine the pressure of stream 3, and the work required by the first
compressor if it has an efficiency of 85%.
c. What are the flowrates of streams 7 and 6?
d. What is the enthalpy of stream 4?
e. Determine the work required by the second compressor (85% efficient) and
the COP.

5.14. A refrigeration process with interstage cooling uses refrigerant R134a, and the outlet of the
condenser is to be saturated liquid at 40°C. Refer to Fig. 5.10 on page 211 for stream numbers in
your solution. The pressure of the flash chamber and the intermediate pressure between
compressors is to be 290 kPa. The evaporator is to operate at –20°C and the outlet is to be



saturated vapor. The flow rate of stream 1 is 23 kg/h. The flash chamber may be considered
adiabatic. The compressors may be considered to be 80% efficient. Attach the P-H chart with
your solution.

a. What is the work input required to the first compressor in kJ/h?
b. What are the flow rates of streams 7 and 6?
c. What is the enthalpy of stream 4?

5.15. The Claude liquefaction process is to be applied to methane. Using the schematic of Fig.
5.13 on page 214 for stream numbering, the key variables depend on the fraction of stream 3 that
is liquefied, , and the fraction of stream 3 that is fed through the expander, . Create a
table listing all streams from low to high stream numbers. Fill in the table as you complete the
problem sections. Attach a P-H diagram with your solution.

a. Write a mass balance for the system boundary encompassing all equipment
except the compressor and precooler.
b. Write an energy balance for the same boundary described in part (a), and show

c. Stream 3 is to be 300 K and 3 MPa, stream 4 is to be 280 K and 3 MPa, stream
12 is to be 290 K and 0.1 MPa, and the flash drum is to operate at 0.1 MPa. The
expander has an efficiency of 91%. The fraction liquefied is to be .
Determine how much flow to direct through the expander, .
d. Find the enthalpies of streams 3–12, and the temperatures and pressures.

5.16. A Brayton gas turbine typically operates with only a small amount of fuel added so that the
inlet temperatures of the turbine are kept relatively low because of material degradation at
higher temperatures, thus the flowing streams can be modeled as only air. Refer to the online
supplement for stream labels. Consider a Brayton cycle modeled with air under the following
conditions: TA = 298 K, PA = PD = 0.1 MPa, PB = 0.6 MPa, and TC = 973 K. The efficiencies of
the turbine and compressor are to be 85%. Consider air as an ideal gas stream with CP =
0.79·CP,N2 + 0.21·CP,O2. Determine the thermal efficiency, heat required, and net work output
per mole of air assuming

a. The heat capacities are temperature-independent at the values at 298 K.
b. The heat capacities are given by the polynomials in Appendix E.

 This problem references an online supplement at the URL given in the front flap.

5.17. The thermal efficiency of a Brayton cycle can be increased by adding a regenerator as
shown in the schematic below. Consider a Brayton cycle using air under the following
conditions: TA = 298 K, PA = PE = PF = 0.1 MPa, PB = 0.6 MPa, TD = 973 K, TF = 563 K. The
efficiency of the turbine and compressor are to be 85%. Consider air as an ideal gas stream with
CP = 0.79·CP,N2 + 0.21·CP,O2, and assume the molar flows of B and E are equal. Determine the
thermal efficiency, heat required, and net work output per mole of air, assuming



 This problem references an online supplement at the URL given in the front flap.

a. The heat capacities are temperature-independent at the values at 298 K.
b. The heat capacities are given by the polynomials in Appendix E.

5.18. Consider the air-standard Otto cycle explained in the online supplement. At the beginning
of the compression stroke, P1 = 95 kPa, T1 = 298 K. Consider air as an ideal gas stream with CP
= 0.79·CP,N2 + 0.21·CP,O2. If the compression ratio is 6, determine T2, T4, and the thermal
efficiency, if T3 = 1200 K and the following are true

a. The heat capacities are temperature-independent at the values at 298 K.
b. The heat capacities are given by the polynomials in Appendix E.

 This problem references an online supplement at the URL given in the front flap.

5.19. A hexane (ρ ≈ 0.66 kg/L, µ = 3.2 E-3 g/(cm-s)) storage tank in the chemical plant tank farm
is 250 m from the 200 L solvent tank that is to be filled in 3 min. A pump is located at the base
of the storage tank at ground level. The storage tank is large enough so that the liquid height
doesn’t change significantly when 200 L are removed. The bends and fittings in the pipe
contribute lost work equivalent to 15 m of additional pipe. The pump and motor are to be sized
based on a storage tank liquid level of 0.3 m above ground level to ensure adequate flow rate
when the storage tank is nearly empty. Find the required power input to the pump and motor.

a. The pipe is to be 2.5 cm in diameter and the outlet is to be 10 m above ground
level. The pump efficiency is 85%, the motor efficiency is 90%.
b. The pipe is to be 3.0 cm in diameter and the outlet is to be 8.5 m above ground
level. The pump efficiency is 87%, the motor efficiency is 92%.
c. Determine the time required to fill the solvent tank using the pump and motor
sized in part (a) if the storage tank liquid level is 6.5 m above ground.
d. Answer part (c) except determine the filling time for part (b).

 This problem references an online supplement at the URL given in the front flap.

5.20. Consider problem 5.16(a). Determine the amount of fuel required per mole of air if the fuel
is modeled as isooctane and combustion is complete.
5.21. Consider problem 5.18(a). Determine the amount of fuel required per mole of air if the fuel



is modeled as isooctane and combustion is complete.
5.22. In the event of an explosive combustion of vapor at atmospheric pressure, the vapor cloud
can be modeled as adiabatic because the combustion occurs so rapidly. The vapor cloud
expands rapidly due to the increase in moles due to combustion, but also due to the adiabatic
temperature rise. Estimate the volume increase of a 22°C, 1 m3 mixture of propane and a
stoichiometric quantity of air that burns explosively to completion. Estimate the temperature rise.
5.23.

a. Derive the energy balance for a closed, constant-volume, adiabatic-system
vapor phase chemical reaction, neglecting the energy of mixing for reactants and
products, and assuming the ideal gas law.
b. Suppose that a 200 L propane tank is at 0.09 MPa pressure and, due to an air
leak, contains the propane with a stoichiometric quantity of air. If a source of
spark is present, the system will burn so rapidly that it may be considered
adiabatic, and there will not be time for any flow out of the vessel. If ignited at
20°C, what pressure and temperature are generated assuming this is a constant
volume system and the reaction goes to completion?



Unit II: Generalized Analysis of Fluid Properties
Forming an intermediate state between liquids, in which we assume no external

pressure, and gases, in which we omit molecular forces, we have the state in which both
terms occur. As a matter of fact, we shall see further on, that this is the only state which
occurs in nature.

van der Waals (1873, ch2)

In Unit I we focused predominantly on a relatively small number of pure fluids. But the number of
chemical compounds encountered when considering all possible applications is vast, and new
compounds are being invented and applied every day. Imagine how many charts and tables would be
necessary to have properties available for all those compounds. Then imagine how many charts
would be necessary to represent the properties of all the conceivable mixtures of those compounds.
Clearly, we cannot address all problems by exactly the same techniques as applied in Unit I. We must
still use the energy and entropy balance, but we need to be able to represent the physical properties of
pure compounds and mixtures in some condensed form, and we desire to predict physical properties
based on very limited data.

As one might expect, an excellent shorthand is offered by the language of mathematics. When we
sought values in the steam tables, we noticed that specification of any two variables was sufficient to
determine the variable of interest (e.g, S or H). This leads to an excellent application of the calculus
of two variables. Changes in each value of interest may be expressed in terms of changes in whatever
other two variables are most convenient. It turns out that the most convenient variables
mathematically are temperature and density, and that the most convenient variables experimentally are
temperature and pressure.

There is a limit to how condensed our mathematical analysis can be. That limit is dictated by how
much physical insight is required to represent the properties of interest to the desired accuracy. With
no physical insight, we can simply measure the desired values, but that is impractical. With maximum
physical insight, we can represent all the properties purely in terms of their fundamental electronic
structure as given by the periodic table and their known molecular structure. The current state-of-the-
art lies between these limits, but somewhat closer to the fundamental side. By developing a
sophisticated analysis of the interactions on the molecular scale, we can show that three carefully
selected parameters characterizing physical properties are generally sufficient to characterize
properties to the accuracy necessary in most engineering applications. This analysis leads to an
equation of state, which is then combined with the necessary mathematics to provide methods for
computing and predicting physical properties of interest. The development of van der Waals’
equation of state provides an excellent case study in the development of engineering models based on
insightful physics and moderately clever extrapolation. Note that before van der Waals the standard
conception was that the vapor phase was represented by what we now refer to as an ideal gas, and
the liquid was considered to be an entirely different species. Van der Waals’ analysis led to a
unification of these two conceptions of fluids that also set the stage for the analysis of interfaces and
other inhomogeneous fluids. Van der Waals’ approach lives on in modern research on inhomogeneous
fluids.



Chapter 6. Classical Thermodynamics — Generalizations for any Fluid

When I first encountered the works of J.W. Gibbs, I felt like a small boy who had
found a book describing the facts of life.

T. von Karmann

When people refer to “classical thermodynamics” with no context or qualifiers, they are generally
referring to a subtopic of physical chemistry which deals with the mathematical transformations of
energy and entropy in fluids. These transformations are subject to several constraints owing to the
nature of state functions. This field was developed largely through the efforts of J.W. Gibbs during the
late 1800’s (Gibbs was granted the first engineering Ph.D. in the United States in 1863). Our study
focuses on three aspects of the field:

1. The fundamental property relation: dU(S,V) = TdS – PdV;
2. Development of general formulas for property dependence of nonmeasurable properties
in terms of on measurable variables, e.g., temperature and pressure dependence of U, H in
terms of P, V, and T;
3. Phase equilibrium: e.g., quality and composition calculations.

The fundamental property relation provides a very general connection between the energy balance
and the entropy balance. It relates state functions to one another mathematically such that no specific
physical situation is necessary when considering how the energy and entropy change. That is, it tells
how one variable changes with respect to some other variables that we may know something about.
We implicitly applied this approach for solving several problems involving steam, determining the
properties upstream of a throttle from the pressure and enthalpy, for instance. In this chapter we focus
intensely on understanding how to transform from one set of variables to another as preparation for
developing general formulas for property dependence on measured variables.

Through “classical thermodynamics,” we can generalize our insights about steam to any fluid at any
conditions. All engineering processes simply involve transitions from one set of conditions to
another. To get from one state to another, we must learn to develop our own paths. It does not matter
what path we take, only that we can compute the changes for each step and add them up. In Chapter 7,
we present the insights that led van der Waals to formulate his equation of state, enabling the
estimation of any fluid’s pressure given the density and temperature. This analysis also illuminates the
basis for development of current and future equations of state. In Chapter 8, we show the paths that
are convenient for applying equations of state to estimate the thermodynamic properties for any fluid
at any state based on a minimal number of experimental measurements.

Finally, a part of property estimation involves calculating changes of thermodynamic properties
upon phase transitions so that they may be used in process calculations (e.g., formation of condensate
during expansion through a turbine and characterization of the quality). The generalized analysis of
phase changes requires the concept of phase equilibrium and an understanding of how the equilibrium
is affected by changes in temperature and pressure. The skills developed in this chapter will be
integrated in a slightly different form to analyze the thermodynamics of non-ideal fluid behavior in
Chapter 8.

Chapter Objectives: You Should Be Able to...



1. Transform variables like dU into dH, dA, dG, dS, dP, dV, and dT given dU and the
definition of H, A, and G. (e.g., Legendre transforms in Eqns. 6.5–6.7, Example 6.7).
2. Describe what is meant by a “measurable properties” and why they are useful.*
3. Apply the chain rule and other aspects of multivariable calculus to transform one
derivative into another (e.g., Eqns. 6.11–6.17).
4. Use Maxwell relations to interchange derivatives.
5. Manipulate partial derivatives using two to three steps of manipulations to put in terms
of measurable properties.
6. Substitute CP and CV for the appropriate temperature derivatives of entropy.

7. Recognize common characterizations of derivative properties like isothermal
compressibility and the Joule-Thomson coefficient and express them in terms of measurable
properties.
8. Devise step-wise paths to compute ∆U(T,V) and ∆S(T,P) or ∆S(T,V) from their ideal gas
and density dependent terms.

6.1. The Fundamental Property Relation
One equation underlies all the other equations to be discussed in this chapter. It is the combined

energy and entropy balances for a closed system without shaft work. The only special feature that we
add in this section is that we eliminate any references to specific physical situations. Transforming to
a purely mathematical realm, we are free to apply multivariable calculus at will, transforming any
problem into whatever variables seem most convenient at the time. Some of these relatively
convenient forms appear frequently throughout the text, so we present them here as clear implications
of the fundamental property relation changes in U.

The Fundamental Property Relation for dU in Simple Systems
We restrict our treatment here to systems without internal rigid, impermeable, or adiabatic walls,

no internal temperature gradients, and no external fields. These restrictions comprise what we refer to
as simple systems. This is not a strong restriction, however. Most systems can be treated as a sum of
simple systems. Our goal is to transform the energy balance from extensive properties like heat and
work to intensive (state) properties like density, temperature, and specific entropy. For this purpose,
we may imagine any convenient physical path, recognizing that the final result will be independent of
path as long as it simply relates state properties.

The energy balance for a closed simple system is

where EK and EP are the intensive kinetic and potential energies of the center of mass of the
system. Eliminating all surface forces except those that cause expansion or contraction, because a
simple system has no gradients or shaft work, and neglecting EK and EP changes by taking the
system’s center of mass as the frame of reference,

Emphasizing the neglect of gradients, the reversible differential change between states is



but, by definition,

Since the system is simple, for the process to be internally reversible, the temperature must be
uniform throughout the system (no gradients). So the system temperature has a single value throughout.
On a molar basis, the fundamental property relation for dU is

 dU for a closed simple system.

The significance of this relation is that changes in one state variable, dU, have been related to
changes in two other state variables, dS and dV. Therefore, the physical problem of relating heat flow
and volume changes to energy changes has been transformed into a purely mathematical problem of
the calculus of two variables. This transformation liberates us from having to think of a physical
means of attaining some conversion of energy. Instead, we can apply some relatively simple rules of
calculus given changes in S and V.

Auxiliary Relations for Convenience Properties
Because dU is most simply written as a function of S and V it is termed a natural function of S and

V. We can express changes of internal energy in terms of other state properties (such as {P, T} or
{T,V}), but when we do so, the expression always involves additional derivatives. We will show
this in more detail in Example 6.11 on page 243. We also should explore the natural variables for the
convenience properties.

We have defined enthalpy, H ≡ U + PV. Therefore, dH = dU + PdV + VdP = TdS – PdV + PdV +
VdP,

 dH for a reversible, closed simple system. Enthalpy is convenient when heat and
pressure are manipulated.

The manipulation we have performed is known as a Legendre transformation. Note that {T, S}
and {P, V} are paired in both U and the transform H. These pairs are known as conjugate pairs and
will always stayed paired in all transforms.1

Enthalpy is termed a convenience property because we have specifically defined it to be useful in
problems where reversible heat flow and pressure are manipulated. By now you have become so
used to using it that you may not stop to think about what the enthalpy really is. If you look back to our
introduction of enthalpy, you will see that we defined it in an arbitrary way when we needed a new
tool. The fact that it relates to the heat transfer in a constant-pressure closed system, and relates to the



heat transfer/shaft work in steady-state flow systems, is a result of our careful choice of its definition.
We may want to control T and V for some problems, particularly in statistical mechanics, where

we create a system of particles and want to change the volume (intermolecular separation) at fixed
temperature. Situations like this also arise quite often in our studies of pistons and cylinders. Since U
is not a natural function of T and V, such a state property is convenient. Therefore, we define
Helmholtz energy A ≡ U – TS. Therefore, dA = dU – TdS – SdT = TdS – PdV – TdS – SdT,

 Helmholtz energy is convenient when T, V are manipulated.

Consider how the Helmholtz energy relates to expansion/contraction work for an isothermal
system. Equilibrium occurs when the derivative of the Helmholtz energy is zero at constant T and V.
The other frequently used convenience property is Gibbs energy G ≡ U – TS + PV = A + PV = H –
TS. Therefore, dG = dH – TdS – SdT = TdS + VdP – TdS – SdT.

 Gibbs energy is convenient when T, P are manipulated.

The Gibbs energy is used specifically in phase equilibria problems where temperature and
pressure are controlled. We find that for systems constrained by constant T and P, the equilibrium
occurs when the derivative of the Gibbs energy is zero (ය driving forces sum to zero and Gibbs
energy is minimized). Note that dG = 0 when T and P are constant (dT = 0, dP = 0). The Helmholtz
and Gibbs energies include the effects of entropic driving forces. The sign convention for Helmholtz
and Gibbs energies are such that an increase in entropy detracts from our other energies, A = U – TS,
G = U – TS + PV. In other words, increases in entropy detract from increases in energy. These are
sometimes called the free energies. The relation between these free energies and maximum work is
shown in Section 4.12.

In summary, the common Legendre transforms are summarized in Table 6.1. We will use other
Legendre transforms in Chapter 18.

Table 6.1. Fundamental and Auxiliary Property Relations

Often, students’ first intuition is to expect that energy is minimized at equilibrium. But some deeper
thought shows that equilibrium based purely on energy would eventually reach a state where all atoms



are at the minimum of their potential wells with respect to one another. All the world would be a
solid block. On the other hand, if entropy was always maximized, molecules would spread apart and
everything would be a gas. Interesting phenomena are only possible over a narrow range of
conditions (e.g., 298 K) where the spreading generated by entropic driving forces balances the
compaction generated by energetic driving forces. A greater appreciation for how this balance occurs
should be developed over the next several chapters.

6.2. Derivative Relations
In Chapters 1–5, we analyzed processes using either the ideal gas law to describe the fluid or a

thermodynamic chart or table. We have not yet addressed what to do in the event that a
thermodynamic chart/table is not available for a compound of interest and the ideal gas law is not
valid for our fluid. To meet this need, it would be ideal if we could express U or H in terms of other
state variables such as P,T. In fact, we did this for the ideal gas in Eqns. 2.35 through 2.38.
Unfortunately, such an expression is more difficult to derive for a real fluid. The required
manipulations have been performed for us when we look at a thermodynamic chart or table. These
charts and tables are created by utilizing the P-V-T properties of the fluid, together with their
derivatives to calculate the values for H, U, S which you see compiled in the charts and tables. We
explore the details of how this is done in Chapters 8–9 after discussing the equations of state used to
represent the P-V-T properties of fluids in Chapter 7. The remainder of this chapter exploits primarily
mathematical tools necessary for the manipulations of derivatives to express them in terms of
measurable properties. By measurable properties, we mean

 Generalized expression of U and H as functions of variables like T and P are desired.
Further, the relations should use P-V-T properties and heat capacities.

1. P-V-T and partial derivatives involving only P-V-T.
2. CP and CV which are known functions of temperature at low pressure (in fact, CP and CV
are special names for derivatives of entropy).
3. S is acceptable if it is not a derivative constraint or within a derivative term. S can be
calculated once the state is specified.

Recall that the Gibbs phase rule specifies for a pure single-phase fluid that any state variable is a
function of any two other state variables. For convenience, we could write internal energy in terms of
{P,T}, {V,T} or any other combination. In fact, we have already seen that the internal energy is a
natural function of {S,V}:

dU = T dS – P dV
In real processes, this form is not the easiest to apply since {V,T} and {P,T} are more often

manipulated than {S,V}. Therefore, what we seek is something of the form:

The problem we face now is determining the functions f(P, V, T, CP, CV) and g(P, V, T, CP,CV).
The only way to understand how to find the functions is to review multivariable calculus, then apply
the results to the problem at hand. If you find that you need additional background to understand the
steps applied here, try to understand whether you seek greater understanding of the mathematics or the



thermodynamics. The mathematics generally involve variations of the chain rule or related
derivatives. The thermodynamics pertain more to choices of preferred variables into which the final
results should be transformed. Keep in mind that the development here is very mathematical, but the
ultimate goal is to express U, H, A, and G in terms of measurable properties.

First, let us recognize that we have a set of state variables {T, S, P, V, U, H, A, G} that we desire
to interrelate. Further, we know from the phase rule that specification of any two of these variables
will specify all others for a pure, simple system (i.e., we have two degrees of freedom). The
relations developed in this section are applicable to pure simple systems; the relations are
entirely mathematical, and proofs do not lie strictly within the confines of “thermodynamics.” The
first four of the state properties in our set {T, S, P, V} are the most useful subset experimentally, so
this is the subset we frequently choose to use as the controlled variables. Therefore, if we know the
changes of any two of these variables, we will be able to determine changes in any of the others,
including U, H, A, and G. Let’s say we want to know how U changes with any two properties which
we will denote symbolically as x and y. We express this mathematically as:

 The principles that we apply use multivariable calculus.

where x and y are any two other variables from our set of properties. We also could write

where x and y are any properties except T. The structure of the mathematics provides a method to
determine how all of these properties are coupled. We could extend the analysis to all combinations
of variables in our original set. As we will see in the remainder of the chapter, there are some
combinations which are more useful than others. In the upcoming chapter on equations of state, some
very specific combinations will be required. A peculiarity of thermodynamics that might not have
been emphasized in calculus class is the significance of the quantity being held constant, e.g., the y in
(∂U/∂x)y. In mathematics, it may seem obvious that y is being held constant if there are only two
variables and ∂x specifies the one that is changing. In thermodynamics, however, we have many more
than two variables, although only two are varying at a time. For example, (∂U/∂T)V is something quite
different from (∂U/∂T)P, so the subscript should not be omitted or casually ignored.

Basic Identities
Frequently as we manipulate derivatives we obtain derivatives of the following forms which

should be recognized.



 Basic identities.

Triple Product Rule
Suppose F = F(x,y), then

Consider what happens when dF = 0 (i.e., at constant F). Then,

 Triple product rule.

Two Other Useful Relations
First, for any partial derivative involving three variables, say x, y, and F, we can interpose a fourth

variable z using the chain rule:

 Chain rule interposing a variable.

Another useful relation is found by a procedure known as the expansion rule. The details of this
expansion are usually not covered in introductory calculus texts:

 The expansion rule.

Recall that we started with a function F = F(x,y). If you look closely at the expansion rule, it



provides a method to evaluate a partial derivative (∂F/∂w)z in terms of (∂x/∂w)z and (∂y/∂w)z. Thus,
we have transformed the calculation of a partial derivative of F to partial derivatives of x and y. This
relation is particularly useful in manipulation of the fundamental relations S, U, H, A, and G when one
of these properties is substituted for F, and the natural variables are substituted for x and y. We will
demonstrate this in Examples 6.1 and 6.2. Look again at Eqn. 6.17. It looks like we have taken the
differential expression of Eqn. 6.14 and divided through the differential terms by dw and constrained
to constant z, but this procedure violates the rules of differential operators. What we have actually
done is not nearly this simple.2 However, looking at the equation this way provides a fast way to
remember a complicated-looking expression.

Exact Differentials
In this section, we apply calculus to the fundamental properties. Our objective is to derive

relations known as Maxwell’s relations. We begin by reminding you that we can express any state
property in terms of any other two state properties. For a function which is only dependent on two
variables, we can obtain the following differential relation, called in mathematics an exact
differential.

Developing the ability to express any state variable in terms of any other two variables from the set
{P, T, V, S} as we have just done is very important. But the equation looks a little formidable.
However, the fundamental property relationship says:

Comparison of the above equations shows that:

This means that the derivatives in Eqn. 6.18 are really properties that are familiar to us. Likewise,
we can learn something about formidable-looking derivatives from enthalpy:

But the result of the fundamental property relationship is:
dH = TdS + VdP

Comparison shows that:
T = (∂H/∂S)P and V = (∂H/∂P)S

Now, we see that a definite pattern is emerging, and we could extend the analysis to Helmholtz and
Gibbs energy. We can, in fact, derive relations between certain second derivatives of these relations.
Since the properties U, H, A, and G are state properties of only two other state variables, the
differentials we have given in terms of two other state variables are known mathematically as exact
differentials; we may apply properties of exact differentials to these properties. We show the features
here; for details consult an introductory calculus textbook. Consider a general function of two
variables: F = F(x,y), and

For an exact differential, differentiating with respect to x we can define some function M:



Similarly differentiating with respect to y:

 Exact differentials.

Taking the second derivative and recalling from multivariable calculus that the order of
differentiation should not matter,

 Euler’s reciprocity relation.

This simple observation is sometimes called Euler’s reciprocity relation.3 To apply the reciprocity
relation, recall the total differential of enthalpy considering H = H(S,P):

Considering second derivatives:

A similar derivation applied to each of the other thermodynamic functions yields the equations
known as Maxwell’s relations.

Maxwell’s Relations

 Maxwell’s relations.

Example 6.1. Pressure dependence of H



Derive the relation for  and evaluate the derivative for: a) water at 20°C where 

 and , ρ = 0.998 g/cm3; b) an ideal gas.

Solution
First, consider the general relation dH = TdS + VdP. Applying the expansion rule,

by a Maxwell relation, the entropy derivative may be replaced

which is valid for any fluid.
a. Plugging in values for liquid water,

Therefore, within 6% at room temperature,  for liquid water as used in
Eqn. 2.42 on page 59 and Example 2.6 on page 60.

b. For an ideal gas, we need to evaluate (∂V/∂T)P. Applying the relation to V = RT/P,
(∂V/∂T)P = R/P. Inserting into Eqn. 6.33, enthalpy is independent of pressure for an ideal
gas.

A non-ideal gas will have a different partial derivative, and the enthalpy will
depend on pressure as we will show in Chapter 8.

Example 6.2. Entropy change with respect to T at constant P
Evaluate (∂S/∂T)P in terms of CP, CV, T, P, V, and their derivatives.

Solution
CP is the temperature derivative of H at constant P. Let us start with the fundamental relation for

enthalpy and then apply the expansion rule. Recall, dH = TdS + VdP.
Applying the expansion rule, Eqn. 6.17, we find,

Applying the basic identity of Eqn. 6.12 to the second term on the right-hand side, since P appears



in the derivative and as a constraint the term is zero,

But the definition of the left-hand side is given by Eqn. 2.36: CP ≡ (∂H/∂T)P.

Therefore, (∂S/∂T)P = CP/T, which we have seen before as Eqn. 4.31, and we have found that the
constant-pressure heat capacity is related to the constant-pressure derivative of entropy with respect
to temperature. An analogous analysis of U at constant V results in a relation between the constant-
volume heat capacity and the derivative of entropy with respect to temperature at constant V. That is,
Eqn. 4.30,

(∂S/∂T)V = CV/T

Example 6.3. Entropy as a function of T and P
Derive a general relation for entropy changes of any fluid with respect to temperature and pressure

in terms of CP, CV, P, V, T, and their derivatives.

Solution
First, since we choose T, P to be the controlled variables, applying Eqn. 6.14

but (∂S/∂T)P = CP/T as derived above, and Maxwell’s relations show that

This useful expression is ready for application, given an equation of state which describes V(T,P).

Note that expressions similar to Eqn. 6.37 can be derived for other thermodynamic variables in an
analogous fashion. These represent powerful short-hand relations that can be used to solve many
different process-related problems. In addition to Eqn. 6.37, some other useful expressions are listed
below. These are so frequently useful that they are also tabulated on the front flap of the text for
convenient reference.

 A summary of useful relations.

The Importance of Derivative Manipulations



One may wonder, “What is so important about the variables CP, CV, P, V, T, and their
derivatives?” The answer is that these properties are experimentally measureable. Engineers have
developed equations of state written in terms of these fundamental properties. Briefly, an equation
of state provides the link between P, V, and T. So, we can solve for all the derivatives by knowing an
equation for P = P(V,T) and add up all the changes. Properties like H, U, and S are not considered
measurable because we don’t have gauges that measure them. Look back at the descriptions in Section
6.2. CP and CV are considered measurable though they are typically measured using the energy
balance with temperature changes. A goal of derivative manipulations is to convert derivatives
involving unmeasurable properties into derivatives involving measurable properties.

 An equation of state links the P, V, T properties of a fluid.

As for CP and CV, we should actually be very careful about specifying when we are referring to the
CP of a real fluid or the  of an ideal gas, but the distinction is frequently not made clear in
literature. You may need to recognize from the context of the source whether CP is for the ideal gas or
something else. In most cases, the intent is to apply  at low density to account for temperature
effects and then to apply a correction factor of dV or dP to account for non-ideal gas density or
pressure effects. In this way, in Chapter 8 we compute ∆U, ∆H, ∆S, ∆A, or ∆G from any initial (or
reference) condition to any final condition and we can imagine compiling the results in the format of
the steam tables for any particular compound.

Test Yourself
Sketch two subcritical isotherms and two supercritical isotherms. Using the isotherms, describe

how the following derivatives could be obtained numerically: (∂P/∂T)V, (∂V/∂T)P, (∂P/∂V)T.
Compare the relative sizes of the derivatives for liquids and gases.

Important Measurable Derivatives
Two measurable derivatives are commonly used to discuss fluid properties, the isothermal

compressibility and the isobaric coefficient of thermal expansion. The isothermal compressibility is

 Isothermal compressibility.

The isobaric coefficient of thermal expansion is

 Isobaric coefficient of thermal expansion.



A similar commonly used property is the Joule-Thomson coefficient defined by

It is easy to see how this property relates to the physical situation of temperature changes as
pressure drops through an isenthalpic throttle valve, though it is not considered measurable because
of the constraint on H. The manipulation in terms of measurable properties is considered in Problem
6.8.

The next two examples illustrate the manner in which derivative manipulations are applied with a
particularly simple equation of state to obtain an expression for ∆S. In this chapter, we establish this
conceptual approach and the significant role of an assumed equation of state. The next chapter focuses
on the physical basis of developing a reasonable equation of state. Since the derivative manipulations
are entirely rigorous, we come to understand that all the approximations in all thermodynamic
modeling are buried in the assumptions of an equation of state. Whenever an engineering
thermodynamic model exhibits inaccuracy, the assumptions of the equation of state must be
reconsidered and refined in the context of the particular application.

Example 6.4. Entropy change for an ideal gas
A gas is being compressed from ambient conditions to a high pressure. Devise a model equation

for computing ∆S(T,P). Assume the ideal gas equation of state.

Solution
We begin with the temperature effect at (constant) low pressure. By Eqn. 6.37,

Having accounted for the temperature effect at constant pressure, the next step is to account for the
pressure effect at constant temperature. The derivative (∂V/∂T)P is required.

Putting it all together,

Assuming  is independent of T and integrating,

Once again, we arrive at Eqn. 4.29, but this time, it is easy to recognize the necessary changes for
applications to non-ideal gases. That is, we must simply replace the P-V-T relation by a more
realistic equation of state when we evaluate derivatives.

Example 6.5. Entropy change for a simple nonideal gas
A gas is compressed from ambient conditions to a high pressure. Devise a model equation for



computing ∆S(T,P) with the equation of state: V = RT/P + (a + bT), where a and b are constants.

Solution
Substituting the new equation of state and following the previous example,

(∂V/∂T)P = R/P + b

We can still apply  because we could be careful to calculate temperature effects at low P before
calculating the pressure effect. Inserting into Eqn. 6.37,

Assuming  is independent of T and integrating,

Equations of state can be much more complicated than this one, motivating us to carefully
contemplate the most efficient manner to organize our derivative relations to transform complex
equations of state into useful engineering models. The departure function formalism as described in
Chapter 8 provides this kind of efficiency. A key manipulation in that chapter will be the volume
dependence of properties at constant temperature.

Example 6.6. Accounting for T and V impacts on energy

Derive an expression for  in terms of measurable properties. (a) Evaluate for the ideal gas.
(b) Evaluate for the van der Waals equation of state, P = RT/(V – b) – a/V.

Solution
Beginning with the fundamental relation for dU,

dU = TdS – PdV
Applying the expansion rule

Using a Maxwell relation and a basic identity

a. For an ideal gas, P = RT/V

Thus, internal energy of an ideal gas does not depend on volume (or pressure) at a
given T.

b. For the van der Waals equation,



Another important application of derivative manipulations is in deriving meaningful connections
between U, H, A, G, and S. We illustrate this kind of application with two examples. The first is a
fairly simple development of the relation between energy and Helmholtz energy; the relation arises
frequently in applications in Unit III of the text. The second example pertains to the Einstein solid
model that was used to demonstrate the connection between the microscopic and macroscopic
definitions of entropy. This second example involves more tedious calculus, but reveals broad
insights related to chemistry and spectroscopy as well as entropy and heat capacity.

Example 6.7. The relation between Helmholtz energy and internal energy
Express the following in terms of U, H, S, G, and their derivatives: (∂(A/RT)/∂T)V.

Solution
Applying the product rule,

Applying Eqn. 6.6 and the definition of A,

Rearranging, and introducing a common definition β ≡ 1/kT,

The significance of Eqn. 6.47 is that one can easily transform from Helmholtz energy to internal
energy and vice versa by integrating or differentiating. This is especially easy when the temperature
dependence is expressed as a polynomial.

We are now in a position to return to the discussion of the relation between entropy and
temperature that was begun in Chapter 4. Many experimental observations circa 1900 were
challenging the conventional theories of atomic motions. It seemed that particles the size of atoms,
and smaller, might be moving in discrete steps of energy, instead of continuous energies, and this
altered the behavior that was being observed. For example, the covalent bond of nitrogen appears to
vibrate classically at high temperature, but to become rigid at low temperature. The nature of this
transition and its impact on heat capacity require explanation. The Einstein solid model was a major
milestone in resolving many of these peculiar observations.

Albert Einstein wrote 45 articles between 1901 and 1907. Of these, 11 were about
thermodynamics, 24 were reviews about thermodynamics, 7 were about relativity, 1 was about
electromagnetism, and 2 were about the photoelectric effect. Of course, his revolutionary works were
about relativity and the photoelectric effect because they opened new vistas of physical insight. But
his work on heat capacity might arguably have had the broader immediate impact. Einstein showed



that a very simple quantized theory predicted the experimental observations that classical theory
could not explain. The following example applies derivative manipulations to obtain heat capacity
from the entropy and demonstrate that the heat capacity approaches zero at zero Kelvin.

Example 6.8. A quantum explanation of low T heat capacity
The result of the Einstein solid model, from Example 4.2 on page 141, can be rearranged to:

where y = S/Mk and x = <qM> = U/Mεq – 1/2. Use these results to derive the temperature
dependence of S/Mk, U/Mεq – 1/2, and CV as instructed.

a. Derive a formula for CV/Mk. Tabulate values of y, x, and CV/Mk versus βεq at βεq =
{0.1, 0.2, 0.5, 1, 2, 5, 10}. Recall that β = 1/kT.
b. The following data have been tabulated for silver by McQuarrie.a Iterate on εq/k to find
the best fit and plot CV/Mk versus kT/εq, comparing theory to experiment. Also indicate the
result of classical mechanics with a dashed line.

Solution
a. Noting that (∂S/∂T)V = CV/T, a logical step is to take (∂y/∂T)V = CV/MkT.

Note that the CV terms cancel, seeming to defeat the purpose, but substitute anyway and recognize
internal energy is embedded.

We may not have obtained CV as expected, but we obtained U(T), so it is straightforward to
evaluate CV from its definition: CV = (∂U/∂T)V.

Multiplying both sides by T for convenience,

Multiplying and dividing by k on the left-hand side,



Varying βεq and tabulating energy and entropy, noting that the lowest temperatures are on the right,
values of U and x = <qM> are calculated by Eqn. 6.49, S/Mk by 6.48, and CV/Mk by 6.50. We can
see that the heat capacity goes to zero as 0 K is approached.

b. As discussed in Example 4.2 on page 141, each atom has three possible directions of
motion, so M = 3N. Therefore, the quantum mechanical formula is CV/(Mk) = CV/(3Nk) =
CV/(3R).

The classical value of the solid heat capacity can be deduced by considering the
degrees of freedom.b Kinetic and potential energy each contribute a degree of freedom
for a bond. Recalling from Section 2.10 that each degree of freedom contributes R/2 to
CV, CV

cs = 2(Nk/2)(M/N) = Mk = 3nR, or CV
cs = 3R where CV

cs is the heat capacity of
the classical solid. Note that the table in part (a) approaches the classical result at
high temperature, CV

cs/3R = 1.
CV/Mk is fitted in Excel by naming a cell as εq/k and applying Eqn. 6.50. The

function SUMXMY2 was used to compute Σ(calc – expt)2. Minimization with the
Solver gives εq/k = 159 K. Values of CV/3R and CV/Mk at εq/k = 159 K are tabulated
below.

a. McQuarrie, D.A., 1976. Statistical Mechanics. New York, NY: Harper & Row, p. 205.
b. The degrees of freedom for kinetic and potential energy discussed here are different from the degrees of freedom for
the Gibbs phase rule. See also, Section 2.10.

Einstein’s expression approaches zero too quickly relative to the experimental data, but it explains
the large qualitative difference between the classical theory and experiment. Several refinements
have appeared over the years and these fit the data more closely, but the key point is that quantized
energy leads to freezing out the vibrational degrees of freedom at temperatures substantially above 0
K. This phenomenology also applies to the vibrations of polyatomic molecules, as explored in the



homework for a diatomic molecule. The weaker bond energy of bromine relative to nitrogen is also
evident in its higher value of CP/R as listed on the back flap. From a broader perspective, Einstein’s
profound insight was that quantized energy meant that thermal entropy could be conceived in a manner
analogous to configurational entropy except by putting particles in energy levels rather than putting
particles in boxes spatially. In this way, we can appreciate that the macroscopic and microscopic
definitions of entropy are analogous applications of distributions.

Hints on Manipulating Partial Derivatives

1. Learn to recognize  and  as being related to CP and CV, respectively.

 Useful hints on manipulating derivatives.

2. If a derivative involves entropy, enthalpy, or Helmholtz or Gibbs energy being held

constant, e.g., , bring it inside the parenthesis using the triple product relation (Eqn.
6.15). Then apply the expansion rule (Eqn. 6.17) to eliminate immeasurable quantities. The
expansion rule is very useful when F of that equation is a fundamental property.
3. When a derivative involves {T, S, P, V} only, look to apply a Maxwell relation.
4. When nothing else seems to work, apply the Jacobian method.4 The Jacobian method
will always result in derivatives with the desired independent variables.

Example 6.9. Volumetric dependence of CV for ideal gas
Determine how CV depends on volume (or pressure) by deriving an expression for (∂CV/∂V)T.

Evaluate the expression for an ideal gas.

Solution
Following hint #1 and applying Eqn. 4.30:

By the chain rule:

Changing the order of differentiation:

For an ideal gas, P = RT/V, we have  in Example 6.6:

Thus, heat capacity of an ideal gas does not depend on volume (or pressure) at a fixed temperature.



(We will reevaluate this derivative in Chapter 7 for a real fluid.)

Example 6.10. Application of the triple product relation
Evaluate (∂S/∂V)A in terms of CP, CV, T, P, and V. Your answer may include absolute values of S if

it is not a derivative constraint or within a derivative term.

Solution
This problem illustrates a typical situation where the triple product rule is helpful because the

Helmholtz energy is held constant (hint #2). It is easiest to express changes in the Helmholtz energies
as changes in other variables. Applying the triple product rule:

(∂S/∂V)A = –(∂A/∂V)S/(∂A/∂S)V

Applying the expansion rule twice, dA = –PdV – SdT ය (∂A/∂V)S = – P – S(∂T/∂V)S and (∂A/∂S)V
= 0 – S(∂T/∂S)V. Recalling Eqn. 4.30 and converting to measurable derivatives:

Substituting:

Example 6.11. Master equation for an ideal gas
Derive a master equation for calculating changes in U for an ideal gas in terms of {V, T}.

Solution

Applying results of the previous examples:

Notice that this expression is more complicated than the fundamental property relation in terms of
{S, V}. As we noted earlier, this is why {S, V} are the natural variables for dU, rather than {T,V} or
any other combination. For an ideal gas, we can use the results of Example 6.6 to find:

Example 6.12. Relating CP to CV

Derive a general formula to relate CP and CV.

Solution



Start with an expression that already contains one of the desired derivatives (e.g., CV) and
introduce the variables necessary to create the second derivative (e.g., CP). Beginning with Eqn.
6.38,

and using the expansion rule with T at constant P,

, where the left-hand side is .

Exercise:
Verify that the last term simplifies to R for an ideal gas.

Owing to all the interrelations between all the derivatives, there is usually more than one way to
derive a useful result. This can be frustrating to the novice. Nevertheless, patience in attacking the
problems, and attacking a problem from different angles, can help you to visualize the structure of the
calculus in your mind. Each problem is like a puzzle that can be assembled in multiple ways. Patience
in developing these tools is rewarded with a mastery of the relations that permit quick insight into the
easiest way to solve problems.

6.3. Advanced Topics
Hints for Remembering the Auxiliary Relations

Auxiliary relations can be easily written by memorizing the fundamental relation for dU and the
natural variables for the other properties. Note that {T,S} and {P,V} always appear in pairs, and each
pair is a set of conjugate variables. A Legendre transformation performed on internal energy among
conjugate variables changes the dependent variable and the sign of the term involving the conjugate
variables. For example, to transform P and V, the product PV is added to U, resulting in Eqn. 6.5. To
transform T and S, the product TS is subtracted: A = U – TS, dA = dU – TdS – SdT = –SdT – PdV. The
pattern can be easily seen in the “Useful Derivatives” table on the front book end paper. Note that
{T,S} always appear together, and {P,V} always appear together, and the sign changes upon
transformation.

Jacobian Method of Derivative Manipulation
A partial derivative may be converted to derivatives of measurable properties with any two

desired independent variables from the set {P,V,T}. Jacobian notation can be used to manipulate
partial derivatives, and there are several useful rules for manipulating derivatives with the notation.
The Joule-Thomson coefficient is a derivative that indicates how temperature changes upon pressure

change at fixed enthalpy, , which is written in Jacobian notation as . Note how
the constraint of constant enthalpy is incorporated into the notation. The rules for manipulation of the
Jacobian notation are,

1. Jacobian notation represents a determinant of partial derivatives,



The Jacobian is particularly simple when the numerator and denominator have a
common variable,

which is a special case of Eqn. 6.54.
2. When the order of variables in the numerator or denominator is switched, the sign of the
Jacobian changes. Switching the order of variables in both the numerator and denominator
results in no sign change due to cancellation. Consider switching the order of variables in
the numerator,

3. The Jacobian may be inverted.

4. Additional variables may be interposed. When additional variables are interposed, it is
usually convenient to invert one of the Jacobians.

Manipulation of Derivatives
Before manipulating derivatives, the desired independent variables are selected. The selected

independent variables will be held constant outside the derivatives in the final formula. The general
procedure is to interpose the desired independent variables, rearrange as much as possible to obtain
Jacobians with common variables in the numerator and denominator, write the determinant for any
Jacobians without common variables; then use Maxwell relations, the expansion rule, and so on, to
simplify the answer.

1. If the starting derivative already contains both the desired independent variables, the
result of Jacobian manipulation is redundant with the triple product rule. The steps are: 1)
write the Jacobian; 2) interpose the independent variables; 3) rearrange to convert to
partial derivatives.

Example: Convert  to derivatives that use T and P as independent variables.



and the numerator can be simplified using the expansion rule as presented in
Example 6.1.

2. If the starting derivative has just one of the desired independent variables, the steps are:
1) write the Jacobian; 2) interpose the desired variables; 3) write the determinant for the
Jacobian without a common variable; 4) rearrange to convert to partial derivatives.

Example: Find a relation for the adiabatic compressibility,  in terms of
derivatives using T, P as independent variables.

Now, including a Maxwell relation as we simplify the second term in square
brackets, and then combining terms:

3. If the starting derivative has neither of the desired independent variables, the steps are:
1) write the Jacobian; 2) interpose the desired variables; 3) write the Jacobians as a
quotient and write the determinants for both Jacobians; 4) rearrange to convert to partial
derivatives.

Example: Find  in measurable properties using P and T as independent
variables.

Writing the determinants for both Jacobians:

Now, using the expansion rule for the derivatives of U, and also introducing Maxwell relations,



The result is particularly simple. We could have derived this directly if we had recognized that S
and V are the natural variables for U. Therefore, dU = TdS – P dV = 0, 

. However, the exercise demonstrates the procedure and
power of the Jacobian technique even though the result will usually not simplify to the extent of this
example.

6.4. Summary
We have seen in this chapter that calculus provides powerful tools permitting us to calculate

changes in immeasurable properties in terms of other measurable properties. We started by defining
additional convenience functions A, and G by performing Legendre transforms. We then reviewed
basic calculus identities and extended throughout the remainder of the chapter. The ability to perform
these manipulations lays the foundation for the development of general methods to calculate
thermodynamic properties for any chemical from P-V-T relations. If we only had a general relation
that perfectly described P=P(V,T) for all the chemicals in the universe, it could be combined with the
tools in this chapter to compute any property required by the energy and entropy balances. At present,
no such perfect equation exists. This means that we need to understand what makes it so difficult to
develop such an equation and how the various available equations can be applied in various
situations to achieve reasonable and continuously improving estimates.

Important Equations
The procedures developed in this chapter are what is important. They provide a basis for

transforming one set of derivatives into another and for thinking systematically about how variables
relate to one another. The basic identities 6.11–6.17 combine with the fundamental properties for the
remainder of the chapter. Nevertheless, several equations stand out as a summary of the results that
can be rearranged to a desired form relatively quickly. These are the Maxwell Eqns. 6.29–6.32, and
also some intermediate manipulations 6.37–6.41. They are included on the front flap of the text-book
for your convenience. Eqn. 6.47 stands out as an equation for long term reference because it relates
the Helmholtz energy to the internal energy. That is a key step when we turn to consideration of
solution models. Also, when combined with a similar relation is for compressibility factor in Chapter
7, the central role of Helmholtz energy in thermodynamic properties becomes apparent.

Test Yourself
1. What are the restrictions necessary to calculate one state property in terms of only two
other state variables?
2. When integrating Eqn. 6.53, under what circumstances may CV be taken out of the



integral?
3. May Eqn. 6.53 be applied to a condensed phase?
4. Is the heat capacity different for liquid acetone than for acetone vapor?
5. Can the tabulated heat capacities be used in Eqn. 6.53 for gases at high pressure?

6.5. Practice Problems
P6.1. Express in terms of P, V, T, CP, CV, and their derivatives. Your answer may include
absolute values of S if it is not a derivative constraint or within a derivative.

a. (∂H/∂S)V

b. (∂H/∂P)V

c. (∂G/∂H)P

(ANS. (a) T[1+V/CV(∂P/∂T)v] (b) Cv(∂T/∂P)v+V (c) –S/CP)

6.6. Homework Problems
6.1. CO2 is given a lot of credit for global warming because it has vibrational frequencies
in the infrared (IR) region that can absorb radiation reflected from the Earth and degrade it
into thermal energy. The vibration at ε/k = 290K (903cm—1) is particularly important.

a. Plot Cv
ig/R versus T for CO2 in the range 200—400 K. Use the polynomial

expression in the back of the book to estimate Cv
ig/R at 200 K as a reference.

Also plot the polynomial expression on the same chart as a dashed line.
b. Use your Internet search skills to learn the wavelength range of the IR
spectrum. How many wavelengths are there? What fraction does the wavelength
at 903cm—1 comprise? If the Earth’s atmosphere was composed entirely of CO2,
what fraction of IR energy could be absorbed by CO2?

c. The Earth’s atmosphere is really 380ppm CO2. If the absorption efficiency is
proportional to the concentration, how much IR energy could be absorbed by CO2
in this case?

6.2. Express in terms of P, V, T, CP, CV, and their derivatives. Your answer may include
absolute values of S if it is not a derivative constraint or within a derivative.

a. (∂G/∂P)T

b. (∂P/∂A)V

c. (∂T/∂P)S

d. (∂H/∂T)U

e. (∂T/∂H)S

f. (∂A/∂V)P

g. (∂T/∂P)H



h. (∂A/∂S)P

i. (∂S/∂P)G

6.3. Express the following in terms of U, H, S, A, and their derivatives.

6.4.

a. Derive  and  in terms of measurable properties.
b. dH = dU + d(PV) from the definition of H. Apply the expansion rule to show

the difference between  and  is the same as the result from part (a).
6.5. In Chapter 2, internal energy of condensed phases was stated to be more weakly
dependent on pressure than enthalpy. This problem evaluates that statement.

a. Derive  and  in terms of measurable properties.

b. Evaluate  and compare the magnitude of the terms contributing to 
for the fluids listed in problem 5.6.

c. Evaluate  for the fluids listed in problem 5.6 and compare with the

values of .

6.6. Express  in terms of αP and/or κT.

6.7. Express the adiabatic compressibility, , in terms of measurable
properties.
6.8. Express the Joule-Thomson coefficient in terms of measurable properties for the
following:

a. Van der Waals equation given in Example 6.6
b. An ideal gas.

6.9.

a. Prove .
b. For an ideal gas along an adiabat, (P/Pi) = (T/Ti)Cp/R. Demonstrate that this
equation is consistent with the expression from part (a).

6.10. Determine the difference CP – CV for the following liquids using the data provided near
20°C.



6.11. A rigid container is filled with liquid acetone at 20°C and 1 bar. Through heat transfer at
constant volume, a pressure of 100 bar is generated. CP = 125 J/mol-K. (Other properties of
acetone are given in problem 6.10.) Provide your best estimate of the following:

a. The temperature rise
b. ∆S, ∆U, and ∆H
c. The heat transferred per mole

6.12. The fundamental internal energy relation for a rubber band is dU = TdS – FdL where F is
the system force, which is negative when the rubber band is in tension. The applied force is
given by Fapplied = k(T)(L – L0) where k(T) is positive and increases with increasing
temperature. The heat capacity at constant length is given by CL = α(L) + β(L)·T. Stability
arguments show that α(L) and β(L) must provide for CL ≥ 0.

a. Show that temperature should increase when the rubber band is stretched
adiabatically and reversibly.
b. Prof. Lira in his quest for scientific facts hung a weight on a rubber band and
measured the length in the laboratory at room temperature. When he hung the
rubber band with the same weight in the refrigerator, he noticed that the length of
the rubber band had changed. Did the length increase or decrease?
c. The heat capacity at constant force is given by

Derive a relation for CF – CL and show whether this difference is
positive, negative, or zero.

d. The same amount of heat flows into two rubber bands, but one is held at
constant tension and the other at constant length. Which has the largest increase in
temperature?
e. Show that the dependence of k(T) on temperature at constant length is related
to the dependence of entropy on length at constant temperature. Offer a physical
description for the signs of the derivatives.



Chapter 7. Engineering Equations of State for PVT Properties

I am more than ever an admirer of van der Waals.
Lord Rayleigh (1891)

From Chapter 6, it is obvious that we can calculate changes in U, S, H, A, and G by knowing
changes in any two variables from the set {P-V-T} plus CP or CV. This chapter introduces the various
ways available for quantitative prediction of the P-V-T properties we desire in a general case. The
method of calculation of thermodynamic properties like U, H, and so on. is facilitated by the use of
departure functions, which will be the topic of the next chapter. The development of the departure
functions is a relatively straightforward application of derivative manipulations. What is less
straightforward is the logical development of a connection between P, V, and T. We introduced the
concept in Chapter 1 that the pressure, temperature, and density (i.e., V–1) are connected through
intermolecular interactions. We must now apply that concept to derive quantitative relationships that
are applicable to any fluid at any conditions, not simply to ideal gases. You will see that making the
connection between P, V, and T hinges on the transition from the molecular-scale forces and potential
energy to the macroscopic pressure and internal energy. Understanding the approximations inherent in
a particular equation of state is important because effectively all of the approximations in a
thermodynamic model can be traced to the assumed equation of state. Whenever deficiencies are
found in a process model, the first place to look for improvement is in revisiting the assumptions of
the equation of state.

Understanding the transition from the molecular scale to the macroscopic is a major contribution in
our conceptual puzzle of calculating energy, entropy, and equilibrium. We made qualitative
connections between the microscopic and macroscopic scales for entropy during our introduction to
entropy. For energy, however, we have left a gap that you may not have noticed. We discussed the
molecular energy in Chapter 1, but we did not quantify the macroscopic implications. We discussed
the macroscopic implications of energy in Chapter 2, but we did not discuss the molecular basis. It is
time to fill that gap, and in doing so, link the conceptual framework of the entire text.

From one perspective, the purpose of the examples in Chapter 6 was to explain the need for making
the transition from the molecular scale to the macroscopic scale. The purpose of the material
following this chapter is to demonstrate the reduction to practice of this conceptual framework in
several different contexts. So in many ways, this chapter represents the conceptual kernel for all
molecular thermodynamics.

Chapter Objectives: You Should Be Able to...
1. Explain and apply two- and three- parameter corresponding states.
2. Apply an equation of state to solve for the density given T and P, including liquid and
vapor roots.
3. Evaluate partial derivatives like those in Chapter 6 using an equation of state for PVT
properties.
4. Identify the repulsive and attractive contributions to an equation of state and critically
evaluate their accuracy relative to molecular simulations and experimental data.



7.1. Experimental Measurements
The preferred method of obtaining P-V-T properties is from experimental measurements of the

desired fluid or fluid mixture. We spend most of the text discussing theories, but you should never
forget the precious value of experimental data. Experimental measurements beat theories every time.
The problem with experimental measurements is that they are expensive, especially relative to
pushing a few buttons on a computer.

To illustrate the difficulty of measuring all properties experimentally, consider the following case.
One method to determine the P-V-T properties is to control the temperature of a container of fluid,
change the volume of the container in carefully controlled increments, and carefully measure the
pressure. The required derivatives are then calculated by numerical differentiation of the data
obtained in this manner. It is also possible to make separate measurements of the heat capacity by
carefully adding measured quantities of heat and determining changes in P, V, and T. These
measurements can be cross-referenced for consistency with the estimated changes as determined by
applying Maxwell’s relations to the P-V-T measurements. Imagine what a daunting task this approach
would represent when considering all fluids and mixtures of interest. It should be understandable that
detailed measurements of this type have been made for relatively few compounds. Water is the most
completely studied fluid, and the steam tables are a result of this study. Ammonia, carbon dioxide,
refrigerants, and light hydrocarbons have also been quite thoroughly studied. The charts which have
been used in earlier chapters are results of these careful measurements. Equations of state permit
correlation and extrapolation of experimental data that can be much more convenient and more
broadly applicable than the available charts.

 The basic procedure for calculating properties involves using derivatives of P-V-T
data.

An experimental approach is naturally impractical for all substances due to the large number of
fluids needing to be characterized. The development of equations of state is the engineering approach
to describing fluid behavior for prediction, interpolation, and extrapolation of data using the fewest
number of adjustable parameters possible for the desired accuracy. Typically, when data are
analyzed today, they are fitted with elaborate equations (embellishments of the equations of state
discussed in this chapter) before determination of interpolated values or derivatives. The charts are
generated from the fitted results of the equation of state.

As a summary of the experimental approach to equations of state, a brief review of the historical
development of P-V-T measurements may be beneficial. First, it should be recalled that early
measurements of P-V-T relations laid the foundation for modern physical chemistry. Knowing the
densities of gases in bell jars led to the early characterizations of molecular weights, molecular
formulas, and even the primary evidence for the existence of molecules themselves. At first, it seemed
that gases like nitrogen, hydrogen, and oxygen were non-condensable and something quite different
from liquids like water or wood alcohol (methanol). As technology advanced, however, experiments
were performed at higher temperatures and pressures. Carbon dioxide was a very common compound
in the early days (known as “carbonic acid” to van der Waals), and it soon became apparent that it
showed a high degree of compressibility. Experimental data were carefully measured in 1871 for
carbon dioxide ranging to 110 bars, and these data were referenced extensively by van der Waals.



Carbon dioxide is especially interesting because it has some very “peculiar” properties that are
exhibited near room temperature and at high pressure. At 31°C and about 70 bars, a very small
change in pressure can convert the fluid from a gas-like density to a liquid density. Van der Waals
showed that the cause of this behavior is the balance between the attractive forces from the
intermolecular potential being accentuated at this density range and the repulsive forces being
accentuated by the high-velocity collisions at this temperature. This “peculiar” range of conditions is
known as the critical region. The precise temperature, pressure, and density where the vapor and the
liquid become indistinguishable is called the critical point. Above the critical point, there is no
longer an abrupt change in the density with respect to pressure while holding temperature constant.
Instead, the balance between forces leads to a single-phase region spanning vapor-like densities and
liquid-like densities. With the work of van der Waals, researchers began to recognize that the
behavior was not “peculiar,” and that all substances have critical points.1

 Fortunately, P,V,T behavior of fluids follows the same trends for all fluids. All fluids
have a critical point.

7.2. Three-Parameter Corresponding States
If we plot P versus ρ for several different fluids, we find some remarkably similar trends. As

shown in Fig. 7.1 below, both methane and pentane show the saturated vapor density approaching the
saturated liquid density as the temperature increases. Compare these figures to Fig. 1.4 on page 23,
and note that the P versus ρ figure is qualitatively a mirror image of the P versus V figure. The
isotherms are shown in terms of the reduced temperature, Tr ≡ T/Tc. Saturation densities are the
values obtained by intersection of the phase envelope with horizontal lines drawn at the saturation

pressures. The isothermal compressibility  is infinite, and its reciprocal is zero,
at the critical point (e.g., 191 K and 4.6 MPa for methane). It is also worth noting that the critical
temperature isotherm exhibits an inflection point at the critical point. This means that (∂2P/∂ρ2)T = 0
at the critical point as well as (∂P/∂ρ)T = 0. The principle of corresponding states asserts that all
fluid properties are similar if expressed properly in reduced variables.



Figure 7.1. Comparison of the PρT behavior of methane (left) and pentane (right)
demonstrating the qualitative similarity which led to corresponding states’ treatment of fluids.

The lines are calculated with the Peng-Robinson equation to be discussed later. The phase
envelope is an approximation sketched through the points available in the plots. The smoothed

experimental data are from Brown, G.G., Sounders Jr., M., and Smith, R.L., 1932. Ind. Eng.
Chem., 24:513. Although not shown, the Peng-Robinson equation is not particularly accurate for

modeling liquid densities.

 The isothermal compressibility is infinite at the critical point.

Although the behaviors in Fig. 7.1 are globally similar, when researchers superposed the P-V-T
behaviors based on only critical temperature, Tc and critical pressure, Pc, they found the
superposition was not sufficiently accurate. For example, one way of comparing the behavior of
fluids is to plot the compressibility factor Z. The compressibility factor is defined as

 The compressibility factor.

Note: The compressibility factor is not the same as the isothermal
compressibility. The similarity in names can frequently result in confusion as you
first learn the concepts.

The compressibility factor has a value of one when a fluid behaves as an ideal gas, but will be
non-unity when the pressure increases. By plotting the data and calculations from Fig. 7.1 as a



function of reduced temperature Tr = T/Tc, and reduced pressure, Pr = P/Pc, the plot of Fig. 7.2
results. Clearly, another parameter is needed to accurately correlate the data. Note that the vapor
pressure for methane and pentane differs on the compressibility factor chart as indicated by the
vertical lines on the subcritical isotherms. The same behavior is followed by other fluids. For
example, the vapor pressures for six compounds are shown in Fig. 7.3, and although they are all
nearly linear, the slopes are different. In fact, we may characterize this slope with a third empirical
parameter, known as the acentric factor, ω. The acentric factor is a parameter which helps to specify
the vapor pressure curve which, in turn, correlates the rest of the thermodynamic variables.2

Figure 7.2. The Peng-Robinson lines from Fig. 7.1 plotted in terms of the reduced pressure at
Tr = 0.8, 0.9, 1.0, 1.1, and 1.3, demonstrating that critical temperature and pressure alone are
insufficient to accurately represent the P-V-T behavior. Dashed lines are for methane, solid
lines for pentane. The figure is intended to make an illustrative point. Accurate calculations

should use the compressibility factor charts developed in the next section.

Figure 7.3. Reduced vapor pressures plotted as a function of reduced temperature for six



fluids demonstrating that the shape of the curve is not highly dependent on structure, but that
the primary difference is the slope as given by the acentric factor.

 Critical temperature and pressure are insufficient characteristic parameters by
themselves. The acentric factor serves as a third important parameter.

Note: The specification of Tc, Pc, and ω provides two points on the vapor
pressure curve. Tc and Pc specify the terminal point of the vapor pressure curve. ω
specifies a vapor pressure at a reduced temperature of 0.7. The acentric factor was
first introduced by Pitzer et al.3 Its definition is arbitrary in that, for example,
another reduced temperature could have been chosen for the definition. The
definition above gives values of ω ~ 0 for spherical molecules like argon, xenon,
neon, krypton, and methane. Deviations from zero usually derive from deviations in
spherical symmetry. Nonspherical molecules are “not centrally symmetric,” so they
are “acentric.” In general, there is no direct theoretical connection between the
acentric factor and the shape of the intermolecular potential. Rather, the acentric
factor provides a convenient experimental vapor pressure which can be correlated
with the shape of the intermolecular potential in an ad hoc manner. It is convenient
in the sense that its value has been experimentally determined for a large number of
compounds and that knowing its value permits a significant improvement in the
accuracy of our engineering equations of state.

 The acentric factor is a measure of the slope of the vapor pressure curve plotted as ln
Psat versus 1/T.

7.3. Generalized Compressibility Factor Charts
P-V-T behavior can be generalized in terms of Tc, Pc, and ω. The original correlation was

presented by Pitzer, and is given in the form

 Pitzer correlation.

where tables or charts summarized the values of Z0 and Z1 at reduced temperature and pressure.
The broad availability of computers and programmable calculators is making this approach somewhat
obsolete, but it is worthwhile to visualize the trends. Fig. 7.44 may be applied for most hydrocarbons.



The plot of Z0 represents the behavior of a fluid that would have an acentric factor of 0, and the plot
of Z1 represents the quantity , which is the correction factor for a hypothetical fluid
with an acentric factor of 1. By perusing the table on the back flap of this book, you will notice that
most fluids fall between these ranges so that the charts may be used for interpolation.

Figure 7.4. Generalized charts for estimating the compressibility factor. (Z0) applies the Lee-
Kesler equation using ω = 0.0, and (Z1) is the correction factor for a hypothetical compound

with ω = 1.0. Note the semilog scale.

Eqn. 7.3 can be applied to any fluid once Tr, Pr, and ω are known. It should be noted, however, that
this graphical approach is rarely used in current practice since computer programs are more



conveniently written in terms of the equations of state as demonstrated in Section 7.5 and the
homework.

Example 7.1. Application of the generalized charts
Estimate the specific volume in cm3/g for carbon dioxide at 310 K and (a) 8 bar (b) 75 bar by the

compressibility factor charts and compare to the experimental values2 of 70.58 and 3.90,
respectively.

Solution
ω = 0.228 and Tr = 310/304.2 = 1.02 for both cases (a) and (b), so,

a. Pr = 8/73.82 = 0.108; from the charts, Z0 = 0.96 and Z1 = 0, so Z = 0.96.
V = ZRT/(P·MW) = (0.96·83.14·310)/(8·44) = 70.29, within 0.4% of the

experimental value.
b. Pr = 75/73.82 = 1.016 ≈ 1.02; Note that the compressibility factor is extremely sensitive
to temperature in the critical region. To obtain a reasonable degree of accuracy in reading
the charts, we must interpolate between the reduced temperatures of 1.0 and 1.05 which we
can read with more confidence.

At Tr = 1.0, Z0 = 0.22 and Z1 = –0.08 so Z = 0.22 + 0.228·(–0.08) = 0.202

At Tr = 1.05, Z0 = 0.58 and Z1 = 0.03, so Z = 0.58 + 0.228·(0.03) = 0.587

Interpolating, Z = 0.202 + (0.587 – 0.202)·2/5 = 0.356
V = ZRT/(P·MW) = (0.356·8.314·310)/(7.5·44) = 2.78, giving 29% error relative to the

experimental value.

It should be noted that the relative error encountered in this example is somewhat exaggerated
relative to most conditions because the Z-charts are highly non-linear in the critical region used in
this problem. Since the compressibility factor charts essentially provide a “linear interpolation”
between Z values for ω = 0 and ω = 1, the error is large in the critical region. If the reduced
temperature had been slightly higher, (e.g., Tr = 1.1), then the relative error would have been roughly
1%, as demonstrated in the homework problems. It would be a simple matter to specify conditions
that would make the chart look much more reliable, but then students might tend to err liberally rather
than conservatively. For better reliability, computer methods provide proper alternatives, and these
are easily applied on any modern engineering calculator. Example 7.5 on page 268 will demonstrate
in detail the validity of this perspective.

7.4. The Virial Equation of State
At low reduced pressure, deviations from ideal gas behavior are sufficiently small that we can

write our equation of state as explicit in a power series with respect to density. That is,

where B, C, and D are the second, third, and fourth virial coefficients. This can be considered an



expansion in powers of ρ. Coefficients C and D are rarely applied because this power series is not
very accurate over a broad range of conditions. The most common engineering application of the
virial equation of state is to truncate it after the second virial coefficient and to limit the range of
application appropriately. It provides a simple equation which still has a reasonable number of
viable applications. It has become common usage to refer to the equation truncated after the second
virial coefficient as the virial equation, even though we know that it is really a specialized form. We,
too, will follow this common usage. Furthermore, the truncated form may alternatively be expressed
as Z = Z(P,T). Hence, we often refer to the virial equation as:

where B is a function of T. Note that Eqn. 7.5 indicates that Z varies linearly with pressure along
an isotherm. Look back at Fig. 7.4 and notice that the region in which linear behavior occurs is
limited, but in general, the approximation can be used at higher reduced pressures when the reduced
temperature is higher. The virial equation can be generalized in reduced coordinates as given by
Eqns. 7.6–7.9.5 Eqn. 7.10 checks for restriction of the calculation to the linear Z region.

 Virial equation. B is known as the second virial coefficient, and it is a measure of the
slope of the Z-chart isotherms in the linear region.

The temperature dependence of the slope of the Z lines is not sufficiently represented by 1/T, so the
temperature dependence of B in Eqns. 7.8 and 7.9 is required. The virial equation is limited in its
range of applicability, but it has the advantage of simplicity. Its simplicity is especially advantageous
when illustrating derivations of real-fluid behavior for the first time and extending thermodynamic
relations to vapor mixtures. Unfortunately, the virial equation does not apply to liquids, and many
interesting results in thermodynamics appear in the study of liquids. To develop a global perspective
applicable to gases and liquids, we must consider the physics of fluids in a more sophisticated
manner. The simplest form which still permits this level of sophistication is the cubic equation,
discussed in the following section.

Example 7.2. Application of the virial equation
Estimate the specific volume in cm3/g for carbon dioxide at 310 K and (a) 8 bar (b) 75 bar by the

virial equation and compare to the experimental values of 70.58 and 3.90, respectively.

Solution



ω = 0.228 and Tr = 310/304.2 = 1.02 for both cases (a) and (b), so,

B0 = 0.083 – 0.422/1.021.6 = –0.326
B1 = 0.139 – 0.172/1.024.2 = –0.0193
B(T)Pc/RTc = B0 + ωB1) = (–0.326 + 0.228·(–0.0193)) = –0.3304

a. Pr = 8/73.82 = 0.108; so Z = 1 + (B0 + ωB1)Pr/Tr = 1 – 0.3304·0.108/1.02 = 0.965 V =
ZRT/(P·MW) = (0.965·83.14·310)/(8·44) = 70.66, within 0.1% of the experimental value.
b. Pr = 75/73.82 = 1.016; applying Eqn. 7.10, 0.686 + 0.439·1.016 = 1.13 > Tr = 1.02.
Therefore, the virial equation may be inaccurate using only the second virial coefficient.

There is an adaptation of the form of the virial series which should be mentioned before concluding
this discussion. It should not seem surprising that the inclusion of extra adjustable parameters in the
form of the virial series is an extremely straightforward task—just add higher order terms to the
series. In many cases, exponential terms are also included as in Eqn. 7.11. In this way, it is possible
to fit the P-V-T behavior of the liquid as well as the vapor to a reasonable degree of accuracy. It turns
out that the theoretical foundation for the series expansion in this way is tenuous, however. Reading
“the fine print” in discussions of series expansions like the Taylor series shows that such an approach
is only applicable to “analytic” functions. At present, there is a general acceptance that the behavior
of real fluids is “non-analytic” at the critical point. This means that application of such a series
expansion above the critical density and below the critical temperature is without a rigorous
mathematical basis. Nevertheless, engineers occasionally invoke the motto that “we can fit the shape
of an elephant with enough adjustable parameters.” It is in this spirit that empirical equations like the
Benedict-Webb-Rubin equation are best appreciated. One particular modification of the Benedict-
Webb-Rubin form is given below. It is the form that Lee and Kesler6 developed to render the Pitzer
correlation in terms of computer-friendly equations. The Lee-Kesler equation was used to generate
Fig. 7.4.

Twelve parameters are used to specify the temperature dependence of B, C, D, E0, E1, and E2 for
each compound. Readers are directed to the original article for the exact values of the parameters as
part of the homework.

 The acronym EOS will be used to mean equation of state.

7.5. Cubic Equations of State
To apply the relationships that we can develop for relating changes in properties to CP, CV, P, T,

V, and their derivatives, we need really general relationships between P, V, and T. These
relationships are dictated by the equation of state (EOS). Constructing an equation of state with a firm
physical and mathematical foundation requires considering how the intermolecular forces affect the
energy and pressure in a fluid. In a dense fluid, we know that the molecules are close together on the



average, and such closeness gives rise to an attractive potential energy. A common practical
manifestation of this attractive energy is the heat of vaporization of a boiling liquid. But how can we
make a quantitative connection between molecular forces and macroscopic properties? A firm
understanding of this physical and mathematical foundation is helpful to understand the extensions to
multicomponent mixtures and multiphase equilibria. A proper derivation would provide a
mathematical connection between the microscopic potential and the macroscopic properties. We will
lay the groundwork for such a rigorous derivation later in the chapter. For introductory purposes,
however, we would like to see how some typical equations look and how to use them in conjunction
with the theorem of corresponding states.

The van der Waals Equation of State
One of the most influential equations of state has been the van der Waals (1873) equation. Even the

most successful engineering equations currently used are only minor variations on the theme
originated by van der Waals. The beauty of his model is that detailed knowledge of the molecular
interactions is not necessary. Simply by noting that there are two characteristic molecular quantities
(ε and σ) and two characteristic macroscopic quantities (Tc and Pc), he was able to infer a simple
equation that captured the key features of each fluid through the principle of corresponding states. His
final equation expressed the attractive energy in terms of a parameter which he referred to as a, and
the size parameter b, but the choice of symbols was arbitrary. The key feature to recognize at this
stage is that there are at least two parameters in all the equations and that these can be determined by
matching experimental data.

Johannes Diderik van der Waals (1837–1923) was a Dutch physicist. He was awarded
the 1910 Nobel Prize in physics.

The resulting equation of state is:

 Van der Waals EOS.

where ρ = molar density = n/V.
Note: Common engineering practice is to use ρ to denote intensive density. We

follow that convention here, using ρ as molar density. Advanced chemistry and
physics books and research publications frequently use ρ as number density N/V =
nNA/V, so the definitions must be carefully determined.

 ρ will be used to denote molar density.

The exact manner of determining the values for the parameters a and b is discussed in Section 7.8
on page 270.



We may write the equation of state as Z = 1 + Zrep + Zatt, where 1 denotes the ideal gas behavior,
Zrep represents the deviations from the ideal gas law due to repulsive interactions, Zatt represents the
deviations due to attractive interactions. For the van der Waals equation,

 The van der Waals equation written in the form Z = 1 + Zrep + Zatt.

where the second and third terms on the right-hand side are Zrep and Zatt, respectively. Eqn. 7.12 is
compact, but Eqn. 7.14 more clearly represents the origin of the contributions to Z. In many later
applications we will need to use the departure of Z from ideal gas behavior, Z–1, and Eqn. 7.14 will
fulfill this need. There are two key features of the van der Waals equation. First, note that the
repulsive term accounts for the asymptotic divergence of the compressibility factor as the packing
factor bρ increases. The divergence occurs because rapidly increasing large pressures are required to
increase the density as close packing is approached. Second, note that the attractive term increases in
magnitude as the temperature decreases, and contributes to smaller values of Z at low T. The
contributions of the attractive forces increase at low temperature because the kinetic energy can no
longer overwhelm the potential attractions at low temperature. As we have discussed, this eventually
leads to condensation. The discussion in Section 7.11 provides a better understanding of the
molecular basis of the van der Waals equation. Note that the van der Waals EOS does not incorporate
the acentric factor and is incapable of representing different vapor pressure slopes. It is thus
primarily a pedagogical tool to introduce the forms of cubic EOSs, not a practical tool.

The Peng-Robinson Equation of State
Since the time of van der Waals (1873), many approximate equations of state have been proposed.

For the most part, these have been semi-empirical corrections to van der Waals’ characterization of
“a = constant,” and most have taken the form a = a(T,ω). One of the most successful examples of this
approach is that of Peng and Robinson (1976). We refer to this equation many times throughout this
text and use it to demonstrate many central themes in thermodynamics theory as well as useful
applications.

 The Peng-Robinson EOS. Note that a is a temperature-dependent parameter, not a
constant. Note the dependence on the acentric factor.

The Peng-Robinson equation of state (EOS) is given by:

where ρ = molar density = n/V, b is a constant, and a depends on temperature and acentric factor,7



Note that α is not the isobaric coefficient of thermal expansion and κ is not the isothermal
compressibility – they are simply variables introduced by Peng and Robinson for notational
convenience. The temperature derivative of a is useful when temperature derivatives of Z are needed:

Tc, Pc, and ω are reducing constants according to the principle of corresponding states. Expressing
the contributions to Z in the manner we followed for the van der Waals equation,

Comparison of the Peng-Robinson equation to the van der Waals equation shows one obvious
similarity; the repulsive term is the same. There are some differences: the temperature dependence of
the attractive parameter a is incorporated; dependence of a on the acentric factor is introduced; and
the density dependence of Zatt is altered by the denominator of the attractive term. The manner in
which these extra details were added was almost entirely empirical; different equations were tried
until one was found which seemed to fit the data most accurately while retaining cubic behavior.
(Many equations can be tried in 103 years.) There is not much to say about this empirical approach
beyond the importance of including the acentric factor. The main reason for the success of the Peng-
Robinson equation is that it is primarily applied to vapor-liquid equilibria and that the representation
of vapor-liquid equilibria is strongly influenced by the more accurate representation of vapor
pressure implicit in the inclusion of the acentric factor. Since the critical point and the acentric factor
characterize the vapor pressure fairly accurately, it should not be surprising that the Peng-Robinson
equation accurately represents vapor pressure.

 There are a lot of EOSs. We focus on the Peng-Robinson to illustrate the concepts.

One caution is given. The differences in accuracy between various equations of state are subtle
enough that one equation may be most accurate for one narrow range of applications, while another
equation of state is most accurate over another range. This may require a practicing engineer to adopt
an equation of state other than the Peng-Robinson equation for his specific application. Nevertheless,
the treatment of the Peng-Robinson equation presented here is entirely analogous to the treatment
required for any equation of state. If you understand this treatment, you should have no problem
adapting. A brief review of several thermodynamic models commonly encountered in chemical
process simulations is given in Appendix D.

Note: The variables a and b are used throughout equation of state literature (and
this text) to denote equation of state parameters. The formulas or values of these
parameters for a given equation of state cannot be used directly with any other



equation of state.

 The variables a and b are commonly used in EOSs. Do not interchange the formulas.

7.6. Solving the Cubic Equation of State for Z
In most applications we are given a pressure and temperature and asked to determine the density

and other properties of the fluid. This becomes slightly difficult because the equation involves terms
of density that are to the third power (“cubic”) even when simplified as much as possible. Standard
methods for solutions to cubic equations can be applied. The equation can be made dimensionless
prior to application of the solution method. Note:

 Dimensional analysis is an important engineering tool. Here we make the EOS
dimensionless so that it can be solved in a generalized way.

Defining dimensionless forms of the parameters

results in the lumped variables

The Peng-Robinson equation of state becomes

 Do not confuse the EOS parameters A and B with other uses of the variables. The
intended use is almost always clear.

Note: The variable A is also used elsewhere in the text to denote Helmholtz
energy. The variable B is used elsewhere in the text to represent the second virial
coefficient and availability. The context of the variable usage should make the
meaning of the variable clear. We choose to use A and B as reduced equation of
state parameters for consistency with equation of state discussions in the literature.

Rearranging the dimensionless Peng-Robinson equation yields a cubic function in Z that must be
solved for vapor, liquid, or fluid roots:

Isotherm Shape and the Real Roots
Fig. 7.5 shows several P-V isotherms for CO2 as generated with Eqn. 7.15. Comparing to Fig. 1.4,



note that the cubic EOS predicts “humps” when T < Tc. The humps are larger at lower temperature,
and the pressure can be negative as shown by the 275 K isotherm. The cubic equation always has
three roots, but at some conditions two are imaginary roots. For engineering, we are interested in the
real roots. For the isotherm at 290 K, three real roots exist at pressures between approximately 39
bar and 58 bar. We will refer to this pressure region as the three-root region meaning that there are
three real roots in this region. Above 58 bar, only a liquid root will result, and below 39 bar only a
vapor root will result. These two regions are called one-root regions to communicate that only one
real root exists in this region. The three-root region size depends on temperature. At 275 K the three-
root region extends down to P = 0, but the region is very narrow near 300 K.

Figure 7.5. Illustration of the prediction of isotherms by the Peng-Robinson equation of state
for CO2 (Tc = 304.2 K) at 275 K, 290 K, 300 K, 310 K, 320 K, and 350 K. Higher temperatures

result in a high pressure for a given volume. The “humps” are explained in the text. The
calculated vapor pressures are 36.42 bar at 275 K, 53.2 bar at 290 K, and 67.21 bar at 300 K.

The cubic equation for Z in Eqn. 7.25 also has similar behavior. Naming this function F(Z), we can
plot F(Z) versus Z to gain some understanding about its roots as shown in Fig. 7.6. Considering the
case when P = Psat, we see that three real roots exist; the larger root of F(Z) will be the vapor root
and will be the value of Z for saturated vapor. The smallest root will be the liquid root and will be
the value of Z for saturated liquid. At all other pressures at this temperature, where three real roots
are found, one of the roots is always more stable. Below the critical temperature, when P > Psat, the
fluid will be a compressed liquid, and the liquid root is more stable. Below the critical temperature,
when P < Psat, the fluid will be a superheated vapor and the vapor root is more stable. When T > Tc,
we have a supercritical fluid which can only have a single root but it may vary continuously between
a “vapor-like” or “liquid-like” densities and compressibility factors. We will discuss stability and
how to choose the stable root without generating an entire isotherm in an upcoming section.



Figure 7.6. Comparison of behavior of cubic in Z for the Peng-Robinson equation of state at
several conditions. The labels Znew and Zold in the upper left are described in the iterative

description in Appendix B.

Methods of Solving the Cubic Equation
Engineering applications typically specify P and T, and require information about V. Solution of

the equation of state in terms of Z is preferred over solution for V, and we can subsequently find V
using

The value of Z often falls between 0 and 1. (See Fig. 7.4 on page 257.) V often varies from 50–100
cm3/mole for liquids to near infinity for gases as P approaches zero. It is much easier to solve for
roots over the smaller variable range using the compressibility factor Z. There are two basic
approaches to solving cubic equations of state. First, we may use an iterative method. One such
method is the Newton-Raphson method. Another method is to solve analytically. A computer or
calculator program is helpful in either solution method.

Iterative Method
The Newton-Raphson method is described in Appendix B. The Newton-Raphson method uses an



initial guess along with the derivative value to rapidly converge on the solution.

Analytical Solution
The other choice we have for solution of the cubic is to analytically obtain the roots as detailed in

Appendix B. The method varies depending on whether one or three roots exist at the pressure of
interest. Solutions are implemented in a spreadsheet (Preos.xlsx) or a MATLAB script (Preos.m).
MATLAB includes a polynomial root finder, so the statement Zvals=roots([1 a2 a1 a0]) results in both
real and imaginary roots. The argument in the “roots” function is the vector of coefficients for the
polynomial in Z. In MATLAB, the indexes of the real roots can by found with index=find(imag(Zvals)==0)
followed by selecting the real parts of the roots using Zreal=real(Zvals(index)).

 Preos.xlsx uses the procedures from Appendix B and shows the intermediate
calculations.

Example 7.3. Peng-Robinson solution by hand calculation
Perform a hand calculation of the real roots for argon at 105.6 K and 0.498 MPa.

Solution
This example is available online and provides an example of hand calculation at the same

conditions as the next example.

 Preos.xlsx, Preos.m.

Example 7.4. The Peng-Robinson equation for molar volume
Find the molar volume predicted by the Peng-Robinson equation of state for argon at 105.6 K and

4.96 bar.

Solution
The critical data are entered from the table on the back flap of the text.
Preos.xlsx output is shown below. The state is in the three-root region, because the cells for the

one-root region are labeled #NUM! by Excel. Many of the intermediate calculations are also shown.
The volumes are 27.8, 134, and 1581 cm3/mole. The lower value corresponds to the liquid volume
and the upper value corresponds to the vapor. Note that Z is close to zero for the liquid and close to
one for the vapor.

The output from the Preos.m MATLAB script is also shown below. Though the default output does
not include intermediate values, they may be obtained by removing the “;” at the end of any code line
and rerunning the script.

Output from Preos.m:
Click here to view code image



argon  Tc(K)= 150.9 Pc(MPa)= 4.898 w = -0.004
T(K)= 105.600000 P(MPa)= 0.496000
Zvals =
    0.8971
    0.0759
    0.0157
Z= 0.897123  0.015681
V(cm^3/mol)= 1588.066740  27.758560
fugacity (MPa)= 0.449384  0.449903
Hdep (J/mol)= -222.933032  -6002.507074

Example 7.5. Application of the Peng-Robinson equation
Estimate the specific volume in cm3/g for carbon dioxide at 310 K and (a) 8 bars (b) 75 bars by the

Peng-Robinson equation and compare to the experimental values of 70.58 and 3.90, respectively.1

Solution
ω = 0.228, Tc = 304.2, Pc = 73.82, MW = 44 g/gmol,

a. Z = 0.961
V = ZRT/(P · MW) = (0.961 · 83.14 · 310)/(8 · 44) = 70.37, within 0.3% of the
experimental value.
b. Z = 0.492
V = ZRT/(P · MW) = (0.492 · 83.14 · 310)/(75 · 44) = 3.84 giving 1.5% error relative to the
experimental value.



 Preos.xlsx, Preos.m.

Example 7.5 shows the equation of state is much more reliable than reading the compressibility
factor charts in Example 7.1 on page 258.

Determining Stable Roots
When three real roots are found, which is most stable can be quickly determined. As mentioned in

Example 7.4, the smallest root usually corresponds to a liquid state, and the largest root usually
corresponds to the vapor state.8,9 When three real roots are found over a range of pressures for a
given temperature, these roots do not indicate vapor + liquid coexistence at all these conditions.
Vapor and liquid phases coexist only at the vapor pressure—above the vapor pressure, the liquid root
is most stable—below the vapor pressure, the vapor root is most stable. The most stable root
represents the phase that will exist at equilibrium. When three roots are found, the most stable root
has the lower Gibbs energy or fugacity. At phase equilibrium, the Gibbs energy and fugacity of the
roots will be equal. Fugacity is closely related to the Gibbs energy and will be described in Chapter
9, but we will begin to use the calculated values before we explain the calculation procedures
completely. When three roots exist, the center root is thermodynamically unstable because the
derivative of pressure with respect to volume is positive, which violates our common sense, and is
shown to be thermodynamically unstable in advanced thermodynamics texts. Physically, we can
understand the meaning of the unstable root as follows. Imagine placing Lennard-Jones spheres all in
a row such that the force pulling on each molecule from one direction is exactly balanced by the force
in the other direction. Next, imagine placing similar rows perpendicular to that one until you obtain
the desired density at the desired temperature. Physically and mathematically, this configuration is
conceivable, but what will happen when one of these atoms moves? The perfect balance will be
destroyed, and a large number of atoms will cluster together to form a liquid. The atoms that do not
form a liquid will remain in the form of a low-density vapor. Although this discussion has discussed
only the energy of interactions, the entropy is also important. It is actually a balance of enthalpy and
entropy that results in phase equilibrium, as we will discuss in Chapter 9.

 The stable root represents the phase that will exist at equilibrium. The stable root has
the lower Gibbs energy or fugacity.

A simple way to visualize the conditions that lead to vapor-liquid equilibrium along an isotherm is
to consider the P-V diagram illustrated in Fig. 7.5. We will show in Chapter 9 that the condition for
equilibrium between vapor and liquid roots occurs when the horizontal line on the P-V diagram is
positioned such that the area enclosed above the line is exactly equal to the area enclosed below the
line. Even though the enclosed areas have different shapes, imagine moving this line up and down
until it looks like the areas are equal. The dots in the figure are the predictions of the saturated liquid
and vapor volumes, and form the phase envelope. The parts of the isotherms that are between the
saturated vapor and saturated liquid roots are either metastable or unstable. To determine whether a
given point is metastable or unstable, look for the point where the isotherm reaches a maximum or a
minimum. Points between the liquid root and the minimum are considered metastable liquids; points
between the maximum and the vapor root are considered metastable vapors. The metastable state can
be experimentally obtained in careful experiments. Under clean conditions, it is possible to



experimentally heat a liquid above its boiling point to obtain superheated liquid. Likewise, under
clean conditions, it is possible (though challenging) to experimentally obtain subcooled vapor.
However, a metastable state is easily disrupted by vibrations or nucleation sites, e.g., provided by a
boiling chip or dust, and once disrupted, the state decays rapidly to the equilibrium state. The
boundary between the metastable and unstable states is known as the spinodal condition, predicted by
the EOS by the maximum and minimum in the humps in sub-critical isotherms. We will discuss more
details about characterizing proper fluid roots when we treat phase equilibrium in a pure fluid.

7.7. Implications of Real Fluid Behavior
There is one implication of non-ideal fluid behavior that should be clear from the equations

presented above: Real fluids behave differently from ideal gases. How differently? An example
provides the most straightforward answer to that question. Here we adapt some of the derivatives
from Chapter 6.

Example 7.6. Derivatives of the Peng-Robinson equation

Determine , , and  for the Peng-Robinson equation.

Solution
The derivatives (∂U/∂V)T and (∂CV/∂V)T have been written in terms of measurable properties in

Examples 6.6 and 6.9, respectively, and have been evaluated for an ideal gas. The analysis with the
Peng-Robinson model provides more realistic representation of the properties of real substances.
Beginning with the same analytical expressions set forth in the referenced examples, a key derivative
is obtained for the Peng-Robinson equation,

which approaches the ideal gas limit: . The volume dependence of CV is
obtained by the second derivative:

which approaches the ideal gas limit of zero at low density,

which also approaches the ideal gas limit of zero at low density. We have thus shown that CV

depends on volume. To calculate a value of CV, first we determine , where  is the heat
capacity tabulated in Appendix E. Then, at a given {P,T}, the equation of state is solved for ρ. The
resultant density is used as the limit in the following integrals, noting as V → ∞, ρ → 0, and dV =
–dρ/ρ2: This method is used for departures from ideal gas properties in Chapter 8.



where 

7.8. Matching the Critical Point
The capability of a relatively simple equation to represent the complex physical phenomena

illustrated in Figs. 7.5–7.6, and as shown later in Figs. 7.7 and 7.9, is a tribute to the genius of van
der Waals. His method for characterizing the difference between subcritical and supercritical fluids
was equally clever. He recognized that, at the critical point,

Figure 7.7. Compressed liquid argon. Experimental data from NIST WebBook. Dashed lines
characterize the van der Waals model and solid lines correspond to molecular simulation of the
square-well model with λ = 1.7. The manner of fitting the molecular parameters (a and b or ε

and σ) is described in Example 7.9.

You can convince yourself that this is true by looking at the P versus ρ plots of Fig. 7.1 on page
254. From this observation, we obtain two equations that characterize the equation of state
parameters a and b in terms of the critical constants Tc and Pc. In principle, this is all we need to say
about this problem. In practice, however, it is much simpler to obtain results by recognizing another
key feature of the critical point: The vapor and liquid roots are exactly equal at the critical point (and
the spurious middle root is also equal). We can apply this latter insight by specifying that 

 (Appendix B). Equating the coefficients of
these polynomials gives three equations in three unknowns: Zc, Ac, and Bc.

Example 7.7. Critical parameters for the van der Waals equation
Apply the above method to determine the values of Zc, Ac, and Bc for the van der Waals equation.



Solution
Rearranging the equation in terms of Ac and Bc we have: 

By comparing coefficients of .
Substituting Ac into the last equation, we have: .

Cancelling the  and solving we have Bc = 1/8 = 0.125. The other equations then give Zc = 0.375
and Ac = 27/64.

The solution is especially simple for the van der Waals equation, but the following procedure can
be adapted for any cubic equation of state:

1. Rearrange the equation of state into its cubic form: Z3 – a2Z2 + a1Z – a0.

2. Guess a value of Zc (e.g., Zc ~ 1/3).

3. Solve the equivalent of expression (1) for Bc.

4. Solve the equivalent of expression (2) for Ac.

5. Solve the equivalent of expression (3) for Zc.

6. If Zc = guess, then stop. Otherwise, repeat.

7.9. The Molecular Basis of Equations of State: Concepts and Notation
In the previous sections we alluded to equations of state as empirical equations that may have

appeared by magic. In this section and the next two, we attempt to de-mystify the origins behind
equations of state by systematically describing the current outlook on equation of state development. It
may seem like overkill to develop so much theory to justify such simple equations. As empirical
equations go, equations of state are not much more difficult to accept than, say, Newton’s laws of
motion. Nevertheless, our general purpose is for readers to learn to develop their own engineering
model equations and to refute models that are not sensible. By establishing the connection between
the nanoscopic potential function and macroscopic properties, molecular modeling lays the
foundation for design at the nanoscale.

It is feasible to develop equations of state based solely on fitting experimental data. If the fit is
insufficiently precise for a given application, simply add more parameters. We see evidence of this
approach in the Peng-Robinson equation, where temperature and density dependencies are added to
the parameter “a” in order to fit vapor pressure and density better. A more extensive example of this
approach is evident in the 32 parameter Benedict-Webb-Rubin equation that forms the basis of the
Lee-Kesler model. The IAPWS model of H2O is representative of the current state of this approach. It
is the basis of the steam tables in Appendix E.

The shortcoming of this approach is that we lose the connection between the parameters in the
equation of state and their physical meaning. For example, the Peng-Robinson “a” parameter must be
related to attractive interactions, like the square-well parameter ε. But ε cannot be a function of
temperature and density, so what part of the Peng-Robinson model is due to ε and what part is due to
something else? If we could recover that physical connection, then all our efforts to fit data would



result in systematically refined characterizations of the molecular interactions. With reliable
characterizations of the molecular interactions, we could design molecules to assemble into a myriad
of nanostructures: membranes for water purification, nanocomposites, polymer wrappers that block
oxygen, artificial kidneys small enough to implant. The possibilities are infinite.

Since about 1960, computers have made it feasible to simulate macroscopic properties based on a
specified intermolecular potential. With this tool, the procedure is clear: (1) Specify a potential
model for a given molecule, (2) simulate the macroscopic properties, (3) evaluate the deviations
between the simulated and experimental properties, (4) repeat until the deviations are minimized.
This procedure is straightforward but tedious. Each simulation of Z(T,ρ) can take an hour or so.

Corresponding States in Molecular Dimensions
As engineers, we would like to get results faster. One idea is to leverage the principle of

corresponding states. We know that ε has dimensions of J/molecule, so NAε has dimensions of J/mol.
Therefore, RT/(NAε) would be dimensionless and serve in similar fashion to the usual reduced
temperature, T/Tc. Similarly, the molecular volume, vmol, has dimensions of cm3/molecule and NAvmol

has dimensions of cm3/mol. Therefore, NAvmolρ would be dimensionless and serve in very similar
fashion to the usual reduced density, ρ/ρc. Another idea would be to tabulate the dimensionless
properties from the simulation at many state points, then interpolate, similar to the steam tables. The
interpolating equations might even resemble traditional equations of state in form and speed. The
difference would be that they retain the connection between the nanoscopic potential model and
macroscopic properties. In other words, we can engineer our equations of state to be consistent with
specific potential models by expressing our “reduced” temperature and density using molecular
dimensions. Then the principle of corresponding states can be applied to match the ε and σ for a
particular molecule in the same way that we match a and b parameters in the van der Waals model.

Perhaps the most difficult part of understanding the molecular perspective is making the
transformations from the macroscopic scale to the nanoscopic. For example, the “b” parameter has
dimensions of cm3/mol. What does that imply about the diameter of the molecule in nm? As another
example, the “a” parameter has dimensions of J-cm3/mol2. How does that relate to the molecular
properties? Answering these questions leads to the introduction of a few “conversion shortcuts” to
facilitate the scale transformations. One valuable conversion shortcut is to note that the transformation
from cm3 to nm3 involves a factor of (107)3 or 1021. This transformation from cm3 to nm3 usually goes
hand-in-hand with a transformation from moles to molecules, involving a factor of NA. If we write NA

= 602(1021) instead of 6.02(1023), then factors of 1021 cancel conveniently. This convenience
motivates us to work in cm3 at the macroscopic level. Another shortcut is to write the volume of a
sphere in terms of diameter instead of radius. Finally, we note that the molecular volume on a molar
basis is equivalent to the “b” parameter in cm3/mol. Altogether,

Example 7.8. Estimating molecular size
Example 7.4 shows that b = 19.9cm3/mol for argon. Estimate the diameter (nm) of argon according

to the Peng-Robinson model.



Solution
NAπσ3/6 = 19.9 cm3/mol; σ3 = 6(19.9cm3/mol)(1mol/602(1021)molecules)(1021 nm3/cm3)/π Thus,

σ3 = 6(19.9)/(602π) = 0.06313 nm3; σ = (0.06313)⅓ = 0.398 nm.

Speaking of the “b” parameter, it is useful to note that the combination of bρ appears in the
equations quite often. This combined variable is very important. In addition to being dimensionless,
and a convenient reduced density, its meaning is quite significant. It represents the volume occupied
by molecules divided by the total volume. It makes sense intuitively that the density cannot be higher
than when the total volume is completely filled. So this explains why the van der Waals equation
includes (1–bρ) in the denominator, forcing divergence as this limit is approached. The prevalence of
this combined variable suggests that we give it a special symbol and name, ηP = bρ = b/V, the packing
efficiency (aka. packing fraction).10

Finally, we should consider the square-well energy parameter, ε, and the van der Waals parameter,
a. Applying Eqn. 7.13 indicates that the dimensions of the “a” parameter are J-cm3/mol2. We can
rewrite the van der Waals equation as Z = 1/(1–ηP) – (a/bRT)ηP. In this format, it is clear that the
combination of variables “a/b” represents an attractive energy in J/mol. In other words, a/b ~ NAε.
Another shortcut for quickly transforming from the macro scale to the nano scale is to recognize that
ε/k = NAε/R and both have dimensions of absolute temperature, K. In this context, the combination of
variables ε/kT = βε is an especially convenient characterization of dimensionless reciprocal
temperature, where β=1/kT.

Distinguishing Repulsive and Attractive Effects
One of the advantages of molecular modeling is that the potential model can be dissected into

various parts: the repulsive core, attractive wells, dipole moments, hydrogen bonding, and so forth.
The total potential function is the sum of all of these interactions, but simulations can be done
separately with one, two, or all interactions. Then we can understand which parts of the equation of
state come from each part of the potential model. Fig. 7.7 illustrates Z versus reciprocal temperature.
This shows a specific y-intercept at infinite temperature. Analyzing the van der Waals equation shows
that this y-intercept corresponds to Z0 = 1/(1–bρ), where the subscript “0” designates the point where
reciprocal temperature reaches zero. This contribution represents positive deviations from ideality,
and therefore we can call it repulsive. The temperature-dependent part of the van der Waals equation
is negative and represents attractive contributions. The reason that the attractive contribution becomes
negligible at high temperature is that such a large molecular kinetic energy overwhelms the relatively
small “stickiness” of the molecular attractions. Only the repulsive interaction is large enough to
contribute at high temperature.

If the y-intercept is so important then what does the x-intercept mean? We have seen Z ~ 0 before,
in Example 7.4, where Z = 0.016 for the liquid root. On the scale of Fig. 7.7, Z = 0.016 is practically
zero. The pressure of the saturated liquid is low despite having a high density (and high repulsion)
because the attractions are comparable to the repulsions when the temperature is low enough. Slow-
moving molecules show a greater tendency to “stick together.”

Ultimately, it is necessary to characterize the parameters that relate the intermolecular potential to
experimental data. With sufficient data for the compressed liquid density, the problem of



characterizing ε and σ becomes a simple matter of matching the slope and intercept of a plot like Fig.
7.7. The procedure is illustrated in Example 7.9(b). This is the most straightforward approach
because it relates experimental PVT data directly to PVT data from a molecular simulation.

Fig. 7.7 also compares to experimental compressed liquid data for argon. These data transition
quickly to supercritical temperatures and pressures, but the trend is smooth (almost linear) because
the density is constant (i.e., isochoric). We can fit the van der Waals equation at one density by tuning
the a and b parameters, as shown in Example 7.9(a). Deviations are large, however, when we apply
the van der Waals model to a different density using the same a and b. This reflects deficiencies in the
physics of the van der Waals model.

We can improve the characterization of argon by using the square-well potential with λ = 1.7. Once
again, the parameters (ε and σ this time) are tuned to the Z versus 1/T data at the high density as
shown in Example 7.9(b). The predictions (using the same ε and σ) are much better, as shown by the
solid lines in Fig. 7.7, reflecting the improved physics underlying the square-well model coupled
with molecular simulation. Systematically studying the square-well model, and dissecting the
repulsive and attractive contributions, leads to a better understanding of the molecular interactions,
and this leads to better predictions.

Other approaches exist to infer potential parameters from experimental data, but they are too
complicated for our introductory treatment. One alternative is to apply experimental data for saturated
vapor pressure and density. This approach accounts better for vapor pressure being a very important
property in chemical engineering, and more data are available. As another alternative, you may be
wondering about fitting the critical point, as done by van der Waals. Unfortunately, the behavior at the
critical point does not conform to the rules of normal calculus and even simulations are challenging. If
you read the fine print on the theorems of calculus, you find the stipulation that functions must be
analytic for the theorems to apply. Phenomena in the critical region are non-analytic. The non-analytic
behavior is universal for all compounds, so the principle of corresponding states is still valid. On the
other hand, fitting a simple analytic function to data outside the critical region leads to inconsistencies
inside the critical region, and vice versa. Cubic equations exhibit this inconsistency by predicting a
PV phase envelope that is not flat enough on the top. Dealing further with these inconsistencies is a
topic of current research. Methods that avoid the critical region are gaining favor at present.

We have barely scratched the surface of what is necessary to characterize the intermolecular forces
between all the molecules that we can imagine. For example, we have only considered the square-
well potential, but the Lennard-Jones model would be more realistic, and those are just two of the
possibilities. As another example, the presentation here is limited to spherical molecules. The
molecular perspective is not extended to non-spherical molecules until Chapter 19, and then only
briefly.11 You might say that the Peng-Robinson equation can be applied to non-spherical molecules,
but only because of clever fitting. The physics behind the Peng-Robinson is simply the same as that of
van der Waals: spherical. Simple physics and educated empirical fitting are cornerstones of
engineering models. The Peng-Robinson model is a prime example of what can be accomplished with
that approach. But recognize that we are always learning more about physics and those new insights
are the cornerstones of new technology. Accurately characterizing intermolecular forces involves
characterizing many small molecules that share common fragments. When those fragments are
characterized, they can be assembled to predict the properties of large molecules. Ultimately, we can
imagine a time when nanostructures can be designed and constructed the way civil engineers build
bridges today. These structures occur naturally in everything from sea shells to proteins. Learning



how to do it is a basis for modern research.

Example 7.9. Characterizing molecular interactions
Based on Fig. 7.7, trend lines indicate y-intercept values of, roughly, 5.7 and 4.7 when fit to the

isochoric PVT data for argon at 1.38g/cm3 and 1.25 g/cm3, respectively. Similarly, the x-intercepts
are roughly 11.2 and 9.5, respectively. Use these values to estimate the EOS parameters.

a. Estimate the values of a and b at 1.38 g/cm3 according to the van der Waals model.
b. Predict the values of x- and y- intercepts at 1.25 g/cm3 using the a and b from part (a).
c. Suppose the square-well simulation data can be represented by:

Z = 1+4 ηP/(1–1.9 ηP)–15.7 ηP βε/(1–0.16 ηP)

Estimate the values of σ and ε/k at 1.38g/cm3 and predict the x- and y-intercepts at 1.25 g/cm3.

Solution
a. At 1.38g/cm3, y-intercept, Z0 = 1/(1 – ηP) = 5.7 => ηP = 1 – 1/5.7 = 0.825 = bρ.
b = 0.825·39.9(g/mol)/1.38(g/cm3) = 23.9 cm3/mol.

At the x-intercept, 0 = 5.7 – (a/bRT)·ηP = 5.7 – (a/bRT)·0.825 => a/bRT =
5.7/0.825 = 6.91. Using the x-intercept to determine temperature, 1000/T = 11.2 => T
= 1000/11.2 = 89.3K => a = 23.9(8.314)89.3(6.91) = 123 kJ-cm3/mol2.

b. At 1.25 g/cm3, ηP = 23.9(1.25)/39.9 = 0.7487 => Z0 = 1/(1 – ηP) = 4.0 = y-intercept.
At the x-intercept, 0 = 4.0 – 123000/(23.9RT)·0.7487 = 4.0 – 463/T => T = 463/4 = 116.
Therefore, the x-intercept is 1000/T = 1000/116 = 8.6. These x- and y- intercepts form the
basis for the dashed line in Fig. 7.7 at 1.25 g/cm3. The prediction of the van der Waals
model is poor.
c. The procedure for finding σ and ε/k is similar. At the 1.38g/cm3,
Z0 = 1 + 4 ηP/(1 – 1.9 ηP) = 5.7 => ηP (4 + 4.7·1.9) = 4.7 => ηP = 0.363 = bρ
b = 0.363·39.9/1.38 = 10.5 cm3/mol = NAπσ3/6 => σ = 0.322 nm

At the x-intercept, 0 = 5.7 – 15.7(0.363)βε/(1 – 0.16·0.363) => βε = 0.942;
1000/T = 11.2 => T = 1000/11.2 = 89.3K => ε/k = (0.942)89.3= 84.1 K

At 1.25 g/cm3, following the same procedure:
ηP = 10.5(1.25)/39.9 = 0.329 => Z0 = 1 + 4ηP/(1 – ηP) = 4.5 = y-intercept.

At the x-intercept, 0 = 4.5 – 15.7(0.329)βε/(1 – 0.16·0.329) = 4.5 – (5.452)βε => βε =
0.827 => T = 84.1/0.827 = 102. Therefore, the x-intercept is 1000/T = 1000/102 =
9.8. These x- and y-intercepts form the basis for the solid line in Fig. 7.7 at 1.25
g/cm3, and the prediction is quite good.

To put the significance of this analysis in perspective, imagine you were designing a material with
pores just the right size to capture argon from air using the van der Waals model. The diameters
would indicate the appropriate pore size. For the van der Waals model σ = (6·23.9/602π)1/3



=0.423nm compared to 0.322nm by the square-well estimate. This means that your pores could be
over sized by more than 30%. Improved physical insight can suggest more successful experiments.

7.10. The Molecular Basis of Equations of State: Molecular Simulation
In Chapter 1 we developed an ultrasimplified kinetic theory based on ideal gas interactions.

Constructing a sophisticated kinetic theory simply means accounting for molecular interactions like
attractions and collisions. Unfortunately, accounting for these detailed interactions requires a
sequential calculation of collisions that does not lend itself to explicit solution. Fortunately, modern
computers make it easy to characterize these collisions over time.

Computation involving finite systems of molecules colliding with one another and with walls is
called molecular dynamics simulation. In this section, we apply a simple computation from
elementary physics: the collision of two particles, as illustrated in Fig. 7.8. If we can compute a
single collision, a computer can be programmed to compute the next trillion collisions. Thus, we see
how the average properties over all collisions can be computed from the intermolecular potential.
Comparing the computer model to experimental data leads to a connection between the molecular
properties (e.g., ε, σ) and the macroscopic properties (e.g., a, b). Seeing the molecular motions and
relating the molecular properties to changes in density, temperature, energy, and pressure sheds light
on both the nanoscopic and macroscopic levels.

Figure 7.8. Molecular collision in 2D. The dashed disk is a disk image that will be discussed in
the text.

Elastic Collision of Two Particles in Two Dimensions

Tools for molecular simulation are freely available, highly visual, and conveniently interactive.12

On the other hand, using a simulator as a mysterious “black box” is not satisfying. We should feel
confident that a molecular dynamics simulation is nothing more than application of Newton’s laws. In
this way, we can leverage our confidence in Newton’s laws to infer the behavior of large systems of
molecules. Then the connection between elementary physics and molecular thermodynamics should
not seem mysterious at all.

For simplicity consider two disks moving in two dimensions (2D). Typical physics courses
describe 2D particle collision.13 Consider the special case of a disk1 with an x-component of
velocity and a stationary disk2 of identical size as shown in Fig. 7.8. Conservation of kinetic energy
and momenta provides:



This provides three equations and four unknowns (v1, θ1, v2, θ2). For hard disks, the fourth
equation derives from noting that the force of impact changes the momentum of each particle. The
collision force acts on disk2 in the direction of the vector between the two centers at contact and the
force on disk1 is equal and opposite. The impact force changes the momentum in the corresponding
direction. Referring to Fig. 7.8. disk2’s angle of recoil θ2 can be found by the shaded right triangle.
For the purpose of this presentation, we consider the case of identical disk diameters, σ. Note that the
shaded triangle hypotenuse is σ and the vertical side is y2

c – y1
c where the “c” denotes collision

location. The angle is given by

For purposes of this presentation, we solve the special case where both masses are equal, in which
case Eqn. 7.29 and the Pythagorean theorem show that

The simultaneous solution of the remaining three equations provides:

 An online supplement provides a generalized derivation for different sizes and
masses.

Details of the simultaneous solution are provided as an online supplement. The solution in 2D is
sufficient in principle because other orientations can be rotated into this reference frame.14

The final element of the computation is to calculate the collision time. The strategy is to calculate
the collision time for all possible collisions, then execute the one that occurs first. Collisions with
walls are the simplest. If the molecule has a positive x-velocity, then you know it collides with the
east wall before it collides with the west wall. Similar reasoning applies for the y-velocity and north
or south walls. A wall collision occurs when the molecule travels from its current position until its
outer edge touches the wall. To be specific, we can define the “simulation box” to have its southwest
corner at the origin and walls of length “L.” For example, the collision time with the east wall (E)
would be:

The collision time between two molecules follows a similar procedure. In this case, they touch
when their distance is (σ/2 + σ/2) = σ, but only if they approach at the proper angle. Approach angle
is not a concern for a wall collision because the wall extends forever, but a molecule is finite in size.
The strategy is to translate the molecules to the reference frame of Fig. 7.8, compute the time until
crossing the x- position of molecule 2, then check if the molecules are close enough at that point to
collide. The first step of the translation simply involves subtracting the position of the first molecule
to put it at the origin, and subtracting the velocity of molecule 2 to make it stationary.

The position of the second molecule must be rotated in accordance with the velocity of the first



molecule being on the x-axis, such that . In polar coordinates,

Transforming the coordinates by rotation,15

A collision occurs if |y2
″| < σ. If there is a collision,

Immediately after the collision, the positions become

The velocities can be reported in the original reference frame by reversing the φ1 rotation,

For the second molecule, it is most convenient to apply Eqns. 7.30 and 7.31 in their resolved
forms:

Example 7.10. Computing molecular collisions in 2D
Let the diameters of two disks, σ, be 0.4 nm, the masses be 16 g/mole, and the length of the square

box, L, be 5nm. Start the disks at [1.67 1.67], [3.33 3.33] and initial velocities (nm/ps): [0.167
0.222], [–0.167 –0.222] where 1 nm = 10-9 m and 1ps = 10-12 s. Note that the gas constant 8.314
J/mol-K = 8.314 kg-nm2/(ns2-mol-K) = 8.314(10-6) kg-nm2/(ps2-mol-K).

a. Compute the temperature (K).
b. Compute the collision times with the walls.
c. Compute the collision times with the disks. Which event occurs first?
d. Compute the velocity vectors (m/s) after the first collision event.

Solution
a. T2D = Mw<v2>/(2R); <v2> = (0.1672 + 0.2222 + 0.1672 + 0.2222)/2 = 0.07717

T2D = (0.016kg/mol)(0.07717 nm2/ps2)/(2·8.314(10–6) kg-nm2/(ps2-mol-K)) = 89K.

b. The collision time with the walls depends on the wall being approached. Note that the
molecular coordinate will be within 0.5σ = 0.2 nm of the wall coordinate when a wall
collision occurs. Disk1 is approaching the north wall and east wall (using superscripts to
denote geographic directions), the collision times are t1

N = (4.8 – y1
o)/v1,y = (4.8 –



1.67)/0.333 = 9.40ps, t1
E = (4.8 – x1

o)/v1,x = (4.8 – 1.67)/0.222 = 14.1ps. Similarly, t2
S =

(0.2 – y2
o)/v2,y = (0.2 – 1.67)/(–0.222) = 6.62ps; t2

W = (0.2 – x2
o)/v2,x = (0.2 – 3.33)/(–

0.111) = 28.2ps. Molecule 2 collides with the south wall first among wall collisions.
c. Translating by Eqn. 7.36, x2′ = y2′ = 3.33 – 1.67 = 1.66. Translating the velocities to
make molecule 2 stationary: v1,x′ = 0.167 – (–0.167) = 0.334. v1,y′ = 0.444. Using Eqn.
7.37,φ1 = tan–1(v1,y′/v1,x′) = tan–1(0.444/0.334) = 53.13o.φ2 = tan–1(1.66/1.66) = 45o. r2′ =
1.66(2)½ = 2.35nm. x2″ = 2.35 cos(45 – 53.13) = 2.326; y2″ = 2.35 sin(45 – 53.13) = –
0.332. Since |y2″| < σ, these molecules do collide. By Eqn. 7.40, θ2 = sin–1(–0.332/0.4) = –
56.10o. Then, x1

c” = 2.326 – 0.4 cos(–56.10) = 2.103; noting v1,x″ = (0.3342+0.4442)½ =
0.5556. t12

c = 2.103/0.556 = 3.78 ps. So the intermolecular collision occurs first.

d. Computing the velocities after collision requires Eqn. 7.34, noting by Eqn. 7.33 that θ1 =
90 – 56.10 = 33.9. v2 = v1″cos θ2 = 0.5556 cos(–56.10) = 0.3099, v1 = (0.55562–
0.30992)½ = 0.4612. Also note that Eqn. 7.34 gives only the magnitude of the velocity and
we are still in the reference frame of Fig. 7.8. Rotating to the original reference frame: v1,x

f

= v1cos(φ1 + θ1) = 0.4607 cos(33.9 + 53.13) = 0.0239. v1,y
f = 0.4607 sin(33.9 + 53.13) =

0.4605; v2,x
f = v2,x

o + v1,x
o – v1,x

f = –0.167 + 0.167 – 0.0239 = –0.0239. v2,y
f = –0.222 +

0.222 – 0.4605 = –0.4605. Finally, we update all the positions to the time of the collision.
x1

f = [1.67 + 0.167·3.78 1.67 + 0.222·3.78] = [2.301 2.514]; x2
f = [3.33 – 0.167·3.78 3.33

– 0.222·3.78] = [2.695 2.486]. From this point, the procedure for the next collision is
exactly the same.

In retrospect, a major oversimplification of this problem deserves comment. By
restricting the system to two particles, it is necessary that the components of velocity
be equal and opposite in sign. Otherwise, the system itself would have a net velocity.
You should not mistake this equality as a general result. If there were three particles,
for example, the velocities would sum to zero, but the individual magnitudes could
vary quite substantially.

Analyzing MD Results
For our purposes, we can assume that you have sufficiently grasped the principles of molecular

simulation if you can compute a single collision. A second collision is much like the first and
computers are made for these kinds of repetitive calculations. At that point, the challenge becomes
analyzing the results of the simulations. We can illustrate this kind of analysis with simulations of the
hard-sphere fluid to infer the repulsive contribution of the square-well fluid’s equation of state. As
shown in Fig. 7.9(a), the hard-sphere (HS) potential can be considered as a special case of the
square-well potential when the depth of the well approaches zero. Thus, there are two ways that βε
can approach zero: the temperature can approach infinity, or the well depth, ε, can approach zero.
Both results lead to the hard-sphere repulsive term.



Figure 7.9. (a) The hard-sphere potential as a special case of the square-well model; (b)
results of DMD simulations for the hard-sphere potential compared to simulation data of

Erpenbeck and Wood cited in the text.

The results of hard-sphere simulations by Erpenbeck and Wood16 are presented in Fig. 7.9(b).
Three equations of state are compared to the simulation results: the van der Waals model, the
Carnahan-Starling model, and the ESD model. These models are listed below, along with another
called the Scott model.

It is immediately apparent that the van der Waals model is quite inaccurate while the Carnahan-
Starling model is practically quantitative. The ESD model is imprecise when the packing fraction
exceeds ηP > 0.40, but it does preserve the prospect of forming the basis for a cubic equation of state.
The Scott equation is not shown, but it is slightly less precise than the ESD model and slightly
simpler. The precision of the Carnahan-Starling model makes it a popular choice for many of the
equations of state discussed in the text. Nevertheless, it is feasible to mix and match various
characterizations of the repulsive and attractive contributions to construct an equation of state that is
applicable to any particular situation. Constructing your own equation of state is the best way to
appreciate the advantages and disadvantages underlying models like the Peng-Robinson equation. We
should probably warn you that it is hard to stop once you start down this path of “observe, predict,
test, and evaluate.” It is a very good sign, however, if you feel yourself being drawn that way.

Molecular dynamics simulation was first accomplished in 1959.17 Until that time, it was
impossible to resolve arguments about whose characterization of the hard-sphere reference system
was best. In the final analysis, only a molecular simulation can resolve this debate conclusively.
Today, several such programs can be accessed online and some are open source. In particular, the
discontinuous molecular dynamics (DMD) module at Etomica.org has been designed to simplify



visual and interactive exploration of the relations between temperature, pressure, density, internal
energy, and the choice of potential model.

 Online exercises may help your understanding of molecular simulations.

Example 7.11. Equations of state from trends in molecular simulations
Use the 3D DMD module at Etomica.org to characterize the trends of the attractive contributions

for argon with λ = 1.7 at densities of 1.25 and 1.38 g/cm3 assuming a diameter of 0.323 nm and ε/k =
87 K. Use the results to obtain a cubic equation of state.

Solution
It is straightforward to set a diameter of 0.323nm, NAε = 87·8.314 = 723 J/mol, MW = 40, and λ

=1.7. For purposes of this problem, we assume the ESD form suffices over the density range of
interest with the objective of obtaining a cubic equation.

The next step is to simulate the full potential and solve for the attractive contribution by
subtraction. Fig. 7.7 suggests that a linear function in βε should suffice, and we know that the
attractive contribution increases with density. These observations suggest an equation of state of the
form

Z = 1 + 4 ηP/(1 – 1.9 ηP) – z11 ηP βε,

where z11 designates a constant corresponding to first order in both ηP and βε. By regressing the
slope of the attractive contribution at the two given densities, we can characterize z11 as a function of
density. We can also infer the zero density limit of z11 from the second virial coefficient as z11(0) =
4(λ3 – 1) = 15.7. The results of these characterizations give z11 = 16.3 at ηP = 0.333 and 17.0 at ηP =
0.367. In order to obtain a cubic equation, we must restrict our attention to equations of the form,

z11 = z11(0)/(1 – z12 ηP).

Plotting z11(0)/z11 and fitting a trendline gives z12 = 0.16 and the final model is,

Z = 1 + 4 ηP/(1 – 1.9 ηP) – 15.7 ηP βε/(1 – 0.16 ηP)

This fit of the attractive trend is crude, but it would be difficult to improve given the constraints
imposed by the cubic form. This leaves the door open to future improvements beyond the cubic form.
The approach would be similar, however.

7.11. The Molecular Basis of Equations of State: Analytical Theories
Molecular simulation provides a numerical connection between the intermolecular potential model

and the macroscopic properties, but it does so one state point at a time. For an equation of state, we
need an equation that makes this connection over all state points. The key to making this kind of
connection is to consider the average number of neighbors for each molecule within range of the
potential model. We alluded to this in Example 1.1(e), and simply called it “four,” but this number
must vary with density and strength of attraction and with the precise distance between molecules.
Therefore, we must define a quantity representing the average number of molecules at each distance



from the center of an average molecule, and study its dependence on density and temperature. To get
the configurational internal energy,18 multiply this average number of molecules by the amount of
potential energy at that distance and integrate over all distances. To get the pressure, multiply this
average number of molecules by the amount of force per unit area at that distance and integrate over
all distances. The average number of molecules at a particular distance from an average molecule is
characterized by the “radial distribution function,” which is discussed in detail below. If you have
ever seen a parking lot, you already know more about radial distribution functions than you may
realize.

The Energy Equation
The ideal gas continues to be an important concept, because it is a convenient reference fluid. To

calculate the internal energy of a real gas, we simply need to compute the departure from the ideal
gas. In this way, the kinetic energy of the gas is included in the ideal gas internal energy, and we
calculate the contribution to internal energy due to the intermolecular potentials of the real gas,

where u is the pair potential and g(r) ≡ the radial distribution function defined by Eqn. 7.55. This
is often called the configurational energy to denote that it relates to summed potential energy of the
configuration. This equation can be written in dimensionless form as

The Pressure Equation
We also may choose to solve for the pressure of our real fluid. Once again it is convenient to use

the ideal gas as our reference fluid and calculate the pressure of the real fluid relative to the ideal gas
law. Since intermolecular force is the derivative of the intermolecular potential, we note the
derivative of the intermolecular potential in the following equation.

This equation is typically derived by determining the product PV, but we have multiplied by
density to show the pressure.19 This equation can also be written in dimensionless form, recalling the
definition of the compressibility factor:

Note in both the energy equation and the pressure equation, that our integral extends from 0 to
infinity. Naturally, we never have a container of infinite size. How can we represent a real fluid this



way? Look again at the form of the intermolecular potentials in Chapter 1. At long molecular
distances, the pair potential and the derivative of the pair potential both go to zero. Long distances on
the molecular scale are 4 to 5 molecular diameters (on the order of nanometers), and the integrand is
practically zero outside this distance. Therefore, we may replace the infinity with dimensions of our
container, and obtain the same numerical result in most situations. This substitution makes a single
equation valid for all containers of any size greater than a few molecular diameters.20

An Introduction to the Radial Distribution Function
As a prelude to a general description of atomic distributions, it may be helpful to review the

structure of crystal lattices like those in body-centered cubic (bcc) metals, as shown in Fig. 7.10.
Such a lattice possesses long-range order due to repetitive arrangements of the unit cell in three
dimensions. This close-packed arrangement of atoms gives a single value for the density, and the
density correlates with many of the macroscopic properties of the material (e.g., strength, ductility).
These are some of the key considerations fundamental to materials science, and more details are
given in common texts on the subject. One goal of introducing the radial distribution function is to
generalize the concept of atomic arrangements so that non-lattice fluids can be included.

Figure 7.10. The body centered cubic unit cell.

The distribution of atoms in a bcc crystal is fairly easy to understand, but how can we address the
distribution of atoms in a fluid? For a fluid, the positions of the atoms around a central atom are less
well defined than in a crystal. To get started, think about the simplest fluid, an ideal gas.
The Fluid Structure of an Ideal Gas

Consider a fluid of point particles surrounding a central particle. What is the number of particles in
a given volume element surrounding the central particle? Since they are point particles, they do not
influence one another. This means that the number of particles is simply related to the density,

where dNV is the number of particles in the volume element, N is the total number of particles in
the total volume, V is the total volume, dV is the size of the volume element, and dNV = NAρ dV

If we would like to know the number of particles within some spherical neighborhood of our
central particle, then,

dV = 4π r2 dr
where r is the radial distance from our central particle,



where R0 defines the range of our spherical neighborhood, Nc is the number of particles in the
neighborhood (coordination number).
The Fluid Structure of a Low-Density Hard-Sphere Fluid

Now consider the case of atoms which have a finite size. In this case, the number of particles
within a given neighborhood is strongly influenced by the range of the neighborhood. If the range of
the neighborhood is less than two atomic radii, or one atomic diameter, then the number of particles
in the neighborhood is zero (not counting the central particle). Outside the range of one atomic
diameter, the exact variation in the number of particles is difficult to anticipate a priori. You can
anticipate it, however, if you think about the way cars pack themselves into a parking lot. We can
express these insights mathematically by defining a “weighting factor” which is a function of the
radial distance. The weighting factor takes on a value of zero for ranges less than two atomic radii,
and for larger ranges, we can consider its behavior undetermined as yet.

 The hard-sphere fluid has been studied extensively to represent spherical fluids.

Then we may write

where g(r) is our average “weighting function,” called the radial distribution function. The radial
distribution function is the number of atomic centers located in a spherical shell from r to r + dr from
one another, divided by the volume of the shell and the bulk number density.

This is a lot like algebra. It helps us to organize what we do know and what we do not know. The
next task is to develop some insights about the behavior of this weighting factor so that we can make
some engineering approximations.

As a first approximation, we might assume that atoms outside the range of two atomic radii do not
influence one another. Then the number of particles in a given volume element goes back to being
proportional to the size of the volume element, and the radial distribution function has a value of one
for all r greater than one diameter. The approximation that atoms outside the atomic diameter do not
influence one another is reasonable at low density. An analogy can be drawn between the problem of
molecular distributions and the problem of parking cars. When the parking lot is empty, cars can be
parked randomly at any position, as long as they are not parked on top of one another. Recalling the
relation between a random distribution and a flat radial distribution function, Fig. 7.11 should seem
fairly obvious at this point.



Figure 7.11. The radial distribution function for the low-density hard-sphere fluid.

The Structure of a bcc Lattice

Far from the low-density limit, the system is close-packed. The ultimate in close-packing is a
crystal lattice. Let’s clarify what is meant by the radial distribution function of a lattice. The radial
distribution function of a bcc lattice can be deduced from knowledge of Nc and the defining relation
for g(r).

If we assume that the atoms in a crystal are located in specific sites, and no atoms are out of their
sites, then g(r) must be zero everywhere except at a site. For a body-centered cubic crystal these sites
are at r = {σ, 1.15σ, 1.6σ,...} g(r) looks like a series of spikes. In the parking lot analogy, the best
way of parking the most cars is to assign specific regular spaces with regular space between, as
shown in Fig. 7.12.

Figure 7.12. The radial distribution function for the bcc hard-sphere fluid.

The Fluid Structure of High-Density Hard-Sphere Fluid

The distributions of atoms in a fluid are most conveniently referred to as the fluid’s structure. The
structures of these simple cases clarify what is meant by structure in the context that we will be using,
but the behavior of a dense liquid illustrates why this concept of structure is necessary. Dense-liquid
behavior is something of a hybrid between the low-density fluid and the solid lattice. At large
distances, atoms are too far away to influence one another and the radial distribution function
approaches unity because the increase in neighbors becomes proportional to the size of the
neighborhood. Near the atomic diameter, however, the central atom influences its neighbors to
surround it in “layers” in an effort to approach the close packing of a lattice. Thus, the value of the
radial distribution function is large, very close to one atomic diameter. Because liquids lack the long-



range order of crystals, the influence of the central atom on its neighbors is not as well defined as in a
crystal, and we get smeared peaks and valleys instead of spikes. Returning to the parking lot analogy
once again, the picture of liquid structure is considerably more realistic than the assumption of a
regular lattice structure. There are no “lines” marking the proper “parking spaces” in a real fluid. If a
few individuals park out of line, the regularity of the lattice structure is disrupted, and it becomes
impossible to say what the precise structure is at 10 or 20 molecular diameters. It is true, however,
that the average parking around any particular object will be fairly regular for a somewhat shorter
range, and the fluid structure in Fig. 7.13 reflects this by showing sharp peaks and valleys at short
range and an approach to a random distribution at long range.

Figure 7.13. The radial distribution function for the hard-sphere fluid at a packing fraction of
bρ = 0.4.

The Structure of Fluids in the Presence of Attractions and Repulsions

As a final case, consider the influence of a square-well potential (presented in Section 1.2) on its
neighbors. The range r < σ is off-limits, and the value of the radial distribution function there is still
zero. But what about the radial distribution function at low density for the range where the attractive
potential is influential? We would expect some favoritism for atoms inside the attractive range, σ < r
< λσ, since that would release energy. How much favoritism? It turns out to be simply related to the
energy inherent in the potential function.

This exponential function, known as a Boltzmann distribution, accounts for the off-limits range and
the attractive range as well as the no-influence (r > λσ) range. Referring to the parking lot analogy
again, imagine the distribution around a coffee and doughnut vending truck early in the morning when
the parking lot is nearly empty. Many drivers would be attracted by such a prospect and would
naturally park nearby, if the density was low enough to permit it.

 The low-density limit of the radial distribution function is related to the pair potential.

As for the radial distribution function at high density, we expect packing effects to dominate and
attractive effects to subordinate because attaining a high density is primarily affected by efficient
packing. At intermediate densities, the radial distribution function will be some hybrid of the high and
low density limits, as shown in Fig. 7.14.



Figure 7.14. The square-well fluid (R = 1.5) at zero density and at a packing fraction of bρ =
0.4. The variable β ≡ 1/kT.

A mathematical formalization of these intuitive concepts is presented in several texts, but the
difficulty of such a rigorous treatment is beyond the scope of our introductory presentation. For our
purposes, we would simply like to understand that the number of particles around a central particle
has some character to it that depends on the temperature and density, and that representing this
temperature and density dependence in some way will be necessary in analyzing the energetics of
how molecules interact. In other words, we would like to appreciate that something called “fluid
structure” exists, and that it is described in detail by the “radial distribution function.” This
appreciation will be of use again when we extend these considerations to the energetics of mixing.
Then we will develop expressions that can be used to predict partitioning of components between
various phases (e.g., vapor-liquid equilibria).

The Virial Equation
The second virial coefficient can be easily derived using the concepts presented in this section,

together with a little more mathematics. Advanced chemistry and physics texts customarily derive the
virial equation as an expansion in density:

The result of the advanced derivation is that each virial coefficient can be expressed exactly as an
integral over the intermolecular interactions characterized by the potential function. Even at the
introductory level we can illustrate this approach for the second virial coefficient. Comparing the
virial equation at low density, Z = 1 + βρ, with Eqn. 7.52, we can see that the second virial
coefficient is related to the radial distribution function at low density. Inserting the low-density form
of the radial distribution function as given by Eqn. 7.57, and subsequently integrating by parts (the
topic of homework problem 7.29), we find

This relationship is particularly valuable, because experimental virial coefficient data may be used
to obtain parameter values for pair potentials.



Example 7.12. Deriving your own equation of state
Appendix B shows how the following equation can be derived to relate the macroscopic equation

of state to the microscopic properties in terms of the square-well potential for λ = 1.5.

Apply this result to develop your own equation of state with a radial distribution function of the
form:

where x = r/σ, b = πNAσ3/6, and S is the “Student” parameter. You pick a number for S, and this
will be your equation of state. Evaluate your equation of state at ε/kT = 0.5 and bρ = 0.4.

Solution
At first glance, this problem may look outrageously complicated, but it is actually quite simple. We

only need to evaluate the radial distribution function at x = 1 and x = 1.5 and insert these two results
into Eqn. 7.60.

Supposing S = 3, Z(0.5,0.4) = 1 + 4·0.4·1.649/(0.2·2.4) – 13.5·0.4·0.648/(0.789·1.211) = 2.83.
Congratulations! You have just developed your own equation of state. Have fun with it and feel

free to experiment with different approximations for the radial distribution function. Hansen and
McDonalda describe several systematic approaches to developing such approximations if you would
like to know more.

a. Hansen, J.P., McDonald, I.R. 1986. Theory of Simple Liquids. New York:Academic Press.

We conclude these theoretical developments with the comment that a similar analysis appears in
the treatment of mixtures. At that time, it should become apparent that the extension to mixtures is
primarily one of accounting; the conceptual framework is identical. The sooner you master the
concepts of separate contributions from repulsive forces and attractive forces, the sooner you will
master your understanding of fluid behavior from the molecular scale to the macro scale.

7.12. Summary
The simple physical observations and succinct mathematical models set forth in this chapter

provide powerful tools for current chemical applications and excellent examples of model
development that we would all do well to emulate. This chapter has illustrated applications of



physical reasoning, dimensional analysis, asymptotic analysis, and parameter estimation that have set
the standard for many modern engineering developments.

Furthermore, the final connection has been drawn between the molecular level and the
macroscopic scale. In retrospect, the microscopic definition of entropy is relatively simple. It follows
naturally from the elementary statistics of the binomial distribution. The qualitative description of
molecular interaction energy is also simple; it was discussed in the introductory chapter. Last, but not
least, the macroscopic description of energy is easy to understand; it gives the macroscopic energy
balance. What is not so simple is the connection of the qualitative description of molecular energies
with the macroscopic energy balance. This is the significant development of this chapter. Having
complete descriptions of the molecular and macroscopic energy and entropy, all the “pieces to the
puzzle” are now in our hands. What remains is to put the pieces together. This final step requires a
fair amount of mathematics, but it is largely a straightforward application of tools that are readily
available from elementary courses in calculus and the background of Chapter 6.

Important Equations
Several equations stand out in this chapter because we apply them repeatedly going forward. These

are Eqns. 7.2, 7.12, and 7.15–7.19. Eqn. 7.2 is the definition of acentric factor (ω), which provides a
convenient standard vapor pressure (cf. back flap) and a crude characterization of the molecular
shape. Eqn. 7.12 is the van der Waals equation of state, one of the greatest model equations of all
time. Eqns. 7.15–7.19 describe the Peng-Robinson equation of state, a remarkably small evolution
from the van der Waals model considering the 100 years of intervening research. We refer to these
often as the basis for further derivations and applications to energy and entropy balances for
chemicals other than steam and refrigerants.

Finally, Eqns. 7.51 and 7.52 convey the foundation for understanding the connection between the
molecular scale and the macroscopic scale. There is no simpler way to see the connection between u
and U than Eqn. 7.51. Understanding the molecular interactions becomes essential when we consider
why some mixtures behave ideally while others do not. This becomes apparent when we extend Eqn.
7.51 to mixtures.

7.13. Practice Problems
P7.1. For Tr < 1 and Pr ≈ Pr

sat, the Peng-Robinson equation of state has three roots
corresponding to compressibility factors between zero and 10. The smallest root is the
compressibility factor of the liquid. The largest root is the compressibility factor of the vapor
and the middle root has no physical significance. This gives us a general method for finding the
compressibility factor of any fluid obeying the Peng-Robinson equation. For the iterative
method, use an initial guess of Z = 0 to find the liquid roots and Z = 1 to find the vapor roots of
methane at the following conditions:

Compare to experimental data from N.B. Vargaftik. 1975. Handbook of Physical
Properties of Liquids and Gases, 2nd ed., New York: Hemisphere.



ANS. The liquid roots are very close. The vapor roots are accurate for Tr < 0.9.

P7.2.
a. Estimate the value of the compressibility factor, Z, for neon at Pr = 30 and Tr =
15.
b. Estimate the density of neon at Pr = 30 and Tr = 15. (ANS. 1.14, 0.25 g/cm3)

P7.3. Above the critical point or far from the saturation curve,21 only one real root to the cubic
equation exists. If we are using Newton’s method, we can check how many phases exist by trying
the two different initial guesses and seeing if they both converge to the same root. If they do, then
we can assume that only one real root exists. Find the compressibility factors for methane at the
following conditions, and identify whether they are vapor, liquid, or supercritical fluid roots.
Complete the table. Compare your results to Z-charts.

When Newton’s method is applied with an initial guess of zero, erratic results are
obtained at these conditions. Explain what is happening, and why, by plotting F(Z)
versus Z for each iteration.

P7.4. A rigid vessel is filled to one-half its volume with liquid methane at its normal boiling
point (111 K). The vessel is then closed and allowed to warm to 77°F. Calculate the final
pressure using the Peng-Robinson equation. (ANS. 33.8 MPa)
P7.5. 4 m3 of methane at 20°C and 1 bar is roughly equivalent to 1 gal of gasoline in an
automotive engine of ordinary design. If methane were compressed to 200 bar and 20°C, what
would be the required volume of a vessel to hold the equivalent of 10 gal of gasoline? (ANS. 16
L)
P7.6. A carbon dioxide cylinder has a volume of 0.15 m3 and is filled to 100 bar at 38°C. The
cylinder cools to 0°C. What is the final pressure in the cylinder and how much more CO2 can be
added before the pressure exceeds 100 bar? If you add that much CO2 to the cylinder at 0°C,
what will the pressure be in the cylinder on a hot, 38°C day? What will happen if the cylinder
can stand only 200 bar? [Hint: log (Pr

sat) ≈ (7(1 + ω)/3) (1 – 1/Tr)] (ANS. 3.5 MPa, 38 MPa,
boom!)

7.14. Homework Problems
7.1. The compressibility factor chart provides a quick way to assess when the ideal gas
law is valid. For the following fluids, what is the minimum temperature in K where the
fluid has a gas phase compressibility factor greater than 0.95 at 30 bar?

a. Nitrogen
b. Carbon dioxide
c. Ethanol



7.2. A container having a volume of 40 L contains one of the following fluids at the given
initial conditions. After a leak, the temperature and pressure are remeasured. For each
option, determine the kilograms of fluid lost due to the leak, using:

a. Compressibility factor charts
b. The Peng-Robinson equation

Options:
i. Methane Ti = 300 K, Pi = 100 bar, Tf = 300 K, Pf = 50 bar
ii. Propane Ti = 300 K, Pi = 50 bar, Tf = 300 K, Pf = 0.9 bar
iii. n-butane Ti = 300 K, Pi = 50 bar, Tf = 300 K, Pf = 10 bar

7.3. Estimate the liquid density (g/cm3) of propane at 298 K and 10 bar. Compare the price
per kilogram of propane to the price per kilogram of regular gasoline assuming the cost of 5
gal of propane for typical gas grills is roughly $20. The density of regular gasoline can be
estimated by treating it as pure isooctane (2,2,4-trimethylpentane ρ = 0.692 g/cm3) at 298 K
and 1 bar.
7.4. From experimental data it is known that at moderate pressures the volumetric equation
of state may be written as PV = RT + B · P, where the second virial coefficient B is a
function of temperature only. Data for methane are given by Dymond and Smith (1969) as,22

a. Identify the Boyle temperature (the temperature at which B = 0) and the
inversion temperature (the temperature at which (∂T/∂P)H = 0) for gaseous
methane. [Hint: Plot B versus T–1 and regress a trendline, then differentiate
analytically.]
b. Plot these data versus T–1 and compare to the curve generated from Eqn. 7.7.
Use points without lines for the experimental data and lines without points for the
theoretical curve.

7.5. Data for hydrogen are given by Dymond and Smith (1969) as,

a. Plot these data versus T–1and compare to the results from the generalized
virial equation (Eqn. 7.7). Suggest a reason that this specific compound does not
fit the generalized equation very accurately. Use points without lines for the
experimental data and lines without points for the theoretical curve.
b. Use the generalized virial equation to speculate whether a small leak in an H2
line at 300 bar and 298 K might raise the temperature of H2 high enough to cause
it to spontaneously ignite.

7.6. N.B. Vargaftik (1975)23 lists the following experimental values for the specific volume
of isobutane at 175°C. Compute theoretical values and their percent deviations from



experiment by the following:
a. The generalized charts
b. The Peng-Robinson equation

7.7. Evaluate (∂P/∂V)T for the equation of state where b is a constant:

P = RT/(V – b)
7.8. Evaluate (∂P/∂T)V for the equation of state where a and b are constants:

P = RT/(V = b) + a/T3/2

7.9. Evaluate  for the Redlich-Kwong equation of state , where
a and b are temperature-independent parameters.

7.10.
a. The derivative (∂V/∂T)P is tedious to calculate by implicit differentiation of an
equation of state such as the Peng-Robinson equation. Show that calculus permits
us to find the derivative in terms of derivatives of pressure, which are easy to
find, and provide the formula for this equation of state.
b. Using the Peng-Robinson equation, calculate the isothermal compressibility of
ethylene for saturated vapor and liquid at the following conditions: {Tr = 0.7, P =
0.414 MPa}; {Tr = 0.8, P = 1.16 MPa}; {Tr = 0.9, P = 2.60 MPa}.

7.11. When cubic equations of state give three real roots for Z, usually the smallest root is the
liquid root and the largest is the vapor root. However, the Peng-Robinson equation can give real
roots at high pressure that differ from this pattern. To study this behavior, tabulate all the roots
found for the specified gas and pressures. As the highest pressures are approached at this
temperature, is the fluid a liquid or gas? Which real root (smallest, middle, or largest)
represents this phase at the highest pressure, and what are the Z values at the specified
pressures?

a. Ethylene at 250 K and 1, 3, 10, 100, 150, 170, 175, and 200 MPa
b. n-Hexane at 400 K and 0.2, 0.5, 1, 10, 100, 130 and 150 MPa
c. Argon at 420 K and 0.1, 1, 5, and 10 MPa

7.12. Plot Pr versus ρr for the Peng-Robinson equation with Tr = [0.7,0.9,1.0], showing both
vapor and liquid roots in the two-phase region. Assume ω = 0.040 as for N2. Include the entire
curve for each isotherm, as illustrated in Fig. 7.1 on page 254. Also show the horizontal line that
connects the vapor and liquid densities at the saturation pressure. Use lines without points for
the theoretical curves. Estimate Tr

sat by log(Pr
sat) = 2.333(1 + ω) (1 – 1/Tr

sat).

7.13. Within the two-phase envelope, one can draw another envelope representing the limits of
supercooling of the vapor and superheating of liquid that can be observed in the laboratory;
along each isotherm these are the points for which (∂P/∂ρ)T = 0. Obtain this envelope for the



Peng-Robinson equation, and plot it on the same figure as generated in problem 7.12. This is the
spinodal curve. The region between the saturation curve and the curve just obtained is called the
metastable region of the fluid. Inside the spinodal curve, the fluid is unconditionally unstable.
The saturation curve is called the binodal curve. Outside, the fluid is entirely stable. It is
possible to enter the metastable region with hot water by heating at atmospheric pressure in a
very clean flask. Sooner or later, the superheated liquid becomes unstable, however. Describe
what would happen to your flask of hot water under these conditions and a simple precaution
that you might take to avoid these consequences.
7.14. Develop a spreadsheet that computes the values of the compressibility factor as a function
of reduced pressure for several isotherms of reduced temperature using the Lee-Kesler (1975)
equation of state (AIChE J., 21:510). A tedious but straightforward way to do this is to tabulate
reduced densities from 0.01 to 10 in the top row and reduced temperatures in the first column.
Then, enter the Lee-Kesler equation for the compressibility factor of the simple fluid in one of
the central cells and copy the contents of that cell to all other cells in the table. Next, copy that
entire table to a location several rows lower. Replace the contents of the new cells by the
relation Pr = Z·ρr·Tr. You now have a set of reduced pressures corresponding to a set of
compressibility factors for each isotherm, and these can be plotted to reproduce the chart in the
chapter, if you like. Copy this spreadsheet to a new one, and change the values of the B, C, D,
and E parameters to correspond to the reference fluid. Finally, copy the simple fluid worksheet
to a new worksheet, and replace the contents of the compressibility factor cells by the formula: Z
= Z0 + ω(Zref – Z0)/ωref, where the Zref and Z0 refer to numbers in the cells of the other
worksheets.
7.15. The Soave-Redlich-Kwong equation24 is given by:

where ρ = molar density = n/V

Tc, Pc, and ω are reducing constants according to the principle of corresponding
states. Solve for the parameters at the critical point for this equation of state (ac, bc,
and Zc) and list the next five significant figures in the sequence 0.08664.......

7.16. Show that Bc = bPc/RTc = 0.07780 for the Peng-Robinson equation by setting up the cubic
equation for Bc analogous to the van der Waals equation and solving analytically as described in
Appendix B.
7.17. Determine the values of ε/kTc, Zc, and bc in terms of Tc and Pc for the equation of state
given by



where F = exp(ε/kT) – 1. The first term on the right-hand side is known as the Scott
equation for the hard-sphere compressibility factor.

7.18. Consider the equation of state

where ηP = b/V. The first term on the right-hand side is known as the Carnahan-
Starling equation for the hard-sphere compressibility factor.

a. Determine the relationships between a, b, and Tc, Pc, Zc.

b. What practical restrictions are there on the values of Zc that can be modeled
with this equation?

7.19. The ESD equation of state25 is given by

ηP = bρ, c is a “shape parameter” which represents the effect of non-sphericity on
the repulsive term, and q = 1 + 1.90476(c – 1). A value of c = 1 corresponds to a
spherical molecule. Y is a temperature-dependent function whose role is similar to the
temperature dependence of the a parameter in the Peng-Robinson equation. Use the
methods of Example 7.7 to fit b and Y to the critical point for ethylene using c = 1.3.

