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SUMMARY OF FLUX EXPRESSIONS

CONVECTIVE FLUX EXPRESSIONS

Convective momentum flux tensor:

0(c) = ivv or 0
(c)
ij = ivivj

Convective energy flux vector:

q(c) =
(
iÛ + 1

2
iv2

)
v or q(c)i =

(
iÛ + 1

2
iv2

)
vi

Convective mass and molar flux vectors:

j(c)A = iaAv or j(c)Ai = iaAvi
J*(c)A = cxAv* or J*(c)Ai = cxAv*i

MOLECULAR FLUX EXPRESSIONS

Molecular momentum flux tensor (i = constant, Newtonian fluid):

0 = pt − 4(∇v + (∇v)†) or 0ij = ptij − 4((𝜕vj∕𝜕xi) + (𝜕vi∕𝜕xj))

Conductive heat flux vector + work flux vector (pure fluids only; see Eqs. 19.3-3 and
24.1-10):

q +w = −k∇T + [0 ⋅ v] or qi + wi = −k(𝜕T∕𝜕xi) +
3∑
j=1

0ijvj

Diffusive mass and molar flux vectors (ordinary diffusion only; see Eq. 24.1-9):

jA = −i𝒟AB∇aA or jAi = −i𝒟AB(𝜕aA∕𝜕xi)
J*A = −c𝒟AB∇xA or J*Ai = −c𝒟AB(𝜕xA∕𝜕xi)

TOTAL (CONVECTIVE + MOLECULAR) FLUX EXPRESSIONS

Total momentum flux tensor:

d = ivv + 0 or d = ivv + pt + f

Total energy flux vector (pure fluids only):

e =
(
iÛ + 1

2
iv2

)
v + q +w or e =

(
iĤ + 1

2
iv2

)
v + q + [f ⋅ v]

Total mass and molar flux vectors (ordinary diffusion only):

nA = iaAv + jA or nA = aA(nA + nB) + jA
NA = cxAv* + J*A or NA = xA(NA +NB) + J*A

All fluxes defined above have the same sign convention; they are positive when the
quantity being transported is moving from the negative side of a surface to the posi-
tive side. Derivatives 𝜕∕𝜕xi appearing in component forms of equations are for Carte-
sian components only.
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EQUATIONS OF CHANGE IN TERMS OF THE TOTAL FLUXES

These equations are valid only for systems in which gravity is the sole external force.
More information can be found in §19.2.

Momentum:

𝜕
𝜕t

iv = −[∇ ⋅ d] + ig

Energy:

𝜕
𝜕t

(
iÛ + 1

2
iv2

)
= −(∇ ⋅ e) + i(v ⋅ g)

Mass:
𝜕
𝜕t

iaA = −(∇ ⋅ nA) + rA

EQUATIONS OF CHANGE (RESTRICTED FORMS)

Momentum (for Newtonian fluids with constant i and 4):

i
Dv
Dt

≡ i
(
𝜕v
𝜕t

+ [v ⋅ ∇v]
)
= −∇p + 4∇2v + ig

Energy (for Newtonian fluids with constant i and k):

iĈp
DT
Dt

≡ iĈp

(
𝜕T
𝜕t

+ (v ⋅ ∇T)
)
= k∇2T + 4Cv

Mass (for binary mixtures of A and Bwith constant i𝒟AB and no cross effects):

i
DaA

Dt
≡ i

(
𝜕aA

𝜕t
+

(
v ⋅ ∇aA

))
= i𝒟AB∇2aA + rA

DIMENSIONLESS GROUPS

(l0 and v0 are a characteristic length and velocity, respectively)

Re = l0v0i∕4 Pr = Ĉp4∕k Sc = 4∕i𝒟AB

Ra = GrPr Gr = gvl3
0
2T∕l2 Gra = grl3

0
2aA∕l2

Nu = hl0∕k Pé = RePr PéAB = ReSc

Sh = kcl0∕𝒟AB jH = Nu∕RePr1∕3 jD = Sh∕ReSc1∕3



Trim Size: 8in x 10in Bird1e r01.tex V1 - October 30, 2014 1:49 P.M. Page i

Introductory
Transport
Phenomena

R. Byron Bird
Warren E. Stewart
Edwin N. Lightfoot
Daniel J. Klingenberg



Trim Size: 8in x 10in Bird1e r01.tex V1 - October 30, 2014 1:49 P.M. Page ii

VP & Executive Publisher: Don Fowley

Executive Editor: Dan Sayre

Product Designer: Jenny Welter

Marketing Manager: Christopher Ruel

Operations Manager: Yana Mermel

Editorial Assistant: Francesca Baratta

Associate Production Manager: Joyce Poh

Designer: Kenji Ngieng

This book was set in Palatino by Laserwords Private Limited.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and

understanding for more than 200 years, helping people around the world meet their needs

and fulfill their aspirations. Our company is built on a foundation of principles that include

responsibility to the communities we serve and where we live and work. In 2008, we

launched a Corporate Citizenship Initiative, a global effort to address the environmental,

social, economic, and ethical challenges we face in our business. Among the issues we are

addressing are carbon impact, paper specifications and procurement, ethical conduct within

our business and among our vendors, and community and charitable support. For more

information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2015 John Wiley & Sons, Inc. All rights reserved. No part of this publication

may be reproduced, stored in a retrieval system or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted

under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior

written permission of the Publisher, or authorization through payment of the appropriate

per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers, MA 01923,

website www.copyright.com. Requests to the Publisher for permission should be addressed to

the PermissionsDepartment, JohnWiley& Sons, Inc., 111 River Street, Hoboken,NJ 07030-5774,

(201)748-6011, fax (201)748-6008, website http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes

only, for use in their courses during the next academic year. These copies are licensed and

may not be sold or transferred to a third party. Upon completion of the review period, please

return the evaluation copy to Wiley. Return instructions and a free of charge return mailing

label are available at www.wiley.com/go/returnlabel. If you have chosen to adopt this

textbook for use in your course, please accept this book as your complimentary desk copy.

Outside of the United States, please contact your local sales representative.

ISBN 978-1-118-77552-3 (cloth)

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/citizenship
http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/returnlabel


Trim Size: 8in x 10in Bird1e f02.tex V1 - October 21, 2014 9:21 P.M. Page iii

Preface

Transport phenomena is now generally recognized as a key scientific subject supporting
study of several branches of engineering, agriculture, meteorology, medicine, and envi-
ronmental studies. Historically, the subject had its origins in Europe, and some of the
key original papers and books were written in German and French, as well as in English.
In the years following World War II, interest in the teaching of transport phenomena in
U.S. universities led to the rapid development of courses and textbooks in this area, first
for background in engineering curricula, with later textbooks in various specialized areas
within engineering as well as outside.

So what exactly is meant by the term “transport phenomena”? Very simply put, it
includes the transport of momentum (or “fluid mechanics”), the transport of energy (or
“heat transfer”), and the transport of chemical species (or “mass transfer”). Of particular
importance are then the transport coefficients—the viscosity (describing the transport of
momentum), the thermal conductivity (describing the transport of energy), and the diffusiv-
ity (describing the transport of chemical species). Luckily there are “conservation laws”
that apply to the three entities being transported, and we will pay considerable attention
to these conservation laws throughout this textbook.

Understandably, the book divides itself quite naturally into three parts, one for each
of the entities being transported.Much emphasis will be placed on the similarities—and
differences—between the development of the three types of conservation equations and
their associated transport coefficients. Each of the three areas just described may be stud-
ied at one of three different levels: the molecular level (where we try to understand the
transport coefficients in terms of the molecular interactions); the microscopic level (where
we regard the materials as continua); and the macroscopic level (where we examine large
systems—such as pieces of equipment or biological organs). It is important, we feel, for
those first making acquaintance with the subject of transport phenomena to understand
the connection between the three levels of the subject, as well as that between the three
quantities that are transported. Since there are these various connections, we can lay out
the general plan of this textbook as in the table shown in Chapter 0—the subject material
just organizes itself! Despite this apparently obvious self-organization, there are in each
of the three main parts of the book some topics that do not fit into this tidy scheme. Each
of the three parts, therefore, has an “eighth chapter,” in which these oddball topics—but
very important topics—are discussed.

Due to the arrangement of the topics to be discussed, it is possible for teaching pur-
poses to consider two ways of proceeding. In the first way, we can teach the material “by
columns”—that is, by teaching the chapters in the order 1, 2, 3, and so on. Clearly this
is the best course of action for instruction of undergraduates. As for graduate students,
teaching “by rows”—that is, by teaching the chapters in the sequence 1, 9, 17, 2, 10, 18,
and so on—may be preferable.

The chapters are provided with a summary section as well as questions for discus-
sion, and these may be helpful in suggesting ways to organize “problems sessions” or
“quiz sections.” Each chapter also has, at the end, a number of problems, which have been
grouped into various classes: Class A, illustrating direct numerical applications of mate-
rial in the text; Class B, involving elementary analysis of physical situations; and Class C,
requiring more mature analysis or material from several chapters.

Depending on the number of credit hours allotted to this subject, it may not be possi-
ble for all the material in the book to be covered. Therefore, in the chapter outlines at the
beginnings of the chapters, as an aid to instructors, we designate optional sections by (o).

iii
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iv Preface

Omission of the topics so designated, will still leave enough material for a well-balanced
introductory course.

The subject of transport phenomena has long been regarded as a rather mathematical
subject. However, it should be taught as a topic in applied physics. Emphasis should be
placed on the visualization of physical systems, the physical interpretation of the results of
problem solving, and, of course, the choice of the physical laws needed.Mathematics will
inevitably have to be used in order to solve the problems, but themathematics is secondary
in importance to the physics. Every effort is made in this introductory text to explain how
themathematics is used, and to include sufficient intermediate steps in derivations so that
the text will be useful for self-study. Much emphasis should be placed on checking the
mathematics at each step in a development and learning to ask whether the equations are
giving results in agreement with physical intuition.

Of importance to teachers will be the difference between BSL (Transport Phenomena,
by Bird, Stewart, and Lightfoot) and the present textbook, which we will designate by
BSLK. Readers familiar with the former book will recognize that the overall organization
of the contents is similar, and that there is considerable overlap in the contents of the two
books. You will find, however, that considerable more space has been devoted to filling
in missing steps in mathematical derivations and to fuller explanations of mathematical
developments, including an enlargement of the appendix devoted tomathematical topics;
in addition, much material has been removed that we felt was beyond the level of mathe-
matical preparation of most undergraduates.Our intention was to make this book reflect
the topics covered in our undergraduate course, with the exception of a few advanced top-
ics included for the brightest students. Finally, we removed the chapters dealing with two
independent variables and replaced them with chapters on dimensional analysis, includ-
ing the much-used Buckingham pi theorem.

We wish to thank the people who have influenced the final form of this textbook, and
at the top of the list we must put Olaf Andreas Hougen, who guided our department and
emphasized the scientific background of chemical engineering.Also, he felt very strongly
that no topic should be taught to engineering students unless there are clear indications
that it can be used in applications. Rarely did a week go by that we did not get questions
from students or professors at other institutions about unclear portions of the text in the
predecessors of this volume. Responding to these queries has been a very helpful exercise
for the coauthors in planning future printings of the book and for better understanding
the pedagogical problems that the readers have had to cope with. Everyone should feel
free to contact us in connection with the present volume, and we encourage you to point
out errors and inconsistencies in the text. Next we would like to acknowledge our own
students and colleagues from whom we have learned so much; conversations with Pro-
fessors Edwin N. Lightfoot, Michael D. Graham, Eric V. Shusta, A. Jeffrey Giacomin, and
Ross E. Swaney have been particularly helpful. Each and every one of them has in some
way contributed to our knowledge of the subject and the solving of pedagogical problems
encountered. Special thanks go to Professor Carlos Ramirez of the University of Puerto
Rico for the time and trouble that he took in supplying us with copious corrigenda for the
second edition of BSL, and to Dr. M. I. Hill of Columbia University for offering critiques
of several chapters for BSLK.

Transport phenomena is an evolving subject. Each month, new applications appear
in the technical journals, and new techniques for problem solving are presented. We are
acutely aware that we cannot possibly cover all the newest of theoretical and experimental
developments in a beginning textbook, but we hope that we have provided a springboard
from which the readers can launch themselves into the new areas.

And now, we point out that the chief coauthors of this BSLK book are RBB and DJK,
whohave tried to carry the torch forward;DJKhas taught the undergraduate and graduate
transport phenomena courses for about twenty years, and his understanding of students’
challenges has been very helpful. Regretfully ENL was not able to participate fully in this
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Preface v

rewrite of the Transport Phenomena textbook, although his contributions to the earlier BSL
editions—particularly some of the more challenging examples and problems—have been
retained. The untimely passing ofWES has been keenly felt by our “team,” and to himwe
also owe generous thanks for his organizational skills, his passion for accuracy, and his
wonderful sense of humor.

RBB
ENL
WES
DJK

Madison, Wisconsin
Summer 2013
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Chapter 0

The Subject of Transport
Phenomena

§0.1 What are the transport phenomena?

§0.2 Three levels for the study of transport phenomena

§0.3 The conservation laws: A molecular collision example

§0.4 From molecules to continua

§0.5 Concluding comments

The purpose of this introductory chapter is to describe the scope, aims, and methods of
the subject of transport phenomena. It is important to have some idea about the struc-
ture of the field before plunging into the details; without this perspective it is not possi-
ble to appreciate the unifying principles of the subject and the interrelation of the vari-
ous individual topics. A good grasp of transport phenomena is essential for understand-
ing many processes in engineering, agriculture, meteorology, physiology, biology, ana-
lytical chemistry, materials science, pharmacy, and other areas. Transport phenomena is
a well-developed and eminently useful branch of physics that pervades many areas of
applied science and engineering.

§0.1 WHAT ARE THE TRANSPORT PHENOMENA?

The subject of transport phenomena includes three closely related topics: fluid dynamics,
heat transfer, andmass transfer. Fluid dynamics involves the transport of linear momentum
and angular momentum, heat transfer deals with the transport of energy, and mass transfer
is concerned with the transport of mass of various chemical species. These three trans-
port phenomena should, at the introductory level, be studied together for the following
reasons:

• They frequently occur simultaneously in industrial, biological, agricultural, and
meteorological problems; in fact, the occurrence of any one transport process by
itself is the exception rather than the rule.

• The basic equations that describe the three transport phenomena are closely related.
The similarity of the equations under simple conditions is the basis for solving prob-
lems “by analogy.”

• The mathematical tools needed for describing these phenomena are very similar.
Although it is not the aim of this book to teach mathematics, the student may find
it necessary to review various mathematical topics as the development unfolds.

1



Trim Size: 8in x 10in Bird1e c00.tex V1 - October 30, 2014 1:53 P.M. Page 2
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Learning how to use mathematics may be a very valuable by-product of studying
transport phenomena.

• The molecular mechanisms underlying the various transport phenomena are very
closely related. All materials are made up of molecules, and the same molecular
motions and interactions are responsible for viscosity, thermal conductivity, and
diffusivity.

Themain aim of this book is to give a balanced overview of the field of transport phenom-
ena, present the fundamental equations of the subject, and illustrate how to use them to
solve problems.

There are many excellent treatises on fluid dynamics, heat transfer, and mass trans-
fer. In addition, there are many research and review journals devoted to these individual
subjects and even to specialized subfields. The reader who has mastered the content of
this book should find it possible to consult the treatises and journals and go more deeply
into other aspects of the theory, experimental techniques, empirical correlations, design
methods, and applications. That is, this book should not be regarded as the complete pre-
sentation of the subject, but rather as a stepping stone to a wealth of knowledge that lies
beyond.

§0.2 THREE LEVELS FOR THE STUDY OF TRANSPORT
PHENOMENA

In Fig. 0.2-1 we show a schematic diagram of a large system—for example, a large piece
of equipment through which a fluid mixture is flowing. We can describe the transport of
mass, momentum, energy, and angular momentum at three different levels.

At the macroscopic level (Fig. 0.2-1a), we can write down a set of equations called the
“macroscopic balances,” which describe how the mass, momentum, energy, and angular
momentum in the system change because of the introduction and removal of these entities
via the entering and leaving streams, and because of various other inputs to the system
from the surroundings. No attempt is made to understand all the details of the system.
In studying an engineering or biological system, it is a good idea to start with this macro-
scopic description in order to make a global assessment of the problem; in some instances,
it is only this overall view that is needed.

At the microscopic level (Fig. 0.2-1b), we examine what is happening to the fluid mix-
ture in a tiny region within the equipment. We write down a set of equations called the
“equations of change,” which describe how the mass, momentum, energy, and angu-
lar momentum change within this tiny region. The aim here is to get information about

Work done on the system by
the surroundings by means
of moving parts

"1"

(a)

(b)
(c)

Wm =

Q = heat added to system

"2"

Fig. 0.2-1. (a) A
macroscopic flow system

containing N2 and O2; (b) a
microscopic region within

the macroscopic system

containing N2 and O2,

which are in a state of flow;

(c) a collision between a

molecule of N2 and a

molecule of O2.
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velocity, temperature, pressure, and concentration profiles within the system. This more

detailed information may be required for the understanding of some processes.

At themolecular level (Fig. 0.2-1c), we seek a fundamental understanding of themecha-

nisms ofmomentum, energy, andmass transport in terms ofmolecular structure and inter-

molecular forces. Generally this belongs in the realmof the theoretical physicist or physical

chemist, but occasionally engineers and applied scientists have to get involved at this

level. This is particularly true if the processes being studied involve complex molecules,

extreme ranges of temperature and pressure, or chemically reacting systems.

It should be evident that these three levels of description involve different “length

scales”: for example, in a typical industrial problem, at the macroscopic level the dimen-

sions of the flow systems may be of the order of centimeters or meters; the microscopic

level involves what is happening in the micron to the centimeter range; and molecular

level problems involve ranges of about 1 to 1000 nanometers.

This book is divided into three parts:

• Chapters 1–8: Flow of pure fluids at constant temperature (with emphasis on vis-

cous and convective momentum transport)

• Chapters 9–16: Flow of pure fluids with varying temperature (with emphasis on

conductive, convective, and radiative energy transport)

• Chapters 17–24: Flow of binary fluid mixtures with varying composition (with

emphasis on diffusive and convective mass transport), as well as simultaneous

energy and mass transport

That is, we build from the simpler to the more difficult problems. Within each of these

parts, we start with an initial chapter dealing with some results of the molecular theory
of the transport properties (viscosity, thermal conductivity, and diffusivity). Then we pro-

ceed to the microscopic level and learn how to determine the velocity, temperature, and

concentration profiles in various kinds of systems. The discussion then focuses on the

macroscopic level and the description of large systems. Each part concludes with a chapter

that introduces special topics that are somewhat outside the main story.

As the discussion unfolds, the reader will appreciate that there are many connections

between the levels of description. The transport properties that are described bymolecular

theory are used at the microscopic level. Furthermore, the equations developed at the

microscopic level are needed in order to provide some input into problem solving at the

macroscopic level.

There are also many connections between the three areas of momentum, energy, and

mass transport. By learning how to solve problems in one area, one also learns the tech-

niques for solving problems in another area. The similarities of the equations in the three

areas mean that in many instances one can solve a problem “by analogy”—that is, by tak-

ing over a solution directly from one area and, by changing the symbols in the equations,

immediately writing down the solution to a problem in another area.

The student will find that these connections—among levels, and among the various

transport phenomena—reinforce the learning process. As one goes from the first part of

the book (momentum transport) to the second part (energy transport) and then on to the

third part (mass transport), the story will be very similar but the “names of the players”

will change.

Table 0.2-1 shows the arrangement of the chapters in the form of a 3 × 8 “matrix.” Just

a brief glance at the matrix will make it abundantly clear what kinds of interconnections

can be expected in the course of the study of the book. We have traditionally taught our

undergraduate introductory transport phenomena course by columns, but a course may

be taught by rows as well.
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Table 0.2-1. Organization of Topics

Type of transport Momentum Energy Mass

Transport

mechanisms

1 Viscosity and

the moment-

um flux vector

9 Thermal

conductivity

and the heat

flux vector

17 Diffusivity and the

mass flux vector

Transport in one

dimension (shell

balance methods)

2 Shell

momentum

balances and

velocity

distributions

10 Shell energy

balances and

temperature

distributions

18 Shell mass balances

and concentration

distributions

Transport in

arbitrary

continua

3 Equations of

change

[isothermal]

11 Equations of

change

[nonisothermal]

19 Equations of change

[binary mixtures]

Transport in

turbulent flow

4 Turbulent

momentum

transport

12 Turbulent

energy

transport

20 Turbulent mass

transport

Dimensional

analysis

5 Dimensional

analysis of

momentum

transport

13 Dimensional

analysis of

energy

transport

21 Dimensional

analysis of mass

transport

Transport across

phase boundaries

6 Friction

factors; use of

empirical

correlations

14 Heat-transfer

coefficients; use

of empirical

correlations

22 Mass-transfer

coefficients; use of

empirical

correlations

Transport in large

systems, such as

pieces of

equipment or

parts thereof

7 Macroscopic

balances

[isothermal]

15 Macroscopic

balances

[nonisothermal]

23 Macroscopic

balances [mixtures]

Transport by

other

mechanisms

8 Momentum

transport in

complex fluids

16 Energy

transport by

radiation

24 Cross effects;
multicompon-

ent systems

At all three levels of description—molecular, microscopic, andmacroscopic—the con-
servation laws play a key role. The derivation of the conservation laws for molecular sys-
tems is straightforward and instructive.With elementary physics and aminimumofmath-
ematics, we can illustrate the main concepts and review key physical quantities that will
be encountered throughout this book. That is the topic of the next section.

§0.3 THE CONSERVATION LAWS: A MOLECULAR COLLISION
EXAMPLE

The system we consider here is that of two colliding diatomic molecules. For simplic-
ity we assume that the molecules do not interact chemically and that each molecule
is homonuclear—that is, that its atomic nuclei are identical. The molecules are in a
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Molecule A before collision

Molecule A after collision

Molecule B after collision

Molecule B before collision

1

2

1

2

21

1

2

Fig. 0.3-1. A collision between identical, homonuclear diatomic molecules, such as N2 and

O2. Molecule A is made up of two atoms A1 and A2. Molecule B is made up of two atoms B1
and B2. From R. B. Bird, Korean J. Chem. Eng., 15, 105–123 (1998).

RA1

RA2

rA1
rA2

rA

Atom A2

Atom A1

O
Arbitrary origin
fixed in space

Center of mass
of molecule A

Fig. 0.3-2. Position vectors for the atoms

A1 and A2 in molecule A. From R. B. Bird,

Korean J. Chem. Eng., 15, 105–123 (1998).

low-density gas, so that we need not consider interactions with other molecules. In
Fig. 0.3-1 we show the collision between the two homonuclear diatomic molecules, A and
B, and in Fig. 0.3-2 we show the notation for specifying the locations of the two atoms of
one molecule by means of position vectors drawn from an arbitrary origin.

Actually the description of events at the atomic and molecular level should be made
by using quantum mechanics. However, except for the lightest molecules (H2 and He) at
temperatures lower than 50 K, the kinetic theory of gases can be developed quite satisfac-
torily by use of classical mechanics.

Several relationsmust hold between quantities before and after a collision. Both before
and after the collision, the molecules are presumed to be sufficiently distant that the two
molecules cannot “feel” the intermolecular force between them; beyond a distance of
about 5 molecular diameters, the intermolecular force is known to be negligible. Quan-
tities after the collision are indicated with primes.

(a) According to the law of conservation of mass, the totalmass of themolecules entering
and leaving the collision must be equal:

mA +mB = m′
A +m′

B (0.3-1)
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HeremA andmB are themasses ofmoleculesA andB. Since there are no chemical reactions,

the masses of the individual species will also be conserved, so that

mA = m′
A andmB = m′

B (0.3-2)

(b) According to the law of conservation of momentum, the sum of the momenta of all

the atoms before the collision must be equal to that after the collision, so that

mA1vA1 +mA2vA2 +mB1vB1 +mB2vB2 = m′
A1v

′
A1 +m′

A2v
′
A2 +m′

B1v
′
B1 +m′

B2v
′
B2 (0.3-3)

inwhich vA1= drA1∕dt is the velocity of atom 1 ofmoleculeA before the collision, and v′A1 =
drA1∕dt its velocity after the collision. We now write rA1 = rA + RA1, so that rA1 is written

as the sum of the position vector for the center of mass of molecule A and the position

vector of the atom 1 with respect to the center of mass of molecule A. We recognize that

RA2 = −RA1, and, by taking the time derivative of this relation, that dRA2∕dt = −dRA1∕dt,
or VA2 = −VA1.

In Eq. 0.3-3, we replace rA1 by rA + RA1 and make analogous replacements for rA2, rB1,
and rB2. We also replace vA1 by vA +VA1 and make similar replacements for vA2, vB1, and
vB2. We treat the primed quantities similarly. We also let mA1 = mA2 =

1

2
mA. With these

substitutions along with Eq. 0.3-2, we then get

1

2
mA(vA +VA1) +

1

2
mA(vA +VA2) +

1

2
mB(vB +VB1) +

1

2
mB(vB +VB2) =

1

2
mA(v′A +V′

A1) +
1

2
mA(v′A +V′

A2) +
1

2
mB(v′B +V′

B1) +
1

2
mB(v′B +V′

B2) (0.3-4)

Then using VA2 = −VA1 and VB2 = −VB1, and similar relations for the primed quan-

tities, we get finally

mAvA +mBvB = mAv
′
A +mBv

′
B (0.3-5)

It is important to notice that the atomicmasses and velocities have completely disappeared

in this final result, so that the law of conservation of momentum is written in terms of

the molecular masses and velocities alone. This does not happen for energy and angular

momentum, as we shall see presently.

(c) According to the law of conservation of energy, the energy of the colliding pair of

molecules must be the same before and after the collision. The energy of an isolated

molecule is the sum of the kinetic energies of the two atoms and the interatomic potential

energy, dA, which describes the force of the chemical bond joining the two atoms 1 and 2

of molecule A, and is a function of the interatomic distance |rA2 − rA1|. Therefore, energy
conservation leads to(

1

2
mA1v

2
A1 +

1

2
mA2v

2
A2 + dA

)
+

(
1

2
mB1v

2
B1 +

1

2
mB2v

2
B2 + dB

)
=(

1

2
m′

A1v
′2
A1 +

1

2
m′

A2v
′2
A2 + d′A

)
+

(
1

2
m′

B1v
′2
B1 +

1

2
m′

B2v
′2
B2 + d′B

)
(0.3-6)

Note that we have used the abbreviated notation v2A1 = (vA1 ⋅ vA1).
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We may now replace rA1 by rA + RA1 and vA1 by vA +VA1 as above in (b). We also let

mA1 = mA2 =
1

2
mA. Then Eq. 0.3-6 becomes

1

2

1

2
mA

[(
vA ⋅ vA

)
+ 2

(
vA ⋅VA1

)
+

(
VA1 ⋅VA1

)]
+ 1

2

1

2
mA

[(
vA ⋅ vA

)
+ 2

(
vA ⋅VA2

)
+

(
VA2 ⋅VA2

)]
+ dA

+ 1

2

1

2
mB

[(
vB ⋅ vB

)
+ 2

(
vB ⋅VB1

)
+

(
VB1 ⋅VB1

)]
+ 1

2

1

2
mB

[(
vB ⋅ vB

)
+ 2

(
vB ⋅VB2

)
+

(
VB2 ⋅VB2

)]
+ dB

= 1

2

1

2
mA

[(
v′A ⋅ v′A

)
+ 2

(
v′A ⋅V′

A1

)
+

(
V′

A1 ⋅V
′
A1

)]
+ 1

2

1

2
mA

[(
v′A ⋅ v′A

)
+ 2

(
v′A ⋅V′

A2

)
+

(
V′

A2 ⋅V
′
A2

)]
+ d′A

+ 1

2

1

2
mB

[(
v′B ⋅ v

′
B

)
+ 2

(
v′B ⋅V

′
B1

)
+

(
V′

B1 ⋅V
′
B1

)]
+ 1

2

1

2
mB

[(
v′B ⋅ v

′
B

)
+ 2

(
v′B ⋅V

′
B2

)
+

(
V′

B2 ⋅V
′
B2

)]
+ d′B (0.3-7)

In Eq. 0.3-7, each single-underlined term exactly cancels the doubly underlined term in
the following line, because VA1 = −VA2 and VB1 = −VB2. Hence we get

1

2
mA(vA ⋅ vA) +

1

2
mA1(VA1 ⋅VA1) +

1

2
mA2(VA2 ⋅VA2) + dA

+ 1

2
mB(vB ⋅ vB) +

1

2
mB1(VB1 ⋅VB1) +

1

2
mB2(VB2 ⋅VB2) + dB

= 1

2
mA(v′A ⋅ v′A) +

1

2
mA1(V′

A1 ⋅V
′
A1) +

1

2
mA2(V′

A2 ⋅V
′
A2) + d′A

+ 1

2
mB(v′B ⋅ v

′
B) +

1

2
mB1(V′

B1 ⋅V
′
B1) +

1

2
mB2(V′

B2 ⋅V
′
B2) + d′B (0.3-8)

In the first line of the equation above, the terms have the following significance: term
1 is the kinetic energy of molecule A in a fixed coordinate system; term 2 is the kinetic
energy of atom A1 in a coordinate system fixed at the center of mass of molecule A; term
3 is the kinetic energy of atom A2 in a coordinate system fixed at the center of mass of
molecule A; term 4 is the potential energy of molecule A, which is a function of |rA2 − rA1|,
the separation of the two atoms in molecule A. Equation 0.3-8 may be rewritten(

1

2
mAv

2
A + uA

)
+

(
1

2
mBv

2
B + uB

)
=

(
1

2
mAv

′2
A + u′A

)
+

(
1

2
mBv

′2
B + u′B

)
(0.3-9)

in which the “internal energy” uA ≡ 1

2
mA1V

2
A1 +

1

2
mA2V

2
A2 + dA is the sum of the kinetic

energies of the atoms, referred to the center of mass of molecule A, and the interatomic
potential energy of molecule A. It is important to note that the sum of the kinetic energies

of the molecules 1

2
mAv

2
A + 1

2
mBv

2
B is not equal to 1

2
mAv

′2
A + 1

2
mBv

′2
B and is hence not con-

served; the same may be said of the sum of the internal energies uA + uB. Thus, it is only
the sum of kinetic and internal energies that is conserved, that is, there may in general be
an interchange between the kinetic and internal energies during a collision. In Chapter 11
we shall see again the interconversion among different forms of energy for flowing fluids.

This discussion of the collision between two diatomic molecules is interesting, for
several reasons. It shows how the idea of “internal energy” arises in a very simple system.
We encounter this concept later in §11.1 where the terms “kinetic energy” and “internal
energy” are used in connection with a fluid regarded as a continuum. When the fluid is
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regarded as a continuum, it may be difficult to understand how one goes about splitting
the energy of a fluid into kinetic energy and internal energy, and how to define the latter. In
considering the collision between two diatomic molecules, however, the splitting is quite
straightforward.

(d) Finally, the law of conservation of angular momentum may be applied to a collision
to give

([rA1 ×mA1vA1] + [rA2 ×mA2vA2]) + ([rB1 ×mB1vB1] + [rB2 ×mB2vB2]) =
([r′A1 ×m′

A1v
′
A1] + [r′A2 ×m′

A2v
′
A2]) + ([r′B1 ×m′

B1v
′
B1] + [r′B2 ×m′

B2v
′
B2]) (0.3-10)

in which × is used for the cross product of two vectors. Next we introduce the center of
mass and relative position vectors and velocity vectors exactly as we did in parts (b) and
(c) above. Without giving the intermediate steps we get

([rA ×mAvA] + LA) + ([rB ×mBvB] + LB) =
([r′A ×mAv

′
A] + L′

A) + ([r′B ×mBv
′
B] + L′

B) (0.3-11)

in which LA = [RA1 ×mA1VA1] + [RA2 ×mA2VA2] is the sum of the angular momenta of the
atoms with respect to the center of mass of the molecule—that is, the “internal angular
momentum.”

Here again there is the possibility for interchange between the angular momentum of
the molecules (with respect to the origin of coordinates) and the internal angular momen-
tum (with respect to the centers of mass of the molecules). If, however, the L’s are negli-
gibly small, then there is virtually no interchange. Exchange of angular momentum will
be referred to later in Chapter 3, where we discuss the equation of change for angular
momentum in fluids.

Much of this book is concerned with establishing the conservation laws for fluids,
regarded as “continua,” and for large pieces of equipment or parts thereof. The above
discussion gives a good perspective for this adventure.

§0.4 FROMMOLECULES TO CONTINUA

We know that gases and liquids consist of molecules and that the molecular motions ulti-
mately determine how fluids flow, how energy moves around in the fluids, and how
diffusion in mixtures occurs. In the foregoing section, we have illustrated the applica-
tion of the fundamental conservation laws to the collisions between diatomic molecules.
However, for engineering applications, we prefer to think of fluids as being “continua.”
After all, when we look at a fluid, we do not see the individual molecules, but instead
a smoothed-out material—a continuum—rather than something of evident corpuscular
nature. In this section, we set forth some ideas that will be used throughout the rest of this
book in discussions of the conservation principles.

Instead of talking about masses of atoms and molecules, we shall talk about the
mass of material inside a “tiny” region, 2x2y2z, containing N molecules, as shown in
Fig. 0.2-1(b). We may take the edges of this box to be of length of the order of 100 nm, so
that it is many times larger than molecular dimensions (1 nm), but much smaller than
most systems of interest (including biological cells of about 1000 nm). Then the fluid
within this volume will have a density (for a pure fluid in which all N molecules have the
same mass mi)

i =

N∑
i

mi

2x2y2z
[=] M

L3
(0.4-1)1

1Here we have introduced the symbol “[=]” to mean “has dimensions of,” whereM, L, t, and T mean

mass, length, time, and temperature. The symbol “[=]” may also be used to mean “has units of” in this text.
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vx∆t
∆z

∆y
vx(y)

x

y

z

Fig. 0.4-1. Schematic diagram

illustrating the volume of fluid that

passes through the area element

2x2y in a time 2t.

The fluid density will in general be a function of position and time, so that we write

i(x,y,z,t). For many situations, the density may be considered to be constant, and then

we speak of an “incompressible fluid.”

The fluid will also have a velocity given by the average of the individual molecular

velocities within the tiny region

v =

N∑
i

vi

N
[=] L

t
(0.4-2)

The velocity vector may be observed by putting tiny neutrally buoyant particles in the

fluid and observing how they move. In this way, we can see how the velocity of the fluid

changes with time at every point in the fluid, and thus obtain the functions vx(x,y,z,t),
vy(x,y,z,t), and vz(x,y,z,t). We can reserve the term speed for the scalar v =

√
v2x + v2y + v2z ,

which is the magnitude of the velocity vector.

For the time-independent flow in Fig. 0.4-1, with just one velocity component vx, in
a time interval 2t, a volume (vx2t)2y2z of fluid will pass through the tiny area element

2y2z. Then the volume rate of flow through 2y2z is

Rate of volume flow = volume

time
= vx2y2z [=]

L3

t
(0.4-3)

Because the fluid is flowing, it carrieswith it all of its properties (mass, momentum, kinetic

energy, etc.). That is, the fluid motion provides a mechanism for transport of the various

quantities. We call this type of transport convective.
Knowing the volume rate of flow of the fluid, we are now in a position to get expres-

sions for the rate of convective transport of various other quantities through the area

element 2y2z by being swept along by the fluid. For example, since the mass density i
is the mass per unit volume, the convective rate of flow of mass through 2y2z is

Rate of mass flow = mass

volume
× volume

time
= i(vx2y2z) [=]

M
t

(0.4-4)

Since ivx is the x momentum per unit volume, the convective rate of x momentum flow
through 2y2z is

Rate of momentum flow = x momentum

volume
× volume

time

= ivx(vx2y2z) [=]
ML
t2

(0.4-5)
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Since 1

2
iv2x is the kinetic energy per unit volume, the convective rate of kinetic energy flow

through 2y2z is

Rate of kinetic energy flow =
kinetic energy

volume
× volume

time

= 1

2
iv2x(vx2y2z) [=]

ML2

t3
(0.4-6)

Similarly, if Û is the internal energy per unit mass, then iÛ is the internal energy per unit
volume, and the convective rate of flow of internal energy through 2y2z is

Rate of internal energy flow =
internal energy

volume
× volume

time

= iÛ(vx2y2z) [=]
ML2

t3
(0.4-7)

Thus, we have seen that the convective rates of flow ofmass, momentum, kinetic energy, and
internal energy are all evaluated in the same way.

Now we divide each of these rates of flow by the area 2y2z to get the corresponding
fluxes (for a flow in which the fluid is flowing in the x direction only)

Flux of mass: ivx [=]
M
L2t

(0.4-8)

Flux of momentum: ivxvx [=]
M
Lt2

(0.4-9)

Flux of kinetic energy:
1

2
iv2xvx [=]

M
t3

(0.4-10)

Flux of internal energy: iÛvx [=]
M
t3

(0.4-11)

These are referred to as convective fluxes, inasmuch as theydescribe how the various entities
are swept along (i.e., convected) with the fluid. In the next chapter, we describe another
mechanism for transport, namely that caused by molecular motion and interactions. The
corresponding molecular fluxes, along with the convective fluxes, will play a prominent
role in the development of the various theories in this book.

In §0.3, we showed how to apply the conservation laws to a molecular collision. In
Chapters 3, 11, and 19, we apply the conservation laws to a fluid, regarded as a continuum,
in a tiny region2x2y2zfixed in space. Thiswill lead to a set of partial differential equations
of great generality—the equations of change. We will then show how these equations can be
used to get the velocity distribution, the temperature distribution (the temperature being
related to the internal energy), and the concentration distribution for binary mixtures.
These equations contain the transport properties—the viscosity, the thermal conductivity,
and the diffusivity—that will appear in the expressions for the fluxes (see Chapters 1, 9,
and 17).

Finally, we point out in Chapters 7, 15, and 23 that the equations of change can be inte-
grated over large systems of industrial or biological interest. Thesemacroscopic balances are
in essence the laws of conservation of mass, momentum, energy, and angular momentum
applied to large, complex systems. Thus, the subject of this book starts with the molecular
level (atoms and molecules), then moves to the microscopic level (2x2y2z), and finally to
the macroscopic level (large systems).

§0.5 CONCLUDING COMMENTS

To use the macroscopic balances intelligently, one needs information about interphase
transport obtainable from the equations of change. To use the equations of change,
we need the transport properties, which are described by various molecular theories.
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Therefore, from a teaching point of view, it seems best to start at the molecular level and
work upward toward the larger systems.

All the discussions of theory are accompanied by examples to illustrate how the the-
ory is applied to problem solving. Then, at the end of each chapter, there are problems to
provide extra experience in using the ideas given in the chapter. The problems are grouped
into three classes:

Class A: Numerical problems that are designed to highlight important equations in
the text and to give a feeling for the orders of magnitude.

Class B: Analytical problems that require doing elementary derivations using ideas
mainly from the chapter.

Class C: Somewhat more advanced analytical problems.

Many of the problems and illustrative examples are rather elementary in that they involve
oversimplified systems or very idealized models. It is, however, advisable to start with
these elementary problems to understand how the theory works and to develop confi-
dence in using it. In addition, some of these elementary examples can be very useful in
making order-of-magnitude estimates in complex problems.

Here are a few suggestions for studying the subject of transport phenomena:

• Always read the text with pencil and paper in hand; work through the details of
the mathematical developments and supply any missing steps.

• Whenever necessary, go back to themathematics textbooks to brush up on calculus,
differential equations, vectors, etc. This is an excellent time to review themathemat-
ics that was learned earlier (but possibly not as carefully as it should have been).

• Make it a habit of giving a physical interpretation of key results; that is, get in the
habit of relating the physical ideas to the equations.

• Always ask whether the results seem reasonable. If the results do not agree with
intuition, it is important to find out which is incorrect.

• Check the dimensions of all results. This is one very good way of avoiding errors
in your work.

We conclude with Table 0.5-1, which emphasizes the role of the three conservation
laws (mass, momentum, and energy) at the three levels of description (molecular, micro-
scopic, and macroscopic).

We hope that the reader will share our enthusiasm for the subject of transport phe-
nomena. It will take some effort to learn the material, but the rewards will be worth the
time and energy required.

QUESTIONS FOR DISCUSSION

1. What are the definitions of momentum, angular momentum, and kinetic energy for a single

particle? What are the dimensions of these quantities?

2. What are the dimensions of velocity, angular velocity, pressure, density, force, work, and

torque? What are some common units used for these quantities?

3. Verify that it is possible to go from Eq. 0.3-3 to Eq. 0.3-5.

4. Go through all the details needed to get Eq. 0.3-9 from Eq. 0.3-6.

5. Suppose that the origin of coordinates is shifted to a new position. What effect would that have

on Eq. 0.3-10? Is the equation changed?

6. Compare and contrast the terms angular velocity and angular momentum.

7. What is meant by internal energy? Potential energy?
8. Is the law of conservation of mass always valid? What are the limitations?
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Table 0.5-1. Summary of Conservation Laws and Systems to Which They are Applied

CONSERVATION LAWS

MASS

m
MOMENTUM

mv
ENERGY

1

2
mv2

S
Y
S
T
E
M

T
O

W
H
IC

H
T
H
E

C
O
N
S
E
R
V
A
T
IO

N
L
A
W

S
A
R
E
A
P
P
P
L
IE
D

C
o
ll
is
io
n
o
f

tw
o
m
o
le
cu

le
s

(F
ig
.
0
.3
-1
)

Conservation of

mass in a binary

collision

(Eq. 0.3-1)

Conservation of

momentum in a

binary collision

(Eq. 0.3-5)

Conservation of

energy in a binary

collision

(Eq. 0.3-9)

R
eg

io
n

2x
2y

2z
in

a

co
n
ti
n
u
u
m

(F
ig
.
3
.1
-2
)

Equation of

continuity

(Eqs. 3.1-4 & 19.1-7)

Equation of motion

(Eq. 3.2-9)

Equation of energy

(Eq. 11.1-8 & Table

19.2-4)

P
ie
ce

o
f

eq
u
ip
m
en

t

(F
ig
.
7
.0
-1
) Macroscopic mass

balance

(Eqs. 7.1-3 & 23.1-1)

Macroscopic

momentum balance

(Eqs. 7.2-2 & 23.2-1)

Macroscopic energy

balance

(Eqs. 15.1-2 & 23.3-1)
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Chapter 1

Viscosity and the Mechanisms
of Momentum Transport

§1.1 Convective momentum flux tensor

§1.2 Molecular momentum flux tensor—Newton’s law

§1.3 Total momentum flux tensor

§1.4 Viscosity data from experiments

§1.5 Viscosity data and the principle of corresponding states

§1.6○ Viscosity of gases and kinetic theory

§1.7○ Viscosity of liquids

§1.8○ Viscosity of suspensions

§1.9 Concluding comments

The first seven chapters of this book deal with the flow of viscous fluids of molecular

weight less than about 1000 g/g-mol, such as air, water, benzene, and glycerin. Poly-

meric liquids of molecular weight greater than about 1000 g/g-mol, which exhibit flow

properties that are quite different from the low molecular weight fluids, are discussed in

Chapter 8.

Fluid dynamics involves the transport of momentum. There are two mechanisms for

this transport: convective momentum transport, discussed in §1.1, and molecular momentum
transport, discussed in §1.2. The combination of the two types of transport is given in §1.3.

The convective transport involves just one physical property, namely the fluid density i.

The molecular transport involves two physical properties, the viscosity 4 and the dilata-

tional viscosity n. In §1.4, we present experimental data for viscosities of a wide variety

of gases and liquids. In §1.5, we use a correlation of fluid viscosity data obtained from

the principle of corresponding states to illustrate how the viscosities of gases and liquids

depend on pressure and temperature, and to showhowviscosity valuesmay be estimated.

In §1.6, we present the results of a rigorous molecular theory for the viscosity for gases at

low density. In §1.7 and §1.8 we give a few widely used expressions for the viscosities of

liquids and suspensions.

In this chapter we are primarily concerned with expressions for the momentum
flux—the momentum flow per unit area per unit time. This quantity is needed for

setting up the equations for finding the velocity distribution in flow systems, and then

getting expressions for the rate of flow in terms of the system geometry and the physical

properties. This will be made abundantly clear in Chapters 2 and 3.

15
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§1.1 CONVECTIVE MOMENTUM FLUX TENSOR

The notion of convectivemomentum transport was introduced in §0.4.We now show how
to develop the expressions for the convective momentum flux. We divide the discussion
into three parts: (a) unidirectional shear flow, (b) general three-dimensional flows, and (c)
flows in curvilinear coordinates.

a. Unidirectional shear flow
Let us now consider a simple flow system, namely that pictured in Fig. 1.1-1 where

the fluid flows in the x direction between a pair of parallel plates. The spacing between the
two planes is y0, and v0 is the constant speed with which the lower plate is moving to the
right. As discussed in §0.4, the volume rate of flow of fluid in the x direction through an
area element 2y2z perpendicular to the flow direction is vx2y2z, and the rate of convective
flow of x momentum through an element of area 2y2z is(

volume of fluid

time

)( x momentum

volume of fluid

)
=

(x momentum

time

)
= (vx2y2z)(ivx) (1.1-1)

If we now divide through by 2y2z, we get the convective flux of x momentum in the x direc-
tion

0(c)xx = ivxvx (1.1-2)

which has dimensions of momentum∕area ⋅ time. Throughout this book, the flux of any
entity will have dimensions of entity∕area ⋅ time.

b. General three-dimensional time-dependent flow
We will generally be interested in a flow system that is much more complicated than

that in Fig. 1.1-1. Consider a general flow in three-dimensional space with three velocity
components that depend on all three spatial coordinates as well as the time, vx(x,y,z,t),
vy(x,y,z,t), and vz(x,y,z,t), such as that shown in Fig. 1.1-2. Themomentumflux components
can be deduced by generalizing the discussion that led to Eq. 1.1-2.

t < 0 Fluid initially
at rest

t = 0 Lower plate
set in motion

Small t Velocity buildup
in unsteady flow

Large t

vx(y)

vx(y, t)

Final velocity
distribution in
steady flow

x v0

v0

v0

y

y0

Fig. 1.1-1. The buildup to

the steady, laminar velocity

profile for a fluid contained

between two plates. The

flow is called “laminar”

because the adjacent layers

of fluid (“laminae”) slide

past one another in an

orderly fashion.
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z

ρvxv

x

y

(a)

z

y

x

x, y, z

ρvyv

z

x

y

(b)

ρvzv

z

x

y

(c)

Fig. 1.1-2. The convective momentum fluxes through planes of unit area perpendicular to the

coordinate directions.

Somewhere in the midst of this flow, we can imagine a tiny volume element 2x2y2z,
fixed in space, through which the fluid is flowing. For a sufficiently small volume ele-
ment, the velocity vector v will be approximately constant throughout. Then across the
plane perpendicular to the x direction (Fig. 1.1-2(a)), there will be convective fluxes of x
momentum, ymomentum, and z momentum given by the three components of vx(iv)

0(c)xx = ivxvx 0(c)xy = ivxvy 0(c)xz = ivxvz (1.1-3)

Similarly across the plane perpendicular to the y direction (Fig. 1.1-2(b)), there will be the
three components of vy(iv)

0(c)yx = ivyvx 0(c)yy = ivyvy 0(c)yz = ivyvz (1.1-4)

and across the plane perpendicular to the z direction (Fig. 1.1-2(c)), there will be the three
components of vz(iv)

0(c)zx = ivzvx 0(c)zy = ivzvy 0(c)zz = ivzvz (1.1-5)

Note that the first subscript on 0(c)ij and ivivj gives the direction of transport and the second

gives the component of the momentum being transported. Quantities with components
such as ivivj, which have two subscripts associated with the coordinate directions, are
referred to as “tensors,” just as quantities (such as velocity) that have one subscript asso-
ciated with the coordinate directions are called “vectors.” A discussion of vectors and
tensors can be found in Appendix A.
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Table 1.1-1. Summary of the Convective Momentum Flux Components

Direction

normal to

shaded surface

Flux of momentum

through the

shaded surface

Convective momentum

flux components

x component y component z component

x ivxv ivxvx ivxvy ivxvz
y ivyv ivyvx ivyvy ivyvz
z ivzv ivzvx ivzvy ivzvz

The set of nine equations for 0(c)ij may be written symbolically as

0(c) = ivv (1.1-6)

where 0(c) is the convective momentum flux tensor (with nine components 0(c)xx , 0
(c)
xy , etc.),

and vv is the dyadic product of the vector velocity with itself (with nine components vxvx,
vxvy, etc.). These convective tensor components are summarized in Table. 1.1-1. Note that
whereas vectors, such as v, have three components, one corresponding to each coordi-
nate direction, (second order) tensors and dyadic products, such as 0(c) and vv, have nine
components, corresponding to all possible ordered pairs of coordinate directions.

c. Flows in curvilinear coordinates
In curvilinear coordinates (e.g., cylindrical and spherical coordinates), the convective

momentum flux is still defined by Eq. 1.1-6, or

0(c)ij = ivivj (1.1-7)

where, 0(c)ij is again interpreted as the convective flux of j momentum transported in the

positive i direction, except that now i and j take on the values r,p,z (cylindrical coordinates)
or r,p,d (spherical coordinates). Thus, the components of 0(c) in cylindrical coordinates can

be obtained by replacing x,y,z by r,p,z in Table 1.1-1 (i.e., 0(c)rr = ivrvr, 0
(c)
rp = ivrvp, 0

(c)
rz = ivrvz,

etc.); similarly, the components of 0(c) in spherical coordinates can be obtained by replacing

x,y,z by r,p,d in Table 1.1-1 (i.e., 0(c)rr = ivrvr, 0
(c)
rp = ivrvp, 0

(c)
rd = ivrvd, etc.). (See Fig. A.6-1 for

definitions of curvilinear coordinates.)

§1.2 MOLECULARMOMENTUM FLUX TENSOR—NEWTON’S LAW

In the foregoing section we discussed how momentum is transported by being swept
along by the bulk movement of the fluid. But there is another mechanism by which
momentum may be transported, namely, by the motion, interactions, and collisions of
the fluid molecules. As before, we develop the expressions for the molecular momentum
flux, by considering first (a) unidirectional shear flow, then (b) general three-dimensional
flows, and finally (c) flows in curvilinear coordinates.

a. Unidirectional shear flow
Once again we consider the simple flow of Fig. 1.1-1, in which the fluid—either a gas

or a liquid—is located between a pair of parallel plates, each of area A separated by a
distance y0. The system is initially at rest. At time t = 0 the lower plate is set in motion
in the positive x direction with a constant speed v0. As time increases, the fluid near the
lower plate gains momentum, and then successive layers of fluid in the y direction gain
momentum, and ultimately the linear steady-state velocity profile shown in the figure is
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established.We require that the flow be laminar (“laminar” flow is the orderly type of flow
that one usually observes when honey is poured, in contrast to the highly irregular “tur-
bulent” flow that one sees in a high-speed mixer). When the final state of steady motion
has been attained, a constant force in the x direction ofmagnitude F is required tomaintain
the motion of the lower plate. This force may be expressed as

F
A

= 4
v0
y0

(1.2-1)

That is, the force is proportional to the area of the plates and the speed of the lower plate,
and inversely proportional to the distance between the plates. The constant of proportion-
ality 4 is a property of the fluid, called the viscosity.

We now rewrite Eq. 1.2-1 in the notation that will be used throughout the book. First,
we replace F∕A by the symbol fyx, which is the force in the x direction acting on a unit area
perpendicular to the y direction. It is understood that this is the force exerted by the fluid
of lesser y on the fluid of greater y. Furthermore, we replace v0∕y0 by −dvx∕dy (note that
−dvx∕dy > 0 in Fig. 1.1-1). Then Eq. 1.2-1 becomes

fyx = −4
dvx
dy

(1.2-2)1

This equation, which states that the shearing force per unit area, or shear stress, is pro-
portional to the negative of the velocity gradient, is often called Newton’s law of viscos-
ity.2 Newton suggested this “law” as an empiricism—the simplest proposal that could be
made for relating the shear stress and the velocity gradient. This simple linear relation
has proven to be very useful for gases and low molecular weight liquids, and these fluids
are referred to as Newtonian fluids. Many polymeric liquids, particulate suspensions, and
other complex fluids are not described by Eq. 1.2-2 and are referred to as non-Newtonian
fluids. These fluids are discussed in Chapter 8.

The quantity fyx may be interpreted in another way. In the neighborhood of the mov-
ing solid surface at y = 0, the fluid acquires a certain amount of x momentum. This fluid,
in turn, imparts momentum to the adjacent layer of fluid throughmolecular motion, inter-
actions, and collisions, causing this adjacent layer to remain in motion in the x direction.
Hence, x momentum is being transmitted in the positive y direction via these molecular
interactions. The term fyx can also be interpreted as the flux of x momentum in the positive y
direction (that is, from the region of smaller y values, to the region of larger y values), where
the term flux means “rate of transport per unit area.” This picture is consistent with the
molecular picture of momentum transport and the kinetic theory of gases and liquids. It is
also in harmony with the analogous treatment given later for energy and mass transport.
The kinetic theory of gas viscosity is discussed in §1.6.

1Some authors write Eq. 1.2-2 in the form

gcfyx = −4
dvx
dy

(1.2-2a)

in which gc is the “gravitational conversion factor.” In the English Engineering System, fyx [=] lbf ∕ft
2,

vx [=] ft∕s, y [=] ft, and 4 [=] lbm∕ft ⋅ s, and thus gc = 32.174 ft ⋅ lbm∕lbf ⋅ s2. In this book we will always

use Eq. 1.2-2 rather than Eq. 1.2-2a.
2Sir Isaac Newton (1643–1727), a professor at Cambridge University and later Master of the Mint,

was the founder of classical mechanics and contributed to other fields of physics as well. Actually Eq.

1.1-2 does not appear in Sir Isaac Newton’s Philosophiae Naturalis Principia Mathematica (1687), but the
germ of the idea is there. For illuminating comments, see D. J. Acheson, Elementary Fluid Dynamics,
Oxford University Press, 1990, §6.1.
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Table 1.2-1. Summary of Units in the SI, c.g.s., and EE Systems for

Quantities Related to Eq. 1.2-2

SI c.g.s. EE

fyx Pa dyn∕cm2 lbf∕ft
2

vx m/s cm/s ft/s

y M cm ft

4 Pa ⋅ s g∕cm ⋅ s = poise lbm∕ft ⋅ s
l m2∕s cm2∕s ft

2∕s

Note: The pascal, Pa, is the same as N∕m2, and the newton, N, is the same as

kg∕m ⋅ s2. The abbreviation of “centipoise” is “cp.”

The dual interpretation of fyx in Eq. 1.2-1 as a force per unit area (shear stress) and
as a momentum flux—both caused by molecular forces during shear flow—leads to two
interchangeable names for this quantity. We will call this quantity the viscous shear stress
as well as the viscous momentum flux. Both interpretations are useful and will be discussed
in more detail below.

Equation 1.2-2 may also be interpreted as stating that momentum naturally flows
“downhill” from a region of high velocity to a region of low velocity—just as a sled goes
downhill from a region of high elevation to a region of low elevation, or theway heat flows
from a region of high temperature to a region of low temperature. The velocity gradient
can therefore be thought of as a “driving force” for molecular momentum transport.

Often fluid dynamicists use the symbol l to represent the viscosity divided by the
density (mass per unit volume) of the fluid, thus:

l = 4∕i (1.2-3)

This quantity is called the kinematic viscosity.
Next we make a few comments about the units of the quantities we have defined. If

we use the symbol “[=]” to mean “has units of,” then in the SI system,3 fyx [=]N∕m2 = Pa,
vx [=] m∕s, and y [=] m, so that

4 = −fyx
(
dvx
dy

)−1

[=] Pa
(
m∕s
m

)−1

= Pa ⋅ s (1.2-4)

We summarize the above and also give the units for the c.g.s. system and the English
Engineering (EE) system in Table 1.2-1. The conversion tables in Appendix E will prove to
be very useful for solving numerical problems involving diverse systems of units.

EXAMPLE 1.2-1

Calculation of
Momentum Flux

Compute the steady-state momentum flux fyx in lbf∕ft
2
when the lower plate velocity v0 in

Fig. 1.1-1(d) is 1 ft/s in the positive x direction, the plate separation y0 is 0.001 ft, and the fluid

viscosity 4 is 0.7 cp.

SOLUTION

Since fyx is desired in English Engineering units, we should convert the viscosity into that sys-

tem of units. Thus, making use of Table E.3-4, we find 4 = (0.7 cp)(2.0886 × 10−5 lbf ⋅ s∕ft
2 ⋅ cp) =

3SI (Système Internationale d’Unités) has seven basic units: meter (m), kilogram (kg), second (s),

ampere (A), kelvin (K), mole (mol), candela (cd). See R. J. Silbey, R. A. Alberty, and M. G. Bawendi,

Physical Chemistry, 4th edition, Wiley, New York (2005), Appendix A.
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1.46 × 10−5 lbf ⋅ s∕ft
2
. The velocity profile is linear so that

dvx
dy

= −
v0
y0

= −
10 ft∕s
0.001 ft

= −1000 s−1 (1.2-5)

Substitution into Eq. 1.2-2 gives

fyx = −4
dvx
dy

= −

(
1.46 × 10−5

lbf ⋅ s

ft
2

)(
−1000 1

s

)
= 1.46 × 10−2

lbf

ft
2

(1.2-6)

b. General three-dimensional, time-dependent flow
Next we consider an arbitrary flow in which all three velocity components vx(x,y,z,t),

vy(x,y,z,t), and vz(x,y,z,t)may be nonzero, andmay depend on all three spatial coordinates
as well as time. An example of such a flow is illustrated in Fig. 1.2-1. We ask how to relate
the various viscous stresses and momentum fluxes to the velocity gradients. That is, we
need to generalize Eq. 1.2-2 to arbitrary flows. This generalization of Newton’s law of
viscosity is associated with the names of Navier, Poisson, and Stokes—all eminent math-
ematicians and scientists.4 The development took a century and a half, so the beginner
need not feel that this generalization is somehow obvious—it isn’t. Fortunately, it is much
simpler to use the stress and momentum flux components than it is to derive them.

Consider the tiny volume element 2x2y2z within a flow field, as illustrated in
Fig. 1.2-1. The center of the volume element is at the position x,y,z. We can slice the
volume element in such a way as to remove half of the fluid within it. As shown in the
figure, we can cut the volume perpendicular to each of the three coordinate directions
in turn. We can then ask what force has to be applied on the shaded surface in order to
replace the force that had been exerted by the fluid that was removed. There will be two
contributions to the force: the viscous forces caused by the flow, and the pressure force
that remains even when the fluid is not moving.

In general, the viscous forces are neither perpendicular nor parallel to the surface ele-
ment, but rather act at some angle to the surface, as illustrated in Fig. 1.2-1. In Fig. 1.2-1(a)
we see a force per unit area fx exerted on the shaded area, and in (b) and (c) we see forces
per unit area fy and fz. Each of these forces (which are vectors) has components (scalars);
for example, fx has components fxx, fxy, and fxz, which denote the x, y, and z components of
the viscous force per unit area acting on an area element perpendicular to the x direction.

The question now is: How are the stresses (or momentum fluxes) fij related to the
velocity gradients in the fluid? In generalizing Eq. 1.2-2, it is customary to require that

i. the fij do not depend explicitly on time

ii. the fij are not affected by pure rotation of the fluid

iii. the fluid is isotropic

iv. in the steady shear flow system of Fig. 1.1-1, the general expression for fij will
simplify to Eq. 1.2-2

4C.-L.-M.-H. Navier, Ann. Chimie, 19, 244–260 (1821); S.-D. Poisson, J. École Polytech., 13, Cahier 20,
1–174 (1831); G. G. Stokes, Trans. Camb. Phil. Soc., 8, 287–305 (1845). Claude-Louis-Marie-Henri Navier
(1785–1836) (pronounced “Nah-vyay,” with the second syllable accented) was a civil engineer whose

specialty was road and bridge building; George Gabriel Stokes (1819–1903) taught at Cambridge

University and was president of the Royal Society. Navier and Stokes are well known because of the

Navier–Stokes equations (see Chapter 3). See also D. J. Acheson, Elementary Fluid Mechanics, Oxford

University Press (1990), pp. 209–212, 218, and L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd
edition, Pergamon Press, Oxford (1987), pp. 44–46. Lev Davydovich Landau (1908–1968) received the

Nobel Prize in 1962 for his work on liquid helium and superfluid dynamics.
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Fig. 1.2-1. Pressure and viscous forces acting on planes in the fluid perpendicular to the three

coordinate directions.

Then it may be shown that the most general form for fij in Cartesian coordinates must be

fxx = −24
𝜕vx
𝜕x

+
(
2

3
4 − n

)(
𝜕vx
𝜕x

+
𝜕vy
𝜕y

+
𝜕vz
𝜕z

)
(1.2-7)

fyy = −24
𝜕vy
𝜕y

+
(
2

3
4 − n

)(
𝜕vx
𝜕x

+
𝜕vy
𝜕y

+
𝜕vz
𝜕z

)
(1.2-8)

fzz = −24
𝜕vz
𝜕z

+
(
2

3
4 − n

)(
𝜕vx
𝜕x

+
𝜕vy
𝜕y

+
𝜕vz
𝜕z

)
(1.2-9)

fxy = fyx = −4
(𝜕vy

𝜕x
+

𝜕vx
𝜕y

)
(1.2-10)

fyz = fzy = −4
(
𝜕vz
𝜕y

+
𝜕vy
𝜕z

)
(1.2-11)

fzx = fxz = −4
(
𝜕vx
𝜕z

+
𝜕vz
𝜕x

)
(1.2-12)

These expressions contain two material properties: the viscosity 4,5 and the dilatational vis-
cosity n. Usually, in solving fluid dynamics problems, n can be omitted. For monatomic

5Some writers refer to 4 as the shear viscosity, but this is inappropriate nomenclature as 4 applies to

nonshearing flows as well as shearing flows. The term dynamic viscosity is also occasionally seen, but this

term has a specific meaning in the field of viscoelasticity and is an inappropriate term for 4.
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gases at low density, molecular theory gives n = 0; and for liquids that can be assumed

to be incompressible, the collection of derivatives following
(

2

3
4 − n

)
is exactly zero (see

§3.1). For these cases, n does not influence the viscous stress. It is, however, important in
describing sound absorption in polyatomic gases and in understanding the fluid dynamics
of liquids containing gas bubbles.

As we encountered before in §1.1, quantities with components such as fij, which have
two subscripts associated with the coordinate directions, are referred to as “tensors,” just
as quantities (such as velocity) that have one subscript associated with the coordinate
directions are called “vectors.” Therefore, wewill refer to f as the viscous stress tensor or the
viscous momentum flux tensor (with components fij). When there is no chance for confusion,
the modifier “viscous” may be omitted. A discussion of vectors and tensors can be found
in Appendix A.

When one looks at the components of f given by Eqs. 1.2-7 through 1.2-12, it is clear
why people working in this field like to use a more compact notation. The viscous stress
(momentum flux) tensor can be written in vector-tensor notation as

f = −4
[
∇v + (∇v)†

]
+

(
2

3
4 − n

)
(∇ ⋅ v)t (1.2-13)

Here ∇v is called the velocity gradient tensor, (∇v)† is the transpose of the velocity gradient
tensor, t is the unit tensor, and (∇ ⋅ v) is the divergence of the vector v, a scalar quantity. The
unit tensor has components tij, where tij is the Kronecker delta, which is 1 if i = j and 0 if
i ≠ j.

When there is no flow (v = 𝟎), the viscous stresses (momentum fluxes) fij are all
zero. The pressure force, however, is present even if the fluid is stationary. The pressure
force is always perpendicular to an exposed surface, as illustrated in Fig. 1.2-1. Hence, in
Fig. 1.2-1(a), the pressure force per unit area on the shaded surface will be a vector ptx,
that is, the pressure (a scalar) multiplied by the unit vector tx in the x direction. Similarly
the pressure force per unit area on the shaded surface in (b) will be pty, and in (c) the
pressure force per unit area will be ptz.

Sometimes we will find it convenient to have a symbol that includes both types of
stresses, and so we define the molecular stresses (or molecular momentum fluxes) as

0ij = ptij + fij where i and jmay be x, y, or z (1.2-14)

Here the Kronecker delta tij is used to indicate that the pressure is normal to surfaces. The
term “molecular stress” (or “molecularmomentumflux”) is adopted because both p and fij
arise from molecular motion, interactions, and collisions. The molecular stress (momentum
flux) tensor is written in vector-tensor notation as

0 = pt+ f (1.2-15)

As with the viscous stress (momentum flux) fyx in §1.2, the components 0ij may be inter-
preted in two ways:

0ij = total molecular (viscous plus pressure) force in the j direction per unit area
perpendicular to the i direction, exerted by the fluid at lesser i on the fluid at greater
i, and

0ij = total molecular (viscous plus pressure) flux of jmomentum in the positive i
direction—that is, from the region of lesser i to that of greater i.

Both interpretations are used in this book; the first one is particularly useful in describing
the forces exerted by the fluid on solid surfaces. The stresses 0xx = p + fxx, 0yy = p + fyy, and
0zz = p + fzz are called normal stresses, whereas the remaining quantities, 0xy = fxy, 0yz = fyz,
· · · are called shear stresses. The stresses acting on the various shaded surfaces in Fig. 1.2-1
are summarized in Table 1.2-2.
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Table 1.2-2. Summary of the Components of the Molecular Stress Tensor (or Molecular

Momentum Flux Tensor)

Direction normal

to the shaded

area

Vector force per

unit area on the

shaded face (momentum

flux through

the shaded face)

Components of the forces

(per unit area) acting on the shaded

face (components of the

momentum flux through

the shaded face)

x component y component z component

x 0x = ptx + fx 0xx = p + fxx 0xy = fxy 0xz = fxz
y 0y = pty + fy 0yx = fyx 0yy = p + fyy 0yz = fyz
z 0z = ptz + fz 0zx = fzx 0zy = fzy 0zz = p + fzz

c. Flows in curvilinear coordinates
In curvilinear coordinates (e.g., cylindrical and spherical coordinates), the stresses

and momentum fluxes retain their definitions. That is, 0ij can still be interpreted as the
molecular force in the j direction per unit area perpendicular to the i direction, exerted
by the fluid at lesser i on the fluid at greater i, except that now i and j take on the values
r,p,z (cylindrical coordinates) or r,p,d (spherical coordinates). Thus, the components of 0
in cylindrical coordinates can be obtained by replacing x,y,z with r,p,z in Table 1.2-2 (i.e.,
0rr = p + frr, 0rp = frp, etc.); similarly, the components of 0 in spherical coordinates can be
obtained by replacing x,y,zwith r,p,d in Table 1.2-2. Figure 1.2-2 illustrates some typical sur-
face elements and differential forces in terms of stress tensor components that arise in fluid
dynamics.

Some caution should be used, however, when expressing the components of the
viscous stress (momentum flux) tensor fij in terms of the velocity gradients. While the
symbolic form of Newton’s law of viscosity in Eq. 1.2-13 still applies, the components
expressed in Eqs. 1.2-7 through 1.2-12 are valid only for Cartesian coordinates and
cannot be converted to curvilinear coordinates by simply replacing indices. Therefore,
Eq. 1.2-13 is written out in full in Cartesian (x,y,z), cylindrical (r,p,z), and spherical (r,p,d)
coordinates in Appendix B.1. We recommend that the beginning students not concern
themselves with the details of the derivation of Eq. 1.2-13, but rather concentrate on using
the tabulated results. Chapters 2 and 3 will give ample practice in doing this.

The shear stresses are usually easy to visualize, but the normal stresses may cause
conceptual problems. For example, fzz is a force per unit area in the z direction on a plane
perpendicular to the z direction. For the flow of an incompressible fluid in the conver-
gent channel of Fig. 1.2-3 we know intuitively that vz increases with decreasing z; hence,
according to Eq. 1.2-2, there is a nonzero stress fzz = −24(𝜕vz∕𝜕z) acting in the fluid.

Note on the Sign Convention for the Stress Tensor. We have emphasized in connection with
Eq. 1.2-2 (and in the generalization in this section) that fyx is the force in the positive x
direction on a plane perpendicular to the y direction, and that this is the force exerted
by the fluid in the region of the lesser y on the fluid of greater y. In most fluid dynamics
and elasticity books, the words “lesser” and “greater” are interchanged and Eq. 1.2-2 is
written as fyx = +4(dvx∕dy). The advantages of the sign convention used in this book are:
(a) the sign convention used in Newton’s law of viscosity is consistent with that used in
Fourier’s law of heat conduction (Chapter 9) and Fick’s law of diffusion (Chapter 17);
(b) the sign convention for fij is the same as that for the convective momentum flux
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Fig. 1.2-2. (a) Some typical surface elements and differential forces expressed in terms of

stress-tensor components in the cylindrical coordinate system. (b) Some typical surface

elements and differential forces expressed in terms of stress-tensor components in the

spherical coordinate system.

ivv (see §1.1); (c) in Eq. 1.2-14, the terms ptij and fij have the same sign affixed, and
the terms p and fii are both positive in compression (in accordance with common usage
in thermodynamics); (d) all terms in the entropy production have the same sign (see
Chapter 24). Clearly the sign convention in Eqs. 1.2-2 and 1.2-13 is arbitrary, and either
sign convention can be used, provided that the physical meaning of the sign convention is
clearly understood.
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y
x

z

Flow

vz(r)

vz(r)

Fig. 1.2-3. The flow in a converging duct is an example of a situation in

which the normal stresses are not zero. Since vz is a function of r and z,
the normal-stress component fzz = −24(𝜕vz∕𝜕z) is nonzero. Also, since

vr depends on r and z, the normal-stress component frr = −24(𝜕vr∕𝜕r) is
not equal to zero. At the wall, however, the normal stresses all vanish

for fluids described by Eq. 1.2-13 provided that the density is constant

(see Example 3.1-1).

§1.3 TOTAL MOMENTUM FLUX TENSOR

Thus far, we have defined the convective momentum flux in §1.1 and themolecular momentum
flux in §1.2. In setting up shell momentum balances in Chapter 2, and in establishing the
equation of motion (a general momentum balance) in Chapter 3, we will find it useful to
define the total momentum flux as the sum of the convective and molecular momentum
fluxes.

a. Cartesian coordinates
In Cartesian coordinates, the components of the total momentum flux is written as the

sum of the convective and molecular momentum flux components as

dij = ivivj + 0ij = ivivj + ptij + fij (1.3-1)

Here, dij is the total flux of j momentum transported in the positive i direction (from the
region of lesser i to that of greater i). All nine components of dij in Cartesian coordinates
are tabulated in Table 1.3-1. In vector-tensor notation, the total momentum flux tensor can
be written

d = ivv + 0 = ivv + pt + f (1.3-2)

Keep in mind that the contribution pt contains no velocity, only the pressure; the combi-
nation ivv contains the density and products of the velocity components; and the contri-
bution f, for Newtonian fluids, contains the viscosities 4 and n and is linear in the velocity
gradients.

b. Curvilinear coordinates
In curvilinear coordinates (e.g., cylindrical and spherical coordinates), the total

momentum flux components are still defined by Eq. 1.3-1. That is, dij can still be inter-
preted as the total flux of j momentum transported in the positive i direction, except
that now i and j take on the values r,p,z (cylindrical coordinates) or r,p,d (spherical
coordinates). Thus, the components of d in cylindrical coordinates can be obtained by
replacing x,y,z with r,p,z in Table 1.3-1 (i.e., drr = ivrvr + p + frr, drp = ivrvp + frp, etc.);
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Table 1.3-1. Components of the Total Momentum Flux Tensor d for Cartesian Coordinates

Direction momentum is

being transported

Component of

momentum being transported

x component y component z component

x dxx = ivxvx + p + fxx dxy = ivxvy + fxy dxz = ivxvz + fxz
y dyx = ivyvx + fyx dyy = ivyvy + p + fyy dyz = ivyvz + fyz
z dzx = ivzvx + fzx dzy = ivzvy + fzy dzz = ivzvz + p + fzz

Note: The components of fij are tabulated in Appendix B.1 for the various coordinate systems.

Table 1.3-2. Summary of Notation for the Momentum Fluxes

Symbol Meaning Reference

0(c) = ivv Convective momentum flux tensor Eq. 1.1-6

f Viscous momentum flux tensora Eq. 1.2-13

0 = pt + f Molecular momentum flux tensorb Eq. 1.2-15

d = ivv + pt + f Total momentum flux tensor Eq. 1.3-2

aFor viscoelastic fluids (Chapter 8), this should be called the “viscoelastic momentum flux tensor” or the

“viscoelastic stress tensor.”
bThis may also be called the molecular stress tensor.

similarly, the components of d in spherical coordinates can be obtained by replacing
x,y,z with r,p,d in Table 1.3-1. As before, the components fij appearing in Table 1.3-1 are
expressed in terms of the velocity gradients in Cartesian (x,y,z), cylindrical (r,p,z), and
spherical (r,p,d) coordinates in Appendix B.1.

The nomenclature and various symbols for the momentum fluxes discussed in this
chapter are summarized in Table. 1.3-2.

§1.4 VISCOSITY DATA FROM EXPERIMENTS

The viscosities of fluids vary over many orders of magnitude, with the viscosity of air at
20∘C being 1.8 × 10−5 Pa ⋅ s, that of water being 10−3 Pa ⋅ s, and that of glycerol being about
1 Pa ⋅ s, with many silicone oils being even more viscous. In Tables 1.4-1, 1.4-2, and 1.4-3
some experimental data1 are given for pure fluids at 1 atm pressure. Note that for gases

1A comprehensive presentation of experimental techniques for measuring transport properties can

be found in W. A. Wakeham, A. Nagashima, and J. V. Sengers, Measurement of the Transport Properties of
Fluids, CRC Press, Boca Raton, FL (1991). Sources for experimental data are: Landolt-Börnstein: Zahlenwerte
und Funktionen, Vol. II, 5, Springer (1968–1969); International Critical Tables, McGraw-Hill, New York

(1926–1930); Y. S. Touloukian, P. E. Liley, and S. C. Saxena, Thermophysical Properties of Matter, Plenum
Press, New York (1970); and also numerous handbooks of chemistry, physics, fluid dynamics, and heat

transfer.
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Table 1.4-1. Viscosity of Water and Air at 1 atm Pressure

Water (liq.)a Airb

Temperature Viscosity Kinematic Viscosity Viscosity Kinematic Viscosity

T(∘C) 4 (mPa ⋅ s) l (cm2∕s) 4 (mPa ⋅ s) l (cm2∕s)

0 1.787 0.01787 0.01716 0.1327

20 1.0019 0.010037 0.01813 0.1505

40 0.6530 0.006581 0.01908 0.1692

60 0.4665 0.004744 0.01999 0.1886

80 0.3548 0.003651 0.02087 0.2088

100 0.2821 0.002944 0.02173 0.2298

aCalculated from the results of R. C. Hardy and R. L. Cottington, J. Research Nat. Bur. Standards, 42,
573–578 (1949); and J. F. Swidells, J. R. Coe, Jr., and T. B. Godfrey, J. Research Nat. Bur. Standards, 48, 1–31
(1952).
bCalculated from “Tables of Thermal Properties of Gases,” National Bureau of Standards Circular 464 (1955),
Chapter 2.

Table 1.4-2. Viscosities of Some Gases and Liquids at Atmospheric Pressurea

Temperature Viscosity Temperature Viscosity

Gases T(∘C) 4 (mPa ⋅ s) Liquids T(∘C) 4 (mPa ⋅ s)

i-C4H10 23 0.0076c (C2H5)2O 0 0.283

SF6 23 0.0153 25 0.224

CH4 20 0.0109b C6H6 20 0.649

H2O 100 0.01211d Br2 25 0.744

CO2 20 0.0146b Hg 20 1.552

N2 20 0.0175b C2H5OH 0 1.786

O2 20 0.0204 25 1.074

Hg 380 0.0654d 50 0.694

H2SO4 25 25.54

Glycerol 25 934.

aValues taken from N. A. Lange, Handbook of Chemistry, McGraw-Hill, New York, 15th edition (1999),

Tables 5.16 and 5.18.
bH. L. Johnston and K. E. McKloskey, J. Phys. Chem., 44, 1038–1058 (1940).
cCRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL (1999).
dLandolt-Börnstein: Zahlenwerte und Funktionen, Springer (1969).

at low density, the viscosity increases with increasing temperature, whereas for liquids

the viscosity usually decreases with increasing temperature. In gases, the momentum is

transported by the molecules in free flight between collisions, but in liquids the transport

takes place predominantly via intermolecular forces that molecules experience as they

wind their way among their neighbors.
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Table 1.4-3. Viscosities of Some Liquid Metals

Temperature Viscosity

Metal T(∘C) 4 (mPa ⋅ s)

Li 183.4 0.5918

216.0 0.5406

285.5 0.4548

Na 103.7 0.686

250 0.381

700 0.182

K 69.6 0.515

250 0.258

700 0.136

Hg −20 1.85

20 1.55

100 1.21

200 1.01

Pb 441 2.116

551 1.700

844 1.185

Data taken from The Reactor Handbook, Vol. 2, Atomic Energy Commission

AECD-3646, U.S. Government Printing Office, Washington, D. C. (May 1955),

pp. 258 et seq.

§1.5 VISCOSITY DATA AND THE PRINCIPLE
OF CORRESPONDING STATES

Extensive data on viscosities of pure gases and liquids are available in various science
and engineering handbooks.1 When values of viscosities are required for practical calcu-
lations, experimental data should be used. If experimental data are lacking and there is
not time to obtain them, the viscosity can be estimated by empirical methods, making use
of other data on the given substance. We present here a corresponding-states correlation that
facilitates such estimates and illustrates general trends of viscosity with temperature and
pressure for ordinary fluids. The principle of corresponding states, which has a sound
scientific basis,2 is widely used for correlating transport and thermodynamic properties.
Discussions of this principle can be found in textbooks on physical chemistry and ther-
modynamics.

1J. A. Schetz and A. E. Fuhs (eds.), Handbook of Fluid Dynamics and Fluid Machinery,
Wiley-Interscience, New York (1996), Vol. 1, Chapter 2; W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho,

Handbook of Heat Transfer, McGraw-Hill, New York, 3rd edition (1998), Chapter 2. Other sources are

mentioned in footnote 1 of §1.4.
2J. Millat, J. H. Dymond, and C. A. Nieto de Castro (eds.), Transport Properties of Fluids, Cambridge

University Press (1996), Chapter 11, by E. A. Mason and F. J. Uribe, and Chapter 12, by M. L. Huber and

H. J. M. Hanley.
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The plot in Fig. 1.5-1 gives a global view of the pressure and temperature dependence

of viscosity. The reduced viscosity 4r = 4∕4c is plotted versus the reduced temperatureTr =
T∕Tc for various values of the reduced pressure pr = p∕pc. A “reduced” quantity is one that

has been made dimensionless by dividing by the same quantity at the critical point. The

chart shows that the viscosity of a gas approaches a limit (the low-density limit) as the

pressure becomes smaller; for most gases, this limit is nearly attained at 1 atm pressure.

The viscosity of a gas at low density increases with increasing temperature, whereas the

viscosity of a liquid decreaseswith increasing temperature.

Experimental values of the critical viscosity 4c are seldom available. However 4c may

be estimated in one of the following ways: (i) if a value of viscosity is known at a given

reduced pressure and temperature, preferably at conditions near to those of interest, then

4c can be calculated from 4c = 4∕4r; or (ii) if critical p-V-T data are available, then 4c may
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Fig. 1.5-1. Reduced viscosity 4r = 4∕4c as a function of reduced temperature for several

values of the reduced pressure. [O. A. Uyehara and K. M. Watson, Nat. Petroleum News, Tech.
Section, 36, 764 (Oct. 4, 1944); revised by K. M. Watson (1960). A large-scale version of this

graph is available in O. A. Hougen, K. M. Watson, and R. A. Ragatz, C. P. P. Charts, Wiley,

New York, 2nd edition (1960).]
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be estimated from these empirical relations:

4c = 61.6(MTc)1∕2
(
Ṽc

)−2∕3
or 4c = 7.70M1∕2p2∕3c T−1∕6

c (1.5-1a,b)

Here 4c is in micropoises,M (mol. wt.) in g/g-mol, pc in atm, Tc in K, and Ṽc in cm3∕g-mol.

A tabulation of critical viscosities3 computed by method (i) is given in Appendix D.

Figure 1.5-1 can also be used for rough estimation of viscosities of mixtures. For an

N-component fluid with mole fractions xw, the “pseudocritical” properties
4 are

p′c =
N∑
w=1

xwpcw T′
c =

N∑
w=1

xwTcw 4′c =
N∑
w=1

xw4cw (1.5-2a, b, c)

That is, one uses the chart exactly as for pure fluids, but with the pseudocritical properties

instead of the critical properties. This empirical procedure works reasonably well unless

there are chemically dissimilar substances in the mixture or the critical properties of the

components differ greatly.

There are many variants on the above method, as well as a number of other

empiricisms. These can be found in the extensive compilation of Poling, Prausnitz, and

O’Connell.5

EXAMPLE 1.5-1

Estimation of Viscosity
from Critical
Properties

Estimate the viscosity of N2 at 50
∘C and 854 atm, given M = 28.0 g∕g-mol , pc = 33.5 atm, and

Tc = 126.2 K.

SOLUTION

Using Eq. 1.5-1b, we get

4c = 7.70(2.80)1∕2(33.5)2∕3(126.2)−1∕6

= 189 micropoises = 189 × 10−6 poise (1.5-3)

The reduced temperature and pressure are:

Tr =
273.2 + 50 K

126.2 K
= 2.56; pr =

854 atm

33.5 atm
= 25.5 (1.5-4a, b)

From Fig. 1.5-1, we obtain 4r = 4∕4c = 2.6. Hence, the predicted value of the viscosity is

4 = 4c(4∕4c) = (189 × 10−6 poise)(2.6) = 490 × 10−6 poise (1.5-5)

The measured value6 is 455 × 10−6 poise.

3O. A. Hougen and K. M. Watson, Chemical Process Principles, Part III, Wiley, New York (1947), p. 873.

Olaf Andreas Hougen (pronounced “How-gen”) (1893–1986) was a leader in the development of

chemical engineering for four decades; together with K. M. Watson and R. A. Ragatz, he wrote influential

books on thermodynamics and kinetics.
4O. A. Hougen, K. M. Watson, and R. A. Ragatz, Chemical Process Principles, Part II, Wiley, New York,

2nd edition (1959), p. 859.
5B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases and Liquids, McGraw-Hill,

New York, 5th edition (2001), Chapter 9.
6A. M. J. F. Michels and R. E. Gibson, Proc. Roy. Soc. (London), A134, 288–307 (1931).
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§1.6 VISCOSITY OF GASES AND KINETIC THEORY

To get a better appreciation of the concept of molecular momentum transport, we examine
this transport mechanism from the point of view of an elementary kinetic theory of gases.

We consider a pure gas composed of rigid, nonattracting spherical molecules of diam-
eter d andmassm, and the number density (number ofmolecules per unit volume) is taken
to be n. The concentration of gas molecules is presumed to be sufficiently small so that the
average distance between molecules is many times their diameter d. In such a gas it is
known1 that, at equilibrium, the molecular velocities are randomly directed and have an
average magnitude given by

u =
√

8KT
0m

(1.6-1)

in which K is the Boltzmann constant (see Appendix E). The frequency of molecular bom-
bardment per unit area on one side of any stationary surface exposed to the gas is

Z = 1

4
nu (1.6-2)

The average distance traveled by a molecule between successive collisions is themean-free
path m, given by

m = 1√
20d2n

(1.6-3)

On average, the molecules reaching a plane will have experienced their last collision at a
distance a from the plane, where a is given very roughly by

a = 2

3
m (1.6-4)

The concept of the mean-free path is intuitively appealing, but it is meaningful only when
m is large compared to the range of intermolecular forces. The concept is appropriate for
the rigid-sphere molecular model considered here.

To determine the viscosity of a gas in terms of the molecular model parameters d and
m, we consider the behavior of the gaswhen it flows parallel to the xz planewith a velocity
gradient dvx∕dy (see Fig. 1.6-1). We assume that Eqs. 1.6-1 to 1.6-4 remain valid in this
nonequilibrium situation, provided that all molecular velocities are calculated relative to
the average velocity v in the region in which the given molecule had its last collision. The
flux of x momentum across any plane of constant y is found by summing the x momenta
of the molecules that cross in the positive y direction and subtracting the x momenta of
those that cross in the opposite direction, as follows:

fyx = Zmvx|y−a − Zmvx|y+a (1.6-5)

Inwriting this equation,we have assumed that allmolecules have velocities representative
of the region in which they last collided and that the velocity profile vx(y) is essentially
linear for a distance of several mean-free paths. In view of the latter assumption, we may
further write

vx|y±a = vx|y ± 2

3
m
dvx
dy

(1.6-6)

1The first four equations in this section are given without proof. Detailed justifications are given in

books on kinetic theory, e.g., E. H. Kennard, Kinetic Theory of Gases, McGraw-Hill, New York (1938),

Chapters II and III. Also E. A. Guggenheim, Elements of the Kinetic Theory of Gases, Pergamon Press, New

York (1960), Chapter 7, has given a short account of the elementary theory of viscosity. For a readable

summary of the kinetic theory of gases, see R. J. Silbey, R. A. Alberty, and M. G. Bawendi, Physical
Chemistry, Wiley, New York, 4th edition (2005), Chapter 17, or R. S. Berry, S. A. Rice, and J. Ross, Physical
Chemistry, Oxford University Press, 2nd edition (2000), Chapter 28.
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a
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a

vx|y + a

vx|y

vx|y – a

λ
Typical molecule
arriving from plane
at (y – a) with
x component of
velocity vx|y – a

Velocity profile vx(y) Fig. 1.6-1. Molecular transport of

xmomentum from the plane at

(y − a) to the plane at y.

Circle of area πd2

d

dO
O'

Fig. 1.6-2. When two rigid spheres of diameter d approach

each other, the center of one sphere (at O′) “sees” a circle of

area 0d2 about the center of the other sphere (at O), on which

a collision can occur. The area 0d2 is referred to as the

“collision cross section.”

When we combine Eqs. 1.6-2, 1.6-5, and 1.6-6, we get for the net flux of x momentum in
the positive y direction

fyx = −1

3
nmum

dvx
dy

(1.6-7)

This has the same form as Newton’s law of viscosity given in Eq. 1.2-2. Comparing the
two equations gives an equation for the viscosity

4 = 1

3
nmum = 1

3
ium (1.6-8)

or, by combining Eqs. 1.6-1, 1.6-3, and 1.6-8

4 = 2

3

√
mKT∕0
0d2

= 2

30

√
0mKT
0d2

(1.6-9)

This expression for the viscosity was obtained by Maxwell2 in 1860. The quantity 0d2 is
called the collision cross section (see Fig. 1.6-2).

The above derivation, which gives a qualitatively correct picture of momentum trans-
fer in a gas at low density, makes it clear why we wished to introduce the term “momen-
tum flux” for fyx in §1.2.

The prediction of Eq. 1.6-9 that 4 is independent of pressure agrees with experimen-
tal data up to about 10 atm at temperatures above the critical temperature (see Fig. 1.5-1).

2James Clerk Maxwell (1831–1879) was one of the greatest physicists of all times; he is particularly

famous for his development of the field of electromagnetism and his contributions to the kinetic theory of

gases. In connection with the latter, see J. C. Maxwell, Phil. Mag., 19, 19, Prop. XIII; S. G. Brush, Am. J.
Phys., 30, 269–281 (1962). There is some controversy concerning Eqs. 1.6-4 and 1.6-9 (see S. Chapman and

T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, 3rd edition

(1970), p. 98; R. E. Cunningham and R. J. J. Williams, Diffusion in Gases and Porous Media, Plenum Press,

New York (1980), §6.4.)



Trim Size: 8in x 10in Bird1e c01.tex V2 - October 31, 2014 3:47 P.M. Page 34

34 Chapter 1 Viscosity and the Mechanisms of Momentum Transport

The predicted temperature dependence is less satisfactory; data for various gases indi-

cate that 4 increases more rapidly than
√
T. For a better description of the temperature

dependence of 4, it is necessary to replace the rigid-sphere model by one that portrays

the attractive and repulsive forces more accurately. It is also necessary to abandon the

mean-free path theories and use the Boltzmann equation to obtain the molecular velocity

distribution in nonequilibrium systemsmore accurately.We present here themain results;

more details are presented elsewhere.3,4,5,6

A rigorous kinetic theory of monatomic gases at low density was developed early in

the twentieth century by Chapman in England and independently by Enskog in Sweden.

The Chapman-Enskog theory gives expressions for the transport properties in terms of

the intermolecular potential energy 3(r), where r is the distance between a pair of molecules

undergoing a collision. The intermolecular force is then given by F(r) = −d3∕dr. The exact
functional formof 3(r) is not known; however, for nonpolarmolecules a satisfactory empir-

ical expression is the Lennard-Jones (6–12) potential7 given by

3(r) = 4s

[(
g
r

)12

−
(
g
r

)6
]

(1.6-10)

in which g is a characteristic diameter of the molecules, often called the collision diame-
ter and s is a characteristic energy, actually the maximum energy of attraction between a

pair of molecules. This function, shown in Fig. 1.6-3, exhibits the characteristic features of

intermolecular forces: weak attractions at large separations, and strong repulsions at small

separations. Values of the parameters g and s are known for many substances; a partial list

is given in Table D.1, and a more extensive list is available elsewhere.4 When g and s are
not known, they may be estimated from properties of the fluid at the critical point (c), the
liquid at the normal boiling point (b), or the solid at the melting point (m), by means of the

3Sydney Chapman (1888–1970) taught at Imperial College in London, and thereafter was at the

High Altitude Observatory in Boulder, Colorado; in addition to his seminal work on gas kinetic theory, he

contributed to kinetic theory of plasmas and the theory of flames and detonations. David Enskog
(1884–1947) (pronounced, roughly, “Ayn-skohg”) is famous for his work on kinetic theories of low- and

high-density gases. The standard reference on the Chapman-Enskog kinetic theory of dilute gases is S.

Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press,

3rd edition (1970); pp. 407–409 give a historical summary of the kinetic theory. See also D. Enskog,

Inaugural Dissertation, Uppsala (1917). In addition J. H. Ferziger and H. G. Kaper,Mathematical Theory of
Transport Processes in Gases, North-Holland, Amsterdam (1972), is a very readable account of molecular

theory.
4The Curtiss-Hirschfelder5 extension of the Chapman-Enskog theory to multicomponent gas

mixtures, as well as the development of useful tables for computation, can be found in J. O. Hirschfelder,

C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, Wiley, New York, 2nd corrected printing

(1964). See also C. F. Curtiss, J. Chem. Phys., 49, 2917–2919 (1968), as well as references given in Appendix

D. Joseph Oakland Hirschfelder (1911–1990), founding director of the Theoretical Chemistry Institute at

the University of Wisconsin, specialized in intermolecular forces and applications of kinetic theory.

Charles Francis (“Chuck”) Curtiss (1921–2007) of the Theoretical Chemistry Institute at the University of

Wisconsin specialized in the kinetic theory of nonspherical and polyatomic molecules. He also developed

a comprehensive theory for the transport properties of polymeric fluids.
5C. F. Curtiss and J. O. Hirschfelder, J. Chem. Phys., 17, 550–555 (1949).
6R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Revised Second Edition, Wiley,

New York (2007), Appendix D.
7J. E. (Lennard-)Jones, Proc. Roy. Soc., A106, 441–462, 463–477 (1924). See also R. J. Silbey, R. A.

Alberty, and M. G. Bawendi, Physical Chemistry, Wiley, 4th edition (2005), §11.9, §16.11, and §17.8, and R.

S. Berry, S. A. Rice, and J. Ross, Physical Chemistry, Oxford University Press, 2nd edition (2000), §10.2.
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r

Fig. 1.6-3. Potential energy function

3(r) describing the interaction of two

spherical, nonpolar molecules. The

Lennard-Jones (6–12) potential, given

in Eq. 1.6-10, is one of the many

empirical equations proposed for

fitting this curve. For r < rm the

molecules repel one another, whereas

for r > rm the molecules attract one

another.

following empirical relations:4

s∕K = 0.77Tc g = 0.841Ṽ1∕3
c or g = 2.44(Tc∕pc)1∕3 (1.6-11a, b, c)

s∕K = 1.15Tb g = 1.166Ṽ1∕3
b,liq

(1.6-12a, b)

s∕K = 1.92Tm g = 1.222Ṽ1∕3
m,sol

(1.6-13a, b)

Here s∕K and T are in K, g is in Ångströms (1 Å = 10−10 m), Ṽ is in cm3∕g-mol, and pc is in
atmospheres.

The viscosity of a puremonatomic gas ofmolecular weightMmay bewritten in terms
of the Lennard-Jones parameters as:

4 = 5

16

√
0mKT

0g214

or 4 = 2.6693 × 10−5

√
MT

g214

(1.6-14)

In the second form of this equation, if T [=] K and g [=]Å, then 4 [=] g∕cm ⋅ s. The dimen-
sionless quantity 14 is a slowly varying function of the dimensionless temperature KT∕s,
of the order of magnitude of unity, given in Table D.2. It is called the “collision integral
for viscosity,” since it accounts for the details of the paths that the molecules take during
a binary collision. If the gas were made up of rigid spheres of diameter g (instead of real
moleculeswith attractive and repulsive forces), then14 would be exactly unity. Hence, the
function 14 may be interpreted as describing the deviation from rigid-sphere behavior.

Although Eq. 1.6-14 is a result of the kinetic theory of monatomic gases, it has been
found to be remarkably good for polyatomic gases aswell. The reason for this is that, in the
equation of conservation of momentum for a collision between polyatomic molecules, the
center of mass coordinates are more important than the internal coordinates (see §0.3(b)).
The temperature dependence predicted by Eq. 1.6-14 is in good agreementwith that found
from the low-density line in the empirical correlation of Fig. 1.5-1. The viscosity of gases
at low density increases with temperature, roughly as the 0.6 to 1.0 power of the absolute
temperature, and is independent of the pressure. Equation 1.6-14 will not, however, give
reliable results for gases consisting of polar or highly elongated molecules because of the
angle-dependent force fields that exist between such molecules. For polar vapors, such as
H2O, NH3, CHOH, and NOCl, an angle-dependent modification of Eq. 1.6-10 has given
good results.8 For the light gases H2 and He below about 100 K, quantum effects have to

8E. A. Mason and L. Monchick, J. Chem. Phys., 35, 1676–1697 (1961), 36, 1622–1639, 2746–2757 (1962).
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be taken into account.9 Viscosities of gas mixtures can be calculated using an extension of

the Chapman-Enskog theory.4,5 A variety of empirical approaches can also be used to give

satisfactory results for gas mixtures.10,11,12

EXAMPLE 1.6-1

Computation of the
Viscosity of a Pure Gas
at Low Density

Compute the viscosity of CO2 at 200, 300, and 800 K and 1 atm.

SOLUTION

Use Eq. 1.6-14. FromTable D.1, we find the Lennard-Jones parameters for CO2 to be s∕K = 190 K

and g = 3.996 Å. The molecular weight of CO2 is 44.01 g∕g-mol. Substitution of M and g into

Eq. 1.6-14 gives

4 = 2.6693 × 10−5

√
44.01T

(3.996)214

= 1.109 × 10−5

√
T

14

(1.6-15)

in which 4 [=] g∕cm ⋅ s and T [=] K. The remaining calculations may be displayed in a table.

Viscosity (g∕cm ⋅ s)

T (K) KT∕s 14

√
T Predicted Observed13

200 1.053 1.548 14.14 1.013 × 10−4 1.015 × 10−4

300 1.58 1.286 17.32 1.494 × 10−4 1.495 × 10−4

800 4.21 0.9595 28.28 3.296 × 10−4 · · ·

Experimental data are shown in the last column for comparison. The good agreement is to be

expected, since the Lennard-Jones parameters of Table D.1 were derived from viscosity data.

§1.7 VISCOSITY OF LIQUIDS

Although themolecular theory has beenworked out in somedetail for gases at lowdensity

and is useful for making calculations, the same cannot be said of liquids, suspensions,

pastes, and other fluids. In the absence of experimental data, it is necessary to use empirical

formulas of varying degrees of reliability.

9J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, op. cit., Chapter 10 by J. de Boer and R. B. Bird; H. T.

Wood and C. F. Curtiss, J. Chem. Phys., 41, 1167–1173 (1964); R. J. Munn, F. J. Smith, and E. A. Mason,

J. Chem. Phys., 42, 537–539 (1965); S. Imam-Rahajoe, C. F. Curtiss, and R. B. Bernstein, J. Chem. Phys., 42,
530–536 (1965).

10R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Revised Second Edition, Wiley,

New York (2007), pp. 27–29.
11C. R. Wilke, J. Chem. Phys., 18, 517–519 (1950); see also J. W. Buddenberg and C. R. Wilke, Ind. Eng.

Chem., 41, 1345–1347 (1949).
12B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases and Liquids, McGraw-Hill,

New York, 5th edition (2001), Chapter 9.
13H. L. Johnston and K. E. McCloskey, J. Phys. Chem., 44, 1038–1058 (1940).
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Fig. 1.7-1. Viscosity as a function

of 1∕T for three different liquids.

[Data from B. E. Poling, J. M.

Prausnitz, and J. P. O’Connell,

The Properties of Gases and Liquids,
McGraw-Hill, New York, 5th

edition (2001), Chapter 9.]

For simple liquids, a useful empiricism, based on earlywork by Eyring1 and coworkers,
is

4 = Ñh
Ṽ

exp

(
3.8Tb

T

)
(1.7-1)

in which Ñ is Avogadro’s number, h is Planck’s constant, Ṽ is the molar volume, Tb is the
boiling point temperature, and T is the absolute temperature. This expression illustrates
that the viscosity of a liquid decreases with increasing temperature, and agrees with the
long-used empiricism 4 = A exp(B∕T). An approximately exponential dependence on the
inverse temperature is often observed as illustrated in Fig. 1.7-1. However, errors as large
as 30% are common, and this empiricism should not be used for long slender molecules,
such as n-C20H42. The approximately exponential dependence on the inverse absolute tem-
perature is best used for interpolation between viscosity values at different temperatures
(e.g., by plotting ln 4 vs 1∕T).

§1.8 VISCOSITY OF SUSPENSIONS

For very dilute suspensions of spheres in a suspendingmediumwith viscosity 40 and volume
fraction of spheres d, a rigorous theory by Einstein1 gives for the effective viscosity of the
suspension (d ≤ 0.1)

4eff
40

= 1 + 5

2
d (1.8-1)

This expression illustrates that a dilute suspension of particles is Newtonian, and its vis-
cosity increases with increasing concentration of the solid particles. It further indicates
that, for low-volume fractions, the effective viscosity is independent of the particle size.

1S. Glasstone, K. J. Laidler, and H. Eyring, Theory of Rate Processes, McGraw-Hill, New York (1941),

Chapter 9; H. Eyring, D. Henderson, B. J. Stover, and E. M. Eyring, Statistical Mechanics, Wiley, New York

(1964), Chapter 16. See also R. J. Silbey, R. A. Alberty, and M. G. Bawendi, Physical Chemistry, Wiley, 4th

edition (2005), §20.1; and R. S. Berry, S. A. Rice, and J. Ross, Physical Chemistry, Oxford University Press,

2nd edition (2000), Ch. 29. Henry Eyring (1901–1981) developed theories for the transport properties

based on simple physical models; he was also a key figure in the theory of absolute reaction rates.
1Albert Einstein (1879–1955) received the Nobel Prize for his explanation of the photoelectric effect,

not for his development of the theory of special relativity. His seminal work on suspensions appeared in

A. Einstein, Ann. Phys. (Leipzig), 19, 289–306 (1906); erratum, ibid., 34, 591–592 (1911). In the original

publication, Einstein made an error in the derivation of Eq. 1.8-1 and got d instead of 5

2
d. After

experiments showed that his equation did not agree with the experimental data, he recalculated the

coefficient. Einstein’s original derivation is quite lengthy; for a more compact development, see L. D.

Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford, 2nd edition (1987), pp. 73–75.



Trim Size: 8in x 10in Bird1e c01.tex V2 - October 31, 2014 3:47 P.M. Page 38

38 Chapter 1 Viscosity and the Mechanisms of Momentum Transport

Equation 1.8-1, however, is accurate only for relatively dilute suspensions. For con-
centrated suspensions of particles, the Krieger-Dougherty2 equation is often used:

4eff
40

=
(
1 − d

dmax

)−Admax

(1.8-2)

This expression illustrates that the effective viscosity of a suspension increases rapidly as
d approaches the maximum packing fraction dmax. The constants dmax and A are typically
treated as adjustable parameters that are fit to experimental data.

Suspensions can exhibit non-Newtonian behavior, particularly at large concentra-
tions. Viscosities in these cases depend on the velocity gradient and may be different in
shear and elongational flows. Therefore, equations such as Eq. 1.8-2 should be used with
some caution.

§1.9 CONCLUDING COMMENTS

The main purpose of this chapter is to describe the different ways that momentum can be
transported, and to define the corresponding momentum fluxes. The convective momen-
tum flux 0(c) arises from the bulk flow of the fluid (§0.4). The molecular momentum flux 0
arises frommolecularmotion, collisions, and interactions, and consists of twoparts: a pres-
sure term pt that is present even when the fluid is static, and a viscous term f that arises
when the fluid is flowing. The convective and molecular momentum fluxes are added
together to form the total momentum flux d, which will be used in Chapters 2 and 3 to
solve flow problems.

Themomentum fluxes are second-order tensors. It is important to note, however, that
the treatment of transport phenomena in this text does not require the reader to under-
stand tensor mathematics, but only to understand how the indices on the scalar tensor
components are assigned. For the momentum flux tensor components, the first index rep-
resents the direction thatmomentum is being transported, and the second index represents
the component of momentum that is being transported. In Chapters 2 and 3, wewill show
how the scalar tensor components are used to set up momentum balances. A variety of
mathematical topics are reviewed in Appendix A, including a summary of tensor opera-
tions in the various coordinate systems.

For the viscous momentum flux, our attention will focus almost exclusively on New-
ton’s law of viscosity, where the flux components are written in terms of derivatives of the
velocity components. These relationships are written explicitly in Appendix B in Carte-
sian, cylindrical, and spherical coordinates. Setting up and solving the flow problems in
Chapters 2 and 3 will require frequent use of the key equations in Appendix B.

Finally, we have described methods for estimating values of the viscosities of gases
and liquids in the event that experimental data are not available. Appendix E contains con-
version factors for converting between different systems of units. For practical calculations
that appear later, this appendix will prove to be indispensable.

QUESTIONS FOR DISCUSSION

1. Compare Newton’s law of viscosity and Hooke’s law of elasticity. What is the origin of these

“laws”?

2. Verify that “momentum per unit area per unit time” has the same dimensions as “force per unit

area.”

3. Compare and contrast the molecular and convective mechanisms for momentum transport.

2I. M. Krieger and T. J. Dougherty, Trans. Soc. Rheol., 3, 137–152 (1959).
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4. What are the physical meanings of the Lennard-Jones parameters and how can they be deter-

mined from viscosity data? Is the determination unique?

5. How do the viscosities of liquids and low-density gases depend on the temperature and pres-

sure?

6. The Lennard-Jones potential depends only on the intermolecular separation. For what kinds

of molecules would you expect that this kind of potential would be inappropriate?

7. Sketch the potential energy function 3(r) for rigid, nonattracting spheres.

8. Molecules differing only in their atomic isotopes have the same values of the Lennard-Jones

potential parameters. Would you expect the viscosity of CD4 to be larger or smaller than that

of CH4 at the same temperature and pressure?

9. Fluid A has a viscosity twice that of fluid B; which fluid would you expect to flow more

rapidly through a horizontal tube of length L and radius R when the same pressure difference

is imposed?

10. Draw a sketch of the intermolecular force F(r) obtained from the Lennard-Jones function for

3(r). Also, determine the value of rm in Fig. 1.6-3 in terms of the Lennard-Jones parameters.

11. What main ideas are used when one goes from Newton’s law of viscosity in Eq. 1.2-2 to the

generalization in Eq. 1.2-13?

PROBLEMS 1A.1 Estimation of dense-gas viscosity. Estimate the viscosity of nitrogen at 68∘F and 1000 psig

by means of Fig. 1.5-1, using the critical viscosity from Table D.1. Give the result in units of

lbm∕ft ⋅ s. For the meaning of “psig,” see Table E.3.2.

Answer: 1.4 × 10−4 lbm ∕ft ⋅ s

1A.2 Estimation of the viscosity of methyl fluoride. Use Fig. 1.5-1 to find the viscosity in Pa⋅ s of
CH3F at 370∘C and 120 atm. Use the following values1 for the critical constants: Tc = 4.55∘C,
pc = 58.0 atm, ic = 0.300 g∕cm3.

1A.3 Computation of the viscosities of gases at low density. Predict the viscosities of molecular

oxygen, nitrogen, and methane at 20∘C and atmospheric pressure, and express the results in

mPa⋅ s. Compare the results with experimental data given in this chapter.

Answers: 0.0202, 0.0172, 0.0107mPa⋅ s

1A.4 Estimation of liquid viscosity. Estimate the viscosity of saturated liquid water at 0∘C and at

100∘C by means of Eq. 1.7-1. Compare the results with the values in Table 1.4-1.

Answer: 4.0 cp, 0.95 cp

1A.5 Molecular velocity and mean-free path. Compute the mean molecular velocity u (in cm/s)

and the mean-free path m (in cm) for oxygen at 1 atm and 273.2 K. A reasonable value for d is

3 Å. What is the ratio of the mean-free path to the molecular diameter under these conditions?

What would be the order of magnitude of the corresponding ratio in the liquid state?

Answers: u = 4.25 × 104 cm∕s, m = 9.3 × 10−6 cm

1A.6 Checking dimensions in equations. It is very important tomake a habit of checking equations

for dimensional consistency. Show that the following equations in the text are dimensionally

consistent: Eq. 1.6-14, Eq. 1.7-1, and Eq. 1.3-2. Do this by replacing the symbols in the formulas

by the appropriate dimensions. Omit any numerical factors that appear.

1B.1 Velocity profiles and the stress components fij. For each of the following velocity distribu-

tions, draw a meaningful sketch showing the flow pattern. Then find all the components of f
and ivv for the Newtonian fluid. The parameter b is a constant.
(a) vx = by, vy = 0, vz = 0

(b) vx = by, vy = bx, vz = 0

1K. A. Kobe and R. E. Lynn, Jr., Chem. Revs. 52, 117–236 (1953), see p. 202.
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(c) vx = −by, vy = bx, vz = 0

(d) vx = − 1

2
bx, vy = − 1

2
by, vz = bz

1B.2 A fluid in a state of rigid rotation.
(a) Verify that the velocity distribution (d) in Problem 1B.1 describes a fluid in a state of pure

rotation; that is, the fluid is rotating like a rigid body. What is the angular velocity of rotation?

(b) For that flow pattern evaluate the symmetric and antisymmetric combinations of velocity

derivatives:

i. (𝜕vy∕𝜕x) + (𝜕vx∕𝜕y)
ii. (𝜕vy∕𝜕x) − (𝜕vx∕𝜕y)

(c) Discuss the results of (b) in connection with the development in §1.2.
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Chapter 2

Shell Momentum Balances
and Velocity Distributions
in Laminar Flow

§2.1 Shell momentum balances; boundary conditions

§2.2 Flow of a falling film

§2.3 Flow through a circular tube

§2.4 Flow through an annulus

§2.5 Flow of two adjacent immiscible fluids

§2.6 Flow in a cone-and-plate viscometer

§2.7 Flow around a sphere

§2.8 Concluding comments

In this chapter we show how to obtain the velocity profiles for fluids in simple laminar
flows. These derivations make use of the definition of viscosity, the expressions for the
convective and molecular momentum fluxes, and the concept of a momentum balance.
Once the velocity profiles have been obtained, we can then get other quantities such as
the maximum velocity, the average velocity, or the force on a surface. Often it is these
latter quantities that are of interest in engineering problems.

In the first section we make a few general remarks about how to set up differential
momentum balances. In the sections that follow, we show how to solve several classical
viscous flow problems. These examples should be thoroughly understood, since we shall
have frequent occasions to refer to them in subsequent chapters. Although these problems
are rather simple and involve idealized systems, the solution methods and results are
nonetheless often used in solving practical problems.

The systems studied in this chapter are so arranged that the reader is gradually
introduced to a variety of factors that arise in the solution of viscous flow problems. In
§2.2 the falling-film problem illustrates the role of gravity forces and the use of Cartesian
coordinates; it also shows how to solve the problem when viscosity may be a function
of position. In §2.3 the flow in a circular tube illustrates the role of pressure and gravity
forces and the use of cylindrical coordinates; an approximate extension to compressible
flow is also given. In §2.4 the flow in a cylindrical annulus emphasizes the role played
by the boundary conditions. Then in §2.5 the question of boundary conditions is pursued
further in the discussion of the flow of two adjacent immiscible liquids. In §2.6 the flow in
a cone-and-plate viscometer is solved approximately to illustrate a problem in spherical
coordinates. This problem also introduces the calculation of a torque exerted by the flow.

41
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Direction

of flow

Fluid containing
tiny particles

(a)

Direction

of flow
(b)

Fig. 2.0-1. (a) Laminar flow, in which fluid

layers move smoothly over one another in

the direction of flow, and (b) turbulent
flow, in which the flow pattern is complex

and time-dependent, with considerable

motion perpendicular to the principal flow

direction.

Finally, in §2.7 the flow around a sphere is discussed briefly to illustrate another problem
in spherical coordinates and also to point out how both tangential and normal forces
contribute to the total force on an object immersed in a flow.

The method of setting up momentum balances in this chapter applies only to steady
rectilinear flow. By “steady” we mean that the pressure, density, and velocity components
at each point in the fluid do not change with time. By “rectilinear” we mean that the fluid
moves along in straight parallel lines. The flows in §2.6 and §2.7 are examples of nonrec-
tilinear flows. The general equations for unsteady flow with arbitrary flow patterns are
given in Chapter 3.

This chapter is also concerned only with laminar flow. Laminar flow is the orderly
flow where thin fluid layers (“lamina”) appear to slide past one another (as in Fig. 1.1-1).
Laminar flow is observed, for example, in tube flow at velocities sufficiently low that tiny
particles injected into the tube move along in a thin line. This is in sharp contrast with the
wildly chaotic “turbulent flow” at sufficiently high velocities that the particles are flung
apart and dispersed throughout the entire cross section of the tube. Turbulent flow is the
subject of Chapter 4. The sketches in Fig. 2.0-1 illustrate the difference between the two
flow regimes.

§2.1 SHELL MOMENTUM BALANCES; BOUNDARY CONDITIONS

The problems discussed in §2.2 through §2.5 are approached by setting upmomentumbal-
ances for appropriately selected volumes of fluid within the flows. These volumes, which
are fixed in space, are open systems through which the fluid is flowing. We call these vol-
umes “shells” because they are thin in one dimension, specifically in the direction inwhich
the fluid velocity varies. For steady flow, the momentum balance over a shell is⎧⎪⎨⎪⎩

Total rate
of momentum
transported in

⎫⎪⎬⎪⎭ −
⎧⎪⎨⎪⎩

Total rate
of momentum
transported out

⎫⎪⎬⎪⎭ +
⎧⎪⎨⎪⎩

Force of
gravity acting
on the fluid

⎫⎪⎬⎪⎭ = 0 (2.1-1)

This is a restricted statement of the law of conservation of momentum. In §2.2 through
§2.5 of this chapter we apply this statement only to one component of the momentum,
namely the component in the direction of flow.

Applying Eq. 2.1-1 for specific flow problems requires specifying the rates of momen-
tum transport into and out of the shell, across each of the shell faces. These rates are simply
the appropriate components of the total momentum flux d (tabulated in Table 1.3-1), mul-
tiplied by the corresponding face areas. Such applications to flow problems are illustrated
in detail in the following sections. Keep in mind that the total momentum flux is the sum
of the convective momentum flux (see Table 1.1-1) and themolecular momentum flux (see
Table 1.2-1), and that the molecular momentum flux includes both the pressure and the
viscous contributions.
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In §2.2 to §2.5 the momentum balance is applied only to flows in which there is just
one velocity component, which depends on just one spatial variable. In the next chapter
the momentum balance concept is extended to unsteady-state systems and to flows with
curvilinear streamlines1 and more than one velocity component.

The procedure recommended in this chapter for setting up and solving viscous flow
problems is as follows:

• Draw a sketch of the flow geometry being studied, including your best guess as to
what the velocity distribution will look like.

• Identify the nonvanishing velocity component and the spatial variable on which it
depends.

• Draw the “shell”—a volume with faces parallel or perpendicular to the
velocity—that is thin in the direction in which the velocity varies.

• Write a momentum balance of the form of Eq. 2.1-1 for the thin shell.

• Let the thickness of the shell approach zero and make use of the definition of the
first derivative to obtain a differential equation for the momentum flux.

• Integrate this equation to get the momentum-flux distribution.

• Insert the expression for the total momentum flux, including Newton’s law of vis-
cosity, and obtain a differential equation for the velocity.

• Integrate this equation to get the velocity distribution.

• Use the velocity distribution to get other quantities, such as the maximum velocity,
average velocity, or forces on solid surfaces.

In the integrationsmentioned above, several constants of integration appear, and these are
evaluated by using “boundary conditions,” that is, statements about the velocity or stress
at the boundaries of the system. The most commonly used boundary conditions are:

a. At solid-fluid interfaces the fluid velocity equals the velocity with which the solid
surface is moving; this statement is applied to both the tangential and the normal
components of the velocity vector. The equality of the tangential components is
referred to as the “no-slip condition.”

b. At a liquid-liquid interfacial plane of constant x, the tangential velocity components
vy and vz are continuous through the interface (the “no-slip condition”) as are also
the molecular stresses 0xx = p + fxx, 0xy = fxy, and 0xz = fxz.

c. At a liquid-gas interfacial plane of constant x, the molecular stresses 0xy = fxy and
0xz = fxz are taken to be zero, provided that the gas-side velocity gradient is not too
large. This is reasonable, since the viscosities of gases are much smaller than those
of liquids.

In all of these boundary conditions it is presumed that there is nomaterial passing through
the interface; that is, there is no adsorption, absorption, dissolution, evaporation, melt-
ing, or chemical reaction at the surface between the two phases. In this section we have
presented some guidelines for solving simple viscous flow problems. For some problems
slight variations on these guidelines may prove to be appropriate.

§2.2 FLOWOF A FALLING FILM

The first example we discuss is that of the flow of a liquid down an inclined flat plate
of length L and width W, as shown in Figs. 2.2-1 and 2.2-2. Such films have been stud-
ied in connection with wetted-wall towers, evaporation, and gas-absorption experiments,

1A streamline is a curve that is tangent to the instantaneous velocity.
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Entrance disturbance

Exit disturbance

Liquid film

Reservoir

Direction of
gravity

Liquid in

L

β

Fig. 2.2-1. Schematic diagram of the falling-film experiment, showing end effects.

and applications of coatings. We consider the viscosity and density of the fluid to be
constant.

A complete description of the liquid flow is difficult because of the disturbances at
the edges of the system (z = 0, z = L, y = 0, y = W). An adequate description can often be
obtained by neglecting such disturbances, particularly if W and L are large compared to
the film thickness t. For small flow rates we expect that the viscous forces will prevent
continued acceleration of the liquid down the wall, so that vz will become independent
of z in a short distance down the plate. Therefore, it seems reasonable to postulate that
vz = vz(x), vx = 0, and vy = 0, and further that p = p(x).

Wenow select as the “system” a shell that is thin in the xdirection; that is, a rectangular
region of thickness 2x, bounded by the planes z = 0 and z = L, and extending a distance
W in the y direction. This shell, depicted by the shaded region in Fig. 2.2-2, is shown in
more detail in Fig. 2.2-3.

Next we set up a zmomentum balance over this shell, using the total momentum-flux
components dxz, dyz, and dzz to describe the flux of z momentum across the x, y, and z
faces, respectively. These components, listed in the “z component” column of Table 1.3-1,

L

v z(x
)

τ xz
(x)

δ

Velocity
distribution

Direction
of gravity

Viscous
momentum

flux
distribution

β

∆x

z
x

Fig. 2.2-2. Sketch of the falling-film flow, including the thin shell of thickness 2x, over which

the zmomentum balance is made. Also shown are the viscous momentum-flux distribution

fxz(x) and the velocity distribution vz(x).
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x+∆x LW

z = L

z = 0

∆x

x
x + ∆x

y = W

y = 0
y=W

L∆x

x
LW

Direction of
gravity

y=0
L∆x

φzzφxz

φxz

φyz

φyz
φzz

z=0
W∆x

z L
W∆x

=

β

Fig. 2.2-3. Three-dimensional sketch of the shell of thickness 2x over which the z momentum

balance is made. The arrows show the rates of momentum transport—momentum-flux

components multiplied by the corresponding face areas—into and out of the shell. Note that

the arrows always point in the directions of the positive coordinate axes.

are thenmultiplied by the corresponding areas of the shell faces to obtain the total rates of
z momentum transported “in” and “out” of the shell across each face. The z momentum
balance is illustrated pictorially in Fig. 2.2-3,where these “in” and “out” terms are depicted
along with arrows. These arrows indicate that the momentum-flux components dxz, dyz,
and dzz are defined as the fluxes of z momentum in the positive x, y, and z directions,
respectively (regardless of the direction that z momentum is actually being transported).
The terms in the z momentum balance are thus

Total rate of z momentum
in across surface at x: dxz|xLW (2.2-1)

Total rate of z momentum
out across surface at x + 2x: dxz|x+2xLW (2.2-2)

Total rate of z momentum
in across surface at y = 0: dyz|y=0L2x (2.2-3)

Total rate of z momentum
out across surface at y = W: dyz|y=WL2x (2.2-4)

Total rate of z momentum
in across surface at z = 0: dzz|z=0W2x (2.2-5)

Total rate of z momentum
out across surface at z = L: dzz|z=LW2x (2.2-6)

Gravity force acting on
the fluid in the z direction: i(LW2x)(g cos v) (2.2-7)

By using the quantities dxz, dyz, and dzz we account for the zmomentum transport by both
the convective and molecular mechanisms. The notation |x+2x means “the term to the left
is evaluated at x + 2x,” and g is the gravitational acceleration.

When these terms are substituted into the z momentum balance of Eq. 2.1-1, we get(
dxz|x − dxz|x+2x) LW +

(
dyz|y=0 − dyz|y=W)

L2x
+

(
dzz|z=0 − dzz|z=L)W2x + i(LW2x)(g cos v) = 0 (2.2-8)

When this equation is divided by LW2x, and the limit taken as 2x approaches zero,
we get

lim
2x→0

(
dxz|x+2x − dxz|x

2x

)
+

dyz|y=W − dyz|y=0
W

+
dzz|z=L − dzz|z=0

L
= ig cos v (2.2-9)



Trim Size: 8in x 10in Bird1e c02.tex V1 - October 21, 2014 3:18 P.M. Page 46

46 Chapter 2 Shell Momentum Balances and Velocity Distributions in Laminar Flow

The first term on the left side is just the definition of the derivative of dxz with respect to x.
Therefore, Eq. 2.2-8 becomes

ddxz
dx

+
dyz|y=W − dyz|y=0

W
+

dzz|z=L − dzz|z=0
L

= ig cos v (2.2-10)

At this point we write explicitly the components dxz, dyz, and dzz, making use of the defini-
tion of d in Eq. 1.3-1 and Table 1.3-1.We also use Newton’s law of viscosity (Appendix B.1)
to write the viscous momentum-flux components fxz, fyz, and fzz in terms of derivatives of
the velocity components. The components are thus written

dxz = fxz + ivxvz = −4
𝜕vz
𝜕x

+ ivxvz (2.2-11)

dyz = fyz + ivyvz = −4
𝜕vz
𝜕y

+ ivyvz (2.2-12)

dzz = p + fzz + ivzvz = p − 24
𝜕vz
𝜕z

+ ivzvz (2.2-13)

In accordance with the postulates that vz = vz(x), vx = 0, vy = 0, and p = p(x), we see that

(i) because vx = 0, the term ivxvz in Eq. 2.2-11 is zero.

(ii) because vz = vz(x), the term −4(𝜕vz∕𝜕y) = fyz in Eq. 2.2-12 is zero.

(iii) because vy = 0, the term ivyvz in Eq. 2.2-12 is zero.

(iv) because vz = vz(x), the term −24(𝜕vz∕𝜕z) = fzz in Eq. 2.2-13 is zero.

(v) because vz = vz(x), the term ivzvz is the same at z = 0 and z = L.

(vi) because p = p(x), the term p is the same at z = 0 and z = L.

Hence, Eq. 2.2-10 simplifies to

dfxz
dx

= ig cos v (2.2-14)

This is the differential equation for the viscous momentum flux fxz. It may be integrated

to give

fxz(x) = (ig cos v)x + C1 (2.2-15)

The constant of integration may be evaluated by using the boundary condition at the
gas-liquid interface (see §2.1)

B.C. 1: at x = 0, fxz = 0 (2.2-16)

Substitution of this boundary condition into Eq. 2.2-15 shows that C1 = 0. Therefore, the
momentum-flux distribution is

fxz(x) = (ig cos v)x (2.2-17)

as shown in Fig. 2.2-2.
Next we substitute Newton’s law of viscosity (Appendix B.1)

fxz = −4
dvz
dx

(2.2-18)

into the left side of Eq. 2.2-17 to obtain

dvz
dx

= −
(
ig cos v

4

)
x (2.2-19)
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which is the differential equation for the velocity distribution. It can be integrated to give

vz(x) = −
(
ig cos v

24

)
x2 + C2 (2.2-20)

The constant of integration is evaluated by using the no-slip boundary condition at the
solid surface:

B.C. 2: at x = t, vz = 0 (2.2-21)

Substitution of this boundary condition into Eq. 2.2-20 shows that C2 = (ig cos v∕24)t2.
Consequently the velocity distribution is

vz(x) =
igt2 cos v

24

[
1 −

(x
t

)2
]

(2.2-22)

This parabolic velocity distribution is shown in Fig. 2.2-2. It is consistent with the pos-
tulates made initially and must therefore be a possible solution. Other solutions might be
possible, and experiments are normally required to tell whether other flow patterns can
actually arise. We return to this point after Eq. 2.2-28.

Once the velocity distribution is known, a number of quantities can be calculated:

(i) The maximum velocity vz,max is clearly the velocity at x = 0; that is

vz,max =
igt2 cos v

24
(2.2-23)

(ii) The volume rate of flow Q is obtained by integrating the volumetric flow rate
through a differential element of the cross section, vzdxdy (see §0.4), over the
entire cross section

Q = ∫
W

0 ∫
t

0

vz(x)dxdy = W
igt2 cos v

24 ∫
t

0

[
1 −

(x
t

)2
]
dx

=
igWt3 cos v

24 ∫
1

0

(1 − k2)dk

=
igWt3 cos v

34
(2.2-24)

Here the dimensionless integration variable k = x∕t has been introduced.

(iii) The average velocity ⟨vz⟩ over a cross section of the film is the volume rate of flow
divided by the cross-sectional area

⟨vz⟩ = ∫
W

0 ∫
t

0

vz(x)dxdy

∫
W

0 ∫
t

0

dxdy

=
Q
Wt

=
igt2 cos v

34
= 2

3
vz,max (2.2-25)

(iv) The mass rate of flow w is obtained by integration of the convective mass flux
distribution ivz(x) (see §0.4) over the entire cross section, or from the volume
rate of flow,

w = ∫
W

0 ∫
t

0

ivz(x)dxdy = iQ = iWt⟨vz⟩ = i2gWt3 cos v

34
(2.2-26)

(v) The film thickness tmay be given in terms of the average velocity or the mass rate
of flow

t =

√
34⟨vz⟩
ig cos v

= 3

√
34w

i2gW cos v
(2.2-27)
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(vi) The force per unit area in the z direction on a surface element perpendicular to
the x direction is +0xz = +fxz evaluated at x = t. This is the force exerted by the
fluid (region of lesser x) on a unit area of the wall (region of greater x). The z
component of the force F of the fluid on the solid surface is obtained by integrating
the shear stress over the fluid-solid interface:

Fz = ∫
L

0 ∫
W

0

(
0xz||x=t)dydz = ∫

L

0 ∫
W

0

(
fxz||x=t)dydz = ∫

L

0 ∫
W

0

(
−4

dvz
dx

|||||x=t
)
dydz

= (LW)(−4)
(
igt cos v

4

)
= i(LWt)g cos v (2.2-28)

This is just the z component of the weight of the fluid in the entire film—as we
would have expected.

Experimental observations of falling films show that there are actually three “flow
regimes,” and that these may be classified according to the Reynolds number,1 Re, for the
flow. For falling films the (dimensionless) Reynolds number is defined by Re = 4t⟨vz⟩i∕4.
The three flow regimes are

laminar flow with negligible rippling: Re < 20

laminar flow with pronounced rippling: 20 < Re < 1500

turbulent flow: Re > 1500

The analysis we have given above is valid only for the first regime, since the analysis
was restricted by the postulates made at the outset. Ripples appear on the surface of
the fluid at all Reynolds numbers. For Reynolds numbers less than about 20, the ripples
are very long and grow rather slowly as they travel down the surface of the liquid; as a
result, the formulas derived above are useful up to about Re = 20 for plates of moderate
length. Above that value of Re, the ripple growth increases very rapidly, although the flow
remains laminar. At about Re = 1500 the flow becomes irregular and chaotic, and the flow
is said to be turbulent.2,3 At this point it is not clear why the value of the Reynolds num-
ber should be used to delineate the flow regimes. We shall have more to say about this in
Chapter 5.

This discussion illustrates a very important point: the theoretical analysis of a flow
system is limited by the postulates that are made in setting up the problem. It is absolutely
necessary to do experiments to establish the flow regimes in order to know when insta-
bilities (e.g., spontaneous rippling) occur and when the flow becomes turbulent. Some
information about the onset of instability and the demarcation of the flow regimes can be
obtained by theoretical analysis, but this is an extraordinarily difficult subject. This is a
result of the inherent nonlinear nature of the governing equations of fluid dynamics, as
will be explained in Chapter 3. Suffice it to say, at this point, that experiments play a very
important role in the field of fluid dynamics.

EXAMPLE 2.2-1

Calculation of Film
Velocity

An oil has a kinematic viscosity of 2 × 10−4 m2∕s and a density of 0.8 × 103 kg∕m3. If we want to
have a falling film of thickness of 2.5mm on a vertical wall, what should the mass rate of flow
of the liquid be?

1This dimensionless group is named forOsborne Reynolds (1842–1912), professor of engineering at

the University of Manchester in England. He studied the laminar-turbulent transition, turbulent heat

transfer, and theory of lubrication. We shall see in the Chapter 5 that the Reynolds number is the ratio of

the inertial forces to the viscous forces.
2G. D. Fulford, Adv. Chem. Engr., 5, 151–236 (1964); S. Whitaker, Ind. Eng. Chem. Fund., 3, 132–142

(1964); V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ (1962), §135.
3H.-C. Chang, Ann. Rev. Fluid Mech., 26, 103–136 (1994); S.-H. Hwang and H.-C. Chang, Phys. Fluids,

30, 1259–1268 (1987).
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SOLUTION

According to Eq. 2.2-26, the mass rate of flow in kg∕s is

w =
igt3W
3l

=
(0.8 × 103 kg∕m3)(9.80 m∕s2)(2.5 × 10−3 m)3W

3(2 × 10−4 m2∕s)
= (0.204 kg∕m ⋅ s)W (2.2-29)

To get the mass rate of flow, one then needs to insert a value for the width of the wall W in
meters. This is the desired result provided that the flow is laminar and nonrippling. To deter-
mine the flow regime we calculate the Reynolds number making use of Eq. 2.2-26

Re =
4t⟨vz⟩i

4
=

4w∕W
li

=
4(0.204 kg∕m ⋅ s)

(2 × 10−4 m2∕s)(0.8 × 103 kg∕m3)
= 5.1 (2.2-30)

This Reynolds number is sufficiently low that rippling will not be pronounced, and therefore,
using the expression for the mass rate of flow in Eq. 2.2-26 is reasonable.

EXAMPLE 2.2-2

Falling Film with
Variable Viscosity

Rework the falling-film problem for a position-dependent viscosity 4 = 40e
−wx∕t, which arises

when the film is nonisothermal, as in the condensation of a vapor on a wall. Here 40 is the
viscosity at the surface of the film and w is a constant that describes how rapidly 4 decreases as
x increases. Such a variation could arise in the flow of a condensate down a wall with a linear
temperature gradient through the film.

SOLUTION

The development proceeds as before up to Eq. 2.2-17. Substituting Newton’s law with variable
viscosity into Eq. 2.2-17 gives

−40e−wx∕t
dvz
dx

= (ig cos v)x (2.2-31)

This equation can be integrated, and using the no-slip boundary condition (Eq. 2.2-21) enables
us to evaluate the integration constant. The velocity profile is then

vz(x) =
igt2 cos v

40

[
ew

(
1

w
− 1

w2

)
− ewx∕t

(
x
wt

− 1

w2

)]
(2.2-32)

As a check we evaluate the velocity distribution for the constant-viscosity problem (that is,
when w is zero). However, setting w = 0 gives∞−∞ in the two expressions within parentheses.
This difficulty can be overcome if we expand the two exponentials in Taylor series (see §C.2),
as follows:

[vz(x)]w=0 =
igt2 cos v

40
lim
w→0

[(
1 + w + w2

2!
+ w3

3!
+ · · ·

)(
1

w
− 1

w2

)
−
(
1 + wx

t
+ 1

2!
w2x2

t2
+ 1

3!
w3x3

t3
+ · · ·

)(
x
wt

− 1

w2

)]

=
igt2 cos v

40
lim
w→0

⎡⎢⎢⎢⎣
(
− 1

w2
+ 1

2
+ 1

3
w + · · ·

)
−
(
− 1

w2
+ 1

2

x2

t2
+ 1

3

x3

t3
w + · · ·

) ⎤⎥⎥⎥⎦
=

igt2 cos v
240

[
1 −

(x
t

)2
]

(2.2-33)

which is in agreement with Eq. 2.2-22.
From Eq. 2.2-32 it may be shown that the average velocity is

⟨vz⟩ = igt2 cos v
40

[
ew

(
1

w
− 2

w2
+ 2

w3

)
− 2

w3

]
(2.2-34)

The reader may verify that this result simplifies to Eq. 2.2-25 when w goes to zero.
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§2.3 FLOW THROUGH A CIRCULAR TUBE

Theflowof fluids in circular tubes is encountered frequently in physics, chemistry, biology,
and engineering. The laminar flow of fluids in circular tubes may be analyzed by means
of the momentum balance described in §2.1. The only new feature introduced here is the
use of cylindrical coordinates, which are the natural coordinates for describing positions
in a pipe of circular cross section.

We consider then the steady-state, laminar flow of a fluid of constant density i and
viscosity 4 in a vertical tube section of length L and radius R (see Fig. 2.3-1(a)). The liquid
flows downward under the influence of a pressure difference and gravity; the coordinate
system is that shown in Fig. 2.3-1(b). If we wish to apply this analysis to the entire tube
length, we require that the tube length be very large with respect to the tube radius, so
that “end effects” will be unimportant throughout most of the tube; that is, we can ignore
the fact that at the tube entrance and exit the flow will not necessarily be parallel to the
tube wall.

We postulate that vz = vz(r), vr = 0, vp = 0, and p = p(z). Because we are interested in
determining the velocity component vz, we will set up and solve a zmomentum balance.

We select as our system a cylindrical shell of thickness 2r and length L, located at an
arbitrary radial position r. A section of this shell is illustrated as the lightly shaded region
in Fig. 2.3-1(b).

Next we set up a z momentum balance for this shell, using the total momentum-flux
components drz and dzz to describe the flux of zmomentum across the r and z faces, respec-
tively (see Table 1.3-1; for a complete cylindrical shell, there are no faces with constant
p). These components are then multiplied by the corresponding areas of the shell faces
to obtain the total rates of z momentum transported “in” or “out” of the shell across
each face. The z momentum balance is illustrated pictorially in Fig. 2.3-1(b), where these

Tube wall
L

φzz|z = L 2πr∆r

φzz|z = 0 2πr∆r

φrz|r 2πrL

R

r
z

Shell of
thickness
∆r over
which

momentum
balance
is made

CL

φrz|r + ∆r 2π (r + ∆r)L
2R

(a) (b)

Fig. 2.3-1. Cylindrical shell of fluid over which the z momentum balance is made for axial

flow in a circular tube (see Eqs. 2.3-1 to 2.3-5). The zmomentum fluxes drz and dzz are given in

full in Eqs. 2.3-9 and 2.3-10.
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“in” and “out” terms are depicted along with arrows. These arrows indicate that the
momentum-flux components drz and dzz are defined as the fluxes of z momentum in the
positive r and z directions, respectively (regardless of the direction that z momentum is
actually being transported). The terms in the z momentum balance are thus

Rate of total z momentum in
across washer-shaped
surface at z = 0:

dzz|z=020r2r (2.3-1)

Rate of total z momentum out
across washer-shaped
surface at z = L:

dzz|z=L20r2r (2.3-2)

Rate of total z momentum in
across cylindrical surface at r:

drz|r20rL = (20rLdrz)|r (2.3-3)

Rate of total z momentum out
across cylindrical
surface at r + 2r:

drz|r+2r20(r + 2r)L = (20rLdrz)|r+2r (2.3-4)

Gravity force acting in
z direction on cylindrical shell:

i(20r2rL)g (2.3-5)

The quantities dzz and drz account for themomentum transport by both the convective and
molecular mechanisms. In Eq. 2.3-4, (r)|r+2r is used as an alternate way of writing (r + 2r).

When these terms are substituted into the z momentum balance of Eq. 2.1-1, we get

(20rLdrz)|r − (20rLdrz)|r+2r + dzz|z=020r2r − dzz|z=L20r2r
+i(20r2rL)g = 0 (2.3-6)

When we divide Eq. (2.3-6) by 20L2r and take the limit as 2r → 0, we get

lim
2r→0

( (rdrz)|r+2r − (rdrz)|r
2r

)
=

(
dzz|z=0 − dzz|z=L

L
+ ig

)
r (2.3-7)

The left side is the definition of the first derivative of rdrz with respect to r. Hence, Eq. 2.3-7
may be rewritten as

d
dr

(rdrz) =
(
dzz|z=0 − dzz|z=L

L
+ ig

)
r (2.3-8)

Now we evaluate the components drz and dzz using Eq. 1.3-1 or Table 3.1, along with
Appendix B.1 to evaluate the viscous stress components frz and fzz

drz = frz + ivrvz = −4
𝜕vz
𝜕r

+ ivrvz (2.3-9)

dzz = p + fzz + ivzvz = p − 24
𝜕vz
𝜕z

+ ivzvz (2.3-10)

In accordance with the postulates that vz = vz(r), vr = 0, vp = 0, and p = p(z), we see that:

(i) because vr = 0, the term ivrvz in Eq. 2.3-9 is zero.

(ii) because vz = vz(r), the term ivzvz in Eq. 2.3-10 will be the same at z = 0 and z = L.

(iii) because vz = vz(r), the term −24(𝜕vz∕𝜕z) = fzz in Eq. 2.3-10 is zero.

Hence, Eq. 2.3-8 simplifies to

d
dr

(rfrz) =

((
p0 − ig0

)
− (pL − igL)
L

)
r =

(
𝒫0 −𝒫L

L

)
r (2.3-11)
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in which 𝒫 = p − igz is a convenient abbreviation for the sum of the pressure and gravi-
tational terms.1 Equation 2.3-11 may be integrated to give

frz(r) =
(
𝒫0 −𝒫L

2L

)
r +

C1

r
(2.3-12)

The constant C1 is evaluated by using the boundary condition

B.C. 1: at r = 0, frz = finite (2.3-13)

Consequently C1 must be zero, for otherwise the momentum flux would be infinite at the
axis of the tube. Therefore, the viscous momentum-flux distribution is

frz(r) =
(
𝒫0 −𝒫L

2L

)
r (2.3-14)

This distribution is shown in Fig. 2.3-2.
Newton’s law of viscosity for this situation is obtained from Appendix B.1

frz = −4
dvz
dr

(2.3-15)

Substitution of this expression into Eq. 2.3-14 then gives the following differential equation
for the velocity:

dvz
dr

= −
(
𝒫0 −𝒫L

24L

)
r (2.3-16)

This first-order, separable differential equation may be integrated to give

vz(r) = −
(
𝒫0 −𝒫L

44L

)
r2 + C2 (2.3-17)

The constant C2 is evaluated from the no-slip boundary condition

B. C. 2: at r = R, vz = 0 (2.3-18)

2L
(   0 –    L)R

Parabolic velocity
distribution vz(r)

Linear momentum-
flux distribution

τrz(r)

z

r

τrz = 0

τrz, max =

vz = 0

vz, max

Fig. 2.3-2. The viscous momentum-

flux distribution frz(r) and velocity

distribution vz(r) for the downward

flow in a circular tube.

1The quantity designated by 𝒫 is called the modified pressure. In general it is defined by

𝒫 = p + igh, where h is the distance “upward”—that is, in the direction opposed to gravity—from some

preselected reference plane. In this problem, h = −z.
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R
rdθ

dr

dQ = vz (r) r dr dθ

r

Fig. 2.3-3. Differential area element used to calculate the

volumetric flow rate. This flow rate is obtained by integrating

dQ over the entire cross section (i.e., as r goes from 0 to R, and p
goes from 0 to 20).

Substitution of this boundary condition into Eq. 2.3-17 gives C2 = (𝒫0 −𝒫L)R2∕44L.
Hence, the velocity distribution is

vz(r) =
(𝒫0 −𝒫L)R2

44L

[
1 −

( r
R

)2
]

(2.3-19)

We see that the velocity distribution for laminar, incompressible flow of aNewtonian fluid
in a long tube is parabolic (see Fig. 2.3-2).

Once the velocity profile has been established, various derived quantities can be
obtained:

(i) The maximum velocity vz,max occurs at r = 0 and is

vz,max =
(𝒫0 −𝒫L)R2

44L
(2.3-20)

(ii) The volume rate of flow Q is obtained by integrating the volumetric flow rate
through an area element, rdrdp, perpendicular to the flow over the entire cross
section (see Fig. 2.3-3)

Q = ∫
20

0 ∫
R

0

vz(r)rdrdp = 20 ⋅
(𝒫0 −𝒫L)R2

44L ∫
R

0

[
1 −

( r
R

)2
]
rdr

=
0(𝒫0 −𝒫L)R4

24L ∫
1

0

(1 − k2)kdk =
0(𝒫0 −𝒫L)R4

84L
(2.3-21)

inwhich k = r∕R. This rather famous result is called theHagen-Poiseuille2 equation.
It is used, along with experimental data for the rate of flow and the modified
pressure difference, to determine the viscosity of fluids (see Example 2.3.1) in a
“capillary viscometer.”

(iii) The average velocity ⟨vz⟩ is obtained by dividing the total volumetric flow rate by
the cross-sectional area

⟨vz⟩ = 0(𝒫0 −𝒫L)R4

84L
⋅

1

0R2
=

(𝒫0 −𝒫L)R2

84L
= 1

2
vz,max (2.3-22)

(iv) The mass rate of flow w is the product of the volumetric rate of flow Q and the
density i

w =
0(𝒫0 −𝒫L)R4i

84L
(2.3-23)

2G. Hagen, Ann. Phys. Chem., 46, 423–442 (1839); J. L. Poiseuille, Comptes Rendus, 11, 961 and 1041

(1841). Jean Louis Poiseuille (1799–1869) (pronounced “Pwa-zø’-yuh,” where ø is roughly the “oo” in

book) was a physician interested in the flow of blood. The unit “poise” was named after Poiseuille.

Although Hagen and Poiseuille established the dependence of the flow rate on the fourth power of the

tube radius, Eq. 2.3-21 was first derived by E. Hagenbach, Pogg. Annalen der Physik u. Chemie, 108, 385–426
(1860).
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(v) The rate of flow of kinetic energy through the tube is obtained by integrating the
volume rate of flow through an element of cross section rdrdp, namely, vzrdrdp,
multiplied by the kinetic energy per unit volume of the fluid 1

2
iv2z . Therefore, the

total amount of kinetic energy per unit volume flowing through the tube is

∫
20

0 ∫
R

0

(
1

2
iv2z

)
vzrdrdp = 20∫

R

0

(
1

2
iv2z

)
vzrdr

= 20 ⋅
1

2
i ⋅ R2∫

1

0

v3zkdk

= i0R2v3z,max ∫
1

0

(
1 − k2

)3
kdk (2.3-24)

Here, we have introduced the dimensionless coordinate k = r∕R and the maxi-
mum velocity vz,max = (𝒫0 −𝒫L)R2∕44L. Now all that remains is to evaluate the
integral. The rate of flow of kinetic energy is then

i0R2v3z,max∫
1

0

(1 − 3k2 + 3k4 − k6) kdk = i0R2v3z,max

(
1

2
− 3

4
+ 3

6
− 1

8

)
= i0R2v3z,max

(
4 − 6 + 4 − 1

8

)
= 1

8
i0R2v3z,max

= 1

4
(0R2vz,max)

(
1

2
iv2z,max

)
(2.3-25)

(vi) The z component of the force, Fz, of the fluid on the wetted surface of the pipe is just
the shear stress 0rz = frz integrated over the wetted area

Fz = ∫
L

0 ∫
20

0

frz|r=RRdpdz = (20RL)
(
−4

dvz
dr

)|||||r=R = 0R2(𝒫0 −𝒫L)

= 0R2(p0 − pL) + 0R2Lig (2.3-26)

This result states that the viscous force Fz exerted by the fluid on the solid pipe
wall is equal to the sum of the net pressure force and the gravitational force. By
Newton’s third law of motion, the force exerted by the wall on the fluid is −Fz. This
is exactly what one would obtain from making a force balance over all of the
fluid in the tube, where all of the forces acting on the fluid—the pressure force,
gravity force, and (viscous) force exerted by the wall—must sum to zero at steady
state. We will discuss such macroscopic balances in more detail in Chapter 7.

The results of this section are only as good as the postulates introduced at the begin-
ning of the section, namely, that vz = vz(r) and p = p(z). Experiments have shown that these
postulates are in fact realized for Reynolds numbers up to about 2100; above that value,
the flow will be turbulent if there are any appreciable disturbances in the system—that
is, wall roughness or vibrations.3 For circular tubes the Reynolds number is defined by
Re = D⟨vz⟩i∕4, where D = 2R is the tube diameter.

We now summarize all the assumptions that were made in obtaining the
Hagen-Poiseuille equation.

(a) The flow is laminar; that is, Re must be less than about 2100.

(b) The density is constant (“incompressible flow”).

3A. A. Draad [Doctoral Dissertation, Technical University of Delft (1996)] in a carefully controlled

experiment, attained laminar flow up to Re = 60,000. He also studied the nonparabolic velocity profile

induced by the Earth’s rotation (through the Coriolis effect). See also A. A. Draad and F. T. M.

Nieuwstadt, J. Fluid Mech., 361, 207-308 (1998).
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(c) The flow is “steady” (i.e., it does not change with time).

(d) The fluid is Newtonian (Eq. 2.3-15 is valid).

(e) End effects are neglected. Actually an “entrance length,” after the tube entrance,
of the order of Le = 0.035DRe, is needed for the buildup to the parabolic profile.
If the section of pipe of interest includes the entrance region, a correction must be
applied.4 The fractional correction in the pressure difference or mass rate of flow
never exceeds Le∕L if L > Le.

(f) The fluid behaves as a continuum. This assumption is valid for most situations,
but becomes invalid for very dilute gases or very narrow tubes inwhich themolec-
ular mean-free path is comparable to the tube diameter (the “slip flow region”) or
much greater than the tube diameter (the “Knudsen flow” or “freemolecule flow”
regime).5

(g) There is no slip at thewall, so that B. C. 2 is valid; this is an excellent assumption for
pure fluids under the conditions assumed in (f). See Problem2B.10 for a discussion
of wall slip.

EXAMPLE 2.3-1

Determination of
Viscosity from
Capillary Flow Data

Glycerol (CH2OH ⋅ CHOH ⋅ CH2OH) at 26.5∘C is flowing through a horizontal tube 1 ft long
and with 0.1 in. inside diameter. For a pressure drop of 40 psi, the volume flow rate Q is

0.00398 ft
3∕min. The density of glycerol at 26.5∘C is 1.261 g∕cm3. From the flow data, find the

viscosity of glycerol in centipoises and in Pa ⋅ s. (For conversion of units, see Appendix E.)

SOLUTION

From the Hagen-Poiseuille equation (Eq. 2.3-21), we find

4 =
0(p0 − pL)R4

8QL

=

0

(
40

lbf

in.2

)(
6.8947 × 104 dyn∕cm2

lbf∕in.2

)(
0.05 in. ×

1 ft

12 in.

)

8

(
0.00398

ft
3

min
× 1 min

60 s

)
(1 ft)

4

= 4.92
g

cm ⋅ s
= 492 cp = 0.492 Pa ⋅ s (2.3-27)

To check whether the flow is laminar, we calculate the Reynolds number

Re =
D⟨vz⟩i

4
=

4Qi

0D4

=
4

(
0.00398

ft
3

min

)(
2.54 cm
1 in.

× 12 in.

1 ft

)3 (
1 min

60 s

)(
1.261

g

cm3

)
0

(
0.1 in. × 2.54 cm

1 in.

)(
4.92

g

cm ⋅ s

)
= 2.41(dimensionless) (2.3-28)

4J. H. Perry, Chemical Engineers Handbook, McGraw-Hill, New York, 3rd edition (1950),

pp. 388–389; W. M. Kays and A. L. London, Compact Heat Exchangers, McGraw-Hill, New York

(1958), p. 49.
5Martin Hans Christian Knudsen (1871–1949), professor of physics at the University of

Copenhagen, did key experiments on the behavior of very dilute gases. The lectures he gave at the

University of Glasgow were published as M. Knudsen, The Kinetic Theory of Gases, Methuen, London

(1934); G. N. Patterson,Molecular Flow of Gases, Wiley, New York (1956). See also J. H. Ferziger and

H. G. Kaper, Mathematical Theory of Transport Processes in Gases, North-Holland, Amsterdam (1972),

Chapter 15.
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Hence, the flow is indeed laminar. Furthermore, the entrance length is

Le = 0.035D Re = 0.035

(
0.1 in. × 1 ft

12 in.

)
(2.41) = 0.0007 ft (2.3-29)

Hence, entrance effects are not important, and the viscosity value given above has been calcu-
lated properly.

EXAMPLE 2.3-2

Compressible Flow in a
Horizontal Circular
Tube6

Obtain an expression for the mass rate of flow w for an ideal gas in laminar flow in a long
circular tube. The flow is presumed to be isothermal, so that the viscosity can be regarded as
constant (because the gas is ideal, the viscosity does not depend on pressure).

SOLUTION

This problem can be solved approximately by assuming that the Hagen-Poiseuille equation in
the form of Eq. 2.3-23 can be applied over a small length dz of the tube as follows:

w = 0iR4

84

(
−
dp
dz

)
(2.3-30)

To eliminate i in favor of p, we use the ideal gas law in the form p∕i = p0∕i0, where p0 and i0
are the pressure and density at z = 0. This gives

w = 0R4

84

i0
p0

(
−p

dp
dz

)
(2.3-31)

The mass rate of flow w is the same for all z. Hence, Eq. 2.3-31 can be integrated from z = 0 to
z = L to give

w = 0R4

164L
i0
p0

(p2
0
− p2L) (2.3-32)

Since p2
0
− p2L = (p0 + pL)(p0 − pL), we get finally

w =
0(p0 − pL)R4iavg

84L
(2.3-33)

where iavg = (i0 + iL)∕2 is the average density calculated at the average pressure
pavg = (p0 + pL)∕2.

EXAMPLE 2.3-3

Tube-Branching in
Poiseuille Flow in
Blood Vessels

A tube of radius R1 branches into two tubes of equal radii R2. Find the ratio R2∕R1 when it is
required that the wall shear stress be the same in all the tubes. It has been established that this
requirement follows from aminimum principle that appears to be applicable to the bifurcation
of blood vessels in the human body.7

SOLUTION

From the law of conservation of mass, the mass flow rate in the tube of radius R1 must be equal
to twice the mass flow rate in one of the tubes of radius R2. That is, from Eq. 2.3-23

w =
i0(2𝒫∕L)1

84
R4

1
= 2

i0(2𝒫∕L)2
84

R4
2

(2.3-34)

or (
R2

R1

)4

= 1

2

(2𝒫∕L)1
(2𝒫∕L)2

(2.3-35)

6L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, 2nd edition (1987), §17, Problem 6. A

perturbation solution of this problem has been obtained by R. K. Prud’homme, T. W. Chapman, and J. R.

Bowen, Appl. Sci. Res., 43, 67–74 (1986).
7Y. C. Fung, Biomechanics: Circulation, Springer, New York, 2nd edition (1997), §3.3.
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The requirement that the wall shear stress in both tubes be the same is, according to Eq. 2.3-14

(2𝒫∕L)1R1

2
=

(2𝒫∕L)2R2

2
(2.3-36)

or (
R2

R1

)
=

(2𝒫∕L)1
(2𝒫∕L)2

(2.3-37)

Dividing Eq. 2.3-35 by Eq. 2.3-37 gives(
R2

R1

)3

= 1

2
or

R2

R1

= 1
3
√
2
= 0.794 (2.3-38)

This gives a reliable result for the bifurcation of blood vessels, until the size of the blood vessels

becomes of capillary size.

§2.4 FLOW THROUGH AN ANNULUS

We now solve another viscous flow problem in cylindrical coordinates, namely, the
steady-state axial flow of an incompressible liquid in an annular region between two
coaxial circular cylinders of radii nR and R as shown in Fig. 2.4-1. The fluid is flowing
upwards in the annulus, that is, in the direction opposed to gravity. We make the same
postulates as in §2.3: vz = vz(r), vp = 0, vr = 0, and p = p(z).

Because the annular flow problem and its postulates are similar to those for the tube
flowproblem, in that both are described in cylindrical coordinates, the shell of thickness2r
for the momentum balance can be chosen similarly—a thin cylindrical shell that extends
from z = 0 to z = L. Furthermore, the zmomentumbalancewill be identical to that derived
in §2.3, up to Eq. 2.3-11. Thus, the zmomentum balance produces the differential equation

d
dr

(rfrz) =

((
p0 + ig0

)
− (pL + igL)
L

)
r ≡

(
𝒫0 −𝒫L

L

)
r (2.4-1)

R
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r

λR

κR
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u
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CL

Velocity
distribution

Shear stress
or momentum-
flux distribution

+

–

Fig. 2.4-1. The viscous momentum-flux

distribution frz(r) and velocity distribution

vz(r) for the upward flow in a cylindrical

annulus. Note that the momentum flux

changes sign at the same value of r for which

the velocity has a maximum.
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This differs from Eq. 2.3-11 only in that 𝒫 = p + igz here, since the coordinate z is in the
direction opposed to gravity (i.e., z is the same as the h of footnote 1 in §2.3). Integration
of Eq. 2.4-1 gives

frz(r) =
(
𝒫0 −𝒫L

2L

)
r +

C1

r
(2.4-2)

just as in Eq. 2.3-12.
The constant C1 cannot be determined immediately, since we have no information

about the momentum flux at the fixed surfaces r = nR and r = R. We know only that there
will be a maximum in the velocity curve at some (as yet unknown) cylindrical surface
r = mR at which themomentumfluxwill be zero; here m is a dimensionless quantity. That is

0 =
(
𝒫0 −𝒫L

2L

)
mR +

C1

mR
(2.4-3)

When we solve this equation for C1 and substitute it into Eq. 2.4-2, we get

frz(r) =
(𝒫0 −𝒫L)R

2L

[ ( r
R

)
− m2

(R
r

)]
(2.4-4)

The only difference between this equation and Eq. 2.4-2 is that the constant of integration
C1 has been eliminated in favor of a different constant m. The advantage of this is that we
know the geometrical significance of m.

We now substitute Newton’s law of viscosity, frz = −4(dvz∕dr), into Eq. 2.4-4 to obtain
a differential equation for vz

dvz
dr

= −
(𝒫0 −𝒫L)R

24L

[ ( r
R

)
− m2

(R
r

)]
(2.4-5)

Integration of this first-order separable differential equation then gives

vz(r) = −
(𝒫0 −𝒫L)R2

44L

[( r
R

)2

− 2m2 ln
( r
R

)
+ C2

]
(2.4-6)

We now evaluate the two constants of integration m and C2 by using the no-slip condition
on each solid boundary:

B. C. 1: at r = nR, vz = 0 (2.4-7)

B. C. 2: at r = R, vz = 0 (2.4-8)

Substitution of these boundary conditions into Eq. 2.4-6 then gives two equations

0 = n2 − 2m2 ln n + C2; 0 = 1 + C2 (2.4-9,10)

From these, the two integration constants m and C2 are found to be

C2 = −1; 2m2 = 1 − n2

ln(1∕n)
(2.4-11,12)

These expressions can be inserted into Eqs. 2.4-4 and 2.4-6 to give the viscous
momentum-flux distribution and the velocity distribution1 as follows:

frz(r) =
(𝒫0 −𝒫L)R

2L

[( r
R

)
− 1 − n2

2 ln(1∕n)

(R
r

)]
(2.4-13)

vz(r) =
(𝒫0 −𝒫L)R2

44L

[
1 −

( r
R

)2

− 1 − n2

ln(1∕n)
ln

(R
r

)]
(2.4-14)

1H. Lamb, Hydrodynamics, Cambridge University Press, 2nd edition (1895), p. 522.
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Note that when the annulus becomes very thin (i.e., n only slightly less than unity), these
results simplify to those for a plane slit (see Problem 2B.6). It’s always a good idea to check
“limiting cases” such as these whenever possible.

The lower limit of n → 0 is not so simple, because the ratio ln(R∕r)∕ ln(1∕n)will always
be important in a region near the inner boundary.Hence, Eq. 2.4-14 does not simplify to the
parabolic distribution. However, Eq. 2.4-18 (below) for the mass rate of flow does simplify
to Eq. 2.3-23 as n → 0.

Once we have the viscous momentum-flux and velocity distributions, it is straight-
forward to get other results of interest:

(i) The maximum velocity is

vz,max= vz|r=mR =
(𝒫0 −𝒫L)R2

44L

[
1 − m2

(
1 − ln m2

)]
(2.4-15)

where the dimensionless location of the maximum velocity m is given in Eq.
2.4-12. It can then be shown that m < (1 + n)∕2; that is, the maximum velocity is
at a point that is closer to the inner wall than to the outer wall.

(ii) The volume rate of flow Q is obtained in a manner similar to that employed for
flow in a tube—by integrating the volumetric flow rate through an area element,
rdrdp, perpendicular to the flow over the entire fluid cross section (nR < r < R),
to give

Q = ∫
20

0 ∫
R

nR
vz(r)rdrdp

= 20 ⋅
(𝒫0 −𝒫L)R2

44L ∫
R

nR

[
1 −

( r
R

)2

− 1 − n2

ln(1∕n)
ln

(R
r

)]
rdr

=
0(𝒫0 −𝒫L)R4

84L

[(
1 − n4

)
− (1 − n2)2

ln(1∕n)

]
(2.4-16)

(iii) The average velocity is given by the volume rate of flow divided by the
cross-sectional area

⟨vz⟩ = ∫
20

0 ∫
R

nR
vz(r)rdrdp

∫
20

0 ∫
R

nR
rdrdp

=
Q

0R2 − 0(nR)2
=

(𝒫0 −𝒫L)R2

84L

[
1 − n4

1 − n2
− 1 − n2

ln (1∕n)

]
(2.4-17)

(iv) The mass rate of flow can be obtained from the volume rate of flow via w = iQ =
i ⋅ 0R2(1 − n2)⟨vz⟩

w =
0(𝒫0 −𝒫L)R4i

84L

[(
1 − n4

)
− (1 − n2)2

ln(1∕n)

]
(2.4-18)

In the limit that n → 0, Eq. 2.4-18 becomes the same as Eq. 2.3-23 for circular tubes.

(v) The force exerted by the fluid on the solid surfaces is obtained by summing the forces
acting on the inner and outer cylinders, as follows:

Fz = (20nRL)(−0rz|r=nR) + (20RL)(+0rz|r=R)
= (20nRL)(−frz|r=nR) + (20RL)(+frz|r=R)
= 0R2(1 − n2)(𝒫0 −𝒫L) (2.4-19)

The reader should explain the choice of signs in front of the shear stresses above
and also give an interpretation of the final result.
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The equations derived above are valid only for laminar flow. The
laminar-turbulent transition occurs in the neighborhood of Re = 2000, with the
Reynolds number defined as Re = 2R(1 − n)⟨vz⟩i∕4.

§2.5 FLOWOF TWO ADJACENT IMMISCIBLE FLUIDS1

Thus far we have considered flow situations with solid-fluid and liquid-gas boundaries.
We now give one example of a flow problem with a liquid-liquid interface (see Fig. 2.5-1).

Two immiscible, incompressible liquids are flowing in the z direction in a horizontal
thin slit of length L and width W under the influence of a horizontal pressure gradient
(p0 − pL)∕L. The fluid flow rates are adjusted so that the slit is half filled with fluid I (the
more dense phase) and half filledwith fluid II (the less dense phase). The fluids are flowing
sufficiently slowly that no instabilities occur—that is, that the interface remains exactly
planar. It is desired to find the viscous momentum-flux and velocity distributions.

A zmomentum balance over a shell of thickness 2x leads to the following differential
equation for the viscous momentum flux:

dfxz
dx

=
p0 − pL

L
(2.5-1)

This equation is obtained for both phase I and phase II. Integration of Eq. 2.5-1 for the two
regions gives

fIxz(x) =
(
p0 − pL

L

)
x + CI

1
(2.5-2)

fIIxz(x) =
(
p0 − pL

L

)
x + CII

1
(2.5-3)

We may immediately make use of one of the boundary conditions, namely, that the
momentum flux fxz is continuous through the fluid-fluid interface

B. C. 1: at x = 0, fIxz = fIIxz (2.5-4)

x

Velocity
distribution

Less dense,
less viscous

fluid Plane of zero shear stress

Shear stress
or momentum-
flux distribution

More dense,
more viscous

fluid

Interface

b

b

z

μII

μI – μII 

μI + μIIμI
x
b

1

2
=

μI + 3μII 

μI + μII
(p0 – pL)b

2L
τxz =

3μI + μII 

μI + μII
(p0 – pL)b

2L
τxz = –

Fig. 2.5-1. Flow of two immiscible fluids between a pair of horizontal plates under the

influence of a pressure gradient.

1The adjacent flow of gases and liquids in conduits has been reviewed by A. E. Dukler and M.

Wicks, III, in Chapter 8 ofModern Chemical Engineering, Vol. 1, “Physical Operations,” A. Acrivos (ed.),

Reinhold, New York (1963).
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This tells us that CI
1
= CII

1
; hence, we drop the superscript and call both integration con-

stants C1.
When Newton’s law of viscosity is substituted into Eqs. 2.5-2 and 2.5-3, we get

−4I
dvIz
dx

=
(
p0 − pL

L

)
x + C1 (2.5-5)

−4II
dvIIz
dx

=
(
p0 − pL

L

)
x + C1 (2.5-6)

These two equations can be integrated to give

vIz(x) = −
(
p0 − pL
24IL

)
x2 −

C1

4I
x + CI

2
(2.5-7)

vIIz (x) = −
(
p0 − pL
24IIL

)
x2 −

C1

4II
x + CII

2
(2.5-8)

The three integration constants can be determined from the following no-slip boundary
conditions:

B. C. 2: at x = 0, vIz = vIIz (2.5-9)

B. C. 3: at x = −b, vIz = 0 (2.5-10)

B. C. 4: at x = +b, vIIz = 0 (2.5-11)

When these three boundary conditions are applied, we get three simultaneous equations
for the integration constants:

From B. C. 2: CI
2
= CII

2
(2.5-12)

From B. C. 3: 0 = −
(
p0 − pL
24IL

)
b2 +

C1

4I
b + CI

2
(2.5-13)

From B. C. 4: 0 = −
(
p0 − pL
24IIL

)
b2 −

C1

4II
b + CII

2
(2.5-14)

From these three equations we get

C1 = −
(p0 − pL)b

2L

(
4I − 4II

4I + 4II

)
(2.5-15)

CI
2
= +

(p0 − pL)b2

24IL

(
24I

4I + 4II

)
= CII

2
(2.5-16)

The resulting momentum-flux and velocity profiles are

fxz(x) =
(p0 − pL)b

2L

[(
x
b

)
− 1

2

(
4I − 4II

4I + 4II

)]
(2.5-17)

vIz(x) =
(p0 − pL)b2

24IL

[(
24I

4I + 4II

)
+

(
4I − 4II

4I + 4II

)(
x
b

)
−

(
x
b

)2
]

(2.5-18)

vIIz (x) =
(p0 − pL)b2

24IIL

[(
24II

4I + 4II

)
+

(
4I − 4II

4I + 4II

)(
x
b

)
−

(
x
b

)2
]

(2.5-19)

These distributions are shown in Fig. 2.5-1. If both viscosities are the same, then the veloc-
ity distribution is parabolic, as one would expect for a pure fluid flowing between parallel
plates (see Eq. 2B.4-2).
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The average velocity in each layer can be obtained and the results are

⟨vIz⟩ = 1

b∫
0

−b
vIz(x)dx =

(p0 − pL)b2

124IL

(
74I + 4II

4I + 4II

)
(2.5-20)

⟨vIIz ⟩ = 1

b∫
b

0

vIIz (x)dx =
(p0 − pL)b2

124IIL

(
4I + 74II

4I + 4II

)
(2.5-21)

From the velocity and momentum-flux distributions given above, one can also calculate
the maximum velocity, the velocity at the interface, the location of the plane of zero shear
stress, and the force exerted by the fluid on the walls of the slit.

§2.6 FLOW IN A CONE-AND-PLATE VISCOMETER

A very popular type of viscometer consists of a stationary circular flat plate of radius R,
and a rotating cone, which can be used to measure the viscosity of liquids (see Fig. 2.6-1).
Although the very tip of the cone is typically removed, the cone is positioned so that the
cone tip, if present, would just contact the center of the plate (see Fig. 2.6-2(a)). The angle
between the cone and the plate is b0, which is quite small—from 1 to 5 degrees in com-
mercial instruments.

A liquid, whose viscosity is to bemeasured, is placed in the gap between the cone and
the plate. The cone ismade to rotatewith an angular velocity1, and the torque Tz required

Ω

vφ(r, θ)

R
Fig. 2.6-1. Cone-and-plate viscometer. The plate remains fixed,

and the cone is rotated at 1 rad/s.

r

R
Plate (fixed)

Cone (rotating
with angular
velocity Ω)(a)

(b)
φ

θ

ψ0

Fluid

Differential
area r dr dφ

b
y

x

vx(y)

v0

(c)

Fig. 2.6-2. Detailed illustrations of the

cone-and-plate viscometer: (a) side view of

the instrument, (b) top view of the cone-plate

system, showing a differential element

r dr dd, (c) an approximate velocity

distribution within the differential region. To

equate the systems in (a) and (c), we identify

the following equivalences: v0 = 1r and
b = r sinb0 ≈ rb0.
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to turn the cone is measured. We want to find the relation between 1, Tz, R, b0 and the
viscosity 4. This relation may be used to determine the liquid viscosity from experimental
measurements.

The advantages of this instrument are that only a very small amount of liquid is
needed, and that the velocity gradient is essentially constant throughout (which is more
of an advantage for non-Newtonian fluids whose viscosities can depend on the velocity
gradient; see Chapter 8). Disadvantages are that evaporation and surface tension at the
outer edge can complicate the viscosity determination for some fluids, and that at high
rates of rotation, the sample may be thrown outward from the instrument.

It is appropriate to use spherical coordinates to solve this problem. The variable r is
the distance outward from the point of contact of the cone and plate. The variable d is the
direction of rotationalmotion of the cone, and p is the angle downward from a line perpen-
dicular to the plate. These variables are shown in Figs. 2.6-2(a) and (b). Thus, in spherical
coordinates, the cone and the plate are both surfaces of constant p (the cone surface is at

p = 1

2
0 − b0 and the plate surface is at p = 1

2
0), and it is reasonable to assume that the flow is

only in the d direction. We will find it convenient to introduce the angle b = 1

2
0 − p, which

is the angle measured upward from the plate.
For the steady flow in spherical coordinates, we postulate that vd = vd(r,p), vr = 0, and

vp = 0. Because this flow is not rectilinear, we cannot employ the shell momentum bal-
ance described in §2.1 to obtain an exact solution to this flow problem. However, we can
obtain an approximate solution for small cone angles b0 because the flow at any radial
position will be, locally, approximately rectilinear; that is, at any radial position, the fluid
is bounded below by the stationary plate and bounded above by the nearly parallel cone,
which locally appears to translate in a uniform direction. The velocity profile at any radial
position can then be determined approximately by applying a momentum balance for a
rectilinear flow in an appropriate Cartesian coordinate system.

To make further progress, we focus on a small volume of liquid at a position r, that
extends from a surface area element r dr dd on the plate upward to the cone as depicted
in Figs. 2.6-2(a) and (b). Locally we can regard the flow as being very nearly that of the
steady, rectilinear flow in Fig. 2.6-2(c), where the fluid is between parallel plates separated
by a distance b and the top plate moves in the +x direction with speed v0. The variables
in the Cartesian coordinate system of Fig. 2.6-2(c) are related to variables in the spherical
coordinate system of Figs. 2.6-2(a) and (b) as described in Table 2.6-1.

The velocity profile vx(y) in Fig. 2.6-2(c) can be obtained by using a shell xmomentum
balance (Problem 2B.1). The resulting velocity profile is

vx(y) = v0
y
b

(2.6-1)

Table 2.6-1. Correspondences between the Variables Used to Describe Flow in a

Cone-and-Plate Viscometer

Variable

Variable used in the

local Cartesian

coordinate system of

Fig. 2.6-2(c)

Equivalent expression

using the spherical

coordinate system of

Figs. 2.6-2(a) and (b)a

Fluid velocity vx vd
Cone surface speed v0 1r
Plate separation b r sinb0 ≈ rb0

Vertical position within the fluid y r sinb ≈ rb = r
(

1

2
0 − p

)
aThe approximation r sinb ≈ rb = r

(
1

2
0 − p

)
for small cone angles is used.
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Using the relationships in Table 2.6-1, this velocity profile can be converted to the profile
for vd(r,p) in Figs. 2.6-2(a,b)

vd(r,p) =
r
(

1

2
0 − p

)
rb0

1r =

(
1

2
0 − p

)
b0

1r (2.6-2)

Now that we know the local velocity in spherical coordinates, we can evaluate the shear
stress fpd from Eq. B.1-19.

fpd = −4sin p
r

d
dp

( vd
sin p

)
(2.6-3)

Because p is very nearly equal to 1

2
0, we can set sin p = 1 in both places in Eq. 2.6-3, and

write

fpd = −41
r

dvd
dp

= 4
1
b0

(2.6-4)

This shows that the shear stress is uniform throughout the gap (when b0 is small).
At steady state, the torque1 Tz about the z axis required to rotate the cone is equal

to the torque about the z axis exerted by the fluid on the lower plate. To calculate this
torque, we integrate the torque exerted on a surface area element r dr dd over the entire
plate surface. As illustrated in Fig. 2.6-3, the torque about the z axis is the moment arm r
multiplied by the component of the differential force that is perpendicular to the moment
arm. In this case, the component of the force (exerted by the fluid on the area element) that
is perpendicular to the moment arm is dFd = +fpd|p=0∕2r dr dd. Thus, the total torque about
the z axis exerted by the fluid on the plate is given by the integral of r dFd over the plate
surface

Tz = ∫
20

0 ∫
R

0

r(fpd)|p=0∕2r dr dd (2.6-5)

When the shear stress from Eq. 2.6-4 is inserted into Eq. 2.6-5 and the integration is per-
formed, we get

Tz = 204
1
b0

∫
R

0

r2dr =2041R3

3b0

(2.6-6)

This is the standard formula used for calculating the viscosity from measurements of the
torque and the angular velocity for a cone-and-plate instrument of known radius R and
cone angle b0.

This problem illustrates how we can obtain a satisfactory solution to some problems
by approximating the flow system locally as a steady shear flow. This particular problem
can actually be solved exactly in spherical coordinates to give for the velocity distribution2

vd(r,p)
r

= 1 sin p0

⎡⎢⎢⎢⎢⎣
cot p + 1

2

(
ln

1 + cos p
1 − cos p

)
sin p

cot p0 +
1

2

(
ln

1 + cos p0
1 − cos p0

)
sin p0

⎤⎥⎥⎥⎥⎦
(2.6-7)

where p0 =
1

2
0 − b0. When both p and p0 are very close to 1

2
0, Eq. 2.6-7 reduces to Eq. 2.6-2.

The reader should be very pleased that it is not necessary to derive Eq. 2.6-7.

1Torque (a vector) is defined as

T = [r × F] (2.6-4a)

where r is the lever arm and F is the force. Therefore, in calculating the torque in the cone-and-plate

system, if we take the lever arm to be in the x direction and the force to be in the y direction, the torque
will be in the z direction. This explains the “z” subscript on T.

2R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York, 1st edition

(1960), p. 119.
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dFφ  = +(τθφ)

rdφ

dr

r

θ=π/2 rdrdφ Fig. 2.6-3. Illustration of the torque about the z axis
exerted by the fluid on an area element r dr dd on the

plate surface.

§2.7 FLOW AROUND A SPHERE1,2,3,4

In the preceding sections several elementary viscous flow problems have been solved.
These have all dealt with rectilinear flows with only one nonvanishing velocity compo-
nent. Since the flow around a sphere involves two nonvanishing velocity components, vr
and vp, it cannot be conveniently analyzed by the techniques explained at the beginning
of this chapter. Nonetheless, a brief discussion of flow around a sphere is warranted
here because of the importance of flow around submerged objects. In fluid dynamics
textbooks,2-4 it is shown how to obtain the velocity and pressure distributions. Here we
just cite those results and show how they can be used to derive some important relations
that we need in later discussions. This exercise also provides the opportunity to reinforce
the readers’ understanding of the definitions of stress components, and their ability to
use these components to evaluate forces on objects. The problem solved here is concerned
with “creeping flow,” that is, very slow flow. This type of flow is also referred to as
“Stokes flow” (see Eq. 3.6-3).

We consider here the flow of an incompressible fluid about a solid sphere of radius R
anddiameterD as shown in Fig. 2.7-1. The fluid,with density i and viscosity 4, approaches
the fixed sphere vertically upward along the negative z axiswith a uniformvelocity v∞. For
this problem, “creeping flow” means that the Reynolds number Re = Dv∞i∕4 is less than
about 0.1. This flow regime is characterized by the absence of eddy formation downstream
from the sphere.

The velocity and pressure distributions for this creeping flow are2,4

vr(r,p) = v∞

[
1 − 3

2

(
R
r

)
+ 1

2

(
R
r

)3
]
cos p (2.7-1)

vp(r,p) = v∞

[
−1 + 3

4

(
R
r

)
+ 1

4

(
R
r

)3
]
sin p (2.7-2)

vd = 0 (2.7-3)

1G. G. Stokes, Trans. Cambridge Phil. Soc., 9, 8–106 (1851). For creeping flow around an object

of arbitrary shape, see H. Brenner, Chem. Engr. Sci., 19, 703–727 (1964).
2L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd edition, Pergamon, London (1987), §20.
3S. Kim and S. J. Karrila,Microhydrodynamics: Principles and Selected Applications,

Butterworth-Heinemann, Boston (1991); Dover, Mineola, NY (2005), §4.2.3; this book contains a thorough

discussion of “creeping flow” problems.
4R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Revised 2nd Edition, Wiley,

New York (2007), Example 4.2-1.
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Radius of sphere = R

At every point there are
pressure and friction
forces acting on the
sphere surface

Fluid approaches
from below with
velocity v∞

 v∞

θ

φ

y

z

x

Point in space
(x, y, z) or
(r, θ, φ)

Projection
of point on
xy-plane

Fig. 2.7-1. Sphere of radius R
around which a fluid is flowing.

The coordinates r, p, and d are

shown. For more information

on spherical coordinates, see

Fig. A.8.2.

p(r,p) = p0 − igz − 3

2

4v∞
R

(
R
r

)2

cos p (2.7-4)

In the last equation, the quantity p0 is the pressure in the plane z = 0 far away from the
sphere. The term −igz is the hydrostatic pressure resulting from the weight of the fluid,
and the term containing v∞ is the contribution of the fluid motion. Equations 2.7-1, 2.7-2,
and 2.7-3 show that the fluid velocity is zero at the surface of the sphere. Furthermore, in
the limit as r → ∞, the fluid velocity is in the z direction with uniform magnitude v∞; this
follows from the fact that vz = vr cos p − vp sin p, which can be derived by using Eq. A.6-33,
and vx = vy = 0, which follows from Eqs. A.6-31 and A.6-32 (see Problem 2C.5).

The components of the viscous stress tensor f in spherical coordinates may be
obtained from the velocity distribution above by using Table B.1. They are

frr(r,p) = −2fpp(r,p) = −2fdd(r,p)

=
34v∞
R

[
−
(
R
r

)2

+
(
R
r

)4
]
cos p (2.7-5)

frp(r,p) = fpr(r,p) =
3

2

4v∞
R

(
R
r

)4

sin p (2.7-6)

and all other components are zero. Note that the normal stresses for this flow are nonzero,
except at r = R.