7.20. A molecular simulation sounds like an advanced subject, but it is really quite simple for
hard spheres.26 Furthermore, modern software is readily available to facilitate performing
simulations, after an understanding of the basis for the simulations has been demonstrated. This
problem provides an opportunity to demonstrate that understanding. Suppose that four hard disks
are bouncing in two dimensions around a square box. Let the diameters of the disks, σ, be 0.4
nm, masses be 40 g/mole, and length of the square box, L, be 5 nm. Start the four disks at (0.25L,
0.25L), (0.75L, 0.25L), (0.25L, 0.75L), (0.75L, 0.75L) and with initial velocities of (v, v/(1 +
2½)), (–v, v), (v/2½, – v/2½), (–v/2½, – v/2½), where v designates an arbitrary velocity. (Hint:
you may find useful information in the DMD module at Etomica.org.)

a. Compute v initially assuming a temperature of 298 K.
b. Sum the velocities of all four particles (x and y separately). Explain the
significance of these sums.
c. Sketch the disks using arrows to show their directions. Make the sizes of the
arrows proportional to the magnitudes of their velocities.
d. Solve for the time of the first collision. Is it with a wall or between particles?
Compute the velocities of all disks after the first collision.

7.21. Suppose you had a program to simulate the motions of four molecules moving in 2D slowly
enough that you could clearly see the velocities of all disks. (Hint: The Piston-Cylinder applet in
the DMD module at Etomica.org is an example of such a program when kept in “adiabatic”
mode.)



a. Let the disk interactions be characterized by the ideal gas potential. Describe
how the disks would move about. Note that the slow particles would always stay
slow, and the fast particles stay fast. Why is that?
b. Change the potential to “repulsion only” as modeled by a hard disk model.
Compare the motions of the “repulsion only” particles to the ideal gas particles.
Explain the differences. Which seems more realistic?
c. Set the potential to “repulsion and attraction,” as modeled by the square-well
model with λ=2.0. Compare the motions of these disks to the “repulsion only”
particles and ideal gas particles. Explain the differences.

7.22. Suppose you had a program to simulate the motions of N molecules moving in 2D. (Hint:
The 2D applet in the DMD module at Etomica.org is an example of such a program when kept in
“adiabatic” mode.)

a. Simulate the motions of the disks using each potential model (ideal gas, hard
disk, square well) for 1000 ps (1 picosecond=10–12 second) at a density of
2.86E-6mol/m2 with an initial temperature of 300K. Which would have the
higher pressure, ideal gas or hard disks? Explain. Which would have the higher
pressure, ideal gas or square well disks? Explain.
b. Simulate the motions of the disks using each potential model for 1000 ps each
at a density of 2.86E-6mol/m2 with an initial temperature of 300 K. Sketch the
temperature versus time in each case. Explain your observations.
c. Suppose you simulated the motions of the disks using each potential model for
1000 ps each at a density of 2.86E-6mol/m2 with an initial temperature of 300 K.
How would the internal energy compare in each case? Explain.

7.23. Sphere and disk collisions can be expressed more compactly and computed more
conveniently in vector notation. Primarily, this involves converting the procedures of Example
7.10 to use the dot product of the relative position and relative velocity. (Hint: You may find
useful information in the DMD module at Etomica.org.)

a. Write a vector formula for computing the center to center distance between
two disks given their velocities, u, and their positions, r0, at a given time, t0.

b. Write a vector formula for computing the distance of each disk from each wall.
(Hint: Use unit vectors x=(1, 0) and y=(0, 1) to isolate vector components.)
c. Noting that energy and momentum must be conserved during a collision, write
a vector formula for the changes in velocity of two disks after collision.
Hints: (1) ab=abcosθ. (2) A unit vector with direction of a is: a/a.
d. Write a vector formula for the change in velocity of a disk colliding with a
wall.

7.24. Molecular simulation can be used to explore the accuracy and significance of individual
contributions to an equation of state. Here we explore how the σ parameter relates to
experimental data.

a. Erpenbeck and Wood have reported precise simulation results for hard
spheres as listed below. Plot these data and compare the ESD and Carnahan-



Starling (CS) equations for hard spheres.

b. According to the CS equation, what value do you obtain for ZHS at ηP=0.392?

c. What value of b corresponds to ηP = 0.392 for Xenon at 22.14 mol/L? What
value of σ corresponds to that value of b?
d. The simulation results below have been tabulated at ηP = 0.392. Plot Z versus
βε for these data. Estimate the value of βε that corresponds to the saturation
temperature.
e. Referring to Xenon on the NIST WebBook, estimate the saturation temperature
at 22.14mol/L. Referring to part (d) for the value of βε, estimate the value of
ε(J/mol).
f. Plot Z versus 1000/T for the simulation data using your best ε and σ at
ηP=0.392. Referring to the “fluid properties” link, plot the isochoric data for
Xenon from the NIST WebBook at 22.14mol/L on the same axes.
g. What values of a and b of the vdW EOS match the simulation data of this plot?
Compute Zvdw versus 1000/T and show the vdW results as a dashed line on the
plot.
h. Using the values of ε and σ from parts (c) and (e), simulate the system
“isothermally” at 225 K and 20.0 mol/L for ~400 ps (got pizza?). Use the CS
equation to estimate the y-intercept for Z. Plot these points including a trendline
with equation. Plot the NIST data for this isochore on the same axes. This
represents a prediction of the data at 20.0 mol/L since the parameters were
determined at other conditions.
i. Using the values of a and b from part (g), plot the vdW results at 20.0 mol/L as
a dashed line on the plot. This represents the vdW prediction.
j. Which model (SW or vdW) matches the experimental trend best? Why?
k. Neither prediction is perfect. Suggest ways that we may proceed to improve
the predictions further.

SW results at ηP = 0.392, λ = 2.0.

7.25. Molecular simulation can be used to explore the accuracy and significance of individual
contributions to an equation of state. Use the DMD module at Etomica.org to tune Xe’s ε and σ
parameters.

a. According to the Carnahan-Starling (CS) model, what value do you obtain for



ZHS at ηP=0.375?

b. What value of σ corresponds to ηP = 0.375 for Xe at 22.14 mol/L?

c. The simulation results below have been tabulated at ηP = 0.375, λ = 1.7. Plot Z
versus βε for these data. Referring to the NIST WebBook for Xe, estimate the
saturation T and Z at 22.14 mol/L. Estimate the value of βε that corresponds to
the saturation Z. Estimate the value of ε(J/mol).
d. Plot Z versus 1000/T, using your best ε and σ at ηP = 0.375 and showing the
fluid properties (isochoric) data from WebBook.nist.gov at 22.14 mol/L on the
same axes.
e. What values of a and b of the vdW EOS will match the simulation data of this
plot? Show the vdW results as a dashed line on the plot.
f. Using the values of ε and σ from parts (b) and (c), simulate the system at 225 K
and 20.0 mol/L for ~400 ps (got pizza?). Use the CS equation to estimate the y-
intercept value for Z and connect the dots on a new plot with a straight line
extrapolating through the x-axis. Plot the NIST data for this isochore on the same
axes. This represents a prediction of the data at 20.0 mol/L since the parameters
were determined at other conditions.
g. Using the values of a and b from part (e), plot the vdW results at 20.0 mol/L as
a dashed line on the plot. This represents the vdW prediction. Comment
critically.
h. Compare to Problem 7.24. Summarize your observations.

SW results at ηP = 0.375, λ = 1.7.

7.26. The discussion in the chapter focuses on the square-well fluid, but the same reasoning is
equally applicable for any model potential function. Illustrate your grasp of this reasoning with
some sketches analogous to those in the chapter.

a. Sketch the radial distribution function versus radial distance for a low-density
Lennard-Jones (LJ) fluid. Describe in words why it looks like that.
b. Repeat the exercise for the high-density LJ fluid. Also sketch on the same plot
the radial distribution function of a hard-sphere fluid at the same density.
Compare and contrast the hard-sphere fluid to the LJ fluid at high density.

7.27. Suppose that a reasonable approximation to the radial distribution function is

where x = r/σ, F = exp(ε/kT) – 1 and b = πNAσ3/6. Derive an expression for the

http://WebBook.nist.gov


equation of state of the square-well fluid based on this approximation. Evaluate the
equation of state at bρ =0.6 and ε/kT = 1.

7.28. Suppose that a reasonable approximation for the radial distribution function is g(r) = 0 for
r < σ, and

for r≥ σ, where u is the square-well potential and b = πNAσ3/6. Derive an equation
of state for the square-well fluid based on this approximation.

7.29. The truncated virial equation (density form) is Z = 1 + Bρ. According to Eqn. 7.52, the
virial coefficient is given by

where the low pressure limit of g(r) given by Eqn. 7.57 is to be used. Another
commonly cited equation for the virial coefficient is Eqn. 7.59. Show that the two
equations are equivalent by the following steps:

a. Beginning with , insert the low-pressure limit for
g(r), and simplify as much as possible.
b. Integrate by parts to obtain

c. Show that the left-hand side of the answer to part (b) may be written as 
for a physically realistic pair potential. Then combine integrals to complete the
derivation of Eqn. 7.59.

7.30. The virial coefficient can be related to the pair potential by Eqn. 7.59.
a. Derive the integrated expression for the second virial coefficient in terms of
the square-well potential parameters ε/k, σ, and R.
b. Fit the parameters to the experimental data for argon.27



c. Fit the parameters to the experimental data for propane.1

7.31. One suggestion for a simple pair potential is the triangular potential

Derive the second virial coefficient and fit the parameters σ, ε, and R to the virial
coefficient data for argon tabulated in problem 7.30.



Chapter 8. Departure Functions

All the effects of nature are only the mathematical consequences of a small number of
immutable laws.

P.-S. LaPlace

Maxwell’s relations make it clear that changes in any one variable can be represented as changes
in some other pair of variables. In chemical processes, we are often concerned with the changes of
enthalpy and entropy as functions of temperature and pressure. As an example, recall the operation of
a reversible turbine between some specified inlet conditions of T and P and some specified outlet
pressure. Using the techniques of Unit I, we typically determine the outlet T and q which match the
upstream entropy, then solve for the change in enthalpy. Applying this approach to steam should seem
quite straightforward at this stage. But what if our process fluid is a new refrigerant or a
multicomponent natural gas, for which no thermodynamic charts or tables exist? How would we
analyze this process? In such cases, we need to have a general approach that is applicable to any
fluid. A central component of developing this approach is the ability to express changes in variables
of interest in terms of variables which are convenient using derivative manipulations. The other
important consideration is the choice of “convenient” variables. Experimentally, P and T are
preferred; however, V and T are easier to use with cubic equations of state.

These observations combine with the observation that the approximations in equations of state
themselves exhibit a certain degree of “fluidity.” In other words, the “best” approximations for one
application may not be the best for another application. Responding to this fluidity requires engineers
to revisit the approximations and quickly reformulate the model equations for U, H, and S.
Fortunately, the specific derivative manipulations required are similar regardless of the equation of
state since equations of state are either in the {T,P} or {T,V} form. The formalism of departure
functions streamlines the each formulation.

An equation of state describes the effects of pressure on our system properties, including the low
pressure limit of the ideal gas law. However, integration of properties over pressure ranges is
relatively complicated because most equations of state express changes in thermodynamic variables
as functions of density instead of pressure, whereas we manipulate pressure as engineers. Recall that
our engineering equations of state are typically of the pressure-explicit form:

 Experimentally, P and T are usually specified. However, equations of state are
typically density (volume) dependent.

and general equations of state (e.g., cubic) typically cannot be rearranged to a volume explicit
form:

Therefore, development of thermodynamic properties based on {V,T} is consistent with the most
widely used equations of state, and deviations from ideal gas behavior will be expressed with the
density-dependent formulas for departure functions in Sections 8.1–8.5. In Section 8.6, we present the



pressure-dependent form useful for the virial equation. In Section 8.8, we show how reference states
are used in tabulating thermodynamic properties.

Chapter Objectives: You Should Be Able to...
1. Choose between using the integrals in Section 8.5 or 8.6 for a given equation of state.
2. Evaluate the integrals of Section 8.5 or 8.6 for simple equations of state.
3. Combine departure functions with ideal gas calculations to determine numerical values
of changes in state properties, and use a reference state.
4. Solve process thermodynamics problems using a tool like Preos.xlsx or PreosProps.m
rather than a chart or table. This skill requires integration of several concepts covered by
other topical objectives including selection of the correct root, and reading/interpreting the
output file.

8.1. The Departure Function Pathway
Suppose we desire to calculate the change in U in a process which changes state from (VL, TL) to

(VH, TH). Now, it may seem unusual to pose the problem in terms of T and V, since we stated above
that our objective was to use T and P. The choice of T and V as variables is because we must work
often with equations of state that are functions of volume. The volume corresponding to any pressure
is rapidly found by the methods of Chapter 7. We have two obvious pathways for calculating a change
in U using {V, T} as state variables as shown in Fig. 8.1. Path A consists of an isochoric step
followed by an isothermal step. Path B consists of an isothermal step followed by an isochoric step.
Naturally, since U is a state function, ∆U for the process is the same by either path. Recalling the
relation for dU(T,V), ∆U may be calculated by either.

Figure 8.1. Comparison of two alternate paths for calculation of a change of state.

Path A:

or Path B:



We have previously shown, in Example 7.6 on page 269, that CV depends on volume for a real
fluid. Therefore, even though we could insert the equation of state for the integrand of the second
integral, we must also estimate CV by the equation of state for at least one of the volumes, using the
results of Example 7.6. Not only is this tedious, but estimates of CV by equations of state tend to be
less reliable than estimates of other properties.

To avoid this calculation, we devise an equivalent pathway of three stages. First, imagine if we
had a magic wand to turn our fluid into an ideal gas. Second, the ideal gas state change calculations
would be pretty easy. Third, at the final state we could turn our fluid back into a real fluid.
Departure functions represent the effect of the magic wand to exchange the real fluid with an ideal
gas. Being careful with signs of the terms, we may combine the calculations for the desired result:

The calculation can be generalized to any fundamental property from the set {U,H,A,G,S}, using the
variable M to denote the property

 Departure functions permit us to use the ideal gas calculations that are easy, and
incorporate a departure property value for the initial and final states.

The steps can be seen graphically in Fig. 8.2. Note the dashed lines in the figure represent the
calculations from our “magic wand” effect of turning on/off the nonidealities.

Figure 8.2. Illustration of calculation of state changes for a generic property M using
departure functions where M is U, H, S, G, or A.

Note how all the ideal gas terms in Eqns. 8.5 and 8.6 cancel to yield the desired property
difference. A common mistake is to get the sign wrong on one of the terms in these equations. Make
sure that you have the terms in the right order by checking for cancellation of the ideal gas terms. The
advantage of this pathway is that all temperature calculations are done in the ideal gas state where:



and the ideal gas heat capacities are pressure- (and volume-) independent (see Example 6.9 on
page 242).

To derive the formulas to be used in calculating the values of enthalpy, internal energy, and entropy
for real fluids, we must apply our fundamental property relations once and our Maxwell’s relations
once.

8.2. Internal Energy Departure Function
Fig. 8.3 schematically compares a real gas isotherm and an ideal gas isotherm at identical

temperatures. At a given {T,P} the volume of the real fluid is V, and the ideal gas volume is Vig =
RT/P. Similarly, the ideal gas pressure is not equal to the true pressure when we specify {T,V}. Note
that we may characterize the departure from ideal gas behavior in two ways: 1) at the same {T,V}; or
2) at the same {T,P}. We will find it convenient to use both concepts, but we need nomenclature to
distinguish between the two departure characterizations. When we refer to the departure of the real
fluid property and the same ideal gas property at the same {T,P}, we call it simply the departure
function, and use the notation U – Uig. When we compare the departure at the same {T,V} we call it
the departure function at fixed T,V, and designate it as (U – Uig)TV.1

Figure 8.3. Comparison of real fluid and ideal gas isotherms at the same temperature,
demonstrating the departure function, and the departure function at fixed T,V.

To calculate the change in internal energy along an isotherm for the real fluid, we write:

 The departure for property M is at fixed T and, P and is given by (M–Mig). The
departure at fixed T,V is also useful (particularly in Chapter 15) and is denoted by
(M–Mig)TV.

For an ideal gas:



Since the real fluid approaches the ideal gas at infinite volume, we may take the difference in these
two equations to find the departure function at fixed T,V,

where (U – Uig)T, V = ∞ drops out because the real fluid energy approaches the ideal gas at infinite
volume (low pressure). We have obtained a calculation with the real fluid in our desired state
(T,P,V); however, we are referencing an ideal gas at the same volume rather than the same pressure.
To see the difference, consider methane at 250 K, 10 MPa, and 139 cm3/mole. The volume of the
ideal gas should be Vig = 8.314·250/10 = 208 cm3/mole. To obtain the departure function denoted by
(U – Uig) (which is referenced to an ideal gas at the same pressure), we must add a correction to
change the ideal gas state to match the pressure rather than the volume. Note in Fig. 8.3 that the real
state is the same for both departure functions—the difference between the two departure functions has
to do with the volume used for the ideal gas part of the calculation. The result is

We have already solved for (∂Uig/∂V)T (see Example 6.6 on page 238), and found that it is equal to
zero. We are fortunate in this case because the internal energy of an ideal gas does not depend on the
volume. When it comes to properties involving entropy, however, the dependency on volume requires
careful analysis. Then the systematic treatment developed above is quite valuable.

Making these substitutions, we have

If we transform the integral to density, the resultant expression is easier to integrate for a cubic
equation of state. Recognizing dV = –dρ/ρ2, and as V → ∞, ρ → 0, thus,

The above equation applies the chain rule in a way that may not be obvious at first:



We now have a compact equation to apply to any equation of state. Knowing Z = Z(T, ρ), (e.g.,
Eqn. 7.15, the Peng-Robinson model), we simply differentiate once, cancel some terms, and integrate.
This a perfect sample application of the multivariable calculus that should be familiar at this stage in
the curriculum. More importantly, we have developed a systematic approach to solving for any
departure function. The steps for a system where Z = Z(T, ρ) are as follows.

1. Write the derivative of the property with respect to volume at constant T. Convert to
derivatives of measurable properties using methods from Chapter 6.
2. Write the difference between the derivative real fluid and the derivative ideal gas.
3. Insert integral over dV and limits from infinite volume (where the real fluid and the ideal
gas are the same) to the system volume V.
4. Add the necessary correction integral for the ideal gas from V to Vig. (This will be more
obvious for entropy.)
5. Transform derivatives to derivatives of Z. Evaluate the derivatives symbolically using
the equation of state and integrate analytically.
6. Rearrange in terms of density and compressibility factor to make it more compact.

Some of these steps could have been omitted for the internal energy, because (∂Uig/∂V)T = 0. Steps
1 through 4 are slightly different when Z = Z(T, P) such as with the truncated virial EOS. To see the
importance of all the steps, consider the entropy departure function.

Example 8.1. Internal energy departure from the van der Waals equation
Derive the internal energy departure function for the van der Waals equation. Suppose methane is

compressed from 200 K and 0.1 MPa to 220 K and 60 MPa. Which is the larger contribution in
magnitude to ∆U, the ideal gas contribution or the departure function? Use CP from the back flap and
ignore temperature dependence.

Solution
For methane, a = 230030 J-cm3/mol2 and b = 43.07 cm3/mol were calculated by the critical point

criteria in Example 7.7 on page 271. Deriving the departure function, –T(dZ/dT)ρ = –aρ/RT, because
the repulsive part is constant with respect to T. Substituting,

Because Tr > 1 there is only one real root. A quick but crude computation of ρ is to rearrange as
Zbρ = bP/RT = bρ/(1 – bρ) – (a/bRT)(bρ)2.

At state 2, 220 K and 60 MPa,
60·43.07/(8.314·220) = bρ/(1 – bρ) – 230030/(43.07·8.314·220)(bρ)2.
Taking an initial guess of bρ = 0.99 and solving iteratively gives bρ = 0.7546, so
(U2 – U2

ig)/RT = –230030·0.7546/(43.07·8.314·220) = –2.203.



At state 1, 200 K and 0.1 MPa,
0.1·43.07/(8.314·200) = bρ/(1 – bρ) – 230030/(43.07·8.314·200)(bρ)2.
Taking an initial guess of bρ = 0.99 and solving iteratively gives bρ = 0.00290, so
(U1 – U1

ig)/RT = –230030·0.00290/(43.07·8.314·200) = –0.00931.

∆U = –2.203(8.314)220 + (4.3 – 1)·8.314(220 – 200) + 0.00931(8.314)200 = –4030 + 549 + 15 =
–3466 J/mol. The ideal gas part (549) is 14% as large in magnitude as the State 2 departure function
(–4030) for this calculation. Clearly, State 2 is not an ideal gas.

Note that we do not need to repeat the integral for every new problem. For the van der Waals
equation, the formula (U–Uig)/(RT) = –(aρ)/(RT) may readily be used whenever the van der Waals
fluid density is known for a given temperature.

8.3. Entropy Departure Function
To calculate the entropy departure, adapt Eqn. 8.11,

Inserting the integral for the departure at fixed {T, V}, we have (using a Maxwell relation),

Since , we may readily integrate the ideal gas integral (note that this is not zero
whereas the analogous equation for energy was zero):

Recognizing Vig = RT/P, V/Vig = PV/RT = Z,

where Eqn. 8.15 has been applied to the relation for the partial derivative of P.

Note the ln(Z) term on the end of this equation. It arises from the change in ideal gas 
represented by the integral in Eqn. 8.16. Changes in states like this may seem pedantic and arcane, but



they turn out to be subtle details that often make a big difference numerically. In Example 7.4 on page
266, we determined vapor and liquid roots for Z. The vapor root was close to unity, so ln(Z) would
make little difference in that case. For the liquid root, however, Z = 0.016, and ln(Z) makes a
substantial difference. These arcane details surrounding the subject of state specification are the
thermodynamicist’s curse.

8.4. Other Departure Functions
The remainder of the departure functions may be derived from the first two and the definitions,

 The departures for U and S are the building blocks from which the other departures
can be written by combining the relations derived in the previous sections.

where we have used PVig = RT for the ideal gas in the enthalpy departure. Using H – Hig just
derived,

8.5. Summary of Density-Dependent Formulas
Formulas for departures at fixed T,P are listed below. These formulas are useful for an equation of

state written most simply as Z = f(T,ρ) such as cubic EOSs. For treating cases where an equation of
state is written most simply as Z = f (T,P) such as the truncated virial EOS, see Section 8.6.



Useful formulas at fixed T,V include:

8.6. Pressure-Dependent Formulas
Occasionally, our equation of state is difficult to integrate to obtain departure functions using the

formulas from Section 8.5. This is because the equation of state is more easily arranged and
integrated in the form Z = f (T,P), such as the truncated virial EOS. For treating cases where an
equation of state is written most simply as Z = f(T,ρ) such as a cubic EOS, see Section 8.5. We adapt
the procedures given earlier in Section 8.2.

1. Write the derivative of the property with respect to pressure at constant T. Convert to
derivatives of measurable properties using methods from Chapter 6.
2. Write the difference between the derivative real fluid and the derivative ideal gas.
3. Insert integral over dP and limits from P = 0 (where the real fluid and the ideal gas are
the same) to the system pressure P.
4. Transform derivatives to derivatives of Z. Evaluate the derivatives symbolically using
the equation of state and integrate analytically.
5. Rearrange in terms of density and compressibility factor to make it more compact.

We omit derivations and leave them as a homework problem. The two most important departure
functions at fixed T,P are

The other departure functions can be derived from these using Eqns. 8.20 and 8.21. Note the
mathematical similarity between P in the pressure-dependent formulas and ρ in the density-dependent
formulas.

8.7. Implementation of Departure Formulas



The tasks that remain are to select a particular equation of state, take the appropriate derivatives,
make the substitutions, develop compact expressions, and add up the change in properties. The good
news is that many years of engineering research have yielded several preferred equations of state (see
Appendix D) which can be applied generally to any application with a reasonable degree of
accuracy. For the purposes of the text, we use the Peng-Robinson equation or virial equation to
illustrate the principles of calculating properties. However, many applications require higher
accuracy; new equations of state are being developed all the time. This means that it is necessary for
each student to know how to adapt the departure function method to new situations as they come
along.

The following example illustrates the procedure with an equation of state that is sufficiently simple
that it can be applied with either the density-dependent formulas or the pressure-dependent formulas.
Although the intermediate steps are a little different, the final answer is the same, of course.

Example 8.2. Real entropy in a combustion engine
A properly operating internal combustion engine requires a spark plug. The cycle involves

adiabatically compressing the fuel-air mixture and then introducing the spark. Assume that the fuel-air
mixture in an engine enters the cylinder at 0.08 MPa and 20°C and is adiabatically and reversibly
compressed in the closed cylinder until its volume is 1/7 the initial volume. Assuming that no ignition
has occurred at this point, determine the final T and P, as well as the work needed to compress each
mole of air-fuel mixture. You may assume that  for the mixture is 32 J/mole-K (independent of T),
and that the gas obeys the equation of state,

PV = RT + aP
where a is a constant with value a = 187 cm3/mole. Do not assume that CV is independent of ρ.

Solve using density integrals.

Solution
The system is taken as a closed system of the gas within the piston/cylinder. Because there is no

flow, the system is irreversible, and reversible, the entropy balance becomes

showing that the process is isentropic. To find the final T and P, we use the initial state to find the
initial entropy and molar volume. Then at the final state, the entropy and molar volume are used to
determine the final T and P.

This example helps us to understand the difference between departure functions at fixed T and V
and departure functions at fixed T and P. The equation of state in this case is simple enough that it can
be applied either way. It is valuable to note how the ln(Z) term works out. Fixed T and V is
convenient since the volume change is specified in this example, and we cover this as Method I, and
then use fixed T and P as Method II.

This EOS is easy to evaluate with either the pressure integrals of Section 8.6 or the density
integrals of Section 8.5. The problem statement asks us to use density integrals.a First, we need to



rearrange our equation of state in terms of Z = f (T, ρ). This rearrangement may not be immediately
obvious. Note that dividing all terms by RT gives PV/RT = 1 + aP/RT. Note that Vρ = 1. Multiplying
the last term by Vρ, Z = 1 + aZρ which rearranges to

Also, we find the density at the two states using the equation of state,

Method I. In terms of fixed T and V, ; 

Method II. In terms of T and P,

Since the departure is zero, it drops out of the calculations.

. However, since we are given the final volume, we
need to calculate the final pressure. Note that we cannot insert the ideal gas law into the pressure
ratio in the last term even though we are performing an ideal gas calculation; we must use the
pressure ratio for the real gas.

Now, if we rearrange, we can show that the result is the same as Method I:

This is equivalent to the equation obtained by Method I and T2 = 490.8 K.

Finally, 
W = ∆U = (U – Uig)2 + CV∆T –(U – Uig)1 = 0 + CV∆T – 0 = 6325 J/mole

a. The solution to the problem using pressure integrals is left as homework problem 8.7.



Examples 8.1 and 8.2 illustrate the procedures for deriving and computing the impacts of departure
functions, but the equations are too simple to merit broad application. The generalized virial equation
helps to broaden the coverage of compound types while retaining a simple functional form.

Example 8.3. Compression of methane using the virial equation
Methane gas undergoes a continuous throttling process from upstream conditions of 40°C and 20

bars to a downstream pressure of 1 bar. What is the gas temperature on the downstream side of the
throttling device? An expression for the molar ideal gas heat capacity of methane is CP = 19.25 +
0.0523 T + 1.197E-5 T2–1.132E-8 T3; T [≡] K; CP [≡] J/mol–K

The virial equation of state (Eqns. 7.6–7.10) may be used at these conditions for methane:
Z = 1 + BP/RT = 1 + (B0 + ωB1)Pr/Tr

where B0 = 0.083 – 0.422/Tr
1.6 and B1 = 0.139 – 0.172/Tr

4.2

Solution
Since a throttling process is isenthalpic, the enthalpy departure will be used to calculate the outlet

temperature.
∆H = 0 = H2–H1 = (H2 – H2

ig) + (H2
ig – H1

ig) – (H1 – H1
ig)

The enthalpy departure for the first and third terms in parentheses on the right-hand side can be
calculated using Eqn. 8.29. Because Z(P,T), we use Eqn. 8.29. For the integrand, the temperature
derivative of Z is required. Recognizing B is a function of temperature only and differentiating,

Inserting the derivative into Eqn 8.29,

We can easily show by differentiating Eqns. 7.8 and 7.9,

Substituting the relations for B0, B1, dB0/dTr and dB1dTr into Eqn. 8.32 for the departure functions
for a pure fluid, we get



For the initial state, 1,

Assuming a small temperature drop, the heat capacity will be approximately constant over the
interval, CP ≈ 36 J/mole-K.

For a throttle, ∆H = 0 ය (H – Hig)2 + 36(T2 – 40) + 287 = 0.

Trial and error at state 2 where P = 1 bar, T2 = 35°C ය –13 + 36(35 – 40) + 287 = 94.

T2 = 30°C ය –13 + 36(30 – 40) + 287 = –87

Interpolating, T2 = 35 + (35 – 30)/(94 + 87)(–94) = 32.4°C, another trial would show this is close.

Finally, the Peng-Robinson model is sufficiently sophisticated to permit broad application, but the
derivations are quite tedious. It may be helpful to see how simple the eventual computations are
before getting overwhelmed with the mathematics. Hence, the first example below simply shows how
to obtain results based on the computer programs furnished with the text. The subsequent examples
confront the derivation of the departure function formulas that appear in the computer programs for the
Peng-Robinson equation.

 Preos.xlsx or PreosPropsMenu.m.

Example 8.4. Computing enthalpy and entropy departures from the Peng-Robinson equation
Propane gas undergoes a change of state from an initial condition of 5 bar and 105°C to 25 bar and

190°C. Compute the change in enthalpy and entropy.

Solution
For propane, Tc = 369.8 K; Pc = 4.249 MPa; ω = 0.152. The heat capacity coefficients are given by

A = –4.224, B = 0.3063, C = –1.586E-4, D = 3.215E-8. We may use the spreadsheet Preos.xlsx or
PreosPropsMenu.m. If we select the spreadsheet, we can use the PROPS page to calculate
thermodynamic properties. Using the m-file, we specify the species ID number in the function call to
PreosPropsMenu.m and find the departures in the command window. We extract the following
results:

For State 2:



For State 1:

Ignoring the specification of the reference state for now (refer to Example 8.8 on page 320 to see
how to apply the reference state approach), divide the solution into the three stages described in
Section 8.1: I. departure Function; II. ideal gas; III. departure function.

The overall solution path for H2 – H1 is

Similarly, for S2 – S1 =

The three steps that make up the overall solution are covered individually.
Step I. Departures at state 2 from the spreadsheet:

Step II. State change for ideal gas: The ideal gas enthalpy change has been calculated in Example
2.5 on page 60.

The ideal gas entropy has been calculated in Example 4.6 on page 151:

Step III. Departures at state 1 from the spreadsheet:

The total changes may be obtained by summing the steps of the calculation.
∆H = –1490 + 8405 + 401 = 7316 J/mole

∆S = –2.292 + 6.613 + 0.708 = 5.029 J/mole-K

We have laid the foundation for deriving and applying departure functions given an equation of
state. What remains is to organize our efforts to enable convenient and accurate calculations for the
myriad of applications that we may encounter. Since these types of computations must be repeated
many times, it is worthwhile to implement a broadly applicable (“one size fits all”) thermodynamic
model and construct a computer program that facilitates input and output. The derivations and
programming are more tedious, but they repay the invested effort through multiple applications. The
examples below illustrate the derivations for the Peng-Robinson model, but several alternative
models could have formed the basis for broad application. You should be able to demonstrate your
mastery of the model equations underlying the programming by performing equivalent derivations
with alternative models like those illustrated in the homework problems



 The final result of this example is incorporated into Preos.xlsx and
PreosPropsMenu.m

Example 8.5. Enthalpy departure for the Peng-Robinson equation
Obtain a general expression for the enthalpy departure function of the Peng-Robinson equation.

Solution
Since the Peng-Robinson equation is of the form Z(T,ρ), we can only solve with density integrals.

where da/dT is given in Eqn. 7.18. Inserting,

We introduce F(Tr) as a shorthand.

Also, B ≡ bP/RT ය bρ = B/Z and A ≡ aP/R2T2 ය a/bRT = A/B. Note that the integration is
simplified by integration over bρ (see Eqn. B.34).

 The final result of this example is incorporated into Preos.xlsx and
PreosPropsMenu.m

Example 8.6. Gibbs departure for the Peng-Robinson equation



Obtain a general expression for the Gibbs energy departure function of the Peng-Robinson
equation.

Solution
The answer is obtained by evaluating Eqn. 8.26. The argument for the integrand is

Evaluating the integral (similar to the integral in Example 8.5), noting again the change in
integration variables,

Making the result dimensionless,

It is often valuable to recognize simplifications that may circumvent the tedium. If two models are
similar, you can reuse the part of the derivation that is equivalent. If thermodynamic identities can be
used to substitute major portions of a derivation, so much the better. Productive engineers should be
aware of opportunities to leverage their time efficiently, as illustrated below.

Example 8.7. U and S departure for the Peng-Robinson equation
Derive the departure functions for internal energy and entropy of the Peng-Robinson equation. Hint:

You could start with Eqns. 8.22 and 8.23, or you could use the results of Examples 8.5 and 8.6
without further integration as suggested by Eqn. 8.20 and Eqn. 8.21.

Solution
By Eqn. 8.20, the U departure can be obtained by dropping the “Z – 1” term from Eqn. 8.35. We

may immediately write:

By Eqn. 8.21, the entropy departure can be obtained by the difference between the enthalpy
departure and Gibbs energy departure, available in Eqns. 8.35 and 8.36. Then, we may immediately
write



8.8. Reference States
If we wish to calculate state changes in a property, then the reference state is not important, and all

reference state information drops out of the calculation. However, if we wish to generate a chart or
table of thermodynamic properties, or compare our calculations to a thermodynamic table/chart, then
designation of a reference state becomes essential. Also, if we need to solve unsteady-state problems,
the reference state is important because the answer may depend on the reference state as shown in
Example 2.15 on page 81. The quantity HR – UR = (PV)R is non-zero, and although we may substitute
(PV)R = RTR for an ideal gas, for a real fluid we must use (PV)R = ZRRTR, where ZR has been
determined at the reference state. We also may use a real fluid reference state or an ideal gas
reference state. Whenever we compare our calculations with a thermodynamic chart/table, we must
take into consideration any differences between our reference state and that of the chart/table.
Therefore, to specify a reference state for a real fluid, we need to specify:

Pressure
Temperature

In addition we must specify the state of aggregation at the reference state from one of the following:
1. Ideal gas
2. Real gas
3. Liquid
4. Solid

Further, we set SR = 0, and either (but not both) of UR and HR to zero. The principle of using a
reference state is shown in Fig. 8.4 and is similar to the calculation outlined in Fig. 8.2 on page 303.

Figure 8.4. Illustration of calculation of state changes for a generic property M using
departure functions where M is U, H, S, G, or A. The calculations are an extension of the

principles used in Fig. 8.2 where the initial state is designated as the reference state.



Ideal Gas Reference States
For an ideal gas reference state, to calculate a value for enthalpy, we have

where the quantity in parentheses is the departure function from Section 8.5 or 8.6 and  may be
set to zero. An analogous equation may be written for the internal energy. Because entropy of the
ideal gas depends on pressure, we must include a pressure integral for the ideal gas,

where the reference state value, , may be set to zero. From these results we may calculate other
properties using relations from Section 6.1: G = H – TS, A = U – TS, and U = H – PV.

Real Fluid Reference State
For a real fluid reference state, to calculate a value for enthalpy, we adapt the procedure of Eqn.

8.5:

For entropy:

Changes in State Properties
Changes in state properties are independent of the reference state, or reference state method. To

calculate changes in enthalpy, we have the analogy of Eqn. 8.5:

To calculate entropy changes:



 Preos.xlsx, PreosPropsMenu.m

Example 8.8. Enthalpy and entropy from the Peng-Robinson equation
Propane gas undergoes a change of state from an initial condition of 5 bar and 105°C to 25 bar and

190°C. Compute the change in enthalpy and entropy. What fraction of the total change is due to the
departure functions at 190°C? The departures have been used in Example 8.4, but now we can use the
property values directly.

Solution
For propane, Tc = 369.8 K; Pc = 4.249 MPa; and ω = 0.152. The heat capacity coefficients are

given by A = –4.224, B = 0.3063, C = –1.586E-4, and D = 3.215E-8. For Preos.xlsx, we can use the
“Props” page to specify the critical constants and heat capacity constants. The reference state is
specified on the companion spreadsheet “Ref State.” An arbitrary choice for the reference state is the
liquid at 230 K and 0.1 MPa. Returning to the PROPS worksheet and specifying the desired
temperature and pressure gives the thermodynamic properties for V,U,H, and S.

The changes in the thermodynamic properties are ∆H = 7315J/mole and ∆S = 5.024J/mole-K,
identical to the more tediously determined values of Example 8.4 on page 314. The purpose of
computing the fractional change due to departure functions is to show that we understand the roles of
the departure functions and how they fit into the overall calculation. For the enthalpy, the appropriate
fraction of the total change is 20%, for the entropy, 46%.

 Preos.xlsx, PreosPropsMenu.m.

Example 8.9. Liquefaction revisited
Reevaluate the liquefaction of methane considered in Example 5.5 on page 213 utilizing the Peng-

Robinson equation. Previously the methane chart was used. Natural gas, assumed here to be pure
methane, is liquefied in a simple Linde process. The process is summarized in Fig. 8.5. Compression
is to 60 bar, and precooling is to 300 K. The separator is maintained at a pressure of 1.013 bar and
unliquefied gas at this pressure leaves the heat exchanger at 295 K. What fraction of the methane
entering the heat exchanger is liquefied in the process?



Figure 8.5. Linde liquefaction schematic.

Solution
Before we calculate the enthalpies of the streams, a reference state must be chosen. The reference

state is arbitrary. Occasionally, an energy balance is easier to solve by setting one of the enthalpies to
zero by selecting a stream condition as the reference state. To illustrate the results let us select a
reference state of H = 0 at the real fluid at the state of Stream 3 (6 MPa and 300 K). Because state 3
is the reference state, the H3 = 0. The results of the calculations from the Peng-Robinson equation are
summarized in Fig. 8.6.

Figure 8.6. Summary of enthalpy calculations for methane as taken from the files Preos.xlsx
(above) and PreosPropsMenu.m below.

The fraction liquefied is calculated by the energy balance: m3H3 = m8H8 + m6H6; then
incorporating the mass balance: H3 = (1 – m6/m3)H8 + (m6/m3)H6.

The throttle valve is isenthalpic (see Section 2.13). The flash drum serves to disengage the liquid
and vapor exiting the throttle valve. The fraction liquefied is (1 – q) = m6/m3 = (H3 – H8)/(H6 – H8)
= (0 – 883)/(–12,954 – 883) = 0.064, or 6.4% liquefied. This is in good agreement with the value



obtained in Example 5.5 on page 213.

 Preos.xlsx, PreosPropsMenu.m.

Example 8.10. Adiabatically filling a tank with propane
Propane is available from a reservoir at 350 K and 1 MPa. An evacuated cylinder is attached to

the reservoir manifold, and the cylinder is filled adiabatically until the pressure is 1 MPa. What is the
final temperature in the cylinder?

Solution
The critical properties, acentric factor and heat capacity constants, are entered on the “Props” page

of Preos.xlsx. On the “Ref State” page, the reference state is arbitrarily selected as the real vapor at
298 K and 0.1 MPa, and HR = 0. At the reservoir condition, propane is in the one-root region with Z
= 0.888, H = 3290 J/mol, U = 705 J/mol, and S = –7.9766 J/mol-K. The same type of problem has
been solved for an ideal gas in Example 2.16 on page 82; however, in this example the ideal gas law
cannot be used. The energy balance reduces to Uf = Hin, where Hin = 3290 J/mol. In Excel, the
answer is easily found by using Solver to adjust the temperature on the “Props” page until U = 3290
J/mol. The converged answer is 381 K. In MATLAB, the dialog boxes can be used to match U =
3290 J/mol by adjusting T. In the MATLAB window, note that the final T is shown in the “Results”
box. The initial guess is preserved in the upper left.

8.9. Generalized Charts for the Enthalpy Departure
As in the case of the compressibility factor, it is often useful to have a visual idea of how

generalized properties behave. Fig. 8.7 on page 324 is analogous to the compressibility factor charts



from the previous chapter except that the formula for enthalpy is (H – Hig) = (H – Hig)0 + ω(H –
Hig)1. Note that one primary influence in determining the liquid enthalpy departure is the heat of
vaporization. Also, the subcritical isotherms shift to liquid behavior at lower pressures when the
saturation pressures are lower. The enthalpy departure function is somewhat simpler than the
compressibility factor in that the isotherms do not cross one another. Note that the temperature used to
make the departure dimensionless is Tc. A sample calculation for propane at 463.15 K and 2.5 MPa
gives Hig – H = [0.45 + 0.152(0.2)] (8.314) 369.8 = 1480 J/mole compared to 1489.2 from the Peng-
Robinson equation.

8.10. Summary
The study of departure functions often causes students great difficulty. That is understandable since

it involves simultaneous application of physics and multivariable calculus. This may be the first
instance in which students have applied these subjects in combination to such an extent. On the other
hand, it is impressive to see what can be accomplished with these tools: the functional equivalent of
“steam tables” for any compound in the universe (given a reliable equation of state).

When you get beyond the technical details, however, it seems obvious that there is a difference
between an ideal gas and a real fluid. As the accountants for energy movements, we need to be able to
account for such contributions. Our method is to first add up all the contributions as if everything
behaved like an ideal gas, then to compute and add up all the departures from ideal gas behavior. We
apply this over and over again. The calculations are greatly facilitated by computers such that the
minimum requirement is the knowledge of what calculation is required and which buttons to push.
The purpose of this chapter was to turn your attention to developing a better understanding of the
subtleties underlying the equations inside the computer programs.

Your understanding of departure functions is reflected in your ability to develop expressions for
various equations of state, as well as the mechanics of adding up the numerical quantities. We
covered several derivations, especially for the Peng-Robinson model, and you should be able to
reproduce that procedure for other models. Obtaining numerical results occasionally requires
iteration and careful consideration of the key constraints. For example, an isentropic compression
may transition from the three-root region to the one-root region and your awareness of issues like this
corresponds directly with your understanding of how the calculations are performed. Try to rewrite
the Excel files yourself, to ensure that you fully comprehend them.

Important Equations
Eqns. 8.22–8.30 stand out in this chapter as the starting point for deriving the necessary departure

function expressions for any equation of state. It is tempting to use spreadsheets or programs to add up
the contributions from departure functions, reference states, and ideal gas temperature effects
mindlessly, like a human computer. But keep in mind that a major goal is to teach the development of
model equations, as well as their application. Your skill in developing model equations for novel
applications can transcend the study of thermodynamics. Master the derivations behind the programs
as well as the mechanics of implementing them.



Figure 8.7. Generalized charts for estimating (H – Hig)/RTc using the Lee-Kesler equation of
state. (H – Hig)0/RTc uses ω = 0.0, and (H – Hig)1/RTc is the correction factor for a hypothetical

compound with ω = 1.0. Divide by reduced temperature to obtain the enthalpy departure
function.

8.11. Practice Problems
P8.1. Develop an expression for the Gibbs energy departure function based on the Redlich-
Kwong (1958) equation of state:



(ANS. (G – Gig)/RT = –ln(1 – bρ) – aln(1 + bρ)/(bRT3/2) + Z – 1 – lnZ)
P8.2. For certain fluids, the equation of state is given by Z = 1 – bρ/Tr.

Develop an expression for the enthalpy departure function for fluids of this type.
(ANS. –2bρ/Tr)

P8.3. In our discussion of departure functions we derived Eqn. 8.14 for the internal energy
departure for any equation of state.

a. Derive the analogous expression for .
b. Derive an expression for  in terms of a, b, ρ, and T for the equation
of state:

P8.4. Even in the days of van der Waals, the second virial coefficient for square-well fluids (λ =
1.5) was known to be B/b = 4 + 9.5 [exp(NAε/RT) – 1]. Noting that ex ~ 1 + x + x2/2 + ..., this
observation suggests the following equation of state:

Derive an expression for the Helmholtz energy departure function for this equation
of state. (ANS. –4ln(1 – bρ) – 9.5NAεbρ/kT)

P8.5. Making use of the Peng-Robinson equation, calculate ∆H, ∆S, ∆U, and ∆V for 1 gmol of
1,3-butadiene when it is compressed from 25 bar and 400 K to 125 bar and 550 K. (ANS. ∆H =
12,570 J/mol; ∆S = 17.998 J/mol-K; ∆U = 11,690 J/mol; ∆V = –640.8 cm3/mol)
P8.6. Ethane at 425 K and 100 bar initially is contained in a 1 m3 cylinder. An adiabatic,
reversible turbine is connected to the outlet of the tank and exhausted to atmosphere at 1 bar
absolute.

a. Estimate the temperature of the first gas to flow out of the turbine. (ANS. 185
K)
b. Estimate the rate of work per mole at the beginning of this operation. (ANS.
8880 J/mol)

P8.7. Ethylene at 350°C and 50 bar is passed through an adiabatic expander to obtain work and
exits at 2 bar. If the expander has an efficiency of 80%, how much work is obtained per mole of
ethylene, and what is the final temperature of the ethylene? How does the final temperature
compare with what would be expected from a reversible expander? (ANS. 11 kJ/mole, 450 K
versus 404 K)
P8.8. A Rankine cycle is to operate on methanol. The boiler operates at 200°C (Psat = 4.087
MPa), and a superheater further heats the vapor. The turbine outlet is saturated vapor at 0.1027
MPa, and the condenser outlet is saturated liquid at 65°C (Psat = 0.1027 MPa). What is the
maximum possible value for the cycle thermal efficiency (ηθ = –W/QH)? (ANS. 26%)

P8.9. An ordinary vapor-compression cycle is to be designed for superconductor application



using N2 as refrigerant. The expansion is to 1 bar. A heat sink is available at 105 K. A 5 K
approach should be sufficient. Roughly 100 Btu/hr must be removed. Compute the coefficient of
performance (COP) and compare to the Carnot COP. Also, estimate the compressor’s power
requirement (hp) assuming it is adiabatic and reversible. (ANS. 1.33, 0.3)
P8.10. Suppose ethane was compressed adiabatically in a 70% efficient continuous compressor.
The downstream pressure is specified to be 1500 psia at a temperature not to exceed 350°F.
What is the highest that the upstream temperature could be if the upstream pressure is 200 psia?
(Hint: Neglect the upstream departure function.) (ANS. 269 K)
P8.11. As part of a liquefaction process, ammonia is throttled to 80% quality at 1 bar. If the
upstream pressure is 100 bar, what must be the upstream temperature?
P8.12. An alternative to the pressure equation route from the molecular scale to the macroscopic
scale is through the energy equation (Eqn. 7.51). The treatment is similar to the analysis for the
pressure equation, but the expression for the radial distribution function must now be integrated
over the range of the potential function.

a. Suppose that u(r) is given by the square-well potential (R = 1.5) and g(r) = 10
– 5(r/σ) for r > σ. Evaluate the internal energy departure function where ρσ3 = 1
and ε/kT = 1. (ANS. –5.7π)
b. Suppose that the radial distribution function at intermediate densities can be
reasonably represented by: g ~ (1 + 2(σ/r)2) at all temperatures. Derive an
expression for the attractive contribution to the compressibility factor for fluids
that can be accurately represented by the Sutherland potential. (ANS.
3πρNAσ3NAε/RT)

8.12. Homework Problems
8.1. What forms does the derivative (∂CV/∂V)T have for a van der Waals gas and a
Redlich-Kwong gas? (The Redlich-Kwong equation is given in Problem P8.1.) Comment
on the results.
8.2. Estimate CP, CV, and the difference CP – CV in (J/mol-K) for liquid n-butane from the
following data.2

8.3. Estimate CP, CV, and the difference CP – CV in (J/mol-K) for saturated n-butane liquid
at 298 K n-butane as predicted by the Peng-Robinson equation of state. Repeat for saturated
vapor.
8.4. Derive the integrals necessary for departure functions for U, G, and A for an equation
of state written in terms of Z = f(T,P) using the integrals provided for H and S in Section
8.6.



8.5.
a. Derive the enthalpy and entropy departure functions for a van der Waals fluid.
b. Derive the formula for the Gibbs energy departure.

8.6. The Soave-Redlich-Kwong equation is presented in problem 7.15. Derive expressions
for the enthalpy and entropy departure functions in terms of this equation of state.
8.7. In Example 8.2 we wrote the equation of state in terms of Z = f (T,ρ). The equation of
state is also easy to rearrange in the form Z = f (T,P). Rearrange the equation in this form,
and apply the formulas from Section 8.6 to resolve the problem using departures at fixed T
and P.
8.8. The ESD equation is presented in problem 7.19. Derive expressions for the enthalpy
and entropy departure functions in terms of this equation of state.
8.9. A gas has a constant-pressure ideal-gas heat capacity of 15R. The gas follows the
equation of state,

over the range of interest, where a = –1000 cm3/mole.
a. Show that the enthalpy departure is of the following form:

b. Evaluate the enthalpy change for the gas as it undergoes the state change:
T1 = 300 K, P1 = 0.1 MPa, T2 = 400 K, P2 = 2 MPa

8.10. Derive the integrated formula for the Helmholtz energy departure for the virial equation
(Eqn. 7.7), where B is dependent on temperature only. Express your answer in terms of B and its
temperature derivative.
8.11. Recent research suggests the following equation of state, known as the PC-SAFT model.

a. Derive an expression for Z.
b. Derive the departure function for (U-Uig).
Note: ηP = bρ; m = constant proportional to molecular weight; ai, bi are constants.

8.12. Recent research in thermodynamic perturbation theory suggests the following equation of
state.

a. Derive the departure function for (A – Aig)T,V.



b. Derive the departure function for (U – Uig).
Hint: substitute u = 0.7 + Texp(10ηP); ηP = bρ.

8.13. A gas is to be compressed in a steady-state flow reversible isothermal compressor. The
inlet is to be 300 K and 1 MPa and the gas is compressed to 20 MPa. Assume that the gas can be
modeled with equation of state

where a = 385.2 cm3-K/mol and b = 15.23 cm3/mol. Calculate the required work
per mole of gas.

8.14. A 1 m3 isolated chamber with rigid walls is divided into two compartments of equal
volume. The partition permits transfer of heat. One side contains a nonideal gas at 5 MPa and
300 K and the other side contains a perfect vacuum. The partition is ruptured, and after sufficient
time for the system to reach equilibrium, the temperature and pressure are uniform throughout the
system. The objective of the problem statements below is to find the final T and P.

The gas follows the equation of state

where b = 20 cm3/mole; a = 40,000 cm3K/mole; and CP = 41.84 + 0.084T(K)
J/mol-K.

a. Set up and simplify the energy balance and entropy balance for this problem.
b. Derive formulas for the departure functions required to solve the problem.
b. Determine the final P and T.

8.15. P-V-T behavior of a simple fluid is found to obey the equation of state given in problem
8.14.

a. Derive a formula for the enthalpy departure for the fluid.
b. Determine the enthalpy departure at 20 bar and 300 K.
c. What value does the entropy departure have at 20 bar and 300 K?

8.16. Using the Peng-Robinson equation, estimate the change in entropy (J/mole-K) for raising
butane from a saturated liquid at 271 K and 1 bar to a vapor at 352 K and 10 bar. What fraction
of this total change is given by the departure function at 271 K? What fraction of this change is
given by the departure function at 352 K?
8.17. Suppose we would like to establish limits for the rule T2 = T1(P2/P1)R/CP by asserting that
the estimated T2 should be within 5% of the one calculated using the departure functions. For ω
= 0 and Tr = [1, 10] at state 1, determine the values of Pr where this assertion holds valid by
using the Peng-Robinson equation as the benchmark.
8.18. A piston contains 2 moles of propane vapor at 425 K and 8.5 MPa. The piston is taken
through several state changes along a pathway where the total work done by the gas is 2 kJ. The
final state of the gas is 444 K and 3.4 MPa. What is the change, ∆H, for the gas predicted by the
Peng-Robinson equation and how much heat is transferred? Note: A reference state is optional;
if one is desired, use vapor at 400 K and 0.1 MPa.



8.19. N.B. Vargaftik3 (1975) lists the experimental values in the following table for the enthalpy
departure of isobutane at 175°C. Compute theoretical values and their percent deviations from
experiment by the following

a. The generalized charts
b. The Peng-Robinson equation

8.20. n-pentane is to be heated from liquid at 298 K and 0.01013 MPa to vapor at 360 K and 0.3
MPa. Compute the change in enthalpy using the Peng-Robinson equation of state. If a reference
state is desired, use vapor at 310 K, 0.103 MPa, and provide the enthalpy departure at the
reference state.
8.21. For each of the fluid state changes below, perform the following calculations using the
Peng-Robinson equation: (a) Prepare a table and summarize the molar volume, enthalpy, and
entropy for the initial and final states; (b) calculate ∆H and ∆S for the process; and (c) compare
with ∆H and ∆S for the fluid modeled as an ideal gas. Specify your reference states.

a. Propane vapor at 1 bar and 60°C is compressed to a state of 125 bar and
250°C.
b. Methane vapor at –40°C and 0.1013 MPa is compressed to a state of 10°C and
7 MPa.

8.22. 1 m3 of CO2 initially at 150°C and 50 bar is to be isothermally compressed in a
frictionless piston/cylinder device to a final pressure of 300 bar. Calculate the volume of the
compressed gas, ∆U, the work done to compress the gas, and the heat flow on compression
assuming

a. CO2 is an ideal gas.

b. CO2 obeys the Peng-Robinson equation of state.

8.23. Solve problem 8.22 for an adiabatic compression.
8.24. Consider problem 3.11 using benzene as the fluid rather than air and eliminating the ideal
gas assumption. Use the Peng-Robinson equation. For the same initial state,

a. The final tank temperature will not be 499.6 K. What will the temperature be?
b. What is the number of moles left in the tank at the end of the process?
b. Write and simplify the energy balance for the process. Determine the final
temperature of the piston/cylinder gas.

8.25. Solve problem 8.24 using n-pentane.
8.26. A tank is divided into two equal halves by an internal diaphragm. One half contains argon
at a pressure of 700 bar and a temperature of 298 K, and the other chamber is completely
evacuated. Suddenly, the diaphragm bursts. Compute the final temperature and pressure of the
gas in the tank after sufficient time has passed for equilibrium to be attained. Assume that there is
no heat transfer between the tank and the gas, and that argon:

a. Is an ideal gas



b. Obeys the Peng-Robinson equation
8.27. The diaphragm of the preceding problem develops a small leak instead of bursting. If there
is no heat transfer between the gas and tank, what is the temperature and pressure of the gas in
each tank after the flow stops? Assume that argon obeys the Peng-Robinson equation.
8.28. A practical application closely related to the above problem is the use of a compressed
fluid in a small can to reinflate a flat tire. Let’s refer to this product as “Fix-a-flat.” Suppose we
wanted to design a fix-a-flat system based on propane. Let the can be 500 cm3 and the tire be
40,000 cm3. Assume the tire remains isothermal and at low enough pressure for the ideal gas
approximation to be applicable. The can contains 250 g of saturated liquid propane at 298 K and
10 bar. If the pressure in the can drops to 0.85 MPa, what is the pressure in the tire and the
amount of propane remaining in the can? Assuming that 20 psig is enough to drive the car for a
while, is the pressure in the tire sufficient? Could another tire be filled with the same can?
8.29. Ethylene at 30 bar and 100°C passes through a throttling valve and heat exchanger and
emerges at 20 bar and 150°C. Assuming that ethylene obeys the Peng-Robinson equation,
compute the flow of heat into the heat exchanger per mole of ethylene.
8.30. In the final stage of a multistage, adiabatic compression, methane is to be compressed from
–75°C and 2 MPa to 6 MPa. If the compressor is 76% efficient, how much work must be
furnished per mole of methane, and what is the exit temperature? How does the exit temperature
compare with that which would result from a reversible compressor? Use the Peng-Robinson
equation.
8.31.

a. Ethane at 280 K and 1 bar is continuously compressed to 310 K and 75 bar.
Compute the change in enthalpy per mole of ethane using the Peng-Robinson
equation.
b. Ethane is expanded through an adiabatic, reversible expander from 75 bar and
310 K to 1 bar. Estimate the temperature of the stream exiting the expander and
the work per mole of ethane using the Peng-Robinson equation. (Hint: Is the
exiting ethane vapor, liquid, or a little of each? The saturation temperature for
ethane at 1 bar is 184.3 K.)

8.32. Our space program requires a portable engine to generate electricity for a space station. It
is proposed to use sodium (Tc = 2300 K; Pc = 195 bar; ω = 0; CP/R = 2.5) as the working fluid
in a customized form of a “Rankine” cycle. The high-temperature stream is not superheated
before running through the turbine. Instead, the saturated vapor (T = 1444 K, Psat = 0.828 MPa)
is run directly through the (100% efficient, adiabatic) turbine. The rest of the Rankine cycle is
the usual. That is, the outlet stream from the turbine passes through a condenser where it is
cooled to saturated liquid at 1155 K (this is the normal boiling temperature of sodium), which is
pumped (neglect the pump work) back into the boiler.

a. Estimate the quality coming out of the turbine.
b. Compute the work output per unit of heat input to the cycle, and compare it to
the value for a Carnot cycle operating between the same TH and TC.

8.33. Find the minimum shaft work (in kW) necessary to liquefy n-butane in a steady-state flow



process at 0.1 MPa pressure. The saturation temperature at 0.1 MPa is 271.7 K. Butane is to
enter at 12 mol/min and 0.1 MPa and 290 K and to leave at 0.1 MPa and 265 K. The
surroundings are at 298 K and 0.1 MPa.
8.34. The enthalpy of normal liquids changes nearly linearly with temperature. Therefore, in a
single-pass countercurrent heat exchanger for two normal liquids, the temperature profiles of
both fluids are nearly linear. However, the enthalpy of a high-pressure gas can be nonlinearly
related to temperature because the constant pressure heat capacity becomes very large in the
vicinity of the critical point. For example, consider a countercurrent heat exchanger to cool a
CO2 stream entering at 8.6 MPa and 115°C. The outlet is to be 8.6 MPa and 22°C. The cooling
is to be performed using a countercurrent stream of water that enters at 10°C. Use a basis of l
mol/min of CO2.

a. Plot the CO2 temperature (°C) on the ordinate versus H on the abscissa, using
H = 0 for the outlet state as the reference state.
b. Since dHwater/dx = dHCO2/dx along a differential length, dx, of countercurrent
of heat exchanger, the corresponding plot of T versus H for water (using the inlet
state as the reference state) will show the water temperature profile for the
stream that contacts the CO2. The water profile must remain below the CO2
profile for the water stream to be cooler than the CO2. If the water profile
touches the CO2 profile, the location is known as a pinch point and the heat
exchanger would need to be infinitely big. What is the maximum water outlet
temperature that can be feasibly obtained for an infinitely sized heat exchanger?
c. Approximately what water outlet temperature should be used to ensure a
minimum approach temperature for the two streams of approximately 10°C?

8.35. An alternative to the pressure equation route from the molecular scale to the macroscopic
scale is through the energy equation (Eqn. 7.50). The treatment is similar to the analysis for the
pressure equation, but the expression for the radial distribution function must now be integrated
over the range of the potential function. Suppose that the radial distribution function can be
reasonably represented by:

g = 0 for r < σ
g ~ 1 + ρNAσ6ε/(r3kT) for r > σ

at all temperatures and densities. Use Eqn. 7.50 to derive an expression for the
internal energy departure function of fluids that can be accurately represented by the
following:

a. The square-well potential with λsw = 1.5

b. The Sutherland potential
Evaluate each of the above expressions at ρNAσ3 = 0.6 and ε/kT = 1.

8.36. Starting with the pressure equation as shown in Chapter 6, evaluate the internal energy
departure function at ρNAσ3 = 0.6 and ε/kT = 1 by performing the appropriate derivatives and
integrations of the equation of state obtained by applying



g = 0 for r < σ
g ~ 1 + ρNAσ6ε/(r3kT) for r > σ

at all temperatures and densities:
a. The square-well potential with λsw = 1.5

b. The Sutherland potential
c. Compare these results to those obtained in problem 8.35 and explain why the
numbers are not identical.

8.37. Molecular simulation can be used to explore the accuracy and significance of individual
contributions to an equation of state. Use the DMD module at Etomica.org to explore Xe’s
energy departure.

a. The simulation results below have been tabulated at ηP = 0.167, λ = 1.7. Plot
U/NAε versus βε for these data along with those at ηP = 0.375 from homework
problem 7.25.
b. Prepare a plot of Xe’s simulated U – Uig versus 1000/T using your best ε and
σ at ηP = 0.375 and showing the isochoric data for Xe from Webbook.nist.gov at
22.14 mol/L on the same axes.
c. The data for U - Uig exhibit a linear trend with βε. The data for Z also exhibit a
linear trend with βε. What trends do these two data sets indicate for (A –
Aig)TV/RT? Are they consistent? Explain.

d. Use the trapezoidal rule and the energy equation (Eqn. 7.49) to estimate A – Aig

and plot as a dashed line. How accurate are your estimates (AAD%) and how
could you improve them?

SW results at ηP = 0.167, λ = 1.7.

8.38. Suppose two molecules had similar potential functions, but they were mirror images of one
another as shown in the figure below. Which one (A or B) would have the larger internal energy
departure? You may assume that the radial distribution function is the same for both potential
models.

a. Reason qualitatively but refer to appropriate equations to explain your answer.
b. Compute the values of (U – Uig)/RT at a packing fraction of 0.4 and a
temperature of 50 K. Assume values of the radial distribution function as
follows:

http://Webbook.nist.gov




Chapter 9. Phase Equilibrium in a Pure Fluid

One of the principal objects of theoretical research is to find the point of view from
which it can be expressed with greatest simplicity.

J.W. Gibbs (1881)

The problem of phase equilibrium is distinctly different from “(In – Out) = Accumulation.” The
fundamental balances were useful in describing many common operations like throttling, pumping,
and compressing, and fundamentally, they provide the basis for understanding all processes. But the
balances make a relatively simple contribution in solving problems of phase equilibrium—so much
so that they are largely ignored, while simple questions like “How many phases are present?” take the
primary role.

The general problem of phase equilibrium has a broad significance that begins to distinguish
chemical thermodynamics from more generic thermodynamics. If we only care about steam, then it
makes sense to concentrate on the various things we can do with steam and to use the steam tables for
any properties we need. But, if our interest is in a virtually infinite number of chemicals and mixtures,
then we need some unifying principles. Since our interest is chemical thermodynamics, we must deal
extensively with property estimations. The determination of phase equilibrium is one of the most
important and difficult estimations to make. The ability to understand, model, and predict phase
equilibria is particularly important for designing separation processes. Typically, these operations
comprise the most significant capital costs of plant facilities, and require knowledgeable engineers to
design, maintain, and troubleshoot them.

In most separation processes, the controlled variables are the temperature and pressure. Thus,
when we approach the modeling of phase behavior, we should seek thermodynamic properties that
are natural functions of these two properties. In our earlier discussions of convenience properties, the
Gibbs energy was shown to be such a function:

As a defined mathematical property, the Gibbs energy remains abstract, in the same way that
enthalpy and entropy are difficult to conceptualize. However, our need for a natural function of P and
T requires the use of this property.

 Phase equilibrium at fixed T and P is most easily understood using G, which is a
natural function of P, T.

Chapter Objectives: You Should Be Able to...
1. Use the Clapeyron and Clausius-Clapeyron equations to calculate thermodynamic
properties from limited data.
2. Explain the origin of the shortcut vapor pressure equation and its limitations.
3. Use the Antoine equation to calculate saturation temperature or saturation pressure.
4. Describe in words the relationship between the Gibbs departure and the fugacity.
5. Given the pressure and temperature, estimate the value of fugacity (in appropriate units)



using an ideal gas model, virial correlation, or cubic equation of state.
6. Calculate the fugacity coefficient of a vapor or liquid given an expression for a cubic
equation of state and the parameter values Z, A, B, and decide which root among multiple
roots is most stable.
7. Estimate the fugacity of a liquid or solid if given the vapor pressure.
8. Interpret equation of state results at saturation and apply the lever rule to properties like
enthalpy, internal energy, and entropy for a two-phase mixture.
9. Solve throttling, compressor, and turbine expander problems using a cubic equation of
state for thermodynamic properties rather than a chart or table.

9.1. Criteria for Phase Equilibrium
As an introduction to the constraint of phase equilibrium, let us consider an example. A

piston/cylinder contains both propane liquid and vapor at –12°C. The piston is forced down a
specified distance. Heat transfer is provided to maintain isothermal conditions. Both phases still
remain. How much does the pressure increase?

This is a trick question. As long as two phases are present for a single component and the
temperature remains constant, then the system pressure remains fixed at the vapor pressure, so the
answer is zero increase. The molar volumes of vapor and liquid phases also stay constant since they
are state properties. However, as the total volume changes, the quantity of liquid increases, and the
quantity of vapor decreases. We are working with a closed system where n = nL + nV. For the whole
system: V = nL VsatL + nVVsatV = n·VsatL + q·n·(VsatV – VsatL) and since VsatL and VsatV are fixed and
VsatL < VsatV, a decrease in V causes a decrease in q1.

Since the temperature and pressure from beginning to end are constant as long as two phases exist,
applying Eqn. 9.1 shows that the change in Gibbs energy of each phase of the system from beginning
to end must be zero, dGL = dGV = 0.

For the whole system:

But by the mass balance, dnL = –dnV which reduces Eqn. 9.2 to 0 = GL – GV or

 Gibbs energy is the key property for characterizing phase equilibria.

This is a very significant result. In other words, GL = GV is a constraint for phase equilibrium.
None of our other thermodynamic properties, U, H, S, and A is equivalent in both phases. If we
specify phase equilibrium must exist and one additional constraint (e.g., T), then all of our other state
properties of each phase are fixed and can be determined by the equation of state and heat capacities.

Only needing to specify one variable at saturation to compute all state properties should not come
as a surprise, based on our experience with the steam tables. The constraint of GL = GV is simply a
mathematical way of saying “saturated.” As an exercise, select from the steam tables an arbitrary



saturation condition and calculate G = H – TS for each phase. The advantage of the mathematical
expression is that it yields a specific equality applicable to many chemicals. The powerful insight of
GL = GV leads us to the answers of many more difficult and significant questions concerning phase
equilibrium.

9.2. The Clausius-Clapeyron Equation
We can apply these concepts of equilibrium to obtain a remarkably simple equation for the vapor-

pressure dependence on temperature at low pressures. As a “point of view of greatest simplicity,” the
Clausius-Clapeyron equation is an extremely important example. Suppose we would like to find the
slope of the vapor pressure curve, dPsat/dT. Since we are talking about vapor pressure, we are
constrained by the requirement that the Gibbs energies of the two phases remain equal as the
temperature is changed. If the Gibbs energy in the vapor phase changes, the Gibbs energy in the liquid
phase must change by the same amount. Thus,

dGL = dGV

Rewriting the fundamental property relation ය dG = VV dPsat – SV dT = VL dPsat – SL dT and
rearranging,

Entropy is a difficult property to measure. Let us use a fundamental property to substitute for
entropy. By definition of G: GV = HV – TSV = HL – TSL = GL

Substituting Eqn. 9.5 in for SV – SL in Eqn. 9.4, we have the Clapeyron equation which is valid for
pure fluids along the saturation line:

 Clapeyron equation.

Note: This general form of Clapeyron equation can be applied to any kind of
phase equilibrium including solid-vapor and solid-liquid equilibria by substituting
the alternative sublimation or fusion properties into Eqn. 9.6; we derived the
current equation based on vapor-liquid equilibria.

Several simplifications can be made in the application to vapor pressure (i.e., vapor-liquid
equilibium). To write the equation in terms of ZV and ZL, we multiply both sides by T2 and divide
both sides by Psat:

We then use calculus to change the way we write the Clapeyron equation:



Combining the results, we have an alternative form of the Clapeyron equation:

 Clapeyron equation.

For a gas far from the critical point at “low” reduced temperatures, ZV – ZL ≈ ZV. In addition, for
vapor pressures near 1 bar, where ideal gas behavior is approximated, ZV ≈ 1, resulting in the
Clausius-Clapeyron equation:

 Clausius-Clapeyron equation.

Example 9.1. Clausius-Clapeyron equation near or below the boiling point
Derive an expression based on the Clausius-Clapeyron equation to predict vapor-pressure

dependence on temperature.

Solution
If we assume that ∆Hvap is fairly constant in some range near the boiling point, integration of each

side of the Clausius-Clapeyron equation can be performed from the boiling point to another state on
the saturation curve, which yields

where  is 0.1013 MPa and TR is the normal boiling temperature. This result may be used in a
couple of different ways: (1) We may look up ∆Hvap so that we can calculate Psat at a new
temperature T; or (2) we may use two vapor pressure points to calculate ∆Hvap and subsequently
apply method (1) to determine other Psat values.

One vapor pressure point is commonly available through the acentric factor, which is the reduced
vapor pressure at a reduced temperature of 0.7. (Frequently the boiling point is near this
temperature.) That means, we can apply the definition of the acentric factor to obtain a value of the
vapor pressure relative to the critical point.



9.3. Shortcut Estimation of Saturation Properties
We found that the Clausius-Clapeyron equation leads to a simple, two-constant equation for the

vapor pressure at low temperatures. What about higher temperatures? Certainly, the assumption of
ideal gases used to derive the Clausius-Clapeyron equation is not valid as the vapor pressure
becomes large at high temperature; therefore, we need to return to the Clapeyron equation. If
∆Hvap/∆Zvap was constant over a wide range of temperature, then we could recover this simple form.
Obviously, ∆Zvap is not constant; as we approach the critical point, the vapor and liquid volumes get
closer together until they eventually become equal and ∆Zvap → 0. However, the enthalpies of the
vapor and liquid approach one another at the critical point, so it is possible that ∆Hvap/∆Zvap may be
approximately constant. To analyze this hypothesis, let us plot the experimental data in the form of
Eqn. 9.7 assuming that ∆Hvap/∆Zvap is constant. A constant slope would confirm a constant value of
∆Hvap/∆Zvap. A plot is shown for two fluids in Fig. 9.1.

Figure 9.1. Plot to evaluate Clausius-Clapeyron for calculation of vapor pressures at high
pressures, argon (left) and ethane (right).

The conclusion is that setting ∆H/∆Z equal to a constant is a reasonable approximation, especially
over the range of 0.5 < Tr < 1.0. The plot for ethane shows another nearly linear region for 1/Tr > 2
(temperatures below the normal boiling temperature), with a different slope and intercept. The
approach of the previous section should be applied at Tr < 0.5. Integrating the Clapeyron equation for
vapor pressure, we obtain,

 The plot of lnPsat versus 1/T is nearly linear.

Example 9.2. Vapor pressure interpolation
What is the value of the pressure in a piston/cylinder at –12°C (261.2 K) with vapor and liquid

propane present? Use only the boiling temperature (available from a handbook), critical properties,
and acentric factor to determine the answer.

Solution



We will use the boiling point and the vapor pressure given by the acentric factor to determine (–
∆Hvap)/(R∆Zvap) for Eqn. 9.10, and then use the boiling temperature with (–∆Hvap)/(R∆Zvap) to
determine the desired vapor pressure. First, let us use the acentric factor to determine the vapor
pressure value at Tr = 0.7. For propane, Tc = 369.8 K, Pc = 4.249 MPa, and ω = 0.152. Solving for
the vapor pressure in terms of MPa by rearranging the definition of the acentric factor, 

 MPa.a The temperature corresponding to this pressure is T =
Tr·Tc = 0.7·369.8 = 258.9 K. The CRC handbook lists the normal boiling temperature of propane as –
42°C = 231.2 K. Using these two vapor pressures in Eqn. 9.10:

ln(0.2994/0.1013) = –∆Hvap/(R∆Zvap)(1/258.9 – 1/231.2) ය –∆Hvap/(R∆Z) = –2342 K
Therefore, using the boiling point and the value of –∆Hvap/(R∆Zvap),
Psat(261.2 K) = 0.1013 MPa · exp[–2342(1/261.2 – 1/231.2)] = 0.324 MPa
The calculation is in excellent agreement with the experimental value of 0.324 MPa.

a. Could we use the Clausius-Clapeyron equation at this condition? Since the Clausius-Clapeyron equation requires the ideal
gas law, the Psat value must be low enough for the ideal gas law to be followed. The deviations at this state can be quickly
checked with the virial equation, Pr = 0.07, Tr = 0.7, B0 = –0.664, B1 = –0.630, Z = 0.924; therefore, the Clausius-
Clapeyron equation should probably not be used. Although you would get the same answer for vapor pressure over this
narrow range, your inaccurate estimate of ∆Hvap might mislead you in a later calculation.

Since the linear relationship of Eqn. 9.10 applies over a broad range of temperatures, we can
derive an approximate general estimate of the saturation pressure based on the critical point as the
reference and acentric factor as a second point on the vapor pressure curve.

Setting PR = Pc and TR = Tc,

Common logarithms are conventional for shortcut estimation, possibly because they are more
convenient to visualize orders of magnitude.

Relating this equation to the acentric factor defined by Eqn. 7.2,

which results in a shortcut vapor pressure equation,

 Shortcut vapor pressure equation. Use care with the shortcut equation below Tr = 0.5.

Note: The shortcut vapor pressure equation must be regarded as an



approximation for rapid estimates. The approximation is generally good above P =
0.5 bar; the percent error can become significant at lower pressures (and
temperatures). Keep in mind that its estimates are based on the critical pressure
which is generally 40–50 bar and acentric factor (at Tr = 0.7).

Example 9.3. Application of the shortcut vapor pressure equation
Use the shortcut vapor pressure equation to calculate the vapor pressure of propane at –12°C, and

compare the calculation with the results from Example 9.2.

Solution
For propane at –12oC, Tr = 261.2/369.8 = 0.7063,

This is in excellent agreement with the result of Example 9.2, with considerably less effort.

Example 9.4. General application of the Clapeyron equation
Liquid butane is pumped to a vaporizer as a saturated liquid under a pressure of 1.88 MPa. The

butane leaves the exchanger as a wet vapor of 90 percent quality and at essentially the same pressure
as it entered. From the following information, estimate the heat load on the vaporizer per gram of
butane entering.

For butane, Tc = 425.2 K; Pc = 3.797 MPa; and ω = 0.193. Use the shortcut method to estimate the
temperature of the vaporizer, and the Peng-Robinson equation to determine the enthalpy of
vaporization.

Solution
To find the T at which the process occurs:a

First, we use the Peng-Robinson equation to find departure functions for each phase, and
subsequently determine the heat of vaporization at 383.2 K and 1.88 MPa:

Therefore, ∆Hvap = (–0.9949 + 5.256)8.314·0.90117·425.2 = 13,575 J/mol
Since the butane enters as saturated liquid and exits at 90% quality, an energy balance gives Q =

0.9·13,575 = 12,217 J/mol ·1mol/58g = 210.6 J/g
Alternatively, we could have used the shortcut equation another way by comparing the Clapeyron

and shortcut equations:
Clapeyron: ln(Psat) = –∆Hvap/RT(ZV – ZL) + ∆Hvap/RTc(ZV – ZL) + lnPc



Shortcut: 

Comparing, we find: 
Therefore, using the Peng-Robinson equation at 383.3 K and 1.88 MPa to determine

compressibility factor values,
∆Hvap = 2725R (ZV – ZL) = 2725(8.314)(0.6744 – 0.07854) = 13,500 J/mol

which would give a result in good agreement with the first approach.

a. In principle, since we are asked to use the Peng-Robinson equation for the rest of the problem, we could have used it to
determine the saturation temperature also, but we were asked to use the shortcut method. The use of equations of state to
calculate vapor pressure is discussed in Section 8.10.

The Antoine Equation
The simple form of the shortcut vapor-pressure equation is extremely appealing, but there are times

when we desire greater precision than such a simple equation can provide. One obvious alternative
would be to use the same form over a shorter range of temperatures. By fitting the local slope and
intercept, an excellent fit could be obtained. To extend the range of applicability slightly, one
modification is to introduce an additional adjustable parameter in the denominator of the equation.
The resultant equation is referred to as the Antoine equation:

 Antoine equation. Use with care outside the stated parameter temperature limits, and
watch use of log, ln, and units carefully.

where T is conventionally in Celsius.2 Values of coefficients for the Antoine equation are widely
available, notably in the compilations of vapor-liquid equilibrium data by Gmehling and coworkers.3
The Antoine equation provides accurate correlation of vapor pressures over a narrow range of
temperatures, but a strong caution must be issued about applying the Antoine equation outside the
stated temperature limits; it does not extrapolate well. If you use the Antoine equation, you should
be sure to report the temperature limits as well as the values of coefficients with every application.
Antoine coefficients for some compounds are summarized in Appendix E and within the Excel
workbook Antoine.xlsx.

 Antoine.xlsx and Matlab/Props have coefficients for many common substances.

9.4. Changes in Gibbs Energy with Pressure
We have seen that the Gibbs energy is the key property that must be used to characterize phase

equilibria. In the previous section, we have used Gibbs energy in the derivation of useful relations for
vapor pressure. For our discussions here, we have been able to relate the two phases of a pure fluid
to one another, and the actual calculation of values of the Gibbs energy were not needed. However,



extension to general phase equilibria in the next chapters will require a capability to calculate
departures of Gibbs energies of individual phases, sometimes using different techniques of
calculation for each phase.

 Values for Gibbs energy departures are needed for further generalization of phase
equilibria.

By observing the mathematical behavior of Gibbs energy for fluids derived from the above
equations, some sense may be developed for how pressure affects Gibbs energy, and the property
becomes somewhat more tangible. Beginning from our fundamental relation, dG = –SdT + VdP, the
effect of pressure is most easily seen at constant temperature.

 Starting point for many derivations.

Eqn. 9.13 is the basic equation used as a starting point for derivations used in phase
equilibrium. In actual applications the appearance of the equation may differ, but it is useful to recall
that most derivations originate with the variation of Eqn. 9.13. To evaluate the change in Gibbs
energy, we simply need the P-V-T properties of the fluid. These P-V-T properties may be in the form
of tabulated data from measurements, or predictions from a generalized correlation or an equation of
state. For a change in pressure, Eqn. 9.13 may be integrated:

Methods for calculating Gibbs energies and related properties differ for gases, liquids, and solids.
Each type of phase will be covered in a separate section to make the distinctions of the calculation
methods clearer. Before proceeding to those analyses, however, we consider a problem which arises
in the treatment of Gibbs energy at low pressure. This problem motivates the introduction of the term
“fugacity” which takes the place of the Gibbs energy in the presentation in the following sections.

Gibbs Energy in the Low-Pressure Limit
The calculation of ∆G is illustrated in Fig. 9.2, where the shaded area represents the integral. The

slope of a G versus P plot at constant temperature is equal to the molar volume. For a real fluid, the
ideal-gas approximation is valid only at low pressures. The volume is given by V = ZRT/P; thus,



Figure 9.2. Schematic of dependence of G on pressure for a real fluid at TR, and an
isothermal change on a P-V diagram for a change from P1 to P2.

which permits use of generalized correlations or volume-explicit equations of state to represent Z
at T and P.4 Of course, we may also use Eqn. 9.13 directly, using an equation of state to calculate V.
Both techniques are shown later, but first the qualitative aspects of the calculations are illustrated.

For an ideal gas, we may substitute Z = 1 into Eqn. 9.15 to obtain

Both dG and dGig become infinite as pressure approaches zero. This means that both Eqns. 9.15
and 9.16 are difficult to use directly at low pressure. However, as a real fluid state approaches zero
pressure, Z will approach the ideal gas limit and dG approaches dGig. Thus, the difference dG – dGig

will remain finite, and goes to zero as P goes to zero. Thus,
dG – dGig = d(G – Gig)

which is simply the change in departure function. Therefore, we combine Eqns. 9.15 and 9.16 and
write:

 Differential form of the Gibbs departure.

This relates the departure function to the P-V-T properties in a way that we have seen before. If
you look back to Eqn. 8.26, that equation looks different because we are integrating over volume
rather than pressure, but they are really related. We use this departure to define a new state property,
fugacity, to describe phase behavior. We reserve further discussion of pressure effects in gases for
the following sections, where fugacity and Gibbs energy can be considered simultaneously. The
generalized treatment by departure functions is also discussed there.



 Fugacity can be directly related to measurable properties under the correct
conditions.

9.5. Fugacity and Fugacity Coefficient
In principle, all pure-component, phase-equilibrium problems could be solved using Gibbs energy.

Historically, however, an alternative property has been applied in chemical engineering calculations,
the fugacity. The fugacity has one advantage over the Gibbs energy in that its application to mixtures
is a straightforward extension of its application to pure fluids. It also has some empirical appeal
because the fugacity of an ideal gas equals the pressure and the fugacity of a liquid equals the vapor
pressure under common conditions, as we will show in Section 9.8. The vapor pressure was the
original property used for characterization of phase equilibrium by experimentalists.

The forms of Eqns. 9.16 and 9.15 are similar, and the simplicity of Eqn. 9.16 is appealing. G.N.
Lewis defined fugacity by

and comparing to Eqn. 9.16, we see that

 Fugacity and fugacity coefficient are convenient ways to quantify the Gibbs departure.

Integrating from low pressure, at constant temperature, we have for the left-hand side,

because (G – Gig) approaches zero at low pressure. Integrating the right-hand side of Eqn. 9.20, we
have

To complete the definition of fugacity, we define the low-pressure limit,

and we define the ratio f/P to be the fugacity coefficient, .

The fugacity coefficient is simply another way of characterizing the Gibbs departure function at a
fixed T,P. For an ideal gas, the fugacity will equal the pressure, and the fugacity coefficient will be
unity. For representations of the P-V-T data in the form Z = f(T,P) (like the virial equation of state),
the fugacity coefficient is evaluated from an equation of the form:



 Fugacity has units of pressure, and the fugacity coefficient is dimensionless.

or the equivalent form for P-V-T data in the form Z = f(T,V), which is essentially Eqn. 8.26,

which is the form used for cubic equations of state.
A graphical interpretation of the fugacity coefficient can be seen in Fig. 9.3. The integral of Eqn.

9.23 is represented by the negative value of the shaded region between the real gas isotherm and the
ideal gas isotherm. The fugacity coefficient is a measure of non-ideality. Under most common
conditions, the fugacity coefficient is less than one. At very high pressures, the fugacity coefficient
can become greater than one.

Figure 9.3. Illustration of RT ln  as a departure function.

Note: In practice, we do not evaluate the fugacity of a substance directly.
Instead, we evaluate the fugacity coefficient, and then calculate the fugacity by

9.6. Fugacity Criteria for Phase Equilibria
We began the chapter by showing that Gibbs energy was equivalent in phases at equilibrium. Here

we show that equilibrium may also be described by equivalence of fugacities. Since

we may subtract Gig from both sides and divide by RT, giving



Substituting Eqn. 9.22,

which becomes

Therefore, calculation of fugacity and equating in each phase becomes the preferred method of
calculating phase equilibria. In the next few sections, we discuss the methods for calculation of
fugacity of gases, liquids, and solids.

9.7. Calculation of Fugacity (Gases)
The principle of calculation of the fugacity coefficient is the same by all methods—Eqn. 9.23 or

9.24 is evaluated. The methods look considerably different, usually because the P-V-T properties are
summarized differently. All methods use the formula below and differ only in the manner the fugacity
coefficient is evaluated.

Equations of State
Equations of state are the dominant method used in process simulators because the EOS can be

solved rapidly by computer. We consider two equations of state, the virial equation and the Peng-
Robinson equation. We also consider the generalized compressibility factor charts as calculated with
the Lee-Kesler equation.

Ideal Gas

The Virial Equation
The virial equation may be used to represent the compressibility factor in the low-to-moderate

pressure region where Z is linear with pressure at constant temperature. Eqn. 7.10 should be used to
evaluate the appropriateness of the virial coefficient method. Substituting Z = 1 + BP/RT, or Z – 1 =
BP/RT into Eqn. 9.23,

Thus,

 The virial equation for gases.

Writing the virial coefficient in reduced temperature and pressure,



where B0 and B1 are the virial coefficient correlations given in Eqns. 7.8 and 7.9 on page 259.

The Peng-Robinson Equation
Cubic equations of state are particularly useful in the petroleum and hydrocarbon-processing

industries because they may be used to represent both vapor and liquid phases. Chapter 7 discussed
how equations of state may be used to represent the volumetric properties of gases. The integral of
Eqn. 9.23 is difficult to use for pressure-explicit equations of state; therefore, it is solved in the
format of Eqn. 9.24. The integral is evaluated analytically by methods of Chapter 8. In fact, the result
of Example 8.6 on page 317 is ln  according to the Peng-Robinson equation.

 Peng-Robinson equation.

To apply, the technique is analogous to the calculation of departure functions. At a given P, T, the
cubic equation is solved for Z, and the result is used to calculate  and then fugacity is calculated, f =
P. This method has been programmed into Preos.xlsx and Preos.m.

Below the critical temperature, equations of state may also be used to predict vapor pressure,
saturated vapor volume, and saturated liquid volume, as well as liquid volumetric properties. While
Eqn. 9.33 can be used to calculate fugacity coefficients for liquids, the details of the calculation will
be discussed in the next section. Note again that Eqn. 9.24 is closely related to Eqn. 8.26 as used in
Example 8.6 on page 317.

Generalized Charts
Properties represented by generalized charts may help to visualize the magnitudes of the fugacity

coefficient in various regions of temperature and pressure. To use the generalized chart, we write

 Generalized charts.

The Gibbs energy departure chart can be generated from the Lee-Kesler equation by specifying a
particular value for the acentric factor. The charts are for the correlation ln  = ln 0 + ωln 1. The
entropy departure can also be estimated by combining Fig. 9.4 with Fig. 8.7:



Figure 9.4. Generalized charts for estimating the Gibbs departure function using the Lee-
Kesler equation of state. (G – Gig)0/RT uses ω = 0.0, and (G – Gig)1/RT is the correction factor

for a hypothetical compound with ω = 1.0.

Fig. 9.4 can be useful for hand calculation, if you do not have a computer. A sample calculation for
propane at 463.15 and 2.5 MPa gives

compared to the value of –0.112 from the Peng-Robinson equation.



9.8. Calculation of Fugacity (Liquids)
To introduce the calculation of fugacity for liquids, consider Fig. 9.5. The shape of an isotherm

below the critical temperature differs significantly from an ideal-gas isotherm. Such an isotherm is
illustrated which begins in the vapor region at low pressure, intersects the phase boundary where
vapor and liquid coexist, and then extends to higher pressure in the liquid region. Point A represents a
vapor state, point B represents saturated vapor, point C represents saturated liquid, and point D
represents a liquid.

Figure 9.5. Schematic for calculation of Gibbs energy and fugacity changes at constant
temperature for a pure liquid.

We showed in Section 9.6 on page 346 that

Note that we have designated the fugacity at points C and B equal to fsat. This notation signifies a
saturation condition, and as such, it does not require a distinction between liquid or vapor. Therefore,
we may refer to point B or C as saturated vapor or liquid interchangeably when we discuss fugacity.
The calculation of the fugacity at point B (saturated vapor) is also adequate for calculation of the
fugacity at point C, the fugacity of saturated liquid. Calculation of the saturation fugacity may be
carried out by any of the methods for calculation of vapor fugacities from the above section. Methods
differ slightly on how the fugacity is calculated between points C and D. There are two primary
methods for calculating this fugacity change. They are the Poynting method and the equation of state
method.

Poynting Method
The Poynting method applies Eqn. 9.19 between saturation (points B, C) and point D. The integral

is

Since liquids are fairly incompressible for Tr < 0.9, the volume is approximately constant, and may
be removed from the integral, with the resultant Poynting correction becoming



 Poynting correction.

The fugacity is then calculated by

 Poynting method for liquids.

Saturated liquid volume can be estimated within a slight percent error using the Rackett equation

The Poynting correction, Eqn. 9.38, is essentially unity for many compounds near room T and P;
thus, it is frequently ignored.

 Frequent approximation.

Equation of State Method
Calculation of liquid fugacity by the equation of state method uses Eqn. 9.24 just as for vapor. To

apply the Peng-Robinson equation of state, we can use Eqn. 9.33. The only significant consideration
is that the liquid compressibility factor must be used. To understand the mathematics of the
calculation, consider the isotherm shown in Fig. 9.6(a). When Tr < 1, the equation of state predicts an
isotherm with “humps” in the vapor/liquid region. Surprisingly, these swings can encompass a range
of negative values of the pressure near C′ (although not shown in our example). The exact values of
these negative pressures are not generally taken too seriously, however, because they occur in a
region of the P-V diagram that is unimportant for routine calculations. Since the Gibbs energy from an
equation of state is given by an integral of the volume with respect to pressure, the quantity of interest
is represented by an integral of the humps. The downward and upward humps cancel one another in
generating that integral. This observation gives rise to the equal area rule for computing saturation
conditions to be discussed in Section 9.10 where we show that the shaded area above line  is
equal to the shaded area below, and that the pressure where the line is located represents the
saturation condition (vapor pressure). With regard to fugacity calculations, it is sufficient simply to
note that these humps are in fact integrable, and easily computed by the same formula derived for the
vapor fugacity by an equation of state.



Fig. 9.6(b) shows that the molar Gibbs energy is indeed continuous as the fluid transforms from the
vapor to the liquid. The Gibbs energy first increases according to Eqn. 9.14 based on the vapor
volume. Note that the volume and pressure changes are both positive, so the Gibbs energy relative to
the reference value is monotonically increasing. During the transition from vapor to liquid, the
“humps” lead to the triangular region associated with the name of van der Waals loop. Then the
liquid behavior takes over and Eqn. 9.14 comes back into play, this time using the liquid volume.
Note that the isothermal pressure derivative of the Gibbs energy is not continuous. Can you develop a
simple expression for this derivative in terms of P, V, T, CP, CV, and their derivatives? Based on your
answer to the preceding question, would you expect the change in the derivative to be a big change or
a small change?

Figure 9.6. Schematic illustration of the prediction of an isotherm by a cubic equation of state.
Compare with Fig. 9.5 on page 350. The figure on the right shows the calculation of Gibbs

energy relative to a reference state. The fugacity will have the same qualitative shape.

Example 9.5. Vapor and liquid fugacities using the virial equation
Determine the fugacity (MPa) for acetylene at (a) 250 K and 10 bar, and (b) 250 K and 20 bar. Use

the virial equation and the shortcut vapor pressure equation.

Solution
From the back flap of the text for acetylene: Tc = 308.3 K, Pc = 6.139, ω = 0.187, Zc = 0.271. For

each part of the problem, the fluid state of aggregation is determined before the method of solution is
specified. At 250 K, using the shortcut vapor pressure equation, Eqn 9.11, the vapor pressure is Psat

= 1.387 MPa.
We will calculate the virial coefficient at 250 K using Eqns. 7.7–7.9:
Tr = 250/308.3 = 0.810, Bo = –0.5071, B1 = –0.2758, B = –233.3 cm3/mol.

a. P = 1 MPa < Psat so the acetylene is vapor (between points A and B in Fig. 9.5). Using
Eqn 7.10 to evaluate the appropriateness of the virial equation at 1 MPa, Pr = 1/6.139 =
0.163, and 0.686 + 0.439Pr = 0.76 and Tr = 0.810, so the correlation should be accurate.

Using Eqn. 9.31,



(f =  P = 0.894 (1) = 0.894 MPa
b. P = 2 MPa > Psat, so the acetylene is liquid (point D of Fig. 9.5). For a liquid phase, the
only way to incorporate the virial equation is to use the Poynting method, Eqn. 9.39. Using
Eqn. 7.10 to evaluate the appropriateness of the virial equation at the vapor pressure, Pr

sat

= 1.387/6.139 = 0.2259, and 0.686 + 0.439Pr
sat = 0.785, and Tr = 0.810, so the correlation

should be accurate.
At the vapor pressure,

fsat = sat Psat = 0.8558(1.387) = 1.187 MPa
Using the Poynting method to correct for pressure beyond the vapor pressure will require the liquid

volume, estimated with the Rackett equation, Eqn. 9.40, using Vc = ZcRTc/Pc = 0.271(8.314)
(308.3)/6.139 = 113.2 cm3/mol.

The Poynting correction is given by Eqn. 9.38,

Thus, f = 1.187(1.015) = 1.20 MPa. The fugacity is close to the value of vapor pressure for liquid
acetylene, even though the pressure is 2 MPa.

9.9. Calculation of Fugacity (Solids)
Fugacities of solids are calculated using the Poynting method, with the exception that the volume in

the Poynting correction is the volume of the solid phase.

 Poynting method for solids.

Any of the methods for vapors may be used for calculation of sat. Psat is obtained from
thermodynamic tables. Equations of state are generally not applicable for calculation of solid phases
because they are used only to represent liquid and vapor phases. However, they may be used to
calculate the fugacity of a vapor phase in equilibrium with a solid, given by satPsat. As for liquids,
the Poynting correction may be frequently set to unity with negligible error.

 Frequent approximation.



9.10. Saturation Conditions from an Equation of State
The only thermodynamic specification that is required for determining the saturation temperature or

pressure is that the Gibbs energies (or fugacities) of the vapor and liquid be equal. This involves
finding the pressure or temperature where the vapor and liquid fugacities are equal. The
interesting part of the problem comes in computing the saturation condition by iterating on the
temperature or pressure.

 Preos.xlsx, PreosPropsMenu.m.

 Phase equilibria involves finding the state where fL = fV.

Example 9.6. Vapor pressure from the Peng-Robinson equation
Use the Peng-Robinson equation to calculate the normal boiling point of methane.

Solution
Vapor pressure calculations are available in Preos.xlsx and PreosPropsmenu.m. Let us discuss

Preos.xlsx first. The spreadsheet is more illustrative in showing the steps to the calculation.
Computing the saturation temperature or pressure in Excel is rapid using the Solver tool in Excel.

On the spreadsheet shown in Fig. 9.7, cell H12 is included with the fugacity ratio of the two
phases; the cell can be used to locate a saturation condition. Initialize Excel by entering the desired P
in cell B8, in this case 0.1 MPa. Then, adjust the temperature to provide a guess in the two-phase
(three-root) region. Then, instruct Solver to set the cell for the fugacity ratio (H12) to a value of one
by adjusting temperature (B7), subject to the constraint that the temperature (B7) is less than the
critical temperature.



Figure 9.7. Example of Preos.xlsx used to calculate vapor pressure.

In MATLAB, the initial guess is entered in the upper left. The “Run Type” is set as a saturation
calculation. The “Root to use” and “Value to match” are not used for a saturation calculation. The
drop-down box “For Matching...” is set to adjust the temperature. The results are shown in Fig. 9.8.

Figure 9.8. Example of PreosPropsMenu.m used to calculate vapor pressure.

For methane the solution is found to be 111.4 K which is very close to the experimental value used
in Example 8.9 on page 320. Saturation pressures can also be found by adjusting pressure at fixed
temperature.

Fugacity and P-V isotherms for CO2 as calculated by the Peng-Robinson equation are shown in Fig.
9.9 and Fig. 7.5 on page 264. Fig. 9.9 shows more clearly how the shape of the isotherm is related to
the fugacity calculation. Note that the fugacity of the liquid root at pressures between B and B′ of Fig.
9.6 is lower than the fugacity of the vapor root in the same range, and thus is more stable because the
Gibbs energy is lower. Analogous comparisons of vapor and liquid roots at pressures between C and
C′ show that vapor is more stable. In Chapter 7, we empirically instructed readers to use the lower
fugacity. Now, in light of Fig. 9.9, readers can understand the reasons for the use of fugacity.



Figure 9.9. Predictions of the Peng-Robinson equation of state for CO2: (a) prediction of the
P-V isotherm and fugacity at 280 K; (b) plot of data from part (a) as fugacity versus pressure,
showing the crossover of fugacity at the vapor pressure. Several isotherms for CO2 are shown

in Fig. 7.5 on page 264.

The term “fugacity” was defined by G. N. Lewis based on the Latin for “fleetness,” which is often
interpreted as “the tendency to flee or escape,” or simply “escaping tendency.” It is sometimes hard to
understand the reasons for this term when calculating the property for a single root. However, when
multiple roots exist as shown in Fig. 9.9, you may be able to understand how the system tries to
“escape: from the higher fugacity values to the lower values. This perspective is especially helpful in
mixtures, indicating the direction of driving forces to lower fugacities.

 A stable system minimizes its Gibbs energy and its fugacity.

Just as the vapor pressure estimated by the shortcut vapor pressure equation is less than 100%
accurate, the vapor pressure estimated by an equation of state is less than 100% accurate. For
example, the Peng-Robinson equation tends to yield about 5% average error over the range 0.4 < Tr <
1.0. This represents a significant improvement over the shortcut equation. The van der Waals
equation, on the other hand, yields much larger errors in vapor pressure. One problem is that the van
der Waals equation offers no means of incorporating the acentric factor to fine-tune the
characterization of vapor pressure. But the problems with the van der Waals equation go much
deeper, as illustrated in the example below.

 Adapting Preos.xlsx to a different equation of state.

Example 9.7. Acentric factor for the van der Waals equation
To clarify the problem with the van der Waals equation in regard to phase-equilibrium



calculations, it is enlightening to compute the reduced vapor pressure at a reduced temperature of 0.7.
Then we can apply the definition of the acentric factor to characterize the vapor pressure behavior of
the van der Waals equation. If the acentric factor computed by the van der Waals equation deviates
significantly from the acentric factor of typical fluids of interest, then we can quickly assess the
magnitude of the error by applying the shortcut vapor-pressure equation. Perform this calculation and
compare the resulting acentric factor to those on the inside covers of the book.

Solution
The computations for the van der Waals equation are very similar to those for the Peng-Robinson

equation. We simply need to derive the appropriate expressions for a0, a1, and a2, that go into the
analytical solution of the cubic equation: Z3+ a2 Z2 + a1 Z + a0 = 0.

Adapting the procedure for the Peng-Robinson equation given in Section 7.6 on page 263, we can
make Eqn. 7.13 dimensionless:

where the dimensionless parameters are given by Eqns. 7.21–7.24; A = (27/64) Pr/Tr
2; B = 0.125

Pr/Tr.

After writing the cubic in Z, the coefficients can be identified: a0 = –AB; a1 = A; and a2 = –(1 +
B). For the calculation of vapor pressure, the fugacity coefficient for the van der Waals equation is
quickly derived as the following:

Substituting these relations in place of their equivalents in Preos.xlsx, the problem is ready to be
solved. Since we are not interested in any specific compound, we can set Tc = 1 and Pc = 1, Tr = 0.7.
Setting an initial guess of Pr = 0.1, Solver gives the result that Pr = 0.20046.

Modification of PreosPropsMenu.m is accomplished by editing the routine PreosProps.m. Search
for the text “global constants.” Change the statements to match the a and b for the van der Waals
equation. Search for “PRsolveZ” Two cases will be calls and you may wish to change the function
name to “vdwsolveZ.” The third case of “PRsolveZ” will be the function that solves the cubic.
Change the function name. Edit the formulas used for the cubic coefficients. Finally, specify a fluid
and find the vapor pressure at the temperature corresponding to Tr = 0.7.

The definition of the acentric factor gives
ω = –log(Pr) – 1 = –log(0.20046) – 1 = –0.302

Comparing this value to the acentric factors listed in the table on the back flap, the only compound
that even comes close is hydrogen, for which we rarely calculate fugacities at Tr < 1. This is the most
significant shortcoming of the van der Waals equation. This shortcoming becomes most apparent
when attempting to correlate phase-equilibria data for mixtures. Then it becomes very clear that
accurate correlation of the mixture phase equilibria is impossible without accurate characterization of



the pure component phase equilibria, and thus the van der Waals equation by itself is not useful for
quantitative calculations. Correcting the repulsive contribution of the van der Waals equation using
the Carnahan-Starling or ESD form gives significant improvement in the acentric factor. Another
approach is to correct the attractive contribution in a way that cancels the error of the repulsive
contribution. Cancellation is the approach that historically prevailed in the Redlich-Kwong, Soave,
and Peng-Robinson equations.

The Equal Area Rule
As noted above, the swings in the P-V curve give rise to a cancellation in the area under the curve

that becomes the free energy/fugacity. A brief discussion is helpful to develop an understanding of
how the saturation pressure and liquid and vapor volumes are determined from such an isotherm.

To make this analysis quantitative, it is helpful to recall the formulas for the Gibbs departure
functions, noting that the Gibbs departure is equal for the vapor and liquid phases (Eqn. 9.26).

In the final equation, the second term in the right-hand side braces represents the area under the
isotherm, and the first term on the right-hand side represents the rectangular area described by
drawing a horizontal line at the saturation pressure from the liquid volume to the vapor volume in Fig.
9.6(a). Since this area is subtracted from the total inside the braces, the shaded area above a vapor
pressure is equal to the shaded area below the vapor pressure for each isotherm. This method of
computing the saturation condition is very sensitive to the shape of the P-V curve in the vicinity of the
critical point and can be quite useful in estimating saturation properties at near-critical conditions.

Although Eqn. 9.49 illustrates the concept of the equal area rule most clearly, it is not in the form
that is most useful for practical application. Noting that GL = GV at equilibrium and rearranging Eqn.
9.47 gives

You should recognize the first term on the right-hand side as (AL – Aig)T,V – (AV – Aig)T,V. You
probably have an expression for (A – Aig)T,V already derived. Solving for P is iterative in nature
because we must first guess a value for P to solve for VV and VL. Five or six iterations normally



suffice to converge to reasonable precision.5 The method is guaranteed to converge as long as a
maximum and minimum exist in the P-V isotherm. Therefore, initiation begins with finding the
extrema, a form of “stability check” (see below) in the sense that the absence of extrema indicates a
single phase. The search for extrema is facilitated by noting that the vapor maximum must appear at ρ
< ρc while the liquid minimum must appear at ρ < ρc. If Pmin > 0, then initialize to P0 =
(Pmin+Pmax)/2. Otherwise, initialize by finding VV and VL at P = 10–12. The procedure is applied in
Example 9.8 below.

Example 9.8. Vapor pressure using equal area rule
Convergence can be tricky near the critical point or at very low temperatures when using the

equality of fugacity, as in Example 9.6. The equal area rule can be helpful in those situations. As an
example, try calling the solver for CO2 at 30°C. Even though the initial guess from the shortcut
equation is very good, the solver diverges. Alternatively, apply the equal area rule to solve as
described above. Conditions in this range may be “critical” to designing CO2 refrigeration systems,
so reliable convergence is important.

Solution
The first step is to construct an isotherm and find the spinodal densities and pressures. Fig. 9.10

shows that Pmin = 7.1917, Pmax = 7.2291, Vmax = 117.98, and Vmin = 94.509. Following the procedure
above, P0 = 7.2104. Solving for the vapor and liquid roots at P0 in the usual way gives Vvap =
129.842, and Vliq = 88.160. Similarly, (AL – Aig)T,V = –1.0652 and (AV – Aig)T,V. = –0.7973, referring
to the formula given in Example 8.6 on page 317:

Figure 9.10. Illustration of use of the equal area rule for a small van der Waals loop.

This leads to the next estimate of Psat as,
Psat = [–1.0652 + 0.7973 – ln(88.160/129.842)][8.314(303.15)/(129.842 – 88.160)] = 7.2129
Solving for the vapor and liquid roots and repeating twice more gives: Psat = 7.21288, shown

below. Note the narrow range of pressures.



9.11. Stable Roots and Saturation Conditions
When multiple real roots exist, the fugacity is used to determine which root is stable as explained

in Section 9.10. However, often we are seeking a value of a state property and we are unable to find
a stable root with the target value. This section explains how we handle that situation. We use entropy
for the discussion, but calculations with other state properties would be similar.

Fig. 9.11 shows the behavior of the entropy values for ethane at 0.1 MPa as calculated by the Peng-
Robinson equation of state using a real gas reference state of T = 298.15K and P = 0.1 MPa. The
figure was generated from the spreadsheet Preos.xlsx by adding the formula for entropy departure for
the center root and then changing the temperature at a fixed pressure of 0.1 MPa. The corresponding
values of S were recorded and plotted.

Figure 9.11. Entropy values for ethane calculated from the Peng-Robinson equation along an
isobar at 0.1 MPa. The largest Z root is shown as diamonds, the smallest Z root is shown as

triangles, and the center root is shown as open squares. The stable behavior is indicated by the
solid line.

Suppose a process problem requires a state with S = –18.185 J/mol-K. At 200 K, the largest Z root
has this value. The corresponding values of the fugacities from largest to smallest Z are 0.0976 MPa,
0.652 MPa, and 0.206 MPa, indicating that the largest root is most stable, so the largest root will give
the remainder of the state variables.

Suppose a process problem requires a state with S = –28.35 J/mol-K. At 150 K, the largest Z root
has this value. The corresponding values of the fugacities from largest to smallest Z are 0.0951 MPa,
0.313 MPa, and 0.0099 MPa, indicating that the smallest root is most stable. Even though the largest
Z root has the correct value of S, the root is not the most stable root, and must be discarded.

Further exploration of roots would show that the desired value of S cannot be obtained by the



middle or smallest roots, or any most stable root. Usually if this behavior is suspected, it is quickest
to determine the saturation conditions for the given pressure and compare the saturation values to the
specified value. (Think about how you handled saturated steam calculations from a turbine using the
steam tables and used the saturation values as a guide.) The saturation conditions at 0.1 MPa can be
found by adjusting the T until the fugacities become equal for the large Z and small Z roots, which is
found to occur at 184.2 K. At this condition, the corresponding values of the fugacities from largest to
smallest Z are 0.0971 MPa, 0.524 MPa, and 0.0971 MPa, indicating that largest and smallest Z roots
are in phase equilibrium, and the center root is discarded as before. The corresponding values for
saturated entropy are S = –21.3021 J/mol-K for the vapor phase and –100.955 J/mol-K for the liquid
phase. For any condition at 0.1 MPa, any value of S between these two values will fall in the two-
phase region. Therefore, the desired state of S = –28.35 J/mol-K is two-phase, with a quality
calculated using the saturation values,

S = SsatL + q (SsatV – SsatL)
–28.35 J/mol-K = –100.955 + q(–21.3021 + 100.955). Solving, q = 0.912

The cautions highlighted in the example also apply when searching for specific values of other
state properties by adjusting P and/or T. For example, it is also common to search for a state with
specified values of {H,P} by adjusting T. The user must make sure that the root selected is a stable
root, or if the system is two-phase, then a quality calculation must be performed.6

9.12. Temperature Effects on G and f
The effect of temperature at fixed pressure is

The Gibbs energy change with temperature is then dependent on entropy. Gibbs energy will
decrease with increasing temperature. Since the entropy of a vapor is higher than the entropy of a
liquid, the Gibbs energy will change more rapidly with temperature for vapor. Since the Gibbs energy
is proportional to the log of fugacity, the fugacity dependence will follow the same trends. Similar
statements are valid comparing liquids and solids.7

9.13. Summary
We began this chapter by introducing the need for Gibbs energy to calculate phase equilibria in

pure fluids because it is a natural function of temperature and pressure. We also introduced fugacity,
which is a convenient property to use instead of Gibbs energy because it resembles the vapor
pressure more closely. We also showed that the fugacity coefficient is directly related to the
deviation of a fluid from ideal gas behavior, much like a departure function (Eqns. 9.23 and 9.24).
This principle of characterization of non-ideality extends into the next chapter where we consider
non-idealities of mixtures. In fact, much of the pedagogy presented in this chapter finds its
significance in the following chapters, where the phase equilibria of mixtures become much more
complex.

Methods for calculating fugacities were introduced using charts, equations of state, and derivative
manipulations. (In the homework problems, we offer illustration of how tables may also be used.)
Liquids and solids were considered in addition to gases, and the Poynting correction was introduced



for calculating the effect of pressure on condensed phases. These pure component methods are
summarized in Table 9.1, and they are applied often in the analysis of mixtures. Skills in their
application must be kept ready throughout the following chapters.

Table 9.1. Techniques for Calculation Pure Component Fugacities

A critical concept in this chapter is that when multiple EOS roots exist from a process calculation,
the stable root has a lower Gibbs energy or lower fugacity. We also provided methods to find
saturation conditions for pure fluids.

Important Equations
Eqns. 9.3 and 9.27 basically state that equilibrium occurs when fugacity in each phase is equal.

This is a general principle that can be applied to components in mixtures and forms the basis for
phase equilibrium computations in mixtures. Eqn. 9.11 is a special form of Eqn. 9.6 that is
particularly convenient for estimating the vapor pressure over wide ranges of temperature. It may not
be as precise as the Antoine equation over a narrow temperature range, but it is less likely to lead to
a drastic error when extrapolation is necessary. Nevertheless, Eqn. 9.11 is not a panacea. When you
are faced with phase equilibrium problems other than vapor pressure, like solid-liquid (e.g., melting
ice) or solid-vapor (e.g., dry ice), you must start with Eqn. 9.6 and re-derive the final equations
subject to relevant assumptions for the problem of interest.

Fugacity is commonly calculated by Eqns. 9.28(Gases), 9.29(Ideal gases), 9.41(Liquids), and
9.43(Solids), and is dependent on the calculation of the fugacity coefficient. Fugacity is particularly
helpful in identifying the stable root.

9.14. Practice Problems
P9.1. Carbon dioxide (CP = 38 J/mol-K) at 1.5 MPa and 25°C is expanded to 0.1 MPa through a
throttle valve. Determine the temperature of the expanded gas. Work the problem as follows:

a. Assuming the ideal gas law (ANS. 298 K)
b. Using the Peng-Robinson equation (ANS. 278 K, sat L + V)
c. Using a CO2 chart, noting that the triple point of CO2 is at –56.6°C and 5.2 bar,
and has a heat of fusion, ∆Hfus, of 43.2 cal/g. (ANS. 194 K, sat S + V)

P9.2. Consider a stream of pure carbon monoxide at 300 bar and 150 K. We would like to
liquefy as great a fraction as possible at 1 bar. One suggestion has been to expand this high-
pressure fluid across a Joule-Thompson valve and take what liquid is formed. What would be
the fraction liquefied for this method of operation? What entropy is generated per mole
processed? Use the Peng-Robinson equation. Provide numerical answers. Be sure to specify



your reference state. (Assume CP = 29 J/mol-K for a quick calculation.) (ANS. 32% liquefied)

P9.3. An alternative suggestion for the liquefaction of CO discussed above is to use a 90%
efficient adiabatic turbine in place of the Joule-Thomson valve. What would be the fraction
liquefied in that case? (ANS. 60%)
P9.4. At the head of a methane gas well in western Pennsylvania, the pressure is 250 bar, and
the temperature is roughly 300 K. This gas stream is similar to the high-pressure stream exiting
the precooler in the Linde process. A perfect heat exchanger (approach temperature of zero) is
available for contacting the returning low-pressure vapor stream with the incoming high-
pressure stream (similar to streams 3–8 of Example 8.9 on page 320). Compute the fraction
liquefied using a throttle if the returning low-pressure vapor stream is 30 bar. (ANS. 30%)

9.15. Homework Problems
9.1. The heat of fusion for the ice-water phase transition is 335 kJ/kg at 0°C and 1 bar. The
density of water is 1g/cm3 at these conditions and that of ice is 0.915 g/cm3. Develop an
expression for the change of the melting temperature of ice as a function of pressure.
Quantitatively explain why ice skates slide along the surface of ice for a 100 kg hockey
player wearing 10 cm x 01 cm blades. Can it get too cold to ice skate? Would it be
possible to ice skate on other materials such as solid CO2?

9.2. Thermodynamics tables and charts may be used when both H and S are tabulated. Since
G = H – TS, at constant temperature, ∆G = RT ln(f2/f1) = ∆H – T∆S. If state 1 is at low
pressure where the gas is ideal, then f1 = P1, RT ln(f2/P1) = ∆H – T∆S, where the
subscripts indicate states. Use this method to determine the fugacity of steam at 400°C and
15 MPa. What value does the fugacity coefficient have at this pressure?
9.3. This problem reinforces the concepts of phase equilibria for pure substances.

a. Use steam table data to calculate the Gibbs energy of 1 kg saturated steam at
150°C, relative to steam at 150°C and 50 kPa (the reference state). Perform the
calculation by plotting the volume data and graphically integrating. Express your
answer in kJ. (Note: Each square on your graph paper will represent
[pressure·volume] corresponding to the area, and can be converted to energy
units.)
b. Repeat the calculations using the tabulated enthalpies and entropies. Compare
your answer to part (a).
c. The saturated vapor from part (a) is compressed at constant T and 1/2 kg
condenses. What is the total Gibbs energy of the vapor liquid mixture relative to
the reference state of part (a)? What is the total Gibbs energy relative to the same
reference state when the mixture is completely condensed to form saturated
liquid?
d. What is the Gibbs energy of liquid water at 600 kPa and 150°C relative to the
reference state from part (a)? You may assume that the liquid is incompressible.
e. Calculate the fugacities of water at the states given in parts (a) and (d). You
may assume that f = P at 50 kPa.



9.4. Derive the formula for fugacity according to the van der Waals equation.
9.5. Use the result of problem 9.4 to calculate the fugacity of ethane at 320 K and at a molar
volume of 150 cm3/mole. Also calculate the pressure in bar.
9.6. Calculate the fugacity of ethane at 320 K and 70 bar using:

a. Generalized charts
b. The Peng-Robinson equation

9.7. CO2 is compressed at 35°C to a molar volume of 200 cm3/gmole. Use the Peng-
Robinson equation to obtain the fugacity in MPa.
9.8. Use the generalized charts to obtain the fugacity of CO2 at 125°C and 220 bar.

9.9. Calculate the fugacity of pure n-octane vapor as given by the virial equation at 580 K
and 0.8 MPa.

9.10. Estimate the fugacity of pure n-pentane (C5H12) at 97°C and 7 bar by utilizing the virial
equation.
9.11. Develop tables for H, S, and Z for N2 over the range Pr = [0.5, 1.5] and Tr = [Tr

sat, 300 K]
according to the Peng-Robinson equation. Use the saturated liquid at 1 bar as your reference
condition for H = 0 and S = 0.
9.12. Develop a P-H chart for saturated liquid and vapor butane in the range T = [260, 340]
using the Peng-Robinson equation. Show constant S lines emanating from saturated vapor at 260
K, 300 K, and 340 K. For an ordinary vapor compression cycle, what would be the temperature
and state leaving an adiabatic, reversible compressor if the inlet was saturated vapor at 260 K?
(Hint: This is a tricky question.)
9.13. Compare the Antoine and shortcut vapor-pressure equations for temperatures from 298 K
to 500 K. (Note in your solution where the equations are extrapolated.) For the comparison, use
a plot of log10Psat versus 1/T except provide a separate plot of Psat versus T for vapor pressures
less than 0.1 MPa.

a. n-Hexane
b. Acetone
c. Methanol
d. 2-propanol
e. Water

9.14. For the compound(s) specified by your instructor in problem 9.13, use the virial equation
to predict the virial coefficient for saturated vapor and the fugacity of saturated liquid. Compare
the values of fugacity to the vapor pressure.
9.15. Compare the Peng-Robinson vapor pressures to the experimental vapor pressures
(represented by the Antoine constants) for the species listed in problem 9.13.
9.16. Carbon dioxide can be separated from other gases by preferential absorption into an amine
solution. The carbon dioxide can be recovered by heating at atmospheric pressure. Suppose pure
CO2 vapor is available from such a process at 80°C and 1 bar. Suppose the CO2 is liquefied and



marketed in 43-L laboratory gas cylinders that are filled with 90% (by mass) liquid at 295 K.
Explore the options for liquefaction, storage, and marketing via the following questions. Use the
Peng-Robinson for calculating fluid properties. Submit a copy of the H-U-S table for each state
used in the solution.

a. Select and document the reference state used throughout your solution.
b. What is the pressure and quantity (kg) of CO2 in each cylinder?

c. A cylinder marketed as specified needs to withstand warm temperatures in
storage/transport conditions. What is the minimum pressure that a full gas
cylinder must withstand if it reaches 373 K?
d. Consider the liquefaction process via compression of the CO2 vapor from
80°C, 1 bar to 6.5 MPa in a single adiabatic compressor (ηC = 0.8). The
compressor is followed by cooling in a heat exchanger to 295 K and 6.5 MPa.
Determine the process temperatures and pressures, the work and heat transfer
requirement for each step, and the overall heat and work.
e. Consider the liquefaction via compression of the CO2 vapor from 80°C, 1 bar
to 6.5 MPa in a two-stage compressor with interstage cooling. Each stage (ηC =
0.8) operates adiabatically. The interstage pressure is 2.5 MPa, and the interstage
cooler returns the CO2 temperature to 295 K. The two-stage compressor is
followed by cooling in a heat exchanger to 295 K and 6.5 MPa. Determine all
process temperatures and pressures, the work and heat transfer requirement for
each step, and the overall heat and work.
f. Calculate the minimum work required for the state change from 80°C, 1 bar to
295 K, 6.5 MPa with heat transfer to the surroundings at 295 K. What is the heat
transfer required with the surroundings?

9.17. A three-cycle cascade refrigeration unit is to use methane (cycle 1), ethylene (cycle 2), and
ammonia (cycle 3). The evaporators are to operate at: cycle 1, 115.6 K; cycle 2, 180 K; cycle 3,
250 K. The outlets of the compressors are to be: cycle 1, 4 MPa; cycle 2, 2.6 MPa; cycle 3, 1.4
MPa. Use the Peng-Robinson equation to estimate fluid properties. Use stream numbers from
Fig. 5.11 on page 212. The compressors have efficiencies of 80%.

a. Determine the flow rate for cycle 2 and cycle 3 relative to the flow rate in
cycle 1.
b. Determine the work required in each compressor per kg of fluid in the cycle.
c. Determine the condenser duty in cycle 3 per kg of flow in cycle 1.
d. Suggest two ways that the cycle could be improved.

9.18. Consider the equation of state





where ηp = b/V.

a. Determine the relationships between a, b, c and Tc, Pc, Zc.

b. What practical restrictions are there on the values of Zc that can be modeled
with this equation?
c. Derive an expression for the fugacity.
d. Modify Preos.xlsx or Preos.m for this equation of state. Determine the value of
c (+/- 0.5) that best represents the vapor pressure of the specified compound
below. Use the shortcut vapor pressure equation to estimate the experimental
vapor pressure for the purposes of this problem for the option(s) specifed by
your instructor.

i. CO2

ii. Ethane
iii. Ethylene
iv. Propane
v. n-Hexane



Unit III: Fluid Phase Equilibria in Mixtures
We have already encountered the phase equilibrium problem in our discussions of pure fluids. In

Unit I, we were concerned with the quality of the steam. In Unit II, we developed generalized
relations for the vapor pressure. These analyses enable us to estimate both the conditions when a
liquid/vapor phase transition occurs and the ratio of vapor to liquid. In Unit III, we are not only
concerned with the ratio of vapor to liquid, but also with the ratio of each component in the liquid to
that in the vapor. These ratios may not be the same because all components are not equally soluble in
all phases. These issues arise in a number of applications (e.g., distillation or extraction) that are
extremely common. Unfortunately, prediction of the desired properties to the required accuracy is
challenging. In fact, no currently available method is entirely satisfactory, even for the limited types
of phase equilibria commonly encountered in the chemical processing industries. Nevertheless, the
available methods do provide an adequate basis for correlating the available data and for making
modest extrapolations, and the methods can be successfully applied to process design. Understanding
of the difference between modest extrapolations and radical predictions is facilitated by a careful
appreciation of the underlying theory as developed from the molecular level. Developing this
understanding is strongly encouraged as a means of avoiding extrapolations that are unreasonable.
This unit relies on straightforward extensions of the concepts of energy, entropy, and equilibrium to
provide a solid background in the molecular thermodynamics of non-reactive mixtures. The final unit
of the text, Unit IV, treats reactive systems.



Chapter 10. Introduction to Multicomponent Systems

What we obtain too cheap we esteem too lightly.
Thomas Paine

Superficially, the extension of pure component concepts to mixtures may seem simple. In fact, this
is a significant problem of modern science that impacts phase transitions in semi- and
superconductors, polymer solutions and blends, alloy materials, composites, and biochemistry.
Specialists in each of these areas devote considerable effort to the basic problem of segmental
interactions between molecules. From a thermodynamic perspective, these various research efforts
are very similar. The specific types of molecules differ, and the pair potential models may be
different, but the means of connecting the molecular scale to the macro scale remains the same.

Our coverage of multicomponent systems consists of (1) a very brief extension to mixtures of the
mathematical and physical principles; and (2) an introductory description of several common methods
for reducing these principles to practice. This description is merely introductory because learning the
specific details is partially what distinguishes the polymer scientist from the ceramicist. Such
specialized study is greatly facilitated by having an appreciation of the types of molecular
interactions that are most influential in each situation. Of similar importance is the ability to analyze
thermodynamic data such that key aspects of processes are easily ascertained.

Chapter Objectives: You Should Be Able to...
1. Interpret phase diagrams to locate dew, bubble, and flash conditions. Use the lever rule
in two-phase regions.
2. Identify when a bubble, dew, or flash computation is required and perform the
computation subject to the assumptions of an ideal solution.
3. Know the assumptions of an ideal solution and where to start with the fundamental
equations to develop models of nonideal solutions.
4. Recognize when the ideal solution model is reasonable and when it is not, including
comparisons of theoretical results to experimental data, graphically and statistically,
coupled with conceptual reasoning about the nature of the molecular interactions.
5. Understand how VLE relates conceptually to the process of distillation.

10.1. Introduction to Phase Diagrams
Before we delve into the details of calculating phase equilibria, let us introduce elementary

concepts of common vapor-liquid phase diagrams. For a pure fluid, the Gibbs phase rule shows
vapor-liquid equilibrium occurs with only one degree of freedom, F = C – P + 2 = 1 – 2 + 2 = 1. At
one atmosphere pressure, vapor-liquid equilibria will occur at only one temperature—the normal
boiling point temperature. However, with a binary mixture, there are two degrees of freedom, F = 2 –
2 + 2 = 2. For a system with fixed pressure, phase compositions and temperature can both be varied
over a finite range when two phases coexist. Experimental data for experiments of this type are
usually presented as a function of T and composition on a plot known as a T-x-y diagram, such as that
shown qualitatively in Fig. 10.1. At fixed temperature, pressure and composition may vary in a binary
mixture and obtain data to create a P-x-y diagram as shown also in Fig. 10.1. The region where two



phases coexist is shown by the area enclosed by the curved lines on either plot and is known as the
phase envelope.1 On the T-x-y diagram, the vapor region is at the top (raising T at fixed P causes
vaporization of liquid). On the P-x-y diagram, the vapor region is at the bottom (lowering P at fixed T
causes vaporization of liquid). Note that the intersections of the phase envelope with the ordinate
scales at the pure component compositions give the pure component saturation temperatures on the T-
x-y diagram, and the pure component vapor (saturation) pressures on the P-x-y diagram. Therefore,
significant information about the shape of the diagram can often be deduced with a single mixture data
point when combined with the pure component end points. Qualitatively, the shape of the P-x-y
diagram can be found by inverting the T-x-y, and vice versa.2 Customarily, for binary systems in the
separations literature, the more volatile component composition is plotted along the abscissa in mole
fraction or percent.

Figure 10.1. Illustration of T-x-y (left) and P-x-y (right) diagrams.

 The ability to quickly read phase diagrams is an essential skill.

The lower curve on the T-x-y diagram is next to the liquid region, and it is known as the bubble
line. The bubble-temperature line gives the boiling temperature of the mixture as a function of
composition at the specified pressure. The upper curve is next to the vapor region, and is known as
the dew line. The two lines meet at the axes if the conditions are below the critical pressure of both
components. At a given composition, the temperature along the bubble line is the temperature where
an infinitesimal bubble of vapor coexists with liquid. Thus, at an over-all composition of 50 mole%
A, the system of Fig. 10.1 at fixed pressure is 100% liquid below 300 K at the pressure of the
diagram. As the temperature is raised, the overall composition is constrained to follow the vertical
dashed line constructed on the diagram, and the first vapor bubble forms at the intersection of the
bubble line at 300 K at point a, which is known as the bubble temperature for a 50 mole% mixture
at the system pressure. Phase compositions at a given P and T may be found by reading the
compositions from intersections of the bubble and dew lines with horizontal lines constructed on the
diagram, such as the dashed line at 300 K. For our example at the bubble temperature, the liquid
phase will be 50 mole% A because the first bubble of vapor has not yet caused a measurable change



in the liquid composition. The vapor phase composition coexisting at the bubble-point temperature
will be 80 mole% A (point b). As the temperature is increased to 320 K, the overall mixture is at
point d, the liquid phase will be 30 mole% A (point c), and the vapor phase will be 70 mole% A
(point e). Suppose we start an experiment with a 50 mole% mixture at 350 K, where the mixture is
100% vapor. As the temperature is lowered, the dew temperature is encountered at 340 K for the 50
mole% mixture at system pressure (point g), and the first drop of liquid is formed which is about 20
mole% A (point f). Note that the bubble and dew temperatures are composition-dependent. For
example, the bubble temperature of a 30 mole% mixture is 320 K (point c), and the bubble
temperature of a 20 mole% mixture is 340 K (point f). Similar discussion could be presented for the
dew temperatures. The bubble and dew-point discussions could also be presented on the pressure
diagram, but in this case we would refer to the bubble and dew pressures. Note that the relative
vertical locations of the bubble- and dew lines are flipped on the two diagrams. The horizontal dotted
lines connecting coexisting compositions are tie lines.

When we speak of composition in a two-phase mixture, we must be clear about which phase we
are discussing. We use x to denote a liquid phase mole fraction, y to denote a vapor phase mole
fraction, and z to denote an overall mole fraction.3 For the example, we have been discussing using a
50 mole% mixture: At the bubble point of 300 K we have zA = 0.5, xA = 0.5, yA = 0.8; at 320 K we
have zA = 0.5, xA = 0.3, yA = 0.7; At 340 K we have zA = 0.5, xA = 0.20, yA = 0.5. At 320 K, the
system is in the two-phase region, and we may use the compositions of the vapor and liquid phases,
together with an overall mass balance, to calculate the fraction of the overall mixture that is vapor or
liquid. This is known as a flash calculation. If the initial number of moles is denoted by F, and it
separates into L moles of liquid and V moles of vapor, the overall mole balance is F = L + V, which
can be written 1 = L/F + V/F. The A component balance is zAF = yAV + xAL, which can be written zA
= yA · V/F + xA · L / F. Combining the two balances to eliminate V/F, the percentage that is liquid will
be

which is simply given by line segment lengths, . Likewise the fraction that is vapor may be
calculated

which is given by line segment lengths, . These balance equations are frequently called the

lever rule. Note that the two fractions sum to one, .

 The lever rule.

10.2. Vapor-Liquid Equilibrium (VLE) Calculations
Classes of VLE Calculations

Depending on the information provided, one may perform one of several types of vapor-liquid



equilibrium (VLE) calculations to model the vapor-liquid partitioning. These are: bubble-point
pressure (BP), dew-point pressure (DP), bubble-point temperature (BT), dew-point temperature
(DT), and isothermal flash (FL) and adiabatic flash (FA). The specifications of the information
required and the information to be computed are tabulated below in Table 10.1. Also shown in the
table are indications of the relative difficulty of each calculation. The best approach to understanding
the calculations is to gain experience by plotting phase envelopes in various situations.

Table 10.1. Summary of the Types of Phase Equilibria Calculations (This Table is
Independent of the VLE Model)

 The classes of VLE calculations presented here will be used through the remainder of
the text, so the concepts are extremely important.

Principles of Calculations
Standard approaches to solving VLE problems utilize the ratio of vapor mole fraction to liquid

mole fraction, known as the VLE K-ratio:

 VLE K-ratio.

The information available from a physical situation is combined with the K-ratio using one of the
procedures shown in Table 10.1. The information available is in the second column of the table. The
procedure involves combination of the known information together with a model-dependent K-ratio to



calculate an objective function based on the estimated unknown compositions. For a bubble

calculation, all the xi are known, and we find the yi by solving for the condition where 

written in terms of xi, namely . For dew calculations, all yi are known, and we solve for the

condition where  written in terms of yi and Ki. For a flash calculation, we solve for the

condition where  written in terms of the overall mole fraction zi and Ki. The
information in Table 10.1 is rigorous. The method used to calculate Ki is model-dependent and will
be the focus of the next few chapters of the text. The Ki ratios generally vary with composition,
pressure, and temperature, though we focus in this chapter on the use of Raoult’s law in situations
where Ki ratios are dependent on only T and P.

Strategies for Solving VLE Problems
Note that there are only six different types of calculations for VLE summarized in Table 10.1.

Usually the solution of the VLE problem will be relatively straightforward after deciding which row
of the table to use. A crucial skill in solving VLE problems is interpreting the physical situation to
decide which of the five methods should be used, and how to calculate the K-ratio.

1. Decide if the liquid, vapor, or overall composition is known from the problem statement.
2. Identify if the fluid is at a bubble or dew point. If the fluid is at a bubble point, the
overall composition will be the same as the liquid composition. At the dew point, the
overall composition will be the same as the vapor.
3. Identify if the P, T, or both P and T are fixed. Decide if the system is adiabatic.
4. The information collected in the first three steps can be used with the second column in
Table 10.1 to identify the method.
5. Select a method to calculate the VLE K-ratio.
6. Decide if the method will be iterative, and if so, generate an initial guess for the solution.
Approaches for handling iterative calculations are introduced in the following chapters and
examples.

Iterative Calculations
When the K-ratios vary, VLE calculations require iterative solutions from an initial guess. For

performing iterative calculations, useful aids include the Solver tool of Excel or the fzero() or fsolve()
function of MATLAB. Many of the following examples summarize detailed calculations to illustrate
fully the iterative procedure. In practice, the detailed calculations can be performed rapidly using a
solver. Online supplements summarize the use of the iterative aids and the methods for successive
substitution.

10.3. Binary VLE Using Raoult’s Law
For a small class of mixtures where the components have very similar molecular functionality and

molecular size, the bubble-pressure line is found to be a linear function of composition as shown in



Figs. 10.2 and 10.3. As was noted in Section 10.1, the T-x-y and P-x-y diagram shapes are related
qualitatively by inverting one of the diagrams. Because the bubble pressure is a linear function of
composition, we may write for a binary system,

Figure 10.2. (a), (b). Phase behavior of the methanol-ethanol system. Left figure at 50°C.
Right figure at 760 mm Hg. (P-x-y from Schmidt, G.C. 1926. Z. Phys. Chem. 121:221, T-x-y

from Wilson, A., Simons, E.L. 1952. Ind. Eng. Chem. 44:2214).

Figure 10.3. (a), (b) Phase behavior of the pentane-hexane system. Left figure at 25°C. Right
figure at 750 mm Hg. (P-x-y from Chen, S.S., Zwolinski, B.J. 1974. J. Chem. Soc. Faraday
Trans. 70: 1133, T-x-y from Tenn, F.G., Missen, R.W. 1963. Can. J. Chem. Eng. 41:12).



Figure 10.3. (c); (d) Phase behavior of the benzene-toluene system. Left figure at 79.7°C.
Right figure at 760 mm Hg. (P-x-y from Rosanoff, M.A., et al. 1914. J. Am. Chem. Soc. 36:1993,

T-x-y from Delzenne, A.O. 1958. Ind. Eng. Chem., Chem. Eng. Data Series. 3:224).

 Raoult’s Law for Bubble Pressure.

Dividing by P, we find the form of the bubble objective function summarized in Table 10.1,

Therefore, we conclude that the K-ratio for Raoult’s law4 is

 Raoult’s Law K-ratio.

Throughout Chapters 10–16 and 18–19 we continually improve and refer to K-value models. The
motivation for this focus on K-values is that they are used for all types of separations. For this select
class of mixtures, the K-ratios depend only on T and P and are independent of composition. To
calculate a K-ratio, we can use any method for the vapor pressure. Though we have derived the K-
ratio empirically, we use this model to practice performing VLE calculations and return in future
sections to a more fundamental derivation to explore more fully the restrictions for this model. In
future chapters, we explore more sophisticated methods for estimating the K-ratio when Raoult’s law
does not apply and the K-ratios depend on composition. In addition to the P-x-y and T-x-y plots,
another common presentation of data for distillation studies is the x-y plot of coexisting compositions
as shown in Fig. 10.4.



Figure 10.4. Data from Fig. 10.3 plotted with coexisting liquid and vapor values for each
experimental tie line, resulting in the x-y plot. Note that the data do not superimpose exactly

because one data set is isobaric and the other set is isothermal. Squares are T-x-y data. Circles
are P-x-y data. The diagonal is traditionally drawn in an x-y figure, and the data never cross the

diagonal for systems that follow Raoult’s law.

 K-values are used for all types of separations.
François-Marie Raoult (1830–1901) was a French chemist who studied freezing point

depression and the effect of mixing on bubble pressure. His first work on solution behavior
in 1878 dealt with freezing point depression. His paper on “Raoult’s Law” was published
in 1892.

Shortcut Estimation of VLE K-ratios
Given Raoult’s law and recalling the Chapter 9 shortcut procedure for estimating vapor pressures,

it is very useful to consider combining these to give a simple and quick method for estimating ideal
solution K-ratios. Substituting, we obtain the shortcut K-ratio,

Since the ideal solution model is somewhat crude anyway, it is not unreasonable to apply the
above equation as a first approximation for any ideal solution when rapid approximations are
needed.5

 Shortcut K-ratio for Raoult’s law. Not only is this expression restricted to Raoult’s
law, but it is also subject to the restrictions of Eqn. 9.11.

Bubble Pressure



For a bubble-pressure calculation, writing  as , which is .
Multiplying by P, we may write

 Note that as we begin applications, some of the equations are model-dependent.

where no iterations are required because temperature, and therefore vapor pressures, are known.
Once the bubble pressure is found, the value can be reinserted into Eqn. 10.6 to find the vapor mole
fractions:

Dew Pressure

For a dew-pressure calculation, writing  as  and rearranging:

which may be rearranged and solved without iteration, because the vapor pressures are fixed at the
specified temperature:

Once the dew pressure is calculated, the value can be reinserted into Eqn. 10.6 to find the liquid
mole fractions:

Bubble Temperature

For a bubble-temperature calculation, writing  as , and rearranging:

To solve this equation, it is necessary to iterate on temperature (which changes Pi
sat) until P equals

the specified pressure. Then the vapor phase mole fractions are calculated using Eqn. 10.9.

Dew Temperature

For a dew-temperature calculation, writing  as , and rearranging:



To solve this equation, it is necessary to iterate on temperature (which changes Pi
sat) until P equals

the specified pressure. Then the liquid phase mole fractions are calculated using Eqn. 10.12.

General Flash
Flash drums are frequently used in chemical processes. For an isothermal drum, the temperature

and pressure of the drum are known. Consider that a feed stream is liquid which becomes partially
vaporized after entering the drum as illustrated in Fig. 10.5. The name of the flash procedure implies
that it is applicable only for flashing liquids, but in fact, the procedure is also valid for vapor entering
a partial condenser or for any number of incoming vapor and/or liquid streams with overall
compositions specified by {zi} with overall flow rate F. To apply the procedure, the overall
composition of the components, zi, total feed flow rate, F, and outlet T and P just need to be known
before the procedure is started. Though the method is introduced using flowing streams, flow is not
required for a flash calculation; the calculation can be performed for any overall composition
constrained at a particular temperature and pressure even within a closed system. Also, the inlet
stream temperature does not need to match the outlet temperature; the two outlet streams are at the
specified temperature.

Figure 10.5. Illustration of a flash drum and variable definitions for streams. Note that F need
not be a liquid; F may be all vapor or partial vapor. The principles can be applied to a

nonflowing system as described for a binary on page 371.

The flash equations are easily derived by modification of the overall and component balances used
in the development of the lever rule in Section 10.1. If z is the feed composition and V/F is the liquid-
to-feed ratio, then L/F = 1 – V/F, and the component balance is zi = xi(L/F) + yi(V/F). Substituting for
L/F from the overall balance, and using yi = xiKi, the component balance becomes zi = xi[(1 – V/F) +
Ki(V/F)], which can be solved for xi:

using yi = xiKi, we may multiply Eqn. 10.15 by Ki to obtain yi.

One obvious thing to do at this point is to iterate to find the V/F ratio which satisfies . But
the flash problem is different from the dew- and bubble-point problems because we must also solve 



. Fortunately, a reliable successive substitution method has been developed by Rachford and

Rice6 to solve this problem using the objective function . Introducing the variable Di
≡ xi – yi to denote the difference between xi and yi for each component, 

, we iterate on V/F until the sum approaches zero. For a binary
system, using the Ki ratios, the objective function becomes

For Raoult’s law, Ki is a function of temperature and pressure only, both of which are fixed for an
general flash calculation. The outlets are assumed to exit at phase equilibrium, and the exit conditions
are used to calculate Ki. Therefore, in Eqn. 10.17, the only unknown is V/F. Eqn. 10.17 is monotonic
in V/F; the sum always increases as V/F increases. Therefore, we search for the value of V/F which
satisfies the equation. Note that 0 < V/F < 1 for a physically realistic answer. Outside this range, the
system is either below the dew pressure (mathematically V/F > 1) or above the bubble pressure
(mathematically V/F < 0). After finding V/F from our basis, then, L/F = 1 – V/F and stream
compositions can be found from Eqns. 10.15 and 10.16.

Before executing a flash calculation by hand, bubble and dew calculations at the overall
composition are recommended to ensures that the flash drum is between the bubble and dew
pressures at the given temperature. (These calculations are easier than the flash calculation and may
save you from doing it if the system is outside the phase envelope.) When using a computer, the value
of V/F can be used to ascertain if the system is outside the two-phase region. If a computer flash
calculation does not converge, then the bubble or dew should be performed to troubleshoot.

For a binary system, a flash calculation may be avoided by plotting the overall composition on the
P-x-y diagram between the dew and bubble pressures and reading the vapor and liquid compositions
from the graph. Application of the lever rule permits calculation of the total fraction that is vapor;
however, this method requires a lot of calculations to generate the diagram if it is not already
available and is limited to binary mixtures. Also, plotting the curves is slower than a direct
calculation.

The steady-state energy balance for an general flash is given by

where we indicate a common method of calculation of the enthalpy of a mixture as the sum of the
component enthalpies and the heat of mixing (Eqn. 3.24 on page 105). Writing in terms of V/F:



A reference state must be specified for each component, and a method for calculation of the
enthalpy must be selected. A simple method of calculating enthalpies of vapors and liquids relative to
reference states has been illustrated in Example 3.3 on page 107. For an isothermal flash, the VLE
constraint, Eqn. 10.17, can be solved independently of the energy balance, and the energy balance can
then be solved for the required heat transfer.

Adiabatic Flash

An adiabatic flash differs from an isothermal flash because  in Eqn. 10.19. The adiabatic
conditions will result in a temperature change from the feed conditions that is often significant. A
typical scenario involves an outlet pressure less than the inlet pressure, resulting in an evaporation of
a fraction of the feed. Because evaporation is endothermic, this type of flash results in a temperature
drop (often significant). We have seen this type of calculation for pure fluids using throttles in
Chapter 5. The additional complication with a mixture is that the components will distribute based on
their different volatilities. The objective of an adiabatic flash calculation is to determine the outlet
temperature in addition to the L and V compositions. An adiabatic flash requires that Eqn. 10.19, 

, must be solved simultaneously with Eqn. 10.17. The vapor and liquid mole fractions for Eqn.
10.19 are determined from Eqns. 10.15 and 10.16. The method is complex enough that even simple
assumptions, such as ideal mixing (∆Hmix = 0), benefit from a computer algorithm.

The algorithm to solve for the adiabatic flash depends on the differences in boiling points of the
components. Usually the boiling points are different enough that an initial guess of T is used in VLE
Eqn. 10.17 (where V and L are assumed to exit at the same T) to find an initial V/F where 0 < V/F <
1. With that initial V/F, then the V and L compositions (Eqns. 10.15 and 10.16) and then the energy
balance (Eqn. 10.19) are evaluated, often scaling Eqn. 10.19 by dividing by 1000 when the enthalpy
values are large. If the energy balance is not satisfied, then a new T trial is inserted into Eqn. 10.17
and the loop continues. Eqn. 10.19 is monotonic in T and increases when T decreases. When the
boiling points are very close for all components, such as with isomers, the calculation converges
better with an initial guess of V/F in Eqn. 10.17, which is solved by trial and error for the T which
satisfies the equation. The L and V compositions and T are then used for the outlet enthalpies in Eqn.
10.19 to generate a new value for V/F and the iteration continues until convergence.

10.4. Multicomponent VLE Raoult’s Law Calculations
Extending our equations to multicomponent systems is straightforward. For a bubble calculation we

have

For a dew calculation we have



These equations may be used for bubble- or dew-pressure calculations without iterations. For
bubble- or dew-point temperatures, iteration is required. A first guess may be obtained from one of
the following formulas:

But these are somewhat inaccurate guesses which require subsequent iteration.7

For flash calculations, the general formula is:

to find L/F and xi and yi are then found using Eqns. 10.15 and 10.16.

Use the next example to understand how to apply the strategies described in Section 10.2. Note
how the column conditions are used to decide which routine to use. Note also that developing skill to
determine which routine to run is as important as proficiency with the routines.