Let us now determine the force exerted by the flowing fluid on the sphere. Because
of the symmetry around the z axis, the resultant force will be in the z direction. Therefore,
the force can be obtained by integrating the z components of the normal and tangential
forces over the sphere surface.

Integration of the Normal Force

At each point on the surface of the sphere the fluid exerts a force per unit area
−0rr|r=R = −(p + frr)|r=R on the solid, acting normal to the surface. Since the fluid is in the
region of greater r and the sphere in the region of lesser r, we have to affix a minus sign in
accordance with the sign convention established in §1.2. The z component of the force (per
unit area) is −0rr|r=R cos p = −(p + frr)|r=R cos p. We now multiply this by a differential sur-
face element R2 sin p dp d3 to get the force on the surface element (see Fig. A.8.2). Then we
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integrate over the surface of the sphere to get the resultant normal force in the z direction

F(n) = ∫
20

0 ∫
0

0

[
−
(
p + frr

)|||r=R cos p]R2 sin p dp dd (2.7-7)

According to Eq. 2.7-5, the normal stress frr is zero5 at r = R and can be omitted in the
integral in Eq. 2.7-7. The pressure distribution at the surface of the sphere is, according to
Eq. 2.7-4

p|r=R = p0 − igR cos p − 3

2

4v∞
R

cos p (2.7-8)

When this is substituted into Eq. 2.7-7 and the integration performed, we get

F(n) = 20∫
0

0

[
−p0 + igR cos p + 3

2

4v∞
R

cos p

]
(cos p)R2 sin p dp

= −20p0R2∫
0

0

cos p sin p dp + 20R2

(
igR + 3

2

4v∞
R

)
∫

0

0

cos2 p sin p dp

= 20R2

(
igR + 3

2

4v∞
R

)(
2

3

)
= 4

3
0R3ig + 204Rv∞ (2.7-9)

In the integration, the term containing p0 gives zero, the term containing the gravitational

acceleration g gives the “buoyant force,” 4

3
0R3ig, and the term containing the approach

velocity v∞ gives the “form drag,” 204Rv∞.

Integration of the Tangential Force

At each point on the solid surface there is also a shear stress acting tangentially. The force
per unit area exerted in the−pdirection by the fluid (region of greater r) on the solid (region
of lesser r) is+0rp|r=R = +frp|r=R. The z component of this force per unit area is 0rp|r=R sin p =
frp|r=R sin p. We now multiply this by the differential surface area R2 sin p dp dd and inte-
grate over the entire spherical surface. This gives the resultant force in the z direction:

F(t) = ∫
20

0 ∫
0

0

(
frp||r=R sin p

)
R2 sin p dp dd (2.7-10)

The shear stress distribution on the sphere surface, from Eq. 2.7-6, is

frp|r=R = 3

2

4v∞
R

sin p (2.7-11)

Substitution of this expression into the integral in Eq. 2.7-10 gives

F(t) = 20∫
0

0

(
3

2

4v∞
R

sin p

)
(sin p)R2 sin p dp

= 304Rv∞∫
0

0

sin3p dp = 304Rv∞

(
4

3

)
= 404Rv∞ (2.7-12)

which is the “friction drag.”
Hence, the total force F exerted by the fluid on the sphere in the +z direction is given

by the sum of Eqs. 2.7-9 and 2.7-12

F = 4

3
0R3ig

⏟⏟⏟
buoyant

force

+ 204Rv∞
⏟⏞⏟⏞⏟

form
drag

+ 404Rv∞
⏟⏞⏟⏞⏟
friction
drag

(2.7-13)

5In Example 3.1-1 we show that, for incompressible, Newtonian fluids, all three of the normal

stresses are zero at fixed solid surfaces in all flows.
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or

F = Fb + Fk =
4

3
0R3ig

⏟⏟⏟
buoyant

force

+ 604Rv∞
⏟⏞⏟⏞⏟
kinetic
force

(2.7-14)

The first term is the buoyant force, Fb, which would be present in a fluid at rest; it is just the
mass of the displaced fluid multiplied by the gravitational acceleration. The second term,
the kinetic force, Fk, results from the motion of the fluid. The relation

Fk = 604Rv∞ (2.7-15)

is known as Stokes’ law.1 It is used in describing the motion of colloidal particles under
an electric field, in the theory of sedimentation, and in the study of the motion of aerosol
particles. Stokes’ law is useful only up to a Reynolds number Re = Dv∞i∕4 of about 0.1.
At Re = 1, Stokes’ law predicts a force that is about 10 per cent too low. The flow behavior
for larger Reynolds numbers is discussed in Chapter 6.

This problem, which could not be solved by the shell balancemethod, emphasizes the
need for a more general method for coping with flow problems in which the streamlines
are not rectilinear. That is the subject of the following chapter.

EXAMPLE 2.7-1

Determination of
Viscosity from the
Terminal Velocity of a
Falling Sphere

Derive a relation that enables one to get the viscosity of a fluid by measuring the terminal

velocity vt of a small sphere of radius R in the fluid.

SOLUTION

If a small sphere is allowed to fall from rest in a viscous fluid, it will accelerate until it reaches a

constant velocity—the terminal velocity. When this steady-state condition has been reached the

sum of all the forces acting on the sphere must be zero. The force of gravity on the solid acts in

the direction of fall, and the buoyant and kinetic forces act in the opposite direction. Thus, the

z force balance is
4

3
0R3isg = 4

3
0R3ig + 604Rvt (2.7-16)

Here is and i are the densities of the solid sphere and the fluid. Solving this equation for the

viscosity gives

4 = 2

9

R2(is − i)g
vt

(2.7-17)

This result may be used only if the Reynolds number Dvti∕4 is less than about 0.1.

This experiment provides an apparently simple method for determining viscosity. How-

ever, it is difficult to keep a homogeneous sphere from rotating during its descent, and if it does

rotate, then Eq. 2.7-17 cannot be used. Sometimes asymmetrically weighted spheres are used

in order to preclude rotation; then the left side of Eq. 2.7-16 has to be replaced by m, the mass

of the weighted sphere, times the gravitational acceleration.

§2.8 CONCLUDING COMMENTS

In this chapterwe have shown how to set up and solve some time-independent, rectilinear
flow problems by using a shell momentum balance. We have also given two examples
of flows that we could not solve by the shell balance method—namely, the flow in a
cone-and-plate viscometer and the flow around a sphere—because they are not rectilinear
flows (although we can obtain an approximate solution to the flow in a cone-and-plate
viscometer using a local shell momentum balance). In the next chapter we will set up the
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general equations, the “equations of change,” that will enable us to solve time-dependent
problems as well as flows that are more complicated than rectilinear.

In setting up the shell momentum balances, components of the convective momen-
tum flux ivv appeared in Eqs. 2.2-11 through 2.2-13, and also in Eqs. 2.3-9 and 2.3-10, but
did not contribute to the final differential equation. This invariably happens for incom-
pressible, rectilinear flows. Also, in §2.7, in the flow around the sphere, the ivv term
does not appear, because of the creeping-flow assumption; inasmuch as the velocity v
is assumed to be very small, the term ivv is even smaller and therefore can be safely
disregarded. In Chapter 3, the ivv term is needed for the derivation of the generalmomen-
tum conservation equation. The termappears in problems involving transpiration cooling,
one-dimensional compressible flow, and many other problems.

QUESTIONS FOR DISCUSSION

1. Summarize the procedure used in the solution of viscous flow problems by the shell balance
method. What kinds of problems can and cannot be solved by this method? How is the defini-
tion of the first derivative used in the method?

2. Which of the flow systems in this chapter can be used as a viscometer? List the difficulties that
might be encountered in each.

3. How are the Reynolds numbers defined for films, tubes, and spheres?What are the dimensions
of Re?

4. How can one modify the film thickness formula in §2.2 to describe a thin film falling down
the interior wall of a cylinder? What restrictions might have to be replaced on this modified
formula?

5. How can the results in §2.3 be used to estimate the time required for a liquid to drain out of a
vertical tube that is open at both ends?

6. Contrast the radial dependence of the shear stress for the laminar flow of a Newtonian liquid
in a tube and in an annulus. In the latter, why does the function change sign?

7. Show that the Hagen-Poiseuille formula (Eq. 2.3-21) is dimensionally consistent.
8. What differences are there between the flow in a circular tube of radius R and the flow in the

same tube with a thin wire placed along the axis?
9. Under what conditions would you expect the analysis in §2.5 to be inapplicable?
10. In §2.6, why is the torque required to turn the cone equal to the torque exerted by the fluid on

the bottom plate? If one were to rotate the plate and keep the cone fixed, what would be the
magnitude of the torque exerted by the fluid on the cone?

11. Is Stokes’ law valid for droplets of oil falling in water? For air bubbles rising in benzene? For
tiny particles falling in air, if the particle diameters are of the order of the mean-free path of the
molecules in the air?

12. Two immiscible liquids, A and B, are flowing in laminar flow between two parallel plates. Is it
possible that the velocity profiles would be of the following form? Explain.

Liquid A

Liquid B

13. What is the terminal velocity of a spherical colloidal particle having an electric charge e in an
electric field of strength ℰ? How is this used in the Millikan oil-drop experiment?

PROBLEMS 2A.1 Thickness of a falling film. Water at 20∘C is flowing down a vertical wall with Re = 10. Cal-
culate (a) the flow rate, in gallons per hour per foot of wall width, and (b) the film thickness in
inches.

Answers: (a) 0.727 gal∕hr ⋅ ft; (b) 0.00361 in.
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2A.2 Determination of capillary radius by flow measurement. One method for determining the

radius of a capillary tube is by measuring the rate of flow of a Newtonian liquid through the

tube. Find the radius of a capillary from the following flow data:

Length of capillary tube 50.02 cm

Kinematic viscosity of liquid 4.03 × 10−5 m2∕s
Density of liquid 0.9552 × 103 kg∕m3

Pressure drop in the horizontal tube 4.829 × 105 Pa

Mass rate of flow through tube 2.997 × 10−3 kg∕s

What difficulties may be encountered in this method? Suggest some other methods for deter-

mining the radii of capillary tubes.

2A.3 Volume flow rate through an annulus. A horizontal annulus, 27 ft in length, has an inner

radius of 0.495 in. and an outer radius of 1.1 in. A 60% aqueous solution of sucrose (C12H22O11)

is to be pumped through the annulus at 20∘C. At this temperature the solution density is 80.3

lbm∕ft
3
and the viscosity is 136.8 lbm∕ft ⋅ hr. What is the volume flow rate when the impressed

pressure difference is 5.39 psi?

Answer: 0.110 ft
3∕s

2A.4 Loss of catalyst particles in stack gas.
(a) Estimate the maximum diameter of microspherical catalyst particles that could be lost in

the stack gas of a fluid cracking unit under the following conditions:

Gas velocity at axis of stack = 1.0 ft∕s (vertically upward)
Gas viscosity = 0.026 cp

Gas density = 0.045 lbm∕ft
3

Density of a catalyst particle = 1.2 g∕cm3

Express the result in microns (1 micron = 10−6 m = 14m).
(b) Is it permissible to use Stokes’ law in (a)?

Answers: (a) 110 4m; Re = 0.93

2B.1 Simple shear flow between parallel plates. Consider the flow of an incompressible Newto-

nian fluid between parallel plates, such as that depicted in Fig. 2.6-2(c). The top plate (located

at y = b) moves in the positive x direction with speed v0, and the bottom plate (located at y = 0)

remains at rest. The dimensions of the plates in the x and zdirections aremuch larger than b, and
thus,we postulate that at steady state vx = vx(y) and vy = vz = 0. Gravity acts in the−ydirection.
(a) Using a shell x momentum balance, obtain the following expressions for the viscous

momentum-flux and velocity distributions:

fyx(y) = −4
v0
b

(2B.1-1)

vx(y) = v0
y
b

(2B.1-2)

(b) Obtain an expression for the volumetric rate of flow.

(c) Repeat the problem for the casewhere the upper plate is fixed and the lower plate ismoving

in the +x direction with a speed v0.

2B.2 Different choice of coordinates for the falling-film problem. Re-derive the velocity profile

and the average velocity in §2.2, by replacing x by a coordinate x measured away from the

wall; that is, x = 0 is thewall surface, and x = t is the liquid-gas interface. Show that the velocity

distribution is then given by

vz(x) =
igt2 cos v

4

[
x
t
− 1

2

(x
t

)2]
(2B.2-1)
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and then use this to get the average velocity. Show how one can get Eq. 2B.2-1 from Eq. 2.2-22
by making a change of variable.

2B.3 Alternate procedure for solving flow problems. In this chapter we have used the following
procedure: (i) derive an equation for the viscous momentum flux, (ii) integrate this equation,
(iii) insert Newton’s law to get a first-order differential equation for the velocity, and (iv) inte-
grate the latter to get the velocity distribution. Another method is: (i) derive an equation for
the viscousmomentumflux, (ii) insert Newton’s law to get a second-order differential equation
for the velocity profile, and (iii) integrate the latter to get the velocity distribution. Apply this
second method to the falling-film problem by substituting Eq. 2.2-18 into Eq. 2.2-14 to obtain a
second-order, ordinary differential equation for the velocity profile vz(x). Integrate this equation
twice and apply appropriate boundary conditions for the velocity and its derivative to evaluate
the constants of integration and determine the velocity profile.

2B.4 Laminar flow in a narrow slit (see Fig. 2B.4).
(a) An incompressible Newtonian fluid is in laminar flow in a narrow slit formed by two par-
allel walls a distance 2B apart. It is understood that B ≪ W and B ≪ L, so that “edge effects”
are unimportant. Make a shell momentum balance, and obtain the following expressions for
the viscous momentum-flux and velocity distributions:

fxz(x) =
(
𝒫0 −𝒫L

L

)
x (2B.4-1)

vz(x) =
(𝒫0 −𝒫L)B2

24L

[
1 −

( x
B

)2
]

(2B.4-2)

In these expressions𝒫 = p + igh = p − igz.

Fluid out

Fluid in

2B

x

z

y

W

L

Fig. 2B.4 Flow through a slit, with B ≪ W ≪ L.

(b) What is the ratio of the average velocity to the maximum velocity for this flow?

(c) Obtain the slit analog of the Hagen-Poiseuille equation.

(d) Draw a meaningful sketch to show why the above analysis is inapplicable if B = W.

(e) How can the result in (b) be obtained from the results of §2.5?

Answers: (b) ⟨vz⟩∕vz,max =
2

3
;

(c) Q = 2

3

(𝒫0 −𝒫L)B3W
4L

2B.5 Laminar slit flowwith a moving wall (“plane Couette flow”). Extend Problem 2B.4 by allow-
ing the wall at x = B to move in the positive z direction at a steady speed v0. Obtain

(a) the shear-stress distribution, and

(b) the velocity distribution.
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Draw carefully labeled sketches of these functions.

Answers: (a) fxz(x) =
(
𝒫0 −𝒫L

L

)
x −

4v0
2B

(b) vz(x) =
(𝒫0 −𝒫L)B2

24L

[
1 −

( x
B

)2
]
+

v0
2

(
1 + x

B

)
2B.6 Interrelation of slit and annulus formulas. When an annulus is very thin, it may, to a good

approximation, be considered as a thin slit. Then the results of Problem 2B.4 can be used with
suitable modifications. For example, the mass rate of flow in an annulus with outer wall of
radius R and inner wall of radius (1 − s)R, where s is small, may be obtained from Problem

2B.4 by replacing 2B by sR, andW by 20
(
1 − 1

2
s
)
R. In this way we get for the mass rate of flow

w =
0(𝒫0 −𝒫L)R4s3i

64L

(
1 − 1

2
s

)
(2B.6-1)

Show that this same result may be obtained from Eq. 2.4-18 by setting n equal to 1 − s
everywhere in the formula and then expanding the expression for w in powers of s. This
requires using the Taylor series (see §C.2)

ln(1 − s) = −s − 1

2
s2 − 1

3
s3 − 1

4
s4 − · · · (2B.6-2)

and then performing a long division. The first term in the resulting serieswill be Eq. 2B.6-1.Cau-
tion: In the derivation it is necessary to use the first four terms of the Taylor series in Eq. 2B.6-2.

2B.7 Flowof a filmon the outside of a circular tube. In a gas absorption experiment, a viscous fluid
flows upward through a small circular tube and then downward in laminar flowon the outside.
Set up a momentum balance over a shell of thickness 2r in the film, as shown in Fig. 2B.7.

Velocity
distribution
inside tube

r

z

Velocity
distribution
outside
in film

Gravity force
acting on
the volume

2πr∆rL

L

z-Momentum
into shell

of thickness
∆r

z-Momentum
out of shell
of thickness

∆r

∆r

R

aR

CL Fig. 2B.7 Velocity distribution vz(r) and z
momentum balance for the flow of a falling film

on the outside of a circular tube.



Trim Size: 8in x 10in Bird1e c02.tex V1 - October 21, 2014 3:18 P.M. Page 73

Problems 73

Note that the “momentum in” and “momentum out” arrows are always taken in the positive

coordinate direction, even though in this problem the momentum is flowing in the negative r
direction.

(a) Show that the velocity distribution in the falling film (neglecting end effects) is

vz(r) =
igR2

44

[
1 −

( r
R

)2

+ 2a2 ln
( r
R

)]
(2B.7-1)

(b) Obtain an expression for the mass rate of flow in the film.

(c) Show that the result in (b) simplifies to Eq. 2.2-26 if the film thickness is very small.

2B.8 Annular flow with inner cylinder moving axially. A cylindrical rod of radius nR moves axi-

ally with velocity v0 along the axis of a cylindrical cavity of radius R as seen in Fig. 2B.8. The

pressure at both ends of the cavity is the same, so that the fluid moves through the annular

region solely because of the rod motion.

L

Cylinder of inside
radius R

Rod of radius κR
moving with velocity v0

Fluid at modified
pressure    0

Fluid at modified
pressure    0

Fig. 2B.8 Annular flow with the inner cylinder moving axially.

(a) Find the velocity distribution in the narrow annular region.

(b) Find the mass rate of flow through the annular region.

(c) Obtain the viscous force acting on the rod over the length L.

(d) Show that the result in (c) can bewritten as a “plane slit” formulamultiplied by a “curvature

correction.” Problems of this kind arise in studying the performance of plastics extrusion dies

for wire coating.1

Answers: (a)
vz(r)
v0

=
ln(r∕R)
ln n

(b) w =
0R2iv0

2

[
1 − n2

ln (1∕n)
− 2n2

]
(c) Fz = −204Lv0∕ ln(1∕n)

(d) Fz = −
204Lv0

s

(
1 − 1

2
s − 1

12
s2 + · · ·

)
where s = 1 − n (see Problem 2B.6)

2B.9 Analysis of a capillary flowmeter. Determine the rate of flow (in lbm∕hr) through the capillary

flow meter shown in Fig. 2B.9. The fluid flowing in the inclined tube is water at 20∘C, and
the manometer fluid is carbon tetrachloride (CCl4) with density 1.594 g∕cm3. The capillary

diameter is 0.010 in. Note: Measurements of H and L are sufficient to calculate the flow rate; p
need not be measured. Why?

1J. B. Paton, P. H. Squires, W. H. Darnell, F. M. Cash, and J. F. Carley, Processing of Thermoplastic
Materials, E. C. Bernhardt (ed.), Reinhold, New York (1959), Chapter 4.
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L = 
120

"

h = L sin θ

H = 1.0"

CCl4

Water

ED

C

F

θ

B

A

Fig. 2B.9 A capillary flow meter.

2B.10 Low-density phenomena in tube flow with compressible fluids.2,3 As the pressure is
decreased in the system studied in Example 2.3-2, deviations from Eqs. 2.3-32 and 2.3-33 arise.
The gas behaves as if it slips at the tube wall. It is conventional2 to replace the customary
“no-slip” boundary condition that vz = 0 at the tube wall by

vz = −r
dvz
dr

at r = R (2B.10-1)

in which r is the slip coefficient. Repeat the derivation in Example 2.3-2 using Eq. 2B.10-1 as
the boundary condition. Also make use of the experimental fact that the slip coefficient varies
inverselywith the pressure, r = r0∕p, in which r0 is a constant. Show that themass rate of flow is

w =
0(p0 − pL)R4iavg

84L

(
1 +

4r0
Rpavg

)
(2B.10-2)

in which pavg =
1

2
(p0 + pL) and iavg is the average density calculated at pavg.

When the pressure is decreased further, a flow regime is reached in which the mean-free
path of the gas molecules is large with respect to the tube radius (Knudsen flow). In that regime3

w =
√

2m
0KT

(
4

3
0R3

)(
p0 − pL

L

)
(2B.10-3)

in which m is the molecular mass and K is the Boltzmann constant. In the derivation of this
result it is assumed that all collisions of the molecules with the solid surfaces are diffuse and not
specular. The results in Eqs. 2.3-33, 2B.10-2, and 2B.10-3 are summarized in Fig. 2B.10.

ρavg

w
p0 – pL Slip flow Poiseuille flow

Free molecule flow
or Knudsen flow

Fig. 2B.10 A comparison of the flow regimes

in gas flow through a tube.

2E. H. Kennard, Kinetic Theory of Gases, McGraw-Hill, New York (1938), pp. 292–295, 300–306.
3M. Knudsen, The Kinetic Theory of Gases, Methuen, London, 3rd edition (1950). See also R. J. Silbey,

R. A. Alberty, and M. G. Bawendi, Physical Chemistry, 4th edition, Wiley, New York (2005), §17.6.
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2B.11 Incompressible flow in a slightly tapered tube. An incompressible fluid flows through a tube
of circular cross section, for which the tube radius changes linearly from R0 at the tube entrance
to a slightly smaller value RL at the tube exit. Assume that the Hagen-Poiseuille equation is
approximately valid over a differential length of the tube, dz, so that the mass flow rate is

w = 0[R(z)]4i
84

(
−d𝒫

dz

)
(2B.11-1)

This is a differential equation for𝒫 as a function of z, but, when the explicit expression for R(z)
is inserted, integration of Eq. 2B.11-1 is cumbersome. This can be avoided by making a change
of variable.

(a) Write down the expression for R as a function of z.
(b) Change the independent variable in the above equation to R, so that the equation becomes

w = 0R4i

84

(
−d𝒫

dR

)(
RL − R0

L

)
(2B.11-2)

(c) Integrate this equation, and then show that the solution can be rearranged to give

w =
0(𝒫0 −𝒫L)R4

0
i

84L

[
1 −

1 +
(
RL∕R0

)
+ (RL∕R0)2 − 3(RL∕R0)3

1 + (RL∕R0) + (RL∕R0)2

]
(2B.11-3)

Interpret the result. The approximation used here that a flow between nonparallel surfacesmay
be regarded locally as flow between parallel surfaces is sometimes called the lubrication approxi-
mation and is widely used in the theory of lubrication. By making a careful order-of-magnitude
analysis, it can be shown that, for this problem, the lubrication approximation is valid as
long as4

RL

L

[
1 −

(
RL

R0

)2
]
≪ 1 (2B.11-4)

2B.12 Flow of a fluid in a network of tubes. A fluid is flowing in laminar flow from A to B through
a network of tubes, as depicted in Fig. 2B.12. Obtain an expression for the mass flow rate w of
the fluid entering at A (or leaving at B) as a function of the modified pressure drop 𝒫A −𝒫B.
Neglect the disturbances at the various tube junctions.

Answer: w =
30(𝒫A −𝒫B)R4i

204L

1

2

Fluid in

Fluid out

3

4

5

6 B

A
All tubes have the same

radius R and same length L
Fig. 2B.12 Flow of a fluid in a network with

branching.

4R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Vol. 1,
Wiley-Interscience, New York, 2nd edition (1987), pp. 16–18.
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2B.13 Location of maximum in the velocity distribution for annular flow. Verify the statement that
the maximum in the velocity distribution for flow in an annulus is closer to the inner wall than
to the outer wall. Use a numerical calculation if necessary.

2C.1 Performance of an electric dust collector.5

(a) Adust precipitator consists of a pair of oppositely chargedplates betweenwhichdust-laden
gases flow, as depicted in Fig. 2C.1. It is desired to establish a criterion for the minimum length
of the precipitator in terms of the charge on the particle e, the electric field strength ℰ , the
pressure difference p0 − pL, the particle massm, and the gas viscosity 4. That is, for what length
L will the smallest particle present (mass m) reach the bottom just before it has a chance to
be swept out of the channel? Assume that the flow between the plates is laminar so that the
velocity distribution is described by Eq. 2B.4-2. Assume also that the particle velocity in the
z direction is the same as the fluid velocity in the z direction. Assume further that the Stokes
drag on the sphere as well as the gravity force acting on the particle as it is accelerated in the
−x direction can be neglected.

L

Parabolic
velocity

distribution

Pressure
p0

Pressure
pL

x = + B

x = – B

x
z

Particle
trajectory

2B g

Fig. 2C.1 A possible particle trajectory in an electric dust collector. The particle that begins at

z = 0, x = +B and ends up at x = −B may not necessarily travel the longest distance in the z
direction.

(b) Rework the problem neglecting the particle acceleration in the x direction resulting from
gravity, but including the Stokes drag.

(c) Compare the usefulness of the solutions in (a) and (b), considering that stable aerosol par-
ticles have effective diameters of about 1-10 4m and densities of about 1 g∕cm3.

Answer: (a) Lmin = [12(p0 − pL)2B5m∕2542eℰ ]1∕4

2C.2 Residence-time distribution in tube flow. Define the residence-time function F(t) to be the frac-
tion of the fluid flowing in a conduit that flows completely through the conduit in a time
interval t. Also define the mean residence time tm by the relation

tm = ∫
1

0

t dF (2C.2-1)

(a) An incompressible Newtonian liquid is flowing in a circular tube of length L and radius R,
and the average flow velocity is ⟨vz⟩. Show that

F(t) = 0 for t ≤ L∕2⟨vz⟩ (2C.2-2)

F(t) = 1 − (L∕2⟨vz⟩t)2 for t ≥ L∕2⟨vz⟩ (2C.2-3)

(b) Show that tm = L∕⟨vz⟩.
5In the first edition of Transport Phenomena, by R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Wiley,

New York (1960), the answer given to this problem (Problem 2.M) was incorrect, as pointed out in 1970 by

Nau Gab Lee of Seoul National University.
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2C.3 Velocity distribution in a tube. You have received amanuscript to referee for a technical jour-

nal. The paper deals with heat transfer in tube flow. The authors state that, because they are

concernedwith nonisothermal flow, theymust have a “general” expression for the velocity dis-

tribution, one that can be used even when the viscosity of the fluid is a function of temperature

(and hence, position). The authors state that a “general expression for the velocity distribution

for flow in a tube” is

vz(y)⟨vz⟩ =
∫

1

y
(y∕4)dy

∫
1

0

(y3∕4)dy
(2C.3-1)

in which y = r∕R and y is a dummy variable of integration. The authors give no derivation, nor

do they give a literature citation. As the referee you feel obliged to derive the formula and list

any restrictions implied.

2C.4 Falling-cylinder viscometer.6 A falling-cylinder viscometer consists of a long vertical cylin-

drical container (radius R), capped at both ends, with a solid cylindrical slug (radius nR), as
illustrated in Fig. 2C.4(a). The slug is equipped with fins so that its axis is coincident with that

of the tube.

κR

κR R

R

HCylindrical
slug descends
with speed v0

Cylindrical container
filled with fluid

Container
wallFalling

cylinder

vz(r)

–v0

x

y

z

(a)

(b)

Fig. 2C.4 (a) A falling-cylinder viscometer with a tightly fitting solid cylinder moving

vertically. The cylinder is usually equipped with fins to maintain centering within the tube.

The fluid completely fills the tube and the top and bottom are closed. (b) Magnification of the

gap between the slug and the container wall, illustrating the velocity profile vz(r).

As the cylindrical slug descends in the −z direction, the (incompressible) fluid is pushed

upward through the gap between the falling slug and the container walls. A sketch of the

resulting fluid velocity profile is illustrated in Fig. 2C.4(b). Note that a portion of the fluid will

be moving upward, while another portion of the fluid is moving downward. Note also that

the pressure at the bottom of the falling slug (p0) will be greater than the pressure at the top

6J. Lohrenz, G. W. Swift, and F. Kurata, AIChE Journal, 6, 547–550 (1960) and 7, 6S (1961); E. Ashare,

R. B. Bird, and J. A. Lescarboura, AIChE Journal, 11, 910–916 (1965); F. J. Eichstadt and G. W. Swift, AIChE
Journal, 12, 1179–1183 (1966); M. C. S. Chen and J. A. Lescarboura, AIChE Journal, 14, 123–127 (1968).
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of the falling slug (pH). At steady state, we postulate that vz = vz(r), vr = 0, vp = 0, and p = p(z)
within the gap between the slug and outer cylinder.

One can observe the rate of descent of the slug in the cylindrical container when the latter
is filled with fluid. In this analysis, we will find an equation that gives the viscosity of the fluid
in terms of the terminal speed of the slug v0 and the various geometric quantities shown in the
figure.

(a) Use a shell zmomentum balance and the postulates above to obtain the following differen-
tial equation for the shear stress in the fluid-filled gap

d
dr

(rfrz) = r
𝒫0 −𝒫H

H
(2C.4-1)

(b) One can integrate Eq. 2C.4-1 to obtain an expression for frz, which will include a constant
of integration. Inserting Newton’s law of viscosity will produce a differential equation for vz(r),
which can be integrated to produce a second constant of integration. Show that by applying
appropriate boundary conditions at r = nR and r = R, one can obtain the velocity distribution

vz(r) =
2𝒫
44H

R2

[
1 −

( r
R

)2
]
−

[
v0 +

2𝒫
44H

R2
(
1 − n2

)] ln(r∕R)
ln n

(2C.4-2)

where 2𝒫 = 𝒫0 −𝒫H.

(c) Because the slug and the fluid are both incompressible, the downward volumetric flow rate
of the cylindrical slug [0(nR)2v0]must be equal to the upward volumetric flow rate of the fluid.
Use this constraint, with the fluid volumetric flow rate determined from the velocity profile
above, to show that

2𝒫
44H

R2 =
v0

(1 + n2) ln 1

n
− (1 − n2)

(2C.4-3)

(d) Show that by using Eq. 2C.4-3 to eliminate 2𝒫 from Eq. 2C.4-2, the velocity distribution
in the annular slit can be written

vz(k)
v0

= −
(1 − k2) − (1 + n2) ln(1∕k)
(1 − n2) − (1 + n2) ln(1∕n)

(2C.4-4)

in which k = r∕R is a dimensionless radial coordinate.

(e) Make a force balance on the cylindrical slug and obtain

4 =
(i0 − i)g(nR)2

2v0

[(
ln

1

n

)
−

(
1 − n2

1 + n2

)]
(2C.4-5)

in which i and i0 are the densities of the fluid and the slug, respectively. To obtain the correct
result, youmust include both the (modified) pressure and shear stress contributions to the force
exerted by the fluid on the slug.

(f) Show that, for very small slit widths, the result in (e)may be expanded in powers of s = 1 − n
to give

4 =
(i0 − i)gR2s3

6v0

(
1 − 1

2
s − 13

20
s2 + · · ·

)
(2C.4-6)

See §C.2 for information on expansions in Taylor series.

2C.5 Relations needed for development of Stokes’ law.
(a) To get the expression for vz above Eq. 2.7-5, start by using Eq. A.2-16 to get vz = (v ⋅ tz). Then
use Eq. A.6-33, relating the unit vectors in the x,y,z coordinates to those in the r,p,d coordinates,
to get vz = (v ⋅ {tr cos p − tp sin p + td0}). Next perform the dot product operations between v
and the unit vectors in the spherical coordinate system, to get the desired result.

(b) Proceed as in part (a) by writing vx = (v ⋅ tx). Then use Eq. A.6-31 for the interrelation of
the unit vectors. This should give you vx = vr sin p cosd + vp cos p cosd. Next recognize that, far
from the sphere, vr = v∞ cos p and vp = −v∞ sin p, so that vx = 0.

(c) Following a procedure similar to that in (b), show that vy = 0.
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2C.6 Falling film on a conical surface.7 A fluid flows upward through a circular pipe and then

downward on a conical surface, as illustrated in Fig. 2C.6. Find the film thickness as a function

of the distance s down the cone.

Film thickness is
δ (s)

s = downstream distance
along cone surface,
measured from the

cone apex

Fluid in with mass
flow rate w

s = L

β

Fig. 2C.6 A falling film on a conical

surface. [R. B. Bird, in Selected Topics
in Transport Phenomena, CEP
Symposium Series #58, 61, 1–15
(1965).]

(a) Assume that the results of §2.2 apply approximately over any small region of the cone surface.

Show that a mass balance on a ring of liquid contained between s and s + 2s gives

d
ds

(st⟨v⟩) = 0 or
d
ds

(st3) = 0 (2C.6-1)

(b) Integrate this equation and evaluate the constant of integration by equating the mass rate

of flow w up the central tube to that flowing down the conical surface at s = L. Obtain the

following expression for the film thickness

t = 3

√
34w

0i2gL sin 2v

(L
s

)
(2C.6-2)

7R. B. Bird, in Selected Topics in Transport Phenomena, CEP Symposium Series #58, 61, 1–15 (1965).
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Chapter 3

The Equations of Change for
Isothermal Systems

§3.1 The equation of continuity

§3.2 The equation of motion

§3.3 The equation of change for mechanical energy

§3.4○ The equation of change for angular momentum

§3.5 The equations of change (substantial derivative form)

§3.6 Common simplifications of the equation of motion

§3.7 The equations of change and solving steady-state problems with one
independent variable

§3.8○ The equations of change and solving problems with two independent
variables

§3.9 Concluding comments

In Chapter 2, velocity distributions were determined for several simple flow systems by

the shell momentum balance method. The resulting velocity distributions were then used

to get other quantities, such as the average velocity and drag force. The shell balance

approach was used to acquaint the novice with the notion of a momentum balance. Even

though we made no mention of it in Chapter 2, at several points we tacitly made use of

the idea of a mass balance.

It is tedious to set up a shell balance for each problem that one encounters. Further-

more, the shell balance method cannot be applied to all flows, such as flows with curved

streamlines. What we need is a general mass balance and a general momentum balance

that can be applied to any problem, including problems with nonrectilinear motion. That

is the main point of this chapter. The two main equations that we derive are called the

equation of continuity (for the mass balance) and the equation of motion (for the momen-

tum balance). These equations can be used as the starting point for studying all problems

involving the isothermal flow of a pure fluid. In fact, all of the flow problems solved in

Chapter 2 can be formulated and solved more easily using the equations derived in this

chapter.

In Chapter 11, we enlarge our problem-solving capability by developing the

equations needed for nonisothermal pure fluids by adding an equation for the tem-

perature. In Chapter 19, we go even further and add equations of continuity for the

concentrations of the individual species. Thus, as we go from Chapter 3 to Chapter 11

and on to Chapter 19, we are able to analyze systems of increasing complexity, using the

80
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complete set of equations of change. It should be evident that Chapter 3 is a very important
chapter—perhaps the most important chapter in the book—and it should be mastered
thoroughly.

In §3.1, the equation of continuity is developed by applying the law of conservation
of mass to a tiny element of volume through which the fluid is flowing. Then the size of
this element is allowed to go to zero (thereby treating the fluid as a continuum), and the
desired partial differential equation is generated.

In §3.2, the equation of motion is developed by applying the law of conservation of
momentum to a tiny element of volume and letting the volume element become infinites-
imally small. Here again a partial differential equation is generated. This equation of
motion can be used, along with some help from the equation of continuity, to set up and
solve all the problems given in Chapter 2 and many more complicated ones. It is thus a
key equation in transport phenomena.

In §3.3 and §3.4, we digress briefly to introduce the equations of change for mechan-
ical energy and angular momentum. These equations are obtained from the equation of
motion and hence contain no new physical information. However, they provide a con-
venient starting point for several applications in this book—particularly the macroscopic
balances in Chapter 7.

The term “equation of change” may be used to describe how any physical quan-
tity changes with time and position. The more restricted term “conservation equation”
is reserved for an equation that is derived from a statement of a conservation law. The
equations of continuity and motion are based on the conservation laws for mass and
momentum. The equation of change for mechanical energy is not based on a conserva-
tion statement, and the equation for angular momentum given here does not account for
the “internal angular momentum” and hence is not based on a complete conservation
statement. A brief review of §0.3 at this point would not be out of place.

In §3.5,we introduce the “substantial derivative.” This is the timederivative following
the motion of the substance (i.e., the fluid). Because it is widely used in books on fluid
dynamics and transport phenomena, we then show how the various equations of change
can be rewritten in terms of the substantial derivatives.

In §3.6, some commonly used special forms of the equation ofmotion are given. These
include the equation for inviscid fluids, the equation for incompressible, constant viscosity
fluids, and the equation for situations where the acceleration terms can be neglected.

In §3.7, we discuss the solution of flow problems by use of the equations of continuity
and motion. Although these are partial differential equations, we can solve many prob-
lems by postulating the form of the solution and then discarding many terms in these
equations. In this way we end up with a simpler set of equations to solve. In §3.7, we
solve only problems in which the general equations may be simplified to one or more
ordinary differential equations.

In §3.8, we examine problems of greater complexity, in that they involve more than
one velocity component or more than one independent variable. These problems are
solved by using various standard methods to reduce the governing equations to ordinary
differential equations. Thus, one does not need a background in partial differential
equations to work any of the problems in this chapter.

At the end of §2.2, we emphasized the importance of experiments in fluid dynamics.
We repeat thosewords of caution here and point out that visualization of actual flows have
provided us with a much deeper understanding of flow problems than would be possible
by theory alone.1 Keep in mind that when one derives a flow field from the equations of
change, it is not necessarily the only physically admissible solution.

1We recommend particularly M. Van Dyke, An Album of Fluid Motion, Parabolic Press, Stanford
(1982); H. Werlé, Ann. Rev. Fluid Mech., 5, 361–382 (1973); D. V. Boger and K. Walters, Rheological
Phenomena in Focus, Elsevier, Amsterdam (1993).
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Vector and tensor notations are occasionally used in this chapter, primarily for the
purpose of abbreviating otherwise lengthy expressions. The beginning student will find
that only an elementary knowledge of vector and tensor notation is needed for reading
this chapter and for solving flow problems. The advanced student will find Appendix A
helpful for a better understanding of vector and tensor manipulations. With regard to the
notation, it should be kept in mind that we use lightface italic symbols for scalars, boldface
Roman symbols for vectors, and boldface Greek symbols for tensors. Also dot product
operations enclosed in ( ) are scalars, dot and cross product operations in [ ] are vectors,
and those in { } are tensors.

§3.1 THE EQUATION OF CONTINUITY

We consider here an arbitrary flow in which all three velocity components vx(x,y,z,t),
vy(x,y,z,t), and vz(x,y,z,t)may be nonzero, andmay depend on all three spatial coordinates
as well as time (for example, such as that depicted in Fig. 1.1.2). We apply the law of
conservation of mass to a tiny volume element 2x2y2z, fixed in space, through which a
fluid is flowing (see Fig. 3.1-1). Stated in words, this is⎧⎪⎨⎪⎩

rate of
increase
of mass

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩
rate of
mass
in

⎫⎪⎬⎪⎭ −
⎧⎪⎨⎪⎩
rate of
mass
out

⎫⎪⎬⎪⎭ (3.1-1)

Nowwe have to translate this simple conservation statement intomathematical language.
The rate of increase ofmasswith time is 𝜕(i2x2y2z)∕𝜕t = 2x2y2z(𝜕i∕𝜕t). As discussed

in §0.4, the fact that the fluid is flowing means that there is a convective mass flux, whose
components contribute to the “in” and “out” terms in Eq. 3.1-1. Consider first the two
shaded faces in Fig. 3.1-1, which are perpendicular to the x axis. The rate of mass enter-
ing the volume element through the shaded face at x is the convective mass flux in the x
direction (ivx)|x multiplied by the area of the shaded face 2y2z, or (ivx)|x2y2z. The rate of
mass leaving through the shaded face at x + 2x is (ivx)|x+2x2y2z. Similar expressions can
be written for the other two pairs of faces. The mass balance then becomes

2x2y2z
𝜕i

𝜕t
= 2y2z[(ivx)|x − (ivx)|x+2x]
+2z2x[(ivy)|y − (ivy)|y+2y]
+2x2y[(ivz)|z − (ivz)|z+2z] (3.1-2)

z

x

(x + ∆x, y + ∆y, z + ∆z)

(x, y, z)y
∆x

∆z

∆y

(ρvx)|x + ∆x ∆y∆z(ρvx)|x ∆y∆z

Fig. 3.1-1. Tiny fixed volume element

2x2y2z through which a fluid is

flowing. The arrows indicate the

mass transport rates in and out of the

volume through the two shaded

faces located at x and x + 2x.
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By dividing the entire equation by 2x2y2z and taking the limits as 2x, 2y, and 2z go to
zero, and then using the definitions of the partial derivatives, we get1

𝜕i

𝜕t
= −

(
𝜕
𝜕x

ivx +
𝜕
𝜕y

ivy +
𝜕
𝜕z

ivz

)
(3.1-3)

This is the equation of continuity, which describes the time rate of change of the fluid density
at a fixed point in space. This equation can be written more concisely by using vector
notation as follows:

𝜕i

𝜕t
rate of
increase of
mass per
unit volume

= −(∇ ⋅ iv)
net rate of mass
addition per
unit volume
by convection

(3.1-4)

Here (∇ ⋅ iv) is called the “divergence of iv,” sometimes written as “diviv.” The diver-
gence of the mass flux vector iv has a simple meaning: it is the net rate of mass efflux per
unit volume. Equation 3.1-4 is written in component form in Cartesian, cylindrical, and
spherical coordinates in Appendix B.1.

A very important special form of the equation of continuity is that for a fluid of con-
stant density, for which Eq. 3.1-4 assumes the particularly simple form

(incompressible fluid) (∇ ⋅ v) = 0 (3.1-5)

Of course, no fluid is truly incompressible, but frequently in engineering and biological
applications, the assumption of constant density results in considerable simplification and
very little error.2,3

EXAMPLE 3.1-1

Normal Stresses at
Solid Surfaces for
Incompressible
Newtonian Fluids

Show that for any kind of flow pattern, the normal stresses are zero at fluid–solid boundaries,

for Newtonian fluids with constant density. This is an important result that we shall use often.

SOLUTION

We visualize the flow of a fluid near some solid surface, whichmay ormay not be flat. The flow

maybe quite general,with all three velocity components being functions of all three coordinates

and time. At some point P on the surface we erect a Cartesian coordinate systemwith the origin

1In this book, when we write
𝜕
𝜕x

ivx (3.1-3a)

we mean that the product of i and vx is being differentiated. Parentheses in this situation are unnecessary,

but will be added occasionally for clarity. The same comments apply to (𝜕∕𝜕t)iv and ∇rs. If we write(
𝜕
𝜕x

i
)
vx (3.1-3b)

then only i is being differentiated.
2L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford (1987), p. 21, point out

that for steady, isentropic flows, commonly encountered in aerodynamics, the incompressibility

assumption is valid when the fluid velocity is small compared to the velocity of sound (i.e., low Mach

number).
3Equation 3.1-5 is the basis for Chapter 2 in G. K. Batchelor, An Introduction to Fluid Dynamics,

Cambridge University Press (1967), which is a lengthy discussion of the kinematical consequences of the

equation of continuity.
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solid surface

z

y
xP

Fig. 3.1-2. Portion of a solid surface on which a

Cartesian coordinate system is constructed. The x and y
axes are in the plane of the surface, and the z axis is
normal to the surface, pointing into the fluid.

atPwith z as the normal direction, as illustrated in Fig. 3.1-2.Wenowaskwhat the normal stress

fzz is at P.
According to Table B.1 or Eq. 1.2-9, fzz = −24(𝜕vz∕𝜕z), because (∇ ⋅ v) = 0 for incompressible

fluids. Also, for constant i, Eq. 3.1-4 can be simplified to

𝜕vz
𝜕z

= −
(
𝜕vx
𝜕x

+
𝜕vy
𝜕y

)
(3.1-6)

Substituting this into the expression for fzz gives for point P on the surface of the solid

fzz|z=0 = −24
𝜕vz
𝜕z

||||z=0 = +24
(
𝜕vx
𝜕x

+
𝜕vy
𝜕y

)|||||z=0 (3.1-7)

Everywhere on the solid surface at z = 0, the velocity vx is zero by the no-slip condition (see

§2.1), and therefore, the derivative 𝜕vx∕𝜕x on the surface must be zero (i.e., vx does not vary

with x). Similarly, 𝜕vy∕𝜕y is also zero on the surface. Therefore, fzz is zero on the surface. One

can show that fxx and fyy are also zero at the surface because of the vanishing of the derivatives

at z = 0.

§3.2 THE EQUATION OFMOTION

Toderive the equation ofmotion for an arbitrary flow,we again consider a tiny volume ele-
ment2x2y2z, illustrated in Fig. 3.2-1. Conservation ofmomentum for this volume element
can be written in words as⎧⎪⎨⎪⎩

rate of
increase of
momentum

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩
rate of total
momentum

in

⎫⎪⎬⎪⎭ −
⎧⎪⎨⎪⎩
rate of total
momentum

out

⎫⎪⎬⎪⎭ +
⎧⎪⎨⎪⎩
external
force on
the fluid

⎫⎪⎬⎪⎭ (3.2-1)

Note that Eq. 3.2-1 is just an extension of Eq. 2.1-1 to unsteady problems. Therefore, we
proceed in much the same way as in Chapter 2. However, in addition to including the
unsteady term, we must allow the fluid to move through all six faces of the volume ele-
ment. Remember that Eq. 3.2-1 is a vector equation with components in each of the three
coordinate directions x,y, and z.We develop the x component of each term in Eq. 3.2-1; the
y and z components may be treated analogously.1

First, we consider the rates of flow of the x component of momentum into and out
of the volume element shown in Fig. 3.2-1. Momentum enters and leaves 2x2y2z by two
mechanisms: convective transport (see §1.1), and molecular transport (see §1.2), the sum
of which is described by the total momentum flux d (see §1.3).

The rate at which the x component of momentum enters across the shaded face at x
by all mechanisms—both convective and molecular—is dxx|x2y2z and the rate at which

1In this book all the equations of change are derived by applying the conservation laws to a region

2x2y2z fixed in space. The same equations can be obtained by using an arbitrary region fixed in space, or

one moving along with the fluid.
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z

x

(x, y, z)
y

φxx|x ∆y∆z

φyx|y ∆z∆x

φzx|z ∆x∆y

φxx|x+∆x ∆y∆z

φyx|y+∆y ∆z∆x

φzx|z+∆z ∆x∆y

(x + ∆x, y + ∆y, z + ∆z)

Fig. 3.2-1. Tiny fixed volume

element 2x2y2z, with six arrows

indicating the rates of x
momentum transported through

the surfaces by all mechanisms.

The shaded faces are located at x
and x + 2x.

it leaves the shaded face at x + 2x is dxx|x+2x2y2z. The rates at which xmomentum enters
and leaves through the faces at y and y + 2y are dyx|y2z2x and dyx|y+2y2z2x, respectively.
Similarly the rates at which x momentum enters and leaves through the faces at z and
z + 2z are dzx|z2x2y and dzx|z+2z2x2y. When these contributions are added, we get for the
net rate of addition (“in” minus “out”) of x momentum

2y2z(dxx|x − dxx|x+2x) + 2z2x(dyx|y − dyx|y+2y) + 2x2y(dzx|z − dzx|z+2z) (3.2-2)

for transport across all three pairs of faces.
Next there is the external force (typically the gravitational force) acting on the fluid in

the volume element. The x component of this force is

igx2x2y2z (3.2-3)

where the x component of the acceleration of gravity gx can be replaced by the body
force per unit mass if other body forces are present (e.g., electric or magnetic forces).
Equations 3.2-2 and 3.2-3 give the x components of the three terms on the right side of
Eq. 3.2-1. The sum of these terms must then be equated to the rate of increase of xmomen-
tum within the volume element, 𝜕(ivx2x2y2z)∕𝜕t = 2x2y2z𝜕(ivx)∕𝜕t. When this is done,
we have the x component of the momentum balance. When this equation is divided by
2x2y2z and the limits are taken as 2x, 2y, and 2z go to zero, we get

𝜕
𝜕t

ivx = −
(

𝜕
𝜕x

dxx +
𝜕
𝜕y

dyx +
𝜕
𝜕z

dzx

)
+ igx (3.2-4)

where we have made use of the definitions of the partial derivatives. Similar equations
can be developed for the y component of the momentum balance

𝜕
𝜕t

ivy = −
(

𝜕
𝜕x

dxy +
𝜕
𝜕y

dyy +
𝜕
𝜕z

dzy

)
+ igy (3.2-5)

and the z component

𝜕
𝜕t

ivz = −
(

𝜕
𝜕x

dxz +
𝜕
𝜕y

dyz +
𝜕
𝜕z

dzz

)
+ igz (3.2-6)

By using vector-tensor notation, these three equations can be written as follows:

𝜕
𝜕t

ivi = −[∇ ⋅ d]i + igi i = x,y,z (3.2-7)

That is, by letting i be successively x,y, and z, Eqs. 3.2-4, 3.2-5, and 3.2-6 can be reproduced.
The quantities ivi are the components of the vector iv, which is the momentum per unit
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volume at a point in the fluid. Similarly, the quantities igi are the components of the vector
ig, which is the external force per unit volume. The term −[∇ ⋅ d]i is the ith component of
the vector −[∇ ⋅ d], which represents the net rate of addition of imomentum by transport
across the faces, per unit volume.

When each of the components of Eq. 3.2-7 is multiplied by the unit vector in the ith
direction and then added together vectorially, we get

𝜕
𝜕t

iv = −[∇ ⋅ d] + ig (3.2-8)

which is the differential statement of the law of conservation of momentum. It is the trans-
lation of Eq. 3.2-1 into mathematical symbols.

In Eq. 1.3-2 it was shown that the total momentum-flux tensor d is the sum of the
convective momentum-flux tensor ivv and the molecular momentum-flux tensor 0, and
that the latter can be written as the sum of pt and f. When we insert d = ivv + pt + f into
Eq. 3.2-8, we get (using Eq. A.4-26) the following equation of motion:2

𝜕
𝜕t

iv

rate of
increase of
momentum
per unit
volume

= −[∇ ⋅ ivv]

rate of momentum
addition by
convection
per unit
volume

−∇p − [∇ ⋅ f]

rate of momentum
addition by molecular
transport per unit volume

+ig

external
force
on fluid
per unit
volume

(3.2-9)

In this equation ∇p is a vector called the “gradient of (the scalar) p,” sometimes written
as “grad p.” The symbol [∇ ⋅ f] is a vector called the “divergence of (the tensor) f” and
[∇ ⋅ ivv] is a vector called the “divergence of (the dyadic product) ivv.”

In the next two sections we give some formal results that are based on the equation of
motion. The equation of change for angular momentum is not used for problem solving in
this chapter, but will be referred to in Chapter 7. Beginners are advised to skim this section
on first reading and to refer to it later as the need arises.

§3.3 THE EQUATION OF CHANGE FORMECHANICAL ENERGY

It was shown in §0.3 that for binary collisions between two molecules, although total
energy is conserved, kinetic energy is not. Similarly, in a flow system, kinetic energy is
not conserved, but that does not prevent us from developing an equation of change for
this quantity. In fact, during the course of this book, we will obtain equations of change
for a number of nonconserved quantities, such as internal energy, enthalpy, and temper-
ature. An equation of change for mechanical energy, which involves kinetic energy and
othermechanical terms, may be derived from the equation ofmotion of §3.2. The resulting
equation is referred to in several places later in the book.

We take the dot product of the velocity vector v with the equation of motion in
Eq. 3.2-9 and then do some rather lengthy rearranging, making use of the equation of
continuity, Eq. 3.1-4 (see Problem 3C.4). We also split up each of the terms containing
p and f into two parts. The final result is the equation of change for kinetic energy, for

2This equation is attributed to A.-L. Cauchy, Ex. de math., 2, 108–111 (1827). (Baron) Augustin-Louis
Cauchy (1789–1857) (pronounced “Koh-shee” with the accent on the second syllable), originally trained

as an engineer, made great contributions to theoretical physics and mathematics, including the calculus of

complex variables.
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symmetric f:1

𝜕
𝜕t

(
1

2
iv2

)
rate of

increase of

kinetic energy

per unit volume

= −
(
∇ ⋅ 1

2
iv2v

)
rate of addition

of kinetic energy

by convection

per unit volume

−(∇ ⋅ pv)
rate of work

done by pressure

of surroundings

on the fluid per

unit volume

−p(−∇ ⋅ v)
rate of reversible
conversion of

kinetic energy into

internal energy per

unit volume

−(∇ ⋅ [f ⋅ v])
rate of work done

by viscous force

on the fluid per

unit volume

−(−f∶∇v)
rate of

irreversible
conversion

from kinetic to

internal energy

per unit volume

+i(v ⋅ g)
rate of work done

by external force

on the fluid per

unit volume

(3.3-1)

At this point it is not clear why we have attributed the indicated physical significance to
the terms p(∇ ⋅ v) and (f ∶ ∇v). Their meaning cannot be properly appreciated until one
has studied the energy balance in Chapter 11. There it will be seen how these same two
terms appear with the opposite sign in the equation of change for internal energy.

We now introduce the potential energy2 (per unit mass) Ĉ, defined by g = −∇Ĉ. Then

the last term in Eq. 3.3-1 may be rewritten as −i(v ⋅ ∇Ĉ) = −(∇ ⋅ ivĈ) + Ĉ(∇ ⋅ iv). The
equation of continuity (Eq. 3.1-4) may now be used to replace +Ĉ(∇ ⋅ iv) by −Ĉ(𝜕i∕𝜕t).
The latter may be written as −𝜕(iĈ)∕𝜕t, if the potential energy is independent of the time.
This is true for the gravitational field for systems that are located on the surface of the

earth; then Ĉ = gh where g is the (scalar constant) gravitational acceleration and h is the
elevation coordinate in the gravitational field.

With the introduction of the potential energy, Eq. 3.3-1 assumes the following form:

𝜕
𝜕t

( 1

2
iv2 + iĈ

)
= −

(
∇ ⋅

( 1

2
iv2 + iĈ

)
v
)

−(∇ ⋅ pv) − p(−∇ ⋅ v) − (∇ ⋅ [f ⋅ v]) − (−f ∶ ∇v)
(3.3-2)

This is an equation of change for kinetic-plus-potential energy. Since Eqs. 3.3-1 and 3.3-2 contain
only mechanical terms, they may both be called equations of change for mechanical energy.

The term p(∇ ⋅ v)may be either positive or negative, depending on whether the fluid
is undergoing expansion or compression. The resulting temperature changes can be rather
large for gases in compressors, turbines, and shock tubes. The term (−f ∶ ∇v) is always
positive for Newtonian fluids,3 because it may be written as a sum of squared terms:

(−f∶∇v) = 1

2
4
∑
i

∑
j

[(
𝜕vi
𝜕xj

+
𝜕vj
𝜕xi

)
− 2

3
(∇ ⋅ v)tij

]2

+ n(∇ ⋅ v)2

≡ 4Cv + nAv (3.3-3)

1The interpretation under the (f∶∇v) term is correct only for inelastic fluids, such as Newtonian

fluids; for viscoelastic fluids, such as polymers, this term may include reversible conversion to elastic

energy.
2If g = −tzg is a vector of magnitude g in the −z direction, then the potential energy per unit mass is

Ĉ = gz, where z is the elevation in the gravitational field.
3An amusing consequence of the viscous dissipation for air is the study by H. K. Moffatt [Nature,

404, 833–834 (2000)] of the way in which a spinning coin comes to rest on a table.
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which serves to define the two quantities Cv and Av. The viscous dissipation function Cv
is tabulated in component form for Cartesian, cylindrical, and spherical coordinates in
Appendix B. The function Av is zero for incompressible fluids, and thus is often omitted.

The quantity (−f∶∇v) describes the degradation of mechanical energy into thermal
energy that occurs in all flow systems (sometimes called viscous dissipation).4 This ther-
mal energy production can result in considerable temperature rises in systems with large
viscosity and large velocity gradients, as in lubrication, rapid extrusion, and high-speed
flight. (Another example of conversion of mechanical energy into heat is the rubbing of
two sticks together to start a fire.)

When we speak of “isothermal systems,” we mean systems in which there are no
externally imposed temperature gradients and no appreciable temperature change result-
ing from expansion, contraction, or viscous dissipation.

The most important uses of Eq. 3.3-2 are for the development of the macroscopic
mechanical energy balance (or engineering Bernoulli equation), and for developing the
internal energy equation in §11.2.

EXAMPLE 3.3-1

The Bernoulli Equation
for the Steady Flow of
Inviscid Fluids

The Bernoulli equation for steady flow of inviscid fluids (fluids with 4 ≈ 0) is one of the most
famous equations of classical fluid dynamics.5 Show how it is obtained from the equation of
change for mechanical energy, given in Eq. 3.3-2.

SOLUTION

If we assume steady, inviscid flow, then Eq. 3.3-2 can be rewritten as(
∇ ⋅

(
1

2
iv2 + iĈ

)
v
)

= −(v ⋅ ∇p) (3.3-4)

where the inviscid flow assumption has been used to eliminate the terms containing f. Next
we use the appropriate rule for differentiating the product of a scalar and a vector (Eq. A.4-19)
to expand the left side of the equation(

iv ⋅ ∇
(
1

2
v2 + Ĉ

))
+

(
1

2
v2 + Ĉ

)
(∇ ⋅ iv) = −(v ⋅ ∇p) (3.3-5)

The second term on the left side is zero because the continuity equation (Eq. 3.1-4) gives (∇ ⋅
iv) = 0 at steady state. After expanding the first term on the left side, the equation of change
for mechanical energy is written as

i

(
v ⋅ ∇1

2
v2
)
+ i(v ⋅ ∇Ĉ) = −(v ⋅ ∇p) (3.3-6)

Then we write the potential energy term using ∇Ĉ = g∇h, where h is the coordinate in the
direction opposite to the direction of gravity. This gives(

v ⋅ ∇1

2
v2
)
+ (v ⋅ g∇h) + 1

i
(v ⋅ ∇p) = 0 (3.3-7)

We can now divide each term by |v| and introduce the unit vector t = v∕|v|, and then recognize
that (t ⋅ ∇) = d∕ds, where s is the distance along a streamline. That is, (t ⋅ ∇) is the derivative in
the direction of flow. Equation 3.3-7 may now be written as

d
ds

(
1

2
v2
)
+ gdh

ds
+ 1

i

dp
ds

= 0 (3.3-8)

4G. G. Stokes, Trans. Camb. Phil. Soc., 9, 8–106 (1851), see pp. 57–59.
5Daniel Bernoulli (1700–1782) was one of the early researchers in fluid dynamics and also the

kinetic theory of gases. His hydrodynamical ideas were summarized in D. Bernoulli, Hydrodynamica sive
de viribus et motibus fluidorum commentarii, Argentorati (1738), however, he did not actually give Eq. 3.3-9.

The credit for the derivation of Eq. 3.3-9 goes to L. Euler, Histoires de l’Académie de Berlin (1755).
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1

P

t
v (x, y, z)

2

Fig. 3.3-1. Streamlines in a steady flow. Recall that a

streamline is a curve that is tangent to the

instantaneous velocity. The unit tangent vector at

point P is shown.

When this equation is integrated along a streamline from point 1 to point 2 (see Fig. 3.3-1), we

get

1

2
(v2

2
− v2

1
) + ∫

p2

p1

1

i
dp + g(h2 − h1) = 0 (3.3-9)

which is the Bernoulli equation. It relates the velocity, pressure, and elevation at two points along

a streamline in a fluid for steady flow. It is used in situations where it can be assumed that

viscosity plays a rather minor role (see Example 3.3-2 below).

EXAMPLE 3.3-2

Torricelli’s Equation
for Efflux from a Tank

A large uncovered tank is filled with an incompressible liquid to a height h. Near the bottom

of the tank, there is a hole that allows the fluid to exit to the atmosphere. Apply Bernoulli’s

equation to a streamline that extends from the liquid surface at the top to a point in the stream

just outside the vessel (see Fig. 3.3-2) to obtain an expression for the efflux velocity.

SOLUTION

At the top liquid surface (point 1), the pressure is patm, and the velocity is negligible. In the

stream just outside the vessel (point 2), the pressure is also patm and the velocity magnitude is

vefflux. From Eq. 3.3-9 we get

1

2
(v2

efflux
− 0) + 1

i
(patm − patm) + g(0 − h) = 0 (3.3-10)

This leads to

vefflux =
√

2gh (3.3-11)

This is known as Torricelli’s equation.

Liquid surface
at which

v1 = 0 and p = patm

Typical streamline

"1"

"2" Fluid exit at which
v2 = vefflux and

p = patm

h

Fig. 3.3-2. Fluid draining from a tank. Points 1 and

2 are on the same streamline. The vertical distance

between the surface and the exit hole is h.
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Note that in this problem, we have used a formula that is valid at steady state (Eq. 3.3-9)

to a situation in which is not actually at steady state (i.e., the liquid height in the tank decreases

slowly with time). The assumption that a steady-state equation can be applied to an unsteady

system at each instant is called the quasi-steady-state assumption.

§3.4 THE EQUATION OF CHANGE FOR ANGULARMOMENTUM

An equation of change for angular momentum can be obtained from the equation of
motion by forming the cross product of the position vector r (which has Cartesian
components x,y,z) with Eq. 3.2-9. When the cross product is formed, we get—after some
vector-tensor manipulations—the following equation of change for angular momentum:

𝜕
𝜕t

i[r × v] = −[∇ ⋅ iv[r × v]] − [∇ ⋅ {r × pt}†]

−[∇ ⋅ {r × f†}†] + [r × ig] − [s ∶ f] (3.4-1)

Here the superscript † denotes the transpose, and s is a third-order tensor with compo-
nents sijk (the permutation symbol defined in §A.2). If the stress tensor f is symmetric, as
forNewtonian fluids, the last term is zero. According to the kinetic theories of dilute gases,
monatomic liquids, and polymers, the tensor f is symmetric, in the absence of electric and
magnetic torques.1 If, on the other hand, f is asymmetric, then the last term describes the
rate of interconversion of bulk angular momentum and internal angular momentum.

The assumption of a symmetric stress tensor, then, is equivalent to an assertion
that there is no interconversion between bulk angular momentum and internal angular
momentum and that the two forms of angular momentum are conserved separately. This
corresponds, in Eq. 0.3-11, to equating the cross-product terms and the internal angular
momentum terms separately.

Eq. 3.4-1 will be referred to only in Chapter 7, where we indicate that the macroscopic
angular momentum balance can be obtained from it.

§3.5 THE EQUATIONS OF CHANGE (SUBSTANTIAL
DERIVATIVE FORM)

Before proceeding, we point out that several different time derivatives may be encoun-
tered in transport phenomena. We illustrate these by a homely example—namely, the
observation of the concentration of fish in the St. Croix River. Because fish swim around,
the fish concentration c will in general be a function of position (x,y,z) and time (t).

The Partial Time Derivative 𝝏∕𝝏t
Suppose we stand on a bridge and record the concentration of fish just below us as a
function of time. From this record of the fish concentration as a function of time at the
fixed location x,y,z,we can then calculate the time rate of change of the fish concentration
at a fixed location using (

𝜕c
𝜕t

)
x,y,z

≡ lim
2t→0

c(x,y,z,t + 2t) − c(x,y,z,t)
2t

(3.5-1)

This is the familiar partial derivative of c with respect to t, at constant x,y, and z.

1J. S. Dahler and L. E. Scriven, Nature, 192, 36–37 (1961). S. R. de Groot and P. Mazur, Nonequilibrium
Thermodynamics, North Holland, Amsterdam (1962), Chapter XII. A literature review can be found in G.

D. C. Kuiken, Ind. Eng. Chem. Res., 34, 3568–3572 (1995).
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The Total Time Derivative d∕dt
Now suppose that we jump into a motor boat and speed around on the river, sometimes
going upstream, sometimes downstream, and sometimes across the current. All the time
we are recording the fish concentration as a function of time and the current boat location.
The time rate of change of the observed fish concentration can be calculated at any instant
from this data using

dc
dt

≡ lim
2t→0

c(x + ux2t,y + uy2t,z + uz2t,t + 2t) − c(x,y,z,t)
2t

(3.5-2)

where ux, uy, and uz are the x,y, and z components of the velocity of the boat. Equation 3.5-2
differs from the partial derivative because the “observer” is not fixed in space, but moves
with velocity u. This derivative is called the total derivative. By expanding the first term in
the numerator of Eq. 3.5-2 in a Taylor series (§C.2) about x,y, and z, the total derivative can
be rewritten

dc
dt

=
(
𝜕c
𝜕t

)
x,y,z

+ ux
(
𝜕c
𝜕x

)
y,z,t

+ uy

(
𝜕c
𝜕y

)
z,x,t

+ uz
(
𝜕c
𝜕z

)
x,y,t

= 𝜕c
𝜕t

+ (u ⋅ ∇c) (3.5-3)

Equation 3.5-3 can be applied generally to describe the time rate of change of any quantity
as the point of observation moves with velocity u.

The Substantial Time Derivative D∕Dt
Next we climb into a canoe, and not feeling energetic, we just float along with the current,
recording the fish concentration. In this situation the velocity of the observer u is the same
as the velocity v of the stream, which has components vx, vy, and vz. If at any instant we
report the time rate of change of fish concentration, we are then giving

Dc
Dt

= 𝜕c
𝜕t

+ vx
𝜕c
𝜕x

+ vy
𝜕c
𝜕y

+ vz
𝜕c
𝜕z

= 𝜕c
𝜕t

+ (v ⋅ ∇c) (3.5-4)

The special operator D∕Dt = 𝜕∕𝜕t + v ⋅ ∇ is called the substantial derivative (meaning that
the time rate of change is reported as the observermoves with the “substance”). The terms
material derivative, hydrodynamic derivative, and derivative following the motion are also used.
Equation 3.5-4 can be utilized in any flow problem to describe the time rate of change of
a quantity as the point of observation moves with the local fluid velocity v.

Now we need to know how to convert equations expressed in terms of 𝜕∕𝜕t into
equations written with D∕Dt. For any scalar function f (x,y,z,t), we can do the following
manipulations:

𝜕
𝜕t

if + 𝜕
𝜕x

ivxf +
𝜕
𝜕y

ivyf +
𝜕
𝜕z

ivzf

= i

(
𝜕f
𝜕t

+ vx
𝜕f
𝜕x

+ vy
𝜕f
𝜕y

+ vz
𝜕f
𝜕z

)
+ f

(
𝜕
𝜕t

i + 𝜕
𝜕x

ivx +
𝜕
𝜕y

ivy +
𝜕
𝜕z

ivz

)
= i

Df
Dt

(3.5-5)

The quantity in the second parentheses in the second line is zero according to the equation
of continuity. Equation 3.5-5 can be written in vector form as:

𝜕
𝜕t

if + (∇ ⋅ ivf ) = i
Df
Dt

(3.5-6)
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Table 3.5-1. The Equations of Change for Isothermal Systems in the D∕Dt-Forma.

Note: At the left are given the equation numbers for the 𝜕∕𝜕t forms.

(3.1-4)
Di

Dt
= −i(∇ ⋅ v) (A)

(3.2-9) i
Dv
Dt

= −∇p − [∇ ⋅ f] + ig (B)

(3.3-1) i
D
Dt

(
1

2
v2
)

= −(v ⋅ ∇p) − (v ⋅ [∇ ⋅ f]) + i(v ⋅ g) (C)

(3.4-1) i
D
Dt

[r × v] = −[∇ ⋅ {r × pt}†] − [∇ ⋅ {r × f}†] + [r × ig] (D)

aEquations (A) and (B) are obtained from Eqs. 3.1-4 and 3.2-9 with no assumptions. Whereas Eq. 3.3-1 is

restricted to symmetric f, Eq. (C) is valid for any f. Equation (D) is valid for symmetric f only. Note that f
is symmetric for Newtonian fluids.

Similarly for any vector function f(x,y,z,t)

𝜕
𝜕t

if + [∇ ⋅ ivf] = i
Df
Dt

(3.5-7)

These equations can be used to rewrite the equations of change given in §3.1 to §3.4 in
terms of the substantial derivative as shown in Table 3.5-1.

Equation (A) in Table 3.5-1 tells how the density is decreasing or increasing as one
moves along with the fluid, because of the compression [(∇ ⋅ v) < 0] or expansion of the
fluid [(∇ ⋅ v) > 0]. Equation (B) can be interpreted as (mass) × (acceleration) = the sum of
the pressure forces, viscous forces, and the external force (all per unit volume). In other
words, Eq. 3.2-9 is equivalent to Newton’s second law of motion applied to a tiny blob of
fluid whose envelope moves with the local fluid velocity v. Equation (B) is tabulated in
component form in Cartesian, cylindrical, and spherical coordinates in §B.5.

§3.6 COMMON SIMPLIFICATIONS OF THE EQUATION OFMOTION

We now discuss briefly the three most common simplifications of the equation of motion.

(i) For constant i and 4, insertion of theNewtonian expression for f fromEq. 1.2-13 into
the equation of motion leads to the very famous Navier–Stokes equation, first developed
from molecular arguments by Navier and from continuum arguments by Stokes1:

i
D
Dt

v = −∇p + 4∇2v + ig (3.6-1)

Equation 3.6-1 is a standard starting point for describing isothermal flows of incompress-
ible Newtonian fluids. This equation is written in component form in Cartesian, cylindri-
cal, and spherical coordinates in §B.6.

Equation 3.6-1 can be written in terms of the modified pressure by replacing p with
𝒫 − igh, to give

i
D
Dt

v = −∇𝒫 + 4∇2v (3.6-2)

1C.-L.-M.-H. Navier, Mémoires de l’Académie Royale des Sciences, 6, 389–440 (1827); G. G. Stokes, Proc.
Cambridge Phil. Soc., 8, 287–319 (1845). The name Navier is pronounced “Nah-vyay.”
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p0

p

ρ0 ρ

Incompressible fluid
with ρ = ρ0

Slightly compressible
fluid with

p – p0 = K(ρ – ρ0)
where K = constant

Fig. 3.6-1. The equation of state for a slightly

compressible fluid and an incompressible fluid when

T is constant.

Appendix B.6 can also be used to obtain the component forms of this equation inCartesian,
cylindrical, and spherical coordinates. One need only replace p in the tables in §B.6 by𝒫 ,
and omit all terms containing the acceleration of gravity.

It must be kept inmind that, when constant i is assumed, the equation of state (at con-
stant T) is a vertical line on a plot of p vs. i (see Fig. 3.6-1). Thus, the absolute pressure is no
longer determinable from i and T, although pressure gradients and instantaneous differ-
ences remain determinate by Eq. 3.6-1 or Eq. 3.6-2. Absolute pressures are also obtainable
if p is known at some point in the system.

(ii) When the acceleration terms in the Navier–Stokes equation are neglected—that is,
when i(Dv∕Dt) = 𝟎—we get

𝟎 = −∇p + 4∇2v + ig (3.6-3)

which is called the Stokes equation. It is sometimes called the creeping flow equation, because
the term i[v ⋅ ∇v], which is quadratic in the velocity, can be discarded when the flow
is extremely slow. For some flows, such as the Hagen-Poiseuille tube flow, the term
i[v ⋅ ∇v] drops out, and a restriction to slow flow is not implied. The Stokes flow equation
is important in lubrication theory, the study of particle motions in suspension, flow
through porous media, and swimming of microbes. There is a vast literature on this
subject.2

(iii) When viscous forces are neglected—that is, [∇ ⋅ f] = 𝟎—the equation of motion
becomes

i
Dv
Dt

= −∇p + ig (3.6-4)

which is known as the Euler equation for “inviscid” fluids.3 Of course, there are no truly
“inviscid” fluids, but there aremany flows inwhich the viscous forces are relatively unim-
portant. Examples are the flow around airplane wings (except near the solid boundary),
flow of rivers around the upstream surfaces of bridge abutments, some problems in com-
pressible gas dynamics, and flow of ocean currents.4

2J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Martinus Nijhoff, The Hague

(1983); S. Kim and S. J. Karrila,Microhydrodynamics: Principles and Selected Applications, Dover, NY (2005).
3L. Euler, Mém. Acad. Sci. Berlin, 11, 217–273, 274–315, 316–361 (1755). The Swiss-born

mathematician Leonhard Euler (1707–1783) (pronounced “Oiler”) taught in St. Petersburg, Basel, and

Berlin and published extensively in many fields of mathematics and physics.
4See, for example, D. J. Acheson, Elementary Fluid Mechanics, Clarendon Press, Oxford (1990),

Chapters 3–5; and G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press (1967),

Chapter 6.
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§3.7 THE EQUATIONS OF CHANGE AND SOLVING STEADY-STATE
PROBLEMSWITH ONE INDEPENDENT VARIABLE

For most applications of the equation of motion, we have to insert the expression for
f from Eq. 1.2-13 into Eq. 3.2-9 (or, equivalently, the components of f from Eqs. 1.2-7
through 1.2-12 or from §B.1 into Eqs. 3.2-4, 3.2-5, and 3.2-6). Then to describe the flow of a
Newtonian fluid at constant temperature, we need in general

The equation of continuity Eq. 3.1-4

The equation of motion Eq. 3.2-9

The components of f Eq. 1.2-13

The equation of state p = p(i)
The equations for the viscosities 4 = 4(i), n = n(i)

These equations, along with the necessary boundary and initial conditions, determine
completely the pressure, density, and velocity distributions in the fluid. However, they are
seldom used in their complete form to solve fluid dynamics problems. Usually restricted
forms are used for convenience, as in this chapter.

If it is appropriate to assume constant density and viscosity, then we use

The equation of continuity Eq. 3.1-4 (or §B.4)

The Navier–Stokes equation Eq. 3.6-1 (or §B.6)

along with initial and boundary conditions. From these, one determines the pressure
(within an additive constant; see §3.6) and velocity distributions.

In Chapter 1 we gave the components of the stress tensor in Cartesian coordinates,
and in this chapter we have derived the equations of continuity and motion in Cartesian
coordinates. In §B.1, §B.4, §B.5, and §B.6,we have summarized these key equations in three
much used coordinate systems: Cartesian (x,y,z), cylindrical (r,p,z), and spherical (r,p,d)
coordinates. Beginning students need not concern themselves with the derivation of these
equations, but they should be very familiar with the tables in Appendix B and be able to
use them for setting up fluid dynamics problems.

In this section we illustrate how to set up and solve some problems involving the
steady, isothermal, laminar flow of Newtonian fluids. The relatively simple analytical
solutions given here are not to be regarded as ends in themselves, but rather as a prepara-
tion for moving on to the analytical or numerical solution of more complex problems, the
use of various approximate methods, or the use of dimensional analysis.

The complete solution of viscous flow problems, including proofs of uniqueness and
criteria for stability, is a formidable task. Indeed the attention of some of the world’s best
applied mathematicians has been devoted to the challenge of solving the equations of
continuity and motion. The beginner may well feel inadequate when faced with these
equations for the first time. All we attempt to do in the illustrative examples in this
section is to solve a few simple problems for stable flows that are known to exist. In each
case we begin by making some postulates about the form for the pressure and velocity
distributions—that is, we make informed guesses about how p and v should depend on
position in the problem being studied. Then we discard all the terms in the equations
of continuity and motion that are zero or negligible according to the postulates made.
For example, if one postulates that vx is a function of y alone, then terms like 𝜕vx∕𝜕x
and 𝜕2vx∕𝜕z2 are zero and can be eliminated from the governing equations. When all
the appropriate terms have been eliminated, one is frequently left with a small number
of relatively simple equations; and if the problem is sufficiently simple, an analytical
solution can be obtained.

It must be emphasized that in listing the postulates, one makes use of intuition. The
latter is based on our daily experience with flow phenomena. Our intuition often tells
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us that a flow will be symmetric about an axis, or that some component of the velocity is
zero. Having used our intuition to make such postulates, wemust remember that the final
solution is correspondingly restricted. However, by starting with the equations of change,
when we have finished the “discarding process,” we do at least have a complete listing of
all the assumptions used in the solution. In some instances, it is possible to go back and
remove some of the assumptions and get a better solution.

In several examples to be discussed, we will find one solution to the fluid dynamical
equations. However, because the full equations are nonlinear, there may be other solu-
tions to the problem. Thus, a complete solution to a fluid dynamics problem requires the
specification of the limits on the stable flow regimes as well as any ranges of unstable
behavior. That is, we have to develop a “map” showing the various flow regimes that are
possible. Usually analytical solutions can be obtained for only the simplest flow regimes;
the remainder of the information is generally obtained by experiment or by very detailed
numerical solutions. In other words, although we know the differential equations that
govern the fluid motion, much is yet unknown about how to solve them. This is a chal-
lenging area of applied mathematics, well above the level of an introductory textbook.

When difficult problems are encountered, a search should be made through some of
the advanced treatises on fluid dynamics.1

We now turn to the illustrative examples. The first two are problems that were dis-
cussed in the preceding chapter; we rework these just to illustrate the use of the equations
of change. Then we consider some other problems that would be difficult to set up by the
shell balance method of Chapter 2.

EXAMPLE 3.7-1

Steady Flow in a Long
Circular Tube

Rework the tube-flow problem of §2.3 using the equations of continuity and motion. This
illustrates the use of the tabulated equations for constant viscosity and density in cylindrical
coordinates, given in Appendix B.

SOLUTION

Wepostulate that v = tzvz(r,z). This postulate implies that there is no radial flow (vr = 0) and no
tangential flow (vp = 0), and that vz does not depend on p. Consequently we can discard many
terms from the tabulated equations of change, leaving

equation of continuity:
𝜕vz
𝜕z

= 0 (3.7-1)

r equation of motion: 0 = −𝜕𝒫
𝜕r

(3.7-2)

p equation of motion: 0 = −𝜕𝒫
𝜕p

(3.7-3)

z equation of motion: 0 = −𝜕𝒫
𝜕z

+ 4
1

r
𝜕
𝜕r

(
r
𝜕vz
𝜕r

)
(3.7-4)

The process of eliminating terms in the z component of the equation of motion to arrive at
Eq. 3.7-4 is illustrated in Fig. 3.7-1. Equation 3.7-1 indicates that vz depends only on r; hence, the
partial derivatives in the second term on the right side of Eq. 3.7-4 can be replaced by ordinary
derivatives. By using the modified pressure 𝒫 = p + igh (where h is the height above some
arbitrary datum plane), we avoid the necessity of calculating the components of g in cylindrical
coordinates, and we obtain a solution valid for any orientation of the tube.

1R. Berker, Handbuch der Physik, Volume VIII-2, Springer, Berlin (1963), pp. 1–384 (in French); G. K.

Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press (1967); L. Landau and E. M.

Lifshitz, Fluid Mechanics, Pergamon Press, Oxford, 2nd edition (1987); J. A. Schetz and A. E. Fuhs (eds.),

Handbook of Fluid Dynamics and Fluid Machinery, Wiley-Interscience, New York (1996); R. W. Johnson (ed.),

The Handbook of Fluid Dynamics, CRC Press, Boca Raton, Fla. (1998); C. Y. Wang, Ann. Revs. Fluid Mech., 23,
159–177 (1991).
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Fig. 3.7-1. Illustration of the

process of writing postulates and

using them to eliminate terms in

the z component of the equation

of motion.

Equations 3.7-2 and 3.7-3 show that 𝒫 is a function of z alone, and therefore, the partial

derivative in the first termof Eq. 3.7-4may be replaced by an ordinary derivative. Equation 3.7-4

thus contains two nonzero terms: a pressure term that can be a function only of z, and a velocity

term that can only be a function of r. The only way that we can have a function of r plus a

function of z equal to zero is for each term individually to be a constant—say C0—so that

4
1

r
d
dr

(
r
dvz
dr

)
= C0 =

d𝒫
dz

(3.7-5)

The equation for 𝒫 can be integrated at once to give

𝒫 (z) = C0z + C1 (3.7-6)

To integrate the equation for vz, one should not try to simplify the left side of Eq. 3.7-5 by

using the product rule for derivatives, but instead separate variables and integrate twice. First,

multiply by r∕4 to obtain
d
dr

(
r
dvz
dr

)
=

C0

4
r (3.7-7)

Integrate this equation to get

r
dvz
dr

=
C0

24
r2 + C2 (3.7-8)

Multiply this equation by 1∕r and integrate again to obtain

vz(r) =
C0

44
r2 + C2 ln r + C3 (3.7-9)

The three constants of integration and C0 can be obtained by applying the following boundary

conditions to Eqs. 3.7-6 and 3.7-9:

B. C. 1 at z = 0, 𝒫 = 𝒫0 (3.7-10)

B. C. 2 at z = L, 𝒫 = 𝒫L (3.7-11)

B. C. 3 at r = R, vz = 0 (3.7-12)

B. C. 4 at r = 0, vz = finite (3.7-13)

The resulting solutions are:

𝒫 (z) = 𝒫0 − (𝒫0 −𝒫L)
z
L

(3.7-14)
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vz(r) =
(𝒫0 −𝒫L)R2

44L

[
1 −

( r
R

)2
]

(3.7-15)

Equation 3.7-15 is the same as Eq. 2.3-19. The pressure profile in Eq. 3.7-14 was not obtained in

§2.3, but was tacitly postulated; we could have done that here, too, but we chose to work with

a minimal number of postulates.

As pointed out in §2.3, Eq. 3.7-15 is valid only in the laminar-flow regime, and at

locations not too near the tube entrance and exit. For Reynolds numbers above about 2100, a

turbulent-flow regime exists downstream of the entrance region, and Eq. 3.7-15 is no longer

valid.

EXAMPLE 3.7-2

Falling Film with
Variable Viscosity

Set up the problem in Example 2.2-2 by using the equations of Appendix B. This illustrates the

use of the equation of motion in terms of f.

SOLUTION

As in Example 2.2-2 we postulate a steady flow with constant density, but with viscosity

depending on x. We postulate, as before, that the x and y components of the velocity are

zero and that vz = vz(x). With these postulates, the equation of continuity is identically

satisfied. According to §B.1, the only nonzero components of f are fxz = fzx = −4(dvz∕dx). The
components of the equation of motion in terms of f are, from §B.5,

0 = −
𝜕p
𝜕x

+ ig sin v (3.7-16)

0 = −
𝜕p
𝜕y

(3.7-17)

0 = −
𝜕p
𝜕z

− d
dx

fxz + ig cos v (3.7-18)

where v is the angle shown in Figs. 2.2-1 and 2.2-2.

Integration of Eq. 3.7-16 gives

p = igx sin v + f (y,z) (3.7-19)

in which f (y,z) is an arbitrary function of integration (i.e., the most general term that can be

added to the pressure and still satisfy Eq. 3.7-16). Equation 3.7-17 shows that f cannot be a

function of y. We next recognize that the pressure in the gas phase is very nearly constant at

the prevailing atmospheric pressure patm. Therefore, all along the gas–liquid interface x = 0, the

pressure is also constant at the value patm. Consequently f is also independent of z, and can be

set equal to patm. We obtain finally

p = igx sin v + patm (3.7-20)

Equation 3.7-18 then becomes
d
dx

fxz = ig cos v (3.7-21)

which is the same as Eq. 2.2-14. The remainder of the solution is the same as in Example 2.2-2.

EXAMPLE 3.7-3

Operation of a Couette
Viscometer

It has been mentioned earlier that the measurement of pressure difference vs. mass flow rate

through a cylindrical tube is the basis for the determination of viscosity in commercial capillary

viscometers. The viscosity may also be determined by measuring the torque required to turn a

solid object in contact with a fluid. The forerunner of all rotational viscometers is the Couette

instrument, a common version of which is illustrated in Figure 3.7-2.
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Outer cylinder
stationary

Inner cylinder
rotating Ωi

R

R

(b)(a)

g

z

r

L

Tz, Ωi

vθ is a function of r

κ

Fig. 3.7-2. (a) A diagram of a Couette viscometer. One measures the angular velocity 1i of the

bob that results from an external torque Tz applied to the bob. Equation 3.7-33 gives the

viscosity 4, in terms of 1i and the torque Tz. (b) Tangential laminar flow of an incompressible

fluid in the space between two cylinders, the inner one of which is moving with an angular

velocity 1i.

The fluid is placed in the outer cylinder or “cup,” and the inner cylinder or “bob” is then

made to rotate by applying a specified torque Tz about the z axis with a motor placed above.

The applied torque causes the suspended bob to rotate with angular speed1i that is measured

by the instrument (the subscript “i” stands for “inner”). A steady flow is obtained when the

externally applied torque is balanced by the torque exerted by the fluid on the inner cylinder.

By deriving an expression for the relationship between the torque and the rotation rate, the

viscosity of the liquid can be obtained. In this analysis, end effects over the region including the

bob height L are neglected. This is reasonable, provided that the bob height is large compared

to the gap between the cylinders.

To analyze this measurement, we apply the equations of continuity and motion for a liq-

uid of constant i and 4 in cylindrical coordinates to the tangential flow in the annular region

between the bob and the outer cylinder. Ultimately we want an expression for the viscosity in

terms of (the z component of) the torque on the inner cylinder Tz, the angular velocity of the

rotating bob 1i, the bob height L, and the radii nR and R of the bob and cup.

SOLUTION

In the portion of the annulus under consideration, the fluid moves in a circular pattern. Rea-

sonable postulates for the velocity and pressure are: vp = vp(r), vr = 0, vz = 0, and p = p(r,z). We

expect p to depend on z because of gravity, and on r because of the centrifugal force.
For these postulates all the terms in the equation of continuity are zero, and the compo-

nents of the equation of motion in Eqs. B.6-4 to B.6-6 simplify to

r component: − i
v2p
r

= −
𝜕p
𝜕r

(3.7-22)

p component: 0 = d
dr

(
1

r
d
dr

(
rvp

))
(3.7-23)

z component: 0 = −
𝜕p
𝜕z

− ig (3.7-24)
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The second equation can be used to obtain the velocity distribution. The third equation gives

the effect of gravity on the pressure (the hydrostatic effect), and the first equation tells how the

centrifugal force affects the pressure. For the problem at hand we need only the p component

of the equation of motion.2

Equation 3.7-23 can be integrated once directly to give

1

r
d
dr

(rvp) = C1 (3.7-25)

Multiplication by r yields
d
dr

(rvp) = C1r (3.7-26)

which can then be integrated to give

rvp =
1

2
C1r

2 + C2 (3.7-27)

or

vp(r) =
1

2
C1r +

C2

r
(3.7-28)

The boundary conditions are that the fluid does not slip at the two cylindrical surfaces:

B. C. 1 at r = nR, vp = 1inR (3.7-29)

B. C. 2 at r = R, vp = 0 (3.7-30)

These boundary conditions can be used to get the constants of integration C1 = −21in[(1∕n)
−n]−1 and C2 = +1inR

2[(1∕n) − n]−1. When these are inserted in Eq. 3.7-28, we get

vp(r) = 1inR

(
R
r
− r

R

)
(
1

n
− n

) (3.7-31)

By writing the result in this form, with similar terms in the numerator and denominator, it is

clear that both boundary conditions are satisfied and that the equation is dimensionally con-

sistent.

From the velocity distributionwe can find the shear stress (momentumflux) by using §B.1:

frp(r) = −4r d
dr

(
vp
r

)
= 241i

(
n2

1 − n2

)(
R
r

)2

(3.7-32)

The torque about the z axis exerted by the inner cylinder on the fluid is then given by the prod-

uct of the force per unit area exerted by the cylinder on the fluid in the p direction (+frp|r=nR),
the surface area of the cylinder (20nRL), and the lever arm (nR),

Tz = (+frp)|r=nR ⋅ 20nRL ⋅ nR = 4041iR
2L

(
n2

1 − n2

)
(3.7-33)

Therefore, measurement of the angular velocity of the bob for a known torquemakes it possible

to determine the viscosity. The same kind of analysis is available for other rotational viscome-

ters.3

2See R. B. Bird, C. F. Curtiss, and W. E. Stewart, Chem. Eng. Sci., 11, 114–117 (1959) for a method of

getting p(r,z) for such systems. The time-dependent buildup to the steady-state profiles is given by R. B.

Bird and C. F. Curtiss, Chem. Eng. Sci., 11, 108–113 (1959).
3J. R. VanWazer, J. W. Lyons, K. Y. Kim, and R. E. Colwell, Viscosity and Flow Measurement, Wiley,

New York (1963); K. Walters, Rheometry, Chapman and Hall, London (1975).
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Onemight ask what happens if we hold the inner cylinder fixed and cause the outer cylin-
der to rotate with an angular velocity1o (the subscript “o” stands for outer). Then the velocity
distribution may be shown to be

vp(r) = 1oR

(
r
nR

− nR
r

)
(
1

n
− n

) (3.7-34)

This is obtained by making the same postulates (see before Eq. 3.7-22) and solving the same
differential equation (Eq. 3.7-23), but with a different set of boundary conditions. The torque
required to rotate the outer cylinder is still given by Eq. 3.7-33, but with1i replaced by1o (the
case of both cylinders rotating is addressed in Problem 3B.1).

Equation 3.7-31 describes the flow accurately for small values of 1i. However, when 1i
reaches a critical value (1i,crit ≈ 41.3(4∕R2(1 − n)3∕2i) for n ≈ 1), the fluid develops a secondary
flow, which is superimposed on the primary (tangential) flow andwhich is periodic in the axial
direction. A very neat system of toroidal vortices, called Taylor vortices, is formed, as depicted
in Figs. 3.7-3 and 3.7-4(b). The loci of the centers of these vortices are circles, whose centers are
located on the common axis of the cylinders. This is still laminar motion—but certainly incon-
sistent with the postulates made at the beginning of the problem.When the angular velocity1i
is increased further, the loci of the centers of the vortices become traveling waves; that is, the
flow becomes, in addition, periodic in the tangential direction (see Fig. 3.7-4(c)). Furthermore

the angular velocity of the traveling waves is approximately 1

3
1i. When the angular velocity1i

is further increased, the flow becomes turbulent. Figure 3.7-5 shows the various flow regimes,
with the inner and outer cylinders both rotating, determined for a specific apparatus and a
specific fluid. This diagram demonstrates how complicated this apparently simple system is.

Inner cylinder
rotating

Outer cylinder fixed

Fig. 3.7-3. Counter-rotating toroidal vortices,

called Taylor vortices, observed in the annular

space between two cylinders. The streamlines

have the form of helices, with the axes wrapped

around the common axis of the cylinders. This

corresponds to Fig. 3.7-4(b).Geoffrey Ingram
Taylor (1886–1975) is famous for Taylor

dispersion, Taylor vortices, and his work on the

statistical theory of turbulence; he attacked

many complex problems in ingenious ways that

made maximum use of the physical processes

involved.

(a) (b) (c)

Fig. 3.7-4. Sketches showing the phenomena

observed in the annular space between two

cylinders: (a) purely tangential flow; (b) singly
periodic flow (Taylor vortices); and (c) doubly
periodic flow in which an undulatory motion is

superposed on the Taylor vortices.
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Further details may be found elsewhere.4,5 The critical Reynolds number (1oR
2i∕4)crit, above

which the system becomes turbulent, is shown in Fig. 3.7-6 as a function of the radius ratio n
for the case of the outer cylinder rotating with the inner cylinder fixed.
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Fig. 3.7-5. Flow-regime

diagram for the flow between

two coaxial cylinders. The

straight line, labeled

“Rayleigh” is Lord Rayleigh’s

analytic solution for an inviscid

fluid. [See D. Coles, J. Fluid
Mech., 21, 385–425 (1965).]
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Fig. 3.7-6. Critical Reynolds number for the

tangential flow in an annulus, with the outer cylinder

rotating and the inner cylinder stationary.

[H. Schlichting, Boundary Layer Theory, McGraw-Hill,

New York (1955), p. 357.]

4The initial work on this subject was done by John William Strutt (Lord Rayleigh) (1842–1919),
who established the field of acoustics with his Theory of Sound, written on a houseboat on the Nile River.

Some original references on Taylor instability are: J. W. Strutt (Lord Rayleigh), Proc. Roy. Soc., A93,
148–154 (1916); G. I. Taylor, Phil. Trans., A223, 289–343 (1923) and Proc. Roy. Soc. A157, 546–564 (1936); P.
Schultz-Grunow and H. Hein, Zeits. Flugwiss., 4, 28–30 (1956); D. Coles, J. Fluid Mech. 21, 385–425 (1965).
See also R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures in Physics, Addison-Wesley,

Reading, MA (1964), §41-6.
5Other references on Taylor instability, as well as instability in other flow systems, are: L. D. Landau

and E. M. Lifshitz, Fluid Mechanics, Pergamon, Oxford, 2nd edition (1987), pp. 99–106; S. Chandrasekhar,

Hydrodynamic and Hydromagnetic Stability, Oxford University Press (1961), pp. 272–342; H. Schlichting and

K. Gersten, Boundary-Layer Theory, Springer-Verlag, Berlin, 8th edition (2000), Chapter 15; P. G. Drazin

and W. H. Reid, Hydrodynamic Stability, Cambridge University Press (1981); M. Van Dyke, An Album of
Fluid Motion, Parabolic Press, Stanford (1982).
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The preceding discussion should serve as a stern warning that intuitive postulates may be

misleading. Most of us would not think about postulating the singly and doubly periodic solu-

tions just described. Nonetheless, this information is contained in theNavier–Stokes equations!

However, since problems involving instability and transitions between several flow regimes are

extremely complex, we are forced to use a combination of theory and experiment to describe

them. Theory alone cannot yet give us all the answers, and carefully controlled experiments

will be needed for years to come.

EXAMPLE 3.7-4

Shape of the Surface of
a Rotating Liquid

A liquid of constant density and viscosity is in a cylindrical container of radius R as shown in

Fig. 3.7-7. The container is caused to rotate about its own axis at an angular velocity 1. The

cylinder axis is vertical, so that in cylindrical coordinates gr = 0, gp = 0, and gz = −g, in which

g is the magnitude of the gravitational acceleration. Find the shape of the free surface of the

liquid at steady state.

SOLUTION

Cylindrical coordinates are appropriate for this problem, and the equations of change are given

in §B.4 and §B.6. At steady state we postulate that vr and vz are both zero and that vp depends
only on r. We also postulate that p depends on z because of the gravitational force, and on r
because of the centrifugal force.

These postulates give 0= 0 for the equation of continuity, and the equation ofmotion gives:

r component: − i
v2p
r

= −
𝜕p
𝜕r

(3.7-35)

p component: 0 = d
dr

(
1

r
d
dr

(
rvp

))
(3.7-36)

z component: 0 = −
𝜕p
𝜕z

− ig (3.7-37)

The p component of the equation of motion can be integrated twice to give

vp(r) =
1

2
C1r +

C2

r
(3.7-38)

in which C1 and C2 are constants of integration. Because vp cannot be infinite at r = 0, the con-

stant C2 must be zero. At r = R the velocity vp is R1. Hence, C1 = 21 and

vp(r) = 1r (3.7-39)

z0

R

z

r

p = p(r, z)
within fluid

p = patm
on

surface

Ω

Fig. 3.7-7. Rotating liquid with a free surface, the

shape of which is a paraboloid of revolution.
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This states that each element of the rotating liquid moves as an element of a rigid body. When

the result in Eq. 3.7-39 is substituted into Eq. 3.7-35, we then have the following two equations

for the pressure derivatives:

𝜕p
𝜕r

= i12r and
𝜕p
𝜕z

= −ig (3.7-40, 41)

Each of these equations can be integrated to give

p(r,p,z) = 1

2
i12r2 + f1(p,z) and p(r,p,z) = −igz + f2(r,p) (3.7-42, 43)

where f1(p,z) and f2(r,p) are arbitrary functions of integration. Since we have postulated that

p does not depend on p, we can choose f1(z) = −igz + C and f2(r) =
1

2
i12r2 + C, where C is a

constant, to satisfy Eqs. 3.7-40 and 3.7-41. Thus, the solution to Eqs. 3.7-40 and 3.7-41 is

p(r,z) = −igz + 1

2
i12r2 + C (3.7-44)

The constantCmay be determined by requiring that p = patm at r = 0 and z = z0, the latter being
the elevation of the liquid surface at r = 0. When C is obtained in this way, we get

p(r,z) − patm = −ig(z − z0) +
1

2
i 12r2 (3.7-45)

This equation gives the pressure at all points within the liquid. Right at the liquid-air interface,

p = patm, and with this substitution Eq. 3.7-45 gives the shape of the liquid-air interface

z(r) − z0 =
(
12

2g

)
r2 (3.7-46)

This is the equation for a parabola. The reader can verify that the free surface of a liquid in a

rotating annular container obeys a similar relation.

§3.8 THE EQUATIONS OF CHANGE AND SOLVING PROBLEMS
WITH TWO INDEPENDENT VARIABLES

In this section, we show how some problems with more than one independent variable
can be solved. For problemswith two independent variables, the equations of change pro-
duce partial differential equations that can be quite challenging to solve. In the examples
below, the problems are solved by using a few well-knownmethods. There are numerous
other methods that can be exploited to solve flow problems, which are beyond the scope
of this text. The reasons for including some examples here are (1) to provide additional
examples where the equations of change are reduced using postulates and boundary (and
initial) conditions are used to evaluate unknown constants, (2) to illustrate some useful
and interesting transport phenomena, and (3) to show the reader that with a little more
experience with mathematics, many more complicated flow problems can be solved.

Example 3.8-1 illustrates a rectilinear flowproblem inwhich the only nonzero velocity
component depends on both position and time. This problem also introduces “similar-
ity solution” methods, as well as the error function and complementary error function,
which appear in numerous problems in transport phenomena. Example 3.8-2 illustrates a
creeping flow problem in spherical coordinates. Example 3.8-3 illustrates a creeping flow
problem in cylindrical coordinates, and also demonstrates how the equation of continuity
can be used in solving flow problems.

EXAMPLE 3.8-1

Flow near a Wall
Suddenly Set in Motion

A semi-infinite body of liquid with constant density and viscosity is bounded below by a hor-

izontal surface (the xz plane). Initially the fluid and the solid are at rest. Then at time t = 0, the

solid surface is set in motion in the positive x direction with speed v0 as shown in Fig. 3.8-1.

Find the velocity vx as a function of y and t. There is no pressure gradient or gravity force in

the x direction, and the flow is presumed to be laminar.
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v0

v0

y

y

y

t < 0
Fluid at
rest

t > 0
Fluid in
unsteady
flow

t = 0
Wall set in 
motion

vx(y, t)

Fig. 3.8-1. Viscous flow of a fluid near a wall

suddenly set in motion.

SOLUTION

For this system, vx = vx(y,t), vy = 0, and vz = 0 . Then from §B.4 we find that the equation of
continuity is satisfied directly, and from §B.6 we get

𝜕vx
𝜕t

= l
𝜕2vx
𝜕y2

(3.8-1)

in which l = 4∕i is the kinematic viscosity. The initial and boundary conditions are

I. C.: at t ≤ 0, vx = 0 for all y (3.8-2)

B. C. 1: at y = 0, vx = v0 for all t > 0 (3.8-3)

B. C. 2: as y → ∞, vx → 0 for all t > 0 (3.8-4)

Next we introduce a dimensionless velocity d = vx∕v0, so that Eq. 3.8-1 becomes

𝜕d

𝜕t
= l

𝜕2d

𝜕y2
(3.8-5)

with the initial condition d(y,0) = 0, and boundary conditions d(0,t) = 1 and d(∞,t) = 0. Because
d is a dimensionless function and the initial and boundary conditions contain only pure (dimen-
sionless) numbers, the quantities y,t, and l must always appear in the function d(y,t; l) in a
dimensionless combination. The only dimensionless combinations of these three quantities are

y∕
√
lt, or powers or multiples thereof. We therefore conclude that

d = d(q) where q =
y√
4lt

(3.8-6)

Combining variables in this way is known as the “similarity method” or the “method of com-
bination of (independent) variables.” The “4” is included so that the final result in Eq. 3.8-15

will look neater; we know to do this only after solving the problem without it. The form of the
solution in Eq. 3.8-6 is possible essentially because there is no characteristic length or time in

the physical system.
We now convert the derivatives in Eq. 3.8-5 into derivatives with respect to the “combined

variable” q as follows:

𝜕d

𝜕t
= dd

dq
𝜕q

𝜕t
= −1

2

y√
4l

1

t3∕2
dd
dq

= −1

2

q

t
dd
dq

(3.8-7)
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𝜕d

𝜕y
= dd

dq
𝜕q

𝜕y
= 1√

4lt

dd
dq

(3.8-8)

𝜕2d

𝜕y2
= 1

4lt
d2d
dq2

(3.8-9)

Substitution of Eqs. 3.8-7 and 3.8-9 into Eq. 3.8-5 then gives

d2d
dq2

+ 2q
dd
dq

= 0 (3.8-10)

This is an ordinary differential equation of the type given in Eq. C.1-8, and the accompanying

boundary conditions are

B. C. 1: at q = 0, d = 1 (3.8-11)

B. C. 2: as q → ∞, d → 0 (3.8-12)

The first of these boundary conditions is related to Eq. 3.8-3, and the second includes Eqs. 3.8-2

and 3.8-4. If now we let dd∕dq = b, we get a first-order separable equation for b, which may be

solved to give

b(q) = dd
dq

= C1 exp(−q2) (3.8-13)

A second integration then gives

d(q) = C1∫
q

0

exp(−q2)dq + C2 (3.8-14)

The choice of 0 for the lower limit of the integral is arbitrary; another choice would lead

to a different value of C2, which is still undetermined. Note that we have been careful to

use an overbar for the dummy variable of integration (q) to distinguish it from the q in the

upper limit.

Application of the two boundary conditions makes it possible to evaluate the two integra-

tion constants, and we get finally

d(q) = 1 −
∫

q

0

exp(−q2)dq

∫
∞

0

exp(−q2)dq
= 1 − 2√

0∫
q

0

exp(−q2)dq

= 1 − erf q = erfc q (3.8-15)

where erf q and erfc q are known as the “error function” and the “complementary error

function,” respectively (see §C.6). They are well-known functions, available in mathematics

handbooks and computer software. When Eq. 3.8-15 is rewritten in the original variables, it

becomes
vx(y,t)
v0

= 1 − erf
y√
4lt

= erfc
y√
4lt

(3.8-16)

Plots of Eq. 3.8-16 are given in Fig. 3.8-2(a) and (b). Note that by plotting the result in terms of

dimensionless quantities, only one curve is needed to describe the velocity profile at all times

and for all fluids.

The complementary error function erfc q is a monotone decreasing function that goes from

1 to 0 and drops to 0.01 when q is about 2.0. We can use this fact to define a “boundary-layer

thickness” t as that distance y for which d = vx∕v0 has dropped to a value of 0.01. This gives

t = 4
√
lt as a natural length scale for the diffusion of momentum. This distance is a measure

of the extent to which momentum has “penetrated” into the body of the fluid. Note that

this boundary-layer thickness is proportional to the square root of the elapsed time. The

boundary-layer thickness also quantifies the notion of “similarity” of the velocity profiles at

different times—when the position y is divided by the boundary-layer thickness, the scaled

velocity profiles d = vx∕v0 superpose onto a single curve, as illustrated in Fig. 3.8-2(b).
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(a) (b)

t = 16 s

4 s

1 s

4vty (cm) y

v x
/v

0

v x
/v

0

Fig. 3.8-2. (a) Velocity distribution at various times for the flow of water at 20∘C (l = 10−6 m2∕s) in the neighborhood of a

wall suddenly set in motion. (b) Velocity distribution in dimensionless form for flow in the neighborhood of a wall

suddenly set in motion.

EXAMPLE 3.8-2

Flow near a Slowly
Rotating Sphere

A solid sphere of radius R is rotating slowly at a constant angular velocity1 in a large body of

quiescent fluid (see Fig. 3.8-3). Develop expressions for the pressure and velocity distributions

in the fluid and for the torque Tz required to maintain the motion. It is assumed that the sphere

rotates sufficiently slowly that it is appropriate to use the creeping flow version of the equation

of motion in Eq. 3.6-3. This problem illustrates setting up and solving a problem in spherical

coordinates.

R

z

x

y

Torque Tz is required
to make the sphere

rotate
Ω

Fig. 3.8-3. A slowly rotating sphere of radius R in an

infinite expanse of fluid. The primary flow is

vd = 1R(R∕r)2 sin p.

SOLUTION

The equations of continuity and motion in spherical coordinates are given in §B.4 and §B.6,

respectively. We postulate that, for steady creeping flow, the velocity distribution will have

the general form v = tdvd(r,p), and that the modified pressure will be of the form 𝒫 = 𝒫 (r,p).
Since the solution is expected to be symmetric about the z axis, there is no dependence on the

angle d.
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With these postulates, the equation of continuity is exactly satisfied, and the components

of the creeping flow equation of motion become

r component: 0 = −𝜕𝒫
𝜕r

(3.8-17)

p component: 0 = −1

r
𝜕𝒫
𝜕p

(3.8-18)

d component: 0 = 1

r2
𝜕
𝜕r

(
r2
𝜕vd
𝜕r

)
+ 1

r2
𝜕
𝜕p

(
1

sin p
𝜕
𝜕p

(
vd sin p

))
(3.8-19)

The boundary conditions may be summarized as

B. C. 1: at r = R, vr = 0, vp = 0, vd = R1 sin p (3.8-20)

B. C. 2: as r → ∞, vr → 0, vp → 0, vd → 0 (3.8-21)

B. C. 3: as r → ∞, 𝒫 → p0 (3.8-22)

where𝒫 = p + igz, and p0 is the fluid pressure far from the sphere at the plane z = 0.

Equation 3.8-19 is a partial differential equation for vd(r,p). To solve this, we try a solution

of the form vd = f (r) sin p. This is just a guess, motivated by the form of the boundary condition

in Eq. 3.8-20. When this form for the velocity distribution is inserted into Eq. 3.8-19, we get the

following ordinary differential equation for f (r):

d
dr

(
r2
df
dr

)
− 2f = 0 (3.8-23)

This is an “equidimensional equation” (or “Cauchy-Euler equation”), which may be solved by

assuming a solution of the form f (r) = rn (see Eq. C.1-14). Substitution of this into Eq 3.8-23

shows that the equation can be satisfied with n = 1 or −2. The general solution of Eq. 3.8-23 is

then

f (r) = C1r +
C2

r2
(3.8-24)

so that

vd(r,p) =
(
C1r +

C2

r2

)
sin p (3.8-25)

Application of the first two boundary conditions shows that C1 = 0 and C2 = 1R3. Therefore,

the final expression for the velocity distribution is

vd(r,p) = 1R
(
R
r

)2

sin p (3.8-26)

Next we evaluate the torque needed to maintain the rotation of the sphere. This will be the

integral, over the entire sphere, of the tangential force (frd|r=R)R2 sin pdpdd exerted on the fluid

by a solid-surface element, multiplied by the lever arm R sin p for that element

Tz = ∫
20

0 ∫
0

0

(frd)|r=R(R sin p)R2 sin pdpdd

= ∫
20

0 ∫
0

0

(341 sin p)(R sin p)R2 sin pdpdd

= 6041R3∫
0

0

sin3pdp

= 8041R3 (3.8-27)

In going from the first to the second line, we have used §B.1, and in going from the second to

the third line, we have done the integration over d. The integral in the third line gives 4

3
.

As the angular velocity increases, deviations from the “primary flow” of Eq. 3.8-26 occur.

The centrifugal force causes fluid to be pulled in toward the poles of the sphere and pushed
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outward along the equator as shown in Fig. 3.8-4. To describe this “secondary flow,” one has

to include the [v ⋅ ∇v] term in the equation of motion. This can be done by a “stream function”

method.1

Ω

z

y

x

Side view

Fig. 3.8-4. Rough sketch showing the secondary flow that

appears around a rotating sphere as the Reynolds number

is increased.

EXAMPLE 3.8-3

Creeping Flow toward
a Slot

Nextwe examine the flowpictured in Fig. 3.8-5. An incompressibleNewtonian liquid is flowing

very slowly at steady state into a thin slot of thickness 2B (in the y direction) and width W in

the z direction (W ≫ B). The mass rate of flow through the slot is w. The fluid outside the slot

is of semi-infinite extent. We want to find the velocity and pressure distributions of the fluid as

it approaches the slot (x > 0). We postulate that, in cylindrical coordinates, vp = 0, vz = 0, and

vr = vr(r,p), and further that 𝒫 = 𝒫 (r,p). Furthermore, we assume that the flow is sufficiently

slow that the acceleration terms can be neglected in the equations of motion.

y

x

y = B

y = –B

Fig. 3.8-5. Converging flow of a liquid into a slot

from a semi-infinite region x > 0.

SOLUTION

The equation of continuity is given by Eq. B.4-2, which for the postulated velocity distribution

reduces to
1

r
𝜕
𝜕r

(rvr) = 0 (3.8-28)

1See, for example, the development by O. Hassager in R. B. Bird, R. C. Armstrong, and O. Hassager,

Dynamics of Polymeric Liquids, Vol 1, Wiley-Interscience, New York, 2nd edition (1987), pp. 31–33. See also

L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, Oxford, 2nd edition (1987), p. 65; and L. G. Leal,

Laminar Flow and Convective Transport Processes, Butterworth-Heinemann, Boston (1992), pp. 180–181.
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from which it follows that

vr =
1

r
f (p) (3.8-29)

Since the flow is symmetric about p = 0 (i.e., the x axis), we must have df∕dp = 0 at p = 0; fur-

thermore, since the fluid velocity is zero at p = ± 1

2
0 (i.e., at the solid wall), it follows that f = 0

at p = ± 1

2
0.

The r and p components of the equation of motion are given by Eqs. B.6-4 and B.6-5, which

for the postulated pressure distribution reduce to

0 = −𝜕𝒫
𝜕r

+ 4
1

r3
d2f
dp2

0 = −𝜕𝒫
𝜕p

+ 24
1

r2
df
dp

(3.8-30, 31)

When the r component of the equation of motion is differentiated with respect to p, and the p
component is differentiatedwith respect to r, the two expressions for 𝜕2𝒫∕𝜕r𝜕pmay be equated

to give
d3f
dp3

+ 4
df
dp

= 0 (3.8-32)

This equation can be integrated once to give

d2f
dp2

+ 4f = C1 (3.8-33)

This equation has a particular integral fPI =
1

4
C1, and the complementary function is

fCF = C2 cos 2p + C3 sin 2p (according to Eq. C.1-3). Therefore, the solution of Eq. 3.8-33 is the

sum of these two functions

f (p) = 1

4
C1 + C2 cos 2p + C3 sin 2p (3.8-34)

The boundary conditions on f (p) are given immediately after Eq. 3.8-29. It is found that C3 = 0,

from the condition on df∕dp, and that 1

4
C1 = C2, from the condition on f at the solid walls. Thus,

we have

f (p) = C2(1 + cos 2p) = 2C2cos
2p (3.8-35)

The remaining constant can be determined by requiring that the total mass flow rate across any

cylindrical surface must be w, that is

∫
W

0 ∫
+0∕2

−0∕2
(−ivr)rdpdz =i∫

W

0 ∫
+0∕2

−0∕2

(
−1

r
⋅ 2C2cos

2p

)
rdpdz = w (3.8-36)

When the integral is performed, we get C2 = −w∕0iW, so that

vr(r,p) = − 2w
0iWr

cos2p (3.8-37)

This is the velocity distribution in the region of positive x. Of course, it will not be valid for

very small values of r, inasmuch as there will be a disturbance in the region where the fluid

enters the slit.

Next we turn to the determination of the modified pressure distribution 𝒫 (r,p). We sub-

stitute f (p) from Eq. 3.8-35, with C2 = −w∕0iW, into Eqs. 3.7-30 and 3.7-31 to get

𝜕𝒫
𝜕r

= 4

r3

(
4w
0iW

)
(cos2p − sin2p) (3.8-38)

𝜕𝒫
𝜕p

= 24

r2
d
dp

(
− 2w
0Wi

cos2p

)
(3.8-39)

Each of these equations can be integrated. From Eq. 3.8-38 we obtain

𝒫 =− 4

r2

(
2w
0iW

)
(cos2p − sin2p) + F(p) (3.8-40)
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and from Eq. 3.8-39

𝒫 =−24

r2

(
2w
0iW

)
cos2p + G(r) (3.8-41)

Equation 3.8-41 can be rewritten as

𝒫 = − 4

r2

(
2w
0iW

)
(cos2p + cos2p) + G(r)

= − 4

r2

(
2w
0iW

)
(cos2p + (1 − sin2p)) + G(r)

= − 4

r2

(
2w
0iW

)
(cos2p − sin2p) +H(r) (3.8-42)

In comparing Eqs. 3.8-40 and 3.8-42, we see that the two expressions for𝒫 are the same except

for the functions F and H. Since the first is a function of p alone, and the second a function of r
alone, they must both be equal to a constant, which we call 𝒫∞. This is the modified pressure

in the limit as r → ∞.

Next we get the total normal stress at the wall at p = ± 1

2
0. If we use the result of Example

3.1-1 (i.e., fpp|p=± 1
2
0 = 0), we find

0pp|p=± 1
2
0 = (p + fpp)|p=± 1

2
0 = (𝒫 − igh)|p=± 1

2
0

=𝒫∞ + 2w4
0iWr2

− igh = p∞ + 2w4
0iWr2

(3.8-43)

And finally we get the shear stress acting on the walls. From Eq. B.1-11

fpr|p=± 0

2
= −41

r
𝜕vr
𝜕p

||||p=± 0

2

= −4
(
− 2w
0Wir2

)
(−2 cos p sin p)

|||||p=± 0

2

= 0 (3.8-44)

Although the fluid is flowing along the wall, there is no tangential force on the wall, because

the velocity gradient is zero! This is an atypical result, and should not be automatically applied

to other problems involving flow along a solid wall.

§3.9 CONCLUDING COMMENTS

In Chapter 2 it was shown how to set up momentum conservation statements by using
shell-balance arguments. The method was, however, restricted to incompressible, rectilin-
ear flows.

In Chapter 3, we have seen how to set up quite general mass and momentum conser-
vation equations—the equations of continuity and motion—that enable us to formulate
problems in much more general flows, using several different coordinate systems. Then
we illustrated problem solving by working through the solutions to seven laminar-flow
problems of varying degrees of complexity. Of course, there are many more fluid dynam-
ics problems for which the solutions can be found in advanced fluid mechanics texts and
handbooks. One’s ability to solve these more complex problems depends on one’s facility
with mathematics. These problems, as well as more complicated ones, can also be solved
numerically by using a variety of commercial software packages. The problems that have
been solved analytically in this chapter can be used to verify the user’s ability to employ
those software packages.

In addition, you are now prepared to approach problem solving in turbulent flow
(Chapter 4) and to examine problems by dimensional analysis (Chapter 5). Also, in Part
II and Part III of this book, where we look at nonisothermal problems and flow of binary
mixtures, youwill see the virtue of problem solving by using equations of change for flows
with temperature and concentration gradients.
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QUESTIONS FOR DISCUSSION

1. What is the physical meaning of the term2x2y(ivz)|z in Eq. 3.1-2?What is the physical meaning

of (∇ ⋅ v)? of (∇ ⋅ iv)?
2. Bymaking amass balance over a volume element (2r)(r2p)(2z), derive the equation of continu-

ity in cylindrical coordinates. Compare your result with the appropriate entry in Appendix B.

3. What is the physical meaning of the term 2x2y(dzx)|z in Eq. 3.2-2?What is the physical meaning

of [∇ ⋅ d]?
4. What happens when f is set equal to unity in Eq. 3.5-6?

5. Equation (B) in Table 3.5-1 is not restricted to fluids with constant density, even though i is to

the left of the substantial derivative. Explain.

6. In the tangential annular flow problem in Example 3.7-3, would you expect velocity profiles

relative to the inner cylinder and the torques on the inner cylinder to be the same in the follow-

ing two situations: (i) the inner cylinder is fixed and the outer cylinder rotates with an angular

velocity 1; (ii) the outer cylinder is fixed and the inner cylinder rotates with an angular veloc-

ity −1? Both flows are presumed to be laminar and stable. How are the torques exerted by the

fluid on the outer cylinder related to the torques on the inner cylinder in these two cases?

7. Suppose that, in Example 3.7-4, there were two immiscible liquids in the rotating beaker. What

would be the shape of the interface between the two liquid regions?

8. Would the system discussed in Example 3.8-2 be useful as a viscometer?

9. In Eq. 3.8-27, explain bymeans of a carefully drawn sketch the choice of limits in the integration

and the meaning of each factor in the first integrand.

PROBLEMS 3A.1 Torque required to turn a friction bearing. Calculate the required torque in lbf ⋅ ft and power

consumption in horsepower to turn the shaft in the friction bearing shown in Fig. 3A.1. The

length of the bearing surface on the shaft is 2 in., and the shaft is rotating at 200 rpm. The vis-

cosity of the lubricant is 200 cp, and its density is 50 lbm∕ft
3
. Neglect the effect of eccentricity.

Answers: 0.32 lbf ⋅ ft; 0.012 hp = 0.009 kW

0.
00
2"

2.
00
"

Fig. 3A.1 Friction bearing.

3A.2 Friction loss in bearings.1 Each of two screws on a large motor-ship is driven by a 4000-hp

engine. The shaft that connects themotor and the screw is 16 in. in diameter and rests in a series

of sleeve bearings that give a 0.005 in. clearance. The shaft rotates at 50 rpm, the lubricant has a

viscosity of 5000 cp, and there are 20 bearings, each 1 ft in length. Estimate the fraction of engine

power expended in rotating the shafts in their bearings. Neglect the effect of the eccentricity.

Answer: 0.116

1This problem was contributed by Prof. E. J. Crosby, University of Wisconsin, author of Experiments
in Transport Phenomena, Wiley, New York (1961).
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3A.3 Effect of altitude on air pressure. When standing at the mouth of the Ontonagon River on the

south shore of Lake Superior (602 ft above mean sea level), your portable barometer indicates

a pressure of 750mm Hg. Use the equation of motion to estimate the barometric pressure at

the top of Government Peak (2023 ft abovemean sea level) in the nearby PorcupineMountains.

Assume the temperature at lake level is 70∘F and that the temperature decreaseswith increasing

altitude at a steady rate of 3∘F per 1000 feet. The gravitational acceleration at the south shore

of Lake Superior is about 32.19 ft∕s2, and its variation with altitude may be neglected in this

problem.

Answer: 713mm Hg = 9.49 × 104 N∕m2(if i = i(p))

3A.4 Viscosity determination with a rotating-cylinder viscometer. It is desired to measure the

viscosities of sucrose solutions of about 60% concentration by weight at about 20∘C with a

rotating-cylinder viscometer such as that shown in Fig. 3.7-2. This instrument has an inner

cylinder 4.000 cm in diameter surrounded by a rotating concentric cylinder 4.500 cm in diame-

ter. The length L is 4.00 cm. The viscosity of a 60% sucrose solution at 20∘C is about 57 cp, and

its density is about 1.29 g∕cm3.

On the basis of past experience, it seems possible that end effects will be important, and it

is therefore decided to calibrate the viscometer by measurements on some known solutions of

approximately the same viscosity as those of the unknown sucrose solutions.

Determine a reasonable value for the applied torque to be used in calibration if the torque

measurements are reliable within 100 dyne/cm and the angular velocity can be measured

within 0.5%. What will be the resultant angular velocity?

3A.5 Fabrication of a parabolic mirror. It is proposed to make a backing for a parabolic mirror, by

rotating a pan of slow-hardening plastic resin at constant speed until it hardens (see Fig. 3.7-7).

Calculate the rotational speed required to produce amirror of focal length f = 100 cm. The focal

length is one-half the radius of curvature at the axis, which in turn is given by

rc =

[
1 +

(
dz
dr

)2
]3∕2(

d2z
dr2

)−1
(3A.5-1)

Answer: 21.1 rpm

3B.1 Flow between coaxial cylinders and concentric spheres.
(a) The space between two coaxial cylinders is filled with an incompressible fluid at constant

temperature. The radii of the inner and outer wetted surfaces are nR and R, respectively. The
angular velocities of rotation of the inner and outer cylinders are 1i and 1o. Determine the

velocity distribution in the fluid, and the torques exerted by the fluid on the two cylinders

needed to maintain the motion.

(b) Repeat part (a) for two concentric spheres.

Answers: (a) vp(r) =
nR

1 − n2

[ (
1o −1in

2
) ( r

nR

)
+ (1i −1o)

(nR
r

)]
(b) vd(r,p) =

nR
1 − n3

[(
1o −1in

3
) ( r

nR

)
+ (1i −1o)

(nR
r

)2
]
sin p

3B.2 Laminar flow in a triangular duct.2 One type of compact heat exchanger is shown in

Fig. 3B.2(a). To analyze the performance of such an apparatus, it is necessary to understand

the flow in a duct whose cross section is an equilateral triangle. This is done most easily by

installing a coordinate system as shown in Fig. 3B.2(b).

2An alternative formulation of the velocity profile is given by L. D. Landau and E. M. Lifshitz, Fluid
Mechanics, Pergamon, Oxford, 2nd edition (1987), p. 54.
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(a)

y
y = H

y =    3 x

(b)
x

y = –   3 x

Fig. 3B.2 (a) Compact heat-exchanger

element, showing channels of a triangular

cross section; (b) coordinate system for an

equilateral-triangular duct.

(a) Verify that the velocity distribution for the laminar flow of a Newtonian fluid in a duct of

this type is given by

vz(x,y) =
(𝒫0 −𝒫L)

44LH
(y −H)(3x2 − y2) (3B.2-1)

(b) From Eq. 3B.2-1, find the average velocity, maximum velocity, and mass flow rate.

Answers: (b) ⟨vz⟩ =
(𝒫0 −𝒫L)H2

604L
= 9

20
vz,max;

w =

√
3(𝒫0 −𝒫L)H4i

1804L

3B.3 Laminar flow in a square duct.
(a) A straight duct extends in the z direction for a length L and has a square cross section,

bordered by the lines x = ±B and y = ±B. A colleague has told you that the velocity distribution

is given by

vz(x,y) =
(𝒫0 −𝒫L)B2

44L

[
1 −

( x
B

)2
] [

1 −
( y
B

)2
]

(3B.3-1)

To be helpful, you feel obliged to check the result. Does it satisfy the relevant boundary condi-

tions and the relevant differential equation?

(b) According to the review article by Berker,3 the mass rate of flow in a square duct is given

by:

w =
0.563(𝒫0 −𝒫L)B4i

4L
(3B.3-2)

Compare the numerical coefficient in this expression with the coefficient that one obtains from

Eq. 3B.3-1.

3B.4 Creeping flow between two concentric spheres. A very viscous Newtonian fluid flows in the

space between two concentric spheres, as shown in Fig. 3B.4. It is desired to find the rate of

3R. Berker, Handbuch der Physik, Vol. VIII/2, Springer, Berlin (1963); see pp. 67–77 for laminar flow in

conduits of noncircular cross sections. See also W. E. Stewart, AIChE Journal, 8, 425–428 (1962).
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flow in the system as a function of the imposed pressure difference. Neglect end effects and

postulate that vp depends only on r and pwith the other velocity components zero.

Fluid in

Fluid out

R

rκ
R

2ε

Fig. 3B.4 Creeping flow in the region between two stationary

concentric spheres.

(a) Using the equation of continuity, show that vp(r,p) sin p = u(r), where u(r) is a function of r
to be determined.

(b) Write the p component of the equation of motion for this system, assuming the flow to be

slow enough that the [v ⋅ ∇v] term is negligible. Show that this gives

0 = −1

r
𝜕𝒫
𝜕p

+ 4

[
1

sin p
1

r2
d
dr

(
r2 du
dr

)]
(3B.4-1)

(c) Separate this into two equations

sin p
d𝒫
dp

= B; 4

r
d
dr

(
r2 du
dr

)
= B (3B.4-2,3)

where B is the separation constant, and solve the two equations to get

B =
𝒫2 −𝒫1

2 ln cot(s∕2)
(3B.4-4)

u(r) =
(𝒫1 −𝒫2)R
44ln cot(s∕2)

[ (
1 − r

R

)
+ n

(
1 − R

r

)]
(3B.4-5)

where𝒫1 and𝒫2 are the values of the modified pressure at p = s and p = 0 − s, respectively.

(d) Use the results above to get the mass rate of flow

w =
0(𝒫1 −𝒫2)R3(1 − n)3i

124ln cot(s∕2)
(3B.4-6)

3B.5 Parallel-disk viscometer. A fluid, whose viscosity is to be measured, is placed in the gap of

thickness B between the two disks of radius R (Fig. 3B.5). One measures the torque Tz required

to turn the upper disk at an angular velocity1. Develop the formula for deducing the viscosity

from these measurements. Assume creeping flow.

Disk at z = B rotates
with angular
velocity Ω

Disk at z = 0 is fixed

Both disks have
radius R
and R >> B

Fluid with viscosity
μ and density ρ is
held in place by
surface tension

Fig. 3B.5 Parallel-disk

viscometer.
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(a) Postulate that for small values of 1 the velocity profiles have the form vr = 0, vz = 0, and
vp = rf (z); why does this form for the tangential velocity seem reasonable? Postulate further
that 𝒫 = 𝒫 (r,z). Write down the resulting simplified equations of continuity and motion.

(b) From the p component of the equation of motion, obtain a differential equation for f (z).
Solve the equation for f (z) and evaluate the constants of integration. This leads ultimately to
the result vp(r,z) = 1r(z∕B). Could you have guessed this result?

(c) Show that the desired working equation for deducing the viscosity is 4 = 2BTz∕01R4.

(d) Discuss the advantages and disadvantages of this instrument.

3B.6 Circulating axial flow in an annulus. A rod of radius nRmoves upwardwith a constant speed
v0 through a cylindrical container of inner radius R containing a Newtonian liquid (Fig. 3B.6).
The liquid circulates in the cylinder, moving upward along themoving central rod andmoving
downward near the fixed container wall. Find the velocity distribution in the annular region,
far from the end disturbances. Flows similar to this occur in the seals of some reciprocating
machinery, for example, in the annular space between piston rings.

Rod of radius κR
moves upward with

velocity v0

Cylinder of length L
and inner radius R

(with L >> R)

Fig. 3B.6 Circulating flow produced by an axially moving

rod in a closed annular region.

(a) First, consider the problem where the annular region is quite narrow—that is, where n is
just slightly less than unity. In that case, the annulus may be approximated by a thin plane slit
and the curvature can be neglected. Show that in this limit, the velocity distribution is given by

vz(k)
v0

= 3

(
k − n
1 − n

)2

− 4

(
k − n
1 − n

)
+ 1 (3B.6-1)

where k = r∕R.
(b) Next, work the problem without the thin-slit assumption. Show that the velocity distribu-
tion is given by

vz(k)
v0

=
(1 − k2)

(
1 − 2n2

1 − n2
ln

1

n

)
− (1 − n2) ln 1

k

(1 − n2) − (1 + n2) ln 1

n

(3B.6-2)

3B.7 Comparison of tube flows for several cross sections. The laminar flow in a circular tube with
radius R is discussed in §2.3, and the laminar flow in tubes with equilateral triangular cross
section of height H is described in Problem 3B.2. Both tubes have the same length, L. We want
to compare these two flow problems.

(a) Compare the mass rates of flow for the two tubes when their cross-sectional areas are
the same.

(b) Compare themass rates of flow for the two tubeswhen the perimeters of their cross sections
are the same.
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Answers: (a)
w2
w○

=
3
√
3(16)
180

⋅ 80 = 0.726

(b)
w2
w○

=
√
3

(2
√
3)4(180)

⋅
(8)(20)4

0
= 0.265

For the square cross section (see Problem 3B.3), the ratios corresponding to (a) and (b) may
be found to be

w◽

w○

= 0.884 (same cross-sectional areas)

w◽

w○

= 0.545 (same perimeters)

What, if any, conclusions can you draw from this problem?

3B.8 Flow near a wall suddenly set in motion. When you look at Fig. 3.8-2(b), you might wonder
whether the slope at y = 0 is−1. You can answer that question by differentiating Eq. 3.8-15 with
respect to q. Show that

d
dq

erfc q
||||q=0 = −1.1287 (3B.8-1)

To do this, use the Leibniz formula for differentiating integrals in §C.3 and the definition of the
complementary error function in §C.6. Asmay be seen from Fig. 3.8-2(b), the slope is somewhat
steeper than minus 1.

3B.9 Slow transverse flowaround a cylinder. An incompressibleNewtonianfluid approaches a sta-
tionary cylinder with a uniform, steady velocity v∞ in the positive x direction (Fig. 3B.9). When
the equations of change are solved for creeping flow, the following expressions4 are found for
the pressure and velocity in the immediate vicinity of the cylinder (they are not valid at large
distances):

p(r,p) = p∞ − C4
v∞ cos p

r
− ig sin p (3B.9-1)

vr(r,p) = Cv∞

[
1

2
ln

( r
R

)
− 1

4
+ 1

4

(R
r

)2
]
cos p (3B.9-2)

vp(r,p) = −Cv∞
[
1

2
ln

( r
R

)
+ 1

4
− 1

4

(R
r

)2
]
sin p (3B.9-3)

Here p∞ is the pressure far from the cylinder at y = 0 and

C = 2

ln(7.4∕Re)
(3B.9-4)

with the Reynolds number defined as Re = 2Rv∞i∕4.

Fluid
approaches
from x = –∞
with uniform
velocity v∞

y

x

D

Fig. 3B.9 Transverse flow around a cylinder.

4See G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press (1967), pp.

244–246, 261.
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(a) Use these results to get the pressure p, the shear stress frp, and the normal stress frr at the
surface of the cylinder.

(b) Show that the x component of the force per unit area exerted by the liquid on the cylinder
is

−p|r=R cos p + frp|r=R sin p (3B.9-5)

(c) Obtain the force Fx = 2C0L4v∞ exerted by the fluid in the x direction on a length L of the
cylinder.

3B.10 Radial flow between parallel disks. A part of a lubrication system consists of two circular
disks between which a lubricant flows radially, as illustrated in Fig. 3B.10. The flow takes place
because of a modified pressure difference𝒫1 −𝒫2 between the inner and outer radii r1 and r2,
respectively.

r = r1
r = r2

Radial flow outward
between disks

Fluid in

z = +b
z = –b

Fig. 3B.10 Outward radial flow in the space

between two parallel, circular disks.

(a) Write the equations of continuity and motion for this flow system, assuming steady-state,
laminar, incompressible Newtonian flow. Consider only the region r1 ≤ r ≤ r2 and a flow that
is radially directed.

(b) Showhow the equation of continuity enables one to simplify the equation ofmotion to give

−id
2

r3
= −d𝒫

dr
+ 4

1

r
d2d
dz2

(3B.10-1)

in which d = rvr is a function of z only. Why is d independent of r?
(c) It can be shown that no solution exists for Eq. 3B.10-1 unless the nonlinear term containing
d is omitted. Omission of this term corresponds to the “creeping flow assumption.” Show that
for creeping flow, Eq. 3B.10-1 can be integrated with respect to r to give

0 = (𝒫1 −𝒫2) +
(
4 ln

r2
r1

)
d2d
dz2

(3B.10-2)

(d) Show that further integration with respect to z gives

vr(r,z) =
(𝒫1 −𝒫2)b2

24r ln(r2∕r1)

[
1 −

( z
b

)2
]

(3B.10-3)

(e) Show that the mass flow rate is

w =
40(𝒫1 −𝒫2)b3i
34 ln(r2∕r1)

(3B.10-4)

(f) Sketch the curves 𝒫 (r) and vr(r,z).

3B.11 Radial flow between two coaxial cylinders. Consider an incompressible fluid, at constant
temperature, flowing radially between two porous cylindrical shells with inner and outer radii
nR and R.
(a) Show that the equation of continuity leads to vr = C∕rwhere C is a constant.

(b) Simplify the components of the equation of motion to obtain the following expressions for
the modified pressure distribution:

d𝒫
dr

= −ivr
dvr
dr

, d𝒫
dp

= 0, d𝒫
dz

= 0 (3B.11-1)
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(c) Integrate the expression for d𝒫∕dr above to get

𝒫 (r) −𝒫 (R) = 1

2
i[vr(R)]2

[
1 −

(R
r

)2]
(3B.11-2)

(d) Write out all the nonzero components of f for this flow.

(e) Repeat the problem for concentric spheres.

3B.12 Pressure distribution in incompressible fluids. Penelope is staring at a beaker filled with a

liquid,which for all practical purposes can be considered as incompressible; let its density be i0.
She tells you she is trying to understand how the pressure in the liquid varies with depth. She

has taken the origin of coordinates at the liquid-air interface, with the positive z axis pointing
away from the liquid. She says to you:

“If I simplify the equation of motion for an incompressible liquid at rest, I get 0 = −dp∕dz −
i0g. I can solve this and get p = patm − i0gz. That seems reasonable—the pressure increaseswith

increasing depth.

“But, on the other hand, the equation of state for any fluid is p = p(i,T), and if the system is

at constant temperature, this just simplifies to p = p(i). And, since the fluid is incompressible,

p = p(i0), and pmust be a constant throughout the fluid! How can that be?”

Clearly Penelope needs help. Provide a useful explanation.

3B.13 Flow of a fluid through a sudden contraction.
(a) An incompressible liquid flows through a sudden contraction from a pipe of diameter D1

into a pipe of smaller diameter D2. What does the Bernoulli equation predict for 𝒫1 −𝒫2, the

difference between themodified pressures upstream and downstream of the contraction? Does

this result agree with experimental observations?

(b) Repeat the derivation for the isothermal horizontal flow of an ideal gas through a sudden

contraction.

3B.14 Normal stresses at solid surfaces for compressible fluids. Extend Example 3.1-1 to compress-

ible fluids. Show that

fzz|z=0 = (
4

3
4 + n

)
(𝜕 ln i∕𝜕t)|z=0 (3B.14-1)

Discuss the physical significance of this result.

3B.15 Shape of free surface in tangential annular flow.
(a) A liquid is in the annular space between two vertical cylinders of radii nR and R, and the

liquid is open to the atmosphere at the top.

Show that when the inner cylinder rotates with an angular velocity1i, and the outer cylin-

der is fixed, the free liquid surface has the shape z(k) given by

zR − z(k) = 1

2g

(
n2R1i

1 − n2

)2 (
1

k2
+ 4 ln k − k2

)
(3B.15-1)

in which zR is the height of the liquid at the outer-cylinder wall, and k = r∕R.
(b) Repeat (a) but with the inner cylinder fixed and the outer cylinder rotating with an angular

velocity 1o. Show that the shape of the liquid surface is

zR − z(k) = 1

2g

(
n2R1o

1 − n2

)2 [(
1

k2
− 1

)
+ 4

n2
ln k − 1

n4
(k2 − 1)

]
(3B.15-2)

(c) Draw a sketch comparing these two liquid-surface shapes.

3B.16 Flow in a slit with uniform cross flow. A fluid flows in the positive x direction through a

long flat duct of length L, width W, and thickness B, where L ≫ W ≫ B (see Fig. 3B.16). The

duct has porous walls at y = 0 and y = B, so that a constant cross flow can be maintained,

with vy = v0, a constant, everywhere. Flows of this type are important in connection with
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separations processes using the sweep-diffusion effect. By carefully controlling the cross flow,

one can concentrate the larger constituents (molecules, dust particles, etc.) near the upper wall.

y = B

y = 0

vx(y)
y

x

L

Fig. 3B.16 Flow in a slit of length L,
widthW, and thickness B. The walls at

y = 0 and y = B are porous, and there is

a flow of the fluid in the y direction,
with a uniform velocity vy = v0.

(a) Show that the velocity profile for the system is given by

vx(y) =
(𝒫0 −𝒫L)B2

4L
1

A

(
y
B
− eAy∕B − 1

eA − 1

)
(3B.16-1)

in which A = Bv0i∕4.
(b) Show that the mass flow rate in the x direction is

w =
(𝒫0 −𝒫L)B3Wi

4L
1

A

(
1

2
− 1

A
+ 1

eA − 1

)
(3B.16-2)

(c) Verify that the above results simplify to those of Problem 2B.4 in the limit that there is no

cross flow at all (that is, as A → 0).

(d) A colleague has also solved this problem, but taking a coordinate system with y = 0 at the

midplane of the slit, with the porous walls located at y = ±b. His answer to part (a) above is

vx(q)⟨vx⟩ = ewq − q sinh w − cosh w

(1∕w) sinh w − cosh w
(3B.16-3)

in which w = bv0i∕4 and q = y∕b. Is this result equivalent to Eq. 3B.16-1?

3C.1 Flow near a wall suddenly set inmotion (approximate solution). This problemwas solved in

Example 3.8-1 by the method of combination of independent variables. We now want to show

how the same problem can be solved by an approximate method.

First, we integrate Eq. 3.8-1 over all y from y = 0 to y = ∞ to get

∫
∞

0

𝜕vx
𝜕t

dy = l
𝜕vx
𝜕y

|||||
∞

0

or
d
dt∫

∞

0

vxdy = l
𝜕vx
𝜕y

|||||
∞

0

(3C.1-1)

Now, instead of the true velocity profiles in Fig. 3C.1(a), let us approximate the profiles as in

Fig 3C.1(b). That is, we say that at each value of the time t, the fluid will be in motion out

to a distance t(t), beyond which the velocity will be zero. The distance t(t) will indicate the

“boundary layer” within which the fluid is in motion.

We can make a reasonably good guess as to the shape of the velocity profile within the

boundary layer. For example, the following function seems reasonable:

vx(y,t)
v0

= 1 − 3

2

y
t(t)

+ 1

2

(
y

t (t)

)3
for 0 ≤ y ≤ t(t) (3C.1-2)

and vx(y,t)∕v0 = 0 for y ≥ t(t). Equation 3C.1-2 satisfies the imposed requirements of vx = v0 at
y = 0 and vx = 0 at y = t(t); this equation also gives 𝜕vx∕𝜕y = 0 at y = t(t), which ensures that

the shear stress fyx is continuous.
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δ(t3)

δ(t2)

δ(t1)

y y

v0 v0

Increasing t Increasing t

(a) True solution (b) Boundary-layer approximation

Fig. 3C.1 Comparison of

true and approximate

velocity profiles near a

wall suddenly set in

motion with velocity v0.

(a) Substitute this guessed velocity profile into Eq. 3C.1-1 and get, with q = y∕t(t),

d
dt
t(t)∫

1

0

(
1 − 3

2
q + 1

2
q3
)
dq = −l

(
−3

2
+ 3

2
q2
)|||||q=0 1

t(t)
(3C.1-3)

(b) Evaluate the integral and obtain the following differential equation for the boundary-layer
thickness:

t
dt
dt

= 4l (3C.1-4)

(c) Solve this and get t(t) =
√
8lt. Substitution of this into Eq. 3C.1-2 then gives an approxima-

tion to the velocity profile.

(d) Compare the approximate velocity profiles with the exact results of Example 3.8-1.

3C.2 Boundary-layer development for flowpast a flat plate. Having seen the success of the approx-
imate time-dependent boundary-layer development in Problem 3C.1, we now apply the same
ideas to the space-dependent boundary-layer for flow past a flat plate of negligible thickness,
as shown in Fig. 3C.2.

Thedifferential equations describing the flowfieldwill be the steady-state, two-dimensional
equation of continuity and the x component of the equation of motion (intuition tells us that
we do not need the y component because the motion in the y direction is expected to be very
small):

𝜕vx
𝜕x

+
𝜕vy
𝜕y

= 0 (3C.2-1)

vx
𝜕vx
𝜕x

+ vy
𝜕vx
𝜕y

= l

(
𝜕2vx
𝜕x2

+
𝜕2vx
𝜕y2

)
(3C.2-2)

Order of magnitude arguments can be given that suggest that the term l𝜕2vx∕𝜕x2 is small com-
pared to vx𝜕vx∕𝜕x.

y
x

Fluid approaches with
uniform velocity v∞

Boundary layer

vx(x, y)

v∞

δ(x)

Fig. 3C.2 Boundary-layer

development near a flat

plate of negligible thickness.
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(a) Solve Eq. 3C.2-1 for vy using the boundary condition that vy = 0 at y = 0, and substitute the

result to Eq. 3C.2-2 to get

vx
𝜕vx
𝜕x

−
(
∫

y

0

𝜕vx
𝜕x

dy
)

𝜕vx
𝜕y

= l
𝜕2vx
𝜕y2

(3C.2-3)

(b) Eq. 3C. 2–3 can be solved approximately by the same method used in Problem 3C.1. We let

the velocity profile be of the form

vx(x,y)
v∞

= d(q) where q =
y

t(x)
(3C.2-4)

in which t(x) is the boundary-layer thickness at a distance x from the leading edge of the plate.

Also, for y > t(x), vx = v∞. Then show that the derivatives in Eq. 3C.2-3 are

𝜕vx
𝜕x

= v∞d
′
(
−q

t

) dt
dx

;
𝜕vx
𝜕y

= v∞d
′ 1

t
;

𝜕2vx
𝜕y2

= v∞d
′′ 1

t2
(3C.2-5)

where primes denote differentiation with respect to q.

(c) Show next that, when the results of (b) are substituted into Eq. 3C.2-3, and when the result-

ing equation is integrated with respect to q, the following equation for the boundary-layer

thickness is obtained:

(B − A)tdt
dx

= l
v∞

C (3C.2-6)

in which the constants A,B, and C are

A = ∫
1

0

dd′qdq; B = ∫
1

0

d′

(
∫

q

0

d′qdq

)
dq = −A + ∫

1

0

d′qdq

C = ∫
1

0

d′′dq = d′|1
0

(3C.2-7)

Then integration of Eq. 3C.2-6 gives

t(x) =

√
2

(
C

B − A

)
lx
v∞

(3C.2-8)

This completes the derivation of the expression for the boundary-layer thickness for any

assumed velocity profile d(q) (other than determining the constants A,B, and C explicitly).

Note that this analysis predicts that t(x) ∝
√
x, which is consistent with the exact solution to

this problem.5

(d) Finally select the approximate velocity profile d(q) = 3

2
q − 1

2
q3. Why is this “reasonable”?

Using this velocity profile, obtain t(x) = 4.64
√
lx∕v∞, and then write down the expression for

the velocity distribution in terms of dimensional variables.

(e) Show that the vx(x,y), thus obtained, leads to the following expression for the drag force

over the flat plate, wetted on both sides:

Fx = 2∫
W

0 ∫
L

0

(
+4

𝜕vx
𝜕y

)|||||y=0dxdz = 1.293

√
i4LW2v3∞ (3C.2-9)

A more accurate treatment6 leads to a numerical constant 1.328.

5See Eq. 4.4-25 of R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Revised 2nd

Edition, Wiley, New York (2007).
6H. Blasius, Z. Math. Phys., 56, 1–37 (1908).
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3C.3 Parallel-disk compression viscometer.7 An incompressible fluid fills completely the region

between two circular disks of radius R (see Fig. 3C.3). The bottom disk is fixed, and the upper

disk is made to approach the lower one very slowly with a constant speed v0, starting from a

heightH0 (andH0 ≪ R). The instantaneous height of the upper disk isH(t). It is desired to find

the force needed to maintain the speed v0. This kind of viscometer has been found to be useful

for extremely viscous fluids, such as tars and cheeses.

z

r

H(t)

H(t)

F(t)

R

Upper disk
moves down-
ward slowly
at constant
speed v0

Lower disk
is fixed

Fig. 3C.3 Squeezing flow in a parallel-disk compression

viscometer.

This problem is inherently a rather complicated unsteady flow problem. However, a use-

ful approximate solution can be obtained by making two simplifications in the equations of

change: (i) we assume that the speed v0 is so small that all terms containing time derivatives

can be omitted; this is the so-called “quasi-steady-state” assumption; (ii) we use the fact that

H0 ≪ R to neglect quite a few terms in the equations of change by order-of-magnitude argu-

ments. Note that the rate of decrease of the fluid volume between the disks is 0R2v0, and that

this must equal the rate of outflow from between the disks, which is 20RH⟨vr⟩|r=R. Hence,

⟨vr⟩|r=R =
Rv0
2H(t)

(3C.3-1)

We now argue that vr(r,z) will be of the order of magnitude of ⟨vr⟩|r=R and that vz(r,z) is of the
order of magnitude of v0, so that

vr ≈ (R∕H)v0; vz ≈ −v0 (3C.3-2, 3)

and hence, |vz| ≪ vr becauseR∕H ≫ 1.Wemay now estimate the order ofmagnitude of various

derivatives as follows: as r goes from 0 to R, the radial velocity vr goes from zero to approxi-

mately (R∕H)v0. By this kind of reasoning we get

𝜕vr
𝜕r

≈
(R∕H)v0 − 0

R − 0
=

v0
H

(3C.3-4)

𝜕vz
𝜕z

≈
(−v0) − 0

H − 0
= −

v0
H
, etc. (3C.3-5)

By the above-outlined order-of-magnitude analysis, it can be shown that the continuity

equation and the r component of the equation of motion become (with gz neglected)

continuity:
1

r
𝜕
𝜕r

(rvr) +
𝜕vz
𝜕z

= 0 (3C.3-6)

motion: 0 = −
dp
dr

+ 4
𝜕2vr
𝜕z2

(3C.3-7)

7J. R. Van Wazer, J. W. Lyons, K. Y. Kim, and R. E. Colwell, Viscosity and Flow Measurement,
Wiley-Interscience, New York (1963), pp. 292–295.
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with the boundary conditions

B. C. 1: at z = 0, vr = 0, vz = 0 (3C.3-8)

B. C. 2: at z = H(t), vr = 0, vz = −v0 (3C.3-9)

B. C. 3: at r = R, p = patm (3C.3-10)

(a) By integrating Eq. 3C.3-7 and using the boundary conditions in Eqs. 3C.3-8 and 3C.3-9,

show that

vr =
1

24

(
dp
dr

)
z(z −H) (3C.3-11)

(b) Next, integrate Eq. 3C.3-6 with respect to z from 0 to H and substitute the result from

Eq. 3C.3-11 to get

v0 = − H3

124
1

r
d
dr

(
r
dp
dr

)
(3C.3-12)

(c) Integrate Eq. 3C.3-12 to get the pressure distribution

p = patm +
34v0R

2

H3

[
1 −

( r
R

)2
]

(3C.3-13)

(d) Integrate [(p + fzz) − patm] over the moving-disk surface to find the total force needed to

maintain the disk motion:

F(t) =
304v0R

4

2[H(t)]3
(3C.3-14)

This result can be used to obtain the viscosity from the force and velocity measurements.

(e) Repeat the analysis for a viscometer that is operated with constant applied force, F0. The

speed of the upper plate in the z direction, v0 = −dH∕dt, is not constant, but Eq. 3C.3-14 can be

integrated to obtain

1

[H(t)]2
= 1

H2
0

+
4F0t

304R4
(3C.3-15)

The viscosity may then be determined by measuring the height of the upper plate H as a func-

tion of the time that has elapsed since the beginning of the experiment, t.
(f) Repeat the analysis for a viscometer that is operated in such a way that a centered, circular

glob of liquid never completely fills the space between the two disks. Let the volume of the

fluid sample be V, and show that

F(t) =
34v0V

2

20[H(t)]5
(3C.3-16)

3C.4 Derivation of the equation of change for mechanical energy. Show how Equation 3.3-1 is

derived by forming the dot product of the flowvelocitywith the equation ofmotion in Eq. 3.2-9.

This development uses only the equation of continuity (Eq. 3.1-4) and several identities from

Appendix A. We attack the problem by dotting v into Eq. 3.2-9 term by term.

(a) Form the scalar product of vwith the external force term to obtain directly

(v ⋅ ig) = i(v ⋅ g) (3C.4-1)

(b) Take the dot product of vwith the [∇ ⋅ f] term. Rearrange using Eq. A.4-29 in ExampleA.4-1

to obtain

−(v ⋅ [∇ ⋅ f]) = −(∇ ⋅ [f ⋅ v]) + (f ∶ ∇v) (3C.4-2)

(c) Treat the term containing ∇p similarly by using Eq. A.4-19 to get

−(v ⋅ ∇p) = −(∇ ⋅ pv) + p(∇ ⋅ v) (3C.4-3)
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(d) Combine the dot products of the remaining two terms with v, and then differentiate the

products, using Eq. A.4-24 to expand the gradient term(
v ⋅

𝜕
𝜕t
iv

)
+ (v ⋅ [∇ ⋅ ivv]) =

(
iv ⋅

𝜕
𝜕t
v
)
+ (v ⋅ v) 𝜕

𝜕t
i + (v ⋅ [iv ⋅ ∇v]) + (v ⋅ v)(∇ ⋅ iv) (3C.4-4)

The underlined terms then sum to zero by using the equation of continuity.

Then on the right side of Eq. 3C.4-4, rewrite the first term as two terms, and rearrange

the third term, so that Eq. 3C.4-4 becomes(
v ⋅

𝜕
𝜕t
iv

)
+ (v ⋅ [∇ ⋅ ivv]) = 𝜕

𝜕t

(
1

2
i (v ⋅ v)

)
− 1

2
(v ⋅ v) 𝜕

𝜕t
i + (iv ⋅ [v ⋅ ∇v]) (3C.4-5)

Again, use the equation of continuity to rewrite the second term on the right side of Eq. 3C.4-5

to get(
v ⋅

𝜕
𝜕t
iv

)
+ (v ⋅ [∇ ⋅ ivv]) = 𝜕

𝜕t

(
1

2
i (v ⋅ v)

)
+ 1

2
(v ⋅ v)(∇ ⋅ iv) + (iv ⋅ [v ⋅ ∇v]) (3C.4-6)

Now combine the second and third terms by using Eq. A.4-19 with s replaced by 1

2
(v ⋅ v) and v

replaced by iv. This gives finally(
v ⋅

𝜕
𝜕t
iv

)
+ (v ⋅ [∇ ⋅ ivv]) = 𝜕

𝜕t

(
1

2
iv2

)
+

(
∇ ⋅

1

2
iv2v

)
(3C.4-7)

Combination of Eqs. 3C.4-1, 3C.4-2, 3C.4-3, and 3C.4-7 gives Equation 3.3-1.

3C.5 Deformation of a fluid line. A fluid is contained in the annular space between two cylinders

of radii nR and R (see Fig. 3C.5). The inner cylinder is made to rotate with a constant angular

velocity of1i. Consider a line of fluid particles in the plane z = 0 extending from the inner cylin-

der to the outer cylinder and initially located at p = 0, normal to the two surfaces. How does

this fluid line deform into a curve p(r,t)? What is the length, l, of the curve after N revolutions

of the inner cylinder? Use Eq. 3.7-31.

Answer: l
R

= ∫
1

n

√
1 + 1602N2

[(1∕n)2 − 1]2k4
dk

Fluid curve
at t > 0

Fluid line
at t = 0

Inner cylinder
rotating with angular

velocity Ωi

Fixed outer 
cylinder

y

x

Fig. 3C.5 Deformation of a fluid line in

Couette flow.
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Chapter 4

Velocity Distributions
in Turbulent Flow

§4.1 Comparisons of laminar and turbulent flows

§4.2 Time-smoothed equations of change for incompressible fluids

§4.3 The time-smoothed velocity profile near a wall

§4.4 Empirical expressions for the turbulent momentum flux

§4.5 Turbulent flow in ducts

§4.6○ Turbulent flow in jets

§4.7 Concluding comments

In Chapter 3 we discussed laminar-flow problems only. We have seen that the differential
equations describing laminar flow are well understood and that, for a number of sim-
ple systems, the velocity distribution and various derived quantities can be obtained in a
straightforward fashion. The limiting factor in applying the equations of change is the
mathematical complexity that one encounters in problems for which there are several
velocity components that are functions of several variables. Even there, with the rapid
development of computational fluid dynamics, such problems are gradually yielding to
numerical solution.

In this chapter we turn our attention to turbulent flow. Whereas laminar flow is
orderly, turbulent flow is chaotic. It is this chaotic nature of turbulent flow that poses
all sorts of difficulties. In fact, one might even question whether or not the equations
of change given in Chapter 3 are even capable of describing the violently fluctuating
motions in turbulent flow. Since the sizes of the turbulent eddies are several orders of
magnitude larger than the mean-free path of the molecules of the fluid, the equations of
change are applicable. Numerical solutions of these equations are obtainable and can be
used for studying the details of the turbulence structure. For many purposes, however,
we are not interested in having such detailed information, in view of the computational
effort required. Therefore, in this chapter we shall concern ourselves primarily with
methods that enable us to describe the time-smoothed velocity and pressure profiles.

In §4.1we start by comparing the experimental results for laminar and turbulent flows
in several simple systems. In thiswaywe can get somequalitative ideas about themaindif-
ferences between laminar and turbulent motions. These experiments help to define some
of the challenges that face the fluid dynamicist.

In §4.2 we define several time-smoothed quantities, and show how these definitions
can be used to time-average the equations of change over a short time interval. These
equations describe the behavior of the time-smoothed velocity and pressure. The
time-smoothed equation of motion, however, contains the turbulent momentum flux.

125
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This flux cannot be simply related to velocity gradients in the way that the viscous
momentum flux is given by Newton’s law of viscosity in Chapter 1. At the present time
the turbulent momentum flux is usually estimated experimentally or else modeled by
some type of empiricism based on experimental measurements.

Fortunately, for turbulent flow near a solid surface, there are several rather general
results that are very helpful in fluid dynamics and transport phenomena: the Taylor-series
development for the velocity near the wall, and the logarithmic and power-law velocity
profiles for regions further from the wall, the latter being obtained by dimensional rea-
soning. These expressions for the time-smoothed velocity distribution are given in §4.3.

In the following section, §4.4, we present a few of the empiricisms that have been
proposed for the turbulent momentum flux. These empiricisms are of historical interest
and have also been widely used in engineering calculations. When applied with proper
judgment, these empirical expressions can be useful.

The remainder of the chapter is devoted to a discussion of two types of turbulent
flows: flows in closed conduits (§4.5) and flows in jets (§4.6). These flows are illustrative
of the two classes of flows that are usually discussed under the headings ofwall turbulence
and free turbulence.

In this brief introduction to turbulence we deal primarily with the description of the
fully developed turbulent flow of an incompressible fluid. We do not consider at all the
theoretical methods for predicting the inception of turbulence, nor the experimental tech-
niques devised for probing the structure of turbulent flow. We also give no discussion of
the statistical theories of turbulence and the way in which the turbulent energy is dis-
tributed over the various modes of motion. For these and other interesting topics, the
reader should consult some of the standard books on turbulence.1−6 There is a growing lit-
erature on experimental and computational evidence for “coherent structures” (vortices)
in turbulent flows.7

Turbulence is an important subject. In fact, most flows encountered in engineering
are turbulent and not laminar! Although our understanding of turbulence is far from sat-
isfactory, it is a subject that must be studied and appreciated. For the solution to many
industrial problems we cannot get neat analytical solutions, and, for the most part, such
problems are attacked by using a combination of dimensional analysis and experimental
data. These methods are discussed in Chapters 5 and 6.

§4.1 COMPARISONS OF LAMINAR AND TURBULENT FLOWS

Before discussing any theoretical ideas about turbulence, it is important to illustrate the
differences between laminar and turbulent flows in several simple systems. Specifically
we consider the flow in conduits of circular and triangular cross section, flow along a flat

1S. Corrsin, “Turbulence: Experimental Methods,” in Handbuch der Physik, Springer, Berlin (1963),

Vol. VIII/2. Stanley Corrsin (1920–1986), a professor at The Johns Hopkins University, was an excellent

experimentalist and teacher; he studied the interaction between chemical reactions and turbulence and

the propagation of the double temperature correlations.
2A. A. Townsend, The Structure of Turbulent Shear Flow, Cambridge University Press, 2nd edition

(1976); see also A. A. Townsend in Handbook of Fluid Dynamics (V. L. Streeter, ed.), McGraw-Hill (1961) for

a readable survey.
3J. O. Hinze, Turbulence, McGraw-Hill, New York, 2nd edition (1975).
4H. Tennekes and J. L. Lumley, A First Course in Turbulence, MIT Press, Cambridge, MA (1972);

Chapters 1 and 2 of this book provide an introduction to the physical interpretations of turbulent flow

phenomena.
5M. Lesieur, La Turbulence, Presses Universitaires de Grenoble (1994); this book contains beautiful

color photographs of turbulent flow systems.
6W. D. McComb, The Physics of Fluid Turbulence, Oxford University Press (1990).
7P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems, and

Symmetry, Cambridge University Press (1996); F. Waleffe, Phys. Rev. Lett., 81, 4140–4148 (1998).
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plate, and flows in jets. The first two of these have been considered for laminar flow in
§2.3 and Problem 3B.2.

a. Circular tubes
For the steady, fully developed, laminar flow in a circular tube of radius R we know

that the velocity distribution and the average velocity are given by

vz(r)
vz,max

= 1 −
( r
R

)2

and
⟨vz⟩
vz,max

= 1

2
(Re < 2100) (4.1-1,2)

and that the pressure drop and mass flow rate w are linearly related:

𝒫0 −𝒫L =
(

84L
0iR4

)
w (Re < 2100) (4.1-3)

For turbulent flow, on the other hand, the velocity is fluctuating with time chaotically at
each point in the tube. We can measure a “time-smoothed velocity” at each point with,
say, a Pitot tube. This type of instrument is not sensitive to rapid velocity fluctuations, but
senses the velocity averaged over several seconds. The time-smoothed velocity (which is
defined in the next section) will have a z component represented by vz, and its shape and
average value will be given very roughly by1

vz(r)
vz,max

≈
(
1 − r

R

)1∕7
and

⟨vz⟩
vz,max

≈ 4

5

(
104 < Re < 105

)
(4.1-4,5)

This 1

7
-power expression for the velocity distribution is too crude to give a realistic velocity

derivative at the wall. For example, it gives an infinite velocity gradient at r = R. The
laminar and turbulent velocity profiles are compared in Fig. 4.1-1.

Over the same range of Reynolds numbers, the pressure drop is no longer propor-
tional to the mass flow rate, but obeys roughly the following relation:

𝒫0 −𝒫L ≈ 0.198

(
2

0

)7∕4 (
41∕4L
iR19∕4

)
w7∕4 (

104 < Re < 105
)

(4.1-6)

The stronger dependence of pressure drop on mass flow rate for turbulent flow results
from the fact that more energy has to be supplied in order to maintain the violent eddy
motion in the fluid.

1.0 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1.0
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t
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Fig. 4.1-1. Qualitative comparison of

laminar and turbulent velocity profiles. For

a more detailed description of the turbulent

velocity distribution near the wall, see

Fig. 4.5-3.

1H. Schlichting, Boundary-Layer Theory, McGraw-Hill, New York, 7th edition (1979), Chapter XX

(tube flow), Chapters VII and XXI (flat plate flow), Chapters IX and XXIIV (jet flows).
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Fig. 4.1-2. Behavior of a colored
stream of liquid injected into the

flow of water in a glass tube. In the

top photograph, the flow is laminar

and the colored liquid stream

remains thin. The Reynolds number

is increased successively in the

lower photographs. As the flow

becomes more turbulent, the

colored liquid disperses more

quickly in the tube. [Experiments

performed by N. H. Johannesen and

C. Lowe with O. Reynolds’s original

equipment; photograph from M.

van Dyke, An Album of Fluid Motion,
Parabolic Press, Stanford (1982).]

The laminar-turbulent transition in circular pipes normally occurs at a critical Reynolds
number of roughly 2100, although this number may be higher if extreme care is taken to
eliminate vibrations in the system.2 The transition from laminar flow to turbulent flow can
be demonstrated by the simple experiment originally performed by Reynolds. One sets
up a long transparent tube equipped with a device for injecting a small amount of colored
liquid into the stream along the tube axis. Results from one such study are illustrated in
Fig. 4.1-2. When the flow is laminar, the colored liquid moves downstream as a straight,
coherent filament. For turbulent flow, on the other hand, the colored liquid spreads quickly
over the entire cross section. This dispersion is similar to themotion of particles in turbulent
flow illustrated in Fig. 2.0-1(b); in both cases, the displacement of material perpendicular
to the flowdirection is caused by eddymotion (turbulent diffusion). This turbulentmixing
is important in heat and mass transport.

b. Noncircular tubes
For developed laminar flow in the triangular duct shown in Fig. 3B.2(b), the fluid

particles move rectilinearly in the z direction, parallel to the walls of the duct. By contrast,
in turbulent flow there is superposed on the time-smoothed flow in the z direction (the
primary flow), a time-smoothed motion in the xy plane (the secondary flow). The secondary
flow is much weaker than the primary flow and manifests itself as a set of six vortices
arranged in a symmetric pattern around the duct axis (see Fig. 4.1-3). Other noncircular
tubes also exhibit secondary flows.

c. Flat plate
For the laminar flow around a flat plate, wetted on both sides and aligned with the

flow, the Blasius solution of the boundary-layer equations gives the drag-force expression
(see Problem 3C.2)

F = 1.328

√
i4LW2v3∞

(
laminar; 0 < ReL < 5 × 105

)
(4.1-7)

2O. Reynolds, Phil. Trans. Roy. Soc., 174, Part III, 935–982 (1883). See also A. A. Draad and F. M. T.

Nieuwstadt, J. Fluid Mech., 361, 297–308 (1998).
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Fig. 4.1-3. Sketch showing the secondary flow patterns

for turbulent flow in a tube of triangular cross section.

[H. Schlichting, Boundary-Layer Theory, McGraw-Hill,

New York, 7th edition (1979), p. 613.]

inwhich ReL = Lv∞i∕4 is the Reynolds number for a plate of length L in the flowdirection;
the plate width isW, and the approach velocity of the fluid is v∞.

For turbulent flow, on the other hand, the dependence on the geometrical and physical
properties is quite different:1

F ≈ 0.074
5

√
i44L4W5v9∞

(
turbulent; 5 × 105 < ReL < 107

)
(4.1-8)

Thus, the force is proportional to the 3

2
-power of the approach velocity for laminar flow,

but to the 9

5
-power for turbulent flow. The stronger dependence on the approach velocity

reflects the extra energy needed to maintain the irregular eddy motions in the fluid.

d. Circular and plane jets
Next, we examine the behavior of jets that emerge from a flat wall, which is taken to

be the xy plane (see Fig. 4.6-1). The fluid emerges from a circular tube or a long narrow
slot, and flows into a large body of the same fluid. Various observations on the jets can
be made: the width of the jet, the center-line velocity of the jet, and the mass flow rate
through a cross section parallel to the xy plane. All these properties can be measured as
functions of the distance z from the wall. In Table 4.1-1 we summarize the properties of
the circular and two-dimensional jets for laminar and turbulent flow.1 It is curious that,
for the circular jet, the jet width, center-line velocity, and mass flow rate have exactly the
same dependence on z in both laminar and turbulent flow. We shall return to this point
later in §4.6.

The above examples should make it clear that the gross features of laminar and tur-
bulent flow are generally quite different. One of the many challenges in turbulence theory
is to try to explain these differences.

Table 4.1-1. Dependence of Jet Parameters on Distance z fromWall

Laminar flow Turbulent flow

Width

of jet

Center-line

velocity

Mass flow

rate

Width

of jet

Center-line

velocity

Mass flow

rate

Circular jet z z−1 z z z−1 z
Plane jet z2∕3 z−1∕3 z1∕3 z z−1∕2 z1∕2

§4.2 TIME-SMOOTHED EQUATIONS OF CHANGE
FOR INCOMPRESSIBLE FLUIDS

We begin by considering a turbulent flow in a tube with a constant imposed pressure
gradient. If at a particular point in the fluid we observe one component of the velocity
as a function of time, we find that it is fluctuating in a chaotic fashion as shown in
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Time t
(b)

v́z(t) = vz(t) – vz

vz

vz(t)

vz(t)

Fig. 4.2-1. Sketch showing the velocity component vz, as well as its time-smoothed value vz, and its fluctuation v′z in
turbulent flow (a) for “steadily driven turbulent flow” in which vz does not depend on time, and (b) for a situation in

which vz does depend on time.

Fig. 4.2-1(a). The fluctuations are irregular deviations from a mean value. The actual
velocity can be regarded as the sum of the mean value (designated by an overbar) and
the fluctuation (designated by a prime). For example, for the z component of the velocity
we write

vz(t) = vz + v′z(t) (4.2-1)

which is sometimes called the Reynolds decomposition. The mean value is obtained from
vz(t) by making a time average over a large number of fluctuations

vz =
1

t0 ∫
t+

1

2
t0

t−
1

2
t0

vz(s)ds (4.2-2)

the period t0 being long enough to give a smooth averaged function. For the system at
hand, the quantity vz, which we call the time-smoothed velocity, is independent of time,
but of course depends on position. When the time-smoothed velocity does not depend
on time, we speak of steadily driven turbulent flow. The same comments we have made for
velocity can also be made for the pressure.

Next we consider turbulent flow in a tube with a time-dependent pressure gra-
dient. For such a flow one can define time-smoothed quantities as above, but one
has to understand that the period t0 must be small with respect to the changes in
the pressure gradient, but still large with respect to the periods of fluctuations. For
such a situation, the time-smoothed velocity and the actual velocity are illustrated
in Fig. 4.2-1(b).1

According to the definition in Eq. 4.2-2, one can show that the following relations
are true:

v′z = 0; vz = vz; vzv
′
z = 0; 𝜕

𝜕x
vz =

𝜕
𝜕x

vz;
𝜕

𝜕t
vz =

𝜕
𝜕t
vz (4.2-3)

The quantity v′2z will not, however, be zero, and in fact, the ratio

√
v′2z ∕⟨vz⟩ can be taken

to be a measure of the magnitude of the turbulent fluctuations. This quantity, known as

1One can also define the “overbar” quantities in terms of an “ensemble average.” For most

purposes, the results are equivalent or are assumed to be so. See, for example, A. A. Townsend, The
Structure of Turbulent Shear Flow, Cambridge University Press, 2nd edition (1976). See also P. K. Kundu,

Fluid Mechanics, Academic Press, New York (1990), p. 421, regarding the last of the formulas given in

Eq. 4.2-3.
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the intensity of turbulence, may have values from 1% to 10% in the main part of a turbulent
stream and values of 25% or higher in the neighborhood of a solid wall. Hence, it must
be emphasized that we are not necessarily dealing with tiny disturbances; sometimes the
fluctuations are actually quite violent and large.

Quantities such as v′xv
′
y are also nonzero. The reason for this is that the local motions

in the x and y directions are correlated. In other words, the fluctuations in the x direction
are not independent of the fluctuations in the y direction. We shall see presently that these
time-smoothed values of the products of fluctuating properties have an important role in
turbulent momentum transfer. Later we shall find similar correlations arising in turbulent
energy and mass transport.

Having defined the time-smoothed quantities and discussed some of the properties
of the fluctuating quantities, we can nowmove on to the time-smoothing of the equations
of change. To keep the development as simple as possible, we consider here only the
equations for a fluid of constant density and viscosity. The equation of continuity is then
just (∇ ⋅ v) = 0.We thenwrite the equations of continuity andmotionwith v replaced by its
equivalent v + v′ and p by its equivalent p + p′. We write the x component of the equation
of motion as the Navier–Stokes equation, Eq. 3.6-1, in the 𝜕∕𝜕t form by using Eq. 3.5-7:

𝜕
𝜕x

(
vx + v′x

)
+ 𝜕

𝜕y

(
vy + v′y

)
+ 𝜕

𝜕z

(
vz + v′z

)
= 0 (4.2-4)

𝜕
𝜕t

i
(
vx + v′x

)
= − 𝜕

𝜕x

(
p + p′

)
−

(
𝜕
𝜕x

i
(
vx + v′x

) (
vx + v′x

)
+ 𝜕

𝜕y
i
(
vy + v′y

) (
vx + v′x

)
+ 𝜕

𝜕z
i
(
vz + v′z

) (
vx + v′x

))
+ 4∇2

(
vx + v′x

)
+ igx (4.2-5)

The y and z components of the equation of motion can be similarly written. We next
time-smooth these equations, making use of the relations given in Eq. 4.2-3. This gives

𝜕
𝜕x

vx +
𝜕
𝜕y

vy +
𝜕
𝜕z

vz = 0 (4.2-6)

𝜕
𝜕t

ivx = − 𝜕
𝜕x

p −
(

𝜕
𝜕x

ivxvx +
𝜕
𝜕y

ivyvx +
𝜕
𝜕z

ivzvx

)
−
(

𝜕
𝜕x

iv′xv
′
x +

𝜕
𝜕y

iv′yv
′
x +

𝜕
𝜕z

iv′zv
′
x

)
+ 4∇2vx + igx (4.2-7)

---------------------------------------

with similar relations for the y and z components of the equation of motion. These are then
the time-smoothed equations of continuity and motion for a fluid with constant density and
viscosity. By comparing them with the corresponding equations in Eq. 3.1-5 and Eq. 3.6-1
(the latter rewritten in terms of 𝜕∕𝜕t), we conclude that:

a. The equation of continuity is the same as we had previously, except that v is now
replaced by v.

b. The equation of motion now has v and pwhere we previously had v and p. In addi-
tion there appears the dashed-underlined term, which describes the momentum
transport associated with the turbulent fluctuations.

We may rewrite Eq. 4.2-7 by introducing the turbulent momentum flux tensor f(t) with
components

f(t)xx = iv′xv
′
x; f(t)xy = iv′xv

′
y; f(t)xz = iv′xv

′
z; etc. (4.2-8)

These quantities are usually referred to as the Reynolds stresses. We may also introduce a
symbol f(v) for the time-smoothed viscousmomentum flux. The components of this tensor
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have the same appearance as the expressions given in §B.1, except that the time-smoothed
velocity components appear in them:

f(v)xx = −24
𝜕vx
𝜕x

; f(v)xy = −4
(𝜕vy

𝜕x
+

𝜕vx
𝜕y

)
; etc. (4.2-9)

This enables us then to write the equations of change in vector-tensor form as

(∇ ⋅ v) = 0 and
(
∇ ⋅ v′

)
= 0 (4.2-10,11)

𝜕
𝜕t

iv = −∇p − [∇ ⋅ ivv] −
[
∇ ⋅

(
f(v) + f(t)

)]
+ ig (4.2-12)

Equation 4.2-11 is an extra equation obtained by subtracting Eq. 4.2-10 from the original
equation of continuity.

The principal result of this section is that the equation of motion in terms of the stress
tensor, summarized in §B.5, can be adapted for time-smoothed turbulent flowby changing

all vi to vi, p to p, and fij to fij = f(v)ij + f(t)ij in any of the coordinate systems given.

We have now arrived at the main stumbling block in the theory of turbulence. The

Reynolds stresses f(t)ij above are not related to the velocity gradients in a simple way as are

the time-smoothed viscous stresses f(v)ij in Eq. 4.2-9. They are, instead, complicated func-

tions of the position and the turbulence intensity. To solve flow problems, we must have
experimental information about the Reynolds stresses or else resort to some empirical
expression. In §4.4 we discuss some of the empiricisms that are available.

Actually one can also obtain equations of change for the Reynolds stresses. How-

ever, these equations contain quantities like v′iv
′
jv

′
k. Similarly, the equations of change for

the v′iv
′
jv

′
k contain the next higher-order correlation v′iv

′
jv

′
kv

′
l , and so on. That is, there is a

never-ending hierarchy of equations that must be solved. To attack flow problems, one
has to “truncate” this hierarchy by introducing empiricisms. If we use empiricisms for the
Reynolds stresses, we then have a “first-order” theory. If we introduce empiricisms for

the v′iv
′
jv

′
k, we then have a “second-order theory,” and so on. The problem of introducing

empiricisms to get a closed set of equations that can be solved for the velocity and pres-
sure distributions is referred to as the “closure problem.” The discussion in §4.4 deals with
closure at the first order. At the second order the “k-s empiricism” has been extensively
studied and widely used in computational fluid mechanics.2

§4.3 THE TIME-SMOOTHED VELOCITY PROFILE NEAR AWALL

Before we discuss the various empirical expressions used for the Reynolds stresses, we
present here several developments that do not depend on any empiricisms. We are con-
cerned here with the fully developed, time-smoothed velocity distribution in the neigh-
borhood of a wall. We discuss two results: (a) the Taylor expansion of the velocity near
the wall, and (b) the universal logarithmic velocity distribution a little further out from
the wall.

The flownear a flat surface is shown in Fig. 4.3-1. It is usual to distinguish—somewhat
arbitrarily—four regions of flow:

• the viscous sublayer very near the wall, in which viscosity plays a key role

• the buffer layer in which the transition occurs between the viscous and inertial
sublayers

2J. L. Lumley, Adv. Appl. Mech., 18, 123–176 (1978); C. G. Speziale, Ann. Revs. Fluid Mech., 23, 107–157
(1991); H. Schlichting and K. Gersten, Boundary-Layer Theory, Springer, Berlin, 8th edition (2000),

pp. 560–563.



Trim Size: 8in x 10in Bird1e c04.tex V1 - October 21, 2014 7:59 P.M. Page 133

§4.3 The Time-Smoothed Velocity Profile Near a Wall 133

x

y
1

2

3

4

Fig. 4.3-1. Flow regions for describing

turbulent flow near a wall: (1) viscous

sublayer, (2) buffer layer, (3) inertial

sublayer, (4) main turbulent stream.

• the inertial sublayer at the beginning of themain turbulent stream, inwhich viscosity
plays at most a minor role

• themain turbulent stream in which the time-smoothed velocity distribution is nearly
flat and viscosity is unimportant

It is only in the viscous sublayer that we can say anything very precise, although a dimen-
sional analysis treatment can give some information about the velocity distribution in the
inertial sublayer.

a. Taylor-series development in the viscous sublayer
We start by writing the Taylor series (see §C.2) for vx as a function of y, about y = 0

vx(y) = vx(0) +
𝜕vx
𝜕y

|||||y=0y + 1

2!
𝜕2vx
𝜕y2

|||||y=0y2 + 1

3!
𝜕3vx
𝜕y3

|||||y=0y3 + · · · (4.3-1)

To evaluate the terms in this series, we need the expression for the time-smoothed shear
stress in the vicinity of a wall. For the special case of the steadily driven flow in a slit of

thickness 2B, the shear stresswill be of the form fyx = f(v)yx + f(t)yx = −f0
[
1 −

(
y∕B

)]
. Here, f0 ≡

−fyx|y=0 is the time-smoothed shear stress acting on the wall at y = 0. Then from Eqs. 4.2-8
and 4.2-9, we have

+4
𝜕vx
𝜕y

− iv′xv
′
y = f0

(
1 −

y
B

)
(4.3-2)

Now we examine the terms that appear in Eq. 4.3-1 one by one:1

(i) The first term is zero by the no-slip condition.

(ii) The coefficient of the second term can be obtained from Eq. 4.3-2, recognizing
that both v′x and v′y are zero at the wall so that

𝜕vx
𝜕y

|||||y=0 = f0
4

(4.3-3)

(iii) The coefficient of the third term involves the second derivative, which may be
obtained by differentiating Eq. 4.3-2 with respect to y and then setting y = 0, as
follows:

𝜕2vx
𝜕y2

|||||y=0 = i

4

(
v′x

𝜕v′y
𝜕y

+ v′y
𝜕v′x
𝜕y

)||||||y=0 −
f0
4B

= −
f0
4B

(4.3-4)

since both v′x and v′y are zero at the wall.

1A. A. Townsend, The Structure of Turbulent Shear Flow, Cambridge University Press, 2nd edition

(1976), p. 163.



Trim Size: 8in x 10in Bird1e c04.tex V1 - October 21, 2014 7:59 P.M. Page 134

134 Chapter 4 Velocity Distributions in Turbulent Flow

(iv) The coefficient of the fourth term involves the third derivative, which may be
obtained from Eq. 4.3-4, and this is

𝜕3vx
𝜕y3

|||||y=0 = i

4

⎛⎜⎜⎝v′x
𝜕2v′y
𝜕y2

+ 2
𝜕v′y
𝜕y

𝜕v′x
𝜕y

+ v′y
𝜕2v′x
𝜕y2

⎞⎟⎟⎠
|||||||y=0

= −i

4

(
+2

(
𝜕v′x
𝜕x

+
𝜕v′z
𝜕z

)
𝜕v′x
𝜕y

)||||||y=0 = 0 (4.3-5)

Here Eq. 4.2-10,11 has been used.

There appears to be no reason to set the next coefficient equal to zero, so that we find that
the Taylor series, in dimensionless quantities, has the form

vx(y)
v
*

=
yv

*
l

− 1

2

(
l

v
*
B

)(
yv

*
l

)2

+ C
(
yv

*
l

)4

+ · · · (4.3-6)

where the quantity v
*
≡ √

f0∕i has dimensions of velocity, and is called the friction velocity.
The coefficient C has been obtained experimentally,2 and so we have the final result:

vx(y)
v
*

=
yv

*
l

[
1 − 1

2

(
l

v
*
B

)(
yv

*
l

)
− 1

4

(
yv

*
14.5l

)3

+ · · ·

]
0 <

yv
*

l
< 5 (4.3-7)

The second term in the brackets is negligible for turbulent flow as long as B is not too
small (i.e., the length scale l∕v

*
is typically much less than B). The y3 term in the brackets

will turn out to be very important in connection with turbulent energy- andmass-transfer
correlations in Chapters 12, 14, 20, and 22.

Equation 4.3-7 is valid in the viscous sublayer, defined approximately by the region
0 < yv

*
∕l < 5. For the region 5 < yv

*
∕l < 30 no simple analytical derivations are available,

and empirical curve fits are sometimes used. One of these is shown in Fig. 4.5-3 for circular
tubes.

b. The logarithmic velocity profile in the inertial sublayer3−6

Next we consider an analysis appropriate for the inertial sublayer (yv
*
∕l > 30). Here

the shear stresswill not be very different from the value f0.We now ask: onwhat quantities
will the time-smoothed velocity gradient dvx∕dy depend? It should not depend on the vis-
cosity, since, out beyond the buffer layer, momentum transport should depend primarily
on the velocity fluctuations (loosely referred to as “eddy motion”). It may depend on the
density i, the wall shear stress f0, and the distance y from the wall. The only combination

2C. S. Lin, R. W. Moulton, and G. L. Putnam, Ind. Eng. Chem., 45, 636–640 (1953); the numerical

coefficient was determined from mass transfer experiments in circular tubes. The importance of the y4

term in heat and mass transfer was recognized earlier by E. V. Murphree, Ind. Eng. Chem., 24, 726–736
(1932). Eger Vaughn Murphree (1898–1962) was captain of the University of Kentucky football team in

1920 and became president of the Standard Oil Development Company.
3L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, Oxford, 2nd edition (1987), pp. 172–178.
4H. Schlichting and K. Gersten, Boundary-Layer Theory, Springer-Verlag, Berlin, 8th edition (2000),

§17.2.3.
5T. von Kármán, Nachr. Ges. Wiss. Göttingen, Math-Phys. Klasse Series 5, 58–76 (1930); L. Prandtl,

Ergeb. Aerodyn. Versuch., Göttingen, Series 4, 18–29 (1932).
6G. I. Barenblatt and A. J. Chorin, Proc. Nat. Acad. Sci. USA, 93, 6749–6752 (1996) and SIAM Rev., 40,

265–291 (1981); G. I. Barenblatt, A. J. Chorin, and V. M. Prostokishin, Proc. Nat. Acad. Sci. USA, 94, 773–776
(1997). See also G. I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics, Cambridge University

Press (1992), §10.2.
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of these three quantities that has the dimensions of a velocity gradient is
√
f0∕i∕y. Hence,

we write
dvx
dy

= 1

n

√
f0
i
1

y
(4.3-8)

in which n is a dimensionless constant, which must be determined experimentally. When

Eq. 4.3-8 is integrated we get (using v
*
=

√
f0∕i)

vx(y) =
v
*
n
ln y + m′ (4.3-9)

m′ being an integration constant. In order to use dimensionless groupings, we rewrite
Eq. 4.3-9 as

vx(y)
v
*

= 1

n
ln

(yv
*

l

)
+ m (4.3-10)

in which m is a constant simply related to m′; the kinematic viscosity l was included in
order to construct the dimensionless argument of the logarithm. Experimentally it has
been found that reasonable values of the constants4 are n = 0.4 and m = 5.5, giving

vx
v
*

= 2.5 ln
(yv

*
l

)
+ 5.5

yv
*

l
> 30 (4.3-11)

This is called the von Kármán-Prandtl universal logarithmic velocity distribution;5 it is
intended to apply only in the inertial sublayer. Later we shall see (in Fig. 4.5-3) that this
function describes moderately well the experimental data somewhat beyond the inertial
sublayer.

§4.4 EMPIRICAL EXPRESSIONS FOR THE TURBULENT
MOMENTUM FLUX

We now return to the problem of using the time-smoothed equations of change in
Eqs. 4.2-10, 4.2-11, and 4.2-12 to obtain the time-smoothed velocity and pressure distri-
butions. As pointed out in the preceding section, some information about the velocity
distribution can be obtained without having a specific expression for the turbulent
momentum flux f(t). However, it has been popular among engineers to use various
empiricisms for f(t) that involve velocity gradients. We mention a few of these, and many
more can be found in the turbulence literature.

a. The eddy viscosity of Boussinesq
By analogy with Newton’s law of viscosity, Eq. 1.2-2, one may write for a turbulent

shear flow1

f(t)yx = −4(t)
dvx
dy

(4.4-1)

inwhich 4(t) is the turbulent viscosity (often called the eddy viscosity, and given the symbol s).
As one can see fromTable 4.1-1, for at least one of the flows given there, the circular jet, one
might expect Eq. 4.4-1 to be useful. Usually, however, 4(t) is a strong function of position
and the intensity of turbulence. In fact, for some systems2 4(t) may even be negative in

1J. Boussinesq, Mém. prés. par div. savants à l’acad. sci. de Paris, 23, #1, 1–680 (1877), 24, #2, 1–64 (1877).
Joseph Valentin Boussinesq (1842–1929), university professor in Lille, France, wrote a two-volume

treatise on heat, and is famous for the “Boussinesq approximation” and the idea of “eddy viscosity.”
2J. O. Hinze, Appl. Sci. Res., 22, 163–175 (1970); V. Kruka and S. Eskinazi, J. Fluid Mech., 20, 555–579

(1964).



Trim Size: 8in x 10in Bird1e c04.tex V1 - October 21, 2014 7:59 P.M. Page 136

136 Chapter 4 Velocity Distributions in Turbulent Flow

some regions. It must be emphasized that the viscosity 4 is a property of the fluid, whereas
the turbulent viscosity 4(t) is primarily a property of the flow.

For two kinds of turbulent flows (i.e., flows along surfaces, and flows in jets and
wakes), special expressions for 4(t) are available:

(i) Wall turbulence:

4(t) = 4
( yv

*
14.5l

)3

0 <
yv

*
l

< 5 (4.4-2)

This expression, derivable from Eq. 4.3-7, is valid only very near the wall. It is
of considerable importance in the theory of turbulent heat and mass transfer at
fluid–solid interfaces.3

(ii) Free turbulence:
4(t) = in0b

(
vz,max − vz,min

)
(4.4-3)

in which n0 is a dimensionless coefficient to be determined experimentally, b
is the width of the mixing zone at a downstream distance z, and the quantity
in parentheses represents the maximum difference in the z component of the
time-smoothed velocities at that distance z. Prandtl4 found Eq. 4.4-3 to be a
useful empiricism for jets and wakes.

b. The mixing length of Prandtl
By assuming that eddiesmove around in a fluid verymuch asmoleculesmove around

in a low-density gas (not a very good analogy!), Prandtl5 developed an expression for
momentum transport in a turbulent fluid. The “mixing length” l plays roughly the same
role as the mean-free path in kinetic theory (see §1.6). This kind of reasoning led Prandtl
to the following relation:

f(t)yx = −il2
|||||dvxdy

||||| dvxdy
(4.4-4)

If the mixing length were a universal constant, Eq. 4.4-4 would be very attractive,
but in fact l has been found to be a function of position. Prandtl proposed the following
expressions for l:

(i) Wall turbulence:
l = n1y

(
y = distance from wall

)
(4.4-5)

(ii) Free turbulence:
l = n2b

(
b = width of mixing zone

)
(4.4-6)

in which n1 and n2 are constants. A result similar to Eq. 4.4-4 was obtained by
Taylor6 by his “vorticity transport theory” some years prior to Prandtl’s proposal.

c. The modified van Driest equation
There have been numerous attempts to devise empirical expressions that can describe

the turbulent shear stress all the way from the wall to the main turbulent stream. Here we
give a modification of the equation of van Driest.7 This is a formula for the mixing length

3C. S. Lin, R. W. Moulton, and G. L. Putnam, Ind. Eng. Chem., 45, 636–640 (1953).
4L. Prandtl, Zeits. f. angew. Math. u. Mech., 22, 241–243 (1942). Ludwig Prondtl (pronounced

“Prahnt’l”), who taught in Hannover and Göttingen and later served as the director of the Kaiser Wilhelm

Institute for Fluid Dynamics, was one of the people who shaped the future of his field at the beginning of

the twentieth century; he made contributions to turbulent flow, heat transfer, and boundary-layer theory.
5L. Prandtl, Zeits. f. angew. Math. u. Mech., 5 , 136–139 (1925).
6G. I. Taylor, Phil. Trans. A215, 1–26 (1915), Proc. Roy. Soc. (London), A135, 685–701 (1932).
7E. R. van Driest, J. Aero. Sci., 23, 1007–1011 and 1036 (1956). Van Driest’s original equation did not

have the square root in the denominator. This modification was made by O. T. Hanna, O. C. Sandall, and

P. R. Mazet, AIChE Journal, 27, 693–697 (1981) so that the turbulent viscosity would be proportional to y3

as y → 0.
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of Eq. 4.4-4:

l = 0.4y
1 − exp

(
−yv

*
∕26l

)√
1 − exp

(
−0.26yv

*
∕l

) (4.4-7)

This relation has been found to be useful for predicting heat and mass transfer rates in
flow in channels.

In the next two sections and in several problems at the end of the chapter, the use
of the above empiricisms is illustrated. It should be kept in mind that these expres-
sions for the Reynolds stresses are little more than crutches that can be used for the
representation of experimental data, or for solving problems that fall into rather special
classes.

§4.5 TURBULENT FLOW IN DUCTS

We start this section with a short discussion of experimental measurements for turbulent
flow in rectangular ducts, in order to give some impressions about the Reynolds stresses.
In Figs. 4.5-1 and 4.5-2 are shown some experimental measurements of the time-smoothed

quantities v′2z , v
′2
x , and v′xv

′
z for the flow in the z direction in a rectangular duct.

In Fig. 4.5-1, note that quite close to the wall,

√
v′2z is about 13% of the time-smoothed

centerline velocity vz,max, whereas

√
v′2x is about 5%. This means that, near the wall, the

velocity fluctuations in the flow direction are appreciably greater than those in the trans-
verse direction. Near the center of the duct, the two fluctuation amplitudes are nearly
equal and we say that the turbulence is nearly isotropic there.

In Fig. 4.5-2, the turbulent shear stress f(t)xz = iv′xv
′
z is compared with the total shear

stress fxz = f(v)xz + f(t)xz across the duct. It is evident that the turbulent contribution is themore
important over most of the cross section, and that the viscous contribution is important
only in the vicinity of the wall. This is further illustrated in Example 4.5-3. Analogous
behavior is observed in tubes of circular cross section.

0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

cm
/
s

x/B LC

v́zv́z

v́xv́x

Fig. 4.5-1. Measurements of H. Reichardt

[Naturwissenschaften, 404 (1938), Zeits. f. angew.
Math. u. Mech., 13, 177–180 (1933), 18, 358–361
(1938)] for the turbulent flow of air in a

rectangular duct with vz,max = 100 cm∕s. Here the

quantities

√
v′xv

′
x and

√
v′zv

′
z are shown.
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–τxz/ρ
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–v́xv́z

Fig. 4.5-2. Measurements of Reichardt (see Fig.

4.5-1) for the quantity v′xv
′
z in a rectangular duct.

Note that this quantity differs from fxz∕i only

near the duct wall.

EXAMPLE 4.5-1

Estimation of Average
Velocity in Circular
Tube

Apply the results of §4.3 to obtain the average velocity for turbulent flow in a circular tube.

SOLUTION

We can use the time-smoothed velocity distribution in the caption to Fig. 4.5-3. To get the aver-
age velocity in the tube, one should integrate over four regions: the viscous sublayer

(
y+ < 5

)
,

the buffer zone
(
5 < y+ < 30

)
, the inertial sublayer, and the main turbulent stream, which is

roughly parabolic in shape. One can certainly do this, but it has been found that integrating
the logarithmic profile of Eq. 4.3-11 over the entire cross section gives results that are roughly
of the right form, thus ⟨

vz
⟩

v
*

= 2.5 ln

(
Rv

*
l

)
+ 1.75 (4.5-1)

If this is compared with experimental data on flow rate vs. pressure drop, it is found that good
agreement can be obtained by changing 2.5 to 2.45 and 1.75 to 2.0. This “fudging” of the con-
stants would probably not be necessary if the integration over the cross section had been done
by using the local expression for the velocity in the various layers. On the other hand, there is
some virtue in having a simple logarithmic relation such as Eq. 4.5-1 to describe pressure drop
vs. flow rate.

EXAMPLE 4.5-2

Application of
Prandtl’s
Mixing-Length
Formula to Turbulent
Flow in Circular Tubes

Show how Eqs. 4.4-4 and 4.4-5 can be used to describe turbulent flow in a circular tube.

SOLUTION

From Eq. 4.2-12 we get for the equation of motion for flow in a circular tube:

0 =
𝒫0 −𝒫L

L
− 1

r
d
dr

(
rfrz

)
(4.5-2)

in which frz = f(v)rz + f(t)rz . Over most of the tube the viscous contribution is quite small; here we
neglect it entirely. Integration of Eq. 4.5-2 then gives

f(t)rz =
(
𝒫0 −𝒫L

)
r

2L
= f0

(
1 −

y
R

)
(4.5-3)

where f0 is the wall shear stress, and y = R − r is the distance from the tube wall.



Trim Size: 8in x 10in Bird1e c04.tex V1 - October 21, 2014 7:59 P.M. Page 139

§4.5 Turbulent Flow in Ducts 139

y+
1 52 10 5020 100 200 500 1000

0

5

10

15

v+

20

Nikuradse (water)
Reichardt-Motzfeld (air)
Reichardt-Schuh (air)
Rothfus-Monrad-Senecal (air)

Fig. 4.5-3. Dimensionless velocity distribution for turbulent flow in circular tubes, presented as v+ = vz∕v* vs.
y+ = yv

*
i∕4, where v

*
=

√
f0∕i and f0 is the wall shear stress. The solid curves are those suggested by Lin, Moulton, and

Putnam [Ind. Eng. Chem., 45, 636–640 (1953)]:

0 < y+ < 5∶ v+ = y+
[
1 − 1

4

(
y+∕14.5

)3]
5 < y+ < 30∶ v+ = 5 ln

(
y+ + 0.205

)
− 3.27

30 < y+∶ v+ = 2.5 ln y+ + 5.5

The experimental data are those of: J. Nikuradse for water (o) [VDI Forschungsheft,H356 (1932)]; Reichardt and Motzfeld

for air (•); Reichardt and Schuh (2) for air [H. Reichardt, NACA, Tech. Mem. 1047 (1943)]; and R. R. Rothfus, C. C.

Monrad, and V. E. Senecal for air (▴) [Ind. Eng. Chem., 42, 2511–2520 (1950)].

According to the mixing-length theory in Eq. 4.4-4, with the empirical expression in

Eq. 4.4-5, we have for dvz∕dr < 0

f(t)rz = −il2
|||||dvzdr

||||| dvzdr
= +i

(
n1y

)2(dvz
dy

)2

(4.5-4)

Substitution of this into Eq. 4.5-3 gives a differential equation for the time-smoothed velocity.
If we follow Prandtl and extrapolate the inertial sublayer to the wall, then in Eq. 4.5-4 it is

appropriate to replace f(t)rz by f0. When this is done, Eq. 4.5-4 can be integrated to give

vz =
v
*
n1

ln y + constant (4.5-5)

Thus, a logarithmic profile is obtained, and hence, the results from Example 4.5-1 can be
used; that is, one can apply Eq. 4.5-5 as a very rough approximation over the entire tube cross
section.
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EXAMPLE 4.5-3

Relative Magnitude of
Viscosity and Eddy
Viscosity

Determine the ratio 4(t)∕4 at y = R∕2 for water flowing at a steady rate in a long, smooth, round

tube under the following conditions:

R = tube radius = 3 in. = 7.62 cm

f0 = wall shear stress = 2.36 × 10−5 lbf∕in.2 = 0.163 Pa

i = density = 62.4 lbm∕ft
3 = 1000 kg∕m3

l = kinematic viscosity = 1.1 × 10−5 ft
2∕s = 1.02 × 10−6 m2∕s

SOLUTION

The expression for the time-smoothed momentum flux is

f(t)rz = −4
dvz
dr

− 4(t)
dvz
dr

(4.5-6)

This result may be solved for 4(t)∕4 and the result can be expressed in terms of dimensionless

variables:

4(t)

4
= 1

4

frz
dvz∕dy

− 1 = 1

4

f0
[
1 −

(
y∕R

)]
dvz∕dy

− 1

=
[
1 −

(
y∕R

)]
dv+∕dy+

− 1 (4.5-7)

where y+ = yv
*
i∕4 and v+ = vz∕v*. When y = R∕2, the value of y+ is

y+ =
yv
*
i

4
=

(R∕2)
√
f0∕ii

4
= 477 (4.5-8)

For this value of y+, the logarithmic distribution in the caption of Fig. 4.5-3 gives:

dv+
z

dy+
= 2.5

477
= 0.00524 (4.5-9)

Substituting this into Eq. 4.5-7 gives

4(t)

4
=

1∕2
0.00524

− 1 = 94 (4.5-10)

This result emphasizes that, far from the tube wall, molecular momentum transport is negligi-

ble in comparison with eddy transport.

§4.6 TURBULENT FLOW IN JETS

In the preceding section we discussed the flow in ducts, such as circular tubes; such flows
are examples of wall turbulence. Another main class of turbulent flows is free turbulence,
and the main examples of these flows are jets and wakes. The time-smoothed velocity
in these types of flows can be described adequately by using Prandtl’s expression for the
eddy viscosity in Eq. 4.4-3, or by using Prandtl’smixing-length theorywith the empiricism
given in Eq. 4.4-6. The former method is simpler, and hence, we use it in the following
illustrative example.
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EXAMPLE 4.6-1

Time-Smoothed
Velocity Distribution
in a Circular Wall
Jet1−4

A jet of fluid emerges from a circular hole into a semi-infinite reservoir of the same fluid as

depicted in Fig. 4.6-1. In the same figure we show roughly what we expect the profiles of the

z component of the velocity to look like. We would expect that for various values of z, the
profiles will be similar in shape, differing only by a scale factor for distance and velocity. We
also can imagine that as the jet moves outward, it will create a net radial inflow so that some

of the surrounding fluid will be dragged along. We want to find the time-smoothed velocity

distribution in the jet and also the amount of fluid crossing each plane of constant z. Before
working through the solution, it may be useful to review the information on jets in Table 4.1-1.

SOLUTION

In order to use Eq. 4.4-3, it is necessary to know how b and vz,max − vz,min vary with z for the
circular jet.We know that the total rate of flowof zmomentum Jwill be the same for all values of

z.We presume that the convectivemomentumflux ismuch greater than the viscousmomentum
flux. This permits us to postulate that the jet width b depends on J, on the density i and the
kinematic viscosity l of the fluid, and on the downstream distance z from the wall. The only
combination of these variables that has the dimensions of length is b ∝ Jz∕il2, so that the jet
width is proportional to z.

We next postulate that the velocity profiles are “similar,” that is

vz
vz,max

= f (k) where k = r
b (z)

(4.6-1)

which seems like a plausible proposal; here vz,max is the velocity along the centerline. When
Eq. 4.6-1 is substituted into the expression for the rate of momentum flow in the jet (neglecting
the contribution from fzz)

J = ∫
20

0 ∫
∞

0

iv2zr dr dp (4.6-2)

it is found that

J = 20ib2v2z,max∫
∞

0

f 2k dk = constant × ib2v2z,max (4.6-3)

z

b (z)

vz(r, z)

Circular hole

Fig. 4.6-1. Circular jet emerging from a plane wall. [H. Schlichting, Boundary-Layer Theory,
McGraw-Hill, New York, 7th edition (1979), Fig. 24.1(b).]

1H. Schlichting, Boundary-Layer Theory, McGraw-Hill, New York, 7th edition (1979), pp. 747–750.
2A. A. Townsend, The Structure of Turbulent Shear Flow, Cambridge University Press, 2nd edition

(1976), Chapter 6.
3J. O. Hinze, Turbulence, McGraw-Hill, New York, 2nd edition (1975), Chapter 6.
4S. Goldstein,Modern Developments in Fluid Dynamics, Oxford University Press (1938), Dover Reprint

(1965), pp. 592–597.



Trim Size: 8in x 10in Bird1e c04.tex V1 - October 21, 2014 7:59 P.M. Page 142

142 Chapter 4 Velocity Distributions in Turbulent Flow

Since J does not depend on z, and since b is proportional to z, then vz,max has to be inversely
proportional to z.

The vz,min in Eq. 4.4-3 occurs at the outer edge of the jet and is zero. Therefore, because
b ∝ z and vz,max ∝ z−1, we find from Eq. 4.4-3 that 4(t) is a constant. Therefore, we can use the
equations of motion for laminar flow and just replace the viscosity 4 by the eddy viscosity 4(t),
or l by l(t).

In the jet the main motion is in the z direction, i.e., ||vr|| ≪ ||vz||. Hence, we can use a
boundary-layer approximation5 for the time-smoothed equations of change and write

continuity∶ 1

r
𝜕
𝜕r

(
rvr

)
+

𝜕vz
𝜕z

= 0 (4.6-4)

motion∶ vr
𝜕vz
𝜕r

+ vz
𝜕vz
𝜕z

= l(t)
1

r
𝜕
𝜕r

(
r
𝜕vz
𝜕r

)
(4.6-5)

These equations are to be solved with the following boundary conditions:

B.C.1∶ at r = 0 vr = 0 (4.6-6)

B.C.2∶ at r = 0 𝜕vz∕𝜕r = 0 (4.6-7)

B.C.3∶ as z → ∞; vz → 0 (4.6-8)

The last boundary condition is automatically satisfied, inasmuch aswe have already found that
vz,max is inversely proportional to z. We now seek a solution to Eq. 4.6-5 of the form of Eq. 4.6-1
with b = z. The equations above, along with their boundary conditions, may be solved to give6

vz =
l(t)

z

2C2
3[

1 + 1

4

(
C3r∕z

)2]2 (4.6-9)

vr =
C3l

(t)

z

(
C3r∕z

)
− 1

4

(
C3r∕z

)3[
1 + 1

4

(
C3r∕z

)2]2 (4.6-10)

A measurable quantity in jet flow is the radial position corresponding to an axial velocity
one-half the centerline value; we call this half-width b1∕2. From Eq. 4.6-9 we then obtain:

vz
(
b1∕2,z

)
vz,max (z)

= 1

2
= 1[

1 + 1

4

(
C3b1∕2∕z

)2]2 (4.6-11)

Experiments indicate7 that b1∕2 = 0.0848z. When this is inserted into Eq. 4.6-11, it is found that
C3 = 15.1.

Figure 4.6-2 gives a comparison of the above axial velocity profile with experimental data.
The calculated curve obtained from the Prandtl mixing-length theory is also shown.8 Both
methods appear to give reasonably good curve fits of the experimental profiles. The eddy vis-
cosity method seems to be somewhat better in the neighborhood of the maximum, whereas the
mixing-length results are better at the outer edge of the jet.

Once the velocity profiles are known, the streamlines can be obtained. From the stream-
lines, shown in Fig. 4.6-3, it can be seen how the jet draws in fluid from the surrounding mass
of fluid. Hence, the mass of fluid carried by the jet increases with the distance from the source.
This mass rate of flow is

w = ∫
20

0 ∫
∞

0

ivzr dr dp = 80il(t)z (4.6-12)

This result corresponds to an entry in Table 4.1-1.

5See R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Revised Second Edition,

Wiley, New York (2007), §4.4.
6See R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Revised Second Edition,

Wiley, New York (2007), §5.6.
7H. Reichardt, VDI Forschungsheft, 414 (1942).
8W. Tollmien, Zeits. f. angew. Math. u. Mech., 6, 468–478 (1926).
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1

Fig. 4.6-2. Velocity distribution in a circular jet in turbulent flow [H. Schlichting, Boundary Layer Theory, McGraw-Hill,

New York, 7th edition (1979), Fig. 24.9]. The eddy viscosity calculation (curve 1) and the Prandtl mixing-length

calculation (curve 2) are compared with the measurements of H. Reichardt [VDI Forschungsheft, 414 (1942), 2nd edition

(1951)]. Further measurements by others are cited by S. Corrsin [“Turbulence: Experimental Methods,” in Handbuch der
Physik, Vol. VIII/2, Springer, Berlin (1963)].

z

Fig. 4.6-3. Streamline pattern in a circular jet in

turbulent flow. [H. Schlichting, Boundary Layer
Theory, McGraw-Hill, New York, 7th edition (1979),

Fig. 24.10.]

The two-dimensional jet issuing from a thin slot may be analyzed similarly. In that

problem, however, the turbulent viscosity is a function of position.

§4.7 CONCLUDING COMMENTS

This chapter began by comparing and contrasting laminar flows and turbulent flows in
several simple systems. It has also introduced some important concepts and definitions
that will be needed in later chapters: time smoothing, Reynolds decomposition, correla-
tion, eddy motion, turbulent mixing, turbulent momentum fluxes (or Reynolds stresses),
and the regions in the neighborhood of thewall–viscous sublayer, buffer layer, and inertial
sublayer.

In addition, we have given several important semi-empirical results, such as the log-
arithmic velocity profile, the eddy viscosity, and Prandtl’s mixing-length hypothesis.

Then we have shown how these ideas can be used for describing two important tur-
bulent flows, namely, the flow in a circular tube (wherewall turbulence plays an important
role), and the flow in a jet (where free turbulence is the key mechanism).
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Much of thismaterial will be referred to later in the chapters on turbulent heat transfer
(Chapter 12) and turbulent mass transfer (Chapter 20).

Keep in mind that this chapter has merely scratched the surface of a very large and
rapidly expanding subject.

QUESTIONS FOR DISCUSSION

1. Compare and contrast the procedures for solving laminar flow problems and turbulent flow

problems.

2. Why must Eq. 4.1-4 not be used for evaluating the velocity gradient at the solid boundary?

3. What does the logarithmic profile of Eq. 4.3-11 give for the fluid velocity at the wall? Why

doesn’t this create a problem in Example 4.5-1 when the logarithmic profile is integrated over

the tube cross section?

4. Discuss the physical interpretation of each term in Eq. 4.2-12.

5. Why is the absolute value sign used in Eq. 4.4-4? How is it eliminated in Eq. 4.5-5?

6. In Example 4.6-1, how do we know that the momentum flow through any plane of constant z
is a constant? Can you imagine a modification of the jet problem in which that would not be

the case?

7. In Eq. 4.3-8, why do we investigate the functional dependence of the velocity gradient rather

than the velocity itself?

8. Why is turbulence such a difficult topic?

PROBLEMS 4A.1 Pressure drop needed for laminar-turbulent transition. A fluid with viscosity 18.3 cp and

density 1.32 g∕cm3 is flowing in a long horizontal tube of radius 1.05 in. (2.67 cm). For what

pressure gradient will the flow become turbulent?

Answer: 26 psi/mile
(
1.12 × 105 Pa∕km

)
4A.2 Velocity distribution in turbulent pipe flow. Water is flowing through a long, straight, level

run of smooth 6.00 in. i.d. pipe, at a temperature of 68∘F. The pressure gradient along the length

of the pipe is 1.0 psi/mile.

(a) Determine the wall shear stress f0 in psi (lbf∕in.2) and Pa.

(b) Assume the flow to be turbulent and determine the radial distances from the pipe wall at

which vz∕vz,max = 0.0,0.1,0.2,0.4,0.7,0.85,1.0.
(c) Plot the complete velocity profile, vz∕vz,max vs. y = R − r.
(d) Is the assumption of turbulent flow justified?

(e) What is the mass flow rate?

4B.1 Average flow velocity in turbulent tube flow.

(a) For the turbulent flow in smooth circular tubes, the function1

vz (r)
vz,max

=
(
1 − r

R

)1∕n
(4B.1-1)

is sometimes useful for curve-fitting purposes: near Re = 4 × 103, n = 6; near Re = 1.1 × 105,

n = 7; and near 3.2 × 106, n = 10. Show that the ratio of average to maximum velocity is⟨
vz
⟩

vz,max

= 2n2

(n + 1) (2n + 1)
(4B.1-2)

and verify the result in Eq. 4.1-4.

1H. Schlichting, Boundary-Layer Theory, McGraw-Hill, New York, 7th edition (1979), pp. 596–600.
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(b) Sketch the logarithmic profile in Eq. 4.3-11 as a function of rwhen applied to a circular tube

of radius R. Then show how this function may be integrated over the tube cross section to get

Eq. 4.5-1. List all the assumptions that have been made to get this result.

4B.2 Mass flow rate in a turbulent circular jet.
(a) Verify that the velocity distributions in Eqs. 4.6-9 and 4.6-10 do indeed satisfy the differen-

tial equations and boundary conditions.

(b) Verify that Eq. 4.6-12 follows from Eq. 4.6-9.

4B.3 The eddy viscosity expression in the viscous sublayer. Verify that Eq. 4.4-2 for the eddy vis-

cosity comes directly from the Taylor-series expression in Eq. 4.3-7.

4C.1 Axial turbulent flow in an annulus. An annulus is bounded by cylindrical walls at r = aR and

r = R (where a < 1). Obtain expressions for the turbulent velocity profiles and the mass flow

rate. Apply the logarithmic profile of Eq. 4.3-10 for the flow in the neighborhood of each wall.

Assume that the location of themaximum in the velocity occurs on the same cylindrical surface

r = bR found for laminar annular flow:

b =

√
1 − a2

2 ln (1∕a)
(4C.1-1)

Measured velocity profiles suggest that this assumption for b is reasonable, at least for high

Reynolds numbers.2 Assume further that n in Eq. 4.3-10 is the same at the inner and outer

walls.

(a) Show that direct application of Eq. 4.3-10 leads immediately to the following velocity pro-

files3 in the region r < bR (designated by <) and r > bR (designated by >):

v<z (r)
v<
*

= 1

n
ln

( (r − aR) v<
*

l

)
+ m< where v<

*
= v

**

√
b2 − a2

a
(4C.1-2)

v>z (r)
v>
*

= 1

n
ln

( (r − aR) v>
*

l

)
+ m> where v>

*
= v

**

√
1 − b2 (4C.1-3)

in which v
**

=
√(

𝒫0 −𝒫L

)
R∕2Li.

(b) Obtain a relation between the constants m< and m> by requiring that the velocity be contin-

uous at r = bR.
(c) Use the results of (b) to show that the mass flow rate through the annulus is

w = 0R2iv
**

{√
1 − b2

(
1 − a2

)[1

n
ln

R (1 − b)
√
1 − b2v

**
l

+ m>
]
− B

}
(4C.1-4)

in which B is:

B =
(
b2 − a2

)3∕2
n
√
a

(
a

a + b
+ 1

2

)
+

(
1 − b2

)3∕2
n

(
1

1 + b
+ 1

2

)
(4C.1-5)

2J. G. Knudsen and D. L. Katz, Fluid Dynamics and Heat Transfer, McGraw-Hill, New York (1958); R.

R. Rothfus (1948), J. E. Walker (1957), and G. A. Whan (1956), Doctoral Theses, Carnegie Institute of

Technology (now Carnegie-Mellon University), Pittsburgh PA.
3W. Tiedt, Berechnung des laminaren u. turbulenten Reibungswiderstandes konzentrischer u. exzentrischer

Ringspalten, Technischer Bericht Nr. 4, Inst. f. Hydraulik u. Hydraulogie, Technische Hochschule,

Darmstadt (1968); D. M. Meter and R. B. Bird, AIChE Journal, 7, 41–45 (1961) did the same analysis using

the Prandtl mixing-length theory.
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Chapter 5

Dimensional Analysis for
Isothermal Systems

§5.1 Dimensional analysis of the equations of change for a pure isothermal fluid

§5.2 Transverse flow around a circular cylinder

§5.3 Steady flow in an agitated tank

§5.4 Pressure drop for creeping flow in a packed tube

§5.5 The Buckingham pi theorem

§5.6 Concluding comments

Many flow problems are far too complicated to be solved analytically. Common examples
of such situations include determining time-dependent velocity profiles in turbulent flow,
or solving for laminar flow in a geometry in which the bounding surfaces cannot be sim-
ply described in a convenient coordinate system. Consequently we frequently resort to
various kinds of dimensional analyses in order to get useful information.

In this chapter we start by nondimensionalizing the equations of change. This leads
to dimensionless groups of variables that will be useful for correlating experimental
data. One such important group that will arise naturally is the Reynolds number, which
appeared several times in Chapters 2, 3, and 4. We will also see how this dimensional
analysis typically reduces the number of parameters on which solutions depend. The
dimensionless equations are then used to obtain useful information about various
problems, without ever solving the equations of change.

Finally we show an alternative dimensional analysis method using the “Bucking-
ham pi theorem,” which has been popular in engineering circles for many decades. To
use this theorem, one does not need to know the governing equations for a process or
phenomenon, such as the equations of change. One does need to have some intuition,
however, and also must know all of the important parameters and their dimensions.

§5.1 DIMENSIONAL ANALYSIS OF THE EQUATIONS OF CHANGE
FOR A PURE ISOTHERMAL FLUID

Suppose thatwe have taken experimental data on, or captured images of, the flow through
some system that cannot be analyzed by solving the equations of change analytically. An
example of such a system is the flow of a fluid through an orifice meter in a pipe (this con-
sists of a disk with a centered hole in it, placed in the tube, with pressure-sensing devices
upstream and downstream of the disk). Suppose now that we want to scale up (or down)
the experimental system, in order to build a new one in which exactly the same flow pat-
terns occur (but appropriately scaled up (or down)). First of all, we need to have geometric

146
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similarity—that is, the ratios of all dimensions of the pipe and orifice plate in the original
system and in the scaled-up (or scaled-down) system must be the same. In addition, we
must have dynamic similarity—that is, the dimensionless groups in the relevant differen-
tial equations and boundary conditions (such as the Reynolds number) must be the same.
The study of dynamic similarity is best understood by writing the equations of change,
along with boundary and initial conditions, in dimensionless form.1,2

For simplicity we restrict the discussion here to fluids of constant density and viscos-
ity, for which the equations of change are Eqs. 3.1-5 and 3.6-2 (and using Eq. 3.5-4 for the
substantial derivative),

(∇ ⋅ v) = 0 (5.1-1)

i
(
𝜕v
𝜕t

+ [v ⋅ ∇v]
)
= −∇𝒫 + 4∇2v (5.1-2)

In most flow systems one can identify the following “scale factors”: a characteristic length
scale l0, a characteristic velocity scale v0, and a characteristic pressure scale iv2

0
. These

scales represent the magnitudes of the variables in the system. For example, for flow in
a tube, we could choose the tube diameter D as the length scale, because all r values will
be of the same magnitude as the diameter. We could choose the average velocity

⟨
vz
⟩
as

the velocity scale, because the axial velocities at different radial positions will be of the
same magnitude as the average velocity. The pressure scale iv2

0
is selected because the

parameter i is already present in the governing equation, and when multiplied by v2
0
,

gives a quantity with dimensions of pressure, which makes the creation of a new pressure
scale unnecessary (this scale is appropriate for large Reynolds number; in Example 5.1-1,
this dimensional analysis is repeated for a different choice for the pressure scale).

Next we define dimensionless variables and differential operators (indicated by a “˘”
(˘) over the symbols) as follows:

x̆ ≡ x
l0
; y̆ ≡ y

l0
; z̆ ≡ z

l0
; t̆ ≡ v0t

l0
(5.1-3)

v̆ ≡ v
v0

; �̆� ≡ 𝒫 −𝒫0

iv2
0

(5.1-4)

∇̆ ≡ l0∇ = tx

(
𝜕
𝜕x̆

)
+ ty

(
𝜕
𝜕y̆

)
+ tz

(
𝜕
𝜕z̆

)
(5.1-5)

∇̆2 ≡ l2
0
∇2 =

(
𝜕2

𝜕x̆2

)
+

(
𝜕2

𝜕y̆2

)
+

(
𝜕2

𝜕z̆2

)
(5.1-6)

A constant 𝒫0 is typically used in the dimensionless pressure for convenience. When the
equations of change in Eqs. 5.1-1 and 5.1-2 are rewritten in terms of the dimensionless
quantities, they become (

∇̆ ⋅ v̆
)
= 0 (5.1-7)

𝜕v̆
𝜕t̆

+
[
v̆ ⋅ ∇̆v̆

]
= −∇̆�̆� +

⟦
4

l0v0i

⟧
∇̆2v̆ (5.1-8)

In these dimensionless equations, the four dimensional parameters l0, v0, i, and 4 appear
in one dimensionless group. The reciprocal of this group is named after a famous fluid

1G. Birkhoff, Hydrodynamics, Dover, New York (1955), Chapter IV. Our dimensional analysis

procedure corresponds to Birkhoff’s “complete inspectional analysis.”
2R. W. Powell, An Elementary Text in Hydraulics and Fluid Mechanics, Macmillan, New York (1951),

Chapter VIII, and H. Rouse and S. Ince, History of Hydraulics, Dover, New York (1963) have interesting

historical material regarding the dimensionless groups and the persons for whom they were named.
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dynamicist, Osborne Reynolds3

Re =
⟦
l0v0i
4

⟧
= Reynolds number (5.1-9)

The magnitude of this dimensionless group gives an indication of the relative importance
of inertial and viscous forces in the fluid system. This feature is elaborated on further
following Example 5.1-1 below.

Additional dimensionless groups may arise in alternate formulations, or in the initial
and boundary conditions; two that appear in problems with fluid-fluid interfaces are4,5

Fr =

⟦
v2
0

l0g

⟧
= Froude number (5.1-10)4

We =

⟦
l0v

2
0
i

g

⟧
= Weber number (5.1-11)5

The first of these contains the gravitational acceleration g, and the second contains the
interfacial tension g, which may enter into a boundary condition (see Problem 5C.1). Still
other groups may appear, such as ratios of lengths in the flow system (for example, the
ratio of the tube diameter to the diameter of the hole in an orifice meter).

EXAMPLE 5.1-1

Dimensional Analysis
with a Different
Pressure Scale

For flows in which viscous forces play a dominant role, a more appropriate pressure scale is

4v0∕l0. Nondimensionalize the equations of change using this pressure scale, in addition to the

length and velocity scales l0 and v0.

SOLUTION

The dimensionless coordinates, time, velocity, and gradient operator that are defined above can

still be used here. A different dimensionless pressure is now defined

̆̆𝒫 ≡ 𝒫 −𝒫0

4v0∕l0
(5.1-12)

To nondimensionalize the governing equations, we first rearrange all of the definitions to

express the dimensional quantities in terms of the dimensionless quantities

x = l0x̆, y = l0y̆, z = l0z̆, t =
l0
v0

t̆ (5.1-13)

v = v0v̆, ∇ = 1

l0
∇̆, ∇2 = 1

l2
0

∇̆2 (5.1-14)

𝒫 = 𝒫0 +
4v0
l0

̆̆𝒫 (5.1-15)

These expressions are then substituted directly into the equations of change (Eqs. 5.1-1 and

5.1-2). Equation 5.1-1 is thus written ( [
l0∇̆

]
⋅
[
v0v̆

] )
= 0 (5.1-16)

3See fn. 1 in §2.2.
4William Froude (1810–1879) (rhymes with “food”) studied at Oxford and worked as a civil

engineer concerned with railways and steamships. The Froude number is sometimes defined as the

square root of the group given in Eq. (5.1-l0).
5Moritz Weber (1871–1951) (pronounced “Vayber”) was a professor of naval architecture in Berlin;

another dimensionless group involving the surface tension is the capillary number, defined as

Ca =
⟦
4v0∕g

⟧
.
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Dividing through by the constants l0 and v0 gives(
∇̆ ⋅ v̆

)
= 0 (5.1-17)

For Eq. 5.1-2, the first term becomes

i
𝜕
[
v0v̆

]
𝜕
[ (

l0∕v0
)
t̆
] =

iv2
0

l0

[
𝜕v̆
𝜕t̆

]
(5.1-18)

The second term becomes [
i(v0v̆) ⋅

(
1

l0
∇̆
)(

v0v̆
)]

=
iv2

0

l0

[
v̆ ⋅ ∇̆v̆

]
(5.1-19)

The third term becomes

−
[
1

l0
∇̆
] [

𝒫0 +
4v0
l0

̆̆𝒫
]
= −

4v0
l2
0

∇̆ ̆̆𝒫 (5.1-20)

(here we have used the fact that ∇̆𝒫0 = 𝟎 because 𝒫0 is a constant). The fourth term becomes

4

[
1

l0
∇̆
]2 [

v0v̆
]
=

4v0
l2
0

[
∇̆2v̆

]
(5.1-21)

Substituting each term back into Eq. 5.1-2 gives

iv2
0

l0

[
𝜕v̆
𝜕t̆

]
+

iv2
0

l0

[
v̆ ⋅ ∇̆v̆

]
= −

4v0
l2
0

[
∇̆ ̆̆𝒫

]
+

4v0
l2
0

[
∇̆2v̆

]
(5.1-22)

Dividing this equation by 4v0∕l20 gives

Re

(
𝜕v̆
𝜕t̆

+
[
v̆ ⋅ ∇̆v̆

])
= −∇̆ ̆̆𝒫 + ∇̆2v̆ (5.1-23)

where Re = l0v0i∕4 as before.

There are several benefits of nondimensionalizing the equations for fluid flow:

1. The dimensionless equations typically involve fewer parameters than their dimen-
sional versions. For example, the Navier-Stokes equation (Eq. 5.1-2) contains the
two parameters i and 4, whereas the dimensionless versions (Eqs. 5.1-8 or 5.1-23)
contain only the single parameter Re. Such a reduction in the number of param-
eters decreases the number of experiments necessary to characterize a particular
fluid flow.

2. The process of nondimensionalization reveals the relevant dimensionless groups.
For example, Eq. 5.1-2 implies that both i and 4 are important quantities in fluid
flow, but the dimensionless versions (Eqs. 5.1-8 or 5.1-23) show that only their ratio
as expressed in the Reynolds number dictates behavior.

3. The dimensionless equations can help to illustrate physical interpretations of
dimensionless groups. For example, when Re ≫ 1, both Eqs. 5.1-8 and 5.1-23
suggest that the viscous term ∇̆2v̆ is not as important as the inertia term

[
v̆ ⋅ ∇̆v̆

]
.

This implies that the Reynolds number can be interpreted as a measure of the
relative importance of inertial and viscous forces. In fact, the Reynolds number
can be written as the ratio of the magnitudes of the inertial force term [iv ⋅ ∇v]
(whose magnitude is approximately iv2

0
∕l0) and the viscous force term 4∇2v

(whose magnitude is approximately 4v0∕l20)

Re = inertial force

viscous force
=

iv2
0
∕l0

4v0∕l20
=

l0v0i
4

(5.1-24)
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4. A solution for the dimensionless velocity for one value of Re can be the solution for
a wide variety of combinations of values of l0, v0, i and 4, as long as Re = l0v0i∕4 is
the same. This is often exploited in scaling up equipment from laboratorymodels to
full-size industrial operations.More specifically, if the laboratorymodel and indus-
trial equipment have the same shapes and ratios of dimensions (geometric similar-
ity), as well as the same dimensionless initial conditions, boundary conditions, and
values of dimensionless parameters (dynamic similarity), then the dimensionless
velocity profiles for the two systems are identical. Examples of scale-up analyses
are illustrated in the following sections.

5. A final reason for nondimensionalizing the governing equations is that simpli-
fications can often be made. For example, if the scales for length, velocity, and

pressure are chosen appropriately, then the terms
[
v̆ ⋅ ∇̆v̆

]
, ∇̆�̆� , ∇̆2v̆, etc. will all

be of order of magnitude of 1. Thus, Eq. 5.1-8 shows that if Re ≫ 1, then the term
containing ∇̆2v̆ is smaller than all of the other terms and can therefore be omitted.
Equation 5.1-8 then reduces to a dimensionless version of the Euler equation for
inviscid flow (Eq. 3.6-4). This analysis is valid when the pressure does indeed scale
with iv2

0
, which we learn from experience to be true for relatively large Reynolds

numbers. For low Reynolds numbers, we learn from experience that the pressure
scales with 4v0∕l0. In this case, the nondimensionalization performed in Example
5.1-1 is more appropriate, and the resulting dimensionless equation of motion is
Eq. 5.1-23. For Re ≪ 1, this equation tells us that the entire left side of the equation
can be omitted. This produces a dimensionless version of the Stokes equation
(Eq. 3.6-3).

Choosing appropriate scales can be quite challenging6 and requires more experience
than a student typically has prior to a first course on transport phenomena. However,
given scales, beginning students should be able to produce dimensionless equations as
illustrated in Example 5.1-1. Problems at the end of this chapter offer more opportunities
for practicing this skill.

§5.2 TRANSVERSE FLOW AROUND A CIRCULAR CYLINDER1

The flow of an incompressible Newtonian fluid past a long circular cylinder is to be stud-
ied experimentally. We want to know how the flow patterns and pressure distribution
depend on the cylinder diameter, the approach velocity, and the fluid density and viscos-
ity. Here we will use dimensional analysis to determine how to organize the work so that
the number of needed experiments will be minimized.

For the analysis we consider an idealized flow system: a cylinder of diameter D and
infinite length, submerged in an unbounded fluid of constant density and viscosity. Ini-
tially the fluid and the cylinder are both at rest. At time t = 0, the cylinder is abruptly
made to move with velocity v∞ in the negative x direction. The subsequent fluid motion
is analyzed by using coordinates fixed in the cylinder axis as shown in Fig. 5.2-1.

The differential equations describing the flow are the equation of continuity (Eq. 5.1-1)
and the equation of motion (Eq. 5.1-2). The initial condition for t = 0 and all z is:

I. C. for x2 + y2 > 1

4
D2, v = txv∞ (5.2-1)

6Approaches for selecting appropriate scales are discussed in W. M. Deen, Analysis of Transport
Phenomena, 2nd edition, Oxford University Press, New York (2012), Chapter 3.

1This discussion is adapted from R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures
on Physics, Vol. II, Addison-Wesley, Reading MA (1964), §41-4.
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Fluid
approaches
from x = ‒∞
with uniform
velocity v∞

y

x

D

Fig. 5.2-1. Transverse flow around a cylinder.

The boundary conditions for t ≥ 0 and all z are:

B. C. 1 as x2 + y2 → ∞, v → txv∞ (5.2-2)

B. C. 2 at x2 + y2 = 1

4
D2, v = 𝟎 (5.2-3)

B. C. 3 as x → −∞ at y = 0, 𝒫 → 𝒫∞ (5.2-4)

Now we rewrite the problem in terms of variables made dimensionless with the char-

acteristic length D, velocity v∞, and modified pressure 𝒫∞. The resulting dimensionless

equations of change are(
∇̆ ⋅ v̆

)
= 0, and

𝜕v̆
𝜕t̆

+
[
v̆ ⋅ ∇̆v̆

]
= −∇̆�̆� + 1

Re
∇̆2v̆ (5.2-5, 6)

in which Re = Dv∞i∕4. The corresponding initial and boundary conditions are, for all z̆:

I. C. for x̆2 + y̆2 > 1

4
, v̆ → tx (5.2-7)

B. C. 1 as x̆2 + y̆2 → ∞, v̆ → tx (5.2-8)

B. C. 2 at x̆2 + y̆2 = 1

4
, v̆ = 𝟎 (5.2-9)

B. C. 3 as x̆ → −∞ at y̆ = 0, �̆� → 0 (5.2-10)

If we were bright enough to be able to solve the dimensionless equations of change

along with the dimensionless initial and boundary conditions, the solutions would have
to be of the following form:

v̆ = v̆
(
x̆,y̆,t̆,Re

)
and �̆� = �̆�

(
x̆,y̆,t̆,Re

)
(5.2-11, 12)

That is, the dimensionless velocity and dimensionless modified pressure can depend only

on the dimensionless parameter Re and the dimensionless independent variables x̆, y̆, and
t̆ (the solution is independent of z̆ for an infinite cylinder). For cylinders of finite length L,
the solution will depend additionally on z̆ and also on L∕D.

This completes the dimensional analysis of the problem. We have not solved the flow

problem, but have decided on a convenient set of dimensionless variables to restate the

problem and suggest the form of the solution. The analysis shows that if we wish to cat-

alog the flow patterns for flow past a long cylinder, it will suffice to record them (e.g., by

capturing video images) for a series of Reynolds numbers Re = Dv∞i∕4; thus, separate
investigations into the roles ofD, v∞, i, and 4 are unnecessary. Such a simplification saves
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Separation point

Separation point

Separation point

Separation point

Separation pointStagnation point

(a)
Re ≈ 10–2

(b)
Re ≈ 10

(c)
Re ≈ 102

(d)
Re ≈ 104

(e)
Re ≈ 106

von
Kármán
vortex
street

Turbulent
wake

Turbulent
wake

Fig. 5.2-2. The types of
behavior for the flow

around a cylinder,

illustrating the various

flow regimes that are

observed as the

Reynolds number

increases. Regions of

turbulent flow are

shaded in gray. [R. P.

Feynman, R. B.

Leighton, and M. Sands,

The Feynman Lectures in
Physics, Vol. II,
Addison-Wesley,

Reading MA (1964), Fig.

41-6.]

a lot of time and expense. Similar comments apply to the tabulation of numerical results,
in the event that one decides to make a numerical assault on the problem.2,3

Experiments involve some necessary departures from the above analysis: the cylin-
der has ends, the stream is finite in size, and small fluctuations of velocity are inevitably
present at the initial state. Nevertheless, for Reynolds numbers below about 40, and loca-
tions away from the ends of the cylinder, Eqs. 5.2-11 and 5.2-12 describe the available
observations quite well. For Re approaching 40, the damping of disturbances is slower,
and beyond this approximate limit unsteady flow is always observed.

The observed flow patterns at large t̆ vary strongly with the Reynolds number as
shown in Fig. 5.2-2. For Re = 1, the flow is orderly, as shown in (a). At Re of about 10, a pair
of vortices appears behind the cylinder, as may be seen in (b). This type of flow persists
up to about Re = 40, when there appear two “separation points,” at which the streamlines
separate from the solid surface. Furthermore, the flow becomes permanently unsteady;
vortices begin to “peel off” from the cylinder andmove downstream.With further increase

2Analytical solutions of this problem at very small Re and infinite L∕D are reviewed in L. Rosenhead

(ed.), Laminar Boundary Layers, Oxford University Press (1963), Chapter IV. An important feature of this

two-dimensional problem is the absence of a “creeping flow” solution. Thus, the [v ⋅ ∇v] term in the

equation of motion has to be included, even in the limit as Re → 0 (see Problem 3B.9). This is in sharp

contrast to the situation for slow flow around a sphere (see §2.7) and around other finite,

three-dimensional objects.
3For a numerical study of the flow around a long cylinder, see F. H. Harlow and J. E. From, Scientific

American, 212, 104–110 (1965), and J. E. From and F. H. Harlow, Phys. Fluids, 6, 975–982 (1963).
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in Re, the vortices separate regularly from alternate sides of the cylinder, as shown in (c);
such a regular array of vortices is known as a “von Kármán vortex street.” At still higher
Re, there is a disorderly fluctuating motion (turbulence) in the wake of the cylinder, as
shown in (d). Finally, at Re near 106, turbulence appears upstream of the separation point,
and the wake abruptly narrows down as shown in (e). Clearly, the unsteady flows shown
in the last three sketches would be very difficult to compute from the equations of change.
It is much easier to observe them experimentally and correlate the results in terms of Eqs.
5.2-11 and 5.2-12.

Equations 5.2-11 and 5.2-12 can also be used for scale-up from a single experiment.
Suppose that we wanted to predict the flow patterns around a cylinder of diameter DI =
5 ft, around which air is to flowwith an approach velocity

(
v∞

)
I
= 30 ft∕s, by means of an

experiment on a scale model of diameter DII = 1 ft. To have dynamic similarity, we must
choose conditions such that ReI = ReII. Then, if we use the same fluid in the small-scale
experiment as in the large system, so that 4II∕iII = 4I∕iI, we find

(
v∞

)
II
= 150 ft∕s as the

required air velocity in the small-scale model.With the Reynolds numbers thus equalized,
the flow patterns in the model and the full-scale system will look alike—that is, they are
geometrically and dynamically similar.

Furthermore, if Re is in the range of periodic vortex formation, the dimensionless time
interval tvv∞∕D between vortices will be the same in the two systems. Thus, the vortices
will shed 25 times as fast in the model as in the full-scale system. The regularity of the vor-
tex shedding at Reynolds numbers from about 102 to 104 has been utilized commercially
for precise flow metering in large pipelines.

§5.3 STEADY FLOW IN AN AGITATED TANK

We next consider the problem of predicting the flow behavior in a large, unbaffled tank
of oil, shown in Fig. 5.3-1, as a function of the impeller rotation speed. We propose to do
this by means of model experiments in a smaller, geometrically similar system. We want
to determine the conditions necessary for the model studies to provide a direct means of
prediction.

We consider a tank of radius R, with a centered impeller of overall diameter D. At
time t = 0, the system is stationary and contains liquid to a height H above the tank bot-
tom. Immediately after time t = 0, the impeller begins rotating at a constant speed of N

Initial
liquid
heights

NI

RI

DI

HI

NII

RII

DIIHII

ʋII =

ʋII = ʋI

1

8
ʋI

z

r
z
r

Fig. 5.3-1. Long-time average free-surface shapes, with ReI = ReII.
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revolutions per minute. The drag of the atmosphere on the liquid surface is neglected. The

impeller shape and initial position are described by the function Simp (r,p,z) = 0.

The flow is governed by Eqs. 5.1-1 and 5.1-2, along with the initial condition

I.C. at t = 0, for 0 ≤ r < R and 0 < z < H, v = 𝟎 (5.3-1)

and the following boundary conditions for the liquid region:

tank bottom at z = 0 and 0 ≤ r < R, v=𝟎 (5.3-2)

tank wall at r = R, v=𝟎 (5.3-3)

impeller surface at Simp (r,p − 20Nt,z) = 0, v = 20Nrtp (5.3-4)

gas-liquid interface at Sint (r,p,z,t) = 0, (n ⋅ v) = 0 (5.3-5)

and np + [n ⋅ f] = npatm (5.3-6)

Equations 5.3-2 and 5.3-4 are the no-slip conditions at solid-liquid interfaces; the

surface Simp (r,p − 20Nt,z) = 0 describes the location of the impeller after Nt rotations.

Equation 5.3-5 is the condition of nomass flow through the gas-liquid interface, described

by Sint (r,p,z,t) = 0, which has a local unit normal vector n. Equation 5.3-6 is a force balance

on an element of this interface (or a statement of the continuity of the normal component

of the momentum flux tensor 0, in which the viscous contributions from the gas side

are neglected). This interface is initially stationary in the plane z = H, and its motion

thereafter is best obtained by measurement, though it is also predictable in principle by

numerical solution of this equation system, which describes the initial conditions and

subsequent acceleration Dv∕Dt of every fluid element.

Nextwe nondimensionalize the equations using the characteristic quantities v0 = ND,

l0 = D, and𝒫0 = iN2D2 along with dimensionless cylindrical coordinates r̆ = r∕D, p, and
z̆ = z∕D. Then the equations of continuity and motion appear as in Eqs. 5.1-7 and 5.1-8,

with Re = D2Ni∕4. The initial condition takes the form

I.C. at t̆ = 0, for r̆ =
⟦R
D

⟧
and 0 < z̆ <

⟦H
D

⟧
, v = 𝟎 (5.3-7)

and the boundary conditions become:

tank bottom at z̆ = 0 and 0 < r̆ <
⟦R
D

⟧
, v̆ = 𝟎 (5.3-8)

tank wall at r̆ =
⟦R
D

⟧
, v̆ = 𝟎 (5.3-9)

impeller surface at S̆imp

(
r̆,p − 20t̆,z̆

)
= 0, v̆ = 20r̆tp (5.3-10)

gas-liquid interface at S̆int
(
r̆, p, z̆, t̆

)
= 0 (n ⋅ v̆) = 0 (5.3-11)

and n�̆� − n
⟦ g

DN2

⟧
z̆ −

⟦
4

D2Ni

⟧ [
n ⋅ ̆̇u

]
= 𝟎 (5.3-12)

In going from Eqs. 5.3-6 to 5.3-12 we have used Newton’s law of viscosity in the form of

Eq. 1.2-13 (but with the last term omitted, as is appropriate for incompressible liquids).We

have also used the abbreviation ̆̇u = ∇̆v̆ +
(
∇̆v̆

)†
for the dimensionless rate-of-deformation

tensor, whose dimensionless Cartesian components are ̆̇uij = (𝜕v̆j∕𝜕x̆i) + (𝜕v̆i∕𝜕x̆j).
The quantities in Eqs. 5.3-7 through 5.3-12 in double brackets are known dimension-

less quantities. The function S̆imp

(
r̆,p − 20t̆,z̆

)
is known for a given impeller design. The

unknown function S̆int
(
r̆,p,z̆,t̆

)
is measurable by video image analysis, or in principle com-

putable from the problem statement.
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By inspection of the dimensionless equations, we find that the velocity and pressure
profiles must have the form

v̆ = v̆
(
r̆,p,z̆,t̆; R

D
,H
D
,Re,Fr

)
(5.3-13)

�̆� = �̆�
(
r̆,p,z̆,t̆; R

D
,H
D
,Re,Fr

)
(5.3-14)

for a given impeller shape and location. The corresponding locus of the free surface is
given by

S̆int = S̆int
(
r̆,p,z̆,t̆; R

D
,H
D
,Re,Fr

)
= 0 (5.3-15)

in which Re = D2Ni∕4 and Fr = DN2∕g. For time-smoothed observations at large t̆, the
dependence on t̆ will disappear, as will the dependence on p for this axisymmetric tank
geometry.

These results provide the necessary conditions for the proposed model experiment:
the two systems must be (i) geometrically similar (same values of R∕D and H∕D, same
impeller geometry and location), and (ii) operated at the same values of the Reynolds and
Froude numbers. Condition (ii) requires that

D2
I
NI

lI
=

D2
II
NII

lII
(5.3-16)

DIN
2
I

gI
=

DIIN
2
II

gII
(5.3-17)

in which the kinematic viscosity l = 4∕i is used. Normally both tanks will operate in the
same gravitational field gI = gII, so that Eq. 5.3-17 requires

NII

NI

=
(
DI

DII

)1∕2

(5.3-18)

Substitution of this into Eq. 5.3-16 gives the requirement

lII
lI

=
(
DII

DI

)3∕2

(5.3-19)

This is an important result, namely, that the smaller tank (II) requires a fluid of smaller
kinematic viscosity to maintain dynamic similarity. For example, if we use a scale model

with DII =
1

2
DI, then we need to use a fluid with kinematic viscosity lII = lI∕

√
8 in the

scaled-down experiment. Evidently the requirements for dynamic similarity are more
stringent here than in the previous example, because of the additional dimensionless
group Fr.

In many practical cases, Eq. 5.3-19 calls for unattainably low values of lII. Exact
scale-up from a single-model experiment is then not possible. In some circumstances,
however, the effect of one or more dimensionless groups may be known to be small, or
may be predictable from experience with similar systems; in such situations, approximate
scale-up from a single experiment is still feasible.1

This example shows the importance of including the boundary conditions in a dimen-
sional analysis. Here the Froude number appeared only in the free-surface boundary con-
dition in Eq. 5.3-12. Failure to use this conditionwould result in the omission of the restric-
tion in Eq. 5.3-18, and onemight improperly choose lII = lI. If one did this, with ReII = ReI,
the Froude number in the smaller tank would be too large, and the vortex would be too
deep, as shown by the dotted line in Fig. 5.3-1.

1For an introduction to methods for scale-up with incomplete dynamic similarity, see R. W. Powell,

An Elementary Text in Hydraulics and Fluid Mechanics, Macmillan, New York (1951).
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§5.4 PRESSURE DROP FOR CREEPING FLOW IN A PACKED TUBE

Here we show that the mean axial gradient of the modified pressure𝒫 for flow of a fluid
of constant i and 4 through a tube of radius R, uniformly packed for a length L ≫ Dp with
solid particles of characteristic size Dp ≪ R, is

2 ⟨𝒫 ⟩
L

=
4
⟨
vz
⟩

D2
p

K
(
geom

)
(5.4-1)

Here ⟨· · ·⟩ denotes an average over a tube cross sectionwithin the packed length L, and the
function K(geom) is a constant for a given bed geometry (i.e., a given shape and arrange-
ment of the particles).

We chooseDp as the characteristic length, and
⟨
vz
⟩
as the characteristic velocity. Since

the flow is slow, we use the pressure scale 4
⟨
vz
⟩
∕Dp as in Example 5.1-1. Then the inter-

stitial fluid motion is determined by Eqs. 5.1-17 and 5.1-23, with v̆ = v∕
⟨
vz
⟩
and

̆̆𝒫 =(
𝒫 −𝒫0

)
Dp∕4

⟨
vz
⟩
, along with no-slip conditions on the solid surfaces and the mod-

ified pressure difference 2 ⟨𝒫 ⟩ = ⟨
𝒫0

⟩
−

⟨
𝒫L

⟩
. The solutions for v̆ and

̆̆𝒫 in creeping

flow (Re = Dp

⟨
vz
⟩
i∕4 → 0) accordingly depend only on r̆, p, and z̆ for a given particle

arrangement and shape. Then the mean axial dimensionless pressure gradient

Dp

L ∫
L∕Dp

0

(
−d ̆̆𝒫

dz̆

)
dz̆ =

Dp

L

(
̆̆𝒫 0 −

̆̆𝒫 L

)
(5.4-2)

depends only on the bed geometry as long as R and L are large relative to Dp. That is,

Dp

L

(
̆̆𝒫0 −

̆̆𝒫L

)
= function of geometry (5.4-3)

Inserting the definition of the dimensionless pressure difference 2
⟨

̆̆𝒫
⟩
=

(
Dp∕4

⟨
vz
⟩)

⋅
2 ⟨𝒫 ⟩ into Eq. 5.4-3 and rearranging then gives Eq. 5.4-1.

§5.5 THE BUCKINGHAM PI THEOREM1

It is sometimes possible to obtain the dimensionless groups necessary for scale-up calcula-
tions without nondimensionalizing the governing equations. Consider a flow problem in
which it is known ahead of time that there are q relevant quantities, x1,x2,… ,xq. The dimen-
sions of these q quantities can be constructed from d primary dimensions (e.g., when the
primary dimensions are mass, length, and time, then d = 3). To obtain a dimensionless
group Hi from these quantities, we write the dimensionless group as a product of each
variable raised to a power

Hi =
(
xn1
1

)(
xn2
2

)
· · ·

(
x
nq
q

)
(5.5-1)

The exponents n1,n2,… ,nq are then selected so that the right side of the equation becomes
dimensionless. For typical problems, this procedure can yield q − d different dimension-
less groups for different choices of the exponents. The dimensionless groups are not
unique, so some experience with common dimensionless groups can be helpful. More
information about this method, as well as discussions about exceptions to the typical
type of problem, are available elsewhere.2,3

According to the Buckinghampi theorem, the functional relationship among q quanti-
ties, whose dimensions can be given in terms of the d primary dimensions, may be written

1E. Buckingham, Phys. Rev., 4, 345–376 (1914).
2The Handbook of Fluid Dynamics, R. W. Johnson, ed., CRC Press, Boca Raton (1998), Chapter 5.
3A. A. Sonin, PNAS, 101, 8525–8526 (2004).
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as a relation among the q − d dimensionless groups (theH’s). Then one canwrite a relation
of the form

f
(
H1,H2,H3,… ,Hq−d

)
= 0 (5.5-2)

Any one of these H’s may be replaced by itself raised to a power, multiplied by any other
H, raised to any power. One can also solve Eq. 5.5-2 for any one of the H’s to get a relation
of the form

H1 = g
(
H2,H3,… ,Hq−d

)
(5.5-3)

Adifficulty in using the pi theorem is that one has to knowall of the relevant variables,
and sometimes this can be a major difficulty. For problems involving many variables,
obtaining the most useful dimensionless groups can also be a challenge.

Several examples are presented below in which the Buckingham pi theorem is
employed to obtain relationships between dimensionless groups.

EXAMPLE 5.5-1

Incompressible Flow in
a Circular Tube

We seek a method of correlating the modified pressure difference for tube flow in terms of

relevant variables.We start by listing possible quantities of interest alongwith their dimensions

𝒫0 −𝒫L [=]M∕Lt2
⟨
vz
⟩
[=] L∕t i [=]M∕L3

4 [=]M∕Lt R [=] L L [=] L (5.5-4)

There are q = 6 quantities with d = 3 primary dimensions, and therefore q − d = 6 − 3 = 3

dimensionless groups. Each dimensionless group will have the form

H =
(
𝒫0 −𝒫L

)a⟨
vz
⟩b
ic4dReLf (5.5-5)

By substituting the dimensions of the 6 variables into Eq. 5.5-5, we find that the dimensions of

H are

H = Ma+c+dL−a+b−3c−d+e+f t−2a−b−d (5.5-6)

The exponents are determined by requiring that H be dimensionless. This gives the system of

equations

a + c + d = 0 (5.5-7)

−a + b − 3c − d + e + f = 0 (5.5-8)

−2a − b − d = 0 (5.5-9)

This is an underspecified system of 3 equations and 6 unknowns, and thus, we can select 3

of the unknowns a − f to obtain dimensionless groups (as long as the 3 selected values do not

violate Eqs. 5.5-7 through 5.5-9). Because we seek a relationship between𝒫0 −𝒫L and all of the

other variables, we select a = 1 for the first dimensionless group, and a = 0 for the remaining

dimensionless groups.

For the dimensionless group with a = 1, we also select d = 0. Equation 5.5-7 then gives c =
−1. Substituting these values into Eq. 5.5-9 gives b = −2. Substituting all of these values into Eq.

5.5-8 gives e + f = 0. For simplicity, we choose e = 0 which gives f = 0. The first dimensionless

group can thus be written
(
P0 − PL

)
∕i

⟨
vz
⟩2
. We choose to add a factor of 1

2
in the denominator

because the factor 1

2
i⟨v⟩2 commonly appears in fluid mechanics. The first dimensionless group

is thus

H1 =
𝒫0 −𝒫L

1

2
i
⟨
vz
⟩2

= a dimensionless pressure difference (5.5-10)

To get a second dimensionless group, we enforce a = 0, and select b = 1, because we expect

a dimensionless average velocity will be a useful group. Equation 5.5-9 then gives d = −1. Sub-
stituting these values into Eq. 5.5-7 then gives c = 1. Substituting all of these values into Eq. 5.5-8

then gives e + f = 0.We arbitrarily set f = 0, which gives e= 1. The second dimensionless group
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then can be written R
⟨
vz
⟩
i∕4. We add a factor of 2 to the numerator so that the second dimen-

sionless group becomes the conventional Reynolds number for tube flow,

H2 =
2R

⟨
vz
⟩
i

4
= Reynolds number (5.5-11)

For the third dimensionless group, we choose both a = 0 and b = 0, so that the modi-
fied pressure difference and average velocity only appear in one dimensionless group each.
Equation 5.5-9 then gives d = 0, and then Eq. 5.5-7 gives c = 0. Substituting all of these val-
ues into Eq. 5.5-8 gives e + f = 0. We arbitrarily choose f = 1, which gives e = −1. The third
dimensionless group is thus

H3 =
L
R

= a dimensionless tube length (5.5-12)

We note that this analysis illustrates that these dimensionless groups are not unique, and others
could have been obtained.

This analysis suggests that we might plot experimental data of H1 (the dimensionless
modified pressure difference) versusH2 (the Reynolds number) for various values ofH3 (L∕R).
This is essentially what we do in §6.2 for turbulent flow. For laminar flow in very long tubes,
Eq. 2.3-22 divided by

⟨
vz
⟩
is the same as 1 = H1H2∕H3, aside from a numerical factor. Thus, the

theoretical result in §2.3 is consistent with this analysis of the Buckingham pi theorem.

EXAMPLE 5.5-2

Correlating Viscosity
Data for Low-Density
Gases

Develop the form of the expression for the temperature dependence of gas viscosity in terms
of the molecular parameters of the Lennard-Jones potential and the molecular mass.

SOLUTION

We start by listing the q = 6 quantities involved in the relation along with their corresponding
dimensions, whence we see that d = 4 (the primary dimensions are mass M, length L, time t
and temperature T)

4 [=]M∕Lt T [=]T m [=]M
g [=] L s [=]ML2∕t2 K [=]ML2∕t2T (5.5-13)

We find that the Boltzmann constant K has to be included in order to construct a dimensionless
group for the viscosity, as well as for the parameter s. Then the q − d = 6 − 4 = 2 dimensionless
groups may be found to be

H1 =
4g2√
mKT

H2 =
KT
s

(5.5-14)

When we write H1 = F
(
H2

)
, we see that this is the form of the kinetic theory expression in

Eq. 1.6-14. The kinetic theory gives the numerical factor as well as the exact function of the
dimensionless temperature KT∕s (see Table D.2).

At extremely low temperatures, one expects quantumeffects to be important, and therefore
that Planck’s constant h should play a role in the theory of transport properties. Therefore, to
the list of quantities in Eq. 5.5-13, we have to add h [=]ML2∕t, so that q = 7. Since d is still equal
to 4, we have now q − d = 7 − 4 = 3 dimensionless groups. Then in addition toH1 andH2 in Eq.

5.5-14, we have a third dimensional group, H3 = h∕g
√
ms, often called the de Boer parameter.4

This parameter has the following values for the light gases:

Gas He3 He4 H2 D2 Ne

h∕g
√
ms 3.08 2.67 1.729 1.223 0.593

The larger the value of the de Boer parameter, the larger the deviation from classical behavior.

4J. de Boer, Reports on Progress in Physics, 12, 305–374 (1949). Jan de Boer (1911–2010) was the

founding director of the Institute for Theoretical Physics of the University of Amsterdam; he was a

superb classroom teacher, who knew how to present difficult concepts in a neat and well-organized way.
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§5.6 CONCLUDING COMMENTS

In this chapter it was shown howdimensional analysis of the equations of change can lead

to better understanding of complex flow systems, even when the governing equations

are not solved. By going through the analysis of three systems in some detail, we have

demonstrated the utility of the approach.

The Buckingham pi theorem, which is about a century old, was then presented. It

involves a certain amount of intuition about how a system behaves. But when applied

skillfully, it can be helpful in determining the dimensionless representations that can be

useful in correlating data on complex systems.

In the next chapter we exploit dimensional analysis to develop friction factor correla-

tions.

QUESTIONS FOR DISCUSSION

1. What are the advantages of writing equations in dimensionless form?

2. Compare and contrast the use of the nondimensionalized equations of change and the Buck-

ingham pi theorem.

3. Write Newton’s law of viscosity in dimensionless form, using v0 and l0 as the scale factors for
velocity and length, respectively.

4. Write the velocity distribution for laminar flow in a circular tube in dimensionless form. Use⟨
vz
⟩
and R as the scale factors for velocity and length, respectively. What other choices could

be made?

5. Discuss the use of the Reynolds number as a means for classifying the types of flow patterns

for the transverse flow of a fluid around a cylinder.

6. What special form does the Navier-Stokes equation take in the limit as Re approaches zero? As

it approaches infinity?

7. What factors would need to be taken into account in designing a mixing tank for use on the

moon, by using data from a similar tank on earth?

8. Do the Reynolds number, the Froude number, and theWeber number contain both the physical

properties of the fluid and information about the geometry of the flow system and the strength

of the flow?

9. The Weber number contains the interfacial tension. How is this fluid property measured?

PROBLEMS 5A.1 Calculating Reynolds numbers. Calculate values for the Reynolds number, Re = l0v0i∕4, for
the following cases:

(a) l0 = 0.1 m, v0 = 0.2m∕s, i = 103 kg∕m3, 4 = 10−3 Pa ⋅ s

(b) l0 = 100 4m, v0 = 10 4m∕s, i = 103 kg∕m3, 4 = 10−3 Pa ⋅ s

(c) l0 = 3 in., v0 = 2 ft∕s, i = 63 lbm∕ft
3
, 4 = 1.2 cp

5A.2 Verifying dimensionless groups. Verify that the dimensionless groups identified in Examples

5.5-1 and 5.5-2 are actually dimensionless.

5B.1 Nondimensionalizing the substantial derivative. Show that the equation for the substantial

derivative of the velocity

Dv
Dt

= 𝜕v
𝜕t

+ [v ⋅ ∇v] (5B.1-1)

becomes
Dv̆
Dt̆

= 𝜕v̆
𝜕t̆

+
[
v̆ ⋅ ∇̆v̆

]
(5B.1-2)

when nondimensionalized using the length and velocity scales, l0 and v0, respectively.
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5B.2 Nondimensionalizing a different form of the Navier-Stokes equation. The Navier-Stokes

equation can be written in terms of the actual pressure as

i
(
𝜕v
𝜕t

+ [v ⋅ ∇v]
)
= −∇p + 4∇2v + ig (5B.2-1)

Using the scales l0 for length, v0 for velocity, and iv2
0
for pressure, nondimensionalize this

equation to obtain
𝜕v̆
𝜕t̆

+
[
v̆ ⋅ ∇̆v̆

]
= −∇̆p̆ + 1

Re
∇̆2v̆ + 1

Fr

g
g

(5B.2-2)

How are the Reynolds number, Re, and Froude number, Fr, defined in this case?

5B.3 Dimensional analysis using the Buckingham pi theorem.
(a) Use the Buckingham pi theorem to determine the dependence of the torque required to

rotate the inner cylinder of a Couette viscometer (see Example 3.7.3) on the other relevant vari-

ables. Show that the result is consistent with Eq. 3.7-33.

(b) Use the Buckingham pi theorem to determine the relationship between the force and other

relevant variables in the parallel-disk compression viscometer in Problem 3C.3. Show that the

result is consistent with Eq. 3C.3-14.

5C.1 Two-phase interfacial boundary conditions. In §2.1, boundary conditions for solving viscous

flow problemswere given. At that point nomention wasmade of the role of interfacial tension.

At the interface between two immiscible fluids, I and II, the following boundary condition

should be used:7

nI
(
pI − pII

)
+

[
nI ⋅

(
fI − fII

)]
= nI

(
1

R1

+ 1

R2

)
g (5C.1-1)

This is essentially a momentum balance written for an interfacial element dS with no matter

passing through it, and with no interfacial mass or viscosity. Here nI is the unit vector normal

to dS and pointing into phase I. The quantities R1 and R2 are the principal radii of curvature at

dS, and each of these is positive if its center lies in phase I. The sum
(
1∕R1

)
+

(
1∕R2

)
can also

be expressed as
(
∇ ⋅ nI

)
. The quantity g is the interfacial tension, assumed constant.

(a) Show that, for a spherical droplet of I at rest in a second medium II, Laplace’s equation(
pI − pII

)
=

(
1

R1

+ 1

R2

)
g (5C.1-2)

relates the pressures inside and outside the droplet. Is the pressure in phase I greater than that

in phase II, or the reverse? What is the relation between the pressures at a planar interface?

(b) Show that Eq. 5C.1-1 leads to the following dimensionless boundary condition

nI
(
�̆� I − �̆� II

)
+ nI

⟦
iII − iI

iI

⟧⟦
gl0
v2
0

⟧
h̆

−
⟦

4I

l0v0iI

⟧[
nI ⋅ ̆̇u

I
]
+

⟦
4II

l0v0iII

⟧[
nI ⋅ ̆̇u

II
]⟦

iII

iI

⟧
= nI

(
1

R̆1

+ 1

R̆2

)⟦
g

l0v
2
0
iI

⟧
(5C.1-3)

in which h̆ =
(
h − h0

)
∕l0 is the dimensionless elevation of dS, ̆̇u

I
and ̆̇u

II
are dimension-

less rate-of-deformation tensors, and R̆1 = R1∕l0 and R̆2 = R2∕l0 are dimensionless radii of

curvature. Furthermore,

�̆� I =
pI − p0 + iIg

(
h − h0

)
iIv2

0

;

�̆� II =
pII − p0 + iIIg

(
h − h0

)
iIv2

0

(5C.1-4, 5)
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In the above, the zero-subscripted quantities are the scale factors, valid in both phases. Identify

the dimensionless groups that appear in Eq. 5C.1-3.

(c) Show how the result in (b) simplifies to Eq. 5.3-12 under the assumptions made in §5.3.

5C.2 Power input to an agitated tank. Show by dimensional analysis that the power, P, imparted

by a rotating impeller to an incompressible fluid in an agitated tank may be correlated, for any

specific tank and impeller shape, by the expression

P
iN3D5

= C
(
D2Ni

4
,DN2

g
,Nt

)
(5C.2-1)

Here N is the rate of rotation of the impeller, D is the impeller diameter, t is the time since the

start of the operation, and C is a function whose form has to be determined experimentally.

For the commonly used geometry shown in Fig. 5C.2, the power is given by the sum of

two integrals representing the contributions of friction drag of the cylindrical tank body and

bottom and the form drag of the radial baffles, respectively:

P = NTz = N
[
∫S

R
(
𝜕vp
𝜕n

)
surf

dS + ∫A
Rpsurf dA

]
(5C.2-2)

Here Tz is the torque required to turn the impeller, S is the total surface area of the tank, A is

the surface area of the baffles, (considered positive on the “upstream” side and negative on the

“downstream side”), R is the radial distance to any surface element dS or dA from the impeller

axis of rotation, and n is the distance measured normally into the fluid from any element of

tank surface dS.
The desired solution may now be obtained by dimensional analysis of the equations of

motion and continuity by rewriting the integrals above in dimensionless form. Here it is conve-

nient to useD,DN, and iN2D2 for the characteristic length, velocity, and pressure, respectively.

Impeller

D

N

Baffle

Top view Side view

Fig. 5C.2 Agitated tank with a six-bladed

impeller and four vertical baffles.

5C.3 An alternate analysis of the power input to an agitated tank. Repeat Problem 5C.2 using the

Buckingham pi theorem as opposed to the dimensional analysis of the equations of continuity

and motion.
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Chapter 6

Interphase Transport
in Isothermal Systems

§6.1 Definition of friction factors

§6.2 Friction factors for flow in tubes

§6.3 Friction factors for flow around spheres

§6.4○ Friction factors for packed columns

§6.5 Concluding comments

In Chapters 2 and 3, we showed how laminar-flow problems may be formulated and
solved. In Chapter 4, we presented somemethods for solving turbulent-flow problems by
dimensional arguments or by semi-empirical relations between the turbulent momentum
flux and the gradient of the time-smoothed velocity. In Chapter 5, we introduced dimen-
sional analysis, and showed how this can help organize data and analyze flow problems.
In this chapter, we show how flow problems can be solved by a combination of dimen-
sional analysis and experimental data. The technique presented here has beenwidely used
in chemical, mechanical, aeronautical, and civil engineering, and it is useful for solving
many practical problems. It is a topic worth learning well.

Many engineering flow problems fall into one of two broad categories: flow in chan-
nels and flow around submerged objects. Examples of channel flow are the pumping of
oil through pipes, the flow of blood through arteries and veins, the flow of water in open
channels, and extrusion of plastics through dies. Examples of flow around submerged
objects are the motion of air around an airplane wing, motion of fluid around particles
undergoing sedimentation, and flow across tube banks in heat exchangers.

For channel flow, the main object is usually to get a relationship between the volume
rate of flow and the pressure drop and/or the elevation change. For problems involving
flow around submerged objects, the desired information is generally the relation between
the velocity of the approaching fluid and the drag force on the object. We have seen in the
preceding chapters that, if one knows the velocity andpressure distributions in the system,
then the desired relationships for these two cases may be obtained. The derivation of the
Hagen-Poiseuille equation in §2.3 and the derivation of the Stokes drag equation in §2.7
illustrate the two categories we are discussing here.

For many systems, the velocity and pressure profiles cannot be easily calculated, par-
ticularly if the flow is turbulent or the geometry is complicated. One such system is the
flow through a packed column; another is the flow in a tube in the shape of a helical
coil. For such systems, we can take carefully chosen experimental data and then construct
“correlations” of dimensionless variables that can be used to estimate the flow behavior

162
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in geometrically similar systems. This method is based on the discussion of dimensional
analysis of Chapter 5.

We start in §6.1 by defining the “friction factor,” and then we show in §6.2 and §6.3
how to construct friction factor charts for flow in circular tubes and flow around spheres.
These are both systems we have already studied, and, in fact, several results from ear-
lier chapters are included in these charts. Finally, in §6.4 we examine the flow in packed
columns to illustrate the treatment of a geometrically complicated system. The more com-
plex problem of fluidized beds is not included in this chapter.1

§6.1 DEFINITION OF FRICTION FACTORS

We consider the steadily driven flow of a fluid of constant density in one of two systems:
(a) the fluid flows in a straight conduit of uniform cross section; (b) the fluid flows around
a submerged object that has an axis of symmetry (or two planes of symmetry) parallel
to the direction of the approaching fluid. There will be a force Ff→s exerted by the fluid
on the solid surfaces. It is convenient to split this force into two parts: Fs, the force that
would be exerted by the fluid even if it were stationary; and Fk, the additional force asso-
ciated with the motion of the fluid (see §2.7 for the discussion of Fs and Fk for flow around
spheres). In systems of type (a), Fk points in the same direction as the average velocity ⟨v⟩
in the conduit, and in systems of type (b), Fk points in the same direction as the approach
velocity v∞.

For both systems we state that the magnitude of the force Fk is proportional to a char-
acteristic area A and a characteristic kinetic energy K per unit volume

Fk = AKf (6.1-1)1

in which the proportionality constant f is called the friction factor. Note that Eq. 6.1-1 is
not a law of fluid dynamics, but just a definition for f . This is a useful definition, because
the dimensionless quantity f can be given as a relatively simple function of the Reynolds
number and the system shape.

Clearly, for any given flow system, f is not completely defined until A and K are spec-
ified. Let us now see what the customary definitions are:

a. Flow in conduits
Here, A is usually taken to be the wetted surface, and K is taken to be 1

2
i
⟨
vz
⟩2
, where⟨

vz
⟩
is the time and spatially averaged axial velocity. Specifically, for circular tubes of

radius R and length Lwe define f by

Fk = (20RL)
(

1

2
i
⟨
vz
⟩2

)
f (6.1-2)

Generally, the quantity measured is not Fk, but rather the pressure difference p0 − pL and
the elevation difference h0 − hL. An axial force balance on the fluid between 0 and L in the
direction of flow gives for fully developed flow

Fk =
[ (

p0 − pL
)
+ ig

(
h0 − hL

) ]
0R2

=
(
𝒫0 −𝒫L

)
0R2 (6.1-3)

1R. Jackson, The Dynamics of Fluidized Particles, Cambridge University Press (2000).
1For systems lacking symmetry, the fluid exerts both a force and a torque on the solid. For a

discussion of such systems, see J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Martinus

Nijhoff, The Hague (1983), Chapter 5; H. Brenner, in Adv. Chem. Engr., 6, 287–438 (1966); S. Kim and S. J.

Karrila,Microhydrodynamics: Principles and Selected Applications, Butterworth-Heinemann, Boston (1991);

Dover, Mineola, NY (2005), Chapter 5.
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Elimination of Fk between the last two equations then gives

f = 1

4

(D
L

) ⎛⎜⎜⎝
𝒫0 −𝒫L

1

2
i
⟨
vz
⟩2

⎞⎟⎟⎠ (6.1-4)

in whichD = 2R is the tube diameter. Equation 6.1-4 shows how to calculate f from exper-
imental data. The quantity f is sometimes called the Fanning friction factor.2

b. Flow around submerged objects
The characteristic area A is usually taken to be the area obtained by projecting the

solid onto a plane perpendicular to the velocity of the approaching fluid; the quantity K
is taken to be 1

2
iv2∞, where v∞ is the approach velocity of the fluid at a large distance from

the object. For example, for flow around a sphere of radius R, we define f by the equation

Fk =
(
0R2

)(
1

2
iv2∞

)
f (6.1-5)3

If it is not possible to measure Fk, then we can measure the terminal velocity of the sphere
when it falls through the fluid (in that case, v∞ has to be interpreted as the terminal
velocity of the sphere). For the steady-state fall of a sphere in a fluid, the force Fk is
just counterbalanced by the gravitational force on the sphere less the buoyant force
(cf. Eq. 2.7-16):

Fk =
4

3
0R3isphg −

4

3
0R3ig (6.1-6)

Elimination of Fk between Eqs. 6.1-5 and 6.1-6 then gives

f = 4

3

gD

v2∞

(isph − i

i

)
(6.1-7)

This expression can be used to obtain f from terminal-velocity data. The friction factor
used in Eqs. 6.1-5 and 6.1-7 is sometimes called the drag coefficient and given the symbol cD.

We have seen that the “drag coefficient” for submerged objects and the “friction fac-
tor” for channel flow are defined in the same general way. It is for this reason that we
prefer to use the same symbol and name for both of them.

§6.2 FRICTION FACTORS FOR FLOW IN TUBES

We now combine the definition of f in Eq. 6.1-2 with the dimensional analysis of Chapter 5
to show what f must depend on in this kind of system. We consider a “test section” of

2This friction factor definition is due to J. T. Fanning, A Practical Treatise on the Hydraulic and Water
Supply Engineering, Van Nostrand, New York, 1st edition (1877), 16th edition (1906); the name “Fanning”

is used to avoid confusion with the “Moody friction factor,” which is larger by a factor of 4 than the f
used here [L. F. Moody, Trans. ASME, 66, 671–684 (1944)].

If we use the “friction velocity” v
*
=

√
f0∕i =

√(
𝒫0 −𝒫L

)
R∕2Li, introduced in §4.3, then

Eq. 6.1-4 assumes the form

f = 2
(
v
*
∕
⟨
vz
⟩)2

(6.1-4a)

John Thomas Fanning (1837–1911) studied architectural and civil engineering, served as an officer in the

Civil War (1861–1865), and after the war became prominent in hydraulic engineering. The 14th edition of

his book A Practical Treatise on Hydraulic and Water-Supply Engineering appeared in 1899.
3For the arbitrary, time-dependent motion of a sphere in three dimensions, one can write the kinetic

force approximately in the quasi-steady form

Fk (t;Re) =
(
0R2

)(
1

2
iv2∞

)
f (Re)n (t) (6.1-5a)

where n is a unit vector in the direction of v∞, which may depend on time; see Problem 6C.1. An exact

description of this force would include the time dependence of f as well.
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Pressure
p0

z = 0

Reservoir

Pressure
pL

z = L

R
D

Fig. 6.2-1. Section of a circular pipe

from z = 0 to z = L for the discussion

of dimensional analysis.

inner radius R and length L, shown in Fig. 6.2-1, carrying a fluid of constant density and
viscosity at a steadymass flow rate. The pressures𝒫0 and𝒫L at the ends of the test section
are known.

The system is either in steady laminar flow or steadily driven turbulent flow (i.e.,
turbulent flow with a steady total throughput). In either case, the force in the z direction
of the fluid on the inner wall of the test section is

Fk(t) = ∫
L

0 ∫
20

0

(
−4

𝜕vz
𝜕r

)|||||r=RR dp dz (6.2-1)

In turbulent flow the force may be a function of time, not only because of the turbulent
fluctuations, but also because of occasional ripping off of the boundary layer from thewall,
which results in some disturbances with long time scales. In laminar flow it is understood
that the force will be independent of time.

Equating Eqs. 6.2-1 and 6.1-2, we get the following expression for the friction factor:

f (t) =
∫

L

0 ∫
20

0

(
−4

𝜕vz
𝜕r

)|||||r=RR dp dz

(20RL)
(

1

2
i
⟨
vz
⟩2

) (6.2-2)

Next we introduce the dimensionless quantities from Chapter 5: r̆ = r∕D, z̆ = z∕D, v̆z =
vz∕

⟨
vz
⟩
, t̆ =

⟨
vz
⟩
t∕D, �̆� =

(
𝒫 −𝒫0

)
∕i

⟨
vz
⟩2
, and Re = D

⟨
vz
⟩
i∕4. Then Eq. 6.2-2 may

be rewritten as

f
(
t̆
)
= 1

0
D
L

1

Re∫
L∕D

0 ∫
20

0

(
−
𝜕v̆z
𝜕r̆

)|||||r̆= 1

2

dp dz̆ (6.2-3)

This relation is valid for laminar or turbulent flow in circular tubes. We see that for flow
systems inwhich the drag depends on viscous forces alone (i.e., no “form drag”) the prod-
uct fRe is essentially a dimensionless velocity gradient averaged over the surface.

Recall now that, in principle, 𝜕v̆z∕𝜕r̆ can be evaluated from the dimensionless
equations of change (e.g., Eqs. 5.1-7 and 5.1-8, or 5.1-7 and 5.1-23) along with the
boundary conditions1

B.C.1∶ at r̆ = 1

2
, v̆ = 𝟎 for z > 0 (6.2-4)

B.C.2∶ at z̆ = 0, v̆ = tz (6.2-5)

B.C.3∶ at r̆ = 0 and z̆ = 0, �̆� = 0 (6.2-6)

and appropriate initial conditions. The uniform inlet velocity profile in Eq. 6.2-5 is accurate
except very near the wall, for a well-designed nozzle and upstream system. If Eqs. 5.1-7

1Here we follow the customary practice of neglecting the
(
𝜕2∕𝜕z̆2

)
v̆ terms of Eq. 5.1-8 and 5.1-23

because the velocity is expected to be nominally independent of z for long tubes. With those terms

suppressed, we do not need an outlet boundary condition on v.
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and 5.1-8 could be solved with these boundary and initial conditions to get v̆ and �̆� , the
solutions would necessarily be of the form

v̆ = v̆
(
r̆,p,z̆,t̆;Re

)
(6.2-7)

�̆� = �̆�
(
r̆,p,z̆,t̆;Re

)
(6.2-8)

That is, the functional dependence of v̆ and �̆� must, in general, include all the dimension-
less variables and the one dimensionless group appearing in the differential equations.
No additional dimensionless groups enter via the foregoing boundary conditions. As a
consequence, 𝜕v̆z∕𝜕r̆ must likewise depend on r̆,p,z̆,t̆, and Re. When 𝜕v̆z∕𝜕r̆ is evaluated
at r̆ = 1

2
and then integrated over z̆ and p in Eq. 6.2-3, the result depends only on t̆, Re,

and L∕D (the latter appearing in the upper limit in the integration over z̆). Therefore,
we are led to the conclusion that f

(
t̆
)
= f

(
Re,L∕D,t̆

)
, which, when time averaged,

becomes
f = f (Re,L∕D) (6.2-9)

when the time average is performed over an interval long enough to include any long-time
turbulent disturbances. The measured friction factor then depends only on the Reynolds
number and the length-to-diameter ratio.

The dependence of f on L∕D arises from the development of the time-average veloc-
ity distribution from its flat entry shape toward more rounded profiles at downstream
z values. This development occurs within an entrance region, of length Le ≈ 0.03DRe for
laminar flow or Le ≈ 60D for turbulent flow, beyondwhich the shape of the velocity distri-
bution is “fully developed.” In the transportation of fluids, the entrance length is usually
a small fraction of the total; then Eq. 6.2-9 reduces to the long-tube form

f = f (Re) (6.2-10)

and f can be evaluated experimentally from Eq. 6.1-4, which was written for fully
developed flow at the inlet and outlet.

Equations 6.2-9 and 6.2-10 are useful results, since they provide a guide for the system-
atic presentation of data on flow rate versus pressure difference for laminar and turbulent
flow in circular tubes. For long tubes we need only a single curve of f plotted versus the
single combination D

⟨
vz
⟩
i∕4. Just think how much simpler this is than the plotting of

the pressure drop versus the flow rate for separate values of D,L,i, and 4, which is what
the uninitiated might do.

There is much experimental information for pressure drop versus flow rate in tubes,
and hence, f can be calculated from the experimental data by Eq. 6.1-4. Then f can be
plotted versus Re for smooth tubes to obtain the solid curves shown in Fig. 6.2-2. These
solid curves describe the laminar and turbulent behavior for fluids flowing in long, smooth,
circular tubes.

Note that the laminar curve on the friction factor chart is just a plot of the
Hagen-Poiseuille equation in Eq. 2.3-21. This can be seen by substituting the expres-
sion for

(
𝒫0 −𝒫L

)
from Eq. 2.3-21 into Eq. 6.1-4 and using the relation w = i

⟨
vz
⟩
0R2;

this gives

f (Re) = 16

Re

{
Re < 2100 stable
Re > 2100 usually unstable

}
(6.2-11)

in which Re = D
⟨
vz
⟩
i∕4; this is exactly the laminar line in Fig. 6.2-2.

Analogous turbulent curves have been constructed by using experimental data. Some
analytical curve-fit expressions are also available. For example, Eq. 4.1-6 can be put
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into the form

f (Re) = 0.0791

Re1∕4
2.1 × 103 < Re < 105 (6.2-12)

which is known as the Blasius formula.2 Equation 4.5-1 (with 2.5 replaced by 2.45 and 1.75
by 2.00) is equivalent to

1√
f
= 4.0 log10 Re

√
f − 0.4 2.3 × 103 < Re < 4 × 106 (6.2-13)

which is known as the Prandtl formula.3

A further relation, which includes the dashed curves for rough pipes in Fig. 6.2-2, is
the empirical Haaland equation4

1√
f
= −3.6 log10

[
6.9
Re

+
(
k∕D
3.7

)10∕9
] {

4 × 104 < Re < 108

0 < k∕D < 0.05
(6.2-14)

where k is the tube roughness, a measure of the average height of protuberances on the
tube wall. This equation is stated4 to be accurate within 1.5%. As can be seen in Fig. 6.2-2,

F
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n
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a
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o
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f

Reynolds number Re = D<v> ρ/μ
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Fig. 6.2-2. Friction factor for tube flow (see definition of f in Eqs. 6.1-2 and 6.1-4). [Curves of L. F. Moody, Trans. ASME,
66, 671–684 (1944) as presented in W. L. McCabe and J. C. Smith, Unit Operations of Chemical Engineering, McGraw-Hill,

New York (1954).]

2H. Blasius, Forschungsarbeiten des Ver. Deutsch. Ing., No. 131 (1913).
3L. Prandtl, Essentials of Fluid Dynamics, Hafner, New York (1952), p. 165.
4S. E. Haaland, Trans. ASME, J. Fluids Engr., 105, 89–90 (1983). For other empiricisms, see D. J.

Zigrang and N. D. Sylvester, AIChE Journal, 28, 514–515 (1982).
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the frictional resistance to flow increases with the roughness. Of course, k has to enter into
the correlation in a dimensionless fashion and hence appears via the ratio k∕D (called the
relative roughness).

For turbulent flow in noncircular tubes, it is common to use the following empiricism:
First, we define a “mean hydraulic radius” Rh as follows:

Rh = S∕Z (6.2-15)

in which S is the cross-sectional area of the conduit and Z is the wetted perimeter. Then,
we can use Eq. 6.1-4 and Fig. 6.2-2, with the diameter D of the circular pipe replaced by 4
Rh. That is, we calculate pressure differences by replacing Eq. 6.1-4 by

f =
(
Rh

L

)⎛⎜⎜⎝
𝒫0 −𝒫L

1

2
i
⟨
vz
⟩2

⎞⎟⎟⎠ (6.2-16)

and getting f from Fig. 6.2-2 with a Reynolds number defined as

Reh =
4Rh

⟨
vz
⟩
i

4
(6.2-17)

This estimation method of Eqs. 6.2-15 to 6.2-17 should not be used for laminar flow.

EXAMPLE 6.2-1

Pressure Drop Required
for a Given Flow Rate

What pressure difference is required to cause N,N-diethylaniline, C6H5N
(
C2H5

)
2
, to flow in

a horizontal smooth circular tube of inside diameter D = 3 cm at a mass rate of 1028 g/s at

20∘C? At this temperature the density of diethylaniline is i = 0.935 g∕cm3 and its viscosity is

4 = 1.95 cp.

SOLUTION

The Reynolds number for the flow is

Re =
D

⟨
vz
⟩
i

4
= Dw(

0D2∕4
)
4
= 4w

0D4

=
4
(
1028 g∕s

)
0 (3 cm)

(
1.95 × 10−2 g∕cm ⋅ s

) = 2.24 × 104 (6.2-18)

From Fig. 6.2-2, we find that for this Reynolds number the friction factor f has a value of 0.0063
for smooth tubes. Hence, the pressure difference required to maintain the flow is (according to

Eq. 6.1-4)

p0 − pL
L

=
(

4

D

)(
1

2
i
⟨
vz
⟩2

)
f = 2

D
i

(
4w
0D2i

)2

f

=
32w2f
02D5i

=
(32)

(
1028 g∕s

)2 (0.0063)
02(3 cm)5

(
0.935 g∕cm3

)
= 95

g

cm2 s2

(
1 dyne

1 g ⋅ cm∕s2

)(
760 mm Hg

1.0133 × 106 dyne∕cm2

)
= 0.071

mm Hg

cm
(6.2-19)
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EXAMPLE 6.2-2

Flow Rate for a Given
Pressure Drop

Determine the mass flow rate, in lbm∕hr, of water at 68∘F through a 1000 ft length of horizontal

8-in. schedule 40 steel pipe (internal diameter 7.981 in.) under a pressure difference of 3.00 psi.

For such a pipe, use Fig. 6.2-2 and assume that k∕D = 2.3 × 10−4.

SOLUTION

Wewant to use Eq. 6.1-4 and Fig. 6.2-2 to solve for
⟨
vz
⟩
when p0 − pL is known. But the quantity⟨

vz
⟩
appears explicitly on the right side of Eq. 6.1-4 and implicitly on the left side in f , which

depends on Re = D
⟨
vz
⟩
i∕4. Because neither side can be evaluated, we cannot solve explicitly

for
⟨
vz
⟩
. One way to solve such problems is by using “trial and error.” That is, guess a value for⟨

vz
⟩
, evaluate the right side of Eq. 6.1-4, then calculate Re = D

⟨
vz
⟩
i∕4 so that a value of f can

be read from Fig. 6.2-2. This process can be repeated for various values of
⟨
vz
⟩
until the values

determined for the right and left sides of Eq. 6.1-4 agree (plotting the difference between the

two sides as a function of
⟨
vz
⟩
can facilitate this process, as one can obtain improved guesses

for
⟨
vz
⟩
by interpolating or extrapolating results from previous guesses). Another approach is

not to use Fig. 6.2-2 at all, but rather to use a correlation for f (Re) (e.g., Eqs. 6.2-11, 6.2-12, 6.2-13,
or 6.2-14). If one substitutes the appropriate correlation for f (Re) in the left side of Eq. 6.1-4, the

average velocity may be obtained directly, either analytically or numerically. This, however, is

also ultimately a trial-and-error method, since one does not know ahead of time if the range of

Re for the correlation chosen is consistent with the solution obtained.

Below we show two graphical solution methods. These methods have the advantage of

producing solutions without trial and error. Understanding these methods can also help to

improve our understanding of the relationship between friction factor definitions and their

dependence on other parameters.

Method A. First, Fig. 6.2-2 is used to construct a plot5 of Re versus the group Re
√
f . A variety

of values of Re are selected, and corresponding values of f are read off of Fig. 6.2-2. For each(
Re,f

)
pair, the quantity Re

√
f can be calculated. One can then plot Re vs. Re

√
f . Such a plot is

presented in Fig. 6.2-3(a) using the data from Fig. 6.2-2 for smooth tubes, as well as for tubes

with k∕D = 0.00023.
Next, we recognize that the quantity Re

√
f is independent of

⟨
vz
⟩
, as follows

Re
√

f =
D

⟨
vz
⟩
i

4

√√√√(
p0 − pL

)
D

2Li
⟨
vz
⟩2

= Di

4

√(
p0 − pL

)
D

2Li
(6.2-20)

and thus the quantity Re
√
f can be computed for this problem because all of the parameters in

the right-most term are known. The corresponding value of the Reynolds number can then be

read from the Re versus Re
√
f plot. From Re the average velocity and mass flow rate can then

be calculated.

For this problem, we have

p0 − pL =

(
3.00 lbf

in.2

)(
32.174 lbm ⋅ ft

lbf ⋅ s2

)(
144 in.2

ft
2

)
= 1.39 × 104

lbm

ft ⋅ s2

D = (7.981 in.)
(

1 ft

12 in.

)
= 0.665 ft

L = 1000 ft

i = 62.3
lbm

ft
3

4 =
(
1.03 cp

)(6.72 × 10−4 lbm∕ft ⋅ s
cp

)
= 6.92 × 10−4

lbm

ft ⋅ s

5A related plot was proposed by T. von Kármán, Nachr. Ges. Wiss. Göttingen, Fachgruppen, Series 5,
58–76 (1930).
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Fig. 6.2-3. (a) Reynolds number as a function of Re
√
f used for “Method A” in Example 6.2-2.

(b) Graphical procedure for “Method B” used in Example 6.2-2.

Then according to Eq. 6.2-20,

Re
√

f = Di

4

√(
p0 − pL

)
D

2Li

=
(
0.665 ft

)(
62.3 lbm∕ft

3)(
6.92 × 10−4 lbm∕ft ⋅ s

)
√√√√(

1.39 × 10−4 lbm∕ft ⋅ s2
)(
0.665 ft

)
2
(
1000 ft

)(
62.3 lbm∕ft

3)
= 1.63 × 104

(
dimensionless

)
(6.2-21)
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This value for Re
√
f is then located on the horizontal axis of Fig. 6.2-3(a), and the value of

Re = 2.4 × 105 is read from the vertical axis using the curve for k∕D = 0.00023. With this value

of Re, average velocity and mass flow rate can be computed:⟨
vz
⟩
= 4Re

Di
=

(
6.92 × 10−4 lbm∕ft ⋅ s

) (
2.4 × 105

)(
0.665 ft

)(
62.3 lbm∕ft

3
) = 4.01

ft

s
(6.2-22)

w = Qi =
(0
4
D2

⟨
vz
⟩)

i

= 0
4

(
0.665 ft

)2 (
4.01

ft

s

)(
62.3

lbm

ft
3

)(
3600 s

hr

)
= 3.12 × 105

lbm

hr
(6.2-23)

Method B. Figure 6.2-2may also be used directly without any replotting, by devising a scheme

that is equivalent to the graphical solution of two simultaneous equations. The two equations

are:

f = f (Re,k∕D) the curve given in Fig. 6.2-2 (6.2-24)

f =

(
Re

√
f
)2

Re2
a straight line of slope − 2

on a log - log plot of f vs Re
(6.2-25)

The procedure is then to compute Re
√
f according to Eq. 6.2-20 using the parameters for the

current problem as in Eq. 6.2-22, and then to plot Eqs. 6.2-24 and 6.2-25 on a log-log plot of

f versus Re. The intersection of the two curves gives the Reynolds number of the flow, from

which
⟨
vz
⟩
and w can then be computed.

From Method A, we have
(
Re

√
f
)2

= 2.66 × 108. Using this value, Eq. 6.2-25 is plotted

alongwith Eq. 6.2-24 in Fig. 6.2-3(b). For the latter, we have included only the curves for smooth

tubes and tubeswith k∕D = 0.00023. The intersection of these curves again gives Re = 2.4 × 105,

from which
⟨
vz
⟩
and w can then be computed as in Method A.

§6.3 FRICTION FACTORS FOR FLOW AROUND SPHERES

In this section we use the definition of the friction factor in Eq. 6.1-5 along with the dimen-
sional analysis of §5.1 to determine the behavior of f for a stationary sphere in an infinite
stream of fluid approaching with a uniform, steady velocity v∞. We have already studied
the flow around a sphere in §2.7 for Re < 0.1 (the “creeping flow” region). At Reynolds
numbers above about 1 there is a significant unsteady eddy motion in the wake of the
sphere. Therefore, it will be necessary to do a time average over a time interval long with
respect to this eddy motion.

Recall from §2.7 that the total force acting in the z direction on the sphere can be writ-
ten as the sum of a contribution from the normal stresses

(
Fn

)
and one from the tangential

stresses
(
Ft
)
. One part of the normal-stress contribution is the force that would be present

even if the fluid were stationary, Fs. Thus, the “kinetic force,” associated with the fluid
motion, is

Fk =
(
Fn − Fs

)
+ Ft = Fform + Ffriction (6.3-1)

The forces associated with the form drag and the friction drag are then obtained from

Fform(t) = ∫
20

0 ∫
0

0

(
−
(
p + igz − p0

)|||r=R cos p)R2 sin p dp dd (6.3-2)

Ffriction(t) = ∫
20

0 ∫
0

0

(
−4

[
r 𝜕
𝜕r

(vp
r

)
+ 1

r
𝜕vr
𝜕p

]|||||r=R sin p

)
R2 sin p dp dd (6.3-3)

Since vr is zero everywhere on the sphere surface, the term containing 𝜕vr∕𝜕p is zero.
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If now we split f into two parts as follows

f = fform + ffriction (6.3-4)

then, from the definition in Eq. 6.1-5, we get

fform
(
t̆
)
= 2

0∫
20

0 ∫
0

0

(
−�̆� |||r̆=1 cos p) sin p dp dd (6.3-5)

ffriction
(
t̆
)
= −4

0
1

Re∫
20

0 ∫
0

0

[
r̆ 𝜕
𝜕r̆

(
v̆p
r̆

)]|||||r̆=1sin2p dp dd (6.3-6)

The friction factor has been expressed in terms of dimensionless variables

�̆� ≡ 𝒫 −𝒫0

iv2∞
=

(
p + igz

)
−

(
p0 + ig0

)
iv2∞

; v̆p ≡ vp
v∞

; r̆ ≡ r
R
; t̆ ≡ v∞t

R
(6.3-7)

and a Reynolds number defined as

Re ≡ Dv∞i

4
=

2Rv∞i

4
(6.3-8)

In order to evaluate f one would have to know �̆� and v̆p as functions of r̆, p, d,
and t̆.

We know that for incompressible flow these distributions can in principle be obtained
from the solution of Eqs. 5.1-7 and 5.1-8 along with the boundary conditions

B.C.1∶ at r̆ = 1, v̆r = 0 and v̆p = 0 (6.3-9)

B.C.2∶ as r̆ → ∞, v̆z → 1 (6.3-10)

B.C.3∶ as r̆ → ∞, �̆� → 0 (6.3-11)

and some appropriate initial condition on v̆. Because no additional dimensionless groups
enter via the boundary and initial conditions, we know that the dimensionless pressure
and velocity profiles will have the following form:

�̆� = �̆�
(
r̆,p,d,t̆;Re

)
v̆ = v̆

(
r̆,p,d,t̆;Re

)
(6.3-12)

When these expressions are substituted into Eqs. 6.3-5 and 6.3-6, it is then evident that the
friction factor in Eq. 6.3-4 must have the form f

(
t̆
)
= f

(
Re,t̆

)
, which, when time averaged

over the turbulent fluctuations, simplifies to

f = f (Re) (6.3-13)

by using arguments similar to those in §6.2. Hence, from the expression for the friction
factor and the dimensionless form of the equations of change, we find that f must be a
function of Re alone.

Many experimental measurements of the drag force on spheres are available, and
when these are plotted in dimensionless form, Fig. 6.3-1 results. For this system there is
no sharp transition from an unstable laminar-flow curve to a stable turbulent-flow curve
as for long tubes at a Reynolds number of about 2100 (see Fig. 6.2-2). Instead, as the
approach velocity increases, f varies smoothly and moderately up to Reynolds number of
the order of 105. The kink in the curve at about Re = 2 × 105 is associated with the shift of
the boundary-layer separation zone from in front of the equator to in back of the equator
of the sphere.1

1R. K. Adair, The Physics of Baseball, Harper and Row, New York (1990).
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We have juxtaposed the discussions of tube flow and flow around a sphere in order
to emphasize the fact that various flow systems behave quite differently. Several points of
difference between the two systems are:

Flow in long tubes Flow around spheres

• Rather well-defined laminar-turbulent
transition at about Re = 2100

• The only contribution to f is the friction
drag (if the tubes are smooth)

• No boundary-layer separation

• No well-defined laminar-turbulent
transition

• Contributions to f from both friction and
form drag

• There is a kink in the f vs. Re curve
associated with a shift in the separation
zone

The general shape of the curves in Figs. 6.2-2 and 6.3-1 should be carefully remembered.
For the creeping flow region, we already know that the drag force is given by

Stokes’ law (Eq. 2.7-15), which is a consequence of solving the continuity equation and
the Navier-Stokes equation of motion without the iDv∕Dt term. Stokes’ law can be
rearranged into the form of Eq. 6.1-5 to get

Fk =
(
0R2

)( 1

2
iv2∞

)(
24

Dv∞i∕4

)
(6.3-14)

Hence, for creeping flow around a sphere

f = 24

Re
for Re < 0.1 (6.3-15)

and this is the straight-line asymptote as Re → 0 of the friction factor curve in Fig. 6.3-1.

F
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up to about Re = 6 × 103

224
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Fig. 6.3-1. Friction factor (or drag coefficient) for spheres moving relative to a fluid with a

velocity v∞. The definition of f is given in Eq. 6.1-5. [Curve taken from C. E. Lapple, “Dust and

Mist Collection,” in Chemical Engineers’ Handbook, (J. H. Perry, ed.), McGraw-Hill, New York,

3rd edition (1950), p. 1018.]
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For higher values of the Reynolds number, the empirical expression2

f =

(√
24

Re
+ 0.5407

)2

for Re < 6000 (6.3-16)

is both simple and useful. It is important to remember that

f ≈ 0.44 for 5 × 102 < Re < 1 × 105 (6.3-17)

which covers a remarkable range of Reynolds numbers. Equation 6.3-17 is sometimes
called Newton’s resistance law; it is handy for a seat-of-the-pants calculation. According
to this, the drag force is proportional to the square of the approach velocity of the fluid.

Many extensions of Fig. 6.3-1 have been made, but a systematic study is beyond the
scope of this text. Among the effects that have been investigated arewall effects3 (see Prob-
lem 6C.2), fall of droplets with internal circulation,4 hindered settling (i.e., fall of clusters
of particles5 that interfere with one another), unsteady flow,6 and the fall of nonspherical
particles.7

EXAMPLE 6.3-1

Determination of the
Diameter of a Falling
Sphere

Glass spheres of density isph = 2.62 g∕cm3 fall through liquid CCl4 at 20
∘C in an experiment

for studying human reaction times in making time observations with stopwatches and more

elaborate devices. At this temperature, the relevant properties of CCl4 are: i = 1.59 g∕cm3 and

4 = 9.58 millipoise. What diameter should the spheres be in order to have a terminal velocity

of about 65 cm∕s?

SOLUTION

To find the sphere diameter, we have to solve Eq. 6.1-7 for D. However, in this equation one

has to know D in order to get f ; and f is given by the solid curve in Fig. 6.3-1. A trial-and-error

procedure can be used, taking f = 0.44 as a first guess.

Alternatively, we can solve Eq. 6.1-7 for f and then note that f∕Re is a quantity independent
of D:

f
Re

= 4

3

g4

iv3∞

(isph − i

i

)
(6.3-18)

The quantity on the right side can be calculated with the information above, and we call it C.
Hence, we have two simultaneous equations to solve:

f = CRe from Eq. 6.3-18 (6.3-19)

f = f (Re) from Fig. 6.3-1 (6.3-20)

Equation 6.3-19 is a straight line with slope of unity on the log-log plot of f versus Re. A

graphical solution of these simultaneous equations is analogous to “Method B” introduced

in Example 6.2-2.

2F. F. Abraham, Physics of Fluids, 13, 2194 (1970); M. Van Dyke, Physics of Fluids, 14, 1038–1039 (1971).
3J. R. Strom and R. C. Kintner, AIChE Journal, 4, 153–156 (1958).
4L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, Oxford, 2nd edition (1987), pp. 65–66; S.

Hu and R. C. Kintner, AIChE Journal, 1, 42–48 (1955).
5C. E. Lapple, Fluid and Particle Mechanics, University of Delaware Press, Newark DE (1951),

Chapter 13; R. F. Probstein, Physicochemical Hydrodynamics, Wiley, New York, 2nd edition (1994), §5.4.
6R. R. Hughes and E. R. Gilliland, Chem. Eng. Prog., 48, 497–504 (1952); L. Landau and E. M. Lifshitz,

Fluid Mechanics, Pergamon, Oxford, 2nd edition (1987), pp. 90–91.
7E. S. Pettyjohn and E. B. Christiansen, Chem. Eng. Prog., 44, 147 (1948); H. A. Becker, Can. J. Chem.

Eng., 37, 885–891 (1959); S. Kim and S. J. Karrila,Microhydrodynamics: Principles and Selected Applications,
Butterworth-Heinemann, Boston (1991); Dover, Mineola, NY (2005), Chapter 5.
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f = 1.86 × 10–5 Re

Portion of f versus Re
curve from Fig. 6.3-1

Fig. 6.3-2. Graphical procedure used in

Example 6.3-1.

For the problem at hand we have

f
Re

= 4

3

g4

iv3∞

(isph − i

i

)
(6.3-21)

C = 4

3

(
980 cm∕s2

) (
9.58 × 10−3 g∕cm ⋅ s

)(
1.59 g∕cm3

) (
65 cm∕s

)3 ( (2.62 − 1.59) g∕cm3

1.59 g∕cm3

)
= 1.86 × 10−5 (6.3-22)

Hence, at Re = 105, according to Eq. 6.3-18, f = 1.86. The line of slope 1 passing through f = 1.86
at Re = 105 is shown in Fig. 6.3-2. This line intersects the curve of Eq. 6.3-20 (i.e., the curve of

Fig. 6.3-1) at Re = Dv∞i∕4 = 2.4 × 104. The sphere diameter is then found to be

D = Re4

iv∞
=

(
2.4 × 104

) (
9.58 × 10−3 g∕cm ⋅ s

)(
1.59 g∕cm3

) (
65 cm∕s

) = 2.2 cm (6.3-23)

§6.4 FRICTION FACTORS FOR PACKED COLUMNS

In the preceding two sections we have discussed the friction factor correlations for two
simple flow systems of rather wide interest. Friction factor charts are available for a num-
ber of other systems, such as transverse flow past a cylinder, flow across tube banks, flow
around baffles, and flow around rotating disks. These and many more are summarized
in various reference works.1 One complex system of considerable interest in chemical
engineering is the packed column, widely used for catalytic reactors and for separation
processes.

1P. C. Carman, Flow of Gases through Porous Media, Butterworths, London (1956); J. G. Richardson,

Section 16 in Handbook of Fluid Dynamics (V. L. Streeter, ed.), McGraw-Hill, New York (1961); M. Kaviany,

Chapter 21 in The Handbook of Fluid Dynamics (R. W. Johnson, ed.), CRC Press, Boca Raton, FL (1998).
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(a) (b)

Fig. 6.4-1. (a) A cylindrical tube packed with spheres; (b) a “tube
bundle” model for the packed column in (a).

There have been two main approaches for developing friction factor expressions for
packed columns. In one method the packed column is visualized as a bundle of tangled
tubes of weird cross section; the theory is then developed by applying the previous results
for single straight tubes to the collection of crooked tubes. In the second method, the
packed column is regarded as a collection of submerged objects, and the pressure drop
is obtained by summing up the resistances of the submerged particles.2 The tube bundle
theories have been somewhat more successful, and we discuss them here. Figure 6.4-1(a)
depicts a packed column, and Fig. 6.4-1(b) illustrates the tube bundle model.

A variety ofmaterialsmay be used for the packing in columns: spheres, cylinders, Berl
saddles, etc. It is assumed throughout the following discussion that the packing is statis-
tically uniform, so that there is no “channeling” (in actual practice, channeling frequently
occurs, and then the development given here does not apply). It is further assumed that
the diameter of the packing particles is small in comparison to the diameter of the column
in which the packing is contained, and that the column diameter is uniform.

We define the friction factor for the packed column analogously to Eq. 6.1-4:

f = 1

4

(
Dp

L

)(
�̆�0 − �̆�L

1

2
iv2

0

)
(6.4-1)

in which L is the length of the packed column, Dp is the particle diameter (defined
presently), and v0 is the superficial velocity; this is the volume flow rate divided by the
empty column cross-sectional area, v0 = Q∕S = w∕iS.

The pressure drop through one of the tubes in the tube bundle model is given by
Eq. 6.2-16

𝒫0 −𝒫L = 1

2
i
⟨
vz
⟩2

(
L
Rh

)
ftube (6.4-2)

in which
⟨
vz
⟩
is the average axial velocity in a model tube of mean hydraulic radius Rh

(see §6.2 for the definition of Rh), and the friction factor for a single tube, ftube, is a function
of the Reynolds number Reh = 4Rh

⟨
vz
⟩
i∕4. When this pressure difference is substituted

into Eq. 6.4-1, we get

f = 1

4

Dp

Rh

⟨
vz
⟩2

v2
0

ftube =
1

4s2

Dp

Rh
ftube (6.4-3)

2W. E. Ranz, Chem. Eng. Prog., 48, 274–253 (1952); H. C. Brinkman, Appl. Sci. Research., A1, 27–34,
81–86, 333–346 (1949).Henri Coenraad Brinkman (1908–1961) did research on viscous dissipation

heating, flow in porous media, and plasma physics; he taught at the University of Bandung, Indonesia,

from 1949–1954, where he wrote The Application of Spinor Invariants to Atomic Physics.
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In the second expression, we have introduced the void fraction, s, the fraction of space in the
column not occupied by the packing. Then, v0 =

⟨
vz
⟩
s, which results from the definition

of the superficial velocity. We now need an expression for Rh.
The hydraulic radius defined by Eq. 6.2-15 can be expressed in terms of the void frac-

tion s and the wetted surface a per unit volume of column as follows:

Rh =
(
cross section available for flow

wetted perimeter

)
=

(
volume available for flow

total wetted surface

)

=

(
volume of voids

volume of column

)
(

wetted surface

volume of column

) = s
a

(6.4-4)

The quantity a is related to the “specific surface” av (total particle surface per volume of
particles) by

av =
a

1 − s
(6.4-5)

The quantity av is in turn used to define the mean particle diameter Dp as follows:

Dp =
6

av
(6.4-6)

This definition is chosen because, for spheres of uniform diameter, Dp is just the diame-
ter of a sphere. From the last three expressions we find that the hydraulic radius is Rh =
Dps∕6 (1 − s). When this is substituted into Eq. 6.4-3, we get

f = 3

2

(
1 − s

s3

)
ftube (6.4-7)

We now adapt this result to laminar and turbulent flows by inserting appropriate expres-
sions for ftube.

a. Laminar flow
For laminar flow in tubes, ftube = 16∕Reh, where Reh is defined by Eq. 6.2-17. This is

exact for circular tubes only. To account for the fact that the fluid is flowing through tubes
that are noncircular and that its path is quite tortuous, it has been found that replacing 16
by 100/3 allows the tube bundle model to describe the packed-column data. When this
modified expression for the tube friction factor is used, Eq. 6.4-7 becomes

f = (1 − s)2

s3
75(

DpG0∕4
) (6.4-8)

in which G0 = iv0 is the convective mass flux through the system. When this expression
for f is substituted into Eq. 6.4-1, we get

𝒫0 −𝒫L

L
= 150

(
4v0
D2

p

)
(1 − s)2

s3
(6.4-9)

which is the Blake-Kozeny equation.3 Equations 6.4-8 and 6.4-9 are generally good for(
DpG0∕4 (1 − s)

)
< 10 and for void fractions less than s = 0.5.

b. Highly turbulent flow
A treatment similar to the above can be given for turbulent flow. We begin again

with the expression for the friction factor definition for flow in a circular tube. This time,

3F. C. Blake, Trans. Amer. Inst. Chem. Engrs., 14, 415–421 (1922); J. Kozeny, Sitzungsber. Akad. Wiss.
Wien, Abt. IIa, 136, 271–306 (1927).
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however, we note that, for highly turbulent flow in tubes with any appreciable roughness,
the friction factor is a function of the roughness only, and is independent of the Reynolds
number. If we assume that the tubes in all packed columns have similar roughness char-
acteristics, then the value of ftube may be taken to be the same constant for all systems.
Taking ftube = 7∕12 proves to be an acceptable choice. When this is inserted into Eq. 6.4-7,
we get

f = 7

8

(
1 − s

s3

)
(6.4-10)

When this is substituted into Eq. 6.4-1, we get

𝒫0 −𝒫L

L
= 7

4

(
iv2

0

Dp

)
1 − s

s3
(6.4-11)

which is the Burke-Plummer4 equation valid for
(
DpG0∕4 (1 − s)

)
> 1000. Note that the

dependence on the void fraction is different from that for laminar flow.

c. Laminar-turbulent transition region
Here, we may superpose the pressure-drop expressions for (a) and (b) above to get

𝒫0 −𝒫L

L
= 150

(
4v0
D2

p

)
(1 − s)2

s3
+ 7

4

(
iv2

0

Dp

)
1 − s

s3
(6.4-12)

For very small v0, this simplifies to the Blake-Kozeny equation, and for very large v0,
to the Burke-Plummer equation. Such empirical superpositions of asymptotes often lead
to satisfactory results. Equation 6.4-12 may be rearranged to form dimensionless groups:((

𝒫0 −𝒫L

)
i

G2
0

)(
Dp

L

)(
s3

1 − s

)
= 150

(
1 − s

DpG0∕4

)
+ 7

4
(6.4-13)

This is the Ergun equation,5 which is shown in Fig. 6.4-2 along with the Blake-Kozeny and
Burke-Plummer equations and experimental data. The Ergun equation is valid for the
entire range of Reynolds numbers in Fig. 6.4-2, and has been applied with success to gas
flow through packed columns by using the density of the gas at the arithmetic average
of the end pressures. Note that G0 is constant through the column, whereas v0 changes
through the column for a compressible fluid. For large pressure drops, however, it seems
more appropriate to apply Eq. 6.4-12 locally by expressing the pressure gradient in differ-
ential form.

The Ergun equation is but one of many6 that have been proposed for describing
packed columns. For example, the Tallmadge equation7((

𝒫0 −𝒫L

)
i

G2
0

)(
Dp

L

)(
s3

1 − s

)
= 150

(
1 − s

DpG0∕4

)
+ 4.2

(
1 − s

DpG0∕4

)1∕6
(6.4-14)

is reported to give good agreement with experimental data over the range 0.1 <(
DpG0∕4 (1 − s)

)
< 105.

The above discussion of packed beds illustrates how one can often combine solu-
tions of elementary problems to create simple models for complex systems. The constants
appearing in the models are then determined from experimental data. As better data
become available, the modeling can be improved.

4S. P. Burke and W. B. Plummer, Ind. Eng. Chem., 20, 1196–1200 (1928).
5S. Ergun, Chem. Engr. Prog., 48, 89–94 (1952).
6I. F. Macdonald, M. S. El-Sayed, K. Mow, and F. A. Dullien, Ind. Eng. Chem. Fundam., 18, 199–208

(1979).
7J. A. Tallmadge, AIChE Journal, 16, 1092–1093 (1970).
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Fig. 6.4-2. The Ergun equation for flow in packed beds, and the two related asymptotes, the Blake-Kozeny equation and

the Burke-Plummer equation. [S. Ergun, Chem. Eng. Prog., 48, 89–94 (1952).]

§6.5 CONCLUDING COMMENTS

In this chapter, we learned how to solve certain flowproblems using correlations of experi-

mental data. The correlations are developed by using dimensional analysis, thereby reduc-

ing the number of parameters in the relations.

In §6.2,we related the flow rate in tubes to the pressure dropusing the Fanning friction

factor. This friction factor depends only on the Reynolds number for the flow in the tube

for large L∕D values. Knowledge of this dependence allows one to solve for a variety of

quantities given values for the other relevant flow parameters.

In §6.3, we related the force on a sphere to the ambient velocity using a similarly

defined friction factor. Again, this friction factor, which depends only on the Reynolds

number, can be used to interrelate a variety of flow parameters.

In §6.4, a similar analysis was performed to relate pressure drop to flow rate within

packed beds. The resulting Ergun equation is valid for a wide range of Reynolds

numbers.

Using the correlations presented in this chapter to solve flow problems is often

much simpler than the methods employed in Chapters 2 and 3. However, the types of

problems and information that can be determined using the correlations are much more

limited. Thus, these approaches augment rather than replace the methods developed in

Chapters 2, 3, and 4.
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QUESTIONS FOR DISCUSSION

1. Howare graphs of friction factors versus Reynolds numbers generated from experimental data,

and why are they useful?

2. Compare and contrast the friction factor curves for flow in tubes and flow around spheres.Why

do they not have the same shapes?

3. In Fig. 6.2-2, why does the f versus Re curve for turbulent flow lie above the curve for laminar

flow rather than below?

4. Discuss the caveat after Eq. 6.2-17. Will the use of the mean hydraulic radius for laminar flow

predict a pressure drop that is too high or too low for a given flow rate?

5. Can the friction factor correlations be used for unsteady flows?

6. Discuss the flow ofwater through a 1

2
-inch rubber garden hose that is attached to a house faucet

with a pressure of 70 psig available.

7. Why was Eq. 6.4-12 rewritten in the form of Eq. 6.4-13?

8. A baseball announcer says: “Because of the high humidity today, the baseball cannot go so far

through the heavy humid air as it would on a dry day.” Comment critically on this statement.

PROBLEMS 6A.1 Pressure drop required for a pipe with fittings. What pressure drop is needed for pumping

water at 20∘C through a pipe 25 cm in diameter and length 1234m at a rate of 1.97 m3∕s? The
pipe is at the same elevation throughout and contains four standard-radius 90∘ elbows and two

45∘ elbows. The resistance of a standard-radius 90∘ elbow is roughly equivalent to that offered

by a pipe whose length is 32 diameters; a 45∘ elbow, 15 diameters. (An alternative method for

calculating losses in fittings is given in §7.5.)

Answer: 4.7 × 103psi = 33 MPa

6A.2 Pressure difference required for pipe with elevation change. Water at 68∘F is to be pumped

through 95 ft of standard 3-in. pipe (internal diameter 3.068 in.) into an overhead reservoir as

illustrated in Fig. 6A.2.

15’

30’

50’
Pump

45° elbow

45° elbow

45°

Fig. 6A.2 Pipe flow system.

(a) What pressure is required at the outlet of the pump to supply water to the overhead reser-

voir at a rate of 18 gal/min? At 68∘F the viscosity of water is 1.002 cp and the density is

0.9982 g/ml.

(b) What percentage of the pressure drop (pump outlet to reservoir) is needed for overcoming

the pipe friction?

Answer: (a) 15.3 psig

6A.3 Flow rate for a given pressure drop. How many gal/hr of water at 68∘F can be delivered

through a 1320-ft length of smooth 6.00-in. i.d. pipe under a pressure difference of 0.25 psi?

Assume that the pipe is “hydraulically smooth.”

(a) Solve by Method A of Example 6.2-2.

(b) Solve by Method B of Example 6.2-2.

Answer: 4.1 × 103gal∕hr
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6A.4 Motion of a sphere in a liquid. A hollow sphere, 5.00mm indiameter,with amass of 0.0500 g, is

released in a column of liquid and attains a terminal velocity of 0.500 cm/s. The liquid density is

0.900 g/cm3. The local gravitational acceleration is 980.7 cm/s2. The sphere is far enough from

the containing walls so that their effect can be neglected.

(a) Compute the drag force on the sphere in dynes.

(b) Compute the friction factor.

(c) Determine the viscosity of the liquid.

Answers: (a) 8.74 dynes; (b) f = 396; (c) 3.7 g/cm⋅ s

6A.5 Sphere diameter for a given terminal velocity.
(a) Explain how to find the sphere diameter D corresponding to given values of v∞, i, isph, 4,
and g by making a direct construction on Fig. 6.3-1.

(b) Rework Problem 2A.4 by using Fig. 6.3-1.

(c) Rework (b) when the gas velocity is 10 ft/s.

6A.6 Estimation of void fraction of a packed column. A tube of 146 sq. in. cross section and 73 in.

height is packed with spherical particles of diameter 2mm. When a pressure difference of

158 psi is maintained across the column, a 60% aqueous sucrose solution at 20∘C flows through

the bed at a rate of 244 lbm∕min. At this temperature, the viscosity of the solution is 56.5 cp and

its density is 1.2865 g/cm3. What is the void fraction of the bed? Discuss the usefulness of this

method of obtaining the void fraction.

Answer: 0.30

6A.7 Estimation of pressure drops in annular flow. For flow in an annulus formed by cylindri-

cal surfaces of diameters D and nD (with n < 1) the friction factors for laminar and turbulent

flow are

Laminar f = 16

Ren
(6A.7-1)

Turbulent
1√
f
= Glog10

(
Ren

√
f
)
−H (6A.7-2)

in which the Reynolds number is defined by

Ren = K
D (1 − n)

⟨
vz
⟩
i

4
(6A.7-3)

The values of G, H, and K are given as:1

n G H K

0.00 4.000 0.400 1.000

0.05 3.747 0.293 0.7419

0.10 3.736 0.239 0.7161

0.15 3.738 0.208 0.7021

0.20 3.746 0.186 0.6930

0.30 3.771 0.154 0.6820

0.40 3.801 0.131 0.6757

0.50 3.833 0.111 0.6719

0.60 3.866 0.093 0.6695

0.70 3.900 0.076 0.6681

0.80 3.933 0.060 0.6672

0.90 3.967 0.046 0.6668

1.00 4.000 0.031 0.6667

1D. M. Meter and R. B. Bird, AIChE Journal, 7, 41–45 (1961).
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Equation 6A.7-2 is believed to be capable of reproducing the experimental data within about
3% up to Reynolds numbers of 20,000.

(a) Verify that, for developed laminar flow, Eqs. 6A.7-1 and 6A.7-3 with the tabulated K values
are consistent with Eq. 2.4-17.

(b) An annular duct is formed from cylindrical surfaces of diameters 6 in. and 15 in. It is desired
to pump water at 60∘F at a rate of 1500 cu ft per second. How much pressure drop is required
per unit length of conduit, if the annulus is horizontal? Use Eq. 6A.7-2.

(c) Repeat (b) using the “mean hydraulic radius” empiricism.

6A.8 Force on a water tower in a gale. A water tower has a spherical storage tank 40 ft in diameter.
In a 100-mph gale, what is the force of the wind on the spherical tank at 0∘C? Take the density
of air to be 1.29 g/liter or 0.08 lbm∕ft

3
and the viscosity to be 0.017 cp.

Answer: 1.7 × 104lbf = 5.4 × 105poundals

6A.9 Flow of gas through a packed column. A horizontal tube with diameter 4 in. and length 5.5 ft
is packed with glass spheres of diameter 1/16 in., and the void fraction is 0.41. Carbon dioxide
is to be pumped through the tube at 300K, at which temperature its viscosity is known to be
1.495 × 10−4 g∕cm ⋅ s. What will be the mass flow rate through the column when the inlet and
outlet pressures are 25 atm and 3 atm, respectively?

Answer: 480 g/s

6A.10 Determination of pipe diameter. What size of circular pipe is needed to produce a flow rate of
250 firkins per fortnightwhen there is a pressure drop of 3 × 105 scruples per square barleycorn?
The pipe is horizontal. (The authors are indebted to the late Professor R. S. Kirk of theUniversity
of Massachusetts who introduced them to these units.)

6B.1 Effect of error in friction factor calculations. In a calculation using the Blasius formula for
turbulent flow in pipes, the Reynolds number used was too low by 4%. Calculate the resulting
error in the friction factor.

Answer: Too high by 1%

6B.2 Friction factor for flow along a flat plate.2

(a) An expression for the drag force on a flat plate, wetted on both sides, is (see Problem 3C.2)

Fk = 1.328

√
i4LW2v3∞ (6B.2-1)

This equation was derived by using laminar boundary-layer theory and is known to be in good
agreement with experimental data. Define a friction factor and Reynolds number, and obtain
the f versus Re relation.
(b) For turbulent flow, an approximate boundary-layer treatment based on the 1/7 power
velocity distribution gives

Fk = 0.072iv2∞WL
(
Lv∞i∕4

)−1∕5
(6B.2-2)

When 0.072 is replaced by 0.074, this relation describes the drag force within experimental
error for 5 × 105 < Lv∞i∕4 < 2 × 107. Express the corresponding friction factor as a function of
the Reynolds number.

6B.3 Friction factor for laminar flow in a slit. Use the results of Problem 2B.4 to show that for the
laminar flow in a thin slit of width 2B the friction factor is f = 12∕Re, if the Reynolds number is
defined as Re = 2B

⟨
vz
⟩
i∕4. Compare this result for f with what one would get from the mean

hydraulic radius empiricism.

6B.4 Friction factor for a rotating disk.3 A thin circular disk of radius R is immersed in a large
body of fluid with density i and viscosity 4. If a torque Tz is required to make the disk rotate

2H. Schlichting, Boundary-Layer Theory, McGraw-Hill, New York, 7th edition (1979), Chapter XXI.
3T. von Kármán, Zeits. für angew. Math. u. Mech., 1, 233–252 (1921).
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at an angular velocity 1, then a friction factor f may be defined analogously to Eq. 6.1-1

as follows,

Tz∕R = AKf (6B.4-1)

where reasonable definitions for K and A are K = 1

2
i
(
1R

)2
and A = 2

(
0R2

)
. An appropriate

choice for the Reynolds number for the system is Re = R21i∕4.
For laminar flow, an exact boundary-layer development gives

Tz = 0.6160iR4
√
413∕i (6B.4-2)

For turbulent flow, an approximate boundary-layer treatment based on the 1/7 power velocity

distribution leads to

Tz = 0.073i12R5 5
√
4∕R21i (6B.4-3)

Express these results as relations between f and Re.

6B.5 Turbulent flow in horizontal pipes. A fluid is flowing with a mass flow rate w in a smooth

horizontal pipe of length L and diameter D as the result of a pressure difference p0 − pL. The
flow is known to be turbulent.

The pipe is to be replaced by one of diameterD∕2 but with the same length. The same fluid

is to be pumped at the same mass flow rate w. What pressure difference will be needed?

(a) Use Eq. 6.2-12 as a suitable equation for the friction factor.

(b) How can this problem be solved using Fig. 6.2-2 if Eq. 6.2-12 is not appropriate?

Answer: (a) A pressure difference 27 times greater will be needed.

6B.6 Inadequacy of mean hydraulic radius for laminar flow.

(a) For laminar flow in an annulus with radii nR and R, use Eqs. 6.2-16 and 6.2-17 to get an

expression for the average velocity in terms of the pressure difference analogous to the exact

expression given in Eq. 2.4-17.

(b) What is the percent error in the result in (a) for n = 1

2
?

(c) Use Eqs. 6.2-16 and 6.2-17 to obtain expressions for the average velocity in laminar flow

in terms of pressure difference for tubes of triangular (equilateral) and square cross sections.

Compare these results to the exact results presented for laminar flow in Problems 3B.2 and 3B.3.

Answer: (b) 49%

6B.7 Falling sphere in Newton’s drag-law region. A sphere initially at rest at z = 0 falls under the

influence of gravity. Conditions are such that, after a negligible interval, the sphere falls with a

resisting force proportional to the square of the velocity.

(a) Find the distance z that the sphere falls as a function of t.
(b) What is the terminal velocity of the sphere? Assume that the density of the fluid is much

less than the density of the sphere.

Answer: (a) The distance is z (t) =
(
1∕c2 g

)
ln

(
cosh cgt

)
where c2 = 3

8
(0.44)

(
i∕isph

) (
1∕gR

)
;

(b) 1/c

6B.8 Design of an experiment to verify the f vs. Re chart for spheres. It is desired to design an

experiment to test the friction factor chart in Fig. 6.3-1 for flow around a sphere. Specifically,

we want to demonstrate that f = 1 at Re = 100. This is to be done by dropping bronze spheres(
isph = 8 g∕cm3

)
in water

(
i = 1 g∕cm3, 4 = 10−2 g∕cm ⋅ s

)
. What sphere diameter must be

used?

(a) Derive a formula that gives the sphere diameter as a function of f , Re, g, 4, i, and isph for

terminal velocity conditions.

(b) Insert numerical values and find the value of the sphere diameter.

Answers: (a) D = 3

√√√√√ 3fRe242

4
(
isph − i

)
ig

; (b) D = 0.048 cm.
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6B.9 Friction factor for flow past an infinite cylinder.4 The flow past a long cylinder (diameter

D, length L) is very different from the flow past a sphere. It is found that, when the fluid

approaches with a velocity v∞, the kinetic force acting on a length L of the cylinder oriented

perpendicular to the flow is

Fk =
404v∞L

ln (7.4∕Re)
(6B.9-1)

The Reynolds number is defined here as Re = Dv∞i∕4. Equation 6B.9-1 is valid only up to

about Re = 1. In this range of Re, what is the formula for the friction factor as a function of the

Reynolds number?

6C.1 Two-dimensional particle trajectories. A sphere of radius R is fired horizontally (in the x
direction) at high velocity in still air above level ground. As it leaves the propelling device,

an identical sphere is dropped from the same height above the ground (in the y direction).

(a) Develop differential equations from which the particle trajectories can be computed, and

which will permit comparison of the behavior of the two spheres. Include the effects of fluid

friction, and make the assumption that steady-state friction factors may be used (this is a

“quasi-steady-state assumption”; see Eq. 6.1-5(a)).

(b) Which sphere will reach the ground first?

(c) Would the answer to (b) have been the same if the sphere Reynolds numbers had been in

the Stokes’ law region?

Answers: (a) dvx
dt

= −3

8

vx
R

√
v2x + v2y f

iair
isph

,

dvy
dt

= −3

8

vy
R

√
v2x + v2y f

iair
isph

+

(
1 −

iair
isph

)
g

in which f = f (Re) is given by Fig. 6.3-1, with

Re =
2R

√
v2x + v2y iair

4air

4G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press (1967), pp. 244–246,

257–261. For flow past finite cylinders, see J. Happel and H. Brenner, Low-Reynolds Number
Hydrodynamics, Martinus Nijhoff, The Hague (1983), pp. 227–230.
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Chapter 7

Macroscopic Balances for
Isothermal Flow Systems

§7.1 The macroscopic mass balance

§7.2 The macroscopic momentum balance

§7.3 The macroscopic angular momentum balance

§7.4 The macroscopic mechanical energy balance

§7.5 Estimation of the viscous loss

§7.6 Use of the macroscopic balances for solving problems

§7.7○ Derivation of the macroscopic mechanical energy balance

§7.8 Concluding comments

In the first three sections of Chapter 3, equations of change for isothermal systems were
presented. The equations for mass, momentum, and angular momentum (where there is
no interchange between internal and external angular momentum) were based on conser-
vation laws, applied to a “microscopic system,” namely, a tiny fixed element of volume
through which the fluid is moving. The microscopic system has no solid bounding sur-
faces, and the interactions of the fluid with solid surfaces in specific flow systems are

u1

r1
r2

u2

Plane 1 Plane 2

Wm = Work done
on system by

surroundings via
moving parts

Q = Heat added
to system from
surroundings

O

Fig. 7.0-1. Macroscopic flow

system with fluid entering at

plane 1 and leaving at plane 2. It

may be necessary to add heat at

a rate Q to maintain the system

temperature constant. The rate

of doing work on the system by
the surroundings by means of

moving surfaces isWm. The

symbols u1 and u2 denote unit
vectors in the direction of flow at

planes 1 and 2. The quantities r1
and r2 are position vectors

giving the location of the centers

of the inlet and outlet planes

with respect to some designated

origin of coordinates.

185



Trim Size: 8in x 10in Bird1e c07.tex V1 - October 30, 2014 1:58 P.M. Page 186

186 Chapter 7 Macroscopic Balances for Isothermal Flow Systems

accounted for by boundary conditions on the differential equations. In the fourth section
of Chapter 3, an additional equation of change, namely that for mechanical energy (which
is not conserved), was obtained by taking the dot product of the velocity vector with the
equation of motion, describing the conservation of momentum.

In this chapter we write similar conservation laws for mass, momentum, and angular
momentum for “macroscopic systems,” that is, the fluid within large pieces of equip-
ment or parts thereof (see Fig. 7.0-1). However, we may not do this for mechanical energy,
since it is not conserved. For unsteady-state systems, these macroscopic balances are ordi-
nary differential equations, and for steady-state systems, they are algebraic equations. The
macroscopic balances contain terms that account for the interactions of the fluid with the
solid surfaces. The fluid can exert forces and torques on the surfaces of the system, and
the surroundings can do work at a rateWm on the system by means of moving surfaces.

The macroscopic balances can also be obtained from the equations of change by inte-
grating the latter over the entire volume of the flow system:1,2

∫V(t)

(
eq. of continuity

)
dV = macroscopic mass balance

∫V(t)

(
eq. of motion

)
dV = macroscopic momentum balance

∫V(t)

(
eq. of angular momentum

)
dV = macroscopic angular momentum balance

∫V(t)

(
eq. of mechanical energy

)
dV = macroscopic mechanical energy balance

It is important to note that the first three of these macroscopic balances can be obtained
either by writing the conservation laws directly for the macroscopic system or by per-
forming the indicated integrations. However, to get the macroscopic mechanical energy
balance, the corresponding equation of change must be integrated over the macroscopic
system.

In §7.1 to §7.3 we set up the macroscopic mass, momentum, and angular momentum
balances by writing the conservation laws. In §7.4 we state the macroscopic mechanical
energy balance, postponing a detailed derivation until §7.7. In themacroscopicmechanical
energy balance, there is a term called the “friction loss,” and we devote §7.5 to methods
for estimating this quantity. Then in §7.6 we show how the set of macroscopic balances
can be used to solve flow problems.

The macroscopic balances have been widely used in many branches of engineering
and applied science. They provide global descriptions of large systems without much
regard for the details of the fluid dynamics inside the systems. Often they are useful for
making an initial appraisal of an engineering problem and formaking order-of-magnitude
estimates of various quantities. Sometimes they are used to derive approximate relations,
which can then be modified with the help of experimental data to compensate for terms
that have been omitted or about which there is insufficient information.

In using themacroscopic balances one often has to decidewhich terms can be omitted,
or one has to estimate some of the terms. This requires (i) intuition, based on experience
with similar systems, (ii) some experimental data on the system, (iii) flow visualization
studies, or (iv) order-of-magnitude estimates. This will be clear when we come to specific
examples.

1R. B. Bird, Chem. Eng. Sci., 6, 123–131 (1957); Chem. Eng. Educ., 27 (2), 102–109 (Spring 1993); NPT
Procestechnologie, Sept. 1994. pp. 6–10; Korean J. Chem. Eng., 15, 105–123 (1998); R. B. Bird, W. E. Stewart,

and E. N. Lightfoot, Transport Phenomena, Wiley, New York, Revised Second Edition (2007), §7.8.
2J. C. Slattery and R. A. Gaggioli, Chem. Eng. Sci., 17, 893–895 (1962).
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Themacroscopic balancesmake use of nearly all the topics covered thus far, and there-
fore, Chapter 7 provides a good opportunity for reviewing the preceding chapters.

§7.1 THE MACROSCOPIC MASS BALANCE

In the system shown in Fig. 7.0-1, the fluid enters the system at plane 1 with cross section
S1, and leaves at plane 2 with cross section S2. The average velocity in the flow direction
is

⟨
v1

⟩
at the entry plane and

⟨
v2

⟩
at the exit plane. In this and the following sections,

we introduce two assumptions that are not very restrictive: (i) at the planes 1 and 2 the
time-smoothed velocity is perpendicular to the relevant cross section, and (ii) at planes 1
and 2 the density and other physical properties are uniform over the cross section.

The law of conservation of mass for this system is then

d
dt
mtot = i1

⟨
v1

⟩
S1 − i2

⟨
v2

⟩
S2

rate of

increase

of mass

rate of

mass in

rate of

mass out

(7.1-1)

Here mtot = ∫i dV is the total mass of fluid contained in the system between planes 1 and
2. Also, in this chapter, we use the symbol

⟨
vz
⟩
for the spatially averaged flow velocity,

whether the flow is laminar or turbulent.
The average velocity can be related to the mass flow rate by

w = iQ = i ⟨v⟩S (7.1-2)

where Q is the volumetric rate. We also introduce the notation 2w = w2 − w1 (exit value
minus entrance value). Then the unsteady-state macroscopic mass balance becomes

Unsteady-state: d
dt
mtot = −2w (7.1-3)

If the total mass of fluid does not change with time, then we get the steady-state macroscopic
mass balance.

Steady-state: 2w = 0 (7.1-4)

which is just the statement that the rate of mass entering equals the rate of mass leaving.
For the macroscopic mass balances we use the term “steady state” to mean that the

time derivative on the left side (e.g., in Eq. 7.1-3) is zero. Within the system, because of the
possibility for moving parts, flow instabilities, and turbulence, there may well be regions
of unsteady flow.

EXAMPLE 7.1-1

Draining of a Spherical
Tank

A spherical tank of radius R and its drainpipe of length L and diameterD are completely filled

with a heavy oil. At time t = 0, the valve at the bottom of the drainpipe is opened. How long

will it take to drain the tank? There is an air vent at the very top of the spherical tank. Ignore

the amount of oil that clings to the inner surface of the tank, and assume that the flow in the

drainpipe is laminar.

SOLUTION

We label three planes as in Fig. 7.1-1, and we let the instantaneous liquid level above plane 2 be

h (t). We define the system as the space within the tank between planes 1 and 2. Our strategy for

solving this problem is to obtain expressions for each term in Eq. 7.1-3, and then use Eq. 7.1-3

to relate h (t) to other quantities. With this information, we can determine the time required for

h to decrease to zero.
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Plane 1

Plane 2

Plane 3

h (t)

L

R

g

x

z

Liquid
surface

Air vent

D

Fig. 7.1-1. Spherical tank with drainpipe.

We first determine the total mass of liquid in the system (between planes 1 and 2), which

is equivalent to the total mass of liquid between plane 2 and the top of the liquid surface. We

imagine that the sphere is generated by a circle in the xz plane, with its center at z = R and x = 0.

The tank is draining in the negative z direction, and the exit from the sphere into the attached

tube is located at z = 0. The sphere is created by rotating the generating circle around the z axis.
The generating circle is described by the equation:

x2 + (z − R)2 = R2 or x2 = 2Rz − z2 (7.1-5)

We then visualize the liquid volume as being made up of a stack of thin circular disks of thick-

ness dz, each with radius x given by Eq. 7.1-5, and a volume of

dV = 0x2dz = 0
(
2Rz − z2

)
dz (7.1-6)

The total volume of the liquid in the spherical tank at time t is then

V (t) = ∫
h(t)

0

0
(
2Rz − z2

)
dz = 0

(
Rz2 − 1

3
z3
)|||||

h(t)

0

= 0R
[
h (t)

]2 [
1 − 1

3

h (t)
R

]
(7.1-7)

and the total mass of liquid in the tank at time t is

mtot (t) = 0R
[
h (t)

]2 [
1 − 1

3

h (t)
R

]
i (7.1-8)

This result may be checked by applying Eq. 7.1-8 to the cases when the tank is full, half full,

and empty.

Since no fluid crosses plane 1, we know that w1 = 0. The outlet mass flow rate w2, as deter-

mined from the Hagen-Poiseuille formula (Eq. 2.3-21), is

w2 =
0
(
𝒫2 −𝒫3

)
D4i

1284L
=

0
[
igh (t) + igL

]
D4i

1284L
(7.1-9)

The Hagen-Poiseuille formula was derived for steady-state flow, but we use it here since

the volume of liquid in the tank is changing slowly with time; this is an example of the

“quasi-steady-state” approximation (where a slowly varying process—momentum transport

in this case—is approximated as occurring at steady state).

When these expressions for mtot and w2 are substituted into Eq. 7.1-3, we get, after some

rearrangement

−(2R − h) h
h + L

dh
dt

=
igD4

1284L
(7.1-10)
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We now abbreviate the constant on the right side of the equation as A. The equation is easier to

integrate if we make the change of variable H = h + L so that[
H − (2R + L)

]
(H − L)

H
dH
dt

= A (7.1-11)

We now integrate this equation between t = 0 (when h = 2R orH = 2R + L), and t = tefflux (when

h = 0 or H = L). This gives for the efflux time

tefflux =
L2

A

[
2
R
L

(
1 + R

L

)
−

(
1 + 2

R
L

)
ln

(
1 + 2

R
L

)]
(7.1-12)

inwhichA is given by the right side of Eq. 7.1-10.Note thatwe have obtained this resultwithout

any detailed analysis of the fluid motion within the sphere.

§7.2 THE MACROSCOPIC MOMENTUM BALANCE

We now apply the law of conservation of momentum to the system in Fig. 7.0-1, using the
same two assumptions ((i) and (ii)) mentioned in the preceding section, plus two addi-
tional assumptions: (iii) the forces associatedwith the stress tensor f are neglected at planes
1 and 2, since they are generally small compared to the pressure forces at the entry and
exit planes, and (iv) the pressure does not vary over the cross section at the entry and exit
planes.

Since momentum is a vector quantity, each term in the balance must be a vector. We
use unit vectors u1 and u2 to represent the direction of flow at planes 1 and 2. The law of
conservation of momentum then reads

d
dt
Ptot =i1

⟨
v2
1

⟩
S1u1−i2

⟨
v2
2

⟩
S2u2+p1S1u1 −p2S2u2 +Fs→f +mtotg

rate of

increase of

momentum

rate of

momentum

in at plane 1

rate of

momentum

out at plane 2

pressure

force on

fluid at

plane 1

pressure

force on

fluid at

plane 2

force of

solid

surface

on fluid

force of

gravity

on fluid

(7.2-1)

Here Ptot = ∫iv dV is the total momentum in the system. The equation states that the total
momentum within the system changes because of convection of momentum into and out
of the system, and because of the various forces acting on the system: the pressure forces
at the ends of the system, the force of the solid surfaces acting on the fluid in the system,
and the force of gravity acting on the fluid within the walls of the system. The subscript
“s → f” serves as a reminder of the direction of the force.

By introducing the mass rate of flow and the 2 symbol, we get finally for the
unsteady-state macroscopic momentum balance

Unsteady-state: d
dt
Ptot = −2

(⟨
v2

⟩
⟨v⟩ w + pS

)
u + Fs→f +mtotg (7.2-2)

If the total amount of momentum in the system does not change with time, then we get
the steady-state macroscopic momentum balance

Steady-state: Ff→s = −2

(⟨
v2

⟩
⟨v⟩ w + pS

)
u +mtotg (7.2-3)

Once againwe emphasize that this is a vector equation. It is useful for computing the force
of the fluid on the solid surfaces, Ff→s, such as the force on a pipe bend or a turbine blade.
Actually we have already used a simplified version of the above equation in Eq. 6.1-3.
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Notes Regarding Turbulent Flow: (i) For turbulent flow, it is customary to replace ⟨v⟩ by ⟨v⟩
and

⟨
v2

⟩
by

⟨
v2

⟩
; in the latter we are neglecting the term

⟨
v′2

⟩
, which is generally small

with respect to
⟨
v2

⟩
. (ii) Then we further replace

⟨
v2

⟩
∕ ⟨v⟩ by ⟨v⟩. The error in doing this

is quite small; for the empirical 1

7
-power law velocity profile given in Eq. 4.1-4,

⟨
v2

⟩
∕ ⟨v⟩ =

50

49
⟨v⟩, so that the error is about 2%. (iii) Whenwemake this assumption, we will normally

drop the angular brackets and overbars in order to simplify the notation. That is, we will
let

⟨
v1

⟩ ≡ v1 and
⟨
v2
1

⟩ ≡ v2
1
, with similar simplifications for quantities at plane 2.

EXAMPLE 7.2-1

Force Exerted by a Jet
(Part (a))

A turbulent jet of water emerges from a tube of radius R1 = 2.5 cm with a speed v1 = 6 m∕s, as
shown in Fig. 7.2-1. The jet impinges on a disk-and-rod assembly of mass m = 5.5 kg, which is

free to move vertically. The friction between the rod and the sleeve will be neglected. Find the

height h at which the disk will “float” as a result of the jet.1 Assume that the water is incom-

pressible.

SOLUTION

To solve this problem, one has to imagine how the jet behaves. In Fig. 7.2-1(a) we assume that

the jet has a constant radius, R1, between the tube exit and the disk, whereas in Fig. 7.2-1(b)
we assume that the jet spreads slightly. In this example, we make the first assumption, and in

Example 7.4-1, we account for the jet spreading.

We apply the z component of the steady-state momentum balance between planes 1 and 2.

The pressure terms can be omitted, since the pressure is atmospheric at both planes. The fluid

velocity at plane 2 is zero. The momentum balance then becomes

mg = v1
(
iv10R

2
1

)
−

(
0R2

1
h
)
ig (7.2-4)

where mg is the force exerted by the solid disk on the fluid in the −z direction. When this is

solved for h, we get (in SI units)

h =
v2
1

g
− m

i0R2
1

=
(6 m∕s)2(

9.807 m∕s2
) −

(
5.5 kg

)(
1000 kg∕m3

)
0(0.025 m)2

= 0.87 m (7.2-5)

h

z

Plane 2

Plane 1

Tube

Plane 3
Plane 2

Plane 1

Disk–rod assembly
with mass m

Tube with radius R1

Rising water jet

(a) (b)

g
Fig. 7.2-1. Sketches
corresponding to the two

solutions to the jet-and-disk

problem. In (a) the water jet is

assumed to have a uniform

radius R1. In (b) allowance is

made for the spreading of the

liquid jet.

1K. Federhofer, Aufgaben aus der Hydromechanik, Springer-Verlag, Vienna (1954), p. 36 and p. 172.
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§7.3 THE MACROSCOPIC ANGULARMOMENTUM BALANCE

The development of the macroscopic angular momentum balance parallels that for the
(linear) momentum balance in the preceding section. All we have to do is to replace
“momentum” by “angular momentum,” and “force” by “torque.”

To describe the angular momentum and torque, we have to select an origin of coor-
dinates with respect to which these quantities are evaluated. The origin is designated by
“O” in Fig. 7.0-1, and the locations of the midpoints of planes 1 and 2 with respect to this
origin are given by the position vectors r1 and r2.

Once again we make assumptions (i)–(iv) introduced in §7.1 and §7.2. With
these assumptions the rate of entry of angular momentum at plane 1, which is
∫ [r × iv] (v ⋅ u) dS evaluated at that plane, becomes i1

⟨
v2
1

⟩
S1

[
r1 × u1

]
, with a similar

expression for the rate at which angular momentum leaves the system at 2.
The unsteady-state macroscopic angular momentum balance may now be written as

d
dt
Ltot

rate of

increase of

angular

momentum

= i1
⟨
v2
1

⟩
S1

[
r1 × u1

]
rate of angular

momentum

in at plane 1

− i2
⟨
v2
2

⟩
S2

[
r2 × u2

]
rate of angular

momentum

out at plane 2

+ p1S1
[
r1 × u1

]
torque due to

pressure on

fluid at

plane 1

− p2S2
[
r2 × u2

]
torque due to

pressure on

fluid at

plane 2

+ Ts→f

torque

of solid

surface

on fluid

+ Text

external

torque

on fluid

(7.3-1)

Here Ltot = ∫i [r × v] dV is the total angular momentum within the system, and Text =∫ [
r × ig

]
dV is the torque on the fluid in the system resulting from the gravitational force.

This equation can also be written as

Unsteady-state: d
dt
Ltot = −2

(⟨
v2

⟩
⟨v⟩ w + pS

)
[r × u] + Ts→f + Text (7.3-2)

Finally, the steady-state macroscopic angular momentum balance is:

Steady-state: Tf→s = −2

(⟨
v2

⟩
⟨v⟩ w + pS

)
[r × u] + Text (7.3-3)

This gives the torque exerted by the fluid on the solid surfaces.

EXAMPLE 7.3-1

Torque on a Mixing
Vessel1

Amixing vessel, shown in Fig. 7.3-1, is being operated at steady state. The fluid enters tangen-

tially at plane 1 in turbulent flow with a velocity v1 and leaves through the vertical pipe with a

velocity v2. Since the tank is baffled, there is no swirling motion of the fluid in the vertical exit

pipe. Find the torque exerted on the mixing vessel.

SOLUTION

The origin of the coordinate system is taken to be on the tank axis in a plane passing through

the axis of the entrance pipe and parallel to the tank top. Then the vector
[
r1 × u1

]
is a vector

1R.B. Bird, in Selected Topics in Transport Phenomena, CEP Symposium Series #58, 61, 1–15 (1965).
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Plane 2

u1

Plane 1

Plane 1

Top view

Side view

u1

u2

r1

r2

z

R

Area of cross
section is S2

Area of cross
section is S1

Origin of coordinates is on
tank axis in a plane passing
through the axis of the entrance
pipe and parallel to the tank top

Fig. 7.3-1. Torque on a

tank, showing side view

and top view. [Adapted

from R. B. Bird, in

Selected Topics in
Transport Phenomena,
CEP Symposium Series

#58, 61, 1–15 (1965).]

pointing in the z direction with magnitude R. Furthermore,
[
r2 × u2

]
= 0, since the two vectors

are collinear. For this problem Eq. 7.3-3 gives

Tf→s =
(
iv2

1
S1 + p1S1

)
Rtz (7.3-4)

Thus, the torque is just “force × lever arm,” as would be expected. If the torque is sufficiently

large, the equipment must be suitably braced to withstand the torque produced by the fluid

motion and the inlet pressure.

EXAMPLE 7.3-2

Angular Velocity of a
Lawn Sprinkler

A lawn sprinkler has four arms of length L and cross-sectional area S as illustrated in Fig. 7.3-2.2

Water enters the sprinkler at the center at a mass flow rate w and splits into four streams. It is

desired to find the angular velocity 1 of the sprinkler, when there is a frictional torque Tf per

arm. (Note that the angular velocity vector of the sprinkler illustrated in Fig. 7.3-2 is −1tz.)

Plane 2

u2

u1

r

θ

δθ
δr

Ω

Plane 1

L

Fig. 7.3-2. The lawn sprinkler.

2F. M. White, Fluid Mechanics, McGraw-Hill, New York (1979), p. 174 describes the angular

momentum balance for a one-armed sprinkler.
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SOLUTION

The flow velocity in each arm is v = w∕4iS, so that the velocity of an outlet stream, relative to

the sprinkler arm, in the p direction is (at plane 2)

v𝟐 = tp

(
w
4iS

− L1
)

(7.3-5)

Therefore, Eq. 7.3-3 gives for the angular momentum balance (z component) at steady state

0 = −w
[
Ltr ×

(
w
4iS

− L1
)
tp

]
− Tftz (7.3-6)

The entering stream contributes nothing to the angular momentum balance because the flow is
perpendicular to the z axis. The unit vectors may now be removed, since

[
tr × tp

]
= tz, to give

0 = −wL
(

w
4iS

− L1
)
− Tf (7.3-7)

Then, solving for 1, we get

1 = w
4iSL

−
Tf

wL2
(7.3-8)

for the angular velocity of the sprinkler.

§7.4 THE MACROSCOPIC MECHANICAL ENERGY BALANCE

Equations 7.1-3, 7.2-2, and 7.3.2 have been set up by applying the laws of conservation
of mass, (linear) momentum, and angular momentum over the macroscopic system in
Fig. 7.0-1. The three macroscopic balances thus obtained correspond to the equations of
change in Eqs. 3.1-4, 3.2-9, and 3.4-1, and, in fact, they are very similar in structure. These
three macroscopic balances can also be obtained by integrating the three equations of
change over the volume of the flow system.

Next we want to set up the macroscopic mechanical energy balance, which corre-
sponds to the equation ofmechanical energy in Eq. 3.3-2. There is noway to do this directly
as we have done in the preceding three sections, since there is no conservation law for
mechanical energy. In this instance we must integrate the equation of change of mechani-
cal energy over the volume of the flow system. The result, which hasmade use of the same
assumptions (i–iv) used above, is the unsteady-state macroscopic mechanical energy balance
(sometimes called the engineering Bernoulli equation). The equation is derived in §7.7; here
we state the result and discuss its meaning:

d
dt

(
Ktot +Ctot

)
rate of increase

of kinetic and

potential energy

in system

=
(

1

2
i1

⟨
v3
1

⟩
+ i1Ĉ1

⟨
v1

⟩)
S1

rate at which kinetic

and potential energy

enter system at plane 1

−
(

1

2
i2

⟨
v3
2

⟩
+ i2Ĉ2

⟨
v2

⟩)
S2

rate at which kinetic

and potential energy

leave system at plane 2

+
(
p1

⟨
v1

⟩
S1 − p2

⟨
v2

⟩
S2

)
net rate at which the

surroundings do

work on the fluid

at planes 1 and 2 by

the pressure

+ Wm

rate of

doing

work on

fluid by

moving

surfaces

+ ∫V(t)
p (∇ ⋅ v) dV

rate at which

mechanical

energy increases

or decreases

because of expansion

or compression

of fluid

+ ∫V(t)
(f ∶ ∇v) dV

rate at which

mechanical

energy

decreases

because of

viscous

dissipation1

(7.4-1)

1This interpretation of the term is valid only for Newtonian fluids; polymeric liquids have elasticity

and the interpretation given above no longer holds.
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HereKtot = ∫ 1

2
iv2 dV andCtot = ∫ 1

2
iĈ dV are the total kinetic andpotential energieswithin

the system. According to Eq. 7.4-1, the total mechanical energy (i.e., kinetic plus potential)
changes because of a difference in the rates of addition and removal of mechanical energy,
because of work done on the fluid by the surroundings, and because of compressibility
effects and viscous dissipation. Note that, at the system entrance (plane 1), the force p1S1
multiplied by the velocity

⟨
v1

⟩
gives the rate at which the surroundings does work on

the fluid. Furthermore, Wm is the rate of work done by the surroundings on the fluid by
means of moving surfaces.

The macroscopic mechanical energy balance may now be written more compactly as

Unsteady state: d
dt

(
Ktot +Ctot

)
= −2

(
1

2

⟨
v3

⟩
⟨v⟩ + Ĉ +

p
i

)
w +Wm − Ec − Ev (7.4-2)

in which the terms Ec and Ev are defined as follows:

Ec = −∫V(t)
p (∇ ⋅ v) dV and Ev = −∫V(t)

(f ∶ ∇v) dV (7.4-3,4)

The compression term Ec is positive in compression and negative in expansion; it is zero
when the fluid is assumed to be incompressible. The term Ev is the viscous dissipation (or
friction-loss) term, which is always positive for Newtonian liquids, as can be seen from
Eq. 3.3-3. (For polymeric fluids, which are viscoelastic, Ev is not necessarily positive; these
fluids are discussed in the next chapter.)

If the total kinetic-plus-potential energy in the system is not changing with time,
we get

Steady state: 2

(
1

2

⟨
v3

⟩
⟨v⟩ + gh +

p
i

)
w = Wm − Ec − Ev (7.4-5)

which is the steady-state macroscopic mechanical energy balance. Here h is the height above
some arbitrarily chosen datum plane.

Next, if we assume that it is possible to draw a representative streamline through the
system, wemay combine the 2

(
p∕i

)
and Ec terms to get the following approximate relation

(see §7.7)

2
(
p
i

)
+ Ec ≈ w∫

2

1

1

i
dp (7.4-6)

Then, after dividing Eq. 7.4-5 by w1 = w2 = w, we get

Steady state
(
approx

)
∶ 2

(
1

2

⟨
v3

⟩
⟨v⟩

)
+ g2h + ∫

2

1

1

i
dp = Ŵm − Êv (7.4-7)

Here Ŵm = Wm∕w and Êv = Ev∕w. Equation 7.4-7 is the version of the steady-statemechan-
ical energy balance that is most often used. Each term in this equation has dimensions of
energy/mass. For isothermal systems, the integral term can be calculated as long as an
expression for density as a function of pressure is available.

Equation 7.4-7 should now be compared with Eq. 3.3-9, which is the “classical”
Bernoulli equation for an inviscid fluid. If, to the right side of Eq. 3.3-9, we simply add
the work Ŵm done by the surroundings and subtract the viscous-dissipation term Êv,
and reinterpret the velocities as appropriate averages over the cross sections, then we
get Eq. 7.4-7. This provides a “plausibility argument” for Eq. 7.4-7 and still preserves
the fundamental idea that the macroscopic mechanical energy balance is derived from
the equation of motion (i.e., from the law of conservation of momentum). The full
derivation of the macroscopic mechanical energy balance is given in §7.7 for those who
are interested.
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Notes for Turbulent Flow: (i) For turbulent flows we replace
⟨
v3

⟩
by

⟨
v3

⟩
, and ignore the

contribution from the turbulent fluctuations. (ii) It is common practice to replace the quo-

tient
⟨
v3

⟩
∕ ⟨v⟩ by ⟨v⟩2. For the empirical 1

7
-power law velocity profile given in Eq. 4.1-4,

it can be shown that
⟨
v3

⟩
∕ ⟨v⟩ = 43200

40817
⟨v⟩2, so that the error amounts to about 6%. (iii) We

further omit the brackets and overbars in order to simplify the notation in turbulent flow.

EXAMPLE 7.4-1

Force Exerted by a Jet
(Part (b))

Continue the problem in Example 7.2-1 by accounting for the spreading of the jet as it moves

upward.

SOLUTION

We now assume that the jet diameter increases with increasing z as shown in Fig. 7.2-1(b). It
is convenient to work with three planes and to make balances between pairs of planes. The

separation between planes 2 and 3 is taken to be quite small.

A mass balance between planes 1 and 2 gives

w1 = w2 (7.4-8)

Nextwe apply themechanical energy balance of Eq. 7.4-5 or 7.4-7 between the same two planes.

The pressures at 1 and 2 are both atmospheric, and there is no work done by moving partsWm.

We assume that the viscous dissipation term Ev can be neglected. If z is measured upward from

the tube exit, then g2h = g
(
h2 − h1

)
≈ g (h − 0), since planes 2 and 3 are so close together. Thus,

the mechanical energy balance gives

1

2

(
v2
2
− v2

1

)
+ gh = 0 (7.4-9)

We now apply the zmomentum balance between planes 2 and 3. Since the region is very small,

we neglect the last term in Eq. 7.2-3. Both planes are at atmospheric pressure, so that the pres-

sure terms do not contribute. The z component of the fluid velocity is zero at plane 3, so that

there are only two terms left in the momentum balance

mg = v2w2 (7.4-10)

The above three equations can be rearranged to obtain h in terms of known quantities.

Equation 7.4-9 can be rearranged to give

h =
v2
1

2g

(
1 −

v2
2

v2
1

)
(7.4-11)

Solving Eq. 7.4-10 for v2 and inserting the result into Eq. 7.4-11 gives

h =
v2
1

2g

(
1 −

(
mg∕w2

)2
v2
1

)
(7.4-12)

Using Equation 7.4-8, this can be rewritten

h =
v2
1

2g

(
1 −

(
mg
v1w1

)2
)

(7.4-13)

in which mg and v1w1 = 0R2
1
iv2

1
are known. When the numerical values are substituted into

Eq. 7.4-13, we get h = 0.77 m. This is probably a better result than the value of 0.87m obtained

in Example 7.2-1, since it accounts for the spreading of the jet.We have not, however, considered

the clinging of the water to the disk, which gives the disk-rod assembly a somewhat greater

effective mass. In addition, the frictional resistance of the rod in the sleeve has been neglected.

It is necessary to run an experiment in order to assess the validity of Eq. 7.4-13.
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§7.5 ESTIMATION OF THE VISCOUS LOSS

This section is devoted to methods for estimating the viscous loss (or friction loss), Ev,
which appears in the macroscopic mechanical energy balance. The general expression for
Ev is given in Eq. 7.4-4. For incompressible Newtonian fluids, Eq. 3.3-3 may be used to
rewrite Ev as

Ev = ∫ 4Cv dV (7.5-1)

which shows that it is the integral of the local rate of viscous dissipation over the volume
of the entire flow system.

We nowwant to examineEv from the point of view of dimensional analysis. The quan-

tityCv is a sumof squares of velocity gradients; hence, it has dimensions of
(
v0∕l0

)2
, where

v0 and l0 are a characteristic velocity and length, respectively. We can therefore write

Ev =
(
iv3

0
l2
0

)( 4

l0v0i

)
∫ C̆v dV̆ (7.5-2)

where C̆v =
(
l0∕v0

)2Cv and dV̆ = l−3
0

dV are dimensionless quantities. If we make use of
the dimensional arguments of §5.1 and §6.2, we see that the integral in Eq. 7.5-2 depends
only on the various dimensionless groups in the equations of change and on various geo-
metrical factors that enter into the boundary conditions. Hence, if the only significant
dimensionless group is a Reynolds number, Re = l0v0i∕4, then Eq. 7.5-2 must have the
general form

Ev =
(
iv3

0
l2
0

)
×
(
a dimensionless function of Re
and various geometrical ratios

)
(7.5-3)

In steady-state flow we prefer to work with the quantity Êv = Ev∕w, in which w = i ⟨v⟩S is
the mass rate of flow passing through any cross section of the flow system. If we select the

reference velocity v0 to be ⟨v⟩ and the reference length l0 to be
√
S, then we may write

Êv =
1

2
⟨v⟩2ev (7.5-4)

in which ev, the friction-loss factor, is a function of a Reynolds number and relevant

dimensionless geometrical ratios. The factor 1

2
has been introduced in keeping with the

form of several related equations. We now want to summarize what is known about the
friction-loss factor for the various parts of a piping system.

For a straight conduit the friction-loss factor is closely related to the friction factor.
We consider only the steady flow of a fluid of constant density in a straight conduit of
arbitrary, but constant, cross section S and length L. If the fluid is flowing in the z direction
under the influence of a pressure gradient and gravity, then Eqs. 7.2-2 and 7.4-7 become

(z momentum) Ff→s =
(
p1 − p2

)
S + (iSL) gz (7.5-5)(

mechanical energy
)

Êv =
1

i

(
p1 − p2

)
+ Lgz (7.5-6)

Multiplication of the second of these by iS and subtracting gives

Êv =
Ff→s

iS
(7.5-7)

If, in addition, the flow is turbulent, then the expression for Ff→s in terms of the mean
hydraulic radius Rh may be used (see Eqs. 6.2-15 to 6.2-17). Specifically, Eq. 6.2-16 can be
rearranged to give

Ff→s = S2𝒫 = S
(

L
Rh

)(
1

2
i
⟨
vz
⟩2

)
f
(
Reh

)
(7.5-8)
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Table 7.5-1. Brief Summary of Friction-Loss Factors for Use with Eqs. 7.5-11 and 7.5-12

(Approximate Values for Turbulent Flow)a

Disturbances ev

Sudden changes in cross-sectional areab

Rounded entrance to pipe 0.05

Sudden contraction 0.45 (1 − v)

Sudden expansionc

(
1

v
− 1

)2

Orifice (sharp-edged) 2.7 (1 − v)
(
1 − v2

) 1

v2

Fittings and Valves

90∘ elbows (rounded) 0.4–0.9

90∘ elbows (square) 1.3–1.9

45∘ elbows 0.3–0.4

Globe valve (open) 6–10

Gate valve (open) 0.2

aTaken from H. Kramers, Physische Transportverschijnselen, Technische Hogeschool Delft, Holland (1958),

pp. 53–54.
bHere v =

(
smaller cross-sectional area

)
∕
(
larger cross-sectional area

)
.

cSee derivation from the macroscopic balances in Example 7.6-1. If v = 0, then Êv =
1

2
⟨v⟩2, where ⟨v⟩ is the

velocity upstream from the enlargement.

in which f is the friction factor discussed in Chapter 6. Inserting this into Eq. 7.5-7 gives

Êv =
1

2
⟨v⟩2 L

Rh
f
(
Reh

)
(7.5-9)

Since this equation is of the form of Eq. 7.5-4, we get a simple relation between the
friction-loss factor and the friction factor

ev =
L
Rh

f
(
Reh

)
(7.5-10)

for turbulent flow in sections of straight pipe with uniform cross section. For a similar
treatment for conduits of variable cross section, see Problem 7B.2.