Example 10.1. Bubble and dew temperatures and isothermal flash of ideal solutions
The overhead from a distillation column is to have the following composition:

A schematic of the top of a distillation column is shown below. The overhead stream in relation to
the column and condenser is shown where Vprod represents vapor flow and Dprod represents liquid
flow. In an ideal column, the vapor leaving each tray (going up) is in phase equilibrium with the
liquid leaving the same tray (going down). If the cooling water to the condenser is turned off, then
only vapor product will be obtained, but this is not typical because the column works better with
some liquid L returning to the column. To obtain liquid product only, cooling water is provided and
the vapor product stream is turned off, and the condenser is known as a total condenser. If cooling
water is provided to partially condense the vapor stream, the liquid product stream is typically turned
off. Then the condenser provides additional separation, operating as a partial condenser. In an ideal
partial condenser, the exiting vapor and liquid leave in phase equilibrium with each other.



a. Using the shortcut K-ratio, calculate the temperature at which the condenser must operate
in order to condense the overhead product completely at 8 bar.
b. Using the shortcut K-ratio, and assuming the overhead product vapors are in equilibrium
with the liquid on the top plate of the column, calculate the temperature of the overhead
vapors and the composition of the liquid on the top plate when operating at the pressure of
part a.
c. The vapors are condensed by a partial condenser operating at 8 bar and 320 K. Using the
shortcut K-ratio, what fraction of liquid is condensed?

Solution
Use the shortcut estimates of the K-ratios. Use of a solver tool is recommended after developing an

understanding of the manual iterations summarized below.
a. To totally condense the overhead product, the mixture must be at the bubble-point
temperature or lower. The maximum temperature is the bubble-point temperature. To find
the bubble-point temperature for the ternary system, we apply Eqn. 10.20 extended to three
components. The calculation requires trial-and-error iteration on temperature as
summarized in Table 10.1.

Tabulated below, the shortcut K-ratio is calculated using Eqn. 10.7 at each
temperature guess at 8 bar, and the y values from Eqn. 10.9 are summed to check for
convergence following the procedure set forth in Table 10.1. Iterations are repeated
until the y’s sum to 1.

 It is easy to create an Excel spreadsheet to do these calculations quickly (e.g.,
Flshr.xlsx can be modified).

The temperature has been bracketed, interpolating,



The temperature has been bracketed, interpolating,

b. The saturated vapor leaving the tray is in equilibrium with the liquid and is at its dew-
point temperature at 8 bar. Eqn. 10.21 is used. The calculation requires iteration on
temperature. Calculating the Ki ratios as in part (a), the liquid phase compositions are
calculated at each iteration using Eqn. 10.12 until the values sum to 1.

Repeating the procedure at this temperature a final time results in the liquid
compositions,

c. Recognize that the solution involves an isothermal flash calculation because P and T are
both specified. Begin by noting that the specified condenser temperature is between the
bubble temperature, 317 K, and the dew temperature, 324 K, so vapor-liquid equilibrium is
indeed possible. Because T and P are already set, Eqn. 10.7 is used to calculate the K-ratio
for each component. Then, we seek a solution for Eqn 10.23 at 320 K and 8 bar. In the
general flash routine, Fflash, Vflash, and Lflash are used to denote the flow rates for the flash
drum and we must adapt the flash variables to the column stream names. We add “flash”
and “column” subscript descriptors for increased clarity. In the solution, Fflash, Vflash, and
Lflash represent the flow rates for the partial condenser, Fflash = V1,column, Vflash = Vprod,
and Lflash = Dprod + Lcolumn. In the summarized calculations below, Vflash/Fflash =
Vprod/V1,column and Di in the table is the objective variable for the flash calculation as used
in Eqn. 10.23, not the column liquid product flow rate Dprod. Each table column
summarizes a guess for flash ratio Vflash/Fflash and the resultant flash objective variable Di.
The composition of the feed is given by zi as conventional for a flash calculation, which is
the composition of V1,column.

 Flshr.xlsx or Chap10/Flshr.m can be modified to work this example.



A summary of the isothermal flash calculation is given below.:

Interpolating between the last two results that bracket the answer,

Vflash/Fflash = 0.25, applying Eqns. 10.15 and 10.16,
ය {xi} = {0.1829, 0.7053, 0.1117} and {yi} = {0.3713, 0.5642, 0.0648}
The compositions can be confirmed to be converged. The outlet composition of the

vapor, Vprod, is given by {yi} and it is clearly more enriched in the volatile
components than the inlet from the top of the column V1,column.

Note: The flash problem converges more slowly than the bubble- and dew-point
calculations, so the third iteration is necessary.

Example 10.2. Adiabatic flash
Ethanol + methanol form a nearly ideal solution as shown in Fig. 10.2. An equimolar feed at 760

mmHg is subjected to an adiabatic flash operating at 200 mmHg. Feed enters at 70°C and 43 mol/min.
Find the exiting stream temperatures, flow rates, and compositions. Assume ideal solutions and use
the Antoine equation for vapor pressures.

Solution
This is a direct application of a procedure, so it is clear which VLE routine to use: the FA row of

Table 10.1. We must combine the VLE procedure with energy balance. A bubble-pressure calculation
at 70°C (not shown) shows that the feed is all liquid. Two solutions are provided using different
pathways for the enthalpy calculations. Both solutions will use the same flash calculation procedures
and the Antoine equation is used with {methanol, ethanol}:

A = {8.081, 8.1122}, B = {1582.3, 1592.9}, C = {239.73, 226.18}

 Chap10/Ex10_02.m.

Solution 1
This solution method calculates component enthalpies using a reference state of liquid at 25°C for

all species where we set HR = 0. The enthalpy calculations use the pathway of Fig. 2.6(a). The
pathway is taken through the boiling point of each component, as in Example 3.3. To compute stream



enthalpies, we use ideal solutions as shown in Example 3.3, ignoring heat of mixing. Heat capacity
constants and heats of vaporization are taken from Appendix E.

The solution requires a guess of T resulting in 0 ≤ V/F ≤ 1 that provides two phases, and then a
check of the energy balance. Due to the complexity of the calculation, we iterate on the T guess
manually, and automate the tedious parts of solving for V/F and checking the energy balance. The
solution is provided in MATLAB file Ex10_02.m. Some intermediate results are tabulated.

Because a computer is used, we skip preliminary bubble and dew calculations. Note that we do not
tabulate all values until 0 ≤ V/F ≤ 1. The first guess of 45°C is above the dew temperature. The
second guess of 35°C is below the bubble temperature. The next guess happens to give a condition
close to the bubble temperature, so we raise the temperature guess slightly. The column OBJEB =
(Eqn. 10.19)/1000. The compositions and enthalpies are shown below and the last row is converged.
The exiting flow rates are V = V/F(43) = 0.09(43) = 3.87 mol/min, and L = 43 – 3.87 = 39.13
mol/min. About 9% (molar basis) of the inlet is flashed, and the outlet temperature is 40.2°C
compared to an inlet of 70°C.

Solution 2
This solution method calculates component enthalpies using the pathway of Fig. 2.6(c), the

reference state of the elements at 25°C, the heats of formation of ideal gases, the generalized
correlation for heat of vaporization in Eqn. 2.45, and the Cpig(25°C) from the back flap. The results
are slightly different from Solution 1, owing to the imprecision of Eqn. 2.45 and differences between
the heat capacities. Process simulation software typically uses this enthalpy path and reference state.

We begin by finding the enthalpy of the feed relative to the elements at 25°C, noting that it is a
liquid ideal solution. HF = HL(70°C) = Σ xi(∆H°Cf,i + Cpig(T–TR) – ∆Hi

vap) = 0.5(–200,940 +
5.28(8.314)(70 – 25) – 35,976) + 0.5(–234,950 + 7.88(8.314)(70 – 25) – 38,595) = –252,769 J/mol.
This takes care of the first term in Eqn. 10.19. Noting that the feed is liquid, we might suspect the
flash outlet to be mostly liquid. Performing a bubble-temperature calculation at 200 mmHg gives T =
40.00°C and HL(40°C) = –256,901 and with no vapor stream results in Q = –4132 J/mol.a The
temperature must be slightly higher to move Q toward zero. Suppose we “guessed” that the
temperature is 40.23°C.b Then the flash calculation gives xEtOH = 0.5173, yEtOH = 0.3515, V/F =
0.1042, HL(40.23°C) = –257,502. The formula for HV is similar to that for HL but omits the ∆Hi

vap

contribution and replaces xi with yi, so HV(40.23°C) = –212,088. Following Eqn. 10.19, Q = (1 –
0.1042)(–257,502) + 0.1042(–212,088) + 252,769 = 0.1 J/mol. We may assume that 0.1 J/mol is
sufficiently close to zero.



a. Note that the heats of vaporization must be recomputed at the new temperature.
b. Obviously, this was not our first guess. Alternatively, you could call the solver with the added constraint that Q = 0 while
Σ Di = 0 by changing T and V/F simultaneously.

10.5. Emissions and Safety
Hydrocarbon emission monitoring is an important aspect of environmentally conscious chemical

manufacturing and processing. The United States Environmental Protection Agency (EPA) has
published guidelines8,9,10 on the calculations of emissions of volatile organic compounds (VOCs),
and VOC emissions are monitored in the U.S. Most of the emission models apply the ideal gas law
and Raoult’s law and thus the calculation methods are easily applied. While many of the mixtures
represented with these techniques are not accurately modeled for phase equilibria by Raoult’s law,
the method is suitable as a first approximation for emission calculations. This section explores
emission calculations for batch processes. Batch processes are common in specialty chemical
manufacture. In most cases, air or an inert gas such as nitrogen is present in the vapor space (also
known as the head space). In some cases, the inert head space gas flows through the vessel, and is
called a purge or sweep gas. These gases typically have negligible solubilities in the liquid phase
and are thus considered noncondensable. There are several common types of unit operations
encountered with VOC emissions, which will be covered individually.

Filling or Charging
During filling of a tank with a volatile component, gas is displaced from the head space. The

displaced gas is assumed to be saturated with the volatile components as predicted with Raoult’s law
and the ideal gas law. Initially in the head space,  and after filling, 

, where the subscript head indicates the head space. The volume of liquid
charged is equal to the volume change of the head space. The mole fractions of the VOC components
are determined by Raoult’s law, and the noncondensable gas makes up the balance of the head space.
The moles of VOC emission from the tank are estimated by  for each VOC.

Purge Gas (Liquid VOC Present)
When a purge (sweep) gas flows through a vessel containing a liquid VOC, the effluent will

contain VOC emissions. At the upper limit, the vessel effluent is assumed to be saturated with VOC
as predicted by Raoult’s law. For VOC component i,

where , where the sum is over VOCs only. The variable km is the saturation level,
and is set to 1 for the assumption of saturation and adjusted lower if justified when the purge gas is
known to be unsaturated. The flow of noncondensables nsweep can be related to a volumetric flow of
purge gas using the ideal gas law,

Purge Gas (No Liquid VOC Present)



Vessels need to be purged for changeover of reactants or before performing maintenance. After
draining all liquid, VOC vapors remain in the vessel at the saturation level present before draining.
The typical assumption upon purging is that the vessel is well mixed. A mole balance on the VOC
gives ; dividing by yi the equation becomes . The left-hand side can
subsequently be written ntankdyi/yidt = (PVtank)/(RTtank) · (dyi)/(yidt), and the right-hand side can be

written . When the sweep gas and tank are at the same temperature, which is
usually a valid case, the equation rearranges to , which integrates to

The emissions are calculated by

Heating
During a heating process, emissions arise because the vapors in the head space must expand as the

temperature rises. Since vapor pressure increases rapidly with increasing temperature, VOC
concentrations in the vapor phase increase also. Detailed calculations of emissions during heating are
somewhat tedious, so an approximation is made; the emission of each VOC is based on the arithmetic
average of the molar ratio of VOC to noncondensable gas at the beginning and the end of the heating
multiplied by the total moles of noncondensable gas leaving the vessel. At the beginning of the
heating, representing the VOC with subscript i and the noncondensables with subscript nc, the ratio of
interest is (ni/nnc)i = (yi/ync)i = (yiP/yncP)i, and at the end (ni/nnc)f = (yi/ync)f = (yiP/yncP)f. The
emission of VOC component i is calculated as

where , and the sum is over VOCs only. The value of ∆nnc is given by

where the summations are over VOCs only and ∆nsweep
 is the total moles of noncondensable that are

swept (purged) through the vessel during heating and is set to zero when purging is not used. Eqns.
10.29 and 10.30 can overestimate the emissions substantially if the tank approaches the bubble point
of the liquid because ync approaches zero, and then calculations are more accurately handled by a
more tedious integration. The integration can be approximated by using the method presented here
over small temperature steps and summing the results.



Depressurization
Three assumptions are made to model depressurizations: The pressure is decreased linearly over

time; air leakage into the vessel is negligible; and the process is isothermal. The relationship is then
the same as Eqn. 10.29, where ∆nnc is calculated by Eqn. 10.30 using ∆nsweep = 0.

Other Operations
Other operations involve condensers, reactors, vacuum vessels, solids drying, and tank farms.

Condensers are commonly used for VOC recovery; however, the VOCs have a finite vapor pressure
even at condenser temperatures and the emissions can be calculated by using Eqns. 10.25 and 10.26
at the condenser temperature. Reactors may convert or produce VOCs and, in a vented reactor, the
emissions can be calculated by adapting one of the above techniques, keeping aware that generation
of gas causes additional vapor displacement and possible temperature rise due to reaction. Vacuum
units and solids-drying operations are also direct adaptations of the methods above. Tank farm
calculations are more detailed and empirical. Tank emission calculations depend on factors such as
the climate and the paint color of the tank. Fixed roof tanks must breathe as they warm during the day
due to sunlight, and then cool during the night hours. There are also working losses due to routine
filling of the tanks as covered above. Although heating and cooling in a tank with a static level can be
treated by the methods presented above, when the levels are also changing due to usage, EPA
publications are recommended for these more tedious calculation procedures.

Flash Point
The flash point is a property much different from that represented by the general flash or adiabatic

flash discussed earlier. Fire requires fuel, an oxidizer (air in this case), and an ignition source. The
flash point is the temperature above which a vapor mixture supports combustion when an ignition
source is present. When liquids burn, fire occurs on a liquid surface; the vapors near the surface are
burning, not the liquid itself. The flash point is important because it is the temperature at which the
Lower Flammability Limit (LFL) concentration is reached at the liquid surface. A flash can also
occur entirely in the vapor phase. When burning buildings explode in action movies, the movies are
depicting the real condition of the vapors in the building reaching the flash point as plastics and other
materials decompose. Fire fighters are very cautious entering buildings where a potential for such
explosions exist.

 The Chemical Safety Board is a federal agency charged with investigating chemical
accidents. The goal is to learn from accidents and improve safety.

The Chemical Safety Board (www.csb.gov) tracks accidents in the U.S. chemical industry. The
CSB reports that workers continue to be careless with ignition sources near organic solvents. Earlier
sections discussed the warming of a tank during the day. As a vented tank warms, emissions may
reach the LFL as the day warms. Maintenance on metal tanks often involves grinding or welding,
which introduces ignition sources and has resulted in numerous deaths and disfigurements as well as
property damage. Raoult’s law may be used to estimate the vapor phase concentrations, and the flash
point temperature is approximately the temperature where y·(100%) = LFL. Technically, the LFL
defined as a volume percent of combustible material, but it is the same as the mole fraction in an ideal
gas. For a mixture, the flash point can be calculated approximately by the empirical relation

http://www.csb.gov


Because combustion requires an oxidizer, each fuel also has an Upper Flammability Limit (UFL)
above which there is not enough oxygen present to maintain combustion. Most accidents occur near
the LFL, which is the motivation for more discussion of LFL. Both the LFL and the UFL are affected
by inerts because of the effect on the ratio of oxidizer to fuel.

10.6. Relating VLE to Distillation
We introduced some major points about the importance of distillation in Section 3.2. Roughly 80%

of separations are done involving distillation and 70% of the capital cost of a chemical plant goes
into distillation equipment, and thus the proper application of vapor-liquid equilibria and design are
essential. Usually, one distillation column is required to separate any two components. To separate
three components to high purity requires two columns. Obtaining four components to high purity
requires three columns, and so forth. So a single reactor that requires two reactants and produces two
products (A + B → C + D) would probably require three distillation columns downstream if all the
components are desired in high purity. Pharmaceutical and speciality chemical plants have more by-
products than bulk chemical plants. This means that chemical engineers need to be fairly familiar with
VLE, especially in the fine chemicals industry.

How Distillation Works
How does the laboratory experiment (Fig. 10.6(a)) relate to distillation in a chemical plant (Fig.

10.6(b) and (c))? We begin with an elementary introduction to the conceptual basis of distillation. We
then follow up with more detailed descriptions of the basis for modeling the process.

Figure 10.6. Schematic diagrams of distillation columns. (a) A typical chemistry laboratory
distillation apparatus; (b) close-up view of sieve trays showing the holes in the trays,

downcomers, and liquid on each tray; (c) a partial condenser operates like a flash unit.

Thermodynamics teaches us that the most volatile components are enriched in the vapor phase
when a liquid solution is boiled. For example, suppose that you want to recover methanol (a potential
transportation fuel or reactant for a fuel cell) from a mixture of 10% methanol (MeOH) and 90%



water. The thermodynamics of the methanol + water system are summarized in Fig. 10.7. Fig. 10.7(a)
shows that the solution bubble-point temperature is ~87°C. As it boils, the temperature remains
constant, but the vapor composition leaving the vessel is ~40 mol% MeOH. Let us call this separation
stage a. Forty percent is a big improvement over the initial 10%, but it is still mostly water. What can
you do to make it more pure? Why not condense the vapor to a liquid and collect it in a separate pot
to reboil it? After you have enough solution in that pot, take it to another boiler and perform stage b,
then repeat for stages c, d, e as shown in Fig. 10.7(a). After ~5 stages, you could obtain 98% pure
methanol. This is a simplification of multistage distillation at the conceptual level. (Note that most
process simulation software numbers stages from the column top which is why we designated stages
as letters rather than numbering from the bottom.) As outlined so far, it is inefficient and
oversimplified because we considered the liquid phase composition to be invariant while the volatile
component was boiling off. Separation textbooks provide the details on the mass balances.

Figure 10.7. Stage-wise separation of methanol (M) and water. (a) T-x,y diagram at 1 bar,
showing stages. (b) McCabe-Thiele analysis based on assuming constant relative volatility, αLH

= [(αLH
T)(αLH

B)]½ (dotted line) compared with experimental curve.

The first law of thermodynamics tells us that energy is conserved. What if we could use the heat of
condensing the vapor from stage a as the heat of boiling in stage b? That would be a big improvement.
Furthermore, we can achieve this in minimal space if we use some clever plumbing. If we put the pot
for stage b on top of stage a, and put little holes in the bottom of the pot, then the vapor boils through
the holes faster than the liquid can weep back (Fig. 10.6(b)). The boiling point of the mixture on stage
b is lower than the vapor temperature coming from below (cf. Fig. 10.7(a)). When the warmer vapor
from stage a contacts the cooler liquid on stage b, it condenses. But the first law tells us that the heat
of condensation must go somewhere. Where? It goes into boiling the liquid on stage b. Then we can
do the same thing for stages c, d, e. This approach is called a tray distillation column and it is very
common throughout the chemical industry. Roughly 70% of distillation columns are tray type.

We still have not addressed how tray distillation relates to the chemistry lab. The chemistry lab
requires some gauze or glass wool in the glass tube above the boiling flask. Because of heat loss
through the condenser walls, some of the boiling liquid condenses, then trickles down the gauze and



falls back into the boiling flask. This trickling liquid serves the same function as the liquid on the
trays, but of course the contact and mass exchange is much less efficient. On the other hand, we can
generate a lot of surface area and a lot of vapor-liquid contact by using a lot of gauze. In the chemical
industry, columns based on this principle are called packed columns. Packed columns comprise the
other 30% of distillation columns. There is another big difference between the chemical industry and
chemistry lab. The vast majority of industrial columns run in continuous steady-state mode, not batch
mode like the chemistry lab. This means that continuous feed enters on a stage that has a similar
composition to the feed.

Most mixtures contain more than two components. It is common, however, to design the
multicomponent column based on the separation of two key components. Because boiling point (in the
absence of azeotropes discussed later) increases with Mw, it is common to discuss separation based
on light components (more volatile) moving up the column, and heavy components moving down. For
preliminary column design a volatile light key (typically low Mw, thus light) and less volatile heavy
key component are designated. Splitting two key components implicitly splits components lighter than
the “light key” component from components heavier than the “heavy key” component. The split (S) is
the fraction that exits with distillate. The light key (LK) component is the least volatile component
with a split SLK > 0.5. System components lighter than the light key must be even more volatile and
exit as distillate. For example, consider a distillation of hexane, octane, decane, and dodecane. If we
designate octane as the light key, then the of hexane should also go out the top. The heavy key is the
lightest component (most volatile) with a split SHK < 0.5. In the example, we could select decane as
the heavy key and thus dodecane would go out the bottom also. In a perfect world, the splits would be
100% for the light key and 0% for the heavy key, but that would require an infinitely tall distillation
column. More typical splits are 99% and 1%.

 Light key and heavy key components are used in preliminary column design.

The split fractions define the relevant mass balances in distillation. The thermodynamics relevant
to distillation is implemented using the relative volatility in terms of the VLE K-ratios,

 Relative volatility.

For the case of light and heavy key components,

For Raoult’s law, the K-ratios are independent of composition, and thus is the relative volatility,

For systems that don’t follow Raoult’s law, the relative volatility may vary through the column
owing to composition changes, but distillation is feasible as long as αLH > 1. (We will show the
analysis for the nonideal αij calculation in Section 11.11 on page 442.) The presence of other



components is of secondary concern for preliminary column design as long as αLH > 1, so shortcut
column analysis treats LK and HK as if the mixture were binary. It may be possible to improve αLH
through the addition of other components (e.g., extractive distillation), but that merely reinforces the
requirement of the overall system to the mandate that αLH > 1.

For the sake of modeling, the tray column is simplest to introduce as illustrated in Fig. 10.7(b). Fig.
10.7(b) focuses on the composition changes only, neglecting the temperature effects. Fig. 10.7(b) also
shows the result of approximating that the relative volatility is constant. A larger αij results in a larger
area under the x-y curve and an easier separation. If αij = 1, the curve collapses on the 45° diagonal.
The diagram shows “steps” between the equilibrium line and the operating line. The equilibrium line
represents the compositions at each tray as they leave. The operating line represents the compositions
between trays. Moving up and down the column, the material balances are shown graphically by
stepping back and forth as we relate the material balance “on stage” and “in-between stage.”
Comparing the curves for actual and constant αij, note that a similar number of stages is obtained. For
the purposes of our model, constant relative volatility is a convenient approximation for the
equilibrium curve as shown. But there is still a significant detail that has been omitted in our
conceptual outline of distillation. Where did the liquid come from that is on the trays of the tray
column?

Fig. 10.6(c) shows how the condenser on top of the column pours liquid back down to keep some
on the trays. The part that we pour back down the column (L) is called reflux. The part that we
recover as product is called distillate (D). The ratio of L/D is called the reflux ratio (R). The reflux
ratio controls the amount of product recovered as distillate. If we actually want to recover some
product (i.e., D ≠ 0), then we must accept some value R ≠ ∞. Finite values for R lead to the dashed-
dot operating lines in Fig. 10.7(b). To understand this, consider that the 45° diagonal on Fig. 10.7(b)
corresponds to L/V = 1. It turns out that taking distillate from the top of the column leads to slightly
less separation on every stage, giving the dashed-dot lines of Fig. 10.7(b). Typical courses in mass
transfer operations explain how to estimate the dashed-dot lines from values of R. The key point for
now is that the value of R cannot be zero, or we will have no liquid on the trays, and it cannot be
infinite or we will recover no product. We can go a little further and say that it must be closer to
infinity for a distillation that has a relative volatility very near to unity, because the y-x curve in that
case stays very close to the diagonal. Beyond that, we simply need to accept that somebody has
analyzed this before and developed some equations for computing the minimum number of stages to
achieve a desired separation (at infinite reflux), the minimum reflux ratio, and the actual number of
stages. This is indeed the case, and the model equations are presented below.

A shortcut distillation calculation for the height of the column for constant relative volatility can be
estimated from the Fenske equation,

where Nmin is the minimum number of theoretical trays at infinite reflux and  is the geometric
mean of the relative volatility calculated using the column top and bottom compositions, T and P.
Typically, the number of actual trays is Nact ~ 4Nmin, with the space between trays being 0.6m. So a



column with 99 and 1% splits and a relative volatility of 3 would have Nmin = 8.4 and a height of 20
m. With this background, the importance of the K-ratios and αLH becomes clear. Note that if αLH = 1,
then Nmin = ∞. The relative volatility changes with composition for nonideal systems, and goes to 1
when an azeotrope exists. Then Eqn. 10.35 is not valid. We discuss such behavior in the following
sections, and find significant motivation to understand the modeling of such systems in subsequent
chapters.

10.7. Nonideal Systems
In Section 10.3 we introduced Raoult’s law for mixtures where the components have very similar

chemical functionality and molecular weight. We have seen how easy the ideal-solution calculations
can be. However, Raoult’s law is accurate for only a few of the systems you will encounter in
practice. Examples of phase diagrams which deviate from Raoult’s law are shown in Fig. 10.8 and
Fig. 10.9. There are several features of these diagrams that introduce important concepts. First of all,
the Raoult’s law bubble lines are shown as dotted lines in the P-x-y diagrams to emphasize the
deviations. Note again that the phase diagrams of each P-x-y/T-x-y pair can be qualitatively related
by inverting one diagram of the pair.

Figure 10.8. (a), (b) Phase behavior of the methanol + 3-pentanone system. Left figure at
65°C. Right figure at 760 mm Hg. (T-x-y from Glukhareva, M.I., et al. 1976. Zh. Prikl. Khim.

(Leningrad) 49:660, P-x-y calculated from fit of T-x-y.)



Figure 10.8. (c), (d) Phase behavior of the 2-propanol + water system. Left figure at 30°C.
Right figure at 760 mm Hg. (T-x-y from Wilson, A., Simons, E.L., 1952. Ind. Eng. Chem.
44:2214, P-x-y from Udovenko, V.V., and Mazanko. T.F. 1967. Zh. Fiz. Khim. 41:1615.)

Figure 10.9. (a), (b) Phase behavior of the acetone + acetic acid system. Left figure at 55°C.
Right figure at 760 mm Hg. (T-x-y from York, R., Holmes, R.C. 1942. Ind. Eng. Chem. 34:345,

P-x-y from Waradzin, W., Surovy, J., 1975. Chem. Zvesti 29:783.)



Figure 10.9. (c); (d) Phase Behavior of the acetone + chloroform system. Left figure at
35.17°C. Right figure at 732 mm Hg. (T-x-y from Soday, F., Bennett, G.W., 1930. J. Chem.

Educ. 7:1336, P-x-y from Zawidzki, V.J., 1900. Z. Phys. Chem. 35:129.)

 Positive deviations from Raoult’s law. It is convenient to say that the components
“dislike” each other.

In Fig. 10.8 the bubble line lies above the Raoult’s law line, and these systems are said to have
positive deviations from Raoult’s law. Positive deviations occur when the components in the mixture
would prefer to be near molecules of their own type rather than near molecules of the other
component. Briefly, it is convenient to say that these components “dislike” each other. The 2-
propanol + water system has vapor pressures that are close to each other relative to the deviation
from ideality. As a result, the positive deviations are large enough to cause the pressure to reach a
maximum (i.e,. Pmax > P1

sat > P2
sat). The presence of a maximum (or minimum) causes the phase

envelope to close at a composition known as the azeotropic composition. The nearness of the vapor
pressures matters, because any deviation from ideality would give a maximum (or minimum), known
as an azeotrope, if P1

sat = P2
sat. As a counterexample, the methanol + 3-pentanone system has

significantly different vapor pressures for the components, and the deviations from ideality are not
large enough to cause azeotrope formation. Recalling that the dew and bubble lines represent
coexisting compositions at equilibrium, a maximum or minimum means that xi = yi and relative
volatility αij = 1 at the azeotrope: αij > 1 on one side of the azeotrope composition and αij < 1 on the
other side. This means that distillation ceases to provide separation at an azeotrope composition, and
knowledge of azeotropes is critical for distillation design. When an azeotrope forms in a system with
positive deviations, the azeotrope is a maximum on the P-x-y diagram and a minimum on the T-x-y
diagram. To give a name to the type of azeotrope, the convention is to refer to azeotropes like that of
2-propanol + water as a minimum boiling azeotrope, referring to the boiling temperature reaching a
minimum in composition. This can be confusing because the deviations from ideality are referred to



as positive with respect to Raoult’s Law on a P-x-y diagram. If you remember that “boiling” refers to
boiling temperature, it may help you to reduce confusion. The azeotrope on a P-x-y diagram is a
maximum pressure azeotrope. Since the vapor and liquid compositions are equivalent at the
azeotrope, a flash drum or distillation column cannot separate a mixture at the azeotropic
composition.

 Relative volatility equals 1 for an azeotrope: αij > 1 on one side of the azeotrope
composition and αij < 1 on the other side.

Azeotropes create challenges for chemical engineers. Azeotropic compositions for systems with
either positive or negative deviations depend on temperature and pressure, however the dependencies
are usually weak unless large pressure or temperature changes are made. For example, the ethanol +
water system possesses an azeotrope that is widely known. This azeotrope causes a significant
contribution to the high energy cost of bioethanol. Separating ethanol from the dilute fermentation
product stream consumes about one-third of the energy content of the ethanol. Are there ways to
separate ethanol more efficiently? Are there alternative fermentation products that can be produced
without an azeotrope? Could fermentation (and copious amounts of water) be circumvented altogether
and cellulose converted directly to chemical feedstocks similar to how heavy oils are cracked to
ethylene? These are questions that a chemical engineering perspective brings to bear on these
challenging problems. In the thermodynamics of phase equilibria, we are primarily concerned with
distillation, liquid-liquid extraction, and azeotropes. Ideal solutions do not form azeotropes and
they do not form immiscible liquid phases. Thus, Raoult’s law is incapable of representing these
systems.

 Ideal solutions do not form azeotropes and they do not form immiscible liquid phases.

 Negative deviations from Raoult’s law. It is convenient to say that the components
“like” each other.

In Fig. 10.9 the systems have negative deviations from Raoult’s law because the bubble line lies
below the Raoult’s line. Similar azeotropic behavior is found in these systems if the vapor pressures
are close to each other or the deviations are large. When an azeotrope forms in a system with negative
deviations, the azeotrope is a minimum on the P-x-y diagram and a maximum on the T-x-y diagram.
Therefore, this behavior is called a maximum boiling azeotrope or a minimum pressure azeotrope.
From a chemical perspective, negative deviations indicate that the components “like” each other more
than they like themselves. For example, mixing two acids may form an ideal solution, but mixing an
acid with a base can give a negative deviation from ideality that feels warm to the touch. This is
consistent with the negative sign on exothermic heats of reaction.

To better understand the reasons that mixtures deviate from Raoult’s law, we need to explore the
fundamental thermodynamic principles and the assumptions underlying Raoult’s law. In doing so, we
reveal the thermodynamic behavior that is necessary for Raoult’s law, and more greatly appreciate
the reasons for the occasional success and more frequent failure of the model. Raoult’s law was



developed empirically. To understand the true thermodynamic basis of Raoult’s law, it is necessary
to “evaluate” how thermodynamic properties depend on composition. In addition, we can show that
the fugacity used in Chapter 9 for pure fluids extends to mixtures and the component fugacity is the
starting point for phase equilibria in mixtures. Raoult’s law involves specific assumptions about
component fugacities for both the vapor and liquid phases. We develop models for deviations from
Raoult’s law in Chapters 11–13.

10.8. Concepts for Generalized Phase Equilibria
Generalization of pure-component principles to multicomponent systems requires that we consider

how the thermodynamic properties change with respect to changes in the amounts of individual
components. For a pure fluid, the natural properties were simply a function of two state variables. In
multicomponent mixtures, these energies and the entropy also depend on composition.

 These equations extend the use of calculus from Chapter 6 to composition variables.

Note that these equations follow the mathematical rules developed in Chapter 6. Each term on the
right-hand side consists of a partial derivative with respect to one variable, with all other variables
held constant. The summation is simply a shorthand method to avoid writing a term for each
component. The subscript nj ≠ i means that the moles of all components except i are held constant. In
other words, for a ternary system, ((∂U)/(∂n1))P, T, nj ≠ i

 means the partial derivative of U with respect
to n1 while holding P, T, n2, and n3 constant. For phase equilibria where P and T are manipulated,
Eqn. 10.37 is more useful than Eqn. 10.36 because the Gibbs energy is a natural function of P and T.
At constant moles and composition of material, the mixture must follow the same constraints as a pure
fluid. That is, the state is dependent on only two state variables if we keep the composition constant.

ය (∂G/∂P)T,n = V and (∂G/∂T)P,n = – S;

These complicated-looking derivatives are really fundamental properties; therefore, we can
rewrite Eqn. 10.37 as

The quantity (∂G/∂ni)P, T, nj ≠ i
 tells us how the total Gibbs energy of the mixture changes with an

infinitesimal change in the number of moles of species i, when the number of moles of all other
species fixed, and at constant P and T. The quantity (∂G/∂ni)P, T, nj ≠ i

 will become very important in
our later discussion. so we give it a name, called the chemical potential, and give it a symbol.



We commonly write

 Chemical potential.

Partial Molar Properties
Another name for the special derivative of Eqn. 10.39 is the partial molar Gibbs energy. We may

generalize the form of the derivative and apply it to other properties. For any extensive

thermodynamic property M, we may write . Note that T, P, and nj ≠ i are always
held constant for a partial molar property. The overbar indicates a partial molar quantity, that is, for
total volume V, the quantity (∂V/∂ni)T,P,nj≠i

 is called the partial molar volume and given the symbol .
Suppose we were considering a mixture of 500 red balls of size σR and 700 blue balls of size σB.
How would the total volume change if we added one more red ball, keeping 700 blue balls? This is a
finite difference example of the derivative called the partial molar volume of red balls. A special
mathematical result of the differentiation is that we may write at constant temperature and pressure:

 Partial molar quantities provide a mathematical way to assign the overall mixture
property according to composition expressed in moles or mole fractions.

As a result, we may write

We will return to these basic equations as we develop more relations for mixtures.
The chemical potential becomes an important term for each of the key properties, U, H, A, and G,

because they are all related by an appropriate Legendre transform as shown in the following table.
The constraints on the derivative are important. For example, (∂U/∂ni)P, T, nj ≠ i

 in Eqn. 10.36 is not
equal to (∂U/∂ni)S, V, nj ≠ i

 = µi in the first line of the table.



The open systems equations can be developed using the energy and entropy balances from the early
chapters as shown in an online supplement.

Equilibrium Criteria
For equilibrium at constant T and P, the Gibbs energy is minimized and mathematically the

minimum means dG = 0 at equilibrium. Therefore, Eqn. 10.38 is equal to zero at a minimum, since dT
and dP are zero, and for a closed system all dni are zero. Thus,

This equation applies to whatever system we define. Suppose we define our system to consist of
two components (e.g,. EtOH + H2O) distributed between two phases (e.g., vapor and liquid), dG =
dGL + dGV = 0, and at constant T and P, the moles may redistribute between the two phases, by Eqn.
10.40 for both phases:

But if component 1 leaves the liquid phase then it must enter the vapor phase (and similarly for
component 2) because the overall system is closed.

The only way to make this equal to zero in general is:

 The chemical potential of each component must be the same in each phase at
equilibrium.

Setting the chemical potentials and T and P in each of the phases equal to each other provides a set
of constraints (simultaneous equations) which may be solved for phase compositions provided we
know the dependency of the chemical potentials on the phase compositions. Suppose the functions GL

(x,T,P) and GV (y,T,P) are available for a binary system. Then



which gives four equations with four unknowns (x1, x2, y1, y2) that we can solve, in principle.11

The first two equations are simply the equivalency of chemical potentials in the two phases.

Chemical Potential of a Pure Fluid
In Chapter 9, we showed the equilibrium constraint for a pure fluid is equality of the molar Gibbs

energy for each of the phases (cf. Eqn. 9.3). How does this relate to Eqn. 10.44?

For a pure fluid, there is only one component, so dni = dn, and since G(T,P) is intensive, then
n(∂G/∂n)T,P = 0. Also (∂n/∂ni)T,P = 1 by Eqn. 6.13. Therefore,

 The chemical potential of a pure fluid is simply the molar Gibbs energy.

That is, the chemical potential of a pure fluid is simply the molar Gibbs energy. Pure components
can be considered as a special case of the same general statement of the equilibrium constraint.

Component Fugacity
We introduced fugacity in Chapter 9. The chemical potential constraint is sufficient for solving any

phase equilibrium problem, but the most popular engineering approach for actual computations makes
use of the concept of fugacity. Fugacity is more “user-friendly” than “chemical potential” or “partial
molar Gibbs energy.” We have seen in Chapter 9 that the fugacity is the same as the pressure for an
ideal gas, and that the fugacity is close to the vapor pressure for a liquid. Engineers use benchmarks
such as these as guidelines for estimating fugacities and double-checking calculations. Fuga- comes
from a Latin noun meaning flight, fleeing, or escape. The suffix -ity comes from a root meaning
“character.” Thus, fugacity was invented to mean flight-character, commonly called “escaping
tendency.” When phases are in equilibrium, the component moves (“escapes”) from the phase where
it has the higher fugacity to the phase where it has the lower fugacity until the fugacities are equal in
both phases.12

Let us generalize our pure component fugacity relations to apply to components in mixtures: At
constant T, we defined RTdlnf ≡ dG (Eqn. 9.19) which can be generalized to define the fugacity of a
component in a mixtures as

 Fugacity is another way to express the chemical potential that is used more widely in
engineering than chemical potential.



where  is the fugacity of component i in a mixture and µi is the chemical potential of the
component. In the limit as the composition approaches purity, these properties become equal to the
pure component values. A caret is used in the symbol for the fugacity of a component. The component
fugacity is not a partial molar property, so the overbar cannot be used.

 Carets ( )̂ are used to denote component properties in mixtures for f while without a
caret the property is the pure component f. When working with µ, the meaning is inferred
from the context of the situation.

Equality of Fugacities as Equilibrium Criteria
The equality of chemical potentials at equilibrium can easily be reinterpreted in terms of fugacity

in a manner analogous to our methods for pure components from Eqn. 10.44:

By integrating Eqn. 10.46 as a function of composition at fixed T from a state of pure i to a mixed
state, we find

where µi,pure and fi are for the pure fluid at the system temperature. Writing an analogous
expression for the liquid phase, and equating the chemical potentials using Eqn. 10.47, we find

Note: Eqn. 10.47 or 10.50 becomes the starting point for all phase-equilibrium
calculations. Therefore, we need to develop the capability to calculate chemical
potentials or fugacities of components in vapor, liquid, and solid mixtures. Here we
briefly introduce the framework for calculating the fugacities of components before
we begin the direct calculations.

Eqn 10.50 does not look much like Raoult’s law, which was our motivation for exploring the
thermodynamics of mixtures. To make this final connection between Raoult’s law and Eqn. 10.50, we
need to understand how energy and volume affect component fugacities.

10.9. Mixture Properties for Ideal Gases
We have introduced the concepts of energy of mixing, enthalpy of mixing, and volume of mixing in

Section 3.4. We can now relate the mixing behavior to the partial molar properties. The partial molar
quantities for ideal gases must be the same as the pure component properties.



Entropy for an ideal-gas mixture is more complicated because, as shown in Chapter 4, even
systems of fixed total energy have an entropy change associated with mixing due to the
distinguishability of the components. The entropy of an ideal gas is calculated by the sum of the
entropies of the components plus the entropy of mixing as given in Chapter 4:

Therefore, the entropy of mixing is nonzero and positive:

and the partial molar entropy is

The Gibbs energy and the fugacity will be at the core of phase equilibria calculations. The Gibbs
energy of an ideal gas is obtained from the definition, G ≡ H – TS. Using Hig an Sig from above,

Therefore, the Gibbs energy of mixing is nonzero and negative:

The chemical potential of a component is given by Eqn. 10.39 and taking the derivative of Eqn.
10.55,

The derivative is most easily seen by expanding the logarithm before differentiation, ln yi = ln ni –
ln n. Then,

Therefore, we find the chemical potential of an ideal-gas component:

 Chemical potential of an ideal-gas component.



By Eqn. 10.48, using Eqn. 10.59 and Eqn. 10.45,

By Eqn. 9.22, , resulting in the fugacity of an ideal-gas component:

Therefore, the fugacity of an ideal-gas component is simply its partial pressure, yiP. This makes
the ideal-gas fugacity easy to quantify rapidly for engineering purposes. One of the goals of the
calculations that will be pursued in Chapter 15 is the quantification of the deviations of the fugacity
from ideal-gas values quantified by the component fugacity coefficient.

 The fugacity of a component in an ideal-gas mixture is particularly simple; it is equal
to the yiP, the partial pressure!

10.10. Mixture Properties for Ideal Solutions
Ideal solutions are similar to ideal-gas mixtures, but they to not follow the ideal-gas law. The

internal energy and enthalpy for ideal solutions were introduced in Section 3.5. Since these properties
are additive, the partial molar properties are equal to the pure component properties,

As for the entropy change of mixing, the loss of order due to mixing is unavoidable, even for ideal
solutions. During our consideration of the microscopic definition of entropy, we derived a general
expression for the ideal entropy change of mixing, Eqn. 4.8.

 The entropy of mixing is nonzero for an ideal solution.

Although we derived Eqn. 4.8 for mixing ideal gases, it also provides a reasonable approximation
for mixing liquids of equal-sized molecules. The reason is that changes in entropy are related to the
change in accessible volume. Even though a significant volume is occupied by the molecules
themselves in a dense liquid, the void space in one liquid is very similar to the void space in another
liquid if the molecules are similar in size and polarity. That means that the accessible volume for
each component doubles when we mix equal parts of two equal-sized components. That is essentially
the same situation that we had when mixing ideal gases. The partial molar entropy of mixing is



Given the effect of mixing on these two properties, we can derive the effect on other
thermodynamic properties, which has the same formula as that found for ideal gases:

The general relationship for ∆Gmix gives a relationship for fugacity. We can extend our definition
of the enthalpy of mixing to the Gibbs energy of mixing,

But by using Eqns. 10.42 and 10.48,

Thus, comparing Eqns. 10.67 and 10.65, for an ideal solution, .
By comparing the relations in the logarithms, we obtain the Lewis-Randall rule for ideal solutions:

 Lewis-Randall rule for component fugacity in an ideal solution.

10.11. The Ideal Solution Approximation and Raoult’s Law
By our equilibrium constraint,

By our ideal solution approximation in both phases, the equilibrium criteria becomes

Now we need to substitute the expressions for fi
V and fi

L that we developed in Chapter 9. The
fugacity of the pure vapor comes from Eqn. 9.25:

The fugacity of the liquid comes from Eqn. 9.39:



Combining Eqns. 10.70–10.72,

Writing in terms of the Ki ratio,

Note: at reasonably low pressures,

resulting in Raoult’s Law,

 Raoult’s law.

Raoult’s law is only valid for molecularly similar components; ideal behavior is demonstrated in
the Figs. 10.2 and 10.3 because of careful selection of molecularly similar binary pairs. If we mixed
methanol from Fig. 10.2(a) and benzene from Fig. 10.3(c), the resultant system would be very non-
ideal.

10.12. Activity Coefficient and Fugacity Coefficient Approaches
The discussion in Sections 10.8–10.11 sets the stage for the next few chapters. The principles

discussed here form the basis for these chapters and a thorough understanding facilitates rapid
understanding of the extensions. There are two main approaches to modeling nonideal fluids. They
differ in the way that they treat the fugacities in the vapor and liquid phases. The first approach is to
model deviations from ideal solution behavior in the liquid phase, using activity coefficients, which
is covered in Chapters 11 through 14. When the vapors are nonideal, the vapor phase fugacities are
modeled with an equation of state, an approach that usually requires a computer. As discussed for
pure fluids, liquid phases may also be modeled with an equation of state by simply selecting the
liquid root. The EOS approach is discussed in Chapter 15.

The presentation has been organized according to a hierarchical approach. First and foremost, it is
necessary to recognize that deviations from Raoult’s law can significantly alter the outlook on
chemical processing. We introduce the activity approach for handling nonideal solutions in Chapter
11, and then extend to more complex models in Chapters 12 and 13. If you prefer a “one-size-fits-all”
approach that can be applied to extremes of temperature, pressure, and component differences (e.g.,
CH4 + eicosane at oil reservoir conditions) then you may want to study Chapter 15 sooner. The EOS
approach must be handled carefully for hydrogen bonding components, however, as discussed in



Chapter 19. We provide more coverage than can typically be incorporated into a single undergraduate
course, so instructors need to be selective about which models to cover. Nevertheless, the principles
from one approach typically extend to other approaches and by focusing on a solid understanding of
the principles for the sections studied, the reader should be able to extend them when the need arises.

10.13. Summary
The concepts in this chapter are relatively simple but far-reaching. A simple extension of the chain

rule to multicomponent systems led to the equilibrium constraint for multicomponent multiphase
equilibria. A simple application of the entropy of mixing derived in Chapter 4 led to the ideal
solution model, Gibbs energy for a component in a mixture, and fugacity for a component in a mixture.
This simple solution model enabled us to demonstrate the computational procedures for dew points,
bubble points, and flashes.

In the remaining chapters of Unit III we proceed in a manner that is extremely similar. We propose
a solution model and apply the equilibrium constraint to derive an expression for the K-ratios. Then
we follow exactly the same computational procedures as developed here. The primary difference is
the increasing level of sophistication incorporated into each solution model. Thus, the chapters ahead
focus increasingly on the detailed description of the molecular interactions and the impacts of
assumptions on the accuracy of the resultant solution models.

In this context, this chapter represents one iteration in the typical sequence of “observe, predict,
test, and evaluate.” We observed that isothermal mixtures boil at higher pressures when more volatile
components were present. We predicted that the bubble pressure varies linearly in mole fraction
between the vapor pressures of the components (Raoult’s law). We tested these predictions by
checking the linearity of several mixtures. We evaluated the assumptions implicit in Raoult’s law by
extending the fundamental thermodynamic principles to mixtures. Successive iterations involve
repeating this sequence, following up on clues from the previous evaluation.

Important Equations
We defined the K-ratio.

Raoult’s law is an important equation, but we have also seen that it has limited applicability.

We developed methods to calculate bubble, dew, and flash conditions summarized in Table 10.1
on page 373. We developed the relation for the relative volatility,

We discussed how the relative volatility varies dramatically with composition in an azeotropic
system, approaching 1 at the azeotrope, and creating challenges. These variations undermine the
utility of Raoult’s law and the use of shortcut design equations for azeotropic systems.

For phase equilibria, including liquid-liquid equilibria, the fugacities of a component are equal,



where α and β indicate different phases, whether vapor, liquid(s), or solid. This is the starting
point throughout Unit III. As we applied the generalized approach, we found

and for an ideal solution,

Two final equations that form the basis for future derivations are

Through these equations, we can infer the fugacities of components in any solution, no matter how
complex, by building a model for Gibbs energy. This is the subject of upcoming chapters. Models of
the Gibbs energy may range from crudely empirical to sophisticated molecular analyses.

10.14. Practice Problems
P10.1. The stream from a gas well consists of 90 mol% methane, 5 mol% ethane, 3 mol%
propane, and 2 mol% n-butane. This stream is flashed isothermally at 233 K and 70 bar. Use the
shortcut K-ratio method to estimate the L/F fraction and liquid and vapor compositions. (ANS.
L/F = 0.181)
P10.2. An equimolar mixture of n-butane and n-hexane at pressure P is isothermally flashed at
373 K. The liquid-to-feed ratio is 0.35. Use the shortcut K-ratio method to estimate the pressure
and liquid and vapor compositions. (ANS. P = 0.533 MPa, xC6 = 0.78)

P10.3. A mixture of 25 mol% n-pentane, 45 mol% n-hexane, and 30 mol% n-heptane is flashed
isothermally at 365.9 K and 2 bar. Use the shortcut K-ratio method to estimate the L/F fraction
and liquid and vapor compositions. (ANS. L/F = 0.56)
P10.4. A mixture containing 15 mol% ethane, 35 mol% propane, and 50 mole% n-butane is
isothermally flashed at 9 bar and temperature T. The liquid-to-feed ratio is 0.35. Use the shortcut
K-ratio method to estimate the pressure and liquid and vapor compositions. (ANS. 319.4 K, xC4
= 0.74)

10.15. Homework Problems
10.1. For a separations process it is necessary to determine the VLE compositions of a mixture
of ethyl bromide and n-heptane at 30°C. At this temperature the vapor pressure of pure ethyl
bromide is 0.7569 bar, and the vapor pressure of pure n-heptane is 0.0773 bar. Calculate the
bubble pressure and the composition of the vapor in equilibrium with a liquid containing 47.23
mol% ethyl bromide assuming ideal solution behavior. Compare the calculated pressure to the
experimental value of 0.4537 bar.
10.2. Benzene and ethanol (e) form azeotropic mixtures. Prepare a y-x and a P-x-y diagram for



the benzene-ethanol system at 45°C assuming the mixture is ideal. Compare the results with the
experimental data tabulated below of Brown and Smith, Austral. J. Chem. 264 (1954). (P in the
data table is in bar.)

10.3. The following mixture of hydrocarbons is obtained as one stream in a petroleum refinery
on a mole basis: 5% ethane, 10% propane, 40% n-butane, 45% isobutane. Assuming the shortcut
K-ratio model: (a) compute the bubble point of the mixture at 5 bar; (b) compute the dew point
of the mixture at 5 bar; (c) find the amounts and compositions of the vapor and liquid phases that
would result if this mixture were to be isothermally flash vaporized at 30°C from a high pressure
to 5 bar.
10.4. Consider a mixture of 50 mol% n-pentane and 50 mol% n-butane at 14 bar.

a. What is the dew-point temperature? What is the composition of the first drop
of liquid?
b. At what temperature is the vapor completely condensed if the pressure is
maintained at 14 bar? What is the composition of the last drop of vapor?

10.5. A 50 mol% mixture of propane(1) and n-butane(2) enters an isothermal flash drum at
37°C. If the flash drum is maintained at 0.6 MPa, what fraction of the feed exits as liquid? What
are the compositions of the phases exiting the flash drum? Work the problem in the following
two ways.

a. Use Raoult’s law (use the Peng-Robinson equation to calculate pure
component vapor pressures).
b. Assume ideal mixtures of vapor and liquid. (Use the Peng-Robinson equation
to obtain fsat for each component.)

10.6. A mixture of 55 mol% ethanol in n-propanol is at 0.2MPa and 80°C at 70 mol/s. The
stream is fed to a adiabatic flash drum. Calculate the outlet stream flow rates, temperatures, and
compositions at 0.05MPa.

a. Use the path of Fig. 2.6(a).
b. Use the path of Fig. 2.6(c).

10.7. An equimolar ternary mixture of acetone, n-butane, and ammonia at 1 MPa is to be flashed.
List the known variables, unknown variables, and constraining equations to solve each of the
cases below. Assume ideal solution thermodynamics and write the flash equations in terms of K-
ratios, with the equations for calculating K-ratios written separately.

a. Bubble temperature
b. Dew temperature
c. Flash temperature at 25 mol% vapor.
d. Raised to midway between the bubble and dew temperature, then adiabatically
flashed

10.8. Tank A is rapidly half-filled with volatile hydrocarbon. Tank B is 10 times as large and



rapidly half-filled with the same hydrocarbon. Initially the gas space can be considered to be
free of volatile organic and at the same pressure. The tanks are then closed. The tanks warm
20°C and the pressure in both tanks goes up. After warming, does one tank have a higher
pressure than the other, or are the final pressures the same? Show your result with equations.
Your answer should be general; it should not depend on numerical calculations.

 Do not confuse a flash point calculation with an isothermal flash calculation.

10.9. Above a solvent’s flash point temperature, the vapor concentration in the headspace is
sufficient that a spark will initiate combustion; therefore, extreme care must be exercised to
avoid ignition sources. Calculate the vapor phase mole fraction for the following liquid solvents
using flash points listed, which were obtained from the manufacturer’s material safety data
sheets (MSDS). The calculated vapor concentration is an estimate of the lower flammability
limit (LFL). Assume that the headspace is an equilibrium mixture of air and solvent at 760
mmHg. The mole fraction of air dissolved in the liquid solvent is negligible for this calculation.

a. Methane, –187.8°C
b. Propane, –104.5°C
c. Pentane, –48.9°C
d. Hexane, –21.7°C
e. Ethanol, 12.7°C
f. 2-butanone, –5.6°C
g. Toluene, 4.4°C
h. m-xylene, 28.8°C
i. Ethyl acetate, –4.5°C

10.10. Solvent vessels must be purged before maintenance personnel enter in order to ensure
that: (1) sufficient oxygen is available for breathing; (2) vapor concentrations are below the
flash point; (3) vapor concentrations are below the Occupational Safety and Health
Administration (OSHA) limits if breathing apparatus is not to be used. Assuming that a 8 m3

fixed-roof solvent tank has just been drained of all liquid and that the vapor phase is initially
saturated at 22°C, estimate the length of purge necessary with 2 m3/min of gas at 0.1 MPa and
22°C to reach the OSHA 8-hr exposure limit.13

a. Hexane 500 ppm
b. 1-butanol 100 ppm
c. Chloroform 50 ppm
d. Ethanol 1000 ppm
e. Toluene 200 ppm

10.11. A pharmaceutical product is crystallized and washed with absolute ethanol. A 100 kg
batch of product containing 10% ethanol by weight is to be dried to 0.1% ethanol by weight by
passing 0.2 m3/min of 50°C nitrogen through the dryer. Estimate the rate (mol/min) that ethanol is
removed from the crystals, assuming that ethanol exerts the same vapor pressure as if it were



pure liquid. Based on this assumption, estimate the residence time for the crystals in the dryer.
The dryer operates at 0.1 MPa and the vapor pressure of the pharmaceutical is negligible.
10.12. Benzyl chloride is manufactured by the thermal or photochemical chlorination of toluene.
The chlorination is usually carried out to no more than 50% toluene conversion to minimize the
benzal chloride formed. Suppose reactor effluent emissions can be modeled ignoring by-
products, and the effluent is 50 mol% toluene and 50 mol% benzyl chloride. Estimate the
emission of toluene and benzyl chloride (moles of each) when an initially empty 4 m3 holding
tank is filled with the reactor effluent at 30°C and 0.1 MPa.
10.13. This problem explores emissions during heating of hexane(1) and toluene(2) in a tank
with a fixed roof that is vented to the atmosphere through an open pipe in the roof. Atmospheric
pressure is 760 mmHg. The tank volume is 2000 L, but the maximum operating liquid level is
1800 L. Determine the emissions of each VOC (in g) when the tank is heated.

a. The liquid volume is 1800 L, x1 = 0.5, Ti = 10°C, ∆T = 15°C.

b. The liquid volume is 1800 L, x1 = 0.5, Ti = 25°C, ∆T = 15°C.

c. The liquid volume is 1500 L, x1 = 0.5, Ti = 25°C, ∆T = 15°C.

d. The liquid volume is 1800 L, x1 = 1.0, Ti = 25°C, ∆T = 15°C.

e. Explain why the ratio [(emission of toluene in part (b))/(emission of toluene in
part (a))] is different from the corresponding ratio of hexane emissions.

 Do not confuse a flash point calculation with an isothermal flash calculation.

10.14. Use Raoult’s law to estimate the flash point temperature for the following equimolar
liquid mixtures in an air atmosphere at 750 mmHg total pressure:

a. Pentane (LFL = 1.5%) and hexane (LFL = 1.2%)
b. Methanol (LFL = 7.3%) and ethanol (LFL = 4.3%)
c. Benzene (LFL = 1.3%) and toluene (LFL = 1.27%)

10.15. Go to www.csb.gov and watch a video assigned by your instructor. For the substance
involved, look up the LFL. Use Raoult’s law to estimate the flash point temperature and compare
it with a literature value. For the scenario in the video, offer an explanation of how easy or
difficult is was to reach the LFL under the conditions, and comment on the recommendations of
the CSB.

http://www.csb.gov


Chapter 11. An Introduction to Activity Models

First, do no harm.
Hippocrates

The subject of non-ideal solutions includes just about everything from aqueous acids to polymers to
semiconductors. Not surprisingly, there is no completely general model for non-ideal solutions. But
there are several popular approaches for specific situations like VLE of alcohols or LLE of organic
solvents with water. We discuss typical models and briefly explain their forms and history.
Moreover, the challenge of developing accurate descriptions of non-ideal solution behavior means
that model development is still an active research area. The presentation here should provide enough
background to understand the rationales behind new developments as well as the old.

Chapters 11 through 13 are concerned with correction factors to Raoult’s law known as “activity
coefficients.” The difference is that Chapter 11 is concerned with purely empirical models of binary
mixtures while Chapter 12 focuses on model equations that can be derived from the van der Waals
equation of state. These models are not as complex as those in Chapter 13, but they convey the key
concepts and serve as an introduction. The models in Chapter 13 reformulate the analysis in terms of
the radial distribution function for mixtures. Students need to recognize that Raoult’s law can lead to
gross errors, failing to represent an azeotrope or liquid-liquid equilibrium (LLE), for example. With
this in mind, we take a hierarchical approach. We begin with a simple illustration using the Margules
1-parameter model. This suffices to account crudely for mixtures of components that “like” or
“dislike” each other. Later, we demonstrate that this simple model is related to a generalized
empirical form called the Redlich-Kister expansion. To proceed beyond empirical fitting and begin
understanding the molecular driving forces for nonideality, Chapter 12 returns to the van der Waals
model and extends it to multicomponent mixtures. With molecular understanding, we can develop
more accurate and general models, permitting us to formulate solutions that accomplish broad design
goals, in addition to fitting and extrapolating specific data for specific systems.

Chapter Objectives: You Should Be Able to...
1. Compute VLE phase diagrams using modified Raoult’s law. Perform bubble, dew, and
flash calculations using modified Raoult’s law.
2. Characterize adjustable parameters in activity models using experimental data.
3. Derive an expression for an activity coefficient given an arbitrary expression for the
Gibbs excess energy.
4. Assess the degree of non-ideality of a given mixture based on the molecular properties of
the components.
5. Comment critically on the merits and limitations of the following solution models:
Henry’s law, Margules models, and the Redlich-Kister expansion, including the ability to
identify the most appropriate model for a given application.
6. Apply Henry’s law to estimate fugacities of dilute components.
7. Explain osmotic pressure and compute its value and implications for biological systems.

11.1. Modified Raoult’s Law and Excess Gibbs Energy



In Section 10.7 we demonstrated that deviations from Raoult’s law were manifested by changes in
the bubble line and thus characterized positive and negative deviations. With a purely mathematical
perspective for modeling the behavior, we could develop a “correction” to Raoult’s law as
illustrated in Fig 11.1.

Figure 11.1. P-x-y diagram for isopropanol water at 30°C illustrating the rationale for activity
coefficients using modified Raoult’s law. Data from Udovenko, V.V., and Mazanko, T.F. 1967.

Zh. Fiz. Khim. 41:1615.

Note that the bubble line for Raoult’s law misses the shape completely. The bubble pressure
formula for Raoult’s law is linear in x1 because x2 = 1 – x1 and the Psat values are constants with
respect to x1. Suppose that we were to apply a “correction” to VLE K-ratio for each component and
attribute the deviations to the liquid phase, where the molecules are closely packed and molecular
geometry and intermolecular potentials are much more important than in the vapor phase. The
resultant method provides

The relation to the bubble line is not yet obvious. Cross-multiplying and summing gives,

 Bubble pressure calculation.

Now we can begin to see how this approach adjusts the model to the bubble pressure. When a
system has positive deviations from Raoult’s law, the bubble line lies above the Raoult’s law bubble
line , therefore γi > 1. When a system has negative deviations, γi < 1. This



correction factor γi, is referred to as the activity coefficient. Therefore, P-x-y data are related to the
deviations of the activity coefficients from unity, or it may be helpful to consider the sign of ln γi.1

Look back at Fig. 11.1 and the figures in Section 10.7 and note that the deviations from Raoult’s law
disappear as pure compositions are approached. This means that the deviations depend on
composition, and that the γi(x) that we have introduced in Eqn. 11.1 must go to 1 as the solution
becomes pure in the ith component.

As you might imagine, there are rules that we should follow to develop feasible functions. We
discuss those theoretical aspects in the upcoming sections. The accepted method of modeling the
system is to build a model for γi(x) based in the excess Gibbs energy. The excess Gibbs energy is
also discussed in upcoming sections, but briefly it is the Gibbs energy in “excess” of an ideal
solution. It is generally positive when γi > 1 and negative when γi < 1. The model for excess Gibbs
energy can be developed from a theoretical model of mixing behavior, and usually contains
adjustable parameters to adjust the magnitude and skewness of the “excess” and thus fit the
experiment.

Activity coefficients may be determined from experimental measurements by rearranging modified
Raoult’s law as implied by Eqn. 11.1:

From the values of the activity coefficients, a value for excess Gibbs energy can be calculated:

These values may be tabulated to provide GE/RT vs. x1 and the resultant curve can be regressed to
fit a reasonable analytical expression for convenient interpolation at all compositions. Empirically, it
is often preferable to fit the γi’s directly. We demonstrate both approaches.

The three major stages of working with activity coefficients are shown in Fig. 11.2. In Stage I, the
activity coefficients are determined at various compositions from the experiments. In Stage II, a
model is selected and various techniques can be used to fit the model to the experimental data.
Finally, in Stage III, the model is utilized to solve many different types of phase equilibria problems.
Initially, we work some examples where Stage II is separate from Stage III. In advanced fitting,
Stages II and III are combined. In addition to development of these skills, much of the chapter is
devoted to demonstrating the theoretical foundations for the models so that you are familiar with some
of the popular models available in process design software. We integrate examples of bubble, dew,
and flash calculations throughout the discussions.



Figure 11.2. Strategy for using excess Gibbs energy models for activity coefficients.
Experiments are used to determine γi in Stage I. A model is selected and the model is fitted in
Stage II. The model is utilized to extend and extrapolate the experimental results in Stage III.

The One-Parameter Margules Equation
The simplest expression for the Gibbs excess function is the one-parameter Margules equation

(also known as the two-suffix Margules equation). For a binary system,

 The one-parameter Margules equation is the simplest excess Gibbs expression.

Note: The parameter A12 is a constant which is not associated with the other uses
of the variable (equation of state parameters, Helmholtz energy, Antoine
coefficients) in the text. The parameter A12 is typically used in discussions of the
Margules equation, so we use it here.2

The one-parameter Margules equation is symmetrical with composition. It has an extremum at x1 =
0.5 in a binary system and becomes zero at purity of either component. The activity coefficients in a
binary system for the one-parameter Margules equation are (derived later as Eqns. 11.29–11.31),

 Margules one-parameter model for a binary mixture.

Let us fit the model to experimental data to demonstrate Stage I and Stage II procedures.

 gammaModels/Marg1P.m.

Example 11.1. Gibbs excess energy for system 2-propanol + water
Using data from the 2-propanol(1) + water(2) system presented in Fig. 10.8 calculate the excess

Gibbs energy at x1 = 0.6369 and fit the one-parameter Margules equation. Data from the original
citation provide T = 30°C, , , and y1 = 0.6462 when x1 = 0.6369 at P
= 66.9 mmHg.

Solution
The approach is to determine the activity coefficients and then relate them to the excess Gibbs

energy. The Stage I step is



If we were given more experimental data, we could repeat the calculation for each data point, thus
creating a plot of GE versus x1 like the points shown in Fig. 11.3.

Figure 11.3. Illustration of calculation of GE from experiment and fitting of Margules models
to a single point as discussed in Examples 11.1 and 11.5, for 2-propanol + water, with the

experimental data points from Fig. 10.8 on page 395. Data are tabulated in Example 11.8. The
van Laar model fit to a single point is explained in Section 12.2.

Then, we have been instructed to use the one-parameter Margules model for Stage II. Let us fit the
model as given by Eqn. 11.5 and using the value from Eqn. 11.7.

The curve of GE versus x1 is shown in Fig. 11.3 along with the two-parameter models to be
discussed in Section 11.6 and Example 11.5.

Note from the example that the single point fit gives only an approximate representation of the
excess Gibbs energy (because we compared to some additional data that were not included in the
problem statement). However, let us proceed to see how this one data point can be leveraged to study
the phase behavior.

11.2. Calculations Using Activity Coefficients
Once the activity coefficient model’s parameters are known for a given system, the K-ratio can be

calculated as a function of composition using Eqn. 11.1. For the one-parameter Margules equation,
the activity coefficients are given by Eqn. 11.6. Then the bubble, dew, and flash routines can be
executed from Table 10.1 on page 373. Because the activity coefficients depend on xi, the algorithms



where xi is unknown require an initial guess to calculate a value for γi, and an iterative procedure to
converge. Raoult’s law is often used for the initial guess for xi. Flow sheets for the methods are
summarized in Appendix C, Section C.1. The method for bubble pressure does not require iteration
because the activity coefficient depends on temperature and liquid composition and both are specified
as inputs, as shown by Eqn. 11.2. This simple method is shown in Fig. 11.4.

Figure 11.4. Bubble-pressure method for modified Raoult’s law.

Let us use the algorithm for bubble pressure to determine the pressure and vapor phase
compositions predicted by the one-parameter Margules equation at new compositions based on the fit
of GE at the composition from Example 11.1. In fact, we can generate the entire diagram by repeating
the bubble-pressure calculation across the composition range.

Example 11.2. VLE predictions from the Margules equation
Use the fit of Example 11.1 to predict the P-x-y diagram for isopropanol + water at 30°C. The data

used for Fig. 9.5 from Udovenko et al. for 2-propanol(1) + water(2) at 30°C show x1 = 0.1168 and y1
= 0.5316 at P = 60.3 mmHg.

Solution
This is a Stage III problem, since the first two stages have been completed earlier. Let us start by

generating activity coefficients at the same composition where experimental data are provided, x1 =
0.1168; we find

Note that these activity coefficients differ substantially from those calculated in Example 11.1
because the liquid composition is different. We always recalculate the activity coefficients when new
values of liquid composition are encountered.

 Bubble-pressure calculation.

Substituting into modified Raoult’s law to perform a bubble-pressure calculation:



The total pressure is found by summing the partial pressures,
P = y1P + y2P = 50.4 mmHg

We manipulate modified Raoult’s law as shown in step 3 of Fig. 11.4:
y1 = y1P/P = 21.48/50.4 = 0.426

Therefore, compared to the experimental data, the model underestimates the pressure and the vapor
composition of y1 is too low, but the use of one measurement and one parameter is a great
improvement over Raoult’s law. The estimation can be compared with the data by repeating the
bubble-pressure calculation at selected xi values across the composition range; the results are shown
in Fig. 11.5. Recall that in Fig. 11.3 we noted that the excess Gibbs energy model using A12 = 1.42
fails to capture the skewness of the excess Gibbs energy curve. The deficiency is evident in the P-x-y
diagram also. Fig. 11.5 includes a two-parameter fit that will be discussed later.

Figure 11.5. (a) One-parameter and two-parameter Margules equation fitted to a single
measurement in Examples 11.2 and 11.5 compared with the experimental data points from Fig.
10.8 on page 395. Data are tabulated in Example 11.8. (b) Activity coefficients predicted from

the parameters fitted in Example 11.5 compared with points calculated from the data.

This example has demonstrated that a single experiment can be leveraged to generate an entire P-x-
y diagram with a greatly improved representation of the system. There is an even better method to use
a single experiment with a two-parameter model, but we can explain that later. Let us look at one
more example using the one-parameter model, but let us integrate the fitting of the excess Gibbs
energy (Stage II) simultaneously with the bubble-pressure calculation (Stage III).

Example 11.3. Gibbs excess characterization by matching the bubble point
The 2-propanol (1) + water (2) system is known to form an azeotrope at 760 mmHg and 80.37°C

(x1 = 0.6854). Estimate the Margules parameter by fitting the bubble pressure at this composition.
Then compare your result to the Raoult’s law approximation and to the data in Fig. 10.8(c) (at 30°C),



where P = 66.9 mmHg at x1 = 0.6369 as used in Example 11.1.

 Bubble-pressure calculation.

Solution
The Antoine coefficients for 2-propanol and water are given in Appendix E. At T = 80.37°C, 

, and . We seek P = 760 mmHg. Let us use trial and error at the
azeotropic composition to fit A12 to match the bubble pressure.

At A12 = 1, γ1 = exp[1(1 – 0.6854)2] = 1.104; γ2 = exp[1(1 – 0.3146)2] = 1.600; the bubble
pressure is by Eqn. 11.2

P = 0.6854(694.)1.104 + 0.3146(359.9)1.600 = 706.3 mmHg
The pressure is too low. We need larger activity coefficients, so A12 must be increased. Typing the

bubble-pressure formula into Excel or MATLAB (see file Ex11_03.m), we can adjust A12 until P =
760 mmHg.

 Ex11_03.m.

at A12 = 1.368, γ1 = exp[1.368(1 – 0.6854)2] = 1.145; γ2 = exp[1.368(1 – 0.3146)2] = 1.902; the
bubble pressure is

P = 0.6854(694.)1.145 + 0.3146(359.9)1.902 = 760.0 mmHg
Now, for the second part of the problem, to apply this at T = 30°C, , 

. When x1 = 0.6369 the ideal solution gives,

P = 0.6369(58.28) + 0.3631(31.74) = 48.64 mmHg
At A12 = 1.368, γ1 = exp[1.368(1 – 0.6369)2] = 1.1976;

γ2 = exp[1.368(1 – 0.3631)2] = 1.7418; the bubble pressure is

P = 0.6369(58.28)1.1976 + 0.3631(31.74)1.7418 = 64.53 mmHg
Comparing, we see that the Raoult’s Law approximation, P = 48.6 mmHg, deviates by 27%

whereas the Margules model deviates by only 3.5%. Furthermore, the Margules model indicates an
azeotrope because  means that there is a pressure maximum. Hence the Margules
model “predicts” an azeotrope at this lower temperature, qualitatively consistent with Fig. 10.8(c),
whereas the ideal solution model completely misses this important behavior.

x-y Plots
The “x-y” plot introduced in Fig. 10.4 can be prepared for the azeotropic system of Fig. 11.5 by

plotting the pairs of y-x data/calculations at each pressure or temperature. Such a plot is shown in
Fig. 11.6. The curve represents the two-parameter fit that is shown in Fig. 11.5. Note when an
azeotrope exists that the y-x curve crosses the diagonal at the azeotropic composition.



Figure 11.6. Data and the two-parameter fit of Fig. 11.5 plotted as pairs of x and y. Both T-x-
y and P-x-y data can be plotted in this way.

Looking Ahead
Careful readers may notice that A12 = 1.42 from Example 11.1 and A12 = 1.37 from Example 11.3.

The compositions were slightly different. We also noted in Example 11.1 when we peeked at
additional data that the single parameter model was insufficient to represent the system all the way
across the composition range, so this was also a factor in the difference. There is also a another
possibility for fitting the activity model that we did not consider. After determining the activity
coefficients from Eqn. 11.3, we could have used the values directly in the model Eqn. 11.6. This
method was not used because the solution is overspecified with two equations and one A12 parameter
value that would have been different for each. We could have calculated the two values and averaged
them, but we chose instead to use the excess Gibbs energy or the bubble pressure directly—methods
that used thermodynamic properties directly. We can see that improved models are desirable.

Clearly, the one-parameter Margules model has limitations, but it sets us on a path of continuing
improvement that is fundamental to engineering: Observe, predict, test, evaluate, and improve.
Observations for ideal solutions suggested a crude model in Raoult’s law. When predictions with
Raoult’s law were tested for a broader range of mixtures, however, we observed deficiencies.
Evaluating the model, a correction factor was suggested that conformed to physical constraints like
γi(xi) = 1 when xi = 1. Then a slightly more sophisticated model equation was suggested, the one-
parameter Margules model. We followed through on several of the implications of this model (e.g.,
Eqns. 11.4 and 11.6) and arrived at new predictions. We tested those predictions and found
improvements, but still deficiencies. Now we are ready to begin a new round of evaluation. Each
successive round of evaluation requires deeper insight into the physical constraints, ultimately
leading to careful consideration of the interactions at the molecular scale.

The activity coefficient models that we discuss in upcoming sections enable a broad range of
engineering analyses. For example, we may wish to design a distillation column that operates at
constant pressure and requires T-x-y data. However, the available VLE data may exist only as
constant temperature P-x-y data. We may use the activity coefficient models to convert isothermal P-
x-y data to isobaric T-x-y data, and vice versa. Furthermore, parameters from binary data can be



combined and extended to multicomponent systems, even if no multicomponent data are available.
Elementary techniques for fitting GE (or activity coefficient) models are presented to fit single data
points. Advanced techniques for fitting GE or VLE data across the composition range are presented in
specific examples and Section 11.9. In the next few pages, we fill in some of the theoretical
development that we have skipped in our overview.

Preliminary Predictions Based on a Molecular Perspective
Ultimately, we would like to make predictions that go beyond fitting a single data point for a single

binary mixture. We would like to design formulations to solve practical problems. For example,
suppose somebody had sprayed graffiti on the Mona Lisa. Could we formulate a solvent that would
remove the spray paint while leaving the original painting intact? What about an oil spill in the Gulf
of Mexico? What kind of treatment could disperse it best? What kind of molecule could be added to
break the azeotrope in ethanol + water? What formulation could promote the permeation of insulin
through the walls of the small intestine? These may sound like very different problems, but they are
all very similar to a thermodynamicist. To formulate a compatible solvent, we simply need to
minimize the activity coefficient. For example, we should seek a solvent that has a low activity
coefficient with polymethylmethacrylate (PMMA, a likely graffiti paint) and a high activity
coefficient with linseed oil (the base of oil paint). We could imagine randomly testing many solvents,
but then we might hope to observe patterns that would lead to predictions. These would be
predictions of a higher order than simply extrapolating to a different temperature or composition, but
they would enable us to contemplate the solutions to much bigger problems. You already possess
sufficient molecular insight to begin this process. Elucidating that will simultaneously make these
problems seem less daunting and help us on the way to more sophisticated model evaluation.

You know that acids and bases interact favorably. An obvious example would be mixing baking
soda and vinegar which react. You could also mix acid into water. These interactions are “favorable”
because they release energy, meaning they are exothermic. They release energy because their
interaction together is stronger than their self-interactions with their own species. A subtler
exothermic example is hydrogen bonding, familiar perhaps from discussions of DNA, where the
molecules do not react, but form exothermic hydrogen bonds. Unlike a covalent bond, the hydrogen
sits in a minimum energy position between the donor and acceptor sites. The proton of a hydroxyl (-
OH) group is acidic while an amide or carbonyl group acts as a base. We can extend this concept and
assign qualitative numerical values characterizing the acidity and basicity of many molecules as
suggested by Kamlet et al.3 These are the acidity parameter, α, and basicity parameter, β, values
listed on the back flap. For example, this simple perspective suggests that chloroform (α > 0) might
make a good solvent for PMMA (a polymer with a molecular structure similar to methyl ethyl ketone,
β > 0) because the α and β values should lead to favorable interactions. This is the perspective
suggested by Fig. 11.7(a).



Figure 11.7. Observations about complexation. (a) A mixture of acid with base suggests
favorable interactions, as in acetone + chloroform. (b) Hydrogen bonding leads to unfavorable
interactions when one component associates strongly and the other is inert, as in isooctane +

water. (c) Hydrogen bonding solutions can also be ideal solutions if both components have
similar acidity and basicity, as in methanol + ethanol.

Hydrogen bonding may sound familiar, but there are subtleties that lead to complex behavior.
These subtleties are largely related to the simultaneously acidic and basic behavior of hydroxyl
species. We know that water contains -OH functionality, but its strong interaction with acids also
indicates a basic character. It is both acidic and basic. The subtlety arises when we consider that its
acidic and basic interactions link together when it exists as a pure fluid. Then a question arises about
how water might interact with an “inert” molecule that is neither acidic nor basic, as illustrated in
Fig. 11.7(b). Clearly, the water would squeeze the inert molecule out, so it could maximize its acid-
base interactions. Referring to the back flap, α = β = 0 for molecules like octane-hexade-cane, and
these components have molecular structures similar to oil. Thus, we see that this acid-base
perspective correlates with the old guideline that oil and water do not mix. Oils are said to be
“water-fearing,” or hydrophobic. Finally, Fig. 11.7(c) illustrates what happens when two molecules
have similar acidity and basicity, like methanol and ethanol. Then they can substitute for each other in
the hydrogen bonding network and result in a solution that is nearly ideal. Molecules like alcohols are
called hydrophilic (“water-liking”).

This perspective is not a large leap from familiar concepts of acids, bases, and hydrogen bonding,
but it does provide more insight than guidelines such as “like dissolves like” or “polarity leads to
nonideality.” Acids are not exactly “like” bases, but they do interact favorably. Methanol and ethanol
are both polar, but they can form ideal solutions with each other.

We can go a step further by formulating numerical predictions using what we refer to as the
Margules acid-base (MAB) model. The model provides first-order approximations. The model is:

 Margules acid-base (MAB) model.

where  is the liquid molar volume at 298.15K in cm3/mol. The MAB model is



introduced here for pedagogical purposes. MAB is a simplification of SSCED4 which is in turn a
simplified adaptation of MOSCED5, both of which are covered in Chapter 12. Typical values of V, α,
and β are presented in Table 11.1. For example, with chloroform + acetone at 60°C, this formula
gives

Table 11.1. Acidity (α) and Basicity (β) Parameters in (J/cm3)1/2 and Molar Volumes
(cm3/mol) for Various Substances as liquids at 298 Ka

a. Additional parameters are on the back flap.

Note how the order of subtraction results in a negative value for A12 when one of the components is
acidic and the other is basic. If you switched the subscript assignments, then ∆α would be negative
and ∆β would be positive, but A12 would still be negative. This negative value makes the value of γi
smaller, and that is basically what happens when hydrogen bonding is favorable. Something else
happens when one compound forms hydrogen bonds but the other is inert. Taking isooctane(1) as
representative of oil (or gasoline) and mixing it with water(2) at 25°C,

This large positive value results in γ1 > 7.5 for the isooctane. We can use γi > 7.5 to suggest a
liquid phase split, as we should expect from the familiar guideline that oil and water do not mix.
Furthermore, we can quantify the solubilities of the components in each other (aka. mutual
solubilities) by noting that xi ≈ 1/γi when γi >100. Knowing the saturation limit of water contaminants
can be useful in environmental applications. As a final example, note that we recover an ideal
solution when both components hydrogen bond similarly, as in the case of ethanol + methanol at
70°C.

In this case, we see that hydrogen bonding by itself is not the cause of solution non-ideality. A
mismatch of hydrogen bonding is required to create non-idealities.



Example 11.4. Predicting the Margules parameter with the MAB model
Predict the A12 value of the 2-propanol (1) + water (2) system using the MAB model at 30°C. Then

compare your result to those of Examples 11.1 and 11.3.

Solution
From Eqn. 11.9, A12 = (50.13 – 9.23)(15.06 – 11.86)(76.8 + 18.0)/[4(8.314)303] = 1.08. This

compares to the value A12/RT = 1.42 from Example 11.1 and A12/RT = 1.37 from Example 11.3 at
30°C. The MAB model does not provide a precise prediction, but qualitatively indicates a positive
deviation of the right magnitude.

With this perspective we can begin to contemplate formulations of very broad problems, but this is
only the beginning. We will see in Section that the MAB model overlooks an important contribution
to the activity coefficient, even in the context of the relatively simple van der Waals perspective. In
Section 13.1 we show limitations of the van der Waals perspective. Finally, Chapter 19 shows that
accounting for hydrogen bonding as a chemical reaction results in a description of the Gibbs excess
energy that is quite different from the perspectives in Chapters 11 to 13. All of these presentations
focus primarily on relatively small molecules with single functionalities like alkyl, hydroxyl, or
amide. Modern materials (including biomembranes and proteins) are composed of large molecules
with deliberate arrangements of the functionalities resulting in self-assembly to perform remarkably
diverse macroscopic functions.

11.3. Deriving Modified Raoult’s Law
In Chapter 10 we demonstrated that Raoult’s law requires an ideal solution model for the vapor

and liquid phases as well as conditions where the fugacity coefficients can be ignored. In Section
11.1 we have shown that a relatively simple function is able to capture a major correction to Raoult’s
law, but we have superficially made the connections to fundamental properties and we must now
develop that understanding of how this function is related to component fugacity and Gibbs energy of
the mixture.

To perform VLE calculations, we begin with the fundamental criterion . The fugacity in
non-ideal systems is modeled in terms of deviations from either the ideal gas model or the ideal
solution model. The Venn diagram in Fig. 11.8 may be helpful in visualizing these relations. Ideal gas
behavior is the simplest type of mixture behavior because the particles are non-interacting. This is
shown in the center of Fig. 11.8. Clearly, ideal gas behavior is not followed by all mixtures, and
therefore ideal gases are a subset of real mixtures. Strictly, ideal gas molecules cannot condense
because they have no attractive forces; if fluids were ideal gases, there would be no liquids, and VLE
would not occur. However, at low densities, gas molecules are frequently separated far enough that
the effective intermolecular potentials are insignificant, and we can frequently model the gas phase as
if it is an ideal gas. The fugacity of a component in an ideal-gas mixture is particularly simple; it is
equal to yiP, the partial pressure. The ideal gas model is acceptable for most small molecular weight
vapors near atmospheric pressure;6 and the primary failure of Raoult’s law is due to the liquid phase
where the molecules are closely packed. When the molecules are closely packed in a liquid phase the
intermolecular potential is significant for the same molecules whose potential energies could be



disregarded in the vapor phase. The size and shape of molecules and differences in chemical
functionality at close distances often violate the assumptions of ideal solution behavior. We introduce
the concept of the activity and activity coefficient, γi, to correct the ideal mixture model as
summarized in Fig. 11.8.

Figure 11.8. Schematic of the relations between different fluid models. Ideal gases are a
subset of ideal mixtures, which in turn are a subset of real mixtures. Departure functions

(fugacity coefficients) characterize deviations from ideal-gas behavior, and excess properties
(activity coefficients) characterize deviations from ideal-solution behavior.

The activity coefficient is defined as a ratio of the component fugacity to the ideal solution fugacity
at the same mole fraction:

 Activity coefficients are commonly used for highly non-ideal solutions.

A value of γi = 1 will denote an ideal solution;  is the value of the fugacity at standard state. A
standard state is slightly different from a reference state. The standard state is a specified
temperature, pressure, and composition. The most common standard state in solution thermodynamics
is the pure component at the same temperature pressure as the system. You can see that this is clearly
different from a reference state that would stay fixed throughout a series of calculations. For this
standard state, standard state fugacity is simply the pure component fugacity which we introduced in
Chapter 9, fi. In Fig. 11.8 we also introduce the fugacity coefficient  for a component in a mixture
to characterize the component fugacity relative to the ideal gas partial pressure. We defer most
discussion of the component fugacity coefficients to Chapters 15 and 19.

Now, let us look rigorously at the development of modified Raoult’s law. For the vapor phase, we
begin with the rigorous expression from Fig. 11.8 including deviations from the ideal gas model, 



. For the liquid phase, we use an activity coefficient, γi, giving7

Typically the Poynting method (Section 9.8) is used to calculate the pure-component liquid phase

fugacities, . Combining these expressions,

When used in this full form, Eqn. 11.15 is called the gamma-phi method. This may be written in
terms of the K-ratio, Ki = yi/xi,

At the low pressures of many chemical engineering processes the Poynting corrections and the
ratios of  for the components approach unity. Recalling , we find

We usually write

 Modified Raoult’s law.

We can see that modified Raoult’s law depends on the fugacity coefficient ratio being close to
unity, not necessarily on the ideal gas law being exact. Next, let us demonstrate how the activity
coefficient is related to the excess Gibbs energy.

 Modified Raoult’s law.

11.4. Excess Properties
The deviation of a property from its ideal-solution value is called the excess property. For a

generic property M, the excess property is given the symbol ME, and ME is the value of the property
for the mixture relative to the property for an ideal mixture, ME = M – Mis. Ideal solutions were
discussed in Section 10.10. The molar volume of an ideal solution is just the weighted sum of the



molar volumes of the components, . The excess volume is then,

 Excess volume.

Although the excess volumes of liquids are typically a very small percentage of the volume, the
concepts of excess properties are easily grasped by first studying the excess volume and then
exploring the more abstract quantities of excess enthalpy, entropy, or Gibbs energy.

The excess volume of the system 3-pentanone (1) + 1-chlorooctane (2) at 298.15 K has been
measured by Lorenzana, et al.,8 and is shown in Fig. 11.9. The molar volumes of the pure components
are V1 = 106.44 cm3/mol and V2 = 171.15 cm3/mol. At the equimolar concentration, the excess
volume is 0.204 cm3/mol. Therefore, the molar volume is V = VE + Vis = 0.204 + 0.5 · 106.44 + 0.5 ·
171.15 = 139.00 cm3/mol. The excess volume is only 0.15% of the total volume. The partial molar
excess volume is calculated in a manner analogous to the partial molar volume, 

. If an algebraic expression is available for the excess volume, it may be
differentiated by this relation to yield formulas for the excess volumes. Graphically, the partial molar
volumes at any point may be found by drawing the tangent line to the excess volume curve and reading
the intercepts. At the composition shown at the tangent point in Fig. 11.9, the intercepts give 

 and . The partial molar volumes depend on composition.

Figure 11.9. Excess volume for the 3-pentanone (1) + 1-chlorooctane (2) system at 298.15 K.

The excess enthalpy is very similar to the excess volume,



A solution with HE > 0 has an endothermic heat of mixing, and when HE < 0, the heat of mixing is
exothermic. In an adiabatic mixing process an endothermic mixing process will cool and an
exothermic mixing process will heat.

In directly analogous fashion, the excess Gibbs energy can be defined as the difference between
the Gibbs energy of the mixture and the Gibbs energy of an ideal solution, GE = G – Gis. Then, instead
of speaking of partial molar volumes, we speak of partial molar Gibbs energies. But you should
recognize the partial molar Gibbs energy as the chemical potential as introduced in Section 10.8,
and the significance of the chemical potential to phase equilibrium calculations should resonate
strongly after reading Chapter 10. What remains is to rearrange the mathematics into the final
relations to show how this property is related to the activity coefficients.

11.5. Modified Raoult’s Law and Excess Gibbs Energy
The excess Gibbs energy is

 Excess Gibbs energy.

where we have added and subtracted the sum of the component Gibbs energies in the second line,

and used Eqns. 10.65 and 10.66 in the last line. Let us further examine .

Recall that , (Eqn. 10.42). Previously in Eqn. 10.48 we expressed µi relative to a pure
component value using a ratio of fugacities. Generalization of this equation will provide the link
between Gibbs energies and component fugacities that will lead to the activity coefficient models. If
we calculate the chemical potential relative to a standard state, we find by generalizing 10.48

This ratio of fugacities will appear often, and it is convenient to define the ratio as the activity, and
it can be related to composition using the activity coefficient,



 Activity.

Using a standard state at the T and P of the system (cf. page 425), , we can develop
an expression for ∆Gmix,

Substituting into Eqn. 11.21:

 Excess Gibbs energy is zero for an ideal solution, and activity coefficients are unity.

Note that the activity coefficients and excess Gibbs energy are coupled—when the activity
coefficients of all components are unity, the excess Gibbs energy goes to zero. The excess Gibbs
energy is zero for an ideal solution.

Activity Coefficients as Derivatives
Activity coefficients are related to derivatives of the excess Gibbs energy, specifically the partial

molar excess Gibbs energy. We have a very simple relation between partial molar quantities and
molar quantities developed in Eqn. 10.41,

Applying this relation to excess Gibbs energy,

Comparing this with Eqn. 11.27, we see that



 Activity coefficients are related to the partial molar excess Gibbs energy.

where we have recognized that the partial molar excess Gibbs energy of a component is also the
component excess chemical potential. So, for any expression of GE (T,P,x), we can derive γ’s.

For the one-parameter Margules,

Applying Eqn. 11.28 for i = 1, and using the product rule on n1/n = n1(1/n),

11.6. Redlich-Kister and the Two-Parameter Margules Models
We noted in Example 11.1 a shortcoming in the one-parameter model’s representation of the

skewness of experimental excess Gibbs energy. In principle, adjusting both the magnitude and
skewness of GE is possible with a two-parameter model equation. The mathematical relations in
Sections 11.3–11.5 liberate us to conjecture freely about forms of GE that may fit any given set of
VLE data. Based on any model, developing working equations for activity coefficients is a
straightforward matter of taking derivatives. These are the considerations behind many empirical
models like the Redlich-Kister and Margules two-parameter models.

Many models can be rewritten in the Redlich-Kister form given as9

Two-Parameter Margules Model
The two-parameter Margules model is a simplification of the Redlich-Kister,

where we relate the constants to the Redlich-Kister via A21 = B12 + C12, A21 = B12 – C12, and D12
= 0. The constants A21 and A12 are fitted to experiment as we show below. Note that if A21 = A12, the
expression reduces to the one-parameter model. The expression for the activity coefficient of the first
component can be derived as



Applying Eqn. 11.28 for i = 1, and using the product rule on n1/n = n1(1/n) and n2/n = n2(1/n),

 Actcoeff.xlsx, sheet Margules; gammaModels/Marg2P.m.

The two parameters can be fitted to a single VLE measurement using

where the activity coefficients are calculated from the VLE data. Care must be used before
accepting the values from Eqn. 11.38 applied to a single measurement because experimental errors
can occasionally result in questionable parameter values.

Example 11.5. Fitting one measurement with the two-parameter Margules equation
We mentioned following Example 11.2 that a single experiment could be used more effectively

with the two-parameter model. Apply Eqn. 11.38 to the two activity coefficients values calculated in
Example 11.1 and estimate the two parameters. This is an example of a Stage II calculation.

Solution
From Example 11.1, x1 = 0.6369, x2 = 0.3631, and γ1 = 1.118, γ2 = 2.031. From Eqn. 11.38,

The parameters from Example 11.5 provide the representation of GE shown in Fig. 11.3. Using the
concepts from earlier examples along with Eqn. 11.37 for the activity coefficients, bubble-pressure
calculations across the composition range (Stage III calculations) result in the curve of Fig. 11.5
designated as the two-parameter model.

Example 11.6. Dew pressure using the two-parameter Margules equation



Use the parameters of Example 11.5 to predict the dew-point pressure and liquid composition for
the 2-propanol(1) + water(2) system at T = 30°C, y1 = 0.4, and compare with Fig. 11.5. Use the
vapor pressures, , .

Solution
We will apply the procedure in Appendix C and refer to step numbers there.

 Dew-pressure calculation.

Step 1. Refer to Chapter 10, P = 1/(0.4/60.7 + 0.6/32.1) = 39.55 mmHg, x1 = 0.4(39.55)/60.7 =
0.26. We skip Step 2 the first time.

Step 3. Using parameters from Example 11.5 in Eqn. 11.37, γ1 = exp(0.742(1.99 –
1.8(0.26)))=2.30; γ2 = exp(0.262(1.09 + 1.8(0.74)))=1.18.

Step 4. P = 1/(0.4/(2.3·60.7) + 0.6/(1.18·32.1)) = 53.46 mmHg.
Note the jump in P compared to Step 1 for the first loop.
Step 5. x1 = 0.4(53.46)/(2.3·60.7) = 0.153. Continuing the loop:

Continuing for several more iterations with four digits, P = 50.63 mmHg, and x1 = 0.0649. The
calculations agree favorably with Fig. 11.5. The dew calculations are consistent with a bubble
calculation at x1 = 0.0649.

Because this is a long chapter, we summarize the relations between the activity coefficient models
developed thus far in Table 11.2.

Table 11.2. Summary of Empirical Activity Models and Simplifications Relative to the
Redlich-Kister

11.7. Activity Coefficients at Special Compositions



Two parameter models provide sufficient flexibility with a balance of relative simplicity to
provide successful VLE modeling. Determination of activity for each component permits two
parameters to be fitted, and special compositions can be used.

Azeotropes
The location of an azeotrope is very important for distillation design because it represents a point

at which further purification in a single distillation column is impossible. Look back at Fig. 11.1 on
page 412. Looking at dilute isopropanol concentrations, note x2-propanol = 0.01 < y2-propanol, but near
purity, x2-propanol = 0.99 > y2-propanol. The relative magnitudes have crossed and thus we expect y2-

propanol = x2-propanol (i.e., there is an azeotrope) somewhere in between. If the relative sizes are the
same at both ends of the composition range, then we expect that an azeotrope does not exist.11

Certainly, the best way to identify an azeotrope is to plot T-x-y or P-x-y, but a quick calculation at
each end of the diagram is usually sufficient.

 A simple algorithm to decide if an azeotrope exists.

Note that the relative volatility introduced in Section 10.6 on page 390 also changes significantly in
an azeotropic system. For the reasons above, αij > 1 on one side of the azeotrope, αij = 1 at the
azeotrope, and αij < 1 on the other side. Because shortcut distillation calculations fail at αij = 1, they
must not be used if (αij – 1) changes sign between column ends. This means that screening systems for
azeotropes such as using the algorithm above is important before blindly plugging numbers into
shortcut distillation calculations.

 Relative volatility crosses 1 at an azeotrope.

 Any deviation from ideality will create an azeotrope at a Bancroft point.

We noted in Section 10.7 on page 393 that azeotropic behavior was dependent on the magnitude of
deviations from ideality and the vapor pressure ratio. Look back at Fig. 11.1 on page 412 and recall
that deviations from Raoult’s law create the curve in the bubble line. When the pure component vapor
pressures are nearly the same then a slight curve due to non-ideality can cause an azeotrope. The
same size deviation in a system with widely different vapor pressure may not have an azeotrope. A
plot of logPsat versus 1/T with both components may show a point where the two curves cross when
the heats of vaporization are different. This point is called a Bancroft point. Since the vapor
pressures are exactly equal at the Bancroft point, any small non-ideality generates an azeotrope. This
might be avoidable if the system pressure is raised or lowered to circumvent the Bancroft point in the
temperature range of a distillation column.

Many tables of known azeotropes are commonly available.12 For systems with an azeotrope, the
azeotropic pressure and composition provide a useful data point for fitting activity coefficient models
because x1 = y1. Then ; . Then the typical single point fitting formulas are used
with the azeotrope composition to find the model parameters.



 The azeotrope is a useful point to fit parameters.

Example 11.7. Azeotrope fitting with bubble-temperature calculations
Consider the benzene(1) + ethanol(2) system which exhibits an azeotrope at 760 mmHg and

68.24°C containing 44.8 mole% ethanol. Using the two-parameter Margules model, calculate the
composition of the vapor in equilibrium with an equimolar liquid solution at 760 mmHg given the
following Antoine constants:

Solution
At T = 68.24°C, ; , and the azeotrope composition is known, x1

= 0.552; x2 = 0.448. At this composition, the activity coefficients can be calculated.

 Positive deviations from Raoult’s law, γi > 1.

Using Eqn. 11.38 with the composition and γ’s just tabulated, A12 = 1.2947, A21 = 1.8373. New
activity coefficient values must be found at the composition, x1 = x2 = 0.5. Using Eqn. 11.37, γ1 =
1.583; γ2 = 1.382. The problem statement requires a bubble-temperature calculation. Using the
method of Table 10.1 (a flow sheet is available in Appendix C, option (a); a MATLAB example is
provided in Ex11_07.m),

 Bubble-temperature calculation.

Guess ; . For this model, the activity coefficients
do not change with temperature. The K-ratio depends on the activity coefficients:

 Ex11_07.m.

Checking the sum of yi,  is too low. Try a higher T.

After a few trials, at T = 68.262°C, ; 

Note: The bubble temperatures at x1 = 0.55 and 0.5 are almost the same. The T-x



diagram is quite flat near an azeotrope. This has an important effect on
temperature profiles in distillation columns.

Purity and Infinite Dilution
A component is said to be infinitely dilute when only a trace is present. Thus, when a binary

mixture is nearly pure in component 1, it is infinitely dilute in component 2. The activity coefficients
take on special values at purity and infinite dilution.

Find these limiting values in Fig. 11.5. As an example, consider the infinite dilution composition
limits of Eqn. 11.37, , . Infinite dilution activity coefficients are sometimes
available in the literature and can be useful for fitting if no data are available near the composition
range of interest, but it should be recalled that extrapolations are less reliable than interpolations. In
other words, one might experience significant errors in predictions of bubble pressures near
equimolar compositions when basing parameters on infinite dilution activity coefficients. The same
principle can be used with other activity coefficient models. Infinite dilution activity coefficients are
especially important in applications requiring high purity. In those cases, several stages may be
required in going from 99% to 99.999% purity.

11.8. Preliminary Indications of VLLE
Recall from Section 10.7 that azeotropes occur at x=y, where a maximum or minimum appears in

all the plots. Also note that the bubble and dew lines do not cross, but they touch at the azeotrope
composition. Occasionally when a P-x-y or T-x-y diagram is generated in a Stage III calculation, the
diagram can look very odd. The two-parameter fit in Fig. 11.5 was generated using A12 = 1.99, A21 =
1.09 as fitted in Example 11.5. Suppose, due to a slight calculation error or programming typo, we
generated a diagram using parameters A12 = 2.99, A21 = 1.09. The predicted phase diagram and y-x
diagram would look like those shown in Fig. 11.10.

Figure 11.10. Phase diagram calculations for the 2-propanol + water system at 30°C
compared with data cited in Example 11.2. The parameters where selected as described in the

text to illustrate how a numerical error can result in thermodynamically unstable loops. Note the
dew line has a has a loop and the maximum in the bubble line is not at the azeotropic condition.



Note in the y-x plot that the coexistence curve has maxima and minima. These calculated
conditions are indicative of LLE as discussed in the text, though the experiments do not show

LLE.

The behavior of the lines using these parameters actually predicts that two liquid phases exist.
However, the diagram requires additional modification before coexisting compositions and the
vapor-liquid-liquid equilibria (VLLE) can be read from the diagram. It is important to understand that
the diagram has been generated assuming that only one liquid phase exists. Though we started the
discussion by assuming that a parameter calculation error resulted in predictions, all systems that
exhibit VLLE will have similarly odd diagrams when only one liquid phase is assumed to exist. This
assumption is the default in common process simulators such as ASPEN Plus and ChemCAD because
the calculations are faster when the simulator can avoid checking for two phases. When working with
simulators, you should check the phase diagrams to see if liquid-liquid phase behavior exists and you
should understand where to change the simulator settings to calculate liquid-liquid behavior when it
exists. Within this chapter, you should be ready to recognize that such diagrams are indicative of two
liquid phases. Also recall that a T-x-y diagram qualitatively resembles an inverted P-x-y, so peculiar
loops appear on a T-x-y diagram if a similar situation exists. When models incorrectly predict VLLE
behavior that we know to be incorrect, we need to check our calculations. We learn how to
rigorously characterize VLLE phase diagrams and how to eliminate the loops in Chapter 14.

11.9. Fitting Activity Models to Multiple Data
Fitting of the Margules equations to limited data has been discussed in Examples 11.2 and 11.5.

Fits to multiple points are preferred, which requires regression of the parameters to optimize the fit.
In a few cases, the Gibbs excess function can be rearranged to form the basis for a linear regression.
In general, a non-linear regression may be required. Modern computers facilitate either method.

Linear Fitting of the Margules Equation
Eqn. 11.33 can be linearized:.

 Margules models can be linearized for fitting of parameters.

Therefore, plotting GE/(x1x2RT) versus x1 gives a slope of (A21 – A12) and an intercept of A12. The
value of A21 can also be determined by the value at x1 = 1. Using the data for 2-propanol + water
listed in Example 11.8 (ignoring the first mixture point) results in a slope = –0.9289, intercept =
2.001. Thus, A12 = 2.001, A21 = 1.072, slightly different from the single point fit of Example 11.5.

 Nonlinear parameter fitting is possible in Excel and MATLAB.

Nonlinear fitting techniques

In general, parameters for excess Gibbs models are nonlinearly related to GE or γ. Even in the



cases of the Redlich-Kister and Margules equations, it may be more convenient to simply apply a
nonlinear fitting procedure. The parameters can be fitted to the experimental data to optimize the fit to
the experimental bubble pressure (P-x-y data) or bubble temperature (T-x-y data). In the case of
fitting bubble-pressure data, the parameters can be used to generate a bubble-pressure calculation at
each experimental xi as demonstrated with the one-parameter Margules in Example 11.3. The Excel
Solver tool or the MATLAB fminsearch or lsqnonlin can provide rapid fits. The spreadsheet
Gammafit.xlsx or MATLAB m-file GammaFit.m permit nonlinear fitting of activity coefficient
parameters for the Margules equation by fitting total pressure. Either can be easily modified to find
parameters for any activity coefficient model. The strategy implemented here is to calculate the
activity coefficients using assumed values for the parameters and generate a bubble-pressure
calculation using Eqn. 11.2 for each of the experimental points. Then each bubble pressure is

compared to the experimental bubble pressure, and  is calculated. The
optimizer is invoked to keep adjusting the parameters until OBJ is minimized.

Example 11.8. Fitting parameters using nonlinear least squares
Measurements for the 2-propanol + water system at 30oC have been published by Udovenko, et al.

(1967).a Use the pressure and liquid composition to fit the two-parameter Margules equation to the
bubble pressure. Plot the resultant P-x-y diagram.

 Gammfit.xlsx, Gammafit.m.

Solution
In the experimental data, the researchers report experimental vapor pressures. It is best to use

experimental values from the same publication to reduce the effect of systematic errors which may be
present in the data due to impurities or calibration errors. The solution will be obtained by
minimizing the sum of squares of error for the bubble pressures across the composition range.

MATLAB (condensed to show the major steps):
Click here to view code image

function GammaFit()
% statements omitted to load experiments into matrix 'Data'
x1 = Data(:,1); %data have been entered into columns of 'Data'
y1expt = Data(:,2); Pexpt = Data(:,3);
Ps1Calc = 60.7; Ps2Calc = 32.1; %experimental values used for Psat
x2 = 1-x1; % calculate x2
x  = [x1  x2];  % create a 2 column matrix of x1 & x2
A = [0 0];  % initial guess for A12 and A21
A = lsqnonlin(@calcError,A); %optimize, calling 'calcError' as needed
   function obj = calcError(A)
        A12 = A(1); %extract coeffs so eqns look like text
        A21 = A(2);
        Gamma1Calc = exp((x2.^2).*(A12 + 2* (A21 - A12).*x1));
        Gamma2Calc = exp((x1.^2).*(A21 + 2* (A12 - A21).*x2));
        Pcalc = (x1.*Gamma1Calc)*(Ps1Calc) + ...
                (x2.*Gamma2Calc)*(Ps2Calc);
        obj = Pcalc - Pexpt;
end



The resultant parameters are A12 = 2.173, A21 = 0.9429. The distributed file includes statements to
plot the final figure similar to that shown below. Note that fminsearch can be used if lsqnonlin is not
available due to the toolboxes on your MATLAB installation. See the fit in Fig. 11.11.

Figure 11.11. Comparison of experimental data with regressed model as explained in Example
11.8.

Excel: The spreadsheet “P-x-y fit P” in the workbook Gammafit.xlsx is used to fit the parameters
as shown below. Antoine coefficients are entered in the table for the components shown at the top of
the spreadsheet. The flag in the box in the center right determines whether experimental vapor
pressures are used in the calculations or values calculated from the Antoine equation.

Experimental data for x1 and Pexpt are entered in columns A and I. Initial guesses for the constants
A12 and A21 are entered in the labeled cells in the top table. Solver is then called to minimize the
error in the objective function by adjusting the two parameters. Calculated pressures are determined
by bubble-pressure calculations.

The results of the fit are shown by the plot on spreadsheet “P-x-y Plot.” See the fit in Fig. 11.11.



Note that the system is the same used in Example 11.2 on page 417 and Example 11.5 on page 430.
The fit in this example using all data is superior. The parameters are also slightly different from the
linear fit discussed above because the objective function is different.

a. Udovenko, V.V., Mazanko, T.F. 1967. Zh. Fiz. Khim. 41:1615.

Alternative Objective Functions

An alternative choice of objective function for a given set of data usually results in a slightly
different set of parameters. While the total pressure is often measured accurately, it may be desired to
include vapor compositions in the objective function. For example, it is not uncommon for the pure
component vapor pressures measured by investigators to differ from literature data; this is indicative
of an impurity or a systematic error. One method of incorporating additional considerations into the
fitting procedure is to use weighted objective functions, where recognition is made of probable errors
in measurements. One of the most rigorous methods uses the maximum likelihood principles, which
asserts that all measurements are subject to random errors and therefore have some uncertainty
associated with them. Such techniques are discussed by Anderson, et al.,13 and Prausnitz, et al.14 The
objective function for such an approach takes the form

where σ represents the variance for each type of measurement. The “true” values are calculated as
part of the procedure. Typical values for variances are: σP = 2 mmHg, σT = 0.2 K, σx = 0.005, σy =
0.01, and therefore the weight of a measurement depends on the probable experimental error in the
value.

11.10. Relations for Partial Molar Properties
Gibbs-Duhem Equation

A useful expression known as the Gibbs-Duhem equation results when we analyze Eqn. 10.40
together with Eqn. 10.42. Consider the differential of Eqn. 10.42 using the product rule,

Substituting for dG in Eqn. 10.40 results in

Simplifying, we obtain the Gibbs-Duhem equation,



Therefore, we conclude at constant T and P:

The relation is typically applied in the context of activity coefficients, as described below.

Gibbs-Duhem Relation for Activity Coefficients
To extend the Gibbs-Duhem equation to excess properties, the excess Gibbs energy can be

manipulated in an manner analogous to the derivation above. Therefore,

resulting in

Inserting the relation between excess chemical potential and activity coefficients gives

Technically it is not possible to vary composition for two coexisting phases in a binary without
either T or P changing. However, experimental analysis of isothermal P-x-y data or isobaric T-x-y
data shows that the SE and VE terms are almost always very small compared to the last term and Eqn.
11.48 is generally an excellent approximation. If we apply the expansion rule, Eqn. 6.17, using one of
the mole fractions, and divide by n, in a binary

This equation means that the activity coefficients for a binary system, when plotted versus
composition, must have slopes with opposite signs, and the slopes are related in magnitude by Eqn.
11.49. A further deduction is that if one of the activity coefficients in a binary system exhibits a
maximum, the other must exhibit a minimum at the same composition. We find this relation useful in:
1) testing data for experimental errors (grossly inconsistent data); 2) generating the activity
coefficients in a binary for a second component based on the behavior of the first component in
experimental techniques where only one activity coefficient is measured; 3) for development of
theories for the Gibbs energy of a mixture, since our model must follow this relation. The Gibbs-
Duhem equation is also useful for checking thermodynamic consistency of data; however, the
applications are subject to uncertainties themselves because the activity coefficient is itself derived
from assumptions, (e.g., modified Raoult’s law).15 Fortunately, developers of activity coefficient
models are generally careful to ensure the models satisfy the Gibbs-Duhem equation. An
understanding of the restrictions of the Gibbs-Duhem equation is helpful when studying alternative
standard states such as Henry’s law or electrolyte models. A particularly useful application of the



Gibbs-Duhem equation in a binary mixture is the use of the activity coefficient of one component to
calculate the activity coefficient of the other component.16 Often this can be done by fitting a model to
the activity of the first component, but the Gibbs-Duhem equation provides a method that does not
require the application of a particular mixture model with its associated assumptions.

Relations between Various Excess Properties
For the development of accurate process calculations, a thermodynamic model should accurately

represent the temperature and pressure dependence of deviations from ideal solution behavior. The
excess functions follow the same relations as the total functions, HE = UE + PVE, GE = HE – TSE, and
AE = UE – TSE. The derivative relations are also followed,

resulting in

The Gibbs-Helmholtz relation applies:

Particularly useful is Eqn. 11.53 using the relation with activity coefficients:

Therefore, excess enthalpy data from calorimetry may be used to check the temperature dependence
of the activity coefficient models for thermodynamic consistency. Typically, activity coefficient
parameters need to be temperature-dependent for representing data accurately, which implies an
excess enthalpy. Likewise, any system with a heat of mixing will have temperature-dependent activity
coefficients. A simple model modification is to replace the parameters with functions, for example,
Aij = aij + bij/T, where aij and bij are constants and T is in K. This sets the stage for computing heats
of mixing of any activity model, as shown in Example 11.9.

Example 11.9. Heats of mixing with the Margules two-parameter model
Fitting the VLE of methanol + benzenea in the range of 308–328 K with the Margules two-

parameter model and then fitting the parameters to Aij = aij + bij/T gives A12 = 0.1671 + 714/T and
A21 = 2.3360 – 247/T. Estimate the heat of mixing at 318 K and 50 mol% benzene.



Solution
The Margules two-parameter model is,

The relation between GE and HE is given by Eqn. 11.53. Noting the right side Margules parameters
for the problem statement are simple functions of (1/T), we can manipulate the derivative for this
function. Since d(1/T) = –T–2dT,

Thus,

At 318 K and x1 = x2 = 0.5, HE = 8.314(0.5)(0.5(0.5·714 – 0.5·247) = 485 J/mol. Note that direct
measurement of excess enthalpy is recommended when possible. Phase equilibria data must be very
precise to provide an accurate enthalpy of mixing.

a. Gmehling J., et al., 1977-. VLE Data Collection. Frankfurt/Main: DECHEMA; Flushing, N.Y.: Distributed by Scholium
International.

This example illustrates what it means for the “activity coefficient parameters to be temperature-
dependent” and the manner of taking the derivative of GE. Though we have calculated the excess
Gibbs energy in the previous example, the parameters may also be used to calculate temperature
dependence of activity coefficients. Activity coefficients are strong functions of composition but
weak functions with respect to temperature. This becomes apparent as you study more systems.

Recalling that heat of mixing for an ideal solution is zero, we note that the heat of mixing and the
excess enthalpy are one and the same. The heat capacity for liquid methanol is about 80 J/mol-K and
about 130 J/mol-K for benzene. In an adiabatic mixing process, we would thus expect this equimolar
mixture to be colder after mixing by roughly 5°C. (Note: The excess heat capacity, Cp

E = Cp – Cp
is, is

the temperature derivative of the excess enthalpy; can you determine its value for this mixture?) In
general, we could write that the enthalpy of any given composition is given by,

In this way, we can represent the enthalpy of any stream to perform energy balances.

11.11. Distillation and Relative Volatility of Nonideal Solutions
To illustrate the impact of activity coefficients on practical applications, it is helpful to revisit our

discussion of distillation. The relative volatility of the light to heavy key, αLH, is important to
distillation, as discussed in Section 10.6. Since αLH may not be constant over an entire distillation
column, it is common to estimate the average value by the geometric mean of the bottom and top.



Recalling the definition of αLH from Eqn. 10.32, substituting Eqn. 11.18, and canceling pressures,

Suppose in a binary mixture that we specify splits so that the top is xLK
top = 0.99, and xLK

bot =
0.01. Then recognizing that the activity coefficients go to unity near purity,

Note: It is required that αLH > 1 at both ends of the column in order to avoid an
azeotrope. In other words, Eqns. 10.35 and 11.57 CANNOT be applied unless αLH >
1 at both ends of the column.

Example 11.10. Suspecting an azeotrope
Make a preliminary estimate of whether we should suspect an azeotrope in the system benzene (B)

+ 2-propanol (I) at 80°C. Assume the MAB model. A convenient feature of Margules one-parameter
models (including the MAB model) is that the infinite dilution activity coefficients are equal. (Note
that “convenient” may not equate to “accurate.”)

Solution
Note that this problem is isothermal rather than a distillation column design, but we can evaluate

the relative volatility at either end of the composition range. Antoine.xlsx gives vapor pressures of
PB

sat = 757 mmHg and PI
sat = 683 mmHg at 80°C, so benzene is the LK. For the MAB model,

A12 = (9.23 – 0.63)(11.86 – 2.24)(89.8 + 76.8)/[4(8.314)353] = 1.174;

γi
∞ = exp(1.174) = 3.235

Using the component key assignments, PLK
sat/PHK

sat = 757/683 = 1.108. Therefore, at the end rich
in LK, αLH = (PLK

sat)/(γHK
∞PHK

sat) = 1.108/3.235 = 0.343, and the end rich in HK, αLH =
(γLK

∞PLK
sat)/(PHK

sat) = 3.235·1.108 = 3.58. MAB predicts an azeotrope since (αLH–1) changes sign.
The prediction should be validated with experimental data and/or more accurate models because of
the approximations in the MAB model.

11.12. Lewis-Randall Rule and Henry’s Law
In this chapter, we have thus far introduced the standard state using the pure component properties

at the state of the system (e.g., same T, P, and liquid state). What if the pure liquid substance does not
exist at these conditions? For example, in liquid-phase hydrogenation reactions, H2 is far above its
critical temperature, yet exists in liquid solution at small concentrations. A pure standard state of
liquid H2 is impractical. Similarly, salts dissolve as ions in aqueous solution, but the ions cannot
exist as pure liquids. A model for dilute liquid solutions would be convenient, particularly if it is
possible to model the liquid as some type of ideal solution. To develop models for this behavior, we
first consider the general compositional behavior of the component fugacities. Based on these
observations, we introduce Henry’s law to model the solution behavior relative to an ideal solution at



dilute concentrations.

The Henry’s Law Standard State
Consider the shape of the component-2 fugacity versus composition that results when Eqn. 11.13 is

used along with an activity coefficient model developed in this chapter. If the liquid-phase model
parameters provide positive deviations from Raoult’s law, the shape of the component fugacity curve
is represented by the curve in Fig. 11.12. In the figure, we follow the widely used convention for
dilute binary solutions, where the solvent is designated as component-1, and the dilute solute is
component-2. The use of a pure component property as a standard state creates an ideal solution line
(Eqn. 10.68) known as the Lewis-Randall rule ideal solution line. Raoult’s law is a special case of
the Lewis-Randall ideal solution where we use the vapor pressure to approximate the standard state
fugacity.17 Thus, the activity coefficient models that we have developed previously are relative to the
Lewis-Randall ideal solution. For a Lewis-Randall ideal solution, the activity coefficients approach
one as the concentration approaches purity for that component, and the activity coefficients are
usually farthest from unity at infinite dilution.

Figure 11.12. Schematic representation of the fugacity of component 2 in a binary mixture.

Consider that the fugacity curve in Fig. 11.12 is nearly linear at low concentrations. Thus, we
could express the component fugacity as proportional to concentration using a tangent line near
infinite dilution,

which is the behavior of an ideal solution given by Henry’s law.

 Ideal Henry’s law component.

The Henry’s law constant, hi, is usually determined experimentally, and depends on temperature,
pressure, and solvent. The fact that it depends on solvent makes it very different from a pseudo-vapor
pressure because a vapor pressure would be independent of solvent.

Looking at Fig. 11.12, note that Henry’s law fails at high concentrations of a component unless an
activity coefficient method is developed. Introducing a Henry’s law activity coefficient to represent
non-idealities,



 Henry’s law for non-ideal solution.

where γi
* is the Henry’s law activity coefficient. For the fugacity curve shown in Fig. 11.12 the

Henry’s law activity coefficient needs to be less than one at high concentrations, and the Henry’s law
activity coefficient goes to one at infinite dilution (compare relative to the Henry’s law ideal solution
line). In contrast, Fig. 11.12 shows that the activity coefficient relative to the Lewis-Randall ideal
solution would be greater than one. This can be confusing if you have grown accustomed to activity
coefficients less than one meaning that the components “like” each other. The component will have
negative deviations from Henry’s law and positive deviations from the Lewis-Randall rule.

Although the Henry’s law activity coefficient goes to one at infinite dilution, it is inaccurate to
designate the Henry’s law standard state at that composition. In fact, the correct standard state
designation is a hypothetical pure component fugacity (often not experimentally accessible) selected
in a manner such that the infinite dilution activity coefficient goes to one. Applying the definition of

activity, Eqn. 11.23, we see that . Comparing with Eqn. 11.61, we see that the
standard state is . So the important activity coefficient value is at infinite dilution, but the
standard state composition is a hypothetical pure state. This perspective is especially useful for
electrolyte solutions.

Relating γi for Henry’s Law and Lewis-Randall Rule

Note in Fig. 11.12 that both Henry’s approach and the Lewis-Randall approach must represent the
same fugacity. Equating the two approaches,

Taking the limit at infinite dilution where γ2
* approaches one, and we see

resulting in the relation between the Henry’s and the Lewis-Randall fugacity and activity
coefficient,

 Relation between Henry’s Law constant and Lewis-Randall fugacity.

In Fig. 11.13, look at the right side where lnγ2 approaches lnγ2
∞ and lnγ2

* approaches zero. The
difference in the intercept at x2 = 0 is ln(h2/f2). To model the Henry’s law activity coefficient, the
restriction that the activity coefficients must follow the Gibbs-Duhem Eqn. 11.49 remains; thus, the
slope of the logarithm of the Henry’s law activity coefficient must be the same as the slope of the



logarithm of the Lewis-Randall activity coefficient—the shift is independent of composition. The shift
is illustrated in Fig. 11.13. We may adapt any activity model developed for the Lewis-Randall rule to
Henry’s law by shifting the intercept values for the components modeled by Henry’s law. Thus,

Figure 11.13. Schematic illustration of the relation of the Henry’s law activity coefficient
compared to the Lewis-Randall rule activity coefficient.

 Formula to shift a Lewis-Randall activity model to a Henry’s law activity model.

where any Lewis/Randall model can be used for γi and the same model is used for γi
∞. Usually the

activity coefficient model is manipulated to obtain the infinite dilution activity coefficient expressed
in terms of the activity model parameters, and the difference is expressed analytically. For the one-
parameter Margules equation, . If applied to component 2 (dilute solute) of a binary, with
component 1 (rich solvent) represented by the Lewis-Randall rule,

 Unsymmetric activity coefficients for Henry’s law based on the one-parameter
Margules equation.

Readers should recognize that we have been careful to distinguish between the two standard states
in the presentation here, including distinct symbols for the different activity coefficients. When one
component is represented with Henry’s law and the other represented by the Lewis-Randall rule, the
overall model is described as using the unsymmetrical normalization convention for the activity
coefficients.

Henry’s Law on Molal Activity Scale
Eqn. 11.61 suggests that the units for the Henry’s law constant should be pressure, but other

conventions also exist. For example, a common way of presenting Henry’s constants for gases is to
express the liquid phase concentration in molality and provide a constant inverted relative to hi. The
result is



where the change in units for concentration requires a change in the activity coefficient and a
change in units of the Henry’s law constant.18 Details on the molal activity coefficient  are deferred
until Chapter 18, but like  it goes to one at infinite dilution. For a gas phase component, we have
seen that , and we may use the vapor phase fugacity in the Henry’s law calculation. Many
Henry’s law constants in the NIST Chemistry WebBook follow the KH convention for molality
concentration units. The relation between molality and mole fraction in water is xi = mixw0.001Mw, w
as we derive later (cf. Eqn. 18.147) where Mw,w is the molecular weight of water, and xw is the mole
fraction of water.

 Molal activity coefficients and Henry’s law.

Example 11.11. Solubility of CO2 by Henry’s Law
Carbon dioxide solubility in water plays a critical role in biological physiology and environmental

ocean chemistry, affects the accuracy of acid-base titrations in analytical chemistry, and makes many
beverages fizzy. The Henry’s law constant for CO2 in water is listed on the NIST Chemistry
WebBooka as KH = 0.035 mol/kg-bar at 298.15 K. Estimate the mole fraction of CO2 in water at 0.7
MPa total pressure and 298.15 K. Treat the vapor phase as an ideal gas and the liquid as an ideal
solution with the Henry’s law standard state. Neglect formation of ionic carbonate species.

Solution
KHyCO2

 P = mCO2
 where mCO2

 is mol/(kgH2O). First find yCO2
 by using Raoult’s law for water.

Taking Pw
sat from the steam tables, Raoult’s law for water gives

yw = Pw
sat/P = 0.00317/0.7 = 0.0045 => yCO2

 = 0.9955.

The solubility of CO2 is thus,

The ionic species ignored here in this binary system are sufficient to lower the pH, and though
essential for comprehensive understanding, the concentrations are small relative to the molecular CO2
modeled here. In physiology or ocean chemistry, many other salts are involved which make the
equilibrium more complicated. Chapter 18 addresses several issues of ionization.

a. webbook.nist.gov

http://webbook.nist.gov


Dilute Solution Calculations Using Hypothetical Lewis-Randall Fugacities
Dissolved gas solubilities can be modeled by treating the liquid phase and vapor phase both with

direct use of an equation of state (to be discussed in Chapter 15). However, Eqn. 11.63 suggests that
we can model dilute solutions relative to the Lewis-Randall rule. Looking at Eqn. 11.63, you can
appreciate why the Henry’s law constant depends on solvent—the Lewis-Randall γi

∞ will be
different for every solvent. The activity coefficient models we have developed can take γi

∞ into
account. What we need is a manner to correlate the fugacity of hypothetical liquids above the critical
point. A prevalent model for light gases in petrochemicals is the Grayson-Streed model (and the
closely related Chao-Seader and Prausnitz-Shair models).19

Note that the shortcut vapor pressure equation yields finite numerical results for the Lewis-Randall
fugacity even when T > Tc. Close to the critical temperature, it is sensible to simply extrapolate the
shortcut equation. In that case, the shortcut result is more properly referred to as an estimate of fL

since the liquid vapor pressure is not rigorously defined at T > Tc. Common experience is that
increasing temperature decreases gas solubility. At temperatures where T > 2Tc, however, a
surprising thing happens. The solubility of the gas increases with increasing temperature. In other
words, fugacity of the hypothetical gaseous component decreases with increasing temperature. This
behavior is predicted by equations of state (Chapter 15), but for simple correlations the previously
cited researchers developed correlations of the hypothetical Lewis-Randall fugacities that matched
experiments together with simple mixture models (predominantly the regular solution models
discussed in the next chapter). We introduce the concepts here using the MAB model.

Fig. 11.14 shows several generalized estimates for fL as a function of reduced temperature. The
Grayson-Streed estimates vary substantially depending on whether the general correlation is applied
(GS-0) or specific correlations as for methane (CH4) or hydrogen (H2). The Grayson-Streed
estimates have limits in their range of temperature that are reflected by their ranges in Fig. 11.14. The
Prausnitz-Shair correlation gives a single curve for all compounds regardless of their acentric factor.
For our purposes, we would like to have a generalized correlation that improves qualitatively on the
shortcut equation at high temperatures. This goal can be achieved with the following correlation for
the Lewis-Randall fugacity:



Figure 11.14. Comparison of correlations for liquid fugacity at high temperature as described
in the text. GS = Grayson/Streed, PS = Prausnitz/Shair, SCVP = shortcut vapor pressure
equation., SCVP+ = extended shortcut vapor pressure equation. (ω = 0.21 for SCVP and

SCVP+)

 SCVP+ model for extrapolating Lewis-Randall fugacity above Tc.

This correlation is designed to match the shortcut vapor pressure (SCVP) equation at T < Tc. It
provides a reasonable match of the Grayson-Streed estimates for CH4 at T > Tc and a fairly accurate
match to the Prausnitz-Shair correlation when a value of ω = 0.21 is applied to Eqn. 11.68. It also
provides reasonable results for all temperatures. We refer to this as the SCVP+ equation.

Example 11.12. Henry’s constant for CO2 with the MAB/SCVP+ model
The solubility for CO2 in water at 298 K and 7 bar can be estimated as xCO2

 = 0.0044. Treating the
gas phase as an ideal gas and neglecting any aqueous ionic species, (a) fit γi

∞ using the Lewis-
Randall rule and the SCVP+ equation for pure CO2 and determine the one-parameter Margules
parameter; (b) estimate A12 of the MAB model for CO2 in water and γi

∞ and compare to part (a); (c)
predict Henry’s constant at 311 K using the MAB and the SCVP+ equation.

Solution
a. First use the SCVP+ equation to predict the hypothetical liquid fugacity, log10(fL / 73.82)
= 7(1 + 0.228)(1 – 304.2/298)/3 – 3exp(–3·304.2/298) ය fCO2

L = 73.82·10–0.200 = 47 bar.



(FYI: The Lewis-Randall standard state by the SCVP model would be 64 bar
instead of 47 bar.) Referring to Example 11.11, the ideal gas vapor fugacity has been
calculated there, and we can equate it with Henry’s law and use the fugacity just
calculated with the experimental xCO2

,

yCO2
P = 7·0.9955 = xCO2

γCO2

∞fCO2

L ය γi
∞ = 7·0.9955/(0.0044·47) = 34.

lnγCO2

∞ = A12 = ln(34) = 3.52

b. For MAB the default estimate is A12 = (α2 – α1)(β2 – β1)(V1 + V2)/(4RT)

A12 = (1.87 – 50.13)(0 – 15.06)(44/1.18 + 18/1)/(4(8.314)298) = 4.05

γi
∞ = exp(4.05) = 57.4

The MAB prediction for A12 is approximately (100%)(4.05 – 3.52)/3.52 = 15% too
high.

c. At 311 K, the fitted MAB model suggests that A12 = 3.52(298/311) = 3.37 = lnγCO2

∞. So,
γCO2

∞ = 29.

By Eqn. 11.68, log10(fL/73.82) = 7(1 + 0.228)(1 – 304.2/311)/3 – 3exp(–
3·304.2/311) = –0.0968

By Eqn. 11.64, hCO2
 = γCO2

∞ fCO2

L = 29(10–0.0968) = 23 bar

Note that γi
∞ > 10 for CO2 in H2O with the SCVP+ model of Henry’s law, suggesting that CO2 and

water are not very compatible. In fact, the CO2+H2O system does exhibit VLLE, affirming that this
approach to Henry’s law maintains consistency with the Lewis-Randall perspective. In a similar
manner, other activity models, compounds, and conditions can be characterized.

11.13. Osmotic Pressure
Semi-permeable membranes exhibit the remarkable ability to sort molecules at the nanoscale.

Semi-permeable membranes are used in reverse-osmosis water purification where water can
permeate but salts cannot and in dialysis membranes where blood is purified. Cell walls and cell
membranes in biological systems also have selective permeability to many species. Consider the
membrane shown in Fig. 11.15(a) where pure W is on the left and a mixture of W + C is on the right.
(Often the solvent is water but in polymer chemistry organic solvents can be used.) The membrane is
permeable to W but not to C. If the solutions are at the same pressure, P, then component W
spontaneously flows from the left chamber (higher chemical potential because higher mole fraction)
to the right chamber (lower chemical potential because lower mole fraction) in the condition of
osmosis. If the pressure on the right side is increased, the degree of flow can be decreased. When the
pressure has been increased by the osmotic pressure, Π, the sides achieve phase equilibrium and
flow stops. If the pressure on the right side is increased by more than the osmotic pressure, a
condition of reverse osmosis exists and component W flows from the right to the left. Reverse
osmosis is on the verge of becoming the largest scale chemical engineering unit operation in the
world as populations grow and water becomes scarce.



Figure 11.15. (a) Illustration of a semipermeable membrane. The membrane is permeable to
component W, but not component C. The label of W is convenient because water is a typical

solvent. (b) Illustration of the path used in calculation of the chemical potential in the mixture at
the osmotic pressure.

At the pressure (P + Π) on the right side, inward flow of W stops and the chemical potential is
balanced. Let us create a convenient pathway to relate the chemical potential for the pure fluid at P to
the mixture at P + Π. We can consider pressurizing the pure fluid and then mixing, or we can consider
mixing the fluid and then pressurizing at fixed composition. Following historical derivation, it is
common to use P as the standard state pressure for the mixing. The mixing process can be represented
by the activity, aW = xWγW (cf. Eqn. 11.23)

For W in a mixture, the pressure effect on chemical potential at constant T is . Because
the liquid is nearly incompressible, for the pressure step  and overall,

The calculation path is illustrated in Fig. 11.16(b). The initial state represents the left side of the
membrane and the final state represents the right side. Equating the chemical potential expressions for
the two sides of the membrane results in

Figure 11.16. (a) Osmotic pressure in mmHg for solutions of bovine serum albumin (BSA) in
water at 25°C at different pH values. Data from Vilker, V.L.; Colton, C.K.; Smith, K.A. J.



Colloid Int. Sci. 1981. 79:548. (b) Fits of osmotic pressure at pH 5.4 as explained in Example
11.13.

Leading to the relation between osmotic pressure and activity of the permeable species,

 Relation between osmotic pressure and activity of the permeable species.

The activity can be calculated from any activity coefficient model. Note that because the solution is
very nearly pure W on a molar basis, we calculate activity relative to the Lewis-Randall rule for W,
and it is common to replace the partial molar volume with the volume of pure W. A method known as
the McMillan-Mayer framework20 is used frequently in biology to express lnaW, writing the
logarithm of the activity as an expansion in terms of the molar concentration of the solute, [C]. Using
the molar volume of W to normalize the expression per mole of W, the McMillan-Mayer framework
results in

where B2(T) and B3(T) are functions of temperature known as the osmotic virial coefficients.
Combining the two expressions, eliminating the molar volume, and rewriting the expression using
solute generic subscript i, Ci the solute mass density (in units of grams/(volume of solution)), and
Mw,i molecular weight, results in the form which is common in presenting data:

The osmotic virial coefficients are explicitly given temperature dependence, though they also
depend on pH for biological molecules that change charge as a function of pH. Note that a plot of
Π/(RTCi) will have an intercept related to the reciprocal of molecular weight and the plot can be used
to determine molecular weight of solutes. Experimental data for osmotic pressure for the pig blood
protein bovine serum albumin (BSA) in water at various pH values are shown in Fig. 11.16. The pH
effects on charge are explained when we discuss electrolytes in Chapter 18.

Example 11.13. Osmotic pressure of BSA
Bovine serum albumin (BSA) has a molecular weight of 66399 g/mol. The osmotic pressure of an

aqueous solution at 25°C and pH 5.4 is 74 mmHg when the concentration is 130 g/L and 260 mmHg at
234 g/L.a Using only these data, determine the second and third osmotic virial coefficients and
estimate the pressure needed to concentrate a solution to 450 g/L across a membrane with pure water
on the other side.



Solution
Since two points are given, let us linearize the equation for osmotic pressure to relate the

coefficients to the slope and intercept. Defining a variable s to hold the rearranged variables,

Converting the osmotic pressure to MPa,  is

Then at 234 g/L, si = 1.269×10-2L/g. The third coefficient is given by the slope of si versus Ci,

The second coefficient is found using the third coefficient with either of the original data points.
From the point at 130 g/L:

Now at 450 g/L,

Therefore, we must apply a minimum estimated pressure of 1400 mmHg to concentrate the BSA to
450 g/L. The original paper cited gives a value of approximately 1500 mmHg. The estimate is within
10%. The prediction is sensitive to noise in the data points selected. A better method is to collect a
few more data and regress a best fit.

Fig. 11.16(b) shows three fits of the data. For the “Linear Fit”, the data are linearized following the
procedure in this example, and then linear regression is used over all points. For the ‘“Non-Linear
Fit”, the error in the osmotic pressure prediction of Eqn. 11.73 is minimized using nonlinear
regression. The “Example 11.13” curve uses the coefficients fitted in this example. The second
osmotic coefficient for this data set is sensitive to the regression method. For the linear fit [B2 B3] =
[1.93E-4 5.352E-5], for the nonlinear fit, [–3.57E-3 6.360E-5]. Careful analysis of the regression
statistics shows that the uncertainty in the value of B2 is larger than the value—the uncertainties for
the 95% confidence limit of the nonlinear fit are ±[5.25E-3 1.25E-5].

a. Vilker, V.L., Colton, C.K., Smith, K.A. 1981. J. Colloid Int. Sci. 79:548. Note the original paper uses a molecular
weight of 69000 g/mol.

Cell membranes are excellent examples of semipermeable membranes, especially when
considering water permeability. One implication of this property is that altering the osmotic pressure
in the cellular environment can make the cells “uncomfortable.” Specifically, a higher salt



concentration outside the cell might cause dehydration. On the other hand, zero salt concentration
outside the cell might cause the cell to swell or rupture. This property extends to cell aggregates like
skin, or the epithelium of the eye. For example, one requirement to minimize discomfort caused by
eye drops is to make the solution isotonic, meaning that the osmotic pressure of water in the solution
is the same as that of the reference cellular material, the eyes in this case.21

A common situation in pharmaceutical preparation is that the drug concentration is determined by
the treatment protocol. However, the delivery solution should be isotonic with bodily fluids.
Therefore, the solution must be supplemented with sodium chloride to make it isotonic. Fortunately,
solute concentrations in cells are so low that B2 and B3 of Eqn. 11.73 can be neglected. This results
in the interesting observation that osmotic pressure is independent of the nature of the compound as
long as the molar concentration is the same. In other words, the concentrations of all constituents can
simply be added up until the isotonic concentration is achieved. A property that follows this rule of
adding up the constituents regardless of chemical nature is called a colligative property, of which
osmotic pressure is an example (as long as the concentration is sufficiently low that B2 and B3 may be
neglected).22 As a point of reference, human blood is in the concentration range where colligative
properties can be assumed and isotonic with any solution of 0.308 mol/L solute.

Example 11.14. Osmotic pressure and electroporation of E. coli
E. coli are bacteria commonly used to express desired proteins through genetic modification

because they replicate and express whatever intracellular DNA they find. Introducing foreign DNA
requires weakening the cell membrane by washing twice briefly (~10 min.) with pure water at 4°C,
followed by a wash with 10wt% glycerol solution, centrifuging to isolate the cell pellet from the
medium before washes. After the cells are rendered “electro-competent” through washing, all but 1
ml of the glycerol solution is removed and the aliquots are frozen for storage until the
“electroporation” step (electrically shocking the cells) is conducted. What concentration of glycerol
(wt%) is necessary to make a solution that is isotonic with human blood? Describe what happens to
the water in the cells and the glycerol outside the cells when the medium is replaced with 10 wt%
glycerol.

Solution
The molecular weight of glycerol can be found from the NIST Chemistry WebBook as 92.1. This

means that a 0.308 mol/L solution has 0.308·92.1 g/L of glycerol. Assuming 1000g/L as the density
(the same as water since the concentration is low), this gives a weight fraction of 0.308·92.1/1000 =
0.0284 = 2.84 wt%. Therefore, the 10 wt% is hypertonic. The activity of water is too low to be
isotonic. The driving force is for water to come out of the cells, diluting the glycerol outside the cells.
The cells will shrink and shrivel.

11.14. Summary
The strategies for problem solving remain much the same as the strategy set forth at the end of

Chapter 10 and a review of that strategy is suggested. Use Table 10.1 on page 373 and the
information in Sections 10.1–10.8 to identify known variables and the correct routine to use. Then
apply the valid approximations.



The introduction of activity coefficients is new in this chapter. First, we showed that there are three
different stages in working with activity coefficients: obtaining them from experiments; fitting a model
to the experiments; and using the models to extrapolate to new compositions or different temperatures
and pressures.

We provided several methods of fitting activity coefficient models to experiments, and we
demonstrated bubble-pressure and bubble-temperature calculations. We presented the strategy for
relating the non-idealities to the excess Gibbs energy. We hypothesized models to fit the correct
shape of the excess Gibbs energy and we differentiated the models to obtain expressions for the
activity coefficients. We related the nature of the non-idealities to the chemical structures in the
mixture through the concepts of acidity and basicity.

We introduced the concept of activity. The foundation is laid here for relating the fugacity of a
component in a mixture to its pure component fugacity. Subtle details pertain to the characterization of
standard state, as discussed in the introductions to Henry’s law and osmotic pressure and we
superficially introduced the molality scale for Henry’s law. We will refer back to this discussion in
the context of electrolytes.

Recognize that the primary difference between this chapter and Chapter 10 is the γi used to
calculate Ki. We also pointed out the need for a greater understanding of solution behavior to assist in
developing theory-based activity models, which will lead us into the next two chapters.

Important Equations
The starting point for many phase equilibrium problems is Eqn. 11.13 on page 425:

The various activity models alter the method of computing γi, but do not alter this basic equation.
Eqn. 11.13 will appear in the simplified form for modified Raoult’s law:

Another significant equation can be summarized as the Redlich-Kister expansion (Eqn. 11.32 on
page 429), in that this implicitly represents all the Margules models. When a GE model is combined
with Eqn. 11.28, the activity coefficients can be derived at any composition and substituted into
modified Raoult’s law to solve a wide variety of problems. The relations between GE and activity
coefficient are given by



The simplest binary phase equilibrium equation to keep in mind is the bubble pressure,

Through this equation, it is very easy to compute the implications of non-ideality and assess
qualitatively whether process complications like azeotropes or LLE are likely. A simple equation to
guide your assessment is the MAB estimate of A12 in the Margules one-parameter model.

When considering distillation applications you must first check that αLH > 1 at top and bottom:

We also developed Henry’s law,

We showed how to relate Henry’s law to the Lewis-Randall rule used for modified Raoult’s law
and how to predict the solubilities of supercritical gases in liquid solvents with the SCVP+ model.

11.15. Practice Problems
P11.1. Ninov et al. (J. Chem. Eng. Data, 40:199, 1995) have shown that the system
diethylamine(1) + chloroform(2) forms an azeotrope at 1 bar, 341.55 K and x1 = 0.4475. Is this
a maximum boiling or minimum boiling azeotrope? Determine the bubble temperature and vapor
composition at x1 = 0.80 and 1 bar. (ANS. 331 K, 0.97)

P11.2. Derive the expression for the activity coefficient of the Redlich-Kister expansion.

11.16. Homework Problems
11.1. The volume change on mixing for the liquid methyl formate(1) + liquid ethanol(2) system
at 298.15 K may be approximately represented by J. Polack, Lu, B.C.-Y. 1972. J. Chem
Thermodynamics, 4:469:

∆Vmix = 0.8x1x2 cm3/mol

a. Using this correlation, and the data V1 = 67.28 cm3/mol, V2 = 58.68 cm3/mol,
determine the molar volume of mixtures at x1 = 0, 0.2, 0.4, 0.6, 0.8, 1.0 in
cm3/mol.
b. Analytically differentiate the above expression and show that

and plot these partial molar excess volumes as a function of x1.

11.2. In vapor-liquid equilibria the relative volatility αij is defined by Eqn. 10.32.

a. Provide a simple proof that the relative volatility is independent of liquid and
vapor composition if a system follows Raoult’s law.



b. In approximation to a distillation calculation for a nonideal system, calculate
the relative volatility α12 and α21 as a function of composition for the n-
pentane(1) + acetone(2) system at 1 bar using experimental data in problem
11.11.
c. In approximation to a distillation calculation for a non-ideal system, calculate
the relative volatility α12 and α21 as a function of composition for the data
provided in problem 10.2.
d. Provide conclusions from your analysis.

11.3. After fitting the two-parameter Margules equation to the data below, generate a P-x-y
diagram at 78.15°C.

11.4. A stream containing equimolar methanol(1) + benzene(2) at 350 K and 1500 mmHg is to
be adiabatically flashed to atmospheric pressure. The two-parameter Margules model is to be
applied with A12 = 1.85, A21 = 1.64. Express all flash equations in terms of Ki values and Ki
values in terms of Modified Raoult’s law.

a. List all the unknown variables that need to be determined to solve for the
outlet.
b. List all the equations that apply to determine the unknown variables.

11.5. In the system A + B, activity coefficients can be expressed by the one-parameter Margules
equation with A = 0.5. The vapor pressures of A and B at 80°C are PA

sat = 900 mmHg, PB
sat =

600 mmHg. Is there an azeotrope in this system at 80°C, and if so, what is the azeotrope pressure
and composition?
11.6. The system acetone(1) + methanol(2) is well represented by the one-parameter Margules
equation using A = 0.605 at 50°C.

a. What is the bubble pressure for an equimolar mixture at 30°C?
b. What is the dew pressure for an equimolar mixture at 30°C?
c. What is the bubble temperature for an equimolar mixture at 760 mmhg?
d. What is the dew temperature for an equimolar mixture at 760 mmhg?

11.7. The excess Gibbs energy for a liquid mixture of n-hexane(1) + benzene(2) at 30°C is
represented by GE = 1089 x1x2 J/mol.

a. What is the bubble pressure for an equimolar mixture at 30°C?
b. What is the dew pressure for an equimolar mixture at 30°C?
c. What is the bubble temperature for an equimolar mixture at 760 mmHg?
d. What is the dew temperature for an equimolar mixture at 760 mmHg?

11.8. The liquid phase activity coefficients of the ethanol(1) + toluene(2) system at 55°C are
given by the two-parameter Margules equation, where A12 = 1.869 and A21 = 1.654.



a. Show that the pure saturation fugacity coefficient is approximately 1 for both
components.
b. Calculate the fugacity for each component in the liquid mixture at x1 = 0.0, 0.2,
0.4, 0.6, 0.8, and 1.0. Summarize your results in a table. Plot the fugacities for
both components versus x1. Label your curves. For each curve, indicate the
regions that may be approximated by Henry’s law and the ideal solution model.
c. Using the results of part (b), estimate the total pressure above the liquid
mixture at 55°C when a vapor phase coexists. Assume the gas phase is ideal for
this calculation. Also estimate the vapor composition.
d. Comment on the validity of the ideal gas assumption used in part (c).

11.9.
a. The acetone(1) + chloroform(2) system can be represented by the Margules
two-parameter equation using A12 = –1.149, A21 = –0.862 at 35.17°C. Use
bubble-pressure calculations to generate a P-x-y and y-x diagram and compare it
with the selected values from the measurements of Zawidzki, Z. Phys. Chem., 35,
129(1900).
b. Compare the data to the predictions of the MAB model.