Most flow systems contain various “obstacles,” such as fittings, sudden changes in
diameter, valves, or flow meters. These also contribute to the friction loss Êv. Such addi-
tional resistancesmay bewritten in the form of Eq. 7.5-4, with ev determined by one of two
methods: (a) simultaneous solution of the macroscopic balances, or (b) experimental mea-
surement. Some rough values of ev are tabulated in Table 7.5-1 for the convention that ⟨v⟩
is the average velocity downstream from the disturbance. These ev values are for turbulent
flow for which the Reynolds number dependence is not too important.

Now we are in a position to rewrite Eq. 7.4-7 in the approximate form frequently used
for turbulent flow calculations in a system composed of various kinds of piping and addi-
tional resistances:

1

2

(
v2
2
− v2

1

)
+ g

(
h2 − h1

)
+ ∫

p2

p1

1

i
dp = Ŵm −

∑
i

(
1

2
v2 L

Rh
f
(
Reh

))
i

sum over all

sections of

straight conduits

−
∑
i

(
1

2
v2ev

)
i

sum over all

fittings, valves,
meters, etc.

(7.5-11)
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HereRh is themean hydraulic radius defined in Eq. 6.2-15, f is the friction factor defined in
Eq. 6.1-4, and ev is the friction-loss factor given in Table 7.5-1. Note that the v1 and v2 in the
first term refer to the velocities at planes 1 and 2; the v in the first sum is the average velocity
in the ith pipe segment; and the v in the second sum is the average velocity downstream
from the ith fitting, valve, or other obstacle.

For the special case of turbulent flow in tubes of circular cross section (diameter D), the
mean hydraulic radius is not needed, and Eq. 7.5-11 may be rewritten

1

2

(
v2
2
− v2

1

)
+ g

(
h2 − h1

)
+ ∫

p2

p1

1

i
dp = Ŵm −

∑
i

(
2v2 L

D
f (Re)

)
i

sum over all

sections of

straight conduits

−
∑
i

(
1

2
v2ev

)
i

sum over all

fittings, valves,
meters, etc.

(7.5-12)

EXAMPLE 7.5-1

Power Requirement for
Pipeline Flow

What is the required power output from the pump at steady state in the system shown in

Fig. 7.5-1? The water at 68∘F (i = 62.4 lbm∕ft
3
; 4 = 1 cp) is to be delivered to the upper tank

at a rate of 12 ft
3∕min. All of the piping is 4-in. internal diameter smooth circular pipe.

SOLUTION

As indicated in Fig. 7.5-1, we select planes 1 and 2 as the liquid surfaces within the tanks. With

these selections, the velocities at the entrance and exit are negligible (assuming that the tank

surface area is much larger than the pipe cross-sectional area), and the pressures at the entrance

and exit are atmospheric pressure. Thus, the first and third terms in Eq. 7.5-12 will be zero. The

remaining terms are calculated as follows.

The average velocity in the pipe is (see Eq. 7.1-2)

⟨v⟩ = w
iS

=
Q
0R2

=

(
12 ft

3∕min
)

0(2 in.)2

(
1 min

60 s

)(
12 in.

ft

)2

= 2.29
ft

s
(7.5-13)

and the Reynolds number is

Re =
D ⟨v⟩ i

4

=
(
4 in.

) (
2.29 ft∕s

) (
62.4 lbm∕ft

3)(
1 cp

) (
1 ft

12 in.

)(
1 cp

6.72 × 10−4 lbm∕ft ⋅ s

)
= 7.09 × 104 (7.5-14)

Hence, the flow is turbulent. For this value of Re, the Blasius formula for the friction factor

(Eq. 6.2-12) gives f = 0.0048.

Plane 1

Plane 2

g

5'

Pump

300'

100'

20'

120'

90° elbow

Fig. 7.5-1. Pipeline
flow with friction losses

because of fittings.

Planes 1 and 2 are just

under the surface of the

liquid.
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The contribution to Êv from the various lengths of pipe will be (see Eq. 7.5-12)∑
i

(
2v2 L

D
f (Re)

)
i
=

2v2f
D

∑
i

Li

=
2
(
2.29 ft∕s

)2 (0.0048)
(4 in.)

[
(5 + 300 + 100 + 120 + 20) ft

](12 in.

1 ft

)
= 82

ft
2

s2
(7.5-15)

The contribution to Êv from the sudden contraction
(
ev = 0.45

)
, the three 90∘ elbows (ev = 0.5

for each), and the sudden expansion (ev = 1; see Table 7.5-1) will be∑
i

(
1

2
v2ev

)
i

= 1

2

(
2.29

ft

s

)2 [
0.45 + 3 (0.5) + 1

]
= 8

ft
2

s2
(7.5-16)

Then from Eq. 7.5-12 we get

0 +
(
32.2

ft

s2

)[
(85 − 0) ft

]
+ 0 = Ŵm − 82

ft
2

s2
− 8

ft
2

s2
(7.5-17)

Solving for Ŵm we get

Ŵm = (2740 + 82 + 8) ft
2

s2
= 2830

ft
2

s2
(7.5-18)

This is the work per unit mass of fluid done on the fluid in the pump. It may not be obvious

that a quantity with units ft
2∕s2 has the dimensions of energy/mass. To convert this quantity

to more familiar units, we can use the definition of the lbf , 1 lbf ≡ 32.2 lbm ⋅ ft∕s2 (e.g., consider
Newton’s law of motion, F = ma). Hence, Ŵm can be rewritten

Ŵm = 2830
ft
2

s2

(
1 lbf

32.2 lbm ⋅ ft∕s2

)
= 88

ft ⋅ lbf

lbm

(7.5-19)

Hence, the pump does 88 ft ⋅ lbf∕lbm of work on the fluid passing through the system. Themass

rate of flow is

w = iQ =
(
62.4

lbm

ft
3

)(
12

ft
3

min

)(
1 min

60 s

)
= 12.5

lbm

s
(7.5-20)

Consequently, the rate of work on the fluid is, in various units,

Wm = wŴ =

(
12.5

lbm

s

)(
88

ft ⋅ lbf

lbm

)
= 1100

ft ⋅ lbf

s

= 1100
ft ⋅ lbf

s

(
1 hp ⋅ hr

1.98 × 106 ft ⋅ lbf

)(
3600 s

hr

)
= 2.0 hp

= 2.0 hp

(
2.6845 × 106 J

1 hp ⋅ hr

)(
1 hr

3600 s

)(
10−3 kW

1 J∕s

)
= 1.5 kW (7.5-21)

which is the power delivered by the pump.

§7.6 USE OF THEMACROSCOPIC BALANCES FOR SOLVING
PROBLEMS

In §3.7 it was shown how to set up the differential equations to calculate the velocity and
pressure profiles for isothermal flow systems by simplifying the equations of change. In
this section, in Examples 7.6-1 to 7.6-5, we show how to use the set of steady-state macro-
scopic balances to obtain the algebraic equations for describing large systems.
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Table 7.6-1. Steady-State Macroscopic Balances for Turbulent Flow in Isothermal Systems

Mass:
∑

w1 −
∑

w2 = 0 (A)

Momentum:
∑(

v1w1 + p1S1

)
u1 −

∑(
v2w2 + p2S2

)
u2 +mtotg = Ff→s (B)

Angular momentum:
∑(

v1w1 + p1S1

) [
r1 × u1

]
−

∑(
v2w2 + p2S2

) [
r2 × u2

]
+ Text = Tf→s (C)

Mechanical energy:
∑(

1

2
v2
1
+ gh1 +

p1
i1

)
w1−

∑(
1

2
v2
2
+ gh2 +

p2
i2

)
w2 = −Wm + Ec + Ev (D)

Notes:
aAll formulas here assume flat velocity profiles.

b
∑

w1 = w1a + w1b + w1c + · · ·, where w1a = i1av1aS1a, etc.
ch1 and h2 are elevations above an arbitrary datum plane.
dAll equations are written for compressible flow; for incompressible flow, Ec = 0.

For each problem, we start with the four macroscopic balances. By keeping track of
the discarded or approximated terms, we automatically have a complete listing of the
assumptions inherent in the final result. All of the examples given here are for isothermal,
incompressible flow. The incompressibility assumptionmeans that the velocity of the fluid
must be less than the velocity of sound in the fluid and that the pressure changes must be
small enough that the resulting density changes can be neglected.

The steady-state macroscopic balances may be easily generalized for systems with
multiple inlet streams (called 1a, 1b, 1c, …) and multiple outlet streams (called 2a, 2b, 2c,
…). These balances are summarized in Table 7.6-1 for turbulent flow (where the velocity
profiles are regarded as flat).

Finally, in Example 7.6-6,we illustrate the solution of an unsteady-state problemusing
the time-dependent macroscopic balances.

EXAMPLE 7.6-1

Pressure Rise and
Friction Loss in a
Sudden Enlargement

An incompressible fluid flows from a small circular tube into a large tube in turbulent flow, as

shown in Fig. 7.6-1. The cross-sectional areas of the tubes are S1 and S2. Obtain an expression

for the pressure change between 1 and 2 and for the friction loss associated with the sudden

enlargement in cross section. Let v = S1∕S2, which is less than unity.

SOLUTION

(a) Mass balance. For steady flow the mass balance gives

w1 = w2 or i1v1S1 = i2v2S2 (7.6-1)

For a fluid of constant density, this gives

v1
v2

= 1

v
(7.6-2)

(b) Momentum balance.We define the z direction as the tube axes in the direction of flow. We

assume that the system volume is small so that the force of gravity can be neglected, so that the

z component of the momentum balance is

Ff→s =
(
v1w1 − v2w2

)
+

(
p1S1 − p2S2

)
(7.6-3)

The axial force Ff→s can also be calculated directly from the molecular stresses. This force is

composed of two parts: the viscous force on the cylindrical surfaces parallel to the direction
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Plane 1

Cylindrical tube
of cross-sectional

area S1 Cylindrical tube
of cross-sectional

area S2

"Washer-shaped"
surface of area

S2 – S1

Plane 2

O

Fig. 7.6-1. Flow through a sudden

enlargement.

of flow, and the pressure force on the “washer-shaped” surface just to the right of 1 and per-

pendicular to the flow axis. We neglect the viscous force contribution because (1) the surface

area of the cylindrical surface is small, and (2) the recirculation flow in the corners illustrated

in Fig. 7.6-1 implies that the wall shear stress changes sign along the axial direction and thus

the shear stresses on the left half partly cancel the shear stresses on the right half. We take the

pressure force to be p1
(
S2 − S1

)
by assuming that the pressure on the washer-shaped surface

is the same as that at plane 1.

We then get, by using Eq. 7.6-1,

−p1
(
S2 − S1

)
= iv2S2

(
v1 − v2

)
+

(
p1S1 − p2S2

)
(7.6-4)

Solving for the pressure difference gives

p2 − p1 = iv2
(
v1 − v2

)
(7.6-5)

This equation can be written in terms of the downstream velocity by using Eq. 7.6-2

p2 − p1 = iv2
2

(
1

v
− 1

)
(7.6-6)

Note that the momentum balance predicts (correctly) a rise in pressure. Onemight expect a rise

in pressure because fast-moving fluid at plane 1 “runs into” slow-moving fluid; this creates an

increase in pressure and thus a net force in the flow direction much like a water jet impinging

on a surface generates a force in the flow direction.

(c) Angularmomentum balance. This balance is not needed. If we take the origin of coordinates

on the axis of the system at the center of gravity of the fluid located between planes 1 and 2,

then
[
r1 × u1

]
and

[
r2 × u2

]
are both zero, and there are no torques on the fluid system.

(d) Mechanical energy balance. There is no compressive loss, no work done via moving parts,

and negligible elevation change, so that the mechanical energy balances simplifies to

Êv =
1

2

(
v2
1
− v2

2

)
+ 1

i

(
p1 − p2

)
(7.6-7)

Insertion of Eq. 7.6-6 for the pressure rise then gives, after some rearrangement,

Êv =
1

2
v2
2

(
1

v
− 1

)2

(7.6-8)

which produces the entry for ev for a sudden enlargement in Table 7.5-1.

This example has shown how to use the macroscopic balances to estimate the friction-loss

factor for a simple resistance in a flow system. Because of the assumptions mentioned after Eq.

7.6-3, the results in Eqs. 7.6-6 and 7.6-8 are approximate. If great accuracy is needed, a correction

factor based on experimental data should be introduced.
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EXAMPLE 7.6-2

Performance of a
Liquid-Liquid Ejector

A diagram of a liquid-liquid ejector is shown in Fig. 7.6-2. It is desired to analyze the mixing of
the two streams, both of the same fluid, by means of the macroscopic balances. At plane 1 the

two fluid streams merge. Stream 1a has a velocity v0 and a cross-sectional area 1

3
S1, and stream

1b has a velocity 1

2
v0 and a cross-sectional area 2

3
S1. Plane 2 is chosen far enough downstream so

that the two streams have mixed and the velocity is almost uniform at v2. The flow is turbulent
and the velocity profiles at 1 and 2 are assumed to be flat. In the following analysis Ff→s is
neglected, since it is felt that it is less important than the other terms in themomentum balance.

SOLUTION

(a) Mass balance. At steady state, Eq. (A) of Table 7.6-1 gives

w1a + w1b = w2 (7.6-9)

or

iv0

(
1

3
S1

)
+ i

(
1

2
v0

)(
2

3
S1

)
= iv2S2 (7.6-10)

Hence, since S1 = S2, this equation gives

v2 =
2

3
v0 (7.6-11)

for the velocity of the exit stream. We also note, for later use, that w1a = w1b =
1

2
w2.

(b) Momentum balance. From Eq. (B) of Table 7.6-1, the component of the momentum balance
in the flow direction is (

v1aw1a + v1bw1b + p1S1

)
−

(
v2w2 + p2S2

)
= 0 (7.6-12)

or using the relation at the end of (a)(
p2 − p1

)
S2 =

(
1

2

(
v1a + v1b

)
− v2

)
w2

=
(
1

2

(
v0 +

1

2
v0
)
− 2

3
v0

)(
i
(
2

3
v0
)
S2

)
(7.6-13)

which can be simplified to give

p2 − p1 =
1

18
iv2

0
(7.6-14)

This is the expression for the pressure rise resulting from the mixing of the two streams.

(c) Angular momentum balance. This balance is not needed.

(d) Mechanical energy balance. Equation (D) of Table 7.6-1 gives:(
1

2
v2
1aw1a +

1

2
v2
1bw1b

)
−

(
1

2
v2
2
+

p2 − p1
i

)
w2 = Ev (7.6-15)

or, using the relation at the end of (a), we get(
1

2
v2
0

(
1

2
w2

)
+ 1

2

(
1

2
v0

)2 (
1

2
w2

))
−

(
1

2

(
2

3
v0

)2

+ 1

18
v2
0

)
w2 = Ev (7.6-16)

v0

v0/2 v2

Plane 1 Plane 2

Stream 1b

Stream 1a

Fig. 7.6-2. Flow in a

liquid-liquid ejector pump.
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Hence,

Êv =
Ev

w2

= 5

144
v2
0

(7.6-17)

is the energy dissipation per unit mass. The foregoing analysis gives fairly good results for
liquid-liquid ejector pumps. In gas-gas ejectors, however, the density varies significantly and
it is necessary to include the macroscopic total-energy balance as well as an equation of state
in the analysis. This is discussed in Example l5.3-2.

EXAMPLE 7.6-3

Thrust on a Pipe Bend

Water at 95∘C is flowing at a rate of 2.0 ft3∕s through a 60∘ bend, in which there is a contraction
from 4-in. to 3-in. internal diameter (see Fig. 7.6-3). Compute the force exerted on the bend
if the pressure at the downstream end is 1.1 atm. The density and viscosity of water at the
temperature of the system are 0.962 g∕cm3 and 0.299 cp, respectively.

SOLUTION

The Reynolds number for the flow in the 4-in. pipe is

Re =
D ⟨v⟩ i

4
= 4w

0D4
=

4Qi

0D4

=
4
(
2 ft

3∕s
) (

0.962 g∕cm3
)

0 (4 in.)
(
0.299 cp

) (
12 in.

ft

)3(
2.54 cm

in.

)2 ( 1 cp

10−2 g∕cm ⋅ s

)
= 2.3 × 106 (7.6-18)

At this Reynolds number the flow is highly turbulent, and the assumption of flat velocity pro-
files is reasonable.

(a) Mass balance. For steady-state flow w1 = w2. If the density is constant throughout,

v1
v2

=
S2

S1

= v (7.6-19)

in which v is the ratio of the smaller to the larger cross section.

(b) Mechanical energy balance. For steady, incompressible flow, Eq. (D) of Table 7.6-1 becomes,
for this problem,

1

2

(
v2
2
− v2

1

)
+ g

(
h2 − h1

)
+ 1

i

(
p2 − p1

)
+ Êv = 0 (7.6-20)

According to Table 7.5-1, the friction-loss factors for rounded elbows from 45∘ to 90∘ range
from 0.3 to 0.9. Since a 60∘ elbow is closer to the lower end of this range, we estimate ev = 0.4.
According to Eq. 7.5-4, the friction loss Êv is thus approximately 1

2
v2
2
(0.4) = 0.2v2

2
. Inserting this

Fluid in

Fluid out 

α = 52°

O
x

y

Plane 1

g

Plane 2

θ = 60°

Force exerted by
fluid on elbow

4" internal
diameter

3" internal
diameter

Fig. 7.6-3. Reaction force at a reducing

bend in a pipe.
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into Eq. 7.6-20 and using the mass balance we get

p1 − p2 = iv2
2

(
1

2
− 1

2
v2 + 0.2

)
+ ig

(
h2 − h1

)
(7.6-21)

This is the pressure drop through the bend in terms of the known velocity v2 and the known

geometrical factor v.

(c) Momentum balance.We now have to consider both the x and y components of the momen-

tum balance. The inlet and outlet unit vectors will have x and y components given by: u1x = 1,

u1y = 0, u2x = cos p, and u2y = sin p.
The x component of the momentum balance then gives

Fx =
(
v1w1 + p1S1

)
−

(
v2w2 + p2S2

)
cos p (7.6-22)

where Fx is the x component of Ff→s. Using w = ivS for each plane, we get

Fx = v1
(
iv1S1

)
− v2

(
iv2S2

)
cos p + p1S1 − p2S2 cos p

= iv2
2
S2 (v − cos p) +

(
p1 − p2

)
S1 + p2

(
S1 − S2 cos p

)
(7.6-23)

Substituting into this the expression for p1 − p2 from Eq. 7.6-21 gives

Fx = iv2
2
S2 (v − cos p) + iv2

2
S2v

−1
(
0.7 − 1

2
v2
)

+ ig
(
h2 − h1

)
S2v

−1 + p2S2

(
v−1 − cos p

)
= w2

(
iS2

)−1 (
0.7v−1 − cos p + 1

2
v

)
+ ig

(
h2 − h1

)
S2v

−1 + p2S2

(
v−1 − cos p

)
(7.6-24)

The y component of the momentum balance is

Fy = −
(
v2w2 + p2S2

)
sin p −mtotg (7.6-25)

or

Fy = −w2
(
iS2

)−1
sin p − p2S2 sin p − 0R2Lig (7.6-26)

in which R and L are the radius and length of a cylinder of equivalent volume.

We now have the components of the reaction force in terms of known quantities. The

numerical values needed are:

i = 60
lbm

ft
3

cos p = 1

2

w =
(
2.0

ft
3

s

)(
60

lbm

ft
3

)
= 120

lbm

s
sin p =

√
3

2

S2 = 0

(
1.5 in. ×

(
1 ft

12 in.

))2

= 0.049 ft2 R ≈ 1

8
ft

v =
S2

S1

=
(
3 in.
4 in.

)2

= 0.562 L ≈ 5

6
ft

p2 = 1.1 atm

(
14.7 lbf∕in.2

1 atm

)
= 16.2

lbf

in.2
h2 − h1 ≈

1

2
ft

(Values for R, L and h2 − h1 are only estimates.) With these values we then get

Fx =
(
120 lbm∕s

)2(
60 lbm∕ft

3
)(

0.049 ft
2
) (

1 lbf

32.2 lbm ⋅ ft∕s2

)(
0.7 × 1

0.562
− 1

2
+ 1

2
× 0.562

)

+
(
60

lbm

ft
3

)(
32.2

ft

s2

)(
1

2
ft

)(
0.049 ft2

)(
1

0.562

)(
1 lbf

32.2 lbm ⋅ ft∕s2

)
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+

(
16.2

lbf

in.2

)(
0.049 ft2

)(
1

0.562
− 1

2

)(
12 in.

ft

)2

= (155 + 2.6 + 146) lbf = 304 lbf

(
1 N

0.224881 lbf

)
= 1352 N (7.6-27)

Fy = −
(
120 lbm∕s

)2(
60 lbm∕ft

3
)(

0.049 ft
2
) (

1 lbf

32.2 lbm ⋅ ft∕s2

)(√
3

2

)

−

(
16.2

lbf

in.2

)(
0.049 ft

2
)(√

3

2

)(
12 in.

ft

)2

−0
(
1

8
ft

)2(
5

6
ft

)(
60

lbm

ft
3

)(
32.2

ft

s2

)(
1 lbf

32.2 lbm ⋅ ft∕s2

)

= (−132 − 99 − 2.5) lbf = −234 lbf

(
1 N

0.224881 lbf

)
= −1041 N (7.6-28)

Hence, the magnitude of the force is

|F| = √
F2
x + F2

y =
√(

304 lbf

)2

+
(
234 lbf

)2

= 384 lbf

(
1 N

0.224881 lbf

)
= 1708 N (7.6-29)

The angle that this force makes with the vertical is

w = tan−1

(|||||Fx

Fy

|||||
)

= tan−11.30 = 52∘ (7.6-30)

In looking back over the calculation, we see that all the effects we have included are important,

with the possible exception of the gravity terms of 2.6 lbf in Fx and 2.5 lbf in Fy.

EXAMPLE 7.6-4

The Impinging Jet

A rectangular incompressible fluid jet of thickness b1 emerges from a slot of width c, hits a flat
plate, and splits into two streams of thicknesses b2a and b2b as shown in Fig. 7.6-4. The emerging

turbulent jet stream has a velocity v1 and amass flow ratew1. Find the velocities andmass rates

of flow in the two streams on the plate.1

SOLUTION

We neglect viscous dissipation and gravity, and assume that the velocity profiles of all three

streams are flat and that their pressures are equal. The macroscopic balances then give

(a) Mass balance.
w1 = w2a + w2b (7.6-31)

(b) Momentum balance (in the direction parallel to the plate).

v1w1 cos p = v2aw2a − v2bw2b (7.6-32)

(c) Mechanical energy balance.

1

2
v2
1
w1 =

1

2
v2
2aw2a +

1

2
v2
2bw2b (7.6-33)

1For alternative solutions to this problem, see G. K. Batchelor, An Introduction to Fluid Dynamics,
Cambridge University Press (1967), pp. 392–394, and S. Whitaker, Introduction to Fluid Dynamics,
Prentice-Hall, Englewood Cliffs, NJ (1968), p. 260. An application of the compressible impinging jet

problem has been given by J. V. Foa, U.S. Patent 3,361,336 (Jan. 2, 1968). There, use is made of the fact that

if the slot-shaped nozzle moves to the left in Fig. 7.6-4 (i.e., left with respect to the plate), then, for a

compressible fluid, the right stream will be cooler than the jet and the left stream will be warmer.



Trim Size: 8in x 10in Bird1e c07.tex V1 - October 30, 2014 1:58 P.M. Page 206

206 Chapter 7 Macroscopic Balances for Isothermal Flow Systems

Velocity v2b
Velocity v2a

Mass rate of flow
w2b

Plate
Mass rate of flow

w2a

Mass rate of flow w1

c

c

c

b1

Slot-shaped
nozzle

Fluid emerges
from jet with
velocity v1

b2ab2b

θ

g

Fig. 7.6-4. Jet impinging on a wall and splitting into two streams. The point O, which is the

origin of coordinates for the angular momentum balance, is taken to be the intersection of the

center line of the incoming jet and a plane, which is at an elevation 1

2
b1 above the flat plate.

(d) Angular momentum balance. (put the origin of coordinates on the center line of the jet

and at an elevation of 1

2
b1 above the flat plate; this is done so that there will be no angular

momentum of the incoming jet)

0 =
(
v2aw2a

)
⋅
1

2

(
b1 − b2a

)
−

(
v2bw2b

)
⋅
1

2

(
b1 − b2b

)
(7.6-34)

This last equation can be rewritten to eliminate the b’s in favor of thew’s. Sincew1 = iv1b1c and
w2a = iv2ab2ac, we can replace b1 − b2a by

(
w1∕iv1c

)
−

(
w2a∕iv2ac

)
, and replace b1 − b2b with the

corresponding expression. Then the angular momentum balance becomes, after multiplying

by ic, (
v2aw2a

)(w1

v1
−

w2a

v2a

)
=

(
v2bw2b

)(w1

v1
−

w2b

v2b

)
(7.6-35)

or

w2
2a − w2

2b =
w1

v1

(
v2aw2a − v2bw2b

)
(7.6-36)

Now Eqs. 7.6-31 to 7.6-33, and 7.6-36 are four equations with four unknowns. When these

are solved we find that
v2a = v1; w2a =

1

2
w1 (1 + cos p) (7.6-37,38)

v2b = v1; w2b =
1

2
w1 (1 − cos p) (7.6-39,40)

Hence, the velocities of all three streams are equal. The same result is obtained by applying the

classical Bernoulli equation for the flow of an inviscid fluid (see Example 3.3-1).

EXAMPLE 7.6-5

Isothermal Flow of a
Liquid through an
Orifice

A commonmethod for determining themass rate of flow through a pipe is tomeasure the pres-

sure drop across some “obstacle” in the pipe. An example of this is the orifice, which is a thin

plate with a hole in the middle (the cross-sectional area of the hole is S0). There are pressure

taps at planes 1 and 2, upstream and downstream of the orifice plate. Figure 7.6-5(a) shows the

orifice meter, the pressure taps, and the general behavior of the velocity profiles as observed

experimentally. The velocity profile at plane 1 will be assumed to be flat. In Fig. 7.6-5(b) we

show an approximate velocity profile at plane 2, which we use in the application of the macro-

scopic balances. The standard orifice-meter equation is obtained by applying the steady-state

macroscopic mass and mechanical energy balances.
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Plane 2

Plane 0

Plane 0

Plane 1 Manometer Plane 2

v0

S1 = cross section of pipe = S2

S0 = cross section of hole

(a)

(b)

Fig. 7.6-5. (a) A sharp-edged orifice, showing the approximate velocity profiles at several

planes near the orifice plate. The fluid jet emerging from the hole is somewhat smaller than

the hole itself. In highly turbulent flow, this jet necks down to a minimum cross section at the

vena contracta. The extent of this necking down can be given by the contraction coefficient,
Cc =

(
Svena contracta∕S0

)
. According to inviscid-flow theory, Cc = 0∕ (0 + 2) = 0.611 if S0∕S1 = 0

(H. Lamb, Hydrodynamics, Dover, New York (1945), p. 99). Note that there is some back flow

near the wall. (b) Approximate velocity profile at 2 used to estimate
⟨
v3
2

⟩
∕
⟨
v2
⟩
.

SOLUTION

(a) Mass balance. For a fluid of constant density with a system for which S1 = S2 = S, the
steady-state mass balance in Eq. 7.1-4 gives⟨

v1
⟩
=

⟨
v2
⟩

(7.6-41)

With the assumed flat velocity profiles this becomes

v1 =
S0

S
v0 (7.6-42)

where v0 is the velocity in the orifice. The mass rate of flow is w = iv1S.

(b) Mechanical energy balance. For a constant-density fluid in a flow systemwith no elevation

change and no moving parts, Eq. 7.4-7 gives

1

2

⟨
v3
2

⟩⟨
v2
⟩ − 1

2

⟨
v3
1

⟩⟨
v1
⟩ +

p2 − p1
i

+ Êv = 0 (7.6-43)
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The viscous loss Êv is neglected, even though it is certainly not equal to zero. With the assumed
flat velocity profiles, Eq. 7.6-43 then becomes

1

2

(
v2
0
− v2

1

)
+

p2 − p1
i

= 0 (7.6-44)

When Eqs. 7.6-42 and 7.6-44 are combined to eliminate v0, we can solve for v1 to get

v1 =

√√√√2
(
p1 − p2

)
i

1(
S∕S0

)2 − 1
(7.6-45)

We can now multiply by iS to get the mass rate of flow. Then to account for the errors intro-
duced by neglecting Êv and by the assumptions regarding the velocity profiles, we include a
discharge coefficient, Cd, and obtain

w = CdS0

√√√√2i
(
p1 − p2

)
1 −

(
S0∕S

)2 (7.6-46)

Experimental discharge coefficients have been correlated as a function of S0∕S and theReynolds
number.2 For Reynolds numbers greater than 104, Cd approaches about 0.61 for all practical
values of S0∕S.

This example has illustrated the use of the macroscopic balances to get the general form
of the result, which is then modified by introducing a multiplicative function of dimension-
less groups to correct for errors introduced by unwarranted assumptions. This combination of
macroscopic balances and dimensional considerations is often used and can be quite useful.

EXAMPLE 7.6-6

Acceleration Effects in
Unsteady Flow from a
Cylindrical Tank

An open cylinder of height H and radius R is initially entirely filled with a liquid. For all times
t > 0, the liquid is allowed to drain out through a small hole of radius R0 at the bottom of the
tank (see Fig. 7.6-6).

(a) Find the efflux time by using the unsteady-state mass balance and by assuming Torricelli’s
equation (see Example 3.3-2) to describe the relation between efflux velocity and the instanta-
neous height of the liquid.

(b) Find the efflux time using the unsteady-state mass and mechanical energy balances.

SOLUTION

(a) We apply Eq. 7.1-3 to the system in Fig. 7.6-6, taking plane 1 to be at the top of the tank (so
that w1 = 0). If the instantaneous liquid height is h (t), then

d
dt

(
0R2hi

)
= −iv2

(
0R2

0

)
(7.6-47)

Here we have assumed that the velocity profile at plane 2 is flat. According to Torricelli’s

equation v2 =
√
2gh, so that Eq. 7.6-47 becomes

dh
dt

= −
(
R0

R

)2√
2gh (7.6-48)

2G. L. Tuve and R. E. Sprenkle, Instruments, 6, 202–205, 225, 232–234 (1935); see also R. H. Perry and

T. H. Chilton, Chemical Engineers’ Handbook, McGraw-Hill, New York, 5th edition (1973), Fig. 5–18; Fluid
Meters: Their Theory and Applications, 6th edition, American Society of Mechanical Engineers, New York

(1971), pp. 58–65; Measurement of Fluid Flow Using Small Bore Precision Orifice Meters, American

Society of Mechanical Engineers, MFC-14-M, New York (1995). Thomas Hamilton Chilton (1899–1972)

had his entire professional career at the E. I. du Pont de Nemours Company, Inc., in Wilmington,

Delaware; he was president of AIChE in 1951. After “retiring” he was a guest professor at a dozen or so

universities.
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H
h

R

Outlet of radius R0

Fig. 7.6-6. Flow out of a cylindrical tank.

When this is integrated from t = 0 to t = tefflux, we get

tefflux =

√
2NH
g

(7.6-49)

in whichN =
(
R∕R0

)4
≫ 1 andH is the initial height of the liquid in the tank. This is effectively

a quasi-steady-state solution, since we have used the unsteady-state mass balance along with

Torricelli’s equation, which was derived for a steady-state flow.

(b) Wenowuse Eq. 7.6-47 and themechanical energy balance in Eq. 7.4-2. In the latter, the terms

Wm and Ec are identically zero, and we assume that Ev is negligibly small, since the velocity

gradients in the system will be small. We take the datum plane for the potential energy to be

at the bottom of the tank, so that Ĉ2 = gz2 = 0. Because w1 = 0, the “entrance” terms do not

contribute, i.e.,
(⟨

v3
⟩
∕2 ⟨v⟩ + Ĉ + p∕i

)
1
w1 = 0.

To get the total kinetic energy in the system at any time t, we have to know the velocity of

every fluid element in the tank. At every point in the tank, we assume that the fluid is moving

downward at the same velocity, namely, vz = dh∕dt = −v2
(
R0∕R

)2
so that the kinetic energy per

unit volume is everywhere 1

2
iv2

2

(
R0∕R

)4
.

To get the total potential energy in the system at any time t, we have to integrate the poten-

tial energy per unit volume igz over the volume of fluid from 0 to h. This gives 0R2ig
(

1

2
h2
)
.

Therefore, the mechanical energy balance in Eq. 7.4-2 becomes

d
dt

[(
0R2h

)(1

2
iv2

2

)(
R0∕R

)4 + 0R2ig
(
1

2
h2
)]

= −1

2
v2
2

(
iv20R

2
0

)
(7.6-50)

The unsteady-state mass balance is the same as in part (a), and thus, v2 = −
(
R∕R0

)2 (dh∕dt).
When this is inserted into Eq. 7.6-50, we get (after dividing by

(
1

2
0R2ig

)
dh∕dt)

2hd
2h
dt2

− (N − 1)
(
dh
dt

)2

+ 2gh = 0 (7.6-51)

This is to be solved with the two initial conditions:

I.C. 1 ∶ at t = 0, h = H (7.6-52)

I.C. 2 ∶ at t = 0, dh
dt

= −
(
R0∕R

)2√
2gH (7.6-53)

where in the second of these we have assumed that Torricelli’s equation can be used for the

initial value of v2.
The second-order differential equation for h can be converted to a first-order equation for

the function u (h) by making the change of variable (dh∕dt)2 = u. The first term of Eq. 7.6-51

becomes

2hd
2h
dt2

= 2h d
dt

(√
u
)
= 2h

(
1

2
u−1∕2 du

dt

)
= hu−1∕2 du

dh
dh
dt

= hdu
dh

(7.6-54)
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so that Eq. 7.6-51 becomes

hdu
dh

− (N − 1) u + 2gh = 0 (7.6-55)

The solution to this first-order ordinary differential equation is3

u = ChN−1 + 2gh∕ (N − 2) (7.6-56)

whereC is a constant of integration. To verify that this is the solution to the differential equation,

we substitute Eq. 7.6-56 into Eq. 7.6-55 to get

h
[
C (N − 1) hN−2 +

2g
N − 2

]
− (N − 1)

[
ChN−1 +

2gh
N − 2

]
+ 2gh = 0 (7.6-57)

We then see that the terms containing C and those containing g separately sum to zero

g-terms ∶
2gh
N − 2

− (N − 1)
2gh
N − 2

+ N − 2

N − 2
2gh = 0 (7.6-58)

C-terms ∶ C (N − 1) hN−1 − (N − 1)ChN−1 = 0 (7.6-59)

We now apply the second initial condition (Eq. 7.6-53), to evaluate the constant of integration

C =
2g

HN−2

(
1

N
− 1

N − 2

)
= −

4g
HN−2

(
1

N (N − 2)

)
(7.6-60)

Even though the factor containing (N − 2) would cause C to become infinite for N = 2, this

need cause no alarm, sinceN =
(
R∕R0

)4
is going to be a large number, i.e., when the outlet hole

radius is small compared to the radius of the tank.

Now we take the square root of Eq. 7.6-56. Using
√
u = dh∕dt and C inserted, and intro-

ducing the dimensionless liquid height q = h∕H, we get

dq
dt

= ±

√
2g

(N − 2)H

√(
q − 2

N
qN−1

)
(7.6-61)

We then choose the minus sign, because we know that the height of the fluid will be decreasing

with time, and therefore, dq∕dtmust be negative. To get the efflux time, we integrate Eq. 7.6-61

from t = 0 when q = 1 (full tank) to t = tefflux (empty tank)

tefflux = ∫
tefflux

0

dt =

√
(N − 2)H

2g ∫
1

0

1√
q − (2∕N) qN−1

dq ≡
√

NH
2g

d (N) (7.6-62)

Keep inmind that tefflux =
√
NH∕2g is the quasi-steady-state solution in Eq. 7.6-49—the solution

that wewould expect to be valid whenN is extremely large, i.e., for the case that the outlet hole

is so small that the system is never very far from steady state. The function d (N) represents the
deviation from the quasi-steady-state solution, and is given by

d (N) = 1

2

√
N − 2

N ∫
1

0

1√
q − (2∕N) qN−1

dq (7.6-63)

This integral can probably not be performed analytically. However, in the expression under the

square-root sign, for largeN, the first termwill predominate over the range of integration (from

q = 0 to q = 1). Therefore, we take the first term outside of the radical and write

d (N) = 1

2

√
N − 2

N ∫
1

0

1√
q

(
1 − 2

N
qN−2

)−1∕2

dq (7.6-64)

3See E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen, Chelsea Publishing Company,

New York (1948), p. 311, #1.94; G. M. Murphy, Ordinary Differential Equations and Their Solutions, Van
Nostrand, Princeton, NJ (1960) p. 236, #157.
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The quantity to the − 1

2
power can then be expanded in a Taylor series (see Eq. C.2-1) about

(2∕N) qN−2 = 0 to get, after integrating term by term,

d (N) = 1

2

√
N − 2

N ∫
1

0

1√
q

[
1 + 1

1!
1

2

(
2

N
qN−2

)
+ 1

2!
1

2

3

2

(
2

N
qN−2

)2

+ · · ·

]
dq

= 1

2

√
N − 2

N

⎛⎜⎜⎜⎜⎝
2 + 1

N
(
N − 3

2

) + 3

4N2

(
N − 7

4

) + · · ·

⎞⎟⎟⎟⎟⎠
(7.6-65)

When this expression is expanded in a Taylor series around 1∕N = 0, we get

d (N) =
[
1 − 1

N
− 1

2

1

N2
+O

(
1

N3

)]
+ 1

2

[
1

N2
+O

(
1

N3

)]
+ 3

8

[
O
(

1

N3

)]
+ · · ·

= 1 − 1

N
+O

(
1

N3

)
(7.6-66)

in which O () means “term of the order of ( ).” Since N =
(
R∕R0

)4
≫ 1, it is evident that the

factor d (N) differs only very slightly from unity.

It is instructive now to return to Eq. 7.6-50 and omit the term describing the change in total

kinetic energy with time. If this is done, one obtains exactly the expression for efflux time in

Eq. 7.6-49 (or Eq. 7.6-62, with d (N) = 1). We can therefore conclude that in this type of problem,

the change in kinetic energy with time can safely be neglected.

§7.7 DERIVATION OF THEMACROSCOPIC MECHANICAL ENERGY
BALANCE1

In Eq. 7.4-2 the macroscopic mechanical energy balance was presented without proof. In
this section we show how the equation is obtained by integrating the equation of change
for mechanical energy (Eq. 3.3-2 ) over the entire volume of the flow system of Fig. 7.0-1.
We begin by doing the formal integration:

∫V(t)

𝜕
𝜕t

(
1

2
iv2 + iĈ

)
dV = −∫V(t)

(
∇ ⋅

(
1

2
iv2 + iĈ

)
v
)

dV

−∫V(t)

(
∇ ⋅ pv

)
dV − ∫V(t)

(∇ ⋅ [f ⋅ v]) dV

+∫V(t)
p (∇ ⋅ v) dV + ∫V(t)

(f ∶ ∇v) dV (7.7-1)

Next we apply the three-dimensional Leibniz formula (Eq. A.5-4) to the left side and the
Gauss divergence theorem (Eq. A.5-1) to terms 1, 2, and 3 on the right side.

d
dt∫V(t)

(
1

2
iv2 + iĈ

)
dV = −∫S(t)

(
n ⋅

(
1

2
iv2 + iĈ

)(
v − vS

))
dS

−∫S(t)

(
n ⋅ pv

)
dS − ∫S(t)

(n ⋅ [f ⋅ v]) dS

+∫V(t)
p (∇ ⋅ v) dV + ∫V(t)

(f ∶ ∇v) dV (7.7-2)

1R. B. Bird, Korean J. Chem. Eng., 15, 105–123 (1998), §3.
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The term containing vS, the velocity of the surface of the system, arises from the application
of the Leibniz formula. The surface S (t) consists of four parts:

• the fixed surfaces Sf , on which both v and vS are zero

• the moving surfaces Sm, on which v = vS, both being nonzero

• the cross section of the entry port S1, where vS = 0

• the cross section of the exit port S2, where vS = 0

Presently each of the surface integrals will be split into four parts corresponding to these
four surfaces.

We now interpret the terms in Eq. 7.7-2 and, in the process, introduce several assump-
tions; these assumptions have already beenmentioned in §7.1 to §7.4, but now the reasons
for them will be made clear.

The term on the left side can be interpreted as the time rate of change of the total
kinetic and potential energy (see Fig. 7.0-1) within the entire flow system, whose shape
and volume may be changing with time.

We next examine one by one the five terms on the right side:
Term 1 (including the minus sign) contributes only at the entry and exit ports and

gives the rates of influx and efflux of kinetic and potential energy:

Term 1 =
(
1

2
i1

⟨
v3
1

⟩
S1 + i1Ĉ1

⟨
v1

⟩
S1

)
−

(
1

2
i2

⟨
v3
2

⟩
S2 + i2Ĉ2

⟨
v2

⟩
S2

)
(7.7-3)

The angular brackets indicate an average over the cross section. To get this result, we have
to assume that the fluid density and potential energy per unit mass are constant over the
cross section, and that the fluid is flowing parallel to the tube walls at the entry and exit
ports. The first term in Eq. 7.7-3 is positive, since at plane 1, (−n ⋅ v) =

(
u1 ⋅

(
u1v1

))
= v1,

and the second term is negative, since at plane 2, (−n ⋅ v) =
(
−u2 ⋅

(
u2v2

))
= −v2.

Term 2 (including the minus sign) gives no contribution on Sf since v is zero there. On
each surface element dS of Sm, there is a force −npdS acting on a surface moving with a
velocity v, and the dot product of these quantities gives the rate at which the surroundings

do work on the fluid through the moving surface element dS. We use the symbol W(p)
m to

indicate the sum of all these surface terms. Furthermore, the integrals over the stationary
surfaces S1 and S2 give the work required to push the fluid into the system at plane 1
minus the work required to push the fluid out of the system at plane 2. Therefore, Term 2
gives finally:

Term 2 = p1
⟨
v1

⟩
S1 − p2

⟨
v2

⟩
S2 +W(p)

m (7.7-4)

Here we have assumed that the pressure does not vary over the cross section at the entry
and exit ports.

Term 3 (including theminus sign) gives no contribution on Sf since v is zero there. The
integral over Sm can be interpreted as the rate at which the surroundings do work on the

fluid bymeans of the viscous forces, and this integral is designated asW(f)
m . At the entry and

exit ports it is conventional to neglect the work terms associated with the viscous forces,
since they are generally quite small compared with the pressure contributions. Therefore,
we get

Term 3 = W(f)
m (7.7-5)

We now introduce the symbol Wm = W(p)
m +W(f)

m to represent the total rate at which the
surroundings do work on the fluid within the system through the agency of the moving
surfaces.
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Terms 4 and 5 cannot be further simplified, and hence, we define

Term 4 = +∫V(t)
p (∇ ⋅ v) dV = −Ec (7.7-6)

Term 5 = +∫V(t)
(f ∶ ∇v) dV = −Ev (7.7-7)

For Newtonian fluids the viscous loss Ev is the rate at which mechanical energy is irre-
versibly degraded into thermal energy because of the viscosity of the fluid and is always a
positive quantity (see Eq. 3.3-3). We have already discussed methods for estimating Ev in
§7.5. (For viscoelastic fluids, whichwe discuss in Chapter 8, Ev has to be interpreted differ-
ently andmay even be negative.) The compression term Ec is the rate at whichmechanical
energy is reversibly changed into thermal energy because of the compressibility of the fluid;
it may be either positive or negative. If the fluid is being regarded as incompressible, Ec is
zero.

When all the contributions are inserted into Eq. 7.7-2wefinally obtain themacroscopic
mechanical energy balance:

d
dt

(
Ktot +Ctot

)
=

(
1

2
i1

⟨
v3
1

⟩
S1 + i1Ĉ1

⟨
v1

⟩
S1 + p1

⟨
v1

⟩
S1

)
−
(
1

2
i2

⟨
v3
2

⟩
S2 + i2Ĉ2

⟨
v2

⟩
S2 + p2

⟨
v2

⟩
S2

)
+Wm − Ec − Ev (7.7-8)

If, now, we use w1 = i1
⟨
v1

⟩
S1 and w2 = i2

⟨
v2

⟩
S2 for the mass rates of flow in and out,

then Eq. 7.7-8 can be rewritten in the form of Eq. 7.4-2. Several assumptions have been
made in this development, but normally they are not serious. If the situation warrants,
one can go back and include the neglected effects.

It should be noted that the above derivation of the mechanical energy balance does
not require that the system be isothermal. Therefore, the results in Eqs. 7.4-2 and 7.7-8 are
valid for nonisothermal systems.

To get the mechanical energy balance in the form of Eq. 7.4-7, we have to develop an
approximate expression for Ec. We imagine that there is a representative streamline running
through the system, and we introduce the distance s along the streamline. We assume that
pressure, density, and velocity do not vary over the cross section. We further imagine that
at each position along the streamline, there is a cross section S (s) perpendicular to the s
coordinate, so that we can write dV = S (s) ds. If there are moving parts in the system and
if the system geometry is complicated, it may not be possible to do this.

We start by using the fact that (∇ ⋅ iv) = 0 at steady state so that

Ec = −∫V
p (∇ ⋅ v) dV = +∫V

p
i
(v ⋅ ∇i) dV (7.7-9)

Then we use the assumption that the pressure and density are constant over the cross
section to write approximately

Ec ≈ ∫
2

1

p
i

(
v
di
ds

)
S (s) ds (7.7-10)

Even though i, v, and S are functions of the streamline coordinate s, their product,w = ivS,
is a constant for steady-state operation and hence, may be taken outside the integral. This
gives

Ec ≈ w ∫
2

1

p

i2
di
ds

ds = −w∫
2

1

p d
ds

(
1

i

)
ds (7.7-11)
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Then an integration by parts can be performed:

Ec ≈ −w
[
p
i

||||21 − ∫
2

1

1

i

dp
ds

ds
]
= −w2

(
p
i

)
+ w∫

2

1

1

i
dp (7.7-12)

When this result is put into Eq. 7.4-5, the approximate relation in Eq. 7.4-7 is obtained.

Because of the questionable nature of the assumptions made (the existence of a represen-

tative streamline and the constancy of p and i over a cross section), it seems preferable

to use Eq. 7.4-5 rather than Eq. 7.4-7. Also Eq. 7.4-5 is easily generalized to systems with

multiple inlet and outlet ports, whereas Eq. 7.4-7 is not; the generalization is given in Eq.

(D) of Table 7.6-1.

§7.8 CONCLUDING COMMENTS

The steady-state macroscopic balances have been part of the engineers’ and applied scientists’

tool kit for many decades. Armed only with limited mathematical skills and some intu-

ition, one can solve many practical problems. Sometimes the macroscopic balances have

to be supplemented with experimental data or visual observations. Sometimes adjustable

constants (or “fudge factors”) have to be introduced in order to get suitable agreement

with the experimental facts.

The unsteady-state macroscopic balances are of more recent vintage and have not

received much attention. They usually do not appear in engineering handbooks. When

they are used, they have to be supplementedwith intuition, good judgment, experimental

data, and flow visualizations. Only experiencewill enable one to develop skill in their use.

Sometimes the macroscopic balances can be used for making “back-of-the-envelope”

estimates before embarking on an extensive experimental programor a detailed numerical

analysis of a process.

QUESTIONS

1. Discuss the origin, meaning, and use of the macroscopic balances, and explain what assump-

tions have been made in deriving them.

2. How does one decide which macroscopic balances to use for a given problem? What auxiliary

information might one need in order to solve problems with the macroscopic balances?

3. Are friction factors and friction-loss factors related? If so, how?

4. Discuss the viscous loss Ev and the compression term Ec, with regard to physical interpretation,

sign, and methods of estimation.

5. How is the macroscopic mechanical energy balance related to the Bernoulli equation for invis-

cid fluids? How is it derived?

6. What happens in Example 7.3-1 if one makes a different choice for the origin of the coordinate

system?

7. In Example 7.5-1, what would be the error in the final result if the estimation of the viscous loss

Ev were off by a factor of 2? Under what circumstances would such an error be more serious?

8. In Example 7.5-1, what would happen if 5 ft were replaced by 50 ft?

9. In Example 7.6-3, how would the results be affected if the outlet pressure were 11 atm instead

of 1.1 atm?

10. List all the assumptions that are inherent in the equations given in Table 7.6-1.
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PROBLEMS 7A.1 Pressure rise in a sudden enlargement. An aqueous salt solution is flowing through a sudden

enlargement (see Fig. 7.6-1) at a rate of 450 U.S. gal∕min = 0.0284 m3∕s. The inside diameter of

the smaller pipe is 5 in. and that of the large pipe is 9 in. What is the pressure rise in pounds per

square inch if the density of the solution is 63 lbm∕ft
3
? Is the flow in the smaller pipe laminar

or turbulent?

Answer: 0.157 psi = 1.08 × 103 N∕m2

7A.2 Pumping a hydrochloric acid solution. AdiluteHCl solution of constant density and viscosity(
i = 64 lbm∕ft

3, 4 = 1 cp
)
, is to be pumped from tank 1 to tank 2 with no overall change in

elevation (see Fig. 7A.2). The pressures in the gas spaces of the two tanks are p1 = 1 atm and

p2 = 4 atm. The pipe radius is 2 in. and the Reynolds number is 7.11 × 104. The average velocity

in the pipe is to be 2.30 ft/s. What power must be delivered by the pump?

Answer: 2.3 hp = 1.7 kW

300 ft

Pump

Inside radius 2''

Tank 1

p1
Tank 2

p2

Fig. 7A.2 Pumping of a hydrochloric acid

solution.

7A.3 Compressible gas flow in a cylindrical pipe. Gaseous nitrogen is in isothermal turbulent flow

at 25∘C through a straight length of horizontal pipe with 3-in. inside diameter at a rate of 0.28

lbm∕s. The absolute pressures at the inlet and outlet are 2 atm and 1 atm, respectively. Evaluate

Êv, assuming ideal gas behavior and radially uniform velocity distribution.

Answer: 26.3 Btu∕lbm = 6.12 × 104 J∕kg

7A.4 Incompressible flow in an annulus. Water at 60∘F is being delivered from a pump through

a coaxial annular conduit 20.3 ft long at a rate of 241 U.S. gal/min. The inner and outer radii

of the annular space are 3 in. and 7 in. The inlet is 5 ft lower than the outlet. Determine the

power output required from the pump. Use the mean hydraulic radius empiricism to solve the

problem. Assume that the pressures at the pump inlet and the annular outlet are the same.

Answer: 0.31 hp = 0.23 kW

7A.5 Force on a U-bend. Water at 68∘F
(
i = 62.4 lbm∕ft

3, 4 = 1 cp
)
, is flowing in turbulent flow in a

U-shaped pipe bend at 3 ft
3∕s (see Fig. 7A.5). What is the horizontal force exerted by the water

on the U-bend?

Answer: 903 lbf to the right

Plane 2

Plane 1

4" internal
diameter

p2 = 19 psia

p1 = 21 psia
Fig. 7A.5 Flow in a U-bend; both arms of the bend are at

the same elevation.
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7A.6 Flow-rate calculation. For the system shown in Fig. 7A.6, calculate the volume flow rate of

water at 68∘F.

12'

14'
11'

Internal diameter
of all pipe

segments is 5"

12'

Fig. 7A.6 Flow from a constant-head tank.

7A.7 Evaluation of various velocity averages fromPitot tube data. Following are some experimen-

tal data1 for a Pitot tube traverse for the flow of water in a pipe of internal radius 3.06 in.:

Distance from Local velocity Distance from Local velocity

Position tube center (in.) (ft/s) Position tube center (in.) (ft/s)

1 2.80 7.85 6 0.72 11.70

2 2.17 10.39 7 1.43 11.47

3 1.43 11.31 8 2.17 11.10

4 0.72 11.66 9 2.80 9.26

5 0.00 11.79

Plot these data and find out whether the flow is laminar or turbulent. Then use Simpson’s rule

for numerical integration to compute ⟨v⟩ ∕vmax,
⟨
v2
⟩
∕v2max, and

⟨
v3
⟩
∕v3max. Are these results

consistent with the values of
⟨
v2
⟩
∕⟨v⟩2 = 50

49
(given just before Example 7.2-1) and

⟨
v3
⟩
∕⟨v⟩3 =

43200

40817
(given just before Example 7.4-1)?

7B.1 Velocity averages from the 1

7
power law. Evaluate the velocity ratios in Problem 7A.7 accord-

ing to the velocity distribution in Eq. 4.1-4.

7B.2 Relation between force and viscous loss for flow in conduits of variable cross section.
Equation 7.5-7 gives the relation Ff→s = iSÊv between the drag force andviscous loss for straight

conduits of arbitrary, but constant, cross section. Here we consider a straight channel whose

cross section varies gradually with the downstream distance. We restrict ourselves to axisym-

metrical channels, so that the force Ff→s is axially directed.

If the cross section and pressure at the entrance are S1 and p1, and those at the exit are S2

and p2, then prove that the relation analogous to Eq. 7.5-7 is

Ff→s = iSmÊv + pm
(
S1 − S2

)
(7B.2-1)

where
1

Sm
= 1

2

(
1

S1

+ 1

S2

)
(7B.2-2)

1B. Bird, C. E. Thesis, University of Wisconsin (1915).
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pm =
p1S1 + p2S2

S1 + S2

(7B.2-3)

Interpret the results.2

7B.3 Flow through a sudden enlargement. A fluid is flowing through a sudden enlargement, in

which the initial and final diameters are D1 and D2, respectively (see Fig. 7.6-1). At what ratio

D2∕D1 will the pressure rise p2 − p1 be a maximum for a given value of v1?

Answer: D2∕D1 =
√
2

7B.4 Flow between two tanks. Case I: A fluid flows between two tanks A and B because pA > pB.
The tanks are at the same elevation and there is no pump in the line. The connecting line has

a cross-sectional area SI and the mass rate of flow is w for a pressure drop of
(
pA − pB

)
I
(see

Fig. 7B.4).

Case II: It is desired to replace the connecting line by two lines, each with cross section

SII =
1

2
SI. What pressure difference

(
pA − pB

)
II
is needed to give the same total mass flow rate

as in Case I? Assume turbulent flow and use the Blasius formula (Eq. 6.2-12) for the friction

factor. Neglect entrance and exit losses.

Answer:
(
pA − pB

)
II
∕
(
pA − pB

)
I
= 25∕8

A B

Circular tube of
cross section SI

Mass flow rate w
A B

Circular tubes of
cross section SII

Sum of mass
flow rates is w

Fig. 7B.4 Flow between two tanks.

7B.5 Revised design of an air duct. A straight, horizontal air duct was to be installed in a factory.

The duct was supposed to be 4 ft × 4 ft in cross section. Because of an obstruction, the duct

may be only 2 ft high, but it may have any width (see Fig. 7B.5). How wide should the duct be

to have the same terminal pressures and same volume rate of flow? Assume that the flow is

turbulent and that the Blasius formula (Eq. 6.2-12) is satisfactory for this calculation. Air can be

regarded as incompressible in this situation.

Pump

Plane 1 Plane 2

Duct I
HI = 4 ft

WI = 4 ft

Pump Duct II

HII = 2 ft

WII = ? ft

p1 p2

p1 p2

Fig. 7B.5 Installation of an air duct.

2R. B. Bird, in Selected Topics in Transport Phenomena, CEP Symposium Series #58, 61, 1–15 (1965), pp.
14 & 15.
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(a) Write the simplified versions of the mechanical energy balance for ducts I and II.

(b) Equate the pressure drops for the two ducts and obtain an equation relating the widths and

heights of the two ducts.

(c) Solve the equation in (b) numerically to find the width that should be used for duct II.

Answer: (c) 9.2 ft

7B.6 Multiple discharge into a common conduit.3 Extend Example 7.6-1 to an incompressible fluid

discharging from several tubes into a larger tube with a net increase in cross section, as shown

in Fig. 7B.6. Such systems are important in heat exchangers of certain types, for which the

expansion and contraction losses account for an appreciable fraction of the overall pressure

drop. The flows in the small tubes and the large tube may be laminar or turbulent. Analyze

this system by means of the macroscopic mass, momentum, and mechanical energy balances.

Plane 1 Plane 2

Fig. 7B.6 Multiple discharge into a

common conduit. The total

cross-sectional area at plane 1

available for flow is S1, and that at

plane 2 is S2.

7B.7 Inventory variations in a gas reservoir. A natural gas reservoir is to be supplied from a

pipeline at a steady-state rate of w1 lbm∕hr. During a 24-hour period, the fuel demand from

the reservoir, w2, varies approximately as follows:

w2 = A + B cosat (7B.7-1)

where at is a dimensionless time measured from the time of peak demand (approximately 6

a.m.).

(a) Determine themaximum,minimum, and average values ofw2 for a 24-hour period in terms

of A and B.
(b) Determine the required value of w1 in terms of A and B.
(c) Let mtot = m0

tot at t = 0, and integrate the unsteady mass balance with this initial condition

to obtain mtot as a function of time.

(d) If A = 5000 lbm∕hr, B = 2000 lbm∕hr, and i = 0.044 lbm∕ft
3
in the reservoir, determine the

absolute minimum reservoir capacity in cubic feet to meet the demand without interruption.

At what time of day must the reservoir be full to permit such operation?

(e) Determine the minimum reservoir capacity in cubic feet required to permit maintaining at

least a three-day reserve at all times.

Answer: (d) 3.47 × 105 ft
3
; (e) 8.53 × 106 ft

3

7B.8 Change in liquid height with time.
(a) In Example 7.1-1, obtain the expression for the liquid height h as a function of time t (see
Fig. 7.1-1).

(b) Make a graph of Eq. 7.1-12 using dimensionless quantities. Is this useful?

3W. M. Kays, Trans. ASME, 72, 1067–1074 (1950).
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7B.9 Draining of a cylindrical tank with exit pipe.
(a) Rework Example 7.1-1, but with a cylindrical tank instead of a spherical tank (see Fig. 7B.9).

Use the quasi-steady-state approach; that is, use the unsteady-state mass balance along with

the Hagen-Poiseuille equation for the laminar flow in the pipe.

(b) Rework the problem for turbulent flow in the pipe.

Answer: (a) tefflux =
1284LR2

igD4
ln

(
1 + H

L

)

H

L
D

R

Fig. 7B.9 A cylindrical tank with a long pipe attached. The fluid surfaces

and pipe exits are open to the atmosphere.

7B.10 Efflux time for draining a conical tank. A conical tank, with dimensions given in Fig. 7B.10, is

initially filled with a liquid. The liquid is allowed to drain out by gravity. Determine the efflux

time. In parts (a)–(c) take the liquid in the cone to be the “system.”

Liquid surface
at time t

r0

r2

r

g
r

z = 0

z = z2

z = z

z = z

z = z0

Fig. 7B.10 A conical container from

which a fluid is allowed to drain. The

quantity r is the radius of the liquid
surface at height z, and r is the radius of
the cone at some arbitrary height z.

(a) First, use an unsteady macroscopic mass balance to show that the exit velocity is related to

the liquid height z by

v2 = −z2

z2
2

dz
dt

(7B.10-1)

(b) Write the unsteady-state mechanical energy balance for the system. Discard the viscous

loss term and the term containing the time derivative of the kinetic energy, and give reasons

for doing so. Show that Eq. 7B.10-1 then leads to

v2 =
√

2g
(
z − z2

)
(7B.10-2)
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(c) Combine the results of (a) and (b). Solve the resulting differential equation with an appro-

priate initial condition to get the liquid level z as a function of t. From this, get the efflux time

tefflux =
1

5

(
z0
z2

)2
√

2z0
g

(7B.10-3)

List all the assumptions that have been made and discuss how serious they are. How could

these assumptions be avoided?

(d) Rework part (b) by choosing plane 1 to be stationary and slightly below the liquid surface at

time t. It is understood that the liquid surface does not go below plane 1 during the differential

time interval dt over which the unsteady mechanical energy balance is made. With this choice

of plane 1, the derivative dCtot∕dt is zero and there is no work termWm. Furthermore, the con-

ditions at plane 1 are very nearly those at the liquid surface. Then with the quasi-steady-state

approximation that the derivative dKtot∕dt is approximately zero and the neglect of the viscous

loss term, show that the mechanical energy balance, with w1 = w2, takes the form

0 = 1

2

(
v2
1
− v2

2

)
+ g

(
h1 − h2

)
(7B.10-4)

Is this result reasonable? Could you get this result from the classical Bernoulli equation inCh. 3?

7B.11 Disintegration of wood chips. In the manufacture of paper pulp, the cellulose fibers of wood

chips are freed from the lignin binder by heating in alkaline solutions under pressure in large

cylindrical tanks called digesters (see Fig. 7B.11). At the end of the “cooking” period, a small

port in one end of the digester is opened, and the slurry of softened wood chips is allowed to

blow against an impact plate to complete the breakup of the chips and the separation of the

fibers. Estimate the velocity of the discharging stream and the additional force on the impact

plate shortly after the discharge begins. Frictional effects inside the digester, and the small

kinetic energy of the fluid inside the tank, may be neglected. (Note: See Problem 7B.10 for two

different methods for selecting the entrance and exit planes.)

Answer: 2810 lbm∕s (or 1275 kg∕s); 10,900 lbf (or 48,500 N)

2'

20'

8'

Density =
65 lbm/ft

3

Steam at
100 psig

Level of
suspension

Diameter of
opening 8"

Fig. 7B.11 Pulp digester.
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7B.12 Criterion for vapor-free flow in a pipeline. To ensure that a pipeline is completely filled with

liquid, it is necessary that p > pvap at every point. Apply this criterion to the system in Fig. 7.5-1

by using a mechanical energy balance over appropriate portions of the system. Where in the

system is the pressure a minimum?

7C.1 End corrections in tube viscometers.4 In analyzing tube-flow viscometric data to determine

viscosity, one compares pressure drop vs. flow rate data with the theoretical expression (the

Hagen-Poiseuille equation of Eq. 2.3-21). The latter assumes that the flow is fully developed in

the region between the two planes at which the pressure is measured. In an apparatus such as

that shown in Fig. 7C.1, the pressure is known at the tube exit (2) and also above the fluid in

the reservoir (1). However, in the entrance region of the tube, the velocity profiles are not yet

fully developed. Hence, the theoretical expression relating the pressure drop to the flow rate is

not valid.

lA

LA

LB – LA

Run A

pA
Plane 1

lB

LB

Run B

pB

Plane 3

Plane 4

Plane 0
Plane 2

Fig. 7C.1 Two tube viscometers with the

same flow rate and the same exit

pressure. The pressures pA and pB are

maintained by an inert gas.

There is, however, a method in which the Hagen-Poiseuille equation can be used, by mak-

ing flowmeasurements in two tubes of different lengths, LA and LB; the shorter of the two tubes

must be long enough so that the velocity profiles are fully developed at the exit. Then the end

section of the long tube, of length LB − LA, will be a region of fully developed flow. If we knew

the value of 𝒫0 −𝒫4 for this region, then we could apply the Hagen-Poiseuille equation.

Show that proper combination of the mechanical energy balances, written for the systems

1–2, 3–4, and 0–4 gives the following expression for 𝒫0 −𝒫4 when each viscometer has the

same flow rate
𝒫0 −𝒫4

LB − LA
=

pB − pA
LB − LA

+ ig
(
1 +

lB − lA
LB − LA

)
(7C.1-1)

where𝒫0 = p0 + igz0. Explain carefully how youwould use Eq. 7C.1-1 to analyze experimental

measurements. Is Eq. 7C.1-1 valid for ducts with noncircular, uniform cross section?

4A. G. Fredrickson, PhD Thesis, University of Wisconsin (1959); Principles and Applications of
Rheology, Prentice-Hall, Englewood Cliffs, NJ (1964), §9.2.
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Chapter 8

Non-Newtonian Liquids

§8.1 “Phunny Phluid Phlow Phenomena”

§8.2 Rheometry and material functions

§8.3 Non-Newtonian viscosity and the generalized Newtonian models

§8.4 Elasticity and the linear viscoelastic models

§8.5 Objectivity and the nonlinear viscoelastic models

§8.6 A molecular theory and a nonlinear viscoelastic model

§8.7 Concluding comments

In the first seven chapters only Newtonian fluids have been considered. The relations

between stresses and velocity gradients are described by Eq. 1.2-2 for simple shear

flow and by Eq. 1.2-13 (or Eqs. 1.2-7 to 1.2-12) for arbitrary time-dependent flows. For

the Newtonian fluid, two material parameters are needed—the viscosity 4 and the

dilatational viscosity n—which depend on temperature, pressure, and composition, but

not on the velocity gradients or on time. In most situations n is not needed. All gases

and all liquids composed of “small” molecules (up to molecular weights of about 5000

g∕g-mol) are accurately described by the Newtonian fluid model.

There are many fluids that are not described by Eq. 1.2-13, and these are called

non-Newtonian fluids. These structurally complex fluids include polymer solutions,

polymer melts, soap solutions, suspensions, colloidal dispersions, pastes, foodstuffs,

foams, and some biological fluids.

Because of their complexity, these fluids have behavior qualitatively different from

that of Newtonian fluids. For example, they may have viscosities that depend strongly

on the velocity gradients and time, and, in addition, may display pronounced “elastic

effects.” Also in the steady simple shear flow between two parallel plates, unequal normal

stresses (fxx,fyy, and fzz) arise. In §8.1 we describe some experiments that emphasize the

“funny fluid flow fenomena” of polymeric liquids and other non-Newtonian fluids.

In dealingwithNewtonian fluids, the science of themeasurement of viscosity is called

viscometry, and in earlier chapters we have seen examples of simple flow systems that can

be used as viscometers (the circular tube, the cone-plate system, and coaxial cylinders).

To characterize non-Newtonian fluids, we must measure not only the viscosity, but the

normal stresses and the viscoelastic responses as well. The science of measurement of

these properties is called rheometry, and the instruments are called rheometers; the rotational
cone-and-plate rheometer is the most famous of these. We treat this subject briefly in §8.2.

The science of rheology includes all aspects of the study of deformation and flow of both

non-Hookean solids and non-Newtonian liquids.

After the first two sections, which deal with experimental facts, we turn to the pre-

sentation of various non-Newtonian “models” (that is, empirical expressions for the stress

222
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tensor) that are commonly used for describing non-Newtonian liquids. In §8.3 we start
with the generalized Newtonian models, which are relatively simple, but which can describe
only the non-Newtonian viscosity (andnot the normal stresses and the viscoelastic effects).
Then in §8.4we give examples of linear viscoelastic models, which can describe the viscoelas-
tic responses, but only in flows with exceedingly small displacement gradients. In §8.5 we
give examples of nonlinear viscoelastic models, which are capable of describing most of the
phenomena observed in polymeric fluids, at least qualitatively. Finally, in §8.6, we give a
simple molecular theory that describes nonlinear effects.

Polymeric liquids are encountered in the fabrication of plastic objects, and as additives
to lubricants, foodstuffs, and inks. They represent a vast and important class of liquids,
and many scientists and engineers must deal with them. Polymer fluid dynamics, heat
transfer, and diffusion form a rapidly growing part of the subject of transport phenom-
ena, and there are many textbooks,1 treatises,2 and journals devoted to the subject. The
subject has also been approached from the kinetic theory standpoint, and molecular theo-
ries of the subject have contributedmuch to our understanding of themechanical, thermal,
and diffusional behavior of these fluids.3 Finally, for those interested in the history of the
subject, the reader is referred to the book by Tanner and Walters.4

§8.1 “PHUNNY PHLUID PHLOW PHENOMENA”

In this section we discuss several experiments that contrast the flow behavior of New-
tonian and non-Newtonian fluids.1 Most of the emphasis is placed on polymeric fluids,
but the two-phase fluids are discussed at the very end of the section. The reason for this
lopsided treatment is that the flow phenomena of polymers have been much more exten-
sively studied than those of suspensions and emulsions, which are every bit as important
as polymers are.

a. Steady axial flow in tubes
Even for the steady-state, axial, laminar flow in circular tubes, there is an impor-

tant difference between the behavior of Newtonian liquids and that of polymeric liquids.
For Newtonian liquids, the velocity distribution, average velocity, and mass flow rate are
given by Eqs. 2.3-19, 2.3-22, and 2.3-23, respectively.

1A. S. Lodge, Elastic Liquids, Academic Press, New York (1964). Arthur Scott Lodge (1922–2005) was

an eminent rheologist and a professor at the University of Wisconsin-Madison from 1968 to 2005. His two

books, Elastic Liquids and Body Tensor Fields in Continuum Mechanics, provided guidance to many

generations of rheologists. He was the inventor of the “Lodge Stressmeter.” He was a recipient of the

Bingham Medal of The Society of Rheology, and the Gold Medal of the British Society of Rheology; he

was elected to the National Academy of Engineering in 1992. R. B. Bird, R. C. Armstrong, and

O. Hassager, Dynamics of Polymeric Liquids, Vol 1, Fluid Mechanics, Wiley-Interscience, New York, 2nd

edition (1987); R. I. Tanner, Engineering Rheology, Clarendon Press, Oxford (1985); 2nd edition (2000).
2H. A. Barnes, J. F. Hutton, and K. Walters, An Introduction to Rheology, Elsevier, Amsterdam (1989);

H. Giesekus, Phänomenologische Rheologie: Eine Einführung, Springer Verlag, Berlin (1994). Books

emphasizing the engineering aspects of the subject include Z. Tadmor and C. G. Gogos, Principles of
Polymer Processing, Wiley, New York, 2nd edition (2006); D. G. Baird and D. I. Collias, Polymer Processing:
Principles and Design, Butterworth-Heinemann, Boston (1995); J. Dealy and K. Wissbrun,Melt Rheology and
its Role in Plastics Processing, Van Nostrand Reinhold, New York (1990).

3R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Vol. 2,
Kinetic Theory, Wiley-Interscience, New York, 2nd edition (1987); C. F. Curtiss and R. B. Bird, Adv. Polymer
Sci, 125, 1–101 (1996) and J. Chem. Phys. 111, 10362–10370 (1999).

4R. I. Tanner and K. Walters, Rheology: An Historical Perspective, Elsevier, Amsterdam (1998).
1More details about these and other experiments can be found in R. B. Bird, R. C. Armstrong, and

O. Hassager, Dynamics of Polymeric Liquids, Vol. 1, Fluid Dynamics, Wiley-Interscience, New York (1977),

Chapter 3; 2nd edition (1987), Chapter 2. See also A. S. Lodge, Elastic Liquids, Academic Press, New York

(1964), Chapter 10.
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N P

Same
maximum
velocity

Parabola

Fig. 8.1-1. Laminar flow in a circular tube.

The symbols N (Newtonian liquid) and P

(Polymeric liquid) are used in this and the

next six figures.

For polymeric fluids, experimental data suggest that the following equations are rea-
sonable:

vz(r)
vz,max

≈ 1 −
( r
R

)(1∕n)+1
and

⟨vz⟩
vz,max

≈
(1∕n) + 1

(1∕n) + 3
(8.1-1,2)

where n is a positive parameter characterizing the fluid, usually with a value less than
unity. That is, the velocity profile is more blunt than that for the Newtonian fluid, for
which n = 1. It is further found experimentally that

w ≈ (𝒫0 −𝒫L)1∕n (8.1-3)

Themass flow rate for polymers increasesmuchmore rapidly with the pressure drop than
for Newtonian fluids, for which the relation is linear.

In Fig. 8.1-1we show typical velocity profiles for laminar flowofNewtonian and poly-
meric fluids for the same maximum velocity. The blunted velocity profiles for polymeric
liquids suggest that they have a viscosity that depends on the velocity gradient. This point
will be elaborated on in §8.3.

For laminar flow in tubes of noncircular cross section, polymeric liquids exhibit secondary
flows superposed on the axial motion. Recall that for turbulent Newtonian flows sec-
ondary flows are also observed—in Fig. 4.1-3 it is shown that the fluid moves from the
center directly toward the corners of the conduit and then back along the walls. For lami-
nar flow of polymeric fluids, the secondary flows go in just the opposite direction—from
the corners of the conduit directly toward the center and then back toward the walls.2 In
turbulentNewtonian flows, the secondary flows result from inertial effects, whereas in the
flow of polymers the secondary flows are associated with the “normal stress differences.”

b. Recoil after cessation of steady-state flow in a circular tube
We start with a fluid at rest in a circular tube and, with a syringe, we “draw” a dye

line radially in the fluid as shown in Fig. 8.1-2. Then we pump the fluid andwatch the dye
deform.3

For a Newtonian fluid, the dye line deforms into a continuously stretching parabola.
If the pump is turned off, the dye-parabola stopsmoving. After some time diffusion occurs
and the parabola begins to get fuzzy, of course.

For a polymeric liquid, the dye line deforms into a curve that is more blunt than a
parabola (cf. Eq. 8.1-1). If the pump is stopped and the fluid is not axially constrained,
the fluid will begin to “recoil” and will retreat from this maximum stretched shape. That
is, the fluid snaps back somewhat like a rubber band. But, whereas a rubber band returns
to its original shape, the fluid retreats only part way towards its original configuration.

2B. Gervang and P. S. Larsen, J. Non-Newtonian Fluid Mech., 39, 217–237 (1991).
3For the details of this experiment see N. N. Kapoor, M.S. Thesis, University of Minnesota,

Minneapolis (1964), as well as A. G. Fredrickson, Principles and Applications of Rheology, Prentice-Hall,

Englewood Cliffs, NJ (1964), p. 120.
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N P

Pumping
stopped
here

Fig. 8.1-2. Constrained recoil after

cessation of flow in a circular tube,

observed in polymeric liquids, but not in

Newtonian liquids.

If we permit ourselves an anthropomorphism, we can say that a rubber band has
“perfect memory,” since it returns to its initial unstressed state. The polymeric fluid, on
the other hand, has a “fading memory,” since it gradually “forgets” its original state. That
is, as it recoils, its memory becomes weaker and weaker.

Fluid recoil is a manifestation of elasticity, and any complete description of polymeric
fluids must be able to incorporate the idea of elasticity into the expression for the stress
tensor. The theory must also include the notion of fading memory.

c. “Normal stress” effects
Other striking differences in the behavior of Newtonian and polymeric liquids appear

in the “normal stress” effects. The reason for this nomenclature will be given in the next
section.

A rotating rod in a beaker of a Newtonian fluid causes the fluid to undergo a tangen-
tial motion. At steady state, the fluid surface is lower near the rotating rod. Intuitively we
know that this comes about because the centrifugal force causes the fluid to move radially
toward the beaker wall. For a polymeric liquid, on the other hand, the fluid moves toward
the rotating rod, and, at steady state, the fluid surface is as shown in Fig. 8.1-3. This phe-
nomenon is called the Weissenberg rod-climbing effect.4 Evidently some kinds of forces are
induced that cause the polymeric liquid to behave in a way that is qualitatively different
from that of a Newtonian liquid.

In a closely related experiment, we can put a rotating disk on the surface of a fluid in
a cylindrical container as shown in Fig. 8.1-4. If the fluid is Newtonian, the rotating disk
causes the fluid to move in a tangential direction (the “primary flow”), but, in addition,
the fluid moves slowly outward toward the cylinder wall because of the centrifugal force,

N P

Fig. 8.1-3. The free surface of a liquid near a

rotating rod. The polymeric liquid shows the

Weissenberg rod-climbing effect.

4This phenomenon was first described by F. H. Garner and A. H. Nissan, Nature, 158, 634–635 (1946)
and by R. J. Russel, Ph.D. Thesis, Imperial College, University of London (1946), p. 58. The experiment

was then analyzed by K. Weissenberg, Nature, 159, 310–311 (1947).
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N P

Fig. 8.1-4. The secondary flows in a cylindrical

container with a rotating disk at the liquid surface

have the opposite directions for Newtonian and

polymeric fluids. For polymeric fluids, photographs

suggest that the secondary flow may not be symmetric

as illustrated in the figure.5

N P

Fig. 8.1-5. Flow down a tilted semicylindrical

trough. The convexity of the polymeric liquid

surface is somewhat exaggerated here.

then moves downward, and then back up along the cylinder axis. This superposed radial
and axial flow is weaker than the primary flow and is termed a “secondary flow.” For
a polymeric liquid, the fluid also develops a primary tangential flow with a weak radial
and axial secondary flow, but the latter goes in a direction opposite to that seen in the
Newtonian fluid.5

In another experiment we can let a liquid flow down a tilted, semi-cylindrical trough
as shown in Fig. 8.1-5. If the fluid is Newtonian, the liquid surface is flat—except for the
meniscus effects at the outer edges. But for most polymeric liquids, the liquid surface is
found to be slightly convex. The effect is small but reproducible.6

d. Some other experiments
The operation of a simple siphon is familiar to everyone. We know from experience

that, if the fluid is Newtonian, the removal of the siphon tube from the liquid causes the
siphoning action to stop. However, as may be seen in Fig. 8.1-6, for polymeric liquids the
siphoning can continue evenwhen the siphon is lifted several centimeters above the liquid
surface. This is called the tubeless siphon effect. One can also just lift some of the fluid up
over the edge of the beaker with one’s finger and then the fluid will flow upwards along
the inside of the beaker and then down the outside until the beaker is nearly empty.7

In another experiment a long cylindrical rod, with its axis in the z direction, is made to
oscillate back and forth in the x direction with the axis parallel to the z axis (see Fig. 8.1-7).
In a Newtonian fluid, a secondary flow is induced, whereby the fluid moves toward the
cylinder from above and below (i.e., from the +y and −y directions), and moves away to
the left and right (i.e., toward the −x and +x directions). For the polymeric liquid, how-
ever, the induced secondary motion is in the opposite direction: the fluid moves inward

5C. T. Hill, J. D. Huppler, and R. B. Bird, Chem. Eng. Sci., 21, 815–817 (1966); C. T. Hill, Trans. Soc.
Rheol., 16, 213–245 (1972). Theoretical analyses have been given by J. M. Kramer and M. W. Johnson, Jr.,

Trans. Soc. Rheol., 16, 197–212 (1972), and by J. P. Nirschl and W. E. Stewart, J. Non-Newtonian Fluid Mech.,
16, 233–250 (1984).

6This experiment was first done by R. I. Tanner, Trans. Soc. Rheol., 14, 483–507 (1970), prompted by a

suggestion by A. S. Wineman and A. C. Pipkin, Acta Mech., 2, 104–115 (1966). See also R. I. Tanner,

Engineering Rheology, Oxford University Press (1985), 102–105; 2nd edition, 107–109 (2000).
7D. F. James, Nature, 212, 754–756 (1966).
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N P "Extrudate
swell"

Fig. 8.1-6. Siphoning continues to occur

when the tube is raised above the surface

of a polymeric liquid, but not so for a

Newtonian liquid. Note the swelling of the

polymeric liquid as it leaves the siphon

tube.

N P

x x

Fig. 8.1-7. The “acoustical streaming”

near a laterally oscillating rod, showing

that the induced secondary flow goes in

the opposite directions for Newtonian

and polymeric fluids.

from the left and right along the x axis and outward in the up and down directions along
the y axis.8

The above examples are just a few of many interesting experiments that have been
performed.9 These phenomena can be illustrated easily and inexpensively with a 0.5%
aqueous solution of polyethylene oxide.

There are also some fascinating effects that occur when only tiny quantities of
polymers are present. The most striking of these is the phenomenon of drag reduction.10

With just parts per million of some polymers (“drag-reducing agents”), the friction loss
in turbulent pipe flow may be lowered dramatically—by 30% to 50%. Such polymeric
drag-reducing agents are used by fire departments to increase the flow of water, and by
oil companies to lower the costs for pumping crude oil over long distances.

e. Two-phase systems
Particulate suspensions, emulsions, and other two-phase systems can exhibit many

of the non-Newtonian features exhibited by polymer solutions. For example, two-phase
systems often exhibit blunted velocity profiles in tube flow that arise from a velocity

8C. F. Chang and W. R. Schowalter, J. Non-Newtonian Fluid Mech., 6, 47–67 (1979).
9The book by D. V. Boger and K. Walters, Rheological Phenomena in Focus, Elsevier, Amsterdam

(1993), contains many photographs of fluid behavior in a variety of non-Newtonian flow systems.
10This is sometimes called the Toms phenomenon, since it was perhaps first reported in B. A. Toms,

Proc. Int. Congress on Rheology, North-Holland, Amsterdam (1949). The phenomenon has also been

studied in connection with the drag-reducing nature of fish slime [T. L. Daniel, Biol. Bull., 160, 376–382
(1981)], which is thought to explain, at least in part, “Gray’s paradox”—the fact that fish seem to be able

to swim faster than energy considerations permit.
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gradient-dependent viscosity, just as for polymers. The recoil phenomenon is observed for

emulsions and colloidal gels. The rod-climbing effect occurs for suspensions of elongated

fibers.11,12

For concentrated suspensions and pastes, one often encounters a yield stress, that is,
a shear stress below which the fluid does not flow. For example, toothpaste and tomato

ketchup will not flow unless the yield stress is exceeded.

For suspensions, emulsions, and some polymer solutions, one can also encounter

thixotropy, the decrease of viscosity with time as the fluid is being sheared. This change

occurs because of some kind of change of structure occurring during flow. Less common

is the phenomenon of rheopexy, the increase of viscosity with time.

More information about the non-Newtonian character of suspensions and other

two-phase systems can be found elsewhere.13,14,15

§8.2 RHEOMETRY ANDMATERIAL FUNCTIONS

The experiments described in §8.1 make it abundantly clear that many complex fluids do

not obey Newton’s law of viscosity. In this section we discuss several simple, control-

lable flows in which the stress components can be measured. From these experiments

one can measure a number of material functions that describe the mechanical response

of complex fluids. Whereas incompressible Newtonian fluids are described by just one

material constant (the viscosity), one can measure many different material functions for

non-Newtonian liquids. Here we show how a few of the more commonly used material

functions are defined and measured. Information about the actual measurement equip-

ment and other material functions can be found elsewhere.1,2 It is assumed throughout

that the polymeric liquids or suspensions can be regarded as incompressible.

a. Steady simple shear flow
We consider now the steady shear flow between a pair of parallel plates, where

the velocity profile is given by vx = u̇y, the other velocity components being zero

(see Fig. 8.2-1). The quantity u̇, here taken to be positive, is called the “shear rate”

(i.e., u̇ ≡ |dvx∕dy|). For an incompressible Newtonian fluid, the shear stress fyx is given by

Eq. 1.2-2, and the normal stresses (fxx, fyy, and fzz) are all zero.

y
x

Upper plate moves at a constant speed

vx = γy
·

Fig. 8.2-1. Steady simple shear flow

between parallel plates, with shear rate u̇.
For Newtonian fluids in this flow,

fxx = fyy = fzz = 0, but for polymeric fluids

the normal stresses are in general nonzero

and unequal.

11M. A. Nawab and S. G. Mason, J. Phys. Chem., 62, 1248–1253 (1958).
12J. Mewis and A. B. Metzner, J. Fluid Mech., 62, 593–600 (1974).
13R. J. Hunter, Foundations of Colloid Science, Vol. 2, Oxford (1989).
14W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions, Cambridge University Press

(1989).
15J. Mewis and N. J. Wagner, Colloidal Suspension Rheology, Cambridge University Press (2012).
1J. R. Van Wazer, J. W. Lyons, K. Y. Kim, and R. E. Colwell, Viscosity and Flow Measurement,

Interscience (Wiley), New York (1963).
2K. Walters, Rheometry, Wiley, New York (1975).
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For incompressible non-Newtonian fluids, the normal stresses are nonzero and
unequal. For these fluids, it is conventional to define three material functions as follows:

fyx = −q
dvx
dy

(8.2-1)

fxx − fyy = −A1

(
dvx
dy

)2
(8.2-2)

fyy − fzz = −A2

(
dvx
dy

)2
(8.2-3)

in which q is the non-Newtonian viscosity, A1 the first normal stress coefficient, and A2

the second normal stress coefficient. These three quantities—q, A1, A2—are all functions
of the shear rate u̇. For many polymeric liquids, q may decrease by a factor of as much as
104 as the shear rate increases. Similarly, the normal stress coefficients may decrease by a
factor of as much as 107 over a typical range of shear rates. For polymeric fluids made up
of flexible macromolecules, the functions q(u̇) and A1(u̇) have been found experimentally
to be positive, whereas A2(u̇) is almost always negative and perhaps only 1∕10 to 1∕3 of
A1(u̇) in magnitude. It can be shown that for positive A1(u̇) the fluid behaves as though
it were under tension in the flow (or x) direction, and that the negative A2(u̇) means that
the fluid is under compression in the transverse (or z) direction. For suspensions of rigid
spherical particles,3 both A1(u̇) and A2(u̇) have been measured and found to be negative,
with |A1| > |A2|. For the Newtonian fluid q = 4, A1 = 0, and A2 = 0.

The strongly shear-rate-dependent non-Newtonian viscosity is connected with the
behavior given in Eqs. 8.1-1 to 8.1-3, as is shown in the next section. The positive A1

is primarily responsible for the Weissenberg rod-climbing effect. Because of the tangen-
tial flow, there is a tension in the tangential direction, and this tension pulls the fluid
toward the rotating rod, overcoming the centrifugal force. The secondary flows in the
disk-and-cylinder experiment (Fig. 8.1-4) can also be explained qualitatively in terms of
the positive A1. Also, the negative A2 can be shown to explain the convex surface shape
in the tilted-trough experiment (Fig. 8.1-5).

Many ingenious devices have been developed to measure the three material func-
tions for steady shearing flow, and the theories needed for the use of the instruments are
explained in detail elsewhere.2 See Problem 8C.2 for deducing q(u̇) from tube-flow data
and Problem 8C.1 for the use of the cone-and-plate instrument for measuring all three of
the material functions.

b. Small-amplitude oscillatory motion
Astandardmethod formeasuring the elastic response of a fluid is the small-amplitude

oscillatory shear flow experiment, depicted in Fig. 8.2-2. Here the top plate moves back
and forth in sinusoidal fashion, andwith a tiny amplitude. If the plate spacing is extremely
small and the fluid has a very high viscosity, then the velocity profile will be nearly linear,
so that vx(y,t) = u̇0y cosat, in which u̇0, a real quantity, gives the amplitude of the shear rate
excursion.

The shear stress required to maintain the oscillatory motion will also be periodic in
time and, in general, of the form

fyx(t) = −q′u̇0 cosat − q′′u̇0 sinat (8.2-4)

in which q′(a) and −q′′(a) are the real and imaginary parts of the complex viscosity, q* =
q′ − iq′′, which is a function of the frequency (where i =

√
−1). The first (in-phase with

the shear rate) term is the viscous response, and the second (out-of-phase with the shear

3I. E. Zarraga, D. A. Hill, and D. T. Leighton, Jr., J. Rheol., 44, 185–220 (2000); A. Singh and P. R. Nott,

J. Non-Newtonian Fluid Mech., 49, 293–330 (2003).
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y
x

Upper plate oscillates with

very small amplitude

vx(y, t) = γ
0y cosωt·

Fig. 8.2-2. Small-amplitude oscillatory

motion. For small plate spacing and

highly viscous fluids, the velocity

profile may be assumed to be linear.

rate) term is the elastic response.4 Polymer scientists and engineers use the curves of q′(a)
and q′′(a) (or the storage and loss moduli, G′ = q′′a and G′′ = q′a) for “characterizing”
polymers and suspensions, sincemuch is known about the connection between the shapes
of these curves and the chemical structure of the polymers or particle interactions in the
suspensions.5 For the Newtonian fluid, q′ = 4 and q′′ = 0.

c. Steady-state elongational flow
A third experiment that can be performed involves the stretching of the fluid, inwhich

the velocity distribution is given by vz = ṡz, vx = − 1

2
ṡx, and vy = − 1

2
ṡy (see Fig. 8.2-3),where

the constant quantity ṡ is called the “elongation rate.” Then the relation

fzz − fxx = −q
dvz
dz

(8.2-5)

defines the elongational viscosity q, which depends on ṡ. When ṡ is negative, the flow is
referred to as biaxial stretching because the fluid is being stretched in the x and y directions.
For the Newtonian fluid, it can be shown that q = 34, and this is sometimes called the
“Trouton viscosity.”

The elongational viscosity q cannot be measured for all fluids, since a steady-state
elongational flow cannot always be attained.6

The three experiments described above are just a few of the many rheometric tests
that can be performed. Other tests include stress relaxation after cessation of flow, stress
growth at the inception of flow, recoil, and creep—each of which can be performed in
shear, elongation, or in other types of flow. Each experiment results in the definition of
one or more material functions. These can be used for fluid characterization and also for
determining the constants in the models described in §8.3 to §8.6.

Some sample material functions are displayed in Figs. 8.2.4 to 8.2.6. Since the chem-
ical structure and constitution of complex fluids vary widely, there are many types of

x

z

vz = εz,   vx = –    εx,   vy = –    εy
1

2

1

2
···

Fig. 8.2-3. Steady elongational flow

with elongation rate ṡ = 𝜕vz∕𝜕z.

4For a discussion of the sign associated with q′′(a), see A. J. Giacomin and R. B. Bird, “Erratum:

Official Nomenclature of The Society of Rheology,” J. Rheol., 55, 921–923 (2011).
5J. D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 3rd edition (1980). John Douglass

Ferry (1912–2002) was a professor of chemistry at the University of Wisconsin-Madison from 1946 to

2002. He was a leader in experimental aspects of linear viscoelasticity. The three editions of his book,

Viscoelastic Properties of Polymers, are highly respected, standard references for viscoelasticity. He was a

recipient of the Bingham Medal of The Society of Rheology, and was a member of both the National

Academy of Engineering and the National Academy of Sciences. The term complex viscosity was first

proposed by A. Gemant, Trans. Faraday Soc., 31, 1582–1590 (1935); see also R. B. Bird and A. J. Giacomin,

Rheologica Acta, 51, 481–486 (2012).
6C. J. S. Petrie, Elongational Flows, Pitman, London (1979); J. Meissner, Chem. Engr. Commun., 33,

159–180 (1985).
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Fig. 8.2-4. The material functions q(u̇),
A1(u̇), q′(a), and q′′(a) for a 1.5%
polyacrylamide solution in a 50/50

mixture of water and glycerin. The

quantities q, q′, and q′′ are given in Pa ⋅ s,
andA1 in Pa ⋅ s2. Both u̇ and a are given

in s−1. The data are from J. D. Huppler,

E. Ashare, and L. Holmes, Trans. Soc.
Rheol., 11, 159–179 (1967), as replotted by

J. M. Wiest. The oscillatory normal

stresses have also been studied

experimentally and theoretically (see M.

C. Williams and R. B. Bird, Ind. Eng.
Chem. Fundam., 3, 42–48 (1964); M. C.

Williams, J. Chem. Phys., 42, 2988–2989
(1965); E. B. Christiansen and

W. R. Leppard, Trans. Soc. Rheol., 18,
65–86 (1974), in which the ordinate of

Fig. 15 should be multiplied by 39.27).
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Fig. 8.2-5. Dependence of the second normal stress

coefficient on shear rate for a 2.5% solution of

polyacrylamide in a 50/50 mixture of water and

glycerin. The quantityA2 is given in Pa ⋅ s2, and u̇ in s−1.

The data of E. B. Christiansen and W. R. Leppard, Trans.
Soc. Rheol., 18, 65–86 (1974), have been replotted by J. M.

Wiest.

mechanical responses in these various experiments.More complete discussions of the data
obtained in rheometric experiments are given elsewhere.7

The next three sections are devoted to stress tensor expressions for non-Newtonian
fluids. One might say, very roughly, that these three sections satisfy the following three
different groups of people:

§8.3 The generalized Newtonian models are empirical expressions, primarily for
describing steady-state shear flows. They have been widely used by engineers for
designing time-independent flow systems.

§8.4 The linear viscoelastic models are primarily used to describe unsteady-state flows in
systems with very small displacement gradients and have been used mainly by
scientists and engineers interested in characterizing polymer and suspension
structure.

7R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics,
Wiley-Interscience, 2nd Edition (1987).
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Fig. 8.2-6. (a) Elongational viscosity for uniaxial stretching of low- and high-density

polyethylene. [From H. Münstedt and H. M. Laun, Rheol. Acta, 20, 211–221 (1981).]
(b) Elongational viscosity for squeeze flow of polydimethyl siloxane. [From Sh. Chatraei,

C. W. Macosko, and H. H. Winter, J. Rheol., 25, 433 (1981).] In both graphs the quantity q is
given in Pa ⋅ s and ṡ in s−1.

§8.5 The nonlinear viscoelastic models represent an attempt to describe all types of flow
(including the two listed above) and have been developed largely by physicists,
applied mathematicians, and, increasingly, engineers interested in finding an
all-inclusive theory. Most of these models are empirical, but molecular theories
are being used more and more to suggest the form of the equations.

Actually the three classes ofmodels are interrelated, and each is important for understand-
ing the subject of non-Newtonian flow. In the following discussion of non-Newtonian
models, we assume throughout that the fluids are incompressible. Finally, after discussing
these phenomenological models, in §8.6 we turn our attention to a simple molecular
theory.

§8.3 NON-NEWTONIAN VISCOSITY AND THE GENERALIZED
NEWTONIANMODELS

The generalizedNewtonianmodels1 discussed here are the simplest of the three types ofmod-
els to be discussed. However, they can describe only the non-Newtonian viscosity, and
none of the normal stress effects, time-dependent effects, or elastic effects. Nonetheless, in
many processes in the polymer industry, such as pipe flow with heat transfer, distributor
design, extrusion, and injection molding, the non-Newtonian viscosity and its enormous
variation with shear rate are central to describing the flows of interest.

For incompressible Newtonian fluids the expression for the stress tensor is given by
Eq. 1.2-13 with the last term omitted

f = −4(∇v + (∇v)†) ≡ −4 u̇ (8.3-1)

Here we have introduced the symbol u̇ = ∇v + (∇v)†, the rate-of-strain tensor (or
rate-of-deformation tensor). The generalized Newtonian fluid model is obtained by simply
replacing the constant viscosity 4 by the shear-rate-dependent non-Newtonian viscosity
q(u̇). The shear rate in general can be written as the “magnitude of the rate-of-strain

1K. Hohenemser and W. Prager, Zeits. f. Math. u. Mech., 12, 216–226 (1932); J. G. Oldroyd, Proc. Camb.
Phil. Soc., 45, 595–611 (1949), and 47, 410–418 (1950). James Gardner Oldroyd (1921–1982), a professor at

the University of Liverpool, made many contributions to the theory of non-Newtonian fluids, and in

particular his ideas on the construction of constitutive equations and the principles of continuum

mechanics.
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tensor” u̇ =
√

1

2
(u̇∶ u̇); it is understood that when the square root is taken, the sign must

be so chosen that u̇ is a positive quantity. Then the generalized Newtonian fluid model is:

f = −q(∇v + (∇v)†) ≡ −q u̇ with q = q(u̇) (8.3-2)

The components of the rate-of-strain tensor u̇ can be obtained in Cartesian, cylindrical, and
spherical coordinates from the right sides of the equations in §B.1 by omitting the (∇ ⋅ v)
terms as well as the factor (−4) in the remaining terms.

We now have to give an empiricism for the non-Newtonian viscosity function q(u̇).
Dozens of such expressions have been proposed, but we mention only five here, the last
three being expressions that contain a yield stress.

(a) The simplest empiricism for q(u̇) is the two-parameter power-law expression2

q(u̇) = mu̇n−1 (8.3-3)

in whichm and n are constants characterizing the fluid. This simple relation describes the
non-Newtonian viscosity curve over the linear portion of the log-log plot of the viscosity
vs. shear rate for many materials (see, for example, the viscosity data in Fig. 8.2-4). The
parameter m has units of Pa ⋅ sn, and n − 1 is the slope of the log q vs. log u̇ plot. Some
sample values of power-law parameters are given in Table 8.3-1.

Although the power-law model was proposed as an empirical expression, the sim-
ple rigid dumbbell molecular theory for dilute polymer solutions3 leads to a power-law

expression for high shear rates, with n = 1

3
(see §8.6).

(b) A better curve fit for most data can be obtained by using the four-parameter
Carreau equation,4 which is

q(u̇) − q∞
q0 − q∞

= [1 + (mu̇)2](n−1)∕2 (8.3-4)

Table 8.3-1. Power Law Parameters for Aqueous Solutionsa

Solution Temperature (K) m(Pa ⋅ sn) n(-)

2.0% hydroxyethylcellulose 293 93.5 0.189

313 59.7 0.223

333 38.5 0.254

0.5% hydroxyethylcellulose 293 0.84 0.509

313 0.30 0.595

333 0.136 0.645

1.0% polyethylene oxide 293 0.994 0.532

313 0.706 0.544

333 0.486 0.599

aR. M. Turian, Ph.D. Thesis, University of Wisconsin, Madison (1964), pp. 142–148.

2W. Ostwald, Kolloid-Zeitschrift, 36, 99–117 (1925); A. de Waele, Oil Color Chem. Assoc. J., 6, 33–88
(1923).

3R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York, 2nd edition

(2002), p. 255.
4P. J. Carreau, Ph.D. Thesis, University of Wisconsin, Madison (1968). See also K. Yasuda,

R. C. Armstrong, and R. E. Cohen, Rheol. Acta, 20, 163–178 (1981) for a similar five-parameter equation.
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Table 8.3-2. Parameters in the Carreau Model for Some Solutions of Linear Polystyrene in

1-Chloronaphthalenea

Properties of solution

Parameters in Eq. 8.3-4

(q∞ is taken to be zero)

Mw(g∕mol) c(g∕ml) q0(Pa ⋅ s) m(s) n(---)

3.9 × 105 0.45 8080 1.109 0.304

3.9 × 105 0.30 135 3.61 × 10−2 0.305

1.1 × 105 0.52 1180 9.24 × 10−2 0.441

1.1 × 105 0.45 166 1.73 × 10−2 0.538

3.7 × 104 0.62 3930 1 × 10−1 0.217

aValues of the parameters are taken from K. Yasuda, R. C. Armstrong, and R. E. Cohen, Rheol. Acta, 20,
163–178 (1981).

in which q0 is the zero-shear-rate viscosity, q∞ is the infinite-shear-rate viscosity, m is a
fluid time constant, and n is a dimensionless parameter. Some sample parameters for the
Carreau model are given in Table 8.3-2.

(c) Formaterials with a yield stress (primarily thick suspensions), the simplest model
is the two-constant Bingham fluid5

u̇ = 0 when f ≤ f0 (8.3-5a)

q(u̇) = 40 +
f0
u̇

when f ≥ f0 (8.3-5b)

in which f0 is the yield stress, the stress belowwhich no flow occurs, and 40 is a parameter

sometimes called the “plastic viscosity.” The quantity f =
√

1

2
(f∶f) is themagnitude of the

stress tensor.

(d) Closely related to the Bingham equation is the two-constant Casson equation, pro-
posed for pigment-oil suspensions, but widely used for blood6

u̇ = 0 when f ≤ f0 (8.3-6a)

√
q(u̇) =

√
40 +

√
f0
u̇

when f ≥ f0 (8.3-6b)

(e) A somewhat more flexible equation, containing a yield stress f0, is the
three-constant Herschel-Bulkley equation7

u̇ = 0 when f ≤ f0 (8.3-7a)

q = mu̇n−1 +
f0
u̇

when f ≥ f0 (8.3-7b)

where m and n are constants, as in the power-law model.

5E. C. Bingham, Fluidity and Plasticity, McGraw-Hill, New York (1922), pp. 215–218. See R. B. Bird,

G. C. Dai, and B. J. Yarusso, Reviews in Chemical Engineering, 1, 1–70 (1982) for a review of models with a

yield stress.
6N. Casson, Rheology of Disperse Systems, C. C. Mill, ed., Pergamon, London (1959), pp. 84–104.
7W. H. Herschel and R. Bulkley, Kolloid Z., 39, 291–300 (1926); ASTM, Part II, 26, 621–629 (1926).
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We now give some examples of how to use the power-law and Casson models. These
are extensions of problems discussed in Chapters 2 and 3 for Newtonian fluids.8,9

EXAMPLE 8.3-1

Laminar Flow of an
Incompressible
Power-Law Fluid in a
Circular Tube8,9

Derive the expression for the mass flow rate of a polymer that can be described by the

power-law fluid flowing in a circular tube of radius R and length L, as a result of a pressure

difference, gravity, or both.

SOLUTION

In §2.3, when beginning the analysis of tube flow, we started out by making a momentum

balance on a cylindrical shell of thickness 2r and length L. There we were going to study the

flow of a Newtonian fluid. However, Eq. 2.3-14 for the shear-stress distribution is valid for any
fluid, Newtonian or non-Newtonian, flowing in a circular tube. Therefore, into Eq. 2.3-14 we

can insert the shear stress for the power-law fluid (instead of using Eq. 2.3-15). The shear-stress

expression may be obtained from Eqs. 8.3-2 and 8.3-3 above,

frz(r) = −mu̇n−1
dvz
dr

(8.3-8)

Since vz is postulated to be a function of r alone, from Eq. B.1-13 we find that u̇ =
√

1

2
(u̇∶u̇) =√

(dvz∕dr)2 = |dvz∕dr|. Since dvz∕dr is negative in tube flow, u̇ = |dvz∕dr| = −dvz∕dr, and thus Eq.

8.3-8 can be rewritten

frz(r) = −m
(
−
dvz
dr

)n−1 dvz
dr

= m
(
−
dvz
dr

)n

(8.3-9)

Combining Eqs. 8.3-9 and 2.3-14 then gives the following differential equation for the velocity:

m
(
−
dvz
dr

)n

=
(
𝒫0 −𝒫L

2L

)
r (8.3-10)

After taking the n th root, the equation may be integrated, and, when the no-slip boundary

condition at r = R is used, we get

vz(r) =

((
𝒫0 −𝒫L

)
R

2mL

)1∕n
R

(1∕n) + 1

[
1 −

( r
R

)(1∕n)+1]
(8.3-11)

for the velocity-distribution (see Eq. 8.1-1). When this is multiplied by the density i and inte-

grated over the cross section of the circular tube, we get

w = ∫
20

0 ∫
R

0

ivz(r)r dr dp = 20i∫
R

0

vz(r)r dr

= 0R3i

(1∕n) + 3

((
𝒫0 −𝒫L

)
R

2mL

)1∕n

(8.3-12)

This simplifies to the mass flow rate form of the Hagen-Poiseuille law for Newtonian fluids

(Eq. 2.3-23) when n = 1 and m = 4. Equation 8.3-12 can be used along with data on pressure

drop vs. flow rate to determine the power-law parameters m and n.

8For additional examples, including nonisothermal flows, see R. B. Bird, R. C. Armstrong, and

O. Hassager, Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics, Wiley-Interscience, New York, 2nd

edition (1987), Chapter 4.
9M. Reiner, Deformation, Strain and Flow, Interscience, New York, 2nd edition (1960), pp. 243–245.
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EXAMPLE 8.3-2

Flow of a Power-Law
Fluid in a Narrow Slit4

The flow of a Newtonian fluid in a narrow slit is solved in Problem 2B.4. Find the velocity

distribution and the mass flow rate for a power-law fluid flowing in the slit.

SOLUTION

The expression for the shear stress fxz as a function of position x in Eq. 2B.4-1 can be taken

over here, since it does not depend on the type of fluid. The power-law formula for fxz from
Eqs. 8.3-2 and 8.3-3 is

fxz(x) = m
(
−
dvz
dx

)n

for 0 ≤ x ≤ B (8.3-13)

fxz(x) = −m
(
dvz
dx

)n

for − B ≤ x ≤ 0 (8.3-14)

To get the velocity distribution for 0 ≤ x ≤ B, we substitute fxz from Eq. 8.3-13 into Eq. 2B.4-1 to

get:

m
(
−
dvz
dx

)n

=
(𝒫0 −𝒫L)x

L
0 ≤ x ≤ B (8.3-15)

Integrating and using the no-slip boundary condition at x = B gives

vz(x) =

((
𝒫0 −𝒫L

)
B

mL

)1∕n
B

(1∕n) + 1

[
1 −

( x
B

)(1∕n)+1
]

0 ≤ x ≤ B (8.3-16)

Since we expect the velocity profile to be symmetric about the midplane x = 0, we can get the

mass rate of flow as follows:

w = ∫
W

0 ∫
B

−B
ivz(x) dx dy = 2Wi∫

B

0

vz(x) dx

= 2

((
𝒫0 −𝒫L

)
B

mL

)1∕n
WB2i

(1∕n) + 1∫
1

0

[
1 −

( x
B

)(1∕n)+1
]
d
( x
B

)
= 2WB2i

(1∕n) + 2

((
𝒫0 −𝒫L

)
B

mL

)1∕n

(8.3-17)

When n = 1 and m = 4, the Newtonian result in Problem 2B.4 is recovered. Experimental data

on pressure drop andmass flow rate through a narrow slit can be used with Eq. 8.3-17 to deter-

mine the power-law parameters.

EXAMPLE 8.3-3

Tangential Annular
Flow of a Power-Law
Fluid 8,9

Rework Example 3.7-3 for a power-law fluid.

SOLUTION

Equations 3.7-22 and 3.7-24 remain unchanged for a non-Newtonian fluid, but in lieu of Eq.

3.7-23 we write the p component of the equation of motion in terms of the shear stress by using

§B.5:

0 = − 1

r2
d
dr

(r2frp) (8.3-18)

For the postulated velocity profile, we get for the power-law model (with the help of §B.1)

frp = −qr d
dr

(vp
r

)
= m

(
−r d

dr

(vp
r

))n−1 (
−r d

dr

(vp
r

))
= m

(
−r d

dr

(vp
r

))n

(8.3-19)
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Combining Eqs. 8.3-18 and 8.3-19 we get

d
dr

(
r2m

(
−r d

dr

(vp
r

))n)
= 0 (8.3-20)

Integration gives

r2
(
−r d

dr

(vp
r

))n

= C1 (8.3-21)

Dividing by r2 and taking the nth root gives a first-order differential equation for the angular

velocity

d
dr

(vp
r

)
= −1

r

(
C1

r2

)1∕n

(8.3-22)

This may be integrated with the boundary conditions in Eqs. 3.7-29 and 3.7-30 to give

vp(r)
1ir

=
(R∕r)2∕n − 1

(1∕n)2∕n − 1
(8.3-23)

The (z component of the) torque needed on the inner cylinder to maintain the motion is then:

Tz = frp|r=nR ⋅ 20nRL ⋅ nR

= m
(
−r d

dr

(vp
r

))n|||||r=nR ⋅ 20nRL ⋅ nR (8.3-24)

Combining Eqs. 8.3-23 and 8.3-24 then gives

Tz = 20m(nR)2L
(

21i∕n
1 − n2∕n

)n

(8.3-25)

The Newtonian result can be recovered by setting n = 1 andm = 4. Equation 8.3-25 can be used

along with torque vs. angular velocity data to determine the power-law parameters m and n.

EXAMPLE 8.3-4

Flow of a Casson Fluid
in a Circular Tube10,11

As mentioned in Example 8.3-1, the shear-stress expression in Eq. 2.3-14 is valid for any kind

of non-Newtonian fluid. According to this equation, the shear stress goes from zero at the tube

center to some value fR = (𝒫0 −𝒫L)R∕2L at the tube wall, where R and L are the radius and

length of the tube. If fR is less than or equal to the yield stress f0, there will be no flow at all. If

fR is greater than f0, then, instead of the situation shown in Fig. 2.3-2, we will have a velocity

distribution such as that shown in Fig. 8.3-1. That is, for frz ≤ f0, there will be a plug-flow region

(i.e., a region in which dvz∕dr = 0), and for frz ≥ f0, there will be a nonzero velocity gradient.

The plug-flow region is bounded by the radial coordinate, r = r0, where r0 is defined by f0 =
((𝒫0 −𝒫L)∕2L)r0.

We note that u̇ = −dvz∕dr for flow in circular tubes, according to the definition given just

before Eq. 8.3-2. For the region r0 ≤ r ≤ R, we then get from Eq. 8.3-6(b)√
qu̇ =

√
40u̇ +

√
f0 or

√
frz =

√
40u̇ +

√
f0 (8.3-26a,b)

Combining Eqs. 2.3-14 and 8.3-26b and rearranging gives√
(𝒫0 −𝒫L)r

2L
=

√
40u̇ +

√
f0 (8.3-27)

10M. M. Lih, Transport Phenomena in Medicine and Biology, Wiley, New York (1975), 378–380.
11E. N. Lightfoot, Transport in Living Systems, Wiley, New York (1974), pp. 35, 430, 438, 440.
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r0
R

τ0

plug flow region
for r < r0

vz(r)

τrz(r)

Fig. 8.3-1. The momentum flux distribution frz(r) and velocity distribution vz(r) for the flow of

a Casson fluid in a circular tube. For r < r0, the velocity is independent of r (plug flow region).

Solving Eq. 8.3-27 for u̇we get

u̇ = 1

40

[(
𝒫0 −𝒫L

)
r

2L
− 2

√
(𝒫0 −𝒫L)rf0

2L
+ f0

]
≡ f0

40

(
r
r0

− 2

√
r
r0

+ 1

)
(8.3-28)

We define v>z (r) to be the velocity in the region r0 ≤ r ≤ R, and v<z (r) in the region 0 ≤ r ≤ r0.
Inserting u̇ = −dv>z ∕dr, we obtain a differential equation for the dimensionless velocity profile

d> = (40∕r0f0)v>z as a function of the dimensionless radial coordinate k = r∕r0

−dd>

dk
= k − 2

√
k + 1 (8.3-29)

Integration of this equation, and using the boundary condition that d> = 0 at k = R∕r0, we get

for r0 ≤ r ≤ R

d>(r) = 1

2

(
R
r0

)2 [
1 −

( r
R

)2]
− 4

3

(
R
r0

)3∕2 [
1 −

( r
R

)3∕2
]
+ R

r0

(
1 − r

R

)
(8.3-30)

and hence for 0 ≤ r ≤ r0

d<(r) = d>(r0) =
1

2

(
R
r0

)2

− 4

3

(
R
r0

)3∕2

+ R
r0

− 1

6
(8.3-31)

The mass rate of flow can then be obtained by using the integral in Eq. 2.3-21 after multiplying

by i and doing an integration by parts to give (the dashed underlined terms are zero)

w = 20i

(
1

2
vzr

2
||||r=Rr=0

− ∫
R

0

1

2
r2
dvz
dr

dr
)

-----------

= −0i
(
∫

r0

0

r2
dvz
dr

dr + ∫
R

r0

r2
dvz
dr

dr
)

-----------

= −0i

(
r3
0
f0
40

)
∫

R∕r0

1

k2
dd>

dk
dk = + 0i

(
r3
0
f0
40

)
∫

R∕r0

1

k2(k − 2
√
k + 1)dk

= 0i

(
r3
0
f0
40

){
1

4

[(
R
r0

)4

− 1

]
− 4

7

[(
R
r0

)7∕2

− 1

]
+ 1

3

[(
R
r0

)3

− 1

]}
= 0i

(
f0R

4

440r0

)[
1 − 16

7

( r0
R

)1∕2
+ 4

3

( r0
R

)
− 1

21

( r0
R

)4
]

=
0(𝒫0 −𝒫L)R4i

840L

⎡⎢⎢⎢⎢⎢⎣
1 − 16

7

√
2Lf0(

𝒫0 −𝒫L

)
R

+ 4

3

2Lf0
(𝒫0 −𝒫L)R

− 1

21

(
2Lf0(

𝒫0 −𝒫L

)
R

)4

⎤⎥⎥⎥⎥⎥⎦
(8.3-32)

When f0 → 0 and 40 → 4, the Newtonian result (Eq. 2.3-23) is recovered.
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§8.4 ELASTICITY AND THE LINEAR
VISCOELASTIC MODELS

In §1.2, in the discussion about generalizingNewton’s “lawof viscosity” to arbitrary flows,
we assumed that the stress does not depend explicitly on time. In this section, we allow
for the inclusion of a time derivative, but still require a linear relation between f and u̇.
This leads to a linear viscoelastic model.

We start by writing down Newton’s expression for the stress tensor for an incom-
pressible viscous liquid along with Hooke’s analogous expression for the stress tensor for
an incompressible elastic solid:1

Newton: f = −4
(
∇v + (∇v)†

) ≡ −4u̇ (8.4-1)

Hooke: f = −G
(
∇u + (∇u)†

) ≡ −Gu (8.4-2)

In the second of these expressions, G is the elastic shear modulus, and u is the displacement
vector, which gives the distance and direction that a point in the solid has moved from
some initial position as a result of the applied stresses. The quantity u is called the infinites-
imal strain tensor. The rate-of-strain tensor and the infinitesimal strain tensor are related by
u̇ = 𝜕u∕𝜕t. The Hookean solid has a perfect memory; when imposed stresses are removed,
the solid returns to its initial configuration. Hooke’s law is valid only for very small dis-
placement gradients, ∇u. Now we want to combine the ideas embodied in Eqs. 8.4-1 and
8.4-2 to describe viscoelastic fluids.

A simple way to describe a fluid that is both viscous and elastic is theMaxwell model2

f + m
𝜕
𝜕t

f = −q0u̇ (8.4-3)

Here m = q0∕G is a time constant (the relaxation time) and q0 is the zero-shear-rate viscosity.
When the stress tensor changes imperceptibly with time, then Eq. 8.4-3 has the form of
Eq. 8.4-1 for a Newtonian liquid. When there are very rapid changes in the stress tensor
with time, then the first term on the left side of Eq. 8.4-3 can be omitted, and when the
equation is integrated with respect to time, we get an equation of the form of Eq. 8.4-2 for
the Hookean solid. In that sense, Eq. 8.4-3 incorporates both viscosity and elasticity, but is
restricted to small displacement gradients, where Hooke’s law is valid.

A simple experiment that illustrates the behavior of a viscoelastic liquid involves
“silly putty.” This material flows easily when squeezed slowly between the palms of the
hands, and this indicates that it behaves as a viscous fluid. However, when it is rolled
into a ball, the ball will bounce when dropped onto a hard surface. During the impact, the
stresses change rapidly, and the material behaves as an elastic solid.

When Eq. 8.4-3 is integrated, with the condition that the fluid is at rest at t=−∞, we
get the integral form of the Maxwell model

f(t) = −∫
t

−∞

{q0
m
e−(t−t′)∕m

}
u̇(t′) dt′ (8.4-4)

In this form, the idea of “fadingmemory” is clearly present: the stress at time t depends on
the velocity gradient at all past times t′, but, because of the exponential, greatest weight
is given to the velocity gradient at times t′ that are near t. That is, the fluid’s “memory” is
better for recent times than for times more remote in the past. That part of the integrand
in Eq. 8.4-4 enclosed in braces is called the relaxation modulus of the fluid and is generally
denoted by G(t − t′). The main problem with the Maxwell model is that it fails to predict

1R. Hooke, Lectures de Potentia Restitutiva (1678).
2This relation was proposed by J. C. Maxwell, Phil. Trans. Roy. Soc., A157, 49–88 (1867), to

demonstrate that gases are not viscoelastic.
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the shear-rate dependence of viscosity that all polymeric liquids exhibit, and is captured
by the generalized Newtonian models in the previous section.

EXAMPLE 8.4-1

Small-Amplitude
Oscillatory Motion

Obtain an expression for the components of the complex viscosity by using theMaxwell model.

SOLUTION

We use the yx component of Eq. 8.4-4, and for this problem the yx component of the

rate-of-strain tensor is:

u̇yx(t) =
𝜕vx
𝜕y

= u̇0 cosat (8.4-5)

where a is the angular frequency. When this is substituted into Eq. 8.4-4, with the relaxation

modulus (in braces) expressed as G(t − t′), we get

fyx(t) = −∫
t

−∞
G(t − t′) u̇0 cosat′ dt′

= −u̇0∫
∞

0

G(s) cosa(t − s) ds

= −u̇0
[
∫

∞

0

G (s) cosas ds
]
cosat − u̇0

[
∫

∞

0

G (s) sinas ds
]
sinat (8.4-6)

in which s = t − t′. When this equation is compared with Eq. 8.2-4, we obtain

q′(a) = ∫
∞

0

G(s) cosas ds (8.4-7)

q′′(a) = ∫
∞

0

G(s) sinas ds (8.4-8)

for the components of the complex viscosity q* = q′ − iq′′. When the Maxwell expression for

the relaxation modulus is introduced and the integrals are evaluated, we find that

q′(a)
q0

= 1

1 + (ma)2
and

q′′(a)
q0

= ma
1 + (ma)2

(8.4-9,10)

Equations 8.4-9 and 8.4-10 show that q′ and q′′ both decrease with increasing frequency a. The
shapes of the curves agree only qualitatively with the shapes of the experimental curves.

However, if one uses a superposition of Maxwell models

f =
∞∑
k=1

fk where fk + mk
𝜕
𝜕t
fk = −qku̇k (8.4-11,12)

then the experimental data may be described with great accuracy. In this formulation, the mk
and qk are constants, and Fkqk = q0. Alternatively, the stress tensor may be written in integral

form as

f(t) = −∫
t

−∞
G(t − t′) u̇(t′)dt′ (8.4-13)

with

G(t − t′) =
∞∑
k=1

(qk∕mk) exp[−(t − t′)∕mk] (8.4-14)

Instead of using an expression containing the infinite sets of constants mk and qk, one can make

use of the Spriggs empiricisms3

qk =
q0mk
Fkmk

and mk =
m
kw

(8.4-15,16)

3T. W. Spriggs, Chem. Eng. Sci., 20, 931–940 (1965).
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This enables one to fit the experimental data quite well with just three parameters: the

zero-shear-rate viscosity q0, a time constant m (the longest relaxation time), and a dimensionless

parameter w.

§8.5 OBJECTIVITY AND THE NONLINEAR VISCOELASTIC
MODELS

We have seen how to get (non-Newtonian) viscosity and elasticity into the expressions for
the stress tensor, but something is still missing. The expression for the stress tensor should
be independent of the instantaneous orientation of a fluid element in space, and this leads
to the requirement of rheological invariance or objectivity.1 In order for a stress-tensor expres-
sion to be objective, it is necessary to replace 𝜕∕𝜕t in differential expressions by a different
kind of time derivative, one that will satisfy the principle of objectivity. There are several
ways to do this. Here we will use the simplest way, and replace 𝜕f∕𝜕t by the “corotational
time derivative” or “Jaumann derivative”2,3

𝒟
𝒟t

f = D
Dt

f+ 1

2
{a ⋅ f− f ⋅ a} (8.5-1)

in which a=∇v − (∇v)† is the vorticity tensor. This derivative tells how the stress tensor
changes with time as one goes along with a fluid element and rotates with it. If this time
derivative replaces 𝜕f∕𝜕t in Eq. 8.4-3, then we get the “corotational Maxwell model”

f + m
𝒟
𝒟t

f = −q0u̇ (8.5-2)

which gives a non-Newtonian viscosity (which drops off too steeply with increasing shear
rate, as shown in the example below) a positive first normal stress coefficient, and a neg-
ative second normal stress coefficient (which is too large in magnitude). Nonetheless, the
corotationalMaxwell model can be useful for getting trends in the physical properties and
learning how to manipulate nonlinear viscoelastic models.

EXAMPLE 8.5-1

Obtaining the
Steady-State Material
Functions for the
Corotational Maxwell
Model

Show how to get the viscosity, the first normal-stress coefficient, and the second normal-stress

coefficient for the steady-state shear flow of a fluid described by the corotational Maxwell

model. The imposed flow is vx = u̇ywith vy = 0 and vz = 0.

SOLUTION

In learning how to discuss nonlinear viscoelasticmodels, it is useful to display the various parts

of the models in matrix form. We start by getting ∇v, (∇v)†, u̇, and a for the flow field being

considered.

∇v =
⎛⎜⎜⎝
(∇v)xx (∇v)xy (∇v)xz
(∇v)yx (∇v)yy (∇v)yz
(∇v)zx (∇v)zy (∇v)zz

⎞⎟⎟⎠ =
⎛⎜⎜⎝
0 0 0

1 0 0

0 0 0

⎞⎟⎟⎠ u̇ (∇v)† =
⎛⎜⎜⎝
0 1 0

0 0 0

0 0 0

⎞⎟⎟⎠ u̇ (8.5-3,4)

1For a discussion of rheological invariance, see R. B. Bird, R. C. Armstrong, and O. Hassager,

Dynamcs of Polymeric Liquids, Vol. 1, 2nd Edition, Wiley, New York (1987), pp. 482 and 483.
2G. Jaumann, Grundlagen der Bewegungslehre, Leipzig (1905). S. Zaremba, Bull. Int. Academie Sci.,

Cracovie, 594–614, 614–621 (1903).Gustav Andreas Johannes Jaumann (1863–1924) (pronounced

“Yow-mahn”) taught at the German university in Brünn (now Brno in the Czech Republic). He was an

important contributor to the field of continuum mechanics at the beginning of the twentieth century.
3J. G. Oldroyd, Proc. Roy. Soc., A245, 278–297 (1958); L. E. Wedgewood, Rheol. Acta, 38, 91–99 (1999).
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u̇=
⎛⎜⎜⎝
u̇xx u̇xy u̇xz
u̇yx u̇yy u̇yz
u̇zx u̇zy u̇zz

⎞⎟⎟⎠ =
⎛⎜⎜⎝
0 1 0

1 0 0

0 0 0

⎞⎟⎟⎠ u̇ a=
⎛⎜⎜⎝
0 −1 0

1 0 0

0 0 0

⎞⎟⎟⎠ u̇ (8.5-5,6)

Since the stress tensor f does not depend on position and time, in the Jaumann derivative of f,
the substantial derivative will not contribute and we are left with only 1

2
{a ⋅ f− f ⋅ a}.

{a ⋅ f} =
⎛⎜⎜⎝
0 −1 0

1 0 0

0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝
fxx fxy fxz
fyx fyy fyz
fzx fzy fzz

⎞⎟⎟⎠ u̇ =
⎛⎜⎜⎝
−fyx −fyy −fyz
fxx fxy fxz
0 0 0

⎞⎟⎟⎠ u̇ (8.5-7)

{f ⋅ a} =
⎛⎜⎜⎝
fxx fxy fxz
fyx fyy fyz
fzx fzy fzz

⎞⎟⎟⎠
⎛⎜⎜⎝
0 −1 0

1 0 0

0 0 0

⎞⎟⎟⎠ u̇ =
⎛⎜⎜⎝
fxy −fxx 0

fyy −fxy 0

fzy −fxz 0

⎞⎟⎟⎠ u̇ (8.5-8)

Hence, the Jaumann derivative is (keep in mind that the stress tensor is symmetric)

𝒟f
𝒟 t

=
⎛⎜⎜⎜⎝

−fyx
1

2

(
fxx − fyy

)
− 1

2
fyz

1

2
(fxx − fyy) fyx

1

2
fxz

− 1

2
fyz

1

2
fxz 0

⎞⎟⎟⎟⎠ u̇ (8.5-9)

Thus, for simple shear flow, the corotational Maxwell model (Eq. 8.5-2) in matrix form is

⎛⎜⎜⎝
fxx fxy fxz
fyx fyy fyz
fzx fzy fzz

⎞⎟⎟⎠ + m

⎛⎜⎜⎜⎝
−fyx

1

2

(
fxx − fyy

)
− 1

2
fyz

1

2
(fxx − fyy) fyx

1

2
fxz

− 1

2
fyz

1

2
fxz 0

⎞⎟⎟⎟⎠ u̇
= −q0

⎛⎜⎜⎝
0 1 0

1 0 0

0 0 0

⎞⎟⎟⎠ u̇ (8.5-10)

From this matrix equation, we can write down the following algebraic equations

xx component minus yy component: (fxx − fyy) − 2fyxmu̇ = 0 (8.5-11)

yy component minus zz component: (fyy − fzz) + fyxmu̇ = 0 (8.5-12)

yx component: fyx +
1

2
(fxx − fyy)mu̇ = −q0u̇ (8.5-13)

xz component: fxz −
1

2
fyzmu̇ = 0 (8.5-14)

yz component: fyz +
1

2
fxzmu̇ = 0 (8.5-15)

From the last two equations we see that fxz = fyz = 0. From solving the first three simultaneous
equations for fyx, fxx − fyy, and fyy − fzz we find

fyx = −q0u̇
1

1 + (mu̇)2
or

q

q0
= 1

1 + (mu̇)2
(8.5-16,17)

fxx − fyy = −q0u̇
2mu̇

1 + (mu̇)2
or

A1

q0m
= 2

1 + (mu̇)2
(8.5-18,19)

fyy − fzz = +q0u̇
mu̇

1 + (mu̇)2
or

A2

q0m
= − 1

1 + (mu̇)2
(8.5-20,21)

We know that the shear stress keeps increasing as the velocity gradient increases, but Eq. 8.5-16
indicates otherwise. In fact, the shear stress goes through a maximum at mu̇ = 1, and therefore,
we see that Eqs. 8.5-16 and 8.5-17 are limited to mu̇ < 1. The second normal stress is negative,
and that is in agreement with measurements for polymeric liquids. However, generally one
expects A2∕A1 to be in the range from −0.1 to −0.4. Hence, from examination of this one par-
ticular flow, it is evident that caution must be used when drawing any conclusions from this
model. However, for a model with just two parameters, it seems to be promising for predicting
qualitative behavior for low shear rates.
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Considerably better results can be obtained by superposing a large number of corotational

Maxwell models4 with different time constants mk and viscosity constants qk

f =
∞∑
k=1

fk with fk + mk
𝒟
𝒟t

fk = −qku̇ (8.5-22,23)

This leads to

q =
∞∑
k=1

qk
1 + (mku̇)2

and
1

2
A1 =

∞∑
k=1

qkmk
1 + (mku̇)2

= −A2 (8.5-24,25)

or, using the Spriggs empiricisms of Eqs. 8.4-15 and 8.4-16

Low-shear-rate region:

q

q0
= 1 − (mu̇)2

r(w)

∞∑
k=1

1

kw
(
k2w + (mu̇)2

) (8.5-26)

A1

2q0m
= −

A2

q0m
= r(2w)

r(w)
− (mu̇)2

r(w)

∞∑
k=1

1

k2w
(
k2w + (mu̇)2

) (8.5-27)

High-shear-rate (power-law) region:

q

q0
= 1

r(w)

[
0(mu̇)(1∕w)−1

2w sin
(
(w + 1) 0∕2w

)] (8.5-28)

A1

2q0m
= −

A2

q0m
= 1

r(w)

[
0(mu̇)(1∕w)−2

2w sin(0∕2w)
− (mu̇)−2

2

]
(8.5-29)
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Fig. 8.5-1. Simple shear flow material functions for the corotational Maxwell model. (a) Viscosity curves. It is not clear if

the “wiggles” evident for larger values of w are in agreement with experimental observations; (b) Normal-stress curves.

HereA1,0 is the value ofA1 in the limit as u̇ → 0.

4R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, 1st Edition, Vol. 1,
Wiley, New York (1977), pp. 335–338; A. J. Giacomin, R. B. Bird, L. M. Johnson, and A. W. Mix,

J. Non-Newtonian Fluid Mechanics, 166, 1081–1099 (2011); Errata: In Eq. (66), “20De2” and “10De2 − 50De4”

should be “20De” and “10De − 50De3”; after Eq. (119), “(rw)” should be “r(w)”; in Eq. (147), “n − 1”

should be “n = 1.” See also A. J. Giacomin and R. B. Bird, Rheologica Acta, 50, 741–752 (2011).
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where r(w) =
∞∑
k=1

k−w is the Riemann zeta function5: r(2) = 02∕6, r(4) = 04∕90, r(6) = 06∕495, etc.

It should be noted that from the slope of the power-law part of the viscosity curve that n of the

power lawmodel (Eq. 8.3-3) is the same as 1∕w. Equations 8.5-26 to 8.5-29 were used to plot the

curves shown in Figures 8.5-1(a) and (b).
Many rheological properties have been well described by the generalized corotational

Maxwell model of Eqs. 8.5-22 and 8.5-23.

§8.6 A MOLECULAR THEORY AND A NONLINEAR
VISCOELASTIC MODEL

The simplest molecular model that can describe the nonlinear rheological behavior is the
dilute suspension of rigid dumbbells. This is the suspension in aNewtonian liquid of dumb-
bells that each consist of two identical “beads” connected by a massless rigid “rod.” The
dumbbells are presumed to be far enough apart that they do not in any way interact with
one another. Although this bead-rodmodel may appear to be quite unrealistic, it has been
found to describe rather well the responses of dilute, and even concentrated, solutions of
flexible polymers.

We let the length of the dumbbell be L and the friction coefficient for the bead be r.
The latter is defined as the coefficient of proportionality between the force F acting on the
bead, and the velocity vwith which the beadmoves; if Stokes’ law is used, then r = 60qsr0,
where r0 is the bead radius and qs is the viscosity of the suspending medium. Then one
can form a fluid “time constant” m as follows:

m = rL2

12KT
(8.6-1)

We do not attempt to give a discussion of the details of the kinetic theory here, as it can be
found elsewhere,1 but simply present the results.

In steady-state shear flow, it is found that the non-Newtonian viscosity and normal
stress functions are given by the following power series expansions for small values of the
shear rate:

q(u̇) − qs = nKTm
[
1 − 18

35
(mu̇)2 + 1326

1825
(mu̇)4 − · · ·

]
(8.6-2)

A1(u̇) = nKTm2
[
1 − 38

35
(mu̇)2 + 38728

25025
(mu̇)4 − · · ·

]
(8.6-3)

A2(u̇) = 0 (8.6-4)

where n is the number of dumbbells per unit volume. By using a technique known as
“orthogonal collocation,” Stewart and Sørensen2 showed that, for very large values of the
shear rate, the viscosity andfirst normal stresses have the following asymptotic power-law
expressions:

q(u̇) − qs =̇ 0.678nKTm(mu̇)−1∕3 (8.6-5)

A1(u̇) =̇ 1.20nKTm2(mu̇)−4∕3 (8.6-6)

5M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions, Dover, New York, 9th

Printing (1973).
1R. B. Bird, H. R. Warner, Jr., and D. C. Evans, Adv. in Polymer Sci., 8, 1–70 (1971); R. B. Bird, C. F.

Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Vol. 2, 2nd edition, Wiley, New

York (1987), Chapter 14; R. B. Bird, O. Hassager, R. C. Armstrong, and C. F. Curtiss, Dynamics of Polymeric
Liquids, Vol. 2, 1st edition, Wiley, New York (1977), Chapter 11.

2W.E. Stewart and J.P. Sørensen, Trans. Soc. Rheol., 16, 1–13 (1972).
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The limiting slopes provided by these equations are fairly realistic for most polymer solu-
tions and melts.

For oscillatory shearing flowwith very small shear rate amplitude, the rigid dumbbell
suspension model gives

q′(a) − qs = nKTm

[
1 + 2

5
(ma)2

1 + (ma)2

]
(8.6-7)

q′′(a) − qs = nKTm

[ 3

5
(ma)

1 + (ma)2

]
(8.6-8)

These expressions capture the main features of the behavior of the linear viscoelastic
behavior of polymeric fluids. In addition, the normal stress difference responses in small
amplitude oscillatory shear flow have been predicted.1

For steady elongational flow, the rigid dumbbell model gives the following:

q(ṡ) − 3qs
3nKTm

= 1

2
∓ 3

4X
± 3

4
√
X

exp(±X)

∫
√
X

0

exp(±Y2)dY

(8.6-9)

in which X = (9∕2)m|ṡ|. This predicts that for positive elongation rates, (q − 3qs)∕3nKTm
increases monotonically from zero to 2.00 as the elongation rate goes from ṡ = 0 to ṡ =
∞; it also predicts that for negative elongation rates (biaxial extension), (q − 3qs)∕3nKTm
decreases monotonically from zero to −1∕2 as the elongation rate goes from ṡ = 0 to ṡ =
−∞. These predictions seem to agree, at least qualitatively, with the behavior of some
polymers.

The rheological responses in even more complex flows have been studied. For
example, the behavior of the dumbbell suspension model in large-amplitude oscillatory
shear flow has been worked out.3 In addition, by using a superposition of dumbbells
with different time constants to model a mixture of dumbbells of different lengths, one
can get refinements in the predictions of the various rheological properties.4 The subject
has been pursued well beyond the discussion of this section, including the development
of theories for freely jointed bead-spring and bead-rod chains.4

§8.7 CONCLUDING COMMENTS

It has been demonstrated that many experiments show that polymeric fluids (as well as
suspensions) do not behave according to Newton’s law of viscosity. We have also seen
that for such fluids, measuring the viscosity is not sufficient to characterize the fluids.
One can measure the normal stress differences and the viscosity as functions of the shear
rate. In addition, many other quantities can be measured: the elongational viscosity, the
stress relaxation after cessation of steady shear flow, the stress growth after the start-up
of steady shear flow, and many others. Suspensions exhibit some, but not all, phenomena
observed for polymers.

For describing steady shearing motions, the generalized fluid models, with two or
three constants, are quite sufficient and these have served the polymer industry well. For

3R. B. Bird, A. J. Giacomin, A. M. Schmalzer, and C. Aumnate, J. Chem. Phys., 140, 074904 (2014);
Errata: in Eq. 9l, q′ should be q′′; in caption to Fig. 3, b[P2

2
s2] should be cos 3at, and b[P0

2
c0,P

2
2
c2] should

be sin 3at.
4R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Vol. 2, 2nd

edition, Wiley, New York (1987); Problem 14C.2 (for dumbbell mixtures) and Chapters 15 through 19 (for

chainlike molecules and other more complex models).
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small amplitude oscillatory flow, theMaxwell model can be used to get general trends, but
is unsuitable for quantitative calculations; however, the three-constant Maxwell model
(using the Spriggs empiricism) can give quantitative agreement with experiments. For
nonlinear viscoelastic flows, recourse has to be taken to expressions for the stress tensor
that take into account the rotation of fluid elements. The simplest model of this type is
the two-constant corotational Maxwell model; this model is inadequate for describing
the nonlinear behavior of rheological phenomena, but the corresponding three-constant
generalized corotational model does rather well. The two-constant dumbbell molecular
theory gives the material functions as well as information regarding the molecular
orientation.

This chapter is but an elementary introduction to a huge subject with a vast and
rapidly growing literature, particularly in the field of nonlinear viscoelastic models. The
molecular theories for polymers and structural models for suspensions will likely, in the
future, provide a more reliable basis for stress tensor expressions for these complex fluids.

QUESTIONS FOR DISCUSSION

1. Compare the behavior of Newtonian liquids and polymeric liquids in the various experiments
discussed in §8.1 and §8.2.

2. Why do we deal only with differences in normal stresses for incompressible liquids (see Eqs.
8.2-2 and 8.2-3)?

3. In §8.2b the postulated velocity profile is linear in y. What would you expect the velocity dis-
tribution to look like if the gap between the plates were not small and the fluid had a very low
viscosity?

4. How is the parameter n in Eq. 8.3-3 related to the parameter n in Eq. 8.3-4?
5. What limitations have to be placed on use of the generalized Newtonian models and the

two-constant corotational Maxwell model?
6. For what kinds of industrial problems would you use the various kinds of models described

in this chapter?
7. Why may the power-law model be unsatisfactory for describing the axial flow in an annulus?
8. In Eq. 8.3-32, why do we integrate by parts?

PROBLEMS 8A.1 Flow of a polyisoprene solution in a pipe. A 13.5% (by weight) solution of polyisoprene in
isopentane has the following power-law parameters at 323 K: n = 0.2 and m = 5 × 103 Pa ⋅ sn.
It is being pumped (in laminar flow) through a horizontal pipe that has a length of 10.2m and
an internal diameter of 1.3 cm. It is desired to use another pipe with a length of 30.6m with the
same mass flow rate and the same pressure drop. What should the pipe radius be?

8A.2 Pumping of a polyethylene oxide solution. A 1% aqueous solution of polyethylene oxide at
333 K has power-law parameters n = 0.6 and m = 0.50 Pa ⋅ sn. The solution is being pumped
between two tanks, with the first tank at pressure p1, and the second at pressure p2. The pipe
carrying the solution has a length of 14.7m and an internal diameter of 0.27 m.

It has been decided to replace the single pipe by a pair of pipes of the same length, but
with smaller diameter. What diameter should these pipes have so that the mass flow rate will
be the same as in the single pipe?

8B.1 Flow of a polymeric film. Work the problem in §2.2 for the power-law fluid. Show that the
result simplifies properly to the Newtonian result.

8B.2 Power-law flow in a narrow slit. In Example 8.3-2, show how to derive the velocity distribu-
tion for the region −B ≤ x ≤ 0. Is it possible to combine this result with that in Eq. 8.3-16 into
one equation?

8B.3 Non-Newtonian flow in an annulus. Rework Problem 2B.8 for the annular flow of a power-
law fluid with the flow being driven by the axial motion of the inner cylinder.



Trim Size: 8in x 10in Bird1e c08.tex V1 - October 21, 2014 3:52 P.M. Page 247

Problems 247

(a) Show that the velocity distribution for the fluid is

vz(r)
v0

=
(r∕R)1−(1∕n) − 1

n1−(1∕n) − 1
(8B.3-1)

(b) Verify that the result in (a) simplifies to the Newtonian result when n goes to 1.

(c) Show that the mass flow rate in the annular region is given by

w =
20R2v0i

n1−(1∕n) − 1

(
1 − n3−(1∕n)

3 − (1∕n)
− 1 − n2

2

) (
for n ≠ 1

3

)
(8B.3-2)

(d) What is the mass flow rate for fluids with n = 1

3
?

(e) Simplify Eq. 8B.3-2 for the Newtonian fluid.

8B.4 Flowof a polymeric liquid in a tapered tube. WorkProblem 2B.11 for a power-lawfluid, using

the lubrication approximation.

8B.5 Derivation of the Buckingham-Reiner equation.1 Rework Example 8.3-1 (or Example 8.3-4)

for the Bingham model. First show that the velocity distribution is

v>z (r) =
(𝒫0 −𝒫L)R2

440L

[
1 −

( r
R

)2
]
−

f0R
40

[
1 −

( r
R

)]
r ≥ r0 (8B.5-1)

v<z (r) =
(𝒫0 −𝒫L)R2

440L

(
1 −

r0
R

)
r ≤ r0 (8B.5-2)

where r0 is the radius of the plug-flow region. Then show that the mass rate of flow is given by

w =
0(𝒫0 −𝒫L)R4i

840L

[
1 − 4

3

(
f0
fR

)
+ 1

3

(
f0
fR

)4
]

(8B.5-3)

in which fR = (𝒫0 −𝒫L)R∕2L is the shear stress at the tube wall. This expression is valid only

when fR ≥ f0.

8B.6 Draining of a tank with an exit pipe. Rework Problem 7B.9(a) for the system depicted in Fig.

7B.9, for the power-law fluid.

8B.7 Radial flow between parallel disks for a power-law fluid. First review the solution to the

problem of a power-law fluid through a thin slit in Example 8.3-2.

Then solve the problem of slow, steady radial flow between two fixed parallel circular

disks separated by a distance 2B. Let the inner and outer radii of the disks be R1 and R2 (see

Fig. 8B.7). Obtain the mass rate of flow by adapting the results of Example 8.3-2 locally in the

region between the two disks. The result is

w = 40B2i

(1∕n) + 2

((
p1 − p2

)
B(1 − n)

m(R1−n
2

− R1−n
1

)

)1∕n

(8B.7-1)

This equation has been used by several groups2,3,4 to describe the radial flow data for moder-

ately viscoelastic polymer solutions.

1E. Buckingham, Proc. ASTM, 21, 1154–1161 (1921); M. Reiner, Deformation and Flow, Lewis, London

(1949).
2T. Y. Na and A. G. Hansen, Int. J. Nonlinear Mech., 2, 261–273 (1967).
3B. R. Laurencena and M. C. Williams, Trans. Soc. Rheol., 18, 331–355 (1974).
4H. Amadou, P. M. Adler, and J.-M. Piau, J. Non-Newtonian Fluid Mech., 4, 229–237 (1978).
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r = R1
r = R2

Radial flow outward
between disks

Fluid in

z = +B
z = –B

Fig. 8B.7 Outward radial flow in the space

between two parallel, circular disks.

8B.8 Axial annular flow of a Bingham fluid. Repeat the problem discussed in §2.4 for a Bingham

fluid. The flow of a Newtonian fluid is pictured in Fig. 2.4-1, and the flow of a Bingham fluid

is shown in Fig. 8B.8.
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Velocity
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or momentum-
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+

–

Fig. 8B.8 The momentum-flux distribution

and velocity distribution for the upward flow

of a Bingham fluid in a cylindrical annulus.

8C.1 The cone-and-plate viscometer.5 Review theNewtonian analysis of the cone-and-plate instru-

ment shown in Fig. 2.6-2 and discussed in §2.6. Then do the following:

(a) Show that the shear rate u̇ is uniform throughout the gap (for small b0) and equal to u̇ =
−u̇pd = 1∕b0. Because of the uniformity of u̇, the components of the stress tensor are also con-

stant throughout the gap.

(b) Show that the non-Newtonian viscosity is then obtained frommeasurements of the torque

Tz and rotation speed 1 by using

q(u̇) =
3Tzb0

20R31
(8C.1-1)

(c) Show that for the cone-and-plate system the radial component of the equation of motion is

0 = −
𝜕p
𝜕r

− 1

r2
𝜕
𝜕r

(r2frr) +
fpp + fdd

r
(8C.1-2)

5R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics,
Wiley-Interscience, New York, 2nd Edition (1987), pp. 521–524.
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if the centrifugal force term −iv2d∕r can be neglected. Rearrange this to get

0 = −
𝜕0rr
𝜕 ln r

+ (fdd − fpp) + 2(fpp − frr) (8C.1-3)

Then introduce the normal stress coefficients, and use the result of (a) to replace 𝜕0rr∕𝜕 ln r by
𝜕0pp∕𝜕 ln r, to get

𝜕0pp
𝜕 ln r

= −(A1 + 2A2)u̇2 (8C.1-4)

Integrate this from r to R and use the boundary condition 0rr(R) = pa to get

0pp(r) = 0pp(R) − (A1 + 2A2)u̇2 ln(r∕R)
= pa −A2u̇

2 − (A1 + 2A2)u̇2 ln(r∕R)
(8C.1-5)

in which pa is the atmospheric pressure acting on the fluid at the rim of the cone-and-plate

instrument.

(d) Show that the total thrust in the z direction exerted by the fluid on the cone is

Fz = ∫
20

0 ∫
R

0

[0pp(r) − pa] r dr dp =
1

2
0R2A1u̇

2 (8C.1-6)

From this one can obtain the first normal-stress coefficient by measuring the force that the fluid

exerts.

(e) Suggest a method for measuring the second normal-stress coefficient using results in part

(c) if small pressure transducers are flush-mounted in the plate at several different radial

locations.

8C.2 Deduction of q(u̇) from tube-flow data. In Problem 8C.1 it is shown how to get the function

q(u̇) from data obtained with a cone-and-plate viscometer. In the absence of this kind of device,

one may have to extract the function from tube-flow data. Show how to get the relation for the

non-Newtonian viscosity q(u̇) from experimental data on mass rate of flow w vs. pressure drop

𝒫0 −𝒫L for flow through circular tubes.

We know from §2.3 that, for any kind of fluid frz = fRr∕R, where fR = (𝒫0 −𝒫L)R∕2L is the

shear stress at the tube wall r = R. The mass rate of flow through the tube is

w = 20i∫
R

0

vzrdr = −20i∫
R

0

(
dvz
dr

)(
r2

2

)
dr = +0i∫

R

0

u̇r2dr (8C.2-1)

the second form being obtained by an integration by parts. In the third formwe have made the

replacement u̇ = −dvz∕dr.
Next change the variable of integration from r to frz

w
0R3i

= 1

f3R
∫

fR

0

u̇f2rz dfrz (8C.2-2)

In this equation, the shear rate u̇ is to be regarded as a function of the shear stress.

Equation 8C.2-2 says that data taken in tubes of different lengths and radii should collapse

onto a single curve when plotted as w∕0R3i vs. fR. Now multiply Eq. 8C.2-2 by f3R and then

differentiate with respect to fR to get

d
dfR

(
f3R

w
0R3i

)
= u̇Rf

2
R (8C.2-3)

where the Leibniz formula for differentiating an integral has been used (see §C.3). This is the

Weissenberg-Rabinowitsch equation. It tells how the wall shear rate u̇R can be obtained by differ-

entiating the flow-rate vs pressure-drop data.

Now put Eq. 8C.2-3 into a different form. Differentiate the product with respect to fR to

get
w

0R3i
⋅ 3f2R + f3R

d
dfR

(
w

0R3i

)
= u̇Rf

2
R (8C.2-4)
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and then divide by f2R(w∕0R
3i) to obtain

3 +
d ln(w∕0R3i)

d ln fR
= u̇R

1

w∕0R3i
(8C.2-5)

Then finally

q(u̇R) =
fR
u̇R

=
fR

w∕0R3i

[
3 +

d ln
(
w∕0R3i

)
d ln fR

]−1

(8C.2-6)

Equation 8C.2-6 gives the viscosity as a function of shear rate at the wall from experimen-

tal measurements of w and 𝒫0 −𝒫L. If it is assumed that q(fR) at the wall is the same as q(u̇)
throughout the tube, then Eq. 8C.2-6 gives q(u̇). This assumption seems to be valid for typical

polymeric fluids. It would not, however, be expected to hold for suspensions of fibers, because

of the change in the fluid microstructure near the wall. The above analysis is applicable only

when there is no appreciable viscous heating.

8C.3 Squeezing flowbetweenparallel disks.6 Rework Problem3C.3(e) for the power-lawfluid (see

Fig. 3C.3). This device can be useful for determining the power-law parameters for materials

that are highly viscous. Show that the power-law analog of Eq. 3C.3-15 is

1

H(n+1)∕n = 1

H(n+1)∕n
0

+ n + 1

2n + 1

(
n + 3

20mRn+3

)1∕n
F1∕n
0

t (8C.3-1)

This equation reduces to that for a Newtonian fluid for m → 4 and n → 1.

6R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics,
Wiley-Interscience, New York, 2nd Edition (1987), pp. 189–192.



Trim Size: 8in x 10in Bird1e p02.tex V1 - June 26, 2014 4:23 P.M. Page 251

Part Two

Energy Transport

251



Trim Size: 8in x 10in Bird1e p02.tex V1 - June 26, 2014 4:23 P.M. Page 252



Trim Size: 8in x 10in Bird1e c09.tex V1 - October 21, 2014 4:01 P.M. Page 253

Chapter 9

Thermal Conductivity and the
Mechanisms of Energy
Transport

§9.1 Convective energy-flux vector

§9.2 Conductive heat-flux vector—Fourier’s law

§9.3 Work-flux vector

§9.4 Total energy-flux vector

§9.5 Thermal conductivity data from experiments

§9.6 Thermal conductivity and the principle of corresponding states

§9.7○ Thermal conductivity of gases and kinetic theory

§9.8○ Thermal conductivity of liquids

§9.9○ Thermal conductivity of solids

§9.10○ Effective thermal conductivity of composite solids

§9.11 Concluding comments

In Chapter 1, when we discussed the mechanisms of momentum transport, we discussed

first the convective momentum flux and then the molecular momentum flux. In this

chapter we follow the same approach for energy transport.

In §9.1, we discuss the convective transport of kinetic energy and internal energy;

in Eqs. 0.4-10 and 0.4-11, we have already obtained expressions for describing how these

forms of energy are swept along by the fluid motion. This leads to the definition of the

convective energy-flux vector q(c).

Then we turn to the molecular transport of energy, but here we must include two

different types of transport. In §9.2, we discuss the conductive heat flux, which involves

the thermal conductivity k of the material, and in §9.3, we explain the work flux, which

involves the viscosity 4 of the material. In these sections we will define the conductive
heat-flux vector q, and the work-flux vector w = [0 ⋅ v] = pv + [f ⋅ v]. These two molecular

fluxes will appear as q +w, and this will be reminiscent of the combination Q +W that

appears in classical thermodynamics.

Having defined the three fluxes mentioned above, in §9.4, we combine them and

define the total energy-flux vector e = q(c) + q +w. This quantity will be used in Chapter

10 in setting up shell energy balances, and again in Chapter 11 in setting up the equation

253
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of change for energy. This is a conservation equation for energy; it is actually a gener-
alization of the first law of thermodynamics, in that it can describe flow systems and
time-dependent problems, whereas classical thermodynamics is restricted to equilibrium
systems that are time-independent.

The remainder of the chapter concerns the thermal conductivity of various
materials—gases, liquids, and solids. In §9.5, we give a brief overview of the experimental
data, in order to give an idea of the range of numerical values of this physical property.
Then in §9.6, we show how the principle of corresponding states can give a qualitative
picture of the behavior of the thermal conductivity of gases and liquids as a function
of temperature and pressure. Then we present a brief discussion of the kinetic theory
of gases, because this gives a clear picture of the mechanism for energy transport for
gaseous systems. We then conclude the chapter with brief discussions of the thermal
conductivity of liquids, solids, and solid composites.

However, this chapter does not tell the whole story about energy transport. A very
important mechanism is that of radiant energy transport, which can even take place in a
vacuum. This is so important that it deserves a chapter of its own, namely Chapter 16.
Furthermore, energy can also be transported by mass diffusion, and this mechanism is
postponed until Chapter 24.

§9.1 CONVECTIVE ENERGY-FLUX VECTOR

Energy may be transported by the bulk motion of the fluid. This convective energy trans-
port mechanism was introduced in Chapter 0 (§0.4) for the special case of unidirectional,
steady flow (students may find it helpful to review that short section before proceeding).
Here we consider the convective transport of energy for arbitrary flows. In Fig. 9.1-1 we
show three mutually perpendicular elements of area dS at the point P, where the fluid
velocity is v. The volume rate of flow across the surface element dS perpendicular to the x
axis is vx dS. The rate at which kinetic plus internal energy is being swept across the same
surface element in the +x direction is then(

1

2
iv2 + iÛ

)
vxdS (9.1-1)

in which 1

2
iv2 = 1

2
i(v2x + v2y + v2z) is the kinetic energy per unit volume, and iÛ is the inter-

nal energy per unit volume.Whenwe divide Eq. 9.1-1 by dS, we get the flux of kinetic plus

zzz

y

x

y

x x

y

vvv

P P P

dS

dS

dS

Fig. 9.1-1. Three mutually perpendicular surface elements of area dS across which energy is

being transported by convection by the fluid moving with velocity v. The volume rate of flow

across the face perpendicular to the x axis is vx dS, and the rate of flow of energy across dS is

then
(

1

2
iv2 + iÛ

)
vx dS. Similar expressions can be written for the surface elements

perpendicular to the y and z axes.
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internal energy in the+xdirection,
(

1

2
iv2 + iÛ

)
vx, which has dimensions of energy∕time ⋅

area.
We can write expressions similar to Eq. 9.1-1 for the rate at which energy is being

swept through the surface elements perpendicular to the y and z axes to give the rates of
energy transport in the +y and +z directions, respectively. If we now multiply each of the
three expressions by the corresponding unit vector and add vectorially, we then get, after
division by dS, the convective energy-flux vector q(c),

q(c) =
(
1

2
iv2 + iÛ

)
vxtx +

(
1

2
iv2 + iÛ

)
vyty +

(
1

2
iv2 + iÛ

)
vztz (9.1-2)

or

q(c) =
(
1

2
iv2 + iÛ

)
v (9.1-3)

It is understood that this is the flux from the negative side of the surface to the positive

side (e.g., q(c)x is the flux in the positive x direction). This flux should be compared to the
convective momentum flux illustrated in Fig. 1.1-2.

The definition of the internal energy in a nonequilibrium situation requires some care.
From the continuum point of view, the internal energy at position r and time t is assumed to
be the same function of the local, instantaneous density and temperature that one would
have at equilibrium. From the molecular point of view, the internal energy consists of the
sum of the kinetic energies of all the constituent atoms (relative to the flow velocity v), the
intramolecular potential energies, and the intermolecular energies, within a tiny region
about the point r at time t.

Recall that, in the discussion of molecular collisions in §0.3, we found it convenient
to regard the energy of a colliding pair of molecules to be the sum of the kinetic energies
referred to the center of mass of the molecule plus the intramolecular potential energy of
the molecule. Here also we split the energy of the fluid (regarded as a continuum) into
kinetic energy associated with the bulk fluid motion and the internal energy associated
with the kinetic energy of the molecules with respect to the flow velocity and the intra-
and intermolecular potential energies.

§9.2 CONDUCTIVE HEAT-FLUX VECTOR—FOURIER’S LAW

Energy can also be transported even when there is no flow. Consider a slab of solid mate-
rial of area A located between two large parallel plates a distance Y apart. We imagine
that initially (for time t < 0) the solid material is at a temperature T0 throughout. At t = 0,
the lower plate is suddenly brought to a slightly higher temperature T1 andmaintained at
that temperature. As time proceeds, the temperature profile in the slab changes, and ulti-
mately a linear steady-state temperature distribution is attained (as shown in Fig. 9.2-1).
When this steady-state condition has been reached, a constant rate of heat flowQ through
the slab is required to maintain the temperature difference 2T = T1 − T0. It is found then
that for sufficiently small values of 2T the following relation holds:

Q
A

= k2T
Y

(9.2-1)

That is, the rate of heat flow per unit area is proportional to the temperature decrease over
the distance Y. The constant of proportionality k is the thermal conductivity of the slab.
Equation 9.2-1 is also valid if a liquid or gas is placed between the two plates, provided
that suitable precautions are taken to eliminate convection and radiation.

In subsequent chapters it is better to work with the above equation in differential
form. That is, we use the limiting form of Eq. 9.2-1 as the slab thickness approaches zero.
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y

x

Y

T0

T1

T1T0

t < 0

t = 0

Small t

Large t

Solid initially at
temperature T0

Lower plate
suddenly raised
to temperature T1

T(y)

T(y, t)

Fig. 9.2-1. Development of the

steady-state temperature profile

for a solid slab between two

parallel plates. See Fig. 1.1-1 for

the analogous situation for

momentum transport.

The local rate of heat flow per unit area (heat flux) in the positive y direction is designated
by qy. In this notation Eq. 9.2-1 becomes

qy = −kdT
dy

(9.2-2)

This equation, which serves to define k, is the one-dimensional form of Fourier’s law of heat
conduction.1,2 It states that the heat flux by conduction is proportional to the temperature
gradient, or, to put it pictorially, “heat slides downhill on the temperature-versus-distance
graph.” Actually Eq. 9.2-2 is not really a “law” of nature, but rather a suggestion, which
has proven to be a very useful empiricism. However, it does have a theoretical basis, as
discussed in §9.7.

If the temperature varies in all three directions, then we can write an equation like
Eq. 9.2-2 for each of the coordinate directions

qx = −k𝜕T
𝜕x

qy = −k𝜕T
𝜕y

qz = −k𝜕T
𝜕z

(9.2-3,4,5)

1J. B. Fourier, Théorie analytique de la chaleur, Oeuvres de Fourier, Gauthier-Villars et Fils, Paris (1822).

(Baron) Jean-Baptiste-Joseph Fourier (pronounced “Foo-ree-ay”)(1768–1830) was not only a brilliant

mathematician and the originator of the Fourier series and the Fourier transform, but also famous as an

Egyptologist and a political figure (he was Prefect of the Province of Isère).
2Some authors prefer to write Eq. 9.2-2 in the form

qy = −Jek
dT
dy

(9.2.2a)

in which Je is the “mechanical equivalent of heat,” which displays explicitly the conversion of thermal

units into mechanical units. For example, in the c.g.s. system one would use the following units:

qy [=] erg∕cm2 ⋅ s, k [=] cal∕cm ⋅ s ⋅ ∘C, T [=] ∘C, y [=] cm, and Je [=] erg∕cal. We will not use Eq. 9.2-2a

in this book.
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If each of these equations is multiplied by the appropriate unit vector and the equations
are then added vectorially, we get

q = −k∇T (9.2-6)

which is the three-dimensional form of Fourier’s law; we call q the conductive heat-flux
vector. This equation describes the molecular transport of heat in isotropic media. By
“isotropic” wemean that thematerial has no preferred direction, so that heat is conducted
with the same thermal conductivity k in all directions.3

The reader will have noticed that Eq. 9.2-2 for heat conduction and Eq. 1.2-2 for vis-
cous flow are quite similar. In both equations the flux is proportional to the negative of
the gradient of a macroscopic variable, and the coefficient of proportionality is a physical
property characteristic of the material and dependent on the temperature and pressure.
For the situations in which there is three-dimensional transport, we find that Eq. 9.2-6 for
heat conduction and Eq. 1.2-13 for viscous flow differ in appearance. This difference arises
because energy is a scalar, whereas momentum is a vector, and the conductive heat flux q
is a vector with three components, whereas the momentum flux f is a second-order ten-
sor with nine components. We can anticipate that the transport of energy and momentum
will in general not be mathematically analogous except in certain geometrically simple
situations.

In addition to the thermal conductivity k, defined by Eq. 9.2-2, a quantity known as
the thermal diffusivity w is widely used. It is defined as

w = k

iĈp

(9.2-7)

Here Ĉp is the heat capacity at constant pressure; the circumflex ( ̂ ) over the symbol indi-

cates a quantity “per unit mass.” Occasionally we will need to use the symbol C̃p in which
the tilde (∼) over the symbol stands for a quantity “per mole.”

The thermal diffusivity w has the same dimensions as the kinematic viscosity
l—namely, (length)2∕time. When the assumption of constant physical properties is made,
the quantities l and w occur in similar ways in the equations of change for momentum
and energy transport. Their ratio l∕w indicates the relative ease of momentum and energy
transport in flow systems. This dimensionless ratio

Pr = l
w
=

Ĉp4

k
(9.2-8)

is called the Prandtl number.4 Another dimensionless group that we will encounter in sub-
sequent chapters is the Péclet number,5 Pé = RePr.

The units that are commonly used for thermal conductivity and related quantities are
given in Table 9.2-1. Other units, as well as the interrelations among the various systems,
may be found in Appendix E. Values for thermal conductivities and related quantities are
tabulated below in §9.5.

3Conduction in anisotropic media is described in R. B. Bird, E. N. Lightfoot, and W. E. Stewart,

Transport Phenomena, Revised Second Edition, Wiley, New York (2007).
4This dimensionless group, named for Ludwig Prandtl, involves only the physical properties of the

fluid.
5Jean-Claude-Eugène Péclet (pronounced “Pay-clay” with the second syllable accented)

(1793–1857) authored several books including one on heat conduction.
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Table 9.2-1. Summary of Units for Quantities in Eqs. 9.2-2

and 9.2-8

SI c.g.s. EE

qy W∕m2 cal∕cm2 ⋅ s Btu∕ft2 ⋅ hr
T K ∘C ∘F
y m cm ft

k W∕m ⋅ K cal∕cm ⋅ s ⋅ ∘C Btu∕ft ⋅ hr ⋅ ∘F
Ĉp J∕kg ⋅ K cal∕g ⋅ ∘C Btu∕lbm ⋅ ∘F
w m2∕s cm2∕s ft

2∕s
4 Pa ⋅ s g∕cm ⋅ s lbm∕ft ⋅ s
Pr — — —

Note: The watt (W) is the same as J∕s, the joule (J) is the same as

N ⋅m, the newton (N) is kg ⋅m∕s2, and the Pascal (Pa) is N∕m2. For

more information on interconversion of units, see Appendix E.

EXAMPLE 9.2-1

Measurement of
Thermal Conductivity

A plastic panel of area A = 1 ft
2
and thickness Y = 0.252 in. was found to conduct heat at a rate

of 3.0W at steady state with temperatures T0 = 24.00 ∘C and T1 = 26.00 ∘C imposed on the two

main surfaces. What is the thermal conductivity of the plastic in cal∕cm ⋅ s ⋅ K at 25 ∘C?

SOLUTION

First, convert units with the aid of Appendix E:

A = 144 in.2 ×
(
2.54 cm

in.

)2

= 929 cm2

Y = 0.252 in. ×
(
2.54 cm

in.

)
= 0.640 cm

Q = 3.0 W ×
(
0.23901 cal∕s

W

)
= 0.717 cal∕s

2T = (26.00 − 24.00)K = 2.00 K

Substitution into Eq. 9.2-1 then gives

k =
QY
A2T

=
(0.717 cal∕s)(0.640 cm)

(929 cm2)(2.00 K)
= 2.47 × 10−4

cal

cm ⋅ s ⋅ K
(9.2-9)

For 2T as small as 2∘C, it is reasonable to assume that the value of k applies at the average

temperature, which in this case is 25 ∘C.

§9.3 WORK-FLUX VECTOR

The last energy transport mechanism that we will consider in this chapter is the energy
transported by doingwork on amaterial. First we recall that, when a force F acts on a body
and causes it to move through a distance dr, the work done on the body is dW = (F ⋅ dr).
Then the rate of doing work is dW∕dt = (F ⋅ dr∕dt) = (F ⋅ v), that is, the dot product of the
force and the velocity. We now apply this formula to the three perpendicular planes at a
point P in space shown in Fig. 9.3-1.

First we consider the surface element perpendicular to the x axis. The fluid on the
minus side (lesser values of x) of the surface exerts a force 0xdS on the fluid that is on the
plus side (greater values of x; see Table 1.2-2). Since the fluid is moving with a velocity v,
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Fig. 9.3-1. Three mutually perpendicular surface elements of area dS at point P along with the

stress vectors 0x, 0y, 0z acting on these surfaces. In the first figure, the rate at which work is

done by the fluid on the minus side of dS on the fluid on the plus side of dS is then

(0x ⋅ v)dS = [0 ⋅ v]xdS. Similar expressions hold for the surface elements perpendicular to the

other two coordinate axes.

the rate at which work is done by the fluid on the minus side of the surface on the fluid on
the plus side of the surface is (0x ⋅ v)dS. Similar expressions may be written for the work
done across the other two surface elements. When written out in component form, these
rate-of-work expressions, per unit area, become

(0x ⋅ v) = 0xxvx + 0xyvy + 0xzvz ≡ [0 ⋅ v]x (9.3-1)

(0y ⋅ v) = 0yxvx + 0yyvy + 0yzvz ≡ [0 ⋅ v]y (9.3-2)

(0z ⋅ v) = 0zxvx + 0zyvy + 0zzvz ≡ [0 ⋅ v]z (9.3-3)

When these scalar components are multiplied by the unit vectors and added, we get the
“rate-of-doing-work (vector) per unit area,” and we can call this, for short, the work-flux
vector

w = tx(0x ⋅ v) + ty(0y ⋅ v) + tz(0z ⋅ v) (9.3-4)

or

w = [0 ⋅ v] (9.3-5)

Furthermore, the rate of doing work across a unit area of surface with orientation given
by the unit vector n is (n ⋅ [0 ⋅ v]).

In curvilinear coordinates, Eqs. 9.3-1 to 9.3-5 are easily written down: for cylindrical
coordinates, replace x,y,z by r,p,z, and for spherical coordinates, replace x,y,z by r,p,d.

§9.4 TOTAL ENERGY-FLUX VECTOR

We now define, for later use, the total energy-flux vector e as follows:

e = q(c) + q +w =
(
1

2
iv2 + iÛ

)
v + q + [0 ⋅ v] (9.4-1)

The e vector is the sumof (a) the convective energy-flux vector, (b) the conductive heat-flux
vector, and (c) the work-flux vector. All the terms in Eq. 9.4-1 have the same sign conven-
tion, so that ex is the energy transport in the positive x direction per unit area per unit time.
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The total molecular stress tensor 0 can now be split up into two parts 0 = pt + f so that
[0 ⋅ v] = p[t ⋅ v] + [f ⋅ v] = pv + [f ⋅ v]. The term pv can then be combined with the internal
energy term iÛv to give an enthalpy term iÛv + pv = i(Û + (p∕i))v = i(Û + pV̂)v = iĤv,
so that

e =
(
1

2
iv2 + iĤ

)
v + [f ⋅ v] + q (9.4-2)

We shall usually use the e vector in this form, understanding that the total energy flux
across the surface element dS is the flux from the negative side to the positive side of the
surface.

In Table 9.4-1 we summarize the notation for the various energy-flux vectors intro-
duced in this section. All of them have the same sign convention.

To evaluate the enthalpy in Eq. 9.4-2, we make use of the standard equilibrium ther-
modynamics formula1

dĤ =
(
𝜕Ĥ
𝜕T

)
p
dT +

(
𝜕Ĥ
𝜕p

)
T
dp = ĈpdT +

[
V̂ − T

(
𝜕V̂
𝜕T

)
p

]
dp (9.4-3)

When this is integrated from some reference state po,To to the state p,T,we then get1

Ĥ(p,T) − Ĥo = ∫
T

To

ĈpdT + ∫
p

po

[
V̂ − T

(
𝜕V̂
𝜕T

)
p

]
dp (9.4-4)

in which Ĥo is the enthalpy per unit mass at the reference state. The integral over p is zero
for an ideal gas and (p − po)∕i for fluids of constant density. The integral over T becomes

Ĉp(T − To) if the heat capacity can be regarded as constant over the relevant temperature
range, which is often a reasonable assumption for incompressible liquids. Thus, we have
the following simplifications for Eq. 9.4-4 for two special cases:

ideal gases: Ĥ(p,T) − Ĥo = Ĉp(T)(T − To) (9.4-5)

incompressible liquids: Ĥ(p,T) − Ĥo = Ĉp(T − To) +
p − po

i
(9.4-6)

In Eq. 9.4-5, Ĉp(T) ≡
(
∫

T

To

Ĉp dT
)
∕(T − To) is the mean heat capacity for the relevant

temperature range. In Eq. 9.4-6, the pressure term is often negligible as illustrated in

Table 9.4-1. Summary of Notation for Energy Fluxes

Symbol Meaning Reference

q(c) =
(

1

2
iv2 + iÛ

)
v convective energy-flux

vector

Eq. 9.1-3

q = −k∇T conductive heat-flux

vector

Eq. 9.2-6

w = [0 ⋅ v] = pv + [f ⋅ v] work-flux vector Eq. 9.3-5

e =
(

1

2
iv2 + iÛ

)
v + q + [0 ⋅ v]

=
(

1

2
iv2 + iĤ

)
v + q + [f ⋅ v]

total energy-flux vector Eq. 9.4-1

Eq. 9.4-2

1See, for example, R. J. Silbey, R. A. Alberty, and M. G. Bawendi, Physical Chemistry, Wiley, 4th

edition (2005), §2.7 and §2.8.
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Example 9.4-1 below. It is assumed that Eqs. 9.4-4 through 9.4-6 are valid in nonequilib-
rium systems, where p and T are the local values of the pressure and temperature.

EXAMPLE 9.4-1

Comparison of Heat
Capacity and Pressure
Terms in Eq. 9.4-6

Compare the magnitudes of the two terms on the right side of Eq. 9.4-6 for reasonable values

of the variables.

SOLUTION

We choose the following values for the variables in Eq. 9.4-6: Ĉp = 4184 J∕kg ⋅ ∘C and

i = 103 kg∕m3 (for water near room temperature), T − To = 10∘C, and p − po = 1 atm =
1.01325 × 105 N∕m2. For these values, the ratio of the pressure and heat capacity terms in

Eq. 9.4-6 is

p − po

iĈp(T − To)
=

1.01325 × 105 N∕m2

(103 kg∕m3)(4184 J∕kg ⋅ ∘C)(10∘C)

(
1 J

N ⋅m

)
= 0.0024 (9.4-7)

Thus, for these variable values, the pressure term is negligible.

§9.5 THERMAL CONDUCTIVITY DATA FROM EXPERIMENTS

The thermal conductivity can vary all the way from about 0.01 W∕m ⋅ K for gases
up to about 1000 W∕m ⋅ K for pure metals. Some experimental values of the thermal
conductivity of gases, liquids, liquid metals, and solids are given in Tables 9.5-1, 9.5-2,
9.5-3, and 9.5-4. In making calculations, experimental values should be used when

Table 9.5-1. Thermal Conductivities, Heat Capacities, and Prandtl Numbers of Some

Common Gases at 1 atm Pressurea

Temperature Thermal conductivity Heat Capacity Prandtl Number

Gas T (K) k (W∕m ⋅ K) Ĉp (J∕kg ⋅ K) Pr (---)

H2 100 0.06799 11,192 0.682

200 0.1282 13,665 0.724

300 0.1779 14,316 0.720

O2 100 0.00904 910 0.764

200 0.01833 911 0.734

300 0.02657 920 0.716

NO 200 0.01778 1015 0.781

300 0.02590 997 0.742

CO2 200 0.00950 734 0.783

300 0.01665 846 0.758

CH4 100 0.01063 2073 0.741

200 0.02184 2087 0.721

300 0.03427 2227 0.701

aTaken from J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley,

New York, 2nd corrected printing (1964), Table 8.4-10. The k values are measured, the Ĉp values are

calculated from spectroscopic data, and 4 is calculated from Eq. 1.6-14. The values of Ĉp for H2 represent

a 3:1 ortho-para mixture.
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Table 9.5-2. Thermal Conductivities, Heat Capacities, and Prandtl Numbers for Some

Nonmetallic Liquids at Their Saturation Pressuresa

Thermal Heat Prandtl

Temperature conductivity Viscosity Capacity Number

Liquid T
(K)

k
(W∕m ⋅ K)

4 × 104

(Pa ⋅ s)
Ĉp × 10−3

(J∕kg ⋅ K)
Pr

(—)

1-Pentene 200 0.1461 6.193 1.948 8.26

250 0.1307 3.074 2.070 4.87

300 0.1153 1.907 2.251 3.72

CCl4 250 0.1092 20.32 0.8617 16.0

300 0.09929 8.828 0.8967 7.97

350 0.08935 4.813 0.9518 5.13

(C2H5)2O 250 0.1478 3.819 2.197 5.68

300 0.1274 2.213 2.379 4.13

350 0.1071 1.387 2.721 3.53

C2H5OH 250 0.1808 30.51 2.120 35.8

300 0.1676 10.40 2.454 15.2

350 0.1544 4.486 2.984 8.67

Glycerol 300 0.2920 7949 2.418 6580

350 0.2977 365.7 2.679 329

400 0.3034 64.13 2.940 62.2

H2O 300 0.6089 8.768 4.183 6.02

350 0.6622 3.712 4.193 2.35

400 0.6848 2.165 4.262 1.35

aThe entries in this table were prepared from functions provided by T. E. Daubert, R. P. Danner, H. M.

Sibul, C. C. Stebbins, J. L. Oscarson, R. L. Rowley, W. V. Wilding, M. E. Adams, T. L. Marshall, and N. A.

Zundel, DIPPR® Data Compilation of Pure Compound Properties, Design Institute for Physical Property

Data®, AIChE, New York, NY (2000).

possible. In the absence of experimental data, one can make estimates by using the
methods outlined in the next several sections, or by consulting various engineering
handbooks.1

§9.6 THERMAL CONDUCTIVITY AND THE PRINCIPLE OF
CORRESPONDING STATES

When thermal conductivity data for a particular compound cannot be found, one can
make an estimate by using the corresponding-states chart in Fig. 9.6-1, which is based
on experimental thermal conductivity data for several monatomic substances. This chart,
which is similar to that for viscosity shown in Fig. 1.5-1, is a plot of the reduced thermal
conductivity kr = k∕kc, which is the thermal conductivity at pressure p and temperature
T divided by the thermal conductivity at the critical point. This quantity is plotted as a
function of the reduced temperature Tr = T∕Tc for various values of the reduced pressure

1For example, W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, Eds., Handbook of Heat Transfer,
McGraw-Hill, New York (1998); Landolt-Börnstein, Zahlenwerte und Funktionen, Vol. II, 5, Springer
(1968–1969).
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Table 9.5-3. Thermal Conductivities, Heat Capacities, and Prandtl Numbers of Some Liquid

Metals at Atmospheric Pressurea

Temperature Thermal conductivity Heat capacity Prandtl number

Metal T (K) k (W∕m ⋅ K) Ĉp (J∕kg ⋅ K) Pr (—)

Hg 273.2 8.20 140.2 0.0288

373.2 10.50 137.2 0.0162

473.2 12.34 156.9 0.0116

Pb 644.2 15.9 15.9 0.024

755.2 15.5 15.5 0.017

977.2 15.1 14.6b 0.013b

Bi 589.2 16.3 14.4 0.0142

811.2 15.5 15.4 0.0110

1033.2 15.5 16.4 0.0083

Na 366.2 86.2 13.8 0.011

644.2 72.8 13.0 0.0051

977.2 59.8 12.6 0.0037

K 422.2 45.2 795 0.0066

700.2 39.3 753 0.0034

977.2 33.1 753 0.0029

Na-K alloyc 366.2 25.5 1130 0.026

644.2 27.6 1054 0.0091

977.2 28.9 1042 0.0058

aData taken from Liquid Metals Handbook, 2nd edition, U.S. Government Printing Office, Washington, DC

(1952), and from E. R. G. Eckert and R. M. Drake, Jr., Heat and Mass Transfer, McGraw-Hill, New York, 2nd

edition (1959), Appendix A.
bBased on an extrapolated heat capacity.
c56% Na by weight, 44% K by weight.

pr = p∕pc. Figure 9.6-1 is based on a limited amount of experimental data for monatomic
substances, but may be used for rough estimates for polyatomic materials. It should not
be used in the neighborhood of the critical point.1

It can be seen that the thermal conductivity of a gas approaches a limiting function ofT
at low pressures; for most gases, this limit is reached at about 1 atm pressure. The thermal
conductivities of gases at low density increase with increasing temperature, whereas the
thermal conductivities ofmost liquids decreasewith increasing temperature. The correlation
is less reliable in the liquid region; polar or associated liquids, such as water, may exhibit
a maximum in the curve of k versus T. The main virtue of the corresponding-states chart
is that one gets a global view of the behavior of the thermal conductivity of gases and
liquids.