11.10.
a. Fit the Margules two-parameter equation to the methanol(1) + benzene(2)
system T-x-y data below at 90°C (Jost, W., Roek, H, Schroeder, W., Sieg, L.,
Wagner, H.G. 1957. Z. Phys. Chem. 10:133) by fitting to x1=0.549. Plot the
resultant fit together with the original data for both phases.
b. Compare the data with the predictions of the MAB model.



11.11.
a. Fit the Margules two-parameter equation to the n-pentane(1) + acetone(2)
system P-x-y data below at 1 bar (Lo et al. 1962. J. Chem. Eng. Data 7:32) by
fitting to x1=0.503. Plot the resultant fit together with the original data for both
phases.
b. Compare the data with the predictions of the MAB model.

11.12. For a particular binary system, data are available:
T = 45°C P = 37 kPa x1 = 0.398 y1 = 0.428

In addition,  and . From these data,
a. Fit the one-parameter Margules equation
b. Fit the two-parameter Margules equation

11.13. The compositions of coexisting phases of ethanol(1) + toluene(2) at 55°C are x1 =
0.7186, and y1 = 0.7431 at P = 307.81 mmHg, as reported by Kretschmer and Wiebe, J. Amer.
Chem. Soc., 71, 1793(1949). Estimate the bubble pressure at 55°C and x1 = 0.1, using

a. The one-parameter Margules equation
b. The two-parameter Margules equation

11.14. A vapor/liquid experiment for the carbon disulfide(1) + chloroform(2) system has
provided the following data at 298 K: , , x1 = 0.2, y1 = 0.363, P =
34.98 kPa. Estimate the dew pressure at 298 K and y1 = 0.6, using

a. The one-parameter Margules equation
b. The two-parameter Margules equation

11.15. The (1) + (2) system forms an azeotrope at x1 = 0.75 and 80°C. At 80°C, ,



. The liquid phase can be modeled by the one-parameter Margules equation.
a. Estimate the activity coefficient of component 1 at x1 = 0.75 and 80°C. [Hint:
The relative volatility (given in problem 11.2) is unity at the azeotropic
condition.]
b. Qualitatively sketch the P-x-y and T-x-y diagrams that you expect.

11.16. Ethanol(1) + benzene(2) form an azeotropic mixture. Compare the specified model to the
experimental data of Brown and Smith cited in problem 10.2.

a. Prepare a y-x and P-x-y diagram for the system at 45°C assuming the MAB
model.
b. Prepare a y-x and P-x-y diagram for the system at 45°C assuming the one-
parameter Margules model and using the experimental pressure at xE = 0.415 to
estimate A12.

c. Prepare a y-x and P-x-y diagram for the system at 45°C assuming the two-
parameter model and using the experimental pressure at xE = 0.415 to estimate
A12 and A21.

11.17. The acetone + chloroform system exhibits an azeotrope at 64.7°C, 760 mmHg, and 20
wt% acetone.

a. Use the MAB model to predict the T-x-y diagram at 1 bar.
b. Use the Margules one-parameter model to estimate the T-x-y diagram at 1 bar.

11.18. For the Margules two-parameter model estimate the total pressure and composition of the
vapor in equilibrium with a 20 mol% ethanol(1) solution in water(2) at 78.15°C using data at
78.15°C:

11.19. Using the data from problem 11.18, fit the two-parameter Margules equation, and then
generate a P-x-y diagram at 78.15°C.
11.20. A liquid mixture of 50 mol% chloroform(1) and 50% 1,4-dioxane(2) at 0.1013 MPa is
metered into a flash drum through a valve. The mixture flashes into two phases inside the drum
where the pressure and temperature are maintained at 24.95 kPa and 50°C. The compositions of
the exiting phases are x1 = 0.36 and y1 = 0.62.

Your supervisor asks you to adjust the flash drum pressure so that the liquid phase
is x1 = 0.4 at 50°C. He doesn’t provide any VLE data, and you are standing in the
middle of the plant with only a calculator and pencil and paper, so you must estimate
the new flash drum pressure. Fortunately, your supervisor has a phenomenal recall for
numbers and tells you that the vapor pressures for the pure components at 50°C are 

 and . What is your best estimate of the pressure adjustment
that is necessary without using any additional information?

11.21. Suppose a vessel contains an equimolar mixture of chloroform(1) and triethylamine(2) at
25°C. The following data are available at 25°C:



a. If the pressure in the vessel is 90 mmHg, is the mixture a liquid, a vapor, or
both liquid and vapor? Justify your answer.
b. Provide your best estimate of the volume of the vessel under these conditions.
State your assumptions.

11.22. Ethanol(1) + benzene(2) form azeotropic mixtures.
a. From the limited data below at 45°C, it is desired to estimate the constant A
for the one-term Margules equation, GE/RT = Ax1x2. Use all of the experimental
data to give your best estimate.

b. From your value, what are the bubble pressure and vapor compositions for a
mixture with x1 = 0.8?

11.23. An equimolar ternary mixture of acetone, n-butane, and ammonia at 1 MPa is to be
flashed. List the known variables, unknown variables, and constraining equations to solve each
of the cases below. Assume MAB solution thermodynamics and write the flash equations in
terms of K-ratios, with the equations for calculating K-ratios written separately. (Hint:
Remember to include the activity coefficients and how to calculate them.

a. Bubble temperature
b. Dew temperature
b. Flash temperature at 25mol% vapor
b. Raised to midway between the bubble and dew temperatures, then
adiabatically flashed.

11.24. Fit the data from problem 11.11 to the following model by regression over all points, and
compare with the experimental data on the same plot, using:

a. One-parameter Margules equation
b. Two-parameter Margules equation

11.25. Fit the specified model to the methanol(1) + benzene(2) system P-x-y data at 90°C by
minimizing the sum of squares of the pressure residual. Plot the resultant fit together with the
original data for both phases (data are in problem 11.10), using

a. One-parameter Margules equation



b. Two-parameter Margules equation
11.26. Fit the specified model to the methanol(1) + benzene(2) system T-x-y data at 760 mmHg
by minimizing the sum of squares of the pressure residual. Plot the resultant fit together with the
original data for both phases (Hudson, J.W., Van Winkle, M. 1969. J. Chem. Eng. Data 14:310),
using

a. One-parameter Margules equation
b. Two-parameter Margules equation

11.27. VLE data for the system carbon tetrachloride(1) and 1,2-dichloroethane(2) are given
below at 760 mmHg, as taken from the literature.23

a. Fit the data to the one-parameter Margules equation.
b. Fit the data to the two-parameter Margules equation.
c. Plot the P-x-y diagram at 80°C, based on one of the fits from (a) or (b).

11.28. When only one component of a binary mixture is volatile, the pressure over the mixture is
determined entirely by the volatile component. The activity coefficient for the volatile



component can be determined using modified Raoult’s law and an activity coefficient model can
be fitted. The model will satisfy the Gibbs-Duhem equation and thus an activity coefficient
prediction can be made for the nonvolatile component. Consider a solution of sucrose and water.
The sucrose is nonvolatile. The bubble pressures of water (1) + sucrose (2) solutions are
tabulated below at three temperatures.

a. Fit the one-parameter Margules equation to the water data at the temperature(s)
specified by your instructor. Report the values of A12.

b. Prepare a table of γ1 values and plot of the experimental and fitted/predicted ln
γ1 versus x1 for water and sucrose over the range of experimental compositions
for the temperature(s) specified by your instructor.
c. Prepare a table of values and on the same plot as (b) add a curve for ln γ2* for
the temperature(s) specified by your instructor.
d. Prepare a table of values and a plot of osmotic pressure (in MPa) for the
solution versus C2 (g/L) at 25°C. The density at 25°C can be estimated using
ρ(g/mL) = 0.99721 + 0.3725w2 + 0.16638w2

2 where w2 is wt. fraction sucrose.
Include a curve of the osmotic pressure expected for an ideal solution.
e. Calculate the osmotic pressure (MPa) using the activity of water modeled with
the one-parameter Margules equation at 25°C fitted in part (a). Add it to the plot
in part (d).
f. Calculate the second and third osmotic virial coefficients (for concentration
units of g/L) at 25°C by fitting the calculations from part (d). Add the modeled
osmotic pressure to the plot from (d).
g. From the temperature dependence of the one-parameter Margules parameter
fitted in (a), show that the parameter may be represented with f(1/T(K)). Then
provide a model for the excess enthalpy and the parameter value(s) that represent
the experimental data.

11.29. Red blood cells have a concentration of hemoglobin (Mw ~ 68000) at 0.3 M. The osmotic
pressure a body temperature (37°C) is 0.83 MPa. Water can permeate the cells walls, but not
hemoglobin.24

a. Using only the second osmotic coefficient, determine the coefficient value



(L/g), and determine the activity of water at the conditions given above.
b. Calculate the ideal solution osmotic pressure at the conditions given above.
c. Suppose we were to transfer red blood cells in a laboratory solution at 37°C
(blood banks need to do this). We want the external glucose solution to match the
red blood cell’s internal osmotic pressure to avoid swelling or shrinking of the
cells. If glucose has an osmotic pressure of 2 MPa at 0.7 M and 37°C, what
glucose concentration (g/L) would match the internal osmotic pressure to keep
the blood cells stable? What is molality of the resulting glucose solution?
Comparing molalities, what can you infer about the solution non-idealities of the
glucose solution compared to the hemoglobin solution?

11.30. Osmotic pressure of bovine serum albumin (BSA) has been measured at 298.15 K and
various pH values by Vilker, V.L., Colton, C.K., Smith, K.A. 1981. J. Colloid Int. Sci. 79:548,
as summarized in the table below. The investigators report the BSA molecular weight in their
sample as 69,000.

a. Regressing all data, determine the second and third osmotic virial coefficients
for pH 7.4.
b. Regressing all data, determine the second and third osmotic virial coefficients
at pH 4.5.

11.31. Boric acid is a common supplement to make ophthalmic solutions isotonic. It is entirely
undissociated at normal ophthalmic conditions.

a. Estimate the concentration (wt%) of boric acid to prepare a solution that is
isotonic with human blood.
b. Estimate the concentration (wt%) of boric acid that should be added to a
0.025wt% solution of Claritin to make it isotonic. The molecular formula of
Claritin is listed at ChemSpider.com as C22H23ClN2O2.



Chapter 12. Van Der Waals Activity Models

Nothing is more practical than a good theory.1

Clausius

Empirical models like the Redlich-Kister expansion provide a significant improvement over the
ideal solution approximation, but they lack the kind of connection with the molecular perspective that
we have developed in Chapters 1 and 7. The empirical models of Chapter 11 are useful for
determining the activity coefficients from a given expression for GE, but they suggest little about the
form that GE should assume. As we develop models that incorporate physical insight more closely,
we also obtain greater predictive power.

Section 12.1 introduces concepts common to many models based on the van der Waals approach
including random mixing rules and the use of the “regular solution” assumption. Section 12.2
introduces the van Laar equation which has a meaningful functional form, but, like the Redlich-Kister
and Margules equations, is fitted to experimental data. Section 12.3 introduces the Scatchard-
Hildebrand theory, which represents historically the first widely-accepted predictive model,
primarily useful for mixtures of nonpolar molecules. Though the original theory has limited direct use
today, it is the basis of several other models, and solubility parameters developed therein are
currently widely-used to characterize solvents. Section 12.4 develops the Flory equation and the
Flory-Huggins model that combines the Flory representation of entropy of mixing with the Scatchard-
Hildebrand theory for energy of mixing. The Flory-Huggins approach is widely used in polymer
thermodynamics. Section 12.5 extends the Scatchard-Hildebrand theory by including acidity and
basicity corrections in a manner that is very successful in estimating infinite dilution activity
coefficients. That section also develops the SSCED and MAB models, which are pedagogical
simplifications that apply the concepts with approximate methods. The final sections document the
relation of the theories to the original van der Waals equation, and extend the models to
multicomponent systems.

Chapter Objectives: You Should Be Able to...
1. Compute VLE phase diagrams using modified Raoult’s law with the van Laar,
Scatchard-Hildebrand, SSCED, MOSCED, or Flory-Huggins models.
2. Compute the relative volatility of key components in a multicomponent mixture.
3. Explain the relationship between molecular properties like energy density, acidity, and
basicity and macroscopic behavior like activity coefficients and azeotropes, enabling
predictions and formulation design.

12.1. The van der Waals Perspective for Mixtures
We have seen that the van der Waals EOS in Chapter 7 provides a simple basis for understanding

the interplay between entropy, energy, repulsion, and attraction of pure fluids. Even the
embellishments of the Peng-Robinson equation add little to the qualitative physical picture envisioned
by van der Waals. Therefore, the van der Waals model provides a reasonable starting point for
conceiving the physics of mixtures. The key quantities to be considered are van der Waals’ a and b. If
only we knew how to compute a = a(x) and b = b(x), then we could solve for Z for a mixture.



Through Z, we can integrate our density-dependent formulas to obtain G, then differentiate with
respect to composition to obtain partial molar Gibbs energies, chemical potentials, and component
fugacities. This is the general strategy. The formulas for a = a(x) and b = b(x) are called mixing
rules.

A Simple Model for Mixing Rules
Recognizing the significance of the Gibbs excess function, it should not be surprising that many

researchers have studied its behavior and developed equations that can represent its various shapes.
In essence, these efforts attempt to apply the same reasoning for mixtures that was so successful for
pure fluids in the form of the van der Waals equation. The resultant expressions contain parameters
that are intended to characterize the molecular interactions within the context of the theory. The utility
of the theory is judged by how precisely the experimental data are correlated and by how accurately
predictions can be made. Given that molecules in solution must actually interact according to some
single set of laws of nature, one might wonder why there are so many different theories. The
challenge with mixtures is that there are many different kinds of interactions occurring simultaneously,
for example, disperse attractions, hydrogen bonding, size asymmetries, branching, rings, and various
rotations and aspect ratios. As a result, many specific terms must be invoked to describe these many
specific interactions. Because incorporation of all these effects makes the resultant model unwieldy,
many researchers have made different approximations in their models. Each model has its proponents.
It is difficult even to describe the various models without expressing personal prejudices. For
practical applications, the perspective we adopt is that these equations usually fit the data, and that
extrapolations beyond the experimental data must be performed at some risk.

The models considered in the remainder of this chapter are based on extension of the van der
Waals equation of state (Eqn. 7.12) to the energy departure for mixtures. When we extend equations
of state to mixtures, the basic form of the equation of state does not change. The fluid properties of the
mixture are written in terms of the same equation of state parameters as for the pure fluids; however,
equation of state parameters like a and b are functions of composition. The equations we use to
incorporate compositional dependence into the mixture constants are termed mixing rules.

 The composition dependence is introduced into an equation of state by mixing rules
for the parameters. The basic equation form does not change.

The parameter b represents the finite size of the molecules. For many mixtures of roughly equal-
sized molecules, the dense volumes mix ideally. Therefore, it is reasonable to assume2

As for a, we must carefully consider how this term relates to the internal energy of mixing, because
the Gibbs energy of mixing is closely related. The departure function can be quickly found using Eqn.
7.12 with the departure formula Eqn. 8.22, resulting in

The parameter a should represent the average attraction resulting from the many varied molecular
interactions in the mixture.



In a binary mixture there are three types of interactions for molecules (1) and (2). First, a molecule
can interact with itself (1+1 or 2+2 interactions), or it can interact with a molecule of the other type
(a 1+2 interaction). Assuming a random fluid,3 the probability of finding a (1) molecule is the fraction
of (1) atoms, x1. The probability of a 1+1 interaction is a conditional probability. A conditional
probability is the probability of finding a second interacting molecule of a certain type given the first
is a certain type. For independent events, a conditional probability is calculated by the product of the
individual probabilities. Therefore, the probability of a 1+1 interaction is . By similar arguments,
the probability of a 2+2 interaction is . The probability of a 1+2 interaction is x1x2 and the
probability of a 2+1 interaction is also x1x2.4 If the attractive interactions are characterized by a11,
a22, and a12, the mixing rule for a is given by:

where the pure component a parameters are indicated by identical subscripts on a. In other words,
a11 represents the contribution of 1+1 interactions, a22 represents 2+2 interactions, a12 represents the
contribution of 1+2 interactions, and the mixing rule provides the mathematical method to sum up the
contributions of the interactions. a12 is called the cross coefficient, indicating that it represents two-
body interactions of unlike molecules. In the above sum, it is understood that a12 is equivalent to a21.
Note that a12 is not the a for the mixture. This type of mixing rule is called a quadratic mixing rule,
because all cross-products of the compositions are included. It represents a fairly obvious
approximation to the way mixing should be represented.

The quantity a12 plays a major role in the solution behavior. Predicting solution behavior is largely
the same task as predicting a12. This prediction takes the form of

where k12 is an adjustable parameter called the binary interaction parameter. The default is k12 =
0, giving a preliminary estimate of a12. Going beyond this estimate requires contemplating whether
we expect positive or negative deviations from Raoult’s law. Eqns. 12.3 and 12.2 show that larger
values of a12 result in more negative (exothermic) energies of mixing. More negative values of k12
lead to more negative energies of mixing, which is favorable to mixing.

We can relate a12 to the molecular properties by considering the square-well model. Fig. 1.2
shows the square-well model for a binary mixture. We are now in a better position to interpret its
significance. When k12 is positive (case (c)), the depth of the attraction is shallower. The most
positive value would be k12 = 1, in which case there would be no attraction at all. This is an easy
way to remember that positive values of k12 lead to repulsion. When k12 is negative (case (b)), the
attraction can be very deep. In fact, k12 < –1 is a possibility for very strong acid-base interactions.
Recalling our discussion of the MAB model, we should begin to understand how to predict k12. We
further develop this understanding through the remaining discussion in this chapter.

Activity Models from the van der Waals Perspective



Several models derive from the van der Waals equation of state with the assumption of a constant
packing fraction (bρ). They are distinguished by different approximations of the terms in the resultant
equations. For example, the entropic contributions to GE are neglected by “regular” solution models
(van Laar, Scatchard-Hildebrand, SSCED). The van Laar model is distinguished by treating the ratio
of V2/V1 as an adjustable parameter, whereas Scatchard-Hildebrand and SSCED estimate that ratio
from the liquid molar volume. SSCED differs from Scatchard-Hildebrand by accounting for the
effects of hydrogen bonding (like the MAB model) as well as the influences of attractive dispersion
forces (aρ).

Many of these distinctions may seem superficial, but they are part of the historical development that
forms the lexicon of activity models. Furthermore, they provide a convenient shorthand for
referencing the various contributions to overall solution behavior. It is important to remember,
however, that the assumed activity model in no way alters the procedures for computing VLE
developed in Chapters 10 and 11. You should be able to adapt any solution model to solving VLE
problems by simply substituting the appropriate expression for γ.

“Regular” Solutions

The Gibbs energy, GE = UE + PVE – TSE, is composed of three contributions. For liquids, the PV
term is small to begin with, and PVE is even smaller, so it makes sense to ignore the excess volume
contribution and assume that the solution volume follows ideal mixing rules. Recalling how entropy is
related to volume suggests the hypothesis that entropy might mix ideally also. These simple
suppositions lead to the theories of van Laar or Scatchard and Hildebrand. We refer to “regular
solution theories” when applying the assumptions of VE = SE = 0, leading to GE ≈ UE.

The energetics of a of the mixture are given by Eqn. 12.3 and 12.4. For the volume, assuming zero

excess volume,  according to regular-solution theory. Combining into Eqn. 12.2,

For the pure fluid, taking the limit as xi → 1,

For a binary mixture, subtracting the ideal solution result, UE = (U – Uig) – (U – Uig)is to get the
excess energy gives,

Collecting terms over a common denominator,



12.2. The van Laar Model
Johannes van Laar found that the parameters from the van der Waals equation of state were not

accurate in predicting excess energy of mixing, and empirical fitting was required. He simplified the
equation for the excess internal energy by arbitrarily defining a single symbol, “Q,” to represent the
final term in the equation:

J. van Laar was a student of Johannes van der Waals and Jacobus Henricus van’t Hoff.

It would appear that this equation contains three parameters (V1, V2, and Q), but van Laar
recognized that it could be rearranged such that only two adjustable parameters need to be
determined.

with the final result:5

Differentiating Eqn. 12.12 gives expressions for the activity coefficients. To show this for γ1,

Applying Eqn. 11.28 for n1 and differentiating the ratio using the product rule on (n2A12A21)(n1)



(1/(n1A12+n2A21)),

Obtaining a common denominator, rearranging, and applying symmetry for γ2,

 Van Laar model.

Note: The parameters A12 and A21 for the van Laar and Margules equations have
different values for the same data. Do not interchange them.

When applied to binary systems, it is useful to note that these equations can be rearranged to obtain
A12 and A21 from γ1 and γ2 given any one VLE point. This is the simple manner of estimating the
parameters that we generally apply in this chapter. Similar to the two-parameter Margules, a single
experimental point can be used as described in Section 11.6:

Care must be used before accepting the values of Eqns. 12.16 applied to a single experiment,
because experimental errors can occasionally result in questionable parameter values. Eqn. 12.16
applied to the activity coefficients from Example 11.1 results in A12 = 2.38, A21 = 1.15, and GE is
plotted in Fig. 11.3. Methods of fitting the parameters in optimal fashion for many data are covered in
Section 11.9.

Example 12.1. Infinite dilution activity coefficients from the van Laar theory
n-Propyl alcohol (1) forms an azeotrope with toluene (2) at x1 = 0.6, 92.6°C, and 760 mmHg. Use

the van Laar model to estimate the infinite dilution activity coefficients of these two species at this
temperature.

Solution
The vapor pressures using parameters from Antoine.xlsx are , .
Applying the azeotropic data as explained in Section 11.7 gives:  = 1.191; 

. Eqn. 12.16 gives: A12 = 1.643; A21 = 1.193.

Taking the limits of Eqn. 12.15 as the respective components approach zero composition results in 



 and ; Similarly .

Linear Fitting of the van Laar Model
Like the Margules models, the van Laar model can be linearized. Eqn. 12.12 can be rearranged:

Therefore, if numerical values for the left-hand side are determined using GE from experimental
data as illustrated in Example 11.1 on page 414 and plotted versus x1, the slope yields (1/A21 –
1/A12), and the intercept yields 1/A12. The value of 1/A21 can also be determined by the value at x1 =
1. Sometimes plots of the data are non-linear when fitting is attempted. This does not necessarily
imply that the data are in error. It implies that an alternative model may fit the data better. By plotting
the data in both the Margules and van Laar linearized forms, the better model can be identified as the
one that is most linear. Fitting the data for 2-propanol + water presented in Example 11.8 (ignoring
the first mixture point), results in an intercept = 1/A12 = 0.4993, slope = 0.3486, resulting in A12 =
2.00, A21 = 1.18.

12.3. Scatchard-Hildebrand Theory
Returning to Eqn. 12.10, G. Scatchard in Europe and Joel H. Hildebrand in the United States both

made similar adjustments to match the van der Waals equation to experiment and provide a model
capable of predictions for nonpolar fluids. They made an assumption that is equivalent to assuming
k12 = 0 in Eqn. 12.4. Setting , and collecting terms,

J.H. Hildebrand is credited with suggesting that helium be mixed with breathing air in
deep sea diving to minimize “the bends.” He was awarded the ACS Priestly award in
1962. He continued to maintain an active professional life until he was 100.

Scatchard and Hildebrand recognized the unknown parameters in terms of volume fractions and
disperse attraction energies that could be related to the pure component values. Defining a term called
the “solubility parameter,”

To estimate the value of δi, Scatchard and Hildebrand suggested that experimental data be used



such that

(Note the units on the “a” parameter from Eqn. 12.2, and from comparing Eqns. 12.21 and
12.22, and note the way Vi moves inside the root in Eqn. 12.22.)

In other words, δi is assumed to provide a standard measure of the “energy density” for each
component. Because it represents the energy departure divided by volume, it is called the cohesive
energy density. As long as a standard reference condition is used, any convenient set of ∆Uvap and
Vi may be applied. A convenient set of conditions that has become customary is the saturated liquid at
298 K. On this basis, we can tabulate a fair number of solubility parameters for ready reference, as
shown in Table 12.1. Note that many similar compounds have similar values for their solubility
parameters. Since similar solubility parameters yield small excess energies, solutions of similar
components are predicted to be nearly ideal, as intuitively expected. By scanning the tables for the
values of solubility parameters, we can quickly estimate whether the ideal solution model should be
accurate or not. This approach gives a quantitative flavor to the old adage “like dissolves like.”

Table 12.1. Solubility Parameters in (J/cm3)1/2 and Molar Volumes (cm3/mol) for Various
Substances as liquids at 298 K

Turning to the Gibbs energy, the regular solution assumptions give,



And the resultant activity coefficients are

 Scatchard-Hildebrand theory.

 Actcoeff.xlsx, worksheet REGULAR.

 Bubble-temperature calculation.

Example 12.2. VLE predictions using the Scatchard-Hildebrand theory
Benzene and cyclohexane are to be separated by distillation at 1 bar. Use the Scatchard-

Hildebrand theory to predict whether an azeotrope should be expected for this mixture.

Solution
We will implement the algorithm to test for an azeotrope from Section 11.7 on page 432. Given xB

and P, we should perform bubble-temperature calculations.
Using parameters from Table 12.1, at xB = 0.99, guess T = 350 K:

ය ΦB = 0.99(88)/[0.99(88) + 0.01(107)] = 0.9879

Calculating vapor pressures:

Applying Eqns. 12.24 and 12.25:
lnγB = 88(1 – 0.9879)2(18.74 – 16.75)2/(8.314·350) = 1.8E-5 ය γB = 1.00002
lnγC = 107(0.98789)2 (18.74 – 16.75)2/(8.314·350) = 0.1443 ය γC = 1.1552

Calculating the pressure and vapor mole fractions:

 = 0.99(1.00)(686.9) + 0.01(1.1552)(680.0) = 687.9 mmHg
යyB = 0.99(1.00)(686.9)/687 = 0.895, yC = 0.01(1.1552)(680.0)/687 = 0.010

Since , we must guess a higher temperature.



Guess T = 354 K ය ; ; γB = 1.00; γC = 1.1533

Interpolating between the first guesses:

At xB = 0.01, guess T = 353.5 K ය ΦB = 0.01(88)/[0.01(88) + 0.99(107)] = 0.0082

lnγC = 107(0.0082)2(18.74 – 16.75)2/(8.314·350)≈ 0 ය γC = 1.00
lnγB = 88(1 – 0.0082)2(18.74 – 16.75)2/(8.314·350) = 0.1232 ය γB = 1.126

converged with ය yB = 0.011 > xB = 0.01

Therefore, (yB – xB) changes sign between 0.01 and 0.99, so the system has an azeotrope.

 Actcoeff.xlsx, worksheet REGULAR.

When the Scatchard-Hildebrand solution theory is used, the {δi} and {Vi} are available directly
from pure component data, and in principle, there are no adjustable parameters. The theory is entirely
predictive. The van Laar theory, on the other hand, treats both A12 and A21 as adjustable parameters.
We can also obtain a compromise by assuming

The activity coefficient expressions for binary solutions become:

 Scatchard-Hildebrand model with an adjustable parameter.

In mixtures of compounds that deviate moderately from ideal-solution behavior, the Scatchard-
Hildebrand solution theory with binary interaction parameters can be extremely helpful. The binary
interaction parameter in those cases serves to adjust the magnitude of the excess Gibbs energy without
addressing the skewness directly. Large deviations, however, are generally accompanied by non-
ideal mixing in the volume and entropy. In those cases, the van Laar equations can often be useful in
correlation, but the physical meaning behind the parameters is generally lost.

Paul J. Flory was awarded the Nobel Prize in chemistry in 1974. The original derivation



used statistical mechanics, but is consistent with this alternative derivation.

12.4. The Flory-Huggins Model
In deriving the entropy of mixing ideal gases in Eqn. 4.8 on page 138, we applied the notion that

ideal gases are point masses and have no volume. We considered the entropy of mixing to be
determined by the total volume of the mixture. When we consider the entropy of mixing liquids,
however, we realize that the volume occupied by the molecules themselves is a significant part of the
total liquid volume. The volume occupied by one molecule is not accessible to the other molecules,
and therefore, our assumptions regarding entropy may be inaccurate. One simple way of correcting
for this effect is to subtract the volume occupied by the molecules from the total volume and treat the
resultant “free volume” in the same way we treated ideal gas volume.

Example 12.3. Deriving activity models involving volume fractions
The derivation of Scatchard-Hildebrand theory shows that volume fraction arises naturally as a

characterization of composition, rather than mole fraction. This observation turns out to be true for
many theories. Show that you can derive the relevant activity model from a Gibbs excess model
involving volume fraction by deriving Eqn. 12.24 from Eqn. 12.28.

Solution
GE = RT(δ2 – δ1)2 (n1V1 + n2V2) Φ1 Φ2

Taking the derivative of the equation for GE involves applying the chain rule to the three
compositional factors: (n1V1 + n2V2), Φ1, and Φ2.

The derivative of the first term is simply V1 and,

RTlnγ1 = ∂GE /∂n1 = RT(δ2 – δ1)2 [V1Φ1Φ2 + (n1V1 + n2V2) (Φ2∂Φ1/∂n1 + Φ1∂Φ2/∂n1)].

It is helpful to maintain dimensional consistency in order to provide a quick check as we proceed.
This can be achieved by multiplying and dividing by n, resulting in:

RTlnγ1 = RT(δ2 – δ1)2 [V1 Φ1 Φ2 + (x1V1 + x2V2) (Φ2 n∂Φ1/∂n1 + Φ1 n∂Φ2/∂n1)]

A key strategy in these derivations is to replace all compositional quantities with expressions
depending only on {ni}, not {xi}, and not {Φi}. For {Φi}, this is easily achieved by multiplying the
numerator and denominator by n, noting that xi = ni/n.

Φ1 = x1V1/(x1V1 + x2V2) = n1V1/(n1V1 + n2V2); Φ2 = x2V2/(x1V1 + x2V2) = n2V2/(n1V1 + n2V2).

Taking the derivative involves product rule for Φ1 and a simple reciprocal for Φ2:

∂Φ1/∂n1 = V1/(n1V1 + n2V2) – n1V1
2/(n1V1 + n2V2)2; ∂Φ2/∂n1 = – n2V2V1/(n1V1 + n2V2)2.

Multiplying by n and simplifying gives:



Substituting and noting that (x1V1 + x2V2) cancels between numerator and denominator,

RTlnγ1 = RT(δ2 – δ1)2 [V1Φ1Φ2 + (Φ2 V1(1 – Φ1) – Φ1V1(Φ2)]

The first and last terms in the brackets cancel. Also, for a binary mixture, Φ2 = (1 – Φ1). So,

RTlnγ1 = RT(δ2 – δ1)2 [V1Φ2
2]

This procedure is extremely similar for all GE models. In particular, Eqns. 12.27 and 12.28 can be
easily adapted to any GE model involving {Φi}, if you first apply the chain rule thoughtfully.

Free volume is the difference between the volume of a fluid and the volume occupied by
its molecules.

To use the concept, we assume that there is a fractional free volume, , globally applicable to all
liquids and liquid mixtures. Let us further assume that the entropy change for a component is given by
the change in free volume available to that component.

Example 12.4. Scatchard-Hildebrand versus van Laar theory for methanol + benzene
Fit the Scatchard-Hildebrand and van Laar models to the methanol + benzene azeotrope. Match the

azeotropic pressure (and the composition in the case of the van Laar two-parameter model). The
azeotrope appears at 58.3°C and xm = 0.614. The vapor pressures at 58.3°C are 591.3 mmHg for
methanol, 368.7 mmHg for benzene.

Solution
The van Laar parameters and binary interaction parameter are determined by matching the

azeotropic pressure (and composition for the van Laar case) as described in previous examples. The
resultant calculations are described in the worksheet REGULAR in the workbook Actcoeff.xlsx and
the MATLAB file Ex12_04.m. Though not apparent from the figure below, the Scatchard-Hildebrand
theory incorrectly predicts LLE until the binary interaction parameter is adjusted. See the supporting
computer files. Fig. 12.1 illustrates the results of the fitting.

Figure 12.1. T-x-y diagram for methanol and benzene for Example 12.4. The compositions are
plotted in terms of mole fractions of methanol.



 Actcoeff.xlsx, sheet REGULAR, Ex12_04.m.

The free volume available to any pure component is

If we assume that there is no volume change on mixing, the resultant free volume in the mixture is
given by the same fraction, , and the mixture volume is

When two components mix, each component’s entropy increases according to how much more
space it has by an modification of Eqn. 4.6 using the free volume rather than the total volume:

Note that Eqn. 12.32 reduces to the ideal solution result, Eqn. 10.63, when V1 = V2. The excess
entropy is

This expression provides a simplistic representation of deviations of the entropy from ideal
mixing. The entropy of mixing given by Eqn. 12.33 is frequently called the combinatorial entropy of
mixing because it derives from the same combinations and permutations that we discussed in the case
of particles in boxes. If entropy is the dominant factor in mixing, this formula can be used to find the
excess Gibbs energy. When the excess enthalpy is zero, the mixture is called athermal.

 Flory’s equation.

It can also be combined with the Scatchard-Hildebrand solution theory6 to derive the predictive
theory of Blanks and Prausnitz7 or the more common “Flory-Huggins” theory. These expressions are
particularly important for solutions containing large molecules like polymers.

For a binary solution,



Frequently, for mixtures of polymer and solvent, the enthalpic term is fitted empirically to
experimental data by adjusting the form of the equation to be the Flory-Huggins model,

 Flory-Huggins model.

where component 1 is always the solvent, and component 2 is always the polymer. The variable r
= V2/V1 denotes the ratio of volume of the polymer to the solvent. Similarly, χ ≡ V1(δ1 – δ1)2/RT. A
solvent for which χ = 0 is an athermal mixture. Plotting the result for SE versus mole fraction for
several size ratios, Fig. 12.2 shows that it is always positive, and it becomes larger and more skewed
as the size ratio increases. Thus, the size ratio has a large effect on the phase stability when the ratio
is large.

Figure 12.2. Illustration of excess entropy according to Flory’s equation for various pure
component volume ratios.

Example 12.5. Polymer mixing
One of the major problems with recycling polymeric products is that different polymers do not

form miscible solutions with one another; rather, they form highly non-ideal solutions. To illustrate,
suppose 1g each of two different polymers (polymer A and polymer B) is heated to 127°C and mixed
as a liquid. Estimate the activity coefficients of A and B using the Flory-Huggins model.

Solution



xA = (1/10,000)/(1/10,000 + 1/12,000) = 0.546; xB = 0.454

ΦA = 0.546(1.54)/[0.546(1.54) + 0.454(1.68)] = 0.524; ΦB = 0.476

lnγA = ln (0.5238/0.5455) + (1 – 0.5238/0.5455) + (1.54E6(19.4 – 19.2)2(0.4762)2)/(8.314(400))

= –0.0008 + 4.200 ය γA = 66

lnγP = ln (0.4762/0.4545) + (1 – 0.4762/0.4545) + (1.68E6(19.4 – 19.2)2(0.5238)2)/(8.314(400))

= +0.0008 + 5.544 ය γB = 258

Several important implications can be interpreted from Example 12.5. It is often noted that the
Flory-Huggins model is especially appropriate for polymer solution models. While the excess
entropy is most significant for polymer-solvent mixtures, it is not so important for polymer-polymer
mixtures. The key to polymer-polymer mixtures is noting that the activity coefficient is proportional to
the exponential of the molar volume of the polymer. Therefore, even tiny differences in solubility
parameter are amplified. Furthermore, the large activities computed for these components mean that
the fugacities of these components would be greatly enhanced if intermingled at this composition.
This means that they show a strong tendency to escape from each other. On the other hand, polymer
compounds are too non-volatile to escape to the vapor phase. The only alternative is to escape into
separate liquid phases. In other words, the liquids become immiscible. Computations of activity
coefficients like those above play a major role in the liquid-liquid phase equilibrium calculations
detailed in Chapter 14.

If you think creatively for a moment, you can imagine staggering possibilities for this amplification
principle. To begin, we could synthesize molecules of just the right size to generate phase behavior
that precisely measures the magnitude of the molecular interactions between, say, polyethylene and
polypropylene. But suppose we would like to homogenize an immiscible blend of high molecular
weight polymers. Then perhaps a polymer that was half of each type could help. Next comes a
consideration that we generally avoid throughout this text. Would the intramolecular structure make a
difference? In other words, it is possible to synthesize one (random) copolymer that alternates
randomly between monomer types and another (block) copolymer that has a long section of one
monomer type followed by another long section of a different monomer type. The properties resulting
from these different intramolecular structures are very different. If the blocks are large enough, they
can aggregate similar to phase separation. This is not exactly a phase separation, however, because
the blocks might be part of the same molecule. Repeating this theme on a grand scale with 20
particular monomer types (amino acids) is called protein engineering. Modern science is just
beginning to manipulate these kinds of interactions to synthesize self-assembled structures with
specific design objectives. Exploring these possibilities would take us beyond the introductory level,
however.

12.5. MOSCED and SSCED Theories
The Scatchard-Hildebrand theory provides reasonable results for hydrocarbon mixtures, but the

results can be highly unreliable if one of the components hydrogen bonds, especially if one of the
components is water. The MOSCED, SSCED, and HSP models remedy this problem by accounting
for hydrogen bonding as a separate contribution to the solubility parameter. MOSCED (pronounced



moss-ked) stands for MOdified Separation of Cohesive Energy Density. SSCED (pronounced sked)
stands for Simplified Separation of Cohesive Energy Density. Recall that the cohesive energy density
is the term for δ2. The HSP model (Hansen Solubility Parameters) is similar in concept, but does not
distinguish between acidity and basicity.8 Therefore, it cannot predict negative deviations from
ideality in the manner of MOSCED or SSCED and is omitted from detailed discussion. It has been
broadly applied, however, and provides impressive demonstrations of what can be achieved with
these kinds of theories. The concept behind these models is that hydrogen bonding should be counted
separately from the physical interactions envisioned by Scatchard and Hildebrand.

The MOSCED Model

The MOSCED model is given by,9

where λi is the dispersion factor (e.g., equal to δ for n-alkanes), τi is the polarity factor (e.g., 3.95
for benzene), qi is a factor ranging from 0.9 to 1 (for our purposes, qi = 1 for all i, cf. reference 9 for
details) and α and β are acidity and basicity parameters. Values of λ and τ are given in Table 12.2.
Values of α and β are given on the back flap. We recognize d12 as the Flory-Huggins contribution. aa,
ψ1 and ξ1 are parameters characterizing solvent properties.

Table 12.2. Dispersion (λ) and Polarity (τ) Parameters in (J/cm3)1/2 liquids at 293 K



Note that MOSCED is not intended to describe the entire solution behavior directly. Instead, it
provides estimates for the infinite dilution activity coefficients. At that point, another activity
coefficient model can be applied by fitting its parameters at infinite dilution to the MOSCED
predictions.

The essential feature of this model is the explicit representation of acidity and basicity. Consider,
for example, the acetone + chloroform system of Fig. 9.6(c). MOSCED model predicts a negative
deviation from ideality for this system, as is the experimental behavior:

For 2-propanol + water, a positive deviation is properly indicated:

These measures of acidity and basicity provide useful insights into the chemical nature of
compounds. It is notable that they can be characterized spectroscopically by mixing a range of
compounds with standard bases and acids. To measure acidity, for example, one might individually
mix pyridine with acetone, benzene, chloroform, and acetic acid. More acidic molecules would bind
more strongly to the pyridine nitrogen and shift the ultraviolet absorption more strongly. So the
magnitude of the shift would provide a relative measure of the acidity.10 By verifying the trend with
other standard bases, an average indicator could be developed for the acidity of each compound (and
its variance). The spectroscopic measurement is independent from the VLE measurement, so the two
observations strongly reinforce each other. This kind of chemical insight combined with
spectroscopic evidence can be useful in a wide variety of settings. In catalyst design, for example,
one might devise acidic adsorption sites to attract a reactant with high basicity, then measure
spectroscopically whether the device was working. Students should look for creative opportunities to
relate concepts like these across the curriculum.

The SSCED Model
Despite its attractions, the MOSCED model is relatively cumbersome. It has many terms, and in the

end, another model (e.g., Redlich-Kister, van Laar, or a model from the next chapter) must be used to



compute the phase behavior. As an pedagogical introduction to MOSCED, we would like to estimate
the phase behavior with sufficient accuracy to predict whether an azeotrope or liquid-liquid
separation may occur, but to make only approximate estimates with a single self-consistent theory.
These motivations suggest a need for a simplified version of MOSCED.

Similar to MOSCED, the SSCED model retains the simple form of the Scatchard-Hildebrand
model while correcting its gross misrepresentation of polar mixtures by taking advantage of the
acidity and basicity measures of MOSCED. For a binary mixture, the SSCED model is

 SSCED model.

Example 12.6. Predicting VLE with the SSCED model
Amines often function as bases that can moderate interactions with acidic compounds. In the case

of triethylamine, however, the high hydrocarbon content competes with the basicity and it is difficult
to intuitively assess how the solution ideality may turn out.

a. Predict the bubble pressure and vapor composition of triethylamine (1) + ethanol (2) at
308 K and x1 = 0.59 using the SSCED model.

b. Compute the relative volatility, αLH, at x1 = 0.01 and 0.99, where triethylamine is the
light key component. Is an azeotrope indicated? Copp and Everett (1953) report an
azeotrope at x1 = 0.59 and P = 119 mmHg.

SSCED and Antoine constants for triethylamine are:

Solution
a. From the Antoine equation, P1

sat = 109; P2
sat = 102 mmHg (cf. Appendix E for ethanol);

δ1′ = 15.17 – 0 = 15.17; δ2′ = (26.132 – 2·12.58·13.29)½ = 18.67; V1= 101/0.72= 140;
V2=58.5.

From Eqn. 12.51, k12 = (12.58 – 0)(13.29 – 7.70)/(4·15.17·18.67) = 0.062;



[(δ2′ – δ1′)2 + 2k12δ1′δ2′]/RT = [(18.67 – 15.17)2 + 2·0.062·18.67·15.17]/(8.314·308)
= 0.0185.
At x1 = 0.59, Φ1 = 0.59·140/(0.59·140 + 0.41·58.5) = 0.774.

γ1 = exp(140(1 – 0.774)20.0185) = 1.141; γ2 = exp(58.5(0.774)20.0185) = 1.916;
P = 0.59·1.141·109 + 0.41·1.01·102 = 154; y1 = 0.59·1.141·109/154 = 0.477.

b. At x1 = 0.01, Φ1 = 0.01·140/(0.01·140+0.99·58.5) = 0.024;
γ1 = exp(140(1 – 0.024)20.0185) = 11.9; γ2 = exp(58.5(0.024)20.0185) = 1.001;
P = 0.01·11.9·109 + 0.41·1.001·102 = 114; y1 = 0.99·1.001·109/114 = 0.113.
αLH(0.01) = 11.9·109/(1.001·102) = 12.6

At x1 = 0.99, Φ1 = 0.99·140/(0.99·140 + 0.01·58.5) = 0.996;
γ1 = exp(140(1 – 0.996)20.0185) = 1.0001; γ2 = exp(58.5(0.996)20.0185) = 2.93;
P = 0.99·1.0001·109 + 0.01·2.93·102 = 111; y1 = 0.99·1.0001·109/111 = 0.973.

αLH(0.99) = 1.0001·109/(2.93·102) = 0.363

Therefore, an azeotrope is suspected since αLH – 1 changes sign as discussed in Section 11.11. The
system should be evaluated experimentally or with a literature search.

To follow up, Fig. 12.3 shows through comparison to experiment that the SSCED model
overestimates the nonideality of the solution, but the prediction of an azeotrope is valid. For a
broader perspective, we can go beyond Example 12.6 and compare to the Scatchard-Hildebrand
model, but the Scatchard-Hildebrand (ScHil) model is not even close. In fact, the Scatchard-
Hildebrand model indicates VLLE where none exists. This is a common problem with Scatchard-
Hildebrand theory in the presence of hydrogen bonding. It undermines the viability of the Scatchard-
Hildebrand model for most applications, but the SSCED model retains its simplicity while providing
a reasonable basis for conceiving formulations predictively. As a final note, the MAB model
performs slightly better than the SSCED model for this mixture with P = 148 mmHg.

Figure 12.3. VLE of triethylamine(1)+ethanol at 308 K. The basicity of the amine moderates
the non-ideality of the solution by solvating the hydroxyl interaction. Data of Copp J.L., Everett

D.H. 1953. Disc. Faraday Soc.15:174.



12.6. Molecular Perspective and VLE Predictions
Can we just forget about some of these models? After all, the van der Waals perspective inherently

accounts for the molecular properties through a and b. Why should we worry with so many
variations? Is the SSCED model really so different from the Scatchard-Hildebrand model? What
about the MAB model? The van Laar model? Which model is “best?” In every case, there is a factor
mitigating against entirely eliminating any one of the models from consideration.

To begin, it is possible to derive the MAB model as a special case of the SSCED model. When V1
= V2 and δ1′ = δ2′, we obtain Φi = xi, and we obtain the Margules one-parameter model,

Technically, we could simply substitute V1 or V2 instead of (V1 + V2)/2, but writing it this way
provides a small compensation for the observation that it is extremely unlikely that V1 = V2. So, if the
MAB model is such an oversimplification, why not forget about it and just use the SSCED model?
That would be a good argument, except that MAB is such a simple model. It does not require
converting from mole fraction to volume fraction and you can anticipate the predicted sign on GE

without using a calculator.
On the other hand, the ∆δ′ term of SSCED is quite significant in some cases. For example, n-hexane

+ methylethylketone has a significant non-ideality that is overlooked by MAB. A similar argument
could be made about polyethylene + polypropylene. Furthermore, the distinction between V1 and V2
in SSCED correctly indicates that it is much less favorable to squeeze a large molecule into a fluid of
small molecules than vice versa, as in the n-butanol + water system.

Another argument could be made about the difference between the SSCED and Scatchard-
Hildebrand models. Both models have the same skewness when k12 is fit to experimental data. The
Scatchard-Hildebrand model takes precedence historically. So maybe we should forget the SSCED
model. On the other hand, SSCED provides better a priori predictions of phase behavior when an
associating component is involved. Eqn. 12.50 shows that the solubility parameter is unaltered if α =
0 or β = 0, but it is substantially diminished for associating compounds like alcohols and water. With
this change alone, the estimated nonideality is substantially diminished. This is a step in the right
direction because overestimating the nonideality (Scatchard-Hildebrand) may cause more confusion
than treating the solution as ideal (Fig. 12.4(a)). Remember to “First, do no harm.” A similar
observation is illustrated in Fig. 12.4(b). The peculiar lines of the Scatchard-Hildebrand (ScHil)
model show what happens if a VLE model is applied when the activity model indicates VLLE. The
experimental data indicate no LLE for either system, showing the qualitative deficiency of the
Scatchard-Hildebrand model for associating mixtures, as well as its quantitative deficiency. The
SSCED model, on the other hand, is qualitatively correct, and semi-quantitative in its predictions.



Figure 12.4. Predictions of SSCED and Scatchard-Hildebrand theories at 1 bar. For
Scatchard-Hildebrand theory, kij = 0 is applied. For SSCED, Eqn. 12.51 applies. (a)

Acetone+ethanol (data of Amer, H.H., Paxton, R.R. van Winkle, M. 1956. I&EC, 48:142); (b)
ethanol+water (data of Bloom, C.H., Clump, C.W., Koeckert, A.H. 1961. Ind. Eng. Chem.

53:829).

Another distinction between SSCED and the Scatchard-Hildebrand model is the guideline for k12
given by Eqn. 12.51. We can compute the VLE with this guideline and compare to the VLE at k12 = 0
to get a range of estimates that suggests the direction of the nonideality and its magnitude. Having
multiple VLE estimates may seem like a bad idea, but computing a single crude prediction ignoring
alternative estimates would be a much worse idea. Contradictory estimates should remind us of the
value of using experimental data to correlate k12 whenever possible. The procedure for correlating
k12 of SSCED based on experimental data is not different from the procedure for the Scatchard-
Hildebrand model, nor from the procedure for the Margules or van Laar models.

One could also argue that the van Laar model provides the best fit of the VLE data, so it should be
preferred. On the other hand, it offers no predictive capability, and we really would like to conceive
designs for formulations. Furthermore, the van Laar model cannot be extended to multicomponent
mixtures in a manner that is consistent with the van der Waals perspective, as discussed in the next
section.

Finally, one might consider the MOSCED model to be the best model. First, it includes the Flory-
Huggins correction for polymer-solvent interactions. Second, when combined with the van Laar or
two-parameter Margules model, it provides predictive capability that is superior to the SSCED
model. In a particular case study involving organic nitrates, the SSCED model gave roughly 10%
deviation in predicted bubble pressure while the MOSCED model gave only 5%. Furthermore, the
predictive insight of MOSCED is at least as good as that of SSCED because it uses the same values
of α, β, δ, and V. On the other hand, it requires several more intermediate calculations than the
SSCED model, including the translation of the infinite dilution activity coefficients into a different
activity model and subsequent computation of the activity coefficient at the concentration of interest.
The requirement of so many intermediate computations generally necessitates the use of a computer,
in which case the methods of Chapter 13 are generally preferred. Overall, the argument in favor of



MOSCED over SSCED is probably the best, however.
In summary, the “best” overall activity model should account for simple molecular properties in

addition to providing a basis for fitting the data of a specific binary system, because our overall goal
includes conceiving of formulations. Formulations generally involve more than two components and
designing them requires simple intuitive insights like energy density (reflected in δi’) and hydrogen
bonding (reflected in α and β). A small molecule with a high energy density disfavors molecules with
less energy density just as an associating compound squeezes out an inert one. The interplay between
these types of molecular interactions is significant and it is best to contemplate both influences when
predicting phase behavior. Through the SSCED model, several observations can be cited about this
interplay: (1) Ignoring hydrogen bonding leads to overestimates of solution nonideality, as observed
for the Scatchard-Hildebrand model; (2) accounting for hydrogen bonding reduces the differences in
disperse interactions (i.e. ∆δi′ < ∆δi); (3) competition between the effects of complexation and energy
density can make it difficult to predict whether deviations from Raoult’s law are positive or negative;
and (4) large nonidealities result when both association and energy density indicate unfavorable
mixing, typified by the hydrophobic effect.

In this context the SSCED and MOSCED models would appear to provide the best overall models
within the van der Waals perspective because they both account for the interplay between energy
density and hydrogen bonding. The trade-off between them is one of precision versus simplicity.
Resolving this trade-off requires the context of a particular application. If you are always working
with similar solvents and species, the greater detail of the MOSCED model may provide
opportunities for refining your predictions.

12.7. Multicomponent Extensions of van der Waals’ Models
Most systems encountered in chemical processes and formulations are multicomponent. If the

application requires bypassing an azeotrope, a third component (called an entrainer) might be added.
If a biomembrane is to be penetrated by a pharmaceutical treatment, the formulation must at least
account for water, the pharmaceutical, the biomembrane, and any additive. The output of a simple
reaction like A + B → C would mean that at least three components must be separated if conversion
was less than 100%. These examples and more lead to the conclusion that a multicomponent solution
model is a necessity.

Unfortunately, the van Laar model makes the assumption that V2/V1 can be treated as an adjustable
parameter. While this is fine for a binary mixture, it becomes problematic for a ternary mixture
because knowing V2/V1 and V3/V2 means that V3/V1 must be implied. The normal procedure for the
van Laar model would fit the binaries for 2-1, 3-2, and 3-1 independently, however. The likelihood
of achieving a consistent value of V3/V1 from such a fit is practically zero.

On the other hand, the simple relation of the Scatchard-Hildebrand theory to the van der Waals
equation permits a simple extension to multicomponent systems. The derivation of this extension is
given by practice problem 12.4. The result is

where <δ> = ΣΦjδj; <<kmm>> = ΣΦiδi<kim>; and <kim> = ΣΦjδj<kij>.



The SSCED model is similar to the Scatchard-Hildebrand model by design. This similarity
guarantees that the algebra extending to multicomponent mixtures is identical, giving

where <δ.′> = ΣΦjδj’<<kmm>> = ΣΦiδi’<kim>; and <kim> = ΣΦjδj’<kij>.

At first sight, the notation may seem confusing. The following example clarifies the necessary
summations.

Example 12.7. Multicomponent VLE using the SSCED model
A partial condenser is generally indicated when distilling a stream that has a light gas impurity,

even if the gas is dilute. A total condenser is impractical because of the “noncondensable” gas. Of
course, we know that it must condense at some sufficiently low temperature, but it is wasteful to cool
the stream that far or reflux the light gas component. A partial condenser condenses just as much
liquid as necessary to keep the column functioning then sends the remainder downstream as a vapor
distillate product. Downstream, a second partial condenser will provide liquid and the remaining gas
can be purged to a flare tower.

Fermentation of corn to form acetone (A), n-butanol (B), and ethanol (E) in water (W) followed by
a drying step results in the stream below to be distilled.a Dissolved carbon dioxide (CO2) is a
prevalent by-product of the fermentation process. Use the SSCED model and assume 2 bar pressure
with splits of 99% ethanol and 2.8% water. Assume that acetone moderates the ethanol+water
interaction to achieve this tops composition without an azeotrope interfering. You may estimate vapor
pressures using the shortcut equation.

where δ’ has been computed from δ in accordance with Eqn. 12.50.
a. Estimate the flow rate and composition of the distillate based on the key component
splits.
b. Estimate the dew temperature of the distillate stream as a preliminary estimate of the
operating temperature in the partial condenser.

Solution
We will indicate the vapor outlet of the partial condenser stream as D.

a. E will be the light key, and W the heavy key. Everything lighter than the light key is
assumed to go out the top, and everything heavier than the heavy key is assumed to go out
the bottom. We estimate the boiling temperatures (K) at 2 bar in the first row. Technically,
CO2 does not have a boiling temperature at 2 bar. Nevertheless, we apply the shortcut
model here (at 351 K, where CO2 is supercritical) merely as an estimate, as suggested in



the problem statement. Components are sorted in decreasing volatility to show that a split
between E and W sends CO2 and A completely to distillate and B completely to the bottoms.
The third row shows the consequent distillate (D) flows and fourth row shows the mole
fractions.

The tops composition of ethanol to water on a solvent-free basis is
4.95/(4.95+0.42) = 92%, which exceeds the azeotropic composition only slightly.

b. For the dew-temperature calculation, we use option (b) from Appendix C and refer to
the step numbers. As an initial estimate,  and assuming Raoult’s law (step
1),  gives :

 Dew - temperature calculation.

In the last row, we divide xi
(0) by Σxi

(0) (the process is known as normalization), such that the
mole fractions xi

(0’) sum to one. To prepare for step 3, the SSCED model gives the values below for
kij. For example, the value for ethanol + water is

kEW = (12.58 – 50.13)(13.29 – 15.06)/(4(18.67)27.94) = 0.0319

Similarly, kAE = 0.0184; kAW = 0.0896.

Finally, we are ready to apply the SSCED model. We drop butanol and CO2 from further
calculations because their liquid compositions are zero. xi

(1) is the result of the first iteration in which
the γi are applied. xi

(2) results from varying the temperature while assuming the γi are constant (even
though the composition is changing slightly too). We are approximating to force xT = 1 to get a good T
guess (step 5) for the next iteration.

where γA, γE, γW, <δ.′>, <kim>, and <<kmm>> are computed by Eqn. 12.55. For example,

<δ.′> = 0.6094(19.6) + 0.3710(18.67) + 0.0196(27.94)0.0319 = 19.4

<kEm> = 0.6094(19.6)0.0184 + 0.3710(18.67)0.0 + 0.0196(27.94)0.0319 = 0.239



<<kmm>> = 0.6094(19.6)0.177 + 0.3710(18.67)0.239 + 0.0196(27.94)1.294 = 4.478

γE = exp(58.5((18.67 – 19.4)2 + 2(0.239)18.67 – 4.478)/(8.314 . 351)) = 1.106

In going from xi
(1’) to xi

(2), we have varied the temperature assuming that the γi are unchanged. This
must be validated with one final iteration at T = 354.88 K.

Note
1. The liquid composition of less volatile components is enhanced in a partial
condenser.
2. For this particular condenser, KW >KE means there is a limit to splitting W
from E.

a. This problem is based on the AIChE 2009 National Student Design Competition, Richard L. Long Coordinator, AIChE
New York (2008).

Noting that MAB is a special case of the SSCED model, the expression for the multicomponent
SSCED model suggests a similar form for the MAB model.

The relation between the Margules form and the Redlich-Kister form suggests a similar relation.

In this manner, we can envision extending many activity models to multicomponent applications.
The power to design formulations that solve practical problems generally involves multicomponent

systems. Design requires synthesis of many fundamental principles into a working toolbox as well as
creative thinking. If we want to disperse an oil spill, we should consider the fate of the additive as
well as the oil. After the oil is dispersed, where will the additive go? What is its toxicity? If we want
to circumvent an azeotrope, where will the entrainer go? Should it be more volatile or less volatile
than the key components? How should its molecular properties relate to those of the key components?
What about the volatility of a solvent to remove paint? What about the solvent’s water solubility? The
multicomponent SSCED perspective empowers us to think creatively about these kinds of problems.

Example 12.8. Entrainer selection for gasohol production
The ethanol + water system has a well-known azeotrope at 89.4 mol% ethanol and 353 K,

frustrating efforts to distill fuel grade ethanol cheaply and easily. Industrially, the azeotrope is broken
using adsorption. Another strategy is to add a third component (an “entrainer”) that reduces the
activity coefficient of the water. In this way, the relative volatility of ethanol to water can remain
greater than one. Noting that activity coefficients pertain to the liquid phase, our entrainer should



stay in the liquid phase. In other words, it should be less volatile than either key component. We can
envision pouring it into the top of the distillation column and letting it trickle down. This process is
called extractive distillation. We would like to use as little entrainer as possible and it should not
form another azeotrope with water. One suggested entrainer is 2-pyrrolidone, for which the key
properties are given below. You can assume the shortcut VP model for 2-pyrrolidone and SSCED
predictions for kij interactions with 2-pyrrolidone. How much 2-pyrrolidone would be needed to
keep the relative volatility greater than 1.1 at 99mol% ethanol? Can you suggest any other prospective
entrainers based on their molecular structure?

Molecular properties for 2-pyrrolidone are

Solution
Noting that azeotropes are sensitive to vapor pressure, we should use the Antoine constants from

Appendix E for ethanol and water. The vapor pressure of the entrainer is less important because it
must be substantially lower than that of water to prevent another azeotrope. The SSCED predicted
value of k12 = 0.0319 fails to reproduce the experimentally observed azeotrope, but a value of k12 =
0.058 gives an azeotrope with xE = 0.894 and 353 K. Checking the relative volatility at xE = 0.99 and
353 K we find αLH = 0.94. We should add entrainer until αLH = 1.1.

We can assume T = 353 K for now, so the vapor pressure ratio stays constant. We can check our
result at the bubble temperature of the final formulated composition. Recalling the definition of
relative volatility from Section 10.6 and substituting modified Raoult’s law,

From the Antoine equation, PL
sat/PH

sat = 2.03. Therefore, we seek γL/γH > 1.1/2.03 = 0.542.

Taking a basis of 1 mole of ethanol (and 0.0101 water), increasing the ratio of 2-pyrrolidone (P) to
ethanol to 0.05 gives a final composition of {0.9433, 0.0095, 0.0472} for {xE, xW, xP}. This gives a
value of αLH = 2.03(1.001/2.075) = 1.11. Setting the pressure to 0.101 MPa and finding the bubble
temperature gives T = 352.6, so the temperature is altered very little.

Another candidate for entrainer might be ethylene glycol. From its molecular structure, it is similar
to half ethanol and half water. Following the same procedure, we find that a final composition of
{0.8532, 0.0086, 0.1382} is required to achieve the same αLH. This is roughly a factor of 3 for
entrainer on a mole basis or a factor of 2 on a weight basis. 2-pyrrolidone is predicted to be superior
because of the large value for its basicity, larger than water’s. This causes the kij parameters with 2-
pyrrolidone to be negative, so less is needed. Glycol is less effective.

12.8. Flory-Huggins and van der Waals Theories
We have shown that the contribution to the excess internal energy in the Flory-Huggins theory is

identical to that in the Scatchard-Hildebrand theory. We derived the Scatchard-Hildebrand theory
from the excess internal energy function of the van der Waals equation on page 468 and 12.3 on page
471. Therefore, any potential difference between the Flory-Huggins theory and the van der Waals



equation must pertain to the entropy. Reviewing briefly, the van der Waals equation of state gives

Recall that the van der Waals equation gives .

Therefore, . Comparing  to the result for regular
solutions, we see that,

UE = Φ1Φ2(δ1 – δ2)2(x1V1 + x2V2)

which is the same. We may also note that  is a very small number because: 1) These are
liquid compressibility factors, so all Z’s are small numerically; and 2) the excess volume is usually a

small percentage of the total volume, . Thus, we may neglect .
Turning to the differences between the entropy terms, the van der Waals equation gives

Note: (1 – biρi) = (Vi – bi)/Vi ≡ (Vi )/Vi = . This means that bi ρi = bρ for all i.
If we assume that  is a universal constant for all fluids, including the mixture, then

This expression is identical to Flory’s equation (and note the importance of the ln(Z) term as the
second term on the right-hand side of Eqn. 12.62, which derived from the ideal gas reference state).
Therefore, the only difference between van der Waals’ and Flory’s theories is the assumption that  is
a universal constant. This is equivalent to saying that the packing fraction (bρ) is a constant (the
packing fraction is one minus the void fraction). In other words, the Flory-Huggins theory is simply
the van der Waals theory with the assumption that bρ = constant. The difference between the Flory-
Huggins theory and the Scatchard-Hildebrand theory is accounting for mixing at constant pressure
instead of mixing at constant packing fraction. This is related to the argument about free volume being
larger for larger molecules because fitting a polymer in the same volume as a solvent must lead to a



deviation from the ideal gas law at some degree of polymerization. Therefore, the V in PV/RT must be
proportional to the volume of the molecule.

The suggestion that bρ = constant is actually quite consistent with another observation that should
seem more familiar. That is, the mass density of a polyatomic species is only weakly dependent on its
molecular weight. For example, the mass density of decane is 0.73 g/cm3 and the density of n-
hexadecane is 0.77 g/cm3. Since the molar density decreases inversely as molecular weight increases
but the b-parameter increases proportionally as molecular weight increases, a constant value for the
mass density implies a constant value for bρ. When you consider that the mass density for almost all
hydrocarbons, alcohols, amides, amines, and their polymers lies between 0.7 and 1.3 g/cm3, you
begin to get an idea of how broadly applicable this approximation is.

Nevertheless, there are some obvious limitations to the assumption of a constant packing fraction.
A little calculation would make it clear that the  for liquid propane at Tr = 0.99 is significantly larger
that  for toluene at Tr = 0.619. Thus, a mixture of propane and toluene at 366 K would not be very
accurately represented by the Flory-Huggins theory. Note that deviations of  from each other are
related to differences in the compressibilities of the components. Thus, it is common to refer to the
Flory-Huggins theory as an “incompressible” theory and to develop alternative theories to represent
“compressible” polymer mixtures. Not surprisingly, these alternative theories closely resemble the
van der Waals equation (with a slightly modified temperature dependence of the a parameter). This
observation lends added significance to Rayleigh’s statement: “I am more than ever an admirer of van
der Waals.”

12.9. Summary
This has been a somewhat theoretical chapter. We have gone through iterations of observation,

prediction, testing, and evaluation with several theories (e.g., van Laar, Scatchard-Hildebrand, Flory-
Huggins, SSCED, and MOSCED). With each iteration, we have achieved increasing precision and
insight. Sulfuric acid and water may react very favorably toward each other (GE << 0), while 2-
propanol and water have enhanced escaping tendencies because the energy required for forcing them
to mix is counteracting the entropic driving force (GE > 0). These facts are due in large part to the
interaction energies characterized by molecular quantities like the solubility parameter, acidity, and
basicity. We showed that two major effects influence the mixing: energy density and complexation.
This molecular perspective provides clarification of the familiar guideline that “like dissolves like.”
With this perspective, we begin to acquire the capability to intuitively reason about chemical
formulations. We illustrated the value of this reasoning with several practical examples. You should
be able to distinguish favorable molecular interactions from unfavorable.

Carrying forward the molecular perspective, we can characterize these tendencies in terms of the
cross-interaction energy (a12). If the cross-interaction energy is weaker than the geometric mean (k12
> 0), then each component prefers its own company. If the cross-interaction energy is stronger than the
geometric mean (i.e., k12 < 0), then the components are strongly attracted, releasing energy as they fall
into the well of their mutual attraction. The energy to break the favorable interactions must be added
to separate such a mixture and this may show up as a maximum boiling azeotrope. Conversely,
mixtures with k12 > 0 tend to exhibit minimum boiling azeotropes, or VLLE if γi > 10.

Molecular insight can help a lot when conceiving of formulations, but these conceptions must



ultimately be tested and validated experimentally.

Important Equations
This chapter has built the connection between the molecular perspective offered by the van der

Waals model and semi-empirical estimates of activity coefficients for binary and multicomponent
mixtures. The key equations in this extension are

where k12 is an adjustable parameter called the binary interaction parameter.

This extension results in several closely related activity models of varying complexity. The choice
of the “best” model depends on the application and the individual’s comfort level with a particular
degree of complexity. As a summary, the SSCED model provides a reasonable compromise.

With this equation, the important roles of energy density (δ2 ≡ a/V2), molecular size (Vk), and
hydrogen bonding are all evident. Understanding these roles enables you to go beyond fitting data and
make predictions about the behavior to be expected when various chemicals are combined. With
practice, these predictions evolve to provide intuitive insight into formulations that achieve specific
engineering objectives.

12.10. Practice Problems
P12.1. Acrolein + water exhibits an atmospheric (1 bar) azeotrope at 97.4 wt% acrolein and
52.4°C.

a. Determine the values of Aij for the van Laar equation that match this bubble-
point pressure at the same liquid and vapor compositions and temperature. (ANS.
2.97, 2.21)

(You may use the shortcut vapor pressure equation for acrolein: Tc = 506
K; Pc = 51.6 bar; and ω = 0.330; MW = 56.)

b. Tabulate P at 326.55 K and x = {0.1,0.3,0.5} via the van Laar equation using
the A12 and A21 determined above. (ANS. P = {1.11, 1.15, 1.03}

P12.2. The system α-epichlorohydrin(1) + n-propanol(2) exhibits an azeotrope at 760 mmHg
and 96°C containing 16 mol% epichlorohydrin. Use the van Laar theory to estimate the



composition of the vapor in equilibrium with a 90 mol% epichlorohydrin liquid solution at
96°C. (α-epichlorohydrin has the formula C3H5ClO, and IUPAC name 1-chloro-2,3-
epoxypropane. Its vapor pressure can be approximated by: log10Psat = 8.0270–2007/T, where
Psat is in mmHg and T is in Kelvin. You can use the shortcut vapor pressure equation for n-
propanol.) (ANS. 0.72, 0.63 bar)
P12.3. The following free energy model has been suggested for a particularly unusual binary
liquid-liquid mixture. Derive the expression for the activity coefficient of component 1,

where,  and .

(ANS. )
P12.4. The Scatchard-Hildebrand model can be extended to multicomponent mixtures in the
following manner. Setting aij = (aiiajj)½ and aii/Vi = Viδ2 Eqn. 12.7 can be rewritten as

Recognizing that the quadratic term is separable and simplifying the square-root of
the square:

where <δ> ≡ ΣxiViδi/V ≡ ΣΦiδi and V ≡ ΣxiVi.

This result can be made even simpler by adding and subtracting V<δ>2 and
rearranging to obtain:

where we have substituted the definition of <δ> in the second term and the
definition of V in the third.

Collecting all terms in a common summation, we obtain:

This is a remarkably simple result. Derive an equally simple expression for the
activity coefficient of a component in a multicomponent mixture. (Hint: It is easier to
start with Eqn. 12.65.) (ANS. Eqn. 12.54)

12.11. Homework Problems
12.1. The compositions of coexisting phases of ethanol(1) + toluene(2) at 55°C are x1 = 0.7186,
and y1 = 0.7431 at P = 307.81 mmHg, as reported by Kretschmer and Wiebe, 1949. J. Amer.



Chem. Soc., 71:1793. Estimate the bubble pressure at 55°C and x1 = 0.1, using

a. The Scatchard-Hildebrand model with k12 = 0

b. The SSCED model with a default value of k12

c. The SSCED model with k12 matched to the data

d. The van Laar equation
12.2. A vapor/liquid experiment for the carbon disulfide(1) + chloroform(2) system has
provided the following data at 298 K: , , x1 = 0.2, y1 = 0.363, and
P = 34.98 kPa. Estimate the dew pressure at 298 K and y1 = 0.6, using

a. The Scatchard-Hildebrand model with k12 = 0

b. The SSCED model with a default value of k12

c. The SSCED model with k12 matched to the data

d. The van Laar equation
12.3. The (1) + (2) system forms an azeotrope at x1 = 0.75 and 80°C. At 80°C, , 

. The liquid phase can be modeled by the van Laar model.
a. Estimate the activity coefficient of component 1 at x1 = 0.75 and 80°C. [Hint:
The relative volatility (given in Eqn 10.32) is unity at the azeotropic condition.]
b. Qualitatively sketch the P-x-y and T-x-y diagrams that you expect.

12.4. Ethanol(1) + benzene(2) form azeotropic mixtures. Compare the specified model to the
experimental data of Brown and Smith cited in problem 10.2.

a. Prepare a y-x and P-x-y diagram for the system at 45°C assuming the van Laar
model and using the experimental pressure at xE = 0.415 to estimate A12 and A21.

b. Prepare a y-x and P-x-y diagram for the system at 45°C with the predictions of
the Scatchard-Hildebrand theory with k12 = 0.

c. Prepare a y-x and P-x-y diagram for the system at 45°C assuming the SSCED
model and using the standard guideline to estimate k12.

d. Prepare a y-x and P-x-y diagram for the system at 45°C assuming the SSCED
model and using the experimental pressure at xE = 0.415 to estimate k12.

12.5. The CRC Handbook lists the azeotrope for the acetone + chloroform system as 64.7°C and
20 wt% acetone.

a. Use the van Laar model to estimate the T-x-y diagram at 1 bar.
b. Use the SSCED model to estimate the T-x-y diagram at 1 bar with predicted
k12.

c. What value of V2/V1 is implied by the van Laar parameters?

12.6. Using the van Laar model and the data from problem 11.3, estimate the total pressure and
composition of the vapor in equilibrium with a 20 mol% ethanol(1) solution in water(2) at
78.15°C.



12.7. A liquid mixture of 50 mol% chloroform(1) and 50% 1,4-dioxane(2) at 0.1013 MPa is
metered into a flash drum through a valve. The mixture flashes into two phases inside the drum
where the pressure and temperature are maintained at 24.95 kPa and 50°C. The compositions of
the exiting phases are x1 = 0.36 and y1 = 0.62.

Your supervisor asks you to adjust the flash drum pressure so that the liquid phase
is x1 = 0.4 at 50°C. He doesn’t provide any VLE data, and you are standing in the
middle of the plant with only a calculator and pencil and paper, so you must estimate
the new flash drum pressure. Fortunately, your supervisor has a phenomenal recall for
numbers and tells you that the vapor pressures for the pure components at 50°C are 

 and . What is your best estimate of the pressure adjustment
that is necessary without using any additional information?

12.8. Fit the data from problem 11.11 to the following model by regression over all points, and
compare with the experimental data on the same plot, using

a. The Scatchard-Hildebrand model with k12 = 0

b. The SSCED model with a default value of k12

c. The SSCED model with k12 matched to the data

d. The van Laar equation
e. Plot the P-x-y diagram at 80°C, based on the fits specified by your instructor.

12.9. Fit the data from problem 11.10 to the following model by regression over all points, and
compare with the experimental data on the same plot, using

(a) – (d) as in problem 12.8.
(e) Plot the T-x-y diagram at 1 bar, based on the fits specified by your instructor.

12.10. Fit the data from problem 11.26 to the following model by regression over all points, and
compare with the experimental data on the same plot, using

(a) – (e) as in problem 12.8.
12.11. Fit the data from problem 11.27 to the following model by regression over all points, and
compare with the experimental data on the same plot, using

(a) – (e) as in problem 12.8.
12.12. Starting from the excess Gibbs energy formula for Flory’s equation, derive the formula
for the activity coefficient of component 1 in a binary mixture.
12.13. Crime scene investigators have determined that an acrylic spray paint
(polymethylmethacrylate, PMMA) was used to deface the Mona Lisa. Leonardo used linseed
oil. We would like a solvent that interacts more strongly with acrylic than with linseed oil.
Based on their chemical structures, we can approximate the SSCED parameters of linseed oil as
n-hexadecane and acrylic paint as methylethylketone. Do you recommend CHCl3, toluene, or
acetone as the solvent? Explain.
12.14. R410a is a replacement for R22 in air conditioners and heat pumps. Air conditioners
require a different refrigerant because they operate in a different temperature range. R410a
avoids the problems with the ozone layer caused by chlorofluorocarbons, but its longevity may
be limited because it has a relatively high global warming factor (1725 times the effect of CO2).



Roughly, it is a 50wt% mixture of difluoromethane (D) and pentafluoroethane (P) (i.e., 70mol%
D). Kobayashi and Nishiumi (1998) report a pressure of 1.098 MPa at 283.05K.11 You may
assume the SCVP equation

a. Assuming kij = 0 for the binary interaction parameter of the SSCED equation,
predict whether an azeotrope should be expected in this system at 283.05 K.
Tabulate the relative volatilities at xD = 0.01 and 0.99.

b. Solve for the value of k12 that matches the reported pressure.

c. What acidity value for pentafluoroethane matches the value of kij determined in
part (b)?

12.15. As part of a biorefining effort, butanediols are being produced by fermentation. The
problem is that the isomers are all mixed up. Furthermore, 1,3-propanediol comprises roughly
30mol% of the mixture on a dry basis (i.e., water has been removed). The problem is to assess
the prospects for azeotrope formation and avoidance. The following steps should shed some
light on the problem.

a. Plot log10(Psat) versus 1000/T(K) in the range of T°C = [100,400] for 1,3-
propanediol, 1,3-butanediol, and 1,4-butanediol on the same axes. Are there
Bancroft points?
b. Compile a table of  for each component in each solvent based on the SSCED
model. Which combinations show the greatest tendency to form azeotropes?



Chapter 13. Local Composition Activity Models

I have constructed three thousand different theories in connection with the electric
light... Yet, in only two cases did my experiments prove the truth of my theory.

Thomas A. Edison

It is evident from Chapter 12 that describing solution nonideality with van der Waals’ mixing rules
is imprecise. With a single parameter like k12 or A12, we can match the magnitude of the excess
energy, but not the skewness. The Margules two-parameter and van Laar models address this problem
in an ad hoc fashion, but there is no physical basis for extending these to multiple components. A
rational basis for extending the analysis of mixtures should seek a legitimate explanation for the
source of varied skewness. One such explanation is that molecules do not distribute themselves
randomly. Instead, they may tend to form clusters. You might witness this kind of distribution at a
dinner party, where the children are in one area, the men are discussing sports, and the ladies are
discussing anything but sports. There is sufficient mixing among the clusters that you cannot consider
it a phase separation. Some children and ladies like sports. Some men do not. Nevertheless, the
distribution is not entirely random. In other words, the local composition around a child at a dinner
party, for example, may differ from the bulk composition. We examine this prospect graphically in
Example 13.2. Local composition models recognize this possibility and account for the local
composition enhancement in terms of two parameters, just enough to characterize both the magnitude
and the skewness of the excess energy. Careful analysis of the molecular scale energies in terms of
the local compositions facilitates straightforward extension to multicomponent mixtures.

Chapter Objectives: You Should Be Able to...
1. Characterize adjustable parameters in local composition activity models using
experimental data.
2. Comment critically on the merits and limitations of the following activity models:
Wilson, UNIQUAC, UNIFAC, and NRTL, including the ability to identify the most
appropriate model for a given mixture.

A Preliminary Glimpse of UNIFAC — A Predictive Method
This chapter is densely packed with theoretical details. In the interest of “telling you what we are

going to tell you,” it is useful to see how the final equations are applied before being concerned with
their derivations. One popular activity coefficient model is the predictive model of UNIFAC. It is the
closest thing to a universally applicable predictive model that we currently have, so it makes sense to
get right to the point and introduce the rudiments of implementing this model at an early stage. It is a
rather complicated model and deriving it must await several other derivations. Nevertheless, the
availability of a computer program for applying the method makes it possible to apply it as a “black
box” at this stage, and the utility of the model should inspire us to learn more about it. Detailed
calculations are illustrated in the UNIFAC spreadsheet in the file Actcoeff.xlsx introduced in Chapter
11, and in the MATLAB file Ex13_01.m.

 See Actcoeff.xlsx worksheets UNIFAC, unifacVLE/MATLAB: Ex13_01.m



Example 13.1. VLE prediction using UNIFAC activity coefficients
The 2-propanol (also known as isopropyl alcohol or IPA) + water (W) system is known to form an

azeotrope at atmospheric pressure and 80.37°C (xW = 0.3146).a Use UNIFAC to estimate the
conditions of the azeotrope at 760 mmHg. Is UNIFAC accurate for this mixture?

Solution
The Antoine coefficients for IPA and water are given in Appendix E. To begin, the VLE can be

computed at the true experimental conditions to see if it looks like there is an azeotrope nearby. This
system is presented in Figs. 10.8 and 10.9, so we know what the answer looks like. We will use the
principles developed in Section 11.7 to determine if an azeotrope exists. Note that the azeotrope
condition is at a maximum or minimum on the diagrams.

The pressure is given as 760 mmHg. We develop a detailed description of the UNIFAC model
later, but you need to know a little bit about it just to run the program. The UNIFAC model is based
on structural and energetic information for the functional groups that comprise the molecules in the
mixture. The UNIFAC model estimates the activity coefficients using the groups by calculating size,
shape, and energy parameters based on the number and types of groups in the molecules.b The
structures of the molecules for this problem and the UNIFAC groups are:

The UNIFAC model can be operated from either the Excel spreadsheet or the MATLAB routine.
To operate the spreadsheet program, simply type the temperature of interest (80.37) and the number of
functional groups of each type in the appropriate column for each component. In MATLAB, the
groups are entered into the cell matrix compArray. Group names available in MATLAB can be
determined by using load 'unifacAij.mat'.

 Bubble-temperature calculation.

Enter the mole fractions (e.g., [xW = 0.3146, xIPA = 0.6854]). The activity coefficients are ය γw =
2.1108; γIPA = 1.0885. According to modified Raoult’s law, . By
entering the proper Antoine coefficients, the pressure is computed using this formula, and we can
keep guessing temperatures (which changes γs and Psats) until the pressure equals 760 mmHg (or we
can apply the Excel solver tool or MATLAB fzero ය T = 80.47°C):



The vapor phase mole fractions are calculated using  and an analogous
expression for the second component (or by using y2 = 1 – y1). Since the vapor and liquid
compositions are not equal (xw = 0.3146 ≠ 0.3158 = yw), we did not find the azeotrope. We must try
several values of x to find the azeotrope composition.

Try xw = 0.3177 ය γW = 2.1035; γIPA = 1.0904:

Since xw = 0.3177 = yw, this is the composition of the azeotrope estimated by UNIFAC. UNIFAC
seems to be fairly accurate for this mixture at the azeotrope. Also note that T versus x is fairly flat
near an azeotrope; this is why it was unnecessary to modify the guess for bubble temperature at the
new composition. This is generally true, and important in the distillation of azeotropic systems.

a. Perry, R.H., Chilton, C.H. 1973. Chemical Engineers’ Handbook , 5 ed, New York NY: McGraw-Hill, Chapter 13.
b. The functional groups for a given molecule are often determined automatically by process design software. Several
examples of group assignments are given in Table 13.2 on page 512.

13.1. Local Composition Theory
Now that we see the capabilities of the predictions, we have motivation to understand the model.

One of the major assumptions of van der Waals mixing was that the mixture interactions were
independent of each other such that quadratic mixing rules would provide reasonable approximations
as shown in Eqn. 12.3 on page 467. But in some cases, like radically different strengths of attraction,
the mixture interaction can be strongly coupled to the mixture composition. That is, for instance, the
cross parameter could be a function of composition: a12 = a12(x). One way of treating this prospect is
to recognize the possibility that the local compositions in the mixture might deviate strongly from the
bulk compositions. As an example, consider a lattice consisting primarily of type A atoms but with
two B atoms right beside each other. Suppose all these atoms were the same size and that the
coordination number was 10. Then the local compositions around a B atom are xAB = 9/10 and xBB =
1/10 (notation of subscripts is AB ය “A around B”). Specific interactions such as hydrogen bonding
and polarity might lead to such effects, and thus, the basis of the hypothesis is that energetic
differences lead to the nonrandomness that causes the quadratic mixing rules to break down. To
develop the theory, we first introduce nomenclature to identify the local compositions summarized in
Table 13.1.



Table 13.1. Nomenclature for Local Composition Variables

We assume that the local compositions are given by some weighting factor, Ωij, relative to the
overall compositions.

Therefore, if Ω12 = Ω21 = 1, the solution is random. Before introducing the functions that describe
the weighting factors, let us discuss how the factors may be used.

Local Compositions around “1” Molecules
Let us begin by considering compositions around “1” molecules. We would like to write the local

mole fractions x21 and x11 in terms of the overall mole fractions, x1 and x2. Using the local mole
balance,

Rearranging Eqn. 13.1,

Substituting Eqn. 13.4 into Eqn. 13.3,

Rearranging,

Substituting Eqn. 13.6 into Eqn. 13.4,

Local Compositions around “2” Molecules
Similar derivations for molecules of type “2” results in



Example 13.2. Local compositions in a two-dimensional lattice
The following lattice contains x’s, o’s, and void spaces. The coordination number of each cell is 8.

Estimate the local composition (xxo) and the parameter Ωxo based on rows and columns away from
the edges.

Solution
There are 9 o’s and 13 x’s that are located away from the edges. The number of x’s and o’s around

each o are as follows:

Note: Fluids do not really behave as though their atoms were located on lattice
sites, but there are many theories based on the supposition that lattices represent
reasonable approximations. In this text, we have elected to omit detailed treatment
of lattice theory on the basis that it is too approximate to provide an appreciation
for the complete problem and too complicated to justify treating it as a simple
theory. This is a judgment call and interested students may wish to learn more
about lattice theory. Sandler presents a brief introduction to the theory which may
be acceptable for readers at this level.a

a. Sandler, S.I. 1989. Chemical Entineering Thermodynamic, 2nd ed. Hoboken NJ: Wiley.

Local Composition and Gibbs Energy of Mixing
We need to relate the local compositions to the excess Gibbs energy. The perspective of

representing all fluids by the square-well potential lends itself naturally to the local composition
concept. Then the intermolecular energy is given simply by the local composition times the well-
depth for that interaction. We simply ignore all but the nearest neighbors because they are outside the



square-well. In equation form, the energy equation for mixtures can be reformulated in terms of local
compositions. The local mole fraction can be related to the bulk mole fraction by defining a quantity
Ωij as follows:

The next step in the derivation requires scaling up from the molecular-scale local composition to
the macroscopic energy in the mixture. The rigorous procedure for taking this step requires integration
of the molecular distributions times the molecular interaction energies, analogous to the procedure for
pure fluids as applied in Section 7.11. This rigorous development is presented below in Section 13.7.
On the other hand, it is possible to simply present the result of that derivation for the time being. This
permits a more rapid exploration of the practical implications of local composition theory. The form
of the equation is not so difficult to understand from an intuitive perspective, however. The energy
departure is simply a multiplication of the local composition (xij) by the local interaction energy (εij).
The departure properties are calculated based on a general model known as the two-fluid theory.1
According to the two-fluid theory, any intensive departure function in a binary is given by

Where the local composition environment of the type 1 molecules determines (M–Mig)(1), and the
local composition environment of the type 2 molecules determines (M–Mig)(2). Note that (M–Mig)(i) is
composition-dependent and is equal to the pure component value only when the local composition is
pure i.

Using the concept of a square-well model and thus counting only nearest neighbors, noting that ε12
= ε21, and recalling that the local mole fractions must sum to unity, we have for a binary mixture

where Nc,j is the coordination number (total number of atoms in the neighborhood of the jth

species), and where we can identify

When x1 approaches unity, x2 goes to zero, and from Eqn. 13.1 x21 goes to zero, and x11 goes to
one. The limits applied to Eqn. 13.11 result in (U – Uig)pure1 = (NA/2)Nc,1ε11. Similarly, when x2

approaches unity, (U – Uig)pure2 = (NA/2)Nc,2ε22. For an ideal solution,

The excess energy is obtained by subtracting Eqn. 13.13 from Eqn. 13.11,



Collecting terms with the same energy variables, and using the local mole balance from Table 13.1
on page 502, (x11–1)ε11 = –x21ε11, and (x22–1)ε22 = –x12ε22, resulting in

Substituting Eqn. 13.7 and Eqn. 13.8,

At this point, the traditional local composition theories deviate from regular solution theory in a
way that really has nothing to do with local compositions. Instead, the next step focuses on one of the
subtleties of classical thermodynamics. Example 6.7 shows that the derivative of Helmholtz energy is
related to internal energy. Therefore, we can integrate energy to find the change in Helmholtz energy,

where  is the infinite temperature limit at the given liquid density, independent of
temperature but possibly dependent on composition or density. We need to insert Eqn. 13.16 into Eqn.
13.17 and integrate. We need to have some algebraic expression for the dependence of Ωij on
temperature, which is what distinguishes the local composition theories from each other.

13.2. Wilson’s Equation
Wilson2 made a bold assumption regarding the temperature dependence of Ωij. Wilson’s original

parameter used in the literature is Λji, but it is related to Ωij in a very direct way. Wilson assumes3

(note: Λii = Λjj = 1, and Aij ≠ Aji even though εij = εji), and integration with respect to T becomes
very simple. Assuming Nc,j = 2 for all j at all ρ,

A convenient simplifying assumption before proceeding further is that GE ~ AE. This corresponds
to neglecting the excess volume of mixing relative to the other contributions and is quite acceptable
for liquids. The customary way of interpreting GE/RT is to separate it into an energetic part known as
the residual contribution, (GE/RT)RES, that vanishes at infinite temperature or when ε12 – ε22 = 0 and
ε21 – ε11 = 0, and a size/shape part known as the combinatorial contribution, (GE/RT)COMB, that
represents the infinite temperature limit at the liquid density. For Wilson’s equation, the first two
terms vanish at high T, so



For the combinatorial contribution, Wilson used Flory’s equation,

It should be noted that the assumption of the temperature dependence of Eqn. 13.18 has been made
for convenience, but there is some justification for it, as we show in Section 13.7. Wilson’s equation
becomes

Algebraic rearrangement of Wilson’s equation results in the form that is usually cited,

For a binary system, the activity coefficients from the Wilson equation are:

Noting that Λ11 = Λ22 = 1, and looking back at Eqn. 13.6, we can also see that for the first equation 

. We can rearrange this expression to obtain the slightly more compact
relation:

Similar rearrangement of the second expression gives:

 Wilson’s equation.



 Parameters for the Wilson equation, Aji. Note that the literature values often include
energy units. Use the correct R!

 Wilson’s equation is incapable of representing LLE.

One limitation of Wilson’s equation is that it is unable to model liquid-liquid equilibria, but it is
reasonably accurate for modeling the liquid phase when correlating the vapor liquid equilibria.

Extending Eqn. 13.23 to a multicomponent solution,

To determine activity coefficients, the excess Gibbs energy is differentiated. Differentiating the last
term,

and letting “sum” stand for the summation of Eqn. 13.28, and combining,

combining,

Example 13.3. Application of Wilson’s equation to VLE
For the binary system n-pentanol(1) + n-hexane(2), the Wilson equation constants are A12 = 1718

cal/mol, A21 = 166.6 cal/mol. Assuming the vapor phase to be an ideal gas, determine the
composition of the vapor in equilibrium with a liquid containing 20 mole% n-pentanol at 30°C. Also
calculate the equilibrium pressure. ; .



Solution
From CRC,

ρ1 = 0.8144 g/ml (1mole/88g) ය V1 = 108 cm3/mole

ρ2 = 0.6603 g/ml (1mole/86g) ය V2 = 130 cm3/mole
Note: ρ1 and ρ2 are functions of T but ρ1/ρ2 ≈ const. ය V2/V1 = 1.205 assumed at all

T.
Utilizing Eqn. 13.26,

Λ12 = 1.205 exp(– 1718/1.987/303) = 0.070; Λ21 = 1/1.205 exp(– 166.6/1.987/303) = 0.629

In γ1 = 1.0408 ය γ1 = 2.822;    In γ2 = 0.1584 ය γ2 = 1.172

y1 = x1γ1Psat/P = 0.2·2.822·3.23/177.2 = 0.0103

 Bubble-pressure calculation.

13.3. NRTL
The NRTL model4 (short for Non-Random Two Liquid) equates UE from Eqn. 13.16 directly to

GE, ignoring the proper thermodynamic integration. At the same time, it introduces a third binary
parameter that generates an extremely flexible functional form for fitting activity coefficients.

 See Actcoeff.xlsx, worksheet NRTL MATLAB: nrtl.m

For a binary mixture, the activity equations become

For a binary mixture, the activity equations become



 Literature NRTL parameter values, ∆gij, typically have units of energy. Use the
correct value of R!

When αij = 0, the binary model simplifies to the one-parameter Margules model,

The NRTL model is not very appealing from a theoretical perspective, but its flexibility has led to
a broad range of applications including combinations with electrolyte models. As a practical matter,
a value of αij = 0.3 is taken as a default and the equation works much like the Wilson equation, except
that it is able to model LLE. The parameter αij is adjusted for additional flexibility when necessary,
such as when modeling LLE where the value is commonly increased. The multicomponent form of
NRTL is

 Multicomponent NRTL.

13.4. UNIQUAC
UNIQUAC5 (short for UNIversal QUAsi Chemical model) builds on the work of Wilson by making

three primary refinements. First, the temperature dependence of Ωij is modified to depend on surface
areas rather than volumes, based on the hypothesis that the interaction energies that determine local
compositions are dependent on the relative surface areas of the molecules. If the parameter qi is
proportional to the surface area of molecule i,



where z = 10. The intermediate parameter τij = exp(– aij/T) is used for compact notation where τii

= τjj = 1, aii = ajj = 0.6 In addition, when the energy equation 13.16 is written with Nc,j = zqj = 10qj
for all j at all ρ, the different sizes and shapes of the molecules are implicitly taken into account.
Qualitatively, the number of molecules that can contact a central molecule increases as the size of the
molecule increases. Using surface fractions attempts to recognize the branching and overlap that can
occur between segments in a polyatomic molecule. The inner core of these segments is not accessible,
only the surface is accessible for energetic interactions. Therefore, the model of the energy is
proposed to be proportional to surface area. Unfortunately, it is not straightforward to construct a
more rigorous argument in favor of surface fractions from the energy equation itself. Inserting Eqns.
13.31 and 13.16 into Eqn. 13.17, the excess Helmholtz for a binary solution becomes

where θi is the surface area fraction, and θi = xiqi/(x1q1 + x2q2) for a binary. Analogous to
Wilson’s equation, GE is calculated as AE, a good approximation. The first two terms represent
(GE/RT)RES,

that can be compared with Eqn. 13.20 and the final term  represents (GE/RT)COMB. The
(GE/RT)COMB term is attributed to the entropy of mixing hard chains, and an approximate expression
for this contribution is applied by Maurer and Prausnitz.7 This representation of the entropy of mixing
traces its roots back to the work of Staverman8 and Guggenheim9 and was discussed more recently by
Lichtenthaler et al.10 It is very similar to the Flory term, but it corrects for the fact that large
molecules are not always large balls, but sometimes long “strings.” By noting that the ratio of surface
area to volume for a sphere is different from that for a string, Guggenheim’s form (the form actually
applied in UNIFAC and UNIQUAC) provides a simple but general correction, giving an indication of
the degree of branching and nonsphericity. Nevertheless, the Staverman-Guggenheim term represents
a relatively small correction to Flory’s term. As shown in Fig. 13.1, the extra correction of including
the “surface to volume” parameter serves to decrease the excess entropy to some value between zero

and the Flory-Huggins estimate. The combinatorial part of UNIQUAC  for a binary
system takes a form that can be compared with 13.21



Figure 13.1. Excess entropy according to the Flory-Huggins equation versus Guggenheim’s
equation at V2/V1 = 1695 for a polymer solvent mixture.

The Guggenheim form of the excess entropy is based on the molecular volume fractions, Φj, and the
surface fractions, θj. Instead of using macroscopic property data to calculate volume fractions and
surface fractions they are based on relative molecule volumes, r, and relative molecule surface areas,
q, for each type of molecule.

 r and q are the relative volume and relative surface area of a molecule.

The relative molecular parameters r and q may be calculated from group size and surface area
parameters using the concept of group contributions. The size/area parameters are ratios to the
equivalent size/area for the -CH2- group in a long chain alkane.11 The group parameters are added in
the same manner as the UNIFAC method discussed in the next section and as given in Table 13.2 on
page 512, except the UNIQUAC r and q values for alcohols are typically not calculated by group
contributions (see the footnote to Table. 13.2). In the table, the uppercase Rk parameter is for the
group volume, and the uppercase Qk parameter is for group surface area. From these values, the
molecular size (rj) and shape (qj) parameters may be calculated by multiplying the group parameter
by the number of times each group appears in the molecule, and summing over all the groups in the
molecule,

Table 13.2. Selected Group Parameters for the UNIFAC and UNIQUAC Equationsa



a. AC in the table means aromatic carbon. The main groups serve as categories for similar subgroups as explained in the
UNIFAC section.
b. Alcohols are usually treated in UNIQUAC without using the group contribution method. Accepted UNIQUAC values
for the set of alcohols [MeOH, EtOH, 1-PrOH, 2-PrOH, 1-BuOH] are r = [1.4311, 2.1055, 2.7799, 2.7791, 3.4543], q =
[1.4320, 1.9720, 2.5120, 2.5080, 3.0520]. See Gmehling, J., Oken, U. 1977-Vapor-Liquid Equilibrium Data Collection.
Frankfort, Germany: DECHEMA.

 Rk and Qk are the relative volume and relative surface area of a functional group.

 Care is necessary when subdividing a molecule into functional groups.

where  is the number of groups of the kth type in molecule j. The subdivision of the molecule
into groups is sometimes not obvious because there may appear to be more than one way to
subdivide, but the conventions have been set forth in examples in the table and these conventions
should be followed. The large number of possible functional groups is divided into main groups and
further subdivided into structurally similar subgroups. Usually the functional groups include a nearest
neighbor atom as part of the group. The group parameters are calculated from the van der Waals
volume and van der Waals surface area. Note that the van der Waals volume and van der Waals
area are not calculated from the van der Waals EOS. They are inferred from x-ray and other property



data.12.

Example 13.4. Combinatorial contribution to the activity coefficient
In polymer solutions, it is not uncommon for the solubility parameter of the polymer to nearly equal

the solubility parameter of the solvent, but the mixture is still nonideal. To illustrate, consider the
case when 1 g of benzene is added to 1 g of pentastyrene to form a solution. Estimate the activity
coefficient of the benzene (B) in the pentastyrene (PS) if δps = δB = 9.2 and Vps and VB are estimated
using group contributions. Use the Flory activity model and group contributions of
UNIQUAC/UNIFAC to estimate volume fractions.

Solution
Since δps = δB = 9.2, we can ignore the residual contribution. Therefore,

Benzene is composed of 6(ACH) groups @ 0.5313 R-units per group ය VB  3.1878. Pentastyrene
is composed of 25(ACH) + 1(ACCH2) + 4(ACCH) + 4(CH2) + 1(CH3) ය Vps  21.17:

Note: The volume fraction is close to the weight fraction because they are so structurally similar.

Flory’s model (no energetic contribution) predicts that the partial pressure of benzene in the vapor,
yBP = xBγBPB

sat, would be about 12% less than the ideal solution model.

The parameters to characterize the volume and surface area fractions have already been tabulated,
so no more adjustable parameters are really introduced by writing it this way. The only real problem
is that including all these group contributions into the formulas makes hand calculations extremely
tedious. Fortunately, computers and spreadsheets make this task much simpler. As such, we can apply
the UNIQUAC method almost as easily as the van Laar method.

For a binary mixture, the activity equations become



 See Actcoeff.xlsx, worksheets uniquac, uniquac5 MATLAB: uniquac.m.

 Literature UNIQUAC parameter values, aij, typically are in K.

Like the Wilson equation, the UNIQUAC equation requires that two adjustable parameters be
characterized from experimental data for each binary system. The inclusion of the excess entropy in
UNIQUAC by Abrams et al. (1975) is more correct theoretically, but Wilson’s equation can be as
accurate as the UNIQUAC method for many binary vapor-liquid systems, and much simpler to apply
by hand. UNIQUAC supersedes the Wilson equation for describing liquid-liquid systems, however,
because the Wilson equation is incapable of representing liquid-liquid equilibria as long as the λij
parameters are held positive (as implied by their definition as exponentials, and noting that
exponentials cannot take on negative values).

Extending Eqn. 13.40 to a multicomponent solution, the UNIQUAC equation becomes

Note that the leading sum is simply Flory’s equation. The first two terms are the combinatorial
contribution and the last is the residual contribution. The parts can be individually differentiated to
find the contributions to the activity coefficients,

 Multicomponent UNIQUAC.

13.5. UNIFAC
UNIFAC13 (short for UNIversal Functional Activity Coefficient model) is an extension of

UNIQUAC with no user-adjustable parameters to fit to experimental data. Instead, all of the
adjustable parameters have been characterized by the developers of the model based on group
contributions that correlate the data in a very large database. The assumptions regarding coordination
numbers, and so forth, are similar to the assumptions in UNIQUAC. The same strategy is applied:

The combinatorial term is therefore identical and given by Eqn. 13.54. The major difference
between UNIFAC and UNIQUAC is that, for the residual term, UNIFAC considers interaction
energies between functional groups (rather than the whole molecule). Interactions of functional
groups are added to predict relative interaction energies of molecules. Examples are shown in Table



13.2. Each of the subgroups has a characteristic size and surface area; however, the energetic
interactions are considered to be the same for all subgroups with a particular main group. Thus,
representative interaction energies (aij) are tabulated for only the main functional groups, and it is
implied that all subgroups will use the same energetic parameters. An illustrative sample of values
for these interactions is given in Table 13.3. Full implementations of the UNIFAC method with large
numbers of functional groups are typically available in chemical engineering process design
software. A subset of the parameters is provided on the UNIFAC spreadsheet in the Actcoeff.xlsx
spreadsheet included with the text. Knowing the values of these interaction energies permits
estimation of the properties for a really impressive number of chemical solutions. The limitation is
that we are not always entirely sure of the accuracy of these predictions.

Table 13.3. Selected VLE Interaction Energies aij for the UNIFAC Equation in Units of
Kelvin

Although UNIFAC is closely related to UNIQUAC, keep in mind that there is no direct extension to
a correlative equation like UNIQUAC. If you want to fit experimental data that might be on hand, you
cannot do it within the defined framework of UNIFAC; UNIQUAC or NTRL is the preferred choice
when adjustable parameters are desired. Although it is tedious to estimate the aij parameters of
UNIQUAC or NRTL from UNIFAC, some implementations of chemical engineering process design
software have included facilities for estimating UNIQUAC or NRTL parameters from UNIFAC. This
approach can be useful for estimating interactions for a few binary pairs in a multicomponent mixture
when most of the binary pairs are known from experimental data specific to those binary interactions.

The basic approach to understanding UNIFAC is the generalization of the methods for calculating
the residual activity coefficient. Imagine the interactions of a CH3 group in a mixture of isopropanol
(1) and component (2). The isopropanol consists of 2(CH3) + 1(CH) + 1(OH). Therefore, in the
mixture, a CH3 will encounter CH3, CH, OH groups, and the groups of component (2), and the
interaction energies depend on the number of each type of group available in the solution. Therefore,
the interaction energy of CH3 groups can be calculated relative to a hypothetical solution of 100%
CH3 groups. The mixture can be approximated as a solution of groups (SOG)14 (rather than a solution
of molecules), and the interaction energies can be integrated with respect to temperature to arrive at
chemical potential in a manner similar to the development of Eqn. 13.40.



Therefore, it is possible to calculate  where  is the chemical potential in
a hypothetical solution of 100% CH3 groups and ΓCH3

 is the activity coefficient of CH3 in the solution

of groups. The chemical potential of CH3 groups in pure isopropanol (1), given by , will differ

from  because even in pure isopropanol CH3 will encounter a mixture of CH3, CH, and OH
groups in the ratio that they appear in pure isopropanol, and therefore the activity coefficient of CH3

groups in pure isopropanol, , is not unity, where the superscript (1) indicates pure component (1).
The difference that is desired is the effect of mixing the CH3 groups in isopropanol with component
(2), relative to pure isopropanol,

Fig. 13.2 provides an illustration of the differences that we seek to calculate, with water as a
component (2).

Figure 13.2. Illustration relating the chemical potential of CH3 groups in pure 2-propanol, a
real solution of groups where water is component (2), and a hypothetical solution of CH3 groups.

The number of groups sketched in each circle is arbitrary and chosen to illustrate the types of

groups present. The chemical potential change that we seek is . We calculate this
difference by taking the difference between the other two paths.

If the chemical potential of a molecule consists of the sum of interactions of the groups,

Therefore, we arrive at the important result that is utilized in UNIFAC,



where the sum is over all function groups in molecule (1) and  is the number of occurrences of
group m in the molecule. The activity coefficient formula for any other molecular component can be
found by substituting for (1) in Eqn. 13.56. Note that Γm is calculated in a solution of groups for all

molecules in the mixture, whereas  is calculated in the solution of groups for just component (1).
Note that we use uppercase letters to represent the group property analog of the molecular properties,
with the following exceptions: Uppercase τ looks too much like T, so we substitute Ψ, and the aij for
UNIFAC is understood to be a group property even though the same symbol is represented by a
molecular property in UNIQUAC. The relations are shown in Table 13.4.

Table 13.4. Comparison of Group Variables and Molecular Variables for UNIFAC

lnΓm is calculated by generalizing the UNIQUAC expression for . Generalizing Eqn. 13.55
and supporting equations,



 UNIFAC. See Actcoeff.xlsx, worksheets UNIFAC and UNIFACLLE, and MATLAB
UnifacCaller.m.

where  is the number of groups of type k in molecule i. Fortunately, the spreadsheet and
programs provided with the textbook save us from doing the tedious calculations for UNIFAC,
although an understanding of the principles is important.

Example 13.5. Calculation of group mole fractions
Calculate the group mole fraction for CH3 in a mixture of 60 mole% 2-propanol, 40 mole% water.

Solution
The two molecules are illustrated in Example 13.1 on page 500 and the group assignments are

tabulated there. On a basis of 10 moles of solution, there are six moles of 2-propanol, and four moles
of H20. The table below summarizes the totals of the functional groups.

The mole fraction of CH3 groups is then XCH3
 = 12/28 = 0.429. The mole fractions of the other

groups are found analogously and are also summarized in the table. The results are consistent with
Eqn. 13.60 which is more easily programmed,

 Actcoeff.xlsx, UNIFAC, and UnifacVLE/unifacCaller.m.

Example 13.6. Detailed calculations of activity coefficients via UNIFAC
Let’s return to the example for the IPA + water system mentioned in Example 13.1. Compute the

surface fractions, volume fractions, group interactions, and summations that go into the activity



coefficients for this system at its azeotropic conditions. The isopropyl alcohol (IPA) + water (W)
system is known to form an azeotrope at atmospheric pressure and 80.37°C (xW = 0.3146)a.

Applying Eqn. 13.57,

Solution
(this calculation can be followed interactively in the UNIFAC spreadsheet):
The molecular size and surface area parameters are found by applying Eqn. 13.44. Isopropanol has

2 CH3, 1 OH, and 1 CH group. The group parameters are taken from Table 13.2.

For IPA: r = 2·0.9011 + 0.4469 + 1.0 = 3.2491; q = 2·0.8480 + 0.2280 + 1.2 = 3.124 For water: r
= 0.920; q = 1.40

At xW = 0.3146, ΦW = 0.1150, and θW = 0.1706 using the same combinatorial contribution as
UNIQUAC, Eqn. 13.54,

Note that these combinatorial contributions are computed on the basis of the total molecule. This is
because the space-filling properties are the same whether we consider the functional groups or the
whole molecules.

For the residual term, we break the solution into a solution of groups. Then we compute the
contribution to the activity coefficients arising from each of those groups. We have four functional

groups altogether (2CH3, CH, OH, H2O). We will illustrate the concepts by calculating  and
simply tabulate the results for the remainder of the calculations since they are analogous.

First, let us tabulate the energetic parameters we will need. We can summarize the calculations in
tabular form as follows:

For pure isopropanol, we tabulate the mole fractions of functional groups, and calculate the surface
fractions:



The same type of calculations can be repeated for the other functional groups. The calculation of 

 is not necessary, since the whole water molecule is considered a functional group. Performing
the calculations in the mixture, the mole fractions, Xj, need to be recalculated to reflect the
compositions of groups in the overall mixture. Table 13.5 summarizes the calculations.

Table 13.5. Summary of Calculations for Mixture of Isopropanol and Water at 80.37°C and xw
= 0.3146

The pure component values of InΓj
(i) can be easily verified on the spreadsheet after unhiding the

columns with the intermediate calculations or in MATLAB by removing the appropriate “;”. Entering
values of 0 and 1 for the respective molecular species mole fractions causes the values of InΓj

(i) to be
calculated. (Note that values will appear on the spreadsheet computed for infinite dilution activity
coefficients of the groups which do not exist in the pure component limits, but these are not applicable
to our calculation so we can ignore them.) Subtracting the appropriate pure component limits gives
the final row in Table 13.5. All that remains is to combine the group contributions to form the
molecules, and to add the residual part to the combinatorial part.

a. Perry, R.H., Chilton, C.H. 1973. Chemical Engineers’ Handbook , 5 ed. New York, NY: McGraw-Hill, Chapter 13.



13.6. COSMO-RS Methods
In principle, all electronic and molecular interactions are described by quantum mechanics, so you

may wonder why we have not considered computing mixture properties from this fundamental
approach. In practice, two considerations limit the feasibility of this approach. First, quantum
mechanical computations tend to be time consuming. Precise computations can require days for a
single molecule the size of naphthalene and the computation time increases as N7, where N is the
number of atoms in the molecule. Second, the intermolecular interaction energy, which affects the
mixing properties, is at least an order of magnitude smaller than the intramolecular energy. Therefore,
high precision is required to compute the intermolecular interactions directly. Circumventing these
limitations has been the focus of the “COSMO-RS” approach.

COSMO-RS is an abbreviation for “COnductor-like Screening MOdel for Real Solvents.” It refers
to a method of performing quantum mechanical calculations as if the simulated molecule were in a
conductive bath rather than a vacuum. The method was developed originally by Klamt and
coworkers15 as an extension of previous work on a continuum solvation model (CSM).16 The
implementation of Klamt and coworkers is marketed commercially as COSMOtherm and updated
continually. A free educational version with graphical user interface is available that includes
capability for about 350 compounds. The implementation of Klamt and coworkers is currently based
on the TURBOMOLE package for quantum mechanical simulations, and a few other packages also
provide consistent results. Later, Lin and Sandler developed an implementation based on the DMOL3

simulation package,17 which is included in the Accelrys Materials Studio. We refer to this
implementation as COSMO-RS/SAC. It is available as a free download including capability for
about 1500 compounds from a web site maintained by Y.A. Liu at Va. Tech.18 The method includes
several empirical parameters that have been characterized by fitting experimental data. The specific
parameters depend on the quantum simulation method. In the example below, we have applied the
SAC parameters.

The key idea of the COSMO-RS approach has been to focus on the polarization of the surface
surrounding a molecule. The significance of the surface polarization can be likened to the acidity and
basicity of the SSCED model. If the surrounding surface is positively charged, then the molecular
surface must be basic; if the surrounding surface is negatively charged, then the molecular surface
must be acidic. If we imagine coloring these acidic interactions as blue and the basic interactions as
red, we could represent the molecular surfaces in the manner of the pictures on the cover of the
textbook. The overall surface energy, including positive, negative, and neutral influences, can be
correlated with activity coefficients and other properties like the heat of vaporization.

To calculate the surface polarization an approximate quantum mechanical method can be applied,
known as density functional theory (DFT). DFT computations typically require only a few hours for a
molecule like naphthalene, and the increase in computation time scales as N3. If we integrate over the
interactions between the surfaces of molecules, we can imagine how results similar to SSCED could
be achieved. An additional advantage of COSMO-RS is that local composition effects are implicit in
the integration of the local polarization interactions over all orientations between the two molecules.
Furthermore, acidity and basicity are not limited to a single characteristic value per molecule, but are
characterized by a range of polarizations over the entire surface of each molecule.

To implement the method, the molecular surface charges are calculated using DFT. The observed



polarization is referred to as a σ-profile, where σ refers to the surface charge density (Coulombs/Å2).
Typical σ-profiles are illustrated in Fig. 13.3. The p(σ) represents the amount of area per σ-interval
(Å2/(Coulombs/Å2)) plotted against the surface charge density (Coulombs/Å2). In other words, p(σ)
is proportional to a count of how many segments possess a given amount of surface polarization. It is
analogous to the number of occurrences of a group in UNIFAC. The curve is normalized such that an
integral of the σ-profile gives the total surface area of the molecule. The effective area per segment is
divided out near the end of the calculation when computing the activity coefficient. The area under the
curve in a particular region shows the total area of the molecule with the charge density. Fig. 13.3(a)
shows how ethanol is a smaller molecule than octanol based on the total area under the curve.

Figure 13.3. Samples of σ-profiles for application to the COSMO-RS method, Aeffni(σ).
Dashed vertical lines show the threshold values for hydrogen bonding.

Since the charge density, σ, ranges over negative and positive values, all values less than –0.0084
are considered to contribute to acidity. A similar consideration applies to the β contribution except
that all σ > 0.0084 contribute to basicity. In Fig. 13.3(a), note that the two alcohols have extremely
similar contributions of total area for both acidity and basicity. Fig. 13.3(b) shows that water is a
very small molecule (small area under the curve) with extensive hydrogen bonding (both acidic and
basic outside the dispersion bounds) while chloroform is a relatively large molecule with strong
acidity and no basicity. All of these behaviors make sense qualitatively, so what remains is the
translation into a quantitative method.

Computing activity coefficients for a binary solution is similar to the UNIFAC method if you can
imagine transforming the earlier summation over groups to a summation over discretized polarization
segments of the σ-profile. Note that use of the term “segment” does not refer to a geometric segment,
but to an “interval” of surface polarization. A particular amount of surface polarization may occur at
various places over the surface of the molecule, but all would be added together to get p(σ). It may be
helpful to think of this quantity in mathematical terms rather than as a physical entity. Typically, the σ-
profile is discretized into 51 values ranging from –0.025 to 0.025 (Coulombs/Å2).19 Therefore, we
can refer to σk where k = [1,51]. To simplify the computations, the integration ∫p(σ)dσ ~ ∆σΣp(σk) is
represented as a sum, Σp(k). The larger size of a particular molecule is reflected in the Σp(k) in a
comparable manner to the molecular volume in the Scatchard-Hildebrand or SSCED models.



Discretized segments on molecule i interact with segments on all molecules, including the ith

molecule itself. In a mixture, pi(k) designates p(k) for the ith component. The activity coefficient
contribution for a segment k(Γk) in a solution of polarization segments is analogous to Eqn. 13.57, but
with a significantly different functional form.

The surface area fraction of polarization segments in a binary mixture of molecules type 1 + 2 is

where ajk is defined below and the molecular surface area is

A practical difference between Eqns. 13.57 and 13.61 is that the activity coefficient contribution of
a given σ-interval depends on itself through the summation over all interactions in Eqn. 13.61.
Conceptually, the influence of a segment on its neighbors alters its own behavior as those neighbors
respond to the local activity. This necessitates iteration, initiated with Γk = 1 for all k.

A fundamental difference between Eqns. 13.57 and 13.61 is that the formulas are derived entirely
differently. The matrix of ajk is related to balancing electrostatic charges, as given by:

where α(j,k) and β(j,k) characterize the hydrogen bonding between the jth and kth segments, similar
to the α and β parameters of the SSCED model. We assume that hydrogen bonding occurs regardless
of which σ value (j or k) surpasses the threshold value because the energetic reward is sufficient for
them to find each other regardless of where the segments are. Mathematically, this becomes,

Similar to UNIFAC, this approach leads to a nonunity value for the activity coefficient of a pure
fluid. So,

where  is computed using the same formula as for UNIFAC or UNIQUAC; Aeff = 7.5 is the
normalization for the area, and Γk

(i) is the segment activity in pure component i, computed by applying
Eqn. 13.62 and so forth, with the appropriate composition.

Although we can conceive of COSMO-RS as being similar to UNIFAC, it is really much more
general. The UNIFAC method requires experimental data to characterize the aik matrix. COSMORS,
on the other hand, computes this matrix based on σ-profiles that have been computed with no
experimental data except the empirical constants in Eqn. 13.65. Usually, more precise results are



obtained with UNIFAC if all the groups have been characterized, but the COSMO-RS approach can
be used to supplement the UNIFAC method when no experimental data exist.

Example 13.7. Calculation of activity coefficients using COSMO-RS/SAC
σ-profiles for methanol and acetone are listed below. (a) Use these to compute the activity

coefficient at xM = 0.425 and 55°C assuming the SAC values of the COSMO-RS parameters as given
by Lin and Sandler. (b) Compute the activity coefficients over the entire range of compositions and
compare to the fit of UNIQUAC to experimental data and the SSCED model.

Table of σ-profiles. Note that σ(k) = [-0.025,0.025], a total of 51 values. Cells omitted if all zeros.

Solution
a. Applying Eqn. 13.64 gives q1 = 67.9 and q2 = 102.6. The mixture’s segmental area
fraction, Θ(k), is zero for k = 1 to 9. Θ(10)=(0.425(0.598) + (0.575)0)/(0.425(67.9) +
(0.575)102.6) = 2.89(10-3) and so forth for Θ(11) to Θ(42).

For j = k = 1, σ(j) = σ(k) = –0.025. So, max(σ(j), σ(k)) = –0.025, and –0.025 –
0.0084 = – 0.0334, but max(0, –0.0334) = 0.

So α(1, 1) = 0, and even though β(1, 1) = –0.0166, the product α(1, 1)β(1, 1) =0 and
hydrogen bonding contributes zero for i = k = 1. For the dispersion term, however,
a1,1 = [8233(σ(1) + σ(1))2]/0.001987 = 10359 and Ψ(1,1) = exp(–
10359/328.15)=1.951(10–14).

The first term for which hydrogen bonding is nonzero is i = 1, k = 35. Then, α(1, 35)
= max(σ(j), σ(k)) – 0.0084 = 0.0006 and β(1, 35) = –0.0166.

The total is a1,35 = [8233(–0.025 + 0.009)2 + 85580(0.0006)(–0.0166)]/0.001987=
–428.98 and Ψ(1, 35) = exp(428.98/328.15) = 3.696. Note how p(k) contributes to Θ
but not Ψ.

These two cases (i = k = 1) and (i = 1, k = 35) illustrate important behaviors.
Briefly, segment pairs involving the disperse interactions between two like-charged



segments are disfavored, as indicated by the small value of Ψ. Even when the
polarizations are exactly opposite and sum to zero, the best that can happen for the
dispersion term is Ψ = 1. All other values of polarization lead to Ψ<1 for the
dispersion term (because the contribution is squared), reflecting an unfavorable
interaction. This is vaguely reminiscent of the (∆δ’)2 term that applies to dispersion
interactions in the SSCED model. The second case shows that acid-base interactions
are opposite in sign to the dispersion interactions, and generally are sufficient to
provide Ψ > 1, indicating favorable interactions. Again, this is reminiscent of
hydrogen bonding in the SSCED model.

Completing the solution for part (a) involves summing all the terms, both for the
mixture and for the pure fluid. After the first iteration of Eqn. 13.61 for Γk, the first 10
values are roughly 0.5. Other sample values are Γ20 = 1.561, Γ30 = 1.203, Γ40 = 0.736,
and Γ50 = 0.500. After the last iteration, these values become Γ1 = 7.864(10–5), Γ10 =
0.0279, Γ20 = 1.478, Γ30 = 1.107, Γ40 = 2.522, Γ50 = 3.312(10–3).

Similarly, after the first iteration for pure fluids: Γk
(1) = 0.5 for k = 1 to 10, ...,

Γ20
(1) = 1.559, Γ30

(1) = 1.267, ... Γ1
(2) = 0.501, Γ10

(2) = 0.563, Γ20
(2) = 1.562, and

Γ30
(2) = 1.176.

After the final iteration, Γ1
(1) = 7.05(10–5), Γ10

(1) = 2.931(10–2), Γ20
(1) = 1.546,

Γ30
(1) = 1.204, ... Γ1

(2) = 3.322(10–4), Γ10
(2) = 3.748(10–3), Γ20

(2) = 1.453, Γ30
(2) =

1.063, ...
Summing the Γk – Γk

(i) gives lnγ1 = 0.0957 – 0.0353 = 0.0605 and lnγ2 = 0.0746 –
0.0145 = 0.0601, where the negative terms are the Guggenheim-Staverman
contribution using qi and r1 = 48.8 and r2 = 86.4. The values of r1 and r2 come from
the (VT) database of Mullins et al.

b. The σ-profiles for methanol and acetone are shown below, along with a comparison to
the activity coefficients from the SSCED model and the UNIQUAC model.a

Regarding the σ-profiles, it is apparent from the high positive polarization (proton
acceptor) of the acetone that hydrogen bonding should play a significant role. The right
figure shows the comparison of the COSMO-RS model with a UNIQUAC fit



(considered the benchmark in this case). The COSMO-RS/SAC model and the SSCED
model are almost scaled mirror images, and neither is precisely correct.b The
COSMO-RS/SAC model underestimates the nonideality of this mixture.

a. The UNIQUAC model (right figure) was fit to the data of Marinichev A.N., Susarev M.P. 1965. Zhur. Prikl. Khim,
38(2):371.
b. These components are available in the educational version of COSMOtherm. Estimates are more accurate with
COSMOtherm, but the mirror-image effect is consistent.

13.7. The Molecular Basis of Solution Models
As discussed during the development of quadratic mixing rules, there comes a point at which the

assumption of random mixing cannot completely explain the nonidealities of the solution. Local
compositions are examples of nonrandomness. The popularity of local composition models like
Wilson’s equation or UNIFAC means that we need to develop some appreciation of the strength of the
underlying theory and its limitations. Similar to the situation for the random mixing models, there are
limitations to the local composition models. At this time, however, we are not exactly sure what all
the limitations are. This is still a question for active research. Nevertheless, we can provide an
understanding of the assumptions in these models, because the assumptions are the sources of errors
that impose limitations.

Extending the Energy Equation to Mixtures
We begin the discussion with the energy equation, not the pressure equation as we did for pure

fluids. This is because we are presently concerned with the Gibbs energy of mixing and its excess
change relative to ideal solution behavior. It turns out that the excess Gibbs energy is dominated by
the excess internal energy in most cases. In other words, the entropy of mixing is given with
reasonable accuracy by the mixing rule on “b” given in Eqn. 12.1. Therefore, we focus our attention
on extending the energy equation to mixtures. This requires revisiting our development of the energy
equation for pure fluids and applying the same principles to extend it to mixtures. With two small
modifications, the energy equation we developed for pure fluids becomes:

The small modifications are: (1) We have put the equation on an atomic basis instead of a molar
basis by noting niNA = Ni and Nk = nR; (2) We recognize that these are the contributions to the energy
departure that arise from atoms of type “1.” For the pure fluid, it so happens that we only have atoms
of type “1.”

In developing the energy equation for pure fluids, we recognized that the average internal energy
departure per atom [i.e., (U1 – U1

ig)/N1] was equal to the energy per pair per unit volume times the
local density in that volume integrated over the total volume. To make the extension to a mixture, we
must simply recognize that there are now atoms of “type 2” around those atoms of “type 1.” To
illustrate, consider a parking lot full of blue cars and green cars. If one parking lot had only green
cars, then the average energy per green car would involve the average number of green cars at each
distance around one green car times the energy associated with green cars being that distance from
each other. If you pack them too close, you will have to work hard to pack them, and so forth. Now



consider the next parking lot, where blue cars are mixed with green cars. The average energy per
green car will now involve contributions from green-green interactions and blue-green interactions.
In equation form, this becomes

We can check this equation by noting that it approaches the pure green car equation when all the
blue cars leave the parking lot (i.e., as Nb → 0). We may next write the average energy per blue car
by symmetry and the total energy by addition.

Finally, making the substitutions in terms of the mole fractions, recognizing that ubg=ugb and
gbg=ggb, and converting back to a molar basis, we see that for multicomponent mixtures,

 The energy equation for mixtures.

Comparing to the van der Waals equation for pure fluids,

where  and it is understood that aij = aji.

In this form we can recognize that the radial distribution functions may be dependent on
composition as well as temperature and density. Therefore, assuming the quadratic mixing rule simply
neglects the composition dependence of the a parameter, as well as the temperature and density
dependence. We found in Unit II that the assumptions about temperature and density in the van der
Waals equation were flawed and that is what motivated the Peng-Robinson equation. Similarly,



neglecting the composition dependence of the radial distribution functions leads to some limitations
that give rise to local composition theory.

Local Compositions in Terms of Radial Distribution Functions
Recalling the energy equation for mixtures, Eqn. 13.71 multiplied by RT,

We may now define the local compositions in terms of the radial distribution functions.

where rij = r / σij

          Rij = “neighborhood”

          Nc,i = total # of atoms around sites of type “i,” that is, the coordination number.

Rearrangement gives the molecular definition of the local composition parameter Ωij,

and we note the similarity between the integral in the energy equation and the integral in the
definition of local composition.

For a square-well fluid, εij = constant, so we can factor it out of the integral,

Substituting Nc,j, and xij into the energy equation for mixtures (multiply Eqn. 13.75 by Nc,j and
substitute into Eqn. 13.78),

This is the equation previously applied as the starting point for development of the Gibbs excess
energy model from a local composition perspective. The rest of the derivation proceeds as before.

Assumptions in Local Composition Models
In the previous section, we discussed some of the currently popular expressions for activity

coefficients. We listed the assumptions involved in developing the expressions but we did not take
time to discuss those assumptions. Instead, we directly applied the expressions as a practical



necessity and moved on. In this section, we recall those assumptions and attempt to put them in
perspective. After developing this perspective, we conclude with a word of caution; the reliability of
the predictions depends largely on the accuracy of the assumptions.

The local composition theory, upon which UNIQUAC and others are based, has the general intent
of correcting regular solution theory for asymmetries in solution behavior due to fluid structure near a
central species. Relaxing the assumption that SE = 0 also leads to the necessity of considering the
entropy of mixing, and differences between the UNIQUAC model and Wilson’s model are primarily
due to differences in treatment of SE. In review, four assumptions are shared by the local composition
theories when considered with respect to spheres:

1. The average energy of an i-j interaction is independent of temperature, density, and other
species present.
2. (A – Ais) = (G – Gis).
3. The “coordination number” of a specie in a mixture is the same as that of the pure
species.
4. The temperature-dependent part of the energy of mixing is given by Ωij = (σij/σij)3

exp[z(εij – εjj)/2kT] where z is a “coordination number.”

Wilson’s equation makes the following assumptions:
5w. Nc,j = z = 2 for all j at all densities.

6w. .

7w. (σij/σjj)3 = Vi/Vj for all i, j, and , Λji = Ωij.20

UNIFAC(QUAC) makes the following assumptions:

7u. (σij/σjj)3 = Nc,i/Nc,j = qi/qj for all i, j, .

Assumption 1 involves factoring some average energy out of the energy integral such that the local
composition integral is obtained. As noted, this assumption would be correct for a square-well
potential, so we can probably trust that it would be reasonable for other similar potentials like the
Lennard-Jones. The doubt which arises, however, involves the application of this approximation to
highly nonideal mixtures. The square-well and Lennard-Jones potentials rarely give rise to highly
nonideal mixtures when realistic values for their parameters are chosen. There is very little evidence
to judge whether the εij factored out in this way is really independent of temperature and density for
nonideal mixtures. In fact, in Chapter 1, we showed that dipole interactions are temperature
dependent.

Assumption 2 has to do with neglecting ln(Z/Zis). For liquids, this may seem dangerous until one



realizes that it amounts to neglecting ln(1 + ρE/ρ) ≈ ρE/ρ. Relative to the density of a liquid, the
excess density is generally small (but easy to measure with a high degree of accuracy) and this
assumption is acceptable.

Assumption 3 has to do with convenience. If the coordination number of each species was assumed
to change with mixing, the theory could become very complicated. That is not a very good physical
reason, of course. Physically speaking, this assumption could become quite poor if the sizes of the
molecules (or segments in the case of UNIFAC) were very different.

Assumption 4 is the primary assumption behind all of the current local composition approaches,
but it is not required by the concept of local compositions. It is simply computationally expedient in
the equations that develop. The crucial aspect of the assumption is the simple form of the temperature
dependence of Ωij. The main motivation for this assumption appears to be obtaining an expression
which can be integrated analytically. But how accurate is this assumption on a physical basis?
Moreover, how can we determine the physical behavior for the behavior of Ωij in an unequivocal
manner? Merely fitting experimental data for the Gibbs excess function is equivocal because some set
of adjustable parameters will provide a good fit even if the model has no physical basis. An
alternative available to us that was not available to van der Waals is to apply computer simulation of
square-well mixtures over a specific range of densities and temperatures and test the validity of
Wilson’s approximation directly through the simulated local compositions. This approach was
undertaken by Sandler and Lee.21

Sandler and Lee have developed a correlation for what amounts to Ωij of a square-well potential.

This expression reproduces the local compositions of a substantial set of molecular simulation data
which Sandler and coworkers have generated. We can therefore use this expression along with the
molecular simulation data as a guide to the accuracy of Wilson’s assumption.

The most important consideration is the temperature dependence of this parameter because it is the
integration with respect to temperature that allows us to get from energy to free energy. As for
density, it could be argued that the density of all liquids is roughly the same, so it is not unreasonable
to pick a specific density and just study the temperature effects. Suppose

If the natural logarithm term on the right-hand side in the above equation is small or gives rise to a
contribution which is linear in 1/kT, then Wilson’s assumption is basically correct and his definition
of εij would just be a little different from Eqn. 13.18. If ln Ωij versus 1/kT is not linear, however, then
Wilson’s assumption is very questionable. Fig. 13.4 shows ln Ωij is fairly linear over certain ranges
of temperature. This suggests that the primary assumption of Wilson and UNIFAC(QUAC) is not
unreasonable. Does this mean that the problem of nonideal solutions is solved? Maybe, but maybe
not. Unfortunately, we must look closely at the range of temperatures that are applicable. This range is



limited by the tendency for the mixture to phase-separate. That is, dropping the temperature at
constant overall density eventually places the conditions inside the binodal curve. For the
composition and density listed above, the binodal occurs when NA(ε12 – ε12)/RT < –0.4. This
corresponds to a maximum value of A12 in Wilson’s equation on the order of ~300 cal/mol at
temperatures near 400 K. To use larger values for A12 would be unsupported, but larger values are
often used, as illustrated in Example 13.3.

Figure 13.4. Temperature-dependence of local composition parameters. Points are molecular
simulation data and the curve is the correlation of Sandler and Lee.21 The approximate linearity

of the plot lends support to the assumption applied in integrating the internal energy to obtain
the free energy.

Another indication of the potential for error with the local composition approach is given by
experimental data for excess enthalpies of mixing. Relations from classical thermodynamics make it
possible to estimate the enthalpy of mixing by taking the derivative of the Gibbs energy of mixing with
respect to temperature. Larsen et al., have developed a modified form of UNIFAC to address this
problem.22 Not surprisingly, the modification involves the introduction of a substantial number of
additional adjustable parameters. Even though the modified form does improve the accuracy of all the
thermodynamic properties for a large number of systems there are many systems for which the
predicted heats of mixing are in error by 100%–700%. More importantly, there is no way of knowing
in advance when the predictions will be in error or when they will be accurate.

So why do these approximations fit the activity coefficient data? Because they have enough
adjustable parameters to fit the data. Even the Margules one-parameter equation is good enough for
that in many cases, but we suffer few delusions about its physical accuracy. In conclusion, we must
say that local composition theory has much to recommend it. It does fit a great wealth of experimental
data and there is some justification for its form via the theoretical physics which can be applied. But
it is often extrapolated too far and that can lead to miscalculations by unwary users. In the end, we
must never underestimate the value of experimental data for nonideal mixtures and apply the currently
available theory with a careful and mildly critical view.



Assumptions 5 through 7 have to do with the entropy of mixing. The inclusion of the Staverman-
type modifications to address the differences between surface fraction and volume fraction are
generally recognized to be reasonable based on polymer lattice computer simulations. This
modification and the estimate of molecular volumes by group contributions instead of liquid molar
volumes comprise the primary differences between the Wilson and UNIQUAC models.

The UNIFAC theory is distinguished from UNIQUAC in that the solution is assumed to be a
mixture of functional groups, not molecules. The UNIQUAC theory is then applied to each type of
group interaction. The values for the group interactions are then regressed from a data base that
includes phase equilibrium data for many, many systems. In one sense, the UNIFAC method is more
like a massive regression than a truly predictive method. Thus, it lies somewhere between the purely
correlative method of fitting van Laar constants and the purely predictive method of the Scatchard-
Hildebrand theory (or any equation of state with kij = 0). Like any regressed equation, it can be
unreliable if extrapolated far beyond the originally applied data. If you are ever in the position of
designing truly novel chemical systems, you should be especially sensitive to the need for specific
experimental data.

13.8. Summary
The theories developed in this chapter are based on the local composition concept. Similar to

models developed in the previous chapter, accurate representation of highly nonideal solutions
requires the introduction of at least two adjustable parameters. These adjustable parameters permit us
to compensate for our ignorance in a systematic fashion. By determining reasonable values for the
parameters from experimental data, we can interpolate between several measurements, and in some
cases extrapolate to systems where we have no measurements. Learning how to determine reasonable
values for the parameters and apply the final equations is an important part of this chapter. We also
introduce the UNIFAC model, which is useful for predicting behavior when no experimental
measurements are available. Similar to UNIFAC, COSMO-RS methods are predictive, but are based
on quantum mechanical simulations that can be applied when experimental data are entirely lacking
for a particular functional group. UNIFAC would require at least a small quantity of experimental
data to characterize the group contributions.

We should also note, however, that using an equation of state is similarly simplified by using a
computer, so the basic motivation for developing solution models specific to liquids is
simultaneously undermined by requiring computers for implementation. From this perspective, what
we should be doing is analyzing the mixing rules and models of interaction energies in equations of
state if we intend to use a computer anyway. We return to this point in Unit IV, when we discuss
hydrogen-bonding equations of state for nonideal solutions.

13.9. Important Equations
The UNIFAC method receives broad application throughout thermodynamic modeling. In fact,

occasional applications of UNIFAC may be too broad in the sense that experimental data specific to a
particular binary system are ignored and UNIFAC predictions are not validated with actual
measurements. A literature search should be conducted for experimental data pertaining to every
molecular interaction in a mixture and compared to the UNIFAC predictions. If significant deviations
are observed, then UNIQUAC (or Wilson or NRTL) should be applied as the general activity model
with system-specific parameters whenever possible and parameters inferred from UNIFAC



predictions only in cases where no experimental data are available. In that context, an important
equation for this chapter is best characterized by the UNIQUAC model.

Fundamentally, the energy equation for mixtures summarizes all local composition models:

13.10. Practice Problems
P13.1. The following lattice contains x’s, o’s, and void spaces. The coordination number of
each cell is 8. Estimate the local composition (Xxo) and the parameter Ωox based on rows and
columns away from the edges. (ANS. 0.68,1.47)

13.11. Homework Problems
13.1. Show that Wilson’s equation reduces to Flory’s equation when Aij = Aji = 0. Further, show
that it reduces to an ideal solution if the energy parameters are zero, and the molecules are the
same size.
13.2. The actone(1) + chloroform(2) system has an azeotrope at x1 = 0.38, 248 mmHg, and
35.17°C. Fit the Wilson equation, and predict the P-x-y diagram.
13.3. Model the behavior of ethanol(1) + toluene(2) at 55°C using the UNIQUAC equation and
the parameters r1 = 2.1055, r2 = 3.9228, q1 = 1.972, q2 = 2.968, a12 = –76.1573 K, and a21 =
438.005 K.
13.4. The UNIFAC and UNIQUAC equations use surface fraction and volume fractions. This
problem explores the differences.

a. Calculate the surface area and volume for a cylinder of diameter d = 1.0 and
length L = 5 where the units are arbitrary. Calculate the surface area for a sphere
of the same volume. Which object has a higher surface area to volume ratio?



b. Calculate the volume fractions and surface area fractions for an equimolar
mixture of the cylinders and spheres from part (a). Use subscript s to denote
spheres and subscript c to denote cylinders.
c. For this equimolar mixture, calculate the local composition ratios xcs/xss and
xsc/xcc for the UNIQUAC equation if the energy variables τcs and τsc are unity.
For the equimolar mixture, substitute the values of volume fraction and surface
fraction into the expression for UNIQUAC activity coefficients, and simplify as
much as possible, leaving the q’s as unknowns.
d. Consider n-pentane and 2,2-dimethyl propane (also known as neopentane).
Calculate the UNIQUAC r and q values for each molecule using group
contribution methods. Compare the results with part (a). [Hint: You might want to
think about the -C-C-C-bond angles.]

13.5. Consider a mixture of isobutene(1) + butane(2). Consider a portion of the calculations that
would need to be performed by UNIFAC or UNIQUAC.

a. Calculate the surface area and volume parameters for each molecule.
b. Provide reasoning to identify which component has a larger liquid molar
volume. Which compound has a larger surface area?
c. Calculate the volume fractions for an equimolar mixture.

13.6. Solve problem 10.14 using UNIFAC to model the liquid phase.
13.7. The flash point of liquid mixtures is discussed in Section 10.5. For the following mixtures,
estimate the flash point temperature of the following components and their equimolar mixtures
using UNIFAC:

a. methanol (LFL = 7.3%) + 2-butanone (LFL = 1.8%)
b. ethanol (LFL = 4.3%) + 2-butanone (LFL = 1.8%).

13.8. Use the UNIFAC model to predict the VLE behavior of the n-pentane(1) + acetone(2)
system at 1 bar and compare to the experimental data in problem 11.11.
13.9. According to Gmehling et al. (1994),23 the system acetone + water shows azeotropes at:
(1) 2793 mmHg, 95.1 mol% acetone, and 100°C; and (2) 5155 mmHg, 88.4 mol% acetone and
124°C. What azeotropic pressures and compositions does UNIFAC indicate at 100°C and
124°C? Othmer et al. (1946) (cf. Gmehling24) have studied this system at 2570 mmHg. Prepare
T-x-y or P-x-y plots comparing the UNIFAC predictions to the experimental data.
13.10. Consider the experimental data of Brown and Smith (1954) cited in problem 10.2.
Prepare a P-x-y plot and a plot of experimental activity coefficients vs. composition. Then use
UNIFAC to predict the activity coefficients across the composition range and add the
calculations to the plots.
13.11. Flash separations are fundamental to any process separation train. A full steady-state
process simulation consists largely of many consecutive flash calculations. Use UNIFAC to



determine the temperature at which 20 mol% will be vaporized at 760 mmHg of an equimolar
mixture liquid feed of n-pentane and acetone.
13.12. A preliminary evaluation of a new process concept has produced a waste stream of the
composition given below. It is desired to reduce the waste stream to 10% of its original mass
while recovering essentially pure water from the other stream. Since the solution is very dilute,
we can use a simple equation known as Henry’s law to represent the system. According to
Henry’s law, . Use UNIFAC to estimate the Henry’s law constants when
UNIFAC parameters are available. Use the Scatchard-Hildebrand theory when UNIFAC
parameters are not available. Estimate the relative volatilities (relative to water) of each
component. Relative volatilities are defined in problem 11.2.

Compositions in mg/liter are:

13.13. Derive the form of the excess enthalpy predicted by Wilson’s equation assuming that Aij’s
and ratios of molar volumes are temperature-independent.
13.14. Orbey and Sandler (1995. Ind. Eng. Chem. Res. 34:4351.) have proposed a correction
term to be added to the excess Gibbs energy of mixing given by UNIQUAC. To a reasonable
degree of accuracy the new term can be written

where

Derive an expression for the correction to the activity coefficient. [Hint: Do you
remember how to differentiate implicitly?]

13.15. The energy equation for mixtures can be written for polymers in the form:

By analogy to the development of the Scatchard-Hildebrand theory, this can be
rearranged to:

where
Nd,i = degree of polymerization for the ith component
ρ = molar density
xi = mole fraction of the ith component
NA = Avogadro’s number
U = molar internal energy.



aii* = 3 + 2/Ndi

aij* = (aii* ajj*)1/2

εij = (εii εjj)1/2

Derive an expression for lnγ1 for the activity coefficient model presented above.

13.16. Use the UNIFAC model to predict P-x-y data at 90°C and x1, = {0, 0.1, 0.3, 0.5, 0.7, 0.9,
1.0} for propanoic acid + water. Fit the UNIQUAC model to the predicted P-x-y data and report
your UNIQUAC a12 and a21 parameters in kJ/mole.

13.17.
a. Rearrange Eqn. 13.22 to obtain Eqn. 13.23.
b. Use Eqns. 13.16 and 13.18 in Eqn. 13.17 and perform the integration to obtain
Eqn. 13.19.
c. Use Eqns. 13.16 and 13.31 in Eqn. 13.17 and perform the integration to obtain
Eqn. 13.40.

13.18. Fit the data from problem 11.11 to the following model by regression over all points, and
compare with the experimental data on the same plot, using the

a. Wilson equation
b. NRTL equation
c. UNIQUAC equation

13.19. Work problem 11.25 using the
a. Wilson equation
b. NRTL equation
c. UNIQUAC equation

13.20. Work problem 11.26 using the
a. Wilson equation
b. NRTL equation
c. UNIQUAC equation

13.21. Using the data from problem 11.27, fit the specified model equation and then plot the
P-x-y diagram at 80°C using the

a. Wilson equation
b. NRTL equation
c. UNIQUAC equation



Chapter 14. Liquid-Liquid and Solid-Liquid Phase Equilibria

In the field of observation, chance favors the prepared mind.
Pasteur

The large magnitudes of the activity coefficients in the polymer mixing example should suggest an
interesting possibility. Perhaps the escaping tendency for each of the polymers in the mixture is so
high that they would prefer to escape the mixture to something besides the vapor phase. In other
words, the components might separate into two distinct liquid phases. This can present quite a
problem for blending plastics and recycling them because they do not stay blended. The next question
is: How can we tell if a liquid mixture is stable as a single liquid phase? Also, crystallization is used
for many pharmaceuticals and industrial products. An understanding of solid solubility is important
for designing their separation.

Chapter Objectives: You Should Be Able to...
1. Compute LLE and VLLE phase behavior, including the ability to identify the onset of
liquid instability.
2. Compute SLE phase behavior.
3. Predict the partitioning of a solute between two fluid phases (e.g., n-octanol and water).
4. Construct and interpret triangular phase diagrams.

14.1. The Onset of Liquid-Liquid Instability
Our common experience tells us that oil and water do not mix completely, even though both are

liquids. If we consider equilibria between the two liquid phases, we can label one phase α and the
other β. For such a system we can quickly show that the equilibrium compositions are given by

 Equations for LLE.

where superscripts identify the liquid phase. The coexisting compositions are known as mutual
solubilities. Note that we have assumed an activity coefficient approach here even though we could
formulate an entirely analogous treatment by an equation of state approach. There is also the
possibility that three phases can coexist, two liquids and a vapor, which is illustrated below and is
known as vapor-liquid-liquid equilibria, or VLLE. In this case we have an additional fugacity
relation for the gas phase, where we assume in the figure that the ideal gas law is valid for the vapor
phase. An example of how such a system could be solved is given below. The phase equilibria can be
solved by starting with whichever two phases we know the most about, and filling in the details for
the third phase.



 Equations for VLLE.

Example 14.1. Simple vapor-liquid-liquid equilibrium (VLLE) calculations
At 25°C, a binary system containing components 1 and 2 is in a state of three-phase LLVE.

Analysis of the two equilibrium liquid phases (α and β) yields the following compositions:

Vapor pressures for the two pure components at 25°C are  and .
Making reasonable assumptions, determine good estimates for the following.

a. The activity coefficients γ1 and γ2 (use Lewis-Randall standard states).

b. The equilibrium pressure.
c. The equilibrium vapor composition.

Solution

Assume  because these are practically pure in the specified phases.

We also can determine activity coefficients from a theory to determine infinitely dilute
concentrations. When a phase is nearly pure, the activity coefficient is nearly one at the same time xi
is nearly one.

Example 14.2. LLE predictions using Flory-Huggins theory: Polymer mixing
One of the major problems with recycling polymeric products is that different polymers do not

form miscible solutions with each other, but form highly nonideal solutions. To illustrate, suppose 1 g
each of two different polymers (polymer A and polymer B) is heated to 127°C and mixed as a liquid.
Estimate the mutual solubilities of A and B using the Flory-Huggins equation. Predict the energy of
mixing using the Scatchard-Hildebrand theory. Polymer data:



Solution
This is the same mixture that we considered as an equal-weight-fraction mixture in Example 12.5.

Based on that calculation, we know that the solution is highly nonideal. We must now iterate on the
guessed solubilities until the implied activity coefficients are consistent. Let’s start by guessing that
the two polymer phases are virtually pure and infinitely dilute in the other component.

Using Eqns. 11.46 and 11.47,

Since , then  and .

Good guess. The polymers are totally immiscible. No further iterations are needed.

14.2. Stability and Excess Gibbs Energy
Expressions for activity coefficients are the same for LLE as they are for VLE. The difference is

that multiple liquid compositions can give the same activities or total pressure at a given temperature.
This behavior is implied in Fig. 11.10, where we commented that the calculated lines indicate LLE.
The time has come to analyze why this happens and how to properly represent the phase behavior of a
system with two liquid phases.

Keep in mind that nature dictates phase stability by minimizing the Gibbs energy when T and P are
fixed. Gibbs energies of mixtures using the one-parameter Margules equation for three values of A12
are plotted in Fig. 14.1 (the curves). In this plot, the important quantity is the Gibbs energy of the
mixture G. In Fig. 14.1, the endpoints represent the values of Gi = Hi – TSi for the pure components,
where the references states have been arbitrarily chosen, and only component 2 is at its reference
state. If we imagine computing the Gibbs energy of two separate beakers containing the two separate
components on the basis of one mole of total fluid, we see that this overall molar Gibbs energy is
simply a molar average of the two component Gibbs energies along line 1 in the plot. There is no
contribution from the entropy of mixing, because they are not mixing; they are in separate beakers.
Substituting (1–x1) for x2 in this molar average formula shows that this formula is simply a linear
relation in terms of x1. Deviations from this line are the changes due to the mixing process. Note how

the shape of the Gibbs energy changes with the value of A12. Since , then



rearranging,

Figure 14.1. Illustration of the Gibbs energy of a mixture represented by the Margules one-
parameter equation.

where the last term represents the sum of component enthalpies represented by the upper straight
line. The increasing excess Gibbs energy of mixing (larger A12) ultimately causes a “w-shaped” curve
to form. The individual contributions of Eqn. 14.3 to the Gibbs energy are shown in Fig. 14.2.

Figure 14.2. Illustration of the contributions to the Gibbs energy of a binary mixture when
A12 = 3 and the pure component Gibbs energies are as in Fig. 14.1.

The procedure of summing together Gibbs energies along a line also applies to any tie line. As
shown in Fig. 14.1, A12 = 1 leads to a situation where connecting any two compositions by a straight
line gives a value of G at the overall composition that is higher than the G along the curve. Line 2 on
the plot shows this for a mixture with an overall composition z1 = 0.4 and assuming that two phases



are formed x1
α ≈ 0.17 (point a) and x1

β ≈ 0.74 (point b). The overall Gibbs energy would be given by
point c on the tie line, G/RT = –0.15. However, if the mixture stays as one phase, along the mixture
line the Gibbs energy would be G/RT = –0.23 (point c’), a lower value, which means this is more
stable. (Note that c’ must be at the overall composition along the line, z1 = 0.4.) Since the curve for
A12 = 1 is concave up, a straight line between two points always gives a higher value for two phases.

 A system will split into two phases if it results in a lower Gibbs energy.

This situation is quite different when we consider the case where A12 = 3. Along this curve, the
mixture at z1 = 0.5 would have G ≈ 0.31, (point d), if it remained as a single phase. However, if the
solution splits into two phases, line 3 can be drawn between the compositions of the phases (one
point on either side of d) as shown by points e  and , and the overall energy is
given by the intersection of this line with the overall composition z1 = 0.5 as shown by point d’. The
lowest energy is obtained when the line is tangent to the humps as shown in the figure, where G/RT ≈
0.18, (point d’). Then, by splitting into two phases, the system clearly has a lower value for G/RT.
Any other line that is drawn would force point d’ to have a higher Gibbs energy than this point. (Try
it.) Considering these points at different values of A12 indicates that there is no phase split unless
there is a hump in G/RT that makes it concave down. Note that A12 must be positive to create this
curvature. This means that the activity coefficients must be greater than one, and the system must also
have positive deviations from Raoult’s law for VLE.

One more point needs to be made before working some examples. Note that the line construction
seems similar to what was done for VLE in a flash calculation at the beginning of Chapter 10. In fact,
this is completely analogous mathematically to the flash in those diagrams, and the lever rule applies.
The ratios of the phases can be found in a similar fashion. The only difference is that two liquid
phases are formed upon a liquid-liquid flash rather than a vapor and liquid flash. For the example in
the figure above, the fraction of the overall mixture that is the α phase (left side of diagram) is given
by , so the mixture of this example splits into equal portions of the
two phases. Note that the compositions for points e and f are the same for any overall composition
between the two points. So a different overall composition in a binary mixture shifts the relative
amounts of the two phases, but not their composition. (This simplification does not hold for more
components; the Gibbs phase rule says F = C – P + 2.)

14.3. Binary LLE by Graphing the Gibbs Energy of Mixing
Fig. 14.2 shows the contributions to the Gibbs energy of a mixture for A12 = 3 of Fig 14.1. The pure

component Gibbs energies do not contribute to the curvature in the Gibbs energy of a mixture, and
therefore are not needed for LLE calculations—we need just ∆Gmix. In principle, all that is required
to make predictions of LLE partitioning is some method of calculating activity coefficients. In this
section we use specific models (MAB and UNIFAC) to demonstrate calculation of LLE using ∆Gmix.
The plotting/tangent line method can be extended to any activity coefficient model. This method is
often the easiest method to use for binary solutions, though we show that it is subject to uncertainties
from drawing/reading the tangent line.



The MAB and UNIFAC models are convenient for demonstrating the calculations, but there is a
certain danger in applying too much confidence in such predictions. LLE is more sensitive to the
accuracy of the activity coefficients than VLE. Furthermore, the empirical nature of UNIFAC means
that the same parameter set, {amn}, is not generally accurate for both VLE and LLE, so a different
predictive parameter set is used. As for the sensitivity problem, the best advice is not to take any
predictions too seriously. They can be used as a guide to assess miscibility in a way that is slightly
better than looking at solubility parameter tables, but should never be considered as a substitute for
experimental data. With these cautions in mind, it is useful to show how LLE can be predicted using
UNIFAC and MAB. We have provided the LLE parameters on the spreadsheet UNIFAC(LLE) within
Actcoeff.xlsx, and within Matlab/gammaModels/unifacLLE.

 UNIFAC parameters for LLE differ from those for VLE.

 Actcoeff.xlsx–UNIFAC(LLE); MATLAB Ex14_03.m.

Example 14.3. LLE predictions by graphing
Arce et al.a give the compositions for the tie lines in the system water(1) + propanoic acid(2) +

methylethylketone (MEK)(3) at 298 K and 1 bar. As limiting conditions, the mutual solubilities of
water + MEK (1CH3 + 1CH3CO + 1CH2) binary are also listed as x1

α = 0.342, x1
β = 0.922.

a. Use MAB to roughly estimate the water + MEK binary mutual solubilities to ± 5 mole%.
b. Use UNIFAC to roughly estimate the water + MEK binary mutual solubilities to ± 5
mole%.

Solution
a. A12 = (50.13 – 0)(15.06 – 9.70)(90.1 + 18.0)/(4·8.314·298) = 2.931, virtually the same
as the parameter used above.

Adding GE/RT = A12x1x2 and  gives ∆Gmix/(RT). Using the
drawing tool shows  and 

b. Selecting the appropriate groups from the UNIFAC menu, then copying the values of the
activity coefficient, we can develop Figs. 14.3 and 14.4 using increments of xw = 0.05. In
MATLAB we can set up a vector x1 = 0:0.05:1, and then insert a loop into

unifacCallerLLE.m. Noting  and programming the formula for
∆Gmix/(RT).



Figure 14.3. Gibbs energy of mixing in the water + MEK system as predicted by (a) MAB and
(b) UNIFAC.

Figure 14.4. Activities of water and MEK as a function of mole fraction water as predicted by
UNIFAC. The activity versus mole fraction plots will have a maximum when LLE exists. The

dashed lines show the compositions where the activities of components are equal in both phases
simultaneously.

Using the line drawing tool we obtain tangents at  and .
These are sufficiently precise for the problem statement as given above. Note how the MAB model

results in symmetric estimates of the compositions, a serious deficiency for LLE, and UNIFAC
happens to be fairly close.

a. 1995. J. Chem. Eng. Data 40:225.

14.4. LLE Using Activities
Usually we require higher precision than obtained by graphing the Gibbs energy. Furthermore, we



may encounter multicomponent mixtures, for which the extension of the above method is not
straightforward. We can develop an entirely general method for computing the phase partitioning
given relative activities in Eqn 14.1. In Fig. 14.4 are plotted the activities for the water + MEK
system of Example 14.3. The extrema in the activity plot are characteristic of LLE. The vertical lines
indicate the compositions where the activities are equal in each phase. The horizontal lines indicate
the activity values. This analysis is a graphical solution to Eqn. 14.1. We need a method to search for
this condition numerically. Rearranging Eqn. 14.1 we have,

Note that the K-ratios calculated using the ratio of mole fractions should be identical to the value
calculated using the ratio of activity coefficients at the stable LLE condition. This form is entirely
analogous to the K-ratios in VLE. To find this condition, we can use an LLE flash calculation. We can
iterate on the system by assuming values for mole fractions, generating activity coefficients at those x
values to get K-ratios and then generating new values for mole fractions from the K-ratios. If the loop
is constructed properly, it will create a successive substitution algorithm that will converge.

We can develop such a procedure by noting for a binary mixture that  must sum to unity. We can
calculate the concentrations using the compositions  in the other phase, and use the K-ratio to
generate a new guess of composition. The principle balance equation is  which
leads to

 Iterative flash procedure for binary LLE.

The method is initialized by assuming the two phases are virtually immiscible with an infinitely
dilute trace of the other component. The method is as follows.

1. Assume that phase β is nearly pure 1, , and α is nearly pure 2, .
These represent initialization of the iteration procedure. The procedure is most stable with
an initial guess of mutual solubility outside the two-phase region.

2. Calculate  where the γi′s are evaluated at the initial compositions.

3. Calculate .
4. Calculate .
5. Determine γi,new values for each liquid phase from the xi,new values.

6. Calculate .
7. Replace all xi,old and Ki,old values with the corresponding new values.

8. Loop to step 3 until calculations converge. The calculations converge slowly.
A similar method for ternary systems is explored in a homework problem. Note that the Rachford-



Rice flash method given for VLE in Section 10.3 can be adapted and provides an even more robust
solution, but it is not as easy to implement in Excel without a macro. The method is provided in
Matlab/Chap14/LLEflash.m.

 LLEflash.m implements the Rachford-Rice flash method.

Let us apply the binary algorithm above to the water and MEK system studied in the previous
example.

Example 14.4. The binary LLE algorithm using MAB and SSCED models
Compute the mutual solubilities of water and MEK at 298 K and compare to the experimental data

of Example 14.3 assuming the following models: (a) MAB (b) SSCED.

Solution
a. From Example 14.3, A12 = 2.931. The symmetry of the MAB model gives x1

α = x2
β =

1/exp(2.931) = 0.05335. Computing γi′s at these compositions, KW = 1.0084/13.83 =

0.0729; KMEK = 13.83/1.0084 = 13.72. Then Eqn. 14.5 gives ; 
for the first iteration. Unfortunately, the LLE calculations converge more slowly than VLE
flash calculations. The calculations may drift a couple mole percent in compositions after
they are changing at step sizes in the tenths of mole percents, so patience is required in
converging the calculations. Section 14.9 provides details on setting up a macro or circular
calculation. The table below summarizes the initial iterations. This same model is used
above and the results are the same, but numerically known to better precision than the
graphical method.

b. The SSCED model gives:
k12 = (50.13 – 0)(15.06 – 9.70)/(4·27.94·18.88) = 0.1274.

From lnγ1
∞ = 18[(27.94-18.88)2+2(0.1274)27.94(18.88)]/(8.314·298) = 1.573, x1

α =
1/exp(1.573)= 0.2072.

Applying the same formulas to MEK: .
The table below shows the improved predictions from SSCED relative to MAB. Note how the

molecular size difference is reflected by the much greater activity of trying to squeeze the large
molecule among the small ones. This reflects a significantly improved insight for SSCED relative to
the MAB model.



Iterating further on x1
α through Eqn. 14.5 gives x1

α = 0.2509.

A similar approach to this example could be applied to solve for the ternary problem of
partitioning of the propanoic acid between water and MEK, starting with the above result and infinite
dilution of the propanoic acid. By steadily increasing the propanoic acid and performing flash
calculations each time, the impact of the propanoic acid on the water + MEK partitioning could be
studied. Can you guess whether the propanoic acid causes relatively more MEK to dissolve into the
water phase or vice versa? The answer is explored later in a homework problem.

14.5. VLLE with Immiscible Components
A special case of VLLE is obtained when one of the liquid-phase components is almost entirely

insoluble in other components, and all other components are essentially insoluble in it, as occurs with
many hydrocarbons with water. When a mixture forms two liquid phases, the mole fractions sum to
unity in each of the phases. When a vapor phase coexists, it is a mixture of all components. The
bubble pressure can be calculated using Eqn. 14.2, where the liquid phase fugacities are used to
calculate the vapor phase partial pressures. For example, water and n-pentane are extremely
immiscible. Applying the strategy used in Example 14.1, each liquid phase is essentially pure,
resulting in the bubble pressure  which is greater than the bubble point of either
component. Rather than considering the bubble pressure, think about the bubble temperature. Since
each component contributes to the partial pressure, the bubble temperature of a mixture of two
immiscible liquids is lower than the bubble temperature of either pure component at a specified
pressure. This phenomenon can be use to permit boiling at a lower temperature as shown in the next
example.

Example 14.5. Steam distillation
Consider a steam distillation with the vapor leaving the top of the fractionating column and entering

the condenser at 0.1 MPa with the following analysis:

Assuming no pressure drop in the condenser and that the water and hydrocarbons are completely
immiscible, calculate the maximum temperature which ensures complete condensation at 0.1 MPa.
Use the shortcut K-ratio method for the hydrocarbons.



Solution
Apply the following notation to designate the phases:

The temperature that we seek is a bubble temperature of the liquid phases. The hydrocarbons and
the water are essentially immiscible. We may approximate the hydrocarbon liquid phase, α, as an
ideal solution of C8 and C12 with no water present. Therefore, two liquid phases will form: one of
pure H2O and the other a mixture of 1/3 n-C8 + 2/3 C12 fraction. We may apply Raoult’s law with xw
= 1 for water in the β phase. The vapor mixture is a single phase, however, and must conform to: 

.

So the bubble temperature with water present is ~95°C. Note that the bubble temperature is below
the bubble temperature of pure water. What would it be without water?

Then, interpolating T ≈ 400 + (1 – 0.41)/(1.121 – 0.41)·40 = 433 K. Thus, we reduced the bubble
temperature by 65°C in the steam distillation.

14.6. Binary Phase Diagrams
Liquid-liquid mutual solubilities in partially miscible systems change with temperature at a given

pressure. Whether the solubilities increase or decrease can be due to a number of factors including
hydrogen bonding. When one species H-bonds and the other does not, then as the temperature is
raised and hydrogen bonds are broken, the fluids become more “similar,” and the LLE region
decreases in size. The fluids can become miscible before the boiling point as shown in Fig. 19.12 on
page 804 for methanol + cyclohexane. The liquid-liquid envelope is the dome in the figure. The
temperature where the liquids become totally miscible is known as the upper critical solution
temperature (UCST). Pressure affects the VLE curve, but has virtually no effect on the liquid phases
or LLE. Thus, as the pressure is lowered, the VLE shifts to lower temperatures, and the VLE curve
will overlap the LLE curve, giving a diagram similar to Fig. 16.2B on page 616, insets (e) and (f).



For other systems that differ more greatly in vapor pressure, an azeotrope may not appear in the VLE
and the diagram will appear as in Fig. 16.2A on page 616, insets (b) and (c).

When VLE is predicted by process simulators, the common default settings check for only one
liquid phase. The result can be the odd diagrams as in Fig. 11.10 on page 435. How do we resolve
such diagrams? Consider the T-x-y diagram in Fig. 14.5(a) for ethyl acetate + water generated using
UNIQUAC parameters in the ASPEN Plus database. By default, ASPEN Plus models VLE; the dotted
line is vapor and the dashed line is liquid. The solid line and dots have been added manually. Note
the Lβ is in equilibrium with the left V branch all the way from 373 K to the two left-most dots.
Likewise the Lα is in equilibrium with the right V branch all the way from the pure ethyl acetate
boiling point to the two rightmost dots. The horizontal line is the VLLE condition because both L
branches are simultaneously in equilibrium with the center V dot, and thus they are also in equilibrium
with each other. The liquid compositions are at the outside dots and the vapor composition in this
case is given by the center dot. This state is known as a heteroazeotrope because two liquid phases
co-exist at the azeotrope condition. The odd loops below this VLLE temperature are not equilibrium
states and are discarded. Fig. 14.5(b) is a comparison of experimental data with the diagram
generated by specifying that the process simulator check for VLLE, though the dotted LLE lines are
added manually to show the general type of expected behavior. Note how the lower loops are
eliminated. The horizontal line method is easy to apply manually to any diagrams that you may
generate.

Figure 14.5. (a) VLE predictions of ethyl acetate + water as predicted by literature
parameters in ASPEN using UNIQUAC. The horizontal line and the dots have been added

manually. (b) The correct phase behavior after specifying to check for VLLE. Note that the
liquid-liquid envelope is sketched by hand based on general behavior that may be expected, not

predicted, but the two liquid compositions at the bubble temperature are at the ends of the
horizontal VLLE line. Data from Ellis, S. R. M.; Garbett, R. D. 1960. Ind. Eng. Chem. 52:385-
388; Reichl, A.; et al, 1998. Fluid Phase Equil. 153:113–134; Lee, L.-S.; et al. 1996. J. Chem.

Eng. Japan 96:427–438.



14.7. Plotting Ternary LLE Data
Graphical representation of ternary LLE data is important for design of separation processes. For

ternary systems, triangular coordinates simultaneously represent all three mole fractions, or
alternatively, all three weight fractions. Triangular coordinates are shown in Fig. 14.6(a), with a few
grid lines displayed. The fraction of component A is represented by lines parallel to the BC axis:
Along , the composition is xA = 0.25; along , the composition is xA = 0.5. The fraction of B is
represented by lines parallel to the AC axis; along , the composition is xB = 0.5; along , the
composition is xB = 0.25. The fraction of C is along lines parallel to the AB axis; along , xC = 0.5.
Combining these conventions, at point h, xA = 0.25, xB = 0.25, xC = 0.5. An example of plotted LLE
phase behavior is shown on triangular coordinates in Fig. 14.6(b). The compositions of coexisting α
and β phases are plotted and connected with tie lines. The lever rule can be applied. For example, in
Fig. 14.6(b), a feed of overall composition d will split into two phases: (moles β)/(moles α) = ,
and (moles β)/(moles feed) = .

Figure 14.6. Illustrations of graphical representation of ternary data on triangular diagrams.
(a) Illustration of grid lines on an equilateral triangle; (b) illustration of LLE on an equilateral

triangle; (c) illustration of LLE on a right triangle; (d) illustration of tie-line data on a right
triangle.

To specify the composition of an arbitrary phase α in a ternary system, only two mole fractions are
required. Since the mole fractions must sum to unity, if  and  are known, then the third mole
fraction can be found, . The subscripts may be interchanged, and the same constraints
hold for phase β. Therefore, cartesian coordinates can be used to plot two mole (or weight) fractions
of each phase. Fig. 14.6(c) presents the data from Fig. 14.6(b) on cartesian coordinates. The tie line
and lever rule concepts also apply on this diagram. Tie line data can be plotted on cartesian
coordinates as in Fig. 14.6(d). This representation of tie line data permits improved accuracy when
interpolating between experimental tie lines. The slope of the tie line data, as presented in Fig.



14.6(d), is frequently linear near the origin; the slope of the line in this region is , which is the
distribution coefficient, Ki. For the LLE phase behavior shown in Fig. 14.6, the B + C miscibility is
increased by the addition of A. Along the phase boundary, the tie lines become shorter upon approach
to point P, the Plait point. Note that at the Plait point, all distribution coefficients are one.

Other Examples of LLE Behavior
The ternary LLE of Fig. 14.6 is one of several common types. In this example, A + C is totally

miscible (there is no immiscibility on the AC axis), as is A + B. When two of the three pairs of
components are immiscible, the type of Fig. 14.7(a) can result, and when all three pairs have
immiscibility regions, then type of Fig. 14.7(b) can result. In Fig. 14.7(b), the center region is LLL;
since the T and P are fixed, any overall composition in the center triangle will split into the three
phases of compositions a, b, and c, because F = C – P + 2 = 3 – 3 + 2 = 2.

Figure 14.7. Illustration of other types of LLE behavior.

14.8. Critical Points in Binary Liquid Mixtures
Referring back to Fig. 14.1, we may wish to find the combination of x1 and A12 where the system

just begins to phase-split. This is known as a liquid-liquid critical point. If it is the highest T where
two phases exist (called the UCST, upper critical solution temperature), then we must seek x1 where
the concavity is equal to zero at only one composition (if it was less than zero anywhere, then we
would just have a regular phase split, not a critical point—refer back to the curve for A12 = 3 in Fig.
14.1). If the concavity is equal to zero at x1 and greater everywhere else, then this must represent a
minimum in the concavity as well a point where it equals zero. These two conditions provide two
equations for the two unknowns, x1 and T, involved in determining the critical point. Recalling that
concavity is given by the second derivative:

A generalization of these concepts to multicomponent mixtures gives

By analogy to the phase diagram for pure fluids, the locus where the second derivative equals zero
represents the boundary of instability and is called the liquid-liquid spinodal.



Example 14.6. Liquid-liquid critical point of the Margules one-parameter model
Based on Fig. 14.1 and the discussion of concavity above, it looks like the value of A12 = 2 may be

close to the critical point. Use Eqns. 14.6 and 14.7 to determine the exact value of the critical
parameter.

Solution
Multiplying through by n and recognizing that we have previously performed the initial part of this

derivation (see Eqns. 11.29–11.31) gives

Since this is a binary solution, there is a simple finite relationship between the derivative with
respect to mole number and the derivative with respect to mole fraction, leading expeditiously to the
expected conclusion:

From this example, we can draw a useful conclusion regarding the magnitude of activity
coefficients that leads to immiscibility. Based on the Margules model, LLE should occur whenever
A12 > 2, and a useful engineering rule of thumb for immiscibility is when the activity coefficients
exceed the value of 7.4,

With the capability to determine immiscibility, it is possible to convey some background on one of
the most significant scientific challenges currently occupying modern thermodynamicists. This is the
problem of phase separation in polymer solutions and polymer blends. The same forces driving these
phase separations lead to the extremely important problem of the collapse transition of a single
polymer chain in a solvent or mixture. A special kind of collapse describes the protein folding
problem. Imagine a bowl of spaghetti formed from a single noodle. After stretching the noodle until it



is completely straight, release and watch it collapse into the bowl again. If the noodle was really a
protein, it would collapse into exactly the same hooks and crooks as it was before being stretched.
The folding is driven by hydrophobic effects, hydrogen bonding, and intramolecular interactions like
helix formation. A complete understanding of this phenomenon would greatly facilitate drug design.

Limiting this introductory presentation to liquid-liquid equilibria, the phase partitioning of polymer
mixtures is somewhat simpler in that we care only about collections of chains rather than the details
of individual chains. Polymer solutions are classified differently from polymer blends in a manner
that is superfluous to our mathematical analysis: polymer solutions are blends where the degree of
polymerization of one of the components is unity (the small one is known as the solvent). With this
minimal background, we can phrase the following problem:

Example 14.7. Liquid-liquid critical point of the Flory-Huggins model
Determine the critical value of the Flory-Huggins χ parameter considering the degrees of

polymerization of each component.

Solution
Note that we have already solved this problem for the special case where the two components are

identical in size. Then the excess entropy is zero, the volume fractions are equal to the mole fractions,
and the Margules one-parameter model is recovered with A12 having nearly the same meaning as the
Flory-Huggins χ parameter. To consider the problem of including the degree of polymerization, Nd,
we must define the parameter with respect to a standard unit of volume. Nd is the number of monomer
repeat units in the polymer. In the presentation below (and most other presentations of the same
material), the volume of a monomer of component 1 is assigned as this standard volume (χ′ =
Vstd·[δ1– δ2]2/RT; Vstd = V1/Nd,1). Note that we are introducing temperature dependence into χ′.
Recalling the formula for the activity coefficient with this notational adaptation, the starting point
(Eqn. 11.46) for this derivation becomes:

The next step is greatly simplified if we recognize a simple relationship that is very similar to the
formula for computing the number average molecular weight from the weight fractions of each
component. The analogous formula for the volume can be rearranged in terms of the volume ratio r =
V2/V1 as follows:

Since this is a binary solution, there is a simple finite relationship between the derivative with
respect to mole number and the derivative with respect to volume fraction, leading expeditiously to
the general conclusion (note dΦ1 = –dΦ2):



which leads to two important results:

These results suggest that critical concentration decreases to zero with increasing polymer size but
the critical temperature approaches a finite limit that is related to the solvent size.

There are a number of significant conclusions that may be drawn from the above example. First, for
polymer solutions where (1) is the solvent (i.e., V1<<V2), the critical composition of polymer (2)
approaches zero, and the critical temperature is a finite value that depends on the solvent and polymer
molar volumes and solubility parameters. Furthermore, the critical temperatures for all polymers in a
given solvent should be given by a universal curve with respect to molecular weight when reduced by
the solubility parameter difference, although these predictions are only semi-quantitative due to the
approximate nature of the Scatchard-Hildebrand theory. For blends where V1~V2, the critical
temperature should be proportional to the molecular weight. We have applied several approximations
in deriving these formulas, however. Therefore, significant efforts are currently underway to
determine whether the formulas presented above are sufficiently accurate to describe the complex
phase behavior often observed in polymer solutions and blends. Hanging in the balance is the ability
to tailor-make polymer solutions and blends with many commercial advantages, because the ability to
manipulate phase behavior successfully often relies on operating within the very sensitive critical
region and knowing how to maneuver appropriately.

14.9. Numerical Procedures for Binary, Ternary LLE
Numerical procedures using Excel and MATLAB are provided in online supplements. The Excel

procedure extends Actcoeff.xlsx and explains details on setting up the macro or circular reference for
binary or ternary mixtures. The MATLAB Rachford-Rice procedure can be extended more easily to
multicomponent mixtures.

14.10. Solid-Liquid Equilibria
Solid-liquid equilibria (SLE) calculations begin just as VLE and LLE calculations, by equating

fugacities. From Eqn. 11.13, . The next step is to equate  and derive an equation to
solve for temperature or composition depending on the problem statement. We have deliberately



avoided substituting , however, as we did for VLE and LLE. This is because pure
components below their melting temperature do not exist as liquids, so the vapor pressure is not
relevant. This peculiarity necessitates a derivation to characterize a hypothetical liquid state. The
treatment of the solid phase is usually much simpler, however, because most solids exist in a
practically pure state. The purity of crystallized solid phases is one of the reasons for the prevalence
of crystallization and filtration in the pharmaceutical industry.

Pressure Effects
For SLE, as for LLE, pressure changes usually have very small effects on the equilibria unless the

pressure changes are large (10 to 100 MPa), because the enthalpies and entropies of condensed
phases are only weakly pressure-dependent. Since dG = RT d ln f = dH – T dS = V dP for a pressure
change at constant T, the Gibbs energy and fugacity exhibit only small changes with pressure when the
enthalpy and entropy exhibit small changes. (Recall that the Poynting correction factor is usually very
near one.) In a mixture of liquids, the analysis must be done with partial molar enthalpies and partial
molar entropies; however, these properties also depend only weakly on pressure. In the following
subsections, we calculate properties at the triple-point, or other low pressures, and use the results at
atmospheric pressure without pressure correction due to the weak pressure dependence.

 Pressure effects on SLE are usually neglected.

SLE in a Single Component System
To begin our discussion, we will consider a single component. At 1 bar, water freezes at 0°C. Ice

exists below this temperature and liquid exists above. From the principles of thermodynamics, the
Gibbs energy is minimized at constant pressure and temperature; therefore, above 0°C, the Gibbs
energy of liquid water must be lower than the Gibbs energy of solid water. In order to express this
concept quantitatively, we must consider how the Gibbs energies of each of these phases changes
with temperature.

The effect of temperature on the Gibbs energy of any phase may be determined most easily at
constant pressure. We may write dG =–S dT + V dP, and recognize using the concepts of Chapter 6

(∂G/∂T)P = –S
The temperature dependence of Gibbs energy is then dependent on the entropy of the phase.

Entropy is a positive quantity; therefore, the Gibbs energy of any phase must decrease with increasing
temperature. However, the entropy of a liquid phase is greater than the entropy of a solid phase; thus,
the Gibbs energy of a liquid phase decreases more rapidly as the temperature increases. Since the
Gibbs energies of the phases are equal at the freezing temperature, the Gibbs energy of the liquid will
lie below the Gibbs energy of the solid above the freezing temperature (see Fig. 14.8).1 Below the
freezing temperature, we can still extrapolate the Gibbs energy of the liquid, but we must refer to this
as a hypothetical liquid because it does not exist as a stable phase. The portion of the solid Gibbs
energy curve above the melting temperature represents the Gibbs energies of a hypothetical solid, and
a melting process will occur spontaneously at constant temperature and pressure because the ∆Gfus

for the process is negative. Alternatively, an equilibrium solid will not be formed above the melting
temperature because ∆Gfus is positive. A discussion for behavior below the melting temperature is
not presented, although the ideas are similar. Melting of a solid below the freezing temperature



requires a ∆Gfus > 0 at constant temperature and pressure. The mixing process balances this positive
Gibbs energy change to create mixtures below the normal melting temperature.

Figure 14.8. Illustration of Gibbs energies for pure SLE.

 ∆Gfus > 0 below the normal melting temperature.

The Calculation Pathway for Mixtures
We know that solids dissolve in liquid mixtures well below their normal melting temperatures.

Sugar and salt both dissolve in water at room temperature, although the pure solid melting
temperatures are far above room temperature. Also, salt is spread on the highways in the winter to
lower the temperature at which solid ice forms. We may choose to address several problems such as:
1) How much sugar may be dissolved in water before the solubility limit is reached? 2) In a
water/salt solution, at what temperature will a solid form, and will the crystals be water or salt? (Salt
is introduced as a practical example, although rigorous treatment of the problem involves electrolyte
thermodynamics.) 3) How may a solvent or solvent mixture be modified to regulate crystallization? In
order to deal with these concepts mathematically, we use state properties to calculate thermodynamic
changes along convenient pathways that involve hypothetical steps.

Let us consider a practical example of dissolving naphthalene (2) in n-hexane (1) at 298 K. Since
the normal melting temperature for pure naphthalene is 353.3 K, how can we explain the phenomenon
that the naphthalene dissolves in hexane? First, recall that the naphthalene will dissolve in the
n-hexane if the total Gibbs energy of the system (n-hexane and naphthalene) decreases upon
dissolution. Thus, more and more solid may be added to the liquid solution until any further addition
causes the total Gibbs energy to increase rather than decrease. This method of calculating equilibrium
is fairly tedious to apply, and a preferred method is used that gives identical results: The solubility
limit is reached when the chemical potential of the naphthalene in the liquid is the same as the
chemical potential of the pure solid naphthalene. Therefore, we solve the problem by equating the
chemical potentials for naphthalene in the liquid and solid phases.

The equilibrium can be written as  or, recognizing the notational definitions  and 
, therefore,

Next, envision the hypothetical pathway shown in Fig. 14.9 to calculate the chemical potential
difference given by Eqn. 14.14, which consists of two primary steps.



Figure 14.9. Illustration of the two-step process for calculating solubility of solids in liquids.
Overall, . Note that the Gibbs energy goes up in Step 1 to create liquid, below the normal

melting Tm, but the Gibbs energy goes down when the liquid is mixed.

Step 1. Naphthalene is melted to form a hypothetical liquid at 298 K. The Gibbs energy change for
this step is positive as discussed above. The Gibbs energy change is:

where the superscript hypL indicates a hypothetical liquid.
Step 2. The hypothetical liquid naphthalene is mixed with liquid n-hexane. If the solution is

nonideal, the Gibbs energy change for component 2 is

The Gibbs energy change for this step is always negative if mixing occurs spontaneously, and must
be large enough to cancel the Gibbs energy change from step 1.

 Solubility is determined by a balance between the positive ∆Gfus and the negative
Gibbs energy effect of mixing.

Then clearly, from Fig. 14.9 and Eqns. 14.14 through 14.16,

or

where T is 298 K for our example. Relations for the activity coefficients in the right-hand side of
the equation have been developed in previous chapters. In the next subsection, the calculation of 
is explained.

Formation of a Hypothetical Liquid
The Gibbs energy change for step 1 is most easily calculated using the entropies and enthalpies.

For an isothermal process, we can write:



dG = dH – T dS
Continuing with the example of dissolving naphthalene at 298 K, the Gibbs energy change for

melting naphthalene at 298 K can be calculated from the enthalpy and entropy of fusion,

where T = 298 K. ∆H298
fus can be calculated by determining the enthalpies of the liquid and solid

phases relative to the normal melting temperature, where the heat of fusion, . The
enthalpy of solid at 353.3 K relative to solid at 298 K (step 1(a) of Fig. 14.9) is

The enthalpy of the liquid at 298 K relative to liquid at 353.3 K (step 1(c) of Fig. 14.9) is:

Thus, the  for melting is

which we can generalize to

A similar derivation for the entropy gives

which we can generalize to

In addition to these relationships, at the normal melting temperature, since ,

where Tm = 353.3 K. Combining the results and neglecting the integrals (which are nonzero, but
essentially cancel each other), we have



where for our example, T = 298.15 and Tm = 353.3. This is the  that we desire for Eqn. 14.17.

Criteria for Equilibrium
In general, combining Eqn. 14.22 with Eqn. 14.17, we arrive at the equation for the solubility of

component 2,

 Solubility equation for crystalline solids.

where heat of fusion is at the normal melting temperature of 2, and heat capacity integrals are
neglected.

Example 14.8. Variation of solid solubility with temperature
Estimate the solubility of naphthalene in n-hexane for the range T = [298, 350K] using the SSCED

model. Plot log10(xN) versus 1000/T.

Solution
From Appendix E, Tm,2 = 353.3 K and ∆Hfus = 18,800J/mol.

We can begin at 298 K, assuming an ideal solution. Then
xN = exp[(–18800/8.314)·(1/298 – 1/353.3)] = 0.305.

Starting with xN = 0.305 as an initial guess,

ΦN = 0.305·130.6/(0.695·130.3 + 0.305·130.6) = 0.306.

Noting that δ1′ = 14.93, δ2′ = 19.19 and k12 = 0.0052 => γ2 = 1.693.

xN = 0.305/1.693 = 0.1802. Iterating on xN to achieve consistency, xN = 0.135. Repeating this
procedure at other temperatures gives Fig. 14.10.



Figure 14.10. Freezing curve for the system n-hexane(1) + naphthalene(2). Experimental data
of H.L. Ward, 1926. J. Phys. Chem., 30:1316.

Hexane also dissolves in a hexane–naphthalene solution below its melting temperature. The
general relationship for solving SLE can be written as:

where the heat of fusion is for the pure ith component at its normal melting temperature, Tm,i. Note
that Eqns. 14.23 and 14.24 may be used to determine crystallization temperatures at specified
compositions.

 Eutectic.

Example 14.9. Eutectic behavior of chloronitrobenzenes
Fig. 14.11 illustrates application to the system o-chloronitrobenzene (1) + p-chlorornitrobenzene

(2). The compounds are chemically similar; thus, the liquid phase may be assumed to be ideal, and
the activity coefficients may be set to 1. The two branches represent calculations performed from
Eqns. 14.23 and 14.24, each giving one-half the diagram. The curves are hypothetical below the point
of intersection. This temperature at the point of intersection of the two curves is called the eutectic
temperature, and the composition is the eutectic composition.



Figure 14.11. Freezing curves for the system o-chloronitrobenzene(1) + p-
chloronitrobenzne(2).

Example 14.10. Eutectic behavior of benzene + phenol
In most systems, an activity coefficient model must be included. Fig. 14.12 shows an example

where the ideal solution model is not a good approximation, and the activity coefficients are
modelled with the UNIFAC activity coefficient model. To solve for solubility given a temperature,
the following procedure may be used (taking component 2, for example):

1. Assume the γ2 = 1.

2. Solve Eqn. 14.23 for x2.

3. At this value of x2, determine γ2 from the activity model.

4. Return to step 2, including the value of γ2 in Eqn. 14.23, iterating to converge.

Figure 14.12. Freezing curves for the system benzene(1) + phenol(2). Solid line, UNIFAC
prediction; dashed line, ideal solution prediction; squares, Tsakalotos, D., Guye, P. 1910. J.

Chim. Phys. 8:340; circles, Hatcher, W., Skirrow, F. J. Am. Chem. Soc., 1917. 39:1939. Based
on figure of Gmehling, J., Anderson, T., Prausnitz, 1978. J. Ind. Eng. Chem Fundam. 17:269.



This is a relatively stable iteration, and Excel Solver can iterate on activity by adjusting
composition, bypassing the successive substitution method above.

A common procedure when crystallizing products of a pharmaceutical process is to add an
antisolvent. The SSCED model is especially convenient for this kind of application because: (1) The
concentrations are generally small for crystalline products left in solution; and (2) the infinite dilution
activity coefficient of the precipitate involves a simple average of the solvent and antisolvent
properties. With these concepts in mind, it is straightforward to tailor a solvent to achieve a target
composition at a given temperature.

Example 14.11. Precipitation by adding antisolvent
Ephedrine is a commonly used stimulant, appetite suppressant, and decongestant, related to

pseudoephedrine. It can be extracted from the Chinese herb, ma huang. Ephedrine is to be crystallized
from ethanol at 278 K by adding water as an antisolvent.

a. Estimate the mole fraction of water needed to reduce the concentration of ephedrine in
solution to 0.1mol% using the SSCED model.
b. Yalkowsky and Valvani (1980) have suggested that ∆Sfus = 56.5 J/mol-K for rigid
molecules.a Evaluate this relation in comparison to the estimated value of ∆Hfus =
25kJ/mol.

Additional data for ephedrine are Mw = 165.2; Tm = 313K; and ∆Hfus = 25kJ/mol.

Solution
a. From Eqn. 14.25, Tm,i = 313 K and ∆Hfus = 25,000J/mol. We can begin by solving for
the target value of the activity coefficient, noting that the concentration of drug is practically
infinitely dilute. Then using xi = 1E-3 to approximate infinite dilution,

The solution requires iteration using Eqn. 12.55. As the mole fraction of water is
increased, the activity coefficient of ephedrine increases because water is the
antisolvent.

Since we have worked the problem before, “Guessing” a value of x1 = 0.2102,

Φ1 = 0.2102(58.3)/(0.2102·58.3 + 0.7898·18.0) = 0.4627
<δ’> = 0.4627(18.68) + 0.5373(27.94) = 23.66

From Eqn. 12.51,
k12 = 0.0318; k13 = 0.0028; k23 = 0.0571;

=> <k3m> = 0.4627(18.68)0.0028 + 0.5373(27.94)0.0571 = 0.8808;



Similarly, <k1m> = 0.4779; <k2m> = 0.2752;
<<kmm>> = 0.4627(18.68)0.4779 + 0.5373(27.94)0.2752 = 8.262.

By Eqn. 12.55, RTlnγ3 = 172.3((16.36 – 23.66)2 + 2(16.36)0.8808 – 8.262) => γ3 =
245. So the solution should be 79 mol% water. Good “guess!”

b. With ∆Sfus = 56.5 and Tm = 313K, ∆Hfus = 56.5(313) = 17,700 J/mol, 29% lower than
25,000. The rule does not appear to apply to this compound.

a. Connors, K.A. 2002. Thermodynamics of Pharmaceutical Systems: An Introduction for Students of Pharmacy,
Hoboken, NJ: Wiley, p. 129.

A special feature of Example 14.11 is the way it shows how to tailor a solvent to achieve a
particular environment for a target solute. A similar approach could be applied to compatibilizing a
liquid solvent to avoid LLE. For example, how much methanol should be added to isooctane to
reduce the activity coefficient of water below a value of 7.4? This is the calculation behind “dry
gas,” used to dissolve water from gas tanks.

SLE with Solid Mixtures
So far, we have only covered phase behavior in systems where the solids are completely

immiscible in each other. Fig. 14.13 illustrates a case where the solids form solid solutions, and Fig.
14.14 illustrates behavior where compounds are formed in the solid complexes. Also, the case of
wax precipitation from petroleum results in a range of n-C20 to n-C35 straight chain alkanes being
mixed in the solid phase. Paraffin wax that you can purchase in the grocery store is primarily
composed of n-C20 to n-C35 straight chain alkanes. For the case of liquid and solid mixtures in
equilibrium, the derivation of the equilibrium relationship can be modified by adding a step for
“unmixing” of solid solutions to the schematic of Fig. 14.9 on page 558. This step is analogous to a
reversal of step 2 of the diagram except involving solid solutions and pure solids rather than liquid
solutions and pure liquids. For each component in the mixtures:

Figure 14.13. Freezing curves for the Azoxybenzene(1) + azobenzene(2) system illustrating a



system with solid-solid solubility. Based on Hildebrand, J.H., Scott, R.L., Solubility of
Nonelectrolytes, New York, NY: Dover, 1964.

Figure 14.14. Solid-liquid and vapor-liquid behavior for the ammonia(1) + water(2) system at
1.013 bar. NH3 and H2O form two crystals in the stoichiometries: (α) NH3·H2O;(β) 2NH3·H2O.

(Based on Landolt-Börnstein, 1960. II/2a:377.)

Thus, we can recognize an SLE K-ratio on the left-hand side, ,

and we can recognize Eqn. 14.24 as a simplification where for a pure solid, .
Petroleum Wax Precipitation

An especially difficult problem in the recovery of natural gas is the clogging of pipes caused by
small amounts of wax that accumulate over time. In the Gulf of Mexico, natural gas at the bottom of
the well can be 250 bars and 100°C, but it must be reduced to 100 bars to be permitted in the
pipeline, and the sea floor can drop to 5°C. The reduction in pressure and temperature results in a
loss of carrying power and the small amounts of heavy liquid hydrocarbons can condense, eventually
coating the walls with viscous liquid. After the liquid has formed, further cooling can cause solid
wax to deposit on the walls of the pipe. These deposits cause constrictions and larger pressure drops
that lead to more deposits, and so forth.

Naturally occurring petroleum co-produced with natural gas is a complex mixture of hundreds of



individual components. Rather than attempt to specify the identity and composition of every
component, it is conventional to collect several fractions of the original according to the ranges of
their molecular weights. Hansen et al.2 provide the data in the first four columns of Table 14.1 for the
composition, mass density, and molecular weight of several fractions from a typical petroleum
stream. This kind of data is typically collected by distilling the initial sample and collecting fractions
over time. As the lower molecular weight species are removed, the boiling temperature rises and the
distillate collected over each particular temperature range is stored in a separate container. The
weight of each fraction relative to the weight of the initial sample gives the composition of that
species fraction. The mass of each fraction divided by its volume gives the density. And the average
molecular weight can be characterized by gas chromatography or through correlations with viscosity.
Note that the molecular weight for any particular species is not necessarily equal to the molecular
weight for the corresponding saturated hydrocarbon. This is an indication that olefins, naphthenics,
and aromatics are present in significant compositions. The objective of this example problem is to
treat the data of Hansen et al. as characteristic of a gas condensate and compute the fractions of the
stream that form solids at each temperature.

Table 14.1. Summary of Data for Wax Fractions and Calculations of the Precipitate
Composition as Calculated by Example 14.12



The fusion (melting) temperatures and heats of fusion for n-paraffins can be calculated according to
the correlations of Won.3

Noting that each species fraction can contain many species besides the n-paraffins that are
responsible for practically all wax formation, it is necessary to estimate the portion of each species
fraction that can form a wax. Since the densities of n-paraffins are well known, it is convenient to use
the difference between the observed density and the density of an n-paraffin of the same molecular
weight as a measure of the n-paraffin content. The correlations for estimating the percentage of wax-
forming components in the feed (zi

W) are taken from Pedersen.4



where  is the species overall mole fraction in the initial sample.
 is the portion of that fraction which is wax-forming (i.e., n-paraffin).

Example 14.12. Wax precipitation
Use the data from the first four columns of Table 14.1 and correlations for wax to estimate the

solid wax phase amount and the composition of the solid as a function of temperature. Use your
estimates to predict the temperature at which wax begins to precipitate. Hansen et al. give the
experimental value as 304 K.

Solution
This problem is basically a multicomponent variation of the binary solid-liquid equilibrium

problems discussed above. The main difference is that the solid phase is not pure. We can adapt the
algorithm as follows.

Assuming ideal solution behavior for both the solid and liquid phases, we define , and as
before, we assume the difference in heat capacities between liquid and solid is negligible relative to
the heat of fusion,

which is independent of the compositions of the liquid and solid phases because of the ideal
solution assumptions. The solid solution mole fraction is given by . Compare this method to
the vapor-liquid calculations using the shortcut K-ratio in Chapter 9. This is a liquid-solid freezing
temperature analog to the vapor-liquid dew-temperature procedure. The liquid mole fractions are
given by the zi

W values in the table below. All that remains is to guess values of T, which changes all

Ki until . Hand calculations would be easy with a couple of components, but spreadsheets
are recommended for a multicomponent mixture. Using Solver for spreadsheet Wax.xlsx distributed
with the textbook software gives T = 320.7 K. Intermediate results are tabulated in Table 14.1. The T
is slightly higher than the experimental value, but reasonably accurate considering the complex nature
of the petroleum fractions and their variabilities from one geographic location to another.

Solid-Liquid Equilibria Summary
Phase equilibrium involving solids is an extension of previous modeling concepts. Like liquid-

liquid equilibria, the condensed phase fugacities are quite insensitive to pressure, so the partition
coefficients are simply functions of temperature. The main difference is that the heats of fusion are
used to relate the component fugacities in their various states of matter. In multicomponent mixtures,
the solid-liquid procedures for calculation are analogs of the vapor-liquid procedures, where the



partition coefficients are calculated in a different manner.

14.11. Summary
The presentations of LLE and SLE have been brief, but have opened a broad new frontier of phase

behavior analysis: multiphase equilibrium. You might find it incredible to see how many phases and
peculiar behaviors can be observed with just “oil,” water, and special third components known as
surfactants. (Soap is an example of a surfactant.) The short introduction here is a branching point that
barely scratches the surface of such oleic and aqueous systems.5 Such molecules are more
complicated than we can represent with the simple models here because of the way that they organize
to make films and micelles. Far down this road you may begin to understand the forces that hold cell
membranes and living organisms together. At the more practical engineering level, you should be able
to perform preliminary designs of liquid extraction and crystallization equipment with little more
thermodynamical background than has been presented here.

This kind of breadth is possible with such short introductions because the fundamentals have been
laid out previously. The key equation in both LLE and SLE is familiar from VLE (Eqn. 11.13):

The liquid phases split because the Gibbs excess energy becomes so large that the stability limit is
exceeded. In other words, the fugacities are so high that the components must escape each other, even
if their volatilities are too low for VLE. An entropic penalty must be paid, but a highly unfavorable
energy of interaction may more than compensate. A convenient guideline is,

Suspect LLE if , in which case  is a good initial guess.6

With this guideline, LLE computation is a simple coincidence that may occur occasionally during
VLE computations. To paraphrase Pasteur, its observation presents no problem if we know how to
recognize it. The procedure for calculating Gibbs energy is the same as for VLE. The calculation of
the phase distributions requires a flash calculation in terms of liquid-liquid K-ratios. But the flash
algorithm has been discussed before and liquid-liquid flash calculations are hardly different from
vapor-liquid flash calculations. The introduction to the prospect of LLE has reminded us of the need
to check for stability, however. We first encountered the concept of stability in contemplating the
critical points of pure fluids. With the prospect of multiple phases, we begin to realize the need to
explore critical phase behavior in a systematic fashion. We have treated that problem for binary and
ternary mixtures but have not generalized to multicomponent systems. The generalization of critical
phase behavior requires a fair amount of calculus and matrix manipulation,7 but leads to a much
deeper understanding of stability behavior than we have provided here. As a practical matter, activity
coefficient models must be used carefully because the precision of the models is usually inferior to
that of VLE predictions for the same systems. In particular, the temperature dependence of LLE is
usually not predicted well. Frequently, the miscibility increases with temperature more quickly than
predicted by the activity coefficients even with more sophisticated models like UNIQUAC or
UNIFAC. Temperature-dependent parameters can improve the fit, but have little theoretical basis,
making extrapolations more tenuous than for VLE.

Important Equations

For LLE, the key equation comes from setting the two expressions for fi
L equal and canceling fi

o,



The iteration for LLE is a little tricky because it relies on the γ’s being large but they get smaller as
the iteration proceeds. If you guess a composition too close to equimolar, you might miss the LLE.

For SLE, the key equation is (Eqn. 14.23),

If γi >> 1 then T → Tm. (It is nonsense if the computations yield a value of T > Tm.) Otherwise, the
solubility may be significant at T < Tm. This observation suggests changing the solvent (by adding
anti-solvent to increase γi), in addition to simply cooling. This is a common technique in
pharmaceutical crystallization, among other applications. SLE computation requires iteration if γi≠ 1,
because the liquid composition must be guessed in order to estimate γi. But iterative problems like
this are familiar from VLE experience and present no problem.

14.12. Practice Problems
P14.1. It has been suggested that the phase diagram of the hexane + furfural system can be
adequately represented by the Margules one-parameter equation, where ln γi = xj

2 · 800/T (K).
Estimate the liquid-liquid mutual solubilities of each component in each liquid phase at 298 K.
(ANS. ~10% each, by symmetry)
P14.2. Suppose the solubility of water in ethyl benzene was measured by Karl-Fisher analysis to
be 1 mol%. Use UNIFAC to estimate the solubility of ethylbenzene in the water phase. (ANS.
0.003wt% or 30ppmw)
P14.3. According to Perry’s Handbook, the system water + isobutanol forms an atmospheric
pressure azeotrope at 67.14 mol% water and 89.92°C. Based on these data, we can estimate the
van Laar coefficients to be A12 = 1.566; A21 = 3.833 at 273 K. Estimate the liquid-liquid mutual
solubilities of each component in each liquid phase at 273 K. (ANS. 0.33,0.97)
P14.4. Use the SSCED model to predict the solubility of iodine in carbon tetrachloride at 298 K.
Iodine’s melting point is 387 K and Hfus = 15.5 kJ/mol.

14.13. Homework Problems
14.1. Suppose the (1) + (2) system exhibits liquid-liquid immiscibility. Suppose we are at a
state where G1/RT = 0.1 and G2/RT = 0.3. The Gibbs energy of mixing quantifies the Gibbs
energy of the mixture relative to the Gibbs energies of the pure components. Suppose the excess
Gibbs energy for the (1) + (2) mixture is given by:

GE/RT = 2.5 x1 x2

a. Combine this with the Gibbs energy for ideal mixing to calculate the Gibbs
energy of mixing across the composition range and plot the results against x1 to
illustrate that the system exhibits immiscibility.
b. Draw a tangent to the humps to illustrate that the system is one phase at
compositions greater than z1 = 0.854 and less than z1 = 0.145, but will split into
two phases with compositions at any intermediate overall composition. Most



systems with liquid-liquid immiscibility must be modeled with a more complex
formula for excess Gibbs energy. The humps on the diagram are usually off-
center, as in Fig. 14.3 on page 545 in the text. The simple model used for the
calculations here results in the symmetrical diagram.
c. When a mixture splits into two phases, the over-all fractions (of total moles) of
the two phases are found by the lever rule along the composition coordinate.
Suppose 0.6 mol of (1) and 0.4 mol of (2) are mixed. Use the lever rule to
calculate the total number of moles which would be found in each phase of the
actual system. Designate the (1)-rich phase as the β phase.
d. What is the value of the hypothetical Gibbs energy, (expressed as G/RT), of a
mixture of 0.6 mol of (1) and 0.4 mol of (2) if the mixture were to remain as one
phase? Calculate the Gibbs energy of the total system considering the phase split
into two phases, and show that the Gibbs energy is less than the Gibbs energy of
the single-phase system.

14.2. Assume solvents A and B are virtually insoluble in each other. Component C is soluble in
both.

a. Use the Scatchard-Hildebrand theory to estimate the distribution coefficient at
low concentrations of C given as (mole fraction C in A)/(mole fraction C in B).
b. If the phase containing A is 0.1 mol% C, estimate the composition of the phase
containing B.
c. If an extractor was designed and constructed, is the distribution coefficient
favorable for extraction from B into A? Data:

14.3. A new drug is to have the formula para-CH3CH2-(C6H4)-CH2CH2COOH, where (C6H4)
designates a phenyl ring. A useful method for assessing the extent of partitioning between the
bloodstream and body fat is to determine the infinite dilution partitioning coefficient for the drug
between water and n-octanol. Use UNIFAC to make this determination. The body temperature is
37°C. Will the new drug stay in the bloodstream or move into fatty body parts?
14.4. Use the Scatchard-Hildebrand theory to generate figures of activity as a function of
composition and ∆Gmix as a function of composition for neopentane and dichloromethane at 0°C.
Determine the compositions of the two phases in equilibrium. Data:

14.5. The bubble point of a liquid mixture of n-butanol and water containing 4 mol% butanol is
92.7°C at 1 bar. At 92.7°C the vapor pressure of pure water is 0.784 bar and that of pure n-



butanol is 0.427 bar. Assuming the activity coefficient of water in the 4% butanol solution is
near unity, estimate the composition of the vapor and activity coefficient of butanol that gives the
correct bubble pressure and compare to the values estimated by UNIFAC.
14.6. Schulte et al.8 discuss a linear solvation energy relationship (LSER) method for the
partitioning of 41 environmentally important compounds between hexane + water phases at
25°C. The LSER method is based on the idea that contributions to the Gibbs excess energy (and
to the logarithm of the partition coefficient) from effects like van der Waals forces and hydrogen
bonding are independent of each other. Therefore, these contributions can be added up as
separate linear contributions. We can test this hypothesis by plotting partition data for several
compounds based on experimental data and LSER. We can also test the predictive capabilities
of alternative theories by plotting their results with different curves. Table 14.2 presents the
required parameters for the LSER method for several compounds. These parameters are to be
substituted into the equation:

Table 14.2. LSER Parameters and Experimental Hexane + Water Partition Coefficients for
Several Compounds

where v = volume parameter, π = polarity parameter, δS = polarizability parameter,
βS = hydrogen bond acceptor parameter, and αS = hydrogen bond donor parameter.
Compute the log partition coefficients for the following compounds by the LSER
method and plot them against the experimental values listed in Table 14.2. Include
predictions using the following methods. (Hint: compounds in the environment usually
exist at ppm concentrations.)

a. the MAB model.
b. the SSCED model.
c. the UNIFAC model.

14.7. Predict the compositions of the coexisting liquid phases for the system methanol (1) +
cyclohexane (2) at 298 K. Let α be the methanol-rich phase.

a. Use the MAB model.
b. Use the SSCED model.
c. Use the UNIFAC model.



14.8. Predict the compositions of the coexisting liquid phases for the system methanol (1) +
cyclohexane (2) at 285.15 K and 310.15 K. Let α be the methanol-rich phase. Compare quickly
with the data from Fig. 19.12 on page 804 and comment on the accuracy of the results. (Include a
printout of your results including converged compositions and activity coefficients of both
phases at one of the temperatures.)

a. Use the MAB model.
b. Use the SSCED model.
c. Use the UNIFAC model.

14.9. Benzene and water are virtually immiscible. What is the bubble pressure of an overall
mixture that is 50 mol% of each at 75°C?
14.10. Water + hexane and water + benzene are immiscible pairs.

a. The binary system water + benzene boils at 69.4°C and 760 mmHg. What is
the activity coefficient of benzene in water if the solubility at this point is xB =
1.6E–4, using only this information and the Antoine coefficients?
b. What is the vapor composition at the bubble pressure at room temperature
(292 K) for a ternary mixture consisting of 1 mole overall of each component if
the organic layer is assumed to be an ideal solution?
c. What is the vapor composition at the bubble pressure at room temperature (292
K) for a ternary mixture consisting of 1 mole overall of each component if the
activity coefficients of the organic layer are predicted by UNIFAC?

The following problems concern LLE in ternary systems. Experimental data for the systems are
listed in Tables 14.3 and 14.4.

Table 14.3. Water(1) + Methylethylketone(MEK)(2) + Acetic Acid(3) System at T = 299.85
Ka

a. Skrzec, A.E., Murphy, N.F. 1954. Ind. Eng. Chem. 46:2245.

Table 14.4. 1-Butanol(1) + water(2) + methanol(3) at 288.15 Ka as reported by Mueller



a. Mueller, A.J., Pugsley, L.I., Ferguson, J.B. 1931. J. Phys. Chem. 35:1314.

14.11. Consider the system water(1) + MEK(2) at 299.85 K. The solubilities measured by
Skrzec, A.E., Murphy, N.F., 1954. Ind. Eng. Chem., 46:2245, are  and . For a
binary system, the LLE iteration procedure has been outlined in Example 14.4. Apply the
procedure to determine the mutual solubilities predicted by UNIQUAC. The mixture parameters
are r = [0.92, 3.2479], q = [1.40, 2.876], a12 = –2.0882 K, and a21 = 345.53 K. Let phase α be
the water-rich phase.

14.12. For a binary system, iterations can be performed by finding a new value of  from
only the K-ratios as shown in Eqn. 14.5. For a ternary system, we need at least one composition.
Derive the iteration formula, using  as the specified composition

14.13. Consider the system water(1) + methylethylketone(MEK)(2) + acetic acid(AA)(3) at
299.85 K. For a ternary LLE system, estimate tie lines at x3

α = 0.005, 0.01, 0.02, using
UNIQUAC, where the parameter values are r = [0.92, 3.2479, 2.2024], q = [1.40, 2.876, 2.072],
and the a values (in K) are a12 = –2.0882, a21 = 345.53, a13 = 254.15, a31 = –301.02, a23 = –
254.13, a32 = –4.5537. Let α be the water-rich phase. Plot the results on rectangular coordinates,
using x1 as the abscissa and x3 as the ordinate. Connect the tie lines on the plot. Add the
experimental tie lines (Table 14.3) to the same plot using different symbols.
14.14. One mole of a stream containing pentane, acetone, methanol, and water in proportions z =
0.75, 0.13, 0.11, 0.01, respectively, is to be mixed and decanted with 1 mol of pure water at
25°C. Estimate the partition coefficients for each of the components and the proportion of lower-
phase/Feed where “Feed” includes both the pentane-rich and pure water streams with the
specified model.

a. The MAB model.
b. The SSCED model.
c. The UNIFAC model.

14.15. Calculate the LLE in the system 1-butanol(1) + water(2) + methanol(3) at 288.15 K, using
UNIQUAC with the following parameters: r = [3.4543, 0.92, 1.4311]; q = [3.052, 1.4, 1.432];
and the a values (in K) are a13 = 355.54; a31 = –164.09; a12 = –82.688; a21 = 443.56; a32 = –
85.451; a23 = –321.92; and compare graphically with the data from Table 14.4.



14.16. Solve problem 14.13, except use the specified model.
a. The MAB model.
b. The SSCED model.
c. The UNIFAC model.

14.17. Consider the system water(1) + methylethylketone(MEK)(2) + propanoic acid(PA)(3).
Use UNIFAC to predict the compositions for the coexisting phases at x3

α = 0.01, 0.05, and 0.10
at 298.15 K. Let α be the water-rich phase. Plot the results on rectangular coordinates by using
x1 as the abscissa and x3 as the ordinate. Connect the tie lines on the plot.

14.18. Solve problem 14.15, except use the specified model.
a. The MAB model.
b. The SSCED model.
c. The UNIFAC model.

14.19. Derive the formulas for the spinodal curves of the Flory-Huggins model and plot the
spinodals (T versus xα, xβ) of several polystyrenes in cyclohexane using UNIFAC parameters to
estimate the volume of polystyrene relative to ethylbenzene and taking the experimental values of
solubility parameters and molar volumes for the species when Nd = 1. Take the degrees of
polymerization of polystyrene to be 100, 200, 500, 1000. Plot the estimated reciprocal critical
temperatures versus Nd

–1/2. Mark the infinite molecular weight critical temperature on both plots
with a big X.

Solid-Liquid Behavior
14.20. In the treatment of solid-liquid equilibria, the effects of pressure on melting points are
neglected.

a. Draw a schematic of the Gibbs energy of liquid and solid phases versus
pressure at constant temperature for a compound for which the molar volume of
the solid is less than the molar volume of the liquid. Plot both curves on the same
figure, and indicate the melting pressure. Most chemicals follow this type of
behavior.
b. For water, the molar volume of the solid is greater than the molar volume of
the liquid. Sketch the Gibbs energy of liquid and solid phases as a function of
pressure at constant temperature for this type of behavior. Plot both curves on the
same figure, and indicate the melting pressure.
c. Calculate the hypothetical Gibbs energy for melting solid naphthalene at 5 bar
and the normal melting temperature, 80.2°C. You may assume that the liquid and
solid are incompressible. Be sure to clearly specify the path you use for your
calculation. VL = 124.8 cm3/gmole, VS = 133 cm3/gmole.
d. Calculate the hypothetical Gibbs energy for melting solid naphthalene at 1 atm
and 78°C. Compare the magnitude with the results of part (c) to verify that the
pressure effects are small relative to temperature effects.

14.21. Generate a solid-liquid equilibrium T-x diagram for naphthalene(1) + biphenyl(2)



assuming ideal solutions. What are the predicted eutectic temperature and composition? The
experimental eutectic point is 39.4°C and x biphenyl = 0.555 (Lee, H.H., Warner, J.C., 1935. J.
Amer. Chem. Soc. 57:318).
14.22. At 25°C, the solubility of naphthalene in n-hexane is 11.9 mol%. The liquid phase is non-
ideal. Use the simple solution model GE/RT = Ax1x2 to predict the solubility at 10°C. (The
experimental solubility at 10°C is 6.5mol%, Sunier, A. 1930. J. Phys. Chem. 34:2582).
14.23. Phenanthrene and anthracene are structurally very similar. Would you expect them to have
similar solubilities in benzene at 25°C? Provide a quantitative answer, and an explanation.
14.24. Predict the solubility (in mole fraction) of phenol at the cited conditions using the
specified model. (i) Use the MAB model. (ii) Use the SSCED model. (iii) Use the UNIFAC
model.

a. Solubility in n-heptane at 25°C.
b. Solubility in ethanol at 25°C.
c. Solubility in a 50/50 mole ratio of heptane and ethanol at 25°C.

14.25. A 50 wt% (22.5 mol%) solution of ethylene glycol + water freezes at about 240 K.
a. What freezing temperature would be predicted by assuming that ethylene
glycol and water form an ideal solution? The freezing occurs by formation of
water crystals.
b. Does your calculation indicate that the system has positive or negative
deviations from Raoult’s law? Why?

14.26. Determine the ideal solubility of naphthalene in any solvent at 40°C. Then predict the
solubility and compare with the experimental solubility (shown in parentheses) for the specified
solvent and specified model. (i) Use the MAB model. (ii) Use the SSCED model. (iii) Use the
UNIFAC model.

a. Methanol (4.4)
b. Ethanol (7.3)
c. 1-propanol (9.4)
d. 2-propanol (7.6)
e. 1-butanol (11.6)
f. n-hexane (22.2)
g. Cyclohexanol (22.5)
h. Acetic acid (11.7)
i. Acetone (37.8)
j. Chloroform (47.3)

14.27. Determine the ideal solubility of anthracene in any solvent at 20°C. Then predict the
solubility and compare with the experimental solubility (shown in parentheses) for the specified
solvent and specified model. (i) Use the MAB model. (ii) Use the SSCED model. (iii) Use the
UNIFAC model.

a. Acetone (0.31)



b. Chloroform (0.94)
c. Ethanol (0.05)
d. Methanol (0.02)

14.28. Determine the ideal solubility of phenanthrene in any solvent at 20°C. Then predict the
solubility and compare with the experimental solubility (shown in parentheses) for the specified
solvent and specified model. (i) Use the MAB model. (ii) Use the SSCED model. (iii) Use the
UNIFAC model.

a. Acetone (14.5)
b. Chloroform (23.8)
c. Ethanol (1.23)
d. Acetic acid (1.92)
e. Methanol (0.64)

14.29. Determine the solubility curve for naphthalene in the specified solvent, and compare with
the literature data:

a. Acetic acid9

b. n-hexane9

c. Cyclohexanol10

d. Acetone9

e. Chloroform11

f. Methanol9

g. n-butanol9

h. Ethanol12

i. n-propanol12

j. 2-propanol12

14.30. The gas condensate from a new gas well in Prudhoe Bay, Alaska has the following
weight% of C5, C10, C15, C20, C25, C30, C35, C40, C45, C50, and >C50, respectively: 1, 4,
7, 10, 12, 12, 12, 12, 8, 8, and 14. Estimate the temperature at which wax may begin to
precipitate from this liquid.
14.31. Generate an SLE phase diagram for phenol(1) + cyclohexane(2).

a. Assume an ideal solution.
b. Use MAB to model liquid phase nonidealities.
c. Use SSCED to model liquid phase nonidealities.
d. Use UNIFAC to model liquid phase nonidealities.
e. Make a comment about how the solubility of phenol in cyclohexane differs
from the solubility in benzene at the same temperature. (See Fig. 14.12 on page
563.)

14.32. Create a flow sheet analog to VLE or LLE calculations to find the melting temperature



and liquid phase composition for a given solid mixture composition for the following.
a. Ideal solutions of solid and liquid
b. Nonideal solutions of solid and liquid

14.33. Create a flow sheet analog to VLE or LLE calculations to find the freezing temperature
and solid composition for a given liquid composition when the liquids and solids form a non-
ideal solution.
14.34. Create a flowsheet analog to VLE or LLE flash calculations to find the coexisting liquid
and solid compositions that exist for a liquid-solid mixture of specified overall composition that
is between the conditions of first freezing and first melting.
14.35. Salicylic acid is similar in structure to aspirin. Shalmashi et al.13 have measured the data
in Table 14.5.

Table 14.5. Solubility of Salicylic Acid in Various Solvents. Compositions in Weight%

a. Find the value of α for salicylic acid in water that best correlates the data,
assuming β = 0.
b. Predict the solubility of the acid in ethanol.
c. Plot log(xacid) versus 1000/T including correlated and measured values.

d. Plot all the calculated versus experimental values. This is known as a parity
plot.

14.36. Sometimes we would like to enhance the solubility of a drug by adding a cosolvent,
instead of adding antisolvent to precipitate. Making optimal use of the data in the previous
problem, estimate the amount of ethanol that should be added to water to prepare an aqueous
solution of salicylic acid with concentration of 10 wt% at 25°C.
14.37. Yalkowsky and Rubino (1985)14 have observed roughly linear behavior for logarithmic
solubility in mixed solvents when plotted as volume fraction of the solvent/cosolvent. That is,
log(xi)= Φ1′log(xi,1) + Φ2′log(xi,2) where xi,j is the solubility in the jth pure solvent and Φi′ is the
volume fraction on a solute-free basis; for example, ΦE′ = ΦE/(ΦE + ΦW). Use the SSCED
model to make your best estimates of the solubility of salicylic acid at 318 K in a range of
mixtures with ethanol/water mole fraction ratios of 3/1, 1/1, and 1/3. Plot your results as
log10(xacid) versus ΦE′. Include the experimental results and the guideline of Yalkowsky and
Rubino. Comment on whether the SSCED model is consistent with the observation of
Yalkowsky and Rubino.



Chapter 15. Phase Equilibria in Mixtures by an Equation of State

The whole is simpler than the sum of its parts.
J.W. Gibbs

Suppose it was required to estimate the vapor-liquid K-ratio of methane in a mixture at room
temperature. For an initial guess, we might assume it follows ideal-solution behavior. It is a
relatively simple molecule (e.g., no polar moments, no hydrogen bonding). But we cannot use
Raoult’s law because the required temperature is well above the critical temperature. We could use
Henry’s law, or the SCVP+ model (Section. 11.12), but the assumption of low concentrations may be
inappropriate at very high pressures. The equation of state method discussed here is an attractive
alternative.

We begin this chapter with a review of the mixing rules introduced in Section 12.1. Then we show
how the mixing rule leads to the fugacities and K-ratios needed for VLE calculations. We then
provide algorithms and illustrate how VLE calculations are programmed using an equation of state
(EOS). Finally we provide some insight into how critical behavior in mixtures differs from critical
behavior in pure components, and that some “counterintuitive” behavior can exist, such as quality that
decreases when pressure is increased.

Chapter Objectives: You Should Be Able to...
1. Compute VLE phase diagrams using an EOS.
2. Characterize adjustable parameters in EOS models using experimental data.
3. Derive an expression for a fugacity coefficient given an arbitrary EOS and mixing rules.
4. Comment critically on the merits and limitations of the PREOS relative to the activity
models of Chapters 11–13, including the ability to suggest ways that the PREOS can be
systematically improved.

15.1. Mixing Rules for Equations of State
Virial Equation of State

The virial equation was introduced for pure fluids in Section 7.4. Previously, we have also given a
strategy for relating parameters to composition in Section 12.1. If we extend this mixing rule to the
virial equation,

which for a binary mixture becomes

Similar to our previous discussion, it is understood that B12 is equivalent to B21. The cross
coefficient B12 is not the virial coefficient for the mixture.



 Combining rules are used to quantify the parameters that represent unlike molecule
interactions.

To obtain the cross coefficient, B12, we must create a combining rule to propose how the cross
coefficient depends on the properties of the pure components 1 and 2. For the virial coefficient, the
relationship between the pair potential and the virial coefficient was given in Section 7.11. However,
a less rigorous method is often used in engineering applications. Rather, combining rules are created
to use the corresponding state correlations developed for pure components in terms of Tc12 and
Pc12. The combining rules used to determine the values of the cross coefficient critical properties are:

 Binary interaction parameters are used to adjust the combining rule to better fit
experimental data, if available.

The parameter k′12 is an adjustable parameter (called the binary interaction parameter) to force
the combining rules to more accurately represent the cross coefficients found by experiment.1
However, in the absence of experimental data, it is customary to set k′12 = 0.

and

The first three of these combining rules lead to:

Then, Tc12, Pc12, and ω12 are used in the virial coefficient correlation presented in Chapter 7 to
obtain B12 (Eqns. 7.6–7.10) which is subsequently incorporated into the equation for the mixture. If
Zc (or Vc) is not available, it may be estimated using Zc = 0.291 – 0.08ω. The virial equation for a
binary mixture is implemented on the spreadsheet Virialmx.xlsx furnished with the text.

 Virialmx.xlsx.

Example 15.1. The virial equation for vapor mixtures
Calculate the molar volume for a 60 mole% mixture of neopentane(1) in CO2(2) at 310 K and 0.2

MPa.



Solution
The conditions are entered in the spreadsheet Virialmx.xlsx, with the following results:

The original spreadsheet is modified slightly for this solution. Cells J9 and J10 are programmed
with a rearranged form of Eqn. 7.10, Tr – 0.686 – 0.439Pr, and if these cells are positive, then the
virial equation is suitable. The critical volume is calculated from Tc, Pc, and Zc. Cells F15–F17 list
the virial coefficients for neopentane, CO2, and the cross coefficient, respectively.

The virial coefficient for the mixture is given by Eqn. 15.1,
B = 0.62·(–846.06) + 2(0.6)(0.4)(–330.5) + 0.42·(–113.39) = –481.36 cm3/mol
V = RT/P + B = 8.314 · 310/0.2 – 481.36 = 12,405 cm3/mol

The volumetric behavior of the mixture depends on composition. The mixture volume differs from

an ideal solution, . The difference V – Vis is called the excess volume, VE.
The molar volume of pure neopentane is
V = RT/P + B = 8.314 · 310/0.2 – 846.1 = 12,041 cm3/mol
The molar volume of pure CO2 is

V = RT/P + B = 8.314 · 310/0.2 – 113.4 = 12,773 cm3/mol
The molar volume of an ideal solution of a 60 mole% neopentane mixture is
Vis = 0.6(12,041) + 0.4(12,773) = 12,334 cm3/mol
and the excess volume is
VE = 12,405 – 12,334 = 71.2 cm3/mol.
The molar volume and excess volume can be determined across the composition range by changing

y’s in the formulas.

Cubic Equations of State
The customary mixing rules for cubic equations of state have been introduced in Section 12.1:



Note the mathematical similarity of the mixing rule for a with the mixing rule used for the virial
coefficient. All of the compositional dependence of the equation of state is incorporated into the two
relations. A combining rule is not necessary for the b term, however the a term does require a
combining rule. The customary combining rule is

where kij is referred to as a binary interaction parameter. This is similar to the form of the
geometric mean rule for critical temperatures used for virial coefficients. The adjustable parameter
kij is used to adjust the combining rule to fit experimental data more closely. Technically, this just
transfers our ignorance into the adjustable parameter kij. Values for kij for various binary
combinations are tabulated in the literature.2

In the absence of experimental data or literature values for kij, we may make a first-order
approximation by letting kij = 0. This approximation serves our purpose nicely, because the equation
of state approach then requires no more information than the ideal solution approach (Tc, Pc, ω, T, P,
x, y), but it offers the possibility of more realistic representation of the phase diagram because of the
more fundamental molecular basis. We can demonstrate this improved accuracy by considering some
examples.

 Review of the concepts from Section 10.8 may help put the approaches in context.
Keep in mind that the objective is still to perform bubble, dew and flash calculations, but
after relaxing the ideal solution assumption.

15.2. Fugacity and Chemical Potential from an EOS
We begin with a reminder that for phase equilibria calculations, that the fugacities of components

are needed. The tool that we need for VLE calculations is the K-ratio and an expression for the
component fugacity. In Section 10.9 we demonstrated that the component fugacity for an ideal gas
component is equal to the partial pressure. In this chapter we develop a method of “correcting” the
partial pressure to provide the fugacity. As a variation of the Venn diagram presented in Fig. 11.8, we
present the schematic shown in Fig. 15.1. Because the equation of state is capable of representing
liquid phases by using the smaller root, we show both vapor and liquid phases.



Figure 15.1. Schematic showing the equation of state approach to modeling fugacities of
components. Departure function (fugacity coefficient) methods are used for both the vapor and

liquid phases. Superscripts are used to distinguish the fugacity coefficients of each phase.
Liquid-phase compositions are conventionally denoted by xi and vapor-phase compositions by yi.

The method of deriving the fugacity is an extension of Eqn. 10.39. If we compare the chemical
potential in the real mixture to the chemical potential for an ideal gas, we see that the difference is
given by the component derivative of the Gibbs departure.

We have seen the Gibbs departure in Eqns. 9.23 and 9.31. For the virial equation, we have

where we recognize that the virial coefficient depends on composition via Eqn. 15.2. By
differentiation of this expression, we obtain the chemical potential. We can calculate the component
fugacity if we use Eqn. 11.22 and replace the standard state with the ideal gas mixture state. Since the
component fugacity in the ideal gas state is the partial pressure, the fugacity coefficient becomes

 General form of fugacity coefficient in a mixture useful for EOSs of the form Z(T,P).

We define the ratio of the component fugacity to the partial pressure (ideal gas component fugacity)
as the component fugacity coefficient.



 Component fugacity coefficient.

Differentiation of the Gibbs departure leads to the component fugacity coefficients for a binary,

 Fugacity coefficient for virial equation of state.

which will be shown in more detail later. The fugacity coefficient of a component in a mixture may
be directly determined at a given T and P by evaluating the virial coefficients at the temperature, then
using this equation to calculate the fugacity coefficient.

Differentiation of the Gibbs departure function is difficult for a pressure-explicit equation of state
like the Peng-Robinson equation of state. The difficulty arises because the Gibbs departure function is
given in terms of volume and temperature rather than pressure (Eqns. 8.36 and 9.33), and
differentiation at constant pressure as required by Eqn. 15.12 is difficult. As in the case of pure
fluids, classical thermodynamics provides the means to solve this problem. Instead of differentiating
the Gibbs departure function, we differentiate the Helmholtz departure function. Recalling,

and noting,

we also use A = G – PV, or dA = dG – d(PV):

Equating coefficients of dni we see an alternative method to find the chemical potential,

Note that T, P, and V identify the same conditions for the real fluid. Therefore, when we evaluate
the departure, the ideal gas state must be corrected from Vig to V,



where the notation (A – Aig)TV denotes a departure function at the same T, V, which is the integral of
Eqn. 8.27. The last term, ln Z, represents the correction of the ideal gas Helmholtz energy from V to
Vig. Careful inspection of the true form on the integral leading to ln Z should convince you that
differentiation does not change this term, and only the integral for the departure in Eqn. 15.16 must be
differentiated.

 General form for fugacity coefficient for a pressure explicit equation of state such as
the Peng-Robinson, that is, Z(T,ρ).

Therefore, the fugacity coefficient is calculated using

To apply this, consider the Peng-Robinson equation as an example.

By extending the method of reducing the equation of state parameters developed in Eqns. 7.21 and

7.22,  and , where . Then, differentiation as we will
show in Example 15.5 on page 592, yields for a binary system

 Fugacity coefficient for the Peng-Robinson equation of state in dimensionless form.

As we saw in the case of equations of state for pure fluids, there is no fundamental reason to
distinguish between the vapor and liquid phases except by the magnitude of Z. The equation of state
approach encompasses both liquids and vapors very simply. We replace the vapor phase mole



fractions with liquid phase mole fractions in all formulas including those for A and B, resulting in

Recalling that  at equilibrium, we write the equality and rearrange to find the expression for
the K-ratio used to solve VLE problems.

 Eqn. 15.20 provides the primary equations for VLE via equations of state. Different
equations of state provide different formulas for .

Given Ki for all i, it is straightforward to solve VLE problems using the same procedures as for
ideal solutions.

Note: Eqns. 15.20 provide the primary equations for VLE via equations of state.
These equations are implemented by iteration procedures summarized in Appendix
C. Only the bubble method will be presented in the chapter in detail. Although cubic
equations can represent both vapor and liquid phases, note that the virial equation
cannot be used for liquid phases.

Bubble-Pressure Method
For a bubble-pressure calculation, the T and all xi are known as shown in Table 10.1 on page 373.

Like the simple calculation performed in the preceding chapter, the criterion for convergence is 

 which needs to be expressed in terms of variables for the current method. Rearranging Eqn.

15.20, this sum becomes . Unlike the activity model calculations, we cannot
explicitly solve for pressure because all  and  depend on pressure. Additionally,  all depend
on composition of the vapor phase, which is not exactly known until the problem is solved. Typically,
we use Raoult’s law with the shortcut vapor pressure equation for the first guesses of yi and P. From
these values, we determine all Ki and check the sum of y values. If the sum is greater than one, the
pressure guess is increased, if less than one, the pressure guess is decreased. A complete flowchart
and example will be discussed in Section 15.4, but for now, let us explore the methods for calculating
the fugacity coefficients.

As we observed for pure fluids, it is important to select the proper root when applying an equation
of state. Considering the Workbook Prfug.xlsx, for the one-root region, we should select that row for
the fugacity coefficients. For the three-root region, we should choose the root with the lowest mixture



fugacity. At low pressure and near room temperature, systems are usually in the three-root region for
both liquid and vapor compositions, but that may change as we approach the critical region. The
number of roots depends on composition as well as T and P. For example, it often occurs that one
root occurs using the vapor composition when one component is supercritical in equilibrium with a
liquid phase. This means we need to select among at least four possibilities for each phase when
computing the K-values: largest Z root for vapor composition, smallest Z root with liquid
composition, single root with vapor composition, single root with liquid composition. If we compute
K-values with all four ratios, only one of the possibilities provides meaningful results and these are
the ones to apply in the next iteration.

 Prfug.xlsx may be helpful in following this example.

Example 15.2. K-values from the Peng-Robinson equation
The bubble-point pressure of an equimolar nitrogen (1) + methane (2) system is to be calculated by

the Peng-Robinson equation and compared to the shortcut K-ratio estimate at 100 K. The shortcut K-
ratio estimate will be used as an initial guess: P = 0.4119 MPa, yN2

 = 0.958. Apply the formulas for
the fugacity coefficients to obtain an estimate of the K-values for nitrogen and methane and evaluate
the sum of the vapor mole fractions based on this initial guess.

Solution

The spreadsheet Prfug.xlsx may be used to follow the calculations. The K-values using the vapor
root with vapor composition and liquid root with liquid composition are valid throughout the
iterations of this example. From the shortcut calculation, P = 0.4119 MPa at 100 K. Applying Eqns.
7.21 and 7.22 for the pure component parameters:

For N2: A11 = 0.09686; B1 = 0.011906;
For CH4: A22 = 0.18242; B2 = 0.013266

By the square-root combining rule Eqn. 15.9: A12 = 0.13293

Based on the vapor composition of the shortcut estimate at y1 = 0.958, the mixing rule gives AV =
0.099913; BV = 0.01196; Solving the cubic for the vapor root at this composition gives ZV = 0.9059.

Then



Many of the terms are the same for the methane in the mixture:

To save some tedious calculations, the liquid formulas have already been applied to obtain: 
; . Determining the K values,

y1 = 0.5 · 1.955 = 0.978; y2 = 0.5 · 0.1106 = 0.055; 

A higher guess for P would be appropriate for the next iteration in order to make the K-values
smaller.  and  would need to be evaluated at the new pressure. The calculations are obviously
tedious. Ki calculations are possible in Excel by first copying the “Fugacities” sheet on Prfug.xlsx,
using one sheet for liquid and the other for vapor, and then referencing cells on one of the sheets to
calculate the Ki. We provide an example of such an arrangement in Prmix.xlsx. More details on the
entire procedure will follow in Section 15.4.

15.3. Differentiation of Mixing Rules
Since a compositional derivative is necessary to obtain the partial molar quantities, and the

compositions are present in summation terms, we must understand the procedures for differentiation
of the sums. Since all of the compositional dependence is embedded in these terms, if we understand
how these terms are handled, we can then apply the results to any equation of state. Only three types
of sums appear in most forms of equations of state, which have been introduced above. The first type
of derivative we will encounter is of the form

 Since the compositional dependence is within the mixing rule, if we understand how
to differentiate the general mixing rules, then we can easily apply them to the models that
use them.



where . For a binary nb = n1b1 + n2b2, and k will be encountered once in the sum, whether
k = 1 or k = 2, thus:

and the general result is

The second type of derivative which we will encounter is of the form

n2a may be written as . For a binary mixture, . Taking the
appropriate derivative,

The general result is

For the virial equation, we need to differentiate a function that will look like:

Differentiation by the product rule gives

The double sum in the derivative is n2B which we have evaluated in equivalent form in Eqn. 15.25.
The second term is just B given by Eqn. 15.1. Therefore, we have for a binary mixture



The general result is

Example 15.3. Fugacity coefficient from the virial equation
For moderate deviations from the ideal-gas law, a common method is to use the virial equation

given by:
Z = 1 + BP/RT

where . Develop an expression for the fugacity coefficient.

Solution

For the virial equation, we have the result of Eqn. 9.30, 
Applying Eqn. 15.12

the argument we need to differentiate looks like .
Differentiation has been performed in Eqn. 15.29, which we can generalize as



which has been shown earlier for a binary in Eqn. 15.14.

Example 15.4. Fugacity coefficient from the van der Waals equation
Van der Waals’ equation of state provides a simple but fairly accurate representation of key

equation of state concepts for mixtures. The main manipulations developed for this equation are the
same for other equations of state but the algebra is a little simpler. Recalling van der Waals’ equation
from Chapter 6,

where  and . Develop an expression for the fugacity coefficient.

Solution
We need to apply Eqn. 15.17. For the departure, we apply Eqn. 8.27 because the differentiation

indicated above is performed at constant volume, not constant pressure.

Apply Eqn. 15.17, but instead of differentiating directly, use the chain rule, Eqn. 6.16.



Example 15.5. Fugacity coefficient from the Peng-Robinson equation
The Peng-Robinson equation is given by

where  and . Develop an expression for the fugacity coefficient.

Solution
We need to apply Eqn. 15.17. From integration for the pure fluid,

The next steps look intimidating. Basically, they apply the same procedure for differentiation as the
last example.



Note a simplification that is not obvious:

Substituting the following definitions,

which has been shown in Eqns. 15.18–15.19 for a binary.

15.4. VLE Calculations by an Equation of State
At the end of Section 15.2, the bubble-pressure method was briefly introduced to show how the

fugacity coefficients are incorporated into a VLE calculation, without concentrating on the details of
the iterations. Section 15.3 offered derivations of formulas for the fugacity coefficients that were
presented without proof at the beginning of the chapter. Now, it is time to turn to the applied



engineering objective: calculation of phase equilibria. Refer again to Table 10.1 on page 373, that
lists the types of routines that are needed and the convergence criteria. Note that Table 10.1 is
independent of the model used for calculating VLE. As an example of the iteration procedure for
cubic equations of state, the bubble-pressure flow sheet is presented in Fig. 15.2. The flow sheet puts
detail to the procedure discussed superficially in Example 15.2 and immediately preceding the
example. Flow sheets for bubble temperature, dew, and flash routines are available in Appendix C.
As with ideal solutions, the bubble-pressure routine is the easiest to apply, so we cover it in detail in
the following examples. Iterative phase equilibrium calculations can be tedious and difficult to
automate. We can facilitate the calculations to some extent by combining two copies of the PrFug
spreadsheet into a single workbook, which we call Prmix.xlsx. The four possible K-value
representations are included for convenient selection, as described in Example 15.2. This workbook
forms only a starting basis with an emphasis on clearly showing the fundamental steps.

Figure 15.2. Bubble-pressure flow sheet for the equation of state method of representing
VLE. Other routines are given in Appendix C.

 The engineering objective is to use equations of state for bubble, dew, and flash
calculations.

 Flow sheets for bubble temperature, dew, and flash routines are in Appendix C.

 Bubble-pressure calculations are enabled with the spreadsheet Prmix.xlsx.



Example 15.6. Bubble-point pressure from the Peng-Robinson equation
Use the Peng-Robinson equation (kij = 0) to determine the bubble-point pressure of an equimolar

solution of nitrogen (1) + methane (2) at 100 K.

Solution
The calculations proceed by first calculating the short-cut K-ratio as in Example 15.2 on page 587.

The ideal-solution (is) bubble pressure was ; yN2
is = 0.958. In fact, the K-

values for the first iteration have already been determined in that example, in great detail. The values
from that example are K1 = 1.955, K2 = 0.1106. The new estimates of vapor mole fractions are

obtained by multiplying xi·Ki. In Example 15.2, the sum was found to be . These
calculations are summarized in the first column of Table 10.1.

Noting that these sum to a number greater than unity, we must choose a greater value of pressure for
the next iteration. Before we can start the next iteration, however, we must develop new estimates of
the vapor mole fractions; the ones we have do not make sense because they sum to more than unity.
These new estimates can be obtained simply by dividing the given vapor mole fractions by the
number to which they sum. This process is known as normalization of the mole fractions. For
example, to start the second iteration, y1 = 0.978/1.033 = 0.947. After repeating the process for the
other component, the mole fractions will sum to unity. Since the result for the second iteration is less
than one, the pressure guess is too high.

 Normalization of mole fractions.

The third iteration consists of applying the interpolation rule to obtain the estimate of pressure and
use of the normalization procedure to obtain the estimates of vapor mole fractions. P = 0.4119 + (1 –
1.033)/(0.956 – 1.033) · (0.45 – 0.4119) = 0.428 MPa. Since the estimated vapor mole fractions after
the third iteration sum very nearly to unity, we may conclude the calculations here. This is the bubble
pressure. Note how quickly the estimate for y1 converges to the final estimate of 0.945.

Example 15.7. Isothermal flash using the Peng-Robinson equation
A distillation column is to produce overhead products having the following compositions:



Suppose a partial condenser is operating at 320 K and 8 bars. What fraction of liquid would be
condensed according to the Peng-Robinson equation, assuming all binary interaction parameters are
zero (kij = 0)?

Solution
This is an isothermal flash calculation. Refer back to the same problem (Example 10.1 on page

382) for an initial guess based on the shortcut K-ratio equation. V/F = 0.25 ය {xi} = {0.1829, 0.7053,
0.1117} and {yi} = {0.3713, 0.5642, 0.0648}. Substituting these composition estimates for the vapor
and liquid compositions into the routine for estimating K-values (cf. Example 15.2 on page 587), we
can obtain the estimates for K-values given below:

The computations for the flash calculation are basically analogous to those in Example 10.1, except
that Ki values are calculated from Eqn. 15.20. A detailed flow sheet is presented in Appendix C. For
this example, the K-values are not modified until the iteration on V/F converges. After convergence
on V/F, the vapor and liquid mole fractions are recomputed using Eqns. 10.15 and 10.16, followed by
recomputed estimates for the K-values. If the new estimates for K-values are equal to the old
estimates for K-values, then the overall iteration has converged. If not, then the new estimates for K-
values are substituted for the old values, and the next iteration proceeds just like the last. This method
of iteratively solving for the vector of K-values is known in numerical analysis as the “successive
substitution” method.

Using these x’s and y’s for guesses we find K = 1.7276, 0.8318, and 0.6407, respectively. These
K-values are similar to those estimated at the compositions derived from the ideal-solution
approximation, and will yield a similar V/F. Therefore, we conclude that this iteration has converged
(a general criterion is that the average % change in the K-values from one iteration to the next is less
than 10-4). Comparison to the shortcut K-ratio approximation shows small but significant deviations



—V/F = 0.13 for Peng-Robinson versus 0.25 for the shortcut K-ratio method.
Based on this example, we may conclude that the shortcut K-Ratio approximation provides a

reasonable first approximation at these conditions. Note, however, that none of the components is
supercritical and all the components are saturated hydrocarbons.

It is tempting to expand further on Prmix.xlsx to facilitate greater automation and simple-minded
application. An online supplement provides a very preliminary step in this direction through the use
of macro’s. Ultimately, however, this literature comprises specialized research that is beyond our
introductory scope. In general, the analysis requires detailed consideration of phase stability and
criticality. References cited in Chapter 16 describe works by Michelsen and Mollerup, Eubank, and
Tang that can help to create more reliable algorithms. It is a useful exercise to customize your
workbooks to increase your confidence in achieving reliable solutions, but do not spend excessive
time trying to program every possibility. Chapter 16 and the references cited there are recommended
for advanced programming.

Example 15.8. Phase diagram for azeotropic methanol + benzene
Methanol and benzene form an azeotrope. For methanol + benzene the azeotrope occurs at 61.4

mole% methanol and 58°C at atmospheric pressure (1.01325 bars). Additional data for this system
are available in the Chemical Engineers’ Handbook. Use the Peng-Robinson equation with kij = 0
(see Eqn. 15.9) to estimate the phase diagram for this system and compare it to the experimental data
on a T-x-y diagram. Determine a better estimate for kij by iterating on the value until the bubble point
pressure matches the experimental value (1.013 bar) at the azeotropic composition and temperature.
Plot these results on the T-x-y diagram as well. Note that it is impossible to match both the azeotropic
composition and pressure with the Peng-Robinson equation because of the limitations of the single
parameter, kij.

 Prmix.xlxx can be used to fit the kij.

The experimental data for this system are as follows:

Solution
Solving this problem is computationally intensive, but still approachable with Prmix.xlsx. The



strategy is to manually set a guessed kij and then perform a bubble pressure calculation at the
azeotrope temperature (331.15 K) and composition, xm = 0.614. The program will give a calculated
pressure and vapor phase composition. The vapor-phase composition may not match the liquid-phase
composition because the azeotrope is not perfectly predicted; however, we continue to manually
change kij, and repeat the bubble pressure calculation until we match the experimental pressure of
1.013 bar. The following values are obtained for the bubble pressure at the experimental azeotropic
composition and temperature with various values of kij.

The resultant kij is used to perform bubble-temperature calculations across the composition range,
resulting in Fig. 15.3. Note that we might find a way to fit the data more accurately than the method
given here, but any improvements would be small relative to estimating kij = 0. We see that the fit is
not as good as we would like for process design calculations. This solution is so nonideal that a more
flexible model of the thermodynamics is necessary. Note that the binary interaction parameter alters
the magnitude of the bubble-pressure curve very effectively but hardly affects the skewness at all.
Since this mixture is far from the critical region, a two-parameter activity model like van Laar or
UNIQUAC would be recommended as shown in Fig. 12.1. The Peng-Robinson model with van der
Waals’ mixing rule comes closest to the Scatchard-Hildebrand activity model. We observed that the
Scatchard-Hildebrand model performed poorly for hydrogen bonding mixtures. Two approaches are
common when precision is needed in the critical region for hydrogen bonding mixtures. Either a
multiparameter activity model can be adapted as a basis for an advanced mixing rule, or hydrogen
bonding can be treated explicitly. References to these are approaches are presented in the chapter
summary.

Figure 15.3. T-x-y diagram for the azeotropic system methanol + benzene. Curves show the
predictions of the Peng-Robinson equation (kij = 0) and correlation (kij = 0.084) based on fitting

a single data point at the azeotrope; x’s and triangles represent liquid and vapor phases,
respectively.

Example 15.9. Phase diagram for nitrogen + methane



Use the Peng-Robinson equation (kij = 0) to determine the phase diagram of nitrogen + methane at
150 K. Plot P versus x, y and compare the results to the results from the shortcut K-ratio equations.

 Prmix.xlsx.

Solution
First, the shortcut K-ratio method gives the dotted phase diagram in Fig. 15.4. Applying the bubble-

pressure procedure with the program Prmix.xlsx, we calculate the solid line in Fig. 15.4. For the
Peng-Robinson method we assume K-values from the previous solution as the initial guess to get the
solutions near xN2 = 0.685. The program Prmix.xlsx assumes this automatically, but we must also be
careful to make small changes in the liquid composition as we approach the critical region.

Figure 15.4. High pressure P-x-y diagram for the nitrogen + methane system comparing the
shortcut K-ratio approximation and the Peng-Robinson equation at 150 K. The data points

represent experimental results. Both theories are entirely predictive since the Peng-Robinson
equation assumes that kij = 0.

Fig. 15.4 was generated by entering liquid nitrogen compositions of 0.10, 0.20, 0.40, 0.60, 0.61,
0.62..., 0.68, and 0.685. This procedure of starting in a region where a simple approximation is
reliable and systematically moving to more difficult regions using previous results is often necessary
and should become a familiar trick in your accumulated expertise on phase equilibria in mixtures. We
apply a similar approach in estimating liquid-liquid equilibria.

Comparing the two approximations numerically and graphically, it is clear that the shortcut
approximation is significantly less accurate than the Peng-Robinson equation at high concentrations of
the supercritical component. This happens because the mixture possesses a critical point, above
which separate liquid and vapor roots are impossible, analogous to the situation for pure fluids. Since
the mixing rules are in terms of a and b instead of Tc and Pc, the equation of state is generating
effective values for Ac and Bc of the mixture.

Instead of depending simply on T and P as they did for pure fluids, however, Ac and Bc also depend
on composition. The mixture critical point varies from one component to the other as the composition
changes. Since the shortcut (and also SCVP+) approximation extrapolates the vapor pressure curve to



obtain an effective vapor pressure of the supercritical component, that approximation does not reflect
the presence of the mixture critical point and this leads to significant errors as the mixture becomes
rich in the supercritical component.

The mixture critical point also leads to computational difficulties. If the composition is excessively
rich in the supercritical component, the equation of state calculations may obtain the same solution for
the vapor root as for the liquid root and, since the fugacities are equal, the program will terminate.
The program may indicate accurate convergence in this case due to some slight inaccuracies that are
unavoidable in the critical region. Or the program may diverge. It is often up to the competent
engineer to recognize the difference between accurate convergence and a spurious answer. Plotting
the phase envelope is an excellent way to stay out of trouble.

 The shortcut K-ratio method provides an initial estimate when a supercritical
component is at low liquid-phase compositions, but incorrectly predicts VLE at high
liquid-phase concentrations of the supercritical component.

Example 15.10. Ethane + heptane phase envelopes
Use the Peng-Robinson equation (kij = 0) to determine the phase envelope of ethane + n-heptane at

compositions of xC7 = [0, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0]. Plot P versus T for each composition by
performing bubble-pressure calculations to their terminal point and dew-temperature calculations
until the temperature begins to decrease significantly and the pressure approaches its maximum. If
necessary, close the phase envelope by starting at the last dew-temperature state and performing dew-
pressure calculations until the temperature and pressure approach the terminus of the bubble-point
curve. For each composition, mark the points where the bubble and dew curves meet with X’s. These
X’s designate the “mixture critical points.” Connect the X’s with a dashed curve. The dashed curve is
known as the critical locus of the mixture.

 Prmix.xlsx facilitates bubble, dew, and flash calculations.

 Mixture critical points.

Solution
Note that these phase envelopes are similar to the one from the previous problem, except that we

are changing the temperature instead of the composition along each curve. They are more tedious in
that both dew and bubble calculations must be performed to generate each curve. The lines of
constant composition are sometimes called isopleths. The results of the calculations are illustrated in
Fig. 15.5. The results at mole fractions of 0 and 1.0 are indicated by dash-dot curves to distinguish
them as the vapor pressure curves. Phase equilibria on the P-T plot occurs at the conditions where a
bubble line of one composition intersects a dew line of a different composition.



Figure 15.5. High pressure phase envelopes for the ethane + heptane system comparing the
effects of composition according to the Peng-Robinson equation. The theory is entirely

predictive because the Peng-Robinson equation has been applied with kij = 0. X’s mark the
mixture critical points and the dashed line indicates the critical locus. The first and last curves

represent the vapor pressures for the pure components.

 Isopleths.

Some practical considerations for high pressure processing can be inferred from the diagram.
Consider what happens when starting at 90 bars and ~445 K and dropping the pressure on a 30
mole% C7 mixture at constant temperature. Similar situations could arise with flow of natural gas
through a small pipe during natural gas recovery. As the pressure drops, the dew-point curve is
crossed and liquid begins to condense. Based on intuition developed from experiences at lower
pressure, one might expect that dropping the pressure should result in more vapor-like behavior, not
condensation. On the other hand, dropping the pressure reduces the density and solvent power of the
ethane-rich mixture. This phenomenon is known as retrograde condensation. It occurs near the
critical locus when the operating temperature is less than the maximum temperature of the phase
envelope. Since this maximum temperature is different from the mixture critical temperature, it needs
a distinctive name. The name applied is the “critical condensation temperature” or cricondentherm.
Similarly, the maximum pressure on the phase envelope is known as the cricondenbar. Note that an
analogous type of phase transition can occur near the critical locus when the pressure is just above
the critical locus and the temperature is changed.

 Retrograde condensation.

To extend the analysis, imagine what happens in a natural gas stream composed primarily of



methane but also containing small amounts of components as heavy as C80. A retrograde
condensation region exists where the heavy components begin to precipitate, as discussed in Example
14.12 on page 567. But a different possibility also exists because the melting temperature of the heavy
components may often exceed the operating temperature, and the precipitate that forms might be a
solid that could stick to the walls of the pipe. This in turn generates a larger constriction which
generates a larger pressure drop during flow, right in the vicinity of the deposit. In other words, this
deposition process may tend to promote itself until the flow is substantially inhibited. Wax deposition
is a significant problem in the oil and natural gas industry and requires considerable engineering
expertise because it often occurs away from critical points, as well as in the near-critical regions of
this discussion. A wide variety of solubility behavior can occur, as we show in Chapter 16.

15.5. Strategies for Applying VLE Routines
For some problems, such as generation of a phase diagram, the examples in this chapter can be

followed directly. Often, however, it takes some thought to decide which type of VLE routine is
appropriate to apply in a given situation. Do not discount this step in the problem solution strategy.
Part of the objective of the homework problems is to increase understanding of phase behavior by
encouraging thought about which routine to use. Since the equation of state routines are complicated
enough to require a computer, they are also solved relatively rapidly, once the VLE routine has been
identified. Use Table 10.1 on page 373 and the information in Section 10.1 to identify the correct
procedure to apply before turning to computational techniques. Use the problem statement to identify
whether the liquid, vapor, or overall mole fractions are known. Study the problem statement to see
whether the P and T are known. Often this information together with Table 10.1 will determine the
routines to apply. Sometimes more than one approach is satisfactory. Sometimes the ideal-solution
approximation may be applied, and a review of Section 10.8 may be helpful. Before using software
that accompanies the text, be sure to read the appropriate section of Appendix A, and the instructions
or readme.txt files that accompany the program.

15.6. Summary
The essence of the equation of state approach to mixtures is that the equation of state for mixtures is

the same as the equation of state for pure fluids. The expressions for Z, A, and U are exactly the same.
The only difference is that the parameters (e.g., a and b of the Peng-Robinson equation) are dependent
on the composition. That should come as no large surprise when you consider that these parameters
must transform from pure component to pure component in some continuous fashion as the
composition changes. What may be surprising is the wealth of behaviors that can be inferred from
some fairly simple rules for modeling this transformation. Everything from azeotropes to retrograde
condensation, and even liquid-liquid separation can be represented with qualitative accuracy based
on this simple extension of the equation of state.

So, are we done with phase behavior modeling? Unfortunately, the keyword in the preceding
paragraph is “qualitative.” Equations of state are sufficiently accurate for most applications involving
hydrocarbons, gases, and to some extent, ethers, esters, and ketones. For many oil and gas wells, it
may suffice to treat the hydrocarbon-rich phases in this way and treat water separately. But any
applications involving strongly hydrogen-bonding species tend to require greater accuracy than
currently attainable from equations like the Peng-Robinson EOS. For example, if methanol is used as



a hydrate inhibitor in a gas well, its partitioning may require a more sophisticated treatment. One idea
is to adapt multiparameter activity models like the UNIQUAC model as the basis for mixing rules.
This is the approach of the Wong-Sandler model.3 Another approach is to analyze hydrogen bonding
as simultaneous reaction and phase equilibria, as discussed in Chapter 19.

Important Equations
Once again the mixing rules play an important role in defining the thermodynamics. Since the Peng-

Robinson mixing rules have the same form as the van der Waals mixing rules, including a single
binary interaction parameter, kij, the Peng-Robinson model cannot match the skewness of the Gibbs
excess curve, only the magnitude. Outside the critical region, you might as well use an activity model.
The advantage of the Peng-Robinson model is that it provides a holistic framework that applies
seamlessly to vapor, liquid, and critical region. Noting how activity models artificially designate
different methods for different phases, it is gratifying to see that such conceptual simplicity is
feasible. The key equation for establishing this feasibility is deriving the fugacity coefficient for a
pressure-explicit equation of state:

Given this equation, it is straightforward to derive fugacity coefficients, and K-ratios, for any
equation of state or mixing rule. Two related equations that often appear are Eqns. 15.23 and 15.26.

Look for ways to rearrange the equations before differentiating such that these terms appear and
then differentiation becomes much simpler, often reducing to simple substitution. Finally, the EOS
method melds with every other phase equilibrium computational procedure when the expression is
derived for the partition coefficient, as given by a slight variation on Eqn. 15.20.

Here we have generalized Eqn. 15.20 slightly by recognizing that the upper phase could be vapor
or it could be the upper phase of LLE. The beauty of the EOS perspective is that the fluid phase
model is the same for liquid or vapor; only the proper root must be selected.

15.7. Practice Problems
P15.1. Repeat all the practice problems from Chapter 10, this time applying the Peng-Robinson



equation.
P15.2. Acrolein (C3H4O) + water exhibits an atmospheric (1 bar) azeotrope at 97.4 wt%
acrolein and 52.4°C. For acrolein: Tc = 506 K; Pc = 51.6 bar; and ω = 0.330; MW = 56.

a. Determine the value of kij for the Peng-Robinson equation that matches this
bubble pressure at the same liquid composition and temperature. (ANS. 0.015)
b. Tabulate P, y at 326.55 K and x = {0.57, 0.9, 0.95, 0.974} via the Peng-
Robinson equation using the kij determined above. (ANS. (1.33, 0.575), (1.16,
0.736), (1.06, 0.841), (1.0, 0.860))

P15.3. Laugier and Richon (J. Chem. Eng. Data, 40:153, 1995) report the following data for the
H2S + benzene system at 323 K and 2.010 MPa: x1 = 0.626; y1 = 0.986.

a. Quickly estimate the vapor-liquid K-value of H2S at 298 K and 100 bar.
(ANS. 0.21)
b. Use the data to estimate the kij value, then estimate the error in the vapor phase
mole fraction of H2S. (ANS. 0.011, 0.1%)

P15.4. The system ethyl acetate + methanol forms an azeotrope at 27.8 mol% EA and 62.1°C.
For ethyl acetate, Tc = 523.2 K; Pc = 38.3 bar; and ω = 0.362.

a. What is the estimate of the bubble-point pressure from the Peng-Robinson
equation of state at this composition and temperature when it is assumed that kij =
0? (ANS. 0.98 bars)
b. What value of kij gives a bubble-point pressure of 1 bar at this temperature and
composition? (ANS. 0.0054)
c. What is the composition of the azeotrope and value of the bubble-point
pressure at the azeotrope estimated by the Peng-Robinson equation when the
value of kij from part (b) is used to describe the mixture? (ANS. xEA = 0.226)

P15.5.
a. Assuming zero for the binary interaction parameter (kij = 0) of the Peng-
Robinson equation, predict whether an azeotrope should be expected in the
system CO2 + ethylene at 222 K. Estimate the bubble-point pressure for an
equimolar mixture of these components. (ANS. No, 8.7 bar)
b. Assuming a value for the binary interaction parameter (kij = 0.11) of the Peng-
Robinson equation, predict whether an azeotrope should be expected in the
system CO2 + ethylene at 222 K. Estimate the bubble-point pressure for an
equimolar mixture of these components. (ANS. Yes, 11.3 bar)

P15.6.
a. Assuming zero for the binary interaction parameter (kij = 0) of the Peng-
Robinson equation, estimate the bubble pressure and vapor composition of the
pentane + acetone system at xp = 0.728, 31.9°C. (ANS. 0.78 bars, y1 = 0.83)

b. Use the experimental liquid composition and bubble condition of the pentane +



acetone system at xP = 0.728, T = 31.9°C, P = 1 bar to estimate the binary
interaction parameter (kij) of the Peng-Robinson equation, and then calculate the
bubble pressure of a 13.4 mol% pentane liquid solution at 39.6°C. (ANS. 0.117,
1.12 bar)

P15.7. Calculate the dew-point pressure and corresponding liquid composition of a mixture of
30 mol% carbon dioxide, 30% methane, 20% propane, and 20% ethane at 298 K using

a. The shortcut K-ratios (ANS. 32 bar)
b. The Peng-Robinson equation with kij = 0 (ANS. 44 bar)

P15.8. The equation of state below has been suggested for a new equation of state. Derive the
expression for the fugacity coefficient of a component.

Z = 1 + 4cbρ/(1 – bρ)

15.8. Homework Problems
15.1. Using Fig. 15.5 on page 602, without performing additional calculations, sketch the P-x-y
diagram at 400 K showing the two-phase region. Make the sketch semi-quantitative to show the
values where the phase envelope touches the axes of your diagram. Label the bubble and dew
lines. Also indicate the approximate value of the maximum pressure.
15.2. Consider two gases that follow the virial equation. Show that an ideal mixture of the two
gases follows the relation B = y1B11 + y2B22.

15.3. Consider phase equilibria modeled with . When might i be replaced by i for
each phase? When might i = 1 be used for each phase? Discuss the appropriateness of using the

virial equation for mixtures to solve phase behavior using the expression .
15.4. Calculate the molar volume of a binary mixture containing 30 mol% nitrogen(1) and 70
mol% n-butane(2) at 188°C and 6.9 MPa by the following methods.

a. Assume the mixture to be an ideal gas.
b. Assume the mixture to be an ideal solution with the volumes of the pure gases
given by

and the virial coefficients given below.
c. Use second virial coefficients predicted by the generalized correlation for B.
d. Use the following values for the second virial coefficients.

Data:



B11 = 14    B22 = –265     B12 = –9.5     (Units are cm3/gmole)

e. Use the Peng-Robinson equation.
15.5. For the same mixture and experimental conditions as problem 15.4, calculate the fugacity
of each component in the mixture, . Use methods (a) – (e).
15.6. A vapor mixture of CO2 (1) and i-butane (2) exists at 120°C and 2.5 MPa. Calculate the
fugacity of CO2 in this mixture across the composition range using

a. The virial equation for mixtures
b. The Peng-Robinson equation
c. The virial equation for the pure components and an ideal mixture model.

15.7. Use the virial equation to consider a mixture of propane and n-butane at 515 K at pressures
between 0.1 and 4.5 MPa. Verify that the virial coefficient method is valid by using Eqn. 7.10.

a. Prepare a plot of fugacity coefficient for each component as a function of
composition at pressures of 0.1 MPa, 2 MPa, and 4.5 MPa.
b. How would the fugacity coefficient for each component depend on
composition if the mixture were assumed to be ideal, and what value(s) would it
have for each of the pressures in part (a)? How valid might the ideal-solution
model be for each of these conditions?

c. The excess volume is defined as , where V is the molar volume of
the mixture, and Vi is the pure component molar volume at the same T and P. Plot
the prediction of excess volume of the mixture at each of the pressures from part
(a). How does the excess volume depend on pressure?
d. Under which of the pressures in part (a) might the ideal gas law be valid?

15.8. Consider a mixture of nitrogen(1) + n-butane(2) for each of the options: (i) 395 K and 2
MPa; (ii) 460 K and 3.4 MPa; (iii) 360 K and 1 MPa.

a. Calculate the fugacity coefficients for each of the components in the mixture
using the virial coefficient correlation. Make a table for your results at y1 = 0.0,
0.2, 0.4, 0.6, 0.8, 1.0. Plot the results on a graph. On the same graph, plot the
curves that would be used for the mixture fugacity coefficients if an ideal mixture
model were assumed. Label the curves.
b. Calculate the fugacity of each component in the mixture as predicted by the
virial equation, an ideal-mixture model, and the ideal-gas model. Prepare a table
for each component, and list the three predicted fugacities in three columns for
easy comparison. Calculate the values at y1 = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0.

15.9. The virial equation Z = 1 + BP/RT may be used to calculate fugacities of components in
mixtures. Suppose B = y1B11 + y2B22. (This simple form makes calculations easier. Eqn. 15.1
gives the correct form.) Use this simplified expression and the correct form to calculate the
respective fugacity coefficient formulas for component 1 in a binary mixture.
15.10. The Lewis-Randall rule is usually valid for components of high concentration in gas



mixtures. Consider a mixture of 90% ethane and 10% propane at 125°C and 170 bar. Estimate 
for ethane.
15.11. One of the easiest ways to begin to explore fugacities in nonideal solutions is to model
solubilities of crystalline solids dissolved in high pressure gases. In this case, the crystalline
solids remain as a pure phase in equilibrium with a vapor mixture, and the fugacity of the
“solid” component must be the same in the crystalline phase as in the vapor phase. Consider
biphenyl dissolved in carbon dioxide, using kij = 0.100. The molar volume of crystalline
biphenyl is 156 cm3/mol.

a. Calculate the fugacity (in MPa) of pure crystalline biphenyl at 310 K and 330
K and 0.1, 1, 10, 15, and 20 MPa.
b. Calculate and plot the biphenyl solubility for the isotherm over the pressure
range. Compare the solubility to the ideal gas solubility of biphenyl where the
Poynting correction is included, but the gas phase nonidealities are ignored.

15.12. Repeat problem 15.11, except consider naphthalene dissolved in carbon dioxide, using kij

= 0.109. The molar volume of crystalline naphthalene is 123 cm3/mol.
15.13. A vessel initially containing propane at 30°C is connected to a nitrogen cylinder, and the
pressure is isothermally increased to 2.07 MPa. What is the mole fraction of propane in the
vapor phase? You may assume that the solubility of N2 in propane is small enough that the liquid
phase may be considered pure propane. Calculate using the following data at 30°C.

15.14. A 50-mol% mixture of propane(1) + n-butane(2) enters a flash drum at 37°C. If the flash
drum is maintained at 0.6 MPa, what fraction of the feed exits as a liquid? What are the
compositions of the phases exiting the flash drum? Work the problem the following two ways.

a. Use Raoult’s law.
b. Assume ideal mixtures of vapor and liquid (Ki is independent of composition).

15.15. A mixture containing 5 mol% ethane, 57 mol% propane, and 38 mol% n-butane is to be
processed in a natural gas plant. Estimate the bubble-point pressure, the liquid composition, and
K-ratios of the coexisting vapor for this mixture at all pressures above 1 bar at which two
phases exist. Set kij = 0. Use the shortcut K-ratio method. Plot ln P versus 1/T for your results.
What does this plot look like? Plot log Ki versus 1/T. What values do the Ki approach?

15.16. Vapor-liquid equilibria are usually expressed in terms of K factors in petroleum
technology. Use the Peng-Robinson equation to estimate the values for methane and benzene in
the benzene + methane system with equimolar feed at 300 K and a total pressure of 30 bar and



compare to the estimates based on the shortcut K-ratio method.
15.17. Benzene and ethanol form azeotropic mixtures. Prepare a y-x and a P-x-y diagram for the
benzene + ethanol system at 45°C assuming the Peng-Robinson model and using the experimental
pressure at xE = 0.415 to estimate k12. Compare the results with the experimental data of Brown
and Smith cited in problem 10.2.
15.18. A storage tank is known to contain the following mixture at 45°C and 15 bar on a mole
basis: 31% ethane, 34% propane, 21% n-butane, 14% i-butane. What is the composition of the
coexisting vapor and liquid phases, and what fraction of the molar contents of the tank is liquid?
15.19. The CRC Handbook lists the atmospheric pressure azeotrope for ethanol +
methylethylketone at 74.8°C and 34 wt% ethanol. Estimate the value of the Peng-Robinson k12
for this system.
15.20. The CRC Handbook lists the atmospheric pressure azeotrope for methanol + toluene at
63.7°C and 72 wt% methanol. Estimate the value of the Peng-Robinson k12 for this system.

15.21. Use the Peng-Robinson equation for the ethane/heptane system.
a. Calculate the P-x-y diagram at 283 K and 373 K. Use k12 = 0. Plot the results.

b. Based on a comparison of your diagrams with what would be predicted by
Raoult’s law at 283 K, does this system have positive or negative deviations
from Raoult’s law?

15.22. One mol of n-butane and one mol of n-pentane are charged into a container. The container
is heated to 90°C where the pressure reads 7 bar. Determine the quantities and compositions of
the phases in the container.
15.23. Consider a mixture of 50 mol% n-pentane and 50 mol% n-butane at 15 bar.

a. What is the dew temperature? What is the composition of the first drop of
liquid?
b. At what temperature is the vapor completely condensed if the pressure is
maintained at 15 bar? What is the composition of the last drop of vapor?

15.24. LPG gas is a fuel source used in areas without natural gas lines. Assume that LPG may be
modeled as a mixture of propane and n-butane. Since the pressure of the LPG tank varies with
temperature, there are safety and practical operating conditions that must be met. Suppose the
desired maximum pressure is 0.7 MPa, and the lower limit on desired operation is 0.2 MPa.
Assume that the maximum summertime tank temperature is 50°C, and that the minimum
wintertime temperature is –10°C. [Hint: On a mass basis, the mass of vapor within the tank is
negligible relative to the mass of liquid after the tank is filled.]

a. What is the upper limit (mole fraction) of propane for summertime propane
content?
b. What is the lowest wintertime pressure for this composition from part (a)?
c. What is the lower limit (mole fraction) of propane for wintertime propane
content?
d. What is the highest summertime pressure for this composition from part (b)?

15.25. The kij for the pentane + acetone system has been fitted to a single point in problem



P15.6. Generate a P-x-y diagram at 312.75 K.
15.26. The synthesis of methylamine, dimethylamine, and trimethylamine from methanol and
ammonia results in a separation train involving excess ammonia and converted amines. Use the
Peng-Robinson equation with kij = 0 to predict whether methylamine + dimethylamine,
methylamine + trimethylamine, or dimethylamine + trimethylamine would form an azeotrope at 2
bar. Would the azeotropic behavior identified above be altered by raising the pressure to 20
bar? Locate experimental data relating to these systems in the library. How do your predictions
compare to the experimental data?

15.27. For the gas/solvent systems below, we refer to the “gas” as the low molecular weight
component. Experimental solubilities of light gases in liquid hydrocarbons are tabulated below.
The partial pressure of the light gas is 1.013 bar partial pressure. Do the following for each
assigned system.

a. Estimate the partial pressure of the liquid hydrocarbon by calculating the pure
component vapor pressure via the Peng-Robinson equation, and by subsequently
applying Raoult’s law for that component.
b. Estimate the total pressure and vapor composition using the results of step (a).
c. Use the Peng-Robinson equation with kij = 0 to calculate the vapor and liquid
compositions that result in 1.013 bar partial pressure of the light gas and compare
the pressure and gas phase composition with steps (a) and (b).
d. Henry’s law asserts that , when xi is near zero, and hi is the Henry’s law
constant. Calculate the Henry’s law constant from the calculations of part (c).
e. Calculate the solubility expected at 2 bar partial pressure of light gas by using
Henry’s law as well as by the Peng-Robinson equation and comment on the
results.

15.28. Estimate the solubility of carbon dioxide in toluene at 25°C and 1 bar of CO2 partial
pressure using the Peng-Robinson equation with a zero binary interaction parameter. The



techniques of problem 15.27 may be helpful.
15.29. Oxygen dissolved in liquid solvents may present problems during use of the solvents.

a. Using the Peng-Robinson equation and the techniques introduced in problem
15.27, estimate the solubility of oxygen in n-hexane at an oxygen partial pressure
of 0.21 bar.
b. From the above results, estimate the Henry’s law constant.

15.30. Estimate the solubility of ethylene in n-octane at 1 bar partial pressure of ethylene and
25°C. The techniques of problem 15.27 may be helpful. Does the system follow Henry’s law up
to an ethylene partial pressure of 3 bar at this temperature? Provide the vapor compositions and
total pressures for the above states.
15.31. Henry’s law asserts that , when xi is near zero, and hi is the Henry’s law constant.
Gases at high reduced temperatures can exhibit peculiar trends in their Henry’s law constants.
Use the Peng-Robinson equation to predict the Henry’s law constant for hydrogen in decalin at T
= [300 K, 600 K]. Plot the results as a function of temperature and compare to the prediction
from the shortcut prediction. Describe in words the behavior that you observe.
15.32. A gas mixture follows the equation of state

where b is the size parameter, , and a is the energetic parameter, 

. Derive the formula for the partial molar enthalpy for component 1 in a
binary mixture, where the reference state for both components is the ideal gas state of
TR, PR, and the pure component parameters are temperature-independent.

15.33. The procedure for calculation of the residual enthalpy for a pure gas is shown in Example
8.5 on page 316. Now consider the residual enthalpy for a binary gas mixture. For this
calculation, it is necessary to determine da/dT for the mixture.

a. Write the form of this derivative for a binary mixture in terms of da1/dT and
da2/dT based on the conventional quadratic mixing rule and geometric mean
combining rule with a nonzero kij.

b. Provide the expression for the residual enthalpy for a binary mixture that
follows the Peng-Robinson equation.
c. A mixture of 50 mol% CO2 and 50 mol% N2 enters a valve at 7 MPa and
40°C. It exits the valve at 0.1013 MPa. Explain how you would determine
whether CO2 precipitates, and if so, whether it would be a liquid or solid.

15.34. A gaseous mixture of 30 mol% CO2 and 70 mol% CH4 enters a valve at 70 bar and 40°C
and exits at 5.3 bar. Does any CO2 condense? Assume that the mixture follows the virial
equation. Assume that any liquid that forms is pure CO2. The vapor pressure of CO2 may be
estimated by the shortcut vapor pressure equation. CO2 sublimes at 0.1013 MPa and –78.8°C,
although freezing is less likely.
15.35. The vapor-liquid equilibria for the system acetic acid(1) + acetone(2) needs to be



characterized in order to simulate an acetic anhydride production process. Experimental data for
this system at 760 mmHg have been reported by Othmer (1943)4 as summarized below. Use the
data at the equimolar composition to determine a value for the binary interaction parameter of
the Peng-Robinson equation. Based on the value you determine for the binary interaction
parameter, determine the percent errors in the Peng-Robinson prediction for this system at a
mole fraction of x(1) = 0.3.

15.36. A mixture of methane and ethylene exists as a single gas phase in a spherical tank (10 m3)
on the grounds of a refinery. The mixture is at 298 K and 1 MPa. It is a spring day, and the
atmospheric temperature is also 298 K. The mole fraction of ethylene is 20 mol%. Your
supervisor wants to draw off gas quickly from the bottom of the tank until the pressure is 0.5
MPa. However, being astute, you suggest that depressurization will cause the temperature to fall,
and might cause condensation.

a. Provide a method to calculate the change in temperature with respect to moles
removed or tank pressure valid up until condensation starts. Assume the
depressurization is adiabatic and reversible. Provide relations to find answers,
and ensure that enough equations are provided to calculate numerical values for
all variables, but you do not need to calculate a final number.
b. Would the answer in part (a) provide an upper or lower limit to the expected
temperature?
c. Outline how you could find the P, T, n of the tank where condensation starts.
Provide relations to find answers, and ensure that enough equations are provided
to calculate numerical values for all variables, but you do not need to calculate a
final number.

15.37.
a. At 298 K, butane follows the equation of state: P(V – b) = RT at moderate
pressures, where b is a function of temperature. Calculate the fugacity for butane
at a temperature of 298 K and a pressure of 1 MPa. At this temperature, b = –732
cm3/mol.
b. Pentane follows the same equation of state with b = –1195 cm3/mol at 298 K.
In a mixture, b follows the mixing rule:  where b12 = –928
cm3/mol. Calculate the fugacity of butane in a 20 mol% concentration in pentane
at 298 K and 1 MPa, assuming the mixture is an ideal solution.

15.38. The Soave equation of state is:

where the mixing and combining rules are given by Eqns. 15.8 and 15.9. Develop
an expression for the fugacity coefficient and compare it to the expression given by
Soave (1972. Chem. Eng. Sci. 27:1197).

15.39. The following equation of state has been proposed for hard-sphere mixtures:



where 
Derive an expression for the fugacity coefficient.

15.40. The equation of state below has been suggested. Derive the expression for the fugacity
coefficient.

Z = 1 + 4cρ/(1 – bρ)

15.41. The following free energy model has been suggested as part of a new equation of state for
mixtures. Derive the expression for the fugacity coefficient of component 1.



Chapter 16. Advanced Phase Diagrams

Whenever new fields of technology are developed, they will involve atoms and
molecules. Those will have to be manipulated on a large scale, and that will mean that
chemical engineering will be involved—inevitably.

Isaac Asimov (1988)

This chapter discusses topics related to phase behavior at a higher level of conception. We have
seen that VLE, LLE, and SLE can occur for various isolated systems under specific conditions. We
can even anticipate conditions when one type of phase behavior may dominate. For example, a large
value of k12 is likely to lead to LLE. But the LLE must subside if the temperature is higher than the
liquid-liquid critical temperature. Furthermore, VLE must subside if the temperature is higher than the
vapor-liquid critical temperature. Is the vapor-liquid critical temperature always higher than the
liquid-liquid critical temperature? Do the particular molecular properties (size, energy density,
complexation) matter or do all molecules conform to a single “universal curve” of some sort? Noting
that phase behavior is a function of many variables, how can we conceive of the behavior in a way
that permits intuitive reasoning? Are there diagrams that might permit us to envision how to achieve
certain practical goals? Or perhaps to prove that some goals are unattainable?

These are the questions that motivate the study of advanced phase diagrams. Through this study, we
find that the molecular properties do matter, but six distinct diagrammatic types are sufficient to
classify the types of phase behavior that have been observed to date. As an example of how diagrams
can be applied, we illustrate the procedure for residue curve analysis, illustrating how processes like
azeotropic and extractive distillation can be conceived and planned.

16.1. Phase Behavior Sections of 3D Objects
Several types of phase behavior may occur in binary systems.1 In earlier chapters, we explored

phase behavior by examining P-x-y or T-x-y diagrams. In this section we demonstrate how these
phase diagrams are related to the three-dimensional P-T-x-y diagrams. The P-x-y and T-x-y diagrams
are two-dimensional cross sections of the three-dimensional phase envelope, and by studying the
phase envelope, the progressions of changing shapes of the two-dimensional cross sections can be
more easily grasped. The relations between the three-dimensional phase envelope and the cross
sections are shown in Figs. 16.1A–16.1C for three different systems that all fall under the
classification as Type I systems. Type I is the simplest class of phase behavior because there is no
LLE behavior. Note that nonazeotrope as well as minimum boiling and maximum boiling
homogeneous azeotropes are in this class. In each of the three-dimensional diagrams, short dashes are
used to denote the pure component vapor pressures which terminate at the critical points denoted by A
and B. Horizontal cross sections of the three-dimensional phase envelopes are shown with long
dashes and are T-x-y diagrams. Vertical cross sections of the three-dimensional phase envelopes are
shown with solid lines, and are P-x-y diagrams. (A summary of special notation used in this section
appears at the end of the section.) There is a one-to-one correspondence of the cross sections in the
three-dimensional plots to the phase envelopes plotted on the P-x-y and T-x-y cross sections. The
solid line running from the critical point of A to the critical point of B is the locus of critical points of
the mixture where the vapor and liquid become identical. Note the branches of the two-dimensional
cross sections do not span the composition range when the critical locus is intersected. Each lobe on



the cross sections will have a critical point. As discussed in Example 15.10 on page 601, the critical
points are frequently not at the maximum temperature or pressure of the phase envelope. Refer back to
phase diagrams from Chapters 10–15 to see how the phase diagrams in those chapters relate to the
diagrams shown here.

Figure 16.1A. Illustration of a system which does not form an azeotrope. The two-dimensional
envelopes correspond to cross sections shown on the three-dimensional diagram. The P-x-y

diagrams are vertical cross sections, and the T-x-y is a horizontal cross section.

Figure 16.1B. Illustration of a system which forms a minimum boiling azeotrope due to
positive deviations from Raoult’s law. The two-dimensional envelopes correspond to cross

sections shown on the three-dimensional diagram.

Figure 16.1C. Illustration of a system which forms a maximum boiling azeotrope due to
negative deviations from Raoult’s law. The two-dimensional envelopes correspond to cross

sections shown on the three-dimensional diagram.



 A summary of special notation appears at the end of this section.

 P-x-y and T-x-y diagrams are cross sections of 3D phase envelopes.

P-x-y and T-x-y diagrams for systems with LLE are shown in Figs. 16.2A and 16.2B. The liquid-
liquid behavior occurs in the region to the left of the critical endpoint U, in the U-shaped region
above the vapor-liquid envelope. Three-phase llv occurs on the surface marked with tie lines. The
intersection of this surface with P-x-y and T-x-y diagrams results in the llv tie lines on the cross-
section diagrams. At the upper critical endpoint, U, a vapor and liquid phase become identical,
denoted with the notation l–l=v. When the vapor pressures of the components are significantly
different from each other, the system may not have an azeotrope as shown in Fig. 16.2A(a–c). When
the vapor pressures are closer to each other, azeotropes and heteroazeotropes will form. Fig.
16.2B(d–f) shows a system with heteroazeotropic behavior below the temperature of the upper
critical endpoint, TU, and azeotropic behavior above TU.

Figure 16.2A. (a) Type II system where the vapor pressures are significantly different; (b) P-
x-y at a temperature below TU; (c) T-x-y at a pressure below PU.

Figure 16.2B. (d) Type II system where the vapor pressures are relatively similar; (e) P-x-y
at a temperature below TU; (f) T-x-y at a pressure below PU. It is also possible for an azeotrope

to lie to the right or left of the liquid-liquid region, rather than the heteroazeotropic behavior
that is shown.



Perspective
Before advancing further into the phase behavior classifications, some justification for such study

is offered. High pressure can be used to create dense fluids that are useful for processing. For
example, high pressure gases are employed industrially for petroleum fractionations in the oil
industry and for hops and spice extractions and coffee decaffeination in the food industry. Dense
gases are also under study for fractionation of specialty vegetable and fish oil components, as
reaction media for polymerizations and other chemical synthesis and separations. High pressure
processing and supercritical fluid extraction rely on control of solubility through manipulation of
temperature and pressure. Solubility behaviors follow clear patterns which depend on
similarities/differences in the thermodynamic and structural properties of the solute and the solvent.
This section serves as an overview of phase behavior and systematic trends in phase behavior.

Natural materials such as foods and oils are multicomponent mixtures. Polymers typically contain a
molecular weight distribution. Frequently, these types of mixtures are not well identified or
characterized. Solubilities and extractabilities for these mixtures are currently difficult to predict
quantitatively; however, significant knowledge regarding solubility trends may be obtained by
studying simpler binary and ternary systems. Solubility represents a saturation condition; therefore,
solubility is represented as a boundary on a phase diagram. Systematic study of binary and ternary
systems shows that the phase boundaries of ternary systems are intermediate to the constituent binary
systems, and many of the same trends continue in multicomponent systems,2 although fundamental
exploration of the trends is an ongoing research topic. Process simulators and computers continue to
simplify the calculation of phase equilibria; however, the interpretation of the resultant phase
behavior is aided by a general understanding of the classes of phase behavior presented in this
section.

16.2. Classification of Binary Phase Behavior
Since 1970 there have been several reviews and classifications of phase behavior2,3,4,5,6,7,8,9,10,11.

The types are usually summarized by the projection of their phase boundaries onto two-dimensional
pressure-temperature diagrams. Type I and II phase behavior have already been discussed, and they
are shown by the upper two plots in Fig. 16.3. Note that azeotropic behavior is a subset of the major
classes of behavior and it is not shown explicitly on the projections in Fig. 16.3.



Figure 16.3. Progression of binary phase behavior with increasing molecular asymmetry
according to van Konynenburg and Scott.10 Arrows denote progressions of phase behavior

expected by theory. Experimental progressions frequently differ.

 There are six major types of phase behavior.

For this discussion, the convention of van Konynenburg and Scott10 is followed for classification
of phase behavior. Following a trend that should be familiar by now, van Konynenburg and Scott
explored the implications of the van der Waals equation in pursuit of answers to questions like those
raised in the introduction. There are six major types of phase behavior shown in the plots which use



special notation denoted in the figures and at the end of this section. The types of phase behavior are
indicated with the Roman numerals in the upper left of each plot, and the distinctions between the
types are due to the location of critical points and critical loci. Types I–V are exhibited by the van
der Waals equation at various proportions of size and energy density. Type VI phase behavior
appears to be exclusive to aqueous systems.11

The Gibbs phase rule is helpful in interpreting the P-T projections. In a pure system, if two phases
coexist, one degree of freedom is available; therefore, two-phase coexistence appears as a line on a
P-T projection. At the triple point, solid, liquid, and gas coexist, and no degrees of freedom are
available; therefore, the condition is a point on the P-T projection. At critical points, all intensive
properties of two phases become identical, so the number of degrees of freedom is reduced, and this
also appears as a point for pure systems. To avoid misuse of the phase rule, only intensive variables
are used for the degrees of freedom. Also, the intensive variables must be varied over a finite range;
for example, two fluid phases are impossible above the critical temperature of a pure substance.
More detailed discussions of the correct use of the degrees of freedom are available.12

 The Gibbs phase rule is helpful in interpreting the P-T projections.

In a binary system, liquid-vapor phase behavior may occur with two degrees of freedom. Liquid-
vapor critical behavior occurs with one degree of freedom. Therefore, liquid-vapor behavior appears
within a region on the P-T projection, and critical behavior occurs along a line known as the critical
locus. In Fig. 16.3, pure component l-v lines are indicated by the dashed lines. Pure component
critical points are indicated by solid circles. Invariant critical points in the binary are indicated by
open circles and critical lines are indicated by solid lines. Critical lines are hashed to indicate the
side on which two phases coexist. Since the critical locus is a projection on the P-T diagram, the
diagram and phase rule indicate that two phases coexist on one side of the curve over a finite
composition range. The diagram does not imply that two phases will coexist at all compositions
below the critical locus. Also, in some areas, two critical curves are superimposed over the same
temperature-pressure range (e.g., Types IV and V); however, the overlaps are due to the projection
onto the two-dimensional diagram—the two overlapping regions of critical behavior occur over
different composition ranges. The critical locus represents conditions where two phases become
identical but this does not necessarily imply that only one phase exists above the critical locus
because: 1) the two phases which become identical at the critical locus may coexist at temperatures
and/or pressures slightly above the critical locus as nonidentical phases (see Example 15.10 on page
601; and 2) if three phases exist below the critical line, two phases will coexist above the critical
line. Also, the absence of a critical line on a region of a P-T trace does not imply that only one phase
is present; it simply means that no phases become identical within the range of the diagram.

Phase Behavior in the Presence of Solids
Figs. 16.1A–16.5 illustrate only fluid phase behavior. Solid-liquid-vapor coexistence can interfere

with the fluid phase behavior when the triple point temperature of the higher molecular weight
(heavier) component approaches the range of experiments. (The general trend is for the melting point
to increase with molecular weight.) The superposition of solidus lines on these diagrams will be
discussed later. For all the phase diagrams sketched here, the light component A, has the lower
critical temperature and appears at the left in Fig. 16.3 and in the rear of Fig. 16.4.



Figure 16.4. Type III and IV phase behavior illustrated on three-dimensional diagrams.
Symbols are the same as Fig. 16.3. The labeled temperatures are the same as Fig. 16.3 and are

used for plotting cross sections in other figures.



Figure 16.5. Illustration of selected isothermal P-x sections for Types IV, V, and III. Symbols
and labeled temperatures are the same as Figs. 16.3 and 16.4.

Molecular Asymmetry
The type of phase behavior depends on the molecular asymmetry of the mixture. Molecular

asymmetry is a term used to describe size differences (molecular weight) for functionally similar
molecules or polarity or functional differences for molecules of similar molecular weight. As the
molecular asymmetry of the system increases, the critical points of the species generally move farther
from each other on the P-T traces. With increasing disparity of the critical points, all phase behavior
spans increasingly larger areas of P-T space.

 The type of phase behavior depends on the molecular asymmetry of the mixture.

Type I and Type II phase behavior occurs in systems where the molecular asymmetry is relatively
small. When the molecular asymmetry is greater, the immiscibility regions become larger, as
illustrated by the three-dimensional diagrams for Types III and IV in Fig. 16.4. Note that the region
below U in Type IV can look the same as the region below U in Type II. Fig. 16.5 shows some
isothermal sections where the temperatures used for the plots are denoted in Figs. 16.3 and 16.4. Note
that the phase behavior in Figs. 16.5(a) and 16.5(b) differ only in the existence of a ll critical point of



the first diagram. The effect of temperature on the phase behavior of a Type III system is interesting
because the narrow neck region can pinch off as the temperature is increased, resulting in the cross
sections of Figs. 16.5(c) and 16.5(d).

Molecular asymmetry was characterized by van Konynenberg and Scott by the variables along the
axes of Fig. 16.6(a). We can refer to Fig. 16.6(a) as a master phase map because it shows where to
find certain types of behavior, but it does not provide a system-specific diagram. These must have
been extremely painstaking computations in 1970. Fortunately, modern programming makes it feasible
to compute phase diagrams with relative ease. A particular example is the GPEC project being
developed by Cismondi and coworkers.13 We can gain insight into the process required to develop a
phase map by running the (free) GPEC program for mixtures of n-alkanes with N2, CH4, C2H6, CO2,
CH3OH, and H2O using the Peng-Robinson equation. To generate a map, each point in Fig. 16.6(b)
represents a computation for a different mixture. X represents type II, ∆ represents type III, and □
represents type IV. Consider N2 + n-alkanes. The phase diagram for N2 + methane is type I, N2 +
ethane is type IV, but N2 + propane and all higher molecular weight n-alkanes are Type III, based on
the calculations. This is expected based on the progressions in Fig. 16.3 (Also, see Assimilation of
Experimental Data on Homologous Series on page 629.) Type III behavior may seem somewhat
surprising. It means that the vapor-liquid critical locus never quite merges from one pure component
to the other. For the N2 + propane system, the propane-rich critical temperature locus extends below
N2′s critical temperature, but the pressure is higher and it is impossible to squeeze enough N2 into the
propane such that the critical loci connect. Instead, the N2-propane phase-split widens with
increasing pressure into something resembling l + l (Fig. 16.5(c)). The driving force in this case is
the high compressibility near the critical region, and the difference in energy density between N2 and
propane. Type IV for N2 + ethane is peculiar; it exhibits a liquid-liquid phase split, even though
neither component is polar.

Figure 16.6. Global phase maps (a) for equal sized molecules for the van der Waals equation,
after van Konynenberg and Scott. The dashed line corresponds to k12 = 0. (b) Variable sized

molecules with the Peng-Robinson equation at k12 = 0.



The axes in Fig. 16.6 are defined such that differences in size, solvation, and energy density are
characterized.

where a and b are the van der Waals parameters. Recall from Eqn. 12.21 that a/b2 ~ δ2.
Several notes should be added to put Fig. 16.6(b) into context. Perhaps the most important

observation is that the boundaries between types of behavior are not perfectly distinct. Types IV and
III may overlap occasionally depending on the specific components in the mixture. Nevertheless,
some general trends are discernible. For example, the range of Type IV behavior appears to be much
larger when the molecules vary in size than one might infer from Fig. 16.6(a). Furthermore, it should
be noted that, for the Peng-Robinson equation, the ξ – ξ relation increases up and to the left along a
homologous series; so the number of components in a series that overlap the Type IV region may be
greater than initially anticipated. On a related note, when the molecular weight of the larger molecule
exceeds ~500 the mapped points lie in a tiny portion at the upper left corner of the figure. Thus, a vast
amount of polymer solution experience lies in a region where Types II, III, and IV are barely
distinguishable based on the current analysis, and small variations in k12 would drastically alter the
phase behavior (as one might expect in the presence of alcohols, for example). First, Types I and V
do not appear although many phase diagrams have been classified as Types I and V experimentally.
Similar to van Konynenburg and Scott, we attribute this to interference from solid phase boundaries
in the experimental systems (as may become more obvious when studying below), hypothesizing that
a ll region must exist at T→0 when the geometric mean is applied. Hence Type II systems may be
classified experimentally as Type I if the ll region lies below the solid phase boundary, and similarly
for Type IV and V systems.

Phase Stability and Critical Phase Behavior Computations
We have touched on the subject of phase stability previously, but we have not delved deeply into it

because it can be a complicated subject if treated in detail. Referring to the critical points of pure
fluids, we developed Eqns. 7.27 based on a simple analysis of the inflection behavior of isotherms. A
similar analysis led to the identification of spinodal conditions and formulation of the equal area rule
as a computational method for vapor pressure in the form of Eqn. 9.49 on page 358. Conceptually,
stability analysis is always similar to the perspective developed for pure fluids, but the derivatives
become more complicated when the dimensionality of the problem expands to include multiple
components.

A hint of the development for mixtures was given in the LLE (l + l) analysis leading to Eqn. 14.7.
Once again, we considered the inflection behavior with respect to a single variable (x1) to infer the
necessary conditions for LLE, and, coincidentally, the critical point. If you consider that pressure is
the first derivative of the Helmholtz energy, you may be struck by the similarity of Eqns. 7.27 and
14.7. At constant volume, both involve second and third derivatives of “free energy” with respect to
mole number.

The multicomponent analysis has been discussed in depth by many authors. The state of the art as of
this writing is well represented by the work of Michelsen and Mollerup.14 Briefly, the extension



requires a generalization of the tangent line evident in the LLE (l + l) development to become a
tangent plane. This leads to a need for many derivatives with respect to density, mole number, and
temperature along with tests for the stability of phases detected. This approach forms the basis of the
GPEC program by Cismondi and coworkers.

An alternative formulation has been presented by Eubank and coworkers as an extension of the
equal area rule (EAR) for pure fluids.15 As in the case of pure fluids, stability checking is an inherent
part of the EAR method because the integrand is easily checked for extrema before performing further
analysis. The formulation of EAR for binary mixtures is particularly simple since it involves only a
single variable, x1.

Note that the right-hand steps are only possible for binary mixtures. From Eqn. 10.42, G = x1 µ1 +
x2 µ2, so

Setting (1 – x1) = x2 and rearranging,

This equation facilitates computing (dG/dx1) using a typical program for chemical potentials. Since
µi

α = µi
β,

To recognize the EAR form, we can multiply by (x1
α – x1

β) and expand to obtain

Combining the µ2 – x1
αµ2 = x2

αµ2. A similar combination gives x2
βµ2. So,

Returning to Eqn. 16.9, substituting and rearranging, we have

Eqn. 16.12 is analogous to Eqn 9.49 and implementation follows the analogous procedure: Find the
spinodals, guess the value of (dG/dx1)α, solve for x2

α and x1
β, compute the next guess for (dG/dx1)α,

and repeat to convergence. One practical note for polymer systems would be to search for spinodals
based on volume fraction since dG/dΦ1 = 0 when dG/dx1 = 0, and using volume fraction spreads the
concentration range over more reasonable values for polymer systems. Advantages of the EAR
approach include (1) relatively few derivative properties are required; (2) a stability test is an
inherent part of the procedure; and (3) convergence is stable, even near the critical point.