1In the vicinity of the critical point, where the thermal conductivity diverges, it is customary to write

k = kb + 2k, where kb is the “background” contribution and 2k is the “critical enhancement” contribution.

The kc being used in the corresponding states correlation is the background contribution. For the

behavior of transport properties near the critical point, see J. V. Sengers and J. Luettmer Strathmann, in

Transport Properties of Fluids (J. H. Dymond, J. Millat, and C. A. Nieto de Castro, eds.), Cambridge

University Press (1995); E. P. Sakonidou, H. R. van den Berg, C. A. ten Seldam, and J. V. Sengers, J. Chem.
Phys., 105, 10535–10555 (1996) and 109, 717–736 (1998).
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Table 9.5-4. Experimental Values of Thermal Conductivities of Some Solidsa

Temperature Thermal conductivity

Substance T (K) k (W∕m ⋅ K)

Aluminum 373.2 205.9

573.2 268

873.2 423

Cadmium 273.2 93.0

373.2 90.4

Copper 291.2 384.1

373.2 379.9

Steel 291.2 46.9

373.2 44.8

Tin 273.2 63.93

373.2 59.8

Brick (common red) — 0.63

Concrete (stone) — 0.92

Earth’s crust (average) — 1.7

Glass (soda) 473.2 0.71

Graphite — 5.0

Sand (dry) — 0.389

Wood (fir)

parallel to axis — 0.126

normal to axis — 0.038

aData taken from the Reactor Handbook, Vol. 2, Atomic Energy Commission, AECD-3646, U.

S. Government Printing Office, Washington, DC (May 1955), pp. 1766 et seq.

The quantity kc may be estimated in one of two ways: (i) given k at a known tempera-
ture and pressure, preferably close to the conditions at which k is to be estimated, one can
read kr from the chart and compute kc = k∕kr; or (ii) one can estimate a value of k in the
low-density region by the methods given in §9.7 and then proceed as in (i). Values of kc
obtained by method (i) are given in Appendix D.

For mixtures, one might estimate the thermal conductivity by methods analogous to
those described in §1.5. Very little is known about the accuracy of pseudocritical proce-
dures as applied to thermal conductivity, largely because there are so fewdata onmixtures
at elevated pressures.

EXAMPLE 9.6-1

Effect of Pressure on
Thermal Conductivity

Estimate the thermal conductivity of ethane at 153∘F and 191.9 atm from the experimental
value2 k = 0.0159 Btu∕hr ⋅ ft ⋅ ∘F at 1 atm and 153∘F.

SOLUTION

Since a measured value of k is known, we use method (i). First we calculate pr and Tr at the
condition of the measured value, using the critical values from Table D.1:

Tr =
(153 + 460)∘R

(305.4 K)(1.8 ∘R∕K)
= 1.115; pr =

1 atm

48.2 atm
= 0.021 (9.6-1)

2J. M. Lenoir, W. A. Junk, and E. W. Comings, Chem. Eng. Progr., 49, 539–542 (1949).



Trim Size: 8in x 10in Bird1e c09.tex V1 - October 21, 2014 4:01 P.M. Page 265

§9.6 Thermal Conductivity and the Principle of Corresponding States 265

R
ed

u
ce
d
 t
h
er
m
a
l 
co
n
d
u
ct
iv
it
y
, 
k r
 =
 k
/k

c

Reduced temperature, Tr = T/Tc

0.3 0.4 0.6 0.8 1.0 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0.9
1

2

3

4

5

6

7

8
9

10

5
10
20
30
40

0.1
0.2
0.4
0.6

0.8
1.0
1.25

1.75

2 2.5

3
4

5

10

20

30

p
r = 40

p r 
= 
0

1.5

Sa
tu
ra
te
d 
va
po
r

Saturated
liq
u
id

Fig. 9.6-1. Reduced thermal conductivity for monatomic substances as a function of the

reduced temperature and pressure [E. J. Owens and G. Thodos, AIChE Journal, 3, 454–461
(1957)]. A large-scale version of this chart may be found in O. A. Hougen, K. M. Watson, and

R. A. Ragatz, Chemical Process Principles Charts, 2nd edition, Wiley, New York (1960).

From Fig. 9.6-1 we read kr = 0.36. Hence, kc is

kc =
k
kr

=
0.0159 Btu∕hr ⋅ ft ⋅ ∘F

0.36
= 0.0442 Btu∕hr ⋅ ft ⋅ ∘F (9.6-2)

At 153∘F (Tr = 1.115) and 191.9 atm (pr = 191.9 atm∕48.2 atm = 3.98), we read from the chart

kr = 2.07. The predicted thermal conductivity is then

k = krkc = (2.07)(0.0442 Btu∕hr ⋅ ft ⋅ ∘F) = 0.0914 Btu∕hr ⋅ ft ⋅ ∘F (9.6-3)

An observed value of 0.0453 Btu∕hr ⋅ ft ⋅ ∘F has been reported.2 This poor agreement shows that

one should not rely heavily on this correlation for polyatomic substances or for conditions near

the critical point.
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§9.7 THERMAL CONDUCTIVITY OF GASES AND KINETIC THEORY

The thermal conductivities of dilute monatomic gases are well understood and can be

described by the kinetic theory of gases at low density. Although detailed theories for

polyatomic gases have been developed,1 it is customary to use some simple approximate

theories. Here, as in §1.6, we give a simplified mean-free-path derivation for monatomic

gases, and then summarize the result of themore realistic Chapman-Enskog kinetic theory

of gases.

We use the model of rigid, nonattracting spheres of mass m and diameter d. The gas

as a whole is at rest (v = 0), but the molecular motions must be accounted for.

As in §1.6, we use the following results for a rigid-sphere gas:

u =
√

8KT
0m

= mean molecular speed (9.7-1)

Z = 1

4
nu = wall collision frequency per unit area (9.7-2)

m = 1√
20d2n

= mean-free path (9.7-3)

The molecules reaching any plane in the gas have, on an average, had their last collision

at a distance a from the plane, where

a = 2

3
m (9.7-4)

In these equations K is the Boltzmann constant, n is the number of molecules per unit

volume, and m is the mass of a molecule.

The only form of energy that can be exchanged in a collision between two smooth

rigid spheres is translational kinetic energy. The mean translational energy per molecule

under equilibrium conditions is

1

2
mu2 = 3

2
KT (9.7-5)

For such a gas, the molar heat capacity at constant volume is

C̃V =
(
𝜕Ũ
𝜕T

)
V
= Ñ d

dT

(
1

2
mu2

)
= 3

2
R (9.7-6)

in which Ñ is Avogadro’s number and R is the gas constant. Equation 9.7-6 is satisfactory

for monatomic gases up to temperatures of several thousand degrees.

To determine the thermal conductivity, we examine the behavior of the gas under

a temperature gradient dT∕dy (see Fig. 9.7-1). We assume that Eqs. 9.7-1 to 9.7-6 remain

valid in this nonequilibrium situation, except that 1

2
mu2 in Eq. 9.7-5 is taken as the average

kinetic energy for molecules that had their last collision in a region of temperature T. The
heat flux qy across any plane of constant y is found by summing the kinetic energies of the

1C. S. Wang Chang, G. E. Uhlenbeck, and J. de Boer, Studies in Statistical Mechanics,
Wiley-Interscience, New York, Vol. II (1964), pp. 241–265; E. A. Mason and L. Monchick, J. Chem. Phys.,
35, 1676–1697 (1961); 36, 1622–1639, 2746–2757 (1962); L. Monchick, A. N. G. Pereira, and E. A. Mason, J.
Chem. Phys., 42, 3241–3256 (1965). For an introduction to the kinetic theory of the transport properties, see

R. S. Berry, S. A. Rice, and J. Ross, Physical Chemistry, 2nd edition (2000), Chapter 28.
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Fig. 9.7-1. Molecular transport
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molecules that cross the plane per unit time in the positive y direction and subtracting the
kinetic energies of the equal number that cross in the negative y direction:

qy = Z
(
1

2
mu2|||y−a − 1

2
mu2|||y+a

)
= 3

2
KZ(T|y−a − T|y+a) (9.7-7)

Equation 9.7-7 is based on the assumption that all molecules have velocities representative
of the region of their last collision and that the temperature profile T(y) is linear for a
distance of several mean-free paths. In view of the latter assumption we may write

T|y−a = T|y − 2

3
m
dT
dy

(9.7-8)

T|y+a = T|y + 2

3
m
dT
dy

(9.7-9)

By combining the last three equations we get

qy = −1

2
nKumdT

dy
(9.7-10)

This corresponds to Fourier’s law of heat conduction (Eq. 9.2-2) with the thermal conduc-
tivity given by

k = 1

2
nKum = 1

2
iĈVum (monatomic gas) (9.7-11)

in which i = nm is the gas density, and ĈV = 3

2
K∕m (from Eq. 9.7-6).

Substitution of the expressions for u and m from Eqs. 9.7-1 and 9.7-3 then gives

k =
√
mKT∕0
0d2

K

m
= 2

30

√
0mKT
0d2

ĈV (monatomic gas) (9.7-12)

which is the thermal conductivity of a dilute gas composed of rigid spheres of diameter
d. This equation predicts that k is independent of pressure. Figure 9.6-1 indicates that this
prediction is in good agreement with experimental data up to about 10 atm formost gases.
The predicted temperature dependence is too weak, just as was the case for viscosity.

For a more accurate treatment of the monatomic gas, we turn again to the rigorous
Chapman-Enskog treatment discussed in §1.6. The Chapman-Enskog formula2 for the
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thermal conductivity of a monatomic gas at low density at temperature T is

k = 25

32

√
0mKT

0g21k
ĈV or k = 1.9891 × 10−4

√
T∕M
g21k

(monatomic gas) (9.7-13)

In the second form of this equation, k [=] cal∕cm ⋅ s ⋅ K, T [=] K, g [=]Å, and the “collision
integral” for thermal conductivity,1k, is identical to that for viscosity,14 in §1.6. Values of
1k = 14 are given for the Lennard-Jones intermolecular potential in Table D.2 as a function
of the dimensionless temperature KT∕s. Equation 9.7-13, together with Table D.2, has been
found to be remarkably accurate for predicting thermal conductivities ofmonatomic gases
when the parameters g and s deduced from viscosity measurements are used (that is, the
values given in Table D.1).

Equation 9.7-13 is very similar to the corresponding viscosity formula, Eq. 1.6-14.
From these two equations we can then get

k = 15

4

R
M

4 = 5

2
ĈV4 (monatomic gas) (9.7-14)

The simplified rigid-sphere theory (see Eqs. 1.6-8 and 9.7-11) gives k = ĈV4 and is thus in
error by a factor 2.5. This is not surprising in view of the many approximations that were
made in the simple treatment.

So far we have discussed onlymonatomic gases. We know from the discussion in §0.3,
that, in binary collisions between diatomic molecules, there may be interchanges between
kinetic and internal (i.e., vibrational and rotational) energy. Such interchanges are not
taken into account in the Chapman-Enskog theory for monatomic gases. It can therefore
be anticipated that the Chapman-Enskog theory will not be adequate for describing the
thermal conductivity of polyatomic molecules.

A simple semiempirical method of accounting for the energy exchange in polyatomic
gases was developed by Eucken.3 His equation for thermal conductivity of a polyatomic
gas at low density is

k =
(
Ĉp +

5

4

R
M

)
4 (polyatomic gas) (9.7-15)

This Eucken formula includes the monatomic formula (Eq. 9.7-14) as a special case, because

Ĉp =
5

2
(R∕M) for monatomic gases. Hirschfelder4 has obtained a formula similar to that of

Eucken by usingmulticomponent-mixture theory. Other theories, correlations, and empir-
ical formulas are also available.5,6

Equation 9.7-15 provides a simplemethod for estimating the Prandtl number, defined
in Eq. 9.2-8:

Pr =
Ĉp4

k
=

C̃p

C̃p +
5

4
R

(polyatomic gas) (9.7-16)

This equation is fairly satisfactory for nonpolar polyatomic gases at low density, as can be
seen in Table 9.7-1; it is less accurate for polar molecules.

2J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, Wiley, New

York, 2nd corrected printing (1964), p. 534.
3A. Eucken, Physik. Z., 14, 324–333 (1913); “Eucken” is pronounced “Oy-ken.”
4J. O. Hirschfelder, J. Chem. Phys., 26, 274–281, 282–285 (1957).
5J. H. Ferziger and H. G. Kaper,Mathematical Theory of Transport Processes in Gases, North-Holland,

Amsterdam (1972).
6B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases and Liquids, McGraw-Hill,

New York, 5th edition (2001).
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Table 9.7-1. Predicted and Observed Values of the Prandtl Number for Gases at

Atmospheric Pressurea

Ĉp4∕k from Ĉp4∕k from observed

Gas T(K) Eq. 9.7-16 values of Ĉp, 4, and k

Neb 273.2 0.667 0.66

Arb 273.2 0.667 0.67

H2 90.6 0.68 0.68

273.2 0.73 0.70

673.2 0.74 0.65

N2 273.2 0.74 0.73

O2 273.2 0.74 0.74

Air 273.2 0.74 0.73

CO 273.2 0.74 0.76

NO 273.2 0.74 0.77

Cl2 273.2 0.76 0.76

H2O 373.2 0.77 0.94

673.2 0.78 0.90

CO2 273.2 0.78 0.78

SO2 273.2 0.79 0.86

NH3 273.2 0.77 0.85

C2H4 273.2 0.80 0.80

C2H6 273.2 0.83 0.77

CHCl3 273.2 0.86 0.78

CCl4 273.2 0.89 0.81

aCalculated from values given by M. Jakob, Heat Transfer, Wiley, New York (1949), pp. 75–76.
bJ. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, Wiley, New York,

corrected printing (1964), p. 16.

Thermal conductivities of gas mixtures can be calculated using an extension of the

Chapman-Enskog theory.2,7 A variety of empirical approaches can also be used to give

satisfactory results for gas mixtures.6,8,9

EXAMPLE 9.7-1

Computation of the
Thermal Conductivity
of a Monatomic Gas at
Low Density

Compute the thermal conductivity of Ne at 1 atm and 373.2 K.

SOLUTION

From Table D.1 the Lennard-Jones constants for neon are g = 2.789 Å and s∕K = 35.7 K, and its

molecular weight M is 20.180 g∕g-mol. Then, at 373.2 K, we have KT∕s = (373.2 K)∕(35.7 K) =

7C. F. Curtiss and J. O. Hirschfelder, J. Chem. Phys., 17, 550–555 (1949).
8R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York, Revised

Second Edition (2007).
9E. A. Mason and S. C. Saxena, Physics of Fluids, 1, 361–369 (1958). Their method is an approximation

to a more accurate method given by J. O. Hirschfelder, J. Chem. Phys., 26, 274–281, 282–285 (1957).
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10.45. From Table D.2 we find that 1k = 14 = 0.821. Substitution into Eq. 9.7-13 gives

k = 1.9891 × 10−4
cal ⋅Å

2
⋅ g1∕2

cm ⋅ s ⋅ K3∕2 ⋅ g-mol
1∕2

√
T∕M
g21k

= 1.9891 × 10−4
cal ⋅Å

2
⋅ g1∕2

cm ⋅ s ⋅ K3∕2 ⋅ g-mol
1∕2

√
(373.2 K)∕(20.180 g∕g-mol)

(2.789Å)2(0.821)

= 1.338 × 10−4
cal

cm ⋅ s ⋅ K
(9.7-17)

A measured value of = 1.35 × 10−4 cal∕cm ⋅ s ⋅ K has been reported10 at 1 atm and 373.2 K.

EXAMPLE 9.7-2

Estimation of the
Thermal Conductivity
of a Polyatomic Gas at
Low Density

Estimate the thermal conductivity of molecular oxygen at 300 K and low pressure.

SOLUTION

The molecular weight of O2 is 32.0000 g∕g-mol; its molar heat capacity C̃p at 300∘C
and low pressure is 7.019 cal∕g-mol ⋅ K. From Table D.1 we find the Lennard-Jones

parameters for molecular oxygen to be g = 3.433Å and s∕K = 113 K. At 300 K, then,

KT∕s = (300 K)∕(113K) = 2.655. From Table D.2, we find 14 = 1.074. The viscosity, from Eq.

1.6-15, is

4 = 2.6693 × 10−5
g1∕2 ⋅Å

2
⋅ g-mol

1∕2

cm ⋅ s ⋅ K1∕2

√
MT

g214

= 2.6693 × 10−5
g1∕2 ⋅Å

2
⋅ g-mol

1∕2

cm ⋅ s ⋅ K1∕2

√
(32.0000 g∕g-mol)(300 K)

(3.433Å)2(1.074)
= 2.065 × 10−4

g

cm ⋅ s
(9.7-18)

Then, from Eq. 9.7-15, the Eucken approximation to the thermal conductivity is

k =
(
Ĉp +

5

4

R
M

)
4 =

(
C̃p +

5

4
R
)

4

M

=
((

7.019 + 5

4
⋅ 1.987

)
cal∕g-mol ⋅ K

) (2.065 × 10−4 g∕cm ⋅ s)
(32.0000 g∕g-mol)

= 6.14 × 10−5
cal

cm ⋅ s ⋅ K

(
W∕m ⋅ K

2.3901 × 10−3 cal∕cm ⋅ s ⋅ K

)
= 0.0257

W

m ⋅ K
(9.7-19)

This compares favorably with the experimental value of = 0.02657 W∕m ⋅ K in Table 9.5-1.

§9.8 THERMAL CONDUCTIVITY OF LIQUIDS

A very detailed kinetic theory for the thermal conductivity of monatomic liquids was
developed over a half-century ago,1 but it has not yet been possible to implement it for
practical calculations. As a result we have to use rough theories or empirical estimation
methods.2

10W. G. Kannuluik and E. H. Carman, Proc. Phys. Soc. (London), 65B, 701–704 (1952).
1J. H. Irving and J. G. Kirkwood, J. Chem. Phys., 18, 817–829 (1950). This theory has been extended to

polymeric liquids by C. F. Curtiss and R. B. Bird, J. Chem. Phys., 107, 5254–5267 (1997).
2B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases and Liquids, McGraw-Hill,

New York, 5th edition (2001); L. Riedel, Chemie-Ing.-Techn., 27, 209–213 (1955).
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We choose to discuss here Bridgman’s simple theory3 of energy transport in pure liq-
uids. He assumed that themolecules are arranged in a cubic lattice, with a center-to-center
spacing given by (Ṽ∕Ñ)1∕3, in which Ṽ∕Ñ is the volume permolecule. He further assumed
energy to be transferred from one lattice plane to the next at the sonic velocity vs for the
given fluid. The development is based on a reinterpretation of Eq. 9.7-11 of the rigid-sphere
gas theory:

k = 1

3
iĈVum = iĈV|uy|a (9.8-1)

The heat capacity at constant volume of a monatomic liquid is about the same as for a

solid at high temperature, which is given by the Dulong and Petit formula4 ĈV = 3(K∕m).
The mean molecular speed in the y direction, |uy|, is replaced by the sonic velocity vs.
The distance a that the energy travels between two successive collisions is taken to be the
lattice spacing (Ṽ∕Ñ)1∕3. Making these substitutions in Eq. 9.8-1 gives

k = 3(Ñ∕Ṽ)2∕3Kvs (9.8-2)

which is Bridgman’s equation. Experimental data show good agreementwith Eq. 9.8-2, even
for polyatomic liquids, but the numerical coefficient is somewhat too high. Better agree-
ment is obtained if the coefficient is changed to 2.80:

k = 2.80(Ñ∕Ṽ)2∕3Kvs (9.8-3)5

This equation is limited to densities well above the critical density, because of the tacit
assumption that each molecule oscillates in a “cage” formed by its nearest neighbors. The
success of this equation for polyatomic fluids seems to imply that the energy transfer in

collisions of polyatomic molecules is incomplete, since the heat capacity used here, ĈV =
3(K∕m), is less than the heat capacities of polyatomic liquids.

The velocity of low-frequency sound is given by

vs =

√
Cp

CV

(
𝜕p
𝜕i

)
T

(9.8-4)

The quantity (𝜕p∕𝜕i)T may be obtained from isothermal compressibility measurements,
or from an equation of state, and (Cp∕CV) is very nearly unity for liquids, except near the
critical point.

EXAMPLE 9.8-1

Prediction of the
Thermal Conductivity
of a Liquid

The density of liquid CCl4 at 20
∘C and 1 atm is 1.595 g∕cm3, and its isothermal compressibility

(1∕i)(𝜕i∕𝜕p)T is 90.7 × 10−6 atm−1. What is its thermal conductivity?

SOLUTION

First compute (
𝜕p
𝜕i

)
T

= 1

i(1∕i)(𝜕i∕𝜕p)T
= 1

(1.595 g∕cm3)(90.7 × 10−6 atm−1)

= 6.91 × 103
atm ⋅ cm3

g

(
1.0133 × 106 g∕cm ⋅ s2

1 atm

)
= 7.00 × 109

cm2

s2
(9.8-5)

3P. W. Bridgman, Proc. Am. Acad. Arts and Sci., 59, 141–169 (1923). Bridgman’s equation is often

misquoted, because he gave it in terms of a little-known gas constant equal to 3

2
K.

4This empirical equation has been justified, and extended, by A. Einstein [Ann. Phys. [4], 22, 180–190
(1907)] and P. Debye [Ann. Phys., [4] 39, 789–839 (1912)].

5Equation (9.8-3) is in approximate agreement with a formula derived by R. E. Powell, W. E.

Roseveare, and H. Eyring, Ind. Eng. Chem., 33, 430–435 (1941).
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Assuming that Cp∕CV = 1, we get from Eq. 9.8-4

vs =

√
(1.0)

(
7.00 × 109

cm2

s2

)
= 8.37 × 104

cm

s
(9.8-6)

The molar volume is Ṽ = M∕i = (153.84 g∕g-mol)∕(1.595 g∕cm3) = 96.5 cm3∕g-mol. Substitu-

tion of these values in Eq. 9.8-3 gives

k = 2.80(Ñ∕Ṽ)2∕3Kvs

= 2.80

(
6.023 × 1023 1∕g-mol

96.5 cm3∕g-mol

)2∕3(
1.3805 × 10−16

erg

K

)(
8.37 × 104

cm

s

)
= 1.10 × 104

erg

cm ⋅ s ⋅ K

(
10−7J

1 erg

)(
1 W

1 J∕s

)(
100 cm

1 m

)
= 0.110

W

m ⋅ K
(9.8-7)

The experimental value given in Table 9.5-2 is 0.101 W∕m ⋅ K.

§9.9 THERMAL CONDUCTIVITY OF SOLIDS

Thermal conductivities of solids have to be measured experimentally, since they depend
onmany factors that are difficult to measure or predict.1 In crystallinematerials, the phase
and crystallite size are important; in amorphous solids the degree ofmolecular orientation
has a considerable effect. In porous solids, the thermal conductivity is strongly depen-
dent on the void fraction, the pore size, and the fluid contained in the pores. A detailed
discussion of thermal conductivity of solids has been given by Jakob.2

In general, metals are better heat conductors than nonmetals, and crystalline mate-
rials conduct heat more readily than amorphous materials. Dry porous solids are very
poor heat conductors and are therefore excellent for thermal insulation. The conductivi-
ties of most pure metals decrease with increasing temperature, whereas the conductivities
of nonmetals increase; alloys show intermediate behavior. Perhaps the most useful of the
rules of thumb is that thermal and electrical conductivity go hand in hand.

For pure metals, the thermal conductivity k and the electrical conductivity ke are
related approximately3 as follows:

k
keT

= L = constant (9.9-1)

This is the Wiedemann-Franz-Lorenz equation; this equation can also be explained theoret-

ically (see Problem 9A.6). The “Lorenz number” L is about 22 to 29 × 10−9 volt2∕K2 for
pure metals at 0∘C and changes but little with temperature above 0∘C, increases of 10%
to 20% per 1000∘C being typical. At very low temperatures (−269.4∘C for mercury) met-
als become superconductors of electricity, but not of heat, and L thus varies strongly with
temperature near the superconducting region. Equation 9.9-1 is of limited use for alloys,
since L varies strongly with composition and, in some cases, with temperature.

1A. Goldsmith, T. E. Waterman, and H. J. Hirschhorn, eds., Handbook of Thermophysical Properties of
Solids, Macmillan, New York (1961).

2M. Jakob, Heat Transfer, Wiley, New York (1949), Vol. I, Chapter 6. See also W. H. Rohsenow, J. P.

Hartnett, and Y. I. Cho, eds., Handbook of Heat Transfer, McGraw-Hill, New York (1998).
3G. Wiedemann and R. Franz, Ann. Phys. u. Chemie, 89, 497–531 (1853); L. Lorenz, Poggendorff’s

Annalen, 147, 429–452 (1872).
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The success of Eq. 9.9-1 for pure metals is due to the fact that free electrons are the
major heat carriers in pure metals. The equation is not suitable for nonmetals, in which
the concentration of free electrons is so low that energy transport by molecular motion
predominates.

§9.10 EFFECTIVE THERMAL CONDUCTIVITY
OF COMPOSITE SOLIDS

Up to this point we have discussed homogeneous materials. Now we turn our attention
briefly to the thermal conductivity of two-phase solids—one solid phase dispersed in a
second solid phase, or solids containing pores, such as granularmaterials, sinteredmetals,
and plastic foams. A complete description of the heat transport through such materials is
extremely complicated. However, for steady conduction these materials can be regarded
as homogeneous materials with an effective thermal conductivity keff, and the temperature
and heat-flux components are reinterpreted as the analogous quantities averaged over a
volume that is large with respect to the scale of the heterogeneity, but small with respect
to the overall dimensions of the heat conduction system.

The first major contribution to the estimation of the conductivity of heterogeneous
solids was by Maxwell.1 He considered a material made of spheres of thermal conductiv-
ity k1 embedded in a continuous solid phase with thermal conductivity k0. The volume
fraction d of embedded spheres is taken to be sufficiently small that the spheres do not
“interact” thermally; that is, one needs to consider only the thermal conduction in a large
medium containing only one embedded sphere. Then by means of a surprisingly simple
derivation Maxwell showed that for small volume fraction d

keff
k0

= 1 + 3d(
k1 + 2k0
k1 − k0

)
− d

(9.10-1)

For complex nonspherical inclusions, often encountered in practice, no exact treatment
is possible, but some approximate relations are available.2,3,4 For simple unconsolidated
granular beds the following expression has proven successful:

keff
k0

=
(1 − d) + wd(k1∕k0)

(1 − d) + wd
(9.10-2)

in which

w = 1

3

3∑
k=1

[
1 +

(
k1
k0

− 1

)
gk

]−1
(9.10-3)

The gk are “shape factors” for the granules of the medium,5 and they must satisfy g1 +
g2 + g3 = 1. For spheres g1 = g2 = g3 =

1

3
, and Eq. 9.10-2 reduces to Eq. 9.10-1. For uncon-

solidated soils3 g1 = g2 =
1

8
and g3 =

3

4
. The structure of consolidated porous beds—for

1Maxwell’s derivation was for electrical conductivity, but the same arguments apply for thermal

conductivity. See J. C. Maxwell, A Treatise on Electricity and Magnetism, Oxford University Press, 3rd

edition (1891, reprinted 1998), Vol. 1, §314; H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids,
Clarendon Press, Oxford, 2nd edition (1959), p. 428.

2V. I. Odelevskii, J. Tech. Phys. (USSR), 24, 667 and 697 (1954); F. Euler, J. Appl. Phys., 28, 1342–1346
(1957).

3D. A. de Vries, Mededelingen van de Landbouwhogeschool te Wageningen, (1952); D. A. de Vries,

Chapter 7 in Physics of Plant Environment, W. R. van Wijk, ed., Wiley, New York (1963).
4W. Woodside and J. H. Messmer, J. Appl. Phys., 32, 1688–1699, 1699–1706 (1961).
5A. L. Loeb, J. Amer. Ceramic Soc., 37, 96–99 (1954).
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example, sandstones—is considerablymore complex. Some success is claimed for predict-
ing the effective conductivity of such substances,2,4,6 but the generality of the methods is
not yet known.

§9.11 CONCLUDING COMMENTS

This chapter is concerned with the various mechanisms for energy transport and the cor-
responding definitions of the energy fluxes: the convective energy-flux vector q(c), the con-
ductive heat-flux vectorq, thework-flux vectorw, and the sumof these fluxes,which is the
total energy-flux vector e = q(c) + q +w. These quantities are summarized in Table 9.4-1,
and mastery of the definitions and meanings of all symbols in that table is essential for
understanding Part II of this book.

It is also necessary to be acquainted with the dimensions and various units used for
the thermal conductivity and the thermal diffusivity. In this connection, the tables of unit
conversions in Appendix E will prove to be very helpful. Also, in this chapter several new
dimensionless groups have been introduced, namely, the Prandtl number and the Péclet
number.

For solving heat conduction and heat-transfer problems, values of the thermal con-
ductivity are needed. It is always preferable to use experimental values for the thermal
conductivity, but in the absence of these, familiarity with available theories and empiri-
cisms is necessary. Therefore, one has to be familiar with the published literature on the
physical properties encountered in practical problems. The last several sections of this
chapter are intended to give you a slight acquaintance with what is available.

QUESTIONS FOR DISCUSSION

1. Define and give the dimensions of: thermal conductivity k, thermal diffusivity w, heat capacity
Ĉp, conductive heat-flux vector q, the work-flux vector w, and the total energy-flux vector e.
Use for the dimensionsM = mass, L = length, T = temperature, t = time.

2. Compare the orders of magnitude of the thermal conductivities of gases, liquids, and solids.

3. In what ways are Newton’s law of viscosity and Fourier’s law of heat conduction similar?

Dissimilar?

4. Are gas viscosities and thermal conductivities related? If so, how?

5. Compare the temperature dependence of the thermal conductivities of gases, liquids, and

solids.

6. Compare the orders of magnitudes of Prandtl numbers for gases and liquids.

7. Are the thermal conductivities of gaseous Ne20 and Ne22 the same?

8. Is the relation C̃p − C̃V = R true only for ideal gases, or is it also true for liquids? If it is not true

for liquids, what formula should be used?

9. What is the kinetic energy flux in the axial direction for the laminar flow of a Newtonian liquid

in a circular tube (Poiseuille flow)?

10. What is w = [0 ⋅ v] = pv + [f ⋅ v] for Poiseuille flow?

PROBLEMS 9A.1 Prediction of thermal conductivities of gases at low density.
(a) Compute the thermal conductivity of argon at 100∘C and atmospheric pressure, using the

Chapman-Enskog theory and the Lennard-Jones constants derived from viscosity data. Com-

pare your result with the observed value1 of 506 × 10−7cal∕cm ⋅ s ⋅ K.

6Sh. N. Plyat, Soviet Physics JETP, 2, 2588–2589 (1957).

1W. G. Kannuluik and E. H. Carman, Proc. Phys. Soc. (London), 65B, 701–704 (1952).
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(b) Compute the thermal conductivities of NO and CH4 at 300 K and atmospheric pressure

from the following data for these conditions:

4 × 107 (g∕cm ⋅ s) C̃p (cal∕g-mol ⋅ K)

NO 1929 7.15

CH4 1116 8.55

Compare your results with the experimental values gives in Table 9.5-1.

9A.2 Computation of the Prandtl numbers for gases at low density.
(a) By using the Eucken formula and experimental heat capacity data, estimate the Prandtl
number at 1 atm and 300 K for each of the gases listed in the table.

(b) For the same gases, compute the Prandtl number directly by substituting the following

values of the physical properties into the defining formula Pr = Ĉp4∕k, and compare the values

with the results obtained in (a). All properties are given at low pressure and 300 K.

Ĉp × 10−3 4 × 105 k
Gasa (J∕kg ⋅ K) (Pa ⋅ s) (W∕m ⋅ K)

He 5.193 1.995 0.1546

Ar 0.5204 2.278 0.01784

H2 14.28 0.8944 0.1789

Air 1.001 1.854 0.02614

CO2 0.8484 1.506 0.01661

H2O 1.864 1.041 0.02250

aThe entries in this table were prepared from functions provided by

T. E. Daubert, R. P. Danner, H. M. Sibul, C. C. Stebbins, J. L.

Oscarson, R. L. Rowley, W. V. Wilding, M. E. Adams, T. L. Marshall,

and N. A. Zundel, DIPPR® Data Compilation of Pure Compound
Properties, Design Institute for Physical Property Data®, AIChE,

New York, NY (2000).

9A.3 Estimation of the thermal conductivity of a dense gas. Predict the thermal conductivity of
methane at 110.4 atm and 127∘F by the following methods:

(a) Use Fig. 9.6-1. Obtain the necessary critical properties from Appendix D.

(b) Use the Eucken formula to get the thermal conductivity at 127∘F and low pressure. Then

apply a pressure correction by using Fig. 9.6-1. The experimental value2 is 0.0282 Btu∕hr ⋅ ft ⋅ ∘F.
Answer: (a) 0.0294 Btu∕hr ⋅ ft ⋅ ∘F.

9A.4 Dimensions of thermal quantities. Verify that the following equations are dimensionally cor-
rect: Eq. 9.7-12, Eq. 9.4-2, and Eq. 9.4-4. The table of notation, just before the author index, will

be helpful.

9A.5 Estimation of the thermal conductivity of a pure liquid. Predict the thermal conductivity of

liquidH2O at 40∘C and 40 bars pressure (1 bar = 106 dyn∕cm2). The isothermal compressibility,

(1∕i)(𝜕i∕𝜕p)T, is 38 × 10−6 bar
−1

and the density is 0.9938 g∕cm3. Assume that C̃p = C̃V .

Answer: 0.375 Btu∕hr ⋅ ft ⋅ ∘F

2J. M. Lenoir, W. A. Junk, and E. W. Comings, Chem. Engr. Prog. 49, 539–542 (1953).
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9A.6 Calculation of the Lorenz number.
(a) Application of kinetic theory to the “electron gas” in a metal3 gives for the Lorenz number

L = 02

3

(
K

e

)2

(9A.6-1)

in which K is the Boltzmann constant and e is the charge on the electron. Compute L in the units
given under Eq. 9.9-1.

(b) The electrical resistivity, 1∕ke, of copper at 20∘C is 1.72 × 10−6 ohm ⋅ cm. Estimate its thermal
conductivity inW∕m ⋅ KusingEq. 9A.6-1, and compare your resultwith the experimental value
given in Table 9.5-4.

Answers: (a) 2.44 × 10−8 volt
2∕K2; (b) 416 W∕m ⋅ K

9A.7 Corroboration of the Wiedemann-Franz-Lorenz law. Given the following experimental data
at 20∘C for pure metals, compute the corresponding values of the Lorenz number, L, defined
in Eq. 9.9-1.

Metal (1∕ke)(ohm ⋅ cm) k (cal∕cm ⋅ s ⋅ K)

Na 4.6 × 10−6 0.317

Ni 6.9 × 10−6 0.140

Cu 1.69 × 10−6 0.92

Al 2.62 × 10−6 0.50

9A.8 Thermal conductivity and Prandtl number of a polyatomic gas.
(a) Estimate the thermal conductivity of CH4 at 1500 K and 1.37 atm. The molar heat capacity
at constant pressure4 at 1500 K is 20.71 cal∕g-mol ⋅ K.
(b) What is the Prandtl number at the same pressure and temperature?

Answers: (a) 5.06 × 10−4 cal∕cm ⋅ s ⋅ K; (b) 0.89

9A.9 Thermal conductivity of gaseous chlorine. Use Eq. 9.7-15 to calculate the thermal conductiv-
ity of gaseous chlorine. To do this you will need to use Eq. 1.6-14 to estimate the viscosity, and
also the following values of the heat capacity:

T (K) 200 300 400 500 600

C̃p (cal∕g-mol ⋅ K) (8.06) 8.12 8.44 8.62 8.74

Check to see how well the calculated values agree with the following experimental thermal
conductivity data:5

3P. Drude, Ann. Phys., 1, 566–613 (1900); J. E. Mayer and M. G. Mayer, Statistical Mechanics, Wiley,

New York (1946), p. 412;Maria Goeppert Mayer (1906–1972) received a Ph.D. in Physics from the

University of Göttingen. She won the Nobel Prize for Physics in 1963, for the shell model of the atomic

nucleus.
4O. A. Hougen, K. M. Watson, and R. A. Ragatz, Chemical Process Principles, Vol. 1, Wiley, New York

(1954), p. 253.
5Interpolated from data of E. U. Frank, Z. Elektrochem., 55, 636 (1951), as reported in Nouveau Traité de

Chimie Minerale, P. Pascal, ed., Masson et Cie, Paris (1960), pp. 158–159.
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T (K) p (mmHg) k × 105 (cal∕cm ⋅ s ⋅ K)

198 50 1.31 ± 0.03

275 220 1.90 ± 0.02

276 120 1.93 ± 0.01

220 1.92 ± 0.01

363 100 2.62 ± 0.02

200 2.61 ± 0.02

395 210 3.04 ± 0.02

453 150 3.53 ± 0.03

250 3.42 ± 0.02

495 250 3.72 ± 0.07

553 100 4.14 ± 0.04

583 170 4.43 ± 0.04

210 4.45 ± 0.08

676 150 5.07 ± 0.10

250 4.90 ± 0.03

9A.10 Thermal conductivity of quartz sand.A typical sample of quartz sand has the following prop-

erties at 20oC:

Component Volume Fraction ki (cal∕cm ⋅ s ⋅ K)

i = 1: Silica 0.510 20.4 × 10−3

i = 2: Feldspar 0.063 7.0 × 10−3

Continuous phase (i = 0) is one of the following:

(i) Water 0.427 1.42 × 10−3

(ii) Air 0.427 0.0615 × 10−3

Estimate the effective thermal conductivity of the sand (i) when it is water-saturated, and (ii)

when it is completely dry.

(a) Use the following generalization of Eqs. 9.10-2 and 9.10-3:

keff
k0

=

N∑
i=0

wi(ki∕k0)di

N∑
i=0

widi

(9A.10-1)

wi =
1

3

3∑
j=1

[
1 +

(
ki
k0

− 1

)
gj

]−1
(9A.10-2)

Here N is the number of solid phases. Compare the prediction for spheres
(
g1 = g2 = g3 =

1

3

)
with the recommendation of de Vries

(
g1 = g2 =

1

8
; g3 =

3

4

)
. The latter gi values closely
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approximate the fitted ones6 for the present sample. The right-hand member of Eq. 9.11-1 is to

be multiplied by 1.25 for completely dry sand.6

(b) Use Eq. 9.10-1 with k1 = 18.9 × 10−3 cal∕cm ⋅ s ⋅ K, which is the volume-average thermal

conductivity of the two solids. Observed values, accurate within about 3%, are 6.2 and 0.58 ×
10−3 cal∕cm ⋅ s ⋅ K for wet and dry sand, respectively.6

Answers in cal∕cm ⋅ s ⋅ K for wet and dry sand, respectively:

(a) Eq. 9A.10-1 gives keff = 4.9 × 10−3 and 0.38 × 10−3 with g1 = g2 = g3 =
1

3
vs. 6.2 ×

10−3 and 0.64 × 10−3 with g1 = g2 =
1

8
; g3 =

3

4
.

(b) Eq. 9.10-1 gives keff = 5.1 × 10−3 and 0.30 × 10−3.

9A.11 Calculation of molecular diameters from transport properties.
(a) Determine themolecular diameter d for argon fromEq. 1.6-9 and the experimental viscosity

given in Problem 9A.2.

(b) Repeat part (a), but using Eq. 9.7-12 and the measured thermal conductivity in Problem

9A.2. Compare this result with the value obtained in (a).

(c) Calculate and compare the values of the Lennard-Jones collision diameter g from the same

experimental data used in (a) and (b), using s∕K from Table D.1.

(d) What can be concluded from the above calculations?

Answer: (a) 2.95 Å; (b) 1.88 Å; (c) 3.415 Å from Eq. 1.6-14, 3.409 Å from Eq. 9.7-13

9B.1 Enthalpy for an ideal monatomic gas. Show that for an ideal monatomic gas Eq. 9.4-4

becomes

Ĥ − Ĥo = 5

2

R
M

(T − To) (9B.1-1)

6The behavior of partially wetted soil has been treated by D. A. de Vries, Chapter 7 in Physics and
Plant Environment, W. R. van Wijk, ed., Wiley, New York (1963).
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§10.1 Shell energy balances; boundary conditions

§10.2 Heat conduction in a steam pipe

§10.3 Heat conduction through composite walls

§10.4 Heat conduction with temperature-dependent thermal conductivity

§10.5 Heat conduction in a cooling fin

§10.6 Energy transport with energy production: electrical energy conversion in
a wire

§10.7 Energy transport with energy production: chemical energy conversion in
a reactor

§10.8 Energy transport with energy production: mechanical energy conversion
by viscous dissipation

§10.9 Forced convection

§10.10 Free convection

§10.11 Concluding comments

In Chapter 2 it was shown how certain simple viscous flow problems can be solved by

applying conservation of momentum to a shell that is thin in the direction in which the

velocity varies. The main steps are: (i) a momentum balance made over the shell leads to

a first-order differential equation for the momentum-flux distribution; (ii) insertion of an

expression for themomentumflux in terms of the fluid velocity (which contains Newton’s

law of viscosity) gives a differential equation for the fluid velocity as a function of position.

These differential equations can be solved using boundary conditions, which specify the

velocity or momentum flux at the bounding surfaces.

In this chapter we show how a number of energy transport problems are solved by an

analogous procedure: (i) an energy balancemade over a shell that is thin in the direction in

which the temperature varies leads to a first-order differential equation for the energy-flux

distribution; (ii) substitution of an expression for the total energy flux in terms of the tem-

perature (which contains Fourier’s law of heat conduction) gives a differential equation

for the temperature as a function of position. These differential equations can be solved

using boundary conditions for the temperature or heat flux at the bounding surfaces.

279
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It should be clear from the similar wording of the foregoing two paragraphs that
the mathematical methods used in this chapter are the same as those introduced in
Chapter 2—only the notation and terminology are different. However, we will encounter
here a number of physical phenomena that have no counterpart in Chapter 2.

After a brief introduction to the shell energy balance in §10.1, we analyze heat con-
duction in a series of uncomplicated systems. Although these examples are somewhat
idealized, the results find application in numerous standard engineering calculations. The
problems were chosen to introduce the beginner to a number of important physical con-
cepts associated with the heat-transfer field. In addition, they serve to show how to use
a variety of boundary conditions and to illustrate problem solving in different coordinate
systems. In §10.2 to §10.5 four problems on heat conduction in solids are given. In §10.6
to §10.8, three problems with heat sources are presented. Finally, in §10.9 and §10.10, we
analyze two limiting cases of heat transfer in moving fluids: forced convection and free
convection. The study of these topics paves the way for the general equations of change
in Chapter 11.

§10.1 SHELL ENERGY BALANCES; BOUNDARY CONDITIONS

The problems discussed in this chapter are set up by means of shell energy balances. We
select a shell whose surfaces are parallel or perpendicular to the direction of energy flow,
and that is thin in the direction that the temperature varies. We then write for this system
a statement of the law of conservation of energy. For steady-state (i.e., time-independent)
systems, we write:⎧⎪⎨⎪⎩

Total rate
of energy

transported
in

⎫⎪⎬⎪⎭ −
⎧⎪⎨⎪⎩

Total rate
of energy

transported
out

⎫⎪⎬⎪⎭ +
⎧⎪⎨⎪⎩

Rate of work
done on
system by

external forces

⎫⎪⎬⎪⎭ +
⎧⎪⎨⎪⎩

Rate of
energy

production

⎫⎪⎬⎪⎭ = 0

(10.1-1)

The rates of energy transported in and out in the first two terms will be expressed by
the appropriate components of the total energy-flux vector e ([=] energy∕time ⋅ area)
multiplied by the relevant areas. The total energy-flux vector e given in §9.4 includes
all transport mechanisms: the convective energy-flux vector q(c) and the two contributions
to the molecular energy flux, the conductive heat-flux vector q and the work-flux vector w. In
setting up problems here and in the next chapter, we will use the e vector along with the
expression for the enthalpy in Eq. 9.4-4, often employing the simplifications of Eqs. 9.4-5
or 9.4-6. Note that in nonflowing systems (for which v is zero) the e vector reduces to the
conductive heat-flux vector q, which is given by Fourier’s law.

The energy production terms in Eq. 10.1-1 include (i) the degradation of electrical energy
into heat, (ii) the heat produced by slowing down of neutrons and nuclear fragments lib-
erated in the fission process, (iii) the heat produced in chemical reactions, and (iv) the
heat produced by viscous dissipation. The chemical-reaction heat source will be discussed
further in Chapter 19.

Equation 10.1-1 is a statement of the first law of thermodynamics, written for an
“open” system at steady-state conditions. In Chapter 11 this same statement—extended
to unsteady-state systems—will be written down as an equation of change for energy.

After Eq. 10.1-1 has been written for a thin shell of material, the thickness of the slab
or shell is allowed to approach zero. This procedure leads ultimately to an expression for
the temperature distribution containing constants of integration, which we evaluate by
use of boundary conditions. The most common types of boundary conditions are:

a. The temperature may be specified at a surface.

b. The heat flux normal to a surface may be given (this is equivalent to specifying the
temperature gradient).
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c. At interfaces the continuity of temperature and the heat flux normal to the interface
are required.

d. At a solid-fluid interface, the normal heat-flux component may be related to the
difference between the solid-surface temperature T|s and the “bulk” fluid temper-
ature Tb:

qn = h(T|s − Tb) (10.1-2)

where the normal vector is directed into the fluid. This relation is referred to as
Newton’s law of cooling. It is not really a “law” but rather the defining equation for
h, which is called the heat-transfer coefficient. Chapter 14 deals with methods for
estimating heat-transfer coefficients.

All four types of boundary conditions are encountered in this chapter. Still other kinds of
boundary conditions are possible, and they will be introduced as needed.

§10.2 HEAT CONDUCTION IN A STEAM PIPE

In this section we will obtain the radial temperature distribution in the wall of a pipe
throughwhich steam is flowing. The temperature at the inner pipe surface at r = nR is fixed
at the steam temperature Ts. For the condition at the outer pipe surface at r = R, we will
consider three different types of boundary conditions. These different cases, illustrated
in Fig. 10.2-1(a)–(c), are considered separately below. For each situation, the goals are to
obtain the temperature distribution T(r) for nR ≤ r ≤ R, as well as the rate of heat loss from
the pipe.

a. Temperature at the outer surface of the pipe is specified.
Here the temperature at the outer surface of the pipe r = R, is maintained at To, as

illustrated in Fig. 10.2-1(a). To find the temperature distribution within the pipe wall, T(r),
we start by writing a steady-state energy balance over a cylindrical shell of thickness 2r
and length L within the pipe wall. The shell is thin in only the r direction because we

(a) (b) (c)

T(r)
Ts

Ta

T(r)
Ts

Ta

T(r)
Ts

Ta

κR

R

κR R r κR R r κR Ri

Ri

R r

qr│r + ∆rqr│r

Region II

Region I

Fig. 10.2-1. Radial temperature distribution in the wall of a steam pipe, (a) when the

temperature of the outer surface is specified; (b) when heat is lost to the ambient air

(described by Newton’s law of cooling); (c) when the pipe is surrounded by a layer of

insulating material and heat is lost to the ambient air (described by Newton’s law of cooling).
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assume that the temperature depends only on r. Since energy is being transported only by
conduction (v = 0), the total energy flux e reduces to the conductive flux q. The rates of
energy transport in and out of the shell will thus consist of the appropriate components
of the conductive heat-flux vector q ([=] energy∕time ⋅ area), multiplied by the relevant
areas. Because there are no sources of energy production, and nowork done on the system
by external forces, the only contributions to the energy balance are

Rate of energy transported
in across the cylindrical
surface at r:

qr|r ⋅ 20rL = (20rLqr)|r (10.2-1)

Rate of energy transported
out across the cylindrical
surface at r + 2r:

qr|r+2r ⋅ 20(r + 2r)L = (20rLqr)|r+2r (10.2-2)

The notation qr means “heat flux in the r direction,” and (· · ·)|r+2r means “evaluated at
r + 2r.” Note that we take “in” and “out” to be in the positive r direction.

The steady-state energy balance can then be written as

(20rLqr)|r − (20rLqr)|r+2r = 0 (10.2-3)

If we now divide the equation by 20L2r and then take the limit as 2r → 0, we get

lim
2r→0

(rqr)|r+2r − (rqr)|r
2r

= d
dr

(rqr) = 0 (10.2-4)

where use has been made of the definition of the first derivative.
Integration with respect to r gives

rqr = C′
1

(10.2-5)

where C′
1
is the constant of integration. Insertion of Fourier’s law of heat conduction

qr = −k𝜕T∕𝜕r gives us then
−krdT

dr
= C′

1
= kC1 (10.2-6)

where we have chosen to replace C′
1
by kC1 so that the kwill drop out. Another integration

with respect to r then gives

T(r) = C1 ln r + C2 (10.2-7)

To determine the constants of integration,wemust specify the boundary conditions. These
have been discussed above, and are as follows:

B. C. 1: at r = nR, T = Ts (10.2-8)

B. C. 2: at r = R, T = To (10.2-9)

Application of these boundary conditions to Eq. 10.2-7 gives the two equations

B. C. 1: Ts = C1 ln nR + C2 (10.2-10)

B. C. 2: To = C1 lnR + C2 (10.2-11)

From these relations we get C1 = (Ts − To)∕ ln n and C2 = To − (Ts − To) lnR∕ ln n, and thus,
the temperature profile is

T(r) − To

Ts − To
=

ln(r∕R)
ln n

(10.2-12)

Note that both sides of this equation are dimensionless, which suggests some natural
dimensionless variables. In fact, this problem can be solved in terms of dimensionless
variables from the very beginning (see Problem 10B.21).



Trim Size: 8in x 10in Bird1e c10.tex V1 - October 21, 2014 4:04 P.M. Page 283

§10.2 Heat Conduction in a Steam Pipe 283

Finally we get the rate of heat loss from a length L of pipe

Q = (20RL)qr|r=R = (20RL)
(
−k dT

dr

||||r=R
)

= (20RL)(−k)
Ts − To

ln n

1

r

||||r=R =
20kL(Ts − To)

ln (1∕n)
(10.2-13)

Here Eq. 10.2-12 has been used to evaluate the temperature gradient at the outside surface
of the pipe.

b. Heat is lost to the surroundings from the outer surface of the pipe according to Newton’s law of
cooling
Here we consider a different boundary condition at the outer surface, namely,

Newton’s law of cooling,

B. C. 2: at r = R, qr = −k𝜕T
𝜕r

= h(T − Ta) (10.2-14)

in place of the known, fixed temperature To. Here, Ta is the air temperature far from the
pipe surface (the “ambient” temperature).

Because this case differs from the previous case only by a boundary condition, the
shell energy balance analysis of part (a) up to and including Eq. 10.2-7 still applies here.
Thus, the temperature profile will still have the form

T(r) = C1 ln r + C2 (10.2-15)

but the values of the constants C1 and C2 will differ from that in part (a). The boundary
conditions are now

B.C. 1: at r = nR, T = Ts (10.2-16)

B.C. 2: at r = R, − kdT
dr

= h(T − Ta) (10.2-17)

When we apply the boundary conditions, we get two equations for the constants of
integration C1 and C2

B.C. 1: Ts = C1 ln nR + C2 (10.2-18)

B.C. 2: −
kC1

R
= h(C1 lnR + C2 − Ta) (10.2-19)

Note that the profile T(r) from Eq. 10.2-15 was substituted into both sides of Eq. 10.2-17 to
arrive at Eq. 10.2-19. Solving these equations for C1 and C2 gives the temperature distri-
bution

T(r) − Ta

Ts − Ta
=

1 − Bi ⋅ ln(r∕R)
1 − Bi ⋅ ln n

for nR ≤ r ≤ R (10.2-20)

where Bi ≡ hR∕k is the Biot number.1

The heat loss from a length L of pipe can be obtained from either of the following
expressions:

Q = h ⋅ (20RL) ⋅ (T|r=R − Ta) or Q = 20RL
(
−k 𝜕T

𝜕r

||||r=R
)

(10.2-21)

1The Biot number is named after Jean Baptiste Biot (1774–1862) (pronounced “Bee-oh”). A

professor of physics at the Collège de France, he received the Rumford Medal for his development of a

simple, nondestructive test to determine sugar concentration. Note that the Biot number contains the

thermal conductivity of the solid, whereas the Nusselt number (see §10.8) contains the thermal

conductivity of the fluid. Both dimensionless groups have the same structure: (heat transfer

coefficient)(length)/(thermal conductivity).
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When the profile T(r) is substituted into either expression, we obtain

Q = 20kL(Ts − Ta)
Bi

1 + Bi ⋅ ln(1∕n)
(10.2-22)

It is instructive to examine the temperature at the outer pipe surface,

T|r=R = Ta + (Ts − Ta)
1

1 + Bi ⋅ ln(1∕n)
(10.2-23)

In the limit Bi = hR∕k → ∞, we see that T|r=R → Ta. In this limit, heat transfer in the sur-
rounding air is so fast relative to conduction within the pipe wall (i.e., h is so large relative
to k∕R) that the temperature of the pipe surface is equal to the ambient temperature. One
can verify that the temperature profile Eq. 10.2-20 reduces to Eq. 10.2-12 (with To replaced
by Ta) in this limit. In the opposite limit Bi = hR∕k → 0, we see that T|r=R → Ts. Here the
heat transfer in the surrounding air is so slow relative to conduction within the pipe wall
(i.e., h is so small relative to k∕R) that the entire pipe wall is at the steam temperature Ts.
From the analysis of these two limits, it is thus apparent that the Biot number may be
interpreted qualitatively as the following ratios:

Bi = hR
k

=
heat-transfer rate in the surrounding fluid

heat-transfer rate in the solid

= heat-transfer resistance in the solid

heat-transfer resistance in the surrounding fluid
(10.2-24)

c. Steam pipe with an insulating layer, and heat loss according to Newton’s law of cooling
Next we add a layer of insulating material on the outside of the steam pipe as

illustrated in Fig. 10.2-1(c). The thermal conductivity of the insulating layer is ki (the
thermal conductivity of the steam pipe still being k), and the outside of the insulation has
a radius Ri. The heat transfer to the surrounding air is still modeled using Newton’s law
of cooling. We will obtain the temperature distribution over the entire region nR ≤ r ≤ Ri,
that is, in the steam pipe wall (region I, nR ≤ r ≤ R) and in the insulation (region II,
R ≤ r ≤ Ri). We assume that the insulation fits tightly around the pipe, so that there are
no air spaces between the pipe and the insulation. This enables us to specify as boundary
conditions at the pipe/insulation interface that the temperature and radial heat flux are
continuous.

Shell energy balances over regions I and II proceed as in cases (a) and (b), and give
the forms for the temperature profiles

TI(r) = CI
1
ln r + CI

2
(10.2-25)

TII(r) = CII
1
ln r + CII

2
(10.2-26)

The boundary conditions are

B. C. 1: at r = nR, TI = Ts (10.2-27)

B. C. 2: at r = R, TI = TII (10.2-28)

B. C. 3: at r = R, − k𝜕T
I

𝜕r
= −ki

𝜕TII

𝜕r
(10.2-29)

B. C. 4: at r = Ri, − ki
𝜕TII

𝜕r
= h(TII − Ta) (10.2-30)

When the profiles in Eqs. 10.2-25 and 10.2-26 are substituted into Eqs. 10.2-27 to 10.2-30,
we obtain the following four equations that can be solved simultaneously to obtain the
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four constants of integration:

B.C. 1: Ts = CI
1
ln nR + CI

2
(10.2-31)

B.C. 2: CI
1
lnR + CI

2
= CII

1
lnR + CII

2
(10.2-32)

B.C. 3: kCI
1
= kiC

II
1

(10.2-33)

B.C. 4: − ki
CII
1

Ri
= h(CII

1
lnRi + CII

2
− Ta) (10.2-34)

Solving for the constants of integration, we obtain the temperature profiles

TI(r) − Ta

Ts − Ta
=

1 − Bii
[
(ki∕k) ln(r∕R) − ln(Ri∕R)

]
1 − Bii

[
(ki∕k) ln(n) − ln(Ri∕R)

] for nR ≤ r ≤ R (10.2-35)

TII(r) − Ta

Ts − Ta
=

1 − Bii
[
ln (r∕R) − ln(Ri∕R)

]
1 − Bii

[
(ki∕k) ln(n) − ln(Ri∕R)

] for R ≤ r ≤ Ri (10.2-36)

where Bii ≡ hRi∕ki. In addition, we can get the heat loss from a length L of the
pipe-plus-insulation

Q = h ⋅ (20RiL) ⋅
(
TII|||r=Ri

− Ta

)
= h(20RiL)(Ts − Ta)

1

1 − Bii
[
(ki∕k) ln n − ln(Ri∕R)

] (10.2-37)

One can verify that this expression reduces to Eq. 10.2-22 as Ri → R.

§10.3 HEAT CONDUCTION THROUGH COMPOSITE WALLS

In industrial heat-transfer problems one is often concernedwith conduction throughwalls
made up of layers of various materials, each with its own characteristic thermal conduc-
tivity. In this section we show how the various resistances to heat transfer are combined
into a total resistance.

In Fig. 10.3-1 we show a composite wall made up of three materials of different thick-
nesses, x1 − x0, x2 − x1, and x3 − x2, and different thermal conductivities k01, k12, and k23. At
x = x0, substance 01 is in contact with a fluid with ambient temperature Ta, and at x = x3,
substance 23 is in contact with a fluid at temperature Tb. The heat transfer at the bound-
aries x = x0 and x = x3 is given by Newton’s law of cooling with heat-transfer coefficients
h0 and h3, respectively. The anticipated temperature profile is sketched in Fig. 10.3-1.

First, we set up the energy balance for the problem. Since we are dealing with heat
conduction in a solid, the terms containing velocity in the e vector can be discarded, and
the only relevant contribution is the q vector, describing heat conduction. For the shell
of thickness 2x (width W and height H) in region 01 illustrated in Fig. 10.3-1, the rate of
energy transported into the shell is qx|xWH, and the rate of energy transported out of the
shell is qx|x+2xWH. The energy balance for the shell in region 01 is thus

Region 01: qx|xWH − qx|x+2xWH = 0 (10.3-1)

which just states that the energy entering at xmust be equal to the energy leaving at x + 2x,
since no energy is producedwithin the region.After division byWH2x and taking the limit
as 2x → 0, we get

Region 01:
dqx
dx

= 0 (10.3-2)
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Fig. 10.3-1. Heat conduction through a composite wall, located between two fluid streams at

temperatures Ta and Tb.

Integration of this equation gives

Region 01: qx = q0 (a constant) (10.3-3)

The constant of integration, q0, is the heat flux at the plane x = x0. The development in
Eqs. 10.3-1, 10.3-2, and 10.3-3 can be repeated for regions 12 and 23, so that the heat flux is
constant and the same for all three regions:

Regions 01, 12, 23: qx = q0 (10.3-4)

with the same constant for each of the regions (i.e., by requiring continuity of the heat flux
at the boundaries). We may now introduce Fourier’s law for each of the three regions and
get

Region 01: − k01
dT
dx

= q0 (10.3-5)

Region 12: − k12
dT
dx

= q0 (10.3-6)

Region 23: − k23
dT
dx

= q0 (10.3-7)

We now assume that k01, k12, and k23 are constants. Then we integrate each equation over
the entire thickness of the relevant slab of material to get

Region 01: T0 − T1 = q0

(
x1 − x0
k01

)
(10.3-8)

Region 12: T1 − T2 = q0

(
x2 − x1
k12

)
(10.3-9)

Region 23: T2 − T3 = q0

(
x3 − x2
k23

)
(10.3-10)

In addition we have the two statements regarding the heat transfer at the surfaces accord-
ing to Newton’s law of cooling:

At surface 0: Ta − T0 =
q0
h0

(10.3-11)

At surface 3: T3 − Tb =
q0
h0

(10.3-12)
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Addition of these last five equations then gives:

Ta − Tb = q0

(
1

h0
+

x1 − x0
k01

+
x2 − x1
k12

+
x3 − x2
k23

+ 1

h3

)
(10.3-13)

or

q0 =
Ta − Tb(

1

h0
+

3∑
j=1

xj − xj−1
kj−1,j

+ 1

h3

) (10.3-14)

Sometimes this result is rewritten in a form reminiscent of Newton’s law of cooling, either
in terms of the heat flux q0 ([=] J∕m2 ⋅ s) or the heat flow Q0 ([=] J∕s)

q0 = U(Ta − Tb) or Q0 = U(WH)(Ta − Tb) (10.3-15)

The quantityU, called the “overall heat-transfer coefficient,” is given then by the following
famous formula for the “additivity of resistances”:

1

U
= 1

h0
+

n∑
j=1

xj − xj−1
kj−1,j

+ 1

hn
(10.3-16)

Here we have generalized the formula to a system with n slabs of material.
Equations 10.3-15 and 10.3-16 are useful for calculating the heat-transfer rate through
a composite wall separating two fluid streams, when the heat-transfer coefficients and
thermal conductivities are known. The estimation of heat-transfer coefficients is discussed
in Chapter 14.

In the above development it has been tacitly assumed that the solid slabs are contigu-
ous with no intervening “air spaces.” If the solid surfaces touch each other only at several
points, the resistance to heat transfer will be appreciably increased.

EXAMPLE 10.3-1

Composite Cylindrical
Walls

Develop a formula for the overall heat-transfer coefficient for the composite cylindrical pipe
wall shown in Fig. 10.3-2.

SOLUTION

An energy balance on a shell of volume 20rL2r for region 01 is

Region 01: qr|r20rL − qr|r+2r20(r + 2r)L = 0 (10.3-17)

which can also be written as:

Region 01: (20rLqr)|r − (20rLqr)|r+2r = 0 (10.3-18)

Division by 20L2r and taking the limit as 2r goes to zero gives

Region 01:
d
dr

(rqr) = 0 (10.3-19)

Integration of this equation gives:

rqr = constant = r0q0 (10.3-20)

in which r0 is the inner radius of region 01, and q0 is the heat flux there. In regions 12 and
23, rqr is equal to the same constant (i.e., the total radial heat-transfer rate 20rLqr is the same
everywhere at steady state). Application of Fourier’s law to the three regions gives:

Region 01: − k01r
dT
dr

= r0q0 (10.3-21)

Region 12: − k12r
dT
dr

= r0q0 (10.3-22)

Region 23: − k23r
dT
dr

= r0q0 (10.3-23)
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T1 T2

T3
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Fig. 10.3-2. Heat conduction through a

laminated tube with a fluid at temperature Ta
inside the tube and temperature Tb outside.

If we assume that the thermal conductivities in the three annular regions are constants, then

each of the above three equations can be integrated across its region to give.

Region 10: T0 − T1 = r0q0
ln(r1∕r0)

k01
(10.3-24)

Region 12: T1 − T2 = r0q0
ln(r2∕r1)

k12
(10.3-25)

Region 23: T2 − T3 = r0q0
ln(r3∕r2)

k23
(10.3-26)

At the two fluid-solid interfaces we can write Newton’s law of cooling:

Surface 0: Ta − T0 =
q0
h0

(10.3-27)

Surface 3: T3 − Tb =
q3
h3

=
q0
h3

r0
r3

(10.3-28)

Addition of the preceding five equations gives an equation for Ta − Tb, which can be solved for

the heat-transfer rate to give

Q0 = 20Lr0q0 =
20L(Ta − Tb)(

1

r0h0
+

ln(r1∕r0)
k01

+
ln(r2∕r1)

k12
+

ln(r3∕r2)
k23

+ 1

r3h3

) (10.3-29)

We now define an “overall heat-transfer coefficient based on the inner surface” U0 by

Q0 = 20Lr0q0 = U0(20Lr0)(Ta − Tb) (10.3-30)

Combination of the last two equations gives, on generalizing to a system with n annular

layers,

1

r0U0

=
⎛⎜⎜⎜⎝

1

r0h0
+

n∑
j=1

ln
(
rj∕rj−1

)
kj−1,j

+ 1

rnhn

⎞⎟⎟⎟⎠ (10.3-31)
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The subscript “0” on U0 indicates that the overall heat-transfer coefficient is referred to the
radius r0. Equation 10.3-31 can be used to determine the heat loss rates directly for the systems
considered in §10.2.

§10.4 HEAT CONDUCTIONWITH TEMPERATURE-DEPENDENT
THERMAL CONDUCTIVITY

In this section we study the heat conduction in the p direction in the annular region
shown in Fig. 10.4-1 of inner radius r1, outer radius r2, and length L. The curved surfaces
and the end surfaces (both shaded in the figure) are insulated. The surface at p = 0 of area
(r2 − r1)L is maintained at temperature T0, and the surface at p = 0, also of area (r2 − r1)L,
is kept at temperature T0.

In the preceding sections we have taken the thermal conductivities to be constants. In
this problemwe show how to take into account the dependence of the thermal conductiv-
ity on the temperature. Specifically, here we assume that the thermal conductivity of the
solid varies linearly with the temperature from k0 at T = T0, to k0 at T = T0. That is,

k(T) = k0 + (k0 − k0)
(
T (p) − T0

T0 − T0

)
= k0 + (k0 − k0)P (10.4-1)

in which P(p) is a dimensionless temperature difference. We want to find the dimension-
less temperature difference P as a function of the angle p.

Since T (or P) is a function of p alone, we make a shell energy balance over a shell
of thickness 2p. Because the velocity is zero, the energy flux e reduces to the conductive
energy flux q. Thus, for conduction across the surfaces of area (r2 − r1)L bounding the shell
between p and p + 2p, the shell energy balance is

qp|p(r2 − r1)L − qp|p+2p(r2 − r1)L = 0 (10.4-2)

Dividing by (r2 − r1)L2p and taking the limit as 2p → 0 gives

dqp
dp

= 0 (10.4-3)

We then insert Fourier’s law with the temperature-dependent thermal conductivity k(P)
to get

d
dp

[
−
(
k0 +

(
k0 − k0

)
P
)
1

r
dP
dp

]
= 0 (10.4-4)

where the dimensionless temperature difference P is defined in Eq. 10.4-1. To get
Eq. 10.4-4, we have made use of the expression for qp given in Eq. B.2-5.

Integrating once we get (
k0 +

(
k0 − k0

)
P
)dP
dp

= C1 (10.4-5)

and a second integration gives

k0P + 1

2
(k0 − k0)P2 = C1p + C2 (10.4-6)

r1
r2

Surface
at Tπ Surface at T0

θ z = L

z = 0
qθ│θ + ∆θ qθ│θ

Fig. 10.4-1. Tangential heat
conduction in an annular

region.



Trim Size: 8in x 10in Bird1e c10.tex V1 - October 21, 2014 4:04 P.M. Page 290

290 Chapter 10 Shell Energy Balances and Temperature Distributions in Solids and Laminar Flow

When the constants are determined from the boundary conditions, P(0) = 0 and P(0) = 1,
we get C2 = 0 and C1 = (k0 + k0)∕20. Therefore, the temperature distribution in the solid is
given by the quadratic equation

k0P + 1

2
(k0 − k0)P2 =

(k0 + k0)p
20

(10.4-7)

or
1

2
(k0 − k0)P2 − k0P +

(k0 + k0)p
20

= 0 (10.4-8)

This quadratic equation has the solution

P(p) =
k0 ±

√[
1 − (p∕0)

]
k2
0
+ (p∕0)k20

k0 − k0
(10.4-9)

The minus sign in Eq. 10.4-9 has to be chosen in order that the boundary conditions be
satisfied.

Next, let us get the rate of heat flow through the surface at p = 0. This is

Q = ∫
L

0 ∫
r2

r1

(
−k1

r
dT
dp

)|||||p=0dr dz = (T0 − T0)∫
L

0 ∫
r2

r1

(
k (P) 1

r
dP
dp

)|||||p=0dr dz
= (T0 − T0)∫

L

0 ∫
r2

r1

1

r

((
k0 + k0

)
20

)
dr dz

=
(
L
0
ln

r2
r1

)(
k0 + k0

2

)
(T0 − T0) (10.4-10)

where in the second line we have used the fact that k(P)dP∕dp is equal to the constant C1.
One can show that Eq. 10.4-10 is the heat-transfer rate one would obtain if the thermal
conductivity were constant and equal to (k0 + k0)∕2.

§10.5 HEAT CONDUCTION IN A COOLING FIN1

Another simple, but practical application of heat conduction is the calculation of the effi-
ciency of a cooling fin. Fins are used to increase the area available for heat transfer between
metal walls and poorly conducting fluids such as gases. A simple rectangular fin is shown
in Fig. 10.5-1. The wall temperature is Tw and the ambient air temperature is Ta.

A reasonably good description of the system may be obtained by approximating the
true physical situation by a simplified model:

True situation Model

1. T is a function of x, y, and z, the
dependence on z is most important.

2. A small quantity of heat is lost from
the fin at the end (area 2BW) and at
the edges (area 2 × 2BL).

3. The heat-transfer coefficient is a
function of position.

1. T is a function of z alone.

2. No heat is lost from the end or from
the edges.

3. The heat flux normal to the surface,
from the solid to the fluid, is given
by qn = h(T − Ta), where h is a
constant and T depends on z.

1For further information on fins, see M. Jakob, Heat Transfer, Vol. I, Wiley, New York (1949), Chapter

11; and H. D. Baehr and K. Stephan, Heat and Mass Transfer, Springer, Berlin (1998), §2.2.3.
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Fig. 10.5-1. A simple cooling fin with

B << L and B << W.

The energy balance is made over a segment 2z of the fin; the shell is thin in only the z
direction because it has been assumed that the temperature depends only on z. Since the
fin is stationary, the terms containing v in the total energy-flux vector emay be discarded,
and the only contribution to the energy flux is the conductive heat flux q. Therefore, the
energy balance is

2BWqz|z − 2BWqz|z+2z − h(2W2z)(T(z) − Ta) = 0 (10.5-1)

The last term in the above equation represents the heat transferred to the surrounding fluid
from the top and bottom surfaces. In contrast to previous problems, Newton’s law of cool-
ing appears here in the energy balance (as opposed to a boundary condition) because the
assumption that T depends only on z requires that the shell system includes the surfaces
in contact with the surrounding fluid.

Division of Eq. 10.5-1 by 2BW2z and taking the limit as 2z approaches zero gives

−
dqz
dz

− h
B
(T(z) − Ta) = 0 (10.5-2)

We now insert Fourier’s law (qz = −kdT∕dz), in which k is the thermal conductivity of the
metal. If we assume that k is constant, we then get

d2T
dz2

− h
kB

(T(z) − Ta) = 0 (10.5-3)

This equation is to be solved with the boundary conditions

B. C. 1: at z = 0, T = Tw (10.5-4)

B. C. 2: at z = L, dT
dz

= 0 (10.5-5)

The second boundary condition is consistentwith the assumption that the energy lost from
the end of the fin is negligible. We now introduce the following dimensionless quantities:

P(r) =
T(z) − Ta

Tw − Ta
= dimensionless temperature difference (10.5-6)

r = z
L

= dimensionless distance (10.5-7)

N2 = hL2

kB
= dimensionless heat-transfer coefficient2 (10.5-8)

2The quantity N2 may be rewritten as N2 = (hL∕k)(L∕B) = Bi(L∕B), where Bi is the Biot number
introduced in §10.2.
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The problem then takes the form:

d2P
dr2

−N2P = 0 (10.5-9)

B. C. 1: at r = 0, P = 1 (10.5-10)

B. C. 2: at r = 1, dP
dr

= 0 (10.5-11)

The solution to Eq. 10.5-9 may be written in terms of hyperbolic functions (see Eq. C.1-4
and §C.5)

P(r) = C1 coshNr + C2 sinhNr (10.5-12)

Application of the boundary conditions gives

B. C. 1: 1 = C1 ⋅ 1 + C2 ⋅ 0 (10.5-13)

B. C. 2: 0 = C1N sinhN + C2N coshN (10.5-14)

From these last two equations the constants of integrationmay be determined (C1 = 1 and
C2 = − tanhN) and we get

P(r) = coshNr − (sinhN∕ coshN) sinhNr

= (coshNr) coshN − (sinhNr) sinhN
coshN

(10.5-15)

This may be rewritten with the help of Eq. C.5-6 to give finally

P(r) = coshN(1 − r)
coshN

(10.5-16)

This result is reasonable only if the heat lost at the end and at the edges is negligible.
The “effectiveness” of the fin surface is defined3 by

q = actual rate of heat loss from the fin

rate of heat loss from an isothermal fin at Tw
(10.5-17)

For the problem being considered here q is then

q =
∫

W

0 ∫
L

0

h(T(z) − Ta)dzdy

∫
W

0 ∫
L

0

h(Tw − Ta)dzdy
=

∫
1

0

P(r)dr

∫
1

0

dr

(10.5-18)

or

q = 1

coshN

(
− 1

N
sinhN (1 − r)

)|||||
1

0

= tanhN
N

(10.5-19)

in which N is the dimensionless quantity defined in Eq. 10.5-8.

EXAMPLE 10.5-1

Error in Thermocouple
Measurement

In Fig. 10.5-2 a thermocouple is shown in a cylindrical well inserted into a gas stream. Estimate

the true temperature of the gas stream if

3M. Jakob, Heat Transfer, Wiley, New York (1949), Vol. I, p. 235.
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T1 = 500∘F = temperature indicated by thermocouple

Tw = 350∘F = wall temperature

h = 120 Btu∕hr ⋅ ft2 ⋅ ∘F = heat-transfer coefficient

k = 60 Btu∕hr ⋅ ft ⋅ ∘F = thermal conductivity of well wall

B = 0.08 in. = thickness of well wall

L = 0.2 ft = length of well

SOLUTION

The thermocouplewellwall of thicknessB is in contactwith the gas streamonone side only, and

the tube thickness is small compared with the diameter. Hence, the temperature distribution

along this wall will be about the same as that along a fin of thickness 2B, in contact with the

gas stream on both sides. According to Eq. 10.5-16, the temperature at the end of the well (that

registered by the thermocouple) satisfies

T1 − Ta

Tw − Ta
= cosh 0

coshN
= 1

cosh
√
hL2∕kB

= 1

cosh

√
(120 Btu∕hr ⋅ ft2 ⋅ ∘F)(0.2 ft)2

/ [(
60 Btu∕hr ⋅ ft ⋅ ∘F

)
(0.08 in.)

(
1 ft

12 in.

)]
= 1

cosh(3.464)
= 0.0625 (10.5-20)

Hence, the actual ambient gas temperature is obtained by solving this equation for Ta:

500∘F − Ta

350∘F − Ta
= 0.0625 (10.5-21)

and the result is

Ta = 510∘F (10.5-22)

Therefore, the reading is 10∘F too low.

This example has focused on one kind of error that can occur in thermometry. Frequently

a simple analysis, such as the foregoing, can be used to estimate the measurement errors.4

Pipe wall at Tw

+ –
Thermocouple wires
to potentiometer

Gas stream
at Ta

Well wall of
thickness B

Thermocouple
junction at T1

L

Fig. 10.5-2. A thermocouple in a cylindrical

well.

4For further discussion, see M. Jakob, Heat Transfer, Vol. II, Wiley, New York (1949), Chapter 33, pp.

147–201.
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§10.6 ENERGY TRANSPORTWITH ENERGY PRODUCTION:
ELECTRICAL ENERGY CONVERSION IN AWIRE

In discussing the shell energy balances in §10.1, a “production” termwas included. In this
section we discuss a heat source in a homogeneous medium, specifically a heat source
resulting from electrical heating in a wire. In §10.7 we take up a heat source in a hetero-
geneous medium, taking as an example the heat production by chemical reaction in a
granular bed. And in §10.8 we discuss heat production in a flowing viscous fluid, where
the heat is produced by viscous dissipation.

In this section the system being studied involves the production of heat by electrical
conduction. But other heat sources can be treated similarly. In Problems 10B.2 and 10B.3
we get the temperature profile in spherical and cylindrical nuclear fuel elements resulting
from the heating associated with the nuclear reaction.

The first system we consider is an electric wire of circular cross section with radius

R, and electrical conductivity ke ohm
−1cm−1. Through this wire there is an electric current

with current density I amp∕cm2. The transmission of an electric current is an irreversible
process, and some electrical energy is converted into thermal energy. The rate of thermal
energy production per unit volume is given by the expression

Se =
I2

ke
(10.6-1)

The quantity Se is the heat source owing to electrical energy dissipation. We assume here
that the temperature rise in the wire is not so large that the temperature dependence of
either the thermal or electrical conductivity need be considered. As a result, the rate of
energy production per unit volume Se is a constant. The surface of the wire is maintained
at temperature T0. We now show how to find the radial temperature distribution within
the wire.

For the energy balance, we take the system to be a cylindrical shell of thickness 2r and
length L (see Fig. 10.6-1). Since v = 0 in this system, the only contributions to the energy
balance are

Rate of heat in
across cylindrical
surface at r:

qr|r ⋅ 20rL = (20rLqr)|r (10.6-2)

Rate of heat out
across cylindrical
surface at r + 2r:

qr|r+2r ⋅ 20(r + 2r)L = (20rLqr)|r+2r (10.6-3)

Rate of thermal
energy production by
electrical energy dissipation:

(20r2rLSe) (10.6-4)

We now substitute these quantities into the energy balance of Eq. 10.1-1. Division by
20L2r and taking the limit as 2r goes to zero gives

lim
2r→0

(rqr)|r+2r − (rqr)|r
2r

= Ser (10.6-5)

The expression on the left side is just the first derivative of rqr with respect to r, so that
Eq. 10.6-5 becomes

d
dr

(rqr) = Ser (10.6-6)

This is a first-order differential equation for the energy flux, and it may be integrated to
give

qr =
Ser
2

+
C1

r
(10.6-7)
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Heat in by
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r
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∆r

Fig. 10.6-1. Electrically heated wire, showing

the cylindrical shell over which the energy

balance is made.

The integration constant C1 must be zero because of the boundary condition that

B. C. 1: at r = 0, qr is not infinite (10.6-8)

Hence, the final expression for the heat-flux distribution is

qr =
Ser
2

(10.6-9)

This states that the heat flux increases linearly with r.
We now substitute Fourier’s law in the form qr = −k(dT∕dr) (see Eq. B.2-4) into Eq.

10.6-9 to obtain

−kdT
dr

=
Ser
2

(10.6-10)

When k is assumed to be constant, this first-order differential equation can be integrated
to give

T(r) = −
Ser

2

4k
+ C2 (10.6-11)

The integration constant is determined from

B. C. 2: at r = R, T = T0 (10.6-12)

Hence, C2 = (SeR2∕4k) + T0 and Eq. 10.6-11 becomes

T(r) − T0 =
SeR

2

4k

[
1 −

( r
R

)2
]

(10.6-13)

Equation 10.6-13 gives the temperature rise as a parabolic function of the distance r from
the wire axis.

Once the temperature and heat-flux distributions are known, various information
about the system may be obtained:

(i) Maximum temperature rise (at r = 0)

Tmax − T0 =
SeR

2

4k
(10.6-14)
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(ii) Average temperature rise

⟨T⟩ − T0 =
∫

20

0 ∫
R

0

[
T (r) − T0

]
r dr dp

∫
20

0 ∫
R

0

r dr dp

=
SeR

2

8k
(10.6-15)

Thus, the temperature rise, averaged over the cross section, is just half the max-
imum temperature rise.

(iii) Heat outflow at the surface (for a length L of wire)

Q|r=R = 20RL ⋅ qr|r=R = 20RL ⋅
SeR
2

= 0R2L ⋅ Se (10.6-16)

This result is not surprising, since, at steady state, all the thermal energy produced by
electrical dissipation in the volume 0R2L must leave through the surface r = R.

The reader, while going through this development, may well have had the feeling of
déja vu. There is, after all, a pronounced similarity between the heated wire problem and
the viscous flow in a circular tube. Only the notation is different:

Tube flow Heated wire

First integration gives frz(r) qr(r)
Second integration gives vz(r) T(r) − T0

Boundary condition at r = 0 frz = finite qr = finite

Boundary condition at r = R vz = 0 T − T0 = 0

Transport property 4 k
Source term (𝒫0 −𝒫L)∕L Se
Assumptions 4 = constant k, ke = constant

That is, when proper quantities are chosen, the differential equations and the boundary
conditions for the two problems are identical, and the physical processes are said to be
“analogous.” Not all problems in momentum transfer have analogs in energy and mass
transport. However, when such analogies can be found, they may be useful in taking
over known results from one field and applying them in another. For example, the reader
should have no trouble in finding a heat-conduction analog for the viscous flow in a liquid
film on an inclined plane.

There are many examples of heat-conduction problems in the electrical industry.1 The
minimizing of temperature rises inside electrical machinery prolongs insulation life. One
example is the use of internally liquid-cooled stator conductors in very large (500,000 kW)
AC generators.

To illustrate further problems in electrical heating, we give two examples concerning
the temperature rise in wires: the first indicates the order of magnitude of the heating
effect, and the second shows how to handle different boundary conditions. In addition,
in Problem 10C.1 it is shown how to take into account the temperature dependence of the
thermal and electrical conductivities.

1M. Jakob, Heat Transfer, Vol. I, Wiley, New York (1949), Chapter 10, pp. 167–199.
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EXAMPLE 10.6-1

Voltage Required for a
Given Temperature
Rise in a Wire Heated
by an Electric Current

A copper wire has a radius of 2mm and a length of 5m. For what voltage drop would the

temperature rise at the wire axis be 10∘C, if the surface temperature of the wire is 20∘C?

SOLUTION

Combination of Eqs. 10.6-14 and 10.6-1 gives

Tmax − T0 =
I2R2

4kke
(10.6-17)

The current density is related to the voltage drop E over a length L by

I = ke
E
L

(10.6-18)

Hence,

Tmax − T0 =
E2R2

4L2

(
ke
k

)
(10.6-19)

from which

E = 2
L
R

√
k

keT0

√
T0(Tmax − T0) (10.6-20)

For copper, the Lorenz number of §9.9 is k∕keT0 = 2.23 × 10−8 volt
2∕K2. Therefore, the voltage

drop needed to cause a 10∘C temperature rise is

E = 2

(
5000 mm

2 mm

)√
2.23 × 10−8

volt

K

√
(293 K)(10 K)

= 40 volts (10.6-21)

EXAMPLE 10.6-2

Heated Wire with
Specified Heat-Transfer
Coefficient and
Ambient Air
Temperature

Repeat the analysis in §10.6, assuming that T0 is not known, but that instead the heat flux

at the wall is given by Newton’s “law of cooling” (Eq. 10.1-2). Assume that the heat-transfer

coefficient h and the ambient air temperature Tair are known.

SOLUTION

The solution proceeds as before through Eq. 10.6-11, but the second integration constant is

determined from the new boundary condition

B. C. 2′: at r = R, − kdT
dr

= h(T − Tair) (10.6-22)

Substituting the temperature profile T(r) given by Eq. 10.6-11 into both sides of Eq. 10.6-22 gives

C2 = (SeR∕2h) + (SeR
2∕4k) + Tair, and the temperature profile is then

T(r) − Tair =
SeR

2

4k

[
1 −

( r
R

)2
]
+

SeR
2h

(10.6-23)

From this, the surface temperature of the wire is found to be Tair + SeR∕2h.

§10.7 ENERGY TRANSPORTWITH ENERGY PRODUCTION:
CHEMICAL ENERGY CONVERSION IN A REACTOR

In this section, we discuss the heat production in a granular system, in which a chemical
reaction is occurring as a fluid flows through a “packed bed.” We ignore the granular
structure and calculate the temperature profiles as though the systemwere homogeneous.
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Fig. 10.7-1. Fixed-bed
axial-flow reactor. Reactants

enter at z = −∞ and leave at

z = +∞. The reaction zone

extends from z = 0 to z = L.

A chemical reaction is being carried out in a tubular, fixed-bed flow reactor with inner
radiusR as shown in Fig. 10.7-1. The reactor extends from z = −∞ to z = +∞ and is divided
into three zones:

Zone I: Entrance zone packed with noncatalytic spheres

Zone II: Reaction zone packed with catalyst spheres, extending from z = 0 to z = L

Zone III: Exit zone packed with noncatalytic spheres

It is assumed that the fluid proceeds through the reactor tube in “plug flow”—that is, with
axial velocity uniform at a superficial value v0 = w∕0R2i (see just below Eq. 6.4-1 for the
definition of “superficial velocity”). The density, mass flow rate, and superficial velocity
are all treated as independent of r and z. In addition, the reactor wall is assumed to be
well insulated, so that the temperature can be considered essentially independent of r. It
is desired to find the steady-state axial temperature distribution T(z)when the fluid enters
at z = −∞ with a uniform temperature T1.

When a chemical reaction occurs, thermal energy is produced or consumed when
the reactant molecules rearrange to form the products. The rate of thermal energy pro-
duction per unit volume by chemical reaction, Sc, is in general a complicated function
of pressure, temperature, composition, and catalyst activity. For simplicity, we represent
Sc here as a function of temperature only: Sc = Sc1F(P), where P = (T(z) − T0)∕(T1 − T0) is
the dimensionless temperature difference. Here T(z) is the local temperature in the cata-
lyst bed (assumed equal for catalyst and fluid), and Sc1 and T0 are empirical constants for
the given reactor inlet conditions.

For the shell balance we select a disk of radius R and thickness 2z in the catalyst zone
(see Fig. 10.7-1), andwe choose 2z to be much larger than the catalyst particle dimensions.
In setting up the energy balance, we use the total energy-flux vector e inasmuch as we are
dealing with a flow system (i.e., v ≠ 0). Then, at steady state, the energy balance is

0R2ez|z − 0R2ez|z+2z + (0R22z)Sc = 0 (10.7-1)

Next we divide by 0R22z and take the limit as 2z goes to zero. Strictly speaking, this oper-
ation is not “legal,” since we are not dealing with a continuum, but rather with a granular
structure. Nevertheless, we perform this limiting process with the understanding that the
resulting equation describes, not point values, but rather average values of ez and Sc for
reactor cross sections at a particular value of z. This gives

dez
dz

= Sc (10.7-2)

Now we substitute the z component of Eq. 9.4-2 into this equation to get

d
dz

((
1

2
iv2 + iĤ

)
vz + fzzvz + qz

)
= Sc (10.7-3)
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We now use Fourier’s law for qz, Eq. 1.2-9 for fzz, and the enthalpy expression in Eq. 9.4-6
(with the assumption that the heat capacity is constant) to get

d
dz

(
1

2
iv2zvz + iĈp (T − To) vz + (p − po)vz + iĤovz − 24vz

dvz
dz

− keff
dT
dz

)
= Sc (10.7-4)

in which an effective thermal conductivity keff has been used to describe heat conduction
in the z direction. The first, fourth, and fifth terms on the left side may be discarded, since
the velocity is not changing with z. The third term may be discarded if the pressure does
not change significantly in the axial direction. Then in the second term we replace vz by
the superficial velocity v0, because the latter is the fluid velocity in the reactor, averaged
over any cross section. Then Eq. 10.7-4 becomes

iĈpv0
dT
dz

= keff
d2T
dz2

+ Sc (10.7-5)

This is the differential equation for the temperature in Zone II. The same equation applies
in Zones I and III with the source term set equal to zero. The differential equations for the
temperature are then

Zone I (z < 0) iĈpv0
dTI

dz
= keff

d2TI

dz2
(10.7-6)

Zone II (0 > z > L) iĈpv0
dTII

dz
= keff

d2TII

dz2
+ Sc1F(P) (10.7-7)

Zone III (z > L) iĈpv0
dTIII

dz
= keff

d2TIII

dz2
(10.7-8)

Here we have assumed that we can use the same value of the effective thermal conduc-
tivity in all three zones. These three second-order differential equations are subject to the
following six boundary conditions:

B. C. 1: as z → −∞, TI → T1 (10.7-9)

B. C. 2: at z = 0, TI = TII (10.7-10)

B. C. 3: at z = 0, keff
dTI

dz
= keff

dTII

dz
(10.7-11)

B. C. 4: at z = L, TII = TIII (10.7-12)

B. C. 5: at z = L, keff
dTII

dz
= keff

dTIII

dz
(10.7-13)

B. C. 6: as z → ∞, TIII = finite (10.7-14)

Equations 10.7-10 to 10.7-13 express the continuity of temperature and heat flux at the
boundaries between the zones. Equations 10.7-9 and 10.7-14 specify requirements at the
two ends of the system.

The solution of Eqs. 10.7-6 to 10.7-14 is considered here for arbitrary F(P). In many
cases of practical interest, the convective heat transport is farmore important than the axial
conductive heat transport. Therefore, here we drop the conductive terms entirely (those
containing keff). The relative importance of conductive and convective energy transport is
discussed in more detail in Chapter 13.

If we introduce a dimensionless axial coordinate Z = z∕L and a dimensionless chem-
ical heat source N = Sc1L∕iĈpv0(T1 − T0), then Eqs. 10.7-6 to 10.7-8 become

Zone I (Z < 0) dPI

dZ
= 0 (10.7-15)

Zone II (0 > Z > 1) dPII

dZ
= NF(P) (10.7-16)

Zone III (Z > 1) dPIII

dZ
= 0 (10.7-17)
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Fig. 10.7-2. Predicted
temperature profiles in a
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is negligible axial conduction.

for which we now need only three boundary conditions:

B. C. 1: as Z → −∞, PI = 1 (10.7-18)

B. C. 2: at Z = 0, PI = PII (10.7-19)

B. C. 3: at Z = 1, PII = PIII (10.7-20)

The above first-order, separable differential equations, with boundary conditions, are inte-
grated directly to get

PI = 1 (10.7-21)

∫
PII

PI

1

F(P)
dP = NZ (10.7-22)

PIII = PII|Z=1 (10.7-23)

These results are shown in Fig. 10.7-2 for a simple choice for the source function—namely,
F(P) = P—which is reasonable for small changes in temperature, if the reaction rate is
insensitive to concentration.

Here in this section we ended up discarding the axial conduction terms. In Problem
10B.18, these terms are not discarded, and then the solution shows that there may be some
preheating (or precooling) in Region I.

§10.8 ENERGY TRANSPORTWITH ENERGY PRODUCTION:
MECHANICAL ENERGY CONVERSION BY VISCOUS
DISSIPATION

Next we consider the flow of an incompressible Newtonian fluid between two coaxial
cylinders as shown in Fig. 10.8-1. The surfaces of the inner and outer cylinders are main-
tained at T = T0 and T = Tb, respectively.We can expect that Twill be a function of r alone.

As the outer cylinder rotates, each cylindrical shell of fluid “rubs” against an adja-
cent shell of fluid. This friction between adjacent layers of the fluid produces heat; that is,
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R

Outer cylinder moves with
angular velocity Ω

Inner cylinder
is stationary

r

b

θ

T0

Tb

Fig. 10.8-1. Flow between cylinders with energy

production by viscous dissipation. That part of the

system enclosed within the dotted lines is shown in

modified form in Fig. 10.8-2.

the mechanical energy is degraded into thermal energy. The volume heat source resulting
from this “viscous dissipation,” which can be designated by Sv, appears automatically
in the shell balance, when we use the total energy-flux vector e defined at the end of
Chapter 9, as we shall see presently. Thus, in this section we actually derive an expres-
sion for Sv, whereas the previous two sections we did not arrive at expressions for Se or Sc
from first principles. We simply stated that there would be heat production, but we gave
no “recipe” for creating specific formulas for these quantities. The reason that we did not
derive expressions for Se and Sc via shell balances is that the electrical and chemical bond
contributions to the energy flux were not explicitly accounted for; because we did account
for viscous work in the energy flux, an expression for Sv will arise naturally. We note that
the need to identify energy production expressions is not necessarily a problem, as the
energy production phenomena are well understood in general.

If the slit width b is small with respect to the radius R of the outer cylinder, then the
problem can be solved approximately by using the somewhat simplified system depicted
in Fig 10.8-2. That is, we ignore curvature effects and solve the problem in Cartesian coor-
dinates. The velocity distribution is then vz(x) = vb(x∕b), where vb = 1R.

We now make an energy balance over a shell of thickness 2x, widthW, and length L.
Since the fluid is in motion, we use the total energy-flux vector e as written in Eq. 9.4-1.
The balance then reads

WLex|x −WLex|x = 0 (10.8-1)

Dividing byWL2x and letting the shell thickness 2x go to zero then gives

dex
dx

= 0 (10.8-2)

This equation may be integrated to give

ex = C1 (10.8-3)

T0

Tb

x
z

vz(x)
T(x)

Top surface moves with velocity vb = RΩ

Stationary surface

Fig. 10.8-2. Modification of a portion of the flow

system in Fig. 10.8-1, in which the curvature of the

bounding surfaces is neglected.
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Since we do not know any boundary conditions for ex, we cannot evaluate the integration
constant at this point.

We now insert the expression for ex from Eq. 9.4-1. Since the velocity component in

the x direction is zero, the term
(

1

2
iv2 + iÛ

)
v can be discarded. The x component of q

is −k(dT∕dx) according to Fourier’s law. The x component of [f ⋅ v] is, by analogy with
Eq. 9.3-1, fxxvx + fxyvy + fxzvz. Since the only nonzero component of the velocity is vz, and
since fxz = −4(dvz∕dx) according to Newton’s law of viscosity, the x component of [f ⋅ v] is
−4vz(dvz∕dx). We conclude, then, that Eq. 10.8-3 becomes

−kdT
dx

− 4vz
dvz
dx

= C1 (10.8-4)

When the linear velocity profile vz(x) = vb(x∕b) is inserted, we get

−kdT
dx

− 4x
(vb
b

)2

= C1 (10.8-5)

in which 4(vb∕b)2 [=] energy∕vol ⋅ time can be identified as the rate of thermal energy pro-
duction by viscous dissipation per unit volume Sv.

When Eq. 10.8-5 is integrated, we get

T(x) = −
(4

k

)(vb
b

)2 x2

2
−

C1

k
x + C2 (10.8-6)

The two integration constants are determined from the boundary conditions:

B. C. 1: at x = 0, T = T0 (10.8-7)

B. C. 2: at x = b, T = Tb (10.8-8)

This yields finally, for Tb ≠ T0

T(x) − T0

Tb − T0

= 1

2
Br

x
b

(
1 − x

b

)
+ x

b
(10.8-9)

in which Br = 4v2b∕k(Tb − T0) is the dimensionless Brinkman number,1 which is a measure
of the importance of the viscous dissipation term (i.e., the importance of rate of viscous
dissipation relative to the rate of conduction). If Tb = T0, then Eq. 10.8-9 can be written as

T(x) − T0

T0

= 1

2

4v2b
kT0

x
b

(
1 − x

b

)
+ x

b
(10.8-10)

and the maximum temperature is at x∕b = 1

2
.

If the temperature rise is appreciable, the temperature dependence of the viscosity has
to be taken into account. This is discussed in Problem 10C.2.

The viscous heating term Sv = 4(vb∕b)2 may be understood by the following argu-
ments. For the system in Fig. 10.8-2, the rate at which work is done is the force acting on
the upper plate times the velocity with which it moves, or (−fxzWL)(vb). The rate of energy
addition per unit volume is then obtained by dividing this quantity by WLb, which gives
(−fxz∕b)(vb) = 4(vb∕b)2. This energy all appears as heat and is hence Sv.

In most flow problems viscous heating is not important. However, if there are large
velocity gradients or if the fluid viscosity is large, then it cannot be neglected. Examples

1H. C. Brinkman, Appl. Sci. Research, A2, 120–124 (1951), solved the viscous dissipation heating

problem for the Poiseuille flow in a circular tube. Other dimensionless groups that may be used for

characterizing viscous heating have been summarized by R. B. Bird, R. C. Armstrong, and O. Hassager,

Dynamics of Polymeric Liquids, Vol. 1, 2nd edition, Wiley, New York, (1987), pp. 207–208.
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of situations where viscous heating must be accounted for include: (i) flow of a lubricant
between rapidly moving parts, (ii) flow of molten polymers through dies in high-speed
extrusion, (iii) flow of highly viscous fluids in high-speed viscometers, and (iv) flow of
air in the boundary layer near an earth satellite or rocket during reentry into the earth’s
atmosphere. The first two of these are further complicated because many lubricants and
molten plastics are non-Newtonian fluids. Viscous heating for non-Newtonian fluids is
illustrated in Problem 10B.6.

§10.9 FORCED CONVECTION

In the preceding sections the emphasis has been placed predominately on heat conduction
in solids. In this and the following section we study two limiting types of heat transport
in fluids: forced convection and free convection (also called natural convection). The main dif-
ferences between these two modes of convection are shown in Fig. 10.9-1. Most industrial
heat-transfer problems are usually put into either one or the other of these two limiting
categories. In some problems, however, both effects must be taken into account, and then
we speak of mixed convection (see §14.6 for some empiricisms for handling this situation).

In this sectionwe consider forced convection in a circular tube, a limiting case ofwhich
is simple enough to be solved analytically.1,2

A viscous fluidwith physical properties (4, k, i, and Ĉp) assumed constant is in laminar
flow in a circular tube of radius R. For z < 0, the fluid temperature is uniform at the inlet

Heated
pipe

Heated
pipe

Forced Convection
Heat Transfer

Free Convection
Heat Transfer

(No fan)

Heat swept to right by forced
stream of air

Heat transported upward by
heated air that rises

1. The flow patterns are
   determined primarily by
   some external force

2 First, the velocity profiles are
   found; then they are used to
   find the temperature profiles
   (usual procedure for fluids
   with constant physical
   properties)

3. The Nusselt number depends
    on the Reynolds and Prandtl
    numbers (see Chapter 14)

1. The flow patterns are
   determined by the buoyant
   force on the heated fluid

2. The velocity profiles and
   temperature profiles are
   interdependent

3. The Nusselt number depends
   on the Grashof and Prandtl
   numbers (see Chapter 14)

Fig. 10.9-1. A comparison

of forced and free

convection in

nonisothermal systems.

1A. Eagle and R. M. Ferguson, Proc. Roy. Soc. (London), A127, 540–566 (1930).
2S. Goldstein,Modern Developments in Fluid Dynamics, Oxford University Press (1938), Dover Edition

(1965), Vol. II, p. 622.
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temperature T1. For z > 0, there is a constant radial heat flux qr = −q0 at the wall. Such a
situation exists, for example, when a pipe is wrapped uniformly with an electrical heating
coil, in which case q0 is positive. If the pipe is being chilled, then q0 is negative.

As indicated in Fig. 10.9-1, the first step in solving a forced convection heat-transfer
problem is the calculation of the velocity profiles in the system. We have seen in §2.3 how
this may be done for tube flow by using the shell balancemethod.We know that the veloc-
ity distribution so obtained is vr = 0, vp = 0, and

vz(r) =
(𝒫0 −𝒫L)R2

44L

[
1 −

( r
R

)2
]
= vz,max

[
1 −

( r
R

)2
]

(10.9-1)

This parabolic distribution is valid sufficiently far downstream from the inlet that the
entrance length has been exceeded.

In this problem, heat is being transported in both the r and the z directions. Therefore,
for the energy balance we use a “washer-shaped” system, which is formed by the inter-
section of an annular region of thickness 2rwith a slab of thickness 2z (see Fig. 10.9-2). In
this problem, we are dealing with a flowing fluid, and therefore all terms in the e vector
will be retained. The various contributions to the energy balance (Eq. 10.1-1) are

Total energy in at r: er|r ⋅ 20r2z = (20rer)|r2z (10.9-2)

Total energy out at r + 2r: er|r+2r ⋅ 20(r + 2r)2z = (20rer)|r+2r2z (10.9-3)

Total energy in at z: ez|z ⋅ 20r2r (10.9-4)

Total energy out at z + 2z: ez|z+2z ⋅ 20r2r (10.9-5)

Work done on fluid by gravity: ivzgz ⋅ 20r2r2z (10.9-6)

The last contribution is the rate at which work is done on the fluid within the ring by
gravity—that is, the force per unit volume igz times the volume 20r2r2z multiplied by
the velocity of the fluid.
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circular tube, showing the annular ring over which the

energy balance is made.
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The energy balance is obtained by summing these contributions and equating the sum
to zero. Then we divide by 202r2z to get

−
(rer)|r+2r − (rer)|r

2r
− r

ez|z+2z − ez|z
2z

+ ivzgzr = 0 (10.9-7)

In the limits as 2r and 2z go to zero, we find

−1

r
𝜕
𝜕r

(rer) −
𝜕ez
𝜕z

+ ivzgz = 0 (10.9-8)

Next we use Eqs. 9.4-2 and 9.4-6 to write out the expressions for the r and z compo-
nents of the total energy-flux vector, using the fact that the only nonzero component of v
is the axial component vz:

er = frzvz + qr =
(
−4

𝜕vz
𝜕r

)
vz − k𝜕T

𝜕r
(10.9-9)

ez =
(
1

2
iv2z

)
vz + iĤvz + fzzvz + qz

=
(
1

2
iv2z

)
vz + iĤ0vz + iĈp(T − To)vz + (p − po)vz

+
(
−24

𝜕vz
𝜕z

)
vz − k𝜕T

𝜕z
(10.9-10)

These expressions may be simplified using a few approximations. The first term in
Eq. 10.9-9 contributes only to energy production by viscous dissipation, which we
assume to be negligible (i.e., this is not a problem of lubrication, polymer extrusion,
high-speed viscometry, or spacecraft reentry; see §10.8). The first and second terms of
Eq. 10.9-10 may be ignored because, in the next step, we will be taking the derivative of
this expression with respect to z, and vz and Ĥo do not depend on z.We ignore the fourth
term because the pressure contributions to the enthalpy are often negligible compared
to the thermal contribution (the third term) (see Example 9.4-1). The fifth term can be
omitted because vz depends only on r. Thus, the approximate energy-flux expressions
employed in this problem are

er ≈ −k𝜕T
𝜕r

(10.9-11)

ez ≈ iĈp(T − T0)vz − k𝜕T
𝜕z

(10.9-12)

Substitution of these flux expressions into Eq. 10.9-8 and using the fact that vz depends
only on r gives, after some rearrangement,

iĈpvz(r)
𝜕T
𝜕z

= k
[
1

r
𝜕
𝜕r

(
r𝜕T
𝜕r

)
+ 𝜕2T

𝜕z2

]
(10.9-13)

where we have also neglected the gravity term in Eq. 10.9-8, because this term is typ-
ically small (see Example 10.9-1) (an alternative, more rigorous approach for obtaining
this equation is illustrated in Problem 10B.20). The last term in the brackets corresponds
to heat conduction in the axial direction.We omit this term sincewe know from experience
that it is usually small in comparison with the convection of energy in the axial direction
(the term on the left side of the equation). Therefore, after substituting the expression for
vz(r), the equation that we want to solve here is

iĈpvz,max

[
1 −

( r
R

)2
]
𝜕T
𝜕z

= k
[
1

r
𝜕
𝜕r

(
r𝜕T
𝜕r

)]
(10.9-14)
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This partial differential equation, when solved, describes the temperature in the fluid as a
function of r and z. The boundary conditions are

B. C. 1: at r = 0, T = finite (10.9-15)

B. C. 2: at r = R, k𝜕T
𝜕r

= q0 (constant) (10.9-16)

B. C. 3: at z = 0, T = T1 (10.9-17)

We now put the problem statement into dimensionless form. The choice of the dimension-
less quantities is arbitrary. We choose:

P =
T − T1

q0R∕k
k = r

R
r = z

iĈpvz,maxR2∕k
(10.9-18,19,20)

Generally one tries to select dimensionless quantities so as to minimize the number of
parameters in the final problem formulation. In this problem, the choice of k = r∕R is a nat-
ural one, because of the appearance of r∕R in the differential equation. The choice for the
dimensionless temperature difference P is suggested by the second and third boundary
conditions. Having specified these two dimensionless variables, the choice of dimension-
less axial coordinate follows naturally.

The resulting problem statement, in dimensionless form, is now

(1 − k2)𝜕P
𝜕r

= 1

k
𝜕
𝜕k

(
k
𝜕P
𝜕k

)
(10.9-21)

with boundary conditions

B. C. 1: at k = 0, P = finite (10.9-22)

B. C. 2: at k = 1, 𝜕P
𝜕k

= 1 (10.9-23)

B. C. 3: at r = 0, P = 0 (10.9-24)

The partial differential equation in Eq. 10.9-21 has been solved for these boundary condi-
tions,3 but in this section we do not give the complete solution.

It is, however, instructive to obtain the asymptotic solution to Eq. 10.9-21 for large r.
After the fluid is sufficiently far downstream from the beginning of the heated section,
one expects that the constant heat flux through the wall will result in an increase of the
fluid temperature that is linear in r. One further expects that the shape of the temperature
profiles as a function of k will ultimately not undergo further change with increasing r
(see Fig. 10.9-3). Hence, a solution of the following form seems reasonable for large r

P(k,r) = C0r +A(k) (10.9-25)

in which C0 is a constant to be determined presently.
The function in Eq. 10.9-25 is clearly not the complete solution to the problem; it does

allow the partial differential equation and boundary conditions 1 and 2 to be satisfied, but
clearly does not satisfy boundary condition 3. Hence, we replace the latter by a statement
that the energy entering through the wall from 0 to z is the same as the difference between
the energy leaving by convection through the cross section at z and that entering at z = 0
(see Fig. 10.9-4),

Condition 4: 20Rzq0 = ∫
20

0 ∫
R

0

iĈp(T(r,z) − T1)vz(r)r dr dp (10.9-26)

3R. Siegel, E. M. Sparrow, and T. M. Hallman, Appl. Sci. Research, A7, 386–392 (1958). See Example

11.5-3 for the asymptotic solution for small r.
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Shape of profiles
is same—they
are displaced
upward with
increasing z

Tube wall

Slope at r = R
same for all z > 0

CL

T1

T1

T1

T1

T1

Region of
large z

Region of
small z

z = 0

Fig. 10.9-3. Sketch
showing how one expects

the temperature T(r,z) to
look for the system shown

in Fig. 10.9-2 when the

fluid is heated by means of

a heating coil wrapped

uniformly around the tube

(corresponding to q0
positive).

We next integrate over p, and then put Eq. 10.9-26 into dimensionless form to get

Condition 4: r = ∫
1

0

P(k,r)(1 − k2)k dk (10.9-27)

Using this condition guarantees that we satisfy an energy balance over the entire tube.
Substitution of the postulated function of Eq. 10.9-25 into Eq. 10.9-21 leads to the fol-

lowing ordinary differential equation for A (see Eq. C.1-11):

1

k
d
dk

(
k
dA
dk

)
= C0(1 − k2) (10.9-28)

This equationmay be integrated twice with respect to k, and the result substituted into Eq.
10.9-25 to give

P(k,r) = C0r + C0

(
k2

4
− k4

16

)
+ C1 ln k + C2 (10.9-29)

Uniform
temperature T1

z = 0

R

Plane at arbitrary
downstream position z

No energy enters here,
since datum temperature

was chosen to be T1

Heat in by
heating coil
is 2πRzq0

Energy leaving here is

2π ρCp(T – T1) vz r dr
R

0

Fig. 10.9-4. Energy balance used for boundary condition 4 given in Eq. 10.9-26.
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The three constants are determined from the conditions 1, 2, and 4 above:

B. C. 1: C1 = 0 (10.9-30)

B. C. 2: C0 = 4 (10.9-31)

Condition 4: C2 = − 7

24
(10.9-32)

Substitution of these values into Eq. 10.9-29 gives finally

P(k,r) = 4r + k2 − 1

4
k4 − 7

24
(10.9-33)

This result gives the dimensionless temperature difference as a function of the dimension-
less radial and axial coordinates. It is exact in the limit as r → ∞; for r > 0.1, it predicts the
local value of P to within about 2%. An asymptotic solution to this problem in the limit of
small r is given in §11.5 (see Example 11.5-3).

Once the temperature distribution is known, one can get various derived quantities.
There are two kinds of average temperatures commonly used in connection with the flow

of fluids with constant i and Ĉp:

⟨T⟩ = ∫
20

0 ∫
R

0

T(r,z)r dr dp

∫
20

0 ∫
R

0

r dr dp

= T1 +
(
4r + 1

8

)
q0R
k

(10.9-34)

Tb(z) =
⟨vzT⟩⟨vz⟩ =

∫
20

0 ∫
R

0

vz(r)T(r,z)r dr dp

∫
20

0 ∫
R

0

vz(r)r dr dp
= T1 + (4r)

q0R
k

(10.9-35)

Both averages are functions of z. The quantity ⟨T⟩ is just the arithmetic average of the
temperatures over the cross section at z. The “bulk temperature” Tb is the temperature
one would measure if the tube were chopped off at z and if the fluid exiting there were
collected in a container and thoroughly mixed. This average temperature is sometimes
referred to as the “cup-mixing temperature” or the “flow-average temperature.”

Now let us evaluate the local heat-transfer driving force, T0 − Tb, which is just the
difference between the wall temperature T0(z) = T(R,z) (from Eq. 10.9-33) and bulk tem-
perature (from Eq. 10.9-35) at a distance z down the tube:

T0 − Tb =
11

24

q0R
k

= 11

48

q0D
k

(10.9-36)

where D is the tube diameter. We may now rearrange this result in the form of a dimen-
sionless wall heat flux

Nu =
q0D

k(T0 − Tb)
= 48

11
(10.9-37)

The quantity Nu, in Chapter 14, will be identified as the Nusselt number.
Before leaving this section, we point out that the dimensionless axial coordinate r

introduced above may be rewritten in the following way:

r =

⟦
4

D
⟨
vz
⟩
i

⟧⟦
k

Ĉp4

⟧⟦ z
R

⟧
= 1

RePr

⟦ z
R

⟧
= 1

Pé

⟦ z
R

⟧
(10.9-38)

Here D is the tube diameter, Re is the Reynolds number used in Part I, and Pr and Pé
are the Prandtl and Péclet numbers introduced in Chapter 9. We shall find in Chapter 13
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that the Reynolds and Prandtl numbers can be expected to appear in forced convection
problems. This point will be reinforced in Chapter 14 in connection with correlations for
heat-transfer coefficients.

EXAMPLE 10.9-1

Comparison of the
Magnitudes of the
Gravity and
Convection Terms

Show that the gravity term omitted from Eq. 10.9-8 is indeed negligible for reasonable values

of the variables.

SOLUTION

Equation 10.9-8 shows that the omitted gravity term is ivzgz. We wish to compare this to the

magnitude of the convection term in Eq. 10.9-13, iĈpvz(𝜕T∕𝜕z). The ratio of the gravity term

to the convection term is gz∕Ĉp(𝜕T∕𝜕z). Choosing the values for the variables gz = 9.8 m∕s2,
Ĉp = 4184 J∕kg ⋅ ∘C (for water near room temperature) and 𝜕T∕𝜕z = 10 ∘C∕m, the ratio of the

terms is

gz
Ĉp(𝜕T∕𝜕z)

=
(
9.8 m

s2

)(
kg ⋅ ∘C
4184 J

)(
m

10 ∘C

)(
1 J

1 kg ⋅m2∕s2

)
= 2.3 × 10−4 (10.9-39)

Thus, the gravity term is negligible, even for magnitudes of the temperature gradient smaller

than 10 ∘C∕m.

§10.10 FREE CONVECTION

In §10.9 we gave an example of forced convection. In this section we turn our attention
to an elementary free convection problem, namely, the flow between two parallel walls
maintained at different temperatures (see Fig. 10.10-1).

A fluid with density i and viscosity 4 is located between two vertical walls a distance
2B apart. The heated wall at y = −B is maintained at temperature T2, and the cooled wall
at y = +B is maintained at temperature T1. It is assumed that the temperature difference
is sufficiently small that the fluid density varies linearly with the temperature.

Because of the temperature gradient in the system, the fluid near the hot wall rises
and that near the cold wall descends. The system is closed at the top and bottom, so that
the fluid is continuously circulating between the plates. The mass rate of flow of the fluid
in the upward-moving stream is the same as that in the downward-moving stream. The

z
y

B

T2

T

T1

H
ea
te
d
 p
la
te

C
o
o
le
d
 p
la
te

Temperature
distribution

T(y)

Velocity
distribution

vz(y)

Fig. 10.10-1. Laminar, free-convection flow between

two vertical plates at two different temperatures. The

velocity is a cubic function of the coordinate y.
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plates are presumed to be very tall, so that end effects near the top and bottom can be
disregarded. Then, for all practical purposes, the temperature is a function of y alone.

An energy balance can now bemade over a thin slab of fluid of thickness 2y, using the
y component of the total energy flux vector e as given in Eq. 9.4-2. The term containing
the kinetic and internal energy can be disregarded, since the y component of the v vec-
tor is zero. The y component of the term [f ⋅ v] is fyzvz = −4(dvz∕dy)vz, which would lead
to the viscous heating contribution discussed in §10.8. However, in the very slow flows
encountered in free convection, this term will be extremely small and can be neglected.
The energy balance then leads to the equation

−
dqy
dy

= 0 or kd
2T
dy2

= 0 (10.10-1)

for constant k. The temperature equation is to be solved with the boundary conditions:

B. C. 1: at y = −B, T = T2 (10.10-2)

B. C. 2: at y = +B, T = T1 (10.10-3)

The solution to this problem is

T(y) = T − 1

2
2T

y
B

(10.10-4)

inwhich2T = T2 − T1 is the difference of thewall temperatures, andT = 1

2
(T1 + T2) is their

arithmetic mean.
By making a momentum balance over the same slab of thickness 2y, one arrives at a

differential equation for the velocity distribution

4
d2vz
dy2

=
dp
dz

+ ig (10.10-5)

Here the viscosity has been assumed constant (see Problem 10B.12 for a solution with
temperature-dependent viscosity).

The phenomenon of free convection results from the fact that when the fluid is heated,
the density (usually) decreases, and the fluid rises. The mathematical description of the
phenomenonmust take this essential feature of the phenomenon into account. Because the
temperature difference 2T = T2 − T1 is taken to be small in this problem, it can be expected
that the density changes in the systemwill be small. This suggests that we should expand

i in a Taylor series (§C.2) about the temperature T = 1

2
(T1 + T2) thus:

i(T) = i|
T=T + di

dT

||||T=T(T − T) + · · ·

= i − iv(T − T) + · · · (10.10-6)

Here i and v are the density and coefficient of volume expansion evaluated at the temper-
ature T. The coefficient of volume expansion is defined as

v = 1

V

(
𝜕V
𝜕T

)
p

= 1

(1∕i)

(
𝜕(1∕i)
𝜕T

)
p
= −1

i

(
𝜕i

𝜕T

)
p

(10.10-7)

We now introduce the “Taylor-made” equation of state of Eq. 10.10-6 (keeping only the
first two terms) into the equation of motion in Eq. 10.10-5 to get

4
d2vz
dy2

=
dp
dz

+ ig − igv(T(y) − T) (10.10-8)
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This equation describes the balance among the viscous force, the pressure force, the grav-
ity force, and the buoyant force −igv(T(y) − T) (all per unit volume). Into this we now
substitute the temperature distribution given in Eq. 10.10-4 to get the differential equation

4
d2vz
dy2

=
(
dp
dz

+ ig
)
+ 1

2
igv2T

y
B

(10.10-9)

which is to be solved with the boundary conditions

B. C. 1: at y = −B, vz = 0 (10.10-10)

B. C. 2: at y = +B, vz = 0 (10.10-11)

The solution is

vz(y) =
(igv2T)B2

124

[( y
B

)3

−
( y
B

)]
+ B2

124

(
dp
dz

+ ig
)[( y

B

)2

− 1

]
(10.10-12)

We now require that the net mass flow in the z direction be zero, that is,

∫
+B

−B
ivzdy = 0 (10.10-13)

Substitution of vz from Eq. 10.10-12 and i from Eqs. 10.10-6 and 10.10-4 into this integral
leads to the conclusion that

dp
dz

= −ig (10.10-14)

when terms containing the square of the small quantity 2T are neglected (which has been
employed in Eq. 10.10-9). Equation 10.10-14 states that the pressure gradient in the system
is due solely to the weight of the fluid, and the usual hydrostatic pressure distribution
prevails. Therefore, the second term on the right side of Eq. 10.10-12 drops out, and the
final expression for the velocity distribution is

vz(y) =
(igv2T)B2

124

[( y
B

)3

−
( y
B

)]
(10.10-15)

The average velocity in the upward-moving stream is

⟨vz⟩ = (igv2T)B2

484
(10.10-16)

The motion of the fluid is thus a direct result of the buoyant force term in Eq. 10.10-8,
associated with the temperature gradient in the system. The velocity distribution of Eq.
10.10-15 is shown in Fig. 10.10-1. It is this sort of velocity distribution that occurs in the air
space in a double-pane window or in double-wall panels in buildings. It is also this kind
of flow that occurs in a Clusius-Dickel column used for separating isotopes or organic
liquids mixtures by the combined effects of thermal diffusion and free convection.1

The velocity distribution in Eq. 10.10-15 may be rewritten using a dimensionless
velocity v̆z = Bvzi∕4 and a dimensionless coordinate y̆ = y∕B thus:

v̆z(y̆) =
1

12
Gr(y̆3 − y̆) (10.10-17)

1Thermal diffusion is the diffusion resulting from a temperature gradient (see Chapter 24). For a

lucid discussion of the Clusius-Dickel column, see K. E. Grew and T. L. Ibbs, Thermal Diffusion in Gases,
Cambridge University Press (1952), pp. 94–106.
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Here Gr is the dimensionless Grashof number,2 defined by

Gr =

⟦(
i2gv2T

)
B3

42

⟧
=

⟦
igB32i

42

⟧
(10.10-18)

where 2i = i1 − i2. The second form of the Grashof number is obtained from the first
form by using Eq. 10.10-6. The Grashof number is the characteristic group occurring in
analyses of free convection, as is shown by dimensional analysis in Chapter 13. It arises
in heat-transfer coefficient correlations in Chapter 14.

§10.11 CONCLUDING COMMENTS

In this chapter we have presented a wide variety of problems that can be solved by shell
balance methods. However, these have been restricted to rather simple problems in which
heat flows in just one coordinate direction (an exception to this is the forced convection
problem of §10.9 where two coordinate directions are involved). We have given illustra-
tions of problems involving Cartesian and cylindrical coordinates. In the problems at the
end of the chapter, spherical coordinates are also used.

In this chapter we have given three examples of problems in which there is a heat
source term. The heating of a current-carrying wire was an example of the “electrical
heat source” Se. The example of the flow with chemical reactions introduced the “chemi-
cal heat source” Sc, and the example of viscous heating in the flow between two moving
surfaces illustrated the “viscous heat source” Sv. These examples point out the differences
between heat sources that have to be added artificially (such as Se and Sc) and those that are
automatically built into the equations (such as Sv, which arose naturally from the expres-
sion for the energy flux). In the problems at the end of the chapter, we introduce another
artificial source term, namely, the heat source associated with nuclear reaction heating, Sn.
The source termsSc, Se, andSn have to be addedon an adhoc basis, because the energy-flux
expression used here is not actually sufficiently general to account for all the chemical,
electrical, or nuclear processes occurring in the material. More will be said about this in
the next chapter.

In Chapter 11, we will set up the general energy equation based on the law of conser-
vation of energy. This equation of change will enable us to set up problems more quickly
and efficiently, in that the shell balances do not have to be written down for each problem.
The equation of change for energy is not completely general in that the chemical, electri-
cal, and nuclear processes are not fully accounted for. Nonetheless, within this limitation
it will be found to be most useful. It will be found to extend the notion of the first law
of thermodynamics, which applies only to time-independent equilibrium systems, so that
we can then handle time-dependent nonequilibrium systems.

QUESTIONS FOR DISCUSSION

1. Verify that the Brinkman, Biot, Prandtl, Nusselt, and Grashof numbers are indeed dimension-
less.

2. Why does e simplify to q for problems in heat conduction in solids?
3. To what problem in electrical circuits is the addition of thermal resistances analogous?
4. What is the coefficient of volume expansion for an ideal gas?What is the corresponding expres-

sion for the Grashof number?

2Named for Franz Grashof (1826–1893) (pronounced “Grahss-hoff”). He was professor of applied

mechanics in Karlsruhe and one of the founders of the Verein Deutscher Ingenieure in 1856.
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5. Whatmight be some consequences of large temperature gradients produced by viscous heating

in viscometry, lubrication, and plastics extrusion?

6. In §10.9, would there be any advantage to choosing the dimensionless temperature and dimen-

sionless axial coordinate to be P = (T − T1)∕T1 and r = z∕R?
7. What would happen in §10.10 if the fluid were water and T were 4∘C?
8. Is there any advantage to solving Eq. 10.5-9 in terms of exponential functions rather than hyper-

bolic functions (see Eq. C.1-4a and b)?

9. In going from Eq. 10.9-11 to Eq. 10.9-12 the axial conduction termwas neglected with respect to

the axial convection term. To justify this, put in some reasonable numerical values to estimate

the relative sizes of the terms.

10. How serious is it to neglect the dependence of viscosity on temperature in solving forced con-

vection problems? Viscous dissipation heating problems?

11. At steady state the temperature profiles in a laminated system appear thus:

Material I Material II

T
em

p
er
a
tu
re

Distance

Which material has the higher thermal conductivity?

12. Show that Eq. 10.3-4 can be obtained directly by rewriting Eq. 10.3-1 with x + 2x replaced by

x0. Similarly, one gets Eq. 10.3-20 from Eq. 10.3-17, with r + 2r replaced by r0.

PROBLEMS 10A.1 Heat loss from an insulated pipe. A standard Schedule 40, 2-in. steel pipe (inside diameter

2.067 in., and wall thickness 0.154 in.) carrying steam is insulated with 2 in. of 85% magnesia

covered in turn with 2 in. of cork. Estimate the heat loss per hour per foot of pipe if the inner

surface of the pipe is at 250∘F and the outer surface of the cork is at 90∘F. The thermal conduc-

tivities (in Btu∕hr ⋅ ft ⋅ ∘F) of the substances concerned are: steel, 26.1; 85%magnesia, 0.04; cork,

0.03.

Answer: 24 Btu∕hr ⋅ ft

10A.2 Heat loss from a rectangular fin. Calculate the heat loss from a rectangular fin (see Fig. 10.5-1)

for the following conditions:

Air temperature 350∘F
Wall temperature 500∘F
Thermal conductivity of fin 60 Btu∕hr ⋅ ft ⋅ ∘F
Thermal conductivity of air 0.0022 Btu∕hr ⋅ ft ⋅ ∘F
Heat-transfer coefficient 120 Btu∕hr ⋅ ft2 ⋅ ∘F
Length of fin 0.2 ft

Width of fin 1.0 ft

Thickness of fin 0.16 in.

Answer: 2074 Btu∕hr

10A.3 Maximum temperature in a lubricant. An oil is acting as a lubricant for a pair of cylindri-

cal surfaces such as those shown in Fig. 10.8-1. The angular velocity of the outer cylinder is

7908 rpm. The outer cylinder has a radius of 5.06 cm, and the clearance between the cylinders
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is 0.027 cm. What is the maximum temperature in the oil if both wall temperatures are known

to be 158∘F? The physical properties of the oil are assumed constant at the following values:

Viscosity 92.3 cp

Density 1.22 g∕cm3

Thermal conductivity 0.055 cal∕s ⋅ cm ⋅ ∘C

Answer: 174∘F

10A.4 Current-carrying capacity of wire. A copper wire of 0.040 in. in diameter is insulated uni-

formly with plastic to an outer diameter of 0.12 in. and is exposed to surroundings at 100∘F.
The heat-transfer coefficient from the outer surface of the plastic to the surroundings is 1.5

Btu∕hr ⋅ ft2 ⋅ ∘F.What is themaximum steady current, in amperes, that this wire can carrywith-

out heating any part of the plastic above its operating limit of 200∘F? The thermal and electrical

conductivities may be assumed constant at the values given here:

k(Btu∕hr ⋅ ft ⋅ ∘F) ke(ohm
−1
cm−1)

Copper 220 5.1 × 105

Plastic 0.20 0.0

Answer: 13.4 amp

10A.5 Free-convection velocity.
(a) Verify the expression for the average velocity in the upward-moving stream in Eq. 10.10-16.

(b) Evaluate v for the conditions given below.

(c) What is the average velocity in the upward-moving stream in the system described in

Fig. 10.10-1 for air flowing under these conditions?

Pressure 1 atm

Temperature of the heated wall 100∘C
Temperature of the cooled wall 20∘C
Spacing between the walls 0.6 cm

Answer: (c) 2.3 cm∕s

10A.6 Insulating power of a wall. The “insulating power” of a wall can be measured by means of

the arrangement shown in Fig. 10A.6. One places a plastic panel against the wall. In the panel

two thermocouples are mounted flush with the panel surfaces. The thermal conductivity and

thickness of the plastic panel are known. From the measured steady-state temperatures shown

in the figure, calculate:

Wall

T1 = 69°F
T2 = 61°F Surface temperatures

of plastic panel

Plastic panel has
thermal conductivity
 k = 0.075
Btu/hr · ft · °F
(average value between
T1 and T2)

6"

0.502"

T3 = 0°F

Fig. 10A.6 Determination of

the thermal resistance of a

wall.
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(a) The steady-state heat flux through the wall (and panel).

(b) The “thermal resistance” (wall thickness divided by thermal conductivity).

Answers: (a) 14.3 Btu∕hr ⋅ ft2; (b) 4.2 ft2 ⋅ hr ⋅ ∘F∕Btu

10A.7 Viscous heating in a ballpoint pen. You are asked to decide whether the apparent decrease

in viscosity in ballpoint pen inks during writing results from “shear thinning” (decrease in

viscosity because of non-Newtonian effects) or “temperature thinning” (decrease in viscosity

because of temperature rise caused by viscous heating). If the temperature rise is less than

1 K, then “temperature thinning” will not be important. Estimate the temperature rise using

Eq. 10.8-9 and the following estimated data:

Clearance between ball and holding cavity 5 × 10−5 in.

Diameter of ball 1mm

Viscosity of ink 104 cp

Speed of writing 100 in.∕min

Thermal conductivity of ink (rough guess) 5 × 10−4 cal∕s ⋅ cm ⋅ ∘C

10A.8 Temperature rise in an electrical wire.
(a) A copper wire, 5mm in diameter and 15 ft long, has a voltage drop of 0.6 volts. Find the

maximum temperature in the wire if the ambient air temperature is 25∘C and the heat-transfer

coefficient h is 5.7 Btu∕hr ⋅ ft2 ⋅ ∘F.
(b) Compare the temperature drops across the wire and the surrounding air.

10B.1 Heat conduction from a sphere to a stagnant fluid. A heated sphere of radius R is suspended

in a large, motionless body of fluid. It is desired to study the heat conduction in the fluid sur-

rounding the sphere in the absence of convection.

(a) Set up the differential equation describing the temperature T in the surrounding fluid as a

function of r, the distance from the center of the sphere. The thermal conductivity k of the fluid
is considered constant.

(b) Integrate the differential equation and use these boundary conditions to determine the inte-

gration constants: at r = R, T = TR; and as r → ∞, T → T∞.

(c) From the temperature profile, obtain an expression for the heat flux at the surface. Equate

this result to the heat flux given by “Newton’s law of cooling” and show that a dimensionless

heat-transfer coefficient (known as the Nusselt number) is given by

Nu = hD
k

= 2 (10B.1-1)

in which D is the sphere diameter. This well-known result provides the limiting value of Nu

for heat transfer from spheres at low Reynolds and Grashof numbers (see §14.4).

(d) In what respect are the Biot number and the Nusselt number different?

10B.2 Viscous heating in slit flow. Find the temperature profile for the viscous heating problem

shown in Fig. 10.8-2, when given the following boundary conditions: at x = 0, T = T0; at x = b,
qx = 0.

Answer:
T(x) − T0

4v2b∕k
=

(x
b

)
− 1

2

(x
b

)2

10B.3 Heat conduction in a spherical nuclear fuel element. Consider a spherical nuclear fuel ele-

ment as shown in Fig. 10B.3. It consists of a sphere of fissionable material with radius RF,

surrounded by a spherical shell of aluminum “cladding” with outer radius RC. Inside the

fuel element, fission fragments are produced that have very high kinetic energies. Collisions

between these fragments and the atoms of the fissionable material provide the major source of

thermal energy in the reactor. Such a volume source of thermal energy resulting from nuclear
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fission we call Sn ([=] energy∕volume ⋅ time). This source will not be uniform throughout the

sphere of fissionable material; it will be the smallest at the center of the sphere. For the pur-

pose of this problem, we assume that the source can be approximated by a simple parabolic

function

Sn = Sn0

[
1 + b

(
r
RF

)2
]

(10B.3-1)

Here Sn0 is the volume rate of heat production at the center of the sphere, b is a dimensionless

positive constant, and r is the radial distance from the center of the sphere. The known tem-

perature at the outside cladding surface (at r = RC) is T0. The thermal conductivities of the fuel

element and cladding are kF and kC. Determine the temperature profiles in the fuel element and

the cladding.

Answers:

TF(r) =
Sn0R

2
F

6kF

{[
1 −

(
r
RF

)2
]
+ 3

10
b

[
1 −

(
r
RF

)4
]}

+
Sn0R

2
F

3kC

(
1 + 3

5
b
)(

1 −
RF

RC

)
+ T0

TC(r) =
Sn0R

2
F

3kC

(
1 + 3

5
b
)(

RF

r
−

RF

RC

)
+ T0

Coolant
Aluminum
cladding

Sphere of
fissionable
material

TF(r)

RF
TC(r)

RC

T0

Fig. 10B.3 A spherical nuclear fuel assembly, showing

the temperature distribution within the system.

10B.4 Heat conduction in a nuclear fuel rod assembly. Consider a long cylindrical nuclear fuel rod,

surrounded by an annular layer of aluminum cladding (see Fig. 10B.4). Within the fuel rod

heat is produced by fission; the rate energy production per unit volume depends on position

approximately as

Sn = Sn0

[
1 + b

(
r
RF

)2
]

(10B.4-1)

Here Sn0 and b are known constants, and r is the radial coordinatemeasured from the axis of the

cylindrical fuel rod. Calculate the maximum temperature in the fuel rod if the outer surface of

the cladding is in contactwith a liquid coolant at temperatureTL. The heat-transfer coefficient at

the cladding-coolant interface is hL, and the thermal conductivities of the fuel rod and cladding

are kF and kC.

Answer: TF,max − TL =
Sn0R

2
F

4kF

(
1 + b

4

)
+

Sn0R
2
F

2kC

(
1 + b

2

)(
kC

RChL
+ ln

RC

RF

)
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Coolant Aluminum
cladding

Nuclear
fuel rod

TF

RF

TC

RC

TL

Fig. 10B.4 Temperature distribution in a cylindrical

fuel-rod assembly.

10B.5 Heat conduction in an annulus.
(a) Heat is flowing through an annular wall of inside radius r0 and outside radius r1 as in

Fig. 10B.5. The thermal conductivity varies linearly with temperature from k0 at T0 to k1 at T1.

Develop an expression for the heat flow through the wall.

(b) Show how the expression in (a) can be simplified when r1 − r0 is very small. Interpret the

result physically.

Answers: (a) Q = 20L(T0 − T1)
(
k0 + k1

2

)(
ln

r1
r0

)−1

;

(b) Q = 20r0L
(
k0 + k1

2

)(
T0 − T1

r1 − r0

)
CL

T0

T1
r0
r1

Fig. 10B.5 Temperature profile in an annular wall.

10B.6 Viscous heat generation in a polymer melt. Rework the problem discussed in §10.8 for a

molten polymer, whose viscosity can be adequately described by the power-law model (see

Chapter 8). Show that the temperature distribution is the same as that in Eq. 10.8-9 but with

the Brinkman number replaced by

Brn =

⟦
mvn+1b

bn−1k
(
Tb − T0

)⟧ (10B.6-1)

10B.7 Insulation thickness for a furnace wall. A furnace wall consists of three layers: (i) a layer

of heat-resistant or refractory brick, (ii) a layer of insulating brick, and (iii) a steel plate,

0.25 in. thick, for mechanical protection, as shown in Fig. 10B.7. Calculate the thickness of each

layer of brick to give minimum total wall thickness if the heat loss through the wall is to be
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5000 Btu∕ft2 ⋅ hr, assuming that the layers are in excellent thermal contact. The following
information is available:

Maximum Thermal conductivity

allowable (Btu∕hr ⋅ ft ⋅ ∘F)
Material temperature at 100∘F at 2000∘F

Refractory brick 2600∘F 1.8 3.6

Insulating brick 2000∘F 0.9 1.8

Steel — 26.1 —

Answer: Refractory brick, 0.39 ft; insulating brick, 0.51 ft.

2500°F 100°F

Steel plate

R
ef
ra
ct
o
ry
 b
ri
ck

In
su

la
ti
n
g
 b
ri
ck

Fig. 10B.7 A composite furnace wall.

10B.8 Forced-convection heat transfer in flow between parallel plates. A viscous fluid with
temperature-independent physical properties is in fully developed laminar flow between two
flat surfaces placed a distance 2B apart as shown in Fig. 10B.8. For z < 0, the fluid temperature
is uniform at T = T1. For z ≥ 0, heat is added at a constant, uniform flux q0 at both walls. Find
the temperature distribution T(x,z) for large z.
(a) Make a shell energy balance to obtain the differential equation for T(x,z). Then discard the
viscous dissipation term and the axial heat-conduction term.

(b) Recast the problem in terms of the dimensionless quantities

P =
T − T1

q0B∕k
g = x

B
r = kz

iĈpvz,maxB2
(10B.8-1,2,3)

(c) Obtain the asymptotic solution for large z

P(g,r) = 3

2
r + 3

4
g2 − 1

8
g4 − 39

280
(10B.8-4)

z
x

q0 q0

z = 0

x = –B x = +B

vz(x) Direction
of flow

Fully developed
slit flow at
z = 0; inlet
temperature

is T1

H
ea
ti
n
g
 e
le
m
en

t

H
ea
ti
n
g
 e
le
m
en

t

Fig. 10B.8 Laminar, incompressible flow

between parallel plates, both of which are

being heated by a uniform wall heat flux q0
starting at z = 0.
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10B.9 Electrical heating of a pipe. In the manufacture of glass-coated steel pipes, it is common prac-
tice first to heat the pipe to the melting range of glass and then to contact the hot pipe surface
with glass granules (Fig 10B.9). These granules melt and wet the pipe surface to form a tightly
adhering nonporous coat. In one method of preheating the pipe, an electric current is passed
along the pipe, with the result that the pipe is heated (as in §10.6). For the purpose of this
problem make the following assumptions:

(i) The electrical conductivity of the pipe ke is constant over the temperature range of inter-
est. The local rate of electrical heat production per unit volume Se is then uniform throughout
the pipe wall.

(ii) The top and bottom of the pipe are capped in such away that heat losses through them
are negligible.

(iii) The heat flux from the outer surface of the pipe to the surroundings is given by New-
ton’s law of cooling: qr = h(T1 − Ta). Here h is a suitable heat-transfer coefficient.

How much electrical power is needed to maintain the inner pipe surface at some desired
value of the temperature, Tn, for known k, Ta, h, and pipe dimensions?

Answer: P =
0R2L(1 − n2)(Tn − Ta)

(1 − n2)R
2h

− (nR)2

4k

[(
1 − 1

n2

)
− 2 ln n

]

Power
supply

Tκ
T1

Pipe wall

Ambient air
temperature TaL

κR

R

Fig. 10B.9 Electrical heating of a pipe.

10B.10 Plug flow with forced-convection heat transfer. Very thick slurries and pastes sometimes
move in channels almost as a solid plug. Thus, one can approximate the velocity profile by a
constant value v0 over the conduit cross section.
(a) Rework the problem of §10.9 for plug flow in a circular tube of radius R. Show that the
temperature distribution analogous to Eq. 10.9-33 is

P(k,r) = 2r + 1

2
k2 − 1

4
(10B.10-1)

in which r = kz∕iĈpv0R
2, and P and k are defined as in §10.9.

(b) Show that for plug flow in a plane slit of width 2B the temperature distribution analogous
to Eq. 10B.8-4 is

P(g,r) = r + 1

2
g2 − 1

6
(10B.10-2)

in which r = kz∕iĈpv0B
2, and P and g are defined as in Problem 10B.8.
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10B.11 Free convection in an annulus of finite height. Afluid is contained in a vertical annulus closed

at the top and bottom as shown in Fig. 10B.11. The inner wall of radius nR is maintained at the

temperature Tn, and the outer wall of radiusR is kept at temperature T1. Using the assumptions

and approach of §10.10, obtain the velocity distribution produced by free convection.

(a) First, derive the temperature distribution

T1 − T(k)
T1 − Tn

= ln k

ln n
(10B.11-1)

in which k = r∕R.
(b) Then show that the equation of motion is

1

k
d
dk

(
k
dvz
dk

)
= A + B ln k (10B.11-2)

in which A = (R2∕4)(dp∕dz + i1g) and B = (i1gv12T)R2∕4 ln n where 2T = T1 − Tn.

(c) Integrate the equation of motion (see Eq. C.1-11) and apply the boundary conditions to

evaluate the constants of integration. Then show that A can be evaluated by the requirement

of no net mass flow through any plane z = constant, with the final result that

vz(k) =
i1gv12TR2

164

[(
1 − n2

)
(1 − 3n2) − 4n4 ln n

(1 − n2)2 + (1 − n4) ln n

((
1 − k2

)
− (1 − n2) ln k

ln n

)
+4

(
k2 − n2

) ln k

ln n

]
(10B.11-3)

T = Tκ at r = κR

T = T1 at r = R

Fig. 10B.11 Free convection pattern in an annular space

with T1 > Tn.

10B.12 Free convection with temperature-dependent viscosity. Rework the problem in §10.10 taking

into account the variation of viscosity with temperature. Assume that the “fluidity” (reciprocal

of viscosity) is the following linear function of the temperature

1

4(T)
= 1

4
[1 + v4(T − T)] (10B.12-1)

Use the dimensionless quantities y̆, v̆z, and Gr defined in §10.10 and in addition

bT = 1

2
v2T, b4 =

1

2
v42T and P = iB3

42

(
dp
dz

+ ig
)

(10B.12-2,3)

and show that the differential equation for the velocity distribution is

d
dy̆

(
1

1 − b4y̆
dv̆z
dy̆

)
= P + 1

2
Gry̆ (10B.12-4)
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Follow the procedure in §10.10, discarding terms containing the third and higher powers of 2T.
Show that this leads to P = − 1

30
GrbT +

1

15
Grb4, and finally

v̆z(y̆) =
1

12
Gr(y̆3 − y̆) − 1

60
GrbT(y̆2 − 1) − 1

80
Grb4(y̆2 − 1)(5y̆2 − 1) (10B.12-5)

Sketch the result to show how the velocity profile becomes skewed because of the

temperature-dependent viscosity.

10B.13 Flow reactorwith exponentially temperature-dependent source. Formulate the function F(P)
of Eq. 10.7-7 for a zero-order reaction with the temperature dependence

Sc = Ke−E∕RT (10B.13-1)

in which K and E are constants, and R is the gas constant. Then insert F(P) into Eqs. 10.7-15

through 10.7-20 and solve for the dimensionless temperature profile with keff neglected.

10B.14 Evaporation loss from an oxygen tank.
(a) Liquefied gases are sometimes stored in well-insulated spherical containers vented to the

atmosphere. Develop an expression for the steady-state heat-transfer rate through the walls of

such a container, with the radii of the inner and outer walls being r0 and r1, respectively, and
the temperatures at the inner and outer walls being T0 and T1. The thermal conductivity of the

insulation varies linearly with temperature from k0 at T0 to k1 at T1.

(b) Estimate the rate of evaporation of liquid oxygen from a spherical container of 6 ft inside

diameter covered with a 1-ft-thick annular evacuated jacket filled with particulate insulation.

The following information is available:

Temperature at inner surface of insulation –183∘C
Temperature at outer surface of insulation 0∘C
Boiling point of O2 –183∘C
Heat of vaporization of O2 1636 cal∕g-mol

Thermal conductivity of insulation at 0∘C 9.0 × 10−4 Btu∕hr ⋅ ft ⋅ ∘F
Thermal conductivity of insulation at –183∘C 7.2 × 10−4 Btu∕hr ⋅ ft ⋅ ∘F

Answers: (a) Q0 = 40r0r1

(
k0 + k1

2

)(
T0 − T1

r1 − r0

)
; (b) 0.198 kg∕hr

10B.15 Radial temperature gradients in an annular chemical reactor. A catalytic reaction is being

carried out at constant pressure in a packed bed between coaxial cylindrical walls with inner

radius r0 and outer radius r1. Such a configuration occurs when temperatures are measured

with a centered thermowell, and is in addition useful for controlling temperature gradients if a

thin annulus is used. The entire inner wall is at uniform temperature T0, and it can be assumed

that there is no heat transfer through this surface. The reaction releases heat at a uniform volu-

metric rate Sc throughout the reactor. The effective thermal conductivity of the reactor contents

is to be treated as a constant throughout.

(a) By a shell energy balance, derive a second-order differential equation that describes the

temperature profile, assuming that the temperature gradient in the axial direction can be

neglected. What boundary conditions must be used?

(b) Rewrite the differential equation and boundary conditions in terms of the dimensionless

radial coordinate and dimensionless temperature difference defined as

k = r
r0
; P =

T − T0

Scr
2
0
∕4keff

(10B.15-1,2)

Explain why these are logical choices.

(c) Integrate the dimensionless differential equation to get the radial temperature profile. To

which viscous flow problem is this conduction problem analogous?
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(d) Develop expressions for the temperature at the outer wall and for the volumetric average

temperature of the catalyst bed.

(e) Calculate the outer wall temperature when r0 = 0.45 in., r1 = 0.50 in., keff = 0.3 Btu∕hr ⋅ ft ⋅
∘F,T0 = 900∘F , and Sc = 4800 cal∕hr ⋅ cm3 .

(f) How would the results of part (e) be affected if the inner and outer radii were doubled?

Answer: (e) 885∘F

10B.16 Temperature distribution in a hot-wire anemometer. A hot-wire anemometer is essentially

a fine wire, usually made of platinum, which is heated electrically and exposed to a flowing

fluid. Its temperature, which is a function of the fluid temperature, fluid velocity, and the rate

of heating, may be determined by measuring its electrical resistance. It is used for measuring

velocities and velocity fluctuations in flow systems. In this problemwe analyze the temperature

distribution in the wire element.

We consider a wire of diameterD and length 2L supported at its ends (z = −L and z = +L)
and mounted perpendicular to an air stream. An electric current of density I amp∕cm2 flows

through the wire, and the heat thus generated is partially lost by convection to the air stream

(see Eq. 10.1-2) and partially by conduction toward the ends of the wire. Because of their size

and their high electrical and thermal conductivity, the supports are not appreciably heated by

the current, but remain at the temperature TL, which is the same as that of the approaching air

stream. Heat loss by radiation is to be neglected.

(a) Derive an equation for the steady-state temperature distribution in the wire, assuming that

T depends on z alone; that is, the radial temperature variation in the wire is neglected. Further,

assume uniform thermal and electrical conductivities in the wire, and a uniform heat transfer

coefficient from the wire to the air stream.

(b) Sketch the temperature profile obtained in (a).

(c) Compute the current, in amperes, required to heat a platinum wire to a midpoint temper-

ature of 50∘C under the following conditions:

TL = 20∘C h = 100 Btu∕hr ⋅ ft2 ⋅ ∘F
D = 0.127 mm k = 40.2 Btu∕hr ⋅ ft ⋅ ∘F
L = 0.5 cm ke = 1.00 × 105 ohm

−1
cm−1

Answers: (a) T(z) − TL =
DI2

4hke

(
1 −

cosh
√
4h∕kDz

cosh
√
4h∕kDL

)
; (c) 1.01 amp

10B.17 Non-Newtonian flow with forced-convection heat transfer.1 For estimating the effect of

non-Newtonian viscosity on heat transfer in ducts, the power-law model of Chapter 8 gives

velocity profiles that show rather well the deviation from parabolic shape.

(a) Rework the problem of §10.9 (heat transfer in a circular tube) for the power-lawmodel given

in Eqs. 8.3-2 and 8.3-3. Show that the final temperature profile is

P(k,r) = 2(s + 3)
(s + 1)

r + (s + 3)
2(s + 1)

k2 − 2

(s + 1)(s + 3)
ks+3 − (s + 3)3 − 8

4(s + 1)(s + 3)(s + 5)
(10B.17-1)

in which s = 1∕n.
(b) Rework Problem 10B.8 (heat transfer in a plane slit) for the power-law model. Obtain the

dimensionless temperature profile:

P(g,r) = (s + 2)
(s + 1)

[
r + 1

2
g2 − 1

(s + 2) (s + 3)
|g|s+3 − (s + 2)(s + 3)(2s + 5) − 6

6(s + 3)(s + 4)(2s + 5)

]
(10B.17-2)

Note that these results contain the Newtonian results (s = 1) and the plug flow results (s = ∞).

1R. B. Bird, Chem.-Ing. Technik, 31, 569–572 (1959).
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10B.18 Reactor temperature profiles with axial heat flux.2

(a) Show that for a heat source that depends linearly on the temperature, Eqs. 10.7-6 to 10.7-14
have the solutions1 (for m+ ≠ m−)

PI = 1 +
m+m−(expm+ − expm−)
m2

+ expm+ −m2
− expm−

exp[(m+ +m−)Z] (10B.18-1)

PII =
m+(expm+)(expm−Z) −m−(expm−)(expm+Z)

m2
+ expm+ −m2

− expm−
(m+ +m−) (10B.18-2)

PIII =
m2

+ −m2
−

m2
+ expm+ −m2

− expm−
exp(m+ +m−) (10B.18-3)

Herem± = 1

2
B
[
1 ±

√
1 − (4N∕B)

]
, inwhichB = iv0ĈpL∕keff. Some profiles calculated from these

equations are shown in Fig. 10B.18.

(b) Show that, in the limit as B goes to infinity, the above solution agrees with that in
Eqs. 10.7-21, 10.7-22, and 10.7-23.

(c) Make numerical comparisons of the results in Eq. 10.7-22 and Fig. 10B.18 for N = 2 at Z =
0.0, 0.5, 0.9, and 1.0.

–0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0
0.1

1.0

10
Direction of flow

D
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n
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p
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a
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Θ
 =
 (
T
 –
 T

0
)/
(T

1
 –
 T

0
)

Dimensionless axial coordinate Z = z/L

Zone I
Zone II in which heat is produced

by chemical reaction Zone III

N = 2

N = 1

N = –1

N = 0

N = –2

Fig. 10B.18 Predicted temperature profiles in a fixed-bed axial-flow reactor for B = 8 and

various values of N.

10B.19 Heat conduction in a conical region. A solid is bounded by the surface p = p0, which is insu-
lated, and surfaces r = r1 and r = r2 in spherical coordinates, as illustrated in Fig. 10B.19. Surface
r = r1 is maintained at temperature T = T1, and surface r = r2 at T = T2. We take the thermal
conductivity to be a linear function of the temperature

k(T) = k1 + (k2 − k1)
(

T − T1

T2 − T1

)
≡ k1 + (k2 − k1)P (10B.19-1)

2Taken from the corresponding results of G. Damköhler, Z. Elektrochem., 43, 1–8, 9–13 (1937), and
J. F. Wehner and R. H. Wilhelm, Chem. Engr. Sci., 6, 89–93 (1956); 8, 309 (1958), for isothermal flow reactors

with longitudinal diffusion and first-order reaction.Gerhard Damköhler (1908–1944) achieved fame for

his work on chemical reactions in flowing, diffusing systems; a key publication was in Der
Chemie-Ingenieur, Leipzig (1937), pp. 359–485. Richard Herman Wilhelm (1909–1968), chairman of the

Chemical Engineering Department at Princeton University, was well known for his work on fixed-bed

catalytic reactors, fluidized transport, and the “parametric pumping” separation process.
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It is desired to find the temperature in this solid as a function of position. Because of the sym-

metry of this problem, we assume that T depends only on the radial position r.
(a) Show that a lens-shaped region defined by a surface of constant r within the cone has the

area 20r2(1 − cos p0).
(b) Make an energy balance over a lens-shaped shell of thickness 2r to get

20(1 − cos p0)(r2qr)|r − 20(1 − cos p0)(r2qr)|r+2r = 0 (10B.19-2)

which leads to the differential equation

d
dr

(r2qr) = 0 (10B.19-3)

Integrate this, and then use Fourier’s law with the temperature-dependent thermal conductiv-

ity given above to get finally

k1P + 1

2
(k2 − k1)P2 = C

r
+D (10B.19-4)

where C and D are constants of integration.

(c) Determine the constants of integration from the boundary conditions at r = r1 and r = r2 to
get

KP2 + LP − f (r) = 0 (10B.19-5)

where K = (k2 − k1)∕kav, kav ≡ 1

2
(k1 + k2), L = k1∕kav, and

f (r) =
(1∕r) − (1∕r1)
(1∕r2) − (1∕r1)

(10B.19-6)

(d) Verify that Eq. 10B.19-6 is the dimensionless temperature distribution when the thermal

conductivity k is constant throughout (i.e., take k2 = k1).
(e) Solving the quadratic equation in Eq. 10B.19-5 then gives

P(r) =
−L ±

√
L2 + 4Kf (r)
2K

(10B.19-7)

How do you determine the sign in front of the square root?

z

r2

r1θ0

Fig. 10B.19 Heat conduction in a conical region.

10B.20 Alternate derivation for forced convection in a tube. The goal of this problem is re-derive

Eq. 10.9-13 using a more rigorous approach than that employed in §10.9.

(a) Insert the flux expressions given by Eqs. 10.9-9 and 10.9-10 into the energy balance given

by Eq. 10.9-8. Show that this gives

iĈpvz(r)
𝜕T
𝜕z

= k
[
1

r
𝜕
𝜕r

(
r𝜕T
𝜕r

)
+ 𝜕2T

𝜕z2

]
+ 4

(
𝜕vz
𝜕r

)2

+vz(r)
[
−
𝜕p
𝜕z

+ 4
1

r
𝜕
𝜕r

(
r
𝜕vz
𝜕r

)
+ igz

]
(10B.20-1)



Trim Size: 8in x 10in Bird1e c10.tex V1 - October 21, 2014 4:04 P.M. Page 325

Problems 325

(b) Show that at steady state, the last term in square brackets is zero for an incompressible,

Newtonian fluid in laminar flow in a tube. (Hint: Consider the Navier-Stokes equations from

Chapter 3.)

(c) Show that Eq. 10B.20-1 reduces to Eq. 10.9-13 when energy production by viscous dissipa-

tion is neglected.

10B.21 Dimensionless solutions to heat conduction in a steam pipe. Repeat the analysis of §10.2

using dimensionless variables.

(a) For the systemdepicted in Fig. 10.2-1(a), use the dimensionless variablesP = (T − To)∕(Ts −
To) and k = r∕R. Show that the Eq. 10.2-7 becomes

P(k) = D1 ln k +D2 (10B.21-1)

where the new constants D1 and D2 are related to C1 and C2.

(b) Nondimensionalize the boundary conditions in Eqs. 10.2-8 and 10.2-9 to obtain boundary

conditions for P(k).
(c) Apply the new boundary conditions and obtain the integration constantsD1 andD2, as well

as the dimensionless profile P(k).
(d) For the systemdepicted in Fig. 10.2-1(b), use the dimensionless variablesP = (T − Ta)∕(Ts −
Ta) and k = r∕R. Show that the Eq. 10.2-15 becomes

P(k) = D1 ln k +D2 (10B.21-2)

where the new constants D1 and D2 are related to C1 and C2.

(e) Nondimensionalize the boundary conditions in Eqs. 10.2-16 and 10.2-17 to obtain boundary

conditions for P(k).
(f) Apply the new boundary conditions and obtain the integration constantsD1 andD2, as well

as the dimensionless profile P(k).
(g) For the systemdepicted in Fig. 10.2-1(c), use the dimensionless variablesP = (T − Ta)∕(Ts −
Ta) and k = r∕R. Show that the Eqs. 10.2-25 and 26 become

PI(k) = DI
1
ln k +DI

2
(10B.21-3)

PII(k) = DII
1
ln k +DII

2
(10B.21-4)

where the new constants DI
1
, DI

2
, DII

1
, and DII

2
, are related to CI

1
, CI

2
, CII

1
, and CII

2
.

(h) Nondimensionalize the boundary conditions in Eqs. 10.2-27 through 10.2-30 to obtain

boundary conditions for PI(k) and PII(k).
(i) Apply the new boundary conditions and obtain the integration constants DI

1
, DI

2
, DII

1
, and

DII
2
, as well as the dimensionless profiles PI(k) and PII(k).

10C.1 Heating of an electricwirewith temperature-dependent electrical and thermal conductivity.3

Find the temperature distribution in an electrically heatedwire when the thermal and electrical

conductivities vary with temperature as follows:

k
k0

= 1 − w1P − w2P2 + · · · (10C.1-1)

ke
ke0

= 1 − v1P − v2P2 + · · · (10C.1-2)

Here k0 and ke0 are the values of the conductivities at temperature T0, and P = (T − T0)∕T0 is a

dimensionless temperature rise. The coefficients wi and vi are constants. Such series expansions

are useful over moderate temperature ranges.

3The solution given here was suggested by Professor L. J. F. Broer of the Technical University of

Delft (personal communication, 20 August 1958).
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(a) Because the temperature depends on the radial position r in the wire, the electrical con-

ductivity is a function of position, ke(r). Therefore, the current density is also a function of r:
I(r) = ke(r) ⋅ (E∕L), and the electrical heat source also is position dependent: Se(r) = ke(r) ⋅ (E∕L)2.
The equation for the temperature distribution is then

−1

r
d
dr

(
rk (r) dT

dr

)
= ke(r)

(
E
L

)2

(10C.1-3)

Now introduce the dimensionless quantities k = r∕R and B = ke0R
2E2∕k0L2T0 and show that

Eq. 10C.1-3 then becomes

−1

k
d
dk

(
k
k0
k
dP
dk

)
= B

ke
ke0

(10C.1-4)

When the power-series expressions for the conductivities are inserted into this equation we get

−1

k
d
dk

((
1 − w1P − w2P2 + · · ·

)
k
dP
dk

)
= B(1 − v1P − v2P2 + · · ·) (10C.1-5)

This is the equation that is to be solved for the dimensionless temperature distribution.

(b) Begin by noting that if all the wi and vi were zero (that is, both conductivities are constant),

then Eq. 10C.1-5 would simplify to

−1

k
d
dk

(
k
dP
dk

)
= B (10C.1-6)

When this is solved with the boundary conditions that P = finite at k = 0, and P = 0 at k = 1,

we get:

P = 1

4
B(1 − k2) (10C.1-7)

This is just Eq. 10.6-13 in dimensionless notation.

Note that Eq. 10C.1-5 will have the solution in Eq. 10C.1-7 for small values of B—that is,

for weak heat sources. For stronger heat sources, postulate that the temperature distribution

can be expressed as a power series in the dimensionless heat source strength B:

P = 1

4
B(1 − k2)(1 + BP1 + B2P2 + · · ·) (10C.1-8)

Here the Pn are functions of k but not of B. Substitute Eq. 10C.1-8 into Eq. 10C.1-5, and equate

the coefficients of like powers of B to get a set of ordinary differential equations for thePn, with

n = 1, 2, 3,… These may be solved with the boundary conditions that Pn = finite at k = 0 and

Pn = 0 at k = 1. In this way obtain

P = 1

4
B(1 − k2)

[
1 + B

(
1

8
w1

(
1 − k2

)
− 1

16
v1(3 − k2)

)
+O(B2)

]
(10C.1-9)

where O(B2) means “terms of the order of B2 and higher.”

(c) For materials that are described by the Wiedemann-Franz-Lorenz law (see §9.9), the ratio

k∕keT is a constant (independent of temperature). Hence,

k
keT

=
k0

ke0T0

(10C.1-10)

Combine this with Eqs. 10C.1-1 and 10C.1-2 to get

1 − w1P − w2P2 + · · · = (1 − v1P − v2P2 + · · ·)(1 +P) (10C.1-11)

Equate coefficients of equal powers of the dimensionless temperature to get relations among

the wi and the vi: w1 = v1 − 1, w2 = v1 + v2, and so on. Use these relations to get

P = 1

4
B(1 − k2)

[
1 − 1

16
B
((
v1 + 2

)
+ (v1 − 2)k2

)
+O(B2)

]
(10C.1-12)
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10C.2 Viscous heating with temperature-dependent viscosity and thermal conductivity. Consider
the flow situation shown in Fig. 10.8-2. Both the stationary surface and the moving surface are

maintained at a constant temperature T0. The temperature dependences of k and 4 are given by

k
k0

= 1 + w1P + w2P2 + · · · (10C.2-1)

40
4

= 3

30

= 1 + v1P + v2P2 + · · · (10C.2-2)

in which the wi and vi are constants, 3 = 1∕4 is the fluidity, and the subscript “0” means “eval-

uated at T = T0.” The dimensionless temperature is defined as P = (T − T0)∕T0.

(a) Show that the differential equations describing the viscous flow and heat conduction may

be written in the forms
d
dk

(
4

40

dd
dk

)
= 0 (10C.2-3)

d
dk

(
k
k0

dP
dk

)
+ Br

4

40

(
dd
dk

)2

= 0 (10C.2-4)

in which d = vz∕vb, k = x∕b, and Br = 40v
2
b∕k0T0 (the Brinkman number).

(b) The equation for the dimensionless velocity distribution may be integrated once to give

dd∕dk = C1 ⋅ (3∕30), in which C1 is an integration constant. This expression is then substituted

into the energy equation to get

d
dk

((
1 + w1P + w2P2 + · · ·

) dP
dk

)
+ BrC2

1

(
1 + v1P + v2P2 + · · ·

)2 = 0 (10C.2-5)

Obtain the first two terms of a solution in the form

P(k;Br) = BrP1(k) + Br2P2(k) + · · · (10C.2-6)

d(k;Br) = d0 + Brd1(k) + Br2d2(k) + · · · (10C.2-7)

It is further suggested that the constant of integration C1 also be expanded as a power series in

the Brinkman number, thus

C1(Br) = C10 + BrC11 + Br2C12 + · · · (10C.2-8)

(c) Repeat the problem changing the boundary condition at y = b to qx = 0 (instead of specify-

ing the temperature).4

Answers: (b) d = k − 1

12
Brv1(k − 3k2 + 2k3) + · · ·

P = 1

2
Br(k − k2) − 1

8
Br2w1(k2 − 2k3 + k4) − 1

24
Br2v1(k − 2k2 + 2k3 − k4) + · · ·

(c) d = k − 1

6
Brv1(2k − 3k2 + k3) + · · ·

P = Br

(
k − 1

2
k2
)
− 1

8
Br2w1(4k2 − 4k3 + k4) + 1

24
Br2v1(−8k + 8k2 − 4k3 + k4) + · · ·

4R. M. Turian and R. B. Bird, Chem. Eng. Sci., 18, 689–696 (1963).
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Chapter 11

The Equations of Change
for Nonisothermal Systems

§11.1 The energy equation

§11.2 Special forms of the energy equation

§11.3 The Boussinesq equation of motion for forced and free convection

§11.4 The equations of change and solving steady-state problems with one
independent variable

§11.5○ The equations of change and solving problems with two independent
variables

§11.6 Concluding comments

In Chapter 10 we introduced the shell energy balance method for solving relatively

simple, time-independent heat-flow problems. We obtained the temperature profiles, as

well as some derived properties, such as the average temperature and heat-transfer rate.

In this chapter, we generalize the shell energy balance and obtain the equation of energy,
a partial differential equation that describes the transport of energy in a homogeneous

fluid or solid.

This chapter is also closely related to Chapter 3, where we introduced the equation

of continuity (conservation of mass) and the equation of motion (conservation of momen-

tum). The addition of the equation of energy (conservation of energy) allows us to extend

our problem-solving ability to include nonisothermal systems.

We begin in §11.1 by deriving the equation of change for the total energy. Just as in

Chapter 10, we use the total energy-flux vector e in applying the law of conservation of

energy. In §11.2 we subtract the mechanical energy equation (given in §3.3) from the total

energy equation to get an equation of change for the internal energy. From the latter we can

get an equation of change for the temperature, and it is this form of the energy equation that

is most commonly used.

Although our main concern in this chapter will be with the various energy equations

just mentioned, we find it useful to discuss in §11.3 an approximate equation of motion

that is convenient for solving problems involving free convection.

In §11.4 we summarize the equations of change encountered up to this point. Thenwe

proceed to illustrate the use of these equations in a series of examples, in which we begin

with the general equations and discard terms that are not needed. In this way we have a

standard procedure for setting up and solving problems.

In §11.5 we show how to solve more complicated problems, and, in particular, ones

that involve time dependence.

328
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§11.1 THE ENERGY EQUATION

The equation of change for energy is obtained by applying the law of conservation
of energy to a tiny element of volume 2x2y2z (see Fig. 3.1-1) and then allowing the
dimensions of the volume element to become vanishingly small. The law of conservation
of energy is an extension of the first law of classical thermodynamics, the latter concerning
itself with the difference in internal energies of two equilibrium states of a closed system
because of the heat added to the system and the work done on the system (i.e., the
familiar 2U = Q +W).1

Here we focus on a stationary volume element, fixed in space, through which a
fluid is flowing. The kinetic plus internal energy within the element increases with
time because kinetic and internal energy may be entering and leaving the element by
convection, because energy may be entering and leaving the element by conduction, and
because work is being done on the element by molecular processes. These effects are all
accounted for in the e vector—the total energy flux. In addition, external forces (such as
gravity) are acting on the fluid within the element of volume.

We can summarize the preceding paragraph by writing the conservation energy in
words as follows:⎧⎪⎪⎨⎪⎪⎩

rate of
increase of
kinetic and
internal
energy

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎨⎪⎩
net rate of
energy addition
by all mechanisms

⎫⎪⎬⎪⎭ +

⎧⎪⎪⎨⎪⎪⎩

rate of work
done on system
by external
forces(
e.g., by gravity

)
⎫⎪⎪⎬⎪⎪⎭

(11.1-1)

Several comments need to be made before proceeding:

i. By kinetic energy (per unit volume)wemean the energy associatedwith the observ-

able motion of the fluid, which is, 1

2
iv2 ≡ 1

2
i(v ⋅ v), per-unit-volume. Here v is the

fluid velocity vector that appears in the equation of motion.

ii. By internal energywemean the kinetic energies of the constituent molecules calcu-
lated in a frame moving with the velocity v, plus the energies associated with the
vibrational and rotational motions of the molecules and also the energies of inter-
action among all the molecules (see §0.3). It is assumed that the internal energy
U for a flowing fluid is the same function of temperature and density as that for
a fluid at equilibrium. Keep in mind that a similar assumption is made for the
thermodynamic pressure p(i,T) for a flowing fluid.

iii. The potential energy does not appear in Eq. 11.1-1, since we prefer instead to con-
sider the work done on the system by gravity. At the end of this section, however,
we show how to express this work in terms of the potential energy.

iv. In Eq. 10.1-1 various source terms were included in the shell energy balance. In
§10.8 the viscous heat source Sv appeared automatically, because the mechanical
energy terms in e were properly accounted for; the same situation prevails here,
and the viscous heating term −(f : ∇v)will appear automatically in Eq. 11.2-1. The
chemical, electrical, and nuclear source terms (Sc, Se, and Sn) do not appear auto-
matically, since chemical reactions, electrical effects, and nuclear disintegrations
have not been included in the energy balance, or in the flux expressions. In Chapter
19, where the energy equation for mixtures with chemical reactions is considered,
the chemical heat source Sc appears naturally, as does a “diffusive source term,”
Fw(jw ⋅ gw).

1R. J. Silbey, R. A. Alberty, and M. G. Bawendi, Physical Chemistry, Wiley, New York, 4th edition

(2005), §2.2.
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We now translate Eq. 11.1-1 into mathematical terms. The rate of increase of kinetic
and internal energy within the volume element 2x2y2z is

2x2y2z 𝜕
𝜕t

(
1

2
iv2 + iÛ

)
(11.1-2)

Here Û is the internal energy per unit mass (sometimes called the “specific internal ener-

gy”). The product iÛ is the internal energy per unit volume, and 1

2
iv2 = 1

2
i(v2x + v2y + v2z)

is the kinetic energy per unit volume.
Next we have to state how much energy enters and leaves across the six faces of the

volume element 2x2y2z. This is

2y2z(ex|x − ex|x+2x) + 2x2z(ey|y − ey|y+2y) + 2x2y(ez|z − ez|z+2z) (11.1-3)

Keep in mind that the e vector includes the convective transport of kinetic and internal
energy, as well as the heat conduction and the work associated with molecular processes.

The rate at which work is done on the fluid by the external force is the dot product of
the fluid velocity v and the force acting on the fluid (i2x2y2z)g, or

i2x2y2z(vxgx + vygy + vzgz) (11.1-4)

We now insert these various contributions into Eq. 11.1-1 and then divide by 2x2y2z.
When 2x, 2y, and 2z are allowed to go to zero, we get

𝜕
𝜕t

(
1

2
iv2 + iÛ

)
= −

(
𝜕ex
𝜕x

+
𝜕ey
𝜕y

+
𝜕ez
𝜕z

)
+ i(vxgx + vygy + vzgz) (11.1-5)

This equation may be written more compactly in vector notation as

𝜕
𝜕t

(
1

2
iv2 + iÛ

)
= −(∇ ⋅ e) + i(v ⋅ g) (11.1-6)

Then, if we insert the expression for the e vector from Eq. 9.4-1, we get

𝜕
𝜕t

(
1

2
iv2 + iÛ

)
= −

(
∇ ⋅

(
1

2
iv2 + iÛ

)
v
)
− (∇ ⋅ q) − (∇ ⋅w) + i(v ⋅ g) (11.1-7)

The similarity with the first law of classical thermodynamics now becomes apparent. For

flow systems, Eq. 11.1-7 becomes i(D∕Dt)
(

1

2
v2 + Û

)
v= −(∇ ⋅ (q+w)), in the absence of

external forces. This states that, in a small region of fluid going along with the flow, the
sum of its internal energy and kinetic energy changes because of the heat being added to
the fluid and work being done on it. For non-flow systems, there is a similar relationship,
2U = Q +W, between the change in internal energy 2U and the heat added to the system
Q andworkW done on it. Whereas Eq. 11.1-7 describes how the various quantities change
with time, the simple classical thermodyamics expression for 2U relates properties at two
successive equilibrium states.

Next we insert the expression for thew vector from Eq. 9.3-5 and use Eq. A.4-26 to get
the equation of energy (a statement of the law of conservation of energy)

𝜕
𝜕t

(
1

2
iv2 + iÛ

)
rate of increase of

energy per unit volume

= −
(
∇ ⋅

(
1

2
iv2 + iÛ

)
v
)

rate of energy addition per

unit volume by convective

transport

− (∇ ⋅ q)

rate of energy addition

per unit volume by

heat conduction

− (∇ ⋅ pv)
rate of work done

on fluid per unit

volume by

pressure forces

−(∇ ⋅ [f ⋅ v])
rate of work done

on fluid per unit

volume by viscous

forces

+ i(v ⋅ g)
rate of work done

on fluid per unit

volume by external

forces

(11.1-8)
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This equation does not include nuclear, radiative, electromagnetic, or chemical forms of
energy. For viscoelastic fluids, the next-to-last term has to be reinterpreted by replacing
“viscous” by “viscoelastic.”

Equation 11.1-8 is the main result of this section, and it provides the basis for the
remainder of the chapter. The equation may be written in another form to include the

potential energy per unit mass, Ĉ, which has been defined earlier by g = −∇Ĉ (see §3.3).

For moderate elevation changes, this gives Ĉ = gh, where h is a coordinate in the direction
opposed to the gravitational field. For terrestrial problems, where the gravitational field
is independent of time, we can write

i(v ⋅ g) = −(iv ⋅ ∇Ĉ)
= −(∇ ⋅ ivĈ) + Ĉ(∇ ⋅ iv) Use vector identityin Eq. A.4−19

= −(∇ ⋅ ivĈ) − Ĉ
𝜕i

𝜕t
Use Eq. 3.1−4

= −(∇ ⋅ ivĈ) − 𝜕
𝜕t
(iĈ) Use Ĉ independent of t (11.1-9)

When this result is inserted into Eq. 11.1-8, we get

𝜕
𝜕t

(
1

2
iv2 + iÛ + iĈ

)
= −

(
∇ ⋅

(
1

2
iv2 + iÛ + iĈ

)
v
)

−(∇ ⋅ q) − (∇ ⋅ pv) − (∇ ⋅ [f ⋅ v]) (11.1-10)

Sometimes it is convenient to use the energy equation in this form, as we will see in
Chapter 15.

§11.2 SPECIAL FORMS OF THE ENERGY EQUATION

Themost useful form of the energy equation is one in which the temperature appears. The
object of this section is to arrive at such an equation, which can be used for prediction of
temperature profiles.

First, we subtract the mechanical energy equation in Eq. 3.3-1 from the energy
equation in Eq. 11.1-8. This leads to the following equation of change for internal energy:

𝜕
𝜕t

iÛ

rate of increase in

internal energy

per unit volume

= −(∇ ⋅ iÛv)
net rate of addition of

internal energy by convective

transport, per unit volume

−(∇ ⋅ q)
rate of internal energy

addition by heat conduction,

per unit volume

−p(∇ ⋅ v)
reversible rate of internal
energy increase per unit

volume by compression

−(f : ∇v)
irreversible rate of internal energy
increase per unit volume by

viscous dissipation

(11.2-1)

It is now of interest to compare the mechanical energy equation of Eq. 3.3-1 and the inter-
nal energy equation of Eq. 11.2-1. Note that the terms p(∇ ⋅ v) and (f : ∇v) appear in both
equations—but with opposite signs. Therefore, these terms describe the interconversion
of mechanical and thermal energy. The term p(∇ ⋅ v) can be either positive or negative,
depending on whether the fluid is expanding or contracting; therefore, it represents a
reversible mode of interchange. On the other hand, for Newtonian fluids, the quantity
−(f : ∇v) is always positive (see Eq. 3.3-3) and therefore represents an irreversible degra-
dation of mechanical into internal energy. For viscoelastic fluids, discussed in Chapter 8,
the quantity −(f : ∇v) does not have to be positive, since some energy may be stored as
elastic energy.



Trim Size: 8in x 10in Bird1e c11.tex V1 - October 21, 2014 4:07 P.M. Page 332

332 Chapter 11 The Equations of Change for Nonisothermal Systems

It was pointed out in §3.5 that the equations of change can be written somewhat more
compactly by using the substantial derivative (see Table 3.5-1). Equation 11.2-1 can be put
in the substantial derivative form by using Eq. 3.5-6. This gives, with no further assump-
tions,

i
DÛ
Dt

= −(∇ ⋅ q) − p(∇ ⋅ v) − (f : ∇v) (11.2-2)

Next it is convenient to switch from internal energy to enthalpy, as we did at the very end
of §9.4. That is, in Eq. 11.2-2 we set Û = Ĥ − pV̂ = Ĥ − (p∕i), making the standard assump-
tion that thermodynamic formulas derived from equilibrium thermodynamics may be
applied locally for nonequilibrium systems. When this formula is substituted into Eq.
11.2-2 and use is made of the equation of continuity (Eq. A of Table 3.5-1), we get

i
DĤ
Dt

= −(∇ ⋅ q) − p(∇ ⋅ v) + i
D
Dt

(
p
i

)
− (f : ∇v)

= −(∇ ⋅ q) − p(∇ ⋅ v) +
Dp
Dt

− p1
i

Di

Dt
− (f : ∇v)

= −(∇ ⋅ q) − (f : ∇v) +
Dp
Dt

(11.2-3)

Next wemay use Eq. 9.4-3, which presumes that the enthalpy is a function of p and T (this
restricts the subsequent development toNewtonian fluids). Then wemay get an expression
for the change in the enthalpy in an element of fluid moving with the fluid velocity,

i
DĤ
Dt

= iĈp
DT
Dt

+ i

[
V̂ − T

(
𝜕V̂
𝜕T

)
p

]
Dp
Dt

= iĈp
DT
Dt

+ i

[
1

i
− T

(
𝜕 (1∕i)
𝜕T

)
p

]
Dp
Dt

= iĈp
DT
Dt

+

[
1 +

(
𝜕 ln i

𝜕 lnT

)
p

]
Dp
Dt

(11.2-4)

Equating the right sides of Eqs. 11.2-3 and 11.2-4 gives

iĈp
DT
Dt

= −(∇ ⋅ q) − (f : ∇v) −
(
𝜕 ln i

𝜕 lnT

)
p

Dp
Dt

(11.2-5)

This is the equation of change for temperature, in terms of the heat-flux vector q and the
viscousmomentum-flux tensor f.1 This equation is tabulated in Cartesian, cylindrical, and
spherical coordinates in §B.8. To use this equation, we need expressions for these fluxes:

(i) When Fourier’s law of Eq. 9.2-6 is used, the term −(∇ ⋅ q) becomes +(∇ ⋅ k∇T), or,
if the thermal conductivity is assumed constant, +k∇2T.

(ii) When Newton’s law of Eq. 1.2-13 is used, the term −(f : ∇v) becomes 4Cv + nAv,
the quantity given explicitly in Eq. 3.3-3.

We do not perform the substitutions here, because the equation of change for temperature
is almost never used in its complete generality.

We now discuss several special restricted versions of the equation of change for tem-
perature. In all of these we use Fourier’s law with constant k, and we omit the viscous
dissipation term, since it is important only in flows with enormous velocity gradients or
for fluids of very large viscosity:

1An equation of change for temperature in polymeric liquid mixtures has been derived by C. F.

Curtiss and R. B. Bird, Adv. Polymer Sci., 125, 1–101 (1996); this derivation assumes that polymers may be

represented by a bead-spring-chain model.
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(i) For an ideal gas, (𝜕 ln i∕𝜕 lnT)p = −1, and

iĈp
DT
Dt

= k∇2T +
Dp
Dt

(11.2-6)

Or, if use is made of the relation C̃p − C̃V = R, the equation of state in the form
pM = iRT, and the equation of continuity as written in Eq. A of Table 3.5-1, we
get

iĈV
DT
Dt

= k∇2T − p(∇ ⋅ v) (11.2-7)

(ii) For a fluid flowing in a constant pressure system, Dp∕Dt = 0, and

iĈp
DT
Dt

= k∇2T (11.2-8)

(iii) For a fluid with constant density,2 (𝜕 ln i∕𝜕 lnT)p = 0, and

iĈp
DT
Dt

= k∇2T (11.2-9)

(iv) For a stationary solid, v is zero and

iĈp
𝜕T
𝜕t

= k∇2T (11.2-10)

These last five equations are the ones most frequently encountered in textbooks and
research publications. Equation 11.2-8 (or equivalently, Eq. 11.2-9) is tabulated in Carte-
sian, cylindrical, and spherical coordinates in §B.9, with the viscous dissipation term
−(f : ∇v) = +4Cv added for completeness. One can also use the table in §B.9 to obtain Eqs.
11.2-6, 11.2-7, or 11.2-10 in component form by adding or subtracting the relevant terms.
Of course, one can always go back to Eq. 11.2-5 and develop less restrictive equations
when needed. Also, one can add chemical, electrical, and nuclear source terms on an ad
hoc basis, just as was done in Chapter 10.

Equation 11.2-10 is the heat conduction equation for stationary solids, and much has
beenwritten about this famous equation developed first by Fourier.3 The famous reference
work by Carslaw and Jaeger deserves special mention. It contains hundreds of solutions
of this equation for a wide variety of boundary and initial conditions.4

§11.3 THE BOUSSINESQ EQUATION OFMOTION FOR FORCED
AND FREE CONVECTION

The equation of motion given in Eq. 3.2-9 (or Eq. B of Table 3.5-1) is valid for both
isothermal and nonisothermal flow. In nonisothermal flow, the fluid density and viscosity
depend in general on temperature as well as on pressure. The variation in the density is

2The assumption of constant density is made here, instead of the less stringent assumption that

(𝜕 lni∕𝜕 lnT)p = 0, since Eq. 11.2-9 is customarily used along with Eq. 3.1-5 (equation of continuity for

constant density) and Eq. 3.6-1 (equation of motion for constant density and viscosity). It should be noted

that the hypothetical equation of state i = constant has to be supplemented by the statement that

(𝜕p∕𝜕T)i = finite, in order to permit the evaluation of certain thermodynamic derivatives. For example,

the relation

Ĉp − ĈV = − 1

i

(
𝜕 lni
𝜕 lnT

)
p

(
𝜕p
𝜕T

)
i

(11.2-9a)

leads to the result that Ĉp = ĈV for the “incompressible fluid” thus defined.
3J. B. Fourier, Théorie analytique de la chaleur, Œuvres de Fourier, Gauthier-Villars et Fils, Paris (1822).
4H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, 2nd edition

(1959).
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particularly important because it gives rise to buoyant forces, and thus to free convection,
as we have already seen in §10.10.

The buoyant force appears automaticallywhen an equation of state is inserted into the
equation of motion. For example, we can use the simplified equation of state introduced
in Eq. 10.10-6 (this is called the Boussinesq approximation)1

i(T) = i − iv(T − T) (11.3-1)

in which v is −(1∕i)(𝜕i∕𝜕T)p evaluated at T = T. This equation is obtained by writing the
Taylor series for i as a function of T, considering the pressure p to be constant, and keeping
only the first two terms of the series. When Eq. 11.3-1 is substituted into the ig term (but
not into the i(Dv∕Dt) term) of Eq. B of Table 3.5-1, we get the Boussinesq equation:

i
Dv
Dt

= (−∇p + ig) − [∇ ⋅ f] − igv(T − T) (11.3-2)

This form of the equation of motion is very useful for heat-transfer analyses. It describes
the limiting cases of forced convection and free convection (see Fig. 10.9-1), and the region
between these extremes as well. In forced convection the buoyancy term −igv(T − T) is
neglected. In free convection (or natural convection) the term (−∇p + ig) is small, and omit-
ting it is usually appropriate, particularly for vertical, rectilinear flow and for the flownear
submerged objects in large bodies of fluid. Setting (−∇p + ig) equal to zero is equivalent
to assuming that the pressure distribution is just that for a fluid at rest.

It is also customary to replace i on the left side of Eq. 11.3-2 by i. This substitution has
been successful for free convection at moderate temperature differences. Under these con-
ditions the fluid motion is slow, and the acceleration term Dv∕Dt is small compared to g.

However, in systems where the acceleration term is large with respect to g, one must
also use Eq. 11.3-1 for the density on the left side of the equation of motion. This is par-
ticularly true, for example, in gas turbines and near hypersonic missiles, where the term
(i − i)Dv∕Dtmay be at least as important as ig.

§11.4 THE EQUATIONS OF CHANGE AND SOLVING STEADY-STATE
PROBLEMSWITH ONE INDEPENDENT VARIABLE

In §3.1 to §3.4 and in §11.1 to §11.3 we have derived various equations of change for a pure
fluid or solid. It seems appropriate here to present a summary of these equations for future
reference. Such a summary is given in Table 11.4-1, with each equation given in the D∕Dt
form. Reference is also made to the first place where each equation has been presented.

Although Table 11.4-1 is a useful summary, for problem solving we use the equations
written out explicitly in the several commonly used coordinate systems. This has been
done in Appendix B, and the readers should thoroughly familiarize themselves with the
tables there.

In general, to describe the nonisothermal flow of a Newtonian fluid one needs

• the equation of continuity

• the equation of motion (containing 4 and n)

• the equation of energy (containing 4, n, and k)

• the thermal equation of state (p = p(i,T))
• the caloric equation of state (Ĉp = Ĉp(i,T))

1J. Boussinesq, Théorie Analytique de Chaleur, Vol. 2, Gauthier-Villars, Paris (1903).
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Ĉ

V
a
n
d
T

iĈ
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as well as expressions for the density and temperature dependence of the viscosity, dilata-
tional viscosity, and thermal conductivity. In addition one needs the boundary and ini-
tial conditions. In the most general case, Eq. 11.2-5 for the equation energy is used. This
equation is tabulated inCartesian, cylindrical, and spherical coordinates in §B.8. The entire
set of equations listed above can then—in principle—be solved to get the pressure, den-
sity, velocity, and temperature as functions of position and time. If onewishes to solve such
a detailed problem, numerical methods generally have to be used. Commercial software
packages are available for such approaches.

Often one may be content with a restricted solution, just for making an order-of-mag-
nitude analysis of a problem, or for investigating limiting cases prior to doing a complete
numerical solution. This is done by making some standard assumptions:

(i) Assumption of constant physical properties. If it can be assumed that all physical
properties are constant, then the equations become considerably simpler, and in
some cases analytical solutions can be found. In this case, the forms of the energy
equation in Eqs. 11.2-6 through 11.2-10 are typically used. Equation 11.2-8 (or
11.2-9) is tabulated in Cartesian, cylindrical, and spherical coordinates in §B.9
(with the viscous dissipation term included). Other forms may be obtained by
adding or removing relevant terms.

(ii) Assumption of zero fluxes. Setting f and q equal to zero may be useful for (a) adi-
abatic flow processes in systems designed to minimize frictional effects (such
as Venturi meters and turbines), and (b) high-speed flows around streamlined
objects. The solutions obtained would be of no use for describing the situation
near fluid–solid boundaries, but may be adequate for analysis of phenomena far
from the solid boundaries.

To illustrate the solution of problems in which the energy equation plays a significant
role, we solve a series of (idealized) problems. We restrict ourselves here to steady-state
flow problems and consider unsteady-state problems in §11.5. In each problem we start
by listing the postulates that lead us to simplified versions of the equations of change.
We then write the simplified equation in component form with the help of §B.8 or §B.9,
employ assumptions in the problem at hand to omit appropriate terms, then solve using
the boundary conditions to obtain constants of integration.

Of course, one can also practice solving problems with the equation of energy by
reworking the examples in Chapter 10, using the appropriate form of the equation of
energy instead of the shell energy balance.

EXAMPLE 11.4-1

Steady-State
Forced-Convection
Heat Transfer in
Laminar Flow in a
Circular Tube

Show how to set up the equations for the problem considered in §10.9, namely, that of finding

the fluid temperature profiles for the fully developed laminar flow in a tube.

SOLUTION

We assume constant physical properties, and we postulate a solution of the following form:

v = tzvz(r), 𝒫 = 𝒫 (z), and T = T(r,z). Then the equations of change, as given in Appendix B,

may be simplified to

Equation of continuity: 0 = 0 (11.4-1)

z Equation of motion: 0 = −d𝒫
dz

+ 4

[
1

r
d
dr

(
r
dvz
dr

)]
(11.4-2)

Equation of energy: iĈpvz
𝜕T
𝜕z

= k
[
1

r
𝜕
𝜕r

(
r𝜕T
𝜕r

)
+ 𝜕2T

𝜕z2

]
+ 4

(
dvz
dr

)2

(11.4-3)

The r and p components of the equation of motion do not add helpful information. The

equation of continuity is automatically satisfied as a result of the postulates. The z component
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of the equation of motion, when solved as in Example 3.6-1, gives the velocity distribution
(the parabolic velocity profile). This expression is then substituted into the convective heat
transport term on the left side of Eq. 11.4-3 and into the viscous dissipation heating term on
the right side.

Next, as in §10.9, wemake two assumptions: (i) in the z direction, heat conduction is much
smaller than heat convection, so that the term 𝜕2T∕𝜕z2 can be neglected, and (ii) the flow is
not sufficiently fast so that viscous heating is significant, and hence the term 4(dvz∕dr)2 can be
omitted. When these assumptions are made, Eq. 11.4-3 becomes the same as Eq. 10.9-14. From
that point on, the asymptotic solution, valid for large z only, proceeds as in §10.9. Note that we
have gone through three types of restrictive processes: (i) postulates, in which a tentative guess
is made as to the form of the solution; (ii) assumptions, in which we eliminate some physical
phenomena or effects by discarding terms or assuming physical properties to be constant; and
(iii) an asymptotic solution, inwhichwe obtain only a portion of the entiremathematical solution.
It is important to distinguish among these various kinds of restrictions.

EXAMPLE 11.4-2

Tangential Flow in an
Annulus with Viscous
Heat Generation

Determine the temperature distribution in an incompressible liquid confined between two
coaxial cylinders, the outer one ofwhich is rotating at a steady angular velocity1o as illustrated
in Fig. 11.4-1. The inner cylinder has radius nR and the outer cylinder has radius R. Consider
the radius ratio n to be fairly small so that the curvature of the fluid streamlines must be taken
into account. Gravity acts in the −z direction.

The temperatures of the inner and outer surfaces of the annular region are maintained at
Tn and T1, respectively, with Tn ≠ T1. Assume steady laminar flow, and neglect the temperature
dependence of the physical properties.

This is an example of a forced convection problem: the equations of continuity andmotion
are solved to get the velocity distribution, and then the energy equation is solved to get the
temperature distribution. This problem is of interest in connection with heat effects in coaxial
cylinder viscometers1 and in lubrication systems.

SOLUTION

We begin by postulating that v = tpvp(r), that𝒫 = 𝒫 (r,z), and that T = T(r). Because the phys-
ical properties are assumed to be constant, Eqs. B.6-4 through B.6-6 can be used for the equation
of motion, and Eq. B.9-2 can be used for the equation of energy (all in cylindrical coordinates).
Then the postulates stated above lead to the following simplifications of the equations of change

R

κR

Outer cylinder moves with
angular velocity Ωo

r
θ

Tκ

T1

Fig. 11.4-1. Tangential annular flow between concentric

cylinders. The outer cylinder at r = R rotates with

angular velocity 1o, and the inner cylinder at r = nR is

stationary.

1J. R. Van Wazer, J. W. Lyons, K. Y. Kim, and R. E. Colwell, Viscosity and Flow Measurement, Wiley,

New York (1963), pp. 82–85.
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for motion and energy:

r Equation of motion: − i
v2p
r

= −
𝜕p
𝜕r

(11.4-4)

p Equation of motion: 0 = d
dr

(
1

r
d
dr

(
rvp

))
(11.4-5)

z Equation of motion: 0 = −
𝜕p
𝜕z

− ig (11.4-6)

Equation of energy: 0 = k1
r
d
dr

(
r dT
dr

)
+ 4

[
r d
dr

(vp
r

)]2
(11.4-7)

When the solution to the p component of the equation of motion, given in Eq. 3.7-34, is substi-

tuted into the energy equation, we get

0 = k1
r
d
dr

(
r dT
dr

)
+

4412
on

4R4

(1 − n2)2
1

r4
(11.4-8)

This is the differential equation for the temperature distribution. It may be rewritten in terms

of dimensionless quantities using

k = r
R

P =
T − Tn

T1 − Tn
N =

412
oR

2

k(T1 − Tn)
⋅

n4

(1 − n2)2
(11.4-9,10,11)

The parameter N is closely related to the Brinkman number of §10.8. Equation 11.4-8 now

becomes
1

k
d
dk

(
k
dP
dk

)
= −4N 1

k4
(11.4-12)

This ordinary differential equation is of the form of Eq. C.1-11 and has the solution

P(k) = −N 1

k2
+ C1 ln k + C2 (11.4-13)

The integration constants are found from the boundary conditions

B. C. 1: at k = n, P = 0 (11.4-14)

B. C. 2: at k = 1, P = 1 (11.4-15)

Determination of the constants then leads to

P(k) =
(
1 − ln k

ln n

)
+N

[(
1 − 1

k2

)
−

(
1 − 1

n2

)
ln k

ln n

]
(11.4-16)

WhenN = 0, we obtain the temperature distribution for a motionless cylindrical shell of thick-

ness R(1 − n)with inner and outer temperatures Tn and T1. If N is large enough, there will be a

maximum in the temperature distribution, located at

kmax =

√
2 ln(1∕n)

(1∕n2) − 1 − (1∕N)
(11.4-17)

with the temperature at this point greater than either Tn or T1.

Although this example provides an illustration of the use of the tabulated equations of

change in cylindrical coordinates, in most viscometric and lubrication applications, the clear-

ance between the cylinders is so small that numerical values computed from Eq. 11.4-16 will

not differ substantially from those computed from Eq. 10.8-9.

EXAMPLE 11.4-3

Steady Flow in a
Nonisothermal Film

A liquid is flowing downward in steady laminar flow along an inclined plane surface, as

shown in Figs. 2.2-1 to 2.2-3. The free liquid surface is maintained at temperature T0, and the

solid surface at x = t is maintained at Tt. At these temperatures the liquid viscosity has values

40 and 4t, respectively, and the liquid density and thermal conductivity may be assumed
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constant. Find the velocity distribution in this nonisothermal flow system, neglecting end

effects and recognizing that viscous heating is unimportant in this flow. Assume that the

temperature dependence of viscosity may be expressed by an equation of the form 4 = AeB∕T,
with A and B being empirical constants; this is suggested by the Eyring theory given in §1.7.

We first solve the energy equation to get the temperature profile, and then use the latter to

find the dependence of viscosity on position. Then the equation of motion can be solved to get

the velocity profile.

SOLUTION

We postulate that T = T(x) and that v = tzvz(x). Because the density and thermal conductivity

are assumed to be constant, we can use the form of the energy equation expressed by Eq. B.9-1

(i.e., Eq. 11.2-9 in Cartesian coordinates). Using the assumptions in this problem, the energy

equation simplifies to
d2T
dx2

= 0 (11.4-18)

This can be integrated, and the boundary conditions T(0) = T0 and T(t) = Tt used to determine

the constants of integration. The resulting temperature profile is

T(x) − T0

Tt − T0

= x
t

(11.4-19)

The dependence of viscosity on temperature may be written as

4(T)
40

= exp

[
B
(
1

T
− 1

T0

)]
(11.4-20)

in which B is a constant, which can be determined from experimental data for viscosity versus

temperature. To get the dependence of viscosity on position, we combine the last two equations

to get
4(x)
40

= exp

[
B
T0 − Tt

T0T

(x
t

)]
≈ exp

[
B
T0 − Tt

T0Tt

(x
t

)]
(11.4-21)

The second expression is a good approximation if the temperature does not change greatly

through the film. When this equation is combined with Eq. 11.4-20, written for T = Tt, we then

get

4(x)
40

= exp

[(
ln

4t
40

)(x
t

)]
=

(
4t
40

)x∕t

(11.4-22)

This is the same as the expression used in Example 2.2-2, if we set w equal to − ln(4t∕40). There-
fore, we may take over the result from Example 2.2-2 and write the velocity profile as:

vz(x) =
(
ig cos v

40

)(
t

ln
(
4t∕40

))2 [
1 + (x∕t) ln(4t∕40)

(4t∕40)x∕t
−

1 + ln(4t∕40)
(4t∕40)

]
(11.4-23)

This completes the analysis of the problem begun in Example 2.2-2, by providing the appro-

priate value of the constant w.

EXAMPLE 11.4-4

Transpiration Cooling2

A system with two concentric porous spherical shells of radii nR and R is shown in Fig. 11.4-2.

The inner surface of the outer shell is at temperature T1, and the outer surface of the inner one is

at a lower temperature Tn. Dry air at Tn is blown outward radially from the inner shell into the

intervening space and then through the outer shell. Develop an expression for the required rate

of heat removal from the inner sphere as a function of the mass rate of flow of the gas. Assume

steady laminar flow and low gas velocity. We may also assume that the density, viscosity and

thermal conductivity are constants.

2M. Jakob, Heat Transfer, Vol. II, Wiley, New York (1957), pp. 394–415.
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R
κR

Porous spherical shells

T = T1

T = Tκ

Refrig-
eration
coil

Air flow out

Air flow out

Air in
at Tκ

Fig. 11.4-2. Transpiration cooling. The

inner sphere is being cooled by means

of the refrigeration coil to maintain its

temperature at Tn. When air is blown

outward, as shown, less refrigeration is

required.

In this example the equations of continuity and energy are solved to get the temperature

distribution. The equation of motion gives information about the pressure distribution in the

system.

SOLUTION

We postulate that for this system v = trvr(r), T = T(r), and𝒫 = 𝒫 (r). The equation of continuity
in spherical coordinates (Eq. B.4-3) then becomes

1

r2
d
dr

(r2ivr) = 0 (11.4-24)

This equation can be integrated to give

r2ivr = const. =
wr

40
(11.4-25)

Here wr is the radial mass flow rate of the gas.

The r component of the equation of motion in spherical coordinates is, from Eq. B.6-7

ivr
dvr
dr

= −d𝒫
dr

+ 4

(
1

r2
d2

dr2
(
r2vr

))
(11.4-26)

The viscosity term drops out because of Eq. 11.4-24, along with the assumption of constant

density. The left side can be written in terms of wr using Eq. 11.4-25. Integration of Eq. 11.4-26

from r = R to an arbitrary radial position r then gives

𝒫 (r) −𝒫 (R) =
wr

3202iR4

[
1 −

(R
r

)4
]

(11.4-27)

Hence, themodified pressure𝒫 increases with r, but only very slightly for the low gas velocity

assumed here.

Thus far, we have assumed constant density and thermal conductivity. If we also assume

that energy production by viscous dissipation can be neglected—a reasonable assumption for

the slowflowhere—then the appropriate formof the energy equation in terms of the temperature

for this problem is Eq. 11.2-8, which is expressed in spherical coordinates, by Eq. B.9-3 (when

the viscous dissipation term is neglected). Using T = T(r), this equation becomes

iĈpvr
dT
dr

= k 1
r2

d
dr

(
r2 dT

dr

)
(11.4-28)
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When Eq. 11.4-25 for the velocity distribution is used for vr in Eq. 11.4-28, we obtain the fol-

lowing differential equation for the temperature distribution T(r) of the gas between the two

shells:
dT
dr

= 40k

wrĈp

d
dr

(
r2 dT

dr

)
(11.4-29)

We make the change of variable u = r2(dT∕dr) and obtain a first-order, separable differential

equation for u(r), du∕dr = (wrĈp∕40k)u(r)∕r2. This may be integrated to obtain u(r). After

substituting u = r2(dT∕dr), the resulting first-order differential equation for T(r) can be inte-

grated. The constants of integration are evaluated using the boundary conditions T(nR) = Tn
and T(R) = T1, to obtain finally the temperature profile

T(r) − T1

Tn − T1

=
exp(−R0∕r) − exp(−R0∕R)
exp(−R0∕nR) − exp(−R0∕R)

(11.4-30)

in which R0 = wrĈp∕40k is a constant with units of length.

The rate of heat flow towards the inner sphere is

Q = −40n2R2qr|r=nR (11.4-31)

and this is the required rate of heat removal by the refrigerant (note that the convective energy

flow in the inlet stream is equal to the convective energy flow radially outward at r = nR, and
hence,Q is due entirely to conduction at r = nR). Insertion of Fourier’s law for the r component

of the heat flux gives

Q = +40n2R2k dT
dr

||||r=nR (11.4-32)

Next we evaluate the temperature gradient at the surface with the aid of Eq. 11.4-30 to obtain

the expression for the heat-removal rate.

Q =
40R0k(T1 − Tn)

exp[(R0∕nR)(1 − n)] − 1
(11.4-33)

In the limit that the mass flow rate of the gas is zero, so that R0 = 0, the heat-removal rate

becomes

Q0 =
40nRk(T1 − Tn)

1 − n
(11.4-34)

The fractional reduction in heat removal as a result of the transpiration of the gas is then

Q0 −Q
Q0

= 1 − d

ed − 1
(11.4-35)

Here d = R0(1 − n)∕nR = wrĈp(1 − n)∕40nRk is the “dimensionless transpiration rate.”
Equation 11.4-35 is shown graphically in Fig. 11.4-3. For small values of d, the quantity

(Q0 −Q)∕Q0 approaches the asymptote 1

2
d.
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Fig. 11.4-3. The effect of
transpiration cooling.
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EXAMPLE 11.4-5

Adiabatic Frictionless
Processes in an Ideal
Gas

Develop equations for the relationship of local pressure to density or temperature in a stream
of ideal gas in which the momentum flux f and the heat flux q are negligible.

SOLUTION

With f andqneglected, the equation of energy (Eq. 11.2-5 or Eq. (G) in Table 11.4-1with i = 1∕V̂)
may be rewritten as

iĈp
DT
Dt

=
(
𝜕 ln V̂
𝜕 lnT

)
p

Dp
Dt

(11.4-36)

For an ideal gas, pV̂ = RT∕M, where M is the molecular weight of the gas, so that
(𝜕 ln V̂∕𝜕 lnT)p = 1. Hence, Eq. 11.4-36 becomes

iĈp
DT
Dt

=
Dp
Dt

(11.4-37)

Dividing this equation by p and assuming the molar heat capacity C̃p = MĈp to be constant, we
can again use the ideal-gas law to get

D
Dt

(
C̃p

R
lnT − ln p

)
= 0 (11.4-38)

Hence, the quantity in parentheses is a constant following an element of the fluid, as is its
antilogarithm, so that we have

TC̃p∕Rp−1 = constant (11.4-39)

This relation among the thermodynamic properties applies to all thermodynamic states p, T
that the fluid element encounters as it moves along with the fluid.

When we introduce the definition u = Ĉp∕ĈV and the ideal-gas relations C̃p − C̃V = R and
p = iRT∕M, Eq. 11.4-39 can be rearranged to give the related expressions

p(u−1)∕uT−1 = constant (11.4-40)

and
pi−u = constant (11.4-41)

These last three equations find frequent use in the study of frictionless adiabatic processes in
ideal-gas dynamics. Equation 11.4-41 is a famous relation well worth remembering.

When the viscous momentum flux f and the heat flux q are zero, there is no change in
entropy following an element of fluid. Hence, the derivative d ln p∕d lnT = u∕(u − 1) following
the fluid motion has to be understood to mean (𝜕 ln p∕𝜕 lnT)S = u∕(u − 1). This equation is then
just a standard formula from equilibrium thermodynamics.

EXAMPLE 11.4-6

One-Dimensional
Compressible Flow:
Velocity, Temperature,
and Pressure Profiles in
a Stationary Shock
Wave

We consider here the adiabatic expansion3–8 of an ideal gas through a convergent-divergent
nozzle under such conditions that a stationary shock wave is formed. The gas enters the nozzle
from a reservoir, where the pressure is p0, and discharges to the atmosphere, where the pres-
sure is pa. In the absence of a shock wave, the flow through a well-designed nozzle is virtually
frictionless (hence, isentropic for the adiabatic situation being considered). If, in addition, pa∕p0
is sufficiently small, it is known that the flow is essentially sonic at the throat (the region of
minimum cross section) and is supersonic in the divergent portion of the nozzle. Under these
conditions, the pressure will continually decrease, and the velocity will increase in the direction
of the flow, as indicated by the curves in Fig. 11.4-4.

3H. W. Liepmann and A. Roshko, Elements of Gas Dynamics,Wiley, New York (1957), §5.4 and §13.12.
4J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, Wiley, New

York, 2nd corrected printing (1964), pp. 791–797.
5M. Morduchow and P. A. Libby, J. Aeronautical Sci., 16, 674–684 (1948).
6R. von Mises, J. Aeronautical Sci., 17, 551–554 (1950).
7G. S. S. Ludford, J. Aeronautical Sci., 18, 830–834 (1951).
8C. R. Illingworth, “Shock waves,” inModern Developments in Fluid Dynamics. High Speed Flow, vol 1.,

L. Howarth, ed., Clarendon Press, Oxford (1953), pp. 122–130.
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Fig. 11.4-4. Formation of a shock wave in a nozzle.

However, for any nozzle design there is a range of pa∕p0 for which such an isentropic flow

produces a pressure less than pa at the exit. Then the isentropic flow becomes unstable. The sim-

plest ofmany possibilities is a stationary normal shockwave, shown schematically in Fig. 11.4-4

as a pair of closely spaced parallel lines. Here the velocity falls off very rapidly to a subsonic

value, while both the pressure and the density rise. These changes take place in an extremely

thin region, which may therefore be considered locally one-dimensional and laminar, and they

are accompanied by a very substantial dissipation of mechanical energy. Viscous dissipation

and heat conduction effects are thus concentrated in an extremely small region of the nozzle,

and it is the purpose of this example to explore the fluid behavior there. For simplicity the shock

wave will be considered normal to the fluid streamlines; in practice, much more complicated

shapes are often observed. The velocity, pressure, and temperature just upstream of the shock

can be calculated and will be considered as known for the purposes of this example.

Use the three equations of change to determine the conditions under which a shock wave

is possible and to find the velocity, temperature, and pressure distributions in such a shock

wave. Assume steady, one-dimensional flow of an ideal gas, neglect the dilatational viscosity

n, and ignore changes of 4, k, and Ĉp with temperature and pressure.

SOLUTION

The assumption of one-dimensional flow implies that the density, x component of the velocity,

temperature, and pressure depend only on the position x along the flow direction, and that the

y and z components of the velocity are zero. The equations of change in the neighborhood of

the stationary (steady-state) shock wave may be simplified to

Equation of continuity: d
dx

ivx = 0 (11.4-42)
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x Equation of motion: ivx
dvx
dx

= −
dp
dx

+ 4

3

d
dx

(
4
dvx
dx

)
(11.4-43)9

Equation of energy: iĈpvx
dT
dx

= d
dx

(
kdT
dx

)
+ vx

dp
dx

+ 4

3
4

(
dvx
dx

)2

(11.4-44)

The energy equation is in the form of Eq. 11.2-5 or Eq. (G) of Table 11.4-1, written for an ideal
gas at steady state.

The equation of continuity may be integrated to give

ivx = i1v1 (11.4-45)

in which i1 and v1 are quantities evaluated a short distance upstream from the shock.
In the energy equation we eliminate ivx by use of Eq. 11.4-45 and dp∕dx by using the

equation of motion to get (after combining the two terms containing the viscosity)

i1Ĉpv1
dT
dx

= d
dx

(
kdT
dx

)
+ vx

(
−i1v1

dvx
dx

+ 4

3

d
dx

(
4
dvx
dx

))
+ 4

3
4

(
dvx
dx

)2

= d
dx

(
kdT
dx

)
− i1v1

d
dx

(
1

2
v2x

)
+ 4

3
4
d
dx

(
vx

dvx
dx

)
(11.4-46)

We next move the second term on the right side over to the left side and divide the entire
equation by i1v1. Then each term is integrated with respect to x to give

ĈpT + 1

2
v2x =

k

i1Ĉpv1

d
dx

(
ĈpT +

(
4

3
Pr

)
1

2
v2x

)
+ CI (11.4-47)

in which CI is a constant of integration and Pr = Ĉp4∕k. For most gases Pr is between 0.65 and
0.85, with an average value close to 0.75. Therefore, in order to simplify the problem, we set

Pr equal to 3

4
. Then Eq. 11.4-47 becomes a first-order, linear ordinary differential equation, for

which the solution is

ĈpT + 1

2
v2x = CI + CII exp[(i1Ĉpv1∕k)x] (11.4-48)

Since ĈpT + 1

2
v2x cannot increase without limit in the positive x direction, the second integration

constant CII must be zero. The first integration constant is evaluated just upstream from the
shock, so that

ĈpT + 1

2
v2x = ĈpT1 +

1

2
v2
1
≡ CI (11.4-49)

Of course, if we had not chosen Pr to be 3

4
, a numerical integration of Eq. 11.4-47 would have

been required.
Next we substitute the integrated continuity equation into the equation of motion and

integrate once to obtain

i1v1vx = −p + 4

3
4
dvx
dx

+ CIII (11.4-50)

Evaluation of the constant CIII from conditions just upstream from the shock, where vx = v1
and dvx∕dx ≈ 0 (i.e., the velocity upstream from the shock varies slowly with x compared to the
changes occurring within the shock wave), gives CIII = i1v

2
1
+ p1 = i1[v21 + (RT1∕M)]. We now

multiply both sides by vx and divide by i1v1. Then, with the help of the ideal-gas law, p =
iRT∕M, and Eqs. 11.4-45 and 11.4-49, we may eliminate p from Eq. 11.4-44 to obtain a relation

9The term containing (4/3) comes from the −[∇ ⋅ f] term in the equation of motion, whose xx
component is, according to Eq. 1.2-7 (with n = 0)

− d
dx

fxx = − d
dx

(
−24

dvx
dx

+ 2

3
4
dvx
dx

)
= + d

dx

(
4

3
4
dvx
dx

)
(11.4-43a)
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containing only vx and x as variables:
4

3

4

i1v1
vx

dvx
dx

= u + 1

2u
v2x +

u − 1

u
CI −

CIII

i1v1
vx (11.4-51)

where u = Cp∕CV . This equation may now be rewritten dimensionless form:

d
dd
dk

= vMa1(d − 1)(d − w) (11.4-52)

The relevant dimensionless quantities are:

d =
vx
v1

= dimensionless velocity (11.4-53)

k = x
m

= dimensionless coordinate (11.4-54)

Ma1 =
v1√

uRT1∕M
= Mach number at the upstream condition (11.4-55)

w = u − 1

u + 1
+ 2

u + 1

1

Ma21
(11.4-56)

v = 9

8
(u + 1)

√
0∕8u (11.4-57)

The reference length m is the mean-free path defined in Eq. 1.6-3 (with d2 eliminated by use of
Eq. 1.6-9):

m =
341
i1

√
0M
8RT1

(11.4-58)

This choice of dimensionless quantities is far from obvious. Equation 11.4-52 may be verified
by working backward from Eq. 11.4-52 to Eq. 11.4-51, and even that is tedious. The solution to
Eq. 11.4-52 is

1 − d(k)
(d(k) − w)w

= C exp[vMa1(1 − w)k] (11.4-59)

where C is an arbitrary constant of integration. Note that Eq. 11.4-59 satisfies the boundary
condition that d → 1 as k → −∞. Setting the constant of integration to 1, Eq. 11.4-59 can be
rewritten

1 − d(k)
(d(k) − w)w

= exp[vMa1(1 − w)(k − k0)] (w < d < 1) (11.4-60)

where k0 = x0∕m and x0 is the location of the shockwave. This equation describes the dimension-
less velocity distribution d(k) where k0 is considered to be known. It can be seen from the plot
of Eq. 11.4-60 in Fig. 11.4-5 that shock waves are indeed very thin. The temperature and pres-
sure distributions may be determined from Eq. 11.4-60 and Eqs. 11.4-49 and 11.4-50. Since d(k)
must approach unity as k → −∞, the constant w is less than 1. This can be true only if Ma1 > 1,
that is, if the upstream flow is supersonic. It can also be seen that for very large positive k, the
dimensionless velocity d approaches w. The Mach number Ma1 is defined as the ratio of v1 to
the velocity of sound at T1 (see Problem 11C.1).
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Fig. 11.4-6. Temperature profile through a shock wave for helium with Ma1 = 1.82. The
experimental values were measured with a resistance-wire thermometer. [Adapted from H.

W. Liepmann and A. Roshko, Elements of Gas Dynamics, Wiley, New York (1957), p. 333.]

In the above development we chose the Prandtl number Pr to be 3

4
, but the solution has

been extended5 to include other values of Pr, as well as the temperature variation of the viscos-
ity.

The tendency of a gas in supersonic flow to revert spontaneously to subsonic flow is impor-

tant in wind tunnels and in the design of high-velocity systems, e.g., in turbines and rocket
engines. Note that the changes taking place in shock waves are irreversible and that, since the

velocity gradients are so very steep, a considerable amount of mechanical energy is dissipated.
In view of the thinness of the predicted shock wave, one may question the applicability of

the analysis given here, based on the continuum equations of change. Therefore, it is desirable
to compare the theory with experiment. In Fig. 11.4-6 experimental temperaturemeasurements

for a shock wave in helium are compared with the theory for u = 5

3
, Pr = 2

3
, and 4 ∼ T0.647. It can

be seen that the agreement is excellent. Nevertheless we should recognize that this is a simple
system, inasmuch as helium is monatomic, and therefore internal degrees of freedom are not
involved. The corresponding analysis for a diatomic or polyatomic gas would need to consider
the exchange of energy between translational and internal degrees of freedom, which typically
requires hundreds of collisions, broadening the shock wave considerably. Further discussion

of this matter can be found in Chapter 11 of Ref. 4.

§11.5 THE EQUATIONS OF CHANGE AND SOLVING PROBLEMS
WITH TWO INDEPENDENT VARIABLES

The illustrative examples in the preceding section involved only one independent vari-
able. In this sectionwe discuss several problems involving two independent variables. For
problems with two independent variables, the equations of change produce partial differ-
ential equations that can be quite challenging to solve. In the examples below, the problems
are solved by using a few well-known methods. There are numerous other methods that
can be exploited to solve flow problems, which are beyond the scope of this text. The
reasons for including some examples here are (1) to provide additional examples where
the equations of change are simplified using postulates, and boundary (and initial) condi-
tions are used to evaluate unknown constants; (2) to illustrate some useful and interesting
transport phenomena; and (3) to show the reader that with a little more experience with
mathematics, many more complicated problems in transport phenomena can be solved.



Trim Size: 8in x 10in Bird1e c11.tex V1 - October 21, 2014 4:07 P.M. Page 347

§11.5 The Equations of Change and Solving Problems with Two Independent Variables 347

Example 11.5-1 addresses the heating of a semi-infinite slab. The similarity solution
method employed draws upon an analogy with a mathematically equivalent momentum
transport problem solved previously in Chapter 3. Example 11.5-2 considers the heating of
a finite slab. Here we introduce the powerful method of separation of variables. Example
11.5-3 focuses on forced convection of a fluid heated in a tube in laminar flow. An approx-
imate solution valid for large z was presented in §10.9. Here we exploit the similarity
method to develop an approximate solution valid for small z.

EXAMPLE 11.5-1

Heating of a
Semi-Infinite Solid
Slab

A solid material occupying the space from y = 0 to y = ∞ is initially at temperature T0. At time

t = 0, the surface at y = 0 is suddenly raised to temperature T1 and maintained at that temper-

ature for t > 0. Find the time-dependent temperature profile T(y,t). Assume that the density,

heat capacity, and thermal conductivity are all constant.

SOLUTION

For a solid with v = 𝟎, with constant physical properties, the appropriate form of the equation

of energy in §11.2 is Eq. 11.2-10. Assuming T = T(y,t), this equation can be further simplified to

(with the help of Eq. B.9-1)

iĈp
𝜕T
𝜕t

= k𝜕
2T
𝜕y2

(11.5-1)

The initial and boundary conditions are

I. C.: at t ≤ 0, T = T0 for all y (11.5-2)

B. C. 1: at y = 0, T = T1 for all t > 0 (11.5-3)

B. C. 2: as y → ∞, T → T0 for all t > 0 (11.5-4)

We introduce the dimensionless temperature difference P = (T − T0)∕(T1 − T0). The equation
of energy can then be written as

𝜕P
𝜕t

= w
𝜕2P
𝜕y2

(11.5-5)

where w = k∕iĈp is the thermal diffusivity. The initial and boundary conditions are then

rewritten as

I. C.: at t ≤ 0, P = 0 for all y (11.5-6)

B. C. 1: at y = 0, P = 1 for all t > 0 (11.5-7)

B. C. 2: as y → ∞, P → 0 for all t > 0 (11.5-8)

This problem is mathematically analogous to that given by Eq. 3.8-5 along with the subse-

quently stated boundary conditions (for flow near a wall suddenly set in motion). Hence, the
solution in Eq. 3.8-16 can be taken over directly by appropriate changes in notation:

P(y∕
√
4wt) = 1 − 2√

0 ∫
y∕

√
4wt

0

e−q
2
dq (11.5-9)

or
T(y,t) − T0

T1 − T0

= 1 − erf
y√
4wt

(11.5-10)

The solution shown in Fig. 3.8-2(b) describes the temperature profiles when the ordinate is

labeled (T − T0)∕(T1 − T0) and the abscissa is labeled y∕
√
4wt.

Since the error function reaches a value of 0.99 when the argument is about 2, the thermal
penetration thickness tT is typically defined to be

tT = 4
√
wt (11.5-11)

That is, for distances y > tT, the temperature has changed by less than 1% of the difference

T1 − T0. If it is necessary to calculate the temperature in a slab of finite thickness, the solution
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in Eq. 11.5-10 will be a good approximation when tT is small with respect to the slab thickness.
However, when tT is of the order of magnitude of the slab thickness or greater, then the series
solution of Example 11.5-2 has to be used.

The wall heat flux can be calculated from Eq. 11.5-10 as follows:

qy|y=0 = −k 𝜕T
𝜕y

|||||y=0 = k√
0wt

(T1 − T0) (11.5-12)

Hence, the wall heat flux varies as t−1∕2, whereas the penetration thickness varies as t1∕2.

EXAMPLE 11.5-2

Heating of a Solid Slab
of Finite Thickness

A solid slab occupying the space between y = −b and y = +b is initially at temperature T0. At
time t = 0, the surfaces at y = ±b are suddenly raised to T1 and kept at that temperature. Find
T(y,t).

SOLUTION

As in the previous example,we have v = 𝟎 and assume that the physical properties are constant.
With the assumption that T = T(y,t), the equation of energy expressed by Eq. 11.2-10 becomes

iĈp
𝜕T
𝜕t

= k𝜕
2T
𝜕y2

(11.5-13)

The initial and boundary conditions are

I. C.: at t ≤ 0, T = T0 for − b ≤ y ≤ b (11.5-14)

B. C. 1: at y = −b, T = T1 for all t > 0 (11.5-15)

B. C. 2: at y = +b, T = T1 for all t > 0 (11.5-16)

For this problem we define the following dimensionless variables:

Dimensionless temperature: P(q,f) =
T1 − T(y,t)
T1 − T0

(11.5-17)

Dimensionless coordinate: q =
y
b

(11.5-18)

Dimensionless time: f = wt
b2

(11.5-19)

With these dimensionless variables, the differential equation and boundary conditions are

𝜕P
𝜕f

= 𝜕2P
𝜕q2

(11.5-20)

I. C.: at f = 0, P = 1 for − 1 ≤ q ≤ 1 (11.5-21)

B. C. 1 and 2: at q = ±1, P = 0 for f > 0 (11.5-22)

Note that no parameters appear when the problem is restated thus.
We can solve this problemby themethod of separation of variables.We start by postulating

that a solution of the following product form can be obtained:

P(q,f) = f (q)g(f) (11.5-23)

Substitution of this trial function into Eq. 11.5-20 and subsequent division by the product
f (q)g(f) gives

1

g
dg
df

= 1

f
d2f
dq2

(11.5-24)

The left side is a function of f alone, and the right side a function of q alone. This can be true
only if both sides equal a constant, which we call −m. Then we get two ordinary differential
equations

dg
df

= −mg (11.5-25)

d2f
dq2

= −mf (11.5-26)
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Equation 11.5-25 is of the form of Eq. C.1-1 and may be integrated to give

g(f) = A exp(−mf) (11.5-27)

in whichA is a constant of integration.We do not expect the temperature to grow exponentially

in time, and thus Eq. 11.5-27 implies that m must be positive. It is then convenient to let m = c2

to enforce this requirement (where c is a real number). Equation 11.5-27 is thus rewritten

g(f) = A exp(−c2f) (11.5-28)

Equation 11.5-26 is of the form of Eq. C.1-3, and the general solution for f (q) is

f (q) = B sin cq + C cos cq (11.5-29)

where B and C are constants of integration.

Because of the symmetry about the xz plane, we must have P(q,f) = P(−q,f), and thus

f (q) = f (−q). Since the sine function does not have this kind of behavior, we have to require that

B be zero. Use of either of the two boundary conditions then gives

C cos c = 0 (11.5-30)

Clearly C cannot be zero, because that choice leads to an inadmissible solution (i.e., we would

not be able to satisfy the initial condition). However, the equality can be satisfied by many

different choices of c, which we call cn:

cn =
(
n + 1

2

)
0, n = 0, ± 1, ± 2, ± 3…±∞ (11.5-31)

Hence, Eq. 11.5-20 can be satisfied by

Pn(q,f) = AnCn exp

[
−
(
n + 1

2

)2

02f

]
cos

(
n + 1

2

)
0q (11.5-32)

The subscripts n remind us that A and C may be different for each value of n. Because of the

linearity of the differential equation, we may now superpose all the solutions of the form of

Eq. 11.5-32. This superposition is necessary because Eq. 11.5-32 alone cannot satisfy the initial

condition. When we add all of the solutions of the form of Eq. 11.5-32, we note that the expo-

nentials and cosines for n have the same values as those for −(n + 1), so that the terms with

negative indices combine with those with positive indices. The superposition then gives

P(q,f) =
∞∑
n=0

Dn exp

[
−
(
n + 1

2

)2

02f

]
cos

(
n + 1

2

)
0q (11.5-33)

in which Dn = AnCn + A−(n+1)C−(n+1).

The Dn are now determined by applying the initial condition, which gives

1 =
∞∑
n=0

Dn cos

(
n + 1

2

)
0q (11.5-34)

Multiplication by cos
(
m + 1

2

)
0q and integration from q = −1 to q = +1 gives

∫
+1

−1
cos

(
m + 1

2

)
0q dq =

∞∑
n=0

Dn ∫
+1

−1
cos

(
m + 1

2

)
0q cos

(
n + 1

2

)
0q dq (11.5-35)

When the integrations are performed, all integrals on the right side are identically zero, except

for the term in which n = m. Hence, we get

sin
(
m + 1

2

)
0q(

m + 1

2

)
0

|||||||
q=+1

q=−1

= Dm

1

2

(
m + 1

2

)
0q + 1

4
sin 2

(
m + 1

2

)
0q(

m + 1

2

)
0

|||||||
q=+1

q=−1

(11.5-36)
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Fig. 11.5-1. Temperature profiles

for unsteady-state heat

conduction in a slab of finite

thickness 2b. The initial
temperature of the slab is T0, and

T1 is the temperature imposed at

the slab surfaces for time t > 0.

[H. S. Carslaw and J. C. Jaeger,

Conduction of Heat in Solids, 2nd
edition, Oxford University Press

(1959), p. 101.]

After inserting the limits, we may solve for Dm to get

Dm = 2(−1)m(
m + 1

2

)
0

(11.5-37)

Substitution of this expression into Eq. 11.5-33 gives the temperature profile, which we now

rewrite in terms of the original variables1

T1 − T(y,t)
T1 − T0

= 2

∞∑
n=0

(−1)n(
n + 1

2

)
0
exp

[
−
(
n + 1

2

)2

02wt∕b2
]
cos

(
n + 1

2

)
0y
b

(11.5-38)

The solutions to many unsteady-state heat-conduction problems come out as infinite series,

such as that just obtained here. These series converge rapidly for large values1 of the dimen-

sionless time, wt∕b2. For very short times the convergence is very slow, and in the limit as wt∕b2
approaches zero, the solution in Eq. 11.5-38 may be shown to approach that given in Eq. 11.5-10

(with the origin properly translated). The dimensionless temperature profile is plotted as a

function of y∕b for several values of f = wt∕b2 in Fig. 11.5-1. From the figure it is clear that when

the dimensionless time f = wt∕b2 is 0.1, the energy has “penetrated” measurably to the center

plane of the slab, and that at f = 1.0 the heating is 90% complete at the center plane.

Results analogous to Fig. 11.5-1 are given for infinite cylinders and for spheres in

Figs. 11.5-2 and 11.5-3.

EXAMPLE 11.5-3

Laminar Tube Flow
with Constant Heat
Flux at the Wall:
Asymptotic Solution
for the Entrance Region

Recall that in §10.9 we studied the laminar tube flowwith constant heat flux at the wall, but we

obtained only the asymptotic solution for large distances z down the tube. Here we develop an

expression for T(r,z) that is useful for small values of z.

SOLUTION

The fluid enters the heated region with an initially uniform temperature of T = T1. For small

z, only the fluid very close to the wall, near r = R, will increase in temperature, as illustrated

in Fig. 10.9-3. Limiting our attention to this thin region near the wall motivates the following

three approximations that lead to results that are accurate in the limit as z → 0:

1H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, 2nd edition

(1959), p. 97, Eq. (8); the alternate solution in Eq. (9) converges rapidly for small times.
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Fig. 11.5-2. Temperature profiles

for unsteady-state heat

conduction in a cylinder of

radius R. The initial temperature

of the cylinder is T0, and T1 is the

temperature imposed at the

cylinder surface for time t > 0.

[H. S. Carslaw and J. C. Jaeger,

Conduction of Heat in Solids, 2nd
edition, Oxford University Press

(1959), p. 200.]
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Fig. 11.5-3. Temperature profiles

for unsteady-state heat

conduction in a sphere of radius

R. The initial temperature of the

sphere is T0, and T1 is the

temperature imposed at the

sphere surface for time t > 0.

[H. S. Carslaw and J. C. Jaeger,

Conduction of Heat in Solids, 2nd
edition, Oxford University Press

(1959), p. 234.]

a. Curvature effects may be neglected and the problem treated as though the wall were

flat; call the distance from the wall y = R − r.

b. The fluid may be regarded as extending from the (flat) heat-transfer surface (y = 0) to
y = ∞.

c. The velocity profile may be regarded as linear, with a slope given by the slope of the

parabolic velocity profile at the wall: vz(y) = v0y∕R, in which v0 = (𝒫0 −𝒫L)R2∕24L.

This is the way the system would appear to a tiny “observer” who is located within the very

thin shell of heated fluid. To this observer, the wall would seem flat, the fluid would appear to

be of infinite extent, and the velocity profile would seem to be linear.

As in §10.9, we assume that the physical properties are constant, that energy production

by viscous dissipation is negligible, that the steady-state temperature profile depends on only

y (or r) and z, and that conduction in the z direction is negligible compared to convection in the

z direction. The energy equation then becomes, in the region just slightly beyond z = 0,

v0
y
R
𝜕T
𝜕z

= w
𝜕2T
𝜕y2

(11.5-39)
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The boundary conditions for this differential equation are

B.C. 1: at z = 0, T = T1 (11.5-40)

B.C. 2: at y = 0, qy = −k𝜕T∕𝜕y = q0 (11.5-41)

B.C. 3: as y → ∞, T → T1 (11.5-42)

Actually it is easier to work with the corresponding equation for the heat flux in the y direction
(qy = −k𝜕T∕𝜕y). This equation is obtained by dividing Eq. 11.5-39 by y and differentiating with

respect to y:

v0
1

R

𝜕qy
𝜕z

= w
𝜕
𝜕y

(
1

y

𝜕qy
𝜕y

)
(11.5-43)

The boundary conditions for this differential equation are

B.C. 1: at z = 0, qy = 0 (11.5-44)

B.C. 2: at y = 0, qy = −k𝜕T∕𝜕y = q0 (11.5-45)

B.C. 3: as y → ∞, qy → 0 (11.5-46)

The first and third boundary conditions arise because the derivative of a constant temperature

is zero. It is more convenient to work with dimensionless variables defined as

b =
qy
q0

q =
y
R

m = wz
v0R2

(11.5-47)

Then Eq. 11.5-43 becomes
𝜕b

𝜕m
= 𝜕

𝜕q

(
1

q

𝜕b

𝜕q

)
(11.5-48)

with the boundary conditions

B. C. 1: at m = 0, b = 0 (11.5-49)

B. C. 2: at q = 0, b = 1 (11.5-50)

B. C. 3: as q → ∞, b → 0 (11.5-51)

Boundary conditions 1 and 3 are similar and motivate us to seek a similarity solution, similar

to that employed in Example 3.8-1. We assume that the dimensionless temperature b is a func-

tion of only a single combined variable, c = q∕mb, where the exponent b is yet to be determined.

Substituting b = b(c) into Eq. 11.5-48 and performing the required derivatives, one can show

that the resulting ordinary differential equation does not contain q or m explicitly for b = 1∕3.
Thus, we define the new combined independent variable c = q∕ 3

√
9m, to a obtain a differen-

tial equation for b with c as the only independent variable (the “9” inside the cube root is for

convenience later). Then Eq. 11.5-48 becomes

c
d2b
dc2

+ (3c3 − 1)db
dc

= 0 (11.5-52)

The boundary conditions are:

B.C. 1′: at c = 0, b = 1 (11.5-53)

B.C. 2′: as c → ∞, b → 0 (11.5-54)

The solution of Eq. 11.5-52 is foundbyfirst letting db∕dc = p, and getting the first-order equation

for p

c
dp
dc

+ (3c3 − 1)p = 0 (11.5-55)

Multiplication by (1∕pc)dc allows the variables to be separated so that the equation can be inte-

grated to give

p = db
dc

= C1ce
−c3 (11.5-56)
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a function of y∕R for several

values of wz∕v0R2 (from Eq.

11.5-62).

This first-order separable differential equation can in turn be integrated to give

b(c) = C1 ∫ ce−c
3
dc + C2 (11.5-57)

The constants of integration may be obtained from the boundary conditions to give the dimen-

sionless heat flux as

b(c) =
∫ ∞
c ce−c

3

dc

∫ ∞
0

ce−c3dc
= 3

T
(

2

3

) ∫
∞

c
ce−c

3

dc (11.5-58)

where T(n) is the gamma function defined in §C.4
(
T
(

2

3

)
≈ 1.35412

)
. The temperature is then

obtained by integrating the heat flux

∫
T1

T
dT = −1

k ∫
∞

y
qydy (11.5-59)

or, in dimensionless form

P(q,m) =
T − T1

q0R∕k
= 3

√
9m∫

∞

c
bdc (11.5-60)

Then the expression for b is inserted into the integral, to get

P(q,m) = 3
√
9m

3

T
(

2

3

) ∫
∞

c

[
∫

∞

c
ce−c

3

dc

]
dc (11.5-61)

The order of integration is now interchanged (§C.7), so that

P(q,m) = 3
√
9m

3

T
(

2

3

) ∫
∞

c

⎡⎢⎢⎣∫
c

c
ce−c

3

dc
⎤⎥⎥⎦ dc

= 3
√
9m

3

T
(

2

3

) ∫
∞

c
[ce−c

3

(c − c)] dc

= 3
√
9m

⎡⎢⎢⎢⎣
e−c3

T
(

2

3

) − c

⎛⎜⎜⎜⎝
T
(

2

3
,c3

)
T
(

2

3

) ⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ (11.5-62)
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where T(n,x) is an incomplete gamma function,2 also described in App. C. The dimensionless

temperature predicted by Eq. 11.5-62 is plotted as a function of q = y∕R for several values of

m = wz∕v0R2 in Figure 11.5-4 (the dimensionless temperature P = (T − T1)∕(q0R∕k) is defined

identically in §10.9 and here). Each of the curves in Fig. 11.5-4 has the same slope for small

y∕R, which is required by the boundary condition of an imposed heat flux at the wall. The

temperature profile can be characterized as a thermal boundary layer, which penetrates further

into the fluid with increasing z. Keep inmind that this approximate solution is only valid when

the boundary layer is of small extent compared to R.

§11.6 CONCLUDING COMMENTS

We began this chapter by deriving an equation for the conservation of kinetic plus internal
energy. We then subtracted from this the equation of change for the kinetic energy (from
Chapter 3), and this resulted in an equation of change for the internal energy. Next, using
some formulas from equilibrium thermodynamics, the internal energy equation was con-
verted into an equation for the temperature. It is this latter equation that forms the basis for
most of the remainder of the chapter. With it one can formulate many important problems
in heat transfer. Many problems so formulated may be solved by standard mathematical
methods, but many more have to be solved by numerical methods.

The energy conservation equation set forth here is really incomplete. For example, we
have not accounted for electromagnetic effects. To do that, we would have to add to the
equations of continuity, motion, and energy (appropriately generalized to include elec-
tric and magnetic energies), and the Maxwell equations for electrodynamics. The fields of
electrohydrodynamics and magneto-hydrodynamics are well–established fields. Rather
than go into these fields, we have chosen to “splice in” an electrical source term Se and
then solve some simple problems, as we did in Chapter 10. The same comment applies to
the nuclear source terms and chemical source terms that have been treated there.

In the remainder of the chapter we have shown how a number of relatively uncompli-
cated problems can be solved with the equations of change. In §11.4, we explained how to
set up and solve problems involving one independent variable, and in §11.5we did several
problems involving two independent variables. There are many treatises on heat transfer,
and also handbooks, in which the solutions to many more problems may be found.

QUESTIONS FOR DISCUSSION

1. Define energy, potential energy, kinetic energy, and internal energy. What common units are

used for these?

2. How does one assign the physical meaning to the individual terms in Eqs. 11.1-8 and 11.2-1?

3. In getting Eq. 11.2-7 we used the relation C̃p − C̃V = R, which is valid for ideal gases. What is

the analogous equation for nonideal gases and liquids?

4. Summarize all the assumptions made in obtaining the equation of change for the temperature.

5. Compare and contrast forced convection and free convection, with regard to methods of prob-

lem solving, and occurrence in industrial and meteorological problems.

6. If a rocket nose cone were made of a porous material and a volatile liquid were forced slowly

through the pores during reentry into the atmosphere, howwould the cone surface temperature

be affected and why?

7. What is Archimedes’s principle, and how is it related to the term igv(T − T) in Eq. 11.3-2?

2M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions, Dover, New York, 9th

Printing (1973), pp. 255 et seq.
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8. When, if ever, can the equation of energy be completely and exactly solved without detailed

knowledge of the velocity profiles of the system?

9. When, if ever, can the equation of motion be completely solved for a nonisothermal system,

without detailed knowledge of the temperature profiles of the system?

PROBLEMS 11A.1 Temperature in a friction bearing. Calculate themaximum temperature in the friction bearing

of Problem 3A.1, assuming the thermal conductivity of the lubricant to be 4.0 × 10−4 cal∕s ⋅ cm ⋅
∘C, the metal temperature 200∘C, and the rate of rotation 4000 rpm.

Answer: About 217∘C (from both Eq. 11.4-16 and Eq. 10.8-9)

11A.2 Viscosity variation and velocity gradients in a nonisothermal film. Water is falling over a

vertical wall in a film 0.1mm thick. The water temperature is 100∘C at the free liquid surface

and 80∘C at the wall surface.

(a) Show that the maximum fractional deviation between viscosities predicted by Eqs. 11.4-20

and 11.4-21 occurs when T =
√
T0Tt.

(b) Calculate the maximum fractional deviation for the conditions given.

Answer: (b) 0.6%

11A.3 Transpiration cooling
(a) Calculate the temperature distribution between the two shells of Example 11.4-4 for radial

mass flow rates of zero and 10−5 g∕s for the following conditions

R = 500 microns TR = 300∘C
nR = 100 microns Tn = 100∘C
k = 6.13 × 10−5 cal∕cm ⋅ s ⋅ ∘C
Ĉp = 0.25 cal∕g ⋅ ∘C

(b) Compare the rates of heat conduction to the surface at nR in the presence and absence of

convection.

11A.4 Velocity, temperature, andpressure changes in a shockwave. Air at 1 atmand 70∘F is flowing

at an upstream Mach number of 2 across a stationary shock wave. Calculate the following

quantities, assuming that u is constant at 1.4 and that Ĉp = 0.24 Btu∕lbm ⋅ ∘F:
(a) The initial velocity of the air.

(b) The velocity, temperature, and pressure downstream from the shock wave.

(c) The changes of internal and kinetic energy across the shock wave.

Answers: (a) 2250 ft∕s;
(b) 844 ft∕s; 888∘R; 4.48 atm;

(c) 2Û = +61.4 Btu∕lbm; 2K̂ = −86.9 Btu∕lbm

11A.5 Adiabatic frictionless compression of an ideal gas. Calculate the temperature attained by

compressing air, initially at 100∘F and 1 atm, to 0.1 of its initial volume. It is assumed that u =
1.40 , and that the compression is frictionless and adiabatic. Discuss the result in relation to the

operation of an internal combustion engine.

Answer: 950∘F

11B.1 Adiabatic frictionless processes in an ideal gas
(a) Note that a gas that obeys the ideal-gas law may deviate appreciably from C̃p = constant.

Hence, rework Example 11.4-5 using a molar heat capacity expression of the form

C̃p = a + bT + cT2 (11B.1-1)

(b) Determine the final pressure, p2, required if methane (CH4) is to be heated from 300K

and 1 atm to 800K by adiabatic frictionless compression. The recommended empirical
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constants1 for methane are: a = 2.322 cal∕g-mol ⋅ K, b = 38.04 × 10−3 cal∕g-mol ⋅ K2, and

c = −10.97 × 10−6 cal∕g-mol ⋅ K3.

Answers: (a) pT−a∕R exp[−(b∕R)T − (c∕2R)T2] = constant;

(b) 270 atm

11B.2 Viscous heating in laminar tube flow (asymptotic solutions).
(a) Show that for fully developed laminar Newtonian flow in a circular tube of radius R , the

energy equation becomes

iĈpvz,max

[
1 −

( r
R

)2
]
𝜕T
𝜕z

= k1
r
𝜕
𝜕r

(
r𝜕T
𝜕r

)
+

44v2z,max

R2

( r
R

)2

(11B.2-1)

if the viscous dissipation terms are not neglected. Here vz,max is the maximum velocity in the

tube. What restrictions have to be placed on any solutions of Eq. 11B.2-1?

(b) For the isothermal wall problem (T = T0 at r = R for z > 0 and at z = 0 for all r), find the

asymptotic expression for T(r) at large z. Do this by recognizing that 𝜕T∕𝜕zwill be zero at large

z. Solve Eq. 11B.2-1 and obtain

T(r) − T0 =
4v2z,max

4k

[
1 −

( r
R

)4
]

(11B.2-2)

(c) For the adiabatic wall problem (qr = 0 at r = R for all z > 0) an asymptotic expression for large

z may be found as follows: Multiply Eq. 11B.2-1 by rdr and then integrate from r = 0 to r = R.
Then integrate the resulting equation over z to get

Tb − T1 = (44vz,max∕iĈpR
2)z (11B.2-3)

in which T1 is the inlet temperature at z = 0. Postulate now that the asymptotic temperature

profile at large z is of the form

T(r,z) − T1 = (44vz,max∕iĈpR
2)z + f (r) (11B.2-4)

Substitute this into Eq. 11B.2-1 and integrate the resulting equation for f (r) to obtain

T(r,z) − T1 =
44vz,max

iĈpR2
z +

4v2z,max

k

[( r
R

)2

− 1

2

( r
R

)4

− 1

4

]
(11B.2-5)

after determining the integration constant by an energy balance of the tube from 0 to z. Keep
in mind that the solutions in Eqs. 11B.2-2 and 11B.2-5 are valid solutions only for large z.

11B.3 Velocity distribution in a nonisothermal film. Show that Eq. 11.4-23 meets the following

requirements:

(a) At x = t, vz = 0.

(b) At x = 0, 𝜕vz∕𝜕x = 0.

(c) lim
4t→40

vz(x) = (igt2 cos v∕240)[1 − (x∕t)2]

11B.4 Heat conduction in a spherical shell. The solid spherical shell shown in Fig. 11B.4 has inner

and outer radii R1 and R2. A hole is made in the shell at the north pole by cutting out the

conical segment in the region 0 ≤ p ≤ p1. A similar hole is made at the south pole by removing

the portion (0 − p1) ≤ p ≤ 0. The surface p = p1 is kept at temperature T = T1, and the surface at

p = 0 − p1 is held at T = T2. Find the steady-state temperature distribution.

1O. A. Hougen, K. M. Watson, and R. A. Ragatz, Chemical Process Principles, Part I, 2nd edition,

Wiley, New York (1958), p. 255. See also Part II, pp. 646–653, for a fuller discussion of isentropic process

calculations.
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(a) (b)

Insulated
surfaces

θ1 θ1

R2

R1

Solid

Hole at top
(at "north pole")

Similar hole
(at "south pole")

Fig. 11B.4 Heat conduction in a spherical shell: (a) cross section containing the z axis; (b) view
of the sphere from above.

11B.5 Axial heat conduction in a wire.2 A solid wire of constant density i moves downward with

uniform speed v into a liquid metal bath at temperature T0 as shown in Fig. 11B.5. It is desired

to find the temperature profile T(z). Assume that T = T∞ at z = ∞, and that resistance to radial

heat conduction is negligible. Assume further that the wire temperature is T = T0 at z = 0.

Temperature of wire far
from liquid metal

surface is T∞

Wire moves downward
with constant speed v

Liquid metal surface
at temperature T0

z

Fig. 11B.5 Wire moving into a liquid metal bath.

(a) First solve the problem for constant physical properties Ĉp and k. Obtain

P(z) =
T(z) − T∞

T0 − T∞
= exp

(
−
iĈpvz

k

)
(11B.5-1)

(b) Next solve the problem when Ĉp and k are known functions of the dimensionless temper-

ature P(z): k = k∞K(P) and Ĉp = Ĉp∞L(P). Obtain the temperature profile:

−

(
iĈp∞vz

k∞

)
= ∫

P

1

K(P)dP

∫ P
0

L(P)dP
(11B.5-2)

(c) Verify that the solution in (b) satisfies the differential equation from which it was derived.

2Suggested by Prof. G. L. Borman, Mechanical Engineering Department, University of Wisconsin.
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11B.6 Transpiration cooling in a planar system. Two large flat porous horizontal plates are sepa-
rated by a relatively small distance L. The upper plate at y = L is at temperature TL, and the

lower one at y = 0 is to be maintained at a lower temperature T0. To reduce the amount of heat
that must be removed from the lower plate, an ideal gas at T0 is blown upward through both

plates at a steady rate. Develop expressions for the temperature distribution and the amount

of heat q0 that must be removed from the cold plate per unit area as functions of the fluid

properties and gas flow rate. Use the abbreviation d = iĈpvyL∕k.

Answer:
T(y) − TL

T0 − TL
= edy∕L − ed

1 − ed
; q0 =

k(TL − T0)
L

(
d

ed − 1

)
11B.7 Reduction of evaporation losses by transpiration. It is proposed to reduce the rate of evapo-

ration of liquefied oxygen in small containers by taking advantage of transpiration. To do this,
the liquid is to be stored in a spherical container surrounded by a spherical shell of a porous

insulating material as shown in Fig. 11B.7. A thin space is to be left between the container and
insulation, and the opening in the insulation is to be stoppered. In operation, the evaporating

oxygen is to leave the container proper, move through the gas space, and then flow uniformly
out through the porous insulation.

Boiling oxygen
at –297°F

Tank wall

Gas space

Porous
insulation

Fig. 11B.7 Use of transpiration to reduce the

evaporation rate.

Calculate the rate of heat gain and evaporation loss from a tank 1 ft in diameter covered with a
shell of insulation 6 in. thick under the following conditions with and without transpiration.

Temperature of liquid oxygen −297∘F
Temperature of outer surface of insulation 30∘F
Effective thermal conductivity of insulation 0.02 Btu∕hr ⋅ ft ⋅ ∘F
Heat of evaporation of oxygen 91.7 Btu∕lbm

Average Ĉp of O2 flowing through insulation 0.22 Btu∕lbm ⋅ ∘F

Neglect the thermal resistance of the liquid oxygen, container wall, and gas space, and neglect
heat losses through the stopper. Assume the particles of insulation to be in local thermal equi-

librium with the gas.

Answers: 82 Btu∕hr without transpiration; 61 Btu∕hr with transpiration

11B.8 Temperature distribution in an embedded sphere. A solid sphere of radius R and thermal
conductivity k1 is embedded in an infinite solid of thermal conductivity k0. The center of the
sphere is located at the origin of coordinates, and there is a constant temperature gradient A in

the positive z direction far from the sphere. The temperature at the center of the sphere is To.
The steady-state temperature distributions in the sphere T1 and in the surrounding

medium T0 have been shown to be:3

T1(r,p) − To =
[

3k0
k1 + 2k0

]
Ar cos p r ≤ R (11B.8-1)

3L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd edition, Pergamon Press, Oxford (1987), p. 199.
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T0(r,p) − To =
[
1 −

k1 − k0
k1 + 2k0

(R
r

)3
]
Ar cos p r ≥ R (11B.8-2)

(a) What are the partial differential equations thatmust be satisfied byEqs. 11B.8-1 and 11B.8-2?

(b) Write down the boundary conditions that apply at r = R.
(c) Show that T1 and T0 satisfy their respective partial differential equations in (a).

(d) Show that Eqs. 11B.8-1 and 11B.8-2 satisfy the boundary conditions in (b).

11B.9 Heat flow in a solid bounded by two conical surfaces. A solid object has the shape depicted
in Fig. 11B.9. The conical surfaces p1 = constant and p2 = constant are held at temperatures T1

and T2, respectively. The spherical surface at r = R is insulated. For steady-state heat conduc-
tion, find

R

Conical
surfaces

Spherical
surface

(insulated)

θ1

θ2

Fig. 11B.9 Body formed from the intersection of two cones

and a sphere.

(a) The partial differential equation that T(p) must satisfy.

(b) The solution to the differential equation in (a) containing two constants of integration.

(c) Expressions for the constants of integration.

(d) The expression for the p component of the heat-flux vector.

(e) The total heat flow (cal/s) across the conical surface at p = p1.

Answer: (e) Q =
20Rk(T1 − T2)

ln

(
tan 1

2
p2

tan 1

2
p1

)
11B.10 Freezing of a spherical drop. To evaluate the performance of an atomizing nozzle, it is pro-

posed to atomize a nonvolatile liquid wax into a stream of cool air. The atomized wax particles
are expected to solidify in the air, from which they may later be collected and examined. The
wax droplets leave the atomizer only slightly above their melting point (see Fig. 11B.10).

T0

Temperature, T

R

RfLiquid
zone

Solid
zone

Radial distance, r

T∞

Fig. 11B.10 Temperature profile in the freezing

of a spherical drop.
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Estimate the time tf required for a drop of radius R to freeze completely, if the drop is initially

at its melting point T0 and the surrounding air is at T∞. Heat is lost from the drop to the sur-

rounding air according to Newton’s law of cooling, with a constant heat-transfer coefficient

h. Assume that there is no volume change in the solidification process. Solve the problem by

using a quasi-steady-state method.

(a) First solve the steady-state heat-conduction problem in the solid phase in the region

between r = Rf (the liquid–solid interface) and r = R (the solid-air interface). Let k be the

thermal conductivity of the solid phase. Then find the radial heat flow Q across the spherical

surface at r = R.
(b) Then write an unsteady-steady energy balance, by equating the heat liberation at r = Rf (t)
resulting from the freezing of the solid to the heat flow Q across the spherical surface at r = R.
Integrate the resulting separable, first-order differential equation between the limits 0 and R,
to obtain the time that it takes for the drop to solidify. Let 2Ĥf be the latent heat of freezing (per

unit mass).

Answers: (a) Q =
h ⋅ 40R2(T0 − T∞)

[1 − (hR∕k)] + (hR2∕kRf )
; (b) tf =

i2Ĥf R

h(T0 − T∞)

[
1

3
+ 1

6

hR
k

]
11B.11 Temperature rise in a spherical catalyst pellet. A catalyst pellet, shown in Fig. 11B.11, has

a radius R and a thermal conductivity k (which may be assumed constant). Because of the

chemical reaction occurring within the porous pellet, heat is generated at a rate Sc cal∕cm3 ⋅ s.
Heat is lost at the outer surface of the pellet to a gas stream at constant temperature Tg by con-

vective heat transfer with heat-transfer coefficient h. Find the steady-state temperature profile,

assuming that Sc is constant throughout.

R

Gas
temperature Tg

Fig. 11B.11 Sphere with heat generation.

(a) Set up the differential equation by making a shell energy balance.

(b) Set up the differential equation by simplifying the appropriate form of the energy equation.

(c) Integrate the differential equation to get the temperature profile. Sketch the function T(r).
(d) What is the limiting form of T(r)when h → ∞.

(e) What is the maximum temperature in the system?

(f) Where in the derivation would one modify the procedure to account for variable k and

variable Sc?

11B.12 Stability of an exothermic reaction system.3 Consider a porous slab of thickness 2B, width

W, and length L, with B << W and B << L. Within the slab an exothermic reaction occurs, with

a temperature-dependent rate of heat production Sc(T) = Sc0 expA(T − T0). Let the coordinate
x vary across the thin dimension with −B ≤ x ≤ B. The temperatures at surfaces at x = ±B are

both fixed at T = T0.

(a) Use the energy equation to obtain a differential equation for the temperature in the slab.

Assume constant physical properties, and postulate a steady-state solution T(x),
(b) Write the differential equation and boundary conditions in terms of these dimensionless

quantities: k = x∕B, P = A(T − T0), and m = Sc0AB
2∕k.

(c) Integrate the differential equation. Hint: First multiply by 2dP∕dk to obtain

(
dP
dk

)2

= 2m(expP0 − expP) (11B.12-1)
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in which P0 is an auxiliary constant representing the value of P at k = 0.

(d) Integrate the result of (c) and make use of the boundary conditions to obtain the relation

between the slab thickness and midplane temperature

exp

(
−1

2
P0

)
arc cosh

(
exp

(
1

2
P0

))
=

√
1

2
m (11B.12-2)

(e) Calculate m atP0 = 0.5, 1.0, 1.2, 1.4, and 2.0; graph these results to find the maximum value

of m for steady-state conditions. If this value of m is exceeded, the system will explode.

11B.13 Laminar annular flowwith constant wall heat flux. Repeat the development of §10.9 for flow

in an annulus of inner and outer radii nR and R respectively, starting with the equations of

change. Heat is added to the fluid through the inner cylinder wall at a rate q0 (energy per unit

area per unit time), and the outer cylinder wall is thermally insulated.

11B.14 Unsteady-state heating of a sphere. A sphere of radius R and thermal diffusivity w is initially
at a uniform temperature T0. For t > 0 the sphere is immersed in a well-stirred water bath

maintained at a temperature T1 > T0. The temperature within the sphere is then a function of

the radial coordinate r and the time t. The solution to the heat conduction equation is given

by:4

T(r,t) − T0

T1 − T0

= 1 + 2

∞∑
n=1

(−1)n
( R
n0r

)
sin

(n0r
R

)
exp(−wn202t∕R2) (11B.14-1)

It is desired to verify that this equation satisfies the differential equation, the boundary condi-

tions, and the initial condition.

(a) Write down the differential equation describing the problem.

(b) Show that Eq. 11B.14-1 for T(r,t) satisfies the differential equation in (a).

(c) Show that the boundary condition at r = R is satisfied.

(d) Show that T is finite at r = 0.

(e) To show that Eq. 11B.14-1 satisfies the initial condition, set t = 0 and T = T0 and obtain the

following:

−1 = 2

∞∑
n=1

(−1)n
( R
n0r

)
sin

(n0r
R

)
(11B.14-2)

To show that this is true, multiply both sides by (r∕R) sin(m0r∕R), where m is any integer from

1 to ∞, and integrate from r = 0 to r = R. In the integration all terms with m ≠ n vanish on the

right side. The term with m = n, when integrated, just equals the integral on the left side.

11C.1 The speed of propagation of sound waves. Sound waves are harmonic compression waves

of very small amplitude traveling through a compressible fluid. The velocity of propagation of

such waves may be estimated by assuming that the momentum-flux tensor f and the heat-flux

vector q are zero and that the velocity of the fluid v is small.5 The neglect of f and q is equivalent

to assuming that the entropy is constant following the motion of a given fluid element.

(a) Use equilibrium thermodynamics to show that(
𝜕p
𝜕i

)
S

= u

(
𝜕p
𝜕i

)
T

(11C.1-1)

in which u = Cp∕CV .

4H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford University Press

(1959), p. 233, Eq. (4).
5See L. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd edition, Pergamon, Oxford (1987), Chapter

VIII; R. J. Silbey, R. A. Alberty, and M. G. Bawendi, Physical Chemistry, Wiley, New York, 4th edition

(2005), §17.4.
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(b) When sound is being propagated through a fluid, there are slight perturbations in the

pressure, density, and velocity from the rest state: p = p0 + p′, i = i0 + i′, and v = v0 + v′, the
subscript-0 quantities being constants associated with the rest state (with v0 being zero), and

the primed quantities being very small. Show that when these quantities are substituted into

the equation of continuity and the equation of motion (with the f and g terms omitted) and

products of the small primed quantities are omitted, we get

Equation of continuity
𝜕i

𝜕t
= −i0(∇ ⋅ v) (11C.1-2)

Equation of motion i0
𝜕v
𝜕t

= −∇p (11C.1-3)

(c) Next use the result in (a) to rewrite the equation of motion as

i0
𝜕v
𝜕t

= −v2s∇i (11C.1-4)

in which v2s = u(𝜕p∕𝜕i)T.
(d) Show how Eqs. 11C.1-2 and 11C.1-4 can be combined to give

𝜕2i

𝜕t2
= v2s∇2i (11C.1-5)

(e) Show that a solution of Eq. 11C.1-5 is

i(z,t) = i0

[
1 + A sin

(
20
m

(
z − vst

))]
(11C.1-6)

This solution represents a harmonic wave of wavelength m and amplitude i0A traveling in the z
direction at a speed vs. More general solutions may be constructed by a superposition of waves

of different wavelengths and directions.

11C.2 Free convection in a slot. Afluid of constant viscosity, with density given by Eq. 11.3-1, is con-

fined in a rectangular slot. The slot has vertical walls at x = ±B, y = ±W, and a top and bottom

at z = ±H, with H >> W >> B. Gravity acts in the −z direction. The walls are nonisothermal,

with temperature distribution Tw = T + Ay, so that the fluid circulates by free convection. The

velocity profiles are to be predicted, for steady laminar-flow conditions and small deviations

from the mean density i.

(a) Simplify the equations of continuity, motion, and energy according to the postulates: v =
tzvz(x,y), 𝜕2vz∕𝜕y2 << 𝜕2vz∕𝜕x2, and T = T(y). These postulates are reasonable for slow flow,

except near the edges y = ±W and z = ±H.

(b) List the boundary conditions to be used with the problem as simplified in (a).

(c) Solve for the temperature, pressure, and velocity profiles.

(d) Whenmaking diffusionmeasurements in closed chambers, free convection can be a serious

source of error, and temperature gradients must be avoided. By way of illustration, compute

the maximum tolerable temperature gradient, A, for an experiment with water at 20∘C in a

chamber with B = 0.1mm,W = 2.0mm, andH = 2 cm, if the maximumpermissible convective

movement is 0.1% of H in a one-hour experiment.

Answers: (c) vz(x,y) =
igvA
24

(x2 − B2)y; (d) 2.7 × 10−3 K∕cm

11C.3 Heating of a semi-infinite slab (approximate boundary-layer treatment). Rework Example

11.5-1 by the method used in Problem 3C.1.
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11C.4 Boundary-layer development for the flow along a heated flat plate (approximate method).6-8

In Problem 3C.2 the use of boundary-layer approximations for steady, laminar flow of incom-

pressible fluids at constant temperature was discussed. In this problemwe extend the previous

“von Kármán integral” development by including the boundary-layer equation for energy

transport, so that the temperature profiles near solid surfaces can be obtained.

As in Problem 3C.2 we consider the steady two-dimensional flow around a flat plate (see

Fig. 11C.4). In the vicinity of the solid surface, the equations of change may be simplified to:

Equation of continuity
𝜕vx
𝜕x

+
𝜕vy
𝜕y

= 0 (11C.4-1)

x Equation of motion i

(
vx

𝜕vx
𝜕x

+ vy
𝜕vx
𝜕y

)
= 4

𝜕2vx
𝜕y2

(11C.4-2)

Equation of energy iĈp

(
vx

𝜕T
𝜕x

+ vy
𝜕T
𝜕y

)
= k𝜕

2T
𝜕y2

(11C.4-3)

Here i, 4, k, and Ĉp are regarded as constants. The viscous heating term in the energy equation,

4(𝜕vx∕𝜕y)2, has been omitted in this problem. Solutions of these equations are asymptotically

accurate for small momentum diffusivity l = 4∕i in Eq. 11C.4-2, and for small thermal diffu-

sivity w = k∕iĈp in Eq. 11C.4-3.

y
xFluid approaches

with velocity v∞

δT(x)

vx(y)

δ(x)

vx = v∞
T0 – T∞

T0 – T
00

Fig. 11C.4 Boundary-layer

development for the flow along a

heated flat plate, showing the

thermal boundary layer for

2 = tT(x)∕t(x) < 1. The surface of

the plate is at temperature T0, and

the approaching fluid is at T∞.

Equation 11C.4-1 is the same as Eq. 3C.2-1, and Eq. 11C.4-2 is the same as Eq. 3C.2-2.

Equation 11C.4-3 is obtained from Eq. 11.2-9 by neglecting the heat conduction in the x
direction. More complete forms of the boundary-layer equations may be found elsewhere.7,8

The usual boundary conditions for Eqs. 11C.4-1 and 11C.4-2 are that vx = vy = 0 at the solid

surface, and that the velocitymerges into the flow at the outer edge of the velocity boundary layer,
so that vx → v∞. For Eq. 11C.4-3 the temperature T is specified to be T0 at the solid surface and

T∞ at the outer edge of the thermal boundary layer. That is, the velocity and temperature are

different from v∞ and T∞ only in thin layers near the solid surface. However, the velocity and

temperature boundary layers will be of different thicknesses corresponding to the relative ease

of the diffusion of momentum and heat. Since Pr = l∕w, for Pr > 1 the temperature boundary

layer usually lies inside the velocity boundary layer, whereas for Pr < 1 the relative thicknesses

6H. Schlichting, Boundary-Layer Theory, 7th edition, McGraw-Hill, New York (1979), Chapter 12.
7K. Stewartson, The Theory of Laminar Boundary Layers in Compressible Fluids, Oxford University Press

(1964).
8E. R. G. Eckert and R. M. Drake, Jr., Analysis of Heat and Mass Transfer, McGraw-Hill, New York,

(1972), Chapters 6 and 7.
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are just reversed (keep in mind that for gases Pr is about 3

4
, whereas for ordinary liquids Pr > 1

and for liquid metals Pr << 1).
In Problem 3C.2 it was shown that the boundary-layer equation of motion could be inte-

grated formally from y = 0 to y = ∞, if use is made of the equation of continuity. In a similar
fashion, integrate Eqs. 11C.4-1 to 11.C.4-3 to get for the flat-plate problem

Momentum 4
𝜕vx
𝜕y

|||||y=0 = d
dx ∫

∞

0

ivx(v∞ − vx)dy (11C.4-4)

Energy k 𝜕T
𝜕y

|||||y=0 = d
dx ∫

∞

0

iĈpvx(T∞ − T)dy (11C.4-5)

Equations 11C.4-4 and 11C.4-5 are the von Kármán momentum and energy balances. The no-slip
condition, vy = 0 at y = 0, has been used here.

Obtain the temperature profiles near a flat plate, along which a Newtonian is flowing, as
shown in Fig. 11C.4. The wetted surface of the plate is maintained at temperature T0 and the
temperature of the approaching fluid is T∞.

(a) In order to use the von Kármán balances, postulate the following reasonable forms for the
velocity and temperature profiles. The following polynomial form gives 0 at the wall and 1 at
the outer limit of the boundary layer, with a slope of zero at the outer limit:⎧⎪⎪⎨⎪⎪⎩

vx
(
y
)

v∞
= 2

(y
t

)
− 2

(y
t

)3

+
(y
t

)4

y ≤ t(x)

vx(y)
v∞

= 1 y ≥ t(x)
(11C.4-6,7)

⎧⎪⎪⎨⎪⎪⎩

T
(
y
)
− T0

T∞ − T0

= 2

(
y
tT

)
− 2

(
y
tT

)3

+
(

y
tT

)4

y ≤ tT(x)

T(y) − T0

T∞ − T0

= 1 y ≥ tT(x)
(11C.4-8.9)

That is, assume that the dimensionless velocity and temperature profiles have the same form
within their respective boundary layers.We further assume that the boundary-layer thicknesses
t(x) and tT(x) have a constant ratio, so that 2 = tT(x)∕t(x) is independent of x. Two possibilities
have to be considered: 2 ≤ 1 and 2 ≥ 1. We consider here 2 ≤ 1, and leave the other case as an
optional assignment.

(b) The use of Eqs. 11C.4-4 and 11C.4-5 is now straightforward but tedious. Show that substi-
tution of Eqs. 11C.4-6 through 11C.4-9 into the integrals gives

∫ ∞
0

ivx(v∞ − vx) dy = iv2∞t(x) ∫ 1

0
(2q − 2q3 + q4)(1 − 2q + 2q3 − q4) dq

= 37

315
iv2∞t(x) (11C.4-10)

and

∫ ∞
0

iĈpvx(T∞ − T) dy = iĈpv∞(T∞ − T0)tT(x) ∫ ∞
0
(2qT2 − 2q3T2

3 + q4T2
4)

× (1 − 2qT + 2q3T − q4T) dqT

=
(

2

15
2 − 3

140
23 + 1

180
24

)
iĈpv∞(T∞ − T0)tT(x) (11C.4-11)

In these integrals q = y∕t(x) and qT = y∕tT(x) = y∕2t(x).
(c) Next substitute these integrals into Eqs. 11C.4-4 and 11C.4-5 to get differential equations for
the boundary-layer thicknesses.
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(d) Integrate the first-order differential equations obtained in (c) to get

t(x) =

√
1260

37

(
lx
v∞

)
(11C.4-12)

tT(x) =

√√√√√ 4

2

15
2 − 3

140
23 + 1

180
24

(
wx
v∞

)
(11C.4-13)

(e) Thus, the boundary-layer thicknesses are now determined, except for the evaluation of 2 in

Eq. 11C.4-13. Take the ratio of Eq. 11C.4-12 to Eq. 11C.4-13 to get an equation for 2 as a function

of the Prandtl number:

2

15
23 − 3

140
25 + 1

180
26 = 37

315
Pr−1 2 ≤ 1 (11C.4-14)

When this sixth-order algebraic equation is solved for 2 as a function of Pr, it is found that the

solution may be curve-fitted by the simple relation9

2 = Pr−1∕3 2 < 1 (11C.4-15)

within about 5%.

(f) Show that the temperature profile is then (for 2 ≤ 1)

T(y) − T0

T∞ − T0

= 2
( y

2t

)
− 2

( y

2t

)3

+
( y

2t

)4

(11C.4-16)

in which 2 ≈ Pr−1∕3 and t(x) =
√
(1260∕37)(lx∕v∞). The assumption of laminar flowmade here

is valid for x < xcrit, where xcritv∞i∕4 is usually greater than 105.

(g) Finally, obtain the rate of heat loss from both sides of a heated plate of widthW and length

L from Eqs. 11C.4-5, 11C.4-11, 11C.4-12, 11C.4-15, and 11C.4-16:

Q = 2∫
W

0 ∫
L

0

qy|y=0dx dz
= 2W(+k)(T0 − T∞)∫

L

0

𝜕
𝜕y

[
2
( y

2t

)
− 2

( y

2t

)3

+
( y

2t

)4
]|||||y=0dx

= 2W
(k)(T0 − T∞)

2 ∫
L

0

2

√
37

1260

(v∞
lx

)
dx

≈
√

148

315
(2WL)(T0 − T∞)

(
k
L

)
Pr1∕3Re

1∕2
L (11C.4-17)

in which ReL = Lv∞i∕4. Thus, the boundary-layer approach allows one to obtain the depen-

dence of the rate of heat loss Q on the dimensions of the plate, the flow conditions, and the

thermal properties of the fluid. Equation 11C.4-17 is in good agreement with more detailed

solutions of Eqs. 11C.4-1 to 11C.4-3.

11C.5 Heat conduction with phase change (the Neumann–Stefan problem).10 A liquid, contained

in a long cylinder, is initially at temperature T1, as illustrated in Fig. 11C.5. For all times t > 0,

9H. Schlichting, Boundary-Layer Theory, 7th edition, McGraw-Hill, New York (1979), p. 292–308.
10For literature references and related problems, see H. S. Carslaw and J. C. Jaeger, Conduction of

Heat in Solids, 2nd edition, Oxford University Press (1959), Chapter XI; on pp. 283–286 the problem

considered here is worked out for the situation that the physical properties of the liquid and solid phases

are different. See also S. G. Bankoff, Advances in Chemical Engineering, Vol. 5, Academic Press, New York

(1964), pp. 75–150; J. Crank, Free and Moving Boundary Problems, Oxford University Press (1984); J. M. Hill,

One-Dimensional Stefan Problems, Longmans (1987); A. M. Schmalzer, A. M. Mertz, D. N. Githuku, and A.

J. Giacomin, J. Adv. Eng., 7, 135–143 (July, 2012), Appendix A.
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the bottom of the container is maintained at a temperature T0, which is below themelting point

Tm. We want to estimate the movement of the solid–liquid interface, Z(t), during the freezing

process.

Liquid Liquid Liquid
TL(z, t)

(Initially at
temperature

T1
throughout)

Temperature
Tm Moving

interface
located at

Z(t)

Solid
TS(z, t)

t > 0t = 0

z = 0

t ≤ 0
Temperature
T0 at z = 0

Fig. 11C.5 Heat

conduction with

solidification.

For the sake of simplicity, we assume here that the physical properties i, k, and Ĉp are

constants and the same in both the solid and liquid phases. Let 2Ĥf be the heat of fusion per

gram, and use the abbreviation M = 2Ĥf∕Ĉp(T1 − T0).
(a) Write the equation for heat conduction for the liquid (L) and solid (S) regions; state the

boundary and initial conditions.

(b) Assume solutions of the form:

PS ≡ TS − T0

T1 − T0

= C1 + C2 erf
z√
4wt

(11C.5-1)

PL ≡ TL − T0

T1 − T0

= C3 + C4 erf
z√
4wt

(11C.5-2)

(c) Use the boundary condition at z = 0 to show thatC1 = 0, and the condition as z → ∞ to show

that C3 = 1 − C4. Then use the fact that TS = TL = Tm at z = Z(t) to conclude that Z(t) = m
√
4wt

where m is some (as yet undetermined) constant. Then get C3 and C4 in terms of m. Use the

remaining boundary condition to get m in terms of M and Pm = (Tm − T0)∕(T1 − T0):√
0Mm exp m2 =

Pm

erf m
−

1 −Pm

1 − erf m
(11C.5-3)

What is the final expression for Z(t)? (Note: In this problem it has been assumed that a phase

change occurs instantaneously and that no supercooling of the liquid phase occurs. It turns

out that in the freezing of many liquids, this assumption is untenable. That is, to describe the

solidification process correctly, one has to take into account the kinetics of the crystallization

process.11)

11H. Janeschitz-Kriegl, Plastics and Rubber Processing and Applications, 4, 145–158 (1984); H.

Janeschitz-Kriegl, in One-Hundred Years of Chemical Engineering (N. A. Peppas, ed.), Kluwer Academic

Publishers, Dordrecht (The Netherlands) (1989), pp. 111–124; H. Janeschitz-Kriegl, E. Ratajski, and G.

Eder, Ind. Eng. Chem. Res., 34, 3481–3487 (1995); G. Astarita and J. M. Kenny, Chem. Eng. Comm., 53, 69–84
(1987).
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Chapter 12

Temperature Distributions
in Turbulent Flow

§12.1 Time-smoothed equations of change for incompressible nonisothermal flow

§12.2 The time-smoothed temperature profile near a wall

§12.3 Empirical expressions for the turbulent heat flux

§12.4○ Temperature distribution for turbulent flow in tubes

§12.5○ Temperature distribution for turbulent flow in jets

§12.6 Concluding comments

In Chapters 10 and 11 we have shown how to obtain temperature distributions in solids
and in fluids in laminar motion. The procedure has involved solving the equations of
change with appropriate boundary and initial conditions. Once the temperature profiles
are known, practical problems can be solved, such as determining overall heat transfer
rates.

We now turn to the problem of analyzing energy transport and finding temperature
profiles in turbulent flow. This discussion is quite similar to that given in Chapter 4. We
begin by time-smoothing the equations of change. In the time-smoothed energy equation
there appears a turbulent heat flux q(t), which is expressed in terms of the correlation of
velocity and temperature fluctuations. There are several rather useful empiricisms for q(t),
which enable one to predict time-smoothed temperature distributions in wall turbulence
and in free turbulence.Weuse heat transfer in tube flowand in jets to illustrate themethod.

Themost apparent influence of turbulence on heat transport is the enhanced transport
perpendicular to themain flow.Consider the flowof a fluid in an externally heated circular
tube (e.g., as in §10.9). If the flow is laminar with the only nonzero velocity component in
the axial direction, then energy transport perpendicular to the tube wall can only occur
by conduction. This mode of energy transport can be very slow. On the other hand, if the
flow is turbulent, there is a nonzero, fluctuating component of the velocity perpendicular
to the tube walls, which results in the convective transport of energy from the tube wall
to the bulk fluid. This mode of transport is typically much faster. This enhanced transport
can also be interpreted as mixing—the turbulent motion mixes the fluid within the tube,
creating a more uniform temperature profile than observed in laminar flow. This mixing
process is worked out in some detail here for flow in tubes and in circular jets.

§12.1 TIME-SMOOTHED EQUATIONS OF CHANGE FOR
INCOMPRESSIBLE NONISOTHERMAL FLOW

In §4.2 the notions of time-smoothed quantities and turbulent fluctuations were intro-
duced. In this chapter we shall be primarily concerned with the temperature profiles.

367
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We introduce the time-smoothed temperature T and temperature fluctuation T′, andwrite
analogously to Eq. 4.2-1 for an arbitrary point in the fluid

T(t) = T + T′(t) (12.1-1)

Clearly the time average of T′ is zero (T′ = 0), but quantities like v′xT
′, v′yT

′, v′zT
′ will not

be zero because of the “correlation” between the velocity and temperature fluctuations at
any point.

For a nonisothermal pure fluid we need three equations of change, and we want here
to discuss their time-smoothed forms. The time-smoothed equations of continuity and
motion for a fluidwith constant density and viscosity were given in Eqs. 4.2-10 and 4.2-12,

and need not be repeated here. For a fluid with constant 4, i, Ĉp, and k, Eq. 11.2-5, when
put in the 𝜕∕𝜕t-form by using Eq. 3.5-6, and with Newton’s and Fourier’s laws included,
becomes

𝜕
𝜕t

iĈpT = −
(

𝜕
𝜕x

iĈpvxT + 𝜕
𝜕y

iĈpvyT + 𝜕
𝜕z

iĈpvzT
)

+k
(
𝜕2T
𝜕x2

+ 𝜕2T
𝜕y2

+ 𝜕2T
𝜕z2

)
+4

[
2

(
𝜕vx
𝜕x

)2

+
(
𝜕vx
𝜕y

)2

+ 2

(
𝜕vx
𝜕y

)(𝜕vy
𝜕x

)
+ · · ·

]
(12.1-2)

in which only a few sample terms in the viscous dissipation term −(f ∶ ∇v) = 4Cv have
been written down (see Eq. B.7-1 for the complete expression).

In Eq. 12.1-2 we replace T by T = T + T′, vx by vx + v′x, etc. Then the entire equation is
time-smoothed (using the time average defined by Eq. 4.2-2) to give

𝜕
𝜕t

iĈpT = −
(

𝜕
𝜕x

iĈpvxT + 𝜕
𝜕y

iĈpvyT + 𝜕
𝜕z

iĈpvzT
)

−
(

𝜕
𝜕x

iĈpv
′
xT

′ + 𝜕
𝜕y

iĈpv
′
yT

′ + 𝜕
𝜕z

iĈpv
′
zT

′
)

------------------------------------------------

+k
(
𝜕2T
𝜕x2

+ 𝜕2T
𝜕y2

+ 𝜕2T
𝜕z2

)
+4

[
2

(
𝜕vx
𝜕x

)2

+
(
𝜕vx
𝜕y

)2

+ 2

(
𝜕vx
𝜕y

)(𝜕vy
𝜕x

)
+ · · ·

]

+4
⎡⎢⎢⎣2

(
𝜕v′x
𝜕x

)(
𝜕v′x
𝜕x

)
+

(
𝜕v′x
𝜕y

)(
𝜕v′x
𝜕y

)
+ 2

(
𝜕v′x
𝜕y

)(
𝜕v′y
𝜕x

)
+ · · ·

⎤⎥⎥⎦
----------------------------------------------------------------------------- (12.1-3)

Comparison of this equation with the preceding one shows that the time-smoothed
equation has the same form as the original equation, except for the appearance of
the terms indicated by dashed underlines, which are concerned with the turbulent
fluctuations. We are thus led to the definition of the turbulent heat-flux vector q(t) with
components

q(t)x = iĈpv
′
xT

′; q(t)y = iĈpv
′
yT

′; q(t)z = iĈpv
′
zT

′ (12.1-4)

and the turbulent energy dissipation function C
(t)
v :

C
(t)
v =

3∑
i=1

3∑
j=1

⎛⎜⎜⎝
(
𝜕v′i
𝜕xj

)(
𝜕v′i
𝜕xj

)
+

(
𝜕v′i
𝜕xj

)(
𝜕v′j
𝜕xi

)⎞⎟⎟⎠ (12.1-5)
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The similarity between the components of q(t) in Eq. 12.1-4 and those of f(t) in Eq. 4.2-8
should be noted. In Eq. 12.1-5, v′

1
, v′

2
, and v′

3
are synonymous with v′x, v

′
y, and v′z, and

x1, x2, and x3 have the same meaning as x, y, and z.
To summarize,we list all three time-smoothed equations of change for turbulent flows

of pure fluids with constant 4, i, Ĉp, and k in their D∕Dt form (the first two were given in
Eqs. 4.2-10 and 4.2-12):

Continuity: (∇ ⋅ v) = 0 (12.1-6)

Motion: i
Dv
Dt

= −∇p −
[
∇ ⋅

(
f(v) + f(t)

)]
+ ig (12.1-7)

-----

Energy: iĈp
DT
Dt

= −
(
∇ ⋅

(
q(v) + q(t))) + 4

(
C(v)

v +C
(t)
v

)
(12.1-8)

----- -----

Here it is understood that D∕Dt = 𝜕∕𝜕t + v ⋅ ∇. Also q(v) = −k∇T, and C
(v)
v is the viscous

dissipation function of Eq. B.7-1, but with all the vi replaced by vi.
In discussing turbulent energy transport problems, it has been customary to drop the

viscous dissipation terms. Then, one sets up the problem as for laminar flow, except that
f and q are replaced by f(v) + f(t) and q(v) + q(t), respectively, and that time-smoothed p, v,
and T are used in the remaining terms.

§12.2 THE TIME-SMOOTHED TEMPERATURE PROFILE
NEAR AWALL1

Before giving empiricisms forq(t) in the next section,we present a short discussion of some
results that do not depend on any empiricism.

We consider the turbulent flowalong a flatwall as shown in Fig. 12.2-1, andwe inquire
as to the temperature in the inertial sublayer. We pattern the development after that in

1 2 3 4

T0

T

y = 0
r = R

y r

R

y = R
r = 0

T

Fig. 12.2-1. Temperature profile in a tube

with turbulent flow. The regions are

(1) viscous sublayer, (2) buffer layer,

(3) inertial sublayer, and (4) main

turbulent stream.

1L. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd edition, Pergamon Press, New York, (1987), §54.
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§4.3(a). We let the heat flux into the fluid at y = 0 be q0 = qy|y=0, and we postulate that the

heat flux in the inertial sublayer will not be very different from that at the wall.
We seek to relate q0 to the time-smoothed temperature gradient in the inertial sublayer.

Because transport in this region is dominated by turbulent convection, the viscosity 4 and
the thermal conductivity kwill not play an important role. Therefore, the only parameters

on which dT∕dy can depend are q0, v* =
√
f0∕i, i, Ĉp, and y. We must further use the fact

that the linearity of the energy equation implies that dT∕dymust be proportional to q0. The
only combination that satisfies these requirements is

−dT
dy

=
vq0

niĈpv*y
(12.2-1)

inwhich n is the dimensionless constant in Eq. 4.3-8, and v is an additional constant (which
will turn out to be the turbulent Prandtl number Pr(t) = l(t)∕w(t)).

When Eq. 12.2-1 is integrated, we get

T0 − T(y) =
vq0

niĈpv*

ln y + C (12.2-2)

where T0 is the wall temperature and C is a constant of integration. The constant is to be
determined bymatching the logarithmic expressionwith the expression forT(y) that holds
at the outer edge of the viscous sublayer. The latter expression will involve both 4 and k;
hence, C will necessarily contain 4 and k, and will therefore include the dimensionless

group Pr = Ĉp4∕k. If, in addition, we introduce the dimensionless coordinate yv
*
∕l, then

Eq. 12.2-2 can be rewritten as

T0 − T(y) =
vq0

niĈpv*

[
ln

(yv
*

l

)
+ f (Pr)

]
for

yv
*

l
> 1 (12.2-3)

in which f (Pr) is a function representing the thermal resistance between the wall and the
inertial sublayer. Landau and Lifshitz (see Ref. 1 on p. 409) estimate, from amixing-length
argument (see Eq. 12.3-3), that, for large Prandtl numbers, f (Pr) = constant ⋅ Pr3∕4; how-
ever, Example 12.3-1 implies that the function f (Pr) = constant ⋅ Pr2∕3 is better. Keep in
mind that Eq. 12.2-3 can be expected to be valid only in the inertial sublayer and that it
should not be used in the immediate neighborhood of the wall.

§12.3 EMPIRICAL EXPRESSIONS FOR THE TURBULENT HEAT FLUX

In §12.1 it was shown that the time-smoothing of the energy equation gives rise to a tur-
bulent heat-flux vector q(t). In order to solve the energy equation for the time-smoothed
temperature profiles, it is customary to postulate a relation between q(t) and the
time-smoothed temperature gradient. We summarize here two of the most popular
empirical expressions; more empiricisms can be found in the heat-transfer literature.

a. Eddy thermal conductivity
By analogy with the Fourier law of heat conduction we may write

q(t)y = −k(t) dT
dy

(12.3-1)

in which the quantity k(t) is called the turbulent thermal conductivity or the eddy thermal
conductivity. This quantity is not a physical property of the fluid, but depends on position,
direction, and the nature of the turbulent flow.
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The eddy kinematic viscosity l(t) = 4(t)∕i and the eddy thermal diffusivity

w(t) = 4(t)∕iĈp have the same dimensions. Their ratio is a dimensionless group

Pr(t) = l(t)

w(t)
(12.3-2)

called the turbulent Prandtl number. This dimensionless quantity is of the order of unity,
values in the literature varying from 0.5 to 1.0. For gas flow in conduits, Pr(t) ranges from
0.7 to 0.9 (for circular tubes the value 0.85 has been recommended1), whereas, for flow in
jets and wakes, the value is more nearly 0.5. The assumption that Pr(t) = 1 is called the
Reynolds analogy.

b. The mixing-length expression of Prandtl and Taylor
According to Prandtl’s theory, momentum and energy are transferred in turbulent

flow by the same mechanism. Hence, by analogy with Eq. 4.4-4, one obtains

q(t)y = −iĈpl
2
|||||dvxdy

||||| dTdy (12.3-3)

where l is the Prandtl mixing length introduced in §4.4. Note that this expression predicts

that Pr(t) = l(t)∕w(t) = 1. The Taylor vorticity transport theory2 gives Pr(t) = l(t)∕w(t) = 1

2
.

EXAMPLE 12.3-1

An Approximate
Relation for the Wall
Heat Flux for Turbulent
Flow in a Tube

Use the Reynolds analogy (l(t) = w(t)), along with Eq. 4.4-2 for the eddy viscosity, to estimate

the wall heat flux q0 for the turbulent flow in a tube of diameter D = 2R. Express the result in

terms of the temperature-difference driving force T0 − TR, where T0 is the temperature at the

wall (y = 0) and TR is the time-smoothed temperature at the tube axis (y = R).

SOLUTION

The time-smoothed radial heat flux in a tube is given by the sum of q(v)r and q(t)r :

qr = −(k + k(t))dT
dr

= −
(
1 + w(t)

w

)
kdT
dr

= +
(
1 + l(t)

w

)
kdT
dy

(12.3-4)

Here we have used Eq. 12.3-1 and the Reynolds analogy, and we have switched to the coordi-

nate y, which is the distance from the wall. We now use the empirical expression of Eq. 4.4-2,

which applies across the viscous sublayer next to the wall

qy = −
[
1 + Pr

( yv
*

14.5l

)3
]
kdT
dy

for
yv
*
l

< 5 (12.3-5)

where qr = −qy has been used.

If now we approximate the heat flux qy in Eq. 12.3-5 by its wall value q0, then integration

from y = 0 to y = R gives:

q0∫
R

0

dy
1 + Pr(yv

*
∕14.5l)3

= k(T0 − TR) (12.3-6)

1W. M. Kays and M. E. Crawford, Convective Heat and Mass Transfer, 3rd edition, McGraw-Hill,

New York (1993), pp. 259–266.
2G. I. Taylor, Proc. Roy. Soc. (London), A135, 685–702 (1932); Phil. Trans., A215, 1–26 (1915).
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For very large Prandtl numbers, the upper limit R in the integral can be replaced by ∞, since

the integrand is decreasing rapidly with increasing y. Then, when the integration on the left

side is performed and the result is put into dimensionless form, we get

q0D

k(T0 − TR)
=

3
√
3

20(14.5)

(
v
*⟨
vz
⟩)

Re Pr1∕3 = 1

17.5

√
f
2
Re Pr1∕3 (12.3-7)

in which Eq. 6.1-4a has been used to eliminate v
*
in favor of the friction factor.

The above development is only approximate. We have not taken into account the change

of the bulk temperature as the fluid moves axially through the tube, nor have we taken into

account the change in the heat flux throughout the tube. Furthermore, the result is restricted to

very high Pr, because of the extension of the integration to y = ∞. Another derivation is given

in the next section, which is free from these assumptions. However, it will be seen that at large

Prandtl numbers the result in Eq. 12.4-21 simplifies to that in Eq. 12.3-7 but with a different

numerical constant.

§12.4 TEMPERATURE DISTRIBUTION FOR TURBULENT
FLOW IN TUBES

In §10.9 we showed how to get the asymptotic behavior of the temperature profiles for
large z in a fluid in laminar flow in a circular tube. We repeat that problem here, but for a
fluid in fully developed turbulent flow. The fluid enters the tube of radius R at an inlet
temperature T1. For z > 0, the fluid is heated because of a radial heat flux at the wall
qr|r=R = −q0 (q0 > 0 for a heated fluid; see Fig. 12.4-1).

We start from the energy equation, Eq. 12.1-8, written in cylindrical coordinates

iĈpvz
𝜕T
𝜕z

= −1

r
𝜕
𝜕r

(
r
(
q(v)r + q(t)r

))
(12.4-1)

Then insertion of the expression for the radial heat flux from Eq. 12.3-4 gives

vz
𝜕T
𝜕z

= 1

r
𝜕
𝜕r

(
r
(
w + w(t)

) 𝜕T
𝜕r

)
(12.4-2)

This is to be solved with the boundary conditions

B. C. 1: at r = 0, T = finite (12.4-3)

B. C. 2: at r = R, + k𝜕T
𝜕r

= q0 (a constant) (12.4-4)

B. C. 3: at z = 0, T = T1 (12.4-5)

We now use the same dimensionless variables as already given in Eqs. 10.9-18 to 10.9-20
(with T in place of T in the definition of the dimensionless temperature). Then Eq. 12.4-2

r
z

r = R
r = 0

z = 0

Fluid at temperature T1 in fully
developed turbulent flow

Electrical heating coil to provide
constant wall flux qr│r=R = –q0

Fig. 12.4-1. System used

for heating a liquid in fully

developed turbulent flow

with constant heat flux for

z > 0.
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in dimensionless form is

d
𝜕P
𝜕r

= 1

k
𝜕
𝜕k

(
k

(
1 + w(t)

w

)
𝜕P
𝜕k

)
(12.4-6)

in which d(k) = vz∕vz,max is the dimensionless turbulent velocity profile. This equation is
to be solved with the dimensionless boundary conditions

B. C. 1: at k = 0, P = finite (12.4-7)

B. C. 2: at k = 1, + 𝜕P
𝜕k

= 1 (12.4-8)

B. C. 3: at r = 0, P = 0 (12.4-9)

The complete solution to this problem has been given,1 butwe content ourselves herewith
the solution for large z.

We begin by assuming an asymptotic solution of the form of Eq. 10.9-25

P(k,r) = C0r +A(k) (12.4-10)

which must satisfy the differential equation, together with B. C. 1 and 2 and Condition 4
in Eq. 10.9-27 (with T and vz = vmax(1 − k2) replaced by T and vz = vmaxd(k)). The resulting
equation for A is

1

k
d
dk

(
k

(
1 + w(t)

w

)
dA
dk

)
= C0d (12.4-11)

Integrating this equation twice and then constructing the functionP using Eq. 12.4-10, we
get

P(k,r) = C0r + C0∫
k

0

I(k)
k
[
1 +

(
w(t)∕w

)] dk + C1∫
k

0

1

k
[
1 +

(
w(t)∕w

)] dk + C2 (12.4-12)

in which it is understood that w(t) is a function of k, and I(k) is shorthand for the integral

I(k) = ∫
k

0

d(k)k dk (12.4-13)

The constant of integration C1 is set equal to zero in order to satisfy B. C. 1. The constants
C0 and C2 are found by applying B. C. 2 and Condition 4 (see Eq. 10.9-27), respectively;
we thus get

C0 =
(
∫

1

0

dk dk
)−1

=
[
I (1)

]−1
(12.4-14)

C2 = ∫
1

0

[
I (k) ∕I(1)

]2 − [
I (k) ∕I(1)

]
k
[
1 +

(
w(t)∕w

)] dk (12.4-15)

We next get an expression for the dimensionless temperature difference P0 −Pb, the
“driving force” for the heat transfer at the tube wall:

P0 −Pb = C0∫
1

0

I(k)
k
[
1 +

(
w(t)∕w

)] dk −
C0

I(1)∫
1

0

dk

[
∫

k

0

I
(
k
)

k
[
1 +

(
w(t)∕w

)] dk

]
dk

= C0∫
1

0

I(k)
k
[
1 +

(
w(t)∕w

)] dk −
C0

I(1)∫
1

0

I(k)
k
[
1 +

(
w(t)∕w

)] [
∫

1

k
dk dk

]
dk (12.4-16)

1R. H. Notter and C. A. Sleicher, Chem. Eng. Sci., 27, 2073–2093 (1972).
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In the second line, the order of integration of the double integral has been reversed. The
inner integral in the second term on the right is just I(1) − I(k), and the portion containing
I(1) exactly cancels the first term in Eq. 12.4-16. Hence, we get, when Eq. 12.4-14 is used,

P0 −Pb = ∫
1

0

[
I (k) ∕I(1)

]2
k
[
1 +

(
w(t)∕w

)] dk (12.4-17)

But the quantity I(1) appearing in Eq. 12.4-17 has a simple interpretation:

I(1) = ∫
1

0

dk dk =
(
∫

R

0

vzr dr
)

1

vz,maxR2
= 1

2

⟨vz⟩
vz,max

(12.4-18)

Finally we want to get the dimensionless wall heat flux,

q0D

k(T0 − Tb)
= 2

P0 −Pb
(12.4-19)

the reciprocal of which is2

k(T0 − Tb)
q0D

= 2

(
vz,max⟨
vz
⟩ )2

∫
1

0

[I (k)]2

k
[
1 +

(
l(t)∕l

) (
Pr∕Pr(t)

)] dk (12.4-20)

3 × 10–5
3 × 10–5
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/
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T
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Deissler & Eian (1952) Pr = 0.73

Allen & Eckert (1964) Pr = 8.0

Malina & Sparrow (1964) 3 ≤ Pr ≤ 75

Friend & Metzner (1958) 55 ≤ Pr ≤ 590

Harriott & Hamilton (1965) 452 ≤ Sc ≤ 97,600

Fig. 12.4-2. Comparison of the expression in Eq. 12.4-21 for the wall heat flux in fully developed turbulent flow with the

experimental data of R. G. Deissler and C. S. Eian, NACA Tech. Note #2629 (1952); R. W. Allen and E. R. G. Eckert, J. Heat
Transfer, Trans. ASME, Ser. C., 86, 301–310 (1964); J. A. Malina and E. M. Sparrow, Chem. Eng. Sci, 19, 953–962 (1964); W. L.

Friend and A. B. Metzner, AIChE Journal, 4, 393–402 (1958); P. Harriott and R. M. Hamilton, Chem. Eng. Sci., 20, 1073–1078
(1965). The data of Harriott and Hamilton are for the analogous mass-transfer experiment, for which Eq. 12.4-21 also

applies. Adapted from O. C. Sandall, O. T. Hanna, and P. R. Mazet, Can. J. Chem. Eng., 58, 443–447 (1980).

2Equation 12.4-20 was first developed by R. N. Lyon, Chem. Eng. Prog., 47, 75–79 (1950) in a paper on

liquid-metal heat transfer. The left side of Eq. 12.4-20 is the reciprocal of the Nusselt number, Nu = hD∕k,
which is a dimensionless heat-transfer coefficient. This nomenclature is discussed in Chapter 14.
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To use this result, we need an expression for the time-smoothed velocity distribution vz
(which appears in I(k)), the turbulent kinematic viscosity l(t) as a function of position, and
a postulate for the turbulent Prandtl number Pr(t).

Extensive calculations based on Eq. 12.4-20 were performed by Sandall, Hanna, and
Mazet.3 These authors took the turbulent Prandtl number to be unity. They divided the
region of integration into two parts, one near the wall and the other for the turbulent core.
In the “wall region” they used a modified van Driest equation for the turbulent kinematic
viscosity, and in the “core region” they used a logarithmic velocity distribution. Their final
result3 is given as

q0D

k(T0 − Tb)
=

RePr
√
f∕2

12.48 Pr2∕3 − 7.853 Pr1∕3 + 3.613 ln Pr + 5.8 + 2.78 ln
(

1

45
Re

√
f∕8

) (12.4-21)

In obtaining this result, Eq. 6.1-4a has been used.
Equation 12.4-21 agrees with the available data on heat transfer within 3.6% and 8.1%

over the range 0.73 < Pr < 590, depending on the sets of data studied. The analogous
mass-transfer expression, containing Sc = 4∕i𝒟AB instead of Pr, was reported3 to agree
with the mass-transfer data within 8% over the range 452 < Sc < 97600. The agreement
of the theory with the heat-transfer and mass-transfer data, shown in Fig. 12.4-2 is quite
convincing.

§12.5 TEMPERATURE DISTRIBUTION FOR TURBULENT
FLOW IN JETS1

In §4.6 we derived an expression for the velocity distribution in a circular fluid jet dis-
charging into an infinite expanse of the same fluid (see Fig. 4.6-1). Here we wish to extend
this problem by considering an incoming jet with temperature T0 higher than that of the
surrounding fluid T1. The problem then is to find the time-smoothed temperature distri-
bution T(r,z) in a steadily driven jet. We expect that this distribution will be monotone
decreasing in both the r and z directions.

We start by assuming that viscous dissipation is negligible, and we neglect the contri-
bution q(v) to the heat-flux vector as well as the axial contribution to q(t). Then Eq. 12.1-8
takes the time-averaged form

iĈp

(
vr
𝜕T
𝜕r

+ vz
𝜕T
𝜕z

)
= −1

r
𝜕
𝜕r

(rq(t)r ) (12.5-1)

Then we express the turbulent heat flux in terms of the turbulent thermal conductivity
introduced in Eq. 12.3-1:

q(t)r = −k(t) 𝜕T
𝜕r

= −iĈpw
(t) 𝜕T

𝜕r
= −iĈp

l(t)

Pr(t)
𝜕T
𝜕r

(12.5-2)

When Eq. 12.5-1 is written in terms ofP(k,r) = (T − T1)∕(T0 − T1), a dimensionless temper-
ature function, it becomes(

vr
𝜕P
𝜕r

+ vz
𝜕P
𝜕z

)
= l(t)

Pr(t)
1

r
𝜕
𝜕r

(
r𝜕P
𝜕r

)
(12.5-3)

3O. C. Sandall, O. T. Hanna, and P. R. Mazet, Canad. J. Chem. Eng., 58, 443–447 (1980). See also O. T.

Hanna and O. C. Sandall, AIChE Journal, 18, 527–533 (1972).
1J. O. Hinze, Turbulence, 2nd edition, McGraw-Hill, New York (1975), pp. 531–546.



Trim Size: 8in x 10in Bird1e c12.tex V1 - October 21, 2014 4:09 P.M. Page 376

376 Chapter 12 Temperature Distributions in Turbulent Flow

Here it has been assumed that the turbulent Prandtl number and the turbulent kinematic
viscosity are constants (see the discussion after Eq. 4.6-3). This equation is to be solved
with the boundary conditions:

B. C. 1: at z = 0, P = 1 (12.5-4)

B. C. 2: at r = 0, P is finite (12.5-5)

B. C. 3: at r → ∞, P → 0 (12.5-6)

Equation 12.5-3 along with the boundary conditions can be solved to give2

P(k,r)
P(0,r)

= P(k,r)
Pmax(r)

=
(
1 + 1

4

(
C3k

)2)−2Pr(t)

(12.5-7)

where k = r∕z, r = (il(t)∕w)z, w is the total mass flow rate in the jet, and

Pmax(r) =
1

r
1 + 2Pr(t)

80
(12.5-8)

Finally, comparison of Eq. 12.5-7with Eq. 4.6-9 shows that the shapes of the time-smoothed
temperature and axial velocity profiles are closely related,

P(k,r)
Pmax(r)

=
(

vz (k,r)
vz,max(r)

)Pr(t)
(12.5-9)

where vz(k,r) is given by Eq. 4.6-9, with z replaced by r∕(il(t)∕w). Equation 12.5-9 is
attributed to Reichardt.3 This theory provides a moderately satisfactory explanation
for the shapes of the temperature profiles.1 The turbulent Prandtl (or Schmidt) number
deduced from temperature (or concentration) measurements in circular jets is about 0.7.

§12.6 CONCLUDING COMMENTS

This chapter on the turbulent energy flux closely parallels Chapter 4, which deals with
turbulent momentum flux. In both chapters, we started by writing the variables as
time-smoothed values plus fluctuations. Then we time-smoothed the relevant equations
of change to get equations that have to be solved in order to get the time-smoothed
velocity and temperature distributions. Solutions cannot be obtained until suitable
expressions for the turbulent momentum and energy fluxes have been stated.

Formanyyears, empirical expressions have beenused to describe the turbulent fluxes,
such as the mixing-length expressions, the expressions containing the eddy viscosity and
eddy thermal conductivity, and others. These have led to some moderately useful results,
but they should be carefully tested against experimental data.

In this chapter, we have presented a few fairly reliable results: the expression for the
wall heat flux for turbulent flow in circular tubes (Eq. 12.3-7); the time-smoothed tem-
perature distribution for flow in circular tubes with constant wall heat flux (Eqs. 12.4-12
through 12.4-15); and the time-smoothed temperature distribution for flow in circular jets
(Eq. 12.5-7). By working through these three illustrations, the reader will get “the flavor”
of the semi-empirical approach to the subject presented here.

2See R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Revised Second Edition,

Wiley, New York (2007), §5.6 and §13.5.
3H. Reichardt, Zeits. f. angew. Math. u. Mech., 24, 268–272 (1944).
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QUESTIONS FOR DISCUSSION

1. Compare turbulent thermal conductivity and turbulent viscosity as to definition, order of mag-

nitude, and dependence upon physical properties and the nature of the flow.

2. What is the “Reynolds analogy,” and what is its significance?

3. Is there any connection between Eq. 12.2-3 and Eq. 12.4-12, after the integration constants in

the latter have been evaluated?

4. Is the analogy between Fourier’s law of heat conduction and Eq. 12.3-1 a valid one?

5. What is the physical significance of the fact that the turbulent Prandtl number is of the order

of unity?

PROBLEMS 12B.1 Wall heat flux for turbulent flow in tubes (approximate).Work through Example 12.3-1, and

fill in themissing steps. In particular, verify the integration in going fromEq. 12.3-6 to Eq. 12.3-7.

12B.2 Wall heat flux for turbulent flow in tubes.
(a) Summarize the assumptions in §12.4.

(b) Work through themathematical details of that section, taking particular care with the steps

connecting Eq. 12.4-12 and Eq. 12.4-17.

(c) When is it not necessary to find the constant C2 in Eq. 12.4-12?

12C.1 Wall heat flux for turbulent flow between two parallel plates.
(a) Work through the development in §12.4, and thenperforma similar derivation for turbulent

flow in a thin slit shown in Fig. 2B.4. Show that the analog of Eq. 12.4-20 is:

k(T0 − Tb)
q0B

=

(
vz,max⟨
vz
⟩ )2

∫
1

0

[J(k)]2[
1 + (l(t)∕l) (Pr∕Pr(t))

] dk (12C.1-1)

in which k = x∕B, and J(k) = ∫
k

0

d(k) dk.

(b) Show how the above result simplifies for laminar flow of Newtonian fluids, and for “plug

flow” (flat velocity profiles).

Answer: (b) k(T0 − Tb)∕q0B = 17

35
, 1
3
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Chapter 13

Dimensional Analysis in
Nonisothermal Systems

§13.1 Dimensional analysis of the equations of change for nonisothermal
systems

§13.2 Temperature distribution about a long cylinder

§13.3 Free convection in a horizontal fluid layer; formation of Bénard cells

§13.4 Surface temperature of an electrical heating coil

§13.5 The Buckingham pi theorem

§13.6 Concluding comments

Many problems in nonisothermal flow are extremely difficult to solve analytically, either
because of complicated geometrical arrangements, because of awkward boundary condi-
tions, or because the differential equations are not easily soluble. In such situations, one
can often get a partial solution by using the methods of dimensional analysis—either by
using the Buckingham pi theorem or by using the equations of change, with their bound-
ary and initial conditions. The purpose of this chapter is to introduce the dimensional
analysis approach by giving several examples.

§13.1 DIMENSIONAL ANALYSIS OF THE EQUATIONS OF CHANGE
FOR NONISOTHERMAL SYSTEMS

In Chapter 11, we have shown how to use the equations of change for nonisothermal
systems to solve some representative heat-transport problems. Then in Chapter 12 we
extended the application of the equations of change to turbulent flow. Now we discuss
the dimensional analysis of these equations.

Just as the dimensional analysis discussion in Chapter 5 provided an introduction
for the discussion of friction factors in Chapter 6, the material in this section provides
the background needed for the discussion of heat-transfer coefficient correlations in
Chapter 14. As in Chapter 5, we write the equations of change and boundary conditions
in dimensionless form. In this way we find some dimensionless parameters that can be
used to characterize nonisothermal flow systems.

We shall see, however, that the analysis of nonisothermal systems leads us to a larger
number of dimensionless groups than we had in Chapter 5. As a result, greater reliance
has to be placed on judicious simplifications of the equations of change and on carefully
chosen physical models. An example of the latter is the Boussinesq equation of motion for
free convection (§11.3).

378
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As in Chapter 5, for the sake of simplicity, we restrict ourselves to a fluidwith constant

physical properties, 4, k, and Ĉp. The density is taken to be i = i − iv(T − T) in the ig term
in the equation of motion, and i = i everywhere else (the “Boussinesq approximation”).
The equations of change then become

equation of continuity: (∇ ⋅ v) = 0 (13.1-1)

equation of motion: i
Dv
Dt

= −∇𝒫 + 4∇2v + igv(T − T) (13.1-2)

equation of energy: iĈp
DT
Dt

= k∇2T + 4Cv (13.1-3)

where 𝒫 = p + igh. We now introduce quantities made dimensionless, indicated by a
breve over each symbol, with characteristic quantities (subscript 0 or 1) as follows:

x̆ = x
l0
; y̆ =

y
l0
; z̆ = z

l0
; t̆ =

v0t
l0

; (13.1-4)

v̆ = v
v0

; �̆� =
𝒫 −𝒫0

iv2
0

; T̆ =
T − T0

T1 − T0

; (13.1-5)

C̆v =
(
l0
v0

)2

Cv; ∇̆ = l0∇;
D
Dt̆

=
(
l0
v0

)
D
Dt

(13.1-6)

Here l0, v0, and 𝒫0 are the reference quantities introduced in Chapter 5, T0 is a reference
temperature, and T1 − T0 is a reference temperature difference. In Eq. 13.1-2 the value T is
the temperature around which the density i was expanded.

In terms of these dimensionless variables, the equations of change in Eqs. 13.1-1 to
13.1-3 take the forms

Equation of continuity: (∇̆ ⋅ v̆) = 0 (13.1-7)

Equation of motion: Dv̆
Dt̆

= −∇̆�̆� +
⟦

4

l
0
v
0
i

⟧
∇̆2v̆ −

⟦
gl0v

(
T1 − T0

)
v2
0

⟧(
g
g

)
(T̆ − T̆)

(13.1-8)

Equation of energy: DT̆
Dt̆

=

⟦
k

l
0
v
0
iĈp

⟧
∇̆2T̆ +

⟦
4v0

l
0
iĈp

(
T1 − T0

)⟧ C̆v (13.1-9)

These equations are typically simplified further for specific classes of problems. For these
different cases, different choices for the characteristic velocity arise naturally. Below we
consider two of these different classes in detail; the characteristic velocities and the result-
ing simplifications of Eqs. 13.1-7 through 13.1-9 are also summarized in Table 13.1-1.

a. Forced convection.
In forced-convection problems, the flow is imposed externally. The characteristic

velocity is generally taken to be the approach velocity (for flow past submerged objects) or
the average velocity (for flow in conduits). The buoyant forces are also typically ignored
leading to the following simplified equations of change for forced convection problems:

Equation of continuity: (∇̆ ⋅ v̆) = 0 (13.1-10)

Equation of motion: Dv̆
Dt̆

= −∇̆�̆� + 1

Re
∇̆2v̆ (13.1-11)

Equation of energy: DT̆
Dt̆

= 1

Re Pr
∇̆2T̆ + Br

Re Pr
C̆v (13.1-12)

where the dimensionless Reynolds (Re), Prandtl (Pr), and Brinkmann (Br) numbers have
been defined in previous chapters, and are summarized again in Table 13.1-2. These
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Table 13.1-1. Dimensionless Groups in Equations 13.1-7, 13.1-8, and 13.1-9

Special cases → Forced convection Intermediate Free convection (A) Free convection (B)

Choice for v0 → v0 v0 l∕l0 w∕l0⟦
4

l
0
v
0
i

⟧
1

Re

1

Re
1 Pr⟦

gl0v
(
T1 − T0

)
v2
0

⟧
Neglect

Gr

Re2
Gr GrPr2

⟦
k

l
0
v
0
iĈp

⟧
1

Re Pr

1

Re Pr

1

Pr
1

⟦
4v0

l
0
iĈp

(
T1 − T0

)⟧ Br

Re Pr

Br

Re Pr
Neglect Neglect

Notes:
aFor forced convection and forced-plus-free (“intermediate”) convection, v0 is generally taken to be the

approach velocity (for flow around submerged objects) or an average velocity in the system (for flow in

conduits).
bFor free convection there are two standard choices for v0, labeled as A and B. In §10.10 Case A arises

naturally. Case B proves convenient if the assumption of creeping flow is appropriate, so that Dv̆∕Dt̆ can

be neglected (see §13.3). Then a new dimensionless pressure difference
⌢
𝒫= Pr�̆� , different from

̆̆𝒫 in Eq.

5.1-12, can be introduced, so that when the equation of motion is divided by Pr, the only dimensionless

group appearing in the equation is GrPr. Note that in Case B, no dimensionless groups appear in the

equation of energy.

Table 13.1-2. Dimensionless Groups Used in Nonisothermal

Systems

Re = ⟦l0v0i∕4⟧ = ⟦l0v0∕l⟧ = Reynolds number
Pr = ⟦Ĉp4∕k⟧ = ⟦l∕w⟧ = Prandtl number
Gr = ⟦gv(T1 − T0)l30∕l

2⟧ = Grashof number
Br = ⟦4v2

0
∕k(T1 − T0)⟧ = Brinkman number

Fr = ⟦v2
0
∕l0g⟧ = Froude number

We = ⟦l0v20i∕g⟧ = Weber number
Ma = ⟦v0∕vs⟧ = Mach number
Pé = Re Pr = Péclet number
Ra = Gr Pr = Rayleigh number
Ec = Br∕Pr = Eckert number
Ca = We∕Re = Capillary number

equations tell us that the dimensionless temperature profile depends only on the param-
eters Re, Pr, and Br. For the intermediate case listed in Table 13.1-1, the dimensionless
temperature profile would also depend on the Grashof number Gr.

As in §10.9, we see that the product RePr appears in forced-convection problems.
Equation 13.1-12 suggests that this product represents the relative importance of energy
transport by convection and conduction. In fact, the product RePr can be written as

the ratio of magnitudes of the convective energy transport term iĈp(v ⋅ ∇T) (whose



Trim Size: 8in x 10in Bird1e c13.tex V1 - October 21, 2014 4:11 P.M. Page 381

§13.1 Dimensional Analysis of the Equations of Change for Nonisothermal Systems 381

magnitude is iĈpv0(T − T0)∕l0) and the magnitude of the conductive energy transport

term k∇2T (whose magnitude is k(T − T0)∕l20),

RePr =
energy transport by convection

energy transport by conduction
=

iĈpv0(T − T0)∕l0
k(T − T0)∕l20

=
(
l0v0i
4

)( Ĉp4

k

)
(13.1-13)

Similarly, the Brinkman number represents the relative importance of energy production
by viscous dissipation and energy transport by conduction (see §10.8), and the quantity
Br∕RePr represents the relative importance of energy production by viscous dissipation
and energy transport by convection.

b. Free convection.
In free-convection problems, the flow arises because of buoyant forces that are caused

by temperature gradients. Unlike forced-convection problems, there are no imposed
velocities—all velocities must be determined by solving the equations of change. The
characteristic velocity is thus selected from combinations of parameters that are relevant to
the transport problem. One such choice for the characteristic velocity is v0 = 4∕il0 = l∕l0.
Using this quantity, the simplified equations of change for free-convection problems
become

Equation of continuity:
(
∇̆ ⋅ v̆

)
= 0 (13.1-14)

Equation of motion: Dv̆
Dt̆

= −∇̆�̆� + ∇̆2v̆ −Gr
g
g

(
T̆ − T̆

)
(13.1-15)

Equation of energy: DT̆
Dt̆

= 1

Pr
∇̆2T̆ (13.1-16)

Here, Gr is the Grashof number, which was introduced in §10.10 and listed again in
Table 13.1-2. The Grashof number quantifies the relative importance of buoyant and
viscous forces.

EXAMPLE 13.1-1

Dimensional Analysis
of Free Convection
with a Different
Velocity Scale

Verify the results in the last columnof Table 13.1-1.More specifically, using the alternate velocity

scale v0 = w∕l0, show that the dimensionless groups in Eqs. 13.1-8 and 13.1-9 simplify to the

corresponding dimensionless groups listed in Table 13.1-1.

SOLUTION

Using v0 = w∕l0, the dimensionless groups in Eqs. 13.1-8 and 13.1-9 simplify as follows:⟦
4

l
0
v
0
i

⟧
=

⟦
4

l
0
(w∕l0)i

⟧
=

⟦
4

wi

⟧
=

⟦
4(

k∕iĈp

)
i

⟧
=

⟦
Ĉp4

k

⟧
= Pr (13.1-17)

⟦
gl0v

(
T1 − T0

)
v2
0

⟧
=

⟦
gl0v

(
T1 − T0

)
(w∕l0)2

⟧
=

⟦
gl3

0
v
(
T1 − T0

)
(k∕iĈp)2

⟧

=

⟦
i2gl3

0
v
(
T1 − T0

)
42

⟧⟦(
Ĉp4

k

)2⟧
= Gr Pr2 (13.1-18)

⟦
k

l
0
v
0
iĈp

⟧
=

⟦
k

l
0
(w∕l0)iĈp

⟧
=

⟦
k(

k∕iĈp

)
iĈp

⟧
= 1 (13.1-19)
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⟦
4v0

l
0
iĈp

(
T1 − T0

)⟧ =

⟦
4v2

0

l
0
iĈpv0

(
T1 − T0

)⟧ =

⟦
4v2

0

l
0
iĈp

(
w∕l0

)
(T1 − T0)

⟧

=

⟦
4v2

0

iĈp

(
k∕iĈp

)
(T1 − T0)

⟧

=

⟦
4v2

0

k
(
T1 − T0

)⟧ = Br (13.1-20)

In the last equation, we retained a factor of v2
0
so that the Brinkman number could be more

easily identified. Of course, for slow flow problems, we do not expect energy production by

viscous dissipation to be important, and thus Br should be small enough to neglect.

We already saw in Chapter 10 how several dimensionless groups appeared in the
solution of nonisothermal problems. Here we have seen that the same groupings appear
naturally when the equations of change are made dimensionless. These dimensionless
groups are used widely in correlations of heat-transfer coefficients. Further dimensionless
groups, listed in Table 13.1-2, may arise in the boundary conditions or in the equation of
state. The Froude andWeber numbers have already been introduced in Chapter 5, and the
Mach number in Example 11.4-6.

We have also seen that dimensionless groups can be interpreted as ratios of forces or
phenomena. Such ratios are listed for various dimensionless groups in Table 13.1-3.

The values of the dimensionless groups can be helpful understanding flow problems
and their solutions. A low value for the Reynolds number means that viscous forces are
large in comparison with inertial forces. A low value of the Brinkman number indicates
that the heat produced by viscous dissipation can be transported away quickly by heat
conduction. When Gr∕Re2 is large, the buoyant force is important in determining the flow
pattern.

Exploiting dimensional analysis to analyze problems and extract useful information
is somewhat of an art, requiring judgment and experience. In the next three sections, we
give three illustrative examples that demonstrate the power of dimensional analysis. In
the first two we analyze forced and free convection in simple geometries. In the third we
discuss scale-up problems in a relatively complex piece of equipment.

Table 13.1-3. Physical Interpretation of Dimensionless Groups

Re =
iv2

0
∕l0

4v0∕l20
= inertial force

viscous force

Fr =
iv2

0
∕l0

ig
= inertial force

gravity force

Gr

Re2
=

igv(T1 − T0)
iv2

0
∕l0

=
buoyant force

inertial force

Re Pr =
iĈpv0(T1 − T0)∕l0

k(T1 − T0)∕l20
=

energy transport by convection

energy transport by conduction

Br =
4(v0∕l0)2

k(T1 − T0)∕l20
=

energy production by viscous dissipation

energy transport by conduction
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§13.2 TEMPERATURE DISTRIBUTION ABOUT A LONG CYLINDER

Suppose it is desired to predict the temperature distribution in a gas flowing about a long,
internally cooled cylinder (System I) from experimental measurements on a one-quarter
scale model (System II). If possible the same fluid should be used in the model as in the
full-scale system. The system, shown in Fig. 13.2-1, is the same as that in §5.2 except that
it is now nonisothermal. The fluid approaching the cylinder has a speed v∞ and a temper-
ature T∞ , and the cylinder surface is maintained at T0, for example, by the boiling of a
refrigerant contained within it.

We want to show by means of dimensional analysis how suitable experimental con-
ditions can be chosen for the model studies. We will perform the dimensional analysis for
the “intermediate case” in Table 13.1-1.

The two systems, I and II, are geometrically similar. To ensure dynamical similarity,
as pointed out in Chapter 5, the dimensionless differential equations and boundary con-
ditions must be the same, and the dimensionless groups appearing in themmust have the
same numerical values.

Here we choose the characteristic length to be the diameter D of the cylinder, the
characteristic velocity to be the approach velocity v∞ of the fluid, the characteristic pres-
sure to be the pressure at x = −∞ and y = 0, and the characteristic temperatures to be
the temperature T∞ of the approaching fluid and the temperature T0 of the cylinder wall.
These characteristic quantities will carry a label I or II depending onwhich system is being
described.

Both systems are described by the dimensionless differential equations given in Eqs.
13.1-7 to 13.1-9, and by boundary conditions

B. C. 1 as x̆2 + y̆2 → ∞, v̆ → tx, T̆ → 1 (13.2-1)

B. C. 2 at x̆2 + y̆2 = 1

4
, v̆ = 0, T̆ = 0 (13.2-2)

B. C. 3 at x̆ → −∞ and y̆ = 0, �̆� = 0 (13.2-3)

yI

xI

xII

DI

DII

yII PII at xPII, yPII

T = (T0)II

T = (T0)I

PI at xPI, yPI

g

g

T = (T∞)II

T = (T∞)I

(b) Small system (System II):

(a) Large system (System I):

(v∞)II

(v∞)I

Fig. 13.2-1. Temperature

profiles about long heated

cylinders. The contour lines

in the two figures represent

surfaces of constant

temperature.
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in which T̆ = (T − T0)∕(T∞ − T0). For this simple geometry, the boundary conditions con-
tain no dimensionless groups. Therefore, the requirement that the differential equations
and boundary conditions in dimensionless form be identical is that the following dimen-

sionless groups be equal in the two systems: Re = Dv∞i∕4, Pr = Ĉp4∕k, Br = 4v2∞∕k(T∞ −
T0), and Gr = i2gv(T∞ − T0)D3∕42. In the latter group we use the ideal-gas expression
v = 1∕T.

To obtain the necessary equality of the four governing dimensionless groups, wemay
use different values of the four parameters at our disposal in the two systems: the approach
velocity v∞, the fluid temperature T∞, the approach pressure 𝒫∞, and the cylinder tem-
perature T0.

The similarity requirements are then (for DI = 4DII):

Equality of Pr:
lI
lII

=
wI
wII

(13.2-4)

Equality of Re:
lI
lII

= 4
v∞I

v∞II

(13.2-5)

Equality of Gr:

(
lI
lII

)2

= 64
T∞II

T∞I

(T∞ − T0)I
(T∞ − T0)II

(13.2-6)

Equality of Br:
(
PrI
PrII

)(
v∞I

v∞II

)2

=
ĈpI

ĈpII

(T∞ − T0)I
(T∞ − T0)II

(13.2-7)

Here l = 4∕i is the kinematic viscosity and w = k∕iĈp is the thermal diffusivity.
The simplest way to satisfy Eq. 13.2-4 is to use the same fluid at the same approach

pressure 𝒫∞ and temperature T∞ in the two systems. If that is done, Eq. 13.2-5 requires
that the approach velocity in the small model (II) be four times that used in the full-scale
system (I). If the fluid velocity is moderately large and the temperature differences small,
the equality of Pr and Re in the two systems provides a sufficient approximation to
thermal similarity. This is the limiting case of forced convection with negligible viscous
dissipation.

If, however, the temperature differencesT∞ − T0 are large, free-convection effectsmay
be appreciable. Under these conditions, according to Eq. 13.2-6, temperature differences
in the model must be 64 times those in the large system to ensure similarity.

From Eq. 13.2-7 it may be seen that such a ratio of temperature differences will not
permit equality of the Brinkman number. For the latter a ratio of 16 would be needed. This
conflictwill not normally arise, however, as free-convection and viscous heating effects are
seldom important simultaneously. Free-convection effects arise in low-velocity systems,
whereas viscous heating occurs to a significant degree only when velocity gradients are
very large.

§13.3 FREE CONVECTION IN A HORIZONTAL FLUID LAYER;
FORMATION OF BÉNARD CELLS

In this section we are going to investigate the free-convection motion in the system shown
in Fig. 13.3-1. It consists of a thin layer of fluid between two horizontal parallel plates,
the lower one at temperature T0, and the upper one at T1, with T1 < T0. In the absence
of fluid motion, the conductive heat flux will be the same for all z, and a nearly uniform
temperature gradient will be established at steady state. This temperature gradient will in
turn cause a density gradient. If the density decreases with increasing z, the system will
be stable, but if it increases, a potentially unstable situation occurs. It appears possible
in this latter case that any chance disturbance may cause the more dense fluid to move
downward and displace the lighter fluid beneath it. If the temperatures of the top and
bottom surfaces are maintained constant, the result may be a continuing free-convection
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z g
r z = 0

z = h

T = T1

T = T0 Insulation
2R

Top view

Side view

Fig. 13.3-1. Bénard cells

formed in the region between

two horizontal parallel plates,

with the bottom plate at a

higher temperature than the

upper one. If the Rayleigh

number exceeds a certain

critical value, the system

becomes unstable and

hexagonal Bénard cells are

produced.

motion. This motion will, however, be opposed by viscous forces and may, therefore,
occur only if the temperature difference tending to cause it is greater than some critical
minimum value.

Wewant to determine bymeans of dimensional analysis the functional dependence of
this fluid motion and the conditions under which it may be expected to arise. The system
is described by Eqs. 13.1-1 to 13.1-3 along with the following boundary conditions:

B.C. 1 at z = 0, v = 0 T = T0 (13.3-1)

B.C. 2 at z = h, v = 0 T = T1 (13.3-2)

B.C. 3 at r = R, v = 0 𝜕T∕𝜕r = 0 (13.3-3)

We now restate the problem in dimensionless form, using l0 = h. We use the dimensionless
quantities listed under Case “B” in Table 13.1-1, and we select the reference temperature

T to be 1

2
(T0 + T1), so that

Equation of continuity: (∇̆ ⋅ v̆) = 0 (13.3-4)

Equation of motion: Dv̆
Dt̆

= −∇̆�̆� + Pr∇̆2v̆ −GrPr2
(
g
g

)(
T̆ − 1

2

)
(13.3-5)

Equation of energy: DT̆
Dt̆

= ∇̆2T̆ (13.3-6)

with dimensionless boundary conditions:

B. C. 1: at z̆ = 0, v̆ = 0 T̆ = 0 (13.3-7)

B. C. 2: at z̆ = 1, v̆ = 0 T̆ = 1 (13.3-8)

B. C. 3: at r̆ = R∕h, v̆ = 0, 𝜕T̆∕𝜕r̆ = 0 (13.3-9)

If the above dimensionless equations could be solved along with the dimensionless
boundary conditions, we would find that the velocity and temperature profiles would
depend only on Gr, Pr, and R∕h. Furthermore, the larger the ratio R∕h is, the less promi-
nent its effect will be, and in the limit of extremely large horizontal plates, the system
behavior will depend solely on Gr and Pr.

If we consider only steady creeping flows, then the term Dv̆∕Dt̆ may be set equal

to zero. Then we define a new dimensionless pressure difference as
⌢
𝒫 = Pr�̆� . With

the left side of Eq. 13.3-5 equal to zero, we may now divide by Pr and the resulting
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equation contains only one dimensionless group, namely the Rayleigh number1

Ra = GrPr = i2gv(T1 − T0)h3Ĉp∕4k, whose value will determine the behavior of the
system. This illustrates how one may reduce the number of dimensionless groups that
are needed to describe a nonisothermal flow system.

The above analysis suggests that there may be a critical value of the Rayleigh number,
and when this critical value is exceeded, fluid motion will occur. This suggestion has been
amply confirmed experimentally2,3 and the critical Rayleigh number has been found to
be 1700 ± 51 for R∕h ≫ 1. For Rayleigh numbers below the critical value, the fluid is
stationary, as evidenced by the observation that the heat flux across the liquid layer is the
same as that predicted for conduction through a static fluid: qz = k(T0 − T1)∕h. As soon as
the critical Rayleigh number is exceeded, however, the heat flux rises sharply, because of
convective energy transport. An increase of the thermal conductivity reduces the Rayleigh
number, thus moving Ra towards its stable range.

The assumption of creeping flow is a reasonable one for this system and is asymp-
totically correct when Pr → ∞. It is also very convenient, inasmuch as it allows analytic
solutions of the relevant equations of change.4 One such solution, which agrees well with
experiment, is sketched qualitatively in Fig. 13.3-1. This flow pattern is cellular and hexag-
onal, with upflow at the center of each hexagon and downflow at the periphery. The units
of this fascinating pattern are called Bénard cells.5 The analytic solution also confirms the
existence of a critical Rayleigh number. For the boundary conditions of this problem and
very large R∕h it has been calculated4 to be 1708, which is in excellent agreement with the
experimental result cited above.

Similar behavior is observed for other boundary conditions. If the upper plate of
Fig. 13.3-1 is replaced by a liquid-gas interface, so that the surface shear stress in the liquid
is negligible, cellular convection is predicted theoretically3 for Rayleigh numbers above
about 1101. A spectacular example of this type of instability occurs in the occasional spring
“turnover” of water in northern lakes. If the lake water is cooled to near freezing during
the winter, an adverse density gradient will occur as the surface waters warm toward 4∘C,
the temperature of maximum density for water.

In shallow liquid layers with free surfaces, instabilities can also arise from
surface-tension gradients. The resulting surface stresses produce cellular convection
superficially similar to that resulting from temperature gradients, and the two effects
may be easily confused. Indeed, it appears that the steady flows first seen by Bénard,
and ascribed to buoyancy effects, may actually have been produced by surface-tension
gradients.6

§13.4 SURFACE TEMPERATURE OF AN ELECTRICAL
HEATING COIL

An electrical heating coil of diameter D is being designed to keep a large tank of liquid
above its freezing point. It is desired to predict the temperature that will be reached at the
coil surface as a function of the heating rate Q and the bulk liquid temperature T0. This

1The Rayleigh number is named after Lord Rayleigh (J. W. Strutt), Phil. Mag., (6) 32, 529–546 (1916).
2P. L. Silveston, Forsch. Ingenieur-Wesen, 24, 29–32, 59–69 (1958).
3S. Chandrasekhar, Hydrodynamic and Hydromagnetic Instability, Oxford University Press (1961); T. E.

Faber, Fluid Dynamics for Physicists, Cambridge University Press (1995), §8.7.
4A. Pellew and R. V. Southwell, Proc. Roy. Soc., A176, 312–343 (1940).
5H. Bénard, Revue générale des sciences pures et appliquées, 11, 1261–1271, 1309–1328 (1900); Annales de

Chimie et de Physique, 23, 62–144 (1901).
6C. V. Sternling and L. E. Scriven, AIChE Journal, 5, 514–523 (1959); L. E. Scriven and C. V. Sternling,

J. Fluid Mech., 19, 321–340 (1964).
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prediction is to be made on the basis of experiments with a smaller, geometrically similar
apparatus filled with the same liquid.

We need to outline a suitable experimental procedure for making the desired predic-
tion. The temperature dependence of the physical properties, other than the density, may
be neglected. The entire heating coil surface may be assumed to be at a uniform temper-
ature T1.

This is a free-convection problem, and we use the column labeled A in Table 13.1-1
for the dimensionless groups. If we could solve the equations of change for this compli-
cated system, we know that the dimensionless temperature T̆ = (T − T0)∕(T1 − T0)would
be a function of the dimensionless coordinates, and would depend on the dimensionless
groups Pr and Gr.

The total energy input rate through the coil surface is

Q = −k∫S

𝜕T
𝜕r

||||SdS (13.4-1)

Here r is the coordinatemeasured outward fromandnormal to the coil surface, S is the sur-
face area of the coil, and the temperature gradient is that of the fluid immediately adjacent
to the coil surface. In dimensionless form this relation is

Q
k(T1 − T0)D

= −∫S̆

𝜕T̆
𝜕r̆

|||||S̆dS̆ = b(Pr,Gr) (13.4-2)

in which b is a function of Pr = Ĉp4∕k and Gr = i2gv(T1 − T0)D3∕42. Since the large-scale

and small-scale systems are geometrically similar, the dimensionless function S̆ describing
the surface of integration will be the same for both systems and hence does not need to be
included in the function b. Similarly, if we write the boundary conditions for temperature,
velocity, and pressure at the coil and tank surfaces, we will obtain only size ratios that will
be identical in the two systems.

We now note that the desired quantity (T1 − T0) appears on both sides of Eq. 13.4-2.
If we multiply both sides of the equation by the Grashof number, then (T1 − T0) appears
only on the right side:

Qi2gvD2

k42
= Gr ⋅ b(Pr,Gr) (13.4-3)

In principle, we may solve Eq. 13.4-3 for Gr and obtain an expression for (T1 − T0). Since
we are neglecting the temperature dependence of physical properties, we may consider
the Prandtl number constant for the given fluid and rearrange Eq. 13.4-3 to obtain

T1 − T0 =
42

i2gvD3
⋅ d

(
Qi2gvD2

k42

)
(13.4-4)

Here d is some function of the dimensionless groupQi2gvD2∕k42 to be determined experi-
mentally. Wemay then construct a plot of Eq. 13.4-4 from the experimental measurements
of T1, T0, andQ for the small-scale system, and the known physical properties of the fluid.
This plot may then be used to predict the behavior of the large-scale system.

Since we have neglected the temperature dependence of the fluid properties, we may
go even further. If we maintain the ratio of the Q values in the two systems inversely
proportional to the square of the ratio of the diameters, then the corresponding ratio of the
values of (T1 − T0)will be inversely proportional to the cube of the ratio of the diameters.

§13.5 THE BUCKINGHAM PI THEOREM

It was pointed out in §5.5 that the Buckingham pi theorem can often be useful in sug-
gesting relations among dimensionless groups of the quantities occurring in complicated
problems. According to this theorem, if we are dealing with q quantities, x1, x2, … , xq,
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involving d dimensions, then one can obtain a relation among q − d different dimension-
less groups.

Here we illustrate the use of this theorem for nonisothermal flow problems.

EXAMPLE 13.5-1

Heating of a Fluid in a
Pipe

Supposewe seek a relation for the heat flux q that should be supplied through thewall of a tube
of diameter D and length L, through which a fluid with constant physical properties (density

i, viscosity 4, thermal conductivity k, heat capacity Ĉp) is flowing. Let the average velocity in
the tube be v and the difference between the average wall temperature and the average bulk
fluid temperature be 2T, which is the driving force for heat transfer (other definitions of 2T are
possible that do not change the conclusions of this analysis; see Ch. 14).

What dimensionless groups should we expect to encounter in the correlation of experi-
mental data?

SOLUTION

In this problem we have 9 physical quantities that involve 4 dimensions: q [=] M∕t3, D [=] L,
L [=] L, i [=] M∕L3, 4 [=] M∕Lt, k [=] ML∕t3T, Ĉp [=] L2∕t2T, v [=] L∕t, 2T [=] T. Therefore, we
can expect to have 5 dimensionless groups, each of the form

H = qaDbLcid4ekf Ĉg
pv

h2Ti (13.5-1)

By substituting the dimensions of the 9 quantities into Eq. 13.5-1, we find that dimensions ofH
are

H [=] Ma+d+e+f Lb+c−3d−e+f+2g+ht−3a−e−3f−2g−hT−f−g+i (13.5-2)

The exponents can be determined by requiring thatH be dimensionless. This gives the follow-
ing system of equations:

a + d + e + f = 0 (13.5-3)

b + c − 3d − e + f + 2g + h = 0 (13.5-4)

−3a − e − 3f − 2g − h = 0 (13.5-5)

−f − g + i = 0 (13.5-6)

This is an underspecified system of 4 equations and 9 unknowns, and thus we are free to select
values for 5 of the unknowns a-i to obtain a dimensionless group (as long as the 5 selected
values do not violate Eqs. 13.5-3 through 13.5-6). Because we seek a relationship between q and
the other quantities, we will select a = 1 for one of the dimensionless groups, and a = 0 for the
other 4 dimensionless groups.

For the dimensionless group that contains q, we use our knowledge of energy transport to
select b = 1, f = −1, and i = −1 (i.e., we know that q has the same dimensions as k∇T). Setting
all of the remaining unknowns to zero satisfies Eqs. 13.5-3 through 13.5-6, and thus our first
dimensionless group is

qD

k2T
= dimensionless heat flux (13.5-7)

For the dimensionless groups with a = 0, we again use our experience. The parameters L
and D have the same dimensions, and thus their ratio is dimensionless. We therefore choose
another dimensionless group to be

L
D

= a geometrical ratio (13.5-8)

and one can verify that the corresponding choices b = −1, c = 1, and a = d = e = f = g = h = i =
0 satisfy Eqs. 13.5-3 through 13.5-6. Again using our knowledge of transport phenomena, we
expect two additional groups to be

Dvi
4

= Reynolds number (13.5-9)

Ĉp4

k
= Prandtl number (13.5-10)
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And again, we can verify that the corresponding choices for the unknowns a-i satisfy Eqs. 13.5-3
through 13.5-6.

For the last dimensionless group, we choose to obtain a ratio that contains k and 2T as
the only two parameters that include the dimension of temperature. Since this requires that
g = 0, Eq. 15.5-6 then gives f = i. We choose f = i = −1 for convenience (see below). We also

select b = c = 0, hoping that the dependence on system size is already captured in the existing
dimensionless groups. The remaining 3 unknowns, d, e, and h, are determined from Eqs. 13.5-3,
13.5-4, and 13.5-5 to be d = 0, e = 1, and h = 2. Thus, our final dimensionless group is

4v2

k2T
= Brinkman number (13.5-11)

Hadwe chosen a different value for f = i, wewould have obtained the Brinkmannumber raised

to a power.
The above selections for the dimensionless groups are not unique. However, any choices

for dimensionless groups that are consistent with Eqs. 13.5-3 through 13.5-6 can be written as
combinations of the dimensionless groups obtained here.

In developing a correlation of experimental data, these would be dimensionless groups
that we could use. We know, however, from the discussion in §10.8, that the Brinkman number
will not be important in flows involving low viscosity fluids and/or small velocity gradients.
Thus, we expect to be able to correlate data using the form

qD

k2T
= d

(
Re,Pr, L

D

)
(13.5-12)

where d is a function yet to be determined.
In the next chapter, several data correlations based on the above analysis are given, includ-

ing the geometric ratio L∕D. It will also be shown how the temperature dependence of the

viscosity can be incorporated into the correlations of experimental data. We will also introduce
the heat-transfer coefficient, h, by the definition q = h2T, and then the dimensionless heat flux

in Eq. 13.5-12 becomes Nu = hD∕k, which is called the Nusselt number. The Buckingham pi
theorem does not tell us anything about the functional relation Nu = Nu(Re, Pr, D∕L); that has
to be found from experimental data or from the solution of the governing equations.

EXAMPLE 13.5-2

Heat Loss from a
Heated Sphere

A sphere of diameterDwith surface temperature T0 is located in a stream of fluid approaching
with a velocity v∞ and temperature T∞ (less than T0). The density, viscosity, thermal conductiv-
ity, and heat capacity of the fluid are known and assumed here to be constant. The mean heat
flux from the surface of the sphere is qm. What functional dependence would one expect to find

for qm?

SOLUTION

Here we have the 8 physical quantities qm, D, v∞, i, 4, k, Ĉp, and 2T = (T0 − T∞) and 4 dimen-
sions. Therefore, we expect a relationship among 4 dimensionless groups. This example is
similar to the previous, except that here we do not have a parameter L. Thus, we can expect to

arrive at the same dimensionless groups, excluding L∕D. In addition, for systems with negli-
gible heat generation, we would not expect the heat flux to depend on the Brinkman number.

Wewould therefore expect that qmD∕k2Twould be a function of the Reynolds numberDv∞i∕4
and Prandtl number Ĉp4∕k.

However, we know from Problem 10B.1 that, if there is no flow past the sphere, qm =
2k2T∕D. This suggests that a suitable expression for qmD∕k2T might be

qmD∕k2T = 2 + f (Re,Pr) (13.5-13)

Often, investigators have attempted to find simple power-law relations of the form

qmD∕k2T = 2 + CRemPrn (13.5-14)

where C is a numerical constant; this is, indeed, the function proposed in 1938 by Frössling

(see §14.4). In later refinements of the correlation, it was found that such a simple expression
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was not adequate, and that furthermore, one additional dimensionless group, namely 4∞∕40,
made it possible to get a better correlation.

Thus, although the pi theorem may in some instances prove helpful, it does require some

intuition as well as auxiliary information. It is far better to make use of the equations of change

if possible.

§13.6 CONCLUDING COMMENTS

In the opening section of this chapter, we showed how a variety of dimensionless groups
can arise by putting the equations of change into dimensionless form. We discussed the
physicalmeaning of these dimensionless groups, and classified the types of flows inwhich
these groups would appear. These are by nomeans all of the groups that one can expect to
encounter in nonisothermal flow systems. After all we encountered the Biot and Nusselt
numbers in §10.2 and the Mach number in §11.4. In flow systems with free surfaces, we
would expect dimensionless groups containing the interfacial tension to arise.

The three examples we have given in this chapter—the transverse flow around a
cylinder, the formation of Bénard cells, and the electrical heating coil—provide a few illus-
trations of the power of the dimensional analysis method. From these examples it should
be clear that some intuition and inventiveness is required. Heat–transfer treatises and
handbooks can provide additional examples. We have also illustrated the use of the Buck-
ingham pi theorem to develop relationships among dimensionless group. This approach
requires even more insight, and is thus less desirable than dimensional analysis of the
equations of change.

QUESTIONS FOR DISCUSSION

1. What are some of the advantages of writing the equations of change in dimensionless form?

2. Why is nondimensionalizing the equations of change preferred over the method illustrated in

§13.5 for obtaining dimensionless groups? Under what conditions would the method in §13.5

be preferred?

3. Which dimensionless groups contain only physical properties?Which contain physical proper-

ties as well as information about the geometry, the strength of flow, or imposed temperatures?

4. How does one decide if a problem is one of forced convection, of free convection, or of an

intermediate case?

5. Can the Prandtl number be interpreted as a ratio of phenomena? Explain.

6. When listing the dimensions of the quantities that are important in a problem, what could be

possible implications of a fundamental dimension appearing in only one of the quantities?

7. Given a set of q quantities with d dimensions, describe how the q − d dimensionless groups

may be obtained from a system of d linear equations.

PROBLEMS 13A.1 Calculating Prandtl numbers. Calculate values for the Prandtl number, Pr = Ĉp4∕k, for the

following cases:

(a) Ĉp = 4184 J∕kg ⋅ ∘C, 4 = 10−3 Pa ⋅ s, k = 0.61 W∕m ⋅ K

(b) Ĉp = 1.0 Btu∕lbm ⋅ ∘F, 4 = 6.7 × 10−4 lbm∕ft ⋅ s, k = 0.35 Btu∕hr ⋅ ft ⋅ ∘F
(c) C̃p = 29.44 J∕g-mol ⋅ K, 4 = 2.07 × 10−5 Pa ⋅ s, k = 0.027 W∕m ⋅ K, M = 32 g∕g-mol

13B.1 Verifying dimensionless groups. Verify that the Grashof and Brinkman numbers, listed in

Table 13.1-2, are dimensionless.

13B.2 Dimensional analysis with source terms. Repeat the nondimensionalization of the energy

equation that leads to Eq. 13.1-9, this time including a term accounting for energy production

by conversion of electrical energy. The rate of energy production per unit volume is Se.
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13B.3 Nondimensionalization of boundary conditions. Using the same dimensional scales

employed in §13.1, nondimensionalize the boundary conditions below. What dimensionless

groups appear?

(a) −k 𝜕T
𝜕x

||||s = q0, where q0 is a prescribed constant heat flux

(b) −k 𝜕T
𝜕x

||||s = h(T|s − T0)

13C.1 Free-convection heat transfer from a vertical flat plate (Fig. 13C.1).Aflat plate of heightH and

widthW (withW ≫ H) heated to a temperature T0 is suspended in a large body of fluid, which

is at ambient temperature T1. In the neighborhood of the heated plate, the fluid rises because of

the buoyant force. From the equations of change, deduce the dependence of the heat loss on the

system variables. The physical properties of the fluid are considered constant, except that the

change in density with temperature will be accounted for by the Boussinesq approximation.

(T – T1)

(T – T1)

vz(y)

z
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Fig. 13C.1 The temperature and velocity profiles

on one side of a thin heated plate suspended in a

large body of fluid at temperature T1.

Begin by postulating that v = tyvy(y,z) + tzvz(y,z) and that T = T(y,z). We assume that the

fluid moves almost directly upward so that vy ≪ vz. The x and y components of Eq. 11.3-2 give

p = p(z), so that the pressure distribution is given to a very good approximation by −dp∕dz −
ig = 0, which is the hydrostatic pressure distribution.

(a) Show that the remaining equations of change simplify to

continuity
𝜕vy
𝜕y

+
𝜕vz
𝜕z

= 0 (13C.1-1)

z motion i

(
vy

𝜕
𝜕y

+ vz
𝜕
𝜕z

)
vz = 4

(
𝜕2

𝜕y2
+ 𝜕2

𝜕z2

)
vz + igv(T − T1) (13C.1-2)

----

energy iĈp

(
vy

𝜕
𝜕y

+ vz
𝜕
𝜕z

)
(T − T1) = k

(
𝜕2

𝜕y2
+ 𝜕2

𝜕z2

)
(T − T1) (13C.1-3)

----

in which i and v are evaluated at temperature T1. The dashed-underlined termswill be omitted

on the grounds that momentum and energy transport by molecular processes in the z direction
are small compared with the corresponding convective terms on the left sides of the equations.

These omissions give a satisfactory description of the system except for a small region around
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the bottom of the plate. With this simplification, the following boundary conditions suffice to

analyze the system up to z = H:

B. C. 1 at y = 0, vy = vz = 0 and T = T0 (13C.1-4)

B. C. 2 as y → ∞, vz → 0 and T → T1 (13C.1-5)

B. C. 3 at z = 0, vz = 0 (13C.1-6)

Note that the temperature rise appears in the equation of motion and the velocity distribution

appears in the energy equation. Thus, these equations are coupled. Analytic solutions of such

coupled, nonlinear differential equations are very difficult to obtain, and we content ourselves

here with a dimensional analysis approach.

(b) Using the following dimensionless variables

P =
T − T1

T0 − T1

= dimensionless temperature (13C.1-7)

r = z
H

= dimensionless vertical coordinate (13C.1-8)

q =
(

B
4wH

)1∕4

y = dimensionless horizontal coordinate (13C.1-9)

dz =
( 4

wBH

)1∕2
vz = dimensionless vertical velocity (13C.1-10)

dy =
(
4H
w3B

)1∕4

vy = dimensionless horizontal velocity (13C.1-11)

in which w = k∕iĈp and B = igv(T0 − T1), show that the dimensionless equations of change

become (with the dashed-underlined terms omitted)

continuity
𝜕dy

𝜕q
+

𝜕dz

𝜕r
= 0 (13C.1-12)

z motion 1

Pr

(
dy

𝜕
𝜕q

+ dz
𝜕
𝜕r

)
dz =

𝜕2dz

𝜕q2
+P (13C.1-13)

energy
(
dy

𝜕
𝜕q

+ dz
𝜕
𝜕r

)
P = 𝜕2P

𝜕q2
(13C.1-14)

(c) Show that the boundary conditions become

B. C. 1 at q = 0, dy = dz = 0 and P = 1 (13C.1-15)

B. C. 2 as q → ∞, dz → 0 and P → 1 (13C.1-16)

B. C. 3 at r = 0, dz = 0 (13C.1-17)

From these equations and boundary conditions, it is apparent that the dimensionless velocity

components dy and dz and the dimensionless temperaturePwill depend on q and r and also on

the Prandtl number, Pr. Since the flow is usually very slow in free convection, the term inwhich

Pr appears will generally by small; setting this term equal to zero corresponds to the creeping

flow assumption. Hence, we expect the dependence of the solution on the Prandtl number to

be weak.

(d) The average heat flux from the plate is given by

qavg =
1

H∫
H

0

(
−k𝜕T

𝜕y

)|||||y=0dz (13C.1-18)

Write this integral in dimensionless form, and use our knowledge of the dependence of P on

system variables to show that

qavg = C ⋅
k
H
(T0 − T1)(GrPr)1∕4 (13C.1-19)
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where the dimensionless parameter C is given by

C = ∫
1

0

(
−𝜕P
𝜕q

)|||||q=0dr (13C.1-20)

Thus, C depends only weakly on Pr. Note that if we use the definition of the heat-transfer

coefficient in Eq. 10.1-2, namely, h ≡ q∕2T, then Eq. 13C.1-19 can be written

hH
k

≡ Nu = C ⋅ (GrPr)1∕4 (13C.1-21)

We will find in the next chapter that this equation is a starting point for determining

heat-transfer coefficients for free convection past submerged objects.

This analysis shows that, even without solving the partial differential equations, we can

predict that the average heat flux is proportional to the 5

4
-power of the temperature difference

(T0 − T1) and inversely proportional to the 1

4
-power of H. Both predictions are confirmed by

experiment. The only thingwe could not dowas to determineC as a function of Pr. Todetermine

that function, we have to make experimental measurements or solve Eqs. 13C.1-12 to 13C.1-17.

In 1881, Lorenz1 obtained an approximate solution to these equations and found C = 0.548.
More refined calculations2 gave the following dependence of C on Pr:

Pr: 0.73 1 10 100 1000 ∞
C: 0.518 0.535 0.620 0.653 0.665 0.67

These values of C are nearly in exact agreement with the best experiments in the laminar flow

range (i.e., for GrPr < 109).3

1L. Lorenz, Wiedemann’s Ann. der Physik u. Chemie, 13, 422–447, 582–606 (1881). See also U. Grigull,

Die Grundgesetze der Wärmeübertragung, Springer-Verlag, Berlin, 3rd edition (1955), pp. 263–269.
2See S. Whitaker, Fundamental Principles of Heat Transfer, Krieger, Malabar, FL (1977), §5.11. The

limiting case of Pr → ∞ has been worked out numerically by E. J. LeFevre [Heat Div. Paper 113, Dept. Sci.

and Ind. Res., Mech. Engr. Lab. (Great Britain), Aug. 1956] and it was found that

𝜕P
𝜕q

||||q=0 = 0.5028

r1∕4
𝜕dz

𝜕q

|||||q=0 = 1.16

r1∕4
(13C.1-19a,b)

Equation 13C.1-19a corresponds to the value C = 0.670 above. This result has been verified

experimentally by C. R. Wilke, C. W. Tobias, and M. Eisenberg, J. Electrochem. Soc., 100, 513–523 (1953), for
the analogous mass-transfer problem.

3For an analysis of free convection in three-dimensional creeping flow, see W. E. Stewart, Int. J. Heat
and Mass Transfer, 14, 1013–1031 (1971).
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Chapter 14

Interphase Transport in
Nonisothermal Systems

§14.1 Definitions of heat-transfer coefficients

§14.2 Heat-transfer coefficients for forced convection through tubes and slits
obtained from solutions of the equations of change

§14.3 Empirical correlations for heat-transfer coefficients for forced convection
in tubes

§14.4 Heat-transfer coefficients for forced convection around submerged objects

§14.5 Heat-transfer coefficients for forced convection through packed beds

§14.6○ Heat-transfer coefficients for free and mixed convection for submerged
objects

§14.7○ Heat-transfer coefficients for condensation of pure vapors on solid
surfaces

§14.8 Concluding comments

In Chapter 10 we saw how shell energy balances may be set up for various simple prob-

lems and how these balances lead to differential equations from which the temperature

profiles may be calculated. We have also seen in Chapter 11 that the energy balance over

an arbitrary differential fluid element leads to a partial differential equation—the energy

equation—which may be used to set up more complex problems. It was further seen in

Chapter 12 that the time-smoothed energy equation, together with empirical expressions

for the turbulent heat flux, provides a useful basis for summarizing and extrapolating

temperature-profile measurements in turbulent systems. Hence, at this point the reader

should have a fairly good appreciation for the meaning of the equations of change for

nonisothermal flow and their range of applicability.

It should be apparent that all of the problems discussed have pertained to systems

of rather simple geometry and furthermore that most of these problems have contained

assumptions, such as temperature-independent viscosity and constant fluid density. For

some purposes, these solutions may be adequate, especially for order-of-magnitude esti-

mates. Furthermore, the study of simple systems provides the stepping stone to the dis-

cussion of more complex problems.

In this chapter we turn to some of the problems in which it is convenient or nec-

essary to use a less detailed analysis. In such problems the usual engineering approach

is to formulate energy balances over pieces of equipment, or parts thereof, as described

in Chapter 15. In the macroscopic energy balance thus obtained, there are usually terms

that require estimating the heat that is transferred through the system boundaries. This

394
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requires knowing the heat-transfer coefficient for describing the interphase transport. Usu-
ally the heat-transfer coefficient is given, for the flow system of interest, as an empirical
correlation of the Nusselt number1 (a dimensionless wall heat flux or heat transfer coef-
ficient) as a function of the relevant dimensionless quantities, such as the Reynolds and
Prandtl numbers.

This situation is not unlike that in Chapter 6, wherewe learned how to use dimension-
less correlations of the friction factor to solve momentum-transfer problems. However,
for nonisothermal problems the number of dimensionless groups is larger, the types of
boundary conditions aremore numerous, and the temperature dependence of the physical
properties is often important. In addition, the phenomena of free convection, condensa-
tion, and boiling are encountered in nonisothermal systems.

We have purposely limited ourselves here to a small number of heat-transfer formulas
and correlations—just enough to introduce the reader to the subject without attempt-
ing to be encyclopedic. Many treatises and handbooks treat the subject in much greater
depth.2,3,4,5,6

§14.1 DEFINITIONS OF HEAT-TRANSFER COEFFICIENTS

Let us consider a flow system with the fluid flowing either in a conduit or around a solid
object. Suppose that the solid surface is warmer than the fluid, so that heat is being trans-
ferred from the solid to the fluid. Then the rate of heat flow across the solid-fluid interface
would be expected to depend on the area of the interface and on the temperature drop
between the fluid and the solid. It is customary to define a proportionality factor h (the
heat-transfer coefficient) by

Q = hA2T (14.1-1)

in which Q is the rate of heat flow into the fluid ([=] J∕hr or Btu/hr), A is a characteristic
area, and 2T is a characteristic temperature difference. Equation 14.1-1 can also be used
when the fluid is cooled. Equation 14.1-1, in slightly different form, has been encountered
in Eq. 10.1-2. Note that h is not completely defined until the area A and the temperature
difference 2T have been specified. We now consider the usual definitions for h for two
types of flow geometry.

As an example of flow in conduits, we consider a fluid flowing through a circular tube of
diameterD (see Fig. 14.1-1), in which there is a heatedwall section of length L and varying
inside surface temperature T0(z), going from T01 to T02. Suppose that the bulk temperature

Tb of the fluid (defined in Eq. 10.9-35 for fluids with constant i and Ĉp) increases from Tb1
to Tb2 in the heated section. Then there are three conventional definitions of heat-transfer
coefficients for the fluid in the heated section:

Q = h1(0DL)(T01 − Tb1) ≡ h1(0DL)2T1 (14.1-2)

1This dimensionless group is named for Ernst Kraft Wilhelm Nusselt (1882–1957), the German

engineer who was the first major figure in the field of convective heat and mass transfer. See, for example,

W. Nusselt, Zeits. d. Ver. deutsch. Ing., 53, 1750–1755 (1909), Forschungsarb. a. d. Geb. d. Ingenieurwesen,
No. 80, 1–38, Berlin (1910), and Gesundheits-Ing., 38, 477–482, 490–496 (1915).

2M. Jakob, Heat Transfer, Vol. I (1949) and Vol. II (1957), Wiley, New York.
3W. M. Kays and M. E. Crawford, Convective Heat and Mass Transfer, 3rd edition, McGraw-Hill, New

York (1993).
4H. D. Baehr and K. Stephan, Heat and Mass Transfer, Springer, Berlin (1998).
5W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho (eds.), Handbook of Heat Transfer, McGraw-Hill, New

York (1998).
6H. Gröber, S. Erk, and U. Grigull, Die Grundgesetze der Wärmeübertragung, Springer, Berlin, 3rd

edition (1961).
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Q = ha(0DL)
( (T01 − Tb1) + (T02 − Tb2)

2

)
≡ ha(0DL)2Ta (14.1-3)

Q = hln(0DL)
( (T01 − Tb1) − (T02 − Tb2)
ln(T01 − Tb1) − ln(T02 − Tb2)

)
≡ hln(0DL)2Tln (14.1-4)

That is, h1 is based on the temperature difference 2T1 at the inlet, ha is based on the arith-
metic mean 2Ta of the terminal temperature differences, and hln is based on the correspond-
ing logarithmic mean temperature difference 2Tln. For most calculations hln is preferable,
because it is less dependent on L∕D than the other two, although it is not always used.1

In using heat-transfer correlations from treatises and handbooks, one must be careful to
note the definitions of the heat-transfer coefficients.

If the wall temperature distribution is initially unknown, or if the fluid properties
change appreciably along the pipe, it is difficult to predict the heat-transfer coefficients
defined above. Under these conditions, it is customary to rewrite Eq. 14.1-2 in the differ-
ential form:

dQ = hloc(0Ddz)(T0 − Tb)loc ≡ hloc(0Ddz)2Tloc (14.1-5)

Here dQ is the rate of heat added to the fluid over a distance dz along the pipe, 2Tloc is the
local temperature difference (at position z), and hloc is the local heat-transfer coefficient. This
equation is widely used in engineering design. Actually, the definition of hloc and 2Tloc is
not complete without specifying the shape of the element of area. In Eq. 14.1-5 we have
set dA = 0Ddz, which means that hloc and 2Tloc are the mean values for the darker shaded
area dA in Fig. 14.1-1.

As an example of flow around submerged objects, consider a fluid flowing around a
sphere of radius R, whose surface temperature is maintained at a uniform value T0. Sup-
pose that the fluid approaches the sphere with a uniform temperature T∞. Then we may
define amean heat-transfer coefficient, hm, for the entire surface of the sphere by the relation

Q = hm(40R2)(T0 − T∞) (14.1-6)

The characteristic area is here taken to be the heat-transfer surface (as in Eqs. 14.1-2 to
14.1-5), whereas in Eq. 6.1-5 we used the sphere cross section.

Fluid enters at
bulk temperature

Tb1

Fluid leaves at
bulk temperature

Tb2

D

Element with
heat transfer

 area
dA = πDdz

∆z
Tube cross

section πD2/4

Inner surface
at T02

Inner surface
at T01

L

z

Heated section
with inner surface

temperature
T0(z)

"1" "2"

Fig. 14.1-1. Heat transfer in a circular tube.

1If 2T2∕2T1 is between 0.5 and 2.0, then 2Ta may be substituted for 2Tln, and ha for hln, with a

maximum error of 4%. This degree of accuracy is acceptable in most heat-transfer calculations.
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A local coefficient can also be defined for submerged objects by analogy with
Eq. 14.1-5:

dQ = hloc(dA)(T0 − T∞) (14.1-7)

This coefficient is more informative than hm because it predicts how the heat flux is dis-
tributed over the surface. However, most experimentalists report only hm, which is easier
to measure.

Let us emphasize that the definitions of A and 2T must be made clear before h is
defined. Keep in mind, also, that h is not a constant characteristic of the fluid medium.
On the contrary, the heat-transfer coefficient depends in a complicated way onmany vari-

ables, including the fluid properties (k, 4, i, Ĉp), the systemgeometry, and the flowvelocity.
The remainder of this chapter is devoted to describing the dependence of h on these quan-
tities. Usually this is done by using experimental data anddimensional analysis to develop
correlations. It is also possible, for some very simple systems, to calculate the heat-transfer
coefficient directly from the equations of change. Some sample values of h are given in
Table 14.1-1.

We saw in §10.3 that, in the calculation of heat-transfer rates between two fluid
streams separated by one or more solid layers, it is convenient to use an overall
heat-transfer coefficient, U0, which expresses the combined effect of the series of resistances
throughwhich the heat flows.We give here a definition ofU0 and show how to calculate it
in the special case of heat exchange between two coaxial streams with bulk temperatures
Th (“hot”) and Tc (“cold”), separated by a cylindrical tube of inside diameter D0 and
outside diameter D1:

dQ =U0(0D0dz)(Th − Tc) (14.1-8)

1

D0U0

=
(

1

D0h0
+

ln(D1∕D0)
2k01

+ 1

D1h1

)
loc

(14.1-9)

Note that U0 is defined as a local coefficient. This is the definition implied in most design
procedures (see Example 15.4-1).