Experimental Studies of Homologous Series
One way to understand the progression of phase behavior is to review literature measurements

which classify the phase behaviors. Classifications are based on experimental studies and may
require revision if additional phase transitions are found to occur.16,17 Types I or II occur when the
molecules are fairly similar in structure or critical properties. Van Konynenburg and Scott found the
van der Waals equation predicted the progression II ය V ය III for increasing molecular asymmetry in
systems with an endothermic low-temperature heat of mixing, and they found the progression I ය V
for increasing asymmetry in systems with an exothermic low-temperature heat of mixing. Most
nonpolar systems are expected to have endothermic heats of mixing (e.g., ethane-butane, benzene-
hexane) and might be expected to be Type II by theory; however, they are classified as based on
experimental measurements, and most are Type I. Type II phase behavior includes a liquid-liquid
immiscibility below the critical temperature of both components. The liquid-liquid behavior is often
relatively insensitive to pressure when the liquids are incompressible far below the critical
temperature. In the liquid-liquid region, as the temperature is increased, the liquids become
increasingly miscible in each other until they become identical at the UCEP. The UCEP occurs at
extremely low temperatures for small endothermic heats of mixing, and is frequently not found
experimentally due to lack of experimental exploration at low temperatures or due to freezing of the
liquids before they become immiscible. While a significant number of liquid-liquid experiments have
been performed to locate liquid-liquid UCEPs at atmospheric pressure,18 phase behavior
characterization near the critical point of the lighter component is necessary to permit classification
as Type II or IV. A summary of some homologous series is provided below to explore the
progressions of phase behavior. To study the series, the asymmetry of the systems is systematically
increased by varying the molecular weight of the heavier component by one functional group at a
time, and observing the trends in the location of critical points and the class of phase behavior.
Ethane/n-Alkane Series Trends

Studies of the ethane family are summarized by Peters, et al.,16 and Miller and Luks.6, Type I
behavior exists up through n-heptadecane because a UCEP has not been reported, possibly because
the components freeze before they become immiscible. Beginning with n-octadecane, a liquid-liquid-
vapor region develops near the ethane critical point characteristic of Type V. Once again, a UCEP is
not found experimentally. This phase behavior continues through n-tricosane. With n-tetracosane and
n-pentacosane a modification of Type V or III occurs where the sBl2v line interferes with the fluid
behavior as shown in Fig. 16.7(a). The three phase sBl2v line extends from the triple point of the
heavier component and intersects the llv line at a quadruple point Q where four phases coexist.
Beginning with n-hexacosane, the sBl2v line moves to temperatures above the K point and the Fig.
16.7(d) phase behavior begins.16 In Fig. 16.7, the line labeled sBl2v denotes the conditions where the
solid melts over some composition ranges.8 Schneider reports that squalane, a branched C30, exhibits
Type III,9 which does not fit the pattern of n-alkanes at the same carbon number.



Figure 16.7. Pressure-temperature projections of phase behavior when the triple point of B is
in the vicinity of the critical point of A. Symbols are the same as Fig. 16.3, except as noted.

CO2/n-Alkane Series Trends

Studies of the CO2 family are summarized by Schneider,7,9 Miller and Luks,6 and Enick et al.17

Pure CO2 freezes at a relatively high reduced temperature (Tr = 0.712) while ethane freezes at a
comparatively low reduced temperature (Tr = 0.295). Therefore, it may initially seem less likely to
observe liquid-liquid immiscibility in CO2 systems because the systems might freeze before the
liquid-liquid critical point, U, is reached; however, the opposite is found, and although the liquid-



liquid region is not seen for the lightest alkanes, n-heptane clearly shows Type II behavior.6 Type II
behavior continues through n-dodecane. Enick, et al.,17 show that n-tridecane is Type IV, and that
beginning with n-tetradecane, the type of Fig. 16.7(a) emerges. Schneider9 reports the type of Fig.
16.7(a) for n-hexadecane. The type of Fig. 16.7(a) is exhibited at n-heneicosane19 and the type of Fig.
16.7(d) appears with n-docosane.6,20 Schneider9 reports that squalane, a branched C30, is Type III,
and as with ethane, varies from the pattern with n-alkanes.

The homologous series of n-alkanes with CO2 exhibits liquid-liquid behavior at much higher
reduced temperatures compared to ethane.21 This may be understood by considering the heat of
mixing using the propane system as an example. The low temperature heat of mixing is estimated from
the van der Waals equation by

where the a’s and b’s are the van der Waals’ parameters. Using Eqn. 16.13 to approximate the low
temperature heat of mixing and the normal van der Waals’ geometric mean combining rule for the
cross parameter a12, both the ethane/propane and CO2/propane systems are endothermic; however,
the heat of mixing in the CO2/propane system is roughly 100 times the heat of mixing for
ethane/propane. Therefore, the excess Gibbs energy of mixing will also be considerably larger and
liquid-liquid behavior is expected to occur to higher temperatures. In general, the n-alkane series
with CO2 shows greater asymmetry than the same ethane series, as might be expected. Therefore, the
solubilities are lower at a given temperature and pressure, and the progression of behavior from Type
II to the type of Fig. 16.7(d) occurs at lower carbon numbers, even though the critical temperatures of
ethane and CO2 are approximately the same.

CO2 and N2O Series Trends

CO2/alcohols: Schneider9 reports 2-hexanol and 2-octanol as Type II and 2,5-hexanediol and 1-
dodecanol7 as Type III. As expected, the addition of hydroxyls on component B increases the
asymmetry of the system and the same carbon number by raising the critical point of B, and lowers the
carbon numbers for transitions between the phase behavior types.

CO2/aromatics and ethane/aromatics: Both CO2 and ethane have been studied with
n-alkylbenzenes through C21 and C20, respectively.6 The over-all trends in behavior are very similar
to the comparisons made in the n-alkane series. Polycyclic aromatics have also been studied, and are
typically the type of Fig. 16.7(d).8

N2O/n-alkanes: Nitrous oxide has been studied with the n-alkanes, and the phase behavior is very
similar to the ethane series3 in both the carbon number where phase behavior changes, and the critical
endpoint temperature values.

CO2/triglycerides/fatty acids: Many common triglycerides and fatty acids are solids at 30°C, and
thus exhibit the type of Fig. 16.7(a) or Fig. 16.7(d) behavior in binaries with CO2. Compounds which
are normally liquids will probably be Type III, IV, or V. Relatively few studies of model systems are
available and in all studies only solubilities are reported.22,23,24,25 Bamberger, et al.25 did determine



that lauric and myristic acid, trilaurin, and trimyristin melted at the average pressure of their
experiments, but the experiments were insufficient to characterize the phase behavior types as Fig.
16.7(a) or (d). Tripalmitin is reported to remain a solid although the triple point is only 5°C greater
than trimyristin. Also, most of the mixtures involving tripalmitin were reported to remain solid, which
would not be expected if the solids formed an eutectic mixture.8 The other publications have not
provided any characterization of the melting behavior of the solids. Unfortunately, disagreements of
up to an order of magnitude exist in a few of the solubility measurements. The disagreements have
been attributed in part to purity of materials.23,24 Nilsson, et al.24 report solubility data for mono- and
di-glycerides. One interesting conclusion from the analysis of Czubryt, et al.26 is that stearic acid
appears to be dimerized in the CO2 phase. Phase behavior of oil mixtures will be discussed in the
section regarding solubility behavior.
Propane/Triglycerides/Fatty Acids Series Trends

Hixson, et al. published most of the available information on these systems in the 1940’s,27,28,29

and recently, more complete information has been published on the propane/tripalmitin system.30

Propane refining of oils was practiced industrially as the Solexol process and descriptions are
available.31 Similar to the case of stearic acid in CO2 discussed above, the acids appear to dimerize
in the fluid phase. This hypothesis is supported by the correlation of phase behavior with the effective
molecular weight, which is double the molecular weight of an acid and equal to the molecular weight
of an ester or triglyceride. (See the trend for the LCEP in Fig. 16.8). Binary mixtures of propane with
lighter molecular weight acids and esters is Type I (a UCEP has not been located), while the
triglycerides and heavier acids and esters exhibit Type IV. For lauric acid (effective M.W. = 400.6)
and for myristic acid (effective M.W. = 456.7) a lower critical end point (LCEP) has not been
located at propane concentrations between 25 and 95 wt%.29 Tricaprylin (M.W. = 470.7) and higher
molecular weight compounds exhibit Type IV. The correlation in Fig. 16.8 is based on only saturated
and mono-unsaturated compounds. Conjugation of unsaturation may have a dramatic effect as
exhibited by abietic acid which does not show an LCEP above 30°C.28



Figure 16.8. Trend in the lower critical endpoint (LCEP) for components in binary mixtures
with propane (Type IV systems).

 Critical points vary systematically as molecular asymmetry is changed.

The Solexol process is based on refining of the oils using the llv region in Type IV or V systems
between the LCEP and the vapor-liquid critical endpoint, K. The phases of interest are the two liquid
phases, and Hixson and coworkers did not measure the vapor phase solubilities. As might be
expected, the compounds with the lowest effective molecular weight have the greatest solubility in the
propane-rich liquid, and for a given chain length solubility increases with decreasing effective
molecular weight: triglyceride - fatty acid - ester. Hixson’s studies concentrate on the measurement of
l-l solubilities on the three-phase llv line in binaries and extension of the measurements to model
ternary systems. Hixson’s publications address the incorporation of staged countercurrent flow, the
importance of density differences for counter-current flow, and internal column recycle using
temperature gradients which have been discussed recently in applications with CO2 extractions.32,33

These engineering concepts remain important in industrial applications of high pressure technology.
In the Solexol process, virtually all the feed oil leaves the top of the first tower dissolved in propane,
and the stream is then fractionated by molecular weight and saturation. The majority of color bodies
leave the bottom of the first column. The conjugated unsaturated components are in general less
soluble than the saturated or mono-unsaturated components. One of the distinct capabilities of the
Solexol process was the concentration of vitamin A but, as alternative methods for obtaining vitamin
A became available, the process was abandoned.
Assimilation of Experimental Data on Homologous Series



Schneider7 suggests that Types II, IV, and III follow a trend which can be understood if the phase
behaviors are considered as a result of effects that are superimposed on each other and can be best
visualized on Fig. 16.3. When a homologous series of systems is studied, with only the heavier
compound varying, the first system to exhibit Type III behavior has a strong maximum and minimum in
the critical line extending from the heavier component critical point. If this strong minimum exists for
less dissimilar systems, it is expected to intersect the llv line in two places, giving Type IV behavior.
These trends also appear consistent with the calculations of Chai34 using the Peng-Robinson equation.
Another trend is obvious which supports this theory. As the dissimilarity of components increases, the
UCEP temperature at U increases which tends to decrease the difference in the temperatures of U and
L of Type IV systems until they merge and Type III results (Fig. 16.9). It is also possible for the phase
behavior to progress directly from Type II to Type III.10

Figure 16.9. Illustration of trends in critical endpoint temperatures as the molecular
asymmetry of systems increases for carbon dioxide + n-alkyl benzenes (diamonds, triangle,

filled circles) and carbon dioxide + n-paraffins (x’s, o, filled squares) as compiled by Miller and
Luks.11 In both series, the systems are Type II below C13, Type IV for C13, then Type III

above C13.

 There is a systematic progression from Type II→IV→III.

Critical Phase Behavior Summary
Phase behavior is determined by the degree of molecular asymmetry. A range of phase behavior

exists, and a natural progression of phase behaviors occurs as the asymmetry of the system is
increased. This progression can be visualized with two-dimensional master phase maps that represent
sections through a three-dimensional space characterized by asymmetry in size, solvation, and energy
density. These asymmetries can explain five of the six types of phase diagram observed in nature. The
sixth type of diagram seems to be peculiar to aqueous systems and presumably may require explicit
accounting for hydrogen bonding. Trends in critical phase behavior suggest that organic acids
dimerize in nonpolar solvents.

P-T projections are specific to the type of phase behavior and summarize conditions where various
processes are feasible or infeasible.



List of Special Symbols for This Section

16.3. Residue Curves
Distillation is among the most highly developed and reliable separation techniques for the chemical

industry, so it is usually among the first separation techniques considered during process design.
Design of multicomponent distillation columns can be complicated by azeotropes and
heteroazeotropes. Shortcut distillation techniques are useful for distillation column screening, but
azeotrope systems require modified shortcut equations and relative volatilities.35 Design of
multicomponent steady-state distillation columns is usually performed by process simulators;
nevertheless, many design hours are saved if the phase behavior is explored using residue curves
before working with the detailed column calculations. In this section, residue curves for ternary
systems with a single feed and one distillate product and one bottoms product will be covered.36

Residue curve analysis for ternary systems, under these conditions, involves the following concepts
that will be described below.

 Using residue curves can save many design hours.

1. The steady-state column feed, distillate, and bottoms compositions are co-linear on
ternary diagrams in accordance with the lever rule.
2. Two combined streams may be represented by a mixing point co-linear with the feed
streams at a point between the streams given by the lever rule.
3. Binary and ternary azeotropes are connected on ternary diagrams by boundary lines
called separatrices. (A single boundary is called a separatrix.)
4. Separatrices divide the ternary residue curve map diagram into regions.
5. As a reliable rule, the distillate, feed, and bottoms compositions will all be in the same
residue curve map region.37

6. Residue curves begin and end in a single region—they do not cross separatrices.
Therefore, only certain composition regions in a ternary system describe possible products for a

given feed, and the residue curves provide the guide to attainable compositions.



 Residue curves can provide a guide to attainable compositions.

Residue curves represent the trace of liquid-phase (the residue) composition during a single-stage
constant-pressure batch distillation. Single-stage batch distillation calculations are not complex, and
will be introduced below using the VLE K-ratios that have been the topics of earlier chapters. As the
batch is distilled, the boiling point of the residue will increase until the composition reaches either a
maximum boiling azeotrope or the pure composition of the highest boiling component. The residue
curves will terminate at these compositions. The residue compositions will move away from any
minimum boiling azeotropes and/or the pure composition of the lowest boiling component. The
residue curves originate at these compositions. In the diagrams in this section, we use the letter o to
represent the low boiling point residue curves’ origin and the letter t to represent the high boiling
point residue curves’ terminus.

The Bow-Tie Approximation
Let us begin analysis by considering residue curves for a ternary system without azeotropes,

propane + butane + pentane. As this ternary mixture boils, bubble-point calculations show that
propane and butane are the most prevalent vapor species. As the vapor is removed, the residue
becomes increasingly rich in pentane. Residue curves calculated with the Peng-Robinson equation are
shown in Fig. 16.10(a). Starting from any initial composition, the curves on the diagram can be used
to follow the trace of the residue composition. The residue from any ternary composition in this
system will become increasingly rich in pentane. The residue curve map has a single region, and the
residue curves originate at pure propane (the lowest boiling composition in the region) and terminate
at pentane (the highest boiling point in the region). Residue curves are helpful in the design of steady-
state continuous flow distillation columns because the accessible compositions of distillate and
bottoms products from a steady-state distillation column can be found by studying the region of the
residue curve map that contains the feed. The distillate of a one-feed steady-state column will tend
to approach the origin of the residue curves, and bottoms of the column will tend to approach the
terminus of the residue curves within the restrictions summarized in points (1) through (6) above.



Figure 16.10. (a) Residue curves for the system propane + n-butane + n-pentane as calculated
with the Peng-Robinson equation at 1 bar; (b) methanol + acetone + water as modeled with the
UNIQUAC equation at 1 bar; (c) methanol + ethanol + benzene as modeled with the UNIQUAC

equation at 1 bar. Calculations performed using Aspen Plus ver. 9.2.

Recognize the importance of point 1, that the feed, distillate, and bottoms for a ternary system must
be colinear when plotted. Consider the implications for the propane + butane + pentane system shown
in Fig. 16.10(a). When a column is designed for a specified feed, F, the distillate or bottoms
composition may be specified also, but not both. For a feed, F, if the bottoms product of a distillation
column is B1, the distillate (top product), D1, must also be colinear on the plot, and F must fall
between B1 and D1 to satisfy the lever rule material balance, D1/F + B1/F = 1, and .
Another option for operating the column is to achieve pure propane distillate, D2. In this case, the
feed must lie on a line between D2 and B2. The first approximation of reachable compositions is
given by the bow-tie shaped region D1-D2-B2-B1.38 The distillate and bottoms compositions are not
required to be on the boundary of the region as we have chosen to show in the figures, but the



colinearity and lever rule must be followed. Note that it is not possible to simultaneously obtain pure
propane and pure pentane in a single-feed, two-product (distillate and bottoms) column from feed F.
Note that products near pure butane are unattainable, so design can focus on other alternatives. The
bow-tie shaped region is an approximation that will be adequate for the screening introduction
intended here.

 The bow-tie method provides a first approximation for attainable compositions.

Azeotropes
When one azeotrope exists in a ternary system, the residue curve map will still be a single region,

but the azeotrope will be an origin or a terminus for the residue curves. Maximum boiling azeotropes
may become the terminus of some residue curves, and minimum boiling azeotropes may become the
origin of some residue curves. For example, in the methanol + acetone + water system shown in Fig.
16.10(b), the methanol + acetone system forms a minimum boiling azeotrope that becomes an origin
for the residue curves because it is the lowest boiling point in the region. The distillate product for
any steady-state column with a feed in the region will tend toward this composition. The highest
boiling point in the region is the terminus of the residue curves at the composition of pure water, and
the steady-state column bottoms will tend toward this composition. The bow-tie approximation of
attainable compositions is shown for a feed F, and note that a distillate composition of pure methanol
or pure acetone is not attainable because the residue curves’ origin is the azeotrope. The lever rule
concepts apply as in nonazeotropic systems.

When two or more azeotropes exist, the residue curve map will often be divided into two or more
regions of residue curves. The residue curve maps show the distillation regions of attainable
compositions, and the location of the separatrices. For example, residue curves for methanol +
ethanol + benzene are shown in Fig. 16.10(c). In the left region, ethanol is the high boiling point
(residue curve terminus) and the methanol + benzene azeotrope is the low boiling point (residue
curve origin). In the right region, the methanol + benzene azeotrope is also the residue curve origin
(low boiling point) and benzene is the residue curve terminus (high boiling point). The ethanol +
benzene azeotrope is at an intermediate temperature between the origin and terminus of each region,
and therefore, is neither an origin nor a terminus, and is called a saddle point. Two different arbitrary
feed compositions are plotted on the diagram, and the corresponding bow-tie shaped regions of
approximate accessible compositions are shown. Since the design rule is that a single column cannot
cross a separatrix, the practical boundary for distillate compositions from the feed F1 is
approximated by the region F1-D1-D2. For a feed of composition F2, the practical region of attainable
distillate compositions is approximated by the region F1-D1-D3. Although an example with a
maximum boiling azeotrope is not shown, systems with these azeotropes can be screened using the
same lever rule techniques; however, the bottoms of the column will be affected by the azeotropes.

Heteroazeotropes — Systems with LLE
Ternary systems exhibiting LLE form minimum-boiling heteroazeotropes and can often be

separated in a system of two columns as shown in Fig. 16.11. The LLE behavior often spans a
separatrix on the residue curve map. This means that an overhead stream, DM, can be condensed in a
decanter, and one of the liquid phases will be on the same side of the separatrix as D1 and can be



returned into that column (left in the figure). The other decanter liquid phase will be on the other side
of the separatrix and can be used as a feed to another column (right in the figure). An example of this
procedure is given by the separation of ethanol + water using benzene. In this case, benzene is
intentionally added to break the azeotrope and permit water to be recovered from one column and
ethanol from the other column. The system involves an ethanol + benzene minimum boiling azeotrope,
an ethanol + water minimum boiling azeotrope, and a benzene + water minimum boiling
heteroazeotrope. The system has three separatrices. The ternary azeotrope, o, is the lowest boiling
point in the system and it is the origin of the residue curves for all three regions. The left column
operates in the right region of the residue curve map, and the right column operates in the upper left
region. Care is taken to avoid having F2 fall in the lower left region of the residue curve map; such a
feed would result in a bottoms of benzene rather than ethanol. Illustrative material balance lines are
provided on the diagram, and the LLE curve is superimposed on the residue curve map to clearly
show how the tie lines span the separatrices. For this example, the residue curve origin can be moved
farther into the LLE region by increasing the system pressure.

Figure 16.11. Illustration of the column configuration, residue curves, and LLE behavior for
the separation of ethanol and water using benzene. Residue curves calculated using Aspen Plus
ver. 9.2 with UNIQUAC at 760 mmHg, LLE data at 25°C from Chang, Y.-I., Moultron, R. W.
1953. Ind. Eng. Chem. 45:2350. LLE tie lines are not plotted to avoid clutter, but tie-line data

are represented by pairs of points along the binodal line.

Generating Residue Curves
Residue curves are generated by a bubble-temperature algorithm for a simple single-stage batch

distillation without reflux. If the total moles vaporized from a multicomponent mixture is dnL, the
moles of component i leaving are calculated by the composition of the vapor phase, dni = yidnL. For
component i in the liquid phase, dni = d(xinL) = nLdxi + xidnL. Equating the vapor and liquid
expressions for dni,

Rearranging,



which may be written

where Ki values can be calculated by any appropriate bubble-temperature method from Chapters
10–14 for the system at composition xi. To generate residue curves in an N-component mixture,
differential values of d(ln[nL]) may be chosen arbitrarily to generate differential values of dxi. Only N
– 1 values of dxi are required since

 MATLAB residue.m and residue.xlxm are available to perform calculations.

From an arbitrarily selected initial composition, the trace of xi values yields the residue curve.
Special care should be taken to include liquid-liquid behavior, if present in the system, requiring a
three-phase bubble-temperature calculation as illustrated in Chapter 14. Table 16.1 presents the first
few residue curve calculations for the n-pentane(1) + n-hexane(2) + n-heptane(3) system at 0.1013
MPa via Eqn. 16.16 using the shortcut K-ratio method to calculate the Ki values. The initial
composition for the residue curve is arbitrarily selected as x1 = 0.1, x2 = 0.6 and x3 = 0.3 denoted in
cells with double ruling in Table 16.1. The step size for Eqn. 16.16 is arbitrarily selected as
d(ln[nL]) = –0.15 to generate the dxi values listed in the table. Eqn. 16.16 is used directly as a finite
difference formula to provide a quick estimate as xi

new = xi
old + dxi

old to move down the table from
the initial point. The residue curve is generated towards the increasing n-pentane liquid compositions
by moving up the table from the initial point and using xi

new = xi
old – dxi

old. More accurate finite
difference methods can be employed for important applications. Residue curves are calculated in
other composition ranges by selecting other initial compositions. The location of the separatrices is
obvious after generating enough residue curves. Residue curve calculations are offered by some
process simulation software due to the importance of screening separations in the chemical industry.
More detailed discussions are available.39

Table 16.1. Example Calculation of Residue Curves for n-butane(1) + n-hexane(2) + n-
heptane(3) as Predicted by the Shortcut K-ratio Method



Residue Curve Summary
Residue curves provide useful tools for designing separation schemes. Although a single feed

column with one overhead and one bottoms product cannot cross a separatrix, a separation scheme
can be constructed using multiple columns to achieve most separations. The residue curve maps are
useful in screening additives for selection of the most promising systems. Residue curve calculations
for homogeneous liquids are straightforward, and an algorithm has been presented.

16.4. Practice Problems
P16.1. Consider the methanol(1) + water(2) + acetone(3) system with a feed shown in Figure
16.10(a). Rate each of the following products as impossible or possible, and explain.

(ANS. impossible; impossible; possible; impossible.)

16.5. Homework Problems
Phase Behavior

16.1. A binary mixture obeys a simple one-term equation for excess Gibbs energy, GE = Ax1x2,
where A is a function of temperature: A = 2930 + 5.02E5/T(K) J/mol.

a. Does this system exhibit partial immiscibility? If so, over what temperature
range?
b. Suppose component 1 has a normal boiling temperature of 310 K, and
component 2 has a normal boiling temperature of 345 K. The enthalpies of
vaporization are equal, both being 4475 cal/mol. Sketch a qualitatively correct T-
x-y diagram including all LLE, VLE behavior at 1 bar.

16.2. As the research scientist of a company where phase equilibria is under study, you are
approached by a laboratory technician with the most recent (and incomplete) high pressure
phase equilibria results. The technician expresses concern that the data have not been collected
correctly, or that some of the samples may have been mislabeled for some of the runs, or there is



a problem with the automated equipment, because the data appear different from what he has
seen before. The most recent results are summarized on the two P-x-y diagrams over the same P
range shown below at T1 and T2, where T1< T2. The circles and triangles give coexisting phase
compositions at each pressure. What is your response?

16.3. Using the value kij = 0.084 fitted to the system methanol(1) + benzene(2), use the Peng-
Robinson equation to plot P-x-y behavior of the system at the following temperatures: 350 K,
500 K, 520 K. Plot the T-x-y behavior at the following pressures: 0.15 MPa, 2 MPa, 5.5 MPa.
Sketch the P-T projection of the system.
16.4. Use UNIFAC to model the methanol(1) + methylcyclohexane(2) system. Provide a P-x-y
diagram at 60°C and 90°C, and a T-x-y at 0.1013 MPa.
16.5. Use UNIFAC to model the methanol(1) + hexane(2) system. Provide a P-x-y diagram at
50°C and 25°C, and a T-x-y at 0.1013 MPa.
16.6. Model the system CO2(1) + tetralin(2) using kij = 0.10. Generate a P-x-y diagram at 20°C,
45°C, and a T-x-y at 12 MPa and 22 MPa. What type of phase behavior does the system
exhibit?40

16.7. The system ethanol(1) + bromoethane(2) forms an azeotrope containing 93.2 mol%
bromoethane and having a minimum boiling point of 37.0°C at 760 mmHg. The following vapor
pressure data are available:

a. Use all of the available data to determine coefficients for equation log10 Psat =
A + B/T by performing a linear regression to find the coefficients A and B. Be
sure to use temperature in Kelvin.
b. Use the azeotropic point to determine the parameters for the van Laar equation.
c. Generate a P-x-y diagram at 100°C. Tabulate the data used to plot the diagram.
d. Generate a T-x-y diagram at 760 mmHg. Assume that the activity coefficients
are independent of temperature over the range of temperature involved. (This is



the type of calculation necessary for generating an x-y diagram for a distillation
at 760 mmHg.)
e. Experimentally, the system is found to have a homogeneous maximum pressure
azeotrope (Smyth, C.P., Engel, E.W. 1929. J. Am. Chem. Soc., 51:2660). How
does this compare with your findings?

16.8. Benzaldehyde is known in the flavor industry as bitter almond oil. It has a cherry or
almond essence. It may be possible to recover it using CO2 for a portion of the processing.
Explore the phase behavior of the CO2(1) + benzaldehyde(2) system, using the Peng-Robinson
equation to categorize the system among the types discussed in this chapter. Experimental data
are not available, so use an interaction coefficient kij = 0.1, which has been fitted to the CO2-
benzene system. Calculate P-x-y diagrams at 295 K and 323 K. Also determine T-x-y diagrams
at 34.5 bar and 206.9 bar. Note that 34.5 bar is below the critical pressure of both substances. If
a bubble calculation fails, try a dew, and vice versa.

Residue Curves
16.9. For the systems specified below, obtain residue curve maps and plot the range of possible
distillate and bottoms compositions for the given feeds. UNIQUAC parameters are provided.

a. methanol(1) + ethanol(2) + ethyl acetate(3), z1 = 0.25, z2 = 0.25, r = [1.4311,
2.1055, 3.4786], q = [1.432, 1.972, 3.116], a parameters (in K); a12 = –91.226,
a21 = 124.485, a13 = –74.2746, a31 = 389.285, a23 = –31.5531, a32 = 183.154.0
Note: Aspen 2006 gives poor VLE using LLE parameters for this system. Use the
provided parameters.
b. Solve part (a), but use z1 = 0.4, z2 = 0.4, z3 = 0.2.

c. methanol(1) + 2-propanol(2) + water(3), z1 = 0.2, z2 = 0.6, z3 = 0.2, r =
[1.4311, 2.7791, 0.92], q = [1.432, 2.508, 1.4], a parameters (in K); a12 =
39.717, a21 = –26.6935, a13 = –112.697, a31 = 176.077, a23 = 151.061, a32 =
55.1272.
d. Solve part (c), but use z1 = 0.6, z2 = 0.2, z3 = 0.2.

e. methanol(1) + ethanol(2) + benzene(3), z1 = 0.25, z2 = 0.25, z3 = 0.5, r =
[1.4311, 2.1055, 3.1878], q = [1.432, 1.972, 2.4], a parameters (in K); a12 = –
91.2264, a21 = 124.485, a13 = –27.2253, a31 = 559.486, a23 = –42.6567, a32 =
337.739.
f. Solve part (e), but use z1 = 0.4, z2 = 0.4, z3 = 0.2.

16.10. Consider an equimolar mixture of methanol(1) + water(2) + acetone(3). Demonstrate that
it is not possible to obtain pure acetone as distillate from a single-feed column by generating a
residue curve map and applying the bow-tie approximation.41 What compositions are attainable
from this feed? Data: r = [1.4311, 0.92, 2.5735], q = [1.432, 1.4, 2.3360], = a parameters (in
K); a12 = –112.697, a13 = –50.9396, a21 = 176.077, a23 = 29.1681, a31 = 218.872, a32 =
228.990.



Unit IV: Reaction Equilibria
Problems involving reactions are affected by equilibrium limitations as well as their kinetics.

Briefly, the Gibbs energy related to the “partitioning” of atoms between species must be minimized in
a fashion analogous to the way that it was minimized for phase partitioning. For example, the
formation of methanol from carbon monoxide and hydrogen is favorable based on the energy from the
bond formation, but limited by the reduction in entropy as the carbon monoxide and hydrogen are
squeezed into a single molecule. Thus, even though the heat of reaction may be favorable, a balance is
struck between the loss in entropy and the favorable energy as the methanol is formed. At 100 bars
and 510 K, this balance occurs at about 60% conversion of stoichiometric CO + H2 to CH3OH. This
unit introduces the principles for determining the effect of temperature and pressure on equilibrium
conversion. A few overly zealous practitioners of the past have erroneously assumed that conversion
of reactants is determined solely by the rate of reaction, and have attempted to increase conversion
beyond the equilibrium limit by increasing reactor size. For example, Le Châtelier (1888) wrote:

It is known that in the blast furnace the reduction of iron oxide is produced by carbon
monoxide, according to the reaction: Fe2O3 + 3CO = 2Fe + 3CO2, but the gas leaving
the chimney contains a considerable proportion of carbon monoxide, which thus carries
away an important quantity of unutilized heat. Because this incomplete reaction was
thought to be due to an insufficiently prolonged contact between carbon monoxide and
the iron ore, the dimensions of the furnaces have been increased. In England they have
been made as high as thirty meters. But the proportion of carbon monoxide escaping has
not diminished, thus demonstrating, by an experiment costing several hundred thousand
francs, that the reduction of iron oxide by carbon monoxide is a limited reaction.
Acquaintance with the laws of chemical equilibrium would have permitted the same
conclusion to be reached more rapidly and far more economically.

Let us hope that this is one bit of history that you will not repeat.



Chapter 17. Reaction Equilibria

We must first speak a little concerning contact or mutual touching, action, passion
and reaction.

Daniel Sennert (1660)

Another important aspect of the thermodynamics of multicomponent systems is the rearrangement of
atoms within and between molecules, known as chemical reaction. Equilibrium thermodynamic
considerations tell us the direction and extent to which a reaction will go. As with phase equilibria,
the constraint of minimum Gibbs energy dictates the equilibrium results at a fixed T and P.

We begin this chapter by noting that the material from Section 3.6 is important for this chapter and
you may wish to read that section again. There are several steps to understand before the equilibrium
conversion is calculated, and some steps may seem very theoretical. We begin in Section 17.1 by
relating the reaction coordinate to the minimum in Gibbs energy at equilibrium. Then in Section 17.3
we introduce the standard state Gibbs energy of reaction using the Gibbs energies of formation. Next,
we relate the Gibbs energies of the components in the reacting system to the chemical potentials and
finally develop the equilibrium constant in terms of the ideal gas law and begin to calculate
equilibrium conversions. However, the standard state Gibbs energy used to calculate the equilibrium
constant depends on temperature, and thus the equilibrium “constant” also changes with temperature
which is discussed in Section 17.7. We then proceed with more advanced topics such as energy
balances, use of the Gibbs minimization method, and multiple phases in reaction equilibrium.

Chapter Objectives: You Should Be Able to...
1. Solve for the equilibrium reaction coordinate values and the equilibrium mole fractions
for a given KaT and P for single and multiple reactions.

2. Understand the influences of pressure, nonstoichiometric feed, and inerts on reaction
equilbrium.
3. Calculate ∆Go

298.15 and ∆Ho
298.15 for a given reaction.

4. Calculate ∆Go
T and KaT using the van’t Hoff equation.

5. Set up the energy balance for a given feed and equilibrium conversion, testing for closure
or solving for heat transfer.
6. Incorporate solid species and liquid components into equilibrium calculations.
7. Understand the Gibbs minimization method for calculating reaction equilibrium.

17.1. Introduction
You have probably performed some reaction equilibrium computations before, usually in high

school or freshman chemistry. This chapter shows how the “activities” (partial pressures for ideal
gases) of products divided by reactants can be related to a quantity, Ka, that does not depend on
pressure or composition, and despite its dependence on temperature, it is called the equilibrium
constant. Developing the relationship between activities utilizes the concept of minimizing Gibbs
energy and rearranging the basic relation. By study of the derivation we learn how to generalize
reaction equilibrium analysis to multiple reactions and simultaneous reaction and phase equilibria.



We begin the chapter with an example to provide an overview of some of the methods developed
in the chapter. We have selected an introductory reaction where all species are approximated as ideal
gases. For ideal gases, we show in upcoming sections that the relation between equilibrium constraint
and partial pressure is written

where the symbol Π designates a product (analogous to the symbol ∑ representing the summation
sign), yiP is the partial pressure (always expressed in bar) of the ith component, and vi is the
stoichiometric coefficient discussed in Section 3.6. Since stoichiometric coefficients are negative for
reactants, the product symbol results in a ratio of products over reactants. The solution primarily
requires a mass balance relating the partial pressure to the reaction coordinate (also discussed in
Section 3.6). The major steps to solving an equilibrium problem are as follows.

1. Ascertain how many phases are present and the method to be used for the equilibrium
calculations. Our initial examples will use only a gas phase and determine equilibrium
compositions using an equilibrium constant method. Later we will show how to use liquid
and solid phases and how to use the Gibbs energy directly.
2. Use standard state properties to obtain the value of the equilibrium constant at the
reaction temperature, or for the Gibbs minimization method find the Gibbs energies of the
species. Usually this consists of two substeps:

a. Perform a calculation using the standard state Gibbs energies at a reference
temperature and pressure.
b. Correct the temperature (and pressure for Gibbs method) to the reaction conditions.

3. Perform a material balance on the reactant and product species and relate the
composition to the equilibrium constant or standard state properties from steps (1) and (2).
4. Solve for the equilibrium compositions.

The steps are made clearer by a series of examples. Steps (1) and (2) are lengthy, and the
applications are easier to see by first studying steps (3) and (4) as we show in the next example. This
example will help to provide motivation for understanding how to use the standard state Gibbs
energies in steps (1) and (2).

Example 17.1. Computing the reaction coordinate
CO and H2 are fed to a reactor in a ratio of 2:1 at 500 K and 20 bar, where the equilibrium

constant is Ka = 0.00581. (We will illustrate how to calculate Ka in Section 17.7.)

Compute the equilibrium conversion of CO.

Solution
In the expression for Ka we insert each yi P with the appropriate exponent and then insert the

numerical value of pressure:



To relate the composition to the mass balance, we select a basis and use the reaction coordinate.
Basis: 2 mole CO fed. Note the excess CO at the feed conditions. The reaction coordinate and
method of selecting a basis have already been introduced in Section 3.6. The stoichiometry table
becomes

Note that all n values must stay positive, constraining the range for a physically acceptable solution
to be 0 ≤ ζ ≤ 0.5. The mole fractions can be written in terms of ζ using the stoichiometry table.

Substituting the mole fractions into the equilibrium constant expression,

A trial-and-error solution is much more robust by using the difference of Eqn. 17.5 rather than the
ratio of Eqn. 17.4. We solve by trial and error and substitute to get ζ recalling 0 ≤ ζ ≤ 0.5. A summary
of guesses:

At reaction equilibrium for the given feed conditions, equilibrium is represented by ζ = 0.21. Now
Eqn. 17.3 may be used to find the y’s. The conversion of CO is 0.21/2·100% = 10.5%; conversion of
H2 is 2(0.21)/1·100% = 42%. Note the conversion is species-dependent with nonstoichiometric feed.
Conversion can be increased further by increasing the pressure further, or by changing T where Ka is
larger, provided a catalyst is available and kinetics are adequate at that T.

This example demonstrates the method to use Ka to calculate the reaction coordinate. Readers



should note that the value of Ka is fixed at a given temperature, but the equilibrium value of ζ may
vary for different feed conditions and often pressure for gas phase reactions as we will show in other
examples. To relate the equilibrium conditions to reaction engineering textbooks, we note that most
reaction engineering textbooks use conversion rather than reaction coordinate to track reaction
progress. By convention, conversion is tracked for the limiting species (the species used up first at
the value of ζ closest to zero in the direction of the reaction). A relation is shown in the footnote of
Section 3.6.

Several other concepts are important for a general understanding of calculating reaction equilibria.
First, we must understand: fundamental relations between the Gibbs energies, activities, and the
equilibrium constant (Sections 17.2–17.4); simplifications that are applied for ideal gases and the
effect of pressure and inerts (Section 17.5); and calculations of the temperature dependence of the
equilibrium constants (Sections 17.7–17.9). Later sections illustrate the adaptation of the fundamental
equations to broader applications like multiple reactions with simultaneous phase equilibria.

17.2. Reaction Equilibrium Constraint
Several sub-steps are involved in the procedure outlined in Section 17.1 steps (1) and (2) to find

the equilibrium constant. In this section, we derive the equilibrium constraint, and then show how the
thermodynamic properties are used to simplify to Eqn. 17.1. At reaction equilibria, the total Gibbs
energy is minimized. If the composition of a system is changing, the change in the Gibbs energy is
given by:

The fact that species are being created or consumed by a reaction does not alter this equation. At
constant temperature and pressure, the first two terms on the right-hand side drop out:1

Substituting the definition of reaction coordinate from Eqn. 3.39,

Because G is minimized at equilibrium at fixed T and P, the derivative with respect to reaction
coordinate is zero:

Now there is one unknown, ζ, in terms of which we can determine the changes in moles for all of
the components. We make a further manipulation before we apply the equilibrium constraint. In phase
equilibria, we found fugacity to be a convenient property to use because it simplified to the partial
pressure for a component in an ideal gas mixture. We can rewrite Eqn. 17.9 in terms of fugacities. We
recall our definition of fugacity dG = RT dln f. Integrating from the standard state to the mixture state
of interest (cf. generalizing Eqn. 10.48),



where Gi
o is the standard state Gibbs energy of species i and fi

o is the standard state fugacity. A
standard state is introduced for liquids in Section 11.3, and now we generalize the approach. The
standard state is at the reaction temperature, but a specified composition (often pure) and pressure P°.
Substitution of Eqn. 17.10 into Eqn. 17.9,

or

We will need to calculate both summations appearing in Eqn. 17.12, and then combine the results.
Qualitatively, this equation indicates how atoms should be arranged within molecules to minimize
Gibbs energy. The connection between Eqn. 17.12 and Eqn. 17.1 will become obvious as we move
through the next sections. Let us work on the two summations separately. We will show that the
second summation is related to the product of partial pressures for gas phase species which we define
as the equilibrium constant. The first summation will relate to the negative numerical value of the
equilibrium constant because the two terms of Eqn. 17.12 are equal and opposite.

17.3. The Equilibrium Constant
We now focus on the second summation of Eqn. 17.12. The ratio appearing in the logarithm is

known as the activity, (cf. Eqns. 11.23 for a liquid, but now in a general sense):

 activity

The numerator  represents a mixture property that changes with composition. We have developed
methods to calculate  in Eqns. 10.61 (ideal gases), 10.68 (ideal solutions), 11.14 (real solution
using γi), Eqn. 15.13 (real gases using ). The denominator represents the component at a specific
standard state, which includes specification of a fixed composition (which can be pure or a mixture
state).

The second sum of Eqn. 17.12 can be manipulated after inserting the activity notation,



In a reacting mixture  and/or ai will change as the reacting composition moves toward
equilibrium. However, at equilibrium, the product term of activities is extremely important. We
define the product term at equilibrium as the equilibrium constant Ka with the a subscript to denote
that activity is used:

 General equilibrium constraint.

Combining the definition of the equilibrium constant with Eqn. 17.12, the first summation can be
used to find the value of the constant:

Note that use of the term constant can be misleading because it depends on temperature. It is
constant with respect to feed composition and changing mole numbers of reacting species as we will
show below. We use a subscript a on the equilibrium constant to stress that it depends on activities.
As we show later, there are other approximations for the equilibrium constant, and subscripts are
used to differentiate between different conventions.

The Equilibrium Constant for Ideal Gases
The activity is a general property defined by Eqn. 17.13. We have seen it applied to liquids in

Section 11.5. For ideal gases, the numerator of the activity is . We complete the formula for
activity by selecting the standard state. For gaseous reacting species, the convention is to use a
standard state of the pure gas at P° = 1 bar. For an ideal gas, fi

o = Po (Eqn. 9.29). Thus, fi
o = 1 bar.

The fugacity ratio (activity) is dimensionless provided that we always express the partial pressure in
bar. The second sum of Eqn. 17.12 for ideal gases simplifies to

where the first two equalities are general, but the last is restricted to ideal gases. We will later
reevaluate the fugacity ratio for nonideal gases, liquids, and solids. Now let us examine the first sum
of Eqn. 17.12 which will give us the value of Ka.

17.4. The Standard State Gibbs Energy of Reaction

The first term on the right side of Eqns. 17.12 and 17.16, , is called the standard state
Gibbs energy of reaction at the temperature of the reaction, which we will denote . The standard



state Gibbs energy of reaction is analogous to the standard state heat of reaction introduced in Section
3.6. The standard state Gibbs energy for reaction can be calculated using Gibbs energies of
formation.

As an example, for CH4(g) + H2O(g) → CO(g) + 3H2(g)

It may be helpful to think of the sum as representing a path via Hess’s law where the reactants are
“unformed” to the elements and then “formed” into the products. The signs of the formation Gibbs
energies of the products are positive and the signs for the reactants are negative. Thus,

 Standard state Gibbs energy of reaction.

The Gibbs energies of formation are typically tabulated at 298.15 K and 1 bar, and special
calculations must be performed to calculate  at other temperatures—the calculations will be
covered in Section 17.7. Like the enthalpy of formation, the Gibbs energy of formation is taken as
zero for elements that naturally exist as molecules at 298.15 K and 1 bar, and the same cautions about
the state of aggregation apply. Gibbs energies of formation are tabulated for many compounds in
Appendix E at 298.15 K and 1 bar. Note that for water, the difference between  and 

 is the Gibbs energy of vaporization at 298 K. The difference is nonzero because liquid is
more stable. (Which phase will have a lower Gibbs energy of formation at 298.15 K and 1 bar?)

The standard state Gibbs energy of reaction is related to the equilibrium constant through Eqn.
17.16,

 Relation between Gibbs energy of reaction and the equilibrium constant.

Once the value of the equilibrium constant is known, equilibrium compositions can be determined,
as shown in Example 17.1. The next example illustrates calculation of the Gibbs energy of reaction
and the equilibrium constant.

Example 17.2. Calculation of standard state Gibbs energy of reaction
Butadiene is prepared by the gas phase catalytic dehydrogenation of 1-butene:



Calculate the standard state Gibbs energy of reaction and the equilibrium constant at 298.15 K.

Solution
We find values tabulated for the standard state enthalpies of formation and standard state Gibbs

energy of formation at 298.15 K.

The equilibrium constant is determined from Eqn. 17.16;

This reaction is not favorable at room temperature because the equilibrium constant is small.

Composition and Pressure Independence of Ka

The use of standard states for calculating  has important implications on the composition and
pressure independence of Ka. The standard state is at a fixed pressure, P°. Thus,  is independent
of pressure. The standard states are also at fixed composition (often pure), and thus  is
independent of equilibrium composition. Looking at Eqn. 17.20, we conclude that because  is
independent of equilibrium composition and pressure, Ka is independent of equilibrium composition
and pressure. One important point is that the state of aggregation in the standard state is important and
the values of  and Ka do depend on the state of aggregation in the standard state; this point will be
clarified in later sections.

 The equilibrium constant Ka is independent of composition and pressure.

We have now demonstrated steps 2(a), 3, and 4 for the procedure given in Section 17.1. The
concepts have been demonstrated, but we must correct the temperature before doing calculations at
temperatures other than 298.15 K. The butadiene reaction of Example 17.2 becomes more favorable
with a larger Ka at higher temperatures. We will discuss some important aspects of the effects of
pressure and inerts and also discuss reaction spontaneity before showing the calculation of
temperature corrections.

17.5. Effects of Pressure, Inerts, and Feed Ratios
At a given temperature, equilibrium values of the reaction coordinate are affected by pressure,

inerts, and feed ratios. The principle that changing the quantities affects equilibrium conversions is
known as Le Châtelier’s principle in honor of Henry Louis Le Châtelier who first characterized the



phenomenon. An understanding of Le Châtelier’s principle is important for operating industrial
reactions. Two important modifications led to significant hydrogen conversions in Example 17.1 even
though the equilibrium constant was small—use of pressure and nonstoichiometric feed.

Henry Louis Le Châtelier (1850–1936) was a French chemist. He was elected to the
French Académie des Sciences and the Royal Swedish Academy of Sciences in 1907.

Pressure Effects
Pressure has little effect on the activities of condensed species (e.g., the Poynting correction is

typically small) and thus it has a primary significance only for reactions with gas phase components.
Pressure has important effects when both 1) gas species are involved in reactions and 2) the
stoichiometric numbers of gas species are different for reactants and products. When the
stoichiometric moles of gas species are the same for reactants and products, P has no effect by the
ideal gas approximation, and for nonideal gases only indirect effects due to fugacity coefficients.

The equilibrium constants for ideal gases can be written

This form makes the pressure effect more obvious. As mentioned above, when the stoichiometric
number of gas moles is the same for products and reactants, Σvi = 0 and the pressure effect drops out.
When the stoichiometric numbers of vapor reactant moles is greater than the stoichiometric numbers
of product vapor moles, an increase in pressure will drive the reaction to higher conversions,. Σvi <
0. When the stoichiometric gas mole ratios are reversed, a decrease in pressure will help drive the
reaction to higher conversions, Σvi > 0. In Example 17.1 the pressure of 20 bar was important to yield
significant conversions. It can be helpful to consider that qualitatively the pressure “squeezes” the
reaction towards the side with fewer gas moles. As an exercise, determine the reaction coordinate for
the same feed when the pressure is 1 bar.

Inerts
A component that does not participate in a reaction is called inert. Inert gas components often have

an indirect, but important effect on the equilibrium reaction coordinate when gas phase species are
present. Inerts change the overall mole fractions and thus mitigate the pressure effects. When Σvi > 0,
adding an inert will increase conversion at a fixed total pressure. However, when Σvi < 0, the
mitigation of the pressure effect is undesirable and inerts should be avoided. Qualitatively, the
presence of an inert decreases the “squeezing” effect mentioned above.

Nonstoichiometric Feed
Conversions of specific reactants are influenced using nonstoichiometric feed. In Example 17.1,

excess CO was fed to the reactor; conversions were 42% (H2), and 10.5% (CO). Generally, an
excess of one reactant will tend to increase conversion of the other reactant. The effect can be seen
qualitatively using Eqn. 17.2. For a given Ka, at a certain value of yCH3OH, a higher value of yCO
results in a lower value of yH2

. When using stoichiometric feed (CO:H2 = 1:2) in Example 17.1, the



equilibrium conversions of H2 and CO are equal (40.6%). Example 17.1 includes both excess CO
and a pressure effect. The excess CO in Example 17.1 is high enough to mitigate the beneficial
pressure effect in a manner similar to an inert gas. The feed ratio giving highest H2 conversion for the
specified conditions uses less excess CO, (CO:H2 = 1:1), which results in conversions of 45.2% (H2)
and 22.6% (CO). Use of nonstoichiometric feed is common in industrial reactions because in some
cases it helps avoid side reactions in addition to effects on equilibrium.

Example 17.3. Butadiene production in the presence of inerts
Consider again the butadiene reaction of Example 17.2 on page 648. Butadiene is prepared by the

gas phase catalytic dehydrogenation of 1-butene, at 900 K and 1 bar.

a. In order to suppress side reactions, the butene is diluted with steam before it passes into
the reactor. Estimate the conversion of 1-butene for a feed consisting of 10 moles of steam
per mole of 1-butene.
b. Find the conversion if the inerts were absent and side reactions are ignored.
c. Find the total pressure that would be required to obtain the same conversion as in (a) if
no inerts were present.

In the earlier example, we determined the value at 298.15 K for . Now we need
a value at 900 K. The next section explains how the value at 900 K may be obtained.
For now, use the following data for  at 900 K and 1 bar:

Solution

a. Basis of 1 mole 1-butene feed. Set up reaction coordinate, using I to indicate inerts,.



The physical range of the solution is 0 ≤ ξ ≤ 1. P = 1 bar ය 1.242 ξ2 + 2.42 ξ –
2.662 = 0 ය ξ = 0.784. For the basis of 1 mol 1-butene feed, the conversion is 78.4%.

b. nI = 0 and the basis of feed is the same and 0 ≤ ξ ≤ 1. The total number of moles is nT = 1
+ ξ; 1.242ξ2 – 0.242 = 0; ξ = 0.44, so conversion decreases to 44% without inert.
c. Rearranging the equilibrium expression for pressure, P–1 = ξ2 / [0.242 · (1 – ξ) · (1 + ξ)],
0 ≤ ξ ≤ 1.

Inserting a reaction coordinate of ξ = 0.784 gives P = 0.152 bar. So the reaction
would need to run at a much lower pressure without the inerts to achieve the same
conversion. In other words, inerts serve to dilute the fugacities of the products and
suppress the reverse reaction since there are more moles of product than reactant.

17.6. Determining the Spontaneity of Reactions
In our preliminary examples, we have assumed rather idealized cases where none of the products

are present in the inlet. However, in some cases, products may be present and then the reaction
direction may not be as we anticipate. We can look at the reaction thermodynamics in a slightly
different way to determine the direction of the reaction under given compositions, T and P. Starting
from Eqn. 17.10, we may add by weighting with the stoichiometric numbers, resulting in

The term  on the left side is called the Gibbs energy of reaction and is given the symbol
∆GT. Note that this is a different term than the standard state Gibbs energy of reaction (the second
term) that uses the superscript °. Thus, we can write,

A reaction with  is called exergonic and results in Ka > 1, and a reaction with  is
called endergonic, resulting in Ka < 1. This provides an indication of whether the equilibrium favors
products or reactants, but does not mean that reactions with small values of Ka cannot be conducted
industrially. For example, Example 17.1 involved a small Ka (thus endergonic with ), yet the
conversion of H2 was 42%. The propensity for the reaction to go forward or backward depends
instead on the Gibbs energy of reaction ∆GT at the concentrations represented by the fugacity ratios. If
the conditions provide ∆GT < 0, then the Gibbs energy is lowered when the reaction proceeds in the
forward direction. If we evaluate conditions and ∆GT > 0, then the reaction goes in the reverse
direction than what we have written. In either case, the concentrations adjust until the system reaches
the equilibrium condition, ∆GT = 0, and then Eqn. 17.12 applies. In summary, the direction a reaction
proceeds is determined by ∆GT, not by . Note when evaluating the fugacity term for determining



spontaneity that the actual conditions are used, not the equilibrium conditions. At the feed conditions
of Example 17.1, yCH3OH = 0, which ensures ∆GT < 0 at the feed conditions even though .

 The propensity for a reaction to go forward or backward under actual conditions is
determined by ∆GT, not .

17.7. Temperature Dependence of Ka
Always remember that  depends on the standard state, which changes with temperature.

Comparing Examples 17.2 and 17.3,  at 298 K (Ka = 1E-14), but decreases to 
 at 900 K (Ka = 0.242). In order to calculate , it may seem that we need to know

∆Gf
o for each compound at all temperatures. Fortunately this is not necessary because the  can be

determined from the Gibbs energy for the reaction at a certain reference temperature (usually
298.15 K) together with the enthalpy for the reaction and the heat capacities of the species.

Suppose we have a table of standard energies of formation at 298.15 K but we would like the
value for  at some other temperature. We can account for temperature effects by applying
classical thermodynamics to the change in Gibbs energy with respect to temperature using the Gibbs-
Helmholtz relation,

Jacobus Henricus van’t Hoff (1852–1911) was awarded the Nobel Prize in chemistry in
1901.

which results in the van’t Hoff equation:

 van’t Hoff equation.

For accurate calculations, we must recognize that the heat of reaction depends on temperature. We
have developed the standard heat of reaction in Section 3.6 and discussed the temperature
dependence there. We show later that an assumption of a temperature-independent heat of reaction
results in a short-cut approximation that is often close to the full calculation. We first show the full
calculation. Substituting into the van’t Hoff equation (Eqn. 17.26) and integrating again,



where we previously described finding J in Eqn. 3.46 on page 113. If desired, all values at TR can
be lumped together in a constant, I.

The constant I may be evaluated from a knowledge of ∆Go
298 by plugging in T = 298.15 on the

right-hand side as illustrated below.

Example 17.4. Equilibrium constant as a function of temperature
The heat capacities of ethanol, ethylene, and water can be expressed as CP = a + bT + cT2 + dT3

where values for a, b, c, and d are given below along with standard energies of formation. Calculate
the equilibrium constant  for the vapor phase hydration of ethylene at 145°C and 320°C.

Solution

 The workbook Kcalc.xlsx or MATLAB Kcalc.m are helpful in doing these
calculations.

Taking 298.15 K as the reference temperature,

The variable J may be found with Eqn. 3.46 on page 113 at 298.15 K.
∆H298.15

o = –45,625 = J + ∆aT + (∆b/2)·T2 + (∆c/3)·T3 + (∆d/4)T4 = J + (9.014 – 3.806 – 32.24)
T + [(0.2141 – 0.1566 – 0.0019)/2] T2 + [(–8.39 + 8.348 – 1.055)(1E-5)/3] T3 + [(1.373 –17.55 +

3.596)(1E-9)/4] T4

= J – 27.032 T + 0.02779 T2 – (3.657E-6)T3 – (3.145E-9)T4

Plugging in T = 298.15 K, and solving for J, J = –39.914 kJ/mole. Using this result in Eqn. 17.28 at



298.15 K will yield the variable I.
∆GT

o/RT = –39,914/(8.314·T) + 27.032/8.314 ln T – [(5.558E-2)/(2·8.314)] T +[(1.097E-
5)/(6·8.314)]T2 + [(1.258E-8)/(12·8.314)]T3 + I

Plugging in ∆GR
o at 298.15K, ∆GT

o/RT = –7546/8.314/298.15 = 3.0442. Plugging in for T on the
right-hand side results in I = –4.494.

The resultant formula to calculate  at any temperature is

17.8. Shortcut Estimation of Temperature Effects
Recall Eqn. 17.25, which we refer to as the general van’t Hoff equation:

We can make rapid estimates of the equilibrium constant when we make the approximation that
∆HT

o is independent of temperature. That is, suppose ∆CP = ∆a = ∆b = ∆c = ∆d = 0, which means
the sensible heat effects for the reactants and products are the same. This is most closely
approximated when all species are about the same molecular size and the same state of aggregation.
With this approximation,  in Eqn. 17.27, or we can integrate Eqn. 17.25 directly to obtain
what we refer to as the shortcut van’t Hoff equation:

 Shortcut van’t Hoff equation.

This equation enables rapid screening for the effects of temperature and the detailed van’t Hoff can
be used as a follow-up calculation. As a particular observation, we take special note from the above
equation that exothermic reactions (∆HT < 0) lead to Ka decreasing as temperature increases, and
endothermic reactions (∆HT > 0) lead to Ka increasing as temperature increases. This means that
equilibrium conversion (for a specified feed) decreases with increasing temperature for exothermic
reactions, and increases for endothermic reactions. This effect is illustrated in Fig. 17.1. The
emphasis is placed on equilibrium because reaction rates increase with temperature. Industrial
application of exothermic reactions are almost always run at elevated temperatures even though the
equilibrium constant decreases at high temperature. For all reactions, the reaction rate will approach
zero as equilibrium is approached. The benefit of faster kinetics typically outweighs the smaller
equilibrium constant for exothermic reactions when economics are considered. There connection
between equilibrium constants and kinetic rates that approach zero is explained in Section 17.15.



Figure 17.1. Qualitative behavior of equilibrium conversion for exothermic and endothermic
reactions.

The approximate results of the shortcut van’t Hoff equation should be followed with the detailed
van’t Hoff for critical applications. To improve shortcut estimates, the detailed van’t Hoff can be
used at Tnear within 100 K of the temperatures of interest to calculate ∆GTnear

o and ∆HTnear
o. Then

the values at Tnear can be used as the reference values in Eqn. 17.29.

Example 17.5. Application of the shortcut van’t Hoff equation
Apply the shortcut approximation to the vapor phase hydration of ethylene. This reaction has been

studied in the previous example, and the Gibbs energy of reaction and heat of reaction can be
obtained from that example.

Solution

The results are very similar to the answer obtained by the general van’t Hoff equation in Example
17.4.

17.9. Visualizing Multiple Equilibrium Constants
Plots of equilibrium constants provide a rapid method to visualize the gross trends and orders of

magnitude. Fig. 17.2 illustrates how several reactions can be illustrated in a single graph. The
equilibrium constants are calculated with the full temperature dependence. Note that the plots are
nearly linear as would be approximated by the short-cut van’t Hoff. Exothermic reactions have a
negative slope and endothermic reactions have a positive slope. When dealing frequently with a set of
reactions, such a graph can serve as a “road map” where the optimal temperature window of
operation maximizes desired products while minimizing by-products and potential coupling of
reactions.



Figure 17.2. Graphical analysis of competing reactions.

The reactions of Fig. 17.2 are typically involved in many high-profile applications including:
combustion, chemical-vapor infiltration, reforming, coking during reforming, space station gas
management, electrolysis, and the hydrogen economy. Several of these reactions have common names
which are listed below.

To illustrate interpretation of the graph, consider an application of the above reactions to material
management in space station gas management, where an objective is to remove CO2 and provide O2.
There are many ways that the reactions could be combined. On a space station sunlight is relatively
abundant. Therefore, high temperatures and solar cells are available, but food must be imported. Note
that the Sabatier reaction would convert waste CO2 to fuel but requires H2. Fig. 17.2 shows that the
equilibrium constant is favorable below 900 K. The Bosch reaction also favors products at
temperatures below 900 K. The Bosch reaction produces graphitic carbon, which can be collected in



dense form and conveniently disposed. The hydrogen required for the Bosch reaction could be
generated by water decomposition, which could be achieved with electrolysis or pyrolysis, with the
benefit of co-producing oxygen for respiration. A small extrapolation of Fig. 17.2 shows that water
pyrolysis is favorable above 2300 K.2 Coupling the Sabatier reaction with methane pyrolysis has
been suggested. Methane pyrolysis is favorable above 700 K. This would produce hydrogen for other
use. Hydrogen production could also be achieved by the syngas reaction, if graphitic carbon was
available. H2 could be enhanced and CO removed by the water-gas shift. Catalysts can selectively
alter the kinetics to minimize undesired products, although they cannot alter the equilibrium
constraints. Nevertheless, all combinations are constrained by material balances, which dictate the
overall reactions.

This kind of reaction network analysis is typical of many applications. For example, some simple
economic considerations show why producing hydrogen by steam reforming of methane (natural gas)
is the preferred method compared to electrolysis. The energetic cost of water electrolysis raises
serious doubts about electrolysis feasibility on Earth. With abundant electrical energy, it might be
more appropriate to operate electric vehicles. It is not practical to articulate all the ways that this
kind of network analysis can be applied to modern problems, but these illustrations should suggest the
manner of proceeding for many such analyses. Noting that energies of reaction are an implicit part of
the analysis, a tremendous wealth of information is implied by a single graph like Fig. 17.2. Later, in
Section 17.11, we demonstrate how combining an unfavorable reaction with a strongly favorable
reaction can help to drive the unfavorable reaction.

17.10. Solving Equilibria for Multiple Reactions
When the equilibrium state in a reacting system depends on two or more simultaneous chemical

reactions, the equilibrium composition can be found by a direct extension of the methods developed
for single reactions. Each reaction will have its own reaction coordinate in which the compositions
can be expressed. Some of the products of one reaction may act as reactants in another reaction, but
the amount of that substance can still be written in terms of the extents of the reactions. Eventually, the
material balances lead us to a system of N nonlinear equations in terms of N unknowns. We illustrate
a solution by hand and then demonstrate how numerical solvers can be used.

Example 17.6. Simultaneous reactions that can be solved by hand
We can occasionally come across multiple reactions which can be solved without a computer.

These are generally limited to textbook problems, but provide a starting point and test case for
applying the general approach. Consider the two series/parallel gas phase reactions:

The reactions are considered series reactions because C is a product of the first reaction, but a
reactant in the second. They are parallel because A is a reactant in both reactions. The pressure in the
reactor is 10 bar, and the feed consists of 2 moles of A and 1 mole of B. Calculate the composition of
the reaction mixture if equilibrium is reached with respect to both reactions.

Solution
The material balance gives:



Note that for a physical solution, 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ ξ1 to ensure that all mole numbers are
positive. This reaction network is independent of P because Σvi = 0. The equilibrium constants are

Solving the first equation for ξ1 using the quadratic equation,

Similarly, for the second reaction,

 MATLAB Ex17_06.m.

We may now solve by trial and error. The procedure is: 1) guess ξ1; 2) solve Eqn. 17.40 for ξ2; 3)
solve Eqn. 17.39 for ; 4) if , go to step 1. The iterations are summarized below.

Further iteration results in no further significant change.

These equations were amenable to the quadratic formula, but in general equilibrium criteria can be
more complicated. Fortunately, standard programs available that are formulated to solve numerically
multiple nonlinear systems of equations, so we can concentrate on applying the program to
thermodynamics instead of developing the numerical analysis. Many software packages like
Mathematica, Mathcad, MATLAB, and even Excel offer the capability to solve nonlinear systems of
equations. Excel provides an especially convenient basis for illustrating the methods presented here.

Example 17.7. Solving multireaction equilibria with Excel
Methanol has a lower vapor pressure than gasoline. That can make it difficult to start a car fueled

by pure methanol. One potential solution is to convert some of the methanol to methyl ether in situ



during the start-up phase of the process (i.e., automobile). At a given temperature, 1 mole of MeOH is
fed to a reactor at atmospheric pressure. It is assumed that only the two reactions given below take
place. Compute the extents of the two simultaneous reactions over a range of temperatures from
200°C to 300°C. Also include the equilibrium mole fractions of the various species.

Solution
A worksheet used for this solution is available in the workbook Rxns.xlsx.
Data for reaction (1) have been tabulated by Reactions Ltd.a—at 473.15 K, ∆HT = 96,865 J/mol

and lnKa1,473 = 3.8205. Over the temperature range of interest we can apply the shortcut van’t Hoff
equation assuming constant heat of reaction using the data at 200°C as a reference.

Data for reaction (2) can be obtained from Appendix E for MeOH and water. For DME, the values
are from Reid et al. (1987).b

The shortcut van’t Hoff equation for this reaction gives:

Material balances:

Writing equations for reaction coordinates for reaction 1:



and for reaction 2:

These two equations are solved simultaneously for ξ1 and ξ2. We have rearranged the objective
functions to eliminate the ratios of ξ functions and use differences instead because the Excel Solver is
much more robust with this mathematical form. The solution is implemented in the worksheet
DUALRXN in Rxns.xlsx or Matlab Ex17_07.m. In the example here (see Fig. 17.3), the ∆CP for both
reactions is neglected. The equations derived above are entered directly into the cells, and the Solver
tool is called.c You will need to designate one of the reaction equations as the target cell, the value of
which is set to zero. The other reaction equation should be designated as a constraint (also set to
zero). The cells with the reaction coordinates are the variables to be changed to obtain a solution.
Under “options,” you may want to specify the “conjugate” method, since that generally seems to
converge more robustly for the reacting systems typically encountered. Generally, the Solver tool will
require a reasonably accurate initial guess to keep it from converging on absurd results (e.g., yi < 0).
The initial guess can be easily developed by varying the values in the reaction-extent cells until the
target cells move in the right direction. It sounds difficult, but the given worksheet will get you
started, then you can experiment with initial guesses and experience how good your initial guesses
need to be.

 Rxns.xlsx, Worksheet DUALRXN of MATLAB Ex17_07.m.

a. These data are slightly different from values calculated using tabulated properties from Appendix E, but such variations
are common in thermochemical data. The equilibrium compositions are about the same if the example is reworked using
data from Appendix E.
b. Reid, R., Prausnitz, J.M., Poling, B. 1987. The Properties of Gases and Liquids, 4th ed. New York: McGraw-Hill.
c. See the online supplement for an introduction to Solver.



Figure 17.3. Worksheet DUALRXN from workbook Rxns.xlsx for Example 17.7 showing
converged answers at several temperatures.

17.11. Driving Reactions by Chemical Coupling
Frequently, one may encounter a reaction that is not favored by Ka, and manipulation of

temperature or pressure or feed composition provides only limited benefit for the desired conversion.
In these cases, it may be possible to couple the reaction to another, more favorable, reaction to drive
the overall production forward. Biological systems use coupling extensively. The building of sugars
and biological tissue from CO2 and water is thermodynamically unfavorable. Carbon is fully oxidized
and it must be reduced to create carbohydrates, and the reactions are endergonic at room temperature.
These reactions are achieved by coupling an unfavorable carbon reduction with a strongly exergonic
reaction.

To illustrate the principles of chemical coupling with a simple set of reactions, let us consider the
production of butadiene from butene dehydrogenation at 900 K. We have investigated this reaction in
Example 17.3 where we showed that the reaction is endergonic: Ka = 0.242 is small. The example
showed that conversion is improved by diluting with steam. Consider instead if CO2 is fed to the
reactor and a catalyst is provided for the water-gas shift reaction (c.f. Eqn. 17.32). The CO2 could
then react with H2 product of the dehydrogenation, inducing higher conversion for the
dehydrogenation. The hydrogen product is removed by Le Châtelier’s principle and the
dehydrogenation reaction is pulled forward.

Example 17.8. Chemical coupling to induce conversion
Example 17.3(a) considered use of steam as a diluent where the conversion was found to be 78%



using 10 moles of steam as diluent and only 44% without the diluent. Consider the conversion by
inducing higher conversion by replacing the 10 mole steam with 10 mole CO2 which adds the water-

gas shift reaction. For the water-gas shift written as , Ka2 = 0.441 at
900 K. What is the conversion of 1-butene at 900 K and 1 bar?

Solution
The butadiene reaction has been written in Example 17.3(a) and ξ1 will be used for that 1-butene

reaction and ξ2 will be used for the water-gas shift reaction. The stoichiometry table is,

Physical limits for the reaction coordinates are 0 ≤ ξ1 ≤ 1 and 0 ≤ ξ2 ≤ ξ1. Solving Eqns. 17.41 and
17.42 simultaneously, we find ξ1 = 0.949 and ξ2 = 0.792. Reviewing previous examples, the
conversion at 1 bar was only 44% without an inert, increased to 78% with an inert, and increased to
95% using CO2 to induce conversion by reaction coupling. Note that even though the water-gas shift
equilibrium constant is not very large, it makes a significant difference in the conversion of 1-butene.
Whether this is implemented depends on the feasibility of economically separating the products.

Chemical coupling can be classified in three ways: (1) induction, where a second reaction “pulls”
a desired reaction by removing a product as in Example 17.8; (2) pumping, where the second reaction
creates additional reactant for the desired reaction to “pump”; or (3) complex, where both induction
and pumping are operative.3 An example of chemical pumping starts with the reaction of methyl
chloride and water to form methanol and hydrochloric acid.

By adding the methyl chloride synthesis reaction,



This overall reaction becomes (adding the reactions, and take the product of the Kas):

The large equilibrium constant of 17.44 forms CH3Cl(g) readily, to pump reaction 17.43 via Le
Châtelier’s principle. Through chemical coupling, the prospects of developing a feasible reaction
network are virtually endless.

17.12. Energy Balances for Reactions
We have previously introduced the energy balance in Section 3.6 and also discussed adiabatic

reactors. In this section we consider that there may be a there is a maximum possible value of ξ
(outlet conversion) due to chemical equilibrium. Equilibrium may affect both adiabatic and
nonadiabatic reactors, but we cover adiabatic reactors, and the extension to nonadiabatic should be
obvious with the inclusion of the heat term.

Adiabatic Reactors
The energy balance for a steady-state adiabatic flow reactor is given in Eqn. 3.53 on page 118. The

variables Tout and  from the energy balance also appear in the equilibrium constraint that will govern
maximum conversion. Earlier, in Chapter 3, we considered the reaction coordinate to be specified.
However, in a reaction-limited adiabatic reactor, we must solve the energy balance together with the
equilibrium constraint to simultaneously determine the maximum conversion and adiabatic outlet
temperature. Using the energy balance from Eqn. 3.53, do the following.

1. Write the energy balance, Eqn 3.53. Calculate the enthalpy of the inlet components at Tin.
2. Guess the outlet temperature, Tout. Calculate the enthalpy of the outlet components at
Tout.

3. Determine  at Tout using the chemical equilibrium constant constraint.

4. Calculate  for this conversion.
5. Check the energy balance for closure.
6. If the energy balance does not close, go to step 2.

As you might expect, this type of calculation lends itself to numerical solution, such as the Solver
in Excel.

Example 17.9. Adiabatic reaction in an ammonia reactor
Estimate the outlet temperature and equilibrium mole fraction of ammonia synthesized from a

stoichiometric ratio of N2 and H2 fed at 400 K and reacted at 100 bar. How would these change if the
pressure was 200 bar?

Solution



For a rough estimate we will use the shortcut approximation of temperature effects. Furthermore,
we will assume K  ≈ 1. (Is this a good approximation or not?a) Therefore we obtain,

Basis: Stoichiometric ratio in feed.

For the purposes of the example, the shortcut van’t Hoff equation will be used to iterate on the
adiabatic reactor temperature. However, the full van’t Hoff method will be used to obtain  and 

 at an estimated nearby temperature Tnear = 600K as suggested in Section 17.8. Then the
shortcut van’t Hoff equation will be used over a limited temperature range for less error. The energy
balance will also use ; we will create an energy balance path through Tnear = 600K rather than
298.15K. We will compare the approximate answer with the full van’t Hoff method at the end of the
example.

For ammonia, , . Since the reactants are in the pure state,
the respective reactant formation values are zero, and therefore the formation values for ammonia
represent the standard state values for the reaction. Inserting the formation values along with the heat
capacities into the detailed van’t Hoff equation—one of the Ka calculators highlighted in the margin
note to Example 17.4 on page 653 is used—at an assumed temperature of 600 K, the values obtained
are  and Ka,600 = 0.0417659. Then the shortcut van’t Hoff in the vicinity will be

From an assumed value of T, this equation will provide the equilibrium constant. Some
manipulation is necessary to obtain the material balance from Ka,T. Plugging the mole fraction
expressions into Eqn. 17.17, and collecting the fractions 1/2 and 3/2,

defining 
Applying the quadratic formula,

The strategy will be to guess T, and calculate Ka,T, M, and .  will be used in Eqn. 17.46 to
perform the material balance. The material balance will be combined with the energy balance using
the Heat of Reaction method (cf. Example 3.6), until the energy balance closes as represented by:

Heat capacity integrals and the energy balance have been entered in the workbook Rxns.xlsx. At the
initial guess of 600 K, the F(T) of Eqn. 17.49 is 19.4 kJ. A converged result is found at 699 K shown



in Fig. 17.4 and the  = 0.33, conversion of feed is 33%. At 200 bar, the answer is 739 K, and
conversion is 38%.

Figure 17.4. Display from Rxns.xlsx showing a converged answer.

 Workbook Rxns.xlsx, worksheet RxnAdia-shortcut or MATLAB Ex17_09.m.

The detailed van’t Hoff is available in the same workbook and results in 698 K and 33%
conversion at 100 bar, and 737 K and 37% conversion at 200 bar.

a. We can evaluate this assumption by calculating the reduced temperatures at the end of our calculation and estimating the
virial coefficients, then fugacity coefficients.

Graphical Visualization of the Energy Balance
The energy balance is presented in Fig. 3.6 on page 119. The difference here is that the appropriate

curve from Fig. 3.6 is superimposed on the plot and the outlet conversion and outlet temperature are
determined by the intersection of the energy balance line and the equilibrium line. Fig. 17.5 illustrates
an exothermic reaction. In the event that the reaction does not reach equilibrium because of kinetic
limitations, the reaction coordinate must be located along the energy balance line below the
equilibrium value. For the case of the ammonia reaction, the equilibrium constraint curve could be
generated by inserting various temperatures in Eqn. 17.47 and then determining the reaction
coordinate from Eqn. 17.48. The energy balance is plotted using Eqn. 3.55. The dot in the figure
represents the point where the energy balance and equilibrium constraint are both satisfied. Note that
an endothermic reaction will have an energy balance with a negative slope, and the equilibrium line
will change shape as shown in Fig. 3.6, making the plot for an endothermic reaction a mirror image of
Fig. 17.5 reflected across a vertical line at Tin.



Figure 17.5. Approximate energy balance for an exothermic reaction. The dot simultaneously
represents the equilibrium outlet conversion and reaction coordinate value at the adiabatic

outlet temperature. The plot for an endothermic reaction will be a mirror image of this figure as
explained in the text.

17.13. Liquid Components in Reactions
When a liquid component is involved in a reaction, the fugacity ratio for activity in Eqn. 17.15 is

typically expressed using activity coefficients. Thus,

where P is expressed in bar, and the Poynting correction is often negligible, as shown. Another
important change in working with liquid components is that in determining Ka liquid phase values are

used for , not the ideal gas values. Frequently these values are not available in the literature, so it
is common to express equilibrium in terms of temperature-dependent correlations for Ka as described
in Section 17.18.

Equilibrium constants calculated using liquid phase species are different from the equilibrium
constants for the same reactants and products in the gas phase. Consider that  for the vapor
phase. If a vapor phase reaction is simultaneously in phase equilibrium with a liquid phase with the
same components, by modified Raoult’s law we could replace . However, for the liquid
equilibrium constant we should use only the activity (Eqn. 17.50) without the vapor pressure. Thus,
we conclude that the equilibrium constants for the liquid phase reaction must be different from the
equilibrium constant for the same vapor phase reaction, and also that the standard state Gibbs energy
change for the same reaction must be different.

Example 17.10. Oligomerization of lactic acid
Lactic acid is a bio-derived chemical intermediate produced in dilute solution by fermentation.

Lactic acid is an α-hydroxy carboxylic acid. As an aqueous solution of lactic acid is concentrated by
boiling off water, the carboxylic acid on one molecule reacts with a hydroxyl on another forming a
dimer and releasing water. Denoting the “monomer” as L1 and a dimer as L2,

The dimer has a hydroxyl and carboxylic acid that can react further to form trimer L3,



As more water is removed, the chain length grows, forming oligomers. The oligomerization can be
represented by a recurring reaction for chain formation. Each liquid phase reaction that adds a lactic
acid molecule can be modeled with a universal temperature-independent value of Ka = 0.2023 and
the solutions may be considered ideal.a Commercial lactic acid solutions are sold based on the wt%
of equivalent lactic acid monomer. So 100 g of 50 wt% solution would be composed of 50 g of lactic
acid monomer and 50 g of water that react to form an equilibrium distribution of oligomers. The
importance of including modeling of higher oligomers increases as the concentration of lactic acid
increases.

a. Determine the mole fractions and wt% of species in a 50 wt% lactic acid solution in
water where the distribution is approximated by only reaction 17.51.
b. Repeat the calculations for an 80 wt% lactic acid solution in water where both reactions
are necessary to approximate the distribution.

 MATLAB Ex17_10.m may be helpful in calculations for this example.

Solution
a. Basis: 100 g total, 50 g of L1 = (50 g)/(90.08 g/mol) = 0.555 mol initially, 50 g = (50
g)/(18.02 g/mol) = 2.775 mol water initially, and 3.330 mol total. The equilibrium relation
is Ka = 0.2023 = xL2

xH2O/(xL1
)2. Since the total number of moles does not change with

reaction, it cancels out of the ratio, and we can write 0.2023 = nL2
nH2O/(nL1

)2. Introducing
reaction coordinate,

Solving, we find, ξ = 0.0193, xL1
 = (0.555 – 2(0.0193))/3.33 = 0.155, xL2

 =
0.0193/3.33 = 0.006, xH2O = (2.775 + 0.0193)/3.33 = 0.839. Note that although the
mole fraction of L2 seems small, converting to wt%, the water content is (2.775 +
0.0193)(18.02 g/mol)/(100 g)·100% = 50.4 wt%, L1 is (0.555 – 2(0.0193))(90.08
g/mol)/(100 g)·100% = 46.5 wt%, and L2 is 0.0193(162.14 g/mol)/(100 g) · 100% =
3.1 wt%.

b. Basis: 100 g total, 80 g of L1 = (80 g)/(90.08 g/mol) = 0.888 mol initially, 20 g = (20
g)/(18.02 g/mol) = 1.110 mol water initially, and 1.998 mol total. Moles are conserved in
both reactions. The equilibrium relations are Ka1 = 0.2023 = xL2

xH2O/(xL1
)2, Ka2 = 0.2023 =

xL3
xH2O/(xL2

xL1
). Introducing the mole numbers and reaction coordinates,

Solving simultaneously, ξ1 = 0.0907, ξ2 = 0.009, xL1
 = (0.888 – 2(0.0907) –

0.009)/1.998 = 0.349, xL2
 = (0.0907 – 0.009)/1.998 = 0.041, xL3

 = 0.009/1.998 =



0.0045, xH2O = (1.110 + 0.0907 + 0.009)/1.998 = 0.6055. The weight fractions are:
(1.110 + 0.0907 + 0.009)(18.02 g/mol)/(100 g)·100% = 21.8 wt% water, (0.888 –
2(0.0907) – 0.009)(90.08 g/mol)/(100 g)·100% = 62.8 wt% L1, and (0.0907 – 0.009)
(162.14 g/mol)/(100 g)·100% = 13.2 wt% L2, 0.009(234.2 g/mol)/(100 g)·100% = 2.1
wt% L3.

a. Vu, D. T., Kolah, A.K., Asthana, N.S., Peereboom, L., Lira, C.T., Miller, D.J. 2005. “Oligomer distribution in
concentrated lactic acid solutions.” Fluid Phase Equil. 236:125–135.

If a vapor state coexists with a liquid phase during a reaction, the phase equilibria and reaction
equilibria are coupled. Reactions need to be considered in only one of the two phases, and the
equilibrium compositions will be consistent with compositions that would have been determined by
the same reaction equilibria in the other phase. Similarly, some reaction equilibria constants may be
known for only one or the other of the phases, and the equilibria can be solved by using reaction
equilibria for whichever phase is most convenient. Simultaneous reaction and phase equilibria can be
extremely useful for driving reactions in preferred directions as we illustrate in Example 17.15.

17.14. Solid Components in Reactions
When a solid component is involved in a reaction, the fugacity ratio for activity in Eqn. 17.15 is

typically expressed using activity coefficients. For a solid solution,

where P is expressed in bar, Psat represents the solid sublimation pressure, and the Poynting
correction is often negligible. Commonly, multiple solids exist as physical mixtures of pure crystals
as discussed in Section 14.10 on page 556. When the solids are immiscible, Eqn. 17.56 simplifies to

Similar to working with liquids, solid phase data are used for , not the ideal gas values. When
these values are not available in the literature, it is common to express equilibrium in terms of
temperature-dependent correlations for Ka as described in Section 17.18.

Consider the reaction:

The carbon formed in this reaction comes out as coke, a solid which is virtually pure carbon and
separate from the gas phase. What is the activity of this carbon? Since it is pure, aC = 1. Would its
presence in excess ever tend to push the reaction in the reverse direction? Since the activity of solid
carbon is always 1 it cannot influence the extent of this reaction. How can we express these
observations quantitatively? Eqn. 17.15 becomes



To compute ∆Go
T as a function of temperature, we apply the usual van’t Hoff procedure. This

means that CP,c can be treated just like CP of the gaseous species.

Example 17.11. Thermal decomposition of methane
A 2-liter constant-volume pressure vessel is evacuated and then filled with 0.10 moles of methane,

after which the temperature of the vessel and its contents is raised to 1273 K. At this temperature the
equilibrium pressure is measured to be 7.02 bar. Assuming that methane dissociates according to the
reaction , compute Ka for this reaction at 1273 K from the experimental data.

Solution

We can calculate the mole fractions of H2 and CH4 as follows. Since the temperature is high, the
total number of moles finally in the vessel can be determined from the ideal gas law (assuming that
the solid carbon has negligible volume): n = PV/RT = 0.702·2000/(8.314)(1273) = 0.1327. Now
assume that ξ moles of CH4 reacted. Then we have the following total mass balance: nT = 0.10 + ξ.
Therefore, ξ = 0.0327 and

Note that the equilibrium constant indicates that significant decomposition will occur (the reaction
is exergonic, Ka > 1) and that graphite forms. Such behavior is known as “coking” and is common
during industrial catalysis. Industrial application of catalysis often includes consideration of
“regeneration’” of the catalyst by burning off the coke and using the heat of combustion elsewhere in
the chemical plant.

17.15. Rate Perspectives in Reaction Equilibria
We have avoided discussing rate effects until now with the rationale that most coverage for

reaction kinetics will occur in a course focused on reactor design. Nevertheless, there is overlap
between the topics of reaction equilibria and reaction rates that can serve as a bridge between the
two subjects. In all equilibrium phenomena, it is important to recognize that the balance achieved is
dynamic, not static. For example, the molecules at the interface between a vapor and liquid are not
stationary; they are perpetually exchanging between the vapor and liquid. Application of
thermodynamics helps us understand the conditions where the balance occurs. Similarly, under
conditions of chemical reaction equilibrium, the species are continuously interconverting with equal



rates for the forward and reverse reactions.
From a thermodynamic perspective, the true driving force for chemical reaction is the activity.

When the activities are balanced as given by Eqn. 17.15 the reaction reaches equilibrium and the
forward are reverse rates are equal. The activities are directly proportional to the concentrations for
liquids and vapors. Thus, it is common to use concentrations instead of activities for simple kinetic
models. Consider the vapor-phase reaction,

For example, if two components, A and B, react to form C and D, then the rate of accomplishing the
reaction must depend on the probability of the two components colliding with each other. This
probability decreases as the concentration of one of the components diminishes. By convention the
rates are typically written for the stoichiometrically limiting component. Also, they are typically
written for the rate of formation per volume of reacting mixture.4 If A is the limiting reactant, the rate
of the formation of A due to reaction of A with B would then be,

where the minus sign acknowledges that A is disappearing rather than forming, and the subscript f
indicates reaction in the forward direction and kf is known as the forward rate constant. When the
exponents on the rate equation match the stoichiometric coefficients, the reaction is called an
elementary reaction. When a reaction is equilibrium-limited, it is considered kinetically reversible.
Recognizing that A is formed by reaction of C and D, the reverse reaction rate for formation of A is

The net rate of formation of A must be zero at reaction equilibrium,

Recognizing that concentration of a gas phase component is related to partial pressure, [A] =
yAP/RT, and similarly for other components. Rearranging Eqn. 17.63 and inserting the partial
pressure results in

where in this case, Σvi = –1, but the general expression is written to help readers remember the
general relation for gas phase reactions. Note the manner in which the forward and reverse reaction
rate constants are related to the equilibrium constant. This means that if the forward rate constant is
measured in an experiment when the product concentrations are low, then the reverse rate constant
can be determined from the equilibrium constant. Note that similar relations can be written for liquid-
phase elementary reactions.

Certainly many reactions have rate expression more complicated than the elementary reactions
discussed here. For example, enzyme catalyzed reactions often involve a binding step that is not
represented by the simple statistical concept of the elementary reaction. Many reactions involve
intermediate species that must be included in the mechanism and kinetic rate law. Understanding more



complex rate laws is an important skill covered in reaction engineering courses. Our intention here
was to show the relation for elementary reactions and to communicate the concept of forward and
reverse rates approaching each other at reaction equilibrium. Note that this means that if the reaction
approaches equilibrium in the forward direction, the overall rate of disappearance of A will slow and
become zero. At slow rates, the reactor volume must be large to achieve meaningful change in
reaction coordinate, so it is rarely economical to run commercial reactors all the way to equilibrium.
However, the calculation of the equilibrium condition is important for any reactor design in order to
know the limiting conversion, and usually avoid the conditions! Often, the equilibrium constant is
used to calculate the reverse rate constant from the forward rate constant as discussed above.

17.16. Entropy Generation via Reactions
When introducing entropy and reversibility in Section 4.11 on page 175, we made a general

statement that spontaneous reactions generate entropy. Then, in Section 4.12 on page 177 we derived
relations between availability and entropy generation. In that section, we treated a single nonreactive
stream. For a reaction in a steady-state open system, Eqn. 4.54 becomes

Bout = Hout – ToSout and Bin = Hin – ToSin involve H and S evaluated at the respective Tout and Tin.
Enthalpies of mixed streams were first introduced in Chapter 3 and entropies for mixed streams in
Chapter 4.5 Models for departures functions and excess properties in Chapters 11–15 can be added to
improve the mixture property values. The concepts for proper choice of a reference state for
properties is important as discussed in Chapter 3 in the section Energy Balances for Reactions on
page 113. The flow terms in Eqn. 17.65 are not the same as the Gibbs energy, but the availability will
decrease with a spontaneous reaction. Therefore, both sides of the equation will be negative, and
shaft work will not be obtained (a normal situation in an industrial reactor), and then entropy is
generated. Note that entropy generation can be decreased for a spontaneous reaction only if work is
produced. For an electrochemical redox reaction (Chapter 18), the process can produce some
electrical work, which is one reason that fuel cells are of much current interest. For a closed-system
process, the analysis is similar to the open-system process. The relation is seen most readily if To = T
(and additional work can be obtained using a heat engine between T and To), and at constant pressure,
the closed system balance (Eqn. 4.57) becomes

We conclude that production of nonexpansion/contraction work equal to changes in the Gibbs
energy is necessary to eliminate entropy generation. Note that it is possible to relate the total work
from a reaction to Helmholtz energy using Eqn. 4.58.

17.17. Gibbs Minimization
A remarkably simple technique can be applied to solve for the equilibrium compositions of

species. It is most effective when only a gas phase is present. This technique recognizes the simplicity
of the fundamental problem of minimizing the Gibbs energy at equilibrium. By expressing the total
Gibbs energy of the mixture in terms of its ideal solution components, we can simply request that the
value of the Gibbs energy be minimized. The Gibbs energy of the mixture is calculated by Eqn. 10.42



and the needed chemical potential (partial molar Gibbs energy) is given by Eqn. 10.59:

where the last equality assumes all components are ideal gases. If we take the reference state as the
elements in their natural form at the standard state, then, at the standard state pressure, 

. However, frequently the reactions are not at standard state pressure. The
pressure effect on Gibbs energy is given by Eqn. 9.17. When the pressure effect is added,

Combining Eqns. 17.67 and 17.68 results in

To find equilibrium compositions, we just need to minimize Eqn. 17.69 by varying the mole
numbers ni of each component while simultaneously satisfying the atom balance. Note that the mole
fractions in the equation will also change as the mole numbers are varied. We do not need to
explicitly write out the reactions. This method assumes that equilibrium is reached by whatever
system of reactions is necessary. Most process simulators provide Gibbs minimization as a process
unit.

Example 17.12. Butadiene by Gibbs minimization
Review Example 17.3(a) where steam is used to enhance conversion for 1-butene

dehydrogenation. Gibbs energies of formation at 900 K for the hydrocarbons are summarized in that
example.

The Gibbs energy of formation for water at 900 K is –198.204 kJ/mol. Vary conversion by
selecting values of the reaction coordinate, calculating the Gibbs energy by Eqn. 17.69, and plotting
the total Gibbs energy as a function of reaction coordinate. Demonstrate that Gibbs energy is
minimized. Compare the equilibrium composition with that found in Example 17.3(a).

Solution
The initial moles of feed are 1 mol of 1-butene and 10 moles of steam. As an example calculation,

select ξ = 0.1. Then the material balance provides, nC4H8
 = 0.9, nC4H6

 = nH2
 = 0.1, nH2O = 10. The mole

fractions are yC4H8
 = 0.9/(0.9 + 2(0.1) + 10) = 0.08108, yC4H6

 = yH2
 = 0.0090, yH2O = 0.9009, and

inserting the quantities into Eqn. 17.69, gives (inserting components in the order given above)



Repeating the calculation at various extents of reaction results in the following plot:

Careful analysis would show that the minimum is at ξ = 0.784 as in the earlier example. Note the
changes in values are a small percentage of the absolute values of the total Gibbs energy, a numerical
observation that is important in setting up convergence in Excel.

The previous example is somewhat contrived because the reaction was specified and the reaction
coordinate was varied. The method is applicable without specifying reactions as long as the atom
material balances are satisfied when selecting mole numbers.

Example 17.13. Direct minimization of the Gibbs energy with Excel
Apply the Gibbs minimization method to the problem of steam cracking of ethane at 1000 K and 1

bar where the ratio of steam to ethane in the feed is 4:1. Determine the distribution of C1 and C2
products, neglecting the possible formation of aldehydes, carboxylic acids, and higher hydrocarbons.

Solution
The solution is obtained using the worksheet GIBBSMIN contained in the workbook Rxns.xlsx (see

Fig. 17.6).



Figure 17.6. Worksheet GIBBSMIN from the workbook Rxns.xlsx for Example 17.13.

 Workbook, Rxns.xlsx, Worksheet GIBBSMIN, or MATLAB Gibbsmin.m.

One fundamental problem and one practical problem remain to be faced; there are several
constraints that must be respected during the minimization process. These are the atom balances. We
must keep in mind that we are not destroying matter, only rearranging it. So the number of carbon
atoms, say, must be the same at the beginning and end of the process. Atom balance constraints must
be written for every atom present. The atom balances are given straightforwardly by the stoichiometry
of the species. For this example the balances are as follows.

O-balance: nO
feed – 2nCO2

 –nCO –2nO2
 – nH2O = 0

H-balance: nH
feed – 4nCH4

– 4nC2H4
 – 2nC2H2

 – 6nC2H6
 – 2nH2

 – 2nH2O = 0

C-balance: nC
feed – nCH4

 – 2nC2H4
 – 2nC2H2

 – nCO2
 – nCO – 2nC2H6

 = 0

The practical problem that remains is that the numerical solver often attempts to substitute negative
values for the prospective species. This problem is easily treated by solving for the log(ni) during the
iterations and determining the values of ni after the solution is obtained. Large negative values for the
log(ni)s cause no difficulty. They simply mean that the concentrations of those species are small.

In order to apply Gibbs minimization, the Gibbs energy of formation is required for each
component at the reaction temperature. This preliminary calculation is the same type of calculation as
performed in Example 17.4 on page 653, but is not shown here. For example, the Gibbs energy of
methane is simply the Gibbs energy of the formation reaction C(s) +  at 1000 K. The
values are embedded in the calculation of Gi shown in the worksheet in Fig. 17.6.

The primary product of this particular process is hydrogen. Fracturing hydrocarbons is a common
problem in the petrochemical industry. This kind of process provides the raw materials for many



downstream processes. The extension of this method to other reactions is straightforward. Some
examples of interest would include several systems with environmental applications: carbon
monoxide and NOx from a catalytic converter, or by-products from catalytic destruction of
chlorinated hydrocarbons. Evaluating the equilibrium possibilities by this method is so easy that it
should be a required preliminary calculation for any gas phase process reaction study.

Example 17.14. Pressure effects for Gibbs energy minimization
Apply the Gibbs energy minimization method to the methanol synthesis reaction using stoichio-

metric feed at 50 bar and 500 K. The reaction has been discussed in Example 17.1 on page 643, and
in Section 17.5 on page 649.

Solution
It is convenient to first find ∆Go

f,1 bar and then find Gi/RT for each species, and then apply these
values in the Gibbs minimization.

For a basis of 1 mole CO: nC,feed = 1 = nCO + nMeOH; nH,feed = 4 = 2nH2
 + 4nMeOH; nO,feed = nCO +

nMeOH; the C-balance is redundant with the O-balance so only one of these should be included as a
constraint to improve convergence. Minimizing the Gibbs energy gives yMeOH = 0.42 in agreement
with the other method in Section 17.5 on page 649.

Note: The objective function changes weakly with mole numbers near the minimum, so tighten the
convergence criteria or re-run the Solver after the first convergence. Convergence is sensitive to the
initial guess. An initial guess which works is log(ni) = –0.1 for all i.

17.18. Reaction Modeling with Limited Data
Frequently chemical engineers must model chemical reactions without information on the Gibbs

energy of formation. Although it can be estimated, often a better method is to conduct experiments to
find equilibrium conditions and calculate Ka directly from compositions. Experiments can be
performed over a temperature range, resulting in an empirical representation of Eqn. 17.28. In fact,
methods like this are used to experimentally determine Gibbs energies of formation. The data can be
fitted to determine constants I and J. If the data are scattered, it is better to use the simplified van’t
Hoff Eqn. 17.29 in the form lnKa = a + b/T, where a and b are fitted to the experimental data, and b is
an indirect measurement of –∆HR

o/R. Thus, equilibrium data for new compounds or for liquid or
solid reactions (discussed next) are often presented in the literature in the form of an equation for Ka
instead of providing Gibbs energies of formation.

17.19. Simultaneous Reaction and VLE



It is not difficult to imagine situations in which reactions take place in the presence of multiple
phases. Absorption of CO2 into NaOH solution involves a reaction of the CO2 as it dissolves to form
sodium bicarbonate and sodium carbonate. Hydrogen bonding in “pure” fluids implies reaction and
phase equilibrium at saturation conditions. The production of methyl t-butyl ether (MTBE) as an
oxygenated fuel additive is an interesting process in which catalyst is placed on the trays of a
distillation column. As catalysts are developed which are active at progressively lower temperatures,
multiphase reactions should become even more common. In low-temperature methanol synthesis
(~240°C), it can be advantageous to add a liquid phase to absorb the heat of reaction, as described in
the example below. Biological pathways are also in development for many products, which
frequently involve multiple phases.

The thermodynamic analysis of this seemingly complex kind of process is actually very similar to
the analysis of multireaction equilibria. The extent of formation of a second phase is analogous to a
reaction coordinate. The easiest way to illustrate the formulation of the problem is to consider an
example. Suppose the methanol synthesis reaction was carried out at 75 bars and 240°C such that the
gas phase mole fractions were 0.25 CO, 0.25 MeOH, and 0.50 H2. Based on a stoichiometric feed
composition, the conversion would then be 50%. Now suppose this gas phase was placed in contact
with a liquid phase with a nonvolatile solvent. The K-ratios at these conditions are about 10 for CO
and H2, and about 1.0 for MeOH. What would be the composition in the liquid phase and the extent of
conversion if only liquid was removed? The composition of the liquid would be 0.025 CO and 0.25
MeOH. Therefore, the extent of conversion would be 0.25/0.275 = 91%. Thus, the addition of a
liquid phase greatly enhances conversion of this process. The example below elaborates on these
findings in a much more formal manner.

Example 17.15. The solvent methanol process
In a process being considered for methanol synthesis, a heavy liquid phase is added directly to the

reactor to absorb the heat of reaction. The liquid is then circulated through an external heat exchanger.
Usually, the catalyst is slurried in the liquid phase. An alternative to be considered is putting the
catalyst in a fixed bed and adding just enough liquid so that a fairly small amount of vapor is left at
the end of the reaction. Supposing naphthalene was used as the heavy liquid phase, use the Peng-
Robinson equation to obtain approximate vapor-liquid K-value expressions of the form

for each component at a temperature of 200–250°C and pressures from 50–100 bar.a In the
worksheet computations, you may assume the K-value of naphthalene to be negligible.

Solution
A worksheet used for this solution is available in the workbook Rxns.xlsx.
Computing the K-value would normally require calling the Peng-Robinson equation during every

flash and reaction iteration. This approximate correlation enables you to use Excel to perform the
calculations since it is independent of any external programming requirements. The correlation should
be suitably accurate if you “guess” compositions for developing the correlation that are reasonably
close to the compositions at the outlet of the reactor. We suggest a guess for feed composition of



{0.02, 0.10, 0.02, 0.035, 0.005, 0.82} for {CO, H2, CO2, methanol, water, and naphthalene}.

As an example of a way to develop a synthetic data base, perform flash calculations at 75 bars and
temperatures of {200, 210, 220, 230, 240, 250} and the suggested feed composition. Tabulate the K-
values for each component and plot them logarithmically with reciprocal temperature on the abscissa.
Select a set of points, then select “add trendline” from the Chart menu. Select the options for a
logarithmic fit, and displaying the equation on the chart. The coefficients of the equation give the a
and b for the local “shortcut” correlation. (This step simplifies the implementation in Excel, but
would be unnecessary if you were writing a dedicated program with access to a Peng-Robinson
subroutine.)

Designating the solvent as component 6, the vapor-liquid K-values can be estimated as follows.

Solve for the simultaneous reaction and phase equilibria at 240°C and P = 100 bars considering
the following two reactions:

Add moles of the heavy liquid until 9 moles of liquid is obtained for every mole of vapor output.
The gases are fed in proportions 2:7:1 CO:H2:CO2.

Applying the shortcut van’t Hoff equation (calculated at 503 K using lnKa and ∆H°R, all reacting
species gases),

Stoichiometry

Imagine performing a flash at each new extent of conversion:



Writing objective functions:

This worksheet is called SMPRXN. An example of the output from a feed of 2,7,1,0,0 mole each of
CO, H2, CO2, CH3OH, H2O is shown in Fig. 17.7.

Figure 17.7. Worksheet SMPRXN from workbook Rxns.xlsx for Example 17.15 at several
temperatures.



 Rxns.xlsx, Worksheet SMPRXN.

The method of solving this problem is extremely similar to the DUALRXN problem. The only
significant addition is an extra constraint equation which specifies that the vapor mole fractions must
sum to unity. Note that ξ1 is greater than unity. This is because we have 2 moles of CO in the feed, so
1.3 moles converted is about 65%.

a. Note: The symbols a and b are simply regression coefficients, not the equation of state parameters a and b.

Example 17.16. NO2 absorptiona

The strength of concentrated acid which can be produced is limited by the back pressure of NO2
over the acid leaving the absorbers. The overall reaction, obtained by adding reactions (a) and (b), is
shown as (c). Here we assume that N2O4 is equivalent to 2NO2.

The gas entering the bottom plate of a nitric acid absorber contains 0.1 mole of NO per mole of
mixture and 0.25 mole of NO2 per mole mixture. The entering gas also contains 0.3 bar partial
pressure of oxygen, in addition to inert gas. The total pressure is 1 bar. The acid made by the
absorption operation contains 50% by weight of HNO3, and the operation is isothermal at 86°F.
Estimate the composition of the gas entering the second plate and the strength of the gas leaving the
second plate.

Solution
(Basis: 1 mole gaseous feed)
Assume yw = yHNO3

 = 0 and xNO2
 = xNO = 0.

For liquid:

For vapor:



We can determine the mole fractions from the weight fractions:

Noting from the CRC Handbookb the vapor pressure of HNO3 is 64.6 mmHg, we can estimate the
activity coefficients of HNO3 and water from the x-y data in The Chemical Engineers’ Handbook.c

Gibbs energies of formation are available in Appendix E for all but nitrogen dioxide, and Reid et
al.d give the standard Gibbs energy of formation as 52 kJ/mol and the standard heat of formation as
33.87 kJ/mol. Performing a shortcut calculation using Kcalc.xlsx, the equilibrium constant at 303.15
K is Ka = 0.0054.

At P = 1 bar:

Substituting for the reaction coordinate:

Solving the cubic equation, ξ = 0.0431.
xHNO3

 = (2ξ/(W + ξ) = 2·0.0431/(W + 0.0431) = 0.222 tells us that

W = –0.0431 + 2·0.0431/0.222 = 0.345 moles
So the composition of gas entering the second stage is yNO = 0.157; yNO2

 = 0.132; yO2
 = 0.328; yI =

0.383. Computations for further stages would be similar.

a. S. Lee, Personal Communication, 1993.
b. Weast, R.C. 1979. CRC Handbook of Chemistry and Physics, 60th ed, Boca Raton, FL: CRC Press, p. D-224.
c. Perry, R.H., Chilton, C.H. 1986. The Chemical Engineers’ Handbook , 6th ed. New York, NY: McGraw-Hill, p. 3–70.
d. Reid, R.C., Prausnitz, J.M., Poling, B. 1987. The Properties of Gases & Liquids, 4th ed, New York, NY: McGraw-
Hill.

17.20. Summary
We have greatly enlarged the scope of our coverage of engineering thermodynamics with very little

extension of the conceptual machinery. All we really did conceptually was recall that the Gibbs
energy should be minimized. The provision that atoms can be moved from one chemical species to
another with commensurate changes in energy and entropy simply means that reference states must be
assigned to elemental standard states instead of standard states based on pure components, such that



the free energies of all the components can be compared. In this sense we begin to comprehend in a
new light the broad range of applications mentioned in Einstein’s quote at the end of Chapter 1.
Instead of conceptual challenges, reaction equilibria focus primarily on the computational aspects of
setting up and solving the problems. Notably, equation solvers can provide multidimensional
capability. These are tools that can be adapted to many problems, even those beyond the scope of
thermodynamics. You should familiarize yourself with such tools and build the expertise that will
permit you to enhance your productivity.

Important Equations
The shortcut van’t Hoff equation provides a rapid method for screening the effect of temperature on

the equilibrium constant. For best results, the temperature range should be limited as suggested in
Section 17.8.

When combined with the equilibrium constraint Eqn. 17.15, reaction conversions can be estimated
for many common scenarios.

The most common scenario is for ideal gases, because most industrial reactions are conducted at
high temperature (to accelerate rates) and low pressure (to minimize cost).

For liquid phase components, we showed that the activity should be written as ai = xiγi. For solid
species, we showed that the activity is unity when the solid is pure. The relevant Gibbs energy of
formation must be used when liquids or solids appear in the equilibrium constant expression.

For simultaneous reaction and phase equilibria, we showed that the reaction could be treated in
any one of the phases. Since the phase equilibrium constraint asserts equality of fugacity between
phases, conceiving of the reaction in any particular phase is inconsequential, providing that the
activities and Gibbs energies of formation use the same standard state.

Test Yourself
1. Reproduce the values given for the Gibbs energy of formation at 900 K for the
component in Example 17.3. What values are given by the shortcut van’t Hoff equation?
2. Explain why a plot of lnK versus 1/T exhibits slight curvature.
3. When T is raised, the equilibrium constant is found to increase. Is the reaction
endothermic or exothermic?



4. Explain why formation of a pure solid product does not inhibit a gas-solid reaction from
going forward.
5. A reaction occurs with all components present in liquid and gas phases. Compositions in
both phases are measured and the activities are calculated. The equilibrium constant value
calculated using vapor phase activities is different from the equilibrium constant calculated
using liquid phase activities. Is something wrong?
6. Describe the behavior of the reaction rate as equilibrium is approached. Explain why
most industrial reactors are not run near equilibrium. Explain why calculation of an
equilibrium constant is a good idea whenever designing a reactor.

17.21. Practice Problems
P17.1. An equimolar mixture of H2 and CO is obtained by the reaction of steam with coal. The
product mixture is known as “water-gas.” To enhance the H2 content, steam is mixed with water-
gas and passed over a catalyst at 550°C and 1 bar so as to convert CO to CO2 by the reaction:

Any unreacted H2O is subsequently condensed and the CO2 is subsequently
absorbed to give a final product that is mostly H2. This operation is called the water-
gas shift reaction. Compute the equilibrium compositions at 550°C based on an
equimolar feed of H2, CO, and H2O.

Data for 550°C:

P17.2. One method for the production of hydrogen cyanide is by the gas-phase nitrogenation of
acetylene according to the reaction: N2 + C2H2  2HCN. The feed to a reactor in which the
above reaction takes place contains gaseous N2 and C2H2 in their stoichiometric proportions.
The reaction temperature is controlled at 300°C. Estimate the product composition if the reactor
pressure is: (a) 1 bar; (b) 200 bar. At 300°C, .
P17.3. Butadiene can be prepared by the gas-phase catalytic dehydrogenation of 1-butene: C4H8 

 C4H6 + H2. In order to suppress side reactions, the butene is diluted with steam before it
passes into the reactor.

a. Estimate the temperature at which the reactor must be operated in order to
convert 30% of the 1-butene to 1,3-butadiene at a reactor pressure of 2 bar from
a feed consisting of 12 mol of steam per mole of 1-butene.
b. If the initial mixture consists of 50 mol% steam and 50 mol% 1-butene, how
will the required temperature be affected?



P17.4. Ethylene oxide is an important organic intermediate in the chemical industry. The
standard Gibbs energy change at 298 K for the reaction 
mole. This large negative value of ∆Go

T indicates that equilibrium is far to the right at 298 K.
However, the direct oxidation of ethylene must be promoted by a catalyst selective to this
reaction to prevent the complete combustion of ethylene to carbon dioxide and water. Even with
such a catalyst, it is thought that the reaction will have to be carried out at a temperature of about
550 K in order to obtain a reasonable reaction rate. Since the reaction is exothermic, an increase
in temperature will have an adverse effect on the equilibrium. Is the reaction feasible (from an
equilibrium standpoint) at 550 K, assuming that a suitable catalyst selective for this reaction is
available? For ethylene oxide, ∆Hf

298 = -52.63 kJ/mol. Heat capacity equations (in J/mole-K)
for the temperature range involved may be approximated by CP,C2H4O = 6.57 + 0.1389 T(K);
CP,C2H4

 = 15.40 + 0.0937 T(K); CP,O2
 = 26.65 + 0.0084 T(K)

P17.5. The water-gas shift reaction is to be carried out at a specified temperature and pressure
employing a feed containing only carbon monoxide and steam. Show that the maximum
equilibrium mole fraction of hydrogen in the product stream results when the feed contains CO
and H2O in their stoichiometric proportions. Assume ideal gas behavior.

P17.6. Assuming ideal gas behavior, estimate the equilibrium composition at 400 K and 1 bar of
a reactive gaseous mixture containing the three isomers of pentane. Standard formation data at
400 K are

P17.7. One method for the manufacture of synthesis gas depends on the vapor-phase catalytic
reaction of methane with steam according to the equation . The only other
reaction which ordinarily occurs to an appreciable extent is the water-gas shift reaction. Gibbs
energies and enthalpies for the problem are tabulated below in kJ/mol.

Compute the equilibrium compositions based on a 1:1 feed ratio at 600 K and 1300
K and 1 bar and 100 bars.



P17.8. Is there any danger that solid carbon will form at 550°C and 1 bar by the reaction 2CO =
Cs + CO2? (ANS. Yes)

P17.9. Calculate the equilibrium percent conversion of ethylene oxide to ethylene glycol at 298
K and 1 bar if the initial molar ratio of ethylene oxide to water is 3.0.

C2H4O(g) + H2O(l) = (CH2OH)2 (1 M aq solution) 
To simplify the calculations, assume that the gas phase is an ideal gas mixture, that

γw = 1.0, and that the shortcut K value is applicable for ethylene oxide and ethylene
glycol.

P17.10. Acetic acid vapor dimerizes according to 2A1  A2. Assume that no higher-order
associations occur. Supposing that a value for Ka is available, and that the monomers and dimers
behave as an ideal gas, derive an expression for yA1 in terms of P and Ka. Then develop an
expression for PV/noRT in terms of yA1, where no is the superficial number of moles neglecting
dimerization. Hint: Write no/nT in terms of yA1 where nT = n1 + n2.

17.22. Homework Problems
17.1. For their homework assignment three students, Julie, John, and Jacob, were working on the
formation of ammonia. The feed is a stoichiometric ratio of nitrogen and hydrogen at a particular
T and P.

Julie, who thought in round numbers of product, wrote:

John, who thought in round numbers of nitrogen, wrote:
N2 + 3H2  2NH3

Jacob, who thought in round numbers of hydrogen, wrote:

a. How will John’s and Jacob’s standard state Gibbs energy of reactions
compare to Julie’s?
b. How will John’s and Jacob’s equilibrium constants be related to Julie’s?
c. How will John’s and Jacob’s equilibrium compositions be related to Julie’s?
d. How will John’s and Jacob’s reaction coordinate values be related to Julie’s?

17.2. The simple statement of the Le Châtelier principle leads one to expect that if the
concentration of a reactant were increased, the reaction would proceed so as to consume the
added reactant. Nevertheless, consider the gas-phase reaction, N2 + 3H2  2NH3 equilibrated
with excess N2 such that N2′s equilibrium mole fraction is 0.55. Does adding more N2 to the
equilibrated mixture result in more NH3? Why?

17.3. The production of NO by the direct oxidation of nitrogen occurs naturally in internal
combustion engines. This reaction is also used to produce nitric oxide commercially in electric
arcs in the Berkeland-Eyde process. If air is used as the feed, compute the equilibrium
conversion of oxygen at 1 bar total pressure over the temperature range of 1300–1500°C. Air



contains 21 mol% oxygen and 79% N2.

17.4. The following reaction reaches equilibrium at the specified conditions.
C6H5CH = CH2(g) +H2(g)  C6H5C2H5(g)

The system initially contains 3 mol H2 for each mole of styrene. Assume ideal
gases. For styrene, , .

a. What is Ka at 600°C?

b. What are the equilibrium mole fractions at 600°C and 1 bar?
c. What are the equilibrium mole fractions at 600°C and 2 bar?

17.5. For the cracking reaction,
C3H8(g)  C2H4(g) + CH4(g)

the equilibrium conversion is negligible at room temperature but becomes
appreciable at temperatures above 500 K. For a pressure of 1 bar, neglecting any side
reactions, determine:

a. The temperature where the conversion is 75%. [Hint: conversion = amount
reacted/amount fed. Relate ξ to the conversion.]
b. The fractional conversion which would be obtained at 600 K if the feed to a
reactor is 50 mol% propane and 50 mol% nitrogen (inert). (Consider the reaction
to proceed to equilibrium.)

17.6. Ethanol can be manufactured by the vapor phase hydration of ethylene according to the
reaction: C2H4 + H2O  C2H5OH. The feed to a reactor in which the above reaction takes place
is a gas mixture containing 25 mol% ethylene and 75 mol% steam.

a. What is the value of the equilibrium constant, Ka, at 125°C and 1 bar?

a. Provide an expression to relate Ka to ξ. Solve for ξ.

17.7. Ethylene is a valuable feedstock for many chemical processes. In future years, when
petroleum is not as readily available, ethylene may be produced by dehydration of ethanol.
Ethanol may be readily obtained by fermentation of biomass.

a. What percentage of a pure ethanol feed stream will react at 150°C and 1 bar if
equilibrium conversion is achieved?
b. If the feed stream is 50 mol% ethanol and 50 mol% N2, what is the maximum
conversion of ethanol at 150°C and 1 bar?

17.8. The catalyzed methanol synthesis reaction, CO(g) + 2H2(g)  CH3OH(g), is to be conducted
by introducing equimolar feed at 200°C. What are the mole fractions and the temperature at the
outlet if the system is adiabatic at 10 bar and the catalyst provides equilibrium conversion
without any competing reactions?
17.9. A gas stream composed of 15 mol% SO2, 20 mol% O2, and 65 mol% N2 enters a catalytic
reactor operating and forms SO3 at 480°C and 2 bar.

a. Determine the equilibrium conversion of SO2.



b. Determine the heat transfer required per mole of reactor feed entering at 295 K
and 2 bar.

17.10. The feed gas to a methanol synthesis reactor is composed of 75 mol% H2, 12 mol% CO,
8 mol% CO2, and 5 mol% N2. The system comes to equilibrium at 550 K and 100 bar with
respect to the following reactions:

2H2(g) + CO(g)  CH3OHg)

H2(g) + Co2(g)  CO(g) + H2O(g)

Assuming ideal gases, derive the equations that would be solved simultaneously for
ξ1, ξ2 where 1 refers to the first reaction listed. Provide numerical values for the
equilibrium constants. Determine ξ1 and ξ2 ignoring any other reactions.

17.11. The 10/25/93 issue of Chemical and Engineering News suggests that the thermodynamic
equilibrium in the isomerization of n-butene (CH3CH=CHCH3, a mix of cis and trans isomers)
is reached at a temperature of 350°C using a zeolite catalyst. The products are isobutene and 1-
butene (CH2=CHCH2CH3). The isobutene is the desired product, for further reaction to MTBE.
Determine the equilibrium composition of this product stream at 1 bar.
17.12. Acrylic acid is produced from propylene by the following gas phase reaction:

A significant side reaction is the formation of acetic acid:

The reactions are carried out at 310°C and 4 bar pressure using a catalyst and air as
an oxidant. Steam is added in the ratio 8:1 steam to propylene to stabilize the heat of
reaction. If 50% excess air is used (sufficient air so that 50% more oxygen is present
than is needed for all the propylene to react by the first reaction), calculate the
equilibrium composition of the reactor effluent.

17.13.
a. As part of a methanol synthesis process similar to problem 17.10, one side
reaction that can have an especially unfavorable impact on the catalyst is coke
formation. As a first approximation of whether coke (carbon) formation would be
significant, estimate the equilibrium extent of coke formation based solely on the
reaction: CO + H2  C(s) + H2O. Conditions for the reaction are 600 K and 100
bar.
b. Is coke formation by the reaction from part (a) expected at the conditions cited
in problem 17.10?

17.14. Hydrogen gas can be produced by the following reactions between propane and steam in
the presence of a nickel catalyst:

C3H8 + 3H2O  3CO + 7H2

CO + H2O  CO2 + H2

Neglecting any other competing reactions:



a. Compute the equilibrium constants at 700 K and 750 K.
b. What is the equilibrium composition of the product gas if the inlet to the
catalytic reactor is propane and steam in a 1:5 molar ratio at each of the
temperatures and 1 bar?

17.15. Write and balance the chemical reaction of carbon monoxide forming solid carbon and
carbon dioxide vapor. Determine the equilibrium constant at 700 K and 750 K. Will solid
carbon form at the conditions of problem 17.14?
17.16. Catalytic converters on automobiles are designed to minimize the NO and CO emissions
derived from the engine exhaust. They generally operate between 400°C and 600°C at 1 bar of
pressure. K.C. Taylor (1993. Cat. Rev. Sci. Eng. 35:457.) gives the following compositions (in
ppm, molar basis) for typical exhaust from the engine:

The additional products of the effluent stream include NO2, N2O, N2O4, and NH3.
Estimate the compositions of all species at each temperature {400°C, 500°C, 600°C}
and plot the ratio of NH3/CO as a function of temperature. (Note: Use the options of
the Solver software to set the precision of the results as high as possible.)

17.17. Styrene can be hydrogenated to ethyl benzene at moderate conditions in both the liquid
and the gas phases. Calculate the equilibrium compositions in the vapor and liquid phases of
hydrogen, styrene, and ethyl benzene at each of the following conditions:

a. 3 bar pressure and 298 K, with a starting mole ratio of hydrogen to styrene of
2:1
b. 3 bar pressure and 423 K, with a starting mole ratio of hydrogen to styrene of
2:1
c. 3 bar pressure and 600 K, with a starting mole ratio of hydrogen to styrene of
2:1

17.18. Habenicht et al. (1995. Ind. Eng. Chem. Res., 34:3784) report on the reaction of t-butyl
alcohol (TBA) and ethanol (EtOH) to form ethyltertiary-butyl ether (ETBE). The reaction is
conducted at 170oC. A typical feed stream composition (in mole fraction) is:

Isobutene is the only significant by-product. Assuming that equilibrium is reached in
the outlet stream, estimate the minimum pressure at which the reaction must be
conducted in order to maintain everything in the liquid phase. Do isobutene or ETBE
exceed their liquid solubility limits at the outlet conditions?

17.19. Limestone (CaCO3) decomposes upon heating to yield quicklime (CaO) and carbon
dioxide. At what temperature does limestone exert a decomposition pressure of 1 bar?
17.20. Two-tenths of a gram of CaCO3(s) is placed in a 100 cm3 pressure vessel. The vessel is
evacuated of all vapor at 298 K and sealed. The reaction CaCO3(s) = CaO(s) + CO2(g) occurs as
the temperature is raised. At what temperature will the conversion of CaCO3 be 50%, and what
will the pressure be?



17.21. One suggestion for sequestering CO2 is to synthesize carbonate polymers. Polycarbonate
is well known for its strength and transparency. To gauge the feasibility of this approach,
consider the synthesis of dimethyl carbonate (DMC) from methanol and CO2 at 350 K.

a. Write a balanced stoichiometric equation for this reaction. Highlight any by-
products.
b. Estimate the Ka value for the reaction. What pressure is required to achieve
P·Ka = 0.1?

c. Methanol and DMC are both liquids at this temperature. Explain how to
estimate their partial pressures at a given extent of conversion. You may neglect
the CO2 in the liquid for this question.

17.22. Ethyl acetate is to be produced by a liquid phase reaction.
a. Use the shortcut van’t Hoff equation to calculate the expected conversion of
HOAc for equimolar feeds of EtOH and HOAc in a batch reactor at 80°C.
b. Repeat part (a) with a 3:1 ratio of EtOH to HOAc at 80°C.

17.23. Hamilton, et al.,6 have studied the binding of DNA chromosomes to proteins WT1 and
EGR1. WT1 uses a zinc binding site to suppress a certain type of kidney tumor. EGR1 binds to
regulate cell proliferation. There may be an important regulatory link between the two proteins.7

a. Use the binding data above to determine the standard state Gibbs energies of
reaction at each temperature, the heat of reaction over the temperature range, and
the entropy of reaction over the temperature range.
b. The binding constants are about the same size. Evaluate the relative
magnitudes of the enthalpy and entropy of formation for each binding type. Does
the thermodynamic analysis imply that the binding types are similar or different?

17.24. The enthalpy of reaction for many biological reactions and surfactants is strongly
temperature-dependent, but instead of using full heat capacities, the temperature dependence can
be characterized by differences in heat capacities ∆CP = CP,prod – CP,react, typically assumed to
be independent of temperature.7

a. The heat of reaction is represented by ∆H = ∆HR + ∆CP(T – TR). Show that

b. Provide an equation consistent with part (a) for the temperature dependence of



the entropy of reaction.
17.25. Lysozyme (MW = 14.313 kDa) undergoes a phase transition from a native folded (N) to
unfolded state (U) that can be considered a reversible reaction, N(aq)  U(aq), where the
subscript (aq) indicates that the protein is in an aqueous solution. At high temperature the protein
is in state U and at low temperature, it is in state N. The melting temperature (Tm) is where the
concentrations are equal. The melting temperature can be changed by pH, ionic strength (added
salt), denaturant (solvents), or pressure. The results of problem 17.24 apply. The protein
unfolding has been studied by Cooper, et al.8 The heat to unfold 1 mg/mL of protein in 2 mL of
pH = 4 solution at Tm = 78°C is 0.0755 J, ∆CP = 6.3 kJ/mol-K. The ∆V = –40 mL/mol.7

a. What is the Gibbs energy change for the unfolding at the melting temperature?
(Hint: The answer requires conceptual thought, not many calculations.)
b. Show that at the melting temperature at pH = 4, ∆H = 540 kJ/mol and ∆S =
1.54 kJ/mol.
c. Evaluate the contributions to ∆G at 23°C and pH = 4. Is the process driven by
enthalpy or entropy under these conditions?

d. Show that the relation for [N]/[U] is  For
a solution of overall concentration 1 mg/mL, plot [U] as a function of temperature
for 20 ≤ T ≤ 110 °C, and provide a tabular summary of [U] at 60°C and 90°C.
e. When pH is varied, the net charges on the protein change (as will be explained
in Chapter 18), resulting in different Tm and ∆H. In the range 20 ≤ Tm ≤ 78 °C, the
relation is ∆H(kJ/mol) = 48.6 + 6.3 Tm(°C). Derive the relation between ∆S and
Tm.

f. At pH = 1, Tm = 43°C. Provide a plot of plot [U] as a function of temperature
for 20 ≤ T ≤ 110 °C, and provide a tabular summary of [U] at 25°C and 55°C.
g. (advanced) Lysozyme has four disulfide bonds that are important in the folding
behavior. The authors created a mutant protein with only three disulfide bonds.
The relation in (e) still holds. At pH = 2.5, Tm = 23°C for the mutant. Evaluate
the contributions of enthalpy and entropy to the folding.
h. (advanced) Provide an interpretation for the sign of ∆V. At pH = 4, how much
pressure is needed to lower the melting temperature 5°C to 73°C?9

17.26. Surfactants clump together to form organized structures called micelles that can be
spheres, rods, and so forth. The formation of the clump can be modeled as a “chemical”
reaction, though there are no chemical bonds formed or broken. When surfactants are in solution
below the critical micelle concentration, CMC, the surfactant molecules are almost all “free” in
solution. At the CMC, micelles start to form. Above the CMC, the amount of free surfactant is
almost constant in solution and as more surfactant is added to the solution, more micelles form. It
is conventional to provide the property changes of surfactants per mol of surfactant molecules,
not per mole of micelle.

a. Given the data below for nonylglucoside (NG) demicellization in water,



calculate the micellization value, ∆CPmic, as a function of temperature. Is the heat
capacity of a micelle greater than or less than the heat capacity of the molecules
that make up the micelle?
b. Calculate ∆Smic and for the surfactant as a function of temperature. Is the
overall solution (including water) more ordered or less ordered after
micellization?

NG data:

17.27. Micelle formation in surfactants is described in problem 17.26. Solve the problem using
the data for sodium docecyl sulfate, SDS in water.

SDS data:

17.28. For nonylglucoside, NG, thermodynamic data for demicellization in water are presented
in problem 17.26. Model the micelle reaction as nS  Mn where S is free surfactant and Mn is a
micelle. Treat the solution as an ideal solution. Vary the total concentration of NG from 0 up to
20 mmol/L. Water is 55.5 mol/L. Calculate mole fractions and molar concentrations (mmol/L) of
the free surfactant (in mM) and the micelles (in µM) of NG at T=285 K, where n = 58. Plot
curves for the concentrations. Identify the approximate CMC in mmol/L. Hint to simplify
calculations: The mol/L added is very small relative water molarity (55.5 mol/L). The density
can be assumed to be constant.



Chapter 18. Electrolyte Solutions

Water, water, every where, Nor any drop to drink.
S.T. Coleridge, “The Rime of the Ancient Mariner”

Electrolyte solutions are as common as seawater. They exist in every biological organism, in
underground reservoirs, and in numerous industrial processes. Thermodynamic models of electrolyte
solutions can range from extremely simple to extremely complex. At the simple end of the spectrum
are solubility product constants, familiar from introductory chemistry courses. At the complex end of
the spectrum, we recognize that concentrated solutions can lead to ion-ion interactions that influence
the activity coefficients, altering the simultaneous reaction and phase equilibria that pervade the
entire subject. Our goal in this chapter is to introduce the vocabulary and the manner of setting up
typical problems involving electrolytes.

Chapter Objectives: You Should Be Able to...
1. Compute the equilibrium concentrations of ionic species in “ideal” electrolyte solutions.
2. Compute the effect of salts on boiling point, freezing point, osmotic pressure, and
acid/base dissociation.
3. Understand and articulate the reason for charges on biological molecules and the
isoelectric point.
4. Quantitatively describe the “salting in” and “salting out” effects and the common ion
effect for solubility.
5. Estimate the true and apparent mole fractions of gaseous solutes in electrolyte solutions.
6. Apply the extended Debye-Hückel model for activity coefficients in dilute solutions.

18.1. Introduction to Electrolyte Solutions
Briefly, an electrolyte is a substance that dissociates into charged species in a liquid phase. The

behavior can occur in solution, or in the case of ionic liquids used as nonvolatile solvents, occurs in
the pure state. Electrolytes exist in biological and industrial systems and are thus important to our
everyday life.

Sodium chloride almost totally dissociates into sodium and chloride ions in dilute aqueous
solutions near room temperature. Due to this strong dissociation, sodium chloride is described in
these circumstances with a strong electrolyte model by assuming that the dissociation is complete.
On the other hand, acetic acid, the dominant ingredient in household vinegar, partially dissociates into
hydrogen ions and acetate ions in dilute aqueous solution and is modeled as a weak electrolyte. A
key caution is that the literature tends to describe compounds as strong or weak electrolytes.
However, the extent of dissociation depends on the environment. For example, Fig. 18.1 shows the
distribution of species in sulfuric acid as a function of concentration measured experimentally1 and
modeled.2 Both hydrogens dissociate only in very dilute solution (which is difficult to discern from
the figure). The second dissociation is suppressed at moderate and high concentrations. The first
dissociation disappears at high concentrations and sulfuric acid exhibits limited dissociation when
pure. Experimental information on the degree of dissociation is important as well as thermodynamic
models to represent the behavior to characterize the strong or weak dissociation under the conditions



of interest.

Figure 18.1. Speciation of sulfuric acid in aqueous solutions as measured by experiments1 and
modeled by OLI Systems, Inc.2 Note the square root scale to emphasize the dilute region.

The extremely polar nature of water and the capability of water to adjust its partial charges by
adjusting the H-O bond distance make it capable of hydrating or solvating the ions. The water
surrounding the ion is known as the water of hydration or solvation and the ions are described as
solvated. Fundamental studies show that three to five water molecules hydrate ions in dilute to
moderately concentrated solutions. The number is inexact due to the difficulty of the experiments and
the fact that the hydration shell is not forming stoichiometric bonds, so the whole hydrated ion is
constantly undergoing exchange resulting in various packing effects and various sizes. The key point
is to understand that ions must be solvated in solution, and the degree of electrolyte dissociation
depends on the ability of a solvent to dissolve ions and the competing driving force for the electrolyte
to stay undissociated. Solvents must have a high dielectric constant to be capable of solvating ions.
Sodium chloride has an infinitesimal solubility in hexane because the ions are not solvated
effectively.

Electrolytes can also have important effects in inhomogeneous fluids like surfaces and colloids.
For example, the ions may align next to a surface of opposite charge causing a phenomenon known as
an electric double layer. Ions can also strongly affect surfactants in micelles, emulsions, and
microemulsions. We restrict our attention here to bulk, homogeneous systems, which are affected in
relatively straightforward ways by reaction and dilution.

18.2. Colligative Properties
Boiling points, freezing points and osmotic pressure are sometimes termed colligative properties.

The adjective “colligative” describes phenomena that are dependent on molar concentration and
ignore the solution nonidealities. This of course is an approximation. We understand from previous
chapters discussing nonelectrolytes that solution nonidealities can be important. However, in the case
of dissolved solids such as sodium chloride, which have negligible vapor pressure under common
conditions, the partial pressure of water/solvent determines the boiling point because the salt does not
contribute measurably to the vapor composition. Likewise, the osmotic pressure and freezing points



are dominated by concentration effects. We know that sodium chloride is commonly used to melt
snow and ice on sidewalks and roads in cold climates. The salt works because the freezing
temperature of the solution is lower than that of pure water. It is more effective on a molar basis than
a compound that does not dissociate because it decreases the mole fraction of water to a greater
extent, thus decreasing the chemical potential of water. François-Marie Raoult wrote about
electrolytes and their melting point depression compared to molecular solutes: “These facts show
that, contrary to what I thought until now, the general law of freezing does not apply to the salts
dissolved in water. They tend to show that it applies to radicals (ions) constituting the salts, almost as
if these radicals (ions) were simply mixtures in dissolutions.”3 To be fair, however, the degree of
melting depression is not always the most critical factor when selecting a system for melting
depression or boiling point elevation. Automobile radiators commonly use ethylene glycol as an
antifreeze. On a molar basis, the ethylene glycol is less effective than a dissociating salt in lowering
the freezing point and increasing the boiling point. Nevertheless, the liquid additive is used instead of
salt for practical reasons like avoiding solid precipitation or corrosion (especially for NaCl).

Raoult’s study of electrolyte dissociation led to further developments by Jacobius van’t
Hoff and Wilhelm Ostwald.

Example 18.1. Freezing point depression
Compare NaCl (used on icy roads), ethylene glycol (used in car radiators), and glucose (used by

hibernating frogs) as alternatives for freezing point depression. Consider 5 g of each for 0.1 L (5.55
mol) of water and then compare 0.1 mol of each in 0.1 L of water. For the molar basis, compare the
masses used and the effectiveness. Assume NaCl totally dissociates, and use an ideal solution
approximation.

Solution
The melting point is calculated with Eqn. 14.24. To calculate mole fractions, the molecular weights

are NaCl 58.44, ethylene glycol (EG) 62.07, and glucose 180.16. For 5 g of each, the molar amounts
are 0.0855 mol, 0.0805 mol, and 0.027 mol, respectively. The mole fractions of water in the solutions
(recall that NaCl forms two moles of ions!) are xH2O = 5.55/(5.55 + 2·0.0855) = 0.970, xH2O =
5.55/(5.55 + 0.0805) = 0.986, xH2O = 0.995, respectively, and

The freezing points for 5 g of each are 270.0 K, 271.7 K, 272.7 K for depressions of 3.2°C, 1.5°C,
and 0.5°C respectively. NaCl is more effective than an equivalent mass of EG. Frogs must generate a
very concentrated solution of glucose to keep from freezing while hibernating (though concentrated
glucose also forms a metastable subcooled liquid easily). For 0.1 mol of each, the mol fractions are
xH2O = 0.965, xH2O = 0.982, xH2O = 0.982, with freezing points of 269.6 K, 271.3 K, 271.3 K for
depressions of 3.6°C, 1.9°C, and 1.9°C, respectively. There is no difference between the last two



solutes because they do not dissociate. The masses needed for 0.1 mol are 5.8 g, 6.2 g, 18.0 g. On a
mass basis, NaCl is more effective than glucose even though only one-third as much is used. For EG
and glucose, 0.1 mol of each gives the same melting depression, but the mass of glycol is about one-
third because the molecular weight is smaller.

Osmotic pressure was discussed in nonelectrolytes in Section 11.13 on page 449. For electrolyte
systems a primary difference is that the dissociation of strong electrolytes creates a larger effect on
osmotic pressure at the same molar concentration. Look back at Eqn. 11.71. The osmotic pressure is
related to the logarithm of the activity of water. When a monovalent electrolyte dissociates, it doubles
the effect on the activity relative to an undissociated molecular species (with the ideal solution
approximation). Sodium chloride (MW = 58.4 g/mol) and propanol (MW = 60.1 g/mol) have similar
molecular weights, but when dissolved in water, to achieve a given osmotic pressure, only about half
as much mass of salt is required at low concentrations.

Example 18.2. Example of osmotic pressure
Consider the solutes from Example 18.1 assuming complete dissociation of NaCl and ideal

solutions. (a) Compare the osmotic pressure for 0.1 mol of each in 0.1 L of water at 298.15 K. (b)
What concentration of NaCl (wt%) is isotonic with human blood?

Solution
a. The mole fractions have been calculated in Example 18.1 as 0.965, 0.982, and 0.982.
The osmotic pressure is given by Eqn. 11.71. The osmotic pressure for an ideal solution is

Inserting the mole fractions of each, the osmotic pressures are 4.89 MPa, 2.5 MPa,
2.5 MPa. In a reverse osmosis system, a solution of NaCl requires much more
pressure to purify than a solution of a nonelectrolyte with the same apparent
concentration.

b. Isotonicity with human blood is defined in Section 11.13 on page 449 as having a
concentration that is 0.308 mol/L of solute. Since two ions are obtained for each NaCl that
dissociates, this corresponds to 0.154 mol/L of NaCl, or 8.99 g/L. Assuming the
concentration is sufficiently low, a dilute aqueous solution corresponds to a density of 1000
g/L. Therefore, the weight fraction is 9/1000 = 0.009 or 0.9wt%. This is commonly known
as “physiological saline” or just “saline.”

Vapor-liquid equilibria is also affected by electrolytes. In many cases the electrolyte can be
considered to be nonvolatile, such as with sodium chloride. Below we consider the equilibrium
condition where salt is only in the liquid phase. In actual application, some salt may be entrained in
aerosol droplets as is well known in ocean-side communities where corrosion from salty aerosols is
common, but this is not an equilibrium phenomenon. On the other hand, many electrolytes are volatile,
such as HCl and acetic acid, so the following analysis will not apply in exactly the same manner.



Example 18.3. Example of boiling point elevation
Consider the solutes from Example 18.1. Compare the bubble points for 0.1 mol of each in 0.1 L of

water at 1.013 bar. Consider complete dissociation of NaCl and ideal solutions. Ignore volatility of
EG.

Solution
This will be a bubble-temperature calculation. Because the solutes are nonvolatile (ignoring

volatility of EG), yH2O = 1. The bubble-pressure condition is

Using the Antoine equation for water and the mole fractions from Example 18.1, the bubble
temperatures are found by using an iterative solver to be 101°C, 100.5°C, and 100.5°C, respectively.
Again, the salt has a larger effect due to its dissociation.

Typically, the analysis of electrolyte dissociation is treated in the reaction equilibrium framework
termed speciation, modeling the dissociation into ionic species as a chemical reaction. When
multiple phases exist, simultaneous reaction and phase equilibria must be solved. The general term
electrolyte refers to a species that dissociates into ions in solution.

18.3. Speciation and the Dissociation Constant
The term speciation refers to a cataloging of the species that exist in solution. The species are

characterized by writing dissociation reactions that identify the species and material balance
constraints that exist in solution. To introduce the concepts of speciation, consider the dissociation of
water:

Thus, in pure water, the species in solution are H2O, H+, and OH–. From introductory chemistry
courses, we are familiar with this reaction and the equilibrium constant at 25°C:

Another important concept in speciation is that the solution must satisfy a charge balance, and the
net charge in solution must be zero. While the charge balance is trivial for this example, it becomes
important in setting up the mathematical solutions to the material balances.

Eqn. 18.5 contains some implicit assumptions that are rarely explained in introductory chemistry
books. From our discussion in Chapter 17, we know that a rigorous calculation should use activities
for a chemical reaction:

Comparing the last two equations, we recognize that Eqn. 18.6 can be simplified to Eqn. 18.5 if the
activities of ions are replaced with concentrations, and if the activity of undissociated water is unity.
Certainly the approximations of Eqn. 18.5 are valid under common conditions or the introductory



textbooks would have been in error. But what is meant by the activity of ions, and why does the
activity of water not appear in Eqn. 18.5? To understand the simplifications, we must understand the
various concentration conventions. The subtleties are important because the values of the equilibrium
constants that characterize the reactions are coupled to the concentration and activity scales.

To partially clarify the relation between Eqns. 18.5 and 18.6, it is necessary to recall that activity
is dimensionless but molarity has dimensions of mol/L. This issue is subtly handled by using molal
concentrations and defining the standard state for electrolytes to be an ideal solution at m° = 1 molal.
Therefore, Eqn. 18.6 can be successively converted using 

 where the m° states are equal to 1
molal, the molal activity coefficients are ignored, and the molar concentration is used as an
approximation to the molality. Water disappears from the relation because the water standard state is
taken as purity and a neutral solution is virtually pure water.4 Supporting discussion is provided in
Sections 18.13–18.15 and summarized in Section 18.24.

Measuring Speciation
Quantitative speciation is important in development of a proper thermodynamic model. Various

techniques are used, including absorption, NMR and Raman spectroscopies, conductance, emf,
solubilities, and rates of reaction. Most techniques require estimation of the activity coefficients to
extrapolate to infinite dilution where the Ka is calculated from ideal solution approximations.
Because modeling extrapolation is always necessary to “measure” the constants, considerable scatter
among literature values is common.

18.4. Concentration Scales and Standard States
To discuss the concentration of an electrolyte, some terminology conventions are important for

clarity. For example, when 0.01 mole of sodium chloride is added to water and diluted to 1 liter at
25°C, the solution results in 0.02 mol/L of ions because it acts as a strong electrolyte. However, we
need a method to communicate the solubility of an electrolyte as an entity or on a superficial basis
or apparent basis or nominal basis. These terms are used interchangeably in the literature; they refer
to the totality of electrolytes in solution as if they were molecular, without dissociation. Formal
concentrations (mol/L) are used in chemistry to refer to the molar concentration based on the
chemical formula of the substance. The terms “undissociated” and “un-ionized” are different from
“apparent.” For species that partially dissociate, the sum of the undissociated and dissociated species
comprises the apparent composition. For example, acetic acid does not completely dissociate in
aqueous solution, and to communicate most clearly, the terms “nominal,” “superficial,” “as an entity,”
and “apparent” are used to refer to the total amount in solution.5 VLE of a weak electrolyte like acetic
acid occurs between the undissociated species in the vapor and the undissociated species in the
liquid (as we will show later), but a “apparent” perspective would simply consider that there is
acetic acid in the vapor and liquid and the apparent activity coefficient of acetic acid is different from
what it would be without dissociation. The true distribution of species should be determined by
reaction equilibria and Le Châtelier’s principle to characterize the NH4OH that forms and the NH4

+

and OH- speciation. Although the apparent perspective may seem oversimplified, the apparent
concentration is very important in engineering calculations because it is often the most accessible
measure of concentration when multiple species are present. In this text, we strive to consistently



refer to “apparent concentrations,” but we may use the equivalent term “superficial concentrations.”

 The apparent basis refers to the hypothetical situation as a molecular species.

The NaCl solution of the preceding paragraph would be described as a 0.01 M apparent
concentration of NaCl. On the other hand, the 0.01 M apparent solution of NaCl would have true
concentrations of 0.01 M Na+ and 0.01 M Cl–. The convention of terminology is to describe modeled
concentrations as “true” concentrations even though the modeled true concentrations often vary for
different models for weak electrolytes. [Apparently, some “true” concentrations are more true than
others ;-).] In a good model, true concentrations from experiments are represented accurately. Note
how the apparent concentration is the only quantity on which everybody can agree.

Concentration Scales For Electrolytes
Throughout introductory chemistry texts, the convention is to express the concentrations in Eqn.

18.5 using molarity. For introductory courses, frequently all the calculations are at room temperature
(25 °C), and thus temperature effects are disregarded. For biological systems, the electrolytes are
almost always very near room temperature and the density of the solutions is almost always constant,
so the convention is to use molarity. However, this choice of concentration as a composition scale
has a disadvantage when the temperature changes in industrial processes because temperature affects
density, which affects molar concentrations. Thus, an increase in temperature decreases molar
concentrations of all species, even when the solution composition does not change. Therefore, for
fundamental calculations as a function of temperature, alternative concentration scales are required.

In the case of electrolytes for industrial reactions, it is often easiest to perform calculations based
on the number of solute (i.e., electrolyte) molecules relative to the number of solvent (e.g., water)
molecules. This can be done with mole fraction or molality. Molality has a disadvantage that the
quantity diverges to infinity at high concentration. Nevertheless, it is the dominant convention in the
older electrolyte literature for nonideal solution behavior and dissociation constants. Molality
approaches molarity at low concentrations near room temperature and thus is a natural extension from
the use of molarity. Also, molality has a convenient magnitude at common concentrations. Molality is
the moles of species existing in 1 kg of solvent (e.g., water) molecules. If water is the solvent, the
number of moles per kg of solvent is 55.509. We use the notation “m” for molality and “M” for
molarity. For example, a one molal aqueous solution of sodium chloride is prepared by adding 1
mole of NaCl (58.44 g) to 1 kg of water. The molarity of that solution is slightly less than 1 M since
the total volume after addition is greater than 1 liter. Molality and molarity are subtly but distinctly
different. The ratio of solute to solvent molecules in all 1 molal solutions will be the same for all
solutes in a given solvent. To clarify, a comparison of molality, molarity, and mole fractions for NaCl
solutions is provided in Table 18.1. The molality and molarity approach each other at low aqueous
concentration near room temperature. For dilute solutions, the molarity and molality can be
interchanged as a good approximation. The mole fraction scale, typically with a Henry’s law standard
state, is preferred when working with concentrated solutions.6 Molality has a disadvantage that it
goes to infinity when the water concentration goes to zero. Formulas for interconversions between
concentration scales are summarized in Section 18.24

Table 18.1. Apparent Mole Fraction, Molality, Density and Molarity for Aqueous Sodium



Chloride Solutionsa

a. Densities are from Washburn, E.W., ed., 1926–1930. International Critical Tables, National Research Council, vol. 3,
p. 79.

 We use the notation “m” for molality and “M” for molarity.

Standard State for Electrolyte Systems
When molality or molarity is used for concentration, the standard state is selected such that the

activity coefficients of the electrolyte species, including the undissociated species, go to unity at
infinite dilution. This is similar to the Henry’s law standard state discussed in Section 11.12.7 An
unsymmetric convention (cf. Section 11.12) is used in that a Lewis-Randall standard state is applied
for the solvent (typically water) and the activity coefficient of the solvent goes to unity when the
solvent is pure.

To understand how the conventions are useful, look back at Table 18.1. Note that the mole fraction
of water is approximately xw = 0.9 when the solution is 3 m in NaCl (remember NaCl dissociates!).
So the use of an activity coefficient of unity for water is reasonable for approximate calculations. The
use of an activity coefficient of unity for the electrolytes is exact only at infinite dilution, but can be
used as a rough approximation for introductory calculations. We take that approach initially, using
ideal solution calculations and the infinite dilution standard state for electrolytes and the Lewis-
Randall standard state for the solvent, and later introduce the more rigorous calculation using activity
coefficients.

A caution is that various conventions of molarity, molality, and mole fractions exist in the
literature.8 Therefore, when using equilibrium constants, the reader must be careful to understand the
conventions used to tabulate the values, and must carefully convert the constants if a different
scale/convention is to be used for calculations. The convention can sometimes be inferred if the
constant is given with units. Interconversion of constants is discussed in Section 18.25.

Solubility and degree of dissociation depend on the solvent. The majority of published equilibrium
constants are for aqueous systems. However, many solvents, including amines, pyridines, ammonia,
alcohols, esters, and carboxylic acids, are also capable of solvating ions to varying extents. Because
the environment of the ion is critical in determination of the extent of solvation, care should be used
when modeling dissociation in nonaqueous solvents.

18.5. The Definition of pH
The pH of a solution is defined to be



where the activity is expressed on the molal scale. Methods for calculating the activity are covered
later. Commonly as an approximation, the concentration (mol/L) is substituted, and the “p” notation
stands for the negative of the common logarithm:

We use this common approximation for introductory examples. The primary use of pH is to
characterize a solution as acidic or basic.

Relation of H and OH in Water

Recall at room temperature9

The “p” notation is extended to other ions and equilibrium constants. When working with dilute
solutions, this means that –log(aH+ aOH–) = – log(aH+) = –log(aOH–) = –logKa,w, or

At room temperature, pKa,w = 14. Thus, when the solution is acidic, the concentration of [OH–] <
10–7 mol/L, and when the solution is basic, the concentration of [H+] < 10–7 mol/L. Often one of these
concentrations can be neglected when taking sums or differences when it is small relative to other
terms.

Importance of Solvent
In water, the pH typically varies in the range 0–14. However, because of the definition, strong

acids at high concentrations can have negative pH. In ammonia, however, the pH varies from 0 to 32.
Therefore, the environment is important in determining the range of pH.

18.6. Thermodynamic Network for Electrolyte Equilibria
Equilibrium Constants

Suppose an electrolyte has a chemical formula C2A where C+ is a monovalent cation and A2– is a
bivalent anion. Succinic acid, H2Succ, is an example of an electrolyte with this formula. An
equilibrium network can be created as shown in Fig. 18.2. An electrolyte with an arbitrary C2A
composition is shown, with the expectation that readers can properly generalize the network for a
specific electrolyte. If completely general notation was used, the figure notation would be unwieldy.
While consideration of simultaneous equilibrium between solid, liquid, and vapor phases is rarely
necessary, certain subsets of the general network are very common. For example, when an aqueous
solution of succinic acid is saturated with solid H2Succ, the aqueous solution contains H2Succ,
HSucc2–, and H+ and the prevalence of a particular species depends on the pH, but the H2Succ in the



vapor is probably negligible.

Figure 18.2. Reaction network for an example electrolyte where C is a monovalent cation and
A is a divalent cation. The equilibrium constants are related as explained in the text.

Fig. 18.2 emphasizes that the undissociated electrolyte species is the key connection to vapor-
liquid equilibria, and also can be used for solid-liquid equilibria. It is proven in Section 18.23 that
the apparent chemical potential of C2A in the liquid phase , is equal to the chemical potential of the
dissolved undissociated species µi(aq):

This may seem odd in the case of a strong electrolyte where the amount of undissociated species is
infinitesimal, but it is in fact rigorous. From an engineering perspective this apparent chemical
potential is important because it is used to relate the apparent chemical potential to the component
chemical potentials in the phases where the electrolyte is undissociated.

Note that the reaction for the solubility product constant

can be obtained by summing the reactions for melting along with the two dissociation reactions.
Since the Gibbs energies are related to the logarithms of the equilibrium constants, we may write

Thus, the solubility of electrolytes is frequently written using the solubility product constant, Ksp
instead of representing all the intermediate dissociation behavior. While this is rigorous
thermodynamically using activities, an approximate solution is often used with concentrations rather
than activities.

Whether a given electrolyte acts as a strong or weak electrolyte is sometimes unknown at the time a
model is required for process design. In other cases, the electrolytes are assumed to act as strong
electrolytes for convenience. A confusing aspect of the literature is that often the reader must infer
whether a strong electrolyte model is applied depending on whether the dissociation constants are
used. When a weak electrolyte is modeled using a strong electrolyte model, the adjustable activity
model parameters can be forced to fit, but often the parameters are unusual. For example, when
activity coefficients are determined for a weak electrolyte assuming that it is strong, the activity



coefficients are very small. This is because the assumed “true” concentration of ions is much larger
than the actual concentration, so the activity coefficients must be smaller than expected to match the
experimental activities.

18.7. Perspectives on Speciation
An important consideration about speciation is the dissociation reaction stoichiometry of reactions

that form H+. The concept of hydration was discussed in Section 18.1. Positive ions usually require
water of hydration, and do not float freely in solution as implied by Eqn. 18.4. For example, the
species H9O4

+ is spectroscopically identifiable even at the normal boiling point of water.10 However,
the generally accepted method of writing the reaction is given by Eqn. 18.4 with the understanding
that it is actually hydrated. Nevertheless, omitting the water of hydration in the reactions can lead to
unexpected results from calculations in mixed solvents. When water is the dominant solvent, there is
sufficient water to hydrate the ions. However, at lower concentrations of water, Eqn. 18.4 has no
requirement for water of hydration to be present. A more realistic method of writing reactions that
form H+ is to write them including at least one water, for example,

where H3O+
(aq) is known as the hydronium ion. For acetic acid, the ionization forming hydronium

can be written

In this manner, at least some water of hydration must be present for ionization to occur. When the
dissociation reactions are written this way, it has no effect on the equilibrium constants from the
literature which are measured when the activity of water is essentially one. On the other hand, when
Gibbs energies are used, the Gibbs energy and enthalpy of formation of the hydronium includes the
corresponding energy and enthalpy of formation for water, resulting in the same Gibbs energies and
enthalpies of reaction for Eqns. 18.14 and 18.4, and the same equilibrium behavior when water is the
dominant component. When the speciation is calculated in a mixture with small concentrations of
water where the activity of water deviates from unity, Eqns. 18.4 and 18.14 lead to different results.
For example, the dissociation of H2SO4 requires water, as seen in Fig. 18.1, but a dissociation in
terms of H+ would result a dissociation in pure sulfuric acid. The requirement for a solvent in the
dissociation reaction is more realistic in aqueous systems.11 Despite the importance of the hydration
water in calculations, the convention in the literature is to write the reactions using only the H+ ion,
and we follow that convention here where we work with dilute aqueous solutions.

The nature of hydration changes with concentration. As the ion concentrations increases, the ions
are often paired with counter-ions and are called ion pairs. Ion pairs often contain water between
them. Under other circumstances water is excluded from within the pair and the pair is hydrated. The
ion pair phenomenon is used in ion pair chromatography (IPC) to influence the retention time using
ions that are bulky or interact strongly with the solid stationary phase.

Charge Balance
When ions are dissolved in solution, an extra constraint of charge balance is needed, which is often

called the condition of electroneutrality. The net charge on a solution must be zero. Electroneutrality



can be expressed using moles, molarity, or molality. This condition provides an important constraint
that is used in all calculations, supplementing the component balances and equilibrium constraints.
Note that the charge balance always uses concentrations, not activities.

Approximate Calculations
We begin quantitative discussion by using concentrations instead of activities. We expect that

students can make the transition to activities as their skill level develops. Further, as we show, the
calculations using concentrations are frequently the first step to a more rigorous solution including
activities. To avoid clumsy notation, we write many equilibrium constant relations using
concentrations instead of activities. When a solution is dilute, we also use concentration in place of
molality without further description. Near the end of the chapter we provide a complete example
using activities.

18.8. Acids and Bases
The terms strong and weak are used when referring to acids and bases in a manner similar to salts.

The terms do not imply anything directly about pH. Rather, like other electrolytes, they refer to a
compound’s degree of dissociation. When the dissociation constant is extremely large the acid/base is
considered strong; when dissociation is incomplete the acid/base is considered weak.

Strong Acids/Bases and the Leveling Effect
The magnitude of the dissociation constant (or the associated Gibbs energy of dissociation)

determines whether an acid/base is strong or weak. An acid is a proton source and reacts with the
solvent (usually water) to create an increased activity of [H+] or [H3O+]; for example, AcOH in Eqn.
18.15 is a proton donor and an acid. HCl is a strong acid and dissociates totally at common
concentrations to form H3O+ (denoted as H+) and Cl–. A base acts as a proton sink, reacting with
water to withdraw a proton and increase the hydroxide activity, as shown by the reaction of the weak
base ammonia with water,

Hydroxides are also common strong bases, such as NaOH or Ca(OH)2. These strong bases are a
direct source of hydroxide because when they dissociate the [OH–] must be high to balance the
positive cation charges in solution.

The strength of an acid or base is determined by the solvent, which governs the degree of
dissociation/reaction. Table 18.2 illustrates acid/base strength. Strong acids are to the upper left.
Strong bases are to the lower right. Weak acids are in the left column below H3O+. Weak bases are in
the right column above OH–. The reaction of H3O+ with water may initially look like little has
happened: . All acids in the left column above H3O+ are equally strong
when they are dilute in water because the protons released from the acid immediately react with H2O
to give hydronium ions. Thus, the strongest acid in water is H3O+ and any stronger acids are leveled
to be the same strength. In an analogous way, OH– is the strongest base that can exist in water. Any
other proton sinks added to solution from stronger bases react immediately with water to give OH–.
(Often these reactions are violent and superbases must be handled with care near water.) Strong



bases are leveled by water and do not produce a stronger base solution than an equivalent
concentration of NaOH. Sometimes organic chemists use strong acids or strong bases in non-aqueous
solvents to overcome the leveling effect.

Table 18.2. Reference Table for Relative Acid and Base Strengths at 25°C Based on pKa,water
= –13.995. pKb = 13.995 – pKa

Each acid in the left column in the table has a conjuate base in the right column. Similarly, each
base in the right column has a conjugate acid in the left column. Strong acids have weak conjugate
bases, and strong bases have weak conjugate acids.

Strong Acids
Consider the behavior of HCl in solution at an apparent molarity of CA. The behavior is

characterized by the dissociation of HCl (essentially complete) and the dissociation of water. Further,
a charge balance must exist in solution, yielding the following conditions

The next step is important and we use it throughout our calculations. Though trivial here, later we
find it important to combine the material balance and charge balance to arrive at a balance known as



the proton condition. The principle is to insert the known constants from the problem statement,
which often cancel to leave the intermediate and smaller concentrations. In this case no terms drop
out, but the proton condition becomes

Think about the size of the [H+] and [OH–] and how they are coupled to Ka,w. Suppose that CA =
10–2 mol/L. Then, by the coupling of the equilibrium and charge balance, because HCl is an acid, we
expect [OH–] < 10–7 mol/L by Eqn. 18.10, thus [OH–] << [Cl–] = 10–2 mol/L. The charge balance
involves terms that are very different in size. Now, when CA > 10-6.5, it is a good approximation to
ignore [OH–] and we can calculate pH = pCA. At low acid concentrations below about 10-6.5, we
must insert the dissociation constant for water into the charge balance, to obtain [H+] = CA +
Ka,w/[H+] and solve the resultant quadratic equation for [H+]. The behavior of strong acids is plotted
in Fig. 18.3. Note that a good approximation for the strong acid curve on this log-log plot is a
diagonal line with slope –1 running from (0,0) through (7, –7). It is an excellent approximation
from (0,0) through (6.5,–6.5).

Figure 18.3. Flood diagram showing the behavior of strong monoprotic acids, weak
monoprotic acids, salts of weak monoprotic bases, and strong monovalent bases.

Strong Bases

Consider a strong monovalent base, such as [OH–]. In a solution of apparent molarity CB of NaOH
the constraints are



Combining the material balance and charge balance results in the proton condition

When CB > 10-6.5, it will be a good approximation to ignore [H+] and we can calculate pH = 14 –
pCB. At low concentrations, the quadratic equation becomes [H+] + CB = Ka,w/[H+]. As evident in
Fig. 18.3, a good approximation for the strong base curve on this log-log plot is a diagonal line
with slope 1 running from (7,–7) through (14, 0).

Weak Monoprotic Acids
Consider a weak monoprotic acid such as acetic acid, pKa,A = 4.7. We denote as the undissociated

acid as HA. The weak acid requires an additional dissociation reaction because it is incomplete. The
material balance is written including the acid HA and conjugate base A–, because the acid is only
partially dissociated. The acid equilibrium constant is required to quantify the dissociation.

The rigorous solution to pH at a given concentration can be obtained from Eqn. 18.26 by
eliminating [HA] and [A–] in terms of [H+] and [OH–] and then eliminating [OH–] using [OH–] = Kw/
[H+], resulting in a cubic equation,

Solutions of the cubic for various pKa,A values and concentrations are shown in the solid lines on
the left side of Fig. 18.3. The graph can serve as a useful guide for monoprotic weak acids, but is only
applicable for the charge balance of Eqn. 18.28 when no other ions are present. Rather than solving
the cubic, or becoming too reliant on the graph, real problems usually involve other ions, and thus the
Flood diagram and cubic have limited utility. Instead, we utilize two equations that relate [A–] and
[HA] to CA and [H+] and are always applicable, even when other ions are present. Combining the
material balance with Eqn. 18.26 to eliminate [A–] results in Ka,A = [H+](CA – [HA])/[HA] which
becomes

Combining the material balance with Eqn. 18.26 to eliminate [HA] results in Ka,A = [H+][A–]/(CA

– [A–]) which becomes



Note that the denominators of the last two equations are the same and we need to know the pH to
solve for the concentrations. Example 18.4 shows how these equations are useful for problem
solving.

Weak Monoprotic Bases

Consider a weak monovalent base such as acetate ion, denoted as A–, pKa,B = 9.3, which might be
added to solution as sodium acetate. The sodium acetate dissociates completely, making it a strong
electrolyte, but the acetate equilibrates with water to form undissociated acid (HA) and hydroxide, 

, so sodium acetate is called a weak base. The material balance is written for
the cation in this case as well as the two forms of A, and the governing equations are:

In an analogous way to treating weak acids, the material balance and charge balance are combined
to eliminate [HA] and [A–] in terms of [H+] and [OH–]. Then the dissociation constant of water is
used to eliminate [OH–], resulting in

The same equation results from a weak neutral base with capacity for one ion, such as ammonia.
Note, however, for ammonia that the base NH3 is neutral and the conjugate acid NH4

+ is charged, but
when the charge balance is modified and the same method is used, Eqn. 18.36 results. As with a weak
acid, the pH values at various base concentrations have been plotted in Fig. 18.3. As with weak
acids, the charge balance that leads to the cubic equation does not hold when other ions are present.
However, we can solve problems using Eqns. 18.30 and 18.31. Thus, we develop a single method of
solution regardless of whether acid or base is added to water. Note that

As an example, consider the fluconazole shown in Fig. 18.4. This is a drug used for treating fungal
infections. Fluconazole is a base that is protonated in water, depending on pH:



Figure 18.4. Structure of Fluconazole.

By lowering the pH, the [OH–] is lowered, driving the reaction to the right. At high pH values, the
reaction shifts to the left, as we show in Example 18.4. The equilibrium shift affects solubility as we
consider in Example 18.8 on page 726.

Example 18.4. Dissociation of fluconazole
Fluconazole is a drug used for treating fungal infections. Behavior of drugs at various pH

conditions is important because the stomach system is at low pH, but the intestinal system has a higher
pH. Thus, models for the dissociation and solubility are desirable. Fluconazole equilibrium written
as Eqn 18.38 can be modeled with the expression

where fluconazole and its ion and the hydroxyl are on the molality scale and water is on the Lewis-
Randall scale. Determine the percentage of fluconazole dissociated at pH 7 and pH 1.5 when the
apparent amount of fluconazole in aqueous solution is 1.5E-3m. The molecular weight of fluconazole
is 306.27. Assume ideal solutions.

Solution
First consider the chemical reaction to identify the acid and base. In this case, the fluconazole is the

base and the fluconazole+ is the acid. Therefore Eqn. 18.39 represents Ka,B. As with this example, it
is common in the literature that acids and bases are not explicitly identified, and recognition is an
important step in the solution. We can rewrite the reaction in the acid form as,

Fluconazole+ + H2O  Fluconazole + H3O+

(We adopt this approach of writing reactions in the acid form as a standard method, as further
implemented in Section 18.9 below.) For Eqn. 18.39, the equilibrium constant at 298.15 K is Ka,B =
6.181E-13, or Ka,A = 10–14/6.181E-13 = 0.01617, or pKa,A = 1.79. Therefore, the fluconazole is
predominately protonated below pH = 1.8 and largely neutral above. The calculations should bear out
this rule of thumb.

At pH = 7 we have from Eqn. 18.30,
[Fluc+] = Cfluc[H+] / ([H+] + Ka,A) = 1.5E-3m(10–7)/(10–7 + 0.01617) = 9.27E-9m. Therefore,

[Fluc] = 1.5E-3m, and the fraction protonated is 9.27E-9/(1.5E-3)·100% = 0% (trace).
At pH = 1.5, the system is near the pKa,A and both terms are important in the denominator, [Fluc+]

= Cfluc[H+] / ([H+] + Ka,A) = 1.5E-3m(10–1.5)/(10–1.5 + 0.01617) = 9.9E-4m. Thus, [Fluc] = 1.5E-3m



– 9.9E-4m = 5.1E-4m. The concentration of protonated species is higher, as expected. The fraction
protonated is 9.9E-4/(1.5E-3)·100% = 66%.

Perspectives on Calculations
Calculations for electrolyte systems can be challenging to converge because the concentrations of

important species vary by several orders of magnitude. Each pH unit is an order of magnitude; thus, at
pH 2 compared to pH 7 the [H+] is five orders of magnitude larger. Calculations using Excel Solver
are insensitive to the latter condition if the Solver tolerance is set to 1E-3! Also, issues may occur if
iterating on values near zero because the concentration of 1E-3 can easily jump to a negative value on
the next iteration if not constrained. Iterations can also converge slowly for some situations.12

Because charges are involved, the net charge in a solution must be zero; a charge balance is required
when iterating on concentrations. However, a charge balance often involves adding terms that are
different by orders of magnitude. There are several general recommendations.

1. Develop a good initial guess using techniques that we discuss below. The pKa,A
represents the pH condition where the reaction coordinate will be 50% between acid
and conjugate base and thus their concentrations will be equal.
2. Constrain concentrations to be positive or use logarithms of concentrations for iterations
when using automated equation solvers.

 The pKa,A represents the pH condition where the reaction coordinate will be 50%
between acid and conjugate base, and thus their concentrations will be equal.

3. Set the convergence criteria in Solver or optimization routine to an extremely small
number (1E-30) and the number of iterations to a high number.
4. Check results to ensure convergence, especially if the specified number of iterations is
reached.

How does one generate a good first guess when the concentrations differ by orders of magnitude?
The best way to generate a good first guess is to use a Sillèn diagram. Sillèn diagrams, originally
developed by Swedish chemist Lars Gunnar Sillèn in the 1950s, are quick to sketch. The next section
discusses how to construct and use a Sillèn diagram. Often the results from the Sillèn are sufficiently
accurate for routine practical applications or as first estimates for more detailed calculations using
activity coefficients.

Other important aspects of the initial examples include the standard states, concentration units, and
composition independence of K. The typical convention used for standard states of charged species is
similar to Henry’s law, but subtly different. Without belaboring the details until later in the chapter,
the activity coefficients for the charged species are unity at infinite dilution, and we will disregard the
activity coefficients for the introductory examples. The corrections are typically small when the
concentrations of ions (measured by the ionic strength) is low, less than approximately 10–2 m. We
will use this approximation at even higher concentrations to develop problem-solving strategies. The
reader should be cautioned that the activity coefficients for charged species can become large rapidly
and can be very large, but typically above 5m. A good understanding of the standard state for water



and uncharged solute species is also important. The standard states for water and uncharged solutes
are different from that used for charged species. Uncharged solutes, such as molecular acids and
bases, like acetic acid or ammonia, are treated with Henry’s law. This shares a similarity to the
treatment of charged species, because the activity coefficients are unity. Water, on the other hand, is
treated relative to the Lewis-Randall standard state of pure water. Because the water concentration
on a mole fraction basis is nearly one, it will be sufficient to approximate the activity coefficient of
water as one and the activity of water will be approximately one. In summary, we extend the concepts
of using unsymmetric standard states introduced in Chapter 11.

 Ions are treated with a molal standard state. Aqueous molecular solutes are treated
with Henry’s law. Water is treated with the Lewis-Randall rule.

Another important approximation is that we use molar concentration rather than molality to work
the examples early in the chapter. This follows the conventions used in introductory chemistry, and,
as shown in Table 18.1, can be a good approximation at low concentrations. Technically, the units
should be molality for the electrolyte species, and certainly the examples can be reworked with those
units, but use of molality requires more unit conversions with little pedagogical advantage. The later
examples in the chapter use molality to demonstrate the more rigorous approach.

Temperature, Pressure, and Composition Effects on K
Initially, the discussions and examples provide values for equilibrium constants. Commonly in

introductory chemistry texts values are provided for 298.15 K, though the designation is often omitted
in those texts. The values of Ka change with temperature as with any reactive system.

In Chapter 17, the equilibrium constant did not depend on pressure. This is not the case for
electrolytes when the typical electrolyte standard state is used for ions, though it is common to neglect
it as a first approximation. When an ion is dissolved in water at infinite dilution, the hydrogen
bonding is disrupted resulting in a pressure-dependence for the infinite-dilution standard state. We do
not develop the details further in this text, but readers should consult advanced texts or handbooks
when working at high pressures.13

There are two conventions to correct for solution nonidealities. Extending the concepts of Chapter
17, the most rigorous method of including solution nonidealities is to use activity coefficients as we
show later. However, another method used in the literature is to determine the dependence of K = Ka
/ Kγ on ionic strength of the solution, and then proceed with calculations using K rather than Ka. This
is possible because to the first approximation the activity coefficients depend on charge and ionic
strength and are independent of species (as we show in Section 18.15). Therefore, when working
with values from the literature, some care is necessary to discern if the authors’ values for K are at
the standard states or if they are corrected for ionic strength. When the dependence of ionic strength is
included and K is substituted for Ka, the methods developed below can be used directly by replacing
Ka with K in the calculations.

18.9. Sillèn Diagram Solution Method
Monoprotic Acids and Bases



Seven main steps are necessary to solve electrolyte problems using a Sillèn diagram (cf. Fig.
18.5), which is similar to a Flood diagram. We summarize the steps and then work an example for
sodium acetate. Skim the procedure initially, and then follow closely with Example 18.5.

Figure 18.5. Sillèn plot for Example 18.5, acetate with an overall concentration 0.01 M.

1. Create a coordinate system like the Flood diagram. (A template is available on the
textbook web site.) Draw straight lines for the strong acid and strong base lines. The detail
of the taper at pH = 7 should be ignored, and cross the lines. Note that the sum of the two
lines is always –14 on the log scale and represents the ion product for water. Label these
lines [H+] (left) and [OH–] (right).

Some rules of thumb are helpful for plotting on common logarithmic coordinates.
Note that when [B] = 2[A], the ordinate of [B] on a log10 scale is 0.3 units higher than
[A]. Likewise, when [B] = 0.5[A], then the [B] ordinate will be 0.3 units lower. A
factor of 5 is 0.7 units. And of course a factor of 10 is one unit. For convenience the
pairs of (linear factor, log10 translation) are (2, 0.3), (3, 0.47), (4, 0.6), (5, 0.7), (6,
0.78), (7, 0.85), (8, 0.9), (9, 0.95), (10, 1).

2. Write the material balance for the dissociating species to relate the apparent species to
the species in solution; for example, Eqn. 18.32.
3. Write the equilibria relations using the dissociation constants for weak acids or bases. If
the acid/base is strong it will completely dissociate, and thus the relation is not needed.
Always write the reactions in the acid form (even if bases are involved); for example,
Eqn. 18.26 for acetate or acetic acid. Write the dissociation reaction for water. Using the
acid form provides a consistent solution strategy, but is not theoretically required.
4. Write the electroneutrality constraint.
5. Sketch Eqns. 18.30 and 18.31 without calculations on the diagram using these steps. (See
the example.) The steps are: (a) create a system point at CA (or CB) and pKa,A; the



procedure always uses pKa,A, even for bases; (b) create an acid/base intersection point
at (pKa,A, logCA – 0.3). (The value of 0.3 represents a decrease of 50% in the
concentration, which is where the acid and base concentrations will match.); (c) sketch
diagonal lines with slope +1 and –1 (parallel to the H+ and OH– lines) below CA that
project through the system point but extend downwards starting about logCA – 1; (d) draw
horizontal lines on either side of the system point leaving a gap of approximately 1 pH unit
on either side of the system point and label the line on the left (low pH) as the acid and the
line to the right (high pH) as the base; (e) connect the sloping lines with the horizontal
lines with smooth curves that pass through the acid/base intersection point.
6. Decide which concentrations are largest and which are least significant. Let Ci be the
apparent concentration. The goal is to simplify the balances and provide a good guess for
true concentrations. This is almost always done by converting the charge balance to a
proton condition by inserting the mass balance to eliminate terms that are largest and leave
smaller terms that are more similar in magnitude. Use the diagram as a guide to decide
which concentrations are insignificant in the pH range expected. The goal is to use the
proton condition to identify the intersection of the positive and negative charges of the
proton condition. Unless some of the diagonal curves are very close to each other this will
be easy. There can be various proton conditions that are equally valid when many ions are
present at similar concentrations. Hints: Remember that each unit on the log scale is an
order of magnitude. Acids by themselves result in pH < 7; bases alone result in pH > 7;
salts of a strong acid and weak base (e.g., NH4

+Cl–) are acidic; salts of a weak acid and
strong base (e.g., NaOAc) are basic.
7. Check the result. The results can be checked by iterating on charge balance pH by
inserting Eqns. 18.30 and 18.31 or the analogs.

Example 18.5. Sillèn diagram for HOAc and NaOAc
Sodium acetate, NaOAc, is dissolved in water at an apparent concentration of CB = 10-2 mol/L.

Construct a Sillèn diagram and estimate the pH. For acetic acid, pKa,A = 4.76 at room temperature in
dilute solutions.

Solution
Here we replace the generic A– with OAc– to denote acetate. The Sillèn diagram is presented in

Fig. 18.5. The approximate solution (thick lines) is shown below superimposed on the exact
equations (thin lines).

Step 1: The lines for [H+] and [OH–] have been drawn and labeled in the figure.



Step 5: See the diagram labels denoting steps 5(a) and 5(b). Referring to the procedure above
indicates the system point (x) should be at CB and pKa,A. On the diagram below, use a straight edge to
verify that the lines for step 5(c) extrapolate through the x from step 5(a). Note that the curves for step
5(e) are not shaded for clarity, but it is obvious that the curves could be easily drawn through o.
Recall that step 5 plots Eqns. 18.30 and 18.31 without calculations.

Step 6: Develop the proton condition. This step is very important and can be the most confusing. It
is best understood by using equations together with the diagram. Since we have dissolved the salt of a
weak acid and strong base, we expect the pH to be above 7. Looking at the diagram in this range,
[OAc–] >> [HOAc] and we will be unable to reliably calculate [HOAc] = CB – [OAc–] with the
material balance because the last two terms are nearly equal. Let us use the material balance to
eliminate the large terms [Na+] and [OAc–] from the charge balance. Note that we can replace [Na+]
with CB and [OAc–] = CB – [HOAc]. This causes all the largest terms to drop from the charge
balance, giving

Eqns. 18.40–18.43 are now all condensed to using Eqn. 18.44 with the graph, looking for where
the proton condition is satisfied. Looking at the lines on the graph where pH > 7, it is obvious that
[HOAc] is almost three orders of magnitude larger than [H+] above pH = 5. Thus, the left side of the
proton condition becomes [HOAc] + [H+] = [HOAc] + ... where ... denotes a very small number. The
proton condition becomes [HOAc] + ... = [OH–], and the solution is given for practical purposes by
the intersection of the [HOAc] curve with the [OH–] curve as shown in the diagram. The approximate
concentrations are

pH = 8.4, pOH = 14 – 8.4 = 5.6, [HOAc] = 10–5.6, [Na+] =[OAc–] = 10–2

Step 7: The proton condition is in terms of Eqns. 18.27 and 18.30, and avoiding taking differences,
[OH–] = 10-14/[H+] = [H+] + [HOAc] = [H+] + CA[H+] / ([H+] + Ka.A)

Rearranging for successive substitution on [H+], and inserting the initial guess of pH = 8.4, iterate
on the highest power of [H+],

pH = 8.38. Plugging this back in results in no further changes. Recall that if successive substitution
results in divergence rather than convergence, that the equation needs to be rearranged. See Appendix
A, Section A.4.

This example has demonstrated that a relatively complex problem can be solved rapidly with a
quick sketch. A key simplification used in this introductory example was that [H+] << [HOAc]. Do
not generalize this approximation. If the same problem is repeated with CB = 10–4 mol/L, this
translates the lines for [HOAc] and [OAc–] downwards two orders of magnitude and the lines for
[H+] and [HOAc] become very close. The approximation [H+] << [HOAc] is not valid then. Instead,



the left side of the proton condition, [H+] + [HOAc], can be calculated at a selected point from the
two lines. The [H+] + [HOAc] sum becomes a line through this point with the same slope as the
individual lines. The answer is where this “summed” line crosses [OH–].

A remarkable feature of this solution technique is that the solution to the four simultaneous
equations did not require sophisticated algebra or a cubic equation. As an exercise, consider a
solution of acetic acid, CA = 10–2 mol/L. The diagram is the same as used above. However, the
material balance and proton condition are different. Use the diagram to show that the pH = 3.35
approximately.

Polyprotic Acids and Bases

The phosphoric system (H3PO4, H2PO4
–, HPO4

2–, PO4
3–) and the CO2 (CO2, HCO3

–, CO3
2–)

systems are important for both biology and environmental applications. Succinic acid, a dicarboxylic
acid produced by fermentation, is expected to become more widely produced via fermentation in
future years, typically as a salt. Amino acids, the building blocks for proteins, combine a basic amine
and a carboxylic acid on the same molecule. Let us begin by considering the nonvolatile phosphate
system.
Phosphate System

The equilibria can be written (using all acid equilibrium constants, but without the A subscript for
convenience),

The material balance on phosphorous is

Defining a variable αi to denote the fraction of each species relative to the total phosphate
concentration where the subscript denotes the number of protons,

Dividing the material balance by [H3PO4], we find the reciprocal of α3,



Inverting and simplifying,

Then α2 as the fraction of acid with three protons is

Recognizing the recurring relation between the fractions, the arguments for one and no protons are

The Sillèn diagram for the phosphate system is slightly more complicated than a monoprotic
system, but can still be quickly drawn by hand. The concentration of each species i can rigorously be
calculated at each pH by αiC where αi is calculated from Eqns. 18.51–18.54. The exact
concentrations are shown in Fig. 18.6 for C = 10–2 mol/L. The upper part of the Sillèn diagram is
analogous to the monoprotic diagram. The difference is that the slopes change to +2 or –2 when the
species concentration crosses the pKa,A for a neighboring dissociation. The curve passes through a y
coordinate approximately 0.3 “log10 units” below the point where the upper extrapolated line crosses
the neighboring pKa,A. Though not apparent from this diagram, at very low concentrations when the
species concentration crosses additional pKa,A values, the slope increments (decrements) again by
one.



Figure 18.6. Phosphoric system at C = 10-2 mol/L discussed in Example 18.6.

Example 18.6. Phosphate salt and strong acid
A solution of NaH2PO4 and HCl is prepared such that the total phosphorous concentration is 1E-2

M and the total Cl concentration is 5E-3M. Calculate the pH and concentrations of species present.

Solution
Begin a problem with multiple ions with the material balance. The material balances on the

sodium, chloride, and phosphate are:

Note the coefficients on the ions in the charge balance. The Sillèn diagram for the phosphate system
is shown below. It may seem daunting that so many species are present, but when you look at the
Sillèn diagram, notice that only two phosphate species at a time are important at any pH range. This
occurs because the pKa,A values are well separated. The curves are drawn with the exact relations,
but can be quickly sketched. Practice the sketch using the rules given above and compare with Fig.
18.6.

Steps 1-5 of the procedure have already been executed.
Step 6. The proton condition is developed by eliminating [Na+] and [Cl–] using the material

balances since they are both known constants. The material balance for phosphate is also inserted,
resulting in



which becomes

Understanding where to find the solution requires some thought and reasoning rather than a direct
numerical manipulation. Both terms on the left side of the proton condition are almost equal at 2.5 <
pH < 7. The values are added on the short dashed line marked “1” (since they are virtually equal in
most of the range, the sum is double, or about 0.3 units higher on the log10 scale). Note that [H2PO4

–]
does not appear in the proton condition. On the right-hand side, the term 5E-3 dominates at pH < 6.
Solutions at high pH are impossible because the decreasing right-hand side is too small to balance the
value of 5E-3 plus increasing concentrations of the negative phosphate and hydroxide ions in the
proton condition. Therefore, the solution must be a low pH where the concentration of negative
phosphate and hydroxide ions in the proton condition are small. The solution occurs where [H+] +
[H3PO4] = 5E-3 (the line marked “2”), and pH = 2.6. The approximate concentrations from the
diagram are [H+] = [H3PO4] = 2.5E-3. Eqn. 18.45 simplifies to [H2PO4

–] = Ka1 = 10–2.15, [HPO4
2–] =

10–6.5, [Na+] = 1E-2, [Cl–] = 5E-3.
Step 7. The detailed calculations are often tedious. Inserting Eqn. 18.51 into the proton condition,

where the first three terms on the right side are negligible,

Inserting the initial guess,

Repeating the iteration results in [H+] = 2.44E-3, pH = 2.613. Note how close we were with the
graphical value of pH = 2.6.

Amino Acids



Amino acids are the fundamental building blocks from which all proteins are built. DNA encodes
the formulas used to assemble 22 standard amino acids into the multitudes of proteins. Proteins with
specific catalytic functions are called enzymes. Amino acids include at least one carboxylic acid
group and one amine group. The 20 amino acids summarized in Fig. 18.7 are encoded in the universal
genetic code. Together with selenocysteine and pyrrolysine which are encoded in special situations,
the 22 amino acids link together to provide the functionalities required for biological life by use of
various side chains. When biological machinery assembles amino acids into proteins, a carboxylic
acid from one amino acid is covalently bonded to the amine on the next amino acid. One end of any
protein backbone is an amine and the other end is a carboxylic acid. Note that some side chains in
Fig. 18.7 include acidic and basic side chains. These acidic and basic side chains lead to charges on
proteins, which change as a function of pH. Since biological systems usually have buffered pH near 7,
which is above the pKa,A for the carboxylic acids, those groups are in the conjugate base form,
leading to negative charges on the side chains. Similarly, basic groups below the pKa,A are
protonated. For example, serum albumin, a globular (round) blood protein, has negative charges on
the surface at physiological pH. At physiological pH, it has an intrinsic charge of -17 and binds 6
monovalent anions giving a total net charge of –23. At low pH, the intrinsic charge becomes positive
and the protein binds more anions. Hence the charge and binding change with pH.14 Serum albumin is
critical for controlling the intravascular hydrostatic pressure by regulating the osmotic pressure.
About half of the osmotic pressure is controlled by Donnan equilibria, as described on page 725.
Other proteins have a larger number of basic side groups than acidic groups. The basic side chains
are protonated at neutral pH, contributing a positive charge.



Figure 18.7. Summary of 20 amino acids encoded by the universal genetic code. The amine
and carboxylic groups on the bottom of each molecule are where the amino acid is linked into

the biomolecule. The acidic and basic side chains are shown uncharged.

Glycine

Glycine is the simplest amino acid. The side chain is simply a hydrogen; that is, there is no side
chain. For glycine, pKa,A1 = 2.35 for the carboxylic acid and pKa,A2 = 9.78 for the amine. Thus, the
amino acids combine the concepts of acids and bases with the concepts of a polyprotic system. The
species at various pH values and nomenclature are shown in Fig. 18.8. Note that the species at neutral
pH has a net charge of zero, but includes a positive and negative charge. Such a molecule with both
positive and negative charges is called a zwitterion (German for “hybrid ion”). This combination of
positive and negative charges results in large dipole moments for biological molecules at neutral pH.
The relevant equilibria are (written using acid dissociation constants, but omitting the A subscript):



Figure 18.8. Dominant species for glycine at various pH levels. pKa,A = 2.35 for the carboxylic
acid and pKa,A = 9.78 for NH3

+. The top line shows the nomenclature and the second line shows
abbreviations.

Example 18.7. Distribution of species in glycine solution
a. Calculate the pH of a 0.1 M solution of glycine.
b. What is the distribution of species for glycine at a physiological pH of 7.4?

Solution
A Sillèn diagram for glycine (Fig. 18.9) is sketched by the standard procedures.

Figure 18.9. Sillèn diagram for 0.1 M glycine discussed in Example 18.7.

a. The relevant equilibria are given in Eqns. 18.64 and 18.65. The material balance is

The charge balance is



The pH is expected to be near neutral because the glycine added is neither an acid
nor a base, though it has both functionalities. Look at the charge balance and the Sillèn
plot of concentrations near neutral pH. On the left-hand side of the charge balance, the
concentration of [H+] is about an order of magnitude smaller than [H2 Gly+] making
the total positive charge concentration about 1.1[H2 Gly+]. On the right side, [Gly–] is
over three orders of magnitude larger than [OH–]. Thus, the charge balance is
effectively

The answer is found at pH = 6.1. [OH–] = 10–(14–6.1) = 10–7.9 M. The glycine
species concentrations are quickly read from the graph, [HGly] = 10–2 M, [Gly–] =
10–4.65 M, [H2 Gly+] = 10–4.75 M. Note the glycine is almost totally in the zwitterion
form and the charged forms are about 3.5 orders of magnitude smaller. The final
verification of the concentrations is left as a homework problem. Note that if the
concentration of glycine was lower, [H+] would become more important in the charge
balance.

b. First, [OH–] = 10–(14–7.4) = 10–6.6 M. The glycine species concentrations are quickly read
from the graph, [HGly] = 10–2 M, [Gly–] = 10–3.4 M, [H2 Gly+] = 10–6.05 M.

Summary for Use of Sillèn Plots
Throughout this section, we have demonstrated the use of Sillèn plots for weak acids and bases,

and polyprotic systems including amino acids. We have demonstrated that the equilibrium relations
plotted on the diagram are not directly dependent on the other ions present in the system. The material
balance is often combined with the charge balance to yield a proton condition. The proton condition
focuses on the intermediate concentrations, by canceling out the overwhelmingly large concentrations,
enhancing precision. The proton condition is used along with the plot to determine an approximate
solution. In cases where the curves for the dominant species with the same charge sign in the proton
condition are close to each other, the curve values are added together and replotted to find the
solution graphically (cf. Example 18.6).

For polyprotic systems we have demonstrated that the distribution can easily be calculated by the
Sillén method (cf. Example 18.6). For the polyprotic systems in the examples, the pKa values were
well separated and each species has a pH where it is the dominant species and the species
concentration is virtually equal to the overall concentration, C. For example, in the case of glycine,
the intermediate species HGly is virtually equal to C in the range of 4 < pH < 8 (cf. Fig. 18.9). In
some polyprotic systems, the pKa.A values are close together—for example, in succinic acid, where
the species are H2Succ, HSucc–, and Succ2–. In these cases, the plot maxima in the intermediate
species concentration (HSucc– in the case of succinic acid) will not extend all the way up to C. When
the diagram is prepared, the regions with sloping lines should be drawn first. Then, if the maxima are
not obvious, the full equations for the distribution can be developed as illustrated in Example 18.6



and then plotted for the intermediate species.

18.10. Applications
To introduce the concepts of electrolytes, we started in Section 18.2 with examples of freezing

point depression, osmotic pressure, and boiling point elevation. Here we consider other applications
where some of the subtler effects of charges are important.

Buffers
When salts and acids that share a common ion are present in solution, the solution is buffered. A

buffered solution is resistant to changes in pH, and such behavior is critical in biology. For example,
blood is buffered to be at pH 7.4 with carbonates, and slight deviations can cause severe illness. The
buffering capacity is dependent on the concentrations of the acid and salt. For a given overall
concentration, the buffering capacity is best understood relative to a titration curve. The buffering
capacity (for a change in either pH direction) is greatest when the acid is “half” titrated. The
fundamental explanation for the buffering phenomenon is because the titration curve is steepest when
the acid is half titrated. For a monoprotic acid, this occurs when the acid and salt concentrations are
equal, and the buffered pH = pKa,A unless the buffer is very dilute such that the acid/base lines are
close to the [H+] or [OH–] lines on a Sillèn diagram. Consider a weak monoprotic acid HA (species
A) and the sodium salt NaA, (species B). A specific case would be a mixture of acetic acid and
sodium acetate in water. The equations are an extension of Eqns. 18.25–18.28:

The sodium material balance is inserted into the charge balance, and solving for [A–],

If this is substituted for [A–] in the acid balance,

Substituting into the equilibrium Eqn. 18.70,

When the [H+] and [OH–] are much smaller than CA and CB the right-hand side simplifies, resulting
in the Henderson-Hasselbalch equation:

The Sillèn graph method can certainly be used, but the Henderson-Hasselbalch equation is



convenient under proper conditions. When CA and CB are near [H+] or [OH–], the equation can lead
to absurd results. A better approximation is

The equations can be used iteratively from an initial assumed value of [H+] or [OH–].

Isoelectric Point and Ionic Strength
Proteins and biomolecules frequently have charged surfaces at neutral pH due to the carboxylic

acid and amine side chains. Basic amines are protonated at neutral pH values and acidic carboxylic
acids are deprotonated. When the biomolecules have a net charge, they repel each other, and are thus
more soluble, enabling them to provide important biological functions by remaining soluble. Two
important phenomena exhibited by charged molecules are the change in solubility as the pH is
changed, and the dependence of solubility on ionic strength (salt concentration).

First of all, as the pH is varied, the charges on the side chains change. The pH value at which the
biomolecule has no net charge is called the isoelectric point. Solubility is usually smallest at the
isoelectric point because the lack of net charges permits the large macromolecules to approach each
other and the large cooperative physical forces cause them to precipitate. Therefore, solubility
typically increases rapidly on either side of the isoelectric point. The isoelectric point is often
characterized by the pI which is the isoelectric point pH. Solubility of a milk protein β-lactoglobulin
is shown in Fig. 18.10.

Figure 18.10. Salting in and illustration of minimum solubility at the isoelectric point for milk
protein β-lactoglobulin as a function of pH and ionic strength. Gronwall, A., 1942. C.R. Trav.

Lab. Carlsberg, Ser. Chim. 24:185-200.

The solubility of biomolecules increases at low ionic strength when the ionic strength (ion
concentration) increases. This effect is called salting in and occurs because the ions in solution
screen the surface charges. This reduces attractions between positive and negative charges, even near
the isoelectric point. There are usually positive and negative charges when the net charge is zero, (cf.
amino acid and zwitterion section above) which lead to net attraction. However, at high ionic strength
(high salt concentrations), the opposite effect is seen and increasing salt concentrations result in
decreasing biomolecule solubility, known as salting out. Salting out occurs because the ionic strength
is so high that it screens the repulsive forces that would normally prevent precipitation. Thus, the
solubility increases with salt concentration at low salt loading, but decreases with salt concentration



at high salt loading, causing a maximum in solubility at intermediate salt concentrations. Observe in
Fig. 18.10 the salting in behavior and the minimum solubility near the isoelectric point at all ionic
strengths.

Donnan Equilibria
Membranes can have interesting effects when they are impermeable to certain ions or charged

species. DNA is a polyanion and requires cations to balance its negative charge. For example,
consider a membrane impermeable to DNA shown in Fig. 18.11 where an arbitrary DNA of charge
–z is shown in the presence of KCl. The chemical potential of the apparent KCl must be the same on
both sides of the membrane, resulting in

Figure 18.11. Illustration of Donnan Equilibria for DNA. DNA cannot cross the membrane. A
larger concentration of ions will exist on the β side, creating higher pressure on the β side due to

osmotic pressure.

Electroneutrality requires

Using concentrations to approximate activities and combining the charge and equilibrium relations
results in

It is clear that the concentration of potassium on the β side is larger due to the minus sign in the
parentheses. Similarly, manipulation for chlorine shows that the concentration on the α side is larger,
due to the plus sign in the parentheses:

What is the relative magnitude of the terms in parentheses in Eqns. 18.80 and 18.81? Substitute
Eqns. 18.80 and 18.81 into the left side of Eqn. 18.78, and it becomes obvious that the product of the
two terms in parentheses is 1. What may not be immediately clear is that mathematically there are
more dissolved species on the β side, creating a higher osmotic pressure on the β side. Hemoglobin
in red blood cells contributes to a Donnan effect because it is confined to the cells. Another
interesting effect is that counter anions such as chloride, bicarbonate, and hydroxyl can pass through
the membrane and impact the pH of blood because they are bases.



Solubility and Ksp

Dissociation of species can have a dramatic effect on solubility in water. Consider the behavior of
fluconazole in Example 18.4. How might the dissociation affect the solubility? Since the solubility is
dependent on the activity of the un-ionized species, the solubility goes up appreciably as the
equilibrium shifts to the protonated form below the pKa,A.

Example 18.8. Dissociation and solubility of fluconazole
In Example 18.4 the dissociation of fluconazole (fluc) was considered. The solubility can be

modeled using (on the molality scale)

Determine the solubility of fluconazole at pH 7 and pH 1.5 and the distribution of species in
solution at 298.15K. Assume ideal solutions.

Solution
This involves two simultaneous equilibria, dissociation and solubility. Note that the acid form of

the reaction equilibrium constant is
Ka,A = [fluc][H+]/([fluc+]aH2O)

Since the pH is specified, the solution is so dilute (thus aH2O = 1), and the Ka,A is constant, the ratio
[fluc]/[fluc+] is constant at a given pH. From the earlier example, at pH 7, the reciprocal is
[fluc+]/[fluc] = 0, and at pH 1.5, [fluc+]/[fluc] = 9.9/5.1 = 1.94.

At 298.15 K, KSLE = 0.018. Using the ideal solution approximation, [fluc] = 0.018 m. This is
independent of pH. At pH 7, virtually no [fluc+] is present and thus the solubility is 0.018 mol/L, or
using the molecular weight, 0.018 mol/L(306.27 g/mol) = 5.5 g/L.

At pH 1.5, the [fluc] = 0.018 m and [fluc+] = 1.94[fluc], thus the total solubility is 2.94(0.018) =
0.0529 mol/L, or 0.0529(306.27) = 16.2 g/L. The pH makes a large difference in the solubility!

Common Ion Effect
When compounds in solution share a common ion and one of the compounds is near or at the

solubility limit, addition of the other species can induce precipitation of the first. For example,
consider a solution of water saturated with KCl. If a small amount of NaCl is added to the solution,
additional KCl precipitates because the equilibrium is disrupted.

Because the activity of Cl is increased when NaCl is added, the activity of K must be decreased to
match Ksp, thus additional KCl precipitates. Likewise, KCl affects the solubility of NaCl near its
solubility limit.

18.11. Redox Reactions



Chemical reactions involving electron transfers are fundamental steps in diverse applications
ranging from biological systems to corrosion, batteries, and fuel cells. Electron losses are called
oxidations and reactions involving gains in electrons are called reductions. A simple acronym to
remember the conventions is OILRIG; oxidation is loss, reduction is gain. To balance electrons, an
oxidation reaction is always coupled with a reduction reaction, and the combined reactions are
termed redox reactions.

Redox reactions can be conducted in any phase. Even combustion of methane is a redox reaction
where carbon is oxidized into CO2 and O2 is reduced into water. Though “oxidation” sounds like it is
limited to reaction with oxygen, the process is much more general, relating to the loss of electrons.
The gas phase combustion of methane does not produce useful electrons. However, biological
oxidation carries out the oxidation of glucose in a series of smaller steps, capturing the electrons and
by coupling the favorable oxidation to otherwise unfavorable reactions. In a battery, the redox
reaction is enabled by electron flow through an external circuit and a voltage is generated. By
permitting the spontaneous redox reaction through an external circuit, we obtain electrical power.

Li-ion batteries power the majority of portable devices today. They are constructed of electrodes
of CoO2 and graphite (represented here as C6 to stress the aromatic ring structure and the way each
ring can host one cation). Li+ and e– are shuttled back and forth during discharge and charge. During
battery discharge, an oxidation of graphite is occurring at the anode, LiC6  C6 + Li+ + e– (remember
that oxidation is loss, so electrons are generated at the anode), and reduction of Co from Co+4 to Co+3

at the cathode, CoO2 + Li+ + e–  LiCoO2. The overall discharge reaction is LiC6 + CoO2  C6 +
LiCoO2. The electrons are carried through the external circuit while the Li+ are not capable of
flowing through the circuit, but travel through an electrolyte solution between the electrodes in the
opposite direction as the electrons. The combination of the electrodes and electrolyte is called an
electrochemical cell or battery. The Li-ion cell produces about 3.9V. To charge the cell, an opposing
voltage > 3.9V must be applied. The life of the cell depends upon chemical reversibility, side
reactions, and physical changes that may affect transport or the ability of the Li+ to be hosted by the
graphite sheets or the CoO2.

Half-Reactions
Redox reactions can be decoupled into the corresponding reduction and oxidation processes as we

have indicated with the battery example above. For example, look at the overall reaction for the
battery above and note that the reaction does not show the electrons! From the overall battery
reaction, how do we determine the two half-reactions, how many electrons are transferred, the
voltage, and the direction of electron flow?

As with other thermodynamic tables a reference is used to establish a relative scale. Because
reduction reactions are always coupled to oxidation reactions, measurement of absolute potentials is
not possible. The reference for redox reactions is to measure/tabulate reduction reactions relative to a
standard H2 electrode. In the standard H2 electrode, an acid solution is used to establish aH+ = 1
(pH = 0) at 298.15K and H2(g) is bubbled through the solution at 1 bar partial pressure;15 the reaction
2H+ + 2e-  H2(g) is conducted on a submersed platinum electrode. This reaction is a reduction of H+.
The direction of the reaction depends on whether the reduction potential for the other electrode is



greater than or less than that of hydrogen. The potential for hydrogen ion reduction is arbitrarily set to
zero at the standard conditions cited above, permitting determination of other reduction potentials.
The convention established by the International Union of Pure and Applied Chemistry, (IUPAC) is to
always tabulate the potential for reduction reactions.16 The oxidation potential is the negative of the
reduction potential. Standard reduction potentials determined at 298.15 K and molal activity of unity
(usually near 1 m) for a variety of reactions are tabulated in Appendix E.17 The half-reaction with the
higher reduction potential undergoes reduction at standard conditions in the electrochemical reaction,
regardless of the number of electrons in the half-reaction. The other reaction proceeds in the direction
of oxidation at standard conditions. The relation between the overall cell voltage and the Gibbs
energy of reaction at equilibrium is

Michael Faraday (1791–1867) established the concept of an electromagnetic field, and
also popularized the terms “anode,” “cathode,” “electrode,” “ion.”

where ne is the number of electrons transferred in the balanced pair of redox reactions, F is
Faraday’s constant 96,485 J/V, and E° = E°red – E°ox is the difference in reduction potentials of
both half-reactions (or you may wish to think of adding the reduction potential and the oxidation
potential). Note that the potential is measured per electron, and thus the potentials can be
combined without balancing. However, the number of balanced electrons is necessary to relate the
potential to the equilibrium constant, Gibbs energy, or nonstandard conditions. As discussed in
Section 18.6, Gibbs energies for steps are additive for an overall reaction; the principle can be
applied to the half-reactions, ∆G° = – neFE°red + neFE°ox, where E°red and E°ox both represent
reduction potentials. A redox reaction at equilibrium is not useful because there are no driving
forces. Instead, the direction of the reaction at nonstandard conditions is dependent on ∆G. The
principles of Chapter 17 also apply, even under nonstandard conditions, and the reaction goes
forward for ∆G < 0, and backward for ∆G > 0. We write

This is often presented as the Nernst equation. Also, since reactions frequently occur near 298.15
K, and log is more convenient than ln for quick calculations, the equation is frequently written with
values inserted,

Walther Nernst (1864–1941) is credited with development of the third law of
thermodynamics, for which he was awarded the 1920 Nobel Prize in chemistry.

where the last equation is limited to 298.15 K. The voltage of a cell is determined by E, not



directly by E°.

Balancing Redox Reactions
Suppose that you want to design a battery and evaluate the voltage that would be generated. The

conventional presentation of thermochemical information is organized in tables of half-cell reactions.
After determining the two half-cell reactions and finding them in tables, the two half-cell reactions
are balanced and then combined to determine the overall cell voltage. The steps to identify the half-
reactions and reaction direction are: 1) identify the oxidized and reduced species using oxidation
states (the procedure to determine oxidation states is summarized in Table 18.3)18; 2) break the
reactions into two half-reactions; 3) for each half-reaction, balance the number of atoms for the
species oxidized or reduced; 4) balance the change in oxidation state by adding the correct number of
electrons to one side of each half-reaction; 5) balance oxygen by adding H2O to one side of each half-
reaction; 6) balance the hydrogen by adding H+ to the appropriate side (the total charge on both sides
of the reactions should now be the same.); 7) look up the reduction potential for each reaction and
write the reaction with the smaller reduction potential as the oxidation reaction; 8) multiply the
reactions by the smallest integers such that when they are added the electrons cancel; and 9)
determine the Gibbs energy and equilibrium condition from Eqn. 18.85 or 18.86 for nonstandard
conditions. Note that if the reaction is under basic conditions, it may be more appropriate to work
with the basic form. Because OH– and H2O both involve H and O, it is easiest to balance with H+ and
then use the water dissociation reaction to convert the reaction as shown in Example 18.9.

Table 18.3. Procedure to Determine Oxidation States

 Steps to determine standard cell potential and direction of reaction.

Including Nonredox Reactions
Frequently, it is necessary to combine redox reactions with reactions that do not involve oxidation

and reduction, such as a dissociation or solubility, or use the dissociation reaction of water to convert
the acid form (reactions using H+) to a basic form (reactions using OH–). This is rigorously done
using the Gibbs energy of formation. To combine the reactions: (1) write all the individual reactions
balanced so that they add to give the overall balanced reaction as explained above and include the
desired nonredox reaction; (2) determine the Gibbs energies for the constituent balanced reactions;
(3) add the reactions and Gibbs energies together and then divide the overall Gibbs energy by F and
ne using the Nernst equation to find E°. The concepts for combining reactions are shown in Example
18.9 where acidic half-cell reactions are transformed to basic reactions.



Example 18.9. Alkaline dry-cell battery
Consumer portable electronics are commonly powered by ‘alkaline’ dry-cell batteries. These cells

use an alkaline paste instead of an aqueous solution. The moisture content is low to minimize leakage,
and the alkaline solution is used instead of acid because the degradation of the electrodes is slower in
alkali compared to acid. The relevant species are Zn(s), ZnO(s), γ-MnO2(s), and α-MnOOH(s). A new
battery has Zn(s) and γ-MnO2(s) electrodes.

a. Determine the balanced reactions for H+ and then transform them to use OH–. Then
provide the balanced overall reaction. (b) Determine the voltage generated by the cell
when [OH–] = 1 m and [OH–] = 1.1 m, and the Gibbs energy of reaction.

Solution
The oxidation states of Zn are 0 for Zn(s) and +2 for ZnO(s); of Mn are +4 for MnO2(s) and +3 for α-

MnOOH(s). Since the initial electrode is Zn(s) and γ-MnO2(s), Zn is being oxidized (losing electrons)
and Mn is being reduced during battery use.

a. For Mn, the half-cell reduction reaction is found to be γ-MnO2(s) + H+ + e–  α-
MnOOH(s), through the following procedure. Start with the Mn species (MnO2 and
MnOOH) on each side of the reaction (more reduced on the right). The reduction requires
one electron to go from +4 to +3, so one electron is added to the left. At this point, the O is
already balanced, and one H+ is added to the left to balance hydrogen. The total charge is 0
on each side of the reaction. To convert to the base form, we add H2O  H+ + OH–, giving
γ-MnO2(s) + H2O + e–  α-MnOOH(s) + OH– and the total charge is –1 on each side of the
reaction.

For the other electrode, the half-cell reduction reaction is found to be ZnO(s) + 2H+

+ 2e–  Zn(s) + H2O through the following procedure. After writing the Zn species on
each side (more reduced on the right), we note that the reaction requires two electrons
and add them to the left, water is added on the right side to balance oxygen, then 2H+

are added to the left side to balance H. The total charge is 0 on each side. To convert
to the base form, we add 2H2O  2H+ + 2OH–, giving ZnO(s) + H2O + 2e–  Zn(s) +
2OH–.

For the overall reaction, to balance electrons, two Mn must be reduced for each Zn
oxidized. Combining, Zn(s) + 2γ-MnO2(s) + H2O  ZnO(s) + 2α-MnOOH(s).

b. The voltage is found by taking the difference in reduction potentials found in Appendix
E. The standard potential is found by the differences in reduction potentials, E° = 0.3 – (–
1.26) = 1.56 V. The potential under operating conditions is given by

Since all the species except for H2O are solids, they exist in the pure state as a first
approximation. (In actual practice the MnOOH forms a solid solution with MnO2, but



we ignore the effect here.) The activity of water is near 1 in the paste and [OH–] does
not appear, and thus it has no effect on the equilibrium voltage. Therefore, the battery
should give a constant 1.56 V throughout its life.

Note that we are neglecting transport effects and the solid solution behavior. Thus,
the actual voltage drops as the battery dies owing in part to these effects. The Gibbs
energy of reaction is ∆G = –neFE = –2(96485)1.56 = –301 kJ/mol, a spontaneous
reaction when the circuit is closed.

Fuel Cells
Fuel cells offer many potential advantages for energy usage. They are similar to a battery in that

they involve oxidation at the anode and reduction at the cathode. Like the battery discussed above,
they also involve transport of molecular cations between the electrodes. The primary difference is
that the oxidizing and reducing species are considered to be “fuels” that either flow past the
electrodes, or are fuels that can be replenished.

Fuel cell technology is in a state of rapid change. Typical issues revolve around the economical
choice of fuels and the longevity of fuel cell devices. Nevertheless, the promise of converting
chemical energy into electrical energy without the limitations of the Carnot cycle is a significant
motivation. A biological fuel cell is considered in Example 18.11. The status of this topic is
addressed in an online supplement with particular emphasis on the thermodynamic aspects of this
technology.

18.12. Biological Reactions
Oxidation States and Degree of Reduction

Oxidation states, introduced in Section 18.11, provide an important balance condition for any
chemical process, but particularly for biochemical reactions and fermentations. Recall that glucose
oxidation to CO2 and H2O is an important energy-generating reaction in eurakyrotic cells to permit
synthesis reactions. The oxidation of glucose or other foodstuffs provides electrons for reducing other
species. For biological reaction networks, an electron balance can provide critical analysis of
feasible products. CO2, H2O, N2, and O2 in any mixture cannot sustain biological life in the absence
of other energy inputs. Therefore, such a mixture constitutes a useful reference point for a scale
known as the degree of reduction.19 The degree of reduction provides a means to compare the
overall electrons in a substance and the energy that can be gained by metabolically converting them to
a mixture of CO2 and H2O. Combustion of a carbon-containing substance with the generic formula
CfHaOb follows the balance,

It is easy to show using stoichiometry that r = f + a/4 – b/2. The oxidation state of oxygen in O2 is
0, and in products is –2. Thus, four electrons are transferred to oxygen atoms for each mole of O2.
The moles of electrons transferred to oxygen from the carbon compound are thus 4r = 4f + a – 2b,
where the degree of reduction multipliers are +4 for C, +1 for H, and –2 for O. Nitrogen, sulphur, and
phosphorous are often supplied to fermentations, and the reduction multipliers are selected such that



reduction numbers are zero in the supply.20 When the N supply is ammonia, the multiplier for N is
given a value of –3. For H2SO4 as the source, the multiplier for S is +6, and for phosphoric acid as a
source, the multiplier for P is +5. To apply an electron balance, the reduction multipliers are used,
not the oxidation states. Consider reaction of acetaldehyde. For acetaldyhde (C2H4O) the reduction
calculation is 2(+4) + 4(+1) + 1(–2) = 10; for O2 the calculation is r·2·(–2) = (5/2)·2·(–2) = –10; for
a net of 0 on the left-side. For CO2, 1(+4) + 2(–2) = 0, for H2O, 2(+2) + 1(–2) = 0, and the right-side
is also 0. Though each side is not always zero, the two sides will balance.

For carbon-containing compounds the degree of reduction, γred, is often expressed per mole of
carbon, (known as a basis of C-moles). For CfHaObNcSdPe,

Thus for acetaldehyde above, γred = 10/2 = 5 per C-mole. Glucose (C6H12O6), has a degree of
reduction of (4(6) + 12 – 2(6))/6 = 4 per C-mole. Hexane (C6H14) is a more highly reduced species,
with a degree of reduction of (4(6) + 14)/6 = 6.33. For molecules containing multiple atoms of
carbon, the degree of reduction can expressed in terms of moles or C-moles. For example, 180 g of
glucose (Mw = 180), can be described as 1 mole of C6H12O6, or as six C-moles of CH2O, (Mw = 30).
An average elemental formula for cell mass is CH1.8O0.5N0.2, with a degree of reduction of 4.2 per C-
mole, slightly higher than glucose. For compounds not containing carbon, the degree of reduction is
expressed per mole of that compound. For the compound HaObNcSdPe,

A fermentation can be represented with a pseudo-reaction, balancing inputs and outputs. For
example, on the basis of one C-mole of substrate CHaObNcSd,

CHaObNcSd + Yo(O2) + Yn(NH3) + Yaux(CHe OfNgSh) → Ybiomass(CHiOjNkSl) + Yproduct(CHm
OnNpSq) + YCO2

(CO2) + Yw(H2O) + YS(H2SO4)

where the Y values on the left are for the nutrients and on the right are for the products and by-
products. The number of moles for each species is the value of the corresponding coefficient Y.

The number of electrons must balance for reactants and products using the degree of reduction
relative scale. An electron balance is a useful method for performing mass balances on fermentation
processes. The number of electrons in a feed or product is simply ∑(C-moles or Y)iγi. Thus, you can
see that if you envision a biological process converting a mole of glucose to a mole of hexane, the
fermentation needs an additional source of electrons to perform the reduction and the required C-mols
of the substance supplying the electrons can be calculated. Some fermentations “fix” CO2, such as the
succinic acid (C4H6O4) fermentation. CO2 and water have a degree of reduction of 0, and succinic
acid has a degree of reduction of 3.5, so 3.5 electrons must be furnished from some other source for
each C-mole of succinic acid produced (14 electrons per mole of succinic acid). Roels19 has
presented a simple approximate correlation between the degree of reduction and availability and
degree of reduction and heat of combustion. Applying the availability concepts from Section 4.12
(with different notation), Roels analyzes heat production and irreversibilities in aerobic and
anaerobic fermentations. Grethlein, et al. used electron balances to determine CO and CO2 utilization



in syngas (mixtures of H2, CO, CO2) fermentations to produce methanol.21 Shuler and Kargi show that
the combination of the electron balance and elemental balances together can be used to determine the
fraction of product, biomass by-product, and fraction lost to CO2.22

Binding Polynomials
To treat driving forces for reactions such as electron transfers and chemical equilibria, transformed

Gibbs energies of formation are used along with their related apparent equilibrium constants. To
perform the transformation, we use a binding polynomial when a species can exist in several bound
states. Here we discuss binding polynomials that are helpful for relating the apparent molar
concentration to the concentrations of individual species.

When we discussed H3PO4 in Section 18.9, we developed a recurring relation for the dissociation
in Eqn. 18.50. In that section, we considered H3PO4 to be the “parent” molecule that lost successive
hydrogens with each dissociation. However, an alternative perspective is to consider PO4

3– to be a
binding receptor for H+ “ligands.” If we consider the addition of H+ to be successive binding
reactions, the first binding constant is the reciprocal of the last dissociation constant, ,
and other binding/dissociations can be similarly related. From this perspective, the binding receptor,
PO4

3– is the species of interest. A total balance on the species from this perspective replaces Eqn.
18.50 with the equivalent relation (left as a homework problem),

Either of the arguments in parentheses is called a binding polynomial, Pbind. Many successive
binding events can be represented by this recursion pattern with either the dissociation constants or
the binding constants. The concept illustrated here for three protons as ligands can be generalized to
other binding receptors and ligands. Each term in the binding polynomial is proportional to the
concentration of a bound species, and the sum represents all possibilities. The fraction of the binding
receptor in a given state is (in terms of the binding reaction constant),

where we have generalized to an arbitrary ligand concentration [x], t is the maximum number of
ligands, and we have generalized the bonding constant, (K0 = 1). For our phosphoric acid example, 

 (recall for our example that the first binding is related to the third
dissociation). In the analogy here, the H+ serves as the ligand. A key quantity in comparing models of
binding to experiments is known as the average number of ligands bound per receptor as a function of
ligand concentration. Using binding constants, the average ligands per receptor are calculated by the
sum of the number of ligands multiplied by the fraction given by Eqn. 18.91,



An equivalent expression can be obtained using Pbind in terms of the dissociation constants from
Eqn. 18.90.23 If the binding constants (or dissociation constants, which are the reciprocal of each) are
known, then the average binding number can be found as a function of ligand concentration. Note that
the average binding number does not depend on the receptor concentration. The binding polynomials
are used in transforming the individual Gibbs energies to the apparent Gibbs energy of formation for a
family of receptors as we show later.

Energy Carriers in Biological Systems
When introducing biological reactions in Section 3.7, we mentioned the use of carbohydrates, fats,

and proteins as food sources. We know that sugars are not “burned” using a single step in the human
body. The human body could not survive the adiabatic temperatures of a single-step oxidation.
However, biological systems oxidize sugars to CO2 and water. The reactions that disassemble these
foods or other energy storage molecules are termed catabolic reactions. Reactions that build new
structures are termed anabolic reactions. Biological systems have a clever way of carrying out the
energy transformations. The body carries out the oxidation in small steps, using enzymes to pair
endergonic steps with highly exergonic steps. Biological systems transfer and store energy by either
1) forming and breaking bonds; 2) performing redox reactions using electron carriers. A main carrier
of energy captured by forming bonds is a molecule called adenosine triphosphate, or ATP as shown
in Fig. 18.12. In the process of glycolysis, two ATP molecules are used to transfer two phosphates to
glucose (a 6-carbon sugar), modifying it to facilitate subsequent isomerizations and production of two
molecules of glyceraldehyde 3-phosphate. Then, the two aldehydes are oxidized to a phosphorylated
carboxylic acid in coupled reactions, reducing nicotinamide adenine dinucleotide,24 NAD+ to
NADH (see Fig. 18.12), storing electrons for other reactions. The two ATP molecules which earlier
became ADP are regenerated. In the final step of glycolysis, pyruvate is produced, along with
transforming two additional molecules of ADP to ATP, storing additional energy. CO2 is produced in
subsequent reactions when the pyruvate is decarboxylated. Another biological electron carrier is
flavin adenine dinucleotide, FAD (oxidized), which is reduced to FADH2 in other reactions. Similar
to the NAD reduction that occurs on the nicotinamide, the riboflavin moiety is reduced, in this case
with two hydrogens. The biological networks are quite complex, and this text is not intended to serve
as an introduction to biological networks. The goal of the next few subsections is to explain the
methods used for calculation of thermodynamic driving forces and equilibrium constants in
biochemical reactions.



Figure 18.12. (a) Structure of adenosine triphosphate in the form stable at high pH, ATP4–.
Adenosine diphosphate (ADP) has two phosphates; adenosine monophosphate (AMP) has one;

adenosine has none. (b)Nicotinamide adenine dinucleotide phosphate, NADP+. Nicotinamide also
shown reduced, as in NADPH or NADH.

Adenosine triphosphate (ATP), diphosphate (ADP) and monophosphate (AMP) shown in Fig.
18.12 are primary carriers of energy in eukaryotic biological systems, and the distribution of
phosphate species is important to represent. ATP can bind up to five protons at low pH (the four on
the phosphates plus one on the NH2). As the pH is lowered, the average number of bindings will
undergo a continuous increase until all “receptor” sites are filled at low pH. The individual species
are denoted ATP4–, HATP3–, H2ATP2–, H3ATP–, H4ATP, and H5ATP+. ATP can also bind other
cations, one of principle importance being Mg2+, and the relevant species are MgATP2–, MgHATP–,
and Mg2ATP. Similar to the situation discussed above with phosphoric acid, each ATP dissociation
has a known dissociation constant. The notation [ATP] will be used to represent the apparent
concentration of ATP in all forms. The distribution of phosphate species is also important as
discussed here because phosphates are transferred to/from molecules during many of the biological
cycles. The pH and pMg are natural variables for determining the distribution of species using Pbind
and Eqn. 18.91.

Biological Standard State and Apparent Equilibrium Constants
Biologists work on the molar concentration scale with standard state properties at 298.15 K, 1 bar

and a standard concentration of 1 M, except water is kept on the Lewis-Randall scale, analogous to
the molal treatment. The 1 M standard state is awkward in biological systems because the standard
state of [H+] is a 1 M solution with a pH near 0. Gibbs energy changes based on such a standard state
requires a large correction to physiological pH. However, it is convenient to transform the Gibbs
energy such that pH and/or pMg may be held constant. Until this point in the text, we have utilized
Gibbs energy for analyzing chemical and phase equilibria because it is minimized at constant T and P.
If a system were at constant T and V, then the Helmholtz energy would be the correct property
minimized, and if at constant S and V, then U would be minimized (note the relation between the
natural variables and the minimized property). Biological systems are pH buffered, and when a
biological reaction occurs, it occurs at a constant T, P, and pH, and often other ion concentrations are
constant, such as Mg. The convention is to transform the Gibbs energy calculations to a pH (and ion
concentration) of interest and use a potential that measures the driving forces at constant pH. The



process of transformation is special for H+ “receptors” such as ATP4–, PO4
3–, and other species such

as ADP and AMP which lead to a distribution of species. The collection of a given receptor
populated with various numbers of ligands are known as a family of pseudoisomers. The transformed
properties are denoted with ’. In a similar way, binding of Mg2+ is important for ATP, ADP, and
AMP. An additional transformation can be made to provide Gibbs energies when pMg = –log[Mg2+]
is held constant, denoted using the same ’.

 Gibbs energies and redox potentials transformed to a specific pH and pMg are
indicated using ’.

The transformed Gibbs energy has some interesting effects on the way that reactions are written
and balanced. In this section, we present two main concepts: 1) balancing of reactions in the
transformed framework; and 2) relationships between the apparent equilibrium constant and the
equilibrium or nonequilibrium concentrations. In this section, we focus on applications where the
apparent equilibrium constants are known or determined from apparent equilibrium concentrations.
Details on the steps to calculate the apparent equilibrium constants from Gibbs energies of formation
are provided in Section 18.17.

When the Gibbs energy is transformed for H, the pH of the solution is considered to be buffered
and the surrounding solution is then a sink/reservoir for H+ ions. This means that when we write
isolated chemical reactions, H is not conserved because the surrounding solution is a sink/reservoir.
Therefore, a single reaction in this environment does not cause the pH to go up or down. When we
write chemical reactions, we write them without balancing H or H+. Because we ignore a cation, H+,
we also ignore the charge balance for chemical reactions. Analogous arguments apply if the
transformation is done for Mg2+, and we ignore the balance on Mg.

 For biological reactions using transformed Gibbs energies, the H, Mg balances, and
charge balances are ignored.

 Families of pseudoisomers are handled by using the apparent concentrations and
apparent Gibbs energies.

 Gibbs energies of formation and equilibrium constant for depend on pH, pMg, ionic
strength, and T due to the conventions.

 Transformed Gibbs energies in biology are rigorously related to concentrations.

Another convention of biological thermodynamics uses the apparent concentrations/Gibbs energies
for families of pseudoisomers instead of tracking the individual species. This applies to species like
phosphate and ATP. Looking at Eqn. 18.90, it is obvious that the distribution of phosphate species is



completely determined by the buffered pH. Similar arguments apply to ATP, ADP, or other H+

receptors except that Mg2+ is simultaneously considered. The approach is to write equilibrium
constants that use the apparent concentrations of H+ and Mg2+ receptors, and absorb the calculations
of the distribution and electrolyte nonidealities into Gibbs energies of formation and the equilibrium
constants. Details on the mathematics and thermodynamics are explained in Section 18.17, but the
details are not important for applications. For applications, the important principle is to recognize
that the Gibbs energies of formation and equilibrium constants change significantly with pH, pMg,
ionic strength, and temperature. The quantities must be available or calculated at the specific
conditions before the equilibrium calculations are performed. However, once they are available,
they can be applied with easy hand calculations to determine driving forces or equilibrium
conditions. The biological molar standard states and the transformations result in

Consider the hydrolysis reaction of ATP to release a phosphate and produce ADP and phosphate,

where the left-hand notation writes phosphate as phosphoric acid, and the right-hand notation
writes phosphate as a generic Pi. Since ATP, ADP, and phosphoric acid are all distributions of
receptor pseudoisomers, the right-side notation is more common in biological publications. The
equilibrium constant, at a specified T, pH, and pMg would be written,

Since the biological standard state uses molar concentrations, the transformed equilibrium constant
does also. Note that water is included in the Gibbs energy calculation, but not in the equilibrium
constant because the standard state for water is purity and the solution is nearly pure, even though it is
transformed.

Example 18.10. ATP hydrolysis
a. Calculate the transformed standard state Gibbs energy of reaction and equilibrium
constant Kc′ for hydrolysis of ATP at pHc = 7, pMg = 3, 298.15 K, ionic strength, I = 0.25
m, where the following data apply.
b. Show whether the reaction is endergonic or exergonic at the above conditions when the
apparent concentrations area [ATP] = 0.00185 M, [ADP] = 0.0014 M, [Pi] = 0.001 M. If
the reaction is exergonic, at what concentration of ADP does it reach equilibrium if the
concentration of phosphate and ATP are constant?
a. In the human body, [ATP]/[ADP] ~ 10. Alberts, B.; Bray, D.; Hopkin, K.; Johnson, A.; Lewis, J.; Raff J.; Roberts, K.;
Walter, P. Essential Cell Biology, 3rd ed., New York: NY, Garland Science, (2010), pg. 465.

Gibbs energies of formation at pHc = 7, pMg = 3, 298.15K, I = 0.25 mol/kg



Solution
First, note that the Gibbs energy of water is different from the value in Appendix E

because of the transformation. The transformed standard state Gibbs energy of reaction
is –1426 – 1060 + 2298 + 156 = – 32 kJ/mol. The equilibrium constant will be 

.
b. The propensity for reaction at the given concentrations is 

The reaction is even more strongly exergonic than the standard state. Equilibrium
occurs when [ADP] = kc′[ATP]/[Pi] = 5.3×108(0.00185)/0.001 = 9.8×108M. Of
course, such a high concentration never happens, so the reaction is always favorable at
reasonable concentrations. Instead of hydrolyzing ATP and “losing the energy,” the
phosphate is transferred to glucose in a coupled reaction, the subject of a homework
problem.

Example 18.11. Biological fuel cell
A biological fuel cell is a portable electrical source that can be refueled. Electrical current is

generated by a biological redox couple. In an ideal fuel cell, the enzymes would be immobilized on
the electrodes and maintain the same activity as if free. In the conceptualized fuel cell on the right,
glucose is to be oxidized to gluconolactone in the right cell, catalyzed by immobilized glucose
oxidase. Oxygen is excluded from the right cell to avoid loss of electrons by bulk oxidation. The left
cell is saturated with air, and a reduction of O2 to H2O2 catalyzed by immobilized laccase is
envisioned. Electrons are to flow through the external circuit and H+ is to flow through the membrane.
Each side of the cell is buffered to pHc = 7, I = 0.25 M at T = 298.15 K. Suppose the concentrations
on the right side are [glucose] = 0.1 M, [gluconolactone] = 0.05 M, and on the left side [H2O2] = 0.05
M. Determine the transformed standard state half-cell potentials and the voltage expected from the
cell under stated concentrations. The standard state Gibbs energies of relevant species are shown
below at the stated conditions.



Solution
Note that two hydrogen ions are generated by the oxidation and two are consumed by the reduction

of O2. The two half-cell reactions are glucose  gluconolactone + 2H+ + 2e–, and O2(g) + 2H+ + 2e– 
H2O2(aq). Note that we could use O2(aq) in the reaction, but that would require an extra calculation
using Henry’s law. Since the solution is saturated, we may use the partial pressure in the gas phase
where the standard state Gibbs energy is 0. The standard state reduction potential for the glucose
reaction is ∆G′° = –427 + 496 = 69 kJ/mol, thus E′° = –∆G′°/neF = –69000/2/96485 = –0.357 V.

For the oxygen reaction, the standard state reduction potential is ∆G′° = –52 = –52 kJ/mol (the
Gibbs energy of formation for O2(g) is 0), thus E′° = –∆G′°/neF = 52,000/2/96485 = 0.269 V. The
potential expected from a standard state cell would be E′° = 0.269 + 0.357 = 0.626 V, which is
favorable. Let us evaluate E under the proposed conditions. Using the Nernst equation,

Thus, the cell is favorable. Note that other factors are important before the cell can be
implemented, such as the rate that electrons can be produced, which requires preserving the activity
(turnover number) of the enzymes. Immobilized enzymes have much slower kinetics compared with
free enzymes. Many of the challenges have been summarized by Calabrese Barton, et. al.a

a. Calabrese Barton, S., Gallaway, J., Atanassov, P. 2004. Chem. Rev. 104:4867–4886.

18.13. Nonideal Electrolyte Solutions: Background
To this point in the chapter, we have considered solutions to be ideal or absorbed the nonidealities

into the Gibbs energies or equilibrium constants. The representation of nonidealities is important for
applications where the concentrations are above approximately 0.01 m. The literature through the
1970s has been largely developed by chemists and a variety of notations and models are used in the
literature. More recently, chemical engineers have become actively involved in model development
and applications. The remainder of this chapter limits the discussion to the extended Debye-Hückel
model and its use as a starting point for more sophisticated models. There are common underlying
themes in most of the literature. The use of a standard state in which the dilute activity coefficient
goes to unity is common for electrolytes and often for molecular species, though the Lewis-Randall
scale is used almost always for water. Due to the prevalent use of molality in literature, coverage of
the chemical potential and activity coefficients on that scale is necessary.

As with nonelectrolytes, the chemical potential is the primary property that determines phase
equilibria and is independent of the scale used to characterize the value. On the molality scale, the
chemical potential of the electrolyte is written in a manner analogous to the Lewis-Randall rule on the
mole fraction scale,



where µi
o is replaced with  and  is the activity of the component.25 The details of  are

subtle as elaborated in Section 18.24. A key consideration is that molality has dimensions of mol/kg
that are inconsistent with the (dimensionless) activity and activity coefficient. By defining the
standard state at 1 molal, we are implicitly writing , but mo = 1 mol/kg. We
defer the details because most problems are solved by incorporation of  into the Gibbs energy of
formation that is commonly tabulated. In other words, the infinite dilution chemical potential is
subsumed into the Gibbs energy of formation and reflected in the computation of ∆Grxn that produces
Ka. Then,

As long as , ai = mi. This perspective highlights why the concept is unnecessary to
solve problems using Ka at low concentrations as we have done early in the chapter. Because it is
common to keep the Lewis-Randall standard state for water, reaction Eqn. 18.14 is written,

Thus, the activity coefficients and Gibbs energies are related to the equilibrium constant that we
have used earlier. Since a solution of pure H+ or H3O+ or OH– cannot exist, we cannot easily use a
pure state for either unless it is a hypothetical pure state. However, we can measure the behavior of
ions in extremely dilute solutions by various means including spectroscopy and electrochemical cells.
Even though measurements are taken at finite concentrations, the behavior can be extrapolated to
infinite dilution. To illustrate, suppose the activity of H+ can be measured and plotted, as shown in
Fig. 18.13. Then extrapolating the measurements to infinite dilution yields an ideal solution that is
similar to Henry’s law. Similar to Henry’s law, the activity coefficient goes to unity at infinite
dilution. At very dilute concentrations, the molality can usually be approximated by the molarity as
we discussed above.

Figure 18.13. Schematic representation of the activity of an ion at low concentration in a
binary mixture. The standard states of ions for industrial calculations are typically 1 molal. For

biological systems, they are usually 1 molar. The molality and molarity scales are used
alternatively, not simultaneously. When using molal concentration, use molal activity. When

using molar concentration, use the molar activity scale.

When first working with electrolytes, this standard state can be very confusing. Because the



activity coefficient goes to unity at infinite dilution, a common misconception is that the standard state
composition is infinitely dilute. However, the standard state composition is 1 molal with a slope
taken such that the infinite dilution activity coefficient is unity. An ideal solution on the basis of the
standard state follows the dashed line as shown in Fig. 18.13 and extrapolates to higher
compositions. Any composition along the dashed line could be taken as the standard state and the
activity coefficient would still be unity, but choosing 1 molal as the standard state permits us to
(deceptively, but conveniently) drop mo numerically from many equations. Referring back to non-
electrolyte systems, the Henry’s law standard state applies a similar concept, but extrapolates the
ideal solution line to the fugacity of the hypothetical pure fluid. Like the discussion here, the slope of
the Henry’s law ideal solution is selected such that the infinite dilution value also goes to unity. The
difference is that the Henry’s law line is based on fugacity as the y-axis, whereas the electrolyte
standard state is based on activity. Like Henry’s law and the Lewis-Randall rule, the activity
coefficient quantifies the deviation from the ideal solution line. Readers should refer to Section 18.24
for further clarification of the relations between Henry’s law, the Lewis-Randall rule, and
molality/molarity.

18.14. Overview of Model Development
The relation between chemical potentials of the ions and the molal activity coefficients is

analogous to nonelectrolytes:

The activity coefficients of the ions are determined from the chemical potentials. The details of
model development are beyond the intentions of the overview provided here. Briefly, the Gibbs
energy of the solution is equal to the work performed in placing an ion in the solution of other ions.
The work is determined from solving Poisson’s equation for electrostatics using various
approximations for the charge density,

where r is the radial position, Φ is the electric potential, ρ±(r) is the charge distribution as a
function of radial distance, ε = εoD, where εo is the permittivity of a vacuum, and D is the dielectric
constant. Different models result from different approximations to the charge distribution and the
screening. The Extended Debye-Hückel model discussed next is one example of a solution.26 An
excellent overview of the approximations and methods of solving the equation is available27 but is
beyond the scope intended here. Briefly, once again, the Debye-Hückel approximation results from
assuming that the charge distribution follows the low density radial distribution function form

g(r) ~ exp(–uCoul/kT)

The solvent is considered to be a continuum during the calculation represented by the dielectric
constant. Various mathematical approximations are made to develop the solution, and different
approximations lead to slightly different approximate formulations used in the literature. The
Extended Debye-Hückel model is limited to dilute concentrations, generally below ionic strengths of
0.1 molal, and significant errors result from using the model outside this range. The excess Gibbs



energy for the Extended Debye-Hückel theory is28

where e = 1.60218E–19 C, εo = 8.85419E–12 C2 N-1 m-2 is the permittivity of vacuum, εr is the
dielectric constant or relative permittivity of the solvent, R is the gas constant in J/mol-K, T is the
temperature in K, ρs is the density of the solvent in g/cm3, zi is the valence of the Coulombic charge
on each ion type, and I is the ionic strength which characterizes the overall charges in the charge
distribution. The parameter Aγ is not a Helmholtz energy. Dielectric constants for water as a function
of temperature are provided in Appendix E. The parameter a represents the average distance of
closest approach, which is larger than the ion size due to water hydration which is always present.
The term 1/(BI½) is an approximate distance known as the screening, shielding, or Debye length. It
represents the screening of the coulombic potential due to the presence of other ions. A common
assumption is Ba = 1 (kg/mol)½, though in biological systems, Ba = 1.6 (kg/mol)½.

18.15. The Extended Debye-Hückel Activity Model
Activity Coefficients for Ions

The activity coefficients for ions are obtained by differentiating the excess Gibbs energy of Eqn.
18.102.29 The resultant formula is

where the constants are defined in Eqns. 18.103–18.105. The ionic strength is calculated based on
the actual ion concentrations, which means that for weak electrolytes calculation of I must be
repeated when the concentration of ions changes during iterations on concentration. The model
predicts activity coefficients that are unity at infinite dilution of ions and decrease to a finite limit at
high concentration. Experimentally, activity coefficients usually pass through a minimum at
concentrations above 0.1 m, which is not captured by the model. Note that all species with the same
charge will have the same activity coefficient values at a given ionic strength. More sophisticated
models are available for higher concentrations as we discuss in Section 18.20.

Activity and Osmotic Coefficient for Water
The solvent activity coefficients from the Extended Debye-Hückel theory can be obtained by

differentiation of the model for excess Gibbs energy. The result is



Recall that the activity of the solvent is expressed on the Lewis-Randall standard state. The mole
fractions are typically near unity, and thus many significant digits are required to characterize activity
coefficients of solvent. Commonly the activity of the solvent is expressed in terms of the “practical”
osmotic coefficient, Φ,

In literature, activities of ions are often measured indirectly by measuring or controlling the partial
pressure (isopiestic method) of water above the solution and then reporting the osmotic coefficient.
The results are very sensitive to whether complete dissociation is assumed for activity calculation
and in the summation in the denominator. Readers must pay careful attention to the assumptions
applied in the experimental interpretation. The osmotic pressure can be converted to the ion activity
using the Gibbs-Duhem equation to obtain the mean ionic activity coefficient described in Section
18.19. The osmotic coefficient approaches 1 at infinite dilution of ions. The osmotic coefficient is
related to the osmotic pressure,

Nonidealities for Nonelectrolyte Solutes
When nonelectrolytes exist in solution with electrolytes, such as with acetic acid, the undissociated

acetic acid is typically treated with a molal standard state with the corresponding unity infinite
dilution activity coefficient. To fit experimental data, the activity coefficient can be represented as 

 where b is a constant fitted empirically. While this does not satisfy the Gibbs-Duhem
equation, it is a common model.

18.16. Gibbs Energies for Electrolytes
In Chapter 17, we determined Ka from the Gibbs energy of formation. However, we also noted that

occasionally results are summarized in terms of a temperature-dependent Ka. Treatment of the model
using Ka requires less thermodynamic information, and it is quite common for electrolytes. Tabulating
in terms of Gibbs energies requires consistency with a large database that is tedious to maintain. Such
data bases are available for common ions only.

The Gibbs energy of reaction can be represented by

Writing a completely general notation is difficult because different standard states are often used
for different components. For example, we have already discussed using  for cations and similar



notation for anions. Writing a general sum is clumsy because of the different standard states used
for components, so we leave the generic superscript ° and expect that readers apply the
appropriate standard states.

Two key steps in understanding the tables for Gibbs energies are to consider the dissociation
constant of water, and the selection of zero as the Gibbs energy of formation for H+. These steps and
choices become clearer in upcoming descriptions. In Chapter 17, we introduced the use of Gibbs
energy of the reaction as

Consider again the dissociation constant for water, as shown in Eqn. 18.4. The equilibrium
constant for this reaction at 298.15 K is well known as Ka = 10–14. The Gibbs energy of the reaction
is thus:

Now consider that the Gibbs energy of the reaction can be calculated by the Gibbs energies of
formation at 298.15 K using the value from Eqn 18.112:

Note that, like the chemical potentials, writing a general notation for  is slightly imprecise and
we use the default ° superscript, expecting readers to insert the ion standard state for ions. Note that
the standard state Gibbs energy for pure water at 298.15 K has been inserted from the tables for
nonelectrolytes. This detail makes an important connection with the standard tables for all other
molecular components, and thus the values from the usual tables can be applied when compounds
appear in reactions with electrolytes, as long as this convention is used.

Looking at Eqn. 18.113, two values are unknown, both  and . The dilemma is
resolved with the arbitrary choice at 298.15 K and 1 bar:

This convention then determines the value

With these values, the remainder of the tables can be developed. Other acid reactions involving H+

can then be characterized based on the degree of dissociation and the above standard selection of 
. For example, the value of  can be determined by the dissociation behavior of

HCl. Once the Gibbs energy of Cl– can be determined the dissociation of NaCl will lead to the Gibbs
energy of Na+. The remainder of the tables are developed using similar calculations.



Strategy for Using Gibbs Energies
There is important perspective regarding tabulation of standard state Gibbs energies. Have you

considered how scientists created the tables for ? Scientists used experimental equilibrium
concentration measurements with models to calculate ai, and then inserted them into the equilibrium
relation:

Experiments were performed where  (or ) was known for all but one of the species. Then
the value of  for the species was determined from the experiment by difference. Calculations
from multiple investigators using different reactions refined the values that we use from the tables
today. When we solve an applied problem, we are using the equation in the opposite direction:

looking up  (and ) and using models of ai to determine concentrations. Calculations are

reliable as long as ai’s are calculated using methods consistent with the standard state  and .

The steps to solving a problem usually involve reverting the procedures used to develop the tables.

Tables are used to calculate  (or ) from standard state. Temperature and pressure
corrections are applied to determine ∆GT,  In K and then selecting methods to calculate ai
consistent with the standard state. Concentrations are thus determined from the activity, often
assuming ideal solutions. Frequently, the Gibbs energies of individual species are not calculated, or
are not available. Rather, scientists report the values of Ka as used in Example 18.4. A reliable
database of Gibbs energies is available as documented in footnote 13 of this chapter.

18.17. Transformed Biological Gibbs Energies and Apparent Equilibrium
Constants

The transformed Gibbs energies in Section 18.12 are a convenient method to handle biological
reactions but the details were not discussed earlier. The transformation of Gibbs energy to a field of
buffered pH is analogous to the other Legendre transforms used previously. To obtain Gibbs energy
from internal energy, starting from dU = TdS – PdV, we introduced G = U – TS + PV, resulting in a
potential where T and P are the natural variables, dG = –SdT + VdP, and G is minimized when the
natural variables are constrained. By introducing G’ = U – TS + PV – NHµH+ we arrive at a potential
that is a natural function of pH. The variable NH is the number of hydrogens in the molecule. To
obtain a transform that is also a natural function of pMg = –log[Mg2+], we use G’ = U – TS + PV –
NHµH+ – NMgµMg2+. Standard-state transformed Gibbs energies of formation are developed for
species, and they are used analogously to the untransformed Gibbs energies to calculate the Gibbs
energy for reactions and the transformed equilibrium constant.

Also, to correct for solution nonidealities, the extended Debye-Hückel model is added, and a
convention is to use Ba = 1.6 in the model. A further difference from previous models is that molar
concentrations are used for the equilibrium constants, though it makes little difference numerically



because solutions of biological molecules are typically dilute on a molar basis. The effect of
nonidealities is typically calculated using the molal form of the Debye-Hückel model, using the
overall solution molal ionic strength since the model does not differentiate between charged species.

Gibbs Energy Transformations for Species with a Single Form
For a species containing hydrogen or Mg,

 Transformed Gibbs energy of formation at a specified pH and I. Workbook
GprimeCalc.xlsx or MATLAB GprimeCalc.m are helpful.

The Gibbs energy of formation appearing on the right side for j = i, H+, and Mg2+ is

where Ba = 1.6 (kg/mol)½, pHc = –log[H+], pMg = –log[Mg2+], and I is measured in molality. By
assuming that the heat of formation is independent of temperature in the small temperature range
where biological reactions occur, the short-cut van’t Hoff equation can be applied before inserting
the Gibbs energy of formation into

The equations are presented in the reverse order compared to how they are used. Standard state
values are inserted into Eqn. 18.119 for j = i, H+, and Mg2+. The results are inserted into Eqn. 18.118
for each, and then each of those results is inserted into Eqn. 18.117. Conversion of the Gibbs energy
of formation is easy using the Excel workbook GprimeCalc.xlsx or MATLAB m-file GprimeCalc.m.
Note that the solution nonidealities are a minor correction compared to the transformations on H+ and
Mg2+. The ’ notation is used quite widely for this transformed Gibbs energy at any specified pH,
though in some literature the transformation is restricted to pH 7. The context of applications must be
studied to discern if Mg2+ is included.

Enthalpy Transformations for Species with a Single Form
The enthalpy is obtained via the Gibbs-Helmholtz relation, where the heat of formation at I = 0, pH

= 0, and pMg = 0 is independent of temperature as a first approximation. The Debye-Hückel
temperature dependence introduces a correction. The heat of formation is

 Transformed enthalpy of formation at a specified pH and I. Workbook
GprimeCalc.xlsx or MATLAB GprimeCalc.m are helpful.



and for each enthalpy of formation on the right side, j = i, H+, and Mg2+:

Gibbs Energy Transformations for Pseudoisomers
For families of receptors with different numbers of ligands, the transformed Gibbs energy of

formation depends on the distribution of species, which changes with T, pHc, and pMg, but the
dependence is easily represented by the binding polynomial. The Gibbs energy of formation for the
apparent species takes a very simple modification relative to the Gibbs energy of formation of the
completely bare receptor,

where G′o f, T, i(1)(I, pHc, pMg) on the right is for the completely bare receptor as determined by
Eqns. 18.117–18.119. The binding polynomial can most easily be expressed in terms of the
transformed Gibbs energies of formation of each pseudoisomer relative to the most bare receptor,

where all Gibbs energies are for aqueous solutions using Eqns. 18.117 - 18.119 at a specified pHc,
pMg, and ionic strength, but the designations have been omitted for brevity. Alternative forms of Eqn.
18.123 are sometimes written, but the given form is recommended to avoid exponentials of very large
or very small numbers because the differences in Gibbs energies of formation are much smaller than
the values.30,31 Note that the exponential terms in Eqn. 18.123 are equivalent to the products of the
equilibrium constants as shown in Eqn. 18.90.

The pHc, pMg, and nonideal solution effects are already incorporated into the reactions, and thus
the binding polynomial in terms of the transformed equilibrium constants for phosphate would give

The fraction of receptor in each pseudoisomer form j in family i, can be calculated by two different
methods. Pbind can be used directly, or we can use the transformed Gibbs energy of formation for the
pseudoisomer with the transformed Gibbs energy of pseudoisomer form j,

where all Gibbs energies are at the specified T, pH, and pMg. The argument of the first exp( ) is



the same as used in 18.123, and the values of the first exp( ) are the same as the values for each term
in Eqn. 18.124. The transformed enthalpy for the apparent species is most easily calculated by using
the individual ri values where each pseudoisomer values is transformed by Eqn. 18.120,

This section has been intended as an introduction to biological thermodynamics. Readers interested
in more depth will find more details in the work of Alberty31,32,33 or Goldberg.34 While the
transformation of the standard state potentials shifts the standard state values of Gibbs energies, such
that, for a reaction, ∆G′oT, i(I, pHc, pMg) ≠ ∆Go

T, i(I, pHc, pMg), the actual driving force for a
reaction at nonequilibrium conditions is the same,35 thus, ∆G′T, i(I, pHc, pMg) = ∆GT, i(I, pHc, pMg)
as in Eqn 18.93 and in the analogous untransformed relation. Also, this means that K′c ≠ Kc, but the
reaction is at equilibrium at the same true concentrations regardless of the transformation. This
relation again emphasizes that the true driving force for the reaction is not represented by the standard
state values.

Example 18.12. Gibbs energy of formation for ATP
The Gibbs energies of formation of ATP species are available in Appendix E. Using the available

Gibbs energies, calculate the apparent Gibbs energy of formation for ATP at T = 298.15 K, pHc = 7,
pMgc = 3, I= 0.25 mol/kg, the pK’, and the percentage of each species present.

Solution
The Gibbs energies for the molal standard state are ATP4– = –2768.1, HATP3– = –2811.48,

H2ATP2– = –2838.18, MgATP2– = –3258.68, MgHATP– = –3287.5, and Mg2ATP = –3729.33
kJ/mol. The charges are –4, –3, –2, –2, –1, and 0, respectively. The number of H’s are 12, 13, 14, 12,
13, and 12, respectively. Inserting the values into GprimeCalc.xlsx, at the stated conditions, the
transformed Gibbs energies of the species are ATP4– = –2291.9, HATP3– = –2288.8, H2ATP2– = –
2270.7, MgATP2– = –2297.1, MgHATP– = –2282.7, and Mg2ATP = –2288.8 kJ/mol. The rest of the
problem must be solved with hand calculations.

The third dissociation reaction is HATP3–  ATP4–,

The product of the first and second is given by H2ATP2–  ATP4–,

The remaining terms for HnATP(–4+n) in the binding polynomial are not important at pH = 7
because they will be even smaller than the last term calculated since the pH is far above the pKa
(review Example 18.6 on page 718 for an analogy with phosphoric acid). For the species involving



Mg, defining K′aMg for MgATP2–  ATP4–,

Defining K′aMgH for MgHATP–  ATP4–,

defining K′aMg2 for Mg2ATP  ATP4–,

The binding polynomial is Pbind = 1 + 0.2863 + 2E–4 + 8.148 + 0.0244 + 0.2863 = 9.7452.

The fraction of each pseudoisomer is given by Eqn. 18.91:

The other species make up the remainder and are insignificant at pH = 7.
The Gibbs energy of formation for the apparent species is

Note this is the value used in Example 18.10.

18.18. Coupled Multireaction and Phase Equilibria
Many texts are available to facilitate more advanced study. The following example uses

thermochemical data from the OBIGT database documented in footnote 13 of this chapter. The
example here is implement using the extended Debye-Hückel model and ignoring pressure
corrections.

Chlorination of Water
Chlorination is one method of water treatment for drinking. When Cl2 dissolves in pure water, it

undergoes reaction with water to simultaneously form the strong acid HCl and the weak acid
hypochlorous acid (HClO). The reaction is sensitive to pH, and at low pH it is shifted toward
molecular Cl2. At high pH, the reaction shifts to hypochlorous acid which is an oxidizer as well as a
weak acid. Chlorine bleach is prepared by stabilizing the hypochlorous acid at high pH by reacting
Cl2 with a solution of NaOH.

Consider the situation with pure water. There are three reactions to be taken into account:



We can also write the liquid-vapor equilibria as “reactions,” noting the convention in the
electrolyte literature is that the liquid phase is always the “product.” This is the convention used for
Henry’s law constants (cf. Section 11.12) in Eqns. 18.130 and 18.131:

Example 18.13. Chlorine + water electrolyte solutions
Determine the concentration and species present when chlorine is in equilibrium with water at

298.15 K and 0.8 atm. Develop an approximate solution and then use extended Debye-Hückel with
Ba = 1 (kg/mol)1/2. Thermodynamic properties from the OBIGT documented in footnote 13 of this
chapter are tabulated in Table 18.4.

Table 18.4. Thermochemical Data for the Species

Solution
We first work the problem assuming ideal solutions. This provides an approximate answer. Then

we may use the activity coefficients to refine the answer. Using the Gibbs energies of formation, the
equilibrium constants are: pKa1 = 3.339, pKa2 = 7.549, and KH(Cl2) = 0.0606, where KH is Henry’s
constant for Cl2.



Since chlorine forms the strong acid HCl and the weak hypochlorous acid when dissolving in pure
water, we expect pH < 7. Note that the weak hypochlorous acid should be almost totally protonated
below pH = pK – 1 = 6.5. Since a strong acid HCl is being formed, this seems very likely. Let us
proceed with that assumption. This enables us to disregard the dissociation of Eqn. 18.128 as a first
approximation.

The three reaction equilibria are summarized in Eqns. 18.127–18.129. The charge balance is

where [ClO–] is ignored because the dissociation of hypochlorous is small when the pH is small
and [OH–] is ignored when pH is small. Thus, the equilibria of Eqn. 18.127 can be approximated as

Approximate Solution:
The partial pressure for water can be estimated by first assuming that the water is almost pure. This

approximation can be refined later if we find significant concentrations of chlorine species. We also
use molar concentrations to approximate molalities. Using Raoult’s law for water, .

From the steam tables,  bar = 0.0313 atm, and yH2O = 0.0313/0.8 = 0.039.
Then yCl2

 P = 0.8 – 0.0313 = 0.7687 atm, yCl2
 = 1 – 0.039 = 0.961. Using Henry’s law coefficient

(KH) for Cl2 at 298.15 K, the concentration of Cl2(aq) is (independent of pH):

The concentration [HOCl(aq)] = 10–3.339(0.0484)/[H+]2 (Eqn. 18.133) at small values of pH is
plotted in a Sillèn diagram. The weak acid dissociation of hypochlorous acid [OCl–] is to be
calculated from Eqn. 18.31 using the concentration of [HOCl] as a function of pH. As expected, the
dissociation is small at low pH.

The weak acid curve in Fig. 18.14 is much different from curves in previous examples because, in
this case, the overall concentration of weak acid is changing rapidly with pH. Now consider the
material balance associated with Eqns. 18.127 and 18.128. Since Eqn. 18.128 does not occur to a
significant extent, to a good approximation by the stoichiometry of Eqn. 18.127 [H+] = [Cl–] =
[HOCl]. This occurs at the intersection shown by the dotted lines. The approximate solution is pH =
1.55, [H+] = [Cl–] = [HOCl] = 10–1.55 = 0.0282 mol/L. Note on the diagram that [OCl–] = 10–7.5 =
3.2E-8. Now, we can use these as initial guesses in a more rigorous answer.



Figure 18.14. Determination of equilibria for the chlorine system.

 CL2H2O.xlsx.

Calculation with Activity Coefficients:
Thermodynamic properties for the components are tabulated below and in the spreadsheet:

CL2H2O.xlsx. Note that the data tabulated below include values for Cl2 and H2O in both the vapor
and aqueous phases. The Gibbs energies are used to calculate the VLE distribution coefficients as a
“reaction.”

To solve the nine equations (five equilibria, three atom balances, and one charge
balance) simultaneously, we must identify nine unknowns. The nine unknowns selected here
are the species listed in Table 18.4: the liquid moles of H2O, Cl2, HClO, H+, Cl–, ClO–,
and OH–, and the vapor moles of H2O(v) and Cl2(v). The basis is 1 liter of liquid water
(ni

H2O = 55.51 moles) and ni
Cl2

 = 0.9 moles initially.

The detailed calculation are handled as a reactive flash. Three atom balances must be
satisfied–H, O, Cl, along with the charge balance. The atom balances and charge balance
are shown in Table 18.5 for the basis of 1 liter of liquid water and 0.9 moles of Cl2. The
compositions for iteration are summarized in Table 18.6.

Table 18.5. Atom Balance and Electroneutrality Constraints



Table 18.6. Electrolyte Component Mole Numbers and Activities at the Converged
Composition

The results from the approximate ideal solution calculation above are used as initial guesses. Excel
Solver is used to adjust the moles of each species (in the second and sixth columns of Table 18.6)
until all equations are simultaneously satisfied.

Note from Table 18.6 that the γ□ for all the ionic species is the same. This occurs because the
Debye-Hückel model is too simple to make distinctions as long as all species have the same valence.
The activity coefficients for Cl2 and HClO are assumed to be unity.

The calculations summarized in Table 18.6 show that the chlorine solubility is enhanced beyond
what might be predicted from the Henry’s law constant alone due to formation of HClO and Cl– in
solution. The Cl in HClO and Cl– together is about two-thirds of the Cl atoms in Cl2(aq) at P = 0.8
atm. Open the spreadsheet Solver to see how the constraints were implemented. Compare with the
approximate answer to see that the approximate answer is pretty close. For example, [HClO] =
0.0312 versus 0.0282.

18.19. Mean Ionic Activity Coefficients
Mean ionic activity coefficients are often used for electrolytes modeling in the literature. The mean

ionic activity coefficients provide an alternative method to express the activity of the apparent
electrolyte species. This section provides the background to relate those activity coefficients to the
ion activity coefficients. The chemical potential of the apparent electrolyte species is the same as the
undissociated electrolyte species as shown in Supplement Section 18.23, however only the
undissociated chemical potential is used here to keep the equations shorter.

If we insert Eqns. 18.99 and 18.100,



Looking at the last terms in parentheses, we can define,

The molality and activity coefficients are averaged by taking the geometric mean. In the literature,
these are commonly called the mean, and the clarification as the geometric mean is commonly
omitted. The mean molality is

where v ≡ (v+ + v–). The mean ionic activity coefficient is found from the geometric mean of the
ion activity coefficients:

This results in the following relation for the chemical potential of the undissociated species

Note that in the formula for chemical potential, the variable v appears before the ln term, unlike the
similar expression for ions or nonelectrolyte species. Therefore, the mean ionic activity is not the
same as the activity of the undissociated (or apparent) activity. There is no new information in
these equations. They are simply an alternative method of expressing the activity coefficients,
molalities, and chemical potentials. The mean molal activity coefficient is

The final equation requires a proof that  is related to . To see this, start with the
charge balance, v+z+ + v_z_ = 0. Obtain one equation by multiplying by z+ and another by multiplying
by z_. Add them and rearrange:

The extended Debye-Hückel model is valid for 1-1 electrolytes up to about 0.1 molal, and to lower
concentrations for species with multiple charges: The extended Debye-Hückel is compared with
experimental mean ionic activity coefficients for NaCl in Fig. 18.15. Note that the experimental
activity coefficients for NaCl are nearly 1 near 6 m. This happens to be about the solubility limit at
room temperature, but the solution is quite nonideal at lower concentrations.



Figure 18.15. Mean ionic activity coefficient for NaCl, KCl and those predicted by the
extended Debye-Hückel (DH) model at 298K. Dashed line is the extended Debye-Hückel, Solid

lines are the unsymmetric eNRTL using default parameters in ASPEN Plus ver. 7.1.
Experimental activity coefficients are from Hamer, W.J.; Wu, Y.-C., 1972. J. Phys. Chem. Ref.

Data, 1:1047.

The osmotic pressure can be manipulated using the Gibbs-Duhem equation to obtain the mean ionic
activity coefficient. The derivation is beyond the scope intended here, but the equation is

The use of the square root is a necessary mathematical manipulation. The integral may be done
numerically. One difficulty is that the experimental data must extend to low concentrations.

18.20. Extending Activity Calculations to High Concentrations
This chapter has served as an introduction to electrolyte models, and the extended Debye-Hückel

leaves much to be desired in its limitations to concentrations lower than 0.1 m. However, the model
has been used as an introduction, and those who work with electrolytes can find more models in the
literature. In the older literature, the model was primarily improved by making modifications to the
Debye-Hückel approximations. For example, Bromley and Davies add to the activity coefficient a
term CI, where C is a parameter and I is ionic strength. Fig. 18.15 illustrates that the parameter C
must be system-dependent to represent the data. One suggestion is that the ionic strength modifies the
dielectric constant of the medium. Others propose that the ions begin to interact with each other in a
way that the Debye-Hückel model cannot capture. Molecular simulations are relatively complicated
in the presence of long-range electrostatic interactions, delaying the conclusive resolution of such
arguments. Since the mid-1980s significant success has been achieved by combining various versions
of the Debye-Hückel model with activity models such as NRTL or UNIQUAC.36 The Debye-Hückel
model is considered to represent the “long range” electrostatic interactions, and the conventional
activity models are considered to represent the “short range” physical interactions. Often, the short-
range model parameters are lumped to minimize the number of parameters to be adjusted. Plotted in
Fig. 18.15 are the activity coefficients calculated with ASPEN Plus using the unsymmetric
electrolyte-NRTL (eNRTL) model. The ASPEN electrolyte wizard was used to set up the
dissociations and pull parameters from the database. Owing to the importance of electrolytes in



industrial processes and corrosion management, and the complexities of correct modeling, companies
such as OLI Systems, Inc., specialize in electrolyte modeling.

18.21. Summary
This chapter began with a review of acid-base behavior to stress the importance of pH on

equilibrium. Compounds are in the acid form below the pKa,A and in the base form above. Techniques
including Sillèn’s graphical method were provided to determine solution pH values and species
distributions at various concentrations. We explained the origin of charges on biological molecules
and why the charges change with pH, as well as the concept of zwitterions. Applications such as
solubility, osmotic coefficients, and isoelectric point were developed.

Concepts of redox reactions were developed, relating the voltage to the Gibbs energy of reaction.
Procedures were given to determine oxidation states, degree of reduction for molecules, and voltages
in cells. The concept of oxidation and reduction in biological systems was introduced in the context
of a biological fuel cell.

Binding polynomials were introduced as a method of representing simultaneous equilibria of
families of pseudoisomers. The concepts of transformed Gibbs energies were introduced for
biological systems buffered in pH or pMg.

Then solution nonidealities were introduced using the extended Debye-Hückel model. We finished
the chapter by providing an example calculation of ATP distribution in nonideal solutions, and an
example that couples phase equilibria with electrolyte equilibria. The later example demonstrates that
for dilute solutions the graphical technique and simple arguments comparing the pH with the pKa,A
values provides rapid estimates that are valuable for converging to more precise values. Because pH
and species concentrations vary over many orders of magnitude, the approximate methods are
important to use first, and in many cases they are adequate for approximate engineering work.
Ultimately, activity coefficient modeling is important for accurate calculations. The chapter concludes
with some supplemental sections that are extremely valuable for conversions of the units used in the
literature.

Important Equations
The most important equations of this chapter are the material balance, reaction equilibria, and

electroneutrality relations. Unfortunately, these are different for every electrolyte system, so there is
not much point in listing them the way we usually do in the chapter summary. A key step in using
Sillèn’s method is to use the acid form of dissociations for weak electrolytes,

A new equation is the electroneutrality constraint. It is not a surprising equation, but it can cause
difficulty because some species may be present in very small quantities that make very big
differences–pH, for instance. Solving for these small quantities often requires rearranging the
equations into a proton condition to avoid the precision problems that come with adding small
numbers to large numbers.



In Section 18.11, the Nernst equation is important to relate voltage to standard potentials and actual
concentrations, and the number of electrons transferred:

In Section 18.12 the Gibbs energy was transformed to use apparent concentrations. All the pH,
pMg, and solution nonidealities were transferred to the Gibbs energies of reaction and the
equilibrium constants:

Besides the primary equations, the extended Debye-Hückel equation (Eqn. 18.107) is introduced in
this chapter to account for nonideal behavior of ionic species. It is best limited to concentrations of
0.1 molal or less, but it conveys the concept that electrolyte solutions may deviate from ideality just
as nonelectrolytes do. Going beyond Eqn. 18.107 would generally involve developing expertise
beyond the introductory level.

Although the notation and reference states are obscure and frustrating, the implications are
impressive. Salting in and salting out, protonation versus pH, osmosis, buffering, and leveling are just
a few examples of implications that play significant roles in commonly encountered chemical
systems, especially biological systems and corrosive environments. All the new jargon may seem
overwhelming at first, but it can be assimilated if you only remember the three P’s: practice, practice,
practice.

18.22. Supplement 1: Interconversion of Concentration Scales
Throughout this chapter, subscript s indicates solvent, and Mw,i represents molecular wt in (g/mol).

relation of mole fraction to molality:

The relation for molality leads to another commonly used substitution for xs,



18.23. Supplement 2: Relation of Apparent Chemical Potential to Species
Potentials

To understand the origin of the models for the mean activity coefficient, some discussion of the
chemical potentials is necessary. Many of the concepts are extensions of the methods used for
reaction engineering. For example, consider the general case of an electrolyte dissociating in solvent.
When an electrolyte dissociates, the material balance gives the molality of positive and negative
charges in solution,

where the subscript u represents the amount of electrolyte that is un-ionized. The change in Gibbs
energy at fixed temperature and pressure is given by the changes in composition and the chemical
potentials,

which rearranges to

The quantities µ+ and µ– are analogous to the partial molar Gibbs energies of other components and
the subscript w represents water or solvent. Since the positive and negative charges cannot change
independently in a physical mixture as required by the rigorous definition of the partial molar quantity
where all but one species is constrained when the derivative is evaluated, they are nonphysical, but
they can be calculated by theory. Recall that the quantity dni relates to changes in the apparent
composition. As a solution of fixed apparent concentration equilibrates (e.g., dni = 0), the un-ionized
concentration changes until Gibbs energy is minimized and dG = 0. Thus, we conclude that at the
equilibrium ionization the first term in parentheses is zero. Thus,

This relationship between the “products” and “reactants” of the ionization is analogous to the
relations developed for molecular reacting systems. This equality can be inserted into the second
term, at equilibrium ionization resulting in

On an apparent basis, we also must satisfy

where µi is the apparent chemical potential. By comparison of the last two equations we conclude
that the apparent chemical potential must equal the chemical potential of the un-ionized species,



which also must equal the weighted sum of the chemical potentials of the ions:

Thus, the approach for developing a model for the apparent chemical potential and apparent
activity coefficient is based on developing models for the ions and then using the weighted sum.

18.24. Supplement 3: Standard States
An important principle of the following discussion is that the chemical potential should be a

property of the state of the system. All models should result in an identical value for the chemical
potential at the same state. The standard state provides a convenient reference condition, but is
slightly different from a reference state because it is at the same temperature as the system.37

The typical convention for nonelectrolytes uses mole fractions and the Lewis-Randall standard
state :

An alternative convention is related to the Henry’s law standard state  and the activity
coefficient is known as the rational activity coefficient.38

The activity coefficients on the two scales are related.

Inserting the activity coefficient relation into Eqn. 18.158 results in

Consider Eqn. 18.158. Inserting Eqn. 18.147 to replace the mole fraction,

Because molality is not dimensionless, but activity is dimensionless, we must introduce some
manipulations. We wish to introduce a molal activity coefficient, , to use with molal
concentrations. The convention is to set the standard state as a hypothetical ideal solution, , at
unit molality, mo = 1 mol/(kg solvent). Introducing the standard state concentration (twice):

The unit value of mo is traditionally omitted and thus “transparent.” We define the molal activity
coefficient:



Note that Eqn. 18.147 can be reinserted into Eqn. 18.163 to eliminate xs, if desired. Inserting Eqn.
18.163 into Eqn. 18.162,

We can see that the standard state reference potential must be given by the first two terms on the
right-hand side of the equation:

Substituting Eqn. 18.165 into Eqn. 18.164 results in the molal standard state and molal activity
coefficient:

The activities corresponding to the standard states are thus

where the activities from the different scales are not equal at a given concentration because of the
difference in standard states. Combining Eqns. 18.162 and 18.147,

Finally, we note that the value of mo is dropped from all the final expressions in application, based
on the assertion that its value is 1 molal by the definition of the standard state. This is the basis for the
equations presented in Sections 18.4 and 18.13.

18.25. Supplement 4: Conversion of Equilibrium Constants
Equilibrium constants in electrolyte literature are often presented on the molal scale. For clarity in

this section, we will use Ka,m to denote the molality equilibrium constant and Ka to denote the rational
(Henry’s law scale) using mole fractions. Recall that the solvent (usually water) is on the Lewis-
Randall scale. Using the molality scale for the electrolytes,

On the rational (Henry’s law) mole fraction scale, we have

To convert, consider the ln of each equation and take the difference. Inserting Eqn. 18.170,



For a 1-1 electrolyte such as NaCl, , thus . If a Ka is desired on
the Lewis-Randall scale, similar conversions can be done using infinite dilution activity coefficients.

18.26. Practice Problems
P18.1.

a. Compute the freezing point depression for an aqueous solutions that is 3 wt%
NaCl.
b. Compute the boiling point elevation for an aqueous solutions that is 3 wt%
NaCl.
c. Compute the osmotic pressure for an aqueous solutions that is 3 wt% NaCl.

18.27. Homework Problems
18.1. Calcium chloride is used occasionally as an alternative to sodium chloride for de-icing
walkways. It is rumored to maintain puddles even a day or so after all evidence of sodium
chloride has disappeared.

a. Compute the freezing point depression for aqueous solutions that are 5 wt%
CaCl2 and NaCl.

b. Compute the boiling point elevation for aqueous solutions that are 5 wt%
CaCl2 and NaCl.

c. Compute the osmotic pressure for aqueous solutions that are 5 wt% CaCl2 and
NaCl.

18.2. Ammonia is a weak base, as indicated by the pKa,A and pKa,B values in Table 18.2.
Determine the percentage of NH3 dissociated at pH 7 and pH 1.5 when the apparent amount of
NH3 in aqueous solution is 0.15 m. Assume ideal solutions.

18.3. Sodium fluoride, NaF, is dissolved in water at an apparent concentration of CB = 10-3

mol/L. Construct a Sillèn diagram and estimate the pH. Refer to the pKa,A and pKa,B values in
Table 18.2.
18.4. A solution of NaHCO3 and HCl is prepared such that the total carbon concentration is 1E-
3 M and the total Cl concentration is 2E-3 M. Calculate the pH and concentrations of species
present. Assume that the pressure is sufficiently that any evolved CO2 remains in solution.
Estimate the partial pressure of the CO2 by

a. using Henry’s Law.
a. assuming the MAB model.

18.5. Plot the “apparent molality” of Cl2 in solution against the partial pressure of Cl2. The



apparent molality is the sum of all Cl species in solution (Cl2 counts twice) divided by 2 (to put
it on a Cl2 basis). Compare your plot to the experimental data of Whitney and Vivian (1941).39

18.6. Model a soft drink as a solution of water with CO2 dissolved at 298.15 K. In this way we
ignore the sugar, flavor, and color. The Henry’s law constant for CO2 at 298.15 K is 0.035
(mol/kg-bar).

a. What pH and composition exist when the vapor phase is 3.5 bar absolute at
room temperature ignoring O2 or N2 present? This approximates conditions in the
unopened container.
b. After the soft drink is opened, and the liquid equilibrates with atmosphere,
what pH and composition exist when the CO2 vapor mole fraction is yCO2

 =
0.0003 (the normal ambient value) and the pressure is 1 bar?

18.7. Sodium bicarbonate, NaHCO3, commonly known as baking soda, is dissolved in water at
10–2 m at 298.15 K. Assume ideal solutions.

a. Determine the pH and the dominant species concentrations. For this part of the
problem, ignore the potential loss of CO2 escaping from the solution as vapor.

b. Now evaluate whether CO2 may have a propensity to come out of solution at
the conditions determined in (a) at 1 bar total pressure. yCO2

 = 0.0003 is the
normal ambient value.

18.8. Sodium carbonate is mixed into a solution of acetic acid and the container is rapidly
closed before the container components react. The amount of sodium carbonate is such that the
total sodium concentration is 1E-2 m and the total acetate concentration is also 1E-2 m. When
the mixture equilibrates, the partial pressure of CO2 over the solution is measured to be 0.5 bar.
Determine the pH and concentrations of the acetate species. The Henry’s law constant for CO2 at
298.15 K is 0.035 (mol/kg-bar).
18.9. Thermodynamic data for Gibbs energy of formation is shown below (kJ/mol for molal
standard states) at 298.15 K. A saturated solution of NaCl is approximately an ideal solution.

a. Use the Gibbs energy of formation to determine the solubility of NaCl in
molality at 298.15 K. Treat the equilibrium between the solids and ions as a Ksp.

b. Determine the NaCl solubility (molal) when the concentration of KCl is 1 m.
c. Prove that the solution in part (b) is not saturated with KCl. (An ideal solution
is actually a poor approximation for a saturated solution of KCl, but provide the
proof based on an ideal solution.)

18.10. Suppose 0.1 mol of CO2 were mixed with 0.9 mol of Cl2 and 1 liter of water. What
would be the concentrations of the aqueous species and the mole fractions in the vapor phase at
0.8 atm in that case?
18.11. Corrosion resistant alloys (such as nickel alloys and stainless steels) can be susceptible



to crevice corrosion in solutions where no corrosion is observed in the bulk solution. For
example, nickel base alloys are immune to corrosion in seawater; however, in areas where two
pieces of this alloy are joined (typically by a flange and an o-ring) crevice corrosion may be
observed. This phenomenon occurs as the result of two conditions, restricted mass transport and
water hydrolysis which both act to make the solution inside a crevice more aggressive. Water
hydrolysis occurs when metal cations react with water to form acid (H+):

In a bulk solution diffusion, convection and migration transport the acid away from
the surface and no damaging effects are observed. However, the restricted mass
transport inside a crevice results in accumulation of metal ions under the crevice
former and acidification. As a result, the alloy can be exposed to a very aggressive
environment. The pH inside the crevice can be calculated from knowledge of
empirically determined concentration quotients (Qxy) where:

You will note that Qxy is similar to Ka in form; however, here we use
concentrations and not activities. Qxy is another way to express K = Ka/Kγ as given in
then end of Section 18.8. As a practical example of this phenomenon, consider
austenitic stainless steels which are generally composed of Fe, Ni, and Cr. Corrosion
results in the formation of metal cations in solution, the most aggressive cation for
stainless steel being Cr+3.

a. Given that log(Q13) = –4.6 for Cr+3 at a temperature and ionic strength of
interest, write the hydrolysis reaction (Eqn. 18.174). Then, solve the
corresponding concentration quotient (Eqn. 18.175) to obtain a relation between
pH and the concentration of [Cr+3].
b. Make a table of the crevice concentrations that result in pH = {6, 4, 2}.
c. Explain why the concentration of  does not appear in Eqn. 18.175.
d. For Fe2+, log Q12 = –9.5, and for Ni2+, logQ12 = –10.5. Repeat (a) for each of
these ions and compare the crevice concentrations with those in part (b).

18.12. Ruthenium (Ru) is a strong oxidation catalyst for organic compounds typically in the form
RuO4(aq) represented as H2RuO5(aq), but it is a stoichiometric catalyst because it is reduced
during the oxidation of the organic species. Ru species also undergo redox reactions with water
and dissolved oxygen. Assume ideal solutions.

a. Show that RuO4(s) is not stable in contact with an air saturated solution of
water and that it will revert to RuO2(s), independent of pH. (Hint: Water will not
appear explicitly in the final reaction.)
b. Show that the solubility of H2RuO5(aq) is independent of pH in an aqueous
solution saturated with air at 1 bar in contact with RuO2(s). Calculate the



concentration of H2RuO5(aq) that would exist at equilibrium.

c. Consider the equilibrium of RuO4
–

(aq) and H2RuO5(aq) in the presence of
RuO2(s). Determine the coefficients for the equation 
.
d. Consider the equilibrium of RuO4

–
(aq) and RuO4

2–
(aq) in the presence of

RuO2(s). Determine the coefficients for the equation .

18.13.
a. Rank the following molecules in order of increasing oxidation of carbon and
give the oxidation state of C for each: CO2, -COH(aldehyde), -
COOH(carboxylic acid), -CO(ketone), -COH(alcohol), -CH2-, -CH3, CH4.
b. Rank the following C5 molecules in order of decreasing degree of reduction,
pentane, valeric acid, 2-pentanone, propyl-ethyl ether, 1-pentanol, 2-methyl
butanol, and 1-pentanal.

18.14. The human body processes ethanol by oxidizing it to acetaldehyde via the NADox/NADred
dehydrogenase redox reaction. The reaction is

NADox + ethanol  NADred + acetaldehyde
The values for properties in the order the species appear in the reaction are
∆G′of, 310.15(pHc =7.4, I=0.25) ={1163.9, 91.45, 1231.0, 43.2}kJ/mol

∆H′of, 310.15(pHc =7.4, I=0.25) ={–11.9, –291.2, –42.9, –214.1}kJ/mol

a. Determine the magnitude of the heat of reaction under the stated conditions.
b. Calculate the equilibrium constant. If we assume the ratio of the two forms of
NAD are near unity, what is implied about the ratio of acetaldehyde:ethanol?
What is the importance of sign of the Gibbs energy for the subsequent oxidation
of acetaldehyde to acetic acid?40

18.15. The first step in biological glycolysis (the catabolic reaction for glucose consumption)
involves addition of a phosphate to create glucose 6-phosphate2–. If the reaction were to occur
in aqueous solution “chemically” (as compared to “biochemically’”), it would be written

However, in a biological solution, ATP and ADP are carriers of phosphate.
Another reaction in solution is the hydrolysis of ATP to ADP:

The transformed values of the Gibbs energies of formation and enthalpy of
formation (kJ/mol) at 298.15K, pHc 7.0, I 0.25m, pMg 3.0 are tabulated below along
with the physiological concentrations.



a. Evaluate the standard state Gibbs energy and enthalpy for Eqn. 18.176 and ∆G′
under the actual concentrations.
b. Repeat part (a) for Eqn. 18.177.
c. Biological glycolysis works by coupling the two reactions. Write the overall
reaction and evaluate ∆G′ under physiological conditions.

18.16. When we discussed H3PO4 in Section 18.9, we developed a recurring relation for the
dissociation in Eqn. 18.50. Later we gave with verbal argument a binding polynomial in Eqn.
18.90.

a. Write the series of binding reactions for PO4
3– and derive the Eqn. 18.50.

b. Create a plot of <i> vs. pH for PO4
3–.

18.17. Write a binding polynomial for CO2 in aqueous systems and determine the transformed
standard state Gibbs energy of total CO2 at pHc = 7 and I = 0.25 m. Give the distribution of
aqueous species at these conditions.
18.18.

a. Write the binding polynomial for ATP at 298.15K in terms of binding
constants in the absence of Mg for application between 3 < pHc < 14. Assume
ideal solutions. Hint: Use untransformed equilibrium constants calculated from
the Gibbs energies of formation, and ignore the species that don’t have Gibbs
energies tabulated in the appendix.
b. Convert the binding constants to dissociation constants and give the pKa,A for
each dissociation constant.
c. Using the binding constants, calculate and plot the <i> vs. pH for ATP
between 3 < pHc < 14. Mark the <i> at the pKa,A values determined in (b).

d. Give the fraction of each species at a pHc = 7.6.

18.19. Repeat problem 18.18, but use ADP.
18.20. Beginning with the untransformed Gibbs energies of formation, document the intermediate
calculations for the value of apparent Gibbs energy of formation of ADP at the conditions of
Example 18.10, using the extended Debye-Hückel activity coefficient model and transformed
Gibbs energies. Also calculate the distribution of each species.
18.21. Repeat problem 18.20, but use H3PO4.

18.22. At pHc = 7, I = 0.25, beginning with the untransformed Gibbs energies of formation,
document the intermediate calculations for the value of apparent Gibbs energy of formation of
CO2 at the conditions using the extended Debye-Hückel activity coefficient model and



transformed Gibbs energies. Also calculate the distribution of each species.



Chapter 19. Molecular Association and Solvation

The satisfaction and good fortune of the scientist lie not in the peace of possessing
knowledge, but in the toil of continually increasing it.

Max Planck

When specific chemical forces act between molecules, there is a possibility of complex formation.
Chapter 17 dealt with systems where the interactions were strong enough to create new molecules.
The interactions of complexes are much weaker but affect solution thermodynamics in a way that is
fundamentally different from van der Waals interactions. The solution thermodynamics of complex
formation is best represented as simultaneous phase and reaction equilibrium. The complexes usually
cannot be isolated, but their existence is certain from measurements such as spectroscopic studies.
Hydrogen bonding is an example of this type of behavior, as well as Lewis acid/base interactions.
When complexation occurs between molecules that are all from the same component, the phenomenon
is called association. For example, acetic acid dimerizes in pure solutions. When complexation
occurs between molecules that are from different components, the phenomenon is called solvation.
Complexation can occur in familiar ways, like hydrogen bonding, or in less familiar settings like
charge transfer complexes. Mathematically, these phenomena can be treated in the same manner,
which we will refer to as the chemical contribution to the Helmholtz energy, Achem. By taking the limit
of the resultant formulas as the complexation energy approaches infinity, we can also derive a
contribution of the Helmholtz energy that characterizes the formation of dimers and chains, Achain.
Until now, we have described nonspherical contributions with empirical corrections, like κ(ω) of the
Peng-Robinson equation. Chemical theory provides a fundamental description of how nonspherical
molecules have nonzero acentric factors. With these contributions, the Helmholtz energy and
compressibility factor become,

These equations comprise a new perspective on how equations of state should be formulated.
Rather than limiting molecular interactions to a spherically symmetric perspective like the square-
well model, chemical theory accounts for orientationally specific interactions. For example, the
proton acceptors in water do not interact with the proton donors in the same way that they interact
with other proton acceptors. Clearly, the orientations of water molecules must matter. Chemical
theory provides a rigorous and practical means to recognize this.

Imagine for a moment how complex the analysis of complexation could be. For example, alcohols
have proton acceptors and donors that can bond in chains of dimers, trimers, ... Each oligomer might
need a specific activity coefficient and an independent reaction equilibrium constant. Then similar
specifications could be necessary for all solvation interactions. Fortunately, the reaction equilibrium
constants tend to follow predictable patterns, which we need to understand. Furthermore, the
oligomer activities can be related through the equilibrium constraints. In the end, the model equations
are only slightly more complex than the Peng-Robinson equation.

Furthermore, the mathematical formalism of chain formation can be extended by simply
extrapolating the complexation energy to infinity. This provides a self-consistent theory of polymeric
molecules. In previous discussions, we assumed that the shape factor in a model like ESD was



somewhat arbitrarily imposed. In the present discussion, the shape factor is derived as a natural
outcome of chain formation. This opens the door to a discussion of intramolecular interactions,
whereas previous discussions have focused on intermolecular interactions. To get an idea of what
lies beyond that door, note that proteins, DNA, and RNA are polymers with very specific
intramolecular arrangements. Factor in the complexity of pH and other polyelectrolyte interactions,
and you can understand why this text really is merely an introduction.

Chapter Objectives: You Should Be Able to...
1. Explain the relations between reaction and phase equilibria that yield the model
equations for the PC-SAFT and ESD models.
2. Solve the model equations for the mole fraction of monomer, dimer, and so on, and the
resultant fugacity expressions to obtain K-values.
3. Critically assess the intramolecular characterization implicit in PC-SAFT and ESD
models and suggest deficiencies that should be addressed in future research.

19.1. Introducing the Chemical Contribution
Evidence of complexation is often subtle and could be overlooked or ignored in many situations,

but its effects are irrefutable in other situations, so a question arises about ignoring facts because they
are inconvenient. For example, dimerization of carboxylic acids is observable in the saturated vapor
compressibility factor of small acids, but less so for acids of 10 carbons or more. On the other hand,
the trend in LCEP discussed in Chapter 16 shows that dimerization is present even in long-chain fatty
acids. Another commonly cited example of association is HF vapor, important in petroleum refining
and the manufacture of refrigerants, modeled as (HF)n with n predominately 2 or 6. Evidence of this
stoichiometry is found in vapor density data. Alcohols are also common substances in the chemical
process industry that exhibit association. Spectroscopic data are the best source for characterizing
complex formation and further information is available.1 On the other hand, infrared spectra of the
hydroxyl stretch, for example, can be difficult to interpret because they include a broad band of
stretches indicative of the various oligomers that form in chains. Solid-liquid phase boundaries are
indicative of strong complex formation, and may be used to infer complex stoichiometries. For
example, the phase diagram for NH3 + water in Fig. 14.14 shows two complexes that form in the
solid phase, and might be expected to appear in fluid phases in addition to ionic species. Acetone and
chloroform show a 1:1 compound in the solid phase.2 Altogether, the chemical evidence and the
results of molecular simulations are converging on the outlook that complexation is an effect that can
and should be included in any systematic theory of molecular interactions and phase behavior.

Hydrogen Bonding
Hydrogen bonding is the most common phenomenon leading to association or solvation. As an

example, consider the saturated vapor phase compressibility factor of acetic acid. Table 19.1 shows
that, even though the pressure is very low for the saturated vapor at low temperature, the vapor
compressibility factor of acetic acid deviates considerably from unity, when we would expect the
ideal gas law to hold and Z = 1. For comparison, benzene under the same conditions is very nearly an
ideal gas.

Table 19.1. P-V-T Evidence of Association from the Compressibility Factors of Saturated



Vapors

In the case of acetic acid, the small compressibility factor is due to the dimerization of the
carboxylic acid. Even though the pressure is very low, the compressibility factor approaches 0.5
because the number of molecules in the vapor is actually half the apparent amount, owing to the
dimerization.3 Note that the compressibility factor increases as the temperature is increased. Why
should the conversion to dimer be more complete at low temperature? Because association is an
exothermic reaction and the van’t Hoff relation clearly dictates that conversion of exothermic
reactions decreases with increasing temperature. Another implication of associating fluids relative to
nonassociating fluids is that higher temperatures are needed to make the associating network break
into a gas, and this means that Tc for an associating component will be significantly higher than a
nonassociating component of similar structure (e.g., H2O versus CH4). The chemical association of
acetic acid during dimerization is illustrated in Fig. 19.1. Note that the structure forms two hydrogen
bonds simultaneously which makes the dimerization quite strong. Note also that a property of
hydrogen bonding is that the O-H-O bond angle is nearly linear. Although the ring has eight atoms, the
carboxylic acid structure is close to a six-sided ring, not an eight-sided ring.

Figure 19.1. Schematic of association in acetic acid.

Hydrogen bonding is also common between different species. For example, the hydroxyl hydrogen
in phenol is fairly acidic while trimethyl amine is basic. The trimethyl amine would form a solvation
complex in this case, even though it is incapable of association. Hydrogen bonding in solvating
systems can enhance miscibility. For example, water and triethylamine are miscible in all proportions
below 18°C (and above 0°C where water freezes). However, above 18–19°C, the increased thermal
energy breaks the hydrogen bonds resulting in an immiscibility region which increases with
increasing temperature4 until the hydrogen bonding energy becomes too weak to influence the phase
behavior. To put this into perspective, water miscibility with triethylmethane (aka 3-ethylpentane) is
practically negligible at all conditions.

Usually, hydrogen bonding refers to protons bonding when they are attached to O, N, or F. In rare
instances, protons bound to carbons can form a complex and it is common to refer to this as hydrogen
bonding as well.1 The hydrogen on a highly chlorinated molecule can form a complex with a Lewis
base, such as a carbonyl, ether, or amine group. Well-known examples are chloroform + acetone,
chloroform + diethyl ether, and acetylene + acetone, as depicted in Fig. 19.2. The chloroform +
acetone in homework problem 11.15 should be reconsidered in light of complex formation.



Figure 19.2. Schematic of solvation in several pairs where association of the pure components
is negligible.

Charge-Transfer Complexes
Solvation can also occur in the absence of “hydrogen bonding,” per se. Similar kinds of

interactions can be called “charge-transfer complexes,” in which case one component is electron-rich
(loosely bound electron) and another is strongly electron-attracting (low energy vacant orbital). For
example, common electron donors are benzene rings with donating groups like –OH, –OCH3, –
N(CH3)2. Common electron acceptors are compounds with several nitro groups (1,3,5-
trinitrobenzene), quinones, and compounds with several CN groups (tetracyanoethane, 2,3-dicyano-
1,4-benzoquinone). For example, nitrobenzene and mesitylene form a complex when they are mixed
as shown in Fig. 19.3. Tetrahydrofuran (THF) and toluene form a charge transfer complex when
mixed together. When a charge-transfer complex forms, the energy typically corresponds to about 5
kJ/mole, and the strength is the same order of magnitude as a hydrogen bond. Chemically, these
situations are all a bit different, but the mathematics is the same.

Figure 19.3. Schematic of charge-transfer complexation.

We discussed acidity and basicity in connection with the MOSCED and SSCED models in Chapter
11. Recall that a measure of the relative acidity/basicity is available from spectroscopic
measurements tabulated in the Kamlet-Taft acidity/basicity parameters.5 The Kamlet-Taft parameters
are determined by comparing spectroscopic behavior of probe molecules in the solvents of interest. A
small table of parameters has been included on the back flap.6 These acidity and basicity parameters
were designed for the SCED perspective, but they can provide guidelines for the energies of
hydrogen bonding and complex formation too. The primary difference is that the SCED perspective
does not alter the underlying solution model in a fundamental sense. To clarify, the similarity of the
SSCED model to the Scatchard-Hildebrand means that the same solution model would be obtained
with proper choices of kij. The kij values of the SSCED model are more predictable, but they do not
alter the skewness of the Gibbs excess energy any more than the kij values of the Scatchard-
Hildebrand model. Recognizing hydrogen bonding and complexation as mild reactions does alter the



skewness of the Gibbs excess energy. In this sense, complexation theory provides an alternative to
local composition theory. Whereas local composition theory correlates qualitatively with molecular
simulation results, complexation theory correlates quantitatively. This means that a systematic step
can be taken in connecting the molecular interactions with their macroscopic behavior.

Preliminary Considerations of Stoichiometry and Notation

In a generalized binary solution,7 the ith complex can be represented by the general form Aai
 Bbi

,
where the values of ai and bi are integers which will depend on the particular system (note that for an
associated specie, either ai or bi is zero, but that won’t affect the proof). The integers ai and bi are the
stoichiometric coefficients:

For example, a hypothetical system is shown in Fig. 19.4 that exhibits both association and
solvation where the components A and B are added to the solution in quantities nA and nB.

Figure 19.4. Illustration of mixing of species A with species B to form a solution with both
association and solvation. The labels in the containers indicate the true species present, not the

relative concentrations. The species have been chosen for illustrative purposes.

The concentrations  and  are the mole fractions that are experimentally
important for macroscopic characterization and are the conventional mole fractions. Since these mole
fractions do not represent the true species in solution, they are also called the apparent mole
fractions. The mole fractions in the actual solution are called the true mole fractions, and also are

denoted by x’s; for example, , . Note that xA (the
apparent mole fraction) is not the same as (the A monomer mole fraction). Because the monomer mole
fraction will end up being so important in later proofs, we give the special subscript M to help
distinguish this as the monomer in the true mixture. Therefore, xA1

 ≡ xAM, and xB1
 ≡ xBM. The true

species that are present in solution will usually be inferred from fitting experimental data, and the true
mole fractions are usually modeled quantities rather than experimental quantities since they are
subject to the assumptions of the model. The nomenclature is nevertheless the established convention
in the literature. Note that the implication that the mixture of this discussion is a liquid mixture is not
restrictive. The same balances and notation will be used to refer to vapor mixtures, but y’s will be
substituted for the x’s.

 The subscript M is used for monomer.



19.2. Equilibrium Criteria
Mole Balance

One may wonder how quantification of the phenomena can be approached in a generalized fashion,
but the criteria are presented clearly by Prigogine and Defay (1954) whose proof we reproduce here
with modified notation. The first balances that must be satisfied are the material balances. For a
binary solution created from nA moles of A, and nB moles of B, where ni is the moles of each specie
formed by Eqn. 19.3,

where the summations are over all i true species found in the solution. For example, in the binary
solution of Fig. 19.4, Eqn. 19.4 becomes

nA = 1nAM + 0nBM + 2nA2
 + 1nAB2

nB = 0nAM + 1nBM + 0nA2
 + 2nAB2

Chemical Potential Criteria
The chemical potentials of the true species are designated by µAM, µBM, µAai

Bbi
 and so forth, and the

apparent chemical potentials by µA and µB. Applying the principles of chemical equilibria to binary
Eqn. 19.3, we find

If the total differential of G (Eqn. 17.7) is evaluated at constant T and P, allowing the species to
come to equilibria,

we find by incorporating Eqn. 19.5 and the differential of Eqn. 19.4

On the other hand, for any binary solution at constant P, T, according to the apparent components

By comparing 19.6 and 19.7 we conclude

Therefore, the apparent (conventional) chemical potential is quantified by a model that calculates
the chemical potential of the true monomer species. It should be noted that this proof is independent of



the number or stoichiometry of species that are formed in solution.

Fugacity Criteria
The chemical potential criteria may be extended to fugacity. For the apparent chemical potential,

and for the monomer,

Note that for a species that associates, the standard state for the monomer is a mixture state since,
even when A is pure, there is a mixture of true associated species. Applying Eqn. 19.8,

where the standard state is pure component A.
In the event that component A does not associate, the true solution is completely a monomer when A

is pure, and

which leads to

The situation when A associates is slightly more complex. Recognizing that the apparent state
neglects complexation, the chemical potential of monomer µAM in Eqn. 19.10 can be calculated,

where the lower limit is the hypothetical state of pure monomer, and the upper limit is the monomer
state that actually exists in a pure associating solution of A. Integrating both sides, and recognizing the
lower limit of each integral as the apparent standard state

Combining with Eqn. 19.11 again results in Eqn. 19.13. Note that a parallel proof would show

Activity Criteria
Returning to Eqn. 19.9, it can be rewritten in terms of the apparent activity and activity coefficient.



Defining an activity coefficient, αAM, of the true monomer species, the chemical potential is

Using Eqn. 19.8 to equate Eqns. 19.15 and 19.16,

where the exponential term is a constant at a given temperature. The symmetrical convention of

apparent activity requires . For a nonassociating species, the exponential term of Eqn.

19.17 is unity by Eqn. 19.12, and thus , . For an associating species 

 which is the true mole fraction of monomer in pure A, which is not unity. Therefore,
the exponential term is simply the reciprocal of the limiting value of the monomer activity 

. As such, we write

where  for a nonassociating component. A parallel proof would show that

These equations show how the activity coefficient could be less than one even for an “ideal”
solution. For example, acetone and chloroform might form an ideal solution in the sense that
αAM=1=αBM at all concentrations. Complexation would result in xAM< xºAM when B was present, such
that γA < 1. We explore this prospect extensively in Section 19.4.