Equations 14.1-8 and 14.1-9 are, of course, restricted to thermal resistances connected
in series. In some situations there may be an appreciable parallel heat flux at one or both
surfaces by radiation, and Eqs. 14.1-8 and 14.1-9 will require special modification (see
Example 16.5-2).

Table 14.1-1. Typical Orders of Magnitude for Heat-Transfer Coefficients.a

System

h (W∕m2 ⋅ K) or
(kcal∕m2 ⋅ hr ⋅ ∘C) h (Btu∕ft2 ⋅ hr ⋅ ∘F)

Free convection
Gases 3–20 1–4

Liquids 100–600 20–120

Boiling water 1000–20,000 200–4000

Forced convection
Gases 10–100 2–20

Liquids 50–500 10–100

Water 500–10,000 100–2000

Condensing vapors 1000–100,000 200–20,000

aTaken from H. Gröber, S. Erk, and U. Grigull,Wärmeübertragung, Springer, Berlin, 3rd edition (1955), p.

158. When given h in kcal∕m2 ⋅ hr ⋅ ∘C, multiply by 0.204 to get h in Btu∕ft2 ⋅ hr ⋅ ∘F, and by 1.162 to get h
in W∕m2 ⋅ K. For additional conversion factors, see Appendix E.
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To illustrate the physical significance of heat-transfer coefficients and illustrate one
method of measuring them, we conclude this section with an analysis of a hypothetical
set of heat-transfer data.

EXAMPLE 14.1-1

Calculation of
Heat-Transfer
Coefficients from
Experimental Data

A series of simulated steady-state experiments on the heating of air in tubes is shown in

Fig. 14.1-2. In the first experiment, air at Tb1 = 200.0∘F is flowing in a 0.5-in. i.d. tube with

fully developed laminar velocity profile in the isothermal pipe section for z < 0. At z = 0

the wall temperature is suddenly increased to T0 = 212.0∘F and maintained at that value for

the remaining tube length LA. At z = LA the fluid flows into a mixing chamber in which the

cup-mixing (or “bulk”) temperature Tb2 is measured. Similar experiments are done with tubes

of different lengths, LB,LC, etc., with the following results:

Experiment A B C D E F G

L (in.) 1.5 3.0 6.0 12.0 24.0 48.0 96.0

Tb2(∘F) 201.4 202.2 203.1 204.6 206.6 209.0 211.0

In all experiments, the air flow rate w is 3.0 lbm∕hr. Calculate h1,ha,hln, and the exit value of hloc
as functions of the L∕D ratio.

SOLUTION

Our strategy is to use an energy balance to relate the heat-transfer rateQ to the inlet and outlet

conditions. Once Q is known, then the various heat-transfer coefficients can be obtained via

Eqs. 14.1-2 through 14.1-5. First we make a steady-state energy balance over a length L of the

tube, by stating that the heat in through the walls plus the energy entering at z = 0 by convec-

tion equals the energy leaving the tube at z = L. The axial energy flux at the tube entry and exit

may be calculated from Eq. 9.4-2. If it is assumed that the flow is fully developed throughout,

then the kinetic energy flux 1

2
iv2v and the work term [f ⋅ v] are the same at the inlet and out-

let. We also assume that qz << iĤvz, so that the axial heat-conduction term may be neglected.

Hence, the only contribution to the energy flux entering and leaving with the flow will be

the term containing the enthalpy, which can be computed with the help of Eq. 9.4-6 and the

assumptions that the heat capacity and density of the fluid are constant throughout. Therefore,

the steady-state energy balance becomes simply “rate of energy flow in = rate of energy flow

out,” or

Q + wĈpTb1 = wĈpTb2 (14.1-10)

The heat-transfer rate Q can be expressed in terms of the heat-transfer coefficient h1 using

Eq. 14.1-2. After rearranging, this gives

wĈp(Tb2 − Tb1) = h1(0DL)(T0 − Tb1) (14.1-11)

from which

h1 =
wĈp

0D2

(Tb2 − Tb1)
(T0 − Tb1)

(D
L

)
(14.1-12)

This gives us the formula for calculating h1 from the data given above.

Analogously, use of Eqs. 14.1-3 and 14.1-4 gives

ha =
wĈp

0D2

(Tb2 − Tb1)
(T0 − Tb)a

(D
L

)
(14.1-13)

hln =
wĈp

0D2

(Tb2 − Tb1)
(T0 − Tb)ln

(D
L

)
(14.1-14)

for obtaining ha and hln from the data.
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To evaluate hloc, we have to use the preceding data to construct a continuous curve Tb(z),
as in Fig. 14.1-2, to represent the change in bulk temperature with z in the longest (96-in.) tube.

Then Eq. 14.1-10 becomes

Q(z) + wĈpTb1 = wĈpTb(z) (14.1-15)

By differentiating this expression with respect to z and combining the result with Eq. 14.1-5, we

get

wĈp

dTb

dz
= hloc0D(T0 − Tb) (14.1-16)

or

hloc =
wĈp

0D
1

(T0 − Tb)
dTb

dz
(14.1-17)

Since T0 is constant, this becomes

hloc = −
wĈp

0D2

d ln(T0 − Tb)
d(z∕L)

(D
L

)
(14.1-18)

The derivative in this equation is conveniently determined as a function of z∕L from the slope

of a plot of ln(T0 − Tb) versus z∕L at various positions z∕L. Because numerical differentiation of

data is involved, it is difficult to determine hloc precisely.
The calculated results are shown in Fig. 14.1-3. Note that all of the coefficients decrease

with increasing L∕D, but that hloc and hln vary less than the others and approach a common

asymptote (see Problem 14B.5 and Fig. 14.1-3). Somewhat similar behavior is observed in tur-

bulent flow with constant wall temperature, except that hloc approaches the asymptote much

more rapidly (see Fig. 14.3-2).

Tb1

T

Tb2(LA)

Tb2(LB)
Tb2(LC)

Pipe with
heated section
of length LC

Pipe with
heated section
of length LB

Pipe with
heated section
of length LA

Heated
section
z > 0

Isothermal
section
z < 0

0 z = LA z = LB z = LC
z

Fig. 14.1-2. Series of experiments

for measuring heat-transfer

coefficients.
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Fig. 14.1-3. Heat-transfer coefficients calculated in Example 14.1-1.

§14.2 HEAT-TRANSFER COEFFICIENTS FOR FORCED
CONVECTION THROUGH TUBES AND SLITS OBTAINED
FROM SOLUTIONS OF THE EQUATIONS OF CHANGE

The main value of heat-transfer coefficients is that they relate heat-transfer rates to tem-
perature differences (as in Eqs. 14.1-2 through 14.1-7), without requiring knowledge of
the entire temperature profile. Thus, the challenges of solving for temperature profiles can
often be avoided. However, it is instructive to use the knowledge of temperature profiles
that have been determined for idealized problems to predict heat-transfer coefficients, and
to begin to understand the dependence of heat-transfer coefficients on other variables.

Recall from Chapter 6, where we defined and discussed friction factors, that for some
very simple laminar flow systemswe could obtain analytical formulas for the (dimension-
less) friction factor as a function of the (dimensionless) Reynolds number. We would like
to do the same for the heat-transfer coefficient, h, which, however, is not dimensionless.
Nonetheless we can construct with it a dimensionless quantity, Nu = hD∕k, the Nusselt
number, using the fluid thermal conductivity k and a characteristic length D, which must
be specified for each flow system. Two other related dimensionless groups are commonly
used: the Stanton number, St = Nu∕RePr, and the Chilton-Colburn j-factor for heat transfer,
jH = Nu∕RePr1∕3. Each of these dimensionless groupsmay be “decorated”with a subscript
1, a, ln, or m, corresponding to the subscript on the Nusselt number.

By way of illustration, let us return to §10.9 where we discussed the heating of a fluid
in laminar flow in a tube, with all the fluid properties being considered constant. Specif-
ically considered was the asymptotic solution for the temperature profile valid for large
distances z down the tube. From Eq. 10.9-35 and Eq. 10.9-33 we can get the difference
between the wall temperature T0(z) = T(r,z)|r=R and the bulk temperature:

T0(z) − Tb(z) =
(
4r + 11

24

)(
q0R
k

)
− 4r

(
q0R
k

)
= 11

24

(
q0R
k

)
= 11

48

(
q0D
k

)
(14.2-1)

in which R and D are the radius and diameter of the tube. Note that even though T0 and
Tb are both functions of z, their difference is independent of z. Solving for the wall heat
flux we get

q0 =
48

11

(
k
D

)
(T0 − Tb) (14.2-2)



Trim Size: 8in x 10in Bird1e c14.tex V1 - October 21, 2014 4:14 P.M. Page 401

§14.2 Heat-Transfer Coefficients from the Equations of Change 401

Then making use of the definition of the local heat-transfer coefficient hloc in
Eq. 14.1-5—namely, that q0 = hloc(T0 − Tb)—we find that

hloc = 48

11

(
k
D

)
or Nuloc =

hlocD
k

= 48

11
(14.2-3)

This result illustrates that for these conditions—namely, laminar tube flow with constant
physical properties and a constant heat flux at the wall—the local Nusselt number and
thus the local heat-transfer coefficient approach constants at large distances. One can show
that the log-mean Nusselt number Nuln = hlnD∕k also approaches a constant at large dis-
tances for these conditions (see Problem 14B.5).

Next consider laminar flow with constant physical properties and a constant wall
heat flux for small values of z (the “entrance region”). This situation was addressed in
Example 11.5-3. Near the entry of the tube, the bulk fluid temperature is approximately
the entrance temperature T1, and the wall temperature is given by T0(z) = T(y,z)|y=0.
In terms of dimensionless variables used in Example 11.5-3, the wall temperature is

expressed as T0(z) = T1 + (q0R∕k)P(q = 0,m = wz∕v0R2) = T1 + (q0R∕k)(9wz∕v0R2)1∕3∕T
(

2

3

)
,

where P(q,m) ≡ (T − T1)∕(q0R∕k) is the dimensionless temperature profile given by Eq.

11.5-62. The local Nusselt number is thus

Nuloc =
hlocD
k

=
q0D∕k

(T0(z) − T1)

=
2T

(
2

3

)
91∕3

(⟨vz⟩D2

wz

)1∕3
= C ⋅

(
RePr

D
z

)1∕3
(14.2-4)

where we have used w = k∕iĈp, T0, and C = 2T
(

2

3

)
∕91∕3 ≈ 1.302 (the gamma function T(n)

is given in App. C). Here we see that the Nusselt number is quite large for small values of

z, and then decreases as z increases. This occurs because the wall flux is constant, and the
temperature difference T0(z) − T1 is small near the entrance and increases with increasing
z. Equation 14.2-4 is valid for small values of z, given by wz∕⟨vz⟩D2 ≪ 1.

The above results are illustrated in Fig. 14.2-1 where Nuloc is plotted as a function of
wz∕⟨vz⟩D2 = (RePrD∕z)−1. Also shown are analogous results for laminar flow in a tubewith
constant wall temperature, as well as the constant wall flux and constant wall temperature
results for flow in a slit of thickness 2B. The asymptotic results for small and large z for
both flow in a tube and flow in a slit are also summarized in Table 14.2-1.1 Keep in mind
that these results are valid for laminar flow of Newtonian fluids with constant physical
properties.

For turbulent flow in a circular tube with constant heat flux, the Nusselt number can
be obtained from Eq. 12.4-21:2

Nuloc =
RePr

√
f∕2

12.48Pr2∕3 − 7.853Pr1∕3 + 3.613 ln Pr + 5.8 + 2.78 ln
(

1

45
Re

√
f∕8

) (14.2-5)

1This table is adapted from R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric
Liquids, Vol. 1, Fluid Mechanics, 2nd edition, Wiley, New York (1987), pp. 212–213. They are based, in turn,

on W. J. Beek and R. Eggink, De Ingenieur, 74, (35) Ch. 81–Ch. 89 (1962) and J. M. Valstar and W. J. Beek,

De Ingenieur, 75, (1), Ch. 1–Ch. 7 (1963).
2O. C. Sandall, O. T. Hanna, and P. R. Mazet, Canad. J. Chem. Eng., 58, 443–447 (1980).
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(tube) or (slit)

αz

Constant wall heat flux (slit)

Constant wall temperature (slit)

Constant wall heat flux (tube)

Constant wall temperature (tube)

8.235

7.541
4.364

3.657

Fig. 14.2-1. The Nusselt number for fully developed, laminar flow of Newtonian fluids with

constant physical properties: Nuloc = hlocD∕k for circular tubes of diameter D, and

Nuloc = 4hlocB∕k for slits of half-width B. The limiting expressions are given in Table 14.2-1.

This is valid only for wz∕⟨vz⟩D2 ≫ 1, for fluids with constant physical properties, and for

tubes with no roughness. It has been applied successfully over the Prandtl-number range

0.7 < Pr < 590. Note that, for very large Prandtl numbers, Eq. 14.2-5 gives

Nuloc ≈
RePr

√
f∕2

12.48 Pr2∕3
= 0.0566 Re Pr1∕3

√
f (14.2-6)

The Pr1∕3 dependence is in exact agreement with Eq. 12.3-7. For turbulent flow, there is

little difference between Nu for constant wall temperature and for constant wall heat flux.

For the turbulent flow of liquid metals, for which the Prandtl numbers are generally

much less than unity, there are two results of importance. Notter and Sleicher3 solved

the energy equation numerically, using a realistic turbulent velocity profile, and obtained

the rates of heat transfer through the wall. The final results were curve-fitted to simple

analytical expressions for two cases:

Constant wall temperature: Nuloc = 4.8 + 0.0156 Re0.85Pr0.93 (14.2-7)

Constant wall heat flux: Nuloc = 6.3 + 0.0167 Re0.85Pr0.93 (14.2-8)

These equations are limited to L∕D > 60 and constant physical properties. Equation 14.2-7

is displayed in Fig. 14.2-2.

It has been emphasized that all of the results of this section are limited to fluids with

constant physical properties. When there are large temperature differences in the system,

it is necessary to take into account the temperature dependence of the viscosity, density,

heat capacity, and thermal conductivity. Usually this is done by means of an empiricism,

namely by evaluating the physical properties at some appropriate average temperature.

3R. H. Notter and C. A. Sleicher, Chem. Eng. Sci., 27, 2073–2093 (1972).
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Pé = Péclet number = RePr

102 103 104

10

102

Nu

Laminar

0.06
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0.004

Pr

Fig. 14.2-2. Nusselt number for

turbulent flow of liquid metals

in circular tubes, based on the

theoretical calculations of R. H.

Notter and C. A. Sleicher, Chem.
Eng. Sci., 27, 2073–2093 (1972).

Throughout this chapter, unless explicitly stated otherwise, it is understood that all phys-
ical properties are to be calculated at the film temperature Tf defined as follows:4

a. For tubes, slits, and other ducts

Tf =
1

2
(T0a + Tba) (14.2-9)

in which T0a is the arithmetic average of the surface temperatures at the two ends,

T0a =
1

2
(T01 + T02), and Tba is the arithmetic average of the inlet and outlet bulk

temperatures, Tba =
1

2
(Tb1 + Tb2). It is also recommended that the Reynolds number

be written as Re = D⟨iv⟩∕4 = Dw∕S4, to account for viscosity, velocity, and density
changes over the cross section of area S.

b. For submerged objects with uniform surface temperature T0 in a stream of liquid
approaching with uniform temperature T∞

Tf =
1

2
(T0 + T∞) (14.2-10)

For flow systems involvingmore complicated geometries, it is preferable to use exper-
imental correlations of the heat-transfer coefficients. In the following sections we show
how such correlations can be established by a combination of dimensional analysis and
experimental data.

§14.3 EMPIRICAL CORRELATIONS FOR HEAT-TRANSFER
COEFFICIENTS FOR FORCED CONVECTION IN TUBES

In the previous section we have shown that the Nusselt numbers for circular tubes can in
some special cases be computed from first principles. In this section we show how dimen-
sional analysis leads us to a general form for the dependence of the Nusselt number on
various dimensionless groups, and that this form includes not only laminar flows, but tur-
bulent flows as well. Then we present a dimensionless plot of Nusselt numbers that was

4W. J. M. Douglas and S. W. Churchill, Chem. Eng. Prog. Symposium Series, No. 18, 52, 23–28 (1956); E.
R. G. Eckert, Recent Advances in Heat and Mass Transfer, McGraw-Hill, New York (1961), pp. 51–81, Eq.

(20); more detailed reference states have been proposed by W. E. Stewart, R. Kilgour, and K.-T. Liu,

University of Wisconsin-Madison Mathematics Research Center Report #1310 (June 1973).
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obtained by correlating experimental data, as well as various empirical equations valid

for specific ranges of parameters.

First we extend the dimensional analysis given in §13.1 to obtain a general form for

correlations of heat-transfer coefficients in forced convection. Consider the steadily driven

laminar or turbulent flow of a Newtonian fluid through a straight tube of inner radius

R, as shown in Fig. 14.3-1. The fluid enters the tube at z = 0 with velocity uniform out

to very near the wall, and with a uniform inlet temperature T1(= Tb1). The tube wall is

insulated except in the region 0 < z ≤ L, where a uniform inner-surface temperature T0

is maintained, for example, by heat from vapor condensing on the outer surface. For the

moment, we assume constant physical properties i, 4, k, and Ĉp. Later we will extend the

empiricism given in §14.2 to provide a fuller allowance for the temperature dependence

of these properties.

We follow the same procedure used in §6.2 for friction factors. We start by writing the

expression for the instantaneous heat flow from the tube wall into the fluid in the system

described above

Q(t) = ∫
L

0 ∫
20

0

(
+k𝜕T

𝜕r

)||||r=RR dp dz (14.3-1)

which is valid for laminar or turbulent flow (in laminar flow,Qwould, of course, be inde-

pendent of time). The + sign appears here because the heat is added to the system in the

negative r direction.
Equating the expressions for Q given in Eqs. 14.1-2 and 14.3-1 and solving for h1, we

get

h1(t) =
1

0DL(T0 − Tb1)∫
L

0 ∫
20

0

(
+k𝜕T

𝜕r

)||||r=RR dp dz (14.3-2)

Introducing dimensionless quantities r̆ = r∕D, z̆ = z∕D, and T̆ = (T − T0)∕(Tb1 − T0), and
multiplying by D∕k, we get an expression for the Nusselt number Nu1 = h1D∕k:

Nu1(t) =
1

20L∕D∫
L∕D

0 ∫
20

0

(
−𝜕T̆
𝜕r̆

)|||||r̆=1∕2dp dz̆ (14.3-3)

Thus, the (instantaneous) Nusselt number is basically a dimensionless temperature gradient
averaged over the heat-transfer surface.

Thedimensionless temperature gradient appearing in Eq. 14.3-3 could, in principle, be
evaluated by differentiating the expression for T̆ obtained by solving Eqs. 13.1-10, 13.1-11,

r

z

L

D
R

"1"

Heated section
with uniform surface

temperature T0

Fluid enters
at uniform

temperature T1

Fluid leaves
with bulk

temperature Tb2

Nozzle Condenser

"2"

Fig. 14.3-1. Heat transfer in the entrance region of a tube.
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and 13.1-12 with the boundary conditions

at z̆ = 0, v̆ = tz for 0 ≤ r̆ ≤ 1

2
(14.3-4)

at r̆ = 1

2
, v̆ = 𝟎 for z̆ ≥ 0 (14.3-5)

at r̆ = 0 and z̆ = 0, �̆� = 0 (14.3-6)

at z̆ = 0, T̆ = 1 for 0 ≤ r̆ ≤ 1

2
(14.3-7)

at r̆ = 1

2
T̆ = 0 for 0 ≤ z̆ ≤ L∕D (14.3-8)

where v̆ = v∕⟨vz⟩1 and �̆� = (𝒫 −𝒫1)∕i⟨vz⟩21. As in §6.2, we have neglected the 𝜕2∕𝜕z̆2
terms (i.e., because of (1) incompressibility, and (2) negligible axial heat conduction). With
those terms suppressed, upstream transport of heat and momentum are excluded, so that
the solutions upstream of plane 2 in Fig. 14.3-1 do not depend on L∕D.

From Eqs. 13.1-10, 13.1-11, and 13.1-12 and these boundary conditions, we conclude
that the dimensionless instantaneous temperature distribution must be of the following
form:

T̆(t) = T̆(r̆,p,z̆,t̆;Re,Pr,Br) for 0 ≤ z̆ ≤ L∕D (14.3-9)

Substitution of this relation into Eq. 14.3-3 leads to the conclusion that Nu1(t̆) =
Nu1(Re,Pr,Br,L∕D,t̆). When time averaged over an interval long enough to include all the
turbulent disturbances, this becomes

Nu1 = Nu1(Re,Pr,Br,L∕D) (14.3-10)

If, as is often the case, the viscous dissipation heating is small, then the Brinkman number
can be omitted. Then Eq. 14.3-10 simplifies to

Nu1 = Nu1(Re,Pr,L∕D) (14.3-11)

Therefore, dimensional analysis tells us that, for forced-convection heat transfer in circular
tubes with constant wall temperature, experimental values of the heat-transfer coefficient
h1 can be correlated by givingNu1 as a function of the Reynolds number, the Prandtl num-
ber, and the geometric ratio L∕D. This should be compared with the similar, but simpler,
situation with the friction factor (Eqs. 6.2-9 and 6.2-10).

The same reasoning leads us to similar expressions for the other heat-transfer coeffi-
cients we have defined. It can be shown (see Problem 14.B-4) that:

Nua =Nua(Re,Pr,L∕D) (14.3-12)

Nuln =Nuln(Re,Pr,L∕D) (14.3-13)

Nuloc =Nuloc(Re,Pr,L∕D) (14.3-14)

in which Nua = haD∕k, Nuln = hlnD∕k, and Nuloc = hlocD∕k. That is, to each of the
heat-transfer coefficients, there is a corresponding Nusselt number. These Nusselt num-
bers are, of course, interrelated (see Problem 14.B-5). These general functional forms for
the Nusselt numbers have a firm scientific basis, since they involve only the dimensional
analysis of the equations of change and boundary conditions.

Thus farwe have assumed that the physical properties are constants over the tempera-
ture range encountered in the flow system.At the end of §14.2we indicated that evaluating
the physical properties at the film temperature is a suitable empiricism. However, for very
large temperature differences, the viscosity variationsmay result in such a large distortion
of the velocity profiles that it is necessary to account for this by introducing an additional
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dimensionless group, 4b∕40, where 4b is the viscosity at the arithmetic average bulk tem-

perature 1

2
(Tb1 + Tb2) and 40 is the viscosity at the arithmetic average wall temperature

1

2
(T01 + T02).1 Then we may express the dependence of the Nusselt number as

Nu = Nu(Re,Pr,L∕D,4b∕40) (14.3-15)

for each of the different Nusselt numbers Nu1, Nua, Nuln, and Nuloc. This type of corre-
lation seems to have first been presented by Sieder and Tate.2 If, in addition, the density
varies significantly, then some free convection may occur. This effect can be accounted
for in correlations by including the Grashof number along with the other dimensionless
groups. Correlations for free-convection heat transfer are discussed in §14.6.

Let us now pause to reflect on the significance of the above discussion for construct-
ing heat-transfer correlations. The heat-transfer coefficient h depends on eight physical
quantities (D,⟨v⟩,i,40,4b,Ĉp,k,L). But Eq. 14.3-15 tells us that this dependence can be
expressed more concisely by giving Nu as a function of only four dimensionless groups
(Re,Pr,L∕D,4b∕40). Thus, instead of taking data on h for 5 values of each of the eight
individual physical quantities (58 ≈ 3.9 × 105 tests), we can measure h for 5 values of the
dimensionless groups (54 = 625 tests)—a rather dramatic saving of time and effort.

A good global view of heat transfer in circular tubes with nearly constant wall tem-
perature can be obtained from the Sieder and Tate2 correlation given in Fig. 14.3-2. This
is of the form of Eq. 14.3-15. It has been found empirically2,3 that transition to turbulence
usually begins at about Re = 2100, evenwhen the viscosity varies appreciably in the radial
direction.

For highly turbulent flow, the curves for L∕D > 10 converge to a single curve. For Re >
20,000 this curve is described by the equation

Nuln = 0.026 Re0.8Pr1∕3
(
4b
40

)0.14
(14.3-16)

This equation reproduces available experimental data within about ±20% in the ranges
104 < Re < 105 and 0.6 < Pr < 100.

For laminar flow, the descending lines at the left are given by the equation

Nuln = 1.86
(
RePr

D
L

)1∕3(4b
40

)0.14
(14.3-17)

1One can arrive at the viscosity ratio by inserting into the equations of change a

temperature-dependent viscosity, described, for example, by a Taylor expansion about the wall

temperature:

4 = 40 +
𝜕4
𝜕T

||||T=T0 (T − T0) + · · · (14.3-15a)

When the series is truncated and the differential quotient is approximated by a difference quotient, we get

4 ≈ 40 +
( 4b − 40
Tb − T0

)
(T − T0) (14.3-15b)

or, with some rearrangement

4
40

≈ 1 +
(4b
40

− 1

)(
T − T0

Tb − T0

)
(14.3-15c)

Thus, the viscosity ratio appears in the equation of motion and hence in the dimensionless correlation.
2E. N. Sieder and G. E. Tate, Ind. Eng. Chem., 28, 1429–1435 (1936).
3A. P. Colburn, Trans. AIChE, 29, 174–210 (1933). Allan Philip Colburn (1904–1955), Provost at the

University of Delaware (1950–1955), made important contributions to the fields of heat and mass transfer,

including the “Chilton-Colburn relations.”
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Fig. 14.3-2. Heat-transfer coefficients for fully developed flow in smooth tubes. The lines for laminar flow should not be

used in the range RePrD∕L < 10, which corresponds to (T0 − Tb)2∕(T0 − Tb)1 < 0.2. The laminar curves are based on data

for RePrD∕L ≫ 10 and nearly constant wall temperature; under these conditions ha and hln are indistinguishable. We

recommend using hln, as opposed to the ha, suggested by Sieder and Tate, because this choice is conservative in the usual

heat-exchanger design calculations. [E. N. Sieder and G. E. Tate, Ind. Eng. Chem., 28, 1429–2435 (1936).]

which is based on Eq. (B) of Table 14.2-1.4 The numerical coefficient in Eq. (B) has been

multiplied by a factor of 3

2
to convert from hloc to hln, and then furthermodified empirically

to account for the deviations due to variable physical properties. This illustrates how a

satisfactory empirical correlation can be obtained by modifying the result of an analytical

derivation. Equation 14.3-17 is good within about 20% for RePrD∕L > 10, but at lower

values of RePrD∕L, it underestimates hln considerably.
The transition region, roughly 2100 < Re < 8000 in Fig. 14.3-2, is not well understood

and is usually avoided in design if possible. The curves in this region are supported by

experimental measurements2 but are less reliable than the rest of the plot.

The general characteristics of the curves in Fig. 14.3-2 deserve careful study. Note that

for a heated section of given L andD, and a fluid of given physical properties, the ordinate

is proportional to the dimensionless temperature rise of the fluid passing through, that is,

(Tb2 − Tb1)∕(T0 − Tb)ln. Under these conditions, as the flow rate (or Reynolds number) is

increased, the exit fluid temperature will first decrease, until Re reaches about 2100, then

increase, until Re reaches about 8000, and then finally decrease again. Note also that the

influence of L∕D on hln is marked in laminar flow but becomes insignificant for Re > 8000

with L∕D > 60.

Note also that Fig. 14.3-2 somewhat resembles the friction-factor plot in Fig.

6.2-2, although the physical situation is quite different. In the highly turbulent range

(Re > 10,000) the heat-transfer ordinate agrees approximately with f∕2 for the long

smooth pipes under consideration. This was first pointed out by Colburn,3 who proposed

4Equation (B) of Table 14.2-1 is an asymptotic solution of the Graetz problem, one of the classic

problems of heat convection: L. Graetz, Ann. d. Physik, 13, 79–94 (1883), 25, 337–357 (1885); see J. Lévêque,
Ann. mines (Series 12), 13, 201–299, 305–362, 381–415 (1928) for the asymptote in Eq. (B). An extensive

summary can be found in M. A. Ebadian and Z. F. Dong, Chapter 5 of Handbook of Heat Transfer, 3rd
edition, (W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, eds.), McGraw-Hill, New York, (1998).
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the following empirical analogy for long, smooth tubes

jH, ln ≈ 1

2
f (Re > 10,000) (14.3-18)

in which

jH, ln =
Nuln

Re Pr1∕3
=

hln⟨iv⟩Ĉp

(
Ĉp4

k

)2∕3

=
hlnS

wĈp

(
Ĉp4

k

)2∕3

(14.3-19)

where S is the area of the tube cross section, w is the mass rate of flow through the tube,
and f∕2 is obtainable from Fig. 6.2-2 using Re = Dw∕S4 = 4w∕0D4. Clearly the analogy of
Eq. 14.3-18 is not valid below Re = 10,000. For rough tubes with fully developed turbulent
flow the analogy breaks down completely, because f is affected more by roughness than
jH is.

One additional remark about the use of Fig. 14.3-2 has to do with the application
to conduits of noncircular cross section. For highly turbulent flow, one may use the mean
hydraulic radius of Eq. 6.2-15. To apply that empiricism,D is replaced by 4Rh everywhere
in the Reynolds and Nusselt numbers.

EXAMPLE 14.3-1

Design of a Tubular
Heater

Air at 70∘F and 1 atm is to be pumped through a straight 2-in. i.d. pipe at a rate of 70 lbm∕hr.
A section of the pipe is to be heated to an inside wall temperature of 250∘F to raise the air
temperature to 230∘F. What heated length is required?

SOLUTION

The arithmetic average bulk temperature is Tba = 150∘F, and the film temperature

is Tf =
1

2
(150∘F + 250∘F) = 200∘F. At this temperature the properties of air are: 4 =

0.052 lbm∕ft ⋅ hr, Ĉp = 0.242 Btu∕lbm ⋅ ∘F, k = 0.0180 Btu∕hr ⋅ ft ⋅ ∘F, and Pr = Ĉp4∕k = 0.70.
The viscosities of air at 150∘F and 250∘F are 0.049 and 0.055 lbm∕ft ⋅ hr, respectively, so that the
viscosity ratio is 4b∕40 = 0.049∕0.055 = 0.89.

The Reynolds number, evaluated at the film temperature, 200∘F, is then

Re = Dw
S4

= 4w
0D4

=
4(70 lbm∕hr)

0(2 in.)(0.052 lbm∕ft ⋅ hr)

(
12 in.

1 ft

)
= 1.03 × 104 (14.3-20)

From Fig. 14.3-2 we obtain

(Tb2 − Tb1)
(T0 − Tb)ln

D
4L

Pr2∕3
(
4b
40

)−0.14
= 0.0039 (14.3-21)

When this is solved for L∕D, we get

L
D

= 1

4(0.0039)
(Tb2 − Tb1)
(T0 − Tb)ln

Pr2∕3
(
4b
40

)−0.14
= 1

4(0.0039)
(230∘F − 70∘F)

72.8∘F
(0.70)2∕3(0.89)−0.14

= 113 (14.3-22)

Hence, the required length is

L = 113D = (113)(2 in.)
(

1 ft

12 in.

)
= 19 ft (14.3-23)

If Re had been much smaller, it would have been necessary to estimate L∕D before reading
Fig. 14.3-2, thus initiating a trial-and-error process.

Note that in this problem we did not have to calculate h. Numerical evaluation of h is
necessary, however, in more complicated problems such as heat exchange between two fluids
with an intervening wall.



Trim Size: 8in x 10in Bird1e c14.tex V1 - October 21, 2014 4:14 P.M. Page 410

410 Chapter 14 Interphase Transport in Nonisothermal Systems

§14.4 HEAT-TRANSFER COEFFICIENTS FOR FORCED
CONVECTION AROUND SUBMERGED OBJECTS

Another topic of industrial and natural importance is the transfer of heat to or from an
object aroundwhich a fluid is flowing. The objectmay be relatively simple, such as a single
cylinder or sphere, or it may be more complex, such as a “tube bundle” made up of a set
of cylindrical tubes with a stream of gas or liquid flowing between them. We examine
here only a few selected correlations for simple systems: the flat plate, the sphere, and
the cylinder. Many additional correlations may be found in the references cited in the
introduction to the chapter.

a. Flow along a flat plate
We first examine the flow along a flat plate, oriented parallel to the flow, with its sur-

face maintained at T0 and the approaching stream having a uniform temperature T∞ and
a uniform velocity v∞. The local heat-transfer coefficient hloc = q0∕(T0 − T∞) and the local

friction factor floc = f0∕
1

2
iv2∞ are shown in Fig. 14.4-1. For the laminar region, which nor-

mally exists near the leading edge of the plate, the following expressions can be obtained
from an approximate boundary analysis (see Problems 3C.2 and 11C.4):

1

2
floc = + 4

iv2∞

𝜕vx
𝜕y

|||||y=0 = 3

2

√
13

280
Re

−1∕2
x = 0.323Re−1∕2x (14.4-1)

Nuloc =
hlocx
k

= x
(T∞ − T0)

𝜕T
𝜕y

|||||y=0 = 2

√
37

1260
Re

1∕2
x Pr1∕3 = 0.343Re1∕2x Pr1∕3 (14.4-2)

More accurate analyses1 of these laminar-flow problems yield exactly the same numerical
coefficient in both expressions above, namely 0.332. If we use this value, then Eq. 14.4-2
gives

jH,loc =
Nuloc

RePr1∕3
=

hloc
iĈpv∞

(
Ĉp4

k

)2∕3

= 0.332 Re−1∕2x (14.4-3)

f/
2
, 
j H

Rex = v∞ ρ x/µ, ReL = v∞ ρ L/µ
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5

Fig. 14.4-1. Transfer coefficients for a smooth flat plate in tangential flow. [Adapted from H. Schlichting, Boundary-Layer
Theory, McGraw-Hill, New York (1955), pp. 438–439.]
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Since the numerical coefficient in Eq. 14.4-3 is the same as that in themore accurate version
of Eq. 14.4-1, we then get

jH,loc =
1

2
floc = 0.332 Re−1∕2x (14.4-4)

for the Colburn analogy between heat transfer and fluid friction. This was to be expected,
because there is no “form drag” in this flow geometry.

Equation 14.4-4 was derived for fluids with constant physical properties.1 When the

physical properties are evaluated at the film temperature Tf =
1

2
(T0 + T∞), Eq. 14.4-3 is

known toworkwell for gases.2 The analogy of Eq. 14.4-4 is accuratewithin 2% for Pr > 0.6,
but becomes inaccurate at lower Prandtl numbers.

For highly turbulent flows, the Colburn analogy still holds with fair accuracy, with floc
given by the empirical curve in Fig. 14.4-1. The transition between laminar and turbulent
flow resembles that for pipes in Fig. 14.3-1, but the limits of the transition region are harder
to predict. For smooth, sharp-edged flat plates in an isothermal flow the transition usually
begins at a Reynolds number Rex = xv∞i∕4 of 100,000 to 300,000 and is almost complete
at a 50% higher Reynolds number.

b. Flow around a sphere
In Problem 10B.1 it is shown that the Nusselt number for a sphere in a stationary fluid

is 2. For the sphere with constant surface temperature T0 in a flowing fluid approaching
with a uniform velocity v∞, the mean Nusselt number is given by the following empiri-
cism3

Num = 2 + 0.60 Re1∕2Pr1∕3 (14.4-5)

This result is useful for predicting the heat loss from droplets or bubbles.
Another correlation that has proven successful4 is

Num = 2 + (0.4 Re1∕2+0.06 Re2∕3)Pr0.4
(
4∞
40

)1∕4

(14.4-6)

in which the physical properties appearing in Num, Re, and Pr are evaluated at the
approaching stream temperature. This correlation is recommended for 3.5 < Re <
7.6 × 104, 0.71 < Pr < 380, and 1.0 < 4∞∕40 < 3.2. In contrast to Eq. 14.4-5, it is not valid
in the limit that Pr → ∞.

c. Flow around a cylinder
Acylinder in a stationary fluid of infinite extent does not admit a steady-state solution.

Therefore, the Nusselt number for a cylinder does not have the same form as that for
a sphere. Whitaker recommends for the mean Nusselt number4 for flow transverse to a
cylinder

Num = (0.4 Re1∕2+0.06 Re2∕3)Pr0.4
(
4∞
40

)1∕4

(14.4-7)

in the range 1.0 < Re < 1.0 × 105, 0.67 < Pr < 300, and 0.25 < 4∞∕40 < 5.2. Here, as in
Eq. 14.4-6, the values of viscosity and thermal conductivity in Re and Pr are those at the

1Eq. 14.4-1 with a numerical coefficient of 0.332 was first obtained by H. Blasius, Z. Math. Phys., 56,
1–37 (1908), and Eq. 14.4-2 with a numerical coefficient of 0.332 was obtained by E. Pohlhausen, Z. angew.
Math. Mech., 1, 115–121 (1921).

2E. R. G. Eckert, Trans. ASME, 56, 1273–1283 (1956). This article also includes high-velocity flows, for

which compressibility and viscous dissipation become important.
3W. E. Ranz and W. R. Marshall, Jr., Chem. Eng. Prog., 48, 141–146, 173–180 (1952). N. Frössling,

Gerlands Beitr. Geophys., 52, 170–216 (1938), first gave a correlation of this form, with a coefficient of 0.552

in lieu of 0.60 in the last term.
4S. Whitaker, Fundamental Principles of Heat Transfer, Krieger Publishing Co., Malabar, FL (1977),

pp. 340–342; AIChE Journal, 18, 361–371 (1972).
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approaching stream temperature. Similar results are available for banks of cylinders,
which may be encountered in certain types of heat exchangers.4

Another correlation,5 based on a curve-fit of McAdams’ compilation of heat-transfer
coefficient data,6 is

Num = (0.376 Re1∕2+ 0.057 Re2∕3)Pr1∕3

+ 0.92

[
ln

(
7.4055
Re

)
+ 4.18 Re

]−1∕3
Re1∕3Pr1∕3 (14.4-8)

This correlation has the proper behavior in the limit that Pr → ∞, and also behaves
properly for small values of the Reynolds number. This result can be used for analyzing
the steady-state performance of hot-wire anemometers, which typically operate at low
Reynolds numbers.

d. Flow around other objects
We learn from the above three discussions that, for the flow around objects of shapes

other than those described above, a fairly good guess for the heat-transfer coefficients can
be obtained by using the relation

Num −Num,0 = 0.6 Re1∕2Pr1∕3 (14.4-9)

in whichNum,0 is themeanNusselt number at zero Reynolds number. This generalization,
which is shown in Fig. 14.4-2, is often useful in estimating the heat transfer from irregularly
shaped objects.

§14.5 HEAT-TRANSFER COEFFICIENTS FOR FORCED
CONVECTION THROUGH PACKED BEDS

Heat-transfer coefficients between particles and fluid in packed beds are important in the
design of fixed-bed catalytic reactors, absorbers, driers, and pebble-bed heat exchangers.
The velocity profiles in packed beds exhibit a strong maximum near the wall, attributable
partly to the higher void fraction there and partly to themore ordered interstitial passages
along this smooth boundary. The resulting segregation of the flow into a fast outer stream
and a slower interior one, which mix at the exit of the bed, leads to complicated behavior
of mean Nusselt numbers in deep packed beds,1 unless the tube-to-particle diameter ratio

5W. E. Stewart (unpublished).
6W. H. McAdams, Heat Transmission, 3rd edition, McGraw-Hill, New York (1954), p. 259.
1H. Martin, Chem. Eng. Sci., 33, 913–919 (1978).
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Dt∕Dp is very large or close to unity. Experiments with wide, shallow beds show simpler
behavior and are used in the following discussion.

We define hloc for a representative volume Sdz of particles and fluid by the following
modification of Eq. 14.1-5:

dQ = hloc(aSdz)(T0 − Tb) (14.5-1)

Here a is the outer surface area of particles per unit bed volume, as in §6.4. Equations 6.4-5
and 6.4-6 give the effective particle sizeDp as 6∕av = 6(1 − s)∕a for a packed bed with void
fraction s.

Extensive data on forced convection for the flow of gases2 and liquids3 through shal-
low packed beds have been critically analyzed4 to obtain the following local heat-transfer
correlation,

jH = 2.19 Re−2∕3 + 0.78 Re−0.381 (14.5-2)

and an identical formula for the mass-transfer function jD defined in §22.3. Here the
Chilton-Colburn jH factor and the Reynolds number are defined by

jH =
hloc
ĈpG0

(
Ĉp4

k

)2∕3

(14.5-3)

Re =
DpG0

(1 − s)4b
=

6G0

a4b
(14.5-4)

In this equation the physical properties are all evaluated at the film temperature Tf =
1

2
(T0 + Tb), and G0 = w∕S is the superficial mass velocity introduced in §6.4. The quan-

tity b is a particle-shape factor, with a defined value of 1 for spheres and a fitted value4 of
0.92 for cylindrical pellets. A related shape factor was used by Gamson5 in Re and jH; the
present factor b is used in Re only.

For small Re, Eq. 14.5-2 yields the asymptote

jH = 2.19 Re−2∕3 (14.5-5)

or

Nuloc =
hlocDp

k(1 − s)b
= 2.19(RePr)1∕3 (14.5-6)

consistent with boundary-layer theory6 for creeping flow with RePr >> 1. The latter
restriction gives Nu >> 1 corresponding to a thin thermal boundary layer relative to
Dp∕(1 − s)b. This asymptote represents the creeping-flow mass-transfer data for liquids3

very well.

The exponent 2

3
in Eq. 14.5-3 is a high-Pr asymptote given by boundary-layer theory

for steady laminar flows6 and for steadily driven turbulent flows.7 This dependence is
consistent with the cited data over the full range Pr > 0.6 and the corresponding range of
the dimensionless group Sc for mass transfer.

2B. W. Gamson, G. Thodos, and O. A. Hougen, Trans. AIChE, 39, 1–35 (1943); C. R. Wilke and O. A.

Hougen, Trans. AIChE, 41, 445–451 (1945).
3L. K. McCune and R. H. Wilhelm, Ind. Eng. Chem., 41, 1124–1134 (1949); J. E. Williamson, K. E.

Bazaire, and C. J. Geankoplis, Ind. Eng. Chem. Fund., 2, 126–129 (1963); E. J. Wilson and C. J. Geankoplis,

Ind. Eng. Chem. Fund., 5, 9–14 (1966).
4W. E. Stewart, unpublished.
5B. W. Gamson, Chem. Eng. Prog., 47, 19–28 (1951).
6W. E. Stewart, AIChE Journal, 9, 528–535 (1963); R. Pfeffer, Ind. Eng. Chem. Fund., 3, 380–383 (1964); J.

P. Sørensen and W. E. Stewart, Chem. Eng. Sci., 29, 833–837 (1974).
7W. E. Stewart, AIChE Journal, 33, 2008–2016 (1987); corrigenda 34, 1030 (1988).
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§14.6 HEAT-TRANSFER COEFFICIENTS FOR FREE ANDMIXED
CONVECTION FOR SUBMERGED OBJECTS1

In this section we consider free-convection heat transfer from objects submerged in large
volumes of otherwise stagnant fluids. We will consider only the situation in which the
surface temperature of the object is uniform at temperature T0, and the fluid temperature
far from the object is also uniform at temperature T∞.

A set of simplified equations of continuity,motion, and energywere presented in §13.1
for such free-convection problems. If one could solve these equations subject to appropri-
ate boundary conditions to obtain the temperature profile, one could determine the rate
of heat transfer from the object to the fluid using

Q = ∫S

(
−k𝜕T

𝜕n

)
dS (14.6-1)

where the integral is over the surface of the object, and n is the local coordinate normal to
the surface of the object, directed into the fluid. The mean heat-transfer coefficient hm is
defined by

Q = hmA(T0 − T∞) (14.6-2)

These last two equations can be combined to eliminate Q and express hm in terms of the
temperature profile. In dimensionless form this results in

Num =
hml0
k

= 1

S̆∫S̆

(
−𝜕T̆
𝜕n̆

)
dS̆ (14.6-3)

where Num is the mean Nusselt number, l0 is an appropriate length scale, S̆ = S∕l2
0
, n̆ =

n∕l0, and T̆ = (T − T∞)∕(T0 − T∞).
In §13.1, the simplified equations of change for free-convection problems were

nondimensionalized, with the resulting dimensionless equations of continuity, motion,
and energy presented in Eqs. 13.1-14, 13.1-15, and 13.1-16. The only dimensionless groups
that appear in these equations are the Grashof number Gr = i2gv(T0 − T∞)l30∕4

2 and

Prandtl number Pr = Ĉp4∕k. As a result, the dimensionless temperature profile can be
expressed as

T̆ = T̆(x̆, y̆, z̆, t̆;Gr,Pr,shape) (14.6-4)

Substitution of this relation into Eq. 14.6-3 leads to the conclusion that Num(t̆) =
Num(t̆;Gr,Pr,shape). When time averaged, this becomes

Num = Num(Gr,Pr,shape) (14.6-5)

Thus, the Nusselt number depends only on Gr and Pr, with perhaps different functional-
ities for different object shapes.

Determining the specific dependence of Num on Gr and Pr can be quite challenging.
Some progress can be gained by approximate solutions to idealized problems. Consider
the natural convection near a vertical heated plate where the cooler adjacent fluid flows
upward as a result of the buoyant force. If the flow is assumed to be slow, laminar, and
confined to a thin layer near the plate, an approximate boundary-layer analysis gives (see
Problem 13C.1)

Num = C(GrPr)1∕4 (14.6-6)

where C is a weak function of Pr. Equation 14.6-6 does a reasonable job of reproducing
experimental trends for intermediate values of GrPr, but fails to describe behavior for
small and large values of GrPr; for small values of GrPr, the thin boundary-layer assump-
tion is not valid, while for large values of GrPr, the buoyancy driven flows are turbulent
instead of laminar.
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Despite the shortcomings of Eq. 14.6-6, development of correlations for mean Nusselt
numbers for free convection from submerged objects often begins with a form similar
to Eq. 14.6-6, with various empirical “corrections” added to better describe experimental
data. This is the approach taken here, which is based on the development described by
Raithby and Hollands.1 The method for calculating mean Nusselt numbers thus proceeds
as follows:

a. ANusselt number based on the thin, laminar boundary analysis is first calculated.

This result is labeled Nuthin
m .

b. The thin boundary layer result is thenmodified to account for thick boundary-layer

effects. This result is labeled Nulam
m .

c. A Nusselt number for turbulent flow is then calculated. This result is labeled
Nuturb

m .

d. The laminar- and turbulent-flow results are combined in a single function that per-
mits the calculation of Num for essentially arbitrary values of GrPr.

e. For objects of small-aspect ratio such as spheres, onemust also correct for the effects
of heat transfer via conduction. The value of the Nusselt number for conduction
only, Nucond

m , can simply be added to the thin boundary-layer result to obtain an
improved estimate of the mean Nusselt number. Such a correction does not appear
for large-aspect ratio objects; the solution to the corresponding two-dimensional
conduction problem does not admit a steady-state solution.

These steps are described in detail for various objects below. Discussions for other
geometries, as well for free convection in other situations (such as prescribed heat
fluxes, stratified media, and transient conditions) are presented elsewhere.1 All physical
properties appearing in the equations below should be evaluated at the film temperature
Tf = (T0 + T∞)∕2. A method for estimating Nusselt numbers when both free and forced
convection are significant is briefly discussed following the discussion of free-convection
results below.

a. Vertical Plates
The thin boundary-layer estimate of the Nusselt number for vertical flat plates of

height L and widthW (W ≫ L) is

Nuthin
m = C𝓁(Pr)(GrPr)1∕4 (14.6-7)

where Gr is the Grashof number based on the height of the plate (l0 = L) and

C𝓁(Pr) =
0.671

[1 + (0.492∕Pr)9∕16]4∕9
(14.6-8)

The correction for thick boundary layers is then expressed

Nulam
m = 2.0

ln(1 + 2.0∕Nuthin
m )

(14.6-9)

The estimate of the mean Nusselt number for turbulent flow is

Nuturb
m = 0.13Pr0.22(

1 + 0.61Pr0.81
)0.42 (GrPr)1∕3(

1 + 1.4 × 109∕Gr
) (14.6-10)

1G. D. Raithby and K. G. T. Hollands, Chapter 4 in W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho,

eds., Handbook of Heat Transfer, 3rd edition, McGraw-Hill, New York (1998).
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Fig. 14.6-1. Comparison of predicted (Eq. 14.6-11 along with Eqs. 14.6-7 through 14.6-10) and

measured values of Nusselt numbers for free convection from vertical flat plates (for air,

Pr = 0.71). Adapted from G. D. Raithby and K. G. T. Hollands, Chapter 4 in W. M. Rohsenow,

J. P. Hartnett, and Y. I. Cho, Handbook of Heat Transfer, 3rd edition, McGraw-Hill, New York

(1998). The data are those of O. A. Saunders (∘) [Proc. Royal Soc., Ser. A, 157, 278–291 (1936)], C.
Y. Warner and V. S. Arpaci (•) [Int. J. Heat Mass Transfer, 11, 397–406 (1968)], A. Pirovano, S.

Viannay, and M. Jannot (△) [Rep. EUR 4489f , Commission of the European Communities

(1970); Proc. 4th Int. Heat Transfer Conf., Elsevier, Amsterdam, paper NC 1.8 (1970)], and A.

M. Clausing and S. N. Kempka (◽) [J. Heat Transfer, 103, 609–612 (1981)].

The last two equations are combined to give a final estimate of the mean Nusselt number2

Num =
hmL
k

= [(Nulam
m )6 + (Nuturb

m )6]1∕6 (14.6-11)

Nusselt numbers predicted by Eq. 14.6-11 are compared with measured values in
Fig. 14.6-1. The data agree well with predictions over the entire range 10−2 ≤ GrPr ≤ 1012.
Effects of turbulent flow are apparent for GrPr > 1010, where Num increases more rapidly

with GrPr. Deviations from the thin boundary-layer behavior (i.e., Nuthin
m ∝ (GrPr)1∕4) are

apparent for GrPr < 104.

b. Horizontal Plates
For heated horizontal plates facing upward, or cooled horizontal plates facing down-

ward, the equations for the various contributions to the mean Nusselt number are

Nuthin
m = 0.835 C𝓁(Pr)(GrPr)1∕4 (14.6-12)

Nulam
m = 1.4

ln(1 + 1.4∕Nuthin
m )

(14.6-13)

2The form Num = [(Nulam
m )m + (Nuturb

m )m]1∕m, where m depends on the shape of the object, was

suggested by S. W. Churchill and R. Usagi, AIChE Journal, 23, 1121–1128 (1972).
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Nuturb
m = 0.14

1 + 0.0107Pr
1 + 0.01Pr

(GrPr)1∕3 (14.6-14)

Num =
hmL*
k

= [(Nulam
m )10 + (Nuturb

m )10]1∕10 (14.6-15)

In these equations, the Grashof and Nusselt numbers are based on the length scale l0 =
L* = A∕P, where A is the area and P is the perimeter of the horizontal plate. The term
C𝓁(Pr) is given by Eq. 14.6-8.

For heated horizontal surfaces facing downward and cooled horizontal surfaces fac-
ing upward, the following correlation3 is recommended:

Nuthin
m = 0.527

[1 + (1.9∕Pr)9∕10]2∕9
(GrPr)1∕5 (14.6-16)

Num = Nulam
m = 2.5

ln(1 + 2.5∕Nuthin
m )

(14.6-17)

Since the buoyancy-driven flow here is toward the surface, the flow is typically laminar
up to large values of GrPr and thus the turbulent correction is not needed.

c. Vertical Cylinders
For vertical cylinders of diameter D and length L, one uses Eqs. 14.6-7 and 14.6-8

to obtain the thin and thick boundary-layer values for the mean Nusselt numbers for a

vertical plate of height L (termed “Nuthin
m, plate” and “Nulam

m, plate”). The thick boundary-layer

estimate for the vertical cylinder is then modified using

Nulam
m = r

ln(1 + r)
Nulam

m, plate (14.6-18)

where

r =
1.8L∕D
Nuthin

m, plate

(14.6-19)

The correction for turbulent flow then proceeds as in Eq. 14.6-10 and 14.6-11. The Grashof
and Nusselt numbers in this case are based on the length of the cylinder (l0 = L).

d. Horizontal Cylinders
The equations for long, horizontal cylinders of diameter D are

Nuthin
m = 0.772 C𝓁(Pr)(GrPr)1∕4 (14.6-20)

Nulam
m =

2f

ln(1 + 2f∕Nuthin
m )

(14.6-21)

Nuturb
m = Ct(GrPr)1∕3 (14.6-22)

Num =
hmD
k

= [(Nulam
m )10 + (Nuturb

m )10]1∕10 (14.6-23)

where the Grashof and Nusselt numbers are based on the cylinder diameter (l0 = D),
C𝓁(Pr) is given by Eq. 14.6-8, f = 1 − 0.13∕NuT

m for GrPr < 10−4 and f = 0.8 for GrPr ≥
10−4. Values of Ct are tabulated for different values of Pr in Table 14.6-1.

Nusselt numbers predicted by Eq. 14.6-23 are compared with measured values in
Fig. 14.6-2. The agreement is excellent over the entire range 10−10 ≤ GrPr ≤ 107.

3T. Fujii, M. Honda, and I. Morioka, Int. J. Heat and Mass Transfer, 15, 755–767 (1972).
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Table 14.6-1. Values of the Parameter Ct for Horizontal Cylinders and Spheres1

Ct

Pr Horizontal Cylinders Spheres

0.71 0.103 0.104

6.0 0.109 0.111

100 0.097 0.098

2000 0.088 0.086

10–10
10–1

100

101

102

10–5 100

GrPr

105

N
u
m

Fig. 14.6-2. Comparison of predicted (Eq. 14.6-23 along with Eqs. 14.6-20 through 22) and

measured values of Nusselt numbers for free convection from long horizontal cylinders (for

air, Pr = 0.71). Adapted from G. D. Raithby and K. G. T. Hollands, Chapter 4 in W. M.

Rohsenow, J. P. Hartnett, and Y. I. Cho, Handbook of Heat Transfer, 3rd edition, McGraw-Hill,

New York (1998). The data are those of S. B. Clemes, K. G. T. Hollands, and A. P. Brunger (∘) [J.
Heat Transfer, 116, 96–104 (1994)], L. M. De Socio (•) [Int. J. Heat Mass Transfer, 26, 1669–1677
(1983)], G. Hesse and E. M. Sparrow (⋄) [J. Heat Transfer, 17, 796–798 (1974)], J. Li and J. D.

Tarasuk (△) [Experimental Thermal and Fluid Science, 5, 235–242 (1992)], and D. C. Collis and M.

J. Williams (∇) [Aeronautical Research Laboratory, Note 140, Melbourne, Australia (1954)].

e. Spheres
For spheres of diameter D, the equations are

Nuthin
m = 0.878 C𝓁(Pr)(GrPr)1∕4 (14.6-24)

Nulam
m = 2 +Nuthin

m (14.6-25)
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Nuturb
m = Ct(GrPr)1∕3 (14.6-26)

Num =
hmD
k

= [(Nulam
m )15 + (Nuturb

m )15]1∕15 (14.6-27)

where the Grashof andNusselt numbers are based on the sphere diameter (l0 = D), C𝓁(Pr)
is given byEq. 14.6-8, and values ofCt are tabulated for different values of Pr in Table 14.6-1
along with the values for horizontal cylinders. Raithby and Hollands1 report that Nusselt
numbers predicted by Eq. 14.6-27 are within 20% of measured values for 1 ≤ GrPr ≤ 1012.

f. Mixed Free and Forced Convection
Finally, when one must deal with the problem of simultaneous free and forced con-

vection, this is again done through the use of an empirical combining rule:4

Nutotal
m = [(Nufree

m )3 + (Nuforced
m )3]1∕3 (14.6-28)

where Nufree
m is the estimate for the mean Nusselt number for free convection obtained

above, and Nuforced
m is the value estimated for forced convection using the appropriate

equations in §14.4. This rule appears to hold reasonably well for all geometries and sit-
uations, provided only that the forced and free convection have the same primary flow
direction.

EXAMPLE 14.6-1

Heat Loss by Free
Convection from a
Horizontal Pipe

Estimate the rate of heat loss by free convection from a unit length of a long horizontal pipe,

6 in. in outside diameter, if the outer surface temperature is 100∘F and the surrounding air is at

1 atm and 80∘F.

SOLUTION

The properties of air at 1 atm and a film temperature Tf = 90∘F (or 550∘R) are

4 = 0.0190 cp = 0.0460 lbm∕ft ⋅ hr

i = 0.0723 lbm∕ft
3

Ĉp = 0.241 Btu∕lbm ⋅ ∘R

k = 0.0152 Btu∕hr ⋅ ft ⋅ ∘R

v = 1∕Tf = (1∕550) ∘R-1

Other relevant values are D = 0.5 ft, 2T = 20∘R, and g = 4.17 × 108 ft∕hr2. From these data we

obtain (using Table 13.1-1, with length scale l0 = D)

GrPr =

(
i2gv(T1 − T0)D3

42

)(
Ĉp4

k

)

=
⎛⎜⎜⎜⎝
(0.0723 lbm∕ft

3)2(4.17 × 108 ft∕hr2)
(

1

550

∘R−1
)
(20 ∘R)(0.5 ft)3

(0.0460 lbm∕ft ⋅ hr)2

⎞⎟⎟⎟⎠
×
( (0.241 Btu∕lbm ⋅ ∘R)(0.0460 lbm∕ft ⋅ hr)

(0.0152 Btu∕hr ⋅ ft ⋅ ∘R)

)
= (4.68 × 106)(0.729) = 3.4 × 106 (14.6-29)

4E. Ruckenstein, Adv. in Chem. Eng., 13, 111–112 (1987); E. Ruckenstein and R. Rajagopalan, Chem.
Eng. Communications, 4, 15–29 (1980).
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Then from Eqs. 14.6-8 and 14.6-20 we get the thin boundary-layer estimate

Nuthin
m = 0.772

(
0.671

[1 + (0.492∕0.729)9∕16]4∕9

)
(3.4 × 106)1∕4

= 0.772

(
0.671
1.30

)
(42.9) = 17.1 (14.6-30)

The thick laminar boundary-layer correction for the Nusselt number is obtained from

Eq. 14.6-21,

Nulam
m = 2(0.8)

ln(1 + 2(0.8)∕17.1)
= 17.9 (14.6-31)

The Nusselt number for turbulent free convection is obtained from Eq. 14.6-22,

Nuturb
m = (0.103)(3.4 × 106)1∕3 = 15.5 (14.6-32)

The final estimate of the mean Nusselt number is then obtained from Eq. 14.6-23,

Num = [(17.9)10 + (15.5)10]1∕10 = 18.3 (14.6-33)

The heat-transfer coefficient is then

hm = Num
k
D

= 18.3

(
0.0152 Btu∕hr ⋅ ft ⋅ ∘R

0.5 ft

)
= 0.56 Btu∕hr ⋅ ft2 ⋅ ∘F (14.6-34)

The rate of heat loss per unit length of the pipe is

Q
L

=
hmA2T

L
= hm0D2T

=
(
0.56

Btu

hr ⋅ ft2 ⋅ ∘F

)
(0)(0.5 ft)(20∘F) = 18 Btu∕hr ⋅ ft (14.6-35)

This is the heat loss by convection only. The radiation loss for the same problem is obtained in

Example 16.5-2.

§14.7 HEAT-TRANSFER COEFFICIENTS FOR CONDENSATION OF
PURE VAPORS ON SOLID SURFACES

The condensation of a pure vapor on a solid surface is a particularly complicated
heat-transfer process, because it involves two flowing fluid phases: the vapor and the
condensate. Condensation occurs industrially in many types of equipment; for simplicity,
we consider here only the common cases of condensation of a slowly moving vapor on
the outside of horizontal tubes, vertical tubes, and vertical flat walls.

The condensation process on a vertical wall is illustrated schematically in Fig. 14.7-1.
Vapor flows over the condensing surface and is moved toward it by the small pressure
gradient near the liquid surface.1 Some of the molecules from the vapor phase strike the
liquid surface and bounce off; others penetrate the surface and give up their latent heat
of condensation. The energy thus released must then move through the condensate to the
wall, thence to the coolant on the other side of the wall. At the same time, the condensate
must drain from the surface by gravity flow.

The condensate on the wall is normally the sole important resistance to heat transfer
on the condensing side of the wall. If the solid surface is clean, the condensate will usu-
ally form a continuous film over the surface, but if traces of certain impurities are present

1Note that there occur small but abrupt changes in pressure and temperature at an interface. These

discontinuities are essential to the condensation process, but are generally of negligible magnitude in

engineering calculations for pure fluids. For mixtures, they may be important. See R. W. Schrage,

Interphase Mass Transfer, Columbia University Press (1953).
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Fig. 14.7-1. Film condensation on a

vertical surface (interfacial temperature

discontinuity exaggerated).

(such as fatty acids in a steam condenser), the condensate will form in droplets. “Drop-
wise condensation”2 gives much higher rates of heat transfer than “film condensation,”
but is difficult to maintain, so that it is common practice to assume film condensation in
condenser design. The correlations that follow apply only to film condensation.

The usual definition of hm for condensation of a pure vapor on a solid surface of area
A and uniform temperature T0 is

Q = hmA(Td − T0) = w2Ĥvap (14.7-1)

in which Q is the rate of heat flow into the solid surface, and Td is the dew point of the
vapor approaching the wall surface—that is, the temperature at which the vapor would
condense if cooled slowly at the prevailing pressure. This temperature is very nearly that
of the liquid at the liquid-gas interface. Therefore, hm may be regarded as a heat-transfer
coefficient for the liquid film. In Eq. (14.7-1), w is the total mass rate of condensation.

Expressions for hm have been derived3 for laminar nonrippling condensate flow by
approximate solution of the equations of energy and motion for a falling liquid film (see
Problem 14C.1). For film condensation on a horizontal tube of diameter D, length L, and
constant surface temperature T0, the result of Nusselt3 may be written as

hm = 0.954

(
k3i2gL
4w

)1∕3
(14.7-2)

Herew∕L is themass rate of condensation per unit length of tube, and it is understood that
all the physical properties of the condensate are to be calculated at the film temperature,

Tf =
1

2
(Td + T0).

For moderate temperature differences, Eq. 14.7-2 may be rewritten with the aid of an
energy balance on the condensate to give

hm = 0.725

(
k3i2g2Ĥvap

4D(Td − T0)

)1∕4

(14.7-3)

2Dropwise condensation and boiling is discussed at length by J. G. Collier and J. R. Thome,

Convective Boiling and Condensation, 3rd edition, Oxford University Press (1996).
3W. Nusselt, Z. Ver. deutsch. Ing., 60, 541–546, 596–575 (1916).
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Equations 14.7-2 and 14.7-3 have been confirmed experimentally within ±10% for sin-
gle horizontal tubes. They also seem to give satisfactory results for bundles of horizontal
tubes,4 in spite of the complications introduced by condensate dripping from tube to tube.

For film condensation on vertical tubes or vertical walls of height L, the theoretical
results corresponding to Eqs. 14.7-2 and 14.7-3 are

hm = 4

3

(
k3i2g
34T

)1∕3
(14.7-4)

and

hm = 2
√
2

3

(
k3i2g2Ĥvap

4L(Td − T0)

)1∕4

(14.7-5)

respectively. The quantity T in Eq. 14.7-4 is the total rate of condensate flow from the bot-
tom of the condensing surface per unit width of that surface. For a vertical tube, T = w∕0D,
where w is the total mass rate of condensation on the tube. For short vertical tubes (L <
0.5 ft), the experimental values of hm confirm the theory well, but the measured values for
long vertical tubes (L > 8 ft) may exceed the theory for a given Td − T0 by as much as 70%.
This discrepancy is attributed to ripples that attain greatest amplitude on long vertical
tubes.5

We now turn to the empirical expressions for turbulent condensate flow. Turbulent
flow begins, on vertical tubes or walls, at a Reynolds number Re = T∕4 of about 350. For
higher Reynolds numbers, the following empirical formula has been proposed:6

hm = 0.003

(
k3i2g(Td − T0)L

432Ĥvap

)1∕2

(14.7-6)

This equation is equivalent, for small Td − T0, to the formula

hm = 0.021

(
k3i2gT

43

)1∕3
(14.7-7)

Equations 14.7-4 to 14.7-7 are summarized in Fig. 14.7-2, for convenience of making calcu-
lations, and to show the extent of agreement with the experimental data. Somewhat better
agreement could have been obtained by using a family of lines in the turbulent range to
represent the effect of Prandtl number. However, in view of the scatter of the data, a single
line is adequate.

Turbulent condensate flow is very difficult to obtain on horizontal tubes, unless
the tube diameters are very large or high temperature differences are encountered.
Equations 14.7-2 and 14.7-3 are believed to be satisfactory up to the estimated transition
Reynolds number, Re = wT∕L4, of about 1000, where wT is the total condensate flow leaving
a given tube, including the condensate from the tubes above.7

The inverse process of vaporization of a pure fluid is considerably more complicated
than condensation. We do not attempt to discuss heat transfer to boiling liquids here, but
refer the reader to some reviews.2,8

4B. E. Short and H. E. Brown, Proc. General Disc. Heat Transfer, London (1951), pp. 27–31. See also D.

Butterworth, in Handbook of Heat Exchanger Design (G. F. Hewitt, ed.), Oxford University Press, London

(1977), pp. 426–462.
5W. H. McAdams, Heat Transmission, 3rd edition, McGraw-Hill, New York (1954) p. 333.
6U. Grigull, Forsch. Ingenieurswesen, 13, 49–57 (1942); Z. Ver. dtsch. Ing., 86, 444–445 (1942).
7W. H. McAdams, Heat Transmission, 3rd edition, McGraw-Hill, New York (1954), pp. 338–339.
8H. D. Baehr and K. Stephan, Heat and Mass Transfer, Springer, Berlin (1998), Chapter 4.
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EXAMPLE 14.7-1

Condensation of Steam
on a Vertical Surface

A boiling liquid flowing in a vertical tube is being heated by condensation of steam on the

outside of the tube. The steam-heated tube section is 10 ft high and 2 in. in outside diameter. If

saturated steam is used, what steam temperature is required to supply 92,000 Btu/hr of heat

to the tube at a tube-surface temperature of 200∘F? Assume film condensation.

SOLUTION

The fluid properties depend on the unknown temperature Td. We make a guess of Td = T0 =
200∘F. Then the physical properties at the film temperature (also 200∘F) are

2Ĥvap = 978 Btu∕lbm

k = 0.393 Btu∕hr ⋅ ft ⋅ ∘F

i = 60.1 lbm∕ft
3

4 = 0.738 lbm∕ft ⋅ hr

If it is assumed that the steamgives up only latent heat (the assumptionTd = T0 = 200∘F implies

this), an energy balance around the tube gives

Q = w2Ĥvap = 0DT2Ĥvap (14.7-8)
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in which Q is the heat flow into the tube wall. The film Reynolds number is

T
4
=

Q

0D42Ĥvap

=
92,000 Btu∕hr

0
(

2

12
ft
)
(0.738 lbm∕hr ⋅ ft)(978 Btu∕lbm)

= 244 (14.7-9)

Reading Fig. 14.7-2 at this value of the ordinate, we find that the flow is laminar. Equation 14.7-4
is applicable, but it ismore convenient to use the line based on this equation in Fig. 14.7-2,which
gives

ki2∕3g1∕3(Td − T0)L
45∕32Ĥvap

= 1700 (14.7-10)

from which

Td − T0 = 1700
45∕32Ĥvap

ki2∕3g1∕3L

= 1700
(0.738 lbm∕hr ⋅ ft)5∕3(978 Btu∕lbm)

(0.393 Btu∕hr ⋅ ft ⋅ ∘F)(60.1 lbm∕ft
3)2∕3(4.17 × 108 ft∕hr2)1∕3(10 ft)

= 22∘F (14.7-11)

Therefore, the first approximation to the steam temperature is Td = 222∘F. This result is close
enough; evaluation of the physical properties in accordance with this result gives Td = 220∘F
as a second approximation. It is apparent from Fig. 14.7-2 that this result represents an upper
limit. If rippling occurs, the temperature drop through the condensate film may be as little as
half that predicted here.

§14.8 CONCLUDING COMMENTS

In this chapter, we have discussed a variety of methods for estimating heat-transfer coef-
ficients. In §14.2 we showed that in some cases it is possible to obtain heat-transfer coeffi-
cients from the solution of the equations of change.

Many times, however, the physical systems of interest are too complicated to per-
mit analytical solutions, and thus we are forced to use either numerical solutions of the
equations or resort to experiments to obtain heat-transfer coefficients. Most of the rest of
the chapter is devoted to presenting correlations for heat-transfer coefficients obtained
largely from experimental measurements.

We have also made extensive use of dimensional analysis in this chapter. This greatly
simplifies the tasks of determining and presenting correlations, as the number dimension-
less variables is significantly less than the number of relevant dimensional variables.

QUESTIONS FOR DISCUSSION

1. Define the heat-transfer coefficient, the Nusselt number, the Stanton number, and the Colburn
jH factor. How can each of these be “decorated” to indicate the type of temperature-difference
driving force that is being used?

2. What are the characteristic dimensionless groups that arise in the correlations for Nusselt num-
bers for forced convection? For free convection? For mixed convection?

3. To what extent can the Nusselt numbers be calculated a priori from analytical solutions?
4. Explain how one develops an experimental correlation for Nusselt numbers as a function of

the relevant dimensionless groups.
5. To what extent can empirical correlations be developed in which the Nusselt number is given

as the product of the relevant dimensionless groups, each raised to a characteristic power?
6. In addition to the Nusselt number, we have met up with the Reynolds number Re, the Prandtl

number Pr, the Grashof number Gr, the Péclet number Pé, and the Rayleigh number Ra. Define
each of these and explain their meaning and usefulness.

7. Discuss the concept of wind-chill temperature.
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PROBLEMS 14A.1 Average heat-transfer coefficients. Ten thousand pounds per hour of an oil with a heat capac-

ity of 0.6 Btu∕lbm ⋅ ∘F are being heated from 100∘F to 200∘F in the simple heat exchanger, shown

Fig. 14A.1. The oil is flowing through the tubes, which are copper, 1 in. in outside diameter,

with 0.065-in. walls. The combined length of the tubes is 300 ft. The required heat is supplied

by condensation of saturated steam at 15.0 psia on the outside of the tubes. Calculate h1, ha, and
hln for the oil, assuming that the inside surfaces of the tubes are at the saturation temperature
of the steam, 213∘F.

Answers: 78, 139, 190 Btu∕hr ⋅ ft2 ⋅ ∘F

Hot
oil out

Condensate out

Steam in

Cold
oil in

Oil
flow

Fig. 14A.1 A single-pass

“shell-and-tube” heat

exchanger.

14A.2 Heat transfer in laminar tube flow. One hundred pounds per hour of oil at 100∘F are flowing

through a 1-in. i.d. copper tube, 20 ft long. The inside surface of the tube is maintained at

215∘F by condensing steam on the outside surface. Fully developed flow may be assumed

through the length of the tube, and the physical properties of the oil may be considered

constant at the following values: i = 55 lbm∕ft
3, Ĉp = 0.49 Btu∕lbm ⋅ ∘F, 4 = 1.42 lbm∕hr ⋅ ft,

k = 0.0825 Btu∕hr ⋅ ft ⋅ ∘F.
(a) Calculate Pr.

(b) Calculate Re.

(c) Calculate the exit temperature of the oil.

Answers: (a) 8.44; (b) 1075; (c) 155∘F

14A.3 Effect of flow rate on exit temperature from a heat exchanger.
(a) Repeat parts (b) and (c) of Problem 14A.2 for oil flow rates of 200, 400, 800, 1600, and

3200 lbm∕hr.
(b) Calculate the total heat flow through the tube wall for each of the oil flow rates in (a).

14A.4 Local heat-transfer coefficient for turbulent forced convection in a tube. Water is flowing in

a 2-in. i.d. tube at a mass flow ratew = 15,000 lbm∕hr. The inner wall temperature at some point

along the tube is 160∘F, and the bulk fluid temperature at that point is 60∘F. What is the local

heat flux qr at the pipe wall? Assume that hloc has attained a constant asymptotic value (see

Fig. 14.3-2).

Answer: −8 × 104 Btu∕hr ⋅ ft2

14A.5 Heat transfer from condensing vapors.
(a) The outer surface of a vertical tube 1 in. in outside diameter and 1 ft long is maintained at

190∘F. If this tube is surrounded by saturated steam at 1 atm, what will be the total rate of heat
transfer through the tube wall?

(b) What would the rate of heat transfer be if the tube were horizontal?

Answers: (a) 8400 Btu/hr; (b) 12,000 Btu/hr

14A.6 Forced-convection heat transfer from an isolated sphere.
(a) A solid sphere 1 in. in diameter is placed in an otherwise undisturbed air stream, which

approaches at a velocity of 100 ft/s, a pressure of 1 atm, and a temperature of 100∘F. The sphere
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surface is maintained at 200∘F by means of an imbedded electric heating coil. What must be

the rate of electrical heating in cal/s to maintain the stated conditions? Neglect radiation, and

use Eq. 14.4-5.

(b) Repeat the problem in (a), but use Eq. 14.4-6.

Answer: (a) 12.9 W = 3.1 cal∕s; (b) 16.8 W = 4.0 cal∕s

14A.7 Free convection heat transfer from an isolated sphere. If the sphere of Problem 14A.6 is sus-

pended in still air at 1 atmpressure and 100∘F ambient air temperature, and if the sphere surface

is again maintained at 200∘F, what rate of electrical heating would be needed? Neglect radia-

tion.

Answer: 1.07 W = 0.25 cal∕s

14A.8 Heat loss by free convection from a horizontal pipe immersed in a liquid. Estimate the rate

of heat loss by free convection from a unit length of a long horizontal pipe, 6 in. in outside diam-

eter, if the outer surface temperature is 100∘F and the surroundingwater is at 80∘F. Compare the

result with that obtained in Example 14.6-1, in which air is the surroundingmedium. The prop-

erties of water at a film temperature of 90∘F (or 32.3∘C) are: 4 = 0.7632 cp, Ĉp = 0.9986 cal∕g ⋅
∘C, k = 0.363 Btu∕hr ⋅ ft ⋅ ∘F. Also the density of water in the neighborhood of 90∘F is:

T (∘C) 30.3 31.3 32.3 33.3 34.3

i (g∕cm3) 0.99558 0.99528 0.99496 0.99463 0.99430

Answer: Q∕L = 2570 Btu∕hr ⋅ ft

14A.9 The ice fisherman on LakeMendota. Compare the rates of heat loss of an ice fisherman, when

he is fishing in calm weather (wind velocity zero) and when the wind velocity is 20 mph out of

the north. The ambient air temperature is −10∘F. Assume that a bundled-up ice fisherman can

be approximated as a sphere 3 ft in diameter.

14B.1 Limiting local Nusselt number for plug flow with constant heat flux.
(a) Equation 10B.10-1 gives the asymptotic temperature distribution for cooling a fluid of con-

stant physical properties in plug flow in a long tube with constant heat flux at the wall. Use this

temperature profile to show that the limiting Nusselt number for these conditions is Nu = 8.

(b) The asymptotic temperature distribution for the analogous problem for plugflow in a plane

slit is given in Eq. 10B.10-2. Use this to show that the limiting Nusselt number is Nu = 12.

14B.2 Local overall heat-transfer coefficient. In Problem 14A.1 the thermal resistances of the

condensed steam film and wall were neglected. Justify this neglect by calculating the actual

inner-surface temperature of the tubes at that cross section in the exchanger at which the oil

temperature is 150∘F. Youmay assume that for the oil hloc is constant throughout the exchanger
at 190 Btu∕hr ⋅ ft2 ⋅ ∘F. The tubes are horizontal.

14B.3 The hot-wire anemometer.1 A hot-wire anemometer is essentially a finewire, usually made of

platinum, which is heated electrically and inserted into a flowing fluid. The wire temperature,

which is a function of the fluid temperature, fluid velocity, and the rate of heating, may be

determined by measuring its electrical resistance.

(a) A straight cylindrical wire 0.5 in. long and 0.01 in. in diameter is exposed to a stream of

air at 70∘F flowing past the wire at 100 ft/s. What must the rate of energy input be in watts to

maintain thewire surface at 600∘F?Neglect radiation as well as heat conduction along thewire.

(b) It has been reported2 that for a given fluid and wire at given fluid and wire temperatures

(hence a given wire resistance)

I2 = B
√
v∞ + C (14B.3-1)

1See, for example, G. Comte-Bellot, Chapter 34 in The Handbook of Fluid Dynamics (R. W. Johnson,

ed.), CRC Press, Boca Raton, FL (1999).
2L. V. King, Phil. Trans. Roy. Soc. (London), A214, 373–432 (1914).
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in which I is the current required to maintain the desired temperature, v∞ is the velocity of

the approaching fluid, and B and C are constants. How well does this equation agree with the

predictions of Eq. 14.4-7 or Eq. 14.4-8 for the fluid and wire of (a) over a fluid velocity range of

100 to 300 ft/s? What is the significance of the constant C in Eq. 14B.3-1?

14B.4 Dimensional analysis. Consider the flow system described in the first paragraph of §14.3,

for which dimensional analysis has already given the dimensionless parameters on which the

dimensionless velocity profile (Eq. 6.2-7) and temperature profile (Eq. 14.3-9) depend.

(a) Use Eqs. 6.2-7 and 14.3-9 and the definition of cup-mixing temperature to get the

time-averaged expression

Tb2 − Tb1

T0 − Tb1
= a function of Re, Pr, L∕D (14B.4-1)

(b) Use the result just obtained and the definitions of the heat-transfer coefficients to derive

Eqs. 14.3-12, 14.3-13, and 14.3-14.

14B.5 Relation between hloc and hln. Inmany industrial tubular heat exchangers (see Example 15.4-1)

the tube-surface temperature T0 varies linearly with the bulk fluid temperature Tb. For this

common situation hloc and hln may be simply interrelated.

(a) Starting with Eq. 14.1-5, show that

hloc(0Ddz)(Tb − T0) = −
(
1

4
0D2

)
(iĈp⟨v⟩dTb) (14B.5-1)

and therefore that

∫
L

0

hloc dz =
1

4
iĈpD⟨v⟩Tb(L) − Tb(0)

(T0 − Tb)ln
(14B.5-2)

(b) Combine the result in (a) with Eq. 14.1-4 to show that

hln = 1

L∫
L

0

hloc dz (14B.5-3)

in which L is the total tube length, and therefore that (if (𝜕hloc∕𝜕L)z = 0, which is equivalent to

the statement that axial heat conduction is neglected)

hloc|z=L = hln + L
dhln
dL

(14B.5-4)

14B.6 Heat loss by free convection from a pipe. In Example 14.6-1, would the heat loss be higher or

lower if the pipe-surface temperature were 200∘F and the air temperature were 180∘F?

14C.1 The Nusselt expression for condensing vapor heat-transfer coefficients (Fig. 14.7-1). Con-
sider a laminar film of condensate flowing down a vertical wall, and assume that this liquid

film constitutes the sole heat-transfer resistance on the vapor side of the wall. Further assume

that (i) the shear stress between liquid and vapor may be neglected; (ii) the physical properties

in the filmmay be evaluated at the arithmetic mean of vapor and cooling-surface temperatures

and that the cooling-surface temperature may be assumed constant; (iii) acceleration of fluid

elements in the film may be neglected compared to the gravitational and viscous forces; (iv)

sensible heat changes, ĈpdT, in the condensate film are unimportant compared to the latent

heat transferred through it; and (v) the heat flux is very nearly normal to the wall surface.

(a) Recall from §2.2 that the average velocity of a film of constant thickness t is ⟨vz⟩ = igt2∕34.
Assume that this relation is valid for any value of z.
(b) Write the energy equation for the film, neglecting film curvature and convection. Show that

the heat flux through the film toward the cold surface is

−qy = k
(
Td − T0

t

)
(14C.1-1)
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(c) As the film proceeds down the wall, it picks up additional material by the condensation

process. In this process, heat is liberated to the extent of 2Ĥvap per unit mass of material that

undergoes the change in state. Show that equating the heat liberation by condensation with the

heat flowing through the film in a segment dz of the film leads to

i2Ĥvapd(⟨vz⟩t) = k
(
Td − T0

t

)
dz (14C.1-2)

(d) Insert the expression for the average velocity from (a) into Eq. 14C.1-2 and integrate from

z = 0 to z = L to obtain

t(L) =

(
4k(Td − T0)4L
i2g2Ĥvap

)1∕4

(14C.1-3)

(e) Use the definition of the heat-transfer coefficient and the result in (d) to obtain Eq. 14.7-5.

(f) Show that Eqs. 14.7-4 and 14.7-5 are equivalent for the conditions of this problem.

14C.2 Heat-transfer correlations for agitated tanks. A liquid of essentially constant physical proper-

ties is being continuously heated by passage through an agitated tank, as shown in Fig. 14C.2.

Heat is supplied by condensation of steam on the outer wall of the tank. The thermal resistance

of the condensate film and the tank wall may be considered small compared to that of the fluid

in the tank, and the unjacketed portion of the tank may be assumed to be well insulated. The

rate of liquid flow through the tank has a negligible effect on the flow pattern in the tank.

D

Steam jacket

Liquid out

Condensate out

Liquid in

Steam jacket

Steam in

N Fig. 14C.2 Continuous heating of a

liquid in an agitated tank.

Develop a general form of dimensionless heat-transfer correlation for the tank corresponding

to the correlation for tube flow in §14.3. Choose the following reference quantities: reference

length,D, the impeller diameter; reference velocity,ND, whereN is the rate of shaft rotation in

revolutions per unit time; reference pressure, iN2D2, where i is the fluid density.
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Chapter 15

Macroscopic Balances for
Nonisothermal Systems

§15.1 The macroscopic energy balance

§15.2 The macroscopic mechanical energy balance

§15.3 Use of the macrosopic balances to solve steady-state problems with flat
velocity profiles

§15.4 The d-forms of the macroscopic balances

§15.5○ Use of the macroscopic balances to solve unsteady-state problems and
problems with non-flat velocity profiles

§15.6 Concluding comments

In Chapter 7 we discussed the macroscopic mass, momentum, angular momentum, and
mechanical energy balances. The treatment there was restricted to systems at constant
temperature. Actually that restriction is somewhat artificial, because in real flow systems
mechanical energy is always being converted into thermal energy by viscous dissipation.
What we really assumed in Chapter 7 is that any heat so produced is either too small to
change the fluid properties or is immediately conducted away through the walls of the
system containing the fluid. In this chapter we extend the previous results to describe the
overall behavior of nonisothermal macroscopic flow systems.

For a nonisothermal system there are five macroscopic balances that describe the
relations between the inlet and outlet conditions of the stream. They may be derived by
integrating the equations of change over the macroscopic system:

∫V(t)
(eq. of continuity) dV =macroscopic mass balance

∫V(t)
(eq. of motion) dV =macroscopic momentum balance

∫V(t)
(eq. of angular momentum) dV =macroscopic angular momentum balance

∫V(t)
(eq. of mechanical energy) dV =macroscopic mechanical energy balance

∫V(t)
(eq. of (total) energy) dV =macroscopic (total) energy balance

The first four of these were discussed in Chapter 7, and their derivations suggest that
they can be applied to nonisothermal systems just as well as to isothermal systems. In this
chapter we add the fifth balance, namely that for the total energy. This is derived in §15.1,

429
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not by performing the integration indicated above, but rather by applying the law of
conservation of total energy directly to the system shown in Fig. 7.0-1. Then in §15.2 we
revisit themechanical energy balance and examine it in light of the discussion of the (total)
energy balance. Next in §15.3 we give the simplified versions of the macroscopic balances
for steady-state systems and illustrate their use.

In §15.4 we give the differential forms (d-forms) of the steady-state balances. In these
forms, the entry and exit planes 1 and 2 are taken to be only a differential distance apart.
The “d-forms” are frequently useful for problems involving flow in conduits in which the
velocity, temperature, and pressure are continually changing in the flow direction.

Finally in §15.5 we present several illustrations of unsteady-state problems that can
be solved by the macroscopic balances.

This chapter will make use of nearly all the topics we have covered so far and pro-
vides an excellent opportunity to review the preceding chapters. Once again we remind
the reader that in using the macroscopic balances, it may be necessary to omit some terms
and to estimate the values of others. This requires good intuition or some extra experi-
mental data.

§15.1 THE MACROSCOPIC ENERGY BALANCE

We consider the system sketched in Fig. 7.0-1 and make the same assumptions that were
made in Chapter 7 with regard to quantities at the entrance and exit planes:

(i) The time-smoothed velocity is perpendicular to the entry and exit cross sections.

(ii) The density and other physical properties are uniform over the relevant cross
sections.

(iii) The forces associated with the stress tensor f are neglected.

(iv) The pressure does not vary over the cross section.

To these we add (likewise at the entry and exit planes):

(v) The energy transport by conductionq is small compared to the convective energy
transport and can be neglected.

(vi) The work associated with [f ⋅ v] is negligible when compared with pv.

We now apply the statement of conservation of energy to the fluid in themacroscopic flow
system. In doing this, we make use of the concept of potential energy to account for the
work done against the external forces (this corresponds to using Eq. 11.1-10, rather than
Eq. 11.1-8, as the equation of change for energy).

The statement of the law of conservation of energy thus takes the form:

d
dt
(Utot + Ktot +Ctot)

rate of increase of
internal, kinetic, and
potential energy in

the system

= (i1Û1⟨v1⟩ + 1

2
i1⟨v31⟩ + i1Ĉ1⟨v1⟩)S1

rate at which internal, kinetic, and
potential energy enter the system

at plane 1 by flow

− (i2Û2⟨v2⟩ + 1

2
i2⟨v32⟩ + i2Ĉ2⟨v2⟩)S2

rate at which internal, kinetic, and
potential energy leave the system

at plane 2 by flow

(15.1-1)

+Q
rate at which
heat is added
to the system

across boundary

+Wm
rate at which work is done on
the system by the surroundings
by means of the moving

surfaces

+ (p1⟨v1⟩S1 − p2⟨v2⟩S2)
rate at which work is
done on the system by the
surroundings at planes 1
and 2
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Here Utot = ∫ iÛdV, Ktot = ∫ 1

2
iv2dV, and Ctot = ∫ iĈdV are the total internal, kinetic,

and potential energy within the system, the integrations being performed over the
entire volume of the system. The last two terms represent the rate of work done by
fluid at planes 1 and 2. The rate at which work is done on the system at plane 1 is the
force p1S1, exerted on the surface S1, times the velocity ⟨v1⟩; the rate at which work
is done by the system at plane 2 is the force p2S2, exerted on the surface S2, times the
velocity ⟨v2⟩.

Equation 15.1-1 may bewritten in amore compact form by introducing themass rates
of flow w1 = i1⟨v1⟩S1 and w2 = i2⟨v2⟩S2, the total energy Etot = Utot + Ktot +Ctot. We thus
get for the unsteady-state macroscopic energy balance

d
dt
Etot = −2

[(
Û + pV̂ + 1

2

⟨
v3

⟩
⟨v⟩ + Ĉ

)
w

]
+Q +Wm (15.1-2)

It is clear, from the derivation of Eq. 15.1-1, that the “work done on the system by the sur-
roundings” consists of two parts: (1) the work done by the moving surfaces Wm, and (2)
the work done at the ends of the system (planes 1 and 2), which appears as −2(pV̂w) in
Eq. 15.1-2. Althoughwe have combined the pV-termswith the internal, kinetic, and poten-
tial energy terms on the right side of Eq. 15.1-2, it is inappropriate to say that “pV-energy
enters and leaves the system” at the inlet and outlet. The pV-terms originate aswork terms,
along with Wm, and should be thought of as such.

We now consider the situationwhere the system is operating at steady state so that the
total energy Etot is constant, and the mass rates of flow in and out are equal (w1 = w2 = w).
Then it is convenient to introduce the symbols Q̂ = Q∕w (the heat addition per unit mass
of flowing fluid) and Ŵm = Wm∕w (the work done on a unit mass of flowing fluid). Then
the steady-state macroscopic energy balance is

2

(
Ĥ + 1

2

⟨
v3

⟩
⟨v⟩ + gh

)
= Q̂ + Ŵm (15.1-3)

Here we have written Ĉ1 = gh1 and Ĉ2 = gh2, where h1 and h2 are heights above an
arbitrarily chosen datum plane (see the discussion just before Eq. 3.3-2). Similarly,
Ĥ1 = Û1 + p1V̂1 and Ĥ2 = Û2 + p2V̂2 are enthalpies per unit mass measured with respect
to an arbitrarily specified reference state. The explicit formula for the enthalpy is given
in Eq. 9.4-4.

For many problems in the chemical industry, the kinetic energy, potential energy,
and work terms are negligible compared with the thermal terms in Eq. 15.1-3, and the

steady-state energy balance becomes simply Ĥ2 − Ĥ1 = Q̂, often incorrectly called an “en-
thalpy balance.” However, this relation should not be construed as a statement of the
conservation of enthalpy.

§15.2 THE MACROSCOPIC MECHANICAL ENERGY BALANCE

Themacroscopic mechanical energy balance, given in §7.4 and derived in §7.7, is repeated
here for comparison with Eqs. 15.1-2 and 15.1-3. The unsteady-state macroscopic mechanical
energy balance, as given in Eq. 7.4-2, is:

d
dt
(Ktot +Ctot) = −2

(
1

2

⟨
v3

⟩
⟨v⟩ + Ĉ +

p
i

)
w +Wm − Ec − Ev (15.2-1)
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V(p, T)

p

Vdp
p2

p1

(p2, T2)

(p1, T1)

Thermodynamic
path

T

M
Surface V =

R T
p

Fig. 15.2-1. Graphical

representation of the integral in

Eq. 15.2-2. The lightly shaded area

is ∫ p2
p1

V̂dp = ∫ p2
p1

(1∕i) dp. Note that

the value of this integral is

negative here, because we are

integrating from right to left.

where Ev and Ec are defined in Eqs. 7.4-3 and 7.4-4. An approximate form of the steady-state
macroscopic mechanical balance, as given in Eq. 7.4-7, is:

2

(
1

2

⟨
v3

⟩
⟨v⟩

)
+ g2h + ∫

2

1

1

i
dp = Ŵm − Êv (15.2-2)

The details of the approximation introduced here are explained in Eqs. 7.7-9 to
7.7-12.

The integral in Eq. 15.2-2must be evaluated along a “representative streamline” in the
system. To do this, onemust know the equation of state i = i(p,T) and also how T changes
with p along the streamline. In Fig. 15.2-1 the surface V̂ = V̂(p,T) for an ideal gas is shown.
In the pT-plane there is shown a curve beginning at p1,T1 (the inlet stream conditions)
and ending at p2,T2 (the outlet stream conditions). The curve in the pT-plane indicates the
succession of states throughwhich the gas passes in going from the initial state to the final

state. The integral ∫ 2

1
(1∕i) dp is then the projection of the shaded area in Fig. 15.2-1 onto

the pV̂-plane. It is evident that the value of this integral changes as the “thermodynamic
path” of the process from 1 to 2 is altered. If one knows the path and the equation of state

then one can compute ∫ 2

1
(1∕i) dp.

In several special situations, it is not difficult to evaluate the integral:

a. For isothermal systems, the integral is evaluated by prescribing the isothermal
equation of state—that is, by giving a relation for i as a function of p. For example,
for ideal gases, i = pM∕RT and

∫
2

1

1

i
dp = RT

M ∫
p2

p1

1

p
dp = RT

M
ln

p2
p1

(ideal gases) (15.2-3)

b. For incompressible liquids, i is constant so that

∫
2

1

1

i
dp = 1

i
(p2 − p1) (incompressible liquids) (15.2-4)

c. For frictionless adiabatic flow of ideal gases with constant heat capacity, p and i
are related by the expression pi−u = constant, in which u = Ĉp∕ĈV , as shown in
Example 11.4-5. Then the integral becomes
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∫
2

1

1

i
dp =

p1∕u
1

i1 ∫
p2

p1

1

p1∕u
dp =

p1
i1

u

u − 1

[(
p2
p1

)(u−1)∕u

− 1

]

=
p1
i1

u

u − 1

[(
i2
i1

)u−1

− 1

]
(15.2-5)

Hence, for this special case of nonisothermal flow, the integration can be performed
analytically.

We now conclude with several comments involving both the mechanical energy
balance and the total energy balance. It was emphasized in §7.7 that Eq. 7.4-2 (same as
Eq. 15.2-1) is derived by taking the dot product of vwith the equation of motion and then
integrating the result over the volume of the flow system. Since we start with the equation
of motion—which is a statement of the law of conservation of linear momentum—the
mechanical energy balance contains information different from that of the (total) energy
balance, which is a statement of the law of conservation of energy. Therefore, in general,
both balances are needed for problem solving. The mechanical energy balance is not “an
alternative form” of the energy balance.

Furthermore, if we subtract the mechanical energy balance in Eq. 15.2-1 from the total
energy balance in Eq. 15.1-2, we get the macroscopic balance for the internal energy

dUtot

dt
= −2Ûw +Q + Ec + Ev (15.2-6)

This states that the total internal energy in the system changes because of the difference
in the amount of internal energy entering and leaving the system by fluid flow (−2Ûw),
because of the net heat entering (or leaving) the system through walls of the system (Q),
because of the net heat produced (or consumed) within the fluid by compression (or
expansion) (Ec), and because of the heat produced in the systembecause of viscous dissipa-
tion (Ev). Equation 15.2-6 cannot bewritten down a priori, because there is no conservation
law for internal energy. It can, however, be obtained by integrating the equation of change
for internal energy, Eq. 11.2-1, over the entire flow system.

§15.3 USE OF THEMACROSOPIC BALANCES TO SOLVE
STEADY-STATE PROBLEMSWITH FLAT VELOCITY PROFILES

Themost important applications of themacroscopic balances are to steady-state problems.
Furthermore, it is usually assumed that the flow is turbulent so that the variation of the
velocity over the entry and exit cross sections can be safely neglected (see “Notes” after
Eqs. 7.2-3 and 7.4-7). The five macroscopic balances, with these additional restrictions, are
summarized in Table 15.3-1. They have also been generalized to multiple inlet and outlet
ports so as to accommodate a larger set of problems.

EXAMPLE 15.3-1

The Cooling of an Ideal
Gas

Two hundred pounds per hour of dry air enter the inner tube of the heat exchanger shown in
Fig. 15.3-1 at 300∘F and 30 psia, with a velocity of 100 ft/sec. The air leaves the exchanger at 0∘F
and 15 psia, at 10 ft above the exchanger entrance (at plane 1).

Calculate the rate of energy removal across the tubewall. Assume turbulent flow and ideal
gas behavior, and use the following expression for the heat capacity of air:

C̃p =
(
6.39

Btu

lb-mol ⋅ ∘R

)
+

(
9.8 × 10−4

Btu

lb-mol ⋅ ∘R2

)
T −

(
8.18 × 10−8

Btu

lb-mol ⋅ ∘R3

)
T2

(15.3-1)
where C̃p is in Btu∕lb-mol ⋅ ∘R and T is in ∘R.
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Table 15.3-1. Steady-State Macroscopic Balances for Turbulent Flow in Nonisothermal

Systems

Mass: ∑
w1 −

∑
w2 = 0 (A)

Momentum:
∑

(v1w1 + p1S1)u1 −
∑

(v2w2 + p2S2)u2 +mtotg = Ff→s (B)

Angular momentum:
∑

(v1w1 + p1S1)[r1 × u1] −
∑

(v2w2 + p2S2)[r2 × u2] + Text = Tf→s (C)

Mechanical energy:
∑(

1

2
v2
1
+ gh1 +

p1
i1

)
w1 −

∑(
1

2
v2
2
+ gh2 +

p2
i2

)
w2 = −Wm + Ec + Ev (D)

(Total) energy:
∑(

1

2
v2
1
+ gh1 + Ĥ1

)
w1 −

∑(
1

2
v2
2
+ gh2 + Ĥ2

)
w2 = −Wm −Q (E)

Notes:
aAll formulas here imply flat velocity profiles.

b
∑

w1 = w1a + w1b + w1c + · · ·, where w1a = i1av1aS1a, etc.
ch1 and h2 are elevations above an arbitrary datum plane.
dĤ1 and Ĥ2 are enthalpies per unit mass relative to some arbitrarily chosen reference state (see Eq. 9.4-4).
eThe quantities Ec and Ev are defined in Eqs. 7.4-3 and 7.4-4. All equations are written for compressible

flow; for incompressible flow, Ec = 0.
fu1 and u2 are unit vectors in the direction of flow.

Hot
liquid
out

Cold
liquid in

10 ft

Plane 2

Plane 1

Air out at 0°F and 15 psia
<v> = ?

Air in at 300°F and 30 psia
<v> = 100 ft s–1

Fig. 15.3-1. The cooling of air in a countercurrent

flow heat exchanger.

SOLUTION

For this system, the (steady-state) macroscopic energy balance, Eq. 15.1-3, becomes

(Ĥ2 − Ĥ1) +
1

2
(v2

2
− v2

1
) + g(h2 − h1) = Q̂ (15.3-2)

The enthalpy difference may be obtained from Eq. 9.4-4, and the velocity may be obtained as a

function of temperature and pressurewith the aid of themacroscopicmass balance, i1v1 = i2v2,
and the ideal gas law p = iRT∕M. Hence, Eq. 15.3-2 becomes

1

M∫
T2

T1

C̃p dT + 1

2
v2
1

[(
p1T2

p2T1

)2

− 1

]
+ g(h2 − h1) = Q̂ (15.3-3)
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The explicit expression for C̃p in Eq. 15.3-1 may then be inserted into Eq. 15.3-3 and the integra-

tion performed. Then substitution of the numerical values gives the heat removal per pound

of fluid passing through the heat exchanger:

−Q̂ =
(

1

29

lb-mol

lbm

)
⎡⎢⎢⎢⎢⎢⎢⎢⎣

(
6.39

Btu

lb-mol ⋅ ∘R

)
(300∘R)

+1

2

(
9.8 × 10−4

Btu

lb-mol ⋅ ∘R2

)
(5.78 − 2.12)(105)(∘R2)

−1

3

(
8.18 × 10−8

Btu

lb-mol ⋅ ∘R3

)
(4.39 − 0.97)(108)(∘R3)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
− 1

2

( (
100 ft∕s

)2
(32.2 ft ⋅ lbm∕lbf ⋅ s2)(778 ft-lbf∕Btu)

)
[(1.21)2 − 1]

−

( (
32.2 ft∕s2

)
(10 ft)

(32.2 ft ⋅ lbm∕lbf ⋅ s2)(778 ft ⋅ lbf∕Btu)

)
= (72.0 − 0.093 − 0.0128) Btu∕lbm

= 71.9 Btu∕lbm (15.3-4)

The rate of heat removal is then

−Q̂w = 14,380 Btu∕hr (15.3-5)

Note that, in Eq. 15.3-4, the kinetic and potential energy contributions (−0.093 and −0.0128,
repectively) are negligible in comparison with the enthalpy change (72.0).

EXAMPLE 15.3-2

Mixing of Two
Ideal-Gas Streams

Two steady, turbulent streams of the same ideal gas flowing at different velocities, tempera-

tures, and pressures are mixed as shown in Fig. 15.3-2. Calculate the velocity, temperature, and

pressure of the resulting stream.

SOLUTION

The fluid behavior in this example is more complex than that for the incompressible, isother-

mal situation discussed in Example 7.6-2, because here changes in density and temperature

may be important. We need to use the steady-state macroscopic energy balance, Eq. 15.1-3, and

the ideal-gas equation of state, in addition to the mass and momentum balances. With these

exceptions, we proceed as in Example 7.6-2.

We choose the inlet planes (1a and 1b) to be cross sections at which the fluids first begin to

mix. The outlet plane (2) is taken far enough downstream that complete mixing has occurred.

As in Example 7.6-2 we assume flat velocity profiles, negligible shear stresses on the pipe wall,

and no changes in the potential energy. In addition, we neglect the changes in the heat capacity

S = S1b S = S2

S = S1a

T1b, p1b, v1b

T1a
p1a
v1a T2

p2
v2

Plane 1 Plane 2 Fig. 15.3-2. The mixing of two ideal-gas

streams.
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of the fluid and assume adiabatic operation. We now write the following equations for this

system with two entry ports and one exit port:

Mass∶ w2 = w1a + w1b (15.3-6)

Momentum∶ v2w2 + p2S2 = v1aw1a + p1aS1a + v1bw1b + p1bS1b (15.3-7)

Energy∶ w2[Ĉp(T2 − Tref) +
1

2
v2
2
] = w1a[Ĉp(T1a − Tref) +

1

2
v2
1a] + w1b[Ĉp(T1b − Tref) +

1

2
v2
1b] (15.3-8)

Equation of state∶ p2 = i2RT2∕M (15.3-9)

In this set of equations we know all the quantities at 1a and 1b, and the four unknowns are p2,
T2, i2, and v2. Tref is the reference temperature for the enthalpy. By multiplying Eq. 15.3-6 by

ĈpTref and adding the result to Eq. 15.3-8, we get

w2[ĈpT2 +
1

2
v2
2
] = w1a[ĈpT1a +

1

2
v2
1a] + w1b[ĈpT1b +

1

2
v2
1b] (15.3-10)

The right sides of Eqs. 15.3-6, 15.3-7, and 15.3-10 contain known quantities and we designate

them by w, P, and E, respectively. Note that w, P, and E are not independent, because the pres-

sure, temperature, and density of each inlet stream must be related by the equation of state.

We now solve Eq. 15.3-7 for v2 and eliminate p2 by using the ideal-gas law. In addition, we

write w2 as i2v2S2. This gives

v2 +
RT2

Mv2
= P

w
(15.3-11)

Equation 15.3-11 can be solved for T2, which is inserted into Eq. 15.3-10 to give

w
[
Ĉp

(
Mv2
R

)( P
w

− v2
)
+ 1

2
v2
2

]
= E (15.3-12)

Then rearranging and introducing the molar heat capacity gives

1

2
v2
2
+

C̃pPv2
Rw

−
C̃p

R
v2
2
= E

w
(15.3-13)

Next we make use of the ideal gas relation C̃p∕R = u∕(u − 1) to rewrite Eq. 15.3-13 as(
1 − 2

u

u − 1

)
v2
2
+ 2

(
u

u − 1

P
w

)
v2 −

2E
w

= 0 (15.3-14)

or (
−u + 1

u − 1

)
v2
2
+ 2

(
u

u − 1

P
w

)
v2 −

2E
w

= 0 (15.3-15)

Finally, we multiply by −(u − 1)∕(u + 1) to obtain

v2
2
−

[
2

(
u

u + 1

)
P
w

]
v2 + 2

(
u − 1

u + 1

)
E
w

= 0 (15.3-16)

in which u = Cp∕CV , a quantity that varies from about 1.1 to 1.667 for gases. Here we have used

the fact that C̃p∕R = u∕(u − 1) for an ideal gas. When Eq. 15.3-16 is solved for v2, we get

v2 =
(

u

u + 1

)
P
w

⎡⎢⎢⎣1 ±
√

1 − 2

(
u2 − 1

u2

)
wE
P2

⎤⎥⎥⎦ (15.3-17)

On physical grounds, the radicand cannot be negative (i.e., we expect the velocity to be a real

number). It can be shown (see Problem 15B.4) that, when the radicand is zero, the velocity of

the final stream is sonic. Therefore, in general, one of the solutions for v2 is supersonic and one

is subsonic. Only the lower (subsonic) solution can be obtained in the turbulent mixing process

under consideration, since supersonic duct flow is unstable. The transition from supersonic to

subsonic duct flow is illustrated in Example 11.4-6.

Once the velocity v2 is known, the pressure and temperature may be calculated from

Eqs. 15.3-7 and 15.3-11. The mechanical energy balance can be used to get (Ec + Ev).
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§15.4 THE d-FORMS OF THEMACROSCOPIC BALANCES

The estimation of Ev in the mechanical energy balance and Q in the total energy balance
often presents some difficulties in nonisothermal systems.

For example, for Ev, consider the following two nonisothermal situations:

a. For liquids, the average flow velocity in a tube of constant cross section is nearly
constant. However, the viscosity may change markedly in the direction of the flow
because of the temperature changes, so that f in Eqs. 7.5-11 and 7.5-12 changes with
distance. Hence Eqs. 7.5-11 and 7.5-12 cannot be applied to the entire pipe.

b. For gases, the viscosity does not change much with pressure, so that the local
Reynolds number and local friction factor are nearly constant for ducts of constant
cross section. However, the average velocity may change considerably along the
duct as a result of the change in density with temperature. Hence, Eqs. 7.5-11 and
7.5-12 cannot be applied to the entire duct.

Similarly for pipe flow with the wall temperature changing with distance, it
may be necessary to use local heat-transfer coefficients. For such a situation, we can
write Eq. 15.1-3 on an incremental basis and generate a differential equation. Or the
cross-sectional area of the conduit may be changing with downstream distance, and this
situation also results in a need for handling the problem on an incremental basis.

It is therefore useful to rewrite the steady-state macroscopic mechanical energy bal-
ance and the total energy balance by taking planes 1 and 2 to be a differential distance dl
apart. We then obtain what we call the “d-forms” of the balances:

i. The d-form of the mechanical energy balance
If we take planes 1 and 2 to be a differential distance apart, then we may write

Eq. 15.2-2 in the following differential form:

d
(

1

2
v2

)
+ gdh + 1

i
dp = dŴ − dÊv (15.4-1)

Then using Eq. 7.5-9 for a differential length dl, we write

vdv + gdh + 1

i
dp = dŴ − 1

2
v2

f
Rh

dl (15.4-2)

in which f is the local friction factor, andRh is the local value of themean hydraulic radius.
In most applications we omit the dŴ term, since work is usually done at isolated points
along the flow path (e.g., by pumps). The term dŴ would be needed, however, in tubes
with extensible walls, magnetically driven flows, or systems with transport by rotating
screws.

ii. The d-form of the total energy balance
If we write Eq. 15.1-3 in differential form, we have

d
(

1

2
v2

)
+ gdh + dĤ = dQ̂ + dŴ (15.4-3)

Then, using Eq. 9.4-4 for Ĥ and Eq. 14.1-8 for dQ̂, we get

vdv + gdh + ĈpdT +

[
V̂ − T

(
𝜕V̂
𝜕T

)
p

]
dp =

UlocZ2T
w

dl + dŴ (15.4-4)

in whichUloc is the local overall heat-transfer coefficient, Z is the corresponding local con-
duit perimeter, and 2T is the local temperature difference between the fluids inside and
outside of the conduit.

Applications of Eqs. 15.4-2 and 15.4-4 are illustrated in the examples that follow.
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EXAMPLE 15.4-1

Cocurrent or
Countercurrent Heat
Exchangers

It is desired to describe the performance of the simple double-pipe heat exchanger, shown in

Fig. 15.4-1, in terms of the heat-transfer coefficients of the two streams and the thermal resis-

tance of the pipewall. The exchanger consists of two coaxial pipeswith one fluid streamflowing

through the inner pipe and another in the annular space; heat is transferred across the wall of

the inner pipe. Both streams may flow in the same direction (cocurrent flow), as indicated in

the figure, but normally it is more efficient to reverse the direction of one stream so that either

wh or wc is negative (countercurrent flow). Steady-state turbulent flow may be assumed, and

the heat losses to the surroundings may be neglected. Assume further that the local overall

heat-transfer coefficient is constant along the exchanger.

SOLUTION

(a) Macroscopic energy balance for each stream as a whole. We designate quantities referring

to the hot stream with a subscript h and the cold stream with subscript c. The steady-state

energy balance in Eq. 15.1-3 becomes, for negligible changes in kinetic and potential energy,

wh(Ĥh2 − Ĥh1) = Qh (15.4-5)

wc(Ĥc2 − Ĥc1) = Qc (15.4-6)

Because there is no heat loss to the surroundings, Qh = −Qc. For incompressible liquids with a

pressure drop that is not too large, or for ideal gases, Eq. 9.4-4 gives for constant Ĉp the relation

2Ĥ = Ĉp2T. Hence, Eqs. 15.4-5 and 15.4-6 can be rewritten as

whĈph(Th2 − Th1) = Qh (15.4-7)

wcĈpc(Tc2 − Tc1) = Qc = −Qh (15.4-8)

(b) d-form of themacroscopic energy balance. Application of Eq. 15.4-4 to the hot stream gives

ĈphdTh =
U0(20r0)(Tc − Th)

wh
dl (15.4-9)

where r0 is the outside radius of the inner tube, and U0 is the overall heat-transfer coefficient

based on the radius r0 (see Eq. 14.1-8).
Rearrangement of Eq. 15.4-9 gives

dTh

Tc − Th
= U0

(20r0)dl

whĈph

(15.4-10)

The corresponding equation for the cold stream is

−
dTc

Tc − Th
= U0

(20r0)dl

wcĈpc

(15.4-11)

Plane 1

Plane 2

l dl

Hot stream in
T = Th1

Cold stream in at l = 0
T = Tc1

Cold stream out at l = L
T = Tc2

Hot stream out
T = Th2

Fig. 15.4-1. A double-pipe heat exchanger.
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Adding Eqs. 15.4-10 and 15.4-11 gives a differential equation for the temperature difference of

the two fluids as a function of the coordinate l:

−
d(Th − Tc)
Th − Tc

= U0

(
1

whĈph

+ 1

wcĈpc

)
(20r0)dl (15.4-12)

By assuming that U0 is independent of l and integrating from plane 1 to plane 2, we get

ln

(
Th1 − Tc1

Th2 − Tc2

)
= U0

(
1

whĈph

+ 1

wcĈpc

)
(20r0)L (15.4-13)

where L is the total length of either tube. This expression relates the terminal temperatures to

the stream rates and exchanger dimensions, and it can thus be used to describe the performance

of the exchanger. However, it is conventional to rearrange Eq. 15.4-13 by taking advantage of

the steady-state energy balances in Eq. 15.4-7 and 15.4-8.We solve each of these latter equations

for wĈp and substitute the results into Eq. 15.4-13 to obtain

Qc = U0(20r0L)

( (
Th2 − Tc2

)
− (Th1 − Tc1)

ln[(Th2 − Tc2)∕(Th1 − Tc1)]

)
(15.4-14)

or

Qc = U0A0(Th − Tc)ln (15.4-15)

Here A0 = 20r0L is the total outer surface of the inner tube, and (Th − Tc)ln is the “logarithmic

mean temperature difference” between the two streams. Equations 15.4-14 and 15.4-15 describe

the rate of heat exchange between the two streams and find wide application in engineering

practice. Note that the streammass flow rates do not appear explicitly in these equations, which

are valid for both cocurrent and countercurrent exchangers (see Problem 15A.1).

From Eqs. 15.4-10 and 15.4-11, we can also get the stream temperatures as functions of l if
desired. Considerable caremust be used in applying the results of this example to laminar flow,

for which the variation of the overall heat-transfer coefficient may be quite large. An example

of a problem with variable U0 is given in Problem 15B.1.

EXAMPLE 15.4-2

Power Requirement for
Pumping a
Compressible Fluid
through a Long Pipe

A natural gas, which may be considered to be pure methane, is to be pumped through a long,

smooth pipeline with an inside diameter of two feet. The gas enters the line at 100 psia with a

velocity of 40 ft/s and at the ambient temperature of 70∘F. Pumping stations are provided every

10 miles along the line, and at each of these stations the gas is recompressed and cooled to its

original temperature and pressure (see Fig. 15.4-2). Estimate the power that must be expended

on the gas at each pumping station, assuming ideal-gas behavior, flat velocity profiles, and

negligible changes in elevation.

SOLUTION

We consider the pipe and compressor separately. First we apply Eq. 15.4-2 to a length dl of the
pipe. We then integrate this equation between planes 1 and 2 to obtain the unknown pressure

p2. Once this is known, wemay apply Eq. 15.2-2 to the system between planes 2 and 3 to obtain

the work done by the pump.

(a) Flow through the pipe. For this portion of the system, Eq. 15.4-2 becomes

vdv + 1

i
dp +

2v2f
D

dl = 0 (15.4-16)

whereD is the pipe diameter. Since the pipe is quite long, we assume that the fluid is isothermal

at 70∘F. We may then eliminate both v and i from Eq. 15.4-16 by use of the assumed equation
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Natural
gas

Compressor

Cooler Cooler
Natural
gas

Compressor

Plane 1

l = 0

l

l = 10 miles

Plane 2 Plane 3

Fig. 15.4-2. Pumping a compressible fluid through a pipeline.

of state, p = iRT∕M, and the macroscopic mass balance, which may be written iv = i1v1. With

i and v written in terms of the pressure, Eq. 15.4-16 then becomes

−1

p
dp +

RT1

M(p1v1)2
pdp +

2f
D
dl = 0 (15.4-17)

It was pointed out in §1.6 that the viscosity of ideal gases is independent of the pressure. From

this it follows that the Reynolds number of the gas, Re = Dw∕S4, and hence the friction factor

f , must be constants. We may then integrate Eq. 15.4-17 from plane 1 to plane 2 to obtain

− ln
p2
p1

+ 1

2

[(
p2
p1

)2

− 1

]
RT1

Mv2
1

+
2fL
D

= 0 (15.4-18)

This equation gives p2 in terms of quantities that are already known, except for f which is easily

calculated: the kinematic viscosity of methane at 100 psi and 70∘F is about 2.61 × 10−5 ft
2∕s, and

therefore Re = Dv∕l = (2 ft)(40 ft∕s)∕(2.61 × 10−5 ft
2∕s) = 3.07 × 106. The friction factor can then

be estimated to be 0.0025, from Fig. 6.2-2.

Substituting numerical values into Eq. 15.4-18 gives

− ln
p2
p1

+ 1

2

[(
p2
p1

)2

− 1

]
(1545 ft ⋅ lbf∕lb-mol ⋅ ∘R)(530∘R)(32.2 ft ⋅ lbm∕lbf ⋅ s

2)
(16.04 lbm∕lb-mol)(40 ft∕s)2

+ (2)(0.0025)(52,800 ft)
(2 ft)

= 0 (15.4-19)

or

− ln
p2
p1

+ 513

[(
p2
p1

)2

− 1

]
+ 132 = 0 (15.4-20)

By solving this equation numerically, with p1 = 100 psia, we obtain p2 = 86 psia.

(b) Flow through the compressor. We are now ready to apply the mechanical energy balance

to the compressor. We start by putting Eq. 15.2-1 into the form

Ŵm = 1

2
(v2

3
− v2

2
) + ∫

p3

p2

1

i
dp + Êv (15.4-21)

To evaluate the integral in this equation, we assume that the compression is adiabatic (i.e., the

compressor surface area available for heat transfer is small and thus the actual rate of heat of

transfer Q should also be small) and further that Êv between planes 2 and 3 can be neglected.

We may use Eq. 15.2-5 to rewrite Eq. 15.4-21 as

Ŵm = 1

2
(v2

3
− v2

2
) +

p1∕u
2

i2 ∫
p3

p2

p−1∕udp

=
v2
1

2

[
1 −

(
p1
p2

)2
]
+

RT2

M
u

u − 1

[(
p1
p2

)(u−1)∕u

− 1

]
(15.4-22)
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in which Ŵm is the energy required of the compressor. By substituting numerical values into

Eq. 15.4-22, we get

Ŵm =
(40 ft∕s)2

2(32.2 ft ⋅ lbm∕lbf ⋅ s2)

[
1 −

(
100 psia

86 psia

)2
]

+
(1545 ft ⋅ lbf∕lb-mol ⋅ ∘R)(530∘R)

16.04 lbm∕lb-mol

1.3
0.3

[(
100 psia

86 psia

)0.3∕1.3

− 1

]
= − 9 + 7834 = 7825 ft ⋅ lbf∕lbm (15.4-23)

The power required to compress the fluid is

wŴm =
(
0D2

4

)(
p1M
RT1

)
v1Ŵm

= 0(1 ft2)
(100 psia)(16.04 lbm∕lb-mol)

(10.73 ft3 ⋅ psia∕lb-mol ⋅ ∘R)(530∘R)
(40 ft∕s)(7825 ft ⋅ lbf∕lbm)

= 277,000 ft ⋅ lbf∕s = 504 hp (15.4-24)

The power required would be virtually the same if the flow in the pipeline were adiabatic (see

Problem 15A.2).

The assumptions used here—assuming the compression to be adiabatic and neglecting the

viscous dissipation—are conventional in the design of compressor-cooler combinations. Note

that the energy required to run the compressor is greater than the calculated work, Ŵm, by (i)

Êv between planes 2 and 3, (ii) mechanical losses in the compressor itself, and (iii) errors in the

assumed p-i path. Normally the energy required at the pump shaft is at least 15 to 20% greater

than Ŵm.

§15.5 USE OF THEMACROSCOPIC BALANCES TO SOLVE
UNSTEADY-STATE PROBLEMS AND PROBLEMS
WITH NON-FLAT VELOCITY PROFILES

In Table 15.5-1 we summarize all five macroscopic balances for unsteady state and nonflat
velocity profiles, and for systemswithmultiple entry and exit ports. One practically never
needs to use these balances in this degree of completeness, but it is convenient to have the
entire set of equations collected in one place. We illustrate their use in the examples that
follow.

EXAMPLE 15.5-1

Heating of a Liquid in
an Agitated Tank1

A cylindrical tank capable of holding 1000 ft
3
of liquid is equipped with an agitator having

sufficient power to keep the liquid contents at a uniform temperature (see Fig. 15.5-1). Heat

is transferred to the contents by means of a coil arranged in such a way that the area avail-

able for heat transfer is proportional to the quantity of liquid in the tank. This heating coil

consists of 10 turns, 4 ft in diameter, of 1-in. o. d. tubing. Water at 20∘C is fed into this tank at

a rate of 20 lbm∕min, starting with no water in the tank at time t = 0. Steam at 105∘C flows

through the heating coil, and the overall heat-transfer coefficient is 100 Btu∕hr ⋅ ft2 ⋅ ∘F. What

is the temperature of the water when the tank is filled?

1This problem is taken in modified form fromW. R. Marshall, Jr., and R. L. Pigford, Applications of
Differential Equations to Chemical Engineering Problems, University of Delaware Press, Newark DE (1947),

pp. 16–18.
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Table 15.5-1. Unsteady-State Macroscopic Balances for Flow in Nonisothermal Systems

Mass: d
dt
mtot =

∑
w1 −

∑
w2 =

∑
i1⟨v1⟩S1−

∑
i2⟨v2⟩S2 (A)

Momentum:
d
dt
Ptot =

∑(⟨
v2
1

⟩
⟨v1⟩ w1 + p1S1

)
u1 −

∑(⟨
v2
2

⟩
⟨v2⟩ w2 + p2S2

)
u2 +mtotg − Ff→s (B)

Angular momentum:
d
dt
Ltot =

∑(⟨
v2
1

⟩
⟨v1⟩ w1 + p1S1

)
[r1 × u1] −

∑(⟨
v2
2

⟩
⟨v2⟩ w2 + p2S2

)
[r2 × u2] + Text − Tf→s (C)

Mechanical energy: d
dt
(Ktot +Ctot) =

∑(
1

2

⟨
v3
1

⟩
⟨v1⟩ + gh1 +

p1
i1

)
w1 −

∑(
1

2

⟨
v3
2

⟩
⟨v2⟩ + gh2 +

p2
i2

)
w2 +Wm − Ec − Ev (D)

(Total) energy: d
dt
(Ktot +Ctot +Utot) =

∑(
1

2

⟨
v3
1

⟩
⟨v1⟩ + gh1 + Ĥ1

)
w1 −

∑(
1

2

⟨
v3
2

⟩
⟨v2⟩ + gh2 + Ĥ2

)
w2 +Wm +Q (E)

Notes:
a
∑

w1 = w1a + w1b + w1c + · · ·, where w1a = i1av1aS1a, etc.
bh1 and h2 are elevations above an arbitrary datum plane.
cĤ1 and Ĥ2 are enthalpies per unit mass relative to some arbitrarily chosen reference state; the formula for Ĥ is given in Eq. 9.4-4.
dThe quantities Ec and Ev are defined in Eqs. 7.4-3 and 7.4-4. All equations are written for compressible flow; for incompressible flow,

Ec = 0.
eu1 and u2 are unit vectors in the direction of flow.

4'

Condensate out

Instantaneous
liquid level 

Liquid
inlet

Steam in Fig. 15.5-1. Heating of a liquid in a tank with a

variable liquid level.

SOLUTION

We make the following assumptions:

a. The steam temperature is uniform throughout the coil.

b. The density and heat capacity do not change very much with temperature.
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c. The fluid is approximately incompressible so that Ĉp ≈ ĈV .

d. The agitator maintains uniform temperature throughout the liquid.

e. The heat-transfer coefficient is independent of position and time.

f. The walls of the tank are perfectly insulated so that no heat loss occurs.

We select the fluid within the tank as the system to be considered, and we make a

time-dependent energy balance over this system. Such a balance is provided by Eq. (E) of

Table 15.5-1. On the left side of the equation, the time rates of change of kinetic and potential

energies can be neglected, since they are probably small compared with that of the internal

energy. On the right side, we can omit the work term, and the kinetic and potential energy

terms can be discarded, since they will be small compared with the other terms. Inasmuch as

there is no outlet stream, we can set w2 equal to zero. Hence, for this system, the total energy

balance simplifies to
d
dt
Utot = w1Ĥ1 +Q (15.5-1)

This states that the internal energy of the system increases because of the enthalpy added by

the incoming fluid, and because of the addition of heat through the steam coil.

Because Utot and Ĥ1 cannot be given absolutely, we now select the inlet temperature T1 as

the thermal datum plane. Then Ĥ1 = 0 and Utot = iĈVV(T − T1) ≈ iĈpV(T − T1), where T and

V are the instantaneous temperature and volume of the liquid. Furthermore, the rate of heat

addition to the liquidQ is given byQ = U0A(Ts − T), in which Ts is the steam temperature, and

A is the instantaneous heat-transfer area. Hence, Eq. 15.5-1 becomes

iĈp
d
dt
V(T − T1) = U0A(Ts − T) (15.5-2)

The expressions for V(t) and A(t) are

V(t) =
w1

i
t A(t) = V(t)

V0

A0 =
w1t
iV0

A0 (15.5-3)

in which V0 and A0 are the volume and heat-transfer area when the tank is full. Hence, the

energy balance equation becomes

w1Ĉpt
d
dt
(T − T1) + w1Ĉp(T − T1) =

w1t
iV0

U0A0(Ts − T) (15.5-4)

which is to be solved with the initial condition that T = T1 at t = 0.

The equation is somewhat easier to solve in dimensionless form. We divide both sides by

w1Ĉp(Ts − T1) to get

t d
dt

(
T − T1

Ts − T1

)
+

(
T − T1

Ts − T1

)
=

U0A0t

iĈpV0

(
Ts − T
Ts − T1

)
(15.5-5)

This equation suggests that suitable definitions of dimensionless temperature and time are

P(f) =
(
T (t) − T1

Ts − T1

)
and f =

U0A0t

iĈpV0

(15.5-6,7)

Then Eq. 15.5-5 becomes after some rearranging

dP
df

+
(
1 + 1

f

)
P = 1 (15.5-8)

and the initial condition requires that P = 0 at f = 0.
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τ
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5Θ

0.6

0.7

0.8

0.9

1.0 Fig. 15.5-2. Plot of dimensionless

temperature, P = (T − T1)∕(Ts − T1),
versus dimensionless time,

f = (U0A0∕iĈpV0)t, according to

Eq. 15.5-10. [W. R. Marshall and R. L.

Pigford, Application of Differential
Equations to Chemical Engineering
Problems, University of Delaware Press,

Newark, DE (1947), p. 18.]

This is a first-order linear differential equation of the form of Eq. C.1-2. It may be solved

as follows:

P(f) = e− ∫ (
1+ 1

f

)
df
[
∫ e∫

(
1+ 1

f

)
dfdf + C

]
= e−(f+ln f)

[
∫ e(f+ln f)df + C

]
= e−f

f

[
∫ fefdf + C

]
= e−f

f
[ef(f − 1) + C]

= 1 − 1 − Ce−f

f
(15.5-9)

The constant of integration, C, can be obtained from the initial condition after first multiplying

Eq. 15.5-9 by f. In that way it is found that C = 1, so that the final solution is

P(f) = 1 − 1 − e−f

f
(15.5-10)

This function is shown in Fig. 15.5-2.

Finally, the temperature T0 of the liquid in the tank, when it has been filled, is given by

Eq. 15.5-10 when t = iV0∕w1 (from Eq. 15.5-3) or f = U0A0∕w1Ĉp (from Eq. 15.5-7). Therefore,

in terms of the original variables

T0 − T1

Ts − T1

= 1 −
1 − exp(−U0A0∕w1Ĉp)

U0A0∕w1Ĉp

(15.5-11)

Thus, it can be seen that the final liquid temperature is determined entirely by the dimension-

less group U0A0∕w1Ĉp, which for this problem is

U0A0

w1Ĉp

=
(100 Btu∕hr ⋅ ft2 ⋅ ∘F)(10)(0 ⋅ 4 ft)

(
0 ⋅ 1

12
ft
)

(20 lbm∕min)(60 min∕hr)(0.998 Btu∕lbm ⋅ ∘F)
= 2.74 (15.5-12)

Knowing this we can find from Eq. 15.5-11 that

T0 − T1

Ts − T1

= 1 −
1 − exp(−2.74)

2.74
= 0.659 (15.5-13)

whence T0 = 76∘C.
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EXAMPLE 15.5-2

Operation of a Simple
Temperature Controller

A well-insulated agitated tank is shown in Fig. 15.5-3. Liquid enters at a temperature T1(t),
which may vary with time. It is desired to control the temperature, T2(t), of the fluid leaving
the tank. It is presumed that the stirring device is sufficiently thorough that the temperature in
the tank is uniform and equal to the exit temperature. The volume of the liquid in the tank, V,
and the mass rate of liquid flow, w, are both constant.

To accomplish the desired control, a metallic electric heating coil of surface areaA is placed
in the tank, and a temperature-sensing element is placed in the exit stream to measure T2(t).
These devices are connected to a temperature controller that supplies energy to the heating
coil at a rate Qe = b(Tmax − T2(t)), in which Tmax is the maximum temperature for which the
controller is designed to operate, and b is a known parameter. It may be assumed that the
liquid temperature T2(t) is always less than Tmax in normal operation. The heating coil sup-
plies energy to the liquid in the tank at a rate Q = UA

[
Tc (t) − T2(t)

]
, where U is the overall

heat-transfer coefficient between the coil and the liquid, and Tc(t) is the instantaneous coil tem-

perature, considered uniform at any instant.
Up to time t = 0, the system has been operating at steady state with liquid inlet tempera-

ture T1(t) = T10 and exit temperature T2(t) = T20. At time t = 0, the inlet stream temperature is
suddenly increased toT1(t) = T1∞ and held there. As a consequence of this disturbance, the tank
temperature will begin to rise, and the temperature indicator in the outlet stream will signal
the controller to decrease the power supplied to the heating coil. Ultimately, the liquid temper-
ature in the tank will attain a new steady-state value T2∞. It is desired to describe the behavior
of the liquid temperature T2(t). A qualitative sketch showing the various temperatures is given
in Fig. 15.5-4.

SOLUTION

We first write the unsteady-state macroscopic energy balances (Eq. (E) of Table 15.5-1) for the
liquid in the tank and for the heating coil:

(liquid) iĈpV
dT2

dt
= wĈp(T1 − T2) +UA(Tc − T2) (15.5-14)

(coil) icĈpcVc

dTc

dt
= b(Tmax − T2) −UA(Tc − T2) (15.5-15)

Note that in applying the macroscopic energy balance to the liquid, we have neglected kinetic
and potential energy changes as well as the power input to the agitator.

(a) Steady-state behavior for t ≤ 0. When the time derivatives in Eqs. 15.5-14 and 15.5-15 are
set equal to zero and the equations added, we get for t ≤ 0, where T1 = T10:

T20 =
wĈpT10 + bTmax

wĈp + b
(15.5-16)

Power
supply

Temperature
controller

Electric
heater

Liquid
outlet

Temperature
indicator

Liquid
inlet

Agitator

T1 = T10 (for t < 0)
T1 = T1∞ (for t > 0)

T2(t)

Fig. 15.5-3. An agitated tank with a temperature controller.
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tt = 0

Inlet temperature

T1(t)

Outlet
temperature

T2(t)

Underdamped

Overdamped

T10

T1∞

T2∞

T20

Fig. 15.5-4. Inlet and outlet temperatures as

functions of time.

Then from Eq. 15.5-15 we can get the initial temperature of the coil

Tc0 = T20

(
1 − b

UA

)
+

bTmax

UA
(15.5-17)

(b) Steady-state behavior for t → ∞. When similar operations are performed with T1 = T1∞,

we get

T2∞ =
wĈpT1∞ + bTmax

wĈp + b
(15.5-18)

and

Tc∞ = T2∞

(
1 − b

UA

)
+

bTmax

UA
(15.5-19)

for the final temperature of the coil.

(c) Unsteady-state behavior for t > 0. It is convenient to define dimensionless variables using

the steady-state quantities for t ≤ 0 and t → ∞:

P2(f) =
T2(t) − T2∞

T20 − T2∞
= dimensionless liquid temperature (15.5-20)

Pc(f) =
Tc(t) − Tc∞

Tc0 − Tc∞
= dimensionless coil temperature (15.5-21)

f = UAt

iĈpV
= dimensionless time (15.5-22)

In addition we define three dimensionless parameters:

R = iĈpV∕icĈpcVc = ratio of thermal capacities (15.5-23)

F = wĈp∕UA = flow-rate parameter (15.5-24)

B = b∕UA = controller parameter (15.5-25)

In terms of these quantities, the unsteady-state balances in Eqs. 15.5-14 and 15.5-15 become

(after considerable manipulation)

dP2

df
= −(1 + F)P2 + (1 − B)Pc (15.5-26)

dPc

df
= R(P2 −Pc) (15.5-27)
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Wemay now eliminatePc between these equations as follows: Take the derivative with respect

f of Eq. 15.5-26 and then insert the expression for dPc∕df from Eq. 15.5-27 to get

d2P2

df2
+ (1 + F)

dP2

df
− (1 − B)R(P2 −Pc) = 0 (15.5-28)

Then multiply Eq.15.5-26 by R to get

R
dP2

df
+ (1 + F)RP2 − (1 − B)RPc = 0 (15.5-29)

Addition of Eqs. 15.5-28 and 15.5-29 gives a single second-order linear ordinary differential

equation for the exit liquid temperature as a function of time

d2P2

df2
+ (1 + R + F)

dP2

df
+ R(B + F)P2 = 0 (15.5-30)

This equation is in the form of Eq. C.1-7. The general solution is then

P2(f) = C+e
m+f + C−e

m−f (m+ ≠ m−) (15.5-31)

or

P2(f) = C1e
mf + C2fe

mf (m+ = m− = m) (15.5-32)

where

m± = 1

2

[
− (1 + R + F) ±

√
(1 + R + F)2 − 4R(B + F)

]
(15.5-33)

The behavior of the tank temperature thus depends on the value of the discriminant

(1 + R + F)2 − 4R(B + F) in Eq. 15.5-33:

(a) If (1 + R + F)2 > 4R(B + F), the system is overdamped, and the liquid temperature
changes slowly and monotonically to its asymptotic
value T2∞.

(b) If (1 + R + F)2 < 4R(B + F), the system is underdamped, and liquid temperature
oscillates about its asymptotic value T2∞, with the
oscillations becoming smaller and smaller (see
Eq. C.1-7c).

(c) If (1 + R + F)2 = 4R(B + F), the system is critically damped, and the liquid temperature
approaches its asymptotic value in most rapid,
monotonic fashion.

The system parameters appear in the dimensionless time variable, as well as in the parame-

ters B,F, and R. Therefore, numerical calculations are needed to decide whether in a particular
system the temperature will oscillate or not.

EXAMPLE 15.5-3

Flow of Compressible
Fluids through Head
Meters

Extend the development of Example 7.6-5 to the steady-state flow of compressible fluids

through orifice meters and Venturi tubes.

SOLUTION

We begin, as in Example 7.6-5, by writing down the steady-state mass and mechanical energy

balances between reference planes 1 and 2 of the two flow meters shown in Fig. 15.5-5. For

compressible fluids, these may be expressed as

w = i1⟨v1⟩S1 = i2⟨v2⟩S2 (15.5-34)

⟨v2⟩2
2w2

−
⟨v1⟩2
2w1

+ ∫
2

1

1

i
dp + 1

2
⟨v2⟩2ev = 0 (15.5-35)
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1

1 0 and 2

Manometer

Manometer

Throat

0 2

Direction
of flow

Pressure taps

Vena contracta
Approximate
boundary of

fluid jet

Direction
of flow

25–30° 7° maximum

(a)

(b)

Fig. 15.5-5. Measurement of mass flow rate by use of (a) an orifice meter, and (b) a Venturi
tube.

in which the quantities wi = ⟨vi⟩3∕⟨v3i ⟩ are included to allow for the replacement of the average

of the cube by the cube of the average.

We next eliminate ⟨v1⟩ and ⟨v2⟩ from the above two equations to get an expression for the

mass flow rate:

w = i2S2

√√√√√√ −2w2∫
2

1

(1∕i)dp

1 − (w2∕w1)(i2S2∕i1S1)2 + w2ev
(15.5-36)

We now repeat the assumptions of Example 7.6-5: (i) ev = 0, (ii) w1 = 1, and (iii) w2 = (S0∕S2)2.
Then Eq. 15.5-36 becomes

w = Cdi2S0

√√√√√√−2w2∫
2

1

(1∕i)dp

1 − (i2S0∕i1S1)2
(15.5-37)

The empirical “discharge coefficient,” Cd, is included in this equation to permit correction of

this expression for errors introduced by the three assumptions and must be determined exper-

imentally.

For Venturi meters, it is convenient to put plane 2 at the point of minimum cross section of

the meter so that S2 = S0. Then w2 is very nearly unity, and it has been found experimentally

that Cd is almost the same for compressible and incompressible fluids, that is, about 0.98 for

well-designed Venturi meters. For orifice meters, the degree of contraction of a compressible



Trim Size: 8in x 10in Bird1e c15.tex V1 - October 21, 2014 4:16 P.M. Page 449

§15.5 Use of the Macroscopic Balances to Solve Unsteady-State Problems 449

fluid stream at plane 2 is somewhat less than for incompressible fluids, especially at high flow

rates, and a different discharge coefficient2 is required.

In order to use Eq. 15.5-37, the fluid density must be known as a function of pressure.

That is, one must know both the path of the expansion and the equation of state of the fluid.

In most cases, the assumption of frictionless adiabatic behavior appears to be acceptable. For

ideal gases, one may write pi−u = constant, where u = Cp∕CV (see Eq. 15.2-5). Then Eq. 15.5-37

becomes

w = Cdi2S0

√
2(p1∕i1)[u∕(u − 1)][1 − (p2∕p1)(u−1)∕u]

1 − (S0∕S1)2(p2∕p1)2∕u
(15.5-38)

This formula expresses the mass flow rate as a function of measurable quantities and the dis-

charge coefficient Cd. Values of the latter may be found in engineering handbooks.2

EXAMPLE 15.5-4

Free Batch Expansion
of a Compressible Fluid

A compressible gas, initially at T = T0, p = p0, and i = i0, is discharged from a large station-

ary insulated tank through a small convergent nozzle, as shown in Fig. 15.5-6. Show how the

fractional remaining mass of fluid in the tank, i∕i0, may be determined as a function of time.

Develop working equations, assuming that the gas is ideal.

SOLUTION

For convenience, we divide the tank into two parts, separated by the surface 1 as shown in the

figure. We assume that surface 1 is near enough to the tank exit that essentially all of the fluid

mass is to left of it, but far enough from the exit that the fluid velocity through the surface 1 is

negligible. We further assume that the average fluid properties to the left of 1 are identical to

those at surface 1. We now consider the behavior of these two parts of the system separately.

(a) The bulk of the fluid in the tank. For the region V to the left of 1, the unsteady-state mass

balance in Eq. (A) of Table 15.5-1 is
d
dt
(i1V) = −w1 (15.5-39)

For the same region, the energy balance of Eq. (E) of Table 15.5-1 becomes

d
dt
(i1V(Û1 + Ĉ1)) = −w1

(
Û1 +

p1
i1

+ Ĉ1

)
(15.5-40)

in which V is the total volume in the system being considered, and w1 is the mass rate of flow

of gas leaving the system. In writing this equation, we have neglected the kinetic energy of the

fluid.

1

1

2

2

Convergent
nozzle

Insulation

Tank volume = V

Ambient pressure = pa

Fig. 15.5-6. Free batch expansion of

a compressible fluid. The sketch

shows the locations of surfaces 1

and 2.

2R. H. Perry, Chemical Engineers’ Handbook, 7th edition, McGraw-Hill, New York, (1997); see also,

Chapter 15 of Handbook of Fluid Dynamics and Fluid Machinery (J. A. Schertz and A. E. Fuhs, eds.), Wiley,

New York (1996).
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Substituting the mass balance into both sides of the energy equation (with V = constant)
gives

i1

(
dÛ1

dt
+

dĈ1

dt

)
=

p1
i1

di1
dt

(15.5-41)

For a stationary system under the influence of no external forces other than gravity, dĈ1∕dt = 0,
so that Eq. 15.5-41 becomes

dÛ1

di1
=

p1
i2
1

(15.5-42)

This equation may be combined with the thermal and caloric equations of state for the fluid
in order to obtain p1(i1) and T1(i1). We find, thus, that the condition of the fluid in the tank
depends only upon the degree to which the tank has been emptied and not upon the rate of

discharge. For the special case of an ideal gas with constant ĈV , for which dÛ = ĈVdT and
p = iRT∕M, we may integrate Eq. 15.5-42 to obtain

p1i
−u
1

= p0i
−u
0

(15.5-43)

in which u = Cp∕CV . This result also follows from Eq. 11.4-41.

(b) Discharge of the gas through the nozzle. For the sake of simplicity we assume here that the
flowbetween surfaces 1 and 2 is both frictionless and adiabatic. Also, sincew1 is not far different
from w2, it is also appropriate to consider at any one instant that the flow is quasi-steady-state.
Then we can use the macroscopic mechanical energy balance in the form of Eq. 15.2-2 with the

second, fourth, and fifth terms omitted. That is

1

2
v2
2
+ ∫

2

1

1

i
dp = 0 (15.5-44)

Since we are dealing with an ideal gas, we may use the result in Eq. 15.5-38 to get the instanta-
neous discharge rate. Since in this problem the ratio S2∕S1 is very small and its square is even
smaller, we can replace the denominator under the square root sign in Eq. 15.5-38 by unity.
Then the i2 outside the square root sign is moved inside and use is made of Eq. 15.5-43. This
gives

w = −V
di1
dt

= S2

√√√√2p1i1

[
u

(u − 1)

][(
p2
p0

)2∕u

−
(
p2
p0

)(u+1)∕u
]

(15.5-45)

in which S2 is the cross-sectional area of the nozzle opening.
Nowwe use Eq. 15.5-43 to eliminate p1 from Eq. 15.5-45. Then we have a first-order differ-

ential equation for i1, which may be integrated to give

t =
V∕S2√

2(p0∕i0)[u∕(u − 1)]∫
1

i1∕i0

d(i1∕i0)√
(p2∕p0)2∕u(i1∕i0)u−1 − (p2∕p0)(u+1)∕u

(15.5-46)

From this equation we can obtain the time required to discharge any given fraction of the orig-
inal gas.

At low flow rates the pressure p2 at the nozzle opening is equal to the ambient pressure.
However, examination of Eq. 15.5-45 shows that, as the ambient pressure is reduced, the calcu-
lated mass rate of flow reaches a maximum at a critical pressure ratio

r ≡
(
p2
p1

)
crit

=
(

2

u + 1

)u∕(u−1)

(15.5-47)

For air (u = 1.4), this critical pressure ratio is 0.53. If the ambient pressure is further reduced, the
pressure just inside the nozzle will remain at the value of p2 calculated from Eq. 15.5-47, and the
mass rate of flow will become independent of ambient pressure pa. Under these conditions,
the discharge rate is

wmax = S2

√
p1i1u

(
2

u + 1

)(u+1)∕(u−1)

(15.5-48)
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Then, for pa∕p1 < r, we may write Eq. 15.5-46 more simply

t =
V∕S2√

(p0∕i0)u(2∕(u + 1))(u+1)∕(u−1) ∫
1

i1∕i0

dx
x(u+1)∕2

(15.5-49)

or

t =
V∕S2√

(uRT0∕M)(2∕(u + 1))(u+1)∕(u−1)

(
2

u − 1

)[(
i1
i0

)(1−u)∕2

− 1

]
(pa∕p1 < r) (15.5-50)

If pa∕p1 is initially less than r, both Eqs. 15.5-50 and 15.5-47 will be useful for calculating the

total discharge time.

§15.6 CONCLUDING COMMENTS

At this point, the reader should be impressed by the variety of problems that can
be tackled by means of the macroscopic balances for nonisothermal systems, both
for time-independent and time-dependent systems. We have even included systems
with multiple entry and exit points. Most of the problems discussed here have not
involved much difficult mathematics, but some experience is needed for deciding what
assumptions are permitted, which balance equations are needed, and which terms in the
equations may be neglected.

The problems at the end of the chapter should provide an opportunity for further
exploring the macroscopic balances. In addition, there are plenty of opportunities for get-
ting more experience in conversions of units. By now the readers should have a good
appreciation for the usefulness of thematerial in Appendix E on constants and conversion
factors.

QUESTIONS FOR DISCUSSION

1. Give the physical significance of each term in the five macroscopic balances.

2. How are the macroscopic balances related to the equations of change?

3. Explain how one goes from Eq. 15.1-1 to Eq. 15.1-2.

4. Does each of the four terms within the parentheses in Eq. 15.1-2 represent a form of energy?

Explain.

5. How is themacroscopic (total) energy balance related to the first law of thermodynamics, 2U =
Q +W?

6. Explain how the averages ⟨v⟩ and ⟨v3⟩ arise in Eq. 15.1-1.

7. What is the physical significance of the quantities Ec and Ev? What sign do they have? How are

they related to the velocity distribution? How can they be estimated?

8. How is the macroscopic balance for internal energy derived?

9. What information can be obtained from Eq. 15.2-2 about a fluid at rest?

10. Explain how the factor 32.2 ft ⋅ lbm∕lbf ⋅ s
2 arises in Eq. 15.3-4.

11. What is the usefulness of the d-forms of the macroscopic balances?

12. What is meant by the “logarithmic mean temperature difference”?

13. Define the terms “underdamped” and “overdamped” in the discussion of the temperature con-

troller.

PROBLEMS 15A.1 Rates of heat transfer in a double-pipe heat exchanger.
(a) Hot oil entering the heat exchanger in Example 15.4-1 at surface 2 is to be cooled by water

entering at surface 1. That is, the exchanger is being operated in countercurrent flow. Compute

the required exchanger area A, if the heat-transfer coefficient U is 200 Btu∕hr ⋅ ft2 ⋅ ∘F and the

fluid streams have the following properties:
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Mass flow Heat Temperature

rate

(lbm∕hr)
capacity

(Btu∕lbm ⋅ ∘F)
entering

(∘F)
leaving

(∘F)

Oil 10,000 0.60 200 100

Water 5,000 1.00 60 —

(b) Repeat the calculation of part (a) if U1 = 50 and U2 = 350 Btu∕hr ⋅ ft2 ⋅ ∘F. Assume that U
varies linearly with the water temperature, and use the results of Problem 15B.1.

(c) What is the minimum amount of water that can be used in parts (a) and (b) to obtain the

desired temperature change for the oil?What is theminimum amount of water that can be used

in cocurrent flow?

(d) Calculate the required heat exchanger area for cocurrent flow operation, if the mass rate of

flow of water is 15,500 lbm∕hr, and U is constant at 200 Btu∕hr ⋅ ft2 ⋅ ∘F.
Answers: (a) 104 ft2; (b) 122 ft

2
; (c) 4290 lbm∕hr, 15,000 lbm∕hr; (d) about 101 ft

2

15A.2 Adiabatic flow of natural gas in a pipeline. Recalculate the power requirement wŴ in

Example 15.4-2 if the flow in the pipeline were adiabatic rather than isothermal.

(a) Use the result of Problem 15B.3(d) to determine the density of the gas at plane 2.

(b) Use your answer to part (a), along with the result of Problem 15B.3(e), to obtain p2.
(c) Calculate the power requirement, as in Example 15.4-2.

Answers: (a) 0.243 lbm∕ft
3
; (b) 86 psia; (c) 504 hp

15A.3 Mixing of two ideal-gas streams.
(a) Calculate the resulting velocity, temperature, and pressure when the following two air

streams are mixed in an apparatus such as that described in Example 15.3-2. The molar heat

capacity C̃p of air may be considered constant at 6.97 Btu∕lb-mol ⋅ ∘F. The properties of the two

streams are:

w (lbm∕hr) v (ft∕s) T (∘F) p (atm)

Stream 1a: 1000 1000 80 1.00

Stream 2a: 10,000 100 80 1.00

(b) What would the calculated velocity be, if the fluid density were treated as constant?

(c) Estimate Êv for this operation, basing your calculation on the results of part (b).

Answers: (a) 11,000 lbm∕hr; about 110 ft∕s; 86.5∘F; 1.00 atm; (b) 109 ft∕s; (c) 1.4 × 103 ft ⋅ lbf∕lbm

15A.4 Flow through a Venturi tube. A Venturi tube, with a throat 3 in. in diameter, is placed in a

circular pipe 1 ft in diameter carrying dry air. The discharge coefficient Cd of the meter is 0.98.

Calculate the mass flow rate of air in the pipe if the air enters the Venturi at 70∘F and 1 atm and

the throat pressure is 0.75 atm.

(a) Assume adiabatic frictionless flow and u = 1.4.

(b) Assume isothermal flow.

(c) Assume incompressible flow at the entering density.

Answers: (a) 2.07 lbm∕s; (b) 1.96 lbm∕s; (c) 2.43 lbm∕s

15A.5 Free batch expansion of a compressible fluid. A tank with volume V = 10 ft
3
(see Fig. 15.5-6)

is filled with air (u = 1.4) at T0 = 300K and p0 = 100 atm. At time t = 0 the valve is opened,



Trim Size: 8in x 10in Bird1e c15.tex V1 - October 21, 2014 4:16 P.M. Page 453

Problems 453

allowing the air to expand to the ambient pressure of 1 atm through a convergent nozzle, with

a throat cross section S2 = 0.1 ft2.

(a) Calculate the pressure and temperature at the throat of the nozzle, just after the start of the
discharge.

(b) Calculate the pressure and temperature within the tank when p2 attains its final value of

1 atm.

(c) How long will it take for the system to attain the state described in (b)?

15A.6 Heating of air in a tube. A horizontal tube of 20 ft length is heated by means of an electrical

heating element wrapped uniformly around it. Dry air enters at 5∘F and 40 psia at a velocity
75 ft∕s and 185 lbm∕hr. The heating element provides heat at a rate of 800 Btu∕hr per foot of
tube. At what temperature will the air leave the tube, if the exit pressure is 15 psia? Assume tur-

bulent flow and ideal-gas behavior. For air in the range of interest, the heat capacity at constant
pressure in Btu∕lb-mol ⋅ ∘F is

C̃p = 6.39 + (9.8 × 10−4)T − (8.18 × 10−8)T2 (15A.6-1)

where T is expressed in degrees Rankine.

Answer: T2 = 354∘F

15A.7 Operation of a simple double-pipe heat exchanger. A cold-water stream, 5400 lbm∕hr at 70∘F,
is to be heated by 8100 lbm∕hr of hot water at 200∘F in a simple double-pipe heat exchanger.

The cold water is to flow through the inner pipe, and the hot water through the annular space
between the pipes. Two 20-ft lengths of heat exchanger are available, and also all the necessary
fittings.

(a) By means of a sketch, show the way in which the two double-pipe heat exchangers should
be hooked up in order to get the most effective heat transfer.

(b) Calculate the exit temperature of the cold stream for the arrangement decided on in (a) for
the following situation:

(i) The heat-transfer coefficient for the annulus, based on the heat-transfer area of the inner
surface of the inner pipe, is 2000 Btu∕hr ⋅ ft2 ⋅ ∘F.

(ii) The inner pipe has the following properties: total length, 40 ft; inside diameter 0.0875 ft;

heat-transfer surface per foot, 0.2745 ft
2
; capacity at average velocity of 1 ft∕s is 1345 lbm∕hr

(iii) The average properties of the water in the inner pipe are:

4 = 0.45 cp = 1.09 lbm∕hr ⋅ ft
Ĉp = 1.00 Btu∕lbm ⋅ ∘F
k = 0.376 Btu∕hr ⋅ ft ⋅ ∘F
i = 61.5 lbm∕ft

3

(iv) The combined resistance of the pipe wall and encrustations combined is 0.001 hr ⋅ ft2 ⋅
∘F∕Btu based on the inner pipe surface area.

(c) Sketch the temperature profile in the exchanger.

Answer: (b) 136∘F

15B.1 Performance of a double-pipe heat exchanger with variable overall heat-transfer coefficient.
Develop an expression for the amount of heat transferred in an exchanger of the type discussed
in Example 15.4-1, if the overall heat-transfer coefficientU varies linearly with the temperature
of either stream.

(a) Since Th − Tc is a linear function of both Th and Tc, show that

U −U1

U2 −U1

=
2T − 2T1

2T2 − 2T1

(15B.1-1)

in which 2T = Th − Tc, and the subscripts 1 and 2 refer to the conditions at control surfaces 1
and 2.
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(b) Substitute the result in (a) for Th − Tc into Eq. 15.4-12, and integrate the equation thus
obtained over the length of the exchanger. Use this result to show that1

Q = A
U12T2 −U22T1

ln(U12T2∕U22T1)
(15B.1-2)

15B.2 Pressure drop in turbulent flow in a slightly converging tube. Consider the turbulent flow

of an incompressible fluid in a circular tube with a diameter that varies linearly with distance
according to the relation

D = D1 + (D2 −D1)
z
L

(15B.2-1)

as shown in Fig. 15B.2. At z = 0, the velocity is v1 and may be assumed constant over the cross
section. The Reynolds number for the flow is such that f is given approximately by the Blasius
formula of Eq. 6.2-12,

f = 0.0791

Re1∕4
(15B.2-2)

Obtain the pressure drop p1 − p2 in terms of v1, D1, D2, i, L, and l = 4∕i.

Diameter D1

Direction of flow
(z direction)

Diameter D2

1
z = 0

2
z = L

Fig. 15B.2 Turbulent flow in a

horizontal, slightly tapered tube (D1

is slightly greater than D2).

(a) Integrate the d-form of the mechanical energy balance to get

1

i
(p1 − p2) =

1

2
(v2

2
− v2

1
) + 2∫

L

0

v2f
D

dz (15B.2-3)

and then eliminate v2 from the equation.

(b) Show that both v and f are functions of D:

v = v1

(
D1

D

)2
f = 0.0791

(D1v1∕l)1∕4

(
D
D1

)1∕4
(15B.2-4)

Of course, D is a function of z according to Eq. 15B.2-1.

(c) Make a change of variable in the integral in Eq. 15B.2-3 and show that

∫
L

0

v2f
D

dz = L
D2 −D1

∫
D2

D1

v2f
D

dD (15B.2-5)

(d) Combine the results of (b) and (c) to get finally

1

i
(p1 − p2) =

1

2
v2
1

[(
D1

D2

)4

− 1

]
+

2Lv2
1

D1 −D2

4

15
(0.0791)

(D1v1∕l)1∕4

[(
D1

D2

)15∕4

− 1

]
(15B.2-6)

(e) Show that this result simplifies properly for D1 = D2.

15B.3 Steady flow of ideal gases in ducts of constant cross section.
(a) Show that, for the horizontal flow of any fluid in a circular duct of uniform diameterD, the
d-form of the mechanical energy balance, Eq. 15.4-1, may be written as

vdv + 1

i
dp + 1

2
v2dev = 0 (15B.3-1)

in which dev = (4f∕D)dL. Assume flat velocity profiles.

1A. P. Colburn, Ind. Eng. Chem., 25, 873 (1933).
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(b) Show that Eq. 15B.3-1 may be rewritten as

vdv + d
(
p
i

)
+

(
p
i2

)
di + 1

2
v2dev = 0 (15B.3-2)

Show further that, when use is made of the d-form of the mass balance, Eq. 15B.3-2 becomes

for isothermal flow of an ideal gas

dev =
2RT
M

dv
v3

− 2
dv
v

(15B.3-3)

(c) Integrate Eq. 15B.3-3 between any two pipe cross sections 1 and 2 enclosing a total pipe

length L. Make use of the ideal-gas equation of state and themacroscopic mass balance to show

that v2∕v1 = i1∕i2 = p1∕p2, so that the “mass velocity” G can be put in the form

G ≡ i1v1 =

√
i1p1(1 − r)
ev − ln r

(isothermal flow of ideal gases) (15B.3-4)

in which r = (p2∕p1)2. Show that, for any given value of ev and conditions at 1, the quantity G
reaches its maximum possible value at a critical value of r defined by ln rc + (1 − rc)∕rc = ev. See
also Problem 15B.4.

(d) Show that, for the adiabatic flow of an ideal gas with constant Ĉp in a horizontal duct of

constant cross section, the d-form of the total energy balance (Eq. 15.4-4) yields

pV̂ +
(
u − 1

u

)
1

2
v2 = constant (15B.3-5)

where u = Cp∕CV . Combine this result with Eq. 15B.3-2 to get

u + 1

u
dv
v

− 2

(
p1
i1

+
(
u − 1

u

)
1

2
v2
1

)
dv
v3

= −dev (15B.3-6)

Integrate this equation between sections 1 and 2 enclosing the resistance ev, assuming u con-

stant. Rearrange the result with the aid of themacroscopic mass balance to obtain the following

relation for the mass velocity G:

G ≡ i1v1 =
√√√√√ i1p1

ev − [(u + 1)∕2u] ln s
1 − s

− u − 1

2u

(adiabatic flow of ideal gases) (15B.3-7)

in which s = (i2∕i1)2.
(e) Show by use of the macroscopic energy and mass balances that for horizontal adiabatic

flow of ideal gases with constant u,

p2
p1

=
i2
i1

⎡⎢⎢⎢⎣1 +
[
1 −

(
i1∕i2

)2]
G2

i1p1

(
u − 1

2u

)⎤⎥⎥⎥⎦ (15B.3-8)

This equation can be combined with Eq. 15B.3-7 to show that, as for isothermal flow, there is a

critical pressure ratio p2∕p1 corresponding to the maximum possible mass flow rate.

15B.4 The Mach number in the mixing of two fluid streams.
(a) Show that when the radicand in Eq. 15.3-17 is zero, the Mach number of the final stream

is unity. Note that the Mach number, Ma, which is the ratio of the local fluid velocity to the

velocity of sound at the local conditions, may be written for an ideal gas as v∕vs = v∕
√
uRT∕M

(see Problem 11C.1).

(b) Show how the results of Example 15.3-2 may be used to predict the behavior of a gas pass-

ing through a sudden enlargement of duct cross section.
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15B.5 Limiting discharge rates for Venturi meters.
(a) Starting with Eq. 15.5-38 (for adiabatic flow of an ideal gas), show that as the throat pressure in
a Venturi meter is reduced, the mass rate of flow reaches a maximum when the ratio r = p2∕p1
of throat pressure to entrance pressure is defined by the expression

u + 1

r2∕u
− 2

r(u+1)∕u
− u − 1

(S1∕S0)2
= 0 (15B.5-1)

(b) Show that for S1 >> S0 the mass flow rate under these limiting conditions is

w = Cdp1S0

√
uM
RT1

(
2

u + 1

)(u+1)∕(u−1)

(15B.5-2)

(c) Obtain results analogous to Eqs. 15B.5-1 and 15B.5-2 for isothermal flow.

15B.6 Flow of a compressible fluid through a convergent-divergent nozzle. In many applications,
such as steam turbines or rockets, hot compressed gases are expanded through nozzles of the
kind shown in Fig. 15B.6 in order to convert the gas enthalpy into kinetic energy. This operation
is in many ways similar to the flow of gases through orifices. Here, however, the purpose of
the expansion is to produce power, for example, by the impingement of the fast-moving fluid
on a turbine blade, or by direct thrust, as in a rocket engine.

1

p = p1
T = T1

v = 0

2

p = p2
T = T2

v = v2

Direction of gas flowAxis of
symmetry

Throat

Fig. 15B.6 Schematic cross section of a

convergent-divergent nozzle.

To explain the behavior of such a systemand to justify the general shape of the nozzle described,
follow the path of expansion of an ideal gas. Assume that the gas is initially in a very large
reservoir at essentially zero velocity and that it expands through an adiabatic frictionless nozzle
to zero pressure. Further assume flat velocity profiles, and neglect changes in elevation.

(a) Show, by writing the macroscopic mechanical energy balance or the total energy balance
between planes 1 and 2, that

1

2
v2
2
=

RT1

M
u

u − 1

[
1 −

(
p2
p1

)(u−1)∕u
]

(15B.6-1)

(b) Show, by use of the ideal-gas law, the steady-state macroscopic mass balance, and
Eq. 15B.6-1, that the cross section S of the expanding stream goes through a minimum at a
critical pressure

p2,crit = p1

(
2

u + 1

)u∕u−1

(15B.6-2)

(c) Show that the Mach number, Ma = v2∕vs(T2), of the fluid at this minimum cross section is
unity (vs for low-frequency sound waves is derived in Problem 11C.1). How do the results of
part (a) above compare with those of Problem 15B.5?
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(d) Calculate fluid velocity v, fluid temperature T, and stream cross section S as a function of
the local pressure p for the discharge of 10 lb-moles of air per second from 560∘R and 10 atm to
zero pressure. Discuss the significance of your results.

Answer:

p, atm 10 9 8 7 6 5.28 5 4 3 2 1 0

v, ft s−1 0 449 645 807 956 1058 1099 1245 1398 1574 1798 2591

T,∘R 560 543 525 506 484 466 459 431 397 353 290 0

S, ft2 ∞ 0.977 0.739 0.650 0.613 0.606 0.607 0.628 0.688 0.816 1.171 ∞

15B.7 Transient thermal behavior of a chromatographic device. You are a consultant to an indus-
trial concern that is experimenting, among other things, with transient thermal phenomena
in gas chromatography. One of the employees first shows you some reprints of a well-known
researcher and says that he is trying to apply some of the researcher’s new approaches, but that
he is currently stuck on a heat-transfer problem. Although the problem is only ancillary to the
main study, it must nonetheless be understood in connection with his interpretation of the data
and the application of the new theories.

A very tiny chromatographic column is contained within a coil, which is in turn inserted
into a pipe through which a gas is blown to control the temperature (see Fig. 15B.7(a)). The gas
temperature will be called Tg(t). The temperature at the ends of the coil (outside the pipe) is T0,
which is not very much different from the initial value of Tg. The actual temperature within the
chromatographic column (i.e., within the coil) will be called T(t). Initially the gas and the coil
are both at the temperature Tg0. Then beginning at time, t = 0, the gas temperature is increased
linearly according to the equation

Tg(t) = Tg0

(
1 + t

t0

)
(15B.7-1)

where t0 is a known constant with dimensions of time.

Gas at
temperature

Tg

Chromatographic column
contained within the coil

T(t)

T0

T
em

p
er
a
tu
re
 T

Time t

t = 0 t = t1

Tg (t)

Tg0
T (t)

(ΔT
)∞

(b)

(a)

Fig. 15B.7 (a) Chromatographic device;

(b) temperature response T(t) of the
chromatographic system.
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You are told that, by inserting thermocouples into the column itself, the people in the lab

have obtained temperature curves that look like those in Fig. 15B.7(b). The T(t) curve seems to

become parallel to the Tg(t) curves for large t. You are asked to explain the above pair of curves

by means of some kind of theory. Specifically you are asked to find out the following:

(a) At any time t, what will Tg − T be?

(b) What will the limiting value of Tg − T be when t → ∞? Call this quantity (2T)∞.
(c) What time interval t1 is required for Tg − T to come within, say, 1% of (2T)∞?
(d) What assumptions had to be made to model the system?

(e) What physical constants, physical properties, etc., have to be known in order to make a

comparison between the measured and theoretical values of (2T)∞?
Devise the simplest possible theory to account for the temperature curves and to answer

the above five questions.

15B.8 Continuous heating of slurry in an agitated tank. A slurry is being heated by pumping it

through a well-stirred heating tank, as shown in Fig. 15B.8. The inlet temperature of the slurry

is Ti and the temperature of the outer surface of the steam coil is Ts. Use the following symbols:

V = volume of the slurry in the tank

i, Ĉp = density and heat capacity of the slurry

w =mass rate of flow of slurry through the tank

U = overall heat-transfer coefficient of heating coil

A = total heat-transfer area of the coil

Assume that the stirring is sufficiently thorough that the fluid temperature in the tank is uni-

form and the same as the outlet fluid temperature.

Slurry in at
temperature

Ti

Temperature
in tank is T(t)

Steam at
temperature

Ts

Condensate out
at approximately Ts

Exit
temperature

is T(t)
Fig. 15B.8 Heating of a slurry in an

agitated tank.

(a) By means of an energy balance, show that the slurry temperature T(t) is described by the

differential equation

dT
dt

=

(
UA

iĈpV

)
(Ts − T) −

(
w
iV

)
(T − Ti) (15B.8-1)

The variable t is the time since the start of heating.

(b) Rewrite this differential equation in terms of the dimensionless variables

f = wt
iV

P =
T − T∞

Ti − T∞
(15B.8-2,3)
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where

T∞ =
(UA∕wĈp)Ts + Ti

(UA∕wĈp) + 1
(15B.8-4)

What is the physical significance of f, P, and T∞?

(c) Solve the dimensionless equation obtained in (b) for the initial condition thatT = Ti at t = 0.

(d) Check the solution to see that the differential equation and initial condition are satisfied.
How does the system behave at large time? Is this limiting behavior in agreement with your
intuition?

(e) How is the temperature at infinite time affected by the flow rate? Is this reasonable?

Answer: (c)
T(t) − T∞

Ti − T∞
= exp

[
−

(
UA

iĈpV
+ w

iV

)
t

]
15C.1 Cocurrent/countercurrent heat exchangers. In the heat exchanger shown in Fig. 15C.1, the

“tube fluid” (fluid A) enters and leaves at the same end of the heat exchanger, whereas the
“shell fluid” (fluid B) always moves in the same direction. Thus, there is both cocurrent flow
and countercurrent flow in the same apparatus. This flow arrangement is one of the simplest
examples of “mixed flow,” often used in practice to reduce exchanger length.2 The behavior of
this kind of equipment may be analyzed by making the following assumptions:

(i) Steady-state conditions exist.

(ii) The overall heat-transfer coefficient U and the heat capacities of the two fluids are
constants.

(iii) The shell-fluid temperature TB is constant over any cross section perpendicular to the
flow direction

(iv) There is an equal amount of heating area in each “pass,” that is, for tube fluid streams
I and II in the figure.

Tube fluid
out

Tube
fluid in Shell

fluid out

Shell
fluid in

Tube fluid TA
II TA

II + dTA
II

TB + dTB

TA
I + dTA

I

TB

TA
I

Shell
fluid

Tube fluid

TA2

TA1
dA = increment of
heat-exchange area TB2

TB1

b

a

Fig. 15C.1 A cocurrent/

countercurrent heat

exchanger.

(a) Show by an energy balance (Eq. 15.1-3, with only the enthalpy terms contributing) over the
portion of the system between planes a and b that

TB − TB2 = R(TII
A − TI

A) where R = |wAĈpA∕wBĈpB| (15C.1-1)

2See D. Q. Kern, Process Heat Transfer, McGraw-Hill, New York (1950), pp. 127–189; J. H. Perry,

Chemical Engineers’ Handbook, 3rd edition, McGraw-Hill, New York (1950), pp. 464–465; W. M. Rohsenow,

J. P. Hartnett, and Y. I. Cho, Handbook of Heat Transfer, 3rd edition, McGraw-Hill, New York (1998),

Chapter 17; S. Whitaker, Fundamentals of Heat Transfer, corrected edition, Krieger Publishing Company,

Malabar, FL (1983), Chapter 11.
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(b) Show that application of Eq. 15.4-4 over a differential section of the exchanger, including a

total heat exchange surface dA gives

dTI
A

dw
= 1

2
(TB − TI

A) (15C.1-2)

dTII
A

dw
= 1

2
(TII

A − TB) (15C.1-3)

1

R
dTB

dw
= −

[
TB −

1

2

(
TI
A + TII

A

)]
(15C.1-4)

in which dw = (U∕wAĈpA)dA, and wA and ĈpA are defined as in Example 15.4-1.

(c) Show that when TI
A and TII

A are eliminated between these three equations, a differential

equation for the shell fluid can be obtained:

d2P
dw2

+ RdP
dw

− 1

4
P = 0 (15C.1-5)

in which P(w) = (TB − TB2)∕(TB1 − TB2). [Hint: Start by differentiating Eq. 15C.1-4 with respect

to w and then eliminating the first derivatives in the parentheses by means of Eqs. 15C.1-2 and

15C.1-3, and then using Eq. 15C.1-1.] Solve Eq. 15C.1-5 (see Eq. C.1-7a) with the boundary

conditions

B.C.1∶ at w = 0, P = 1 (15C.1-6)

B.C.2∶ at w = (UAT∕wAĈpA), P = 0 (15C.1-7)

in which AT is the total heat-transfer surface area of the exchanger. Obtain

P(w) = C1 exp
[
− 1

2

(
R −

√
R2 + 1

)
w
]
+ C2 exp

[
− 1

2

(
R +

√
R2 + 1

)
w
]

≡ C1e
m−w + C2e

m+w (15C.1-8)

in which

C1 =
1

1 − exp(
√
R2 + 1 wT)

C2 =
1

1 − exp(−
√
R2 + 1 wT)

(15C.1-9a,b)

where wT = UAT∕wAĈpA.

(d) Use the result of part (c) to obtain an expression for dTB∕dw. Eliminate dTB∕dw from this

expression with the aid of Eq. 15C.1-4 and evaluate the resulting equation at w = 0 to obtain

R
TB1 − TB2

[
−TB1 +

1

2

(
TA1 + TA2

)]
=

m−

1 − e
√
R2+1 wT

+
m+

1 − e−
√
R2+1 wT

(15C.1-10)

Then manipulate the left side by using Eq. 15C.1-1 in such a way as to obtain the ratio A =
(TA2 − TA1)∕(TB1 − TA1). Finally obtain

e
√
R2+1 wT =

(
−
(
1∕A

)
+ 1

2

)
−m−(

−
(
1∕A

)
+ 1

2

)
−m+

=
2 −A(1 − 2m−)
2 −A(1 − 2m+)

= 2 −A(R + 1 −
√
R2 + 1 )

2 −A(R + 1 +
√
R2 + 1 )

(15C.1-11)

From this one can then get the following relation for the performance of the exchanger:

wT =
UAT

wAĈpA

= 1√
R2 + 1

ln

⎡⎢⎢⎢⎣
2 −A

(
R + 1 −

√
R2 + 1

)
2 −A

(
R + 1 +

√
R2 + 1

)⎤⎥⎥⎥⎦ (15C.1-12)
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(e) Use Eq. 15C.1-12 to obtain the following expression for the rate of heat transfer in the

exchanger:

Q = UA(2T)ln ⋅ Y (15C.1-13)

in which

(2T)ln =
(TB1 − TA2) − (TB2 − TA1)
ln[(TB1 − TA2)∕(TB2 − TA1)]

(15C.1-14)

Y =
√
R2 + 1 ln[(1 −A)∕(1 − RA)]

(R − 1) ln
⎡⎢⎢⎢⎣
2 −A

(
R + 1 −

√
R2 + 1

)
2 −A

(
R + 1 +

√
R2 + 1

)⎤⎥⎥⎥⎦
(15C.1-15)

The quantity Y represents the ratio of the heat transferred in the “1-2 cocurrent-countercurrent

exchanger” shown to that transferred in a true countercurrent exchanger of the same area and

terminal fluid temperatures. Values of Y(R,A) are given graphically in Perry’s handbook.2 It

may be seen that Y(R,A) is always less than unity.



Trim Size: 8in x 10in Bird1e c16.tex V1 - October 21, 2014 4:18 P.M. Page 462

Chapter 16

Energy Transport by Radiation

§16.1 The spectrum of electromagnetic radiation

§16.2 Absorption and emission at solid surfaces

§16.3 Planck’s distribution law, Wien’s displacement law, and the
Stefan-Boltzmann law

§16.4 Direct radiation between black bodies in vacuo at different temperatures

§16.5○ Radiation between nonblack bodies at different temperatures

§16.6○ Radiant-energy transport in absorbing media

§16.7 Concluding comments

We concluded Part I of this book with a chapter about fluids that cannot be described by
Newton’s law of viscosity, but that require various kinds of nonlinear and time-dependent
expressions. We now end Part II with a brief discussion of radiative energy transport,
which cannot be described by Fourier’s law.

In Chapters 9 to 15 the transport of energy by conduction and by convection has been
discussed. Both modes of transport rely on the presence of a material medium. For heat
conduction to occur, there must be temperature inequalities between neighboring points.
For heat convection to occur, there must be a fluid that is free to move and transport energy
with it. In this chapter, we turn our attention to a third mechanism for energy transport,
namely, radiation. This is basically an electromagnetic mechanism, which allows energy to
be transported with the speed of light through a region of space that is devoid of matter.
The rate of energy transport between two “black” bodies in a vacuum is proportional to
the difference of the fourth powers of their absolute temperatures. Thismechanism is qual-
itatively very different from the three transport mechanisms considered elsewhere in this
book: momentum transport in Newtonian fluids, proportional to the velocity gradient;
energy transport by heat conduction, proportional to a temperature gradient; and mass
transport by diffusion, proportional to a concentration gradient. Because of the unique-
ness of radiation as a means of transport, and because of the importance of radiant heat
transfer in industrial calculations, we have devoted a separate chapter to this subject.

A thorough understanding of the physics of radiative transport requires the use of
several different disciplines:1,2 electromagnetic theory is needed to describe the essentially

1M. Planck, Theory of Heat, Macmillan, London (1932), Parts III and IV. Nobel LaureateMax Karl
Ernst Ludwig Planck (1858–1947) was the first to hypothesize the quantization of energy and thereby

introduce a new fundamental constant h (Planck’s constant); his name is also associated with the

“Fokker-Planck” equation of stochastic dynamics.
2W. Heitler, Quantum Theory of Radiation, 2nd edition, Oxford University Press (1944).

462
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wavelike nature of radiation, in particular the energy and pressure associated with elec-
tromagnetic waves; thermodynamics is useful for obtaining some relations among the
“bulk properties” of an enclosure containing radiation; quantum mechanics is necessary
in order to describe in detail the atomic andmolecular processes that occurwhen radiation
is produced within matter and when it is absorbed by matter; and statistical mechan-
ics is needed to describe the way in which the energy of radiation is distributed over
the wavelength spectrum. All we can do in this elementary discussion is define the key
quantities and set forth the results of theory and experiment. We then show how some
of these results can be used to compute the rate of heat transfer by radiant processes in
simple systems.

In §16.1 and §16.2 we introduce the basic concepts and definitions. Then in §16.3 some
of the principal physical results concerning black-body radiation are given. In the follow-
ing section, §16.4, the rate of heat exchange between two black bodies is discussed. This
section introduces no new physical principles, the basic problems being those of geome-
try. Next, §16.5 is devoted to an extension of the preceding section to nonblack surfaces.
Finally, in §16.6, there is a brief discussion of radiation processes in absorbing media.3

§16.1 THE SPECTRUMOF ELECTROMAGNETIC RADIATION

When a solid body is heated, for example by an electric coil, the surface of the solid emits
radiation of wavelength primarily in the range 0.1 to 10 microns. Such radiation is usually
referred to as thermal radiation. A quantitative description of the atomic and molecular
mechanisms by which the radiation is produced is given by quantum mechanics and is
outside the scope of this discussion. A qualitative description, however, is possible: When
energy is supplied to a solid body, some of the constituent molecules and atoms are raised
to “excited states.” There is a tendency for the atoms ormolecules to return spontaneously
to lower energy states. When this occurs, energy is emitted in the form of electromagnetic
radiation. Because the emitted radiation results from changes in the electronic, vibrational,
and rotational states of the atoms and molecules, the radiation will be distributed over a
range of wavelengths.

Actually, thermal radiation represents just a small part of the total spectrum of elec-
tromagnetic radiation. Figure 16.1-1 shows roughly the kinds of mechanisms that are
responsible for the various parts of the radiation spectrum. The various kinds of radiation
are distinguished from one another only by the range of wavelengths they include. In a
vacuum, all these forms of radiant energy travel with the speed of light c. The wavelength
m, characterizing an electromagneticwave, is then related to its frequency l by the equation

m = c
l

(16.1-1)

in which c = 2.998 × 108 m∕s. Within the visible part of the spectrum, the various wave-
lengths are associated with the “color” of the light.

For some purposes, it is convenient to think of electromagnetic radiation from a cor-
puscular point of view. Then we associate with an electromagnetic wave of frequency l a
photon, which is a particle with charge zero and mass zero with an energy given by

s = hl (16.1-2)

3For additional information on radiative heat transfer and engineering applications, see the

comprehensive textbook by R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 3rd edition,
Hemisphere Publishing Co., New York (1992). See also J. R. Howell and M. P. Mengöç, in Handbook of Heat
Transfer, 3rd edition (W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, eds.), McGraw-Hill, New York (1998),

Chapter 7.
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Fig. 16.1-1. The spectrum of electromagnetic radiation, showing roughly the mechanisms by

which various types of radiation are produced (1Å = Ångström = 10−8 cm = 0.1 nm;
14 = 1 micron = 10−6 m).