19.3. Balance Equations for Binary Systems
The balance equations to be solved take the same form for both vapors and liquids. The liquid

equations will be shown, and the reader should recognize the vapor equations by analogy. First, the
true mole fractions must sum to unity:

In a binary system, a balance equation can be written for either component to match the apparent



mole fraction:

Dividing numerator and denominator by the true number of moles, nT,

Rearranging Eqn. 19.21 to facilitate implementation of the balance, multiply by the denominator,

and collecting the true mole fraction results in a form of Eqn. 19.21 that is easier to implement:

Eqns. 19.20 and 19.22 are not yet ready to implement because all of the true mole fractions are
unknown and only two equations have been developed. In the next section, we show that the true mole
fractions can be written in terms of an equilibrium constant and the monomer mole fractions, which
will provide sufficient information once the equilibrium constants are known.

19.4. Ideal Chemical Theory for Binary Systems
The simplest method of modeling complex behavior is to neglect the nonidealities by modeling a

vapor phase as an ideal gas mixture including the complexes (true fugacity coefficients equal to 1),
and to model a liquid phase as an ideal solution containing complexes (true activity coefficients equal
to 1). This approach is called Ideal Chemical Theory and can be used to calculate the non-ideal
apparent fugacity or activity coefficients. Two brief observations at the outset help to put the
chemical perspective into context. First, in reference to systems that can only solvate (not associate),
the observed activity coefficients must be less than one because xAM<x°AM when B is present.
Second, for systems in which one component associates and the other can neither associate nor
solvate, the observed activity coefficients must be greater than one because xAM> x°AM when B is
present owing to the interference of B with A from dilution. If you combine these two observations
for mixtures that can solvate and associate, you can see how an entire range of activity coefficients
may be obtained.

Modeling complex formation with ideal chemical theory, Eqn. 19.3 can be expressed in terms of an
equilibrium constant:

Plugging into Eqns. 19.20 and 19.22, the equations to be solved are obtained:



Once the Ki are known, then xAM and xBM can be determined by solving these two equations at a
specified apparent concentration. Subsequently, all true mole fractions, xi (Eqn. 19.23) and the
apparent mole fractions γA, γB (Eqns. 19.18 and 19.19), can be calculated. If γA, γB are known from
experiment, and the complex stoichiometry is known, Ki values can be adjusted to fit the data using
optimization methods. A spreadsheet is provided for solving for the true species for given values of
Ki in the programs Ichemt.xlsx and Ichemt.m.

For ideal chemical theory applied to the vapor phase, the xi are replaced with yi and Eqn. 19.3 is
expressed as

Eqns. 19.20 and 19.22 then become

These equations are marked as ideal gas equations since they are ideal gas equations from the
perspective of the true solution. As with the liquid-phase calculation, if the Ki values are known, yAM
and yBM can be determined.

Example 19.1. Compressibility factors in associating/solvating systems
Derive a formula to relate the true mole fractions to the compressibility factor of a vapor phase

where the true species follow the ideal gas law.

Solution
A vessel of volume V holds no apparent moles. However, experimentally, in the same total volume,

there would be a smaller number of true moles nT. Applying the ideal gas law,

Experimentally, we wish to work in terms of the apparent number of moles,



Note that this equation is labelled as an ideal gas equation because the true species follow the
ideal gas law, even though from the perspective of the apparent species, the ideal gas law will not be

followed. From the total mole balances, , and ; therefore,

Dividing numerator and denominator by nT,

Therefore, once the true mole fractions have been determined, the compressibility factor can be
calculated. Determining the true mole fractions requires solving the reaction equilibria, as discussed
in the next example.

Example 19.2. Dimerization of carboxylic acids
P-V-T measurements of acetic and propionic acid vapors are available.a The equilibrium constants

for acetic and propionic acids at 40°C are 375 bar–1 and 600 bar–1 respectively. At a pressure of
0.01 bar, determine the true mole fractions, the compressibility factor, and the fugacity coefficients.

Solution
Beginning with Eqn. 19.27, letting A be the acid of interest,

Eqn. 19.28 is not required since the system is a single component. This simple equation can be
solved with the quadratic formula,

At P = 0.01 bar, for acetic acid, yAM = 0.4, YA2
 = 0.6, and even at this low pressure, Eqn. 19.30

gives Z = 0.625. For the fugacity coefficient, starting with Eqn. 19.13,

Since the system is pure, yA = 1 and the fugacity coefficient on the left-hand side will be for a pure
species. Since the model uses ideal chemical theory, . Therefore

The same procedure can be repeated for propionic acid, however it will be even more nonideal.



The answers are: yAM = 0.333, Z = 0.6, .

a. McDougall, F. H., 1936. J. Amer. Chem. Soc. 58:2585; 1941. 63:3420.

Example 19.3. Activity coefficients in a solvated system
1,4-dioxane (component B) is a cyclic 6-member ring, C4H8O2, with oxygens in the 1 and 4

positions. When mixed with chloroform (component A) the oxygens provide solvation sites for the
hydrogen on chloroform. Since there are two sites on 1,4-dioxane, two complexes are possible, AB
and A2B. McGlashan and Rastogia have studied this system and report the liquid phase can be
modeled with ideal chemical theory using KAB = 1.11, KA2B = 1.24 at 50°C. Calculate the true mole
fractions and activity coefficients across the composition range.

Solution
We will use the program Ichemt.xlsx to solve Eqns. 15.21 and 15.22. For the A2B compound, ai =

2, bi = 1, Ki = 1.24. For the compositions, we enter increments of 0.05 for the apparent compositions.
Near the endpoints, we enter xA = 0.001 and xA = 0.999 to avoid numerical underflows and
overflows. The activity coefficients are easily calculated using γA = zA/xA, γB = zB/xB since neither
component exhibits association. The results are shown in Fig. 19.5. Note that the solvation causes
negative deviation from Raoult’s law. Also note the relation between the complex stoichiometry and
the maxima in the complex concentration. Can you rationalize why the infinite dilution activity
coefficient of 1,4-dioxane is smaller than the infinite dilution activity coefficient of chloroform?

Figure 19.5. Ideal chemical theory applied to the chloroform + 1,4-dioxane system as
calculated in Example 19.3.

a. McGlashan, M. L., Rastogi, R. P. 1958. Trans. Faraday Soc. 54:496.

 Ichemt.xlsx Ichemt.m



19.5. Chemical-Physical Theory
The assumptions of ideal chemical theory are known to be oversimplifications for many systems

and physical interactions must be included. For a liquid phase, the activity coefficients of the true
species can be reintroduced. Then

Utilizing this result with Eqns. 19.20 and 19.22, the following equations are obtained:

Since most activity coefficient models require two parameters per pair of molecules, the number of
parameters becomes large. In addition, any parameters for the complex must be estimated or fit to
experiment since the complex cannot be isolated. Solution of the equations is more challenging
because the true activity coefficients must be updated with each iteration on xAM and xBM.

For chemical-physical theory applied to the vapor phase,

Eqns. 19.20 and 19.22 then become

The physical properties of the complex must also be modeled with this approach, and the same
challenges for solving the equations are present as discussed above for chemical-physical theory of
liquid phases.

An interesting study has been performed by Harris8 for acetylene in n-hexane, butyrolactone, and n-
methyl pyrrolidone at 25°C. In this study, a simplified van Laar model was used to model the physical
deviations, which resulted in one physical parameter. Naturally, the acetylene + n-hexane does not
exhibit solvation, but the other binaries do, with the pyrrolidone showing the strongest complexation.
Further, the n-hexane system has positive deviations from Raoult’s law across the composition range,
the pyrrolidone shows negative deviations, and the lactone shows both positive and negative



deviations. All three systems are accurately modeled using two parameters each—one chemical
parameter and one physical parameter.

Another approach to the chemical-physical theory is to use the Flory-Huggins theory for the
physical contributions. This is the approach of Coleman and Painter in modeling polymer solutions.
The Coleman-Painter model leads to complications in the extension to ternary mixtures, however,
owing to several details in their perspective on chemical networks.9

Multicomponent chemical-physical theory can be achieved most elegantly with Wertheim’s theory
which we will discuss in the next section.10 Wertheim’s theory characterizes chemical interactions
from the perspective of the acceptor or donor sites instead of the species. This simplifies to the
counting of nonbonded sites, especially for multicomponent systems, and the nonbonded sites can be
related to the monomer fraction, which suffices to define the solution thermodynamics. Wertheim’s
theory requires a complementary physical theory for the nonchemical attractive and repulsive
interactions. Briefly, chemical interaction is short-ranged, so variations in bonding are affected by the
frequency of species coming into contact. Repulsive interactions dominate the frequency of contact
(specifically, g(σ)). We can estimate g(σ) for spherical molecules with the Carnahan-Starling
equation. For nonspherical molecules, we can imagine that they are composed of spherical segments.
Then the role of the attractive contribution is like that of a spherical molecule, to provide a disperse
field of attractive energy that acts between spherical entities and reduces the pressure. This leads to a
remarkably compact and self-consistent model of chemical-physical equilibria.

Before we begin our discussions of Wertheim’s theory, let us mention an additional approach to
chemical-physical theory is provided by Heidemann and Prausnitz.11 They showed that reasonable
assumptions about the van der Waals parameters of monomers, dimers, trimers, and so on leads to a
closed form solution for the compressibility factor and fugacity coefficient. Similar to Wertheim’s
theory for pure fluids, the Heidemann-Prausnitz method provides a complete chemical-physical
theory, describing all variations with density, temperature, composition, and chemistry. However,
similar to the Coleman-Painter theory, this method has complications in the extension to
multicomponent mixtures. Suresh and Elliott12 showed that the Heidemann-Prausnitz method is
equivalent to Wertheim’s theory subject to certain assumptions about the change in heat capacity due
to reaction. In the interest of covering the most general method, we focus now on Wertheim’s theory,
but we introduce concepts using the Heidemann-Prausnitz perspective as a simple way of illustrating
several of the more striking results derived from Wertheim’s theory. This is necessary because the
rigorous proofs of Wertheim’s theory of Wertheim’s original publications go beyond the introductory
scope envisioned here.

19.6. Wertheim’s Theory for Complex Mixtures
The general approach is exactly what you would expect: Write all the reaction and phase

equilibrium constraints and then solve the nonlinear system of equations. Making this approach into a
practical alternative to, say, the Peng-Robinson model requires several clever observations,
approximations, and rearrangements, however. Wertheim’s theory is based on the contribution to the
Helmholtz energy. In the end, Achem is recognizable as a distinct contribution with a firm foundation in
experimental observation and molecular simulation that adds just one intermediate (but robust) step in
solving for the density given temperature and pressure.

Wertheim’s theory has the same objective as this chapter: to develop a theory for the chemical



contribution to the Helmholtz energy, Achem, and consequently Zchem, through the derivative relations
in Chapter 6. Because the volume derivative of A results in P, the volume (or density) derivative of A
can be used to calculate the contribution of chemical interactions to Z. Wertheim’s theory refers to the
concepts of monomers and dimers discussed previously, but develops a self-contained and self-
consistent model based on a given equation of state for the nonchemical contributions. In Chapter 7,
we demonstrated that an equation of state expression for Z could be written in terms of the repulsive
Zrep and attractive Zatt contributions. (i.e., Arep and Aatt, aka the “physical” contributions).
Wertheim’s original development uses sophisticated statistical mechanics beyond the scope of this
introduction. Nevertheless, we can understand his results in terms of contributions to the reaction and
equilibrium equations. Whenever we arrive at a set of terms that seems difficult to simplify, we can
apply Wertheim’s result as a “clever guess,” and show how this result leads to a self-consistent
interpretation for specific physical contributions (e.g., the van der Waals model). Once we have an
expression for Achem expressed in terms of ρ0 and T, it can be added to the physical contributions and
the equation of state can be applied like any other equation of state.

Because the notation is complicated, we develop this section using pure components, and later
generalize the results. Wertheim’s theory is applied to equations of state, so we use the notation x to
represent mole fractions in both the vapor and liquid phases and the state of aggregation will be
determined by the size of Z. Also, we omit the “A” from xAM when there is only one component. The
starting point for Wertheim’s theory is to rearrange the analysis in terms of the true numbers of
bonding sites in the fluid. The extent of association is then characterized in terms of the fraction of
bonding sites not bonded:

This “fraction of bonding sites not bonded” is closely related to the fraction monomer, xM. The
relevant mass balances are discussed below. To understand Wertheim’s theory, you must understand
what is meant by a hydrogen bonding site. A key element of Wertheim’s perspective is to characterize
the bonding sites as small, off-center “blisters” of attractive energy. This gives orientational
specificity because the sites can only bond if the angle from the left repulsive site to the bonding sites
to the right repulsive site is close to 180°; any other orientation would be inconsequential.
Furthermore, the smallness of the blister relative to the repulsive site means that three sites cannot
bond simultaneously because it would require the third repulsive to overlap with the two that were
already bound as shown in Fig. 19.6. This captures the short-range nature, orientational specificity,
and steric hindrance that we recognize in hydrogen bonding, and complexation in general.

Figure 19.6. Wertheim’s perspective on bonding sites. The shaded portions represent the
blisters. The lower two molecules are happily bonded, but the upper molecule can’t join the

same bond.



Dimer Formation
We begin with association to form a dimer. For the formation of a dimer (denoted with subscript

D), Eqn. 19.4 and the sum of true mole fractions can be combined and rearranged to relate the
apparent moles n0 and total true moles nT to the fraction of unbonded sites X:

Dividing Eqn. 19.38 by n0 gives 1 – nT/n0 = (1 – X)/2, where X is the fraction of bonding sites not
bonded:

Noting that the solution must satisfy the mass balance, Eqn. 19.20, xM + xD = 1. Together with the
reaction equilibrium (law of mass action, Eqn. 19.34) we may write,

Substituting Eqn. 19.40 gives 1 – 2X/(1 + X) = 4X2PKa(φM
2/φD)/(1 + X)2, which can be rearranged

to

Defining

may seem odd at first glance, but it is one of the major simplifications derived from Wertheim’s
theory. We outline his analysis below, but a key step was when Wertheim showed that this
conglomeration of symbols can be simplified to

where g(σ) is the radial distribution function at contact distance σ, εC is the bond energy of the
complex, and KC is the bonding volume related to the size of the “blisters.” Eqn. 19.42 shows that X
can be solved directly from the density and temperature since ∆ is a function of ρ and T. Since the
density and temperature must be specified in applying the physical contributions of the equation of
state anyway, the interjection of this contribution does not complicate matters in the way that solving
simultaneous phase and reaction equilibria does. Imagine how cumbersome this model might become
if all complexation required iterative solution. The principles are the same, but the feasibility is
radically altered.

Aside from the advanced statistical mechanical analysis of Wertheim’s paper, we can appreciate
the phenomenology of his analysis in two ways. First, we can recognize ∆ as an equilibrium constant
of a reversible reaction, the ratio of forward and reverse rates. The forward reaction is proportional
to the probability of the sites finding each other. This probability is zero if the density is zero, and it
is enhanced by g(σ). The reverse reaction is inhibited by the strength of association. The stronger the
bonding energy, the slower the dissociation.13 Second, we can apply the van der Waals model with
some simple assumptions. If we assume that bD = 2bM, aDD = 4aMM, and aDM = 2aMM, we obtain a



similar result, in the manner of Heidemann and Prausnitz as shown in Fig. 19.7. Applying these
assumptions to the fugacity coefficients of the van der Waals equation and substituting into Eqn.
19.42, we obtain,

Figure 19.7. Illustration that aDD = 4 aMM and aDM = 2 aMM are reasonable by adding the
number of pair interactions.

Simplifying gives,

Note that the vdW EOS corresponds roughly to g(σ) = 1/(1 – ηP). Also, the equilibrium constant,
Ka, can be referenced to the critical temperature and written as,

The “best” expression for ∆Cp/R is debatable. Experimental measurements are unlikely to provide
sufficient precision to resolve the debate. From a practical perspective, we would prefer a compact
expression for Ka. From a theoretical perspective, Wertheim’s analysis is the most sophisticated.
Suresh and Elliott14 showed that Wertheim’s analysis is consistent with the assumption that,

Substitution shows a remarkably compact expression for Ka,

where KC = Kac(∆H/RTc – ∆Cp/R) and εC/kTc = (∆H/RTc – ∆Cp/R). The superscript “C” in this



expression designates the chemical contribution.15 Substituting this expression for Ka and g(σ) for
1/(1 – ηP) results in Eqn. 19.44, eliminating the need to solve iteratively for the density, monomer and
dimer concentrations, and fugacity coefficient ratio. It is a significant simplification, but an additional
step is required to transform the extent of reaction (implicit in X) into the thermodynamic contribution,
Achem.

Low Density

The next objective is to evaluate the impact on Helmholtz energy, Achem, of forming a bond. As
discussed in the introduction, Achem is the chemical contribution as it pertains to an equation of state.
Let’s begin by rewriting the Gibbs energy for a single bond at low density, noting that PV = nTRT
then.16

Or, on a apparent molar basis, (dividing by n0),

In rearranging, note that Gchem = ∆µchem = RT ln(f/f°), where f is the total fugacity with association
fully recognized and f0 is the apparent fugacity based on zero association.

Further noting that

Substituting Eqns. 19.39 and 19.53 into Eqn. 19.51, and recalling X = nM/n0, we have

This turns out to be a very powerful equation.

All Densities
The remarkable aspect of Eqn. 19.54 is that it is accurate for all densities and extents of

association, although it has been derived here only for binary association at low density. In fact, the
significance of Wertheim’s work is that he provides a rigorous statistical mechanical derivation of
this identity at all conditions. Once again, we can support this result phenomenologically through the
van der Waals model. Adapting Eqn. 19.38,

This equation shows that there is no overlap of repulsive sites when a hydrogen bond occurs, so
the volume occupied by molecules is the same regardless of association. Similarly,

We can express the fugacity of the fluid in two ways, noting that fM = f where fM is defined by the
monomer fugacity in the mixture, that is, ln(φM) = ln(fM/xMP), and f is defined by ln(f/P) = (G –



Gig)/RT for the “pure” fluid based on the apparent perspective. The expression in terms of φM relates
to the true species and uses the fugacity expression for a component in a mixture. The expression in
terms of f/P emphasizes that we are still discussing a single pure component,

By Eqns. 19.55 to 19.56,

Equating 19.58 to 19.59, we can immediately cancel terms of ln(1 – ηP) and ρ0aMM. Also noting
that ln(PV/n0RT) – ln(PV/nTRT) = ln(nT/n0),

noting that xM·nT/n0 = X, and from Eqn. 19.39 (nT/n0 = (1+X)/2), we obtain,

Recall that Z/ηP = d(A/RT)/dηP. Taking Eqn. 19.54 as a trial solution and checking that it is
consistent with Eqn. 19.61,

We can evaluate ∂X/∂ηP through Eqn. 19.42 by differentiating implicitly.

Multiplying and dividing the left side by X and replacing X2∆ with 1 – X, then multiplying and
dividing the right side by ∆ and replacing X2∆ with 1 – X, we obtain,

Recalling the definition of ∆ from Eqn. 19.44,



Substituting Zchem = (–1 + 1/X) / [2(1 – ηP)] gives

Hence we have recovered Eqn. 19.54 and verified our trial solution, this time without the
assumption of low density, but with the assumption of the van der Waals model.17 Altogether, we can
thoroughly appreciate the results of Wertheim’s analysis, even if the rigors of Wertheim’s statistical
mechanics exceed our current scope. We can derive the framework of the simultaneous reaction and
phase equilibria and see the crucial terms requiring simplification. At that point, Wertheim’s “clever
guesses” provide a tremendous simplification of an immensely complex problem, all the more
remarkable when recognizing that they are thoroughly grounded in a rigorous fundamental analysis.

Given Eqn. 19.54 for the free energy and Eqn. 19.42 to solve for X, the problem is essentially
solved. Z = 1 + Zrep + Zatt + Zchem can be solved at a given T and P by iterating on ρ. Then the free
energy equation yields the fugacity. The algorithm to solve for apparent density is illustrated in Fig.
19.8. Relative to the numerical solution of binary association in a pure fluid, this result might not
seem so impressive. Nevertheless, further analysis shows that the extension to chain association of
multiple components requires the same effort from Wertheim’s perspective, whereas the numerical
solution quickly becomes overwhelming.

Figure 19.8. Flow sheet for calculating density by the van der Waals associating fluid model.

Example 19.4. The chemical contribution to the equation of state



Assuming ∆ is about 1000 at 300 K and ρ = 1.04 g/cm3, estimate Achem/RT, Zchem, and xM of liquid
acetic acid. You may assume that bM = 23 cm3/mol and the van der Waals model for Z.

Solution
Referring to Eqn. 19.66, Achem/RT = ln(X) + (1 – X)/2 and Zchem = –(1 – X) / [2(1 – ηP)]

Referring to Eqn. 19.39, xM = 2X/(1 + X) = 0.06037

Comparing xM to X, the true solution is 94% dimer and 97% of the acid molecules exist in the
dimer form. It is also interesting that Zchem < –0.5 for this liquid phase. The amount of dimerization
would decrease at lower density, and for the gas phase it would be significantly lower, with Zchem

smaller in magnitude.

Chain Association
To extend the analysis from dimer formation to model chain formation, the primary adjustment is to

assign two sites per molecule, consistent with one proton acceptor (A) and one proton donor (D), as
we might expect for an alcohol. We can easily count the number of acceptors and donors in such
linear chains by noting that one unbonded acceptor is left in each bonded chain, referring to Fig. 19.9.
The equations for donors are entirely symmetrical and are omitted for simplicity. Note that nA (the
mole number of acceptors not bonded) is something quite different from nA (the mole number of an
“A-mer”). The extent of association is then characterized in terms of the fraction of acceptor sites not
bonded, Xj

A. To see the relationship, consider the mass balances We obtain,

Figure 19.9. Wertheim’s theory of chain association in a two-site model.

But the total number of acceptors is given by noting that there are “j” total acceptors per j-mer,

Note that no refers to the same apparent number of moles discussed previously. Therefore,

There is a further simplification that results from treating the bonding sites instead of the bonding
molecules. The fraction of sites bonded can be perceived as a simple product of the bonding



probabilities. First, note that the fraction of monomers bonded, xAD, and the fraction of monomers not
bonded, XA, must sum to unity.

xAD is the fraction of acceptors that are bonded, regardless of whether they are bonded in
monomers, dimers, trimers, ... In principle, the second term is an infinite sum. From an acceptor site
perspective, however, we assume that the thermodynamic change from the unbonded state to the
bonded state is the same, regardless of the degree of polymerization for that i-mer. That is, adding one
more monomer to the end of a chain has the same equilibrium constant regardless of the chain length.
Chemically, we have

That transition can be represented by

where XD is the fraction of unbonded donors and ∆AD = ρg(σ) KAD[exp(εAD/kT) – 1] adapts Eqn.
19.44 to AD interactions. The term on the left is the fraction of acceptors that are bonded, and the term
on the right expresses the observation that acceptors and donors must be unbonded in order to be
available for bonding. By noting that one donor bonds for every acceptor, we see that XA = XD. Then
we write Eqn. 19.72 in terms of XA, (XA)2, and ∆AD and we can solve the quadratic equation to obtain

The extension of the Helmholtz energy to chain formation simply applies the same formula
developed for dimer formation. This formula accounts for the change in entropy and energy each time
a bond is formed. Whether the bond is formed as part of a dimer or part of a chain, the reduction in
entropy by forming a bond is the same. So is the energy released by the bond formation. In terms of
acceptors and donors for a pure fluid, Eqn. 19.54 becomes,

Eqns. 19.73, 19.74, and 19.44 characterize the chemical contribution for molecules like alcohols.
Given a temperature and density, Eqn. 19.44 gives ∆AD, then Eqn. 19.73 gives XA, then Eqn. 19.74
gives A chem, then Eqn. 19.1 gives (A – Aig). Altogether, just one extra step (Eqn. 19.73) is required to
compute the Helmholtz energy relative to the van der Waals model, but the rigor of the chemical
perspective is greatly enhanced. In the MOSCED model, for example, the contribution involving (αi –
αj)(βi – βj) is entirely empirical. It is contrived to give the right sign when mixing acids and bases, but
there is no basis for it in theory, and it does not alter the skewness of the excess Gibbs energy. On the
other hand, Wertheim’s theory is based on a rigorous derivation relating the molecular scale bonding
volume and energy to the macroscopic properties, and fundamentally altering the behavior of the
Gibbs energy.

Extension to Mixtures
Analyzing the impact of the chemical contribution on excess Gibbs energy requires extension of



Wertheim’s theory to mixtures. The beauty of Wertheim’s perspective is that the extension of the
reaction equilibrium relation (Eqn. 19.72) is entirely straightforward. One donor must bond for each
bonded acceptor, whether the molecules are mixed or pure. The only issue is which molecule
possesses the acceptor and which possesses the donor, but that is a notational detail. Furthermore, the
fraction of bonded acceptors on the ith molecule must be in equilibrium with the unbonded donors and
acceptors. The only difference is that the transition of an acceptor to being bonded can be effected by
any donors, including those on other molecules. We simply need to sum all the transition probabilities
and the extension becomes:

where xi is the apparent mole fraction of component i and Nd,i is the number of hydrogen bonding
segments in component i. Nd,i accounts for the prospect that one molecule could have several donors,
like the hydroxyl sites in polyvinyl alcohol. The extension of Eqn. 19.44 to mixtures becomes

The ordering of the subscripts and superscripts in Eqn. 19.76 provides the notational detail that
permits accounting for which bonding site resides on which molecule. For example, by writing εij

AD,
it is implied that the acceptor is on the ith component and the donor is on the jth. To designate the
energy of a donor on the ith component with an acceptor on the jth, we should write εij

DA. To clarify,
this distinction might be important in a mixture of alcohols (i) and amines (j), for example. An amine
is usually a weak proton donor (indicated by its low acidity, αj) but a strong proton acceptor
(indicated by its basicity, βj), whereas a typical alcohol has roughly equal acidity and basicity (αi =
βi). If we suppose that βi ~ βj, then εii

AD ~ εij
AD > εij

DA ~ εjj
DA. This would mean strong solvation for

the amines and negative deviations from Raoult’s law, as observed experimentally. Eqns. 19.75
simply states that the bonding probability for an acceptor on the ith species increases when there are
donors on other molecules, and it decreases proportional to the mole fraction when the donor species
are diluted by nonassociating species. The precise extent of chemical interaction is controlled by
∆ij

AD, which could range from zero (for alkanes in water, for example) to a substantial quantity (when
mixing carboxylic acids, for example).

The extension of Achem to any number of bonding sites or components becomes,

Briefly, this equation indicates that the change in Helmholtz energy due to bonding is the same
regardless of how those bonds are formed. In other words, the reduction in entropy due to bond
formation is universal when the packing fraction is unchanged. We know that entropy is the primary
contribution because energy does not appear explicitly in Eqn. 19.77. Bonding energy affects Achem

implicitly through ∆, because a larger energy gives a larger value of ∆ and a smaller value of Xi
B. We

have included XC here to represent dimerization (e.g., carboxylic acid bonding) as something distinct
from AD interaction. A’s can only bond with D’s, and this leads to chain formation. On the other hand,



C’s can only bond with C’s, confining these sites to dimerization. Although we wrote the equation for
these three types of bonds, there is really no limit and Eqn. 19.77 can be extended straightforwardly
to many situations. In the description here, XC would not affect XA because C’s can only interact with
C’s. If a carboxylic acid (e.g., acetic acid) is to interact with an alcohol (e.g., water), A’s or D’s
would need to be included as part of the carboxylic acid segment, in addition to the C’s, as illustrated
in Fig. 19.10.18

Figure 19.10. A bonding site model for acetic acid.

Eqns. 19.75–19.77 provide a powerful and versatile complement to our treatment of phase
equilibria. In Chapters 10–12, we might have alluded to hydrogen bonding, for example, as a reason
why oil and water do not mix, but our models did not truly recognize it as bonding. The van der
Waals models and local composition theories treat attractive energy as spherically symmetric, like
the square-well potential. But complexation is stereospecific and this alters the description of the
Helmholtz energy. The Helmholtz energy of hydrogen bonding is as different from that of the van der
Waals model as Eqn. 19.77 is from aρ/RT.

19.7. Mass Balances for Chain Association
The thermodynamics and phase behavior are sufficiently described by Eqns. 19.75 and 19.77, but

you may be curious about the true mole fractions of the species. Furthermore, it is interesting to see
how this “fraction of acceptor sites not bonded” is closely related to the fraction monomer, xM. This
turns out to be a bit subtle, and it should not distract you from the primary issue of phase behavior. If
you are interested, we can use material balances to obtain two simple relations between the true
number of moles in the solution, nT, and the apparent number of moles that we would expect if there
was no association,19 no. Note that no is the number of moles one would compute based on dividing
the mass of solution by the molecular weight of a monomer as taught in introductory chemistry. For
example, in 100 cm3 of water one would estimate

no = 100 cm3 · 1.0 g/cm3/(18 g/mole) = 5.556 moles

But how many moles of H2O monomer do you think truly exist in that beaker of water? We will
return to this question shortly. Note that each i-mer contains “i” monomers, such that the contribution
to the apparent number of moles is i·ni. Note also that the true mole fractions, xi, are given by ni/nT,
but it may not look so simple at first.

We begin by noting that Ki = Ki–1 implies that xi = xM(xi–1∆). This leads to a recursive relation
originating with the monomer, so xi = xM(xM∆)i.



Substituting Eqn. 19.41–19.44,
n0 = nT Σ i·xM(xM∆)i = xM nT [1 + 2(xM∆) + 3(xM∆)2 + 4(xM∆)3 + ...]

This series may not appear to be familiar but it is a common converging series. Referring to series
formulas in a math handbook, we find that

Since the mole fractions must sum to unity, we can write a second balance, for xi,

and again recognizing the series,

Substituting xM for (1 – xM∆) in Eqn. 19.79 results in,

This equation makes clear that the properties of the mixture are closely related to the properties of
the monomer.

Example 19.5. Molecules of H2O in a 100 ml beaker

Assuming ∆ is about 100 at room temperature and ρ = 1 g/cm3, estimate the moles of H2O monomer
in a 100 ml beaker of liquid water.

Solution
Note that the problem statement requests moles of H2O, not (H2O)2 or (H2O)3, and so on, so we are

interested in the true number of H2O monomer moles. We know n0 = 5.556 by applying the monomer
molecular weight, but the number of monomer moles nM = xM·nT will be significantly less.
Proceeding, using Eqn. 19.73,



Therefore, the true number of moles is 100 times less than the apparent number of moles.

19.8. The Chemical Contribution to the Fugacity Coefficient and Compressibility
Factor

The solution to phase equilibrium problems can be achieved in the manner of Chapter 15 (Eqn
15.20), where Eqns. 19.1 and 19.2 describe the enhanced equation of state. Eqns. 19.75–19.77
completely characterize the temperature, density, and composition dependence of the chemical
contribution to Helmholtz energy. The Zchem contribution is implied, but requires differentiation as in
RT·Zchem = –V∂(A – Aig)/∂V. Similarly, the fugacity coefficient is implicitly determined through
differentiation. Nevertheless, the differentiation can be complicated relative to the fugacity coefficient
of the van der Waals model. The summation of Eqn. 19.77 means that terms like ∂Xi/∂nj contribute
and Eqn. 19.75 implies a nonlinear system of equations that must be solved to determine these
contributions. For example, consider a mixture of three alcohols, with  and Nd,i=1 for all i.
Eqn. 19.75 implies that

The only way to fully determine all ∂Xi/∂nj is to apply Eqn. 19.75 eight more times to obtain nine
equations for the nine unknown values implied by ∂Xi/∂nj. Once again, chemical theory seems to
become impractical.

Fortunately, this particular nonlinear system of equations possesses subtle but advantageous
properties. Briefly, there are many symmetries in the calculus that lead to surprising simplifications
when cleverly manipulated. Michelsen and Hendriks showed that Achem can be rewritten as the
stationary point of a generalized function Q.20 The term “stationary point” refers to a condition where 

, for all i and B. At this time, there does not appear to be any underlying thermodynamic
significance to the function Q or its stationary point. We apply it here merely as a mathematical
device. The beauty of the generalized function is that derivatives with respect to  can be separated
from derivatives with respect to V or nj. By chain rule, and using  at the stationary point,

The generalized function, Q, can be inferred by adding and subtracting the defined term

from Achem. The term h can then be rearranged through Eqn. 19.75 to obtain a function that is



quadratic in acceptor/donor contributions by explicitly recognizing A/D contributions in place of the
generic B. The algebra proceeds as,

Expanding h in terms of  and  explicitly, and substituting for  and ,

Now we recognize the generalized function with removal of the stationary point constraint.

Note that the summation over  goes to zero when differentiated at the stationary point, so the
term involving –h/2 is the only one that matters. Then we can take advantage of Eqns. 19.84 and
19.85 to obtain,

Differentiating Eqn. 19.88,

The derivative of ∆ij
AD is straightforward, similar to Eqn. 19.54. Once again, the chemical

contribution appears at first to be hopelessly complicated, but clever insights reduce the
computational complexity to a level comparable with the Peng-Robinson model.

The computational complexity of Eqns. 19.75–19.77 can be further reduced in the special case

where , which we refer to as the square root combining rule (SRCR). In general,
Eqns. 19.75–19.77 require an iterative solution, as illustrated in Example 19.7. An initial guess for
the iterations is

where  for all i,B. Note: . This
simplification is accurate for alcohols and hydrocarbons, but not for alcohols and amines.21

This concludes our analysis of chemical contributions to phase equilibrium. Eqns. 19.75–19.77 and
19.91–19.93 permit solution of Eqns. 19.1 and 19.2 for mixtures as well as pure fluids and
computation of the fugacity coefficients to perform any phase equilibrium determination. Wertheim’s
theory of solution thermodynamics is more challenging than that of van der Waals or local
compositions, but it replaces the empirical conjectures of those models with rigorous analysis that



has been verified with molecular simulations. The perspective offered by Wertheim’s theory suggests
further application of the basic equations to describe nonspherical molecules. This extension
provides a self-consistent and rigorous description of the thermodynamics of all sizes of molecules,
as discussed in the following section.

19.9. Wertheim’s Theory of Polymerization
Now that we have an accounting for the thermodynamics of bond formation, it is natural to wonder

what happens to the thermodynamics as the bond energy approaches infinity. This would be a natural
limit for covalent bond formation. Having a theoretical basis for nonspherical molecules would be a
big step forward, considering that all theories discussed until now have been based on spherical
molecules. Of course, we added correction terms like α(T, ω) to the Peng-Robinson model, but this
was done with no theoretical basis. Wertheim’s theory provides an opportunity to develop meaningful
guidelines for shape effects.

The key step is to find the contribution to the equation of state from forming a bond in the limit of
infinite bond energy. The result for binary association, Eqn. 19.54, is convenient to illustrate the key
points. At first glance, the limit may not seem obvious, because the X term in Achem must approach
zero and the log term would then be undefined. This issue can be resolved by substituting, say, 1 – X
= X2∆. We use Abond to denote the covalent nature of the bonds.

Example 19.6. Complex fugacity for the van der Waals model
A sample calculation with a specific reference equation of state should clarify these results. Let

K12
AD = K22

AD = 0.72 cm3/mol and ε12
AD = ε22

AD = 20 kJ/mol, b1=27.5 and b2=20.4 cm3/mol.

a. Derive Zchem and ln(φk
chem) adapting the definition of ∆ from Eqn. 19.44.

b. Evaluate the expressions for trimethylamine(1) + methanol(2) at x1 = 0.5, ρ =
0.0141mol/cm3, and T = 300K.

Solution
a. ∆ij

AD = ρKAD(exp(βεij
AD) – 1)/(1 – ηP) = ∆.

Eqn. 19.65 shows that ηP∂∆/∂ηP = ∆/(1 – ηP)

Substituting gives Zchem = –0.5h/(1 – ηP). For ln(φk
chem) Eqn. 19.93 requires

n∂(∆ij
AD/n)/∂nk, 

Similarly, n∂(∆ij
DA/n)/∂nk = (∆ij

DAbkρ)/(1 – η). Substituting this result into Eqn.
19.93 gives,

b. Evaluating these expressions, ∆11
DA = ∆12

DA= 0 because trimethylamine (TMA) has no



donors, so X1
D = 1. It may seem odd to represent X1

D = 1 when there are no donors, but site
occupation is impossible when ∆ = 0 for that site.

To solve Eqns. 19.93 for X1
A, X2

A, and X2
D,

This gives three equations. Rearranging (below) shows that X1
A = X2

A. We can
replace these to obtain a quadratic equation in terms of X2

D. Usually, we would need
to iterate to solve for X2

D.

This shows that X2
D is almost completely bonded.

By Eqn. 19.88,
h = x1

2X1
AX1

D∆11
AD + 2x1x2X1

AX2
D∆12

AD + x2
2X2

AX2
D∆22

AD + x1
2X1

DX1
A∆11

DA +
2x1x2X1DX2

A∆12
DA + x2

2X2
DX2

A∆22
DA

Substituting x1, x2, and X gives

h = 0 + 2·x1x2·X1
AX2

D·46.4 + x2
2X2

AX2
D·46.4 + 0 + 0 + x2

2X2
DX2

A·46.4 = 0.960
Zchem = –0.5h/(1 – ηP) = –0.480/(1 – 0.338) = –0.725

By Eqn. 19.92,



There are several points of interest in this result. The acceptors in this mixture
outnumber donors by two to one. Therefore, it is impossible that Xi

A< 0.5, and, in fact,
X2

D ~ 2·(X1
A – 0.5) because the lack of donor saturation is reflected twice, in X1

A and
X2

A. The compressibility factor is depressed in a simple way that sums over all
donors and acceptors, but the fugacity is depressed more for the alcohol than for the
amine. There are three ways for the alcohol to interact, but only one for the amine, so
the depression of the fugacity is much greater. On the other hand, the fugacity of the
alcohol is depressed less in the mixture than in the pure fluid because relatively fewer
acceptors are bonded (ln(φ2

chem)= –6.105 at x2 = 1). So the activity of the alcohol in
the mixture is relatively enhanced by hydrogen bonding while the activity of the amine
is depressed at all compositions.

Example 19.7. More complex fugacity for the van der Waals model
Evaluate the expressions for Zchem and ln(φk

chem) of trimethylamine(1) + methanol(2) at x1 = 0.4, ρ
= 0.0141 mol/cm3, and T = 300 K. Let K12

AD = K22
AD = 0.72 cm3/mol and 1.25ε12

AD = ε22
AD = 20

kJ/mol, b1 = 27.5, and b2 = 20.4 cm3/mol.

Solution
The difference between this example and the previous is that ε12

AD ≠ ε22
AD, indicating that the

solvation is slightly weaker than the alcohol association. Because of this lack of symmetry, an
iterative solution for X is required. Recalling part (a) of the previous example,

Zchem = –0.5h/(1 – ηP)

For ln(φk
chem): –∑ xj(Xk

A Xj
D∆kj

AD + Xk
DXj

A ∆kj
DA) – 0.5hbkρ/(1 – ηP)

Substituting the mole fractions and solving for ∆’s,
b = 0.4·27.5 + 0.6·20.4 = 23.4; ηP = 0.0141·23.4 = 0.328. This is slightly less than Eqn 19.99.

∆22
AD = ρKAD(exp(βε22

AD) – 1)/(1 – η) = 45.8. ∆12
AD = 9.21; ∆11

DA = ∆12
DA = 0.

1 – X1
A = 0.5X1

AX2
D∆12

AD; 1 – X2
D = 0.5X1

AX2
D∆12

AD + 0.5X2
AX2

D∆22
AD;

1 – X2
A = 0.5X2

AX2
D∆22

AD;

X1
A = 1/(1 + 0.4X2

D∆12
AD); X2

A = 1/(1 + 0.6X2
D∆22

AD);

X2
D = 1/(1 + 0.4X1

A∆12
AD + 0.6X2

A∆22
AD);

Unlike the previous example, an explicit solution is not found. The previous example was
contrived to achieve an exact solution, but this is rarely possible. Normally, we must iterate to
achieve a numerical solution. It is convenient to guess X2

D, then compute X1
A and X2

A, then check the
new value of X2

D based on X1
A and X2

A. To initialize X2
D, a reasonable estimate can be based on a

variation of the solution for ∆kj
AD =(∆kk

AD∆jj
AD)1/2.



Applying Eqn. 19.94,
(–1 + 1/X2

D) ≈ Σ xj∆2j
AD/[1 + (∆jj

AD)1/2] = 0.122 ය X1
A = 0.597; X2

A = 0.230; X2
D = 0.105;

Five more iterations give, X1
A = 0.678; X2

A = 0.297; X2
D = 0.0855. Five iterations is actually a

large number because this particular mixture deviates substantially from the SRCR.
X1

A = 1/(1 + 0.4·0.0857·9.21)= 0.678

X2
A = 1/(1 + 0.6·0.0857·45.8)= 0.297

X2
D = 1/(1 + 0.4·0.678·9.21 + 0.6·0.297·45.8) = 0.0855

Substituting into Eqn. 19.88
h = x1

2X1
AX1

D∆11
AD + 2x1x2X1

AX2
D∆12

AD + x2
2X2

AX2
D∆22

AD

+ x1
2X1

DX1
A∆11

DA + 2x1x2X1
DX2

A∆12
DA + x2

2X2
DX2

A∆22
DA

h = 0 + 2·x1x2·X1
AX2

D·9.21 + x2
2X2

AX2
D·45.8 + 0 + 0 + x2

2X2
DX2

A·45.8 = 1.097

Zchem = –0.5h/(1 – ηP) = –0.480/(1 – 0.328) = –0.816

ln(φ1
chem) = ln(X1

A) – [x1(0 + 0) + x2(X1
AX2

D∆12
AD + 0)] – 0.5hbkρ/(1 – ηP) = –2.228

ln(φ2
chem) = ln(X2

A) + ln(X2
D) – [x1(0 + X2

DX1
A∆21

DA)

+ x2(X2
AX2

D∆22
AD + X2

DX2
A∆22

DA)] – 0.5hbkρ/(1 – ηP) = –5.855

These results show that a 20% change in ε12
AD compared to Example 19.6 gives a 500% change in

∆12
AD. That is fairly sensitive. This change in ∆12

AD is primarily responsible for the increase in X1
A

from 0.520 to 0.679 and the decrease of X2
A from 0.520 to 0.298. Overall, the chemical contributions

are slightly stronger because the composition of amine has been reduced.

Eqn. 19.95 is helpful when ∆→∞ because Z can be obtained by differentiation of A. Taking the
derivative,

From a model for ∆, the bonding contribution to the EOS results. For example, if ∆ is given by the
van der Waals model,

Generalizing this result to a chain with m segments, there are (m–1) bonds per chain. For example,
continuing with the vdW model,

This is essentially Wertheim’s theory of polymerization, although Wertheim specifically treated the



case resulting in a mixture with a range of molecular weights and average degree of polymerization of
<m>.22

19.10. Statistical Associating Fluid Theory (The SAFT Model)
Shortly after Wertheim’s work appeared, Chapman et al. formulated an equation of state that

incorporated the bonding contribution and complexation as well as the disperse repulsive and
attractive terms. Their perspective was to treat any solution in the conventional way as a fluid of
independent spheres, then to add the bonding contribution required to assemble the spheres into
chains. Then the equation of state becomes

Adding and subtracting (1 – m) to isolate the ideal gas limit,

Recognizing the significance of Wertheim’s statistical mechanical theory for associating (and
solvating) systems, Chapman et al. named their model SAFT. In principle, any equation of state can
be applied for the dispersion interactions, but Chapman et al. adopted the Carnahan-Starling model
for the hard-sphere systems, including the Mansoori-Carnahan-Starling-Leland (MCSL) model for
hard-sphere mixtures.23 That choice has remained consistent in most variations of the SAFT model,
but several alternatives have been adopted to describe the attractive dispersion interactions, Zatt. The
original version suggested using second order perturbation contributions of the Lennard-Jones fluid
for Zatt.24 Huang and Radosz adopted a 20-parameter equation of state for argon (HR-SAFT).25 More
recently, Gross and Sadowski took a slightly different approach.26 They treated the hard-sphere and
chain contributions in the usual manner of SAFT, but treated Zatt by a second order perturbation
theory that takes the tangent-sphere-chain as the reference fluid, instead of the tangent spheres
themselves. They refer to their method as Perturbed Chain SAFT (PC-SAFT). In the conventional
SAFT approach, Zatt/m would be a universal curve, but PC-SAFT shows a mild variation in this
quantity with chain length. We focus our discussion on PC-SAFT for the most part.

Example 19.8. The SAFT model
Chapman et al. (1990)a suggested that second order perturbation theory could be applied for the

segment term of the SAFT model, with the hard-sphere contribution described by the Carnahan-
Starling (CS) equation and the Aatt given by:

Aatt/RT = A1βε + A2(βε)2

A1 = –11.61ηP – 8.28ηP
2 – 5.24ηP

3 + 34.21ηP
4

A2 = –25.76ηP + 181.87ηP
2 – 547.17ηP

3 + 529.00ηP
4

Express this model as an equation of state for alcohols, including Zchain; that is Z = Z(m,ηP,βε).



Solution
The CS equation is given by Zhs–1 = 4ηP(1 – ηP/2)/(1 – ηP)3. This corresponds to g(σ) = (1 –

ηP/2)/(1 – ηP)3 and, by Eqn. 19.44, ∆ = ρ(1 – ηP/2)KAD(exp(βεij
AD) – 1)/(1 – ηP)3. Then, ∂ln∆/∂lnηP

= ηP{∆/η – ∆/(2 – ηP) + 3∆/(1 – ηP)} = ∆{1 + (5ηP – 2ηP
2)/[(2 – ηP)(1 – ηP)]}.

Substituting,
Zchain = Zbond + (m – 1) = –(m – 1)(Zbond – 1) = –(m – 1)(5ηP – 2ηP

2)/[(2 – ηP)(1 –ηP)]

Zchem = –0.5h∂ln∆/∂lnηP = –(1 –XA) ∂ln∆/∂lnηP = –(1 – XA){1 + (5ηP – 2ηP
2)/[(a – ηP)(1 – ηP)]};

and Zseg = Zhs – 1 + Z1βε + Z2(βε)2, where Z1 = –11.61ηP – 16.56ηP
2 – 15.72ηP

3 + 136.84ηP
4 and Z2

= –25.76 ηP + 363.74ηP
2 – 1641.51ηP

3 + 2116.00ηP
4.

Putting it all together, Z(m,ηP,Tr)= 1 + m[4ηP(1 – ηP/2)/(1– ηP)3 + Z1βε + Z2(βε)2] – (m – 1)(5ηP –
2 ηP

2)/[(2 – ηP)(1 – ηP)] – (1 – XA){1+(5ηP – 2ηP
2)/[(2 – ηP)(1 –ηP)]}.

where XA = [–1 + (1 + 4∆)1/2]/(2∆), ∆ = ηP(1 – ηP/2)(KAD/b)(exp(Hβε) – 1)/(1 – ηP)3, H = εij
AD/ε.

Since all the terms can be computed based on m,ηP, βε, the equation of state is complete.

a. Chapman, W.G., Gubbins, K.E., Jackson, G., Radosz, M. 1990. Ind. Eng. Chem. Res. 29:1709.

The tangent-sphere-chain that lays the foundation of all SAFT models is well defined and
relatively simple to treat by molecular simulation. This makes it possible to evaluate the accuracy of
Wertheim’s theory for the hard chain reference system. With only slightly more effort we can also
evaluate the accuracy for a reference fluid of fused sphere chains with 110° bond angles, as in
n-alkane chains. As shown in Fig. 19.11, the comparison is quite favorable in both cases, showing
that Wertheim’s theory and the related SAFT models have a solid theoretical foundation that is
validated by molecular simulation.

Figure 19.11. Comparison of molecular simulations, the van der Waals equation, and the ESD
equation of state for Zrep. Nd is the number of spheres in a chain.



The PC-SAFT model has the same form as Example 15.8 except for Zatt
seg.

Eqns. 19.117 and 19.118 include 42 coefficients listed in the original reference.
You might wonder whether there is a simpler form of the SAFT model that is more sophisticated

than the van der Waals model, but not as complicated as the PC-SAFT model. Such a model would be
convenient for illustrating the key advantages of an association model without losing the simplicity of
a cubic model like the PR model. One alternative is simply to add the association contribution of
Example 15.8 to the PR model. This is the basis of the CPA model of Kontogeorgis et al.27 This is a
feasible model and it has been applied in many practical settings, but it is not entirely faithful to the
Wertheim perspective in that it uses g(σ) from one model and Zhs from another, while ignoring Zchain

completely. Another alternative is to reconsider the ESD model in light of the SAFT analysis. Then
we can rewrite the ESD model as a “simplified SAFT” model:28

In this form, we recognize that g(σ)=1/(1–1.9ηP) provides consistency as a SAFT model. Then,

19.11. Fitting the Constants for an Associating Equation of State
To this point in the discussion, we have assumed that the constants needed for a fluid are available.

However, association models add complexity in the sense that two association parameters must be
characterized in addition to the usual size (b), energy (a or ε), and shape (k, m, q, or c). One simple
approach is to assign standardized values to the bonding volume and energy. For example, alcohols
can be assigned an energy of 17 kJ/mol. Aldehydes, amides, amines, and nitriles can be assigned an
energy of 5.2 kJ/mol. Given the bonding energy and volume, three parameters remain to be



determined in a manner equivalent to three parameter corresponding states.
The simplest case is when the association energy is zero. Then the critical method can be applied

in the usual way. For the ESD model, this is especially simple, because it is cubic. The approach of
setting (Z–Zc)3 = 0 can be applied over a range of values of c from 1 to infinity. For each value of c,
the acentric factor can be computed once the critical point has been determined. Then the value of c
can be regressed as a function of acentric factor, and values of b and ε can be correlated as functions
of c. This results in the following correlations,

where a = 1.9(9.5q – k1) + 4ck1 and k1 = 1.7745

An interesting implication of this result is that Zc → ⅓ in the infinite chain limit. Lue et al. showed
that this is a general result for all SAFT models, despite the experimental observation that Zc appears
to approach zero for long chains.29 They attributed this deficiency to inaccurate characterization of the
intramolecular interactions by SAFT models at low density and high temperature.

At a slightly higher level of complexity, the bonding energy and volume can be treated as
adjustable parameters and regressed to minimize deviations in vapor pressure and density. This is the
predominate method for most SAFT models. In fact, the critical point method has been systematically
avoided for SAFT models other than the ESD model. The regression method requires extensive pure
component data. Unfortunately, sufficient data exist for relatively few compounds to regress optimal
values or even critical values, and those regressions have already been performed and the results are
available. Therefore, the important problem is to characterize the constants when data are few or
nonexistent.

Emami et al. have formulated a convenient method that requires little or no experimental data.30

Their method has been developed for the ESD, HR-SAFT, and PC-SAFT models. The method refers
to standard literature correlations for ∆Hvap and ρliq

298.15 and provides UNIFAC group contribution
correlations for the shape factors. This method is facilitated by spreadsheets that are available in
Chapter 15 supplements on the textbook’s web site.

Implementations of ESD, HR-SAFT, and PC-SAFT are available from the various authors. A
convenient set of implementations that also provides the capability to generate global phase diagrams
is available from Cismondi et al.31

19.12. Summary



A simple way of remembering the qualitative conclusions of this analysis can be derived by
considering the behavior of the fugacity coefficient. One can easily demonstrate that the fugacity
coefficient of the monomeric species is insensitive to the extent of association if it is expressed on the
basis of the true number of moles in the associated mixture. But all of our phase equilibrium
algorithms are based on the fugacity divided by the apparent mole fraction; for example, the flash
algorithm is the same for any equation of state. The relation between the two fugacity coefficients is
given by

This means that we must simply multiply the fugacity coefficient from the usual equation of state
expression by the ratio of true to apparent mole fraction. Since this ratio is always less than one, we
see that the effect of association is to suppress the effective fugacity of the associating species.

For mixtures, elevation of the monomer mole fraction by breaking the association network accounts
for VLE quite accurately. Fig. 19.12 illustrates the benefit of a chemical physical model relative to a
purely physical equation like the Peng-Robinson equation. The figure depicting the methanol +
cyclohexane system shows the improved accuracy in representing simultaneous LLE and VLE when
hydrogen bonding is recognized. Notice the change in the skewness of the curves when hydrogen
bonding is applied. The hydrogen bonding model is accomplishing this change in skewness as a clear
and understandable explanation of the physics. By contrast, the van Laar model in Chapter 11 altered
the skewness by adjusting constants that ignore the physics. We would expect that the stronger
physical basis would provide greater capability for extrapolations to multicomponent mixtures.
Unfortunately, remarkably few multicomponent studies have been performed to date. Hence, there is
no single recommended method for treating nonideal multicomponent solutions at this time.

Figure 19.12. T-x-y diagram for the system methanol + cyclohexane. Data from Soerensen, J.



M.; Arlt, W. Liquid-Liquid Equilibrium Data Collection; DECHEMA: Frankfurt/Main, 1979 Vol.
V, Part 1.

From a theoretical perspective, however, we may still feel uncomfortable with having made
several sweeping assumptions with little justification besides their making the equations easier to
solve. This may not seem like much of an improvement over local composition theory. On the other
hand, the assumptions could be reasonably accurate; they simply need to be tested. As in the case of
local composition theory, molecular simulations provide an effective method of testing the
assumptions implicit in the development of a theory. Fig. 19.13 shows a comparison to molecular
simulation results and to Wertheim’s theory.32 It can be seen that the above assumptions lead to
reasonably accurate agreement with the molecular simulations and therefore they represent at least a
self-consistent theory of molecular interactions.

Figure 19.13. DMD-B simulation of hard dumbbell methanol with reduced bond length l/σ =
0.4, at T = 300 K and NAεHB/R = 2013 K. TPT1 theory is an adaptation of Wertheim’s theory.

This is not to say that chemical theory completely solves all problems. Local composition effects
are real and should be incorporated into the mixing rules. Evidence supporting this step can be found
in the anomalous behavior of the methane + hexane system. If such local composition effects are so
prominent for nonassociating solutions, they should be accounted for at all times. As an example of
other problems, the association network of water seems to be different enough from that of alcohols
that a more sophisticated model will be necessary to represent difficult solutions like hydrocarbons +
water to the high degree of accuracy (ppm) required by organizations like the Environmental
Protection Agency. Furthermore, the solvation between different species can be extremely
complicated and require substantially more investigation to develop reliable engineering models.
Finally, it is well known that “nonadditive” effects play a significant role in aqueous and alcoholic
solutions.33 That is, the energy of network formation changes in a way that cannot be understood
based only on a simple potential model for a single water molecule. These peculiarities may seem
esoteric, but they are key obstacles which prevent us from revealing many of the mysteries of
biomolecular solutions. Other areas of application such as polymer solutions involving association,
as in nylon, can also be imagined. These are the areas which remain to be explored. The methods for
engaging in this exploration predominantly involve mathematically formalizing our treatment of the
radial distribution function through applications of statistical mechanics. At this point, we leave this
engagement to the “satisfaction and good fortune” of the reader.



19.13. Practice Problems
P19.1.

a. A gas-phase A+B system solvates A + B  AB with Ka = 0.5 at 298.15 K.
Calculate the compressibility factor, apparent fugacity coefficients, and the true
vapor phase mole fractions in a mixture at 298.15 K and 2 bar when the apparent
concentration is yA = 0.45 using ideal chemical theory.

b. A liquid-phase A+B system solvates A + B  AB with Ka = 0.7 at 298.15 K.
Calculate the true liquid-phase mole fractions in a mixture at 298.15 K and 1 bar
when the apparent concentration is xA = 0.45 using ideal chemical theory.

c. A gas-phase A+B system associates 2A  A2 with Ka = 0.5 at 298.15 K.
Calculate the compressibility factor, apparent fugacity coefficients, and the true
vapor phase mole fractions in a mixture at 298.15 K and 2 bar when the apparent
concentration is yA = 0.45 using ideal chemical theory.

19.14. Homework Problems
19.1. Consider a dilute isothermal mixing process of acetic acid(1) in benzene(2). For the dilute
region (say, up to 5 mol% acid), draw schematically curves for the following:

 versus x1;  versus x1;  versus x1.
Briefly justify your schematic graphs with suitable explanations. Take standard

states as the pure substances.
19.2. Acetic acid dimerizes in the vapor phase. Show that the fugacity of the dimer is
proportional to the square of the fugacity of the monomer.
19.3. By assuming that the equilibrium constant for each successive hydrogen bond is equal in
the generalized association approach developed in this chapter, what assumptions are being
made about the Gibbs energy, enthalpy, and entropy for each successive hydrogen bond?
19.4. The value of the excess Gibbs energy at 298 K for an equimolar chloroform(1) +
triethylamine(2) system is GE = –0.91 kJ/mol. Assuming only a 1-1 compound is formed, model
the excess Gibbs energy with ideal chemical theory, and plot the P-x-y diagram.
19.5. Suppose that, due to hydrogen bonding, the system A + B forms a 1-1 complex in the vapor
phase when mixed. Neither pure species self-associates in the vapor phase. The equilibrium
constant for the solvation is KAB = 0.8 bar–1 at 80°C. At 80°C, a mixture with a apparent (bulk)
mole fraction of yA = 0.5 is all vapor at 0.78 bar. Calculate the fugacity coefficient of A in the
vapor phase using ideal chemical theory at this composition, temperature, and pressure. Use
hand calculations.
19.6. At 143.5°C, the vapor pressure of acetic acid is 2.026 bar. The dimerization constant for
acetic acid vapor at this temperature is 1.028 bar–1. The molar liquid volume of acetic acid at
this temperature is 57.2 cm3/mol. Calculate the fugacity of pure acetic acid at 143.5°C and 10
bar. Use hand calculations.
19.7. An A + B mixture exhibits solvation in the liquid phase, which is to be represented using



ideal chemical theory. Because of a Lewis acid/base interaction, the system is expected to form
a 1-1 compound.

a. Which one of the following sets of true mole fractions are correct for the
system using an equilibrium constant of 3.2 to represent the complex formation at
an apparent composition xA = 0.4?

b. Based on your answer for part (a), what are the apparent activity coefficients
of A and B?

19.8. Water and acetic acid do not form an azeotrope at 760 mmHg. The normal boiling point of
acetic acid is 118.5°C. Therefore, at 118.5°C and 760 mmHg, the mixture will exhibit only
vapor behavior across the composition range. The following equilibrium constants have been
fitted to represent the vapor-phase behavior:34

a. Let compound A be acetic acid and B be water. Calculate the true mole
fractions of all the species from yA = 0.05 to yA = 0.95. At what apparent mole
fraction does each specie show a maximum true mole fraction? What is the
relation of this apparent mole fraction with the compound’s stoichiometry?
b. Plot the fugacity coefficient of acetic acid and water as a function of acetic
acid mole fraction. What is the physical interpretation of the rapid change of the
acetic acid fugacity coefficient in the dilute region, if the water fugacity
coefficient doesn’t show such a dramatic trend in its dilute region?

19.9.
a. The molar Gibbs energy of mixing (per mole of superficial solution) for a
liquid binary system

expressed extensively, this becomes

Introduce the concepts of chemical theory into Eqn. 19.131 to prove that
the Gibbs energy of mixing is equivalently given by the sums over true
species,



where Ki is unity for the monomers. Hint: nA = ∑aini.

b. Show that on a molar basis for an ideal chemical theory solution that has only
solvation, per mole of true solution, the equation reduces to

and provide a physical interpretation relating the Gibbs energy of
formation to K.

c. Considering a system where A associates, show that the Gibbs energy of
mixing by ideal chemical theory is per mole of true solution given by

Below are tabulated calculations for ideal chemical theory for an A + B
system where A forms dimers with K=140. Use Eqns. 19.134 and 19.130 to
tabulate the respective Gibbs energies of mixing over RT. Then tabulate
nT/n0 (the number of true moles divided by the number of apparent moles)
and multiply Eqn. 19.134 by this number and compare with Eqn. 19.130.

19.10. Furnish a proof that the concentration of true species i is maximum at composition xA
* =

ai/(ai + bi), xB
* = bi/(ai + bi) where ai and bi are given in Eqn. 15.1. [Hint: The Gibbs-Duhem

equation is useful for relating derivatives of activity.]
19.11. Show that the result for Zassoc is obtained by taking the appropriate derivative of Aassoc.
19.12. Use the ESD equation to model the monomer, dimer, and trimer in the vapor and liquid



phases of saturated water at 373 K, 473 K, and 573 K. How does the monomer fraction of
saturated vapor change with respect to temperature? How does monomer fractions of saturated
liquid change?
19.13. Derive the equations for determining the critical point of the ESD equation based on εHB

and KAD being zero by noting that dF/dZ = 0 and d2F/dZ2 = 0, where F = Z3 + a2Z2 + a1Z + a0
when hydrogen bonding is negligible.
19.14. Plot P against V at 647.3 K for water with the ESD equation using the characterization
analogous to Eqns. 15.73–15.76. Apply the equal area rule and determine the vapor pressure at
that temperature. Raise the temperature until the areas equal zero and compare this temperature
to the true value of 647.3 K.
19.15. Apply the ESD equation to the methanol + benzene system and compare to the data in
Perry’s Handbook based on matching the bubble pressure at the azeotropic point. Prepare a T-
x-y diagram and determine whether the ESD equation indicates a liquid-liquid phase split for
any temperatures above 250 K. Perform the same analysis for the Peng-Robinson EOS. Do you
see any differences? Compare to Fig. 15.3 on page 599.
19.16. Use the ESD equation to estimate the mutual LLE solubilities of methanol and n-hexane at
285.15 K, 295.15 K, and 310.15 K. Use the value of kij = 0.03 as fitted to a similar system in
Fig. 19.12 on page 804.
19.17. The hydrogen halides are unusual. For example, here are the critical properties of various
hydrogen halides:

Experimental data for the vapor pressure and the apparent molecular weight of HF
vapor are as follows:

These apparent molecular weights have been found by measuring the mass density
of the vapor and comparing with an ideal gas of molecular weight 20. Assuming that
HF forms only monomers and hexamers, use the ESD EOS with c = q = 1 for both
monomer and hexamer to match this value of Zc, and fit the vapor density data as
accurately as possible in the least squares sense.

19.18.



a. Compute the values of Ka´, a/bRTc, xMc, and bρc for methanol and ethanol
according to the van der Waals hydrogen bonding equation of state.
b. Assuming an enthalpy of hydrogen bonding of 24 kJ/mole and ∆CP = –R,
calculate the acentric factors for methanol and ethanol according to the vdw-HB
EOS.

19.19. Derive the association model for the Peng-Robinson model, using the van’t Hoff formula
with ∆CP/R = –1. Extend the homomorph concept by applying ωPR = ωhomo, where ωhomo is the
acentric factor for the nonassociating homomorph and ωPR is the acentric factor substituting for
the associating compound into the Peng-Robinson expression for a.

a. For methanol, determine the values of Ka′, b, a/bRTc, xMc that match the
critical point.
b. Determine the vapor pressure at Tr = 0.7 for methanol assuming a hydrogen
bonding energy of 15 kJ/mole, and compare to the experimental value. Infer the
acentric factor and compare to the experimental value.
c. Plot log Pr

sat versus Tr
–1 for the Peng-Robinson EOS and the Peng-Robinson

hydrogen bonding EOS, and experiment.
19.20. Acetic acid has a much stronger tendency to dimerize than any alcohol. Therefore, it is
not reasonable to assume that Ka2 = Ka3 = ... for acetic acid. The assumption is reasonable for
Ka3 = Ka4 = ..., however. We can supplement the theory by adding a single additional equation
for the dimerization reaction with an effective equilibrium constant equal to the ratio of the true
Ka2 divided by the linear association value. Assume that the linear association is negligible for
the saturated vapor at ~300–350 K.

a. Determine the value of Ka2 that matches the saturated vapor compressibility
factor in that range. Let NAεHB/R = 4000 K for the dimerization.

b. Determine the values of KAD, b, αc, εHB that match the critical point.

c. Determine the values of KAD, b, αc, εHB that match the vapor pressure at Tr =
0.7 for acetic acid.

19.21. Extend the ESD equation to compounds with more than one bonding segment.
a. Consider ethylene glycol as a compound with both an associating head and
tail. Extend the mixture analysis to treat this case with two bonding segments (Nd
= 2).
b. Treat water by the same model noting that water is merely a “very short
glycol.” Determine the acentric factor of the Peng-Robinson hydrogen bonding
EOS with ∆H = 15 kJ/mole.



Appendix A. Summary of Computer Programs

Several programs are furnished with the text to help you learn the material and to assist in
repetitive and/or complex calculations. Programs are available for Microsoft Excel and MATLAB.
There is significant duplication of capabilities among the two platforms. The software is updated
periodically. Visit the web site listed in the front flap for the latest version of both the software and
this appendix.

A.1. Programs for Pure Component Properties
Matlab/3D/PVT.m—3-D PVT for water fluid phases; PHT.m—3-D PHT for water fluid phases.
Matlab/Props/Props.dat—Critical properties, acentric factor, heat capacity constants, and Kamlet-

Taft parameters for a variety of substances. Use ‘load Props.dat’ to load to workspace. Props-
Browse.m–A quick summary of the compound name and ID number. Many programs load Props.dat.

Matlab/Psat/AntoineGet.m—Returns Antoine constants from database using ID numbers;
AntoineTableBrowse.m—Use for a quick overview of ID numbers and temperature limits;
AntoineTable.mat—The database, use load AntoineTable.mat to load to workspace for viewing;
Tsat.m—Utility program for calculating the saturation temperature. Many programs load
AntoineTable.mat.

Excel/Antoine.xlsx—A tabulation of Antoine coefficients for a variety of common chemicals.
Excel/Props.xlsx—Critical properties, acentric factor, heat capacity constants, and Kamlet-Taft

parameters for a variety of substances. Use to copy/paste values into other workbooks.
Excel/Steam.xls—Steam property calculator. Same formulation implemented in Harvey, A. P.,

Peskin, A. P., Klein, S. A., NIST/ASME Steam Properties, Version 2-1, NIST Standard Reference
Data Program, December 1997. Another good resource for steam properties for Excel and MATLAB
is Xsteam available at www.x-eng.com/ (accessed 11/2011).

Excel/Preos.xls—An Excel workbook for calculating properties using the Peng-Robinson
equation. Also calculates departure functions and thermodynamic properties.

Matlab/Chap07/Preos.m—Pure component P-V-T calculations via the Peng-Robinson equation of
state. Loads data from Matlab/Props/Props.dat.

Matlab/Chap08-09/PreosPropsMenu.m—A GUI interface for calculating U, H, S, and f using the
Peng-Robinson equation of state. Loads data from Matlab/Props/Props.dat.

A.2. Programs for Mixture Phase Equilibria
Matlab/ExamplePlot.m—Plot with multiple data sets, markers, lines, labels, and legend.
Matlab/TextExamples/Ex10_02.m—Raoult’s law adiabatic flash; Ex11_03.m—Fitting 1-

parameter Margules; Ex11-07.m—Bubble T for MRL; Gammafit.m—Fitting of activity coefficients,
Ex12_04.m—Scatchard-Hildebrand; Ex13_01.m—UNIFAC-VLE; Ex14_03.m—UNIFAC-LLE

Matlab/Chap10/RaoultTxy.m—T-x-y diagram using Raoult’s Law; Flshr.m—Isothermal VLE
flash using Raoult’s law.

Matlab/Chap11-13/—See the gammaModels and TextExamples folders for appropriate routines.
Matlab/gammaModels/Marg1P.m—One-parameter Margules; Marg2P.m—Two-parameter

http://www.x-eng.com/


Margules; uniquac.m—UNIQUAC equation; vanLaar.m—Van Laar equation; nrtl.m—NRTL
equation; unifacVLE/unifacCaller.m—Example of function calls for VLE UNIFAC;
unifacLLE/unifacCallerLL.m—Example of function calls for LLE UNIFAC.

Matlab/Chap14/LLEflash.m—Flash using UNIFAC or UNIQUAC.
Matlab/Chap15/Prfug.m—Peng-Robinson fugacities at a given state; Prmix.m—VLE using Peng-

Robinson.
Matlab/Chap16/Residue.m – Residue curve calculator programmed to use UNIQUAC.
Excel/Flshr.xls—Two-phase isothermal flash using Raoult’s law. Currently set for a binary system

using the short-cut Psat equation.
Excel/Actcoeff.xls—Activity coefficients as a function of composition. These spreadsheets may

be modified to calculate excess Gibbs energy, fugacities, and P-x-y diagrams.
1. MARGULES—A spreadsheet to use with the MARGULES activity coefficient model.
2. REGULAR—A spreadsheet to calculate VLE for methanol + benzene using the van Laar
and Scatchard-Hildebrand models.
3. NRTL, NRTL5—Binary and multicomponent (up to five components) NRTL activity
coefficient models.
4. UNIQUAC, UNIQUAC5—Binary and multicomponent (up to five components)
UNIQUAC activity coefficient model. The multicomponent model can be used for LLE.
5. UNIFAC(VLE)—A spreadsheet to use with the UNIFAC activity coefficient model for
up to five components to model VLE.
6. UNIFAC(LLE)—Two spreadsheets to use with the UNIFAC activity coefficient model
for up to five components to model LLE.

Excel/Gammafit.xls—Fitting activity coefficient parameters.
Excel/Prfug.xlsx—Component fugacities via the Peng-Robinson equation for up to three

components. Useful for understanding mixing rules, and for manually following iterative steps for
phase equilibria calculations.

Excel/Prmix.xlsx—Peng Robinson phase equilibria.
Excel/Residue.xlsm—Spreadsheet with macro for calculating residue curves for homogeneous

systems using UNIQUAC for up to three components.
Excel/Virialmx.xls—Spreadsheet that calculates the second virial coefficient for a binary mixture

using the critical temperature, pressure, and volume.
Excel/Wax.xls—A spreadsheet to calculate wax solubilities.
Excel/Ichemt.xls—A chemical theory spreadsheet for calculating the true mole fractions at a given

superficial mole fraction. The equilibrium constants need to be known before using the program.

A.3. Reaction Equilibria
Matlab/TextExamples/Ex17_09.m—Shortcut adiabatic reaction.
Matlab/Chap17-19/Kcalc.m—Equilibrium constant calculator for detailed van’t Hoff; RxnA-

dia.m—Adiabatic reaction with full van’t Hoff; Gibbsmin.m—Gibbs minimization; Gprime-



Calc.m—Transformed properties for biological systems; IChemTheory.m—Ideal chemical theory.
Excel/Kcalc.xls – Workbook to calculate equilibrium constants as a function of temperature.
Excel/Rxns.xls – Workbook with spreadsheets used for multiple reaction equilibria in the text.

1. RXNADIA-shortcut—Shortcut van’t Hoff for ammonia example.
2. RXNADIA—Detailed van’t Hoff for ammonia example.
3. DUALRXN—Simultaneous reactions.
4. GIBBSMIN—Gibbs minimization.
5. SMPRXN—Simultaneous reactions with phase equilibria.

Excel/CL2H2O.xlsx—Worked electrolyte example.
Excel/GprimeCalc.xlsx—Transformed Gibbs energies for biological systems.
Excel/IdChemTheory.xlsx—Ideal chemical theory.

A.4. Notes on Excel Spreadsheets
*.XLSX Files

These workbooks are a starting point for homework problems. You may need to modify the existing
spreadsheet to work a homework problem. The *.XLSX files are provided in “document protected”
format so that inadvertent modification will not occur. Only the unlocked cells which appear blue on
the screen may be modified without turning the document protection off. (To change the document
protection, select “Protection....” from the “Tools” menu. No passwords are used on the distributed
spreadsheets. To change the protection status of individual cells, choose “Cell Protection” from the
“Format” menu when document protection is turned off.)

While the tabular format of Excel is a benefit, the disadvantage is that it is very difficult to figure
out how a pre-programmed sheet works and/or to debug. To find out the interdependencies of cells,
first unprotected the sheet, then use the “auditing” tools.

Online Supplements
An online supplement covers topics including naming of variables, importing text files, plotting

multiple data sets on the same axes, setting up successive substitution, use of Solver, and array
operations. The textbook web site provides links for tutorial videos for the software.

A.5. Notes on MATLAB
MATLAB content is arranged in folders to maximize computing flexibility and power. Files in the

folders gammaModels, Props, and Psat should not be moved because other programs call routines in
those folders.

When MATLAB first starts, the current directory that holds the code of interest must be selected in
the “current directory” drop-down box. Some of the code for this text is organized into subfolders
relative to that directory; if a routine cannot be found, this may be the reason. Use the “path”
command to see the full search path. Use the “addpath” command or the “genpath” nested into the
addpath as shown in the Example files. For example, addpath(../Psat) will permit calling any functions
in the Psat folder at the same folder level as any routine that is run in that session. The statement
addpath(genpath(../gammaModels)) will add a path to include any routines in the gammaModels or any



subfolder of gammaModels for routines that are run at the same folder level as gammaModels. Use
additional “../” to move up additional folder levels. Absolute paths can be used in code, but can
cause problems if .m files are shared and the recipient does not put the routines in exactly the same
folder. The addpath statement must be run once each session unless save-path is used. The convention
we use for the text is to embed the addpath statements into the routines that need to access functions in
different folders, and we use relative paths.

The display of MATLAB windows can be controlled through the “Desktop” menu; use the menu if
a command window, workspace, or other window is not visible. MATLAB files for code for this text
are unprotected; create a backup if you need to make changes. An overview of important commands
and methods is furnished as an online supplement.

(), [], and {} have special meanings. Do not interchange them or you may get unexpected results. ()
are used for indicating arithmetic precedence. [] are used to indicate vectors and matrices. {} are
used for cell arrays.

*.m and *.dat Files and File Naming
The MATLAB code is contained in .m files which may be scripts or functions. Scripts return the

output to the workspace, while functions offer the capability to be called by other functions and return
the results to the calling routine. For good programming practice, file names should match the function
names, and each should be unique. At the time of this writing, MATLAB does not work well with
spaces in file names, and such use leads to confusing error messages.

Online Supplements
Note that a MATLAB supplemental quick reference is available as an online supplement. An

additional online supplement covers topics such as importing of text files, plotting, solving routines,
minimization and optimizers, and matrix operations.

Note that “element-by-element” processing is powerful. For example, if A, B, and C are vectors
with Antoine coefficients for multiple components, Psat = 10^(A – B./(T+C)) will produce a vector of
vapor pressures at T. See the online MATLAB supplement for more details.

Matlab/SuppExamples contains files for the examples in the online supplement.

A.6. Disclaimer
The programs provided with this text are for educational use only. They are provided AS IS,

without any warranty. They must not be sold under any circumstances.



Appendix B. Mathematics

B.1. Important Relations
Algebra

Some functions like logarithms and exponentials appear so often in thermodynamics that it makes
sense to summarize some of them here. Also, integrations and differentiations are frequently
performed, so a few important formulae are presented.

The quadratic formula provides roots to the equation ax2 + bx + c = 0:

Cubic equations are discussed in Section B.2.
Beginning in Chapter 10, summation notation is used extensively. Many of the formulas are easily

programmed using matrices and linear algebra. A matrix is a rectangular representation of the
elements of an array. The elements of an array are identified by subscripts. For example:

X = [0.4, 0.6], x1 = 0.4, x2 = 0.6

For a multidimensional array, the first element subscript represents the row and the second element
subscript identifies the column, for example:

The transpose of a matrix is obtained by exchanging aij with aji. In shorthand notation, the transpose
is represented by a superscript T. The number of rows and columns interchange after the transpose
operation:



Matrices can be multiplied. The product of array1 and array2 becomes array3 and:
a. The number of columns in array1 must equal the number of rows in array2.
b. array3 has the same number of rows as array1 and the same number of columns as array2.
c. Element ij of array3 is obtained by multiplying the elements in the ith row of array1 by the
elements in the jth column of array2 and summing the products.

For one-dimensional arrays,

which is the linear mixing rule, Eqn. 15.8. Suppose  and , then

which is a bubble formula for Raoult’s Law. A set of compositions can be stored in a matrix. For
example, using two sets of compositions,

where the first subscript in designation for X indicates the data set, and the subscripts on Pbub
indicate the corresponding bubble pressure for that composition.

An example of a one- and two-dimensional array is:

Multiplying the result by YT,

when aij = aji, we may write

which is the quadratic mixing rule, Eqn. 15.8. For an example using two multidimensional arrays:



MATLAB offers element-by-element algebra for vectors and matrices. If two matrices have the
same dimensions, they may be dot multiplied. For example:

Therefore, modified Raoult’s law can be programmed for bubble-pressure calculations as

For an overview of programming arrays in Excel, see Appendix A.

Calculus
Differentiation:

General differentiation of composite functions:
(Product rule)

Integration:



Integration by parts .
Numerical integration by trapezoidal rule:



where ∆x is a constant step size between discrete values of f(x).
See also Chapter 6 for additional mathematical relationships.

B.2. Solutions to Cubic Equations
A cubic equation of state may be solved by trial and error or analytically,

where the a2, a1, and a0 are constants for the purposes of solving the cubic.

Iterative Method
The Newton-Raphson method uses an initial guess along with the derivative value to rapidly

converge on the solution. This discussion focuses on an example solution for the following equation:

We seek the value of Z where F = 0. Suppose we have made an initial guess Zold which gives a
value Fold, as shown in the upper-left graph in Fig. 7.6 on page 265. We are seeking a value of Z that
results in F = 0. If Fold is the current value, and if we use the derivative of F as a linear
approximation of the function behavior, then 0 = m · Znew + b, (where the slope m can be calculated
analytically from Eqn. B.37 as dF/dZ = (3Z2 – 2(1 – B)Z + (A – 3B2 – 2B)). Since the current point is
on the same line, we may also write Fold = m · Zold + b. Taking the difference we get 0 – Fold = m ·
(Znew–Zold) + (b–b) or rearranging, –Fold/m + Zold = Znew. Since m = (dF/dZ), we have Znew = Zold –
F/(dF/dZ). The procedure can be repeated until the answer is obtained. A summary of steps is:

1. Guess Zold = 1 or Zold = 0 and compute Fold(Zold).

2. Compute dF/dZ.
3. Compute Znew = Zold – F/(dF/dZ).

4. If |∆Z/Znow| < 1.E – 5, print the value of Znow and stop.

5. Compute Fnew(Znew) and use this as Fold. Return to step 3 until step 4 terminates.

Note that an initial guess of Z = 0 converges on the smallest real root. An initial guess of Z = 1
almost always converges on the largest real root. At very high reduced pressures, an initial guess
greater than one is sometimes required since the compressibility factor can exceed one (see Fig. 7.4
on page 257).

Analytical Method
Below are summaries of two methods for solving analytically. These techniques are implemented

for the Peng-Robinson equation in the spreadsheet Preos.xlsx. Eqn. B.36 can be reduced to the form



by substituting for Z the value

The values of p and q for Eqn. B.38 will then be

If a2, a1, and a0 are real (which they are for an EOS), then defining

results in one real root and two conjugate roots if R > 0;
results in three real roots, of which two are equal if R = 0;
results in three real and unequal roots if R < 0.

Solution Method I: Algebraic Solution

Let

The values of x are given by using Eqns. B.40, B.41, and B.42:

Values of Z are then found with Eqn. B.39.
Solution Method II: Trigonometric Solution

Let x = m cos θ; then

therefore,

which leads to

therefore,

where θ1 is in radians. By the functionality of the cosine function, two other solutions will be



The values of x are given by using Eqns. B.40 and B.48:

Values of Z are found with Eqn. B.39.

Sorting Roots
Meaningful roots for the Peng-Robinson and many other common EOSs are of the form

P = Prep + Patt

where . To ensure that Prep > 0, we must have Z > B, where B = bP/(RT).

When three real, positive roots exist, the meaningful roots must satisfy , that is, the
isothermal compressibility must be positive. The value of κT may also be used to determine whether a
root is vapor or liquid in cases where only one root is found by identifying the phase with the larger
isothermal compressibility as the vapor phase. κT is always greater for a vapor root than for a liquid
root except at the critical point.1

Determination of Equation of State Constants from the Critical Point
Determination of equation of state constants from the critical conditions has been the prevalent

method of characterizing fluids. When a cubic equation of state is fit to the critical point, the
parameters may be determined in a couple of ways. First, we can evaluate the derivatives,

applied at Tc. By differentiating the equation of state, the resultant equations can be simultaneously
solved to find two equation of state constants. A simpler approach using significantly less calculus
and algebra is to write out (Z – Zc)3, which goes to zero at the critical point.

If we compare Eqn. B.51 with Eqn. B.36 at the critical point, we find

For the van der Waals equation, comparing Eqns. B.51 and B.52 with Example 7.7 on page 271,



where the superscript EOS has been added to explicitly show that this is the value predicted by the
equation of state. Plugging Eqn. B.54 into Eqn. B.55, we find

Plugging into Eqn. B.53,

Thus, the van der Waals equation predicts a universal value of Zc = 0.375. Plugging this into Eqn.
B.56, we find

and into Eqn. B.54,

B.3. The Dirac Delta Function
Understanding many of the terms appearing in thermodynamic functions like the repulsive

contribution to the equation of state requires an understanding of a somewhat peculiar mathematical
function known as the Dirac delta function. This function has the property of “filtering” the value of a
function being integrated and focusing attention on the function value at a particular value of the
independent variable. That is, over the interval x1 < x0 < x2,

where δ is the Dirac delta function defined by

and shown in the figure below. The following discussion should clarify the function.



The Dirac delta function
Suppose for the moment that we approximate the delta function as a square pulse function, such

that,

Approximation of the Dirac delta function as a square pulse function.

Then when we evaluate the integral,

a reasonable approximation would be that F(x) = F(x0) over the relatively short interval where δ
holds a nonzero value. Since F (x0) is approximately constant over the short interval, it may be
factored out of the integral, giving,



The next step is obvious. Let δ be zero except for an interval of ±0.005 around x0. Within the
interval, set δ = 100. Then our approximation of F(x) = F(x0) throughout the interval is even more
reasonable. Proceeding in this fashion leads to an interval that is differentially deviating from x0 with
δ approaching infinity.

This seems like a crazy thing to do, since we have now defined the function value to be itself times
an integral that must be unity. But note that our ultimate goal is to leave the function inside and we
will show how this helps us momentarily. Looking at this final result, we see that the function δ has
filtered out the value of F(x) at a single value of x.

Despite its peculiarity, the δ function is a well-defined function and therefore integrable. To
understand the importance of the δ function, consider taking the derivative of a step function, H(x –
x0), shown below. The derivative of H(x – x0) is positively infinite at x0 but zero on either side of x0.
It may help you to imagine slanting the corners of the step function and plotting the derivative first and
then making the corners systematically more square. If you plot this derivative function, you will see
that it is the square pulse function and becomes the Dirac delta function in the limit of the Heaviside
step function. Therefore, the Dirac delta function is the derivative of a Heaviside step function.
And the integral of the Dirac delta function is equal to the Heaviside step function. It is really this
last observation that permits us to derive important results for the integrals of discontinuous functions.

Example B.1. The hard-sphere equation of state
A significant application of the Dirac delta function is suggested by the pressure equation

developed for hard-sphere fluids. The discussion in Unit II indicates that, at low density, the radial
distribution function (rdf) is given by a simple Boltzmann weighting probability:

g(r) ~ exp(–u/kT)
Note that for hard-sphere fluids, this function is discontinuous and behaves as the Heaviside step

function at r = σ.
The pressure equation is:

If we were to substitute the hard-sphere potential and a discontinuous rdf like the low-density one
into the pressure equation, we would have a combination of discontinuities that we could not resolve.



Note what happens if we postulate a function y(r) such that

Clearly, y(r) would be continuous at low density and approaches a value of one. Furthermore, it
turns out that y(r) can be rigorously proven to be continuous for all densities and all potentials.1
Apply these insights to develop the equation of state for a hard-sphere fluid in terms of its rdf value at
r = σ.

Solution
Substituting g(r) = y(r)exp(–u/kT) and recognizing

If you plot the function exp(–u/kT) versus r for the hard-sphere potential, you will see that it is a
Heaviside step function. This means that its derivative is a Dirac delta. So the pressure equation
becomes,

Applying Eqn. B.60,

Although it may seem that we don’t know y(σ), recall that it is a continuous function. Therefore the
value of y(σ) will be approximated by y(σ+). Further, recognizing that uHS(σ+) = 0, therefore
exp(uHS(σ+)/kT) = 1 in Eqn. B.66, and therefore yHS(σ+) = gHS(σ+).

Defining 

The relationship between ZHS and gHS(σ+) is used often. It provides the functional form for
building Zrep in the equation of state. It also provides a basis for converting our approximate equation



of state for Zrep back into a quantitative estimate of gHS(σ). Recognize that Eqn. B.72 is a virial
equation for hard spheres, Z = 1 + Bρ. At low density, gHS(σ+) = exp(–uHS(σ+)/kT) = 1, resulting in
Boltzmann’s value for the second virial coefficient for hard spheres.

Example B.2. The square-well equation of state
The preceding example illustrates the use of all the tools necessary to develop any equation of

state, but one more illustration may help to clarify the way that the tools can be used in combination to
derive a wide variety of results. The problem statement is as follows: Develop a formula for deriving
the equation of state for any fluid described by the square-well potential (λ = 1.5), given an estimate
for the radial distribution function (rdf). Apply this formula to obtain the equation of state from the
following approximation for the rdf,

where x = r/σ, and b = πNAσ3/6. Before looking at the solution, think for yourself. Can you
conceive of how to solve the problem without any help?

Solution
The trick is to realize that the exponential of the square-well potential is composed of two step

functions, each of a different height. The step up is of height, exp(ε/kT) whereas the step down is of
height, exp(ε/kT) –1.

exp(–u/kT) = exp(ε/kT) H(r – σ) – [exp(ε/kT) –1]·H(r – λσ)
Taking the derivative of the Heaviside function gives the Dirac Delta in two places:

Noting that y(r) = g(r)exp(u/kT) and that exp(u/kT) is best evaluated inside the well:

This is valid for the square-well fluid with any g(r).
For the above expression for λ = 1.5: g(σ+) = 1 + bρε/kT and g(λσ–) = g(1.5σ–)= 1 + 0.198 bρε/kT

At the given conditions: Z = 1 + 4(0.2){1 + 0.2 – 2.1333(1.0396)} = 0.1858
It would be straightforward at this point to develop the entire phase diagram for this new equation

of state. The result would yield expressions for ε/k and b in terms of Tc and Pc. The value for the
acentric factor would be a fixed value since there is no third parameter to affect it. Its numerical
value could be determined in the same way that the value was determined for the van der Waals
equation in Chapter 8.

At first glance, one may wonder why we have expended so much effort to represent this problem in



terms of the rdf when we must approximate it anyway. It may seem fruitless to have translated our
ignorance of the equation of state into ignorance of the radial distribution function. It turns out that the
thermodynamic properties are fairly insensitive to details of the rdf. If you doubt this, reflect on what
van der Waals achieved by effectively assuming that g (r) = 1 for all temperatures and densities.
Furthermore, if you refer to the discussion of local composition theory in Chapter 13, you will see
that the fundamental basis for virtually all of the activity coefficient models currently in use is:
gij(r)/gjj(r) = exp[(εij – εjj)/kT)]. As a slightly oversimplified summary of modern research in
equilibrium thermodynamics, one could say that it is a search for better approximations of the radial
distribution function. The thermodynamics of hydrogen bonding can be related to the rdf as discussed
in Chapter 19. The thermodynamics of polymers and folding of proteins simply require generalization
in terms of an intramolecular rdf known as the conformation. Electrolyte and solution thermodynamics
are given very directly in terms of the rdf as discussed in Chapter 13. Adsorption and slit
thermodynamics can be expressed in terms of the rdf between the fluid molecules and the adsorbent
surface. Clearly, even rough approximations can be very useful when developed at the level of the rdf
and carried to their logical conclusion. It may not be worth the effort for every chemical engineer, but
it should not be beyond the grasp of many engineering students who sincerely want to understand the
method behind the madness of fugacity estimation.



Appendix C. Strategies for Solving VLE Problems

In earlier chapters, we have discussed applications of VLE using simplified procedures such as
bubble calculations using modified Raoult’s law. This appendix summarizes flow sheets for modified
Raoult’s law and cubic equations of state.

• Section C.1 focuses on modified Raoult’s Law and offers a summary of flow sheets that
quickly converge. Though you may be able to figure out other ways to converge calculations, it
is often best to use strategies that have been well tested.
• Section C.2 discusses equations of state. Software permits solution of VLE using cubic
equations without knowing the details of how the iterations are performed, and so a strategy is
presented here also. There are many strategies throughout the literature, and the reader should be
aware that other strategies are also successful.
• Section C.3 covers the gamma-phi method for nonideal gases with activity coefficients. These
calculations require more sophistication, and are summarized online.

For each approach, there are five flowcharts presented—bubble P, bubble T, dew P, dew T, and
isothermal flash. Specific routines may also be written for VLLE or other multiphase applications,
which are not summarized here.

C.1. Modified Raoult’s Law Methods
The equation that must be solved is: yiP = xiγiPi

sat

Bubble P

Bubble T
(Choose one flow sheet.)



Dew P

Dew T
(Choose one flow sheet.)



 Step 4 is called normalization of the compositions.

Isothermal Flash



C.2. EOS Methods

The equation that must be solved is: 

Bubble P
(The bubble pressure flow sheet is presented in Section 15.4)

Bubble T



Dew P



Dew T



Isothermal Flash

C.3. Activity Coefficient (Gamma-Phi) Methods



The equation that must be solved is: .
These flow sheets are available online as a supplement to Unit III.



Appendix D. Models for Process Simulators

D.1. Overview
There are so many thermodynamic models commonly used in chemical process simulators that it

would be overwhelming to cover all of them in great detail. This is why the discussion in the text
focuses on a few representative models. Nevertheless, students interested in process engineering will
often face the need to choose the most appropriate thermodynamic model, and the most appropriate
model may not be one of those that we have covered in detail. Fortunately, the differences between
many of the thermodynamic models and the ones that we have studied are generally quite small. In this
appendix, we review some of most common thermodynamic models and put them into context with
others that we have studied. This should help students to feel a bit more comfortable wading through
the wealth of models from which to choose.

Students interested in becoming process simulation experts will be interested in reading the recent
articles reviewing the selection of thermodynamic models. Schad1 and Carlson2 provide some
significant examples and cites several relevant articles. A common thread throughout these articles is
the emphasis on accurate application of thermodynamic principles. It is interesting to see the large
number of examples in which practical engineering applications were so deeply affected by the
fundamentals of thermodynamics.

D.2. Equations of State
We have covered the Peng-Robinson and virial equations in fair detail, but there are many others.

Some that we have mentioned but not treated in detail are the Redlich-Kwong equation (homework
problem 7.9),3 the Lee-Kesler equation (Eqn. 7.11 on page 260),4 and a popular form of its extension
to mixtures, the Lee-Kesler-Plocker equation,5 the Soave equation (Eqn. 7.65 on page 294),6 also
known as the Soave-Redlich-Kwong or SRK equation), the ESD equation,7 and the SAFT equation.8

A slight variation on the Soave equation is the API equation;9 it changes only the value of κ as a
function of acentric factor in order to obtain a slight improvement in the predicted vapor pressures of
hydrocarbons. A specific implementation of the virial equation useful for associating systems is the
Hayden-O’Connell method.10 The Soave equation, Peng-Robinson equation, Lee-Kesler-Plocker
equation, and API equation are all very similar in their predictions of VLE behavior of hydrocarbon
mixtures. They are accurate to within ~5% in correlations of bubble-point pressures of hydrocarbons
and gases (CO, CO2, N2, O2, H2S) and about ~15% for predictions based on estimated binary
interaction parameters. The Lee-Kesler-Plocker equation can be slightly more accurate for enthalpy
and liquid density for some hydrocarbon mixtures, but the advantage is generally slight with regard to
enthalpy and there are better alternatives to equations of state for liquid densities if you want accurate
values. The cubic equations have some convergence advantages for VLE near critical points and their
relative simplicity makes them more popular choices for adaptations of semi-empirical mixing rules
to tune in an accurate fit to the thermodynamics of a specific system of interest. The best choice
among these is generally the one for which the binary interaction parameters have been determined
with the greatest reliability. (Accurate reproduction of the most experimental data at the conditions of
your specific interest wins.)

The primary role of equations of state is that they can predict thermodynamic properties at any
conditions of temperature and pressure, including the critical region. The disadvantage is that they



tend to be inaccurate for strongly hydrogen-bonding mixtures. This disadvantage is diminishing in
importance with the development of hydrogen-bonding equations of state (like the SAFT and ESD
equations), but it is not clear at this time whether these newer equations of state will displace any of
the long-standing cubic equations of state with their semi-empirical modifications.

D.3. Solution Models
We have covered many solution models in fair detail: the Margules equation, the Redlich-Kister

expansion, the van Laar equation, the Scatchard-Hildebrand theory (the most common implementation
of regular solution theory), the Flory-Huggins equation, the Wilson equation, NRTL, UNIQUAC, and
UNIFAC. Once again, the best choice will most often depend on the availability of binary interaction
parameters which are relevant to the specific conditions of interest.

The primary role of solution models is to provide semi-empirical models which have a greater
degree of flexibility than equation of state models, owing to the greater number of adjustable
parameters and their judicious choice such that both magnitude and skewness of the free energy
curves can be accurately tuned.

D.4. Hybrid Models
Another set of models that have been developed relatively recently can be referred to as “hybrid”

models in the sense that they combine equation of state models with solution models. The two most
prevalent of these are the Modified Huron-Vidal (MHV) method and the Wong-Sandler mixing
rules.11 The basic idea is to apply a solution model at high density or pressure to characterize the
mixing rules of the equation of state and then interpolate from this result to the virial equation at low
density. These methods tend to compete with the hydrogen bonding models in the sense that they
enhance accuracy for nonideal solutions at high temperatures and pressures. They are more empirical,
but they tend to leverage the well-developed solution models (like UNIFAC) more directly. They
also tend to be more efficient computationally than the hydrogen bonding equations of state.

D.5. Recommended Decision Tree
When faced with choosing a thermodynamic model, it is helpful to at least have a logical procedure

for deciding which model to try first. A decision tree is included in Fig. D.1. For nonpolar fluids, an
equation of state may suffice. For polar fluids, a fitted activity coefficient model is preferred,
possibly in combination with the Hayden-O’Connell method or in combination with some other
equation of state for the vapor phase (like the Peng-Robinson equation). This approach can often
provide satisfactory predictions as long as the pressures are 10 bar or less. Predictions by this
approach should be checked against literature data to the greatest extent possible. If there are no
experimental data for one of the binary systems in this event, then UNIFAC can be used to generate
“pseudo-data” that can be used to predict the Gibbs excess energy for that binary, and these pseudo-
data can be used to regress UNIQUAC or NRTL parameters if desired (homework problem 13.16).
Above 10 bars, the choices are not so obvious. The most obvious method to try if you are satisfied
with the correlations below 10 bars is to apply the MHV or Wong-Sandler approach. If you need to
predict phase behavior over a broad range of conditions based on few data in a narrow range of
conditions, a hydrogen bonding equation might provide more reliable leverage in light of its clearer
connection with the physical chemistry in the solution. If you are dealing with compounds which
dissociate electrolytically or associate strongly and specifically in solution, then it will probably be



necessary to apply a simultaneous reaction and phase equilibrium approach. These kinds of systems
are common in gas strippers for compounds like CO2, H2S, and amines. For these systems, it is
especially important to check your correlations against experimental data near the conditions of your
specific interest.

Figure D.1. Flowchart to select the best thermodynamic model. The abbreviation BIP is used
to mean binary interaction parameters.



Appendix E. Themodynamic Properties

E.1. Thermochemical Data
The heat capacity coefficients are used in the equation:

CP = A + BT + CT2 + DT3

where T is in K and CP in J/mol-K The heat capacities tabulated on the back flap are only suitable
for quick order of magnitude calculations. The full form of the heat capacity should be used when
possible.

Note that the value of the heat capacity at room temperature is not given by the
first coefficient A when other coefficients are present. The polynomial should not be
truncated.









E.2. Latent Heats

E.3. Antoine Constants
The following constants are for the equation

where Psat is in mmHg, and T is in Celsius. Additional Antoine constants are tabulated in



Antoine.xls.

E.4. Henry’s Constant with Water as Solvent
Selected from the compilation of Sander. KH(T) = K°H exp(d(ln(KH))/d(1/T) ((1/T) – 1/(298.15

K))





E.5. Dielectric Constant for Water

E.6. Dissociation Constants of Polyprotic Acids
The constants are at 25°C and I = 0.



Triprotic: o-phosphoric acid, 2.148, 7.198, 12.375.
Tetraprotic: citric acid, 3.128, 4.761, 6.396, ~16?(hydroxyl)

E.7. Standard Reduction Potentials
All species are at 298.15 K and 1 bar aqueous unless otherwise noted. Gases are at 1 bar partial

pressure and pressure is measured in bar. The molal standard state is used for soluble species, with a
molal activity coefficient of one at infinite dilution. For water the standard state composition is pure
water. The temperature coefficients permit calculation of E°T = E°298.15 + (dE°/dT)(T – 298.15). This
small subset is representative.











E.8. Biochemical Data
Standard state for soluble species is an ideal solution at 1 M except for water, which is relative to

the Lewis-Randall standard state. The data are for the untransformed Gibbs energies and enthalpies.





E.9. Properties of Water1

I. Saturation Temperature



II. Saturation Pressure



III. Superheated Steam













IV. Compressed Liquid



E.10. Pressure-Enthalpy Diagram for Methane

(Source: NIST, Thermophysics Division, Boulder, CO, USA, used with permission.)



E.11. Pressure-Enthalpy Diagram for Propane

(Source: NIST, Thermophysics Division, Boulder, CO, USA, used with permission.)



E.12. Pressure-Enthalpy Diagram for R134a (1,1,1,2-Tetraflouroethane)

(Source: NIST, Thermophysics Division, Boulder, CO, USA, used with permission.)



Properties of Saturated HFC-134a.



Abstracted from R. Tillner-Roth; H. D. Baehr, 1994. J. Phys. Chem. Ref. Data, 23:657.
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hints, 185
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Lee-Kesler, 260, 293
MCSL, 800
PC-SAFT, 327, 800
Peng-Robinson, 262, 266, 314, 316, 320, 347, 354, 357, 585, 587, 592, 594, 599,

601, 813
Redlich-Kwong, 325, 357
SAFT, 799, 800
Scott, 280, 294
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exergy, See availability
exothermic, 112, 119, 427
exothermic reaction, 655, 666
expander, 72
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heat conduction, 17, 157, 176
heat convection, 17
heat engine, 157

See also Carnot cycle
heat exchanger, 70, 160
heat radiation, 17
heavy key, 392, 487
Helmholtz energy, 179, 228, 309, 584
Helmholtz energy of mixing, 105
Helmholtz, Hermann, 179
Henderson-Hasselbalch, 724
Henry’s law, 376, 443, 457, 535, 610, 740, 749

standard state, 759
Hess’s law, 111, 119, 648
heteroazeotrope, xxi, 550, 616, 630, 633
Hilsch vortex tube, 195
Hooke’s law, 139
human blood, 453
hydrate inhibitor, 603
hydration, 694



hydrogen bonding, 8, 466, 501, 533, 550, 603, 769
hydronium, 704
hydrophilic, 421
hydrophobic, 421
hydrophobic effect, 485
hypertonic, 453

I
ideal chemical theory, 776, 813
ideal gas law, 18, 284
ideal solution, 106, 139, 403
incompressible fluid, 24
induction forces, 10
inelastic collision, 44
inert, 387, 650
infinite dilution, xxi, 434, 471
instability, 539
integration, 820
intensive, 17
internal energy, 15, 57, 226

ideal gas, 19
interpolation, 25

double, 27
interstage cooling, 174, 211
ion pair, 704
ion pair chromatography, 704
irreversible, xxi, 43, 74, 86, 142
isenthalpic, xxi
isentropic, xxi, 143, 148
isentropic efficiency, xxi
isobaric, xxi, 46, 147
isobaric coefficient of thermal expansion, 236
isochore, xxii, 46, 147
isochoric, 274
isoelectric point, 724
isolated, xxii, 74

system, 16, 50
isopiestic, xxii
isopleth, 601
isopycnic, xxii
isosteric, xxii



isotherm, 23, 264
isothermal, xxii, 46, 147

compressibility, 236, 253, 824
flash, 372, 834, 838

isotonic, 453
IUPAC, 728

J
Jacobian, 242, 244
Joule-Thomson coefficient, 212, 236, 245
Joule-Thomson expansion, 68

K
Kamlet-Taft acidity/basicity, 421, 771
kinetic energy, 6, 22, 43, 66, 69
K-ratio, 372, 586

LLE, 545
modified Raoult’s law, 425
Raoult’s law, 376
shortcut, 376
SLE, 566

L
latent heat, 60, 846
laws

See Raoult’s law, Henry’s law
See zeroth law, first law, second law, third law

Le Châtelier, Henry, 649
Le Châtelier’s principle, 649, 699
Lee-Kesler, See equation of state
Legendre transformation, 228, 244, 398, 745
leveling effect, 705
lever rule, 372, 543, 551, 571, 630
Lewis, G.N., 3, 355
Lewis-Randall rule, 404, 443, 739
LFL, lower flammability limit, 389
light key, 392, 487
Linde liquefaction, 212, 320
linear extrapolation, 29
liquefaction, 212, 320
LLE, xxii, 539
local composition, 501



Lorentz and Bertholet combining rule, 13
lost work, 15, 42, 137, 142, 164, 178
low pressure steam, 172

M
M, as a generic property, 31, 303, 398, 426
MAB, Margules acid-base model, 421
Margules, 435, 812, 813

acid-base characterization, 421
one-parameter, 414, 484, 509, 542
two-parameter, 430

mass balance, 16
master equation, xxii
matrix, 817
maximum boiling azeotrope, 397
maximum pressure azeotrope, 394
Maxwell’s relations, 233
McCabe-Thiele analysis, 391
McMillan-Mayer framework, 450
mean ionic activity coefficients, 753
mean molality, 753
measurable properties, xxii, 229, 235
metastable, xxii, 269

See also unstable, equation of state (stable roots)
micelle, 691
microstate, 132
minimum boiling azeotrope, 394
minimum pressure azeotrope, 397
mixing rule, 466, 580, 840

differentiation, 588
molecular basis, 466

mixture
combining rule, 13

modified Raoult’s law, 412, 427
molal standard state, 759, 849
molality, 700
molecular asymmetry, 619
molecular simulation, 276
Mollier diagram, 166
monomer, 772
MOSCED, 480
mutual solubilities, 423, 540, 544



N
NAD, 735
negative deviations, 413, 444
Nernst equation, 728
Newton-Raphson, 265
nicotinamide adenine dinucleotide, 735
nominal, 699
noncondensable, 387, 487
normal boiling temperature, 61
normalization, 488, 595, 833
nozzle, xxii, 69, 74, 162
NRTL model, 508

O
one-root region, 264
open system, 16, 51
osmotic coefficient, 742
osmotic pressure, 449, 743, 755
osmotic virial coefficient, 451
overall

molar volume, enthalpy, etc., 31
mole fraction, 371

overall property, 31
overhead product, 101
oxidation, 727
oxidation state, 729

P
packing fraction, 273
packing, column, 102
parameter

binary interaction, 13, 582
cross, 467

parity plot, 578
partial condenser, 101, 378
partial molar

excess volume, 426
Gibbs energy, 398, 400, 427
properties, 398
volume, 398, 426

partial pressure, 403, 424



path properties, 46
PC-SAFT, See equation of state
Peng-Robinson, See equation of state
permutations, 135
pH, 701
phase behavior classes, 617
phase envelope, 23, 370, 601, 617
photosynthesis, 182
pI, 724
Pitzer correlation, 256, 323, 349
Plait point, 552
pMg, 736
polytropic, xxii
positive deviations, 413, 444
potential

energy, 8, 66
hard sphere, 277
Lennard-Jones, 10
square-well, 10, 274, 829
Sutherland, 10

potential energy, 6
Poynting correction, 350, 353, 425, 667, 669
Prausnitz-Shair, 447
preheater, 205
pressure, 20

bubble, See bubble-point pressure
dew, See dew-point pressure
equation, 283
gradient, 44
reduced, 64, 254
reference, 63

See also reference state
probability, 133, 467
process simulators, 839
properties

convenience, 227
measurable, 229

protein, 119, 719
protein engineering, 479
proton condition, 706
pseudoisomer, 736



pump, 73, 163, 173, 202
purge gas, 387
P-x-y diagram, 370

Q
quadratic equation, 817
quadratic mixing rule, 467
quadrupole, 8
quality, xxii, 30, 167, 336

R
Rackett equation, 351
radial distribution function, 284, 828
Rankine cycle, 200
Raoult, François-Marie, 376, 695
Raoult’s law, 405, 443

modified, 412, 427
negative deviations, 394, 444, 781
positive deviations, 394, 444, 781

rdf, See radial distribution function
reaction

coordinate, 110, 643
elementary, 671

reboiler, 101
reciprocity relation, Euler, 233
rectifying section, 101
Redlich-Kister activity coefficient model, 429
Redlich-Kwong, See equation of state, 325
redox reactions, 727
reduced, 254

pressure, See pressure, reduced
temperature, See temperature, reduced

reduction, 727
reference state, xxii, 6, 63, 112, 113, 314, 318, 652
reflux, 101

ratio, 101, 393
refrigerant choice, 210
refrigeration, 208
regular solution theory, 468

See also van Laar, Scatchard-Hildebrand theory
relative volatility, 392, 394, 456, 490
repulsive force, 10



reservoir, 17
residual contribution, 506
residue curve, 630, 813
retrograde condensation, 601
reverse osmosis, 449
reversible, 42, 74, 142

internally, 158
work, 41

roots
See quadratic, cubic
three- and one-root regions, 264

rotational energy, 43, 59
rules of thumb

plotting on logarithmic coordinates, 712

S
SAFT, See equation of state
salting in, out, 725
saturated

liquid, 23
steam, 24

saturation, 23
pressure, 23
temperature, 23

scalar, 20
Scatchard-Hildebrand, 471, 812
Schrödinger equation, 8
Scott, See equation of state
second law of thermodynamics, 4, 130, 131, 143
sensible heat, xxii, 60, 111
separation of variables, 75, 77
separatrices, 631
separatrix, 631, 635
shortcut distillation calculation, 393, 442, 630
sign convention

heat and work, 53
mass balance, 16
work, 40

simple system, 131, 226
sink, 17
SLE, xxii, 556
Soave, See equation of state



solubility, 540, 560, 726
parameter, 472, 621

solubility product, 726
solvation, xxii, 521, 694, 767
speciation, 697
specific heat, xxii
specific property, xxii, 17
spinodal, xxii, 269, 553
split, 392
SSCED model, 482
stability check, 358
stable roots, 268
stage, separation, 102
standard conditions, xxii
standard hydrogen electrode, 728
standard state, xxii, 112, 425, 428, 645

Gibbs energy of reaction, 648
heat of formation, 112
heat of reaction, 111
Henry’s law, 759
molal, 759, 849

state, 18
of aggregation, xxii, 25, 60, 63, 113, 318
property, 46
reference, 63, 318
variable, 18

statistical thermodynamics, 59
steady-state, xxiii, 18, 74

energy balance, 51
steam properties, 811
steam tables, 24, 854
steam trap, 92
Stirling’s approximation, 136
stoichiometric coefficient, 109
stoichiometric number, 109
stoichiometry, 109
STP, xxiii
strategy

problem-solving, 74, 165, 177, 179, 373
stripping section, 101
strong acid, 704



strong base, 704
strong electrolyte, 694
subcooled, xxiii, 25
supercritical, 24, 376
superficial basis, 699
superheated, xxiii, 25
superheater, 71, 201
surface fraction, 510
surfactant, 691
sweep gas, 387
system, 15

closed, 16
isolated, 16
open, 16
point, 713
simple, 131, 226

T
temperature, 6, 254

absolute, 7
bubble, See bubble-point temperature
dew, See dew-point temperature
gradient, 44
reduced, 62, 64, 253
reference, 63, 115

See also reference state
state variable, 18

thermal efficiency, xxiii, 97
thermodynamic efficiency, xxiii
third law of thermodynamics, 33, 63, 728
three-root region, 264
throttle, xxiii, 68, 74, 162
tie line, 23, 371, 551
ton of refrigeration capacity, 209
total condenser, 101
trays, 102
triple product rule, 231, 246
true concentrations, 699
true mole fraction, 772
true moles, 792, 793
turbine, 72, 163, 166

multistage, 172



two-fluid theory, 504
T-x-y diagram, 370

U
UCST, 552
UFL, 390
UNIFAC, 500, 514, 529, 562, 812
UNIQUAC, 509, 529, 812
unstable, xxiii, 268
unsteady-state, 74
unsymmetric convention

activity coefficients, 446
upper critical solution temperature, 550
upper flammability limit, 390

V
valve, 68, 162

See also throttle
van der Waals, 253, 261, 469

area, 511
equation, See equation of state
loop, 352
volume, 511

van Laar, 468, 470, 471, 474, 476, 812
van’t Hoff, 469, 653, 746
van’t Hoff equation, 653

shortcut, 655
vapor pressure, 24, 62, 254, 342, 353, 357, 376, 400

shortcut, 62, 339
See also Antoine equation

vector, 20
velocity gradient, 44
virial coefficient

See equation of state, virial
viscosity, 43
viscous dissipation, 43
VLE, xxiii, 372
VLLE, 434, 540, 548, 550
VOC, 387
volatile organic compounds, 387
voltage, 727
volume



saturated liquid, 351
van der Waals, 511

volume fraction, 472, 510
volume of mixing, 105, 106

W
wax, 564, 813
weak acid, 704
weak base, 704
weak electrolyte, 694
wet steam, xxiii, 24
Wilson equation, 505, 513
work, 15

expansion/contraction, 40
flow, 41
maximum, 164
minimum, 164
optimum, 158, 177
pump, 55, 202
shaft, 41, 54, 214
sign convention, 40

X
x-y plot, 376, 419

Z
Z, compressibility factor, 253
zeroth law of thermodynamics, 7
zwitterion, 721
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1. The International Steam Table (IT) BTU.
2. The thermochemical calorie.

Properties of Selected Compounds
Heat capacities are values for ideal gas at 298 K and should be used for order of magnitude

calculations only. See appendices for temperature-dependent formulas and constants.







References: API Technical Data Book (1988), and Reid, R.C., Prausnitz, J.M., and Sherwood, T.K., The Properties
of Liquids and Gases, 3rd Edition, 1977. McGraw-Hill:New York. For a more complete list, see the spreadsheet in
props.xlsx or the MATLAB props folder. Italics designate estimated or effective values.











Footnotes

Chapter 1
1. Lewis, G.N., Randall, M. 1923. Thermodynamics and the Free Energy of Chemical Substances, New York: McGraw-Hill.
2. The term “lost work” refers to the loss of capability to perform useful work, and is discussed in more detail in Sections 2.4 on
page 42, 4.2 on page 132, and 4.3 on page 142.
3. Denbigh, K., 1971. The Principles of Chemical Equilibrium, London: Cambridge University Press, p. 9.
4. The dipole is a model of the charge distribution on the molecule, and it is thus an approximate description of the charge
distribution.
5. The polarizability is the linear proportionality constant in a model of how easily a dipole is “induced” when the molecule is
placed in an electric field.
6. We qualify this criterion for the purposes of chemical engineering that there is no driving force for “meaningful” change
because most of our systems are technically metastable (in a state of local equilibrium). For example, considering air expansion in
a piston/cylinder expansion, we neglect the potential corrosion of the piston/cylinder by air oxidation when we state the system has
reached mechanical equilibrium.
7. For a reactive system, C is replaced with the number of distinct species minus the number of independent reactions.
8. We will formally define heat capacity and relations for CP and CV in Chapter 2.

9. See an introductory physics text for further discussion of time-averaged force.
10. This is a pressure [=] force/area where motion is in 2-D and forces are in only two dimensions. In an alternative perspective
molecules would only exist in a 2D plane. Then the divisor should be 2L2 and we multiply by area L2, and P2D [=] MPa-m,

P2DL2 = nRT.

11. This stability is determined by the Gibbs energy and we will defer proof until Chapter 9.
12. Calculation of these properties requires mastery of several fundamental concepts as well as application of calculus and will be
deferred. We calculate energies for ideal gas in Chapter 2 and for real fluids in Chapter 8.
13. There is also a third law of thermodynamics, as discussed by Denbigh, K., 1981. The Principles of Chemical Equilibrium,
London: Cambridge University Press, p. 416. The third law is of less direct interest in this introductory text, however.

Chapter 2
1. Some texts refer to expansion/contraction work as PV work. This leads to confusion since Section 2.3 shows that work
associated with flow is PV, and the types of work are distinctly different. We have chosen to use the term
“expansion/contraction” for work involved in moving boundaries to help avoid this ambiguity.
2. Two other possibilities exist: 1) The piston may hit a stop before it has finished moving upward, a case that will be considered
below, or; 2) The piston may fly out of the cylinder if the cylinder is too short, and there is no stop.
3. However, this is not a useful perpetual motion machine because the net effect on the surroundings and the piston is zero at the
end of each cycle. If we tried to utilize the motion, we would damp it out.
4. Other possibilities include electric or magnetic fields, or mechanical springs, etc., which we do not address in this text.
5. The degrees of freedom discussed here are different from those discussed for the Gibbs phase rule.
6. This theory also requires experimental spectroscopic measurements, but those are quite different from the calorimetric
measurement of enthalpy changes with respect to temperature.
7. http://webbook.nist.gov/
8. Perry, R.M., Green, D.W., 2008. Chemical Engineer’s Handbook , 8th ed., New York: McGraw-Hill.
9. Poling, B.E., Prausnitz, J.M., O’Connell, J.P., 2001. The Properties of Gases and Liquids, 5th ed., New York: McGraw-Hill.
10. Pitzer, K.S., Lippmann, D.Z., Curl Jr., R.F., Huggins, C.M., Petersen, D.E. 1955. J. Am. Chem. Soc., 77:3433.
11. In the most detailed calculations, absolute zero is used as a reference state to create some thermodynamic tables. This is
based on a principle known as the third law of thermodynamics , that states that entropy goes to zero for a perfect crystal at
absolute zero. The difficulties in the rigorous calculations are mentioned above, and although the principles are straightforward, the
actual calculations are beyond the scope of this book.

http://webbook.nist.gov/


12. For calculation of ideal gas U and H, only a reference temperature is required; however, for the entropy introduced in the next
chapter, a reference pressure is needed, so we establish the P requirement now.
13. Turbine design is a specialized topic. Introductions to the actual operation are most readily available in mechanical engineering
thermodynamics textbooks, such as Jones, J.B., Dugan, R.E. 1996. Engineering Thermodynamics. Upper Saddle River, NJ:
Prentice-Hall, pp. 734–745.
14. This may seem like common sense, but sometimes when calculations are performed, it is surprisingly easy to overlook the fact
that a valid mathematical result might be physically impossible to obtain.
15. Section 2.17 on page 85 may be helpful for details on interpreting each term of the balance for new applications.
16. This problem is reconsidered as an adiabatic process in problem P3.14.

Chapter 3
1. The reaction coordinate is in some texts called the extent of reaction. This is misleading because depending on conditions, it
can be less than one at complete conversion, or it can be negative.
2. Another common measure of reaction progress is conversion. In reaction engineering, it is common to follow the conversion
of a particular reactant species, say, species A. If XA is the conversion of A, then nA = nA

in(1 – XA), and XA = a ξ/nA
in, where

a is the stoichiometric coefficient for A as written in the reaction.
3. cf. RealClimate.org (... “simple model”) and aip.org/history/climate/simple.htm, 8/2011

Chapter 4
1. Denbigh, K. 1971. The Principles of Chemical Equilibrium. 3rd ed. New York: Cambridge University Press, p.33.
2. A simple system is not acted on by external force fields or inertial forces.
3. The term “configurational” is occasionally used in different contexts. We apply the term in the context of Denbigh, K. 1981.
The Principles of Chemical Equilibrium, 4th ed. Cambridge University Press, pp. 54–55. Technically, the configurational
entropy includes both the combinatorial contribution discussed here for ideal gases, and the entropy departure function discussed in
Unit II. Note that configurational energy is equivalent to the energy departure function of Chapter 7 because the change in energy
of spatially rearranging ideal gas particles is zero.
4. The distinctions between these types of entropy are discussed in more detail by Denbigh, K. 1981. The Principles of Chemical
Equilibrium, 4th ed. Cambridge University Press, pg. 353.
5. Ideal gases are non-interacting. Non-interacting particles are oblivious to the presence of other particles and the energy is
independent of the interparticle separations. In other words, potential energies are ignored.
6. Note that the number of particles and the energy are constant throughout the discussion presented here and the volume is
specified at each stage. The constant energy for non-interacting particles means that the temperature will be constant; only the
pressure will be reduced at larger volumes because it takes the molecules longer to get around the box and collide with a particular
wall. We can think of this as an N, V, U perspective, and we will demonstrate that entropy is maximized at equilibrium within this
perspective, but some other quantity might characterize equilibrium if we held other quantities constant.
7. In an isolated system at constant (U, V), entropy will be generated as equilibrium is approached; S will increase and will be
maximized at equilibrium. If the system is closed but not isolated, the property which is minimized is determined by the property
which is a natural function of the controlled variables: H is minimized for constant (S,P); A for constant (T,V); G for constant
(T,P). A and G will be introduced in future chapters.
8. In statistics, this is called the number of permutations.
9. The formula for the particles in boxes is an example of a binomial coefficient, fundamental in the study of probability and
statistics. Detailed development of the binomial distribution and the issue of indistinguishability can be found in any textbook or
handbook on the subject.
10. In statistics this is called the number of combinations. It is also known as the multinomial coefficient.
11. Moore, Schroeder, 1997. Am. J. Phys. 65:26–36.
12. Callen, H.B. 1985. Thermodynamics and an Introduction to Thermostatistics, 2ed, Indianapolis IN: Wiley, p.333.
13. The Debye model is described by McQuarrie, D.A. 1976. Statistical Mechanics. Harper and Row.
14. Uffink, J. 2003. “Irreversibility and the Second Law of Thermodynamics,” Chapter 7, in Entropy, Greven, A., Keller, G.,
Warnecke, G. eds., Princeton, NJ: Princeton University Press.
15. Note, however, that Q is constrained to be reversible in the macroscopic definition, so it is not entirely arbitrary.



16. This relation is known as Fourier’s law and is studied in heat-transfer courses.
17. In multistage units, the stages may be considered individually.
18. Bejan, A. 2006. Advanced Engineering Thermodynamics, 3ed, New York: John Wiley & Sons.
19. Kondepudi, D. 2008. Introduction to Modern Thermodynamics. New York: Wiley, p. 386.
20. Though the structure building decreases entropy, the reactions are proceeding at a finite rate which generates entropy.

Chapter 5
1. Cavitation occurs when vapor bubbles form in the inlet line of a liquid pump, and the bubbles prevent the pump from drawing
the liquid into the pump cavity.
2. This criterion can be evaluated by looking at the dependence of temperature on pressure at constant enthalpy on a
thermodynamic chart or table. In Chapter 6, we introduce principles for calculating this derivative from P, V, T properties.

Chapter 6
1. Details are given by Tester, J.W., Modell, M. 1996. Thermodynamics and Its Applications. Upper Saddle River, NJ: Prentice-
Hall.
2. Leithold, L., 1976. The Calculus with Analytical Geometry. 3rd ed. New York, NY: Harper & Row, p. 929.
3. Other descriptions include “condition for exact differential.” It was called by Rudolf Clausius the “condition of immediate
integrability.”
4. This method is covered in optional Section 6.3.

Chapter 7
1. Naturally, some compounds decompose before their critical point is reached, or like carbon or tungsten they have such a high
melting temperature that such a measurement is impossible even at the present time.
2. The significance of the vapor pressure curve in determining the thermodynamic properties can be readily appreciated if you
consider the difference between a vapor enthalpy and a liquid enthalpy. The detailed consideration of vapor pressure behavior is
treated in Chapter 9.
3. Pitzer, K.S., Lippmann, D.Z., Curl Jr., R.F., Huggins, C.M., Petersen, D.E. 1955. J. Am. Chem. Soc. 77:3427–3433.
4. This is the Lee-Kesler equation. Lee, B. I., Kesler, M.G. 1975. AIChE J. 21:510.
5. Smith, J.M., Van Ness, H.C. 1975. Introduction to Chemical Engineering Thermodynamics, 3rd ed, New York: McGraw-
Hill, p. 87.
6. Lee, B.I., Kesler, M.G. 1975. AIChE J. 21:510.
7. The number of significant figures presented in Eqn. 7.16 is important in reproducing the universal value of Zc = 0.307 predicted
by the Peng-Robinson equation of state.
8. Vargaftik, N.B. 1975. Handbook of Physical Properties of Liquids and Gases. New York: Hemisphere Publishers.
9. However, the Peng-Robinson equation does give small real roots at high pressures, and the smallest real root is not always the
liquid root. See problem 7.11.
10. To be more precise, however, it is impossible to pack spheres such that the space is completely filled. One example of highly
efficient packing would be the body-centered-cubic (bcc) unit cell (Fig. 7.10). We can determine ηP for the bcc unit cell by noting
that there are two atoms in the unit cell. The obvious atom is the one in the center. The second atom is actually the combination of
pieces of atoms at the corners. There are eight corners and each one contributes one-eighth of an atom. To compute the packing
fraction, we need to relate the box length, L, to the diameter, σ. Note that all the corner atoms are touching the atom in the center.
Therefore, a diagonal line from the lower left to the upper right corner cuts through 2σ. In Cartesian coordinates, this same
distance represents (L2+ L2+ L2)½ = L(3)½. Therefore, L = 2σ/3½ and the packing fraction is 2πσ3/(6L3) = 0.68 = ηP

bcc.
Liquids at typical conditions cannot pack this efficiently, so typical packing fractions for liquids are 0.25–0.45.
11. The principles are simple for extending molecular simulation to non-spherical molecules. These are described along with a
number of implementation resources in an online supplement.
12. For example, see the discontinuous molecular dynamics (DMD) module at Etomica.org.
13. For example, Giancoli, D.C. 2000. Physics for Scientists and Engineers, 3rd ed., Englewood Cliffs, NJ: Prentice-Hall,
Example 7.6.



14. The 2D perspective is not convenient for a general program. Therefore, the online supplement includes formulas for a general
methodology in three dimensions, handling attractive collisions, extensions to multi-site molecules, and resources for
implementation, all in vector notation.
15. Spiegel, M.R. 1968. Schaum’s Mathematical Handbook of Formulas and Tables, New York:McGraw-Hill, p. 36.
16. Erpenbeck, J.J., Wood, W.W. 1984. J. Stat. Phys. 35:321.
17. Alder, B.J., Wainwright, T.E. 1959. J. Chem. Phys. 31:459.
18. The configurational energy is that energy due solely to the intermolecular interactions at given distances, hence the adjective
configurational.
19. Hansen, J-P., McDonald, I.R. 2006. Theory of Simple Liquids, 3rd ed. New York:Academic Press, p. 32.
20. The exception to this discussion occurs very near the critical point, but addressing this problem is beyond the scope of this text.

21. Fig. 7.5 on page 264 shows that three roots will exist at all pressures below Psat when the reduced temp is low, but over a
limited range near Tr = 1.

22. Dymond, J.H., Smith, E.B. 1969. The Virial Coefficients of Pure Gases and Mixtures, New York: Oxford University Press.
23. Vargaftik, N.B. 1975. Handbook of Physical Properties of Liquids and Gases, 2nd ed. New York: Hemisphere.
24. Soave, G. 1972. Chem. Eng. Sci. 27:1197.
25. Elliott, J.R., Suresh, S.J., Donohue, M.D. 1990. Ind. Eng. Chem. Res. 29:1476.
26. Alder, B.J., Wainwright, T.E. 1959. J. Chem. Phys. 31:459.
27. Dymond, J.H., Smith, E. B. 1980. The Virial Coefficients of Pure Gases and Mixtures. New York: Oxford University
Press.

Chapter 8
1. Generalization of the ideal gas state is also possible beyond the two choices discussed here. For a discussion, see Reid, R.C.,
Prausnitz, J.M., Poling, B.E. 1987. The Properties of Gases and Liquids. 4th ed. New York: McGraw-Hill.
2. Starling, K.E. 1973. Fluid Thermodynamic Properties for Light Petroleum Substances, Houston, TX: Gulf Publishing.
3. See Vargaftik reference homework problem 6.6.

Chapter 9
1. Once the system volume is decreased below a volume where V < nVsatL, we are compressing a liquid, and the pressure could
become quite high. We would need to compute how high using an equation of state. An analogous discussion could be developed
for expansion of system volume showing that only vapor will exist for V > nVsatV. The key to notice is that values of q are only
physically meaningful in the range 0 < q < 1.
2. What value of C would be common if the Clausius-Clapeyron equation was exact? Compare that value to tabulated C values.
3. Gmehling, J. 1977-. Vapor-liquid Equilibrium Data Collection. Frankfurt, Germany: DECHEMA.
4. Naturally, the accuracy of our calculation is dependent on the accuracy of predicting Z, so we must use an accurate equation of
state or correlation.
5. Eubank, P.T., Elhassan, A.E., Barrufet, M.A. 1992. Whiting, W.B. Ind. Eng. Chem Res. 31:942. Tang, Y., Stephenson, G.,
Zhao, Z., Agrawal, M., Saha, S. 2011. AIChE J. 57:3333.
6. It is possible to program conditionals to avoid unstable roots, but due to the importance of chemical engineers understanding the
conditions, we require the users to make the determination. Can you see how to program the conditionals?
7. Frequently, we arbitrarily set SR = 0 and either HR or UR = 0 at our reference states. For consistency in our calculations, GR =
HR – TRSR. As a result, the calculated value of S at a given state depends on our current state relative to the reference sate.
Calculated S values may be positive or negative due to our choice of SR = 0, and Gibbs energy thus calculated may increase or
decrease with temperature. Entropy does not actually go to zero except for a perfect crystal at absolute zero, and entropy of all
substances at practical conditions is positive. The fact that our calculations result in negative numbers for S is purely a result of
our choice of setting SR = 0 at our reference state (to avoid more difficult calculation of the actual value relative to a perfect
crystal at absolute zero). See third law of thermodynamics in Subject Index.

Chapter 10



1. There are many variations of the diagrams, and this discussion is meant to introduce only the most commonly encountered types
of diagrams. More complex diagrams are introduced gradually, and are discussed in depth in Chapter 16. These diagrams are
cross sections of three-dimensional diagrams which are discussed in Chapter 16.
2. This is a convenient manipulation to visualize both diagrams if only one diagram is available.
3. Note that when at 100% liquid, x = z and at 100% vapor, y = z. In some cases, such as formulas for an equation of state, we
discuss a generic phase which may be liquid or vapor, and thus use either x or y.
4. An interesting perspective on the contributions of Raoult is available in Wisniak, J. 2001. “François-Marie Raoult: Past and
Modern Look”. The Chemical Educator 6 (1): 41–49. doi:10.1007/s00897000432a.
5. If a supercritical component is present in significant quantity, the user must beware, because the shortcut K-ratio may falsely
predict a liquid phase due to extrapolation of the vapor pressure. An interesting problem arises when we must calculate the VLE
K-ratio for a component in the liquid phase but above its critical temperature. Carbon dioxide (Tc = 31°C) in soda pop on a 32°C
day would be a common example. Since the saturation pressure of CO2 does not exist above the critical temperature, and pure
CO2 cannot condense, we might consider that CO2 would not exist in the liquid phase and that Raoult’s law might indicate an
infinite value for the K-ratio. Experience tells us that this component does exist in the liquid phase over a portion of the
composition range. Remarkably, the extrapolated vapor pressures in the above formula give reasonably accurate results at small
liquid phase concentrations of noncondensable components. Of course, it is more accurate for components that are only slightly
above their critical temperature, because then the extrapolation is slight. Calculations with supercritical components are best done
using a Henry’s law, or a hypothetical liquid fugacity (Section 11.12 on page 443) or an equation of state (Example 15.9 on page
599).
6. Rachford Jr., H.H., Rice, J.D. 1952. J. Petrol. Technol. 4(sec. 1):19, 4(sec. 2):3.
7. Note that Eqns. 10.20–10.22 can be used to estimate the bubble and dew points regardless of whether the components are
supercritical or whether vapor and liquid phases are indeed possible. We will see in the discussion of equations of state that
mixtures can have critical points, too, and this leads to a number of subtle complexities.
8. OAQPS, Control of Volatile Organic Compound Emissions from Batch Processes–Alternate Control Techniques Information
Document, EPA-450/R-94-020, Research Triangle Park, NC 27711, February 1994.
9. OAQPS, Control of Volatile Organic Emissions from Manufacturing of Synthesized Pharmaceutical Products, EPA-450/2-78-
029, December 1978.
10. U.S. E.P.A., Compilation of Air Pollution Emission Factors-Volume 1, (1993) EPA Publication AP-42.

11. Even though µL = µV at equilibrium, the dependency of µV on composition will be quite different from the dependency of µL
on composition because the molecules are arranged very differently.
12. The concept of fugacity becomes especially useful when we begin to discuss phase equilibrium in mixtures. In that case, it is
conceivable that we could have some supercritical component dissolved in the liquid phase despite its high escaping tendency, (e.g.
CO2, in a carbonated beverage at 100°F). The possibility of a component that cannot be a liquid still dissolving in a liquid requires
a very general concept of escaping tendency because the pure-component vapor pressure does not exist at those conditions. The
definition of fugacity provides us with that general concept.
13. OSHA may change these limits at any time.

Chapter 11
1. In polymer-solvent systems the activity coefficient of the solvent at high solvent concentrations is typically > 1, but the activity
coefficient of the polymer is <<1. However, the overall system has positive deviations from the perspective of bubble pressure.
We focus above on the behavior in systems of molecules of approximately the same size.

2. Another common characterization of the Margules one-parameter model is: GE = A12x1x2. This results in an explicit

temperature dependence, RTlnγi = A12(1–xi)
2. Use care when using parameters from various sources.

3. Kamlet, M. J., Abboud, J.-L.M., Abraham, M.H., Taft, R.W. 1983. J. Org. Chem. 48:2877.
4. Elliott, J.R. 2010. Chem. Eng. Ed. 44(1):13–22.
5. Lazzaroni, M.J., Bush, D., Eckert, C.A., Frank, T.C., Gupta, S., Olson, J.D. 2005. Ind. Eng. Chem. Res. 44:4075.
6. Carboxylic acids almost always have significant deviations from ideal gas behavior as we discuss in Chapters 16 and 19.

7. We ignore the pressure dependence of activity coefficients since most models ignore the effect,  when the
standard state pressure is the system pressure.



8. Lorenzana, T., Franjo, C., Jiménez, E., Fernández, J., Paz-Andrade, M.I. 1994. J. Chem. Eng. Data 39:172.
9. Redlich, O., Kister, T. 1948. Ind. Eng. Chem. 40:345–348.
10. If RT is omitted from the excess Gibbs energy, then explicit temperature dependence of the γi results, and the “ln” terms of
Eqn. 11.37 are preceded with RT. Use care when comparing parameters from various sources because both conventions are
used.
11. Technically, this would not be true for a double azeotrope, but these are extremely rare.
12. Gmehling, J. 1991. Azeotropic Data. Frankfort, Germany: DECHEMA Press; Weast, R.C. 2001. Handbook of Chemistry
and Physics. Boca Raton, FL: CRC.
13. Anderson, T.F., Abrams, D.S., Grens, E.A. 1978. AICHE J. 24:20.
14. Prausnitz, J., Anderson, T., Grens, E., Eckert, C., Hsieh, R., O’Connell, J. 1980. Computer Calculations for
Multicomponent Vapor-Liquid Equilibria, Upper Saddle River, NJ: Prentice-Hall.
15. Van Ness, H.C., Byer, S.M., Gibbs, R.E. 1973. AIChE J. 19:238.
16. Examples of techniques that measure only one activity are osmotic pressure, partial pressure of solvent over a non-volatile
polymer solution, the isopiestic method for measuring solvent activity in electrolyte systems, and electrochemical emf techniques in
liquid metal solutions.
17. Do not be confused that we discuss Henry’s “law,” Raoult’s “law,” and the Lewis-Randall “rule.” The designations as “law”
or “rule” are purely historical names, and are simply different perspectives on modeling the real solution.
18. The reason that the Henry’s law constant appears to be inverted is because the solubilization is represented as an equilibrium
constant for a “reaction” where the dissolved species is the “product” and the vapor phase species is the “reactant.”
19. Chao, K. C., Seader, J. D. 1961. AIChE J. 7:598; Grayson, H.G., Streed, C.W. Paper 20-PO7, 6th World Petroleum
Conference, Frankfurt, June 1963; Prausnitz, J.M., Shair, F.H. 1961. AIChE J. 7:682.
20. Tester, J.W., Modell, M. 1997. Thermodynamics and Its Applications, 3rd ed. Upper Saddle River, NJ: Prentice-Hall, p.
469.
21. Connors, K.A. 2002. Thermodynamics of Pharmaceutical Systems. Hoboken, NJ: Wiley.
22. As you might imagine there are reasons why “normal saline” for medical IV has other salts dissolved. It is important to
maintain balance of many specific electrolytes, and therefore we must be careful which species are delivered, though from a
superficial level, any species can be used to make the solution isotonic.
23. Yound, H.D., Nelson, O.A. 1932. Ind. Eng. Chem. Anal. Ed. 4:67.
24. Suggested by O’Connell, J.P. 2010. NSF BioEMB Workshop, San Jose, CA.

Chapter 12
1. Quoted by Cor Peters on the occasion of his Area 1a lecturer award, 2010. AIChE National Meeting, Salt Lake City, UT.
2. The variable x is customarily used as a generic composition variable for the mixing rule, whether applied to vapor or liquid roots.
3. The assumption of a random fluid is analyzed and evaluated in Section 13.7.

4. The actual probability for a 1+1 interaction is , but when N is large it is equal to . Likewise, for a 2+2 the

probability is . For a 1+2 it is , which is effectively x1x2.

5. Readers should be aware that sometimes Eqns 12.11 and 12.12 are written without the RT terms. With that parameterization,
then the “ln” term in Eqn. 12.15 is multiplied by RT and the activity coefficients have explicit temperature dependence. Use care
when using literature parameters.
6. Huggins, M.L. 1941. J. Phys. Chem., 9:440; and 1942. Ann. N.Y. Acad. Sci. 43:1.
7. Blanks, R.F., Prausnitz, J.M. 1964. Ind. Eng. Chem. Fundam, 3:1.
8. Hansen, C.M. 2007. Hansen Solubility Parameters: A User’s Handbook . Boca Raton, FL: CRC Press, Inc.
9. Lazzaroni, M.J., Bush, D., Eckert, C.A., Frank, T.C., Gupta, S., Olson, J.D. 2005. Ind. Eng. Chem. Res. 44:4075.
10. Kamlet, M.J., Abboud, J.-L.M., Abraham, M.H., Taft R.W. 1983. J. Org. Chem., 48:2877. For solutes in liquids see
Abraham, M.H., Andonian-Haftvan, J., Whiting, G.S., Leo, A., Taft, R.W. 1994. J. Chem. Soc. Perkin Trans. 2:1777.
11. 1998. Fluid Phase Equil. 144:191.



Chapter 13
1. Scott, R.L. 1956. Annu. Rev. Phys. Chem 7:43.
2. Wilson, G.M. 1964. J. Am. Chem. Soc. 86:127.
3. Advanced readers may note that our definition of local compositions differs slightly from Wilson’s. Wilson’s original derivation
combined the two-fluid theory of local compositions with an ad hoc “one-fluid” Flory equation. The same result can be derived
more consistently using a two-fluid theory. The difference is that the local compositions are dependent on size as well as energies
as defined by Eqns. 13.1, 13.2, and 13.18. This gives xij/xjj = (Φi/Φj)exp(–Aji/(RT)) where the original was xij/xjj =
(xi/xj)exp(-Aji/(RT)).

4. Renon, H., Prausnitz, J.M. 1969. Ind. Eng. Proc. Des. Dev. 8:413.
5. Abrams, E.S., Prausnitz, J.M. 1975. AIChE J. 21:116.
6. Note that these assumptions create local compositions of the form xij/xjj = (θi/θj)exp(–aij/T). Compare this with the form of
Wilson’s equation (footnote page 505). Note that the use of the subscripts for the local composition energetic parameters τ and a
are switched for the UNIQUAC relative to the Wilson equation λ and A.
7. Maurer, G., Prausnitz, J.M. 1978. Fluid Phase Equil. 2:91.
8. Staverman, A.J. 1950. Recl. Trav. Chem. Pays Bas. 69:163.
9. Guggenheim, E.A. Mixtures, 1952. Oxford, England: Oxford University Press.
10. Lichtenthaler, R.N., Abrams, D.S., Prausnitz, J.M. 1973. J.M. Can. J. Chem. 51:3071.

11. The group parameters are based on the relative van der Waals volume and surface area of sites, Rk  = Vk  (cm3/mol)/15.15,

Qk  = Ak(cm2/mol)/2.5E9; see Abrams, Prausnitz, 1975. AIChE J. 21:116. Even though the reducing parameters are based on -
CH2-, the values of Rk  and Qk  are nonunity. See the reference for details. The unity value for -OH volume is a coincidence.

12. Bondi, A. 1968. Physical Properties of Molecular Crystals, Liquids and Glasses. Hoboken NJ: Wiley.
13. Fredenslund, Aa., Jones, R.L.; Prausnitz, J.M. 1975. AIChE J. 21:1086.
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21. Sandler, S.I., Lee, K-H. 1986. Fluid Phase Equil. 30:135.
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23. Gmehling, et al., 1994. Azeotropic Data, NY: VCH.
24. Gmehling, J., Onken, V., Arlt, W. 1977. Vapor-Liquid Equilibrium Data Collection, Frankfurt, Germany: DECHEMA.

Chapter 14
1. To begin the calculations, we must specify a reference state. In any thermodynamic analysis, we must have only one reference
state for each chemical species; for our example here, the reference state for water must be the same whether the water is solid
or liquid. See Section 9.12 on page 361 and footnote therein.
2. Hansen, J.H., Fredenslund, Aa., Pedersen, K.S., Ronningsen, H.P. 1988. AIChE J. 34:1937.
3. Won, K.W, 1986. Fluid Phase Equil. 30:265. See also Won, K.W. 1989. Fluid Phase Equil 53:377.
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5. Hiemenz, P.C. 1986. Principles of Colloid and Surface Chemistry, 2nd ed. New York, NY: Marcel Dekker, NY.
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Chapter 15
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38. The products of a two-feed column may lie outside the bow-tie region drawn from the overall feed, a principle exploited in
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Chapter 17

1. An alternative method of arriving at the same result is to write at fixed T, P, . The derivative is mathematically

found by using the product rule for differentiation resulting in  and the last sum is zero by the Gibbs-
Duhem equation.
2. By comparison, CO pyrolysis is less favored above 700 K, owing to its smaller heat of reaction.
3. O’Connell, J.M., Fernandez, E., Komives, C. July, 2010. NSF BioEMB Workshop on Thermodynamics, San Jose, CA.
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Chapter 18
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Clegg, S.L., Rard, J.A., Pitzer, K.S. 1994. J. Chem. Soc., Faraday Trans. 90:1875; Clegg, S.L., Brimblecombe, P. 1995. J.
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density calculation which often must be based on a model. Process simulators typically use the mole fraction scale.
7. There are subtle distinctions between this and the Henry’s law standard state, as detailed in Sections 18.13 and 18.24.
8. A common notation in the older literature is to use f for the rational (Henry’s law) activity coefficient, which is very confusing
with the use of f as fugacity.

9. A more rigorous value is 10–13.995, but the value of 10–14 will be used for casual calculations.
10. Butler, J.N. 1998. Ionic Equilibria. New York: Wiley, p. 8.
11. As a practical note, water is important to include in aqueous systems, but ionic liquids and some other species (HF) may exist
dissociated or partially dissociated when pure.
12. Butler, James N. 1998. Ionic Equilibria. New York: Wiley. pp. 20–35.
13. A widely-accepted method for calculating infinite dilution properties uses the Helgeson-Kirkham-Flowers (HKF) EOS. This
equation of state is specifically developed for the infinite dilution properties as a function of temperature and pressure. The EOS is
extremely detailed, as explained in four papers: (1) Helgeson, H.C., Kirkham, D.H. 1974. Am. J. Sci. 274:1089–1198; (2)
Helgeson, H.C., Kirkham, D.H. 1974. Am. J. Sci. 274:1199–1261; (3) Helgeson, H.C., Kirkham, D.H. 1976. Am. J. Sci. 276:97–
240; (4) Helgeson, H.C., Kirkham, D.H., Flowers, G.C. 1981. Am. J. Sci. 281:1249–1516. A database of parameters is available
at www.predcent.org in the SUPCRT and OBIGT (includes some extensions) databases. A windows interface is provided to use
with some of the data, though the tables can be used directly for calculations at the reference state of 298.15 K and 1 bar.
Application of the EOS is illustrated in Wang, P., Anderko, A., Young, R.D. 2002. Fluid Phase. Equil. 203:141–176 and references
26–30 therein include parameters.
14. Fogh-Andersen, N., Bjerrum, P.J., Siggaard-Andersen O. 1993. “Ionic Binding, Net Charge, and Donnan Effect of Human
Serum Albumin as a Function of pH.” Clin. Chem. 39:48–52.
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