Here h = 6.626 × 10−34 J ⋅ s is Planck’s constant. From these two equations and the informa-
tion from Fig. 16.1-1, we see that decreasing the wavelength of electromagnetic radiation
corresponds to increasing the energy of the corresponding photons. This fact ties in with
the variousmechanisms that produce the radiation. For example, relatively small energies
are released when a molecule decreases its speed of rotation, and the associated radia-
tion is in the infrared. On the other hand, relatively large energies are released when an
atomic nucleus goes from a high-energy state to a lower one, and the associated radiation
is either gamma- or x-radiation. The foregoing statements also make it seem reasonable
that the radiant energy emitted fromheated objectswill tend towards shorterwavelengths
(higher-energy photons) as the temperature of the body is raised.

Thus far we have sketched the phenomenon of the emission of radiant energy or pho-
tons when a molecular or atomic system goes from a high- to a low-energy state. The
reverse process, known as absorption, occurs when the addition of radiant energy to a
molecular or atomic system causes the system to go from a low- to a high-energy state.
The latter process is then what occurs when radiant energy impinges on a solid surface
and causes its temperature to rise.
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§16.2 ABSORPTION AND EMISSION AT SOLID SURFACES

Having introduced the concepts of absorption and emission in terms of the atomic picture,
we now proceed to the discussion of the same processes from a macroscopic viewpoint.
We restrict the discussion here to opaque solids.

Radiation impinging on the surface of an opaque solid is either absorbed or reflected.
The fraction of the incident radiation that is absorbed is called the absorptivity and is given
the symbol a. Also the fraction of the incident radiation with frequency l that is absorbed
is designated by al. That is, a and al are defined as

a =
q(a)

q(i)
; al =

q(a)l

q(i)l
(16.2-1,2)

inwhich q(a)l dl and q(i)l dl are the absorbed and incident radiation per unit area per unit time
([=] energy∕area ⋅ time) in the frequency range l to l + dl. For any real body, al will be less
than unity and will vary considerably with the frequency. A hypothetical body for which
al is a constant, less than unity, over the entire frequency range and at all temperatures is
called a gray body. That is, a gray body always absorbs the same fraction of the incident
radiation, regardless of the frequency. A limiting case of the gray body is that for which
al = 1 for all frequencies and all temperatures. This limiting behavior defines a black body.

All solid surfaces emit radiant energy. The total radiant energy emitted per unit
area per unit time is designated by q(e), and that emitted in the frequency range l to

l + dl is called q(e)l dl. The corresponding rates of energy emission from a black body are

given the symbols q(e)b and q(e)bldl. In terms of these quantities, the emissivity for the total
radiant-energy emission as well as that for a given frequency are defined as

e =
q(e)

q(e)b
; el =

q(e)l
q(e)bl

(16.2-3,4)

The emissivity is also a quantity less than unity for real, nonfluorescing surfaces and is
equal to unity for black bodies. At any given temperature the radiant energy emitted by a
black body represents an upper limit to the radiant energy emitted by real, nonfluorescing
surfaces.

We now consider the radiation within an evacuated enclosure or “cavity” with
isothermal walls. We imagine that the entire system is at equilibrium. Under this condi-
tion, there is no net flux of energy across the interfaces between the solid and the cavity.
We now show that the radiation in such a cavity is independent of the nature of the
walls and dependent solely on the temperature of the walls of the cavity. We connect two
cavities, the walls of which are at the same temperature, but are made of two different
materials, as shown in Fig. 16.2-1. If the radiation intensities in the two cavities were
different, there would be a net transport of radiant energy from one cavity to the other.
Because such a flux would violate the second law of thermodynamics, the radiation
intensities in the two cavities must be equal, regardless of the compositions of the cavity
surfaces. Furthermore, it can be shown that the radiation is uniform and unpolarized
throughout the cavity. This cavity radiation plays an important role in the development of

Material 1 Material 2

Fig. 16.2-1. Thought experiment for proof that cavity

radiation is independent of the wall materials.
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Planck’s law.We designate the intensity of the radiation as q(cav). This is the radiant energy
that would impinge on a solid surface of unit area placed anywhere within the cavity.

We nowperform two additional thought experiments. In the first, we put into a cavity
a small black body at the same temperature as the walls of the cavity. There will be no net
interchange of energy between the black body and the cavity walls. Hence, the energy
impinging on the black-body surface must equal the energy emitted by the black body:

q(cav) = q(e)b (16.2-5)

From this result, we draw the important conclusion that the radiation emitted by a black
body is the same as the equilibrium radiation intensity within a cavity at the same tem-
perature.

In the second thought experiment, we put a small nonblack body into the cavity, once
again specifying that its temperature be the same as that of the cavity walls. There is no
net heat exchange between the nonblack body and the cavity walls. Hence, we can state
that the energy absorbed by the nonblack body will be the same as that radiating from it:

aq(cav) = q(e) (16.2-6)

Comparison of Eqs. 16.2-5 and 16.2-6 leads to the result

a =
q(e)

q(e)b
(16.2-7)

The definition of the emissivity e in Eq. 16.2-3 allows us to conclude that

e = a (16.2-8)

This is Kirchhoff’s law,1 which states that at a given temperature the emissivity and absorp-
tivity of any solid surface are the same when the radiation is in equilibriumwith the solid
surface. It can be shown that Eq. 16.2-8 is also valid for each wavelength separately:

el = al (16.2-9)

Values of the total emissivity e for some solids are given in Table 16.2-1. Actually, edepends
also on the frequency and on the angle of emission, but the averaged values given there
have foundwidespread use. The tabulated values are, with a few exceptions, for emission
normal to the surface, but they may be used for hemispheric emissivity, particularly for
rough surfaces. Unoxidized, clean, metallic surfaces have very low emissivities, whereas
most nonmetals and metallic oxides have emissivities above 0.8 at room temperature or
higher. Note that emissivity increases with increasing temperature for nearly all materials.

We have indicated that the radiant energy emitted by a black body is an upper limit
to the radiant energy emitted by real surfaces and that this energy is a function of the
temperature. It has been shown experimentally that the total emitted energy flux from a
black surface is

q(e)b = gT4 (16.2-10)

in which T is the absolute temperature. This is known as the Stefan-Boltzmann law.2 The
Stefan-Boltzmann constant g has been found to have the value 0.1712 × 10−8 Btu∕hr ⋅ ft2 ⋅
∘R4 or 1.355 × 10−12 cal∕s ⋅ cm2 ⋅ K4. In the next section we indicate two routes by which

1G. Kirchhoff,Monatsber. d. preuss. Akad. d. Wissenschaften, p. 24, 783–787 (1859); Poggendorffs
Annalen, 109, 275–301 (1860).Gustav Robert Kirchhoff (1824–1887) published his famous laws for

electrical circuits while still a graduate student; he taught at Breslau, Heidelberg, and Berlin.
2J. Stefan, Sitzber. Akad. Wiss. Wien, 79, part 2, 391–428 (1879); L. Boltzmann, Ann. Phys. (Wied. Ann.),

Ser. 2, 22, 291–294 (1884). Slovenian-born Josef Stefan (1835–1893), rector of the University of Vienna
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Table 16.2-1. The Total Emissivities of Various Surfaces for Perpendicular Emissiona

T (∘R) e T (∘R) e

Aluminum

Highly polished, 98.3% pure 900 0.039 1530 0.057

Oxidized at 1110∘F 850 0.11 1570 0.19

Al-coated roofing 560 0.216

Copper

Highly polished, electrolytic 636 0.018

Oxidized at 1110∘F 850 0.57 1570 0.57

Iron

Highly polished, electrolytic 810 0.052 900 0.064

Completely rusted 527 0.685

Cast iron, polished 852 0.21

Cast iron, oxidized at 1100∘F 850 0.64 1570 0.78

Asbestos paper 560 0.93 1160 0.945

Brick

Red, rough 530 0.93

Silica, unglazed, rough 2292 0.80

Silica, glazed, rough 2472 0.85

Lampblack, 0.003 in. or thicker 560 0.945 1160 0.945

Paints

Black shiny lacquer on iron 536 0.875

White lacquer 560 0.80 660 0.95

Oil paints, 16 colors 672 0.92–0.96

Aluminum paints, varying age and lacquer content 672 0.27–0.67

Refractories, 40 different

Poor radiators 1570 0.65–0.70 2290 0.75

Good radiators 1570 0.80–0.85 2290 0.85–0.90

Water, liquid, thick layerb 492 0.95 672 0.963

aSelected values from the table compiled by H. C. Hottel for W. H. McAdams, Heat Transmission, 3rd
edition, McGraw-Hill, New York (1954), pp. 472–479.
bCalculated from spectroscopic data.

this important formula has been obtained theoretically. For nonblack surfaces at tempera-
ture T the emitted energy flux is

q(e)b = egT4 (16.2-11)

in which emust be evaluated at temperature T. The use of Eqs. 16.2-10 and 16.2-11 to cal-
culate radiant heat-transfer rates between heated surfaces is discussed in §16.4 and §16.5.

We have mentioned that the Stefan-Boltzmann constant has been experimentally
determined. This implies that we have a true black body at our disposal. Solids with

(1876–1877), in addition to being known for the law of radiation that bears his name, also contributed to

the theory of multicomponent diffusion and to the problem of heat conduction with phase change.

Ludwig Eduard Boltzmann (1844–1906), who held professorships in Vienna, Graz, Munich, and Leipzig,

developed the basic differential equation for gas kinetic theory and the fundamental entropy-probability

relation, S = K lnW, which is engraved on his tombstone in Vienna; K is called the Boltzmann constant.
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perfectly black surfaces do not exist. However, we can get an excellent approximation to
a black surface by piercing a very small hole in the wall of an isothermal cavity. The hole
itself is then very nearly a black surface. The extent to which this is a good approximation
may be seen from the following relation, which gives the effective emissivity of the hole,
ehole, in a rough-walled enclosure in terms of the actual emissivity e of the cavity walls
and the fraction f of the total internal cavity area that is cut away by the hole:

ehole ≅
e

e + f (1 − e)
(16.2-12)

If e = 0.8 and f = 0.001, then ehole = 0.99975. Therefore, 99.975% of the radiation that falls
on the hole will be absorbed. The radiation that emerges from the hole will then be very
nearly black-body radiation.

§16.3 PLANCK’S DISTRIBUTION LAW, WIEN’S DISPLACEMENT
LAW, AND THE STEFAN-BOLTZMANN LAW1,2,3

The Stefan-Boltzmann law may be deduced from thermodynamics, provided that certain
results of the theory of electromagnetic fields are known. Specifically, it can be shown that
for cavity radiation the energy density (that is, the energy per unit volume) within the
cavity of volume V is

u(r) = 4

c
q(e)b (16.3-1)

Since the radiant energy emitted by a black body depends on temperature alone, the
energy density u(r) must also be a function of temperature only. It can be further shown
that the electromagnetic radiation exerts a pressure p(r) on the walls of the cavity given by

p(r) = 1

3
u(r) (16.3-2)

The preceding results for cavity radiation can also be obtained by considering the cavity to
be filled with a gas made up of photons, each endowedwith an energy hl andmomentum
hl∕c. We now apply the thermodynamic formula(

𝜕U
𝜕V

)
T
= T

(
𝜕p
𝜕T

)
V
− p (16.3-3)

to the photon gas or radiation in the cavity. Insertion of U(r) = Vu(r) and p(r) = 1

3
u(r) into

this relation gives the following ordinary differential equation for u(r)(T):

u(r) = 1

3
Tdu(r)

dT
− 1

3
u(r) (16.3-4)

This equation can be integrated to give

u(r) = bT4 (16.3-5)

in which b is a constant of integration. Combination of this result with Eq. 16.3-1 gives the
radiant energy emitted from the surface of a black body per unit area per unit time:

q(e)b = c
4
u(r) = cb

4
T4 = gT4 (16.3-6)

1J. de Boer, Chapter VII in Leerboek der Natuurkunde, 3rd edition (R. Kronig, ed.), Scheltema and

Holkema, Amsterdam (1951).
2H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edition, Wiley, New York

(1985), pp. 78–79.
3M. Planck, Vorlesungen über die Theorie der Wärmestrahlung, 5th edition, Barth, Leipzig (1923); Ann.

Phys., 4, 553–563, 564–566 (1901).



Trim Size: 8in x 10in Bird1e c16.tex V1 - October 21, 2014 4:18 P.M. Page 469

§16.3 Planck’s Distribution Law, Wien’s Displacement Law, and the Stefan-Boltzmann Law 469

This is just the Stefan-Boltzmann law. Note that the thermodynamic development does
not predict the numerical value of g.

The second way of deducing the Stefan-Boltzmann law is by integrating the Planck
distribution law. This famous equation gives the radiated energy flux q(e)bm in the wavelength
range m to m + dm from a black surface:

q(e)bm = 20c2h
m5

1

ech∕mKT − 1
(16.3-7)

Here h is Planck’s constant. The result can be derived by applying quantum statistics to a
photon gas in a cavity, the photons obeying Bose-Einstein statistics.4,5 The Planck distribu-
tion, which is shown in Fig. 16.3-1, correctly predicts the entire energy versus wavelength
curve and the shift of the maximum towards shorter wavelengths at higher temperatures.
When Eq. 16.3-7 is integrated over all wavelengths, we get

q(e)b = ∫
∞

0

q(e)bm dm

= 20c2h∫
∞

0

m−5

ech∕mKT − 1
dm

= 20K4T4

c2h3 ∫
∞

0

x3

ex − 1
dx

= 20K4T4

c2h3

(
6

∞∑
n=1

1

n4

)
= 20K4T4

c2h3

(
04

15

)
(16.3-8)
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Fig. 16.3-1. The spectrum of

equilibrium radiation as given by

Planck’s law, Eq. 16.3-7.

[M. Planck, Verh. der deutschen
Physik. Gesell., 2, 202, 237 (1900);
Ann. der Physik, 4, 553–563,
564–566 (1901).]

4J. E. Mayer and M. G. Mayer, Statistical Mechanics, Wiley, New York (1940), pp. 363–374.
5L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd edition, Part 1, Pergamon, Oxford (1980), §63.
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In the above integration we changed the variable of integration from m to x = ch∕mKT.
Then the integration over x was performed by expanding 1∕(ex − 1) in a Taylor series in
ex (see §C.2) and then integrating term by term. The quantum statistical approach thus
gives the details of the spectral distribution of the radiation and also the expression for
the Stefan-Boltzmann constant,

g = 2

15

05K4

c2h3
(16.3-9)

which has the value 1.355 × 10−12 cal∕s ⋅ cm2 ⋅ K4, which is confirmedwithin experimental
uncertainty by direct radiation measurements. Equation 16.3-9 is an amazing formula,
interrelating as it does the g from radiation, the K from statistical mechanics, the speed of
light c from electromagnetism, and the h from quantum mechanics!

In addition to obtaining the Stefan-Boltzmann law from the Planck distribution, we
can get an important relation pertaining to the maximum in the Planck distribution. First

we rewrite Eq. 16.3-7 in terms of x and then set dq(e)bm∕dx = 0. This gives the following
equation for xmax, which is the value of x for which the Planck distribution shows a
maximum:

xmax = 5(1 − e−xmax ) (16.3-10)

The solution to this equation is found numerically to be xmax = 4.9651…. Hence, at a given
temperature T

mmaxT = ch
Kxmax

(16.3-11)

Inserting the values of the universal constants and the value for xmax, we then get

mmaxT = 0.2884 cm K (16.3-12)

This result, originally found experimentally,6 is known as Wien’s displacement law. It is
useful primarily for estimating the temperature of remote objects. The law predicts, in
agreementwith experience, that the apparent color of radiation shifts from red (longwave-
lengths) toward blue (short wavelengths) as the temperature increases.

Finally, we may reinterpret some of our previous remarks in terms of the Planck dis-
tribution law. In Fig. 16.3-2 we have sketched three curves: the Planck distribution law for
a hypothetical black body, the distribution curve for a hypothetical gray body, and a dis-
tribution curve for some real body. It is thus clear that when we used the total emissivity
values, such as those in Table 16.2-1, we are just accounting empirically for the deviations
from Planck’s law over the entire spectrum.

We should not leave the subject of the Planck distribution without pointing out that
the “Planck distribution law” in Eq. 16.3-7 was presented at the October 1900 meeting
of the German Physical Society as an empiricism that fitted the available data.7 However,
before the end of the year,8 Planck succeeded in deriving the equation, but at the expense
of introducing the radical notion of the quantization of energy, an idea that was met with
little enthusiasm. Planck himself had misgivings, as clearly stated in his textbook.9 In a
letter in 1931, he wrote: “…what I did can be described as an act of desperation…I had
been wrestling unsuccessfully for six years…with the problem of equilibrium between

6W. Wien, Sitzungsber. d. kglch. preuss. Akad. d. Wissenschaften, (VI), p. 55–62 (1893).
7O. Lummer and E. Pringsheim, Wied. Ann., 63, 396 (1897); Ann. der Physik, 3, 159 (1900).
8M. Planck, Verhandl. d. deutsch. Physik. Ges., 2, 202 and 237 (1900); Ann. Phys., 4, 553–563, 564–566

(1901).
9M. Planck, The Theory of Heat Radiation, Dover, New York (1991), English translation of Vorlesungen

über die Theorie der Wärmestrahlung (1913), p. 154.
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λ

qλ
(e)

Planck's law (black body)

A typical real surface

Gray body with e = 1/3

Fig. 16.3-2. Comparison of the

emitted radiation from black, gray,

and real surfaces.

radiation and matter, and I knew that the problem was of fundamental importance….”
Then Planck went on to say that he was “ready to sacrifice every one of my previous
convictions about physical laws,” except for the first and second laws of thermodynam-
ics.10 Planck’s radical proposal ushered in a new and exciting era of physics, and quantum
mechanics penetrated into chemistry and other fields in the twentieth century.

EXAMPLE 16.3-1

Temperature and
Radiant-Energy
Emission of the Sun

For approximate calculations, the sunmay be considered to be a black body, emitting radiation

with a maximum intensity at m = 0.5 microns (5000 Å). With this information, estimate (a) the
surface temperature of the sun, and (b) the emitted heat flux at the sun’s surface.

SOLUTION
(a) FromWien’s displacement law, Eq. 16.3-12,

T = 0.2884
mmax

= 0.2884 cm K

0.5 × 10−4 cm
= 5760 K = 10,400∘R (16.3-13)

(b) From the Stefan-Boltzmann law, Eq. 16.2-10,

q(e)b = gT4 = (0.1712 × 10−8 Btu∕hr ⋅ ft2 ⋅ ∘R4)(10,400∘R)4

= 2.0 × 107 Btu∕hr ⋅ ft2 (16.3-14)

§16.4 DIRECT RADIATION BETWEEN BLACK BODIES IN VACUO AT
DIFFERENT TEMPERATURES

In the preceding sections we have given the Stefan-Boltzmann law, which describes the
total radiant-energy emission from a perfectly black surface. In this section we discuss
the radiant-energy transfer between two black bodies of arbitrary geometry and orienta-
tion. Hence, we need to know how the radiant energy emanating from a black body is
distributed with respect to angle. Because black-body radiation is isotropic, the following
relation, known as Lambert’s cosine law,1 can be deduced:

q(e)bp =
q(e)b
0

cos p = gT4

0
cos p (16.4-1)

10A. Hermann, The Genesis of Quantum Theory, MIT Press (1971), pp. 23–24.
1J. H. Lambert, Photometria, Augsburg (1760).
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Black surface

Solid angle
sin θ dθ dφ

n
φ

θ

Fig. 16.4-1. Radiation at an angle p from
the normal to the surface into a solid angle

sin p dp dd.

in which q(e)bp is the energy emitted per unit area per unit time per unit solid angle in a
direction p (see Fig. 16.4-1). The energy emitted through the shaded solid angle is then

q(e)bp sin p dp dd per unit area of black solid surface. Integration of the foregoing expression

for q(e)bp over the entire hemisphere gives the known total energy emission:

∫
20

0 ∫
0∕2

0

q(e)bp sin p dp dd = gT4

0 ∫
20

0 ∫
0∕2

0

cos p sin p dp dd

= gT4 = q(e)b (16.4-2)

This justifies the inclusion of the factor of 1∕0 in Eq. 16.4-1.
We are now in a position to get the net heat-transfer rate from body 1 to body 2, where

these are black bodies of any shape and orientation (see Fig. 16.4-2). We do this by getting
the net heat-transfer rate between a pair of surface elements dA1 and dA2 that can “see”
each other, and then integrating over all such possible pairs of areas. The elements dA1 and
dA2 are joined by a straight line of length r12, which makes an angle p1 with the normal to
dA1 and an angle p2 with the normal to dA2.

We start by writing an expression for the energy radiated from dA1 into a solid angle
sin p1 dp1 dd1 about r12. We choose this solid angle large enough that dA2 will lie entirely
within the “beam” (see Fig 16.4-2). According to Lambert’s cosine law, the energy radiated
in a unit time will be (

gT4
1

0
cos p1

)
dA1 sin p1 dp1 dd1 (16.4-3)

Body 1

Body 2

dA1

dA2

φ1

φ2

θ1

θ2

n1

n2

Solid angle
sin θ1 dθ1 dφ1

r12 r12
2 sin θ1 dθ1 dφ1

Fig. 16.4-2. Radiant interchange
between two black bodies.
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Of the energy leaving dA1 at an angle p1, only the fraction given by the following ratio will
be intercepted by dA2(

area of dA2 projected onto a
plane perpendicular to r12

)
⎛⎜⎜⎜⎝
area formed by the intersection
of the solid angle sin p1 dp1 dd1
with a sphere of radius r12 with

center at dA1

⎞⎟⎟⎟⎠
=

dA2 cos p2

r2
12

sin p1 dp1 dd1
(16.4-4)

Multiplication of these last two expressions then gives

dQ→

12
=

gT4
1

0

cos p1 cos p2

r2
12

dA1 dA2 (16.4-5)

This is the radiant energy emitted by dA1 and intercepted by dA2 per unit time. In a similar
way we can write

dQ→

21
=

gT4
2

0

cos p1 cos p2

r2
12

dA1 dA2 (16.4-6)

which is the radiant energy emitted by dA2 that is intercepted by dA1 per unit time. The
net rate of energy transport from dA1 to dA2 is then

dQ12 = dQ→

12
− dQ→

21

= g
0
(T4

1
− T4

2
)
cos p1 cos p2

r2
12

dA1 dA2 (16.4-7)

Therefore, the net rate of energy transfer from an isothermal black body 1 to another
isothermal black body 2 is

Q12 =
g
0
(T4

1
− T4

2
)∫ ∫

cos p1 cos p2

r2
12

dA1 dA2 (16.4-8)

Here it is understood that the integration is restricted to those pairs of areas dA1 and dA2

that are in full view of each other. This result is conventionally written in the form

Q12 = A1F12g(T4
1
− T4

2
) = A2F21g(T4

1
− T4

2
) (16.4-9)

where A1 and A2 are usually chosen to be the total areas of bodies 1 and 2. The dimen-
sionless quantities F12 and F21, called view factors (or angle factors or configuration factors),
are given by

F12 =
1

0A1
∫ ∫

cos p1 cos p2

r2
12

dA1 dA2 (16.4-10)

F21 =
1

0A2
∫ ∫

cos p1 cos p2

r2
12

dA1 dA2 (16.4-11)

and the two view factors are related by A1F12 = A2F21. The view factor F12 represents the
fraction of radiation leaving body 1 that is directly intercepted by body 2.

The actual calculation of view factors is a difficult problem, except for some very sim-
ple situations. In Fig. 16.4-3 and Fig. 16.4-4 some view factors for direct radiation are
shown.2,3,4 When such charts are available, the calculations of energy interchanges by
Eq. 16.4-9 are straightforward.

2H. C. Hottel and A. F. Sarofim, Radiative Transfer, McGraw-Hill, New York (1967).
3H. C. Hottel, Chapter 4 in W. H. McAdams, Heat Transmission, McGraw-Hill, New York (1954).
4R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 3rd edition, Hemisphere Publishing Co.,

New York (1992).
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Fig. 16.4-3. View factors for direct radiation between adjacent rectangles in perpendicular planes. [H. C. Hottel,

Chapter 3 in W. H. McAdams, Heat Transmission, McGraw-Hill, New York (1954), p. 68.]
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New York (1954), Third Edition, p. 69.]

In the above development, we have assumed that Lambert’s law and the
Stefan-Boltzmann law may be used to describe the nonequilibrium transport pro-
cess, in spite of the fact that they are strictly valid only for radiative equilibrium. The
errors thus introduced do not seem to have been studied thoroughly, but apparently the
resulting formulas give a good quantitative description.
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Thus far we have concerned ourselves with the radiative interactions between two
black bodies. We now wish to consider a set of black surfaces 1, 2,…, n, which form the
walls of a complete enclosure. The surfaces are maintained at temperatures T1, T2,…, Tn,
respectively. The net heat flow from any surface i to the enclosure surfaces is

Qi = gAi

n∑
j=1

Fij(T4
i − T4

j ) i = 1,2,…, n (16.4-12)

or

Qi = gAi

(
T4
i −

n∑
j=1

FijT
4
j

)
i = 1,2,…, n (16.4-13)

In writing the second form, we have used the relations

n∑
j=1

Fij = 1 i = 1,2,…, n (16.4-14)

The sums in Eqs. 16.4-13 and 16.4-14 include the term Fii, which is zero for any object that
intercepts none of its own rays. The set of n equations given in Eq. 16.4-12 (or Eq. 16.4-13)
may be solved to get the temperatures or heat flows according to the data available.

A simultaneous solution of Eqs. 16.4-13 of special interest is that for which Q3 =
Q4 = · · · = Qn = 0. Surfaces such as 3, 4,…, n are here called “adiabatic.” In this situation
one can eliminate the temperatures of all surfaces except 1 and 2 from the heat-flow
calculation and obtain an exact solution for the net heat flow from surface 1 to surface 2:

Q12 = A1F12g(T4
1
− T4

2
) = A2F21g(T4

1
− T4

2
) (16.4-15)

Values of F12 for use in this equation are given in Fig. 16.4-4. These values apply onlywhen
the adiabatic walls are formed from line elements perpendicular to 1 and 2.

The use of these view factors F and F greatly simplifies the calculations for black-body
radiation, when the temperatures of surfaces 1 and 2 are known to be uniform. The reader
wishing further information on radiative heat exchange in enclosures is referred to the
literature.4

EXAMPLE 16.4-1

Estimation of the Solar
Constant

The radiant heat flux entering the earth’s atmosphere from the sun is called the “solar constant”

and is important in solar-energy utilization as well as in meteorology. Designate the sun as

body 1 and the earth as body 2, and use the following data to calculate the solar constant:

D1 = 8.60 × 105 miles; r12 = 9.29 × 107 miles; q(e)b1 = 2.0 × 107 Btu∕hr ⋅ ft2 (from Example 16.3-1).

SOLUTION

FromEq. 16.4-5, the radiant energy arriving at dA2 from dA1 (see Fig. 16.4-5) is dQ→
12
∕ cos p2 dA2 =

(gT4
1
∕0r2

12
) cos p1 dA1. Then the total radiant energy arriving at dA2 from the sun is obtained by

integrating dQ→
12
∕ cos p2 dA2 over that part of the sun’s surface that is visible from the earth:

Solar constant =
dQ→

12

cos p2 dA2

=
gT4

1

0r2
12
∫ cos p1 dA1

=
gT4

1

0r2
12

(
0D2

1

4

)
=

q(e)b1
4

(
D1

r12

)2

=
(2.0 × 107 Btu∕hr ⋅ ft2)

4

(
8.60 × 105 miles

9.29 × 107 miles

)2

= 430 Btu∕hr ⋅ ft2 (16.4-16)
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Sun

dA1 r12

θ1

θ2
dA2

860,000
miles

92.9 million miles

Earth Fig. 16.4-5. Estimation of the solar

constant.

This is in satisfactory agreement with other estimates that have been made. The treatment of
r2
12
as a constant in the integrand is permissible here because the distance r12 varies by less than

0.5% over the visible surface of the sun. The remaining integral, ∫ cos p1 dA1 , is the projected

area of the sun as seen from the earth, or very nearly 0D2
1
∕4.

EXAMPLE 16.4-2

Radiant Heat Transfer
between Disks

Two black disks of diameter 2 ft are placed directly opposite one another at a distance of 4 ft.
Disk 1 is maintained at 2000∘R, and disk 2 at 1000∘R. Calculate the heat flow between the two
disks (a) when no other surfaces are present, and (b) when the two disks are connected by an
adiabatic right-cylindrical black surface.

SOLUTION
(a) From Eq. 16.4-9 and curve 1 of Fig. 16.4-4,

Q12 = A1F12g(T4
1
− T4

2
)

= (0 ⋅ 1 ft2)(0.06)(0.1712 × 10−8 Btu∕hr ⋅ ft2 ⋅ ∘R4)
[
(2000∘R)4 − (1000∘R)4

]
= 4.83 × 103 Btu∕hr (16.4-17)

(b) From Eq. 16.4-15 and curve 5 of Fig. 16.4-4,

Q12 = A1F12g(T4
1
− T4

2
)

= (0 ⋅ 1 ft2)(0.34)(0.1712 × 10−8 Btu∕hr ⋅ ft2 ⋅ ∘R4)
[
(2000∘R)4 − (1000∘R)4

]
= 27.4 × 103 Btu∕hr (16.4-18)

§16.5 RADIATION BETWEEN NONBLACK BODIES AT DIFFERENT
TEMPERATURES

In principle, radiation between nonblack surfaces can be treated by differential analysis of
emitted rays and their successive reflected components. For nearly black surfaces this is
feasible, as only one or two reflections need be considered. For highly reflecting surfaces,
however, the analysis is complicated, and the distributions of emitted and reflected rays
with respect to angle and wavelength are not usually known with enough accuracy to
justify a detailed calculation.

A reasonably accurate treatment is possible for a small convex surface in a large,
nearly isothermal enclosure (i.e., a “cavity”), such as a steam pipe in a room with walls
at constant temperature. The rate of energy emission from a nonblack surface 1 to the
surrounding enclosure 2 is given by

Q→

12
= e1A1gT

4
1

(16.5-1)

and the rate of energy absorption from the surroundings by surface 1 is

Q→

21
= a1A1gT

4
2

(16.5-2)
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Here we have made use of the fact that the radiation impinging on surface 1 is very nearly
cavity radiation or black-body radiation corresponding to temperature T2. SinceA1 is con-
vex, it intercepts none of its own rays; hence, F12 has been set equal to unity. The net
radiation rate from A1 to the surroundings is therefore

Q12 = gA1(e1T4
1
− a1T

4
2
) (16.5-3)

In Eq. 16.5-3, e1 is the value of the emissivity of surface 1 atT1. The absorptivity a1 is usually
estimated as the value of e at T2.

Next we consider an enclosure formed by n gray, opaque, diffuse-reflecting surfaces
A1,A2,A3, · · · ,An at temperatures T1, T2, T3, · · · ,Tn. Following Oppenheim1 we define the
radiosity Ji for each surface Ai as the sum of the fluxes of reflected and emitted radiant
energy from Ai. Then the net radiant energy flow from Ai to Ak is expressed as

Qik = AiFik(Ji − Jk) i,j = 1,2,3, · · · ,n (16.5-4)

that is, by Eq. 16.4-9 with substitution of radiosities Ji in place of the black-body emissive
fluxes gT4

i .
The definition of Ji gives, for an opaque surface

Ji = (1 − ei)Ii + eigT
4
i (16.5-5)

in which Ii is the incident radiant flux on Ai. Elimination of Ii in favor of the net radiant
flux Qie∕Ai from Ai into the enclosure gives

Qie

Ai
= Ji − Ii = Ji −

Ji − eigT
4
i

1 − ei
(16.5-6)

whence
Qie

Ai
=

ei
1 − ei

Ai(gT4
i − Ji) (16.5-7)

Finally, an energy balance on each surface gives

Qi = Qie =
n∑

k=1
Qik (16.5-8)

Here Qi is the rate of heat addition to surface Ai by nonradiative means.
Equations analogous to Eqs. 16.5-4, 16.5-7, and 16.5-8 arise in the analysis of

direct-current circuits, from Ohm’s law of conduction and Kirchhoff’s law of charge
conservation. Hence, we have the following analogies:

Electrical Radiative
Current Q
Voltage J or gT4

Resistance (1 − ei)∕eiAi or 1∕AiFij

This analogy allows easy diagramming of equivalent circuits for visualization of simple
enclosure radiation problems. For example, the system in Fig. 16.5-1 gives the equivalent
circuit shown in Fig. 16.5-2 so that the radiant heat-transfer rate is

Q1 =
g(T4

1
− T4

2
)

1 − e1
e1A1

+ 1

A1F12
+

1 − e2
e2A2

(16.5-9)

1A. K. Oppenheim, Trans. ASME, 78, 725–735 (1956); for earlier work, see G. Poljak, Tech. Phys.
USSR, 1, 555–590 (1935).
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Surface 1 at
temperature T1

with emissivity e1

Surface 2 at
temperature T2

with emissivity e2

Fig. 16.5-1. Radiation between two infinite, parallel gray

surfaces.

Radiation potential:

Radiation resistance:
1 – e1
e1 A1

σT1
4 σT2

4

1

A1 F12
1

or
A2 F21

1 – e2
e2 A2

J1 J2

Fig. 16.5-2. Equivalent circuit
for system shown in Fig.

16.5-1.

The short-cut solution summarized in Eq. 16.4-15 has been similarly generalized to
nonblack-walled enclosures giving

Q12 = A1F12(J1 − J2) (16.5-10)

in place of Eq. 16.5-8, for an enclosure with Qi = 0 for i = 2,3, · · · ,n. The result is like that
in Eq. 16.5-9, except that F12 must be used instead of F12 to include indirect paths from A1

to A2, thus giving a larger heat-transfer rate.

EXAMPLE 16.5-1

Radiation Shields

Develop an expression for the reduction in radiant heat transfer between two infinite parallel

gray planes having the same area, A, when a thin parallel gray sheet of very high thermal

conductivity is placed between them as shown in Fig. 16.5-3.

SOLUTION

The radiation balance between planes 1 and 2 is given by

Q12 =
Ag(T4

1
− T4

2
)

1 − e1
e1

+ 1 +
1 − e2
e2

=
Ag(T4

1
− T4

2
)

1

e1
+ 1

e2
− 1

(16.5-11)

since both planes have the same area A and the view factor is unity. Similarly the heat transfer

between planes 2 and 3 is

Q23 =
Ag(T4

2
− T4

3
)

1 − e2
e2

+ 1 +
1 − e3
e3

=
Ag(T4

2
− T4

3
)

1

e2
+ 1

e3
− 1

(16.5-12)
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T = T1
e = a = e1

T = T2
e = a = e2

T = T3
e = a = e3

Fig. 16.5-3. Radiation shield.

These last two equationsmay be combined to eliminate the temperature of the radiation shield,

T2, giving

Q12

(
1

e1
+ 1

e2
− 1

)
+Q23

(
1

e2
+ 1

e3
− 1

)
= Ag(T4

1
− T4

3
) (16.5-13)

Then, since Q12 = Q23 = Q13, we get

Q13 =
Ag(T4

1
− T4

3
)(

1

e1
+ 1

e2
− 1

)
+

(
1

e2
+ 1

e3
− 1

) (16.5-14)

Finally the ratio of radiant-energy transfer with a shield to that without one is

(Q13)with

(Q13)without

=

(
1

e1
+ 1

e3
− 1

)
(

1

e1
+ 1

e2
− 1

)
+

(
1

e2
+ 1

e3
− 1

) (16.5-15)

EXAMPLE 16.5-2

Radiation and
Free-Convection Heat
Losses from a
Horizontal Pipe

Predict the total rate of heat loss, by radiation and free convection, from a unit length of hor-

izontal pipe covered with asbestos. The outside diameter of the insulation is 6 in. The outer

surface of the insulation is at 100∘F (560∘R), and the surrounding walls and air in the room are

at 80∘F (540∘R).

SOLUTION

Let the outer surface of the insulation be surface 1 and the walls of the room be surface 2. Then

Eq. 16.5-3 gives

Q12 = gA1F12(e1T4
1
− a1T

4
2
) (16.5-16)

Since the pipe surface is convex and completely enclosed by surface 2, F12 is unity. From

Table 16.2-1, we find e1 = 0.93 at 560∘R and a1 = 0.93 at 540∘R. Substitution of numerical values

into Eq. 16.5-16 then gives for 1 ft of pipe

Q12 = (0.1712 × 10−8 Btu∕hr ⋅ ft2 ⋅ ∘R4)
(
0 ⋅

(
1

2
ft
)
(1 ft)

)
(1.00) ×

[
0.93(560∘R)4 − 0.93(540∘R)4

]
= 33 Btu∕hr (16.5-17)

By adding the convection heat loss from Example 14.6-1, we obtain the total heat loss from the

pipe:

Q = Q(conv) +Q(rad) = 18 + 33 = 51 Btu∕hr (16.5-18)

Note that in this situation radiation accounts for more than half of the heat loss. If the fluid

were not transparent, the convection and radiation processes would not be independent, and

the convective and radiative contributions could not be added directly.
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EXAMPLE 16.5-3

Combined Radiation
and Convection

A body directly exposed to the night sky will be cooled below ambient temperature because

of radiation to outer space. This effect can be used to freeze water in shallow trays well insu-

lated from the ground. Estimate the maximum air temperature for which freezing is possible,

neglecting evaporation.

SOLUTION

As a first approximation, the following assumptions may be made:

a. All heat received by the water is by free convection from the surrounding air, which is

assumed to be quiescent.

b. The heat effect of evaporation or condensation of water is not significant.

c. Steady state has been achieved.

d. The pan of water is square in cross section.

e. Back radiation from the atmosphere may be neglected.

The maximum permitted air temperature at the water surface is T1 = 492∘R. The rate of heat
loss by radiation is

Q(rad) = gA1e1T
4
1

= (1.712 × 10−9 Btu∕hr ⋅ ft2 ⋅ ∘R4)(L ft)2(0.95)(492∘R)4

= 95L2 Btu∕hr (16.5-19)

in which L is the length in feet of one edge of the pan, and 0.95 is the value of the emissivity of

a thick layer of water, from Table 16.2-1.

To get the heat gain by convection, we use the relation

Q(conv) = hL2(Tair − Twater) (16.5-20)

in which h is the heat-transfer coefficient for free convection. For cooling atmospheric air by a

horizontal square facing upward, the heat-transfer coefficient is given by2

h = (0.2 Btu∕hr ⋅ ft2 ⋅ ∘F ⋅ (∘R)1∕4)(Tair − Twater)1∕4 (16.5-21)

in which h is expressed in Btu∕hr ⋅ ft2 ⋅ ∘F and the temperature is given in degrees Rankine.

When the foregoing expressions for heat loss by radiation and heat gain by free convection

are equated, we get

(95 Btu∕hr ⋅ ft2)L2 = (0.2 Btu∕hr ⋅ ft2 ⋅ (∘R)5∕4)L2(Tair − 492 ∘R)5∕4 (16.5-22)

From this we find that the maximum ambient air temperature is 630∘R or 170∘F. Except under
desert conditions, back radiation and moisture condensation from the surrounding air greatly

lower the required air temperature.

§16.6 RADIANT-ENERGY TRANSPORT IN ABSORBINGMEDIA1

Themethods given in the preceding sections are applicable only tomaterials that are com-
pletely transparent or completely opaque. To describe energy transport in nontransparent
media,wewrite differential equations for the local rate of change of energy as viewed from
both from the material and radiation standpoint. That is, we regard a material medium

2W. H. McAdams, in Chemical Engineers’ Handbook (J. H. Perry, Ed.), McGraw-Hill, New York (1950),

3rd edition, p. 474.
1G. C. Pomraning, Radiation Hydrodynamics, Pergamon Press, New York (1973); R. Siegel and J. R.

Howell, Thermal Radiation and Heat Transfer, 3rd edition, Hemisphere Publishing Co., New York (1992).
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traversed by electromagnetic radiation as two coexisting “phases”: a “material phase,”
consisting of all the mass in the system, and a “photon phase,” consisting of the electro-
magnetic radiation.

In Chapter 11 we have already given an energy balance equation for a system con-
taining no radiation. Here we extend Eq. 11.2-1 for the material phase to take into account
the energy that is being interchanged with the photon phase by emission and absorption
processes:

𝜕
𝜕t

iÛ = −(∇ ⋅ iÛv) − (∇ ⋅ q) − p(∇ ⋅ v) − (f ∶ ∇v) − (ℰ −𝒜 ) (16.6-1)

Here we have introduced ℰ and 𝒜 , which are the local rates of photon emission and
absorption per unit volume, respectively. That is,ℰ represents the energy lost by themate-
rial phase resulting from the emission of photons bymolecules, and𝒜 represents the local
gain of energy by the material phase resulting from photon absorption by the molecules
(see Fig. 16.6-1). The q in Eq. 16.6-1 is the conduction heat flux given by Fourier’s law.

For the “photon phase,” wemay write an equation describing the local rate of change
of radiant-energy density u(r):

𝜕
𝜕t
u(r) = −(∇ ⋅ q(r)) + (ℰ −𝒜 ) (16.6-2)

in which q(r) is the radiant energy flux. This equation may be obtained by writing a
radiant-energy balance on an element of volume fixed in space. Note that there is no
convective term in Eq. 16.6-2, since the photons move independently of the local material
velocity. Note further that the term (ℰ −𝒜 ) appears with opposite signs in Eqs. 16.6-1
and 16.6-2, indicating that a net gain of radiant energy occurs at the expense of molecular
energy. Equation 16.6-2 can also be written for the radiant energy within a frequency
range l to l + dl:

𝜕
𝜕t
u(r)l = −(∇ ⋅ q(r)

l ) + (ℰl −𝒜l) (16.6-3)

This expression is obtained by differentiating Eq. 16.6-2 with respect to l.
For the purpose of simplifying the discussion,we consider a steady-state nonflow sys-

tem in which the radiation travels only in the +z direction. Such a system can be closely
approximated by passing a collimated light beam through a solution at temperatures suffi-
ciently low that the emission by the solution is unimportant. (If emission were important,
it would be necessary to consider radiation in all directions.) These are the conditions

Photon
absorption

Photon

Photon

Photon
emission

Fig. 16.6-1. Volume element over which energy

balances are made. The circles represent

molecules.
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commonly encountered in spectrophotometry. For such a system, Eqs. 16.6-1 and 16.6-2
become

0 = − d
dz

qz +𝒜 (16.6-4)

0 = − d
dz

q(r)z −𝒜 (16.6-5)

In order to use these equations, we need information about the volumetric absorption rate
𝒜 . For a unidirectional beam a conventional expression is

𝒜 = maq
(r) (16.6-6)

in which ma is known as the extinction coefficient. Basically, this just states that the proba-
bility for photon absorption is proportional to the concentration of photons.

EXAMPLE 16.6-1

Absorption of a
Monochromatic
Radiant Beam

A monochromatic radiant beam of frequency l, focused parallel to the z axis, passes through
an absorbing fluid. The local rate of energy absorption is given by malq

(r)
l , in which mal is the

extinction coefficient for radiation of frequency l. Determine the distribution of the radiant flux

q(r)l (z) in the system.

SOLUTION

We neglect refraction and scattering of the incident beam. Also, we assume that the liquid is
cooled so that re-radiation can be neglected. Then Eq. 16.6-5 becomes for steady state

0 = − d
dz

q(r)l −malq
(r)
l (16.6-7)

Integration with respect to z gives

q(r)l (z) = q(r)l (0) exp(−malz) (16.6-8)

This is Lambert’s law of absorption,2 widely used in spectrometry. For any given pure material,
mal depends in a characteristic way on l. The shape of the absorption spectrum is therefore a
useful tool for qualitative analysis.

§16.7 CONCLUDING COMMENTS

The theory of radiant-heat transfer is a very large topic, one about which entire volumes
have been written. All we have done in this chapter is present some of the key ideas and
show how to make some fairly simple calculations.

Keep in mind that it was Planck’s persistence in trying to understand the distribu-
tion of black-body radiation over a wide range of frequencies that led him to the radical
notion that energy is quantized. This resulted in the development of an entire new body
of physics, namely quantummechanics, one of the two gigantic basic developments in the
twentieth century—the other being Einstein’s development of the theory of relativity.

QUESTIONS FOR DISCUSSION

1. The “named laws” in this chapter are important. What is the physical content of the laws asso-
ciated with the following scientists’ names: Stefan and Boltzmann, Planck, Kirchhoff, Lambert,
Wien?

2. How are the Stefan-Boltzmann law and the Wien displacement law related to the Planck
black-body distribution law?

3. Do black bodies exist? Why is the concept of a black body useful?

2J. H. Lambert, Photometria, Augsburg (1760).
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4. In specular (mirrorlike) reflection, the angle of incidence equals the angle of reflection. How
are these angles related for diffuse reflection?

5. What is the physical significance of the view factor, and how can it be calculated?

6. What are the units of q(e), q(e)l , and q(e)m ?
7. Under what conditions is the effect of geometry on radiant-heat interchange completely

expressible in terms of view factors?
8. Which of the equations in this chapter show that the apparent brightness of a black body with

a uniform surface temperature is independent of the position (distance and direction) from
which it is viewed through a transparent medium?

9. What relation is analogous to Eq. 16.3-2 for an ideal monatomic gas?
10. Check the dimensional consistency of Eq. 16.3-9.

PROBLEMS 16A.1 Approximation of a black body by a hole in a sphere.A thin sphere of copper, with its internal
surface highly oxidized, has a diameter of 6 in. How small a hole must be made in the sphere
to make an opening that will have an absorptivity of 0.99?

Answer: Radius = 0.70 in.

16A.2 Efficiency of a solar engine. A device for utilizing solar energy, developed by Abbot,1 con-
sists of a parabolic mirror that focuses the impinging sunlight onto a Pyrex tube containing a
high-boiling, nearly black liquid. This liquid is circulated to a heat exchanger in which the heat
energy is transferred to superheated water at 25 atm pressure. Steam may be withdrawn and
used to run an engine. Themost efficient design requires amirror 10 ft in diameter to generate 2
hp, when the axis of themirror is pointed directly toward the sun.What is the overall efficiency
of the device?

Answer: 15%

16A.3 Radiant heating requirement. A shed is rectangular in shape, with the floor 15 ft by 30 ft and
the roof 7.5 ft above the floor. The floor is heated by hot water running through coils. On
cold winter days the exterior walls and roof are about −10∘F. At what rate must heat be sup-
plied through the floor in order to maintain the floor temperature at 75∘F? (Assume that all
the surfaces of the system are black, and that convective heat transfer within the shed can be
neglected.)

16A.4 Steady-state temperature of a roof. Estimate the maximum temperature attained by a level
roof at 45∘ north latitude on June 21 in clear weather. Radiation from sources other than the
sun may be neglected, and a convection-heat-transfer coefficient of 2.0 Btu∕hr ⋅ ft2 ⋅ ∘F may be
assumed. Amaximum temperature of 100∘Fmay be assumed for the surrounding air. The solar
constant of Example 16.4-1 may be used, and the absorption and scattering of the sun’s rays by
the atmosphere may be neglected.

(a) Solve for a perfectly black roof.

(b) Solve for an aluminum-coated roof, with an absorptivity of 0.3 for solar radiation and an
emissivity of 0.07 at the temperature of the roof.

16A.5 Radiation errors in temperature measurements. The temperature of an air stream in a duct
is being measured by means of a thermocouple. The thermocouple wires and junction are
cylindrical, 0.05 in. in diameter, and extend across the duct perpendicular to the flow with the
junction in the center of the duct. Assuming a junction emissivity of e = 0.8, estimate the tem-
perature of the gas stream from the following data obtained under steady conditions:

Thermocouple junction temperature = 500∘F
Duct wall temperature = 300∘F

Convection heat-transfer coefficient from wire to air = 50 Btu∕hr ⋅ ft2 ⋅ ∘F

1C. G. Abbot, in Solar Energy Research (F. Daniels and J. A. Duffie, eds.), University of Wisconsin

Press, Madison (1955), pp. 91–95; see also U.S. Patent No. 2,460,482 (Feb. 1, 1945).
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The wall temperature is constant at the value given for 20 duct diameters upstream and down-
stream of the thermocouple installation. The thermocouple leads are positioned so that the
effect of heat conduction along them on the junction temperature may be neglected.

16A.6 Surface temperatures on the earth’s moon.
(a) Estimate the surface temperature of our moon at the point nearest the sun by a
quasi-steady-state radiant energy balance, regarding the lunar surface as a gray sphere.
Neglect radiation and reflection from the planets. The solar constant at earth is given in
Example 16.4-1.

(b) Extend part (a) to give the lunar surface temperature as a function of angular displacement
from the hottest point.

16B.1 Reference temperature for effective emissivity. Show that, if the emissivity increases linearly
with the temperature, Eq. 16.5-3 may be written as

Q12 = eo
1
gA1(T4

1
− T4

2
) (16B.1-1)

in which eo
1
is the emissivity of surface 1 evaluated at a reference temperature To given by

To =
T5
1
− T5

2

T4
1
− T4

2

(16B.1-2)

16B.2 Radiation across an annular gap.Develop an expression for the radiant heat transfer between
two long, gray coaxial cylinders 1 and 2. Show that

Q12 =
g(T4

1
− T4

2
)

1

A1e1
+ 1

A2

(
1

e2
− 1

) (16B.2-1)

where A1 is the surface area of the inner cylinder.

16B.3 Multiple radiation shields.
(a) Develop an equation for the rate of radiant heat transfer through a series of n very thin, flat,
parallel metal sheets, each having a different emissivity e, when the first sheet is at temperature
T1 and the nth sheet is at temperature Tn. Give your result in terms of the radiation resistances

Ri,i+1 =
g(T4

i − T4
i+1)

Qi,i+1
(16B.3-1)

for the successive pairs of planes. Edge effects and conduction across the air gaps between the
sheets are to be neglected.

(b) Determine the ratio of the radiant heat-transfer rate for n identical sheets to that for two
identical sheets.

(c) Compare your results for three sheets with that obtained in Example 16.5-1.
The marked reduction in heat-transfer rates produced by a number of radiation shields in

series has led to the use of multiple layers of metal foils for high-temperature insulation.

16B.4 Radiation and conduction through absorbing media. A glass slab, bounded by planes z = 0
to z = t, is of infinite extent in the x and y directions. The temperatures of the surfaces at z = 0
and z = t are maintained at T0 and Tt, respectively. A uniform monochromatic radiant beam

of intensity q(r)
0

in the z direction impinges on the face at z = 0. Emission within the slab, and
incident radiation in the −z direction can be neglected.

(a) Determine the temperature distribution in the slab, assuming ma and k to be constants (see
§16.6).

(b) How does the distribution of the conductive heat flux qz depend on ma?

16B.5 Cooling of a black body in vacuo. A thin black body of very high thermal conductivity has

a volume V, surface area A, density i, and heat capacity Ĉp. At time t = 0, this body at tem-
perature T1 is placed in a black enclosure, the walls of which are maintained permanently at
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temperature T2 (with T2 < T1). Derive an expression for the temperature T of the black body as

a function of time.

16B.6 Heat loss from an insulated pipe. A standard Schedule 40 two-inch horizontal steel pipe

(inside diameter 2.067 in., wall thickness 0.154 in.; k = 26 Btu∕hr ⋅ ft ⋅ ∘F) carrying steam is

lagged (i.e., insulated) with 2 in. of 85%magnesia (k = 0.04 Btu∕hr ⋅ ft ⋅ ∘F) and tightly wrapped

with a single outer layer of clean aluminum foil (e = 0.05). The inner surface of the pipe is at

250∘F, and the pipe is surrounded by air at 1 atm and 80∘F.
(a) Compute the conductive heat flow per unit length, Q(cond)∕L, through the pipe wall and

insulation for assumed temperatures, T0, of 100
∘F and 250∘F at the outer surface of the alu-

minum foil.

(b) Compute the radiative and free-convective heat losses, Q(rad)∕L and Q(conv)∕L, for the same

assumed outer surface temperatures T0.

(c) Plot or interpolate the foregoing results to obtain the steady-state values of T0 and

Q(cond)∕L = Q(rad)∕L +Q(conv)∕L.

16C.1 Integration of the view-factor integral for a pair of disks. Two identical, perfectly black disks

of radius R are placed a distance H apart as shown in Fig. 16C.1. Integrate the view-factor

integrals for this case and show that

F12 = F21 =
1 + 2B2 −

√
1 + 4B2

2B2
(16C.1-1)2

in which B = R∕H.

H

R Fig. 16C.1 Two parallel, perfectly black disks.

2C. Christiansen, Wiedemann’s Ann. d. Physik, 19, 267–283 (1883); see also M. Jakob, Heat Transfer,
Vol. II, Wiley, New York (1957), p. 14.
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Chapter 17

Diffusivity and the
Mechanisms of Mass Transport

§17.1 Species concentrations

§17.2 Convective mass and molar flux vectors

§17.3 Diffusive mass and molar flux vectors—Fick’s law

§17.4 Total mass and molar flux vectors

§17.5 Diffusivity data from experiments

§17.6 Diffusivity and the principle of corresponding states

§17.7○ Diffusivity of gases and kinetic theory

§17.8○ Diffusivity of liquids

§17.9 Concluding comments

In Chapter 1, we began by describing convective momentum transport, and then we dis-
cussed molecular momentum transport (Newton’s law of viscosity); in Chapter 9, we
began bydescribing convective energy transport, and thenwediscussedmolecular energy
transport (Fourier’s law of heat conduction). In this chapter we start by describing con-
vective mass transport, and then discuss the molecular mechanism of mass transport. The
latter is described mathematically by Fick’s law of diffusion, which relates the movement
of chemical species A through a binary mixture of A and B to the concentration gradient
of A. Fick’s law of diffusion is the mass transfer analog of Newton’s law of viscosity for
momentum transport, and Fourier’s law of heat conduction for energy transport.

In §17.1, we preface the discussion ofmass transport by defining several ways of spec-
ifying the concentration of speciesA in amixture ofA andB. Bothmass concentrations and
molar concentrations are discussed. It is helpful to know how these two ways of specify-
ing concentration are related, since both of themwill be used.When dealingwith chemical
reactions, molar units are more useful, but when solving problems in conjunction with the
equation of motion, mass units may be more useful. Often the molar units are preferred
for gaseous mixtures, because usually the total molar density c can be assumed to be con-
stant. Similarly, for liquid mixtures the mass units are sometimes preferred, because the
total mass density i is often very nearly constant.

Then in §17.2, we begin by defining the mass average velocity v and the molar average
velocity v* of a mixture of A and B. It is the mass average velocity that is measured by
means of a Pitot tube or by laser-Doppler velocimetry, and it is identical to the v in the
equation of motion. The molar average velocity is not amenable to simple measurement.

489
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After defining these average velocities, we then can describe how species A and B are
swept along by the average rate of flow—i.e., we can formulate the convective mass flux
vector and the convective molar flux vector.

In §17.3, we turn to the molecular mass transport and describe how species A and B
“diffuse” in a mixture. The movement of a chemical species from a region of high con-
centration to a region of low concentration can be observed by dropping a small crystal
of potassium permanganate (KMnO4) into a beaker of water. The KMnO4 begins to dis-
solve in the water, and very near the crystal there is a dark purple, concentrated solution
of KMnO4. Because of the concentration gradient that is established, the KMnO4 diffuses
away from the crystal—from a region of high concentration to a region of low concen-
tration. The progress of this molecular diffusion can then be followed by observing the
growth of the purple region. Molecular diffusion is described by Fick’s law, which relates
the diffusive mass flux vector or the diffusive molar flux vector to a concentration gradient. The
relevant physical property is the diffusivity 𝒟AB for the pair A-B.

The diffusive flux owes its existence to the seemingly random thermal motion of the
molecules. Through thismotion, individualmolecules can travel large distanceswith time.
This process is also known as diffusion, and in fact can be shown to be related to Fick’s
law. While we will not dwell on this perspective, it is important to note that the molecular
motion that gives rise to diffusion and Fick’s law is also responsible for viscous stress
and Newton’s law of viscosity, as well as thermal conduction and Fourier’s law of heat
conduction.

In §17.4, the convective mass (molar) flux vector and the diffusive mass (molar) flux
vector are combined to give the total mass and molar flux vectors. This is the flux that will be
used for setting up problems by shell mass (or molar) balances in Chapter 18 and estab-
lishing the equations of change in Chapter 19.

The remainder of the chapter is devoted to various ways of estimating the diffusivity
𝒟AB. As in Chapters 1 and 9, we discuss the experimental data (§17.5), the use of corre-
sponding states (§17.6), the kinetic theory for gas mixtures (§17.7), and empiricisms for
liquid mixtures (§17.8).

This entire chapter, as well as subsequent chapters, are restricted to two-component
(binary) mixtures. The multicomponent equivalent of Fick’s law (the Maxwell-Stefan
equations) are discussed briefly in the last section of Chapter 24. However, the reader
should be aware of the fact that there exists a sizeable volume of literature devoted to
multicomponent mixtures.1

§17.1 SPECIES CONCENTRATIONS

Asmentioned in the introduction to this chapter,we shall find it necessary to use bothmass
units and molar units for describing concentrations. In mass units, the concentration of A
in a binary mixture of A and B will be given as mass of A per unit volume of the mixture
and represented by the symbol iA. It is sometimes convenient to express the composition
in terms of the mass fraction of A, defined as the mass of A divided by the total mass and
represented by the symbol aA. In molar units, the concentration of A in a binary mixture
will be given as the number of moles of A per unit volume of the mixture and represented

1R. Taylor and R. Krishna, Multicomponent Mass Transfer, Wiley, New York (1993). R. B. Bird, W. E.

Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York, 2nd Revised Edition (2007), §17.9

and §§24.1, 24.2, 24.4. C. F. Curtiss and R. B. Bird, Ind. Eng. Chem. Research, 38, 2515–2522 (1999), erratum
40, 1791 (2001). R. B. Bird and D. J. Klingenberg, Advances in Water Resources, 62, 238–242 (2013); errata: in
Eq. 3.15, awav on the right side should be in the denominator instead of the numerator; also, in the first

sentence of Sec. 4, the reference should be to Eq. 3.15 rather than Eq. 3.13.



Trim Size: 8in x 10in Bird1e c17.tex V1 - October 21, 2014 4:19 P.M. Page 491

§17.2 Convective Mass and Molar Flux Vectors 491

Table 17.1-1. Species Concentrations in a Binary Mixture of A and B

iA =mass of A per unit

volume

(A)a cA = moles of A per unit

volume

(F)

i = iA + iB =mass density

of mixture

(B) c = cA + cB = molar density

of mixture

(G)

aA = iA∕i = mass fraction

of A
(C) xA = cA∕c =mole fraction

of A
(H)

aA + aB = 1 (D) xA + xB = 1 (I)

∇aA = −∇aB (E) ∇xA = −∇xB (J)

aWe emphasize that iA is the mass concentration of species A in a mixture. The notation i(A)

is reserved for the density of pure species A when the need arises. Similar comments apply

to the symbols cA and c(A).

Table 17.1-2. Relations among Concentrations and Molecular Weights

iA = cAMA (A) cA = iA∕MA (F)

M = xAMA + xBMB (B) 1∕M = aA∕MA + aB∕MB (G)

i = cM (C) c = i∕M (H)

aA =
xAMA

M
(D) xA =

aA∕MA

1∕M
(I)

∇aA =
MAMB∇xA

M2
(E) ∇xA = M2

MAMB
∇aA (J)

=
aAaB

xAxB
∇xA (E′) =

xAxB
aAaB

∇aA (J′)

by the symbol cA. The mole fraction of A is the number of moles of A divided by the total
number of moles and is represented by the symbol xA.

In Table 17.1-1, we list the basic definitions along with some important relations
among the defined quantities. In Table 17.1-2, we summarize some of the relations that
link the mass quantities with the molar quantities. These involve the species molecular
weights MA and MB. Note that M, with no subscript, is the molar mean molecular weight of
the mixture, defined in Eqs. (B) and (G) of Table 17.1-2. With the relations in Table 17.1-2,
it is possible to transform relations in mass units into the analogous relations in molar
units and vice versa.

In the first four sections of this chapter, the tables are so arranged that mass units are
given at the left, and the corresponding molar units at the right.

§17.2 CONVECTIVE MASS ANDMOLAR FLUX VECTORS

Before discussing the convectivemass andmolar flux vectors, wemust take a small detour
and define species velocities and average velocities.

In a mixture of A and B, the chemical species are generally moving at different veloci-
ties. By vA, the velocity of speciesA, we do notmean the velocity of an individualmolecule
of species A, but rather the average of all the velocities of molecules of species A within
a small volume (this volume should be large enough to contain many A molecules, but
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much smaller than the system of interest). Then, for a mixture of two chemical species, the
local mass average velocity v is defined as

v =
iAvA + iBvB

iA + iB
=

iAvA + iBvB
i

= aAvA + aBvB (17.2-1)

Note that iv is the local rate at which mass passes through a unit cross section perpendic-
ular to the velocity v (see §0.4).

Similarly one may define the local molar average velocity v* by

v* =
cAvA + cBvB

cA + cB
=

cAvA + cBvB
c

= xAvA + xBvB (17.2-2)

The product cv* is the local rate at which moles pass through a unit cross section perpen-
dicular to the velocity v*. Other types of averages may be defined, but we shall not need
them here.

a. Convective mass flux vector
Species A may be transported by the bulk motion of the fluid. This convective mass

transport mechanism was introduced in Chapter 0 (§0.4) for the special case of unidirec-
tional, steady-state flow (readers may find it helpful to review that short section before
proceeding). Here we consider the convective transport of species A for arbitrary flows.
In Fig. 17.2-1 we show three mutually perpendicular elements of area dS at the point P,
where the fluid velocity is v. The volume rate of flow across the surface element dS per-
pendicular to the x axis is vxdS. The rate at which mass of species A is being swept across
the same surface element in the +x direction is then

iAvxdS = aAivxdS (17.2-3)

When we divide Eq. 17.2-3 by dS, we get the convective mass flux of species A in the +x
direction, iAvx = aAivx, which has dimensions of mass∕time ⋅ area.

We can write expressions similar to Eq. 17.2-3 for the rate at which mass of species A
is being swept through the surface elements perpendicular to the y and z axes to give the
rates of species Amass transport in the +y and +z directions, respectively. If we nowmul-
tiply each of the three expressions by the corresponding unit vector and add vectorially,
we then get, after division by dS, the convective mass flux vector of species A,

j(c)A = iA(vxtx + vyty + vztz) = aAi(vxtx + vyty + vztz) (17.2-4)

y

zz

x xx

z

y y

vvv

PPP
dS

dSdS

Fig. 17.2-1. Three mutually perpendicular surface elements of area dS across which species A
is being transported by convection by the fluid moving with the velocity v. The volume rate

of flow across the face perpendicular to the x axis is vx dS, and the rate of flow of mass of

species A across dS is then iAvx dS. Similar expressions can be written for the surface elements

perpendicular to the y and z axes.
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Table 17.2-1. Average Velocities and Convective Mass and Molar Fluxes

vA = velocity of species Awith respect to axes fixed in space

vB = velocity of species B with respect to axes fixed in space

v =aAvA + aBvB
=mass average velocity

(A) v* = xAvA + xBvB
= molar average velocity

(C)

j(c)A =iAv
=convective mass flux vector of A

(B) J*(c)A = cAv*
= convective molar flux vector of A

(D)

or

j(c)A = iAv = aA(iv) (17.2-5)

It is understood that this is the flux from the negative side of the surface to the positive

side (e.g., j(c)A,x is the flux in the positive x direction). This flux should be compared to the

convective momentum flux discussed in §1.1, and the convective energy flux discussed in
§9.1.

b. Convective molar flux vector
The convective molar flux vector of species A can be developed similarly. The rate at

which moles of species A are being swept in the +x direction across the surface element
dS oriented perpendicular to the x axis is

cAv*xdS = xAcv*xdS (17.2-6)

When we divide Eq. 17.2-6 by dS, we get the convective molar flux of species A in the +x
direction, cAv*x = xAcv*x , which has dimensions of moles∕time ⋅ area.

We can write expressions similar to Eq. 17.2-6 for the rate at which moles of species A
are being swept through the surface elements perpendicular to the y and z axes to give the
rates of speciesAmolar transport in the+y and+z directions, respectively. If we nowmul-
tiply each of the three expressions by the corresponding unit vector and add vectorially,
we then get, after division by dS, the convective molar flux vector of species A,

J*(c)A = cA(v*xtx + v*yty + v*ztz) = xAc(v*xtx + v*yty + v*ztz) (17.2-7)

or

J*(c)A = cAv* = xA(cv*) (17.2-8)

It is understood that this is the molar flux from the negative side of the surface to the

positive side (e.g., J*(c)A,x is the molar flux in the positive x direction). Note that j(c)A = iAv is

the local rate at which mass of A passes through a unit cross section placed perpendicular

to the velocity v, and that J*(c)A = cAv* is the local rate at which moles of A pass through a
unit cross section placed perpendicular to the velocity v*. The key ideas in this section are
summarized in Table 17.2-1.

§17.3 DIFFUSIVEMASS ANDMOLAR FLUX VECTORS—FICK’S LAW

Havingdiscussed the convectivemass andmolar flux vectors,we now turn to the diffusive
mass and molar flux vectors, that is, the fluxes associated with the random molecular
motion.
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Consider a thin, horizontal, fused-silica plate of area A and thickness Y. Suppose that
initially (for time t < 0) both horizontal surfaces of the plate are in contact with air, which
we regard as completely insoluble in silica. At time t = 0, the air below the plate is sud-
denly replaced by pure helium, which is appreciably soluble in silica. The helium slowly
penetrates into the plate by virtue of its molecular motion and ultimately appears in the
gas above. This molecular transport of one substance relative to another is known as dif-
fusion (also known as mass diffusion, concentration diffusion, or ordinary diffusion). The air
above the plate is being replaced rapidly with pure air, so that there is no appreciable
buildup of helium there. We thus have the situation represented in Fig. 17.3-1; this process
is analogous to those described in §1.2 and §9.2 where viscosity and thermal conductivity,
respectively, were defined.

a. Diffusive mass flux vector
In this system, we will call helium “species A” and silica “species B.” The concentra-

tions will be given by the mass fractions aA and aB. The mass fraction aA is the mass of
helium divided by the mass of helium-plus-silica in a given microscopic volume element.
The mass fraction aB is defined analogously.

For time t less than zero, the mass fraction of helium, aA, is everywhere equal to zero.
For time t greater than zero, at the lower surface, y = 0, themass fraction of helium is equal
to aA0. This latter quantity is the solubility of helium in silica, expressed as mass fraction,
just inside the solid. As time proceeds, the mass fraction profile develops, with aA = aA0
at the bottom surface of the plate and aA = 0 at the top surface of the plate. As indicated
in Fig. 17.3-1, the profile tends toward a straight line with increasing t.

At steady state, it is found that the mass flow rate wAy (in grams per second, say) of
helium in the positive y direction can be described to a very good approximation by

wAy

A
= i𝒟AB

aA0 − 0

Y
(17.3-1)

That is, the diffusive mass flow rate of helium per unit area (or diffusive mass flux) is pro-
portional to the mass fraction difference divided by the plate thickness. Here i is the

y

x

t < 0Y

t = 0

Small t

Large t

ωA = 0

ωA = ωA0

ωA = ωA0ωA = 0

ωA (y)

ωA (y, t)

Thickness of
slab of fused silica =

(substance B)

Fig. 17.3-1. Buildup to the

steady-state concentration

profile for the diffusion of

helium (substance A) through
fused silica (substance B). The
symbol aA stands for the mass

fraction of helium, and aA0 is the

solubility of helium in fused

silica, expressed as the mass

fraction. See Figs. 1.1-1 and 9.2-1

for analogous momentum and

heat-transport situations.
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density of the silica-helium system, and the proportionality factor 𝒟AB is the diffusivity
of the silica-helium system. We now rewrite Eq. 17.3-1 for a differential element within
the slab:

jAy = −i𝒟AB
daA

dy
(17.3-2)

HerewAy∕A as been replaced by jAy, the diffusive mass flux of helium in the positive y direc-
tion. Note that the first index, A, designates the chemical species (in this case, helium),
and the second index indicates the direction in which diffusive transport is taking place
(in this case, the y direction).

Equation 17.3-2 is the one-dimensional form of Fick’s first law of diffusion.1 It is valid
for any binary solid, liquid, or gas solution, provided that jAy is defined as the mass flux
relative to the mass average velocity of the mixture vy,

vy = aAvAy + aBvBy (17.3-3)

as defined in §17.2. For the system examined in Fig. 17.3-1, the helium is moving rather
slowly and its concentration is very small, so that vy is negligibly different from zero dur-
ing the diffusion process. As pointed out at the beginning of §17.2, the species velocity vA
is not the instantaneous molecular velocity of a molecule of A, but rather the arithmetic
average of the velocities of all the molecules of Awithin a tiny volume element.

Equation 17.3-2 relates the diffusivemass flux to the concentration gradient (y compo-
nent), and may be interpreted as the definition of the diffusivity 𝒟AB. The diffusive mass
flux jAy itself can be definedmore generally in terms of the velocities discussed above. Fol-
lowing the derivation of the convectivemass flux in §17.2, the y component of the diffusive
mass flux is

jAy = iaA(vAy − vy) (17.3-4)

which clearly illustrates that this is the flux relative to the mass average velocity, or equiv-
alently, the flux relative to a coordinate system moving with the mass average velocity v.
The diffusive mass flux of B is defined analogously.

As the two chemical species interdiffuse, there is, locally, a shifting of the center of
mass in the y direction if the molecular weights of A and B differ. The mass fluxes jAy and
jBy are so defined that jAy + jBy = 0 (this result can be obtained by using Eqs. 17.3-3 and
17.3-4; see Problem 17B.3). This again illustrates that the fluxes jAy and jBy are measured
with respect to the motion of the center of mass.

When equations similar to Eq. 17.3-2 are written for diffusion in the x and z directions,
and the three equations added vectorially, we then get the vector form of Fick’s law for
the diffusive mass flux vector of species A:

jA = −i𝒟AB∇aA (17.3-5)

A similar relation can be written down for the diffusive mass flux vector of species B:

jB = −i𝒟BA∇aB (17.3-6)

It is shown in Example 17.3-2 that 𝒟AB = 𝒟BA. Thus, for the pair A-B, there is just one
diffusivity; in general it will be a function of pressure, temperature, and composition. This
equation is written in component form in Cartesian, cylindrical, and spherical coordinates
in Appendix B.3.

1A. Fick, Ann. der Physik, 94, 59–86 (1855). Fick’s second law, the diffusional analog of the

heat-conduction equation in Eq. 11.2-10, is given in Eq. 19.1-22. Adolf Eugen Fick (1829–1901) was a

medical doctor who taught in Zürich and Marburg, and then became the Rector of the University of

Würzburg. He postulated the laws of diffusion by analogy with heat conduction, not by experiment.
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A frequently asked question is:Whydon’twewrite Eq. 17.3-5 as jA = −𝒟AB∇iA so that
Fick’s lawwill have the same form as Fourier’s law q = −k∇T? If the total mass density i is
constant, then the two forms are the same. However, if the total mass density is a function
of position and if aA is constant throughout, then ∇iA = i∇aA + aA∇i would imply that
there is a diffusive flux of A because of the gradient of the mass density i. We want jA, the
mass flux ofA, to depend only on the nonuniformity in themass fraction ofA, that is on the
gradient ofaA. Furthermore, requiring that the flux be proportional to∇aA guarantees that
jA + jB = 𝟎 (i.e., jA and jB are fluxes relative to the mass average velocity), whereas making
the flux proportional to ∇iA only produces this result in special situations. Therefore, Eq.
17.3-5 is the only reasonable expression for the mass flux. We note that Eq. 17.3-5 is in
complete agreement with the kinetic theory of gases2 and with the thermodynamics of
irreversible processes.3

b. Diffusive molar flux vector
The diffusive fluxes in molar units are written analogously. For the process illustrated

in Fig. 17.3-1, the molar flow rate of species A at steady state is

WAy

A
= c𝒟AB

xA0 − 0

Y
(17.3-7)

whereWAy is the number of moles of speciesA transported in the y direction per unit time,
c is the total molar concentration of the silica-helium system, and xA0 is the mole fraction
of species A at y = 0, which is also the solubility of species A expressed as a mole fraction.
Equation 17.3-7 can be rewritten for a differential element within the slab as

J*Ay = −c𝒟AB
dxA
dy

(17.3-8)

HereWAy∕A as been replaced by J*Ay, the diffusivemolar flux of helium in the positive ydirec-
tion. As before, the first index, A, designates the chemical species (in this case, helium),
and the second index indicates the direction in which diffusive transport is taking place
(in this case, the y direction). Note that the diffusivity that appears in Eqs. 17.3-7 and 17.3-8
is the same diffusivity that appears in Eqs. 17.3-1 and 17.3-2.

Equation 17.3-8 is another one-dimensional form of Fick’s first law of diffusion.1 It is
valid for any binary solid, liquid, or gas solution, provided that J*Ay is defined as the molar

flux relative to the molar average velocity of the mixture v*y ,

v*y = xAvAy + xBvBy (17.3-9)

as defined in §17.2. For the system examined in Fig. 17.3-1, the helium is moving rather
slowly and its concentration is very small, so that v*y is negligibly small.

The diffusive molar flux J*Ay is defined in general as

J*Ay = cxA(vAy − v*y) (17.3-10)

which again illustrates that this is the flux relative to the molar average velocity. The dif-
fusive molar flux of B is defined analogously. Equations 17.3-9 and 17.3-10 imply that J*Ay
and J*By are defined such that J*Ay + J*By = 0.

2S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Third Edition,

Cambridge University Press (1970), p. 257, Eq. 14.1,1.
3L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, London (1959), p. 224, Eq. 58.11; see

also R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Revised Second Edition, Wiley

(2007), Eqs. 24.1-8 and 24.2-4.
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For diffusion in three dimensions, the vector form of Fick’s law for the diffusive molar
flux vectors are written for species A and B as

J*A = −c𝒟AB∇xA (17.3-11)

J*B = −c𝒟BA∇xB (17.3-12)

where again,𝒟AB = 𝒟BA. These equations can be written in component form in Cartesian,
cylindrical, or spherical coordinates by using Appendix B.3 along with the appropriate
variable substitutions.

In Table 17.3-1, we summarize the main results of the above discussion of the various
expressions for the diffusive mass and molar fluxes.

The mass diffusivity 𝒟AB, the thermal diffusivity w = k∕iĈp, and the momentum dif-

fusivity (kinematic viscosity) l = 4∕i, all have dimensions of (length)2∕time. The ratios of
these three quantities are therefore dimensionless groups:

The Prandtl number: Pr = l
w
=

Ĉp4

k
(17.3-13)

The Schmidt number∶4 Sc = l
𝒟AB

= 4

i𝒟AB
(17.3-14)

The Lewis number∶4 Le = w
𝒟AB

= k

iĈp𝒟AB

(17.3-15)

Table 17.3-1. Diffusion Velocities and Diffusive Mass and Molar Flux Vectors

vA − v = diffusion velocity

of A relative to the

mass average

velocity v

(A) vA − v* = diffusion velocity

of A relative to the

molar average

velocity v*

(E)

jA = iA(vA − v) = diffusive mass flux

vector of A
(B) J*A = cA(vA − v*) = diffusive molar

flux vector of A
(F)

jA = −i𝒟AB∇aA diffusive mass flux

vector is

proportional to

mass fraction

gradient (Fick’s

law)

(C) J*A = −c𝒟AB∇xA diffusive molar flux

vector is

proportional to

mole fraction

gradient (Fick’s

law)

(G)

jA + jB = 0 (D) J*A + J*B = 0 (H)

The connection between diffusive mass and molar flux vectors is:
jA

iaAaB
=

J*A
cxAxB

(I)

Note: Vector components in Cartesian, cylindrical, and spherical coordinates can be obtained using

Appendix A. The components of Eq. C are written explicitly in Cartesian, cylindrical, and spherical

coordinates in Appendix B.3.

4These groups were named for: Ernst Heinrich Wilhelm Schmidt (1892–1975), who taught at the

universities in Gdansk, Braunschweig, and Munich (where he was the successor to Nusselt);Warren
Kendall Lewis (1882–1975), who taught at MIT and was a coauthor of the pioneering textbook: W. H.

Walker, W. K. Lewis, and W. H. McAdams, Principles of Chemical Engineering, McGraw-Hill, New York

(1923). Sometimes the Lewis number is erroneously attributed to Bernard Lewis, famous for his work in

flames, combustion, and explosions.
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These dimensionless groups of fluid properties play a prominent role in dimensionless

equations for systems in which competing transport processes are occurring. (Note: Some-
times the Lewis number is defined as the inverse of the expression above.)

A special case of binary diffusion is self-diffusion, namely, the interdiffusion of two

chemically identical species A and A*. Here A* is a “tagged” species, which may differ
physically from A by virtue of radioactivity or other nuclear properties such as the mass,

magnetic moment, or spin.5

EXAMPLE 17.3-1

Diffusion of Helium
through a Pyrex Glass
Plate

Calculate the steady-state mass flux jAy of helium for the system of Fig. 17.3-1 at 500∘C. The par-
tial pressure of helium is 1 atm at y = 0 and zero at the upper surface of the plate. The thickness

Y of the Pyrex plate is 10−2 mm, and its density i(B) is 2.6 g∕cm3. The solubility and diffusiv-

ity of helium in Pyrex are reported6 as 0.0084 volumes of gaseous helium per volume of glass,

and 𝒟AB = 0.2 × 10−7 cm2∕s, respectively. Show that the neglect of the mass average velocity

implicit in Eq. 17.3-4 is reasonable.

SOLUTION

Themass concentration of helium in the glass at the lower surface is obtained from the solubility

data and the ideal-gas law:

iA0 = (0.0084)
pA0MA

RT

= (0.0084)
(1.0 atm)(4.00 g∕g-mol)

(82.05 cm3atm∕g-mol K)(773 K)
= 5.3 × 10−7 g∕cm3 (17.3-16)

The mass fraction of helium in the solid phase at the lower surface is then

aA0 =
iA0

iA0 + iB0
=

5.3 × 10−7 g∕cm3

5.3 × 10−7 + 2.6 g∕cm3
= 2.04 × 10−7 (17.3-17)

We may now calculate the flux of helium from Eq. 17.3-1 as

jAy = (2.6 g∕cm3)(2.0 × 10−8 cm2∕s)2.04 × 10−7

10−3 cm
= 1.05 × 10−11 g∕cm2s (17.3-18)

Next, the velocity of the helium can be obtained from Eq. 17.3-4:

vAy =
jAy
iA

+ vy (17.3-19)

At the lower surface of the plate (y = 0), this velocity has the value

vAy|y=0 = 1.05 × 10−11 g∕cm2s

5.3 × 10−7 g∕cm3
+ vy0 = 1.98 × 10−5 cm∕s + vy0 (17.3-20)

5E. O. Stejskal and J. E. Tanner, J. Chem. Phys., 42, 288–292 (1965); P. Stilbs, Prog. NMR Spectros., 19,
1–45 (1987); P. T. Callaghan and J. Stepišnik, Adv. Magn. Opt. Reson., 19, 325–388 (1996).

6C. C. Van Voorhis, Phys. Rev. 23, 557 (1924), as reported by R. M. Barrer, Diffusion in and through
Solids, corrected printing, Cambridge University Press (1951).
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The corresponding value vy0 of the mass average velocity of the glass-helium system at y = 0

is then obtained from Eq. 17.3-3

vy0 = (2.04 × 10−7)(1.98 × 10−5 cm∕s + vy0) + (1 − 2.04 × 10−7)(0)

vy0 =
(2.04 × 10−7)(1.98 × 10−5 cm∕s)

1 − 2.04 × 10−7

= 4.04 × 10−12 cm∕s (17.3-21)

Thus, it is safe to neglect vy in Eq. 17.3-19 (i.e., Eq. 17.3-4), and the analysis of the experiment

in Fig. 17.3-1 at steady state is accurate.

EXAMPLE 17.3-2

The Equivalence of
𝓓AB and𝓓BA

Show that only one diffusivity is needed to describe the diffusional behavior of an isotropic

binary mixture.

SOLUTION

We begin by writing Eq. 17.3-6 as follows:

jB = −i𝒟BA∇aB = +i𝒟BA∇aA (17.3-22)

The second form of this equation follows from the fact that aA + aB = 1. We next use the vector

equivalents of Eqs. 17.3-3 and 17.3-4 to write

jA = iaA(vA − v)

= iaA(vA − aAvA − aBvB)

= iaA((1 − aA)vA − aBvB)
= iaAaB(vA − vB) (17.3-23)

Interchanging A and B in this expression shows that jA = −jB. Combining this with the second

form of Eq. 17.3-22 then gives

jA = −i𝒟BA∇aA (17.3-24)

Comparing this with Eq. 17.3-5 gives𝒟AB = 𝒟BA. We find that the order of subscripts is unim-

portant for a binary system and that only one diffusivity is required to describe the diffusional

behavior.

Keep in mind that the diffusivities are concentration-dependent, and that𝒟AB = 𝒟BA
is true at each composition. However, it may well be that the diffusivity for a dilute solu-
tion of A in B and that for a dilute solution of B in A are numerically different, because
these two cases refer to two different compositions.

In this section we have discussed the diffusion that occurs as a result of a concen-
tration gradient in the system, i.e., mass diffusion, concentration diffusion, or ordinary dif-
fusion. There are, however, still more kinds of diffusion: thermal diffusion, which results
from a temperature gradient; pressure diffusion, resulting from a pressure gradient; and
forced diffusion, which is caused by unequal external forces acting on the chemical species.
For the time being, we consider only concentration diffusion, and we postpone discus-
sion of the other mechanisms until Chapter 24. Also, in that chapter we discuss the use
of the activity gradient, rather than the concentration gradient, as the driving force for
ordinary diffusion.
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§17.4 TOTAL MASS ANDMOLAR FLUX VECTORS

In Chapter 1 we combined the convective momentum flux 0(c) = ivv and the molecular
moment flux 0 = f + pt to create the total momentum flux d. In Chapter 9 we combined

the convective energy flux q(c) = i
(
Û + 1

2
v2

)
v with the molecular energy flux q +w =

−k∇T + [0 ⋅ v] to create the total energy flux e. These total fluxes were then used to solve
momentum and energy balances. In this section we combine the convective and diffu-
sive mass and molar flux vectors to create total mass and molar flux vectors. These total
fluxes will then be used in Chapters 18 and 19 for setting up shell balances and deriving
equations of change to solve mass-transfer problems.

a. Total mass flux vector
The total mass flux vector nA is obtained by summing the convective mass flux vector

j(c)A = iAv and the diffusive mass flux vector jA,

nA = iAv + jA (17.4-1)

with an analogous equation for nB. The total flux can also be written in terms of the veloc-
ity of speciesA. Following the derivation of the convectivemass flux in §17.2, the total flux
relative to a fixed coordinate system can be expressed nA = iAvA. Adding this to the anal-
ogous expression for species B, we obtain nA + nB = (iAvA + iBvB) = i(aAvA + aBvB) = iv.
Thus, v in Eq. 17.4-1 can be replaced by (nA + nB)∕i. If we also replace jA by −i𝒟AB∇aA
by using Fick’s law of diffusion (Eq. 17.3-5), Eq. 17.4-1 can be rewritten as

nA = aA(nA + nB) − i𝒟AB∇aA (17.4-2)

This equation can be written in component form in Cartesian, cylindrical, and spherical
coordinates with the help of Appendix B.3.

b. Total molar flux vector
The total molar flux vector NA is defined analogously, by summing the convective

molar flux vector J*(c)A = cAv* and the diffusive molar flux vector J*A,

NA = cAv* + J*A (17.4-3)

This total flux can also be written in terms of just the velocity of species A. Following the
derivation of the convectivemolar flux in §17.2, the totalmolar flux relative to a fixed coor-
dinate system can be expressed NA = cAvA. Adding this to the analogous expression for
species B, we get NA +NB = (cAvA + cBvB) = c(xAvA + xBvB) = cv*. Thus, v* in Eq. 17.4-3
can be replaced by (NA +NB)∕c. If we also replace J*A by −c𝒟AB∇xA by using Fick’s law of
diffusion (Eq. 17.3-11), Eq. 17.4-3 can be rewritten as

NA = xA(NA +NB) − c𝒟AB∇xA (17.4-4)

This equation can be written in component form in Cartesian, cylindrical, and spherical
coordinates with the help of Appendix B.3 along with the appropriate variable substi-
tutions. In Table 17.4-1, we give a summary of the notation used for the total mass and
molar fluxes as well as several useful relations. In Table 17.4-2 we give several common
expressions using Fick’s law of diffusion, both in mass units and in molar units.

In Chapter 18 we will use the total molar fluxNA extensively in the form of Eq. 17.4-4.
It is this form that has generally been used in chemical engineering. In many problems
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Table 17.4-1. Total Mass and Molar Flux Vectors

Total mass flux of A: Total molar flux of A:
nA = j(c)A + jA = iAvA (A) NA = J*(c)A + J*A = cAvA (E)

= iAv + jA (B) = cAv* + J*A (F)

= iAv − i𝒟AB∇aA (C) = cAv* − c𝒟AB∇xA (G)

Sum of total mass flux vectors: Sum of total molar flux vectors:

nA + nB = iv (D) NA +NB = cv* (H)

Interrelation:

nA = MANA (I)

Note: Vector components in Cartesian, cylindrical, and spherical coordinates can be obtained using

Appendix A.

Table 17.4-2. Common Expressions Using Fick’s Law for Binary Mixtures

jA = −i𝒟AB∇aA (A) J*A = −c𝒟AB∇xA (D)

nA = aA(nA + nB) − i𝒟AB∇aA (B) NA = xA(NA +NB) − c𝒟AB∇xA (E)

i(vA − vB) = −
i𝒟AB

aAaB
∇aA (C) c(vA − vB) = −

c𝒟AB

xAxB
∇xA (F)

Note: Vector components in Cartesian, cylindrical, and spherical coordinates can be

obtained using Appendix A.

something is known about the relation between NA and NB, for example, from reaction
stoichiometry or from boundary conditions. Therefore, NB can be eliminated from Eq.
17.4-4 giving a direct relation betweenNA and xA for the particular problem.

§17.5 DIFFUSIVITY DATA FROM EXPERIMENTS

In Tables 17.5-1 through 17.5-4 some values of𝒟AB in cm2∕s are given for a few gas, liquid,
solid, and polymer systems. These values can be converted to m2∕s by multiplication
by 10−4. Diffusivities of gases at low density are almost independent of aA, increase
with temperature, and vary inversely with pressure. Liquid and solid diffusivities
are strongly concentration-dependent and generally increase with temperature. There
are numerous ways of measuring diffusivities, and some of these are described in
subsequent chapters.1

For gas mixtures, the Schmidt number can range from about 0.2 to 3, as can be seen in
Table 17.5-1. For liquid mixtures, values up to 40,000 have been observed.2

1For an extensive discussion see W. E. Wakeham, A. Nagashima, and J. V. Sengers, Measurement of
the Transport Properties of Fluids: Experimental Thermodynamics, Vol. III, CRC Press, Boca Raton, FL (1991).

2D. A. Shaw and T. J. Hanratty, AIChE Journal, 23, 28–37, 160–169 (1977); P. Harriott and R. M.

Hamilton, Chem. Eng. Sci., 20, 1073–1078 (1965).
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Table 17.5-1. Experimental Diffusivitiesa and Limiting Schmidt Numbersb of Gas Pairs at 1

Atmosphere Pressure

Sc = l∕𝒟AB

Gas Pair A - B Temperature (K) 𝒟AB (cm2∕s) xA → 1 xB → 1

CO2 - N2O 273.2 0.096 0.73 0.72

CO2 - CO 273.2 0.139 0.50 0.96

CO2 - N2 273.2 0.144 0.48 0.91

288.2 0.158 0.49 0.92

298.2 0.165 0.50 0.93

N2 - C2H6 298.2 0.148 1.04 0.51

N2 - nC4H10 298.2 0.0960 1.60 0.33

N2 - O2 273.2 0.181 0.72 0.74

H2 - SF6 298.2 0.420 3.37 0.055

H2 - CH4 298.2 0.726 1.95 0.23

H2 - N2 273.2 0.674 1.40 0.19

NH3 - H2
c 263 0.58 0.19e 1.53

NH3 - N2
c 298 0.233 0.62e 0.65

H2O - N2
c 308 0.259 0.58e 0.62

H2O - O2
c 352 0.357 0.56e 0.59

C3H8 - nC4H10
d 378.2 0.0768 0.95 0.66

437.7 0.107 0.91 0.63

C3H8 - iC4H10
d 298.0 0.0439 1.04 0.73

378.2 0.0823 0.89 0.63

437.8 0.112 0.87 0.61

C3H8 - neo-C5H12
d 298.1 0.0431 1.06 0.56

378.2 0.0703 1.04 0.55

437.7 0.0945 1.03 0.55

nC4H10 - neo-C5H12
d 298.0 0.0413 0.76 0.59

378.2 0.0644 0.78 0.61

437.8 0.0839 0.80 0.62

iC4H10 - neo-C5H12
d 298.1 0.0362 0.89 0.67

378.2 0.0580 0.89 0.67

437.7 0.0786 0.87 0.66

aUnless otherwise indicated, the values are taken from J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,

Molecular Theory of Gases and Liquids, 2nd corrected printing, Wiley, New York (1964), p. 579. All values

are given for 1 atmosphere pressure.
bCalculated using the Lennard-Jones parameters of Table D.1. The parameters for sulfur hexafluoride

were obtained from second virial coefficient data.
cValues of𝒟AB for the water and ammonia mixtures are taken from the tabulation of B. E. Poling, J. M.

Prausnitz, and J. P. O’Connell, The Properties of Gases and Liquids, 5th edition, McGraw-Hill, New York

(2001).
dValues of𝒟AB for the hydrocarbon-hydrocarbon pairs are taken from S. Gotoh, M. Manner, J. P.

Sørensen, and W. E. Stewart, J. Chem. Eng. Data, 19, 169–171 (1974).
eValues of 4 for water and ammonia were calculated from functions provided by T. E. Daubert, R. P.

Danner, H. M. Sibul, C. C. Stebbins, J. L. Oscarson, R. L. Rowley, W. V. Wilding, M. E. Adams, T. L.

Marshall, and N. A. Zundel, DIPPR®, Data Compilation of Pure Compound Properties, Design Institute for

Physical Property Data®, AIChE, New York, NY (2000).



Trim Size: 8in x 10in Bird1e c17.tex V1 - October 21, 2014 4:19 P.M. Page 503

§17.5 Diffusivity Data From Experiments 503

Table 17.5-2. Experimental Diffusivities in the Liquid State a,b

A B T (∘C) xA 𝒟AB × 105 (cm2∕s)

Chlorobenzene Bromobenzene 10.10 0.0332 1.007

0.2642 1.069

0.5122 1.146

0.7617 1.226

0.9652 1.291

39.92 0.0332 1.584

0.2642 1.691

0.5122 1.806

0.7617 1.902

0.9652 1.996

Water n-Butanol 30 0.131 1.24

0.222 0.920

0.358 0.560

0.454 0.437

0.524 0.267

Ethanol Water 25 0.026 1.076

0.266 0.368

0.408 0.405

0.680 0.743

0.880 1.047

0.944 1.181

aThe data for the first two pairs above are taken from a review article by P. A. Johnson and A. L. Babb,

Chem. Revs., 56, 387–453 (1956). Other summaries of experimental results may be found in: P. W. M.

Rutten, Diffusion in Liquids, Delft University Press, Delft, The Netherlands (1992); L. J. Gosting, Adv. in
Protein Chem., Vol. XI, Academic Press, New York (1956); A. Vignes, IEC Fundamentals, 5, 189–199 (1966).
bThe ethanol-water data were taken fromM. T. Tyn andW. F. Calus, J. Chem. Eng. Data, 20, 310–316 (1975).

Table 17.5-3. Experimental Diffusivities in the Solid State a

A B T (∘C ) 𝒟AB (cm2∕s)

He SiO2 20 2.4 – 5.5 × 10−10

He Pyrex 20 4.5 × 10−11

500 2 × 10−8

H2 SiO2 500 0.6 – 2.1 × 10−8

H2 Ni 85 1.16 × 10−8

165 10.5 × 10−8

Bi Pb 20 1.1 × 10−16

Hg Pb 20 2.5 × 10−15

Sb Ag 20 3.5 × 10−21

Al Cu 20 1.3 × 10−30

Cd Cu 20 2.7 × 10−15

aIt is presumed that in each of the above pairs, component A is present only in

very small amounts. The data are taken from R. M. Barrer, Diffusion in and
through Solids, Macmillan, New York (1941), pp. 141, 222, and 275.
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Table 17.5-4. Experimental Diffusivities of Gases in Polymers.a

Diffusivities,𝒟AB, are given in units of 10−6 (cm2∕s). The values for N2 and

O2 are for 298K, and those for CO2 and H2 are for 198K

N2 O2 CO2 H2

Polybutadiene 1.1 1.5 1.05 9.6

Silicone rubber 15 25 15 75

Trans-1,4-polyisoprene 0.50 0.70 0.47 5.0

Polystyrene 0.06 0.11 0.06 4.4

aExcerpted from D. W. van Krevelen, Properties of Polymers, 3rd edition, Elsevier,

Amsterdam (1990), pp. 544–545. Another relevant reference is S. Pauly, in Polymer
Handbook, 4th edition (J. Brandrup and E. H. Immergut, eds.), Wiley-Interscience,

New York (1999), Chapter VI.

§17.6 DIFFUSIVITY AND THE PRINCIPLE OF
CORRESPONDING STATES

In this section we discuss the prediction of the𝒟AB for binary systems by corresponding-
states methods. These methods are also useful for extrapolating existing data. Compar-
isons of many alternative methods are available in the literature.1,2

For binary gasmixtures at low pressure,𝒟AB is inversely proportional to the pressure,
increases with increasing temperature, and is almost independent of the composition for
a given gas pair. The following equation for estimating 𝒟AB at low pressures has been
developed3 from a combination of kinetic theory and corresponding-states arguments:

p𝒟AB

(pcApcB)1∕3(TcATcB)5∕12(1∕MA + 1∕MB)1∕2
= a

(
T√

TcATcB

)b

(17.6-1)

Here 𝒟AB [=] cm2∕s, p [=] atm, and T [=] K. Analysis of experimental data gives a =
2.745 × 10−4 (cm2∕s)(atm)1∕3(K)-5∕6(g∕g-mol)1∕2 and b = 1.823 (dimensionless) for nonpo-
lar gas pairs, excluding helium and hydrogen, and a = 3.640 × 10−4 and b = 2.334 for pairs
consisting of H2O and a nonpolar gas. Equation 17.6-1 fits the experimental data at atmo-
spheric pressurewithin an average deviation of 6% to 8%. If the gasesA andB are nonpolar
and their Lennard-Jones parameters are known, the kinetic theory method described in
the next section usually gives somewhat better accuracy.

At high pressures, and in the liquid state, the behavior of 𝒟AB is more complicated.
The simplest and best understood situation is that of self-diffusion (interdiffusion of
labeled molecules of the same chemical species). We discuss this case first and then
extend the results approximately to binary mixtures.

A corresponding-states plot of the self-diffusivity 𝒟AA* for nonpolar substances is
given in Fig. 17.6-1.4 This plot is based on self-diffusion measurements, supplemented

1B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases and Liquids, 5th edition,

McGraw-Hill, New York (2001), Chapter 11.
2E. N. Fuller, P. D. Shettler, and J. C. Giddings, Ind. Eng. Chem., 58, No. 5, 19–27 (1966); Erratum: ibid.

58, No. 8, 81 (1966). This paper gives a useful method for predicting binary gas diffusivities from the

molecular formulas of the two species.
3J. C. Slattery and R. B. Bird, AIChE Journal, 4, 137–142 (1958).
4Other correlations for self-diffusivity at elevated pressures have appeared in Ref. 3 and in L. S. Tee,

G. F. Kuether, R. C. Robinson, and W. E. Stewart, API Proceedings, Division of Refining, 235–243 (1966);
R. C. Robinson and W. E. Stewart, IEC Fundamentals, 7, 90–95 (1968); J. L. Bueno, J. Dizy, R. Alvarez, and

J. Coca, Trans. Inst. Chem. Eng., 68, Part A, 392–397 (1990).
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Fig. 17.6-1. A
corresponding-states plot for

the reduced self-diffusivity.

Here (c𝒟AA* )r = (i𝒟AA* )r for
Ar, Kr, Xe, and CH4 is plotted as

a function of reduced

temperature for several values

of the reduced pressure. This

chart is based on diffusivity

data of J. J. van Loef and E. G.

D. Cohen, Physica A, 156,
522–533 (1989), the

compressibility function of B. I.

Lee and M. G. Kessler, AIChE
Journal, 21, 510–527 (1975), and
Eq. 17.7-11 for the low-pressure

limit.

by molecular dynamics simulations, and by kinetic theory for the low-pressure limit. The
ordinate is c𝒟AA* at pressure p and temperature T, divided by c𝒟AA* at the critical point.
This quantity is plotted as a function of the reduced pressure pr = p∕pc and the reduced
temperature Tr = T∕Tc. Because of the similarity of species A and the labeled species A*,
the critical properties are all taken as those of species A.

From Fig. 17.6-1 we see that c𝒟AA* increases strongly with temperature, especially for
liquids. At each temperature, c𝒟AA* decreases toward zero with increasing pressure.With
decreasing pressure, c𝒟AA* increases toward a low-pressure limit, as predicted by kinetic
theory (see §17.7). The reader is warned that this chart is tentative, and that the curves,
except for the low-density limit, are based on data for a very few substances: Ar, Kr, Xe,
and CH4.

The quantity (c𝒟AA* )c may be estimated by one of the following three methods:

(i) Given c𝒟AA* at a known temperature and pressure, one can read (c𝒟AA* )r from
the chart and get (c𝒟AA* )c = (c𝒟AA* )∕(c𝒟AA* )r.

(ii) One can predict a value of c𝒟AA* in the low-density region by themethods given
in §17.7 and then proceed as in (i).

(iii) One can use the empirical formula (see Problem 17A.9)

(c𝒟AA* )c = 2.96 × 10−6
(

1

MA
+ 1

MA*

)1∕2 p2∕3cA

T1∕6
cA

(17.6-2)
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This equation, like Eq. 17.6-1, should not be used for helium or hydrogen isotopes. Here
c [=] g-mol∕cm3, 𝒟AA* [=] cm2∕s, Tc [=] K, and pc [=] atm; the constant 2.96 × 10−6 has
units of (g-mol∕cm ⋅ s) (g∕g-mol)1∕2 K1∕6 atm−2∕3.

Thus far, the discussion of high-density behavior has been concerned with
self-diffusion. We turn now to the binary diffusion of chemically dissimilar species.
In the absence of other information, it is suggested that Fig. 17.6-1 may be used for crude

estimation of c𝒟AB, with pcA and TcA replaced everywhere by
√
pcApcB and

√
TcATcB,

respectively (see Problem 17A.9 for the basis for this empiricism). The ordinate of the plot
is then interpreted as (c𝒟AB)r = c𝒟AB∕(c𝒟AB)c and Eq. 17.6-2 is replaced by

(c𝒟AB)c = 2.96 × 10−6
(

1

MA
+ 1

MB

)1∕2 (pcApcB)1∕3

(TcATcB)1∕12
(17.6-3)

With these substitutions, accurate results are obtained in the low-pressure limit. At higher
pressures, very few data are available for comparison, and the method must be regarded
as provisional.

The results in Fig. 17.6-1, and their extensions to binary systems, are expressed in
terms of c𝒟AA* and c𝒟AB rather than𝒟AA* and𝒟AB. This is done because the products of
concentration and diffusivity are more frequently required in mass-transfer calculations,
and their dependence on pressure and temperature is simpler.

EXAMPLE 17.6-1

Estimation of
Diffusivity at Low
Density

Estimate𝒟AB for the system CO-CO2 at 296.1K and 1 atm total pressure.

SOLUTION

The properties needed for Eq. 17.2-1 are (see Table D.1):

Label Species M (g/g-mol) Tc (K) pc (atm)

A CO 28.01 133 34.5

B CO2 44.01 304.2 72.9

Therefore,

(pcApcB)1∕3 = (34.5 atm × 72.9 atm)1∕3 = 13.60 atm2∕3

(TcATcB)5∕12 = (133 K × 304.2 K)5∕12 = 83.1 K5∕6

(
1

MA
+ 1

MB

)1∕2

=
(

1

28.01

g-mol

g
+ 1

44.01

g-mol

g

)1∕2

= 0.2417

(
g-mol

g

)1∕2

a

(
T√

TcATcB

)b

= 2.745 × 10−4 (cm2∕s)(atm)1∕3(K)−5∕6(g∕g-mol)1∕2

×

(
296.1 K√

133 K × 304.2 K

)1.823

= 5.56 × 10−4 (cm2∕s)(atm)1∕3(K)−5∕6(g∕g-mol)1∕2

Substitution of these values into Eq. 17.6-1 gives

(1.0 atm)𝒟AB = 5.56 × 10−4 (cm2∕s)(atm)1∕3(K)−5∕6(g∕g-mol)1∕2

× 13.60 atm2∕3(83.1 K5∕6)(0.2417 (g∕g-mol)−1∕2) (17.6-4)
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This gives 𝒟AB = 0.152 cm2∕s, in agreement with the experimental value.5 This is unusually

good agreement.

This problem can also be solved by means of Fig. 17.6-1 and Eq. 17.6-3, together with the

ideal-gas law p = cRT. The result is𝒟AB = 0.140 cm2∕s, in fair agreement with the data.

EXAMPLE 17.6-2

Estimation of
Self-Diffusivity at
High Density

Estimate c𝒟AA* for C14O2 in ordinary CO2 at 171.7 atm and 373K. It is known6 that 𝒟AA* =
0.113 cm2∕s at 1.00 atm and 298K, at which condition c = p∕RT = 4.12 × 10−5 g-mol∕cm3.

SOLUTION

Since a measured value of 𝒟AA* is given, we use Method (i). The reduced conditions of the

measurement are: Tr = 298∕304.2 = 0.980 and pr = 1.00∕72.9 = 0.014. Then from Fig. 17.6-1, we

get the value (c𝒟AA* )r = 0.98. Hence,

(c𝒟AA* )c =
c𝒟AA*
(c𝒟AA* )r

=
(4.12 × 10−5 g-mol∕cm3)(0.113 cm2∕s)

0.98

= 4.75 × 10−6 g-mol∕cm ⋅ s (17.6-5)

At the conditions of prediction (Tr = 373∕304.2 = 1.23 and pr = 171.7∕72.9 = 2.36), we read

(c𝒟AA* )r = 1.21. The predicted value is then

c𝒟AA* = (c𝒟AA* )r(c𝒟AA* )c = (1.21)(4.75 × 10−6 g-mol∕cm ⋅ s)
= 5.75 × 10−6 g-mol∕cm ⋅ s (17.6-6)

The data of O’Hern andMartin7 give c𝒟AA* = 5.89 × 10−6 g-mol∕cm ⋅ s at these conditions. This
good agreement is not unexpected, inasmuch as their low-pressure data were used in the esti-

mation of (c𝒟AA* )c.
This problem can also be solved by Method (iii) without an experimental value of c𝒟AA* .

Equation 17.4-2 gives directly

(c𝒟AA* )c = 2.96 × 10−6 (g-mol∕cm s) (g∕g-mol)1∕2 K1∕6 atm−2∕3

×
(

1

44.01

g-mol

g
+ 1

46

g-mol

g

)1∕2 (72.9 atm)2∕3

(304.2 K)1∕6
= 4.20 × 10−6 g-mol∕cm ⋅ s (17.6-7)

The resulting predicted value of c𝒟AA* is 5.1 × 10−6 g-mol∕cm ⋅ s.

EXAMPLE 17.6-3

Estimation of Binary
Diffusivity at High
Density

Estimate c𝒟AB for a mixture of 80mole% CH4 and 20mole% C2H6 at 136 atm and 313 K. It

is known that, at 1 atm and 293 K, the molar density is c = 4.17 × 10−5 g-mol∕cm3 and 𝒟AB =
0.163 cm2∕s.

SOLUTION

Figure 17.6-1 is used, with Method (i). The reduced conditions for the known data are

Tr =
T√

TcATcB

= 293 K√
(190.7 K)(305.4 K)

= 1.22 (17.6-8)

pr =
p√

pcApcB
= 1.0 atm√

(45.8 atm)(48.2 atm)
= 0.021 (17.6-9)

5B. A. Ivakin and P. E. Suetin, Sov. Phys. Tech. Phys. (English translation), 8, 748–751 (1964).
6E. B. Wynn, Phys. Rev., 80, 1024–1027 (1950).
7H. A. O’Hern and J. J. Martin, Ind. Eng. Chem., 47, 2081–2086 (1955).
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FromFig. 17.6-1 at these conditions, we obtain (c𝒟AB)r = 1.21. The critical value (c𝒟AB)c is there-
fore

(c𝒟AB)c =
c𝒟AB

(c𝒟AB)r
=

(4.17 × 10−5 g-mol∕cm3)(0.163 cm2∕s)
1.21

= 5.62 × 10−6 g-mol∕cm ⋅ s (17.6-10)

Next we calculate the reduced conditions for the prediction (Tr = 1.30, pr = 2.90) and read the

value (c𝒟AB)r = 1.31 from Fig. 17.6-1. The predicted value of c𝒟AB is therefore

c𝒟AB = (c𝒟AB)r(c𝒟AB)c = (1.31)(5.62 × 10−6 g-mol∕cm ⋅ s)
= 7.4 × 10−6 g-mol∕cm ⋅ s (17.6-11)

Experimental measurements8 give c𝒟AB = 6.0 × 10−6 g-mol∕cm ⋅ s, so that the predicted value

is 23% high. Deviations of this magnitude are not unusual in the estimation of c𝒟AB at high

densities.

An alternative solution may be obtained by Method (iii). Substitution into Eq. 17.6-3 gives

(c𝒟AA* )c = 2.96 × 10−6 (g-mol∕cm ⋅ s) (g∕g-mol)1∕2 K1∕6 atm−2∕3

×
(

1

16.04

g-mol

g
+ 1

30.07

g-mol

g

)1∕2 (45.8 atm × 48.2 atm)1∕3

(190.7 K × 305.4 K)1∕12
= 4.78 × 10−6 g-mol∕cm ⋅ s (17.6-12)

Multiplication by (c𝒟AB)r at the desired condition gives

c𝒟AB = (4.78 × 10-6 g-mol∕cm ⋅ s)(1.31)
= 6.26 × 10−6 g-mol∕cm ⋅ s (17.6-13)

This is in closer agreement with the measured value.8

§17.7 DIFFUSIVITY OF GASES AND KINETIC THEORY

The diffusivity𝒟AB for binary mixtures of nonpolar gases is predictable within about 5%
by kinetic theory. As in the earlier kinetic theory discussions in §1.6 and §9.7, we start with
a simplified derivation to illustrate the mechanisms involved and then present the more
accurate results of the Chapman-Enskog theory.

Consider a large body of gas containing molecular species A and A*, which are iden-
tical except for labeling. We wish to determine the self-diffusivity 𝒟AA* in terms of the
molecular properties on the assumption that themolecules are rigid spheres of equal mass
mA and diameter dA.

Since the properties of A and A* are nearly the same, we can use the following results
of the kinetic theory for a pure rigid-sphere gas at low density in which the gradients of
temperature, pressure, and velocity are small:

u =

√
8KT
0mA

=mean molecular speed relative to v (17.7-1)

Z = 1

4
nu = wall collision frequency per unit area in a stationary gas (17.7-2)

m = 1√
20d2An

= mean free path (17.7-3)

8V. J. Berry, Jr., and R. C. Koeller, AIChE Journal, 6, 274–280 (1960).
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The molecules reaching any plane in the gas have, on the average, had their last collision
at a distance a from the plane, where

a = 2

3
m (17.7-4)

In these equations, n is the number density (total number of molecules per unit volume).
To predict the self-diffusivity𝒟AA* , we consider themotion of speciesA in the y direc-

tion under amass fraction gradient daA∕dy (see Fig. 17.7-1), where the fluidmixturemoves
in the y direction at a finite mass average velocity vy throughout. The temperature T and
the totalmolarmass concentration i are considered constant.We assume that Eqs. 17.7-1 to
17.7-4 remain valid in this nonequilibrium situation. The net mass flux of species A cross-
ing a unit area of any plane of constant y is found by writing an expression for the mass
of A crossing the plane in the positive y direction and subtracting the mass of A crossing
in the negative y direction:

(iaAvy)|y +
[(

1

4
iaAu

)|||||y−a −
(
1

4
iaAu

)|||||y+a
]

(17.7-5)

Here the first term is the mass transport in the y direction because of the mass motion
of the fluid—that is, the convective transport—and the last two terms give the diffusive
transport relative to vy.

It is assumed that the concentration profile aA(y) is very nearly linear over distances
of several mean free paths. Then we may write

aA|y±a = aA|y ± 2

3
m
daA

dy
(17.7-6)

Combination of the last two equations then gives for the total mass flux at plane y:

nAy = iaAvy −
1

3
ium

daA

dy

≡ iaAvy − i𝒟AA*
daA

dy
(17.7-7)

This is the convective mass flux plus the diffusive mass flux, the latter being given by
Eq. 17.3-2. Therefore, we get the following expression for the self-diffusivity:

𝒟AA* = 1

3
um (17.7-8)

y

x

λ

a

a

ωA|y + a

ωA|y

ωA|y – a

Mole-fraction
profile ωA(y)

Molecule arriving at y
after collision at y – a.
The fraction of such
molecules that are of
species A is ωA|y – a

Fig. 17.7-1. Molecular transport

of species A from the plane at

(y − a) to the plane at y.
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Finally, making use of Eqs. 17.7-1 and 17.7-3, we get

𝒟AA* = 2

3

√
KT∕0mA

0d2A

1

n
= 2

30

√
0mAKT

0d2A

1

i
(17.7-9)

which can be compared with Eq. 1.6-9 for the viscosity and Eq. 9.7-12 for the thermal
conductivity.

The development of a formula for𝒟AB for rigid spheres of unequal masses and diam-
eters is considerably more difficult. We simply quote the result1 here:

𝒟AB = 2

3

√
KT
0

√
1

2

(
1

mA
+ 1

mB

)
1

0
(

1

2

(
dA + dB

))2

1

n
(17.7-10)

That is, 1∕mA is replaced by the arithmetic average of 1∕mA and 1∕mB, and dA by the arith-
metic average of dA and dB.

The preceding discussion shows how the diffusivity can be obtained by mean-free
path arguments. For accurate results, the Chapman-Enskog kinetic theory should be used.
The Chapman-Enskog results for viscosity and thermal conductivity were given in §1.6
and §9.7, respectively. The corresponding formula for c𝒟AB is:2,3

c𝒟AB =
3

16

√
2RT
0

(
1

MA
+ 1

MB

)
1

Ñg2AB1𝒟 ,AB

= 2.2646 × 10−5

√
T
(

1

MA
+ 1

MB

)
1

g2AB1𝒟 ,AB

(17.7-11)

Or, if we approximate c by the ideal-gas law p = cRT, we get for 𝒟AB

𝒟AB =
3

16

√
2(RT)3

0

(
1

MA
+ 1

MB

)
1

Ñpg2AB1𝒟 ,AB

= 0.0018583

√
T3

(
1

MA
+ 1

MB

)
1

pg2AB1𝒟 ,AB

(17.7-12)

In the second lines of Eqs. 17.7-11 and 17.7-12, 𝒟AB [=] cm2∕s, gAB [=] Å, T [=] K,
and p [=] atm; the numerical constants in Eqs. 17.7-11 and 17.7-12 have units of

(g-mol∕cm s)(K−1∕2)(g∕g-mol)−1∕2Å2
and (cm2∕s)K−3∕2(g∕g-mol)1∕2atm Å

2
, respectively.

The dimensionless quantity 1𝒟 ,AB—the “collision integral” for diffusion—is a
function of the dimensionless temperature KT∕sAB. The parameters gAB and sAB are those
appearing in the Lennard-Jones potential between one molecule of A and one of B (cf. Eq.
1.6-10),

3AB(r) = 4sAB

[(gAB
r

)12
−

(gAB
r

)6]
(17.7-13)

and are given for nonpolar gas pairs by4

gAB = 1

2
(gA + gB) and sAB =

√
sAsB (17.7-14,15)

1A similar result is given by R. D. Present, Kinetic Theory of Gases, McGraw-Hill, New York (1958),

p. 55.
2S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Third Edition,

Cambridge University Press (1970), Chapters 10 and 14.
3J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, 2nd Corrected

Printing, Wiley, New York (1964), p. 539.
4J. O. Hirschfelder, R. B. Bird, and E. L. Spotz, Chem. Revs., 44, 205–231 (1949); S. Gotoh, M. Manner,

J. P. Sørensen, and W. E. Stewart, J. Chem. Eng. Data, 19, 169–171 (1974).
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The function 1𝒟 ,AB is given in Table D.2 and Eq. D.2-2. From these results, one can com-
pute that𝒟AB increases roughly as the 2.0 power of T at low temperatures and as the 1.65
power of T at very high temperatures; see the pr → 0 curve in Fig 17.6-1. For rigid spheres,
1𝒟 ,AB would be unity at all temperatures and a result analogous to Eq. 17.7-10 would be
obtained.

The parameters gAB and sAB could, in principle, be determined directly from accu-
rate measurements of 𝒟AB over a wide range of temperatures. Suitable data are not yet
available for many gas pairs, and hence, Eqs. 17.7-14 and 17.7-15 are normally used.

For isotopic pairs, gAA* = gA = gA* and sAA* = sA = sA* ; that is, the intermolecular
force fields for the various pairs A - A*, A* - A*, and A - A are virtually identical, and
the parameters gA and sA may be obtained from viscosity data on pure A. If, in addition,
MA is large, Eq. 17.7-11 simplifies to

c𝒟AA* = 3.2027 × 10−5

√
T
MA

1

g2A1𝒟 ,AA*
(17.7-16)

the numerical constant having the units of (g-mol∕cm ⋅ s)(K−1∕2)(g∕g-mol)−1∕2Å2
. The cor-

responding equation for the rigid-sphere model is given in Eq. 17.7-9.
Comparison of Eq. 17.7-16 with Eq. 1.6-14 shows that the self-diffusivity 𝒟AA* and

the viscosity 4 (or kinematic viscosity l) are related as follows for heavy isotopic gas pairs
at low density:

4

i𝒟AA*
= l

𝒟AA*
= 5

6

1𝒟 ,AA*

14

(17.7-17)

in which 14 ≈ 1.11𝒟 ,AA* over a wide of KT∕sA, as may be seen in Table D.2. Thus,𝒟AA* ≈
1.32l for the self-diffusivity. The relation between l and the binary diffusivity 𝒟AB is not
so simple, because l may vary considerably with the composition. The Schmidt number
Sc = 4∕i𝒟AB is in the range from 0.2 to 5.0 for most gas pairs.

Equations 17.7-11, 17.7-12, 17.7-16, and 17.7-17 were derived for monatomic nonpolar
gases but have been found useful for polyatomic nonpolar gases aswell. In addition, these
equations may be used to predict𝒟AB for interdiffusion of a polar gas and a nonpolar gas
by using combining laws different5 from those given in Eqs. 17.7-14 and 17.7-15.

EXAMPLE 17.7-1

Computation of Mass
Diffusivity for
Low-Density Gases

Predict the value of𝒟AB for the system CO - CO2 at 296.1 K and 1.0 atm total pressure.

SOLUTION

From Table D.1 we obtain the following parameters:

CO: MA = 28.01 g∕g-mol gA = 3.590Å sA∕K = 110K

CO2: MB = 44.01 g∕g-mol gB = 3.996Å sB∕K = 190K

The mixture parameters are then estimated from Eqs. 17.7-14 and 17.7-15:

gAB = 1

2
(3.590 + 3.996 Å) = 3.793 Å (17.7-18)

sAB∕K =
√
(110 K)(190 K) = 144.6 K (17.7-19)

5J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, 2nd corrected

printing, Wiley, New York (1964), §8.6b and p. 1201. Polar gases and gas mixtures are discussed by E. A.

Mason and L. Monchick, J. Chem. Phys., 36, 2746–2757 (1962).
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The dimensionless temperature is then KT∕sAB = (296.1 K)∕(144.6 K) = 2.048. From Table D.2

we can find the collision integral for diffusion, 1𝒟 ,AB = 1.067. Substitution of the preceding

values in Eq. 17.7-12 gives

𝒟AB = 0.0018583 (cm2∕s)K−3∕2(g∕g-mol)1∕2atm Å
2

×

√
(296.1 K)3

(
1

28.01

g-mol

g
+ 1

44.01

g-mol

g

)
1

(1.0 atm)(3.793 Å)2(1.067)
= 0.149 cm2∕s (17.7-20)

§17.8 DIFFUSIVITY OF LIQUIDS

The kinetic theory for diffusion in simple liquids is not as well developed as that for dilute
gases, and it cannot presently give accurate analytical predictions of diffusivities.1–3 As a
result, our understanding of liquid diffusion depends primarily on the rather crude hydro-
dynamic and activated-state models. These in turn have spawned a number of empirical
correlations, which provide the best available means for prediction. These correlations
permit estimation of diffusivities in terms of more easily measured properties such as
viscosity and molar volume.

The hydrodynamic theory takes as its starting point the Nernst-Einstein equation,4

which states that the diffusivity of a single particle or solute molecule A through a
stationary medium B is given by

𝒟AB = KT(uA∕FA) (17.8-1)

in which uA∕FA is the “mobility” of a particle A (that is, the steady-state velocity attained
by the particle under the action of a unit force). If the shape and size of A are known, the
mobility can be calculated by the solution of the creeping-flow equation of motion5 (Eq.
3.6-3). Thus, if A is spherical and if one takes into account the possibility of “slip” at the
fluid–solid interface, one obtains6

uA
FA

=
(
34B + RAvAB
24B + RAvAB

)
1

604BRA
(17.8-2)

in which 4B is the viscosity of the pure solvent, RA is the radius of the solute particle, and
vAB is the coefficient of sliding friction (formally the same as the 4∕r of Problem 2B.10). The
limiting cases of vAB → ∞ and vAB → 0 are of particular interest:

a. The limit vAB → ∞ (no slip condition)
In this case Eq. 17.8-2 becomes Stokes’ law (Eq. 2.7-15) and Eq. 17.8-1 becomes:

𝒟AB4B
KT

= 1

60RA
(17.8-3)

which is usually called the Stokes-Einstein equation (or the Stokes-Einstein-Sutherland
equation7). This equation applies well to the diffusion of very large spherical molecules

1R. J. Bearman and J. G. Kirkwood, J. Chem. Phys., 28, 136–145 (1958).
2R. J. Bearman, J. Phys. Chem., 65, 1961–1968 (1961).
3C. F. Curtiss and R. B. Bird, J. Chem. Phys., 111, 10362–10370 (1999).
4See E. A. Moelwyn-Hughes, Physical Chemistry, 2nd edition, corrected printing, Macmillan, New

York (1964), pp. 62–74. See also R. J. Silbey, R. A. Alberty, and M. G. Bawendi, Physical Chemistry, 4th
edition, Wiley, New York, (2005), §20.2.

5S. Kim and S. J. Karrila,Microhydrodynamics: Principles and Selected Applications,
Butterworth-Heinemann, Boston (1991); Dover, Mineola, NY (2005).

6H. Lamb, Hydrodynamics, 6th edition, Cambridge University Press (1932), Dover, New York (1945),

§337.
7I. C. Carpen and J. F. Brady, J. Rheol., 49, 1483–1502 (2005)
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in solvents of low molecular weight8 and to suspended particles. Analogous expressions
developed for nonspherical particles have been used for estimating the shapes of protein
molecules.9,10

b. The limit vAB → 0 (complete slip condition)
In this case Eq. 17.8-2 leads to

𝒟AB4B
KT

= 1

40RA
(17.8-4)

If the molecules A and B are identical (that is for self-diffusion) and if they can be assumed
to form a cubic lattice with the adjacent molecules just touching, then 2RA = (ṼA∕Ñ)1∕3
and

𝒟AA4A
KT

= 1

20

(
Ñ
ṼA

)1∕3

(17.8-5)

Equation 17.8-5 has been found11 to agree with self-diffusion data for a number of liquids,
including polar and associated substances, liquid metals, and molten sulfur, to within
about 12%. The hydrodynamic model has proven less useful for binary diffusion (that is,
for A not identical to B), although the predicted temperature and viscosity dependences
are approximately correct.

It should be kept in mind that the above formulas apply only to dilute solutions of
A in B. Some attempts have been made, however, to extend the hydrodynamic model to
more concentrated solutions.12

The Eyring activated-state theory attempts to explain transport behavior via a
quasi-crystalline model of the liquid state.13 It is assumed in this theory that there is
some unimolecular rate process in terms of which diffusion can be described, and it is
further assumed that in this process there is some configuration that can be identified as
the “activated state.” The Eyring theory of reaction rates is applied to this elementary
process in a manner analogous to that described in §1.7 for estimation of liquid viscosity.
A modification of the original Eyring model by Ree, Eyring, and coworkers14 yields an
expression similar to Eq. 17.8-5 for traces of A in solvent B:

𝒟AB4B
KT

= 1

k

(
Ñ
ṼB

)1∕3

(17.8-6)

Here k is a “packing parameter,” which in the theory represents the number of nearest
neighbors of a given solvent molecule. For the special case of self-diffusion, k is found
to be very close to 20, so that Eqs. 17.8-5 and 17.8-6 are in good agreement despite the
difference between the models from which they were developed.

The Eyring theory is based on an oversimplified model of the liquid state, and con-
sequently, the conditions required for its validity are not clear. However, Bearman2 has
shown that the Eyring model gives results consistent with the statistical mechanics for

8A. Polson, J. Phys. Colloid Chem., 54, 649–652 (1950).
9H. J. V. Tyrrell, Diffusion and Heat Flow in Liquids, Butterworths, London (1961), Chapter 6.
10Creeping motion around finite bodies in a fluid of infinite extent has been reviewed by J. Happel

and H. Brenner, Low Reynolds Number Hydrodynamics, Prentice-Hall, Englewood Cliffs, New Jersey (1965);

Martinus Nijhoff, The Hague (1983); see also S. Kim and S. J. Karrila,Microhydrodynamics: Principles and
Selected Applications, Butterworth-Heinemann, Boston (1991); Dover, Mineola, NY (2005). G. K. Youngren

and A. Acrivos, J. Chem. Phys. 63, 3846–3848 (1975) have calculated the rotational friction coefficient for

benzene, thereby establishing the validity of the no-slip condition at molecular dimensions.
11J. C. M. Li and P. Chang, J. Chem. Phys., 23, 518–520 (1955).
12C. W. Pyun and M. Fixman, J. Chem. Phys., 41, 937–944 (1964).
13S. Glasstone, K. J. Laidler, and H. Eyring, Theory of Rate Processes, McGraw-Hill, New York (1941),

Chapter IX.
14H. Eyring, D. Henderson, B. J. Stover, and E. M. Eyring, Statistical Mechanics and Dynamics, Wiley,

New York (1964), §16.8.
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“regular solutions,” that is, for mixtures of molecules that have similar size, shape, and
intermolecular forces. For this limiting situation, Bearman also obtains an expression for
the concentration dependence of the diffusivity,

𝒟AB4B
(𝒟AB4B)xA→0

=

[
1 + xA

(
VA

VB

− 1

)](
𝜕 ln aA
𝜕 ln xA

)
T,p

(17.8-7)

in which𝒟AB and 4B are the diffusivity and viscosity of the mixture at the composition xA,
and aA is the thermodynamic activity of species A. For regular solutions, the partial molar
volumes, VA and VB, are equal to the molar volumes of the pure components. Bearman
suggests on the basis of his analysis that Eq. 17.8-7 should be limited to regular solutions,
and it has in fact been found to apply well only to nearly ideal solutions.

Because of the unsatisfactory nature of the theory for diffusion in liquids, it is neces-
sary to rely on empirical expressions. For example, the Wilke-Chang equation15 gives the
diffusivity in cm2∕s for small concentrations of A in B as:

𝒟AB = 7.4 × 10−8

√
bBMB T

4Ṽ0.6
A

(17.8-8)

Here ṼA is the molar volume of the solute A in cm3∕g-mol as liquid at its normal boiling
point, 4 is the viscosity of the solution in centipoises, bB is a dimensionless “association
parameter” for the solvent, and T is the absolute temperature in K; the numerical con-

stant has dimensions (cm2∕s)(g-mol∕g)1∕2K−1(cp)(cm3∕g-mol)0.6. Recommended values of
bB are: 2.6 for water; 1.9 for methanol; and 1.0 for benzene, ether, heptane, and other
unassociated solvents. Equation 17.8-8 is good only for dilute solutions of nondissociating
solutes. For such solutions, it is usually good within ±10%.

Other empiricisms, alongwith their relativemerits, have been summarized by Poling,
Prausnitz, and O’Connell.16

EXAMPLE 17.8-1

Estimation of Liquid
Diffusivity

Estimate𝒟AB for a dilute solution of TNT (2,4,6-trinitro-toluene) in benzene at 15∘C.

SOLUTION

Use the equation ofWilke andChang, takingTNTas componentA andbenzene and component

B. The required data are

4 = 0.705 cp (the viscosity for pure benzene)
ṼA = 140 cm3∕g-mol (for TNT)
bB = 1.0 (for benzene)
MB = 78.11 g∕g-mol (for benzene)

Substitution into Eq. 17.8-8 gives

𝒟AB = 7.4 × 10−8 (cm2∕s)(g-mol∕g)1∕2 (K)−1(cp)(cm3∕g-mol)0.6

×
√
(1.0)(78.11 g∕g-mol) (273 + 15 K)
(0.705 cp)(140 cm3∕g-mol)0.6

= 1.38 × 10−5 cm2∕s (17.8-9)

This result compares well with the measured value of 1.39 × 10−5 cm2∕s.

15C. R. Wilke, Chem. Eng. Prog., 45, 218–224 (1949); C. R. Wilke and P. Chang, AIChE Journal, 1,
264–270 (1955).

16B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases and Liquids, 5th edition,

McGraw-Hill, New York (2001), Chapter 11.



Trim Size: 8in x 10in Bird1e c17.tex V1 - October 21, 2014 4:19 P.M. Page 515

Problems 515

§17.9 CONCLUDING COMMENTS

One of the biggest problems in the subject of diffusion is that one encounters, at the very
outset, a veritable zoo of symbols. This cannot be avoided, however, and the person study-
ing this for the first time has to bite the bullet andmake their acquaintance. Bothmass and
molar units are in common use. In addition, each of the various reference frames—axes
fixed in space (for nA and NA), axes moving with the mass average velocity (for jA), and
axes moving with the molar average velocity (for J*A)—has its own advantages. Perhaps
the following will help in remembering the notation:

a. The mass density and concentrations are written with Greek letters (i,iA,aA),
whereas the molar concentrations are written with Roman letters (c,cA,xA).

b. Themass flux vectors are in lowercase letters (jA,nA), and the molar flux vectors are
in capital letters (J*A,NA).

c. Quantities associated with the molar average velocity are decorated with asterisks
(v*,J*A), and quantities associated with the mass average velocity are not decorated
(v, jA).

Compared with the viscosity and thermal conductivity, the diffusivity has been
neglected. Whereas experimental data for viscosity and thermal conductivity are plen-
tiful, data on diffusivity are generally lacking. Part of the reason for this is that, for N
compounds, there areN sets of data for 4 and for k, but for𝒟AB one needsN2 sets of data.

Many problems in the chemical industry and in biology are concerned with mul-
ticomponent mixtures. Here the situation is even worse regarding the accumulation of
reliable experimental data. Furthermore, solution of multicomponent diffusion problems
is no easy task. This topic is addressed briefly at the end of Chapter 24.

QUESTIONS FOR DISCUSSION

1. How is the binary diffusivity defined? How is self-diffusion defined? Give typical orders of

magnitude of diffusivities for gases, liquids, and solids.

2. Summarize the notation for the molecular, convective, and total fluxes for the three transport

processes. How does one calculate the flux of mass, momentum, and energy across a surface

with orientation n?
3. Define the Prandtl, Schmidt, and Lewis numbers. What ranges of Pr and Sc can one expect to

encounter for gases and liquids?

4. Howcan you estimate the Lennard-Jones potential for a binarymixture, if you know the param-

eters for the two components of the mixture?

5. Of what value are the hydrodynamic theories of diffusion?

6. Compare and contrast the relation between binary diffusivity and viscosity for gases and for

liquids.

7. In a binary mixture, does the vanishing ofNA imply the vanishing of ∇xA?
8. Why dowe use both mass andmolar units in the description of diffusing systems?Write Fick’s

law in both systems of units.

9. Compare and contrast the mass average velocity and the molar average velocity.

10. When were Newton’s law of viscosity, Fourier’s law of heat conduction, and Fick’s law of dif-

fusion proposed?

PROBLEMS 17A.1 Prediction of a low-density binary diffusivity. Estimate 𝒟AB for the methane-ethane system

at 293 K and 1 atm by the following methods:

(a) Equation 17.6-1.

(b) The corresponding-states chart in Fig. 17.6-1 along with Eq. 17.6-3.
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(c) The Chapman-Enskog relation (Eq. 17.7-12) with Lennard-Jones parameters from
Appendix D.

(d) The Chapman-Enskog relation (Eq. 17.7-12) with the Lennard-Jones parameters estimated
from critical properties.

Answers (all in cm2∕s): (a) 0.152; (b) 0.138; (c) 0.146; (d) 0.138

17A.2 Extrapolation of binary diffusivity to a very high temperature. Avalue of𝒟AB = 0.151 cm2∕s
has been reported1 for the system CO2-air at 293K and 1 atm. Extrapolate𝒟AB to 1500K by the
following methods:

(a) Equation 17.6-1.

(b) Equation 17.7-10.

(c) Equations 17.7-12, 17.7-14, and 17.7-15, with Table D.2.
What do you conclude from comparing these results with the experimental value1 of

2.45 cm2∕s?
Answers (all in cm2∕s): (a) 2.96; (b) 1.75; (c) 2.51

17A.3 Self-diffusion in liquid mercury. The diffusivity of Hg203 in normal liquid Hg has been mea-
sured,2 along with its viscosity and volume per unit mass. Compare the experimentally mea-
sured 𝒟AA* with the values calculated with Eq. 17.8-5.

T (K) 𝒟AA* (cm2∕s) 4 (cp) V̂ (cm3∕g)

275.7 1.52 × 10−5 1.68 0.0736

289.6 1.68 × 10−5 1.56 0.0737

364.2 2.57 × 10−5 1.27 0.0748

17A.4 Schmidt numbers for binary gas mixtures at low density. Use Eq. 17.7-11 and the viscosity
data given below3 to compute Sc = 4∕i𝒟AB for binary mixtures of hydrogen (A) and Freon-12
(B, dichlorodifluoromethane) at xA = 0.00, 0.25, 0.50, 0.75, and 1.00, and at 25∘C and 1 atm.

Mole fraction of H2: 0.00 0.25 0.50 0.75 1.00

4 × 106 (poise): 124.0 128.1 131.9 135.1 88.4

Sample answers: As xA → 0.00, Sc → 0.057; as xA → 1.00, Sc → 2.44

17A.5 Estimation of diffusivity for a binarymixture at high density. Predict c𝒟AB for an equimolar
mixture of N2 and C2H6 at 288.2 K and 40 atm.

(a) Use the value of 𝒟AB at 1 atm from Table 17.5-1, along with Fig. 17.6-1.

(b) Use Eq. 17.6-3 and Fig. 17.6-1.

Answers: (a) 5.8 × 10−6 g-mol∕cm ⋅ s; (b) 5.3 × 10−6 g-mol∕cm ⋅ s

17A.6 Diffusivity and Schmidt number for chlorine-air mixtures.
(a) Predict 𝒟AB for chlorine (A)-air (B) mixtures at 75∘F and 1 atm. Treat air as a single sub-
stance with Lennard-Jones parameters as given in Appendix D. Use the Chapman-Enskog
theory results in §17.7.

1Ts. M. Klibanova, V. V. Pomerantsev, and D. A. Frank-Kamenetskii, J. Tech. Phys. (USSR), 12, 14–30
(1942), as quoted by C. R. Wilke and C. Y. Lee, Ind. Eng. Chem., 47, 1253 (1955).

2R. E. Hoffman, J. Chem. Phys., 20, 1567–1570 (1952).
3J. W. Buddenberg and C. R. Wilke, Ind. Eng. Chem. 41, 1345–1347 (1949).
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(b) Repeat (a) using Eq. 17.6-1.

(c) Use the results of (a) to estimate Schmidt numbers for chlorine-air mixtures at 297K and

1 atm for the following mole fractions of chlorine: 0, 0.25, 0.50, 0.75, and 1.00. The mixture vis-

cosities for these compositions have been predicted to be 0.0183, 0.0164, 0.0150, 0.0139, and

0.0130 cp, respectively.4

Answers: (a) 0.121 cm2∕s; (b) 0.124 cm2∕s; (c) Sc = 1.27, 0.832, 0.602, 0.463, 0.372

17A.7 The Schmidt number for self-diffusion.
(a) Use Eqs. 1.5-1b and 17.6-2 to predict the self-diffusion Schmidt number Sc = 4∕i𝒟AA* at

the critical point for a system withMA ≈ MA* .

(b) Use the above result, along with Fig. 1.5-1 and Fig. 17.6-1, to predict Sc = 4∕i𝒟AA* at the

following states:

Phase Gas Gas Gas Liquid Gas Gas

Tr 0.7 1.0 5.0 0.7 1.0 2.0

pr 0.0 0.0 0.0 saturation 1.0 1.0

17A.8 Correction of high-density diffusivity for temperature. The measured value5 of c𝒟AB for a

mixture of 80mole% CH4 and 20mole% C2H6 at 313K and 136 atm is 6.0 × 10−6 g-mol∕cm ⋅ s
(see Example 17.6-3). Predict c𝒟AB for the same mixture at 136 atm at 351K, using Fig. 17.6-1.

Answer: 6.6 × 10−6 g-mol∕cm ⋅ s
Observed:5 6.33 × 10−6 g-mol∕cm ⋅ s

17A.9 Prediction of the critical c𝒟AB values. Figure 17.6-1 gives the low-pressure limit (c𝒟AA* )r =
1.01 at Tr = 1 and pr → 0. At this limit, Eq. 17.7-11 gives

1.01(c𝒟AA* )c = 2.2646 × 10−5

√
TcA

(
1

MA
+ 1

MA*

)
1

g2AA*1𝒟 ,AA*
(17A.9-1)

The argument KTcA∕sAA* of 1𝒟 ,AA* is reported6 to be about 1.225 for Ar, Kr, and Xe. Here we

use the value 1/0.77 from Eq. 1.6-11a as representative average over many fluids.

(a) Combine Eq. 17A.9-1 with the relations

gAA* = 2.44(TcA∕pcA)1∕3 sAA*∕K = 0.77TcA (17A.9-2,3)

and Table D.2 to obtain Eq. 17.6-2 for (c𝒟AA* )c.
(b) Show that the approximations

gAB =
√
gAgB sAB =

√
sAsB (17A.9-4,5)

for the Lennard-Jones parameters for the A-B interaction give

gAB = 2.44

(
TcATcB

pcApcB

)1∕6 sAB
K

= 0.77
√
TcATcB (17A.9-6,7)

when the molecular parameters of each species are predicted according to Eqs. 1.6-11a, c. Com-

bine these expressions with Eq. 17A.9-1 (with A* replaced by B, and TcA by
√
TcATcB) to obtain

Eq. 17.6-3 for (c𝒟AB)c. The corresponding replacement of pc and Tc in Fig. 17.6-1 by
√
pcApcB and

4R. B. Bird, W.E. Stewart, and E. N. Lightfoot, Transport Phenomena, revised 2nd edition,

McGraw-Hill, 2007 (New York), Chapter 1.
5V. J. Berry and R. C. Koeller, AIChE Journal, 6, 274–280 (1960).
6J. J. van Loef and E. G. D. Cohen, Physica A, 156, 522–533 (1989).
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√
TcATcB amounts to regarding the A-B collisions as dominant over collisions of like molecules

in the determine the value of c𝒟AB.

17A.10 Estimation of liquid diffusivities.
(a) Estimate the diffusivity for a dilute aqueous solution of acetic acid at 12.5∘C, using the

Wilke-Chang equation. The density of pure acetic acid is 0.937 g∕cm3 at its boiling point.

(b) The diffusivity of a dilute aqueous solution of methanol at 15∘C is about 1.28 × 10−5 cm2∕s.
Estimate the diffusivity for the same solution at 100∘C.
Answer: (b) 6.7 × 10−5 cm2∕s

17B.1 Dimensional checks of equations. Verify that Eq. 17.8-4, Eq. (F) of Table 17.3-1, and Eq. (C) of

Table 17.4-2 are dimensionally consistent.

17B.2 Interrelation of composition variables in binary mixtures. Using the basic definitions in

Table 17.1-1, derive the relations in Eqs. (C) through (E) and Eqs. (H) through (J) of Table 17.1-2.

17B.3 Relations between fluxes in binary systems.
(a) Verify Eqs. (D) and (H) of Table 17.3-1 using only the definitions of concentrations, veloci-

ties, and fluxes.

(b) Verify the relation in Eq. (I) of Table 17.3-1.

17B.4 Equivalence of various forms of Fick’s law for binary mixtures.
(a) Starting with Eq. (A) of Table 17.4-2, derive the other equations in the table.

(b) Show that Eq. (F) of Table 17.4-2 can be rewritten as

vA − vB = −𝒟AB∇ ln
xA
xB

(17B.4-1)

17C.1 Mass flux with respect to volume-average velocity. Let the volume-average velocity in an

N-component mixture be defined by

v◽ =
N∑
w=1

iw(Vw∕Mw)vw =
N∑
w=1

cwVwvw (17C.1-1)

in which Vw is the partial molar volume of species w (see Example 19.3-1 for the definition of a

partial molar property). Then define

j◽w = iw(vw − v◽) (17C.1-2)

as the mass flux with respect to the volume-average velocity.

(a) Show that for a binary system of A and B,

j◽A = i(VB∕MB)jA (17C.1-3)

To do this you will need to use the identity cAVA + cBVB = 1. Where does this come from?

(b) Show that Fick’s first law then assumes the form

j◽A = −𝒟AB∇iA (17C.1-4)

To verify this you will need the relation VA∇cA + VB∇cB = 0. What is the origin of this?
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Chapter 18

Shell Mass Balances and
Concentration Distributions in
Solids and in Laminar Flow

§18.1 Shell mass balances; boundary conditions

§18.2 Diffusion of gases through solids

§18.3 Diffusion away from a slightly soluble sphere

§18.4 Diffusion with a homogeneous chemical reaction

§18.5 Diffusion with a heterogeneous chemical reaction

§18.6 Diffusion through a stagnant gas film

§18.7 Diffusion of gases in a two-bulb experiment

§18.8 Diffusion into a falling liquid film (gas absorption)

§18.9 Diffusion into a falling liquid film (solid dissolution)

§18.10 Diffusion and chemical reaction inside a porous catalyst

§18.11 Concluding comments

In Chapter 2 it was shown how a number of steady-state viscous flow problems can be
set up and solved by making a shell momentum balance. In Chapter 10 it was further shown
how steady-state heat-conduction problems are handled bymeans of a shell energy balance.
In this chapter we show how steady-state diffusion problems may be formulated by shell
mass balances. The procedure used here is virtually the same as that used previously:

a. A mass balance is made over a thin shell perpendicular to the direction of mass
transport, and this shell balance leads to a first-order differential equation, which
may be solved to get the mass flux distribution.

b. Into this expression we insert the relation between mass flux and concentration
gradient. The result is a second-order differential equation for the concentration
profile. The integration constants that appear in the resulting expression are deter-
mined by the boundary conditions on the concentration and/or mass flux.

In Chapter 17 it was pointed out that several kinds of mass and molar fluxes are in
common use to describe the transport of species. For simplicity, in this chapter we use the
total molar flux NA, that is, the number of moles of A that go through a unit area in unit
time, the unit area being fixed in space. We shall relate the molar flux to the concentration

519
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gradient by Eq. (E) of Table 17.4-2, written here for the z component

NAz
⏟⏟⏟
total flux

of A

= xA(NAz +NBz)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

convective
flux of A

− c𝒟AB
𝜕xA
𝜕z

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
diffusive
flux of A

(18.0-1)

This equation differs from Newton’s law of viscosity, fzx = −4𝜕vx∕𝜕z, and Fourier’s
law of heat conduction, qz = −k𝜕T∕𝜕z—both molecular fluxes—because here the convec-
tive flux has been included. That is, Eq. 18.0-1 is not analogous to Newton’s law and
Fourier’s law.

However, the convection term can be omitted in several situations, illustrated here for
transport in the z direction:

• Very small xA (i.e., xA ≪ 1) and “stagnant B” (i.e., NBz = 0) or “nearly stagnant B”
(i.e., NBz ≈ 0). In these cases, the convective flux term is negligible compared to the
diffusive flux term.

• “Equimolar counterdiffusion” (i.e., NBz = −NAz). In this case, the convective flux
vanishes.

Even if these assumptions aren’t strictly valid, the assumption of negligible convection
can sometimes be a good starting place for analyzing concentration profiles and mass
transport.

When the convection terms cannot be ignored, there are several useful approaches
that can sometimes be used to simplify the convection term and obtain an explicit expres-
sion for NAz:

• Specification of NBz:

• If species B is stagnant (i.e., NBz = 0), then Eq. 18.0-1 can be rearranged to the
form

NAz = −
c𝒟AB

1 − xA

𝜕xA
𝜕z

(18.0-2)

• If a heterogeneous reaction occurs, the ratioNBz∕NAz at steady statemay be deter-
mined from stoichiometry. LettingNBz∕NAz = −m, Eq. 18.0-1 can be rearranged to
the form

NAz = −
c𝒟AB

1 − (1 − m)xA

𝜕xA
𝜕z

(18.0-3)

• When the convective flux in the z direction dominates over the diffusive flux,
Eq. 18.0-1 can be written

NAz = xA(NAz +NBz) = cAv*z ≈ cAvz (18.0-4)

where the velocity component vz is determined by the momentum balance.

The special cases given in this and the preceding paragraph are often very useful in sim-
plifying and solving problems. Examples of all of these will be given in what follows.

In this chapter we study diffusion and convection in both nonreacting and reacting
systems. When chemical reactions occur, we distinguish between two types: homogeneous,
in which the chemical change occurs in the entire volume of the fluid, and heterogeneous,
in which the chemical change takes place only in a restricted region, such as the surface of
a catalyst. Not only is the physical picture different for homogeneous and heterogeneous
reactions, but there is also a difference in the way the two types of reactions appear in the
problem formulation. The rate of production of a chemical species by homogeneous reaction
appears as a source term in the differential equation obtained from the shell balance, just
as the thermal source term appears in the shell energy balance. The rate of production by
a heterogeneous reaction, on the other hand, appears not in the differential equation, but
rather in the boundary condition at the surface on which the reaction occurs.
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In order to set up problems involving chemical reactions, some information has to
be available about the rate at which the various chemical species appear or disappear
by reaction. This brings us to the vast subject of chemical kinetics, that branch of physical
chemistry that deals with the mechanisms of chemical reactions and the rates at which
they occur.1 In this chapter we assume that the reaction rates are described by means of
simple functions of the concentrations of the reacting species.

Mention needs to bemade at this point of the notation to be used for the chemical rate
constants. For homogeneous reactions, the molar rate of production of species A may be
given by an expression of the form

Homogeneous reaction∶ RA = k′′′n cnA (18.0-5)

in which RA [=] moles∕vol ⋅ time and cA [=] moles∕volume. The index n indicates the
“order” of the reaction;2 for a first-order reaction (n = 1), k′′′

1
[=] 1∕time. For heterogeneous

reactions, the molar rate of production at the reacting surface may often be specified at
steady state by a relation of the form

Heterogeneous reaction∶ NAz|surface = k′′n c
n
A|surface (18.0-6)

in which NAz [=] moles∕area ⋅ time and cA [=] moles∕volume. Here, for n = 1, k′′
1
[=]

length∕time. Note that the triple prime on the rate constant indicates a volume source
and the double prime a surface source.

We begin in §18.1 with a statement of the shell balance and the kinds of boundary
conditions that may arise in solving diffusion problems. §18.2 to §18.4 focus on diffusion
problems in which the convection term in the flux expression (Eq. 18.0-1) can be ignored.
In §18.2 we discuss the diffusion of helium through a Pyrex wall, the helium being only
slightly soluble. In §18.3 we talk about the diffusion of a very slightly soluble sphere in
a surrounding liquid. In §18.4 we take up the diffusion accompanied by homogeneous
chemical reaction, but restricting the problem to one in which the diffusing species is
present only in very low concentration. In §18.5 we introduce the reader to diffusion with
a heterogeneous chemical reaction occurring at a catalytic surface. The problem is first
solved by omitting the convection term in the flux expression (Eq. 18.0-1), and then it is
solved again with the convection term retained. Here the ratio NBz∕NAz can be specified
from the stoichiometry of the chemical reaction. Then in §18.6 we discuss the evaporation
of one gas, A, that then diffuses through another gas, B, which is motionless, so thatNBz is
exactly zero throughout the system; this provides onemeans for measuring the diffusivity
of a gas pair. Here again the convection term in the flux expression is retained. Following
that, in §18.7, we discuss the interdiffusion of two gases, in which NAz = −NBz; that is, for
every mole of A that moves, say, upwards, there will be a mole of B that moves down-
wards. This “two-bulb experiment” provides another method for measuring diffusivity.
In the two sections that follow, §18.8 and §18.9, we study forced convectionwith diffusion;
in the first section, the absorption of a gas into a liquid film falling along a vertical wall,
and in the second, the dissolution of the wall into the falling film. Then in §18.10, we give
an approximate treatment of the diffusion inside a catalyst pellet.

1R. J. Silbey, R. A. Alberty, and M. G. Bawendi, Physical Chemistry, Wiley, New York (2004), 4th

edition, Chapter 18.
2Not all rate expressions are of the simple form of Eq. 18.0-5. The reaction rate may depend in a

complicated way on the concentration of all species present. Similar remarks hold for Eq. 18.0-6. For

detailed information on reaction rates, see Table of Chemical Kinetics, Homogeneous Reactions, National

Bureau of Standards, Circular 510 (1951), Supplement No. 1 to Circular 510 (1956). See also C. G. Hill,

Introduction to Chemical Engineering Kinetics and Reactor Design, Wiley, New York (1977); C. G. Hill and

T. W. Root, Introduction to Chemical Engineering Kinetics and Reactor Design, 2nd edition, Wiley, New York

(2013); J. B. Rawlings and J. G. Ekerdt, Chemical Reactor Analysis and Design Fundamentals, 2nd edition,

Nob Hill Publishing, Madison, WI (2012).
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§18.1 SHELL MASS BALANCES; BOUNDARY CONDITIONS

The diffusion problems in this chapter are solved by making mass balances for one of the

chemical species over a thin shell of solid or fluid. Having selected an appropriate system,

the law of conservation of mass for species A in a binary system is written for steady state

over the volume of the shell in the form

⎧⎪⎨⎪⎩
rate of
mass of
A in

⎫⎪⎬⎪⎭ −
⎧⎪⎨⎪⎩
rate of
mass of
A out

⎫⎪⎬⎪⎭ +
⎧⎪⎨⎪⎩
rate of production of
mass of A by
homogeneous reaction

⎫⎪⎬⎪⎭ = 0 (18.1-1)

The conservation statementmay, of course, be also expressed in terms ofmoles. The chem-

ical speciesAmay enter or leave the system by virtue of the overall motion of the fluid (i.e.,

by convection), or by diffusion (i.e., by molecular motion), both of these being included in

the molar fluxNA. In addition, speciesAmay be produced or consumed by homogeneous

chemical reactions.

After a balance is made on a shell of finite thickness by means of Eq. 18.1-1, we then

let the thickness become infinitesimally small. As a result of this process, a differential

equation for the mass (or molar) flux is generated. If, into this equation, we substitute

the expression for the mass (or molar) flux in terms of a concentration gradient, we get a

differental equation for the concentration.

When this differential equation has been integrated, constants of integration appear,

and these have to be determined by the use of boundary conditions. The types of possible

boundary conditions are very similar to those used in heat conduction (see §10.1):

a. The concentration at a surface can be specified; for example, at a solid–liquid inter-

face, xA = xA0, where xA0 is the solubility of the solid in the liquid.

b. Themolar flux at a surface can be specified, that is,NAz = NA0; for example,NAz = 0

at a surface impermeable to A.

c. If diffusion is occurring in a solid or a liquid, it may happen that, at an interface,

substance A is lost to a surrounding stream according to the relation

NA0 = kc(cA0 − cAb) or NA0 = kx(xA0 − xAb) (18.1-2)

in which NA0 is the molar flux at the surface (into the surrounding stream), cA0 (or
xA0) is the surface concentration, cAb or (xAb) is the concentration in the bulk fluid

stream, and the proportionality constant kc (kx) is a “mass-transfer coefficient.”

Methods of correlating mass-transfer coefficients are discussed in Chapter 22.

Equation 18.1-2 is analogous to “Newton’s law of cooling” given in Eq. 10.1-2.

d. The rate of chemical reaction at the surface can be specified. For example, if sub-

stance A disappears at a surface by a first-order chemical reaction, NA0 = k′′
1
cA,

where NA0 is the rate of transport to the surface. That is, at steady state, the rate

of disappearance at a surface is proportional to the surface concentration, the pro-

portionality constant k′′
1
being a first-order chemical rate constant.

§18.2 DIFFUSION OF GASES THROUGH SOLIDS

Many gases are only very slightly soluble in solids, and in these cases the convection term

in Eq. 18.0-1 may be neglected. Such is the situation with Pyrex glass, which is almost

impermeable to all gases but helium. For example, the diffusivity of He through Pyrex

is about 1,000 times the diffusivity of H2 through Pyrex, the closest “competitor” in the



Trim Size: 8in x 10in Bird1e c18.tex V1 - October 30, 2014 2:11 P.M. Page 523

§18.2 Diffusion of Gases Through Solids 523

R2

Pyrex tube

Natural gas
containing
helium

R1

Fig. 18.2-1. Diffusion of helium through Pyrex tubing.

The length of the tubing is L.

diffusion process. This fact suggests that a method for separating helium from natural gas
could be based on the relative diffusion rates through Pyrex.1

Suppose that a natural gas mixture is contained in a Pyrex tube with dimensions
shown in Fig. 18.2-1.Wewant to obtain an expression for the rate atwhich heliumwill leak
out of the tube, in terms of the diffusivity of helium (A) through Pyrex (B), the interfacial
concentrations of helium in the Pyrex, and the dimensions of the tube.

We begin by making a steady-state shell balance on helium over a cylindrical shell of
thickness 2r and length L, located at an arbitrary radial position between R1 and R2,

NAr|r ⋅ 20Lr −NAr|r+2r ⋅ 20L(r + 2r) = 0 (18.2-1)

This balance may be rewritten as

20L(rNAr)|r − 20L(rNAr)|r+2r = 0 (18.2-2)

Division by 20L2r and taking the limit as 2r → 0 gives

lim
2r→0

(rNAr)|r+2r − (rNAr)|r
2r

= 0 (18.2-3)

Then according to the definition of the first derivative, this is

d
dr

rNAr = 0 (18.2-4)

Into this we insert Eq. 18.0-1, without the convective term (because xA ≪ 1 and NBr = 0),
to get

d
dr

(
rc𝒟AB

dxA
dr

)
= 0 (18.2-5)

We nowmake use of the fact that𝒟AB does not depend on the concentration of helium, and
hence not on the coordinate r, so that𝒟AB may be moved to the left of the first derivative
operator. Furthermore, because species A is very dilute, we assume that the total concen-
tration c is a constant. Then Eq. 18.2-5 becomes

d
dr

(
r
dcA
dr

)
= 0 (18.2-6)

This equation may be integrated, thus:

r
dcA
dr

= C1 and cA(r) = C1 ln r + C2 (18.2-7,8)

The constants of integration have to be determined from the boundary conditions

B.C. 1∶ at r = R1, cA = cA1 (18.2-9)

B.C. 2∶ at r = R2, cA = cA2 (18.2-10)

1Scientific American, 199, 46–54, (1958) (see p. 52) describes briefly the method developed by K. B.

McAfee of Bell Telephone Laboratories.



Trim Size: 8in x 10in Bird1e c18.tex V1 - October 30, 2014 2:11 P.M. Page 524

524 Chapter 18 Shell Mass Balances and Concentration Distributions in Solids and in Laminar Flow

Here cA1 and cA2 are the helium concentrations in the Pyrex, just inside the Pyrex phase at
R1 and R2, respectively. It is found that the constants of integration are

C1 =
cA1 − cA2
ln(R1∕R2)

C2 = cA2 −
(cA1 − cA2) lnR2

ln(R1∕R2)
(18.2-11)

Insertion of these expressions into Eq. 18.2-8 then gives

cA(r) − cA2
cA1 − cA2

=
ln(r∕R2)
ln(R1∕R2)

(18.2-12)

Using this concentration profile we can get the flux of helium through the Pyrex as

NAr(r) = −𝒟AB
dcA
dr

= −𝒟AB
(cA1 − cA2)
r ln(R1∕R2)

(18.2-13)

and finally

WA = 20rLNAr =
20L𝒟AB(cA1 − cA2)

ln(R2∕R1)
(18.2-14)

is the total molar flow rate, the moles of helium per unit time diffusing out of the tube.

§18.3 DIFFUSION AWAY FROM A SLIGHTLY SOLUBLE SPHERE

Asphere of solidmaterialA (KMnO4) is suspended in a stationary body of liquidB (water).
We consider a system such thatA is only very slightly soluble in liquid B, so that themolar
flux ofAmay be well described by Eq. 18.0-1 without the convection term because xA is so
small. We want to describe the dissolution of A in B at steady state. That is, we know the
solubility of A, so that the concentration xAR at the sphere surface at r = R is known, and
it is presumed that the concentration far from the sphere xA∞ is also known. The situation
is pictured in Fig. 18.3-1. This problem is exactly analogous to the heat conduction away
from a sphere described in Problem 10B.1.

A shell balance over a spherical surface of thickness 2r within the liquid phase at a
distance r from the sphere center gives

NAr|r ⋅ 40r2 −NAr|r+2r ⋅ 40(r + 2r)2 = 0 (18.3-1)

which can also be written in the form

40(r2NAr)|r − 40(r2NAr)|r+2r = 0 (18.3-2)

Division by 402r and taking the limit as 2r → 0 then gives

lim
2r→0

(r2NAr)|r+2r − (r2NAr)|r
2r

= 0 (18.3-3)

cAR

R

cA∞

Fig. 18.3-1. A sphere of material A dissolving in a liquid B.
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Using the definition of the first derivative, this may be written as

d
dr

(r2NAr) = 0 (18.3-4)

This equation may be integrated to give

r2NAr = C1 (18.3-5)

Insertion of NAr from Eq. 18.0-1, without the convection term, into Eq. 18.3-5 then gives

−c𝒟AB
dxA
dr

=
C1

r2
(18.3-6)

A further integration then yields

−c𝒟ABxA(r) = −
C1

r
+ C2 (18.3-7)

The total molar concentration cwill be virtually constant throughout the system, because
of the extremely small concentration ofA. Similarly, although𝒟AB may vary considerably
with concentration in liquid systems, here we are dealing with only a slight amount of
A and therefore 𝒟AB may be treated as a constant. Therefore, we may define new con-
stants of integration C1 ≡ −c𝒟ABC

′
1
and C2 ≡ −c𝒟ABC

′
2
. Division of Eq. 18.3-7 by −c𝒟AB

then gives

xA(r) = −
C′
1

r
+ C′

2
(18.3-8)

We next apply the boundary conditions

B.C. 1∶ at r = R, xA = xAR (18.3-9)

B.C. 2∶ as r → ∞, xA → xA∞ (18.3-10)

This enables us to obtain C′
1
= −R(xAR − xA∞) and C′

2
= xA∞. Using these constants in

Eq. 18.3-8, we get

xA(r) − xA∞
xAR − xA∞

= R
r

(18.3-11)

which shows the concentration profile at steady state as A diffuses outward from the
sphere. Furthermore,

NAr|r=R = −c𝒟AB
dxA
dr

||||r=R = +c𝒟AB
xAR − xA∞

R
(18.3-12)

which is the molar flux at the sphere surface.

§18.4 DIFFUSIONWITH A HOMOGENEOUS CHEMICAL REACTION

As the next illustration of setting up a mass balance, we consider the system shown in
Fig. 18.4-1. Here gas A dissolves sparingly in liquid B in a beaker and diffuses isother-
mally into the liquid phase. As it diffuses, A also undergoes an irreversible first-order
homogeneous reaction: A + B → AB, with the moles of A consumed per unit time per
unit volume given by RA = k′′′

1
cA, where k′′′

1
is a first-order rate constant. An example

of such a system would be the absorption of CO2 by a concentrated aqueous solution
of NaOH.

We treat this as a binary solution of A and B, ignoring the small amount of AB that
is present (the pseudobinary assumption). Then the steady-state mass balance on species A
over a thickness 2z of the liquid phase becomes

NAz|zS −NAz|z+2zS − k′′′
1
cAS2z = 0 (18.4-1)
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Δz

NAz|z + Δz

NAz|z

z = 0 cA0

z = L

Gas A

Liquid B

Fig. 18.4-1. Absorption of A by B with a

homogeneous reaction in the liquid phase.

where S is the cross-sectional area of the liquid. Division of Eq. 18.4-1 by S2z and taking
the limit as 2z → 0 gives

dNAz

dz
+ k′′′

1
cA = 0 (18.4-2)

If the concentration of A is very small, then we may to a good approximation neglect the
convection term in Eq. 18.0-1 and write

NAz = −𝒟AB
dcA
dz

(18.4-3)

since the totalmolar concentration c is virtually uniform throughout the liquid. Combining
the last two equations gives

𝒟AB
d2cA
dz2

− k′′′
1
cA = 0 (18.4-4)

This is to be solved with the following boundary conditions:

B.C. 1∶ at z = 0, cA = cA0 (18.4-5)

B.C. 2∶ at z = L, NAz = 0 (or dcA∕dz = 0) (18.4-6)

The first boundary condition asserts that the concentration ofA at the surface in the liquid
is maintained at a fixed value cA0. The second states that noA diffuses through the bottom
of the container at z = L.

If Eq. 18.4-4 is multiplied by L2∕cA0𝒟AB, then it can be written in terms of dimension-
less variables in the form of Eq. C.1-4

d2T
dr2

− d2T = 0 (18.4-7)

where T = cA∕cA0 is a dimensionless concentration, r = z∕L is a dimensionless length, and

d =
√

k′′′
1

L2∕𝒟AB is a dimensionless group, known as the Thiele modulus.1 This group

represents the relative influence of the rates of chemical reaction k′′′
1
cA and diffusion

cA𝒟AB∕L2. Equation 18.4-7 is to be solved with the dimensionless boundary conditions
that at r = 0, T = 1, and at r = 1, dT∕dr = 0. The general solution is (see §C.1, as well as the
discussion of hyperbolic functions in §C.5)

T(r) = C1 cosh dr + C2 sinh dr (18.4-8)

1E. W. Thiele, Ind. Eng. Chem., 31, 916–920 (1939). Ernest William Thiele (pronounced “tee-lee”)

(1895–1993) is noted for his work on catalyst effectiveness factors and his part in the development of the

“McCabe-Thiele” diagram; after 35 years with Standard Oil of Indiana, he taught for a decade at Notre

Dame University.
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When the constants of integration are evaluated, we find that C1 = 1 and C2 =
−(sinh d∕ cosh d), so that

T(r) = cosh d cosh dr − sinh d sinh dr

cosh d
= cosh[d(1 − r)]

cosh d
(18.4-9)

Then reverting to the original notation

cA(z)
cA0

=
cosh

[√
k′′′
1

L2∕𝒟AB (1 − (z∕L))
]

cosh
√

k′′′
1

L2∕𝒟AB

(18.4-10)

The concentration profile thus obtained is plotted in Fig. 18.4-1.
Once we have the concentration profile, wemay evaluate other quantities, such as the

average concentration in the liquid phase

cA,avg
cA0

=
∫

L

0

(cA∕cA0)dz

∫
L

0

dz

= 1

d cosh d∫
d

0

cosh x dx = 1

d cosh d
sinh|d

0
= tanh d

d
(18.4-11)

in which we used the variable x = d[1 − (z∕L)]. Furthermore, the molar flux at plane z = 0
can be found to be (from Eq. 18.4-3)

NAz|z=0 = −𝒟AB
dcA
dz

||||z=0 =
(
cA0𝒟AB

L

)
d tanh d (18.4-12)

This result shows how the chemical reaction influences the rate of absorption of a gas A
by liquid B.

The reader may wonder how the solubility cA0 and the diffusivity 𝒟AB can be deter-
mined experimentally if there is a chemical reaction occurring. First, k′′′

1
can be measured

in a separate experiment in a well-stirred vessel. Then, in principle, cA0 and 𝒟AB can be
obtained from the measured absorption rates for various liquid depths L.

EXAMPLE 18.4-1

Gas Absorption with
Chemical Reaction in
an Agitated Tank2

Estimate the effect of chemical reaction rate on the rate of gas absorption in an agitated tank
(see Fig. 18.4-2). Consider a system in which the dissolved gas A undergoes an irreversible

Gas A in

Liquid B
Volume of liquid

phase is V

Surface area
of all the

bubbles is S

Fig. 18.4-2. Gas-absorption apparatus.

2E. N. Lightfoot, AIChE Journal, 4, 499–500 (1958), 8, 710–712 (1962).
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first-order reactionwith the liquidB—that is,Adisappearswithin the liquid phase at a rate pro-
portional to the local concentration ofA. An example of such a systemwould be the absorption
of SO2 or H2S in aqueous NaOH solutions.

SOLUTION

An exact analysis of this situation is not possible because of the complexity of the
gas-absorption process. But a useful semiquantitative understanding can be obtained by
the analysis of a relatively simple model, in which a spherical coordinate system is fixed on a
bubble. The model we use involves the following assumptions:

a. Each gas bubble is surrounded by a stagnant liquid film of thickness t, which is small
relative to the bubble diameter.

b. A quasi-steady concentration profile is quickly established in the liquid film after the
bubble is formed.

c. The gas A is only sparingly soluble in the liquid, so that we can neglect the convection
term in Eq. 18.0-1.

d. The liquid outside the stagnant film is at concentration cAt, which changes so slowly
with respect to time that it can be considered constant.

The differential equation describing the diffusion with chemical reaction is the same as
that in Eq. 18.4-4, but the boundary conditions are now

B.C. 1∶ at z = 0, cA = cA0 (18.4-13)

B.C. 2∶ at z = t, cA = cAt (18.4-14)

The concentration cA0 is the interfacial concentration ofA in the liquid phase, which is assumed
to be at equilibrium with the gas phase at the interface, and cAt is the concentration of A in the
main body of the liquid. The solution of Eq. 18.4-4 with these boundary conditions is

cA(r)
cA0

= sinhd coshdr + (B − coshd) sinhdr
sinhd

(18.4-15)

in which r = z∕t, B = cAt∕cA0, and d =
√

k′′′
1
t2∕𝒟AB. This result is plotted in Fig. 18.4-3.

Next we use assumption (d) above and equate the amount of A entering the main body
of liquid at z = t over the total bubble surface S in the tank to the amount of A consumed in
the bulk of the liquid by chemical reaction (that is, we consider this as a quasi-steady-state
problem):

−S𝒟AB

dcA
dz

|||||z=t = Vk′′′
1
cAt (18.4-16)

Substitution of cA(z) from Eq. 18.4-15 into Eq. 18.4-16 gives an expression for B

B = 1

coshd + (V∕St)d sinhd
(18.4-17)

When this result is inserted into Eq. 18.4-15, we obtain an expression for cA∕cA0 in terms of d
and V∕St.

Liquid filmGas in
bubble

Main body
of liquid

Without
reaction

cAδ

z = 0 z = δ

With
reactionLiquid–gas

interface Fig. 18.4-3. Predicted concentration profile in the

liquid film near the bubble.
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NAz|z = 0δ V/Sδ = ∞

106 104 102

cA0 AB

10‒5

φ
10‒4 10‒3 10‒2 10‒1 1 10

0

1.0

2.0

V/Sδ = 108 V/Sδ = 0

Fig. 18.4-4. Gas absorption

accompanied by an irreversible

first-order reaction. [Adapted

from E. N. Lightfoot, AIChE J., 4,
499–500 (1958).]

From this expression for the concentration profile, we can then get the total rate of absorp-

tion with chemical reaction from NAz = −𝒟AB(dcA∕dz) evaluated at z = 0, thus:

N̆ =
NAz|z=0t
cA0𝒟AB

= d

(
sinhd + (V∕St)d coshd
coshd + (V∕St)d sinhd

)
(18.4-18)

The result is plotted in Fig. 18.4-4.

It is seen here that the dimensionless absorption rate per unit area of interface, N̆, increases

with d for all finite values ofV∕St. At very low values of d—that is, for very slow reactions—N̆
approaches zero. For this limiting situation the liquid is nearly saturated with dissolved gas,

and the “driving force” for absorption is very small. At large values of d the dimensionless

surface mass flux N̆ increases rapidly with d and becomes very nearly independent of V∕St.
Under the latter circumstances, the reaction is so rapid that almost all of the dissolving gas

is consumed within the film. Then B is very nearly zero, and the bulk of the liquid plays no

significant role. In the limit as d becomes very large, N̆ approaches d.
Somewhat more interesting behavior is observed for intermediate values of d. It may be

noted that, for moderately large V∕St, there is a considerable range of d for which N̆ is very

nearly unity. In this region, the chemical reaction is fast enough to keep the bulk of the solution

almost solute free, but slow enough to have little effect on solute transport in the film. Such a

situation will arise when the ratio V∕St of bulk to film volume is sufficient to offset the higher

volumetric reaction rate in the film. The absorption rate is then equal to the physical absorption

rate (that is, the rate for k′′′
1

= 0) for a solute-free tank. This behavior is frequently observed in

practice, and operation under such conditions has proven a useful means of characterizing

mass-transfer behavior of a variety of gas absorbers.2

§18.5 DIFFUSIONWITH A HETEROGENEOUS CHEMICAL
REACTION

Let us now consider a simple model for a heterogeneous catalytic reactor, such as that

shown in Fig. 18.5-1(a), in which a reaction 2A → B is being carried out. An example of a

reaction of this type would be the solid-catalyzed dimerization of CH3CH = CH2.

We imagine that each catalyst particle is surrounded by a stagnant gas film through

which A has to diffuse to reach the catalyst surface, as shown in Fig. 18.5-1(b). At the

catalyst surface we presume that the reaction 2A → B occurs instantaneously, and that
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(a)

Spheres with coating
of catalytic material

l = 0 l = L

Gas A
Gases
A and B

(b)

B

Az

z = 0

x = 0 x = 1

Edge of hypothetical
stagnant gas film

z = δ

xB(z) xA(z)

xA, xB
xB0 xA0

Catalytic surface
where 2A B
irreversibly and
instantaneously

Fig. 18.5-1. (a)
Schematic diagram of a

catalytic reactor in

which A is being

converted to B; (b)
Idealized picture (or

“model”) of the

diffusion problem near

a catalyst particle.

the product B then diffuses back out through the gas film to the main turbulent stream
composed ofA and B. We want to get an expression for the local rate of conversion fromA
to Bwhen the effective gas-film thickness and the main stream concentrations xA0 and xB0
are known.We assume that the gas film is isothermal, although in many catalytic reactions
the heat generated by the reaction cannot be neglected.

We solve this problem in two stages: (a) with the assumption that A is present in such
a small concentration that the convection term in Eq. 18.0-1 may be safely omitted; and
(b) without the assumption of a very small concentration so that the convection term in
Eq. 18.0-1 must be included.

a. With the assumption of very small concentration of A
We start by making a mass balance on species A over a thin slab of thickness 2z in the

gas film. This leads directly to the equation (see Eq. 18.6-2 below)

dNAz

dz
= 0 (18.5-1)

When Eq. 18.0-1, without the convection term, is inserted into this mass balance, we get
for constant c and𝒟AB

d2xA
dz2

= 0 (18.5-2)

This may be integrated to give
xA(z) = C1 + C2z (18.5-3)

We then apply the boundary conditions

B.C. 1∶ at z = 0, xA = xA0 (18.5-4)

B.C. 2∶ at z = t, xA = 0 (18.5-5)

From these conditions we get the integration constants C1 = xA0 and C2 = −xA0∕t, so that

xA(z) = xA0
(
1 − z

t

)
(18.5-6)
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From this we get the molar flux through the gas film

NAz = −c𝒟AB
dxA
dz

=
c𝒟ABxA0

t
(18.5-7)

This may be interpreted as the local rate of reaction per unit area of catalyst surface.
One point deserves to be emphasized. Although the chemical reaction occurs instan-

taneously at the catalytic surface, the conversion ofA to B proceeds at a finite rate because
of the diffusion process that is “in series” with the reaction process. Hence we speak of the
conversion of A to B as being diffusion controlled.

b. Without the assumption of very small concentration of A
Once again we start with the molar balance over a thin region of thickness 2z, which

leads to Eq. 18.5-1. Into this we have to substitute the expression for the molar flux of A.
Because xA is not small, we must retain the convection term in the flux expression

(Eq. 18.0-1). To obtain a molar balance for species A that does not contain NBz, we must
get information about the ratio NBz∕NAz. We can get this from the stoichiometry of the
reaction. We know that there is onemole of Bmoving in theminus z direction for every two
moles of Amoving in the plus z direction. Therefore, at steady state

NBz = − 1

2
NAz (18.5-8)

at any value of z. Therefore, Eq. 18.0-1 can be rewritten for this problem as

NAz = xA(NAz +NBz) − c𝒟AB
dxA
dz

= xA
(
NAz −

1

2
NAz

)
− c𝒟AB

dxA
dz

= 1

2
xANAz − c𝒟AB

dxA
dz

(18.5-9)

From this we may solve for NAz in the form of Eq. 18.0-3,

NAz(z) = −
c𝒟AB

1 − 1

2
xA

dxA
dz

(18.5-10)

This is now inserted into the molar balance (Eq. 18.5-1), which gives (for constant c and
𝒟AB)

d
dz

(
1

1 − 1

2
xA

dxA
dz

)
= 0 (18.5-11)

Integration twice with respect to z gives

−2 ln
(
1 − 1

2
xA (z)

)
= C1z + C2 = −(2 lnK1)z − (2 lnK2) (18.5-12)

or, in terms of the alternative integration constants K1 and K2,

1 − 1

2
xA(z) = Kz

1
K2 (18.5-13)

Then, from the boundary conditions

B.C. 1∶ at z = 0, xA = xA0 (18.5-14)

B.C. 2∶ at z = t, xA = 0 (18.5-15)

we find K1 =
(
1 − 1

2
xA0

)−1∕t
and K2 =

(
1 − 1

2
xA0

)
, so that the final result is then

1 − 1

2
xA(z) =

(
1 − 1

2
xA0

)1−(z∕t)
(18.5-16)
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for the concentration profile for species A in the gas film. Equation 18.5-16 may now be
substituted into Eq. 18.5-10 to get the molar flux of reactant through the film as follows:

NAz = −
c𝒟AB(

1 − 1

2
xA0

)1−(z∕t) (−2) ddz(1 − 1

2
xA0

)1−(z∕t)
= + 2c𝒟AB

d
dz

ln
(
1 − 1

2
xA0

)1−(z∕t)

= + 2c𝒟AB ln
(
1 − 1

2
xA0

)
⋅
d
dz

(
1 −

(z
t

))
= + 2c𝒟AB ln

(
1 − 1

2
xA0

)
⋅
(
− 1

t

)
=

2c𝒟AB

t
ln

(
1

1 − 1

2
xA0

)
(18.5-17)

The quantity NAz may also be interpreted as the local rate of reaction per unit area of
catalytic surface. This information can be combined with other information about the
catalytic reactor sketched in Fig. 18.5-1(a) to get the overall conversion rate in the entire
reactor. (Note that Eq. 18.5-7, which is valid for small xA0, may be obtained fromEq. 18.5-17
by expanding the logarithm using Eq. C.2-3 and retaining only the first term.)

Here again, although the chemical reaction occurs instantaneously at the cat-
alytic surface, the conversion of A to B proceeds at a finite rate because this is still a
diffusion-controlled reaction.

In the example above we have assumed that the reaction occurs instantaneously at
the catalytic surface. In the following example, we show how to account for a reaction at
the catalytic surface that does not occur infinitely fast.

EXAMPLE 18.5-1

Diffusion with a Slow
Heterogeneous
Reaction

Rework the problem just considered when the reaction 2A → B is not instantaneous at the cat-

alytic surface at z = t. Instead, assume that the rate at whichA disappears at the catalyst-coated

surface is proportional to the concentration of A in the fluid at the interface,

NAz = k′′
1
cA = k′′

1
cxA (18.5-18)

in which k′′
1
is a rate constant for the pseudo-first-order surface reaction.

SOLUTION

We proceed exactly as before, except that B.C. 2 in Eq. 18.5-15 must be replaced by

B.C. 2′∶ at z = t, xA =
NAz

k′′
1
c

(18.5-19)

NAz being, of course, a constant at steady state. The determination of the integration constants

from B.C. 1 and B.C. 2′ gives

K1 =

[
1 − 1

2

(
NAz∕k′′1 c

)
1 − 1

2
xA0

]1∕t
; K2 = 1 − 1

2
xA0 (18.5-20)

so that

1 − 1

2
xA(z) =

(
1 − 1

2

NAz

k′′
1
c

)z∕t(
1 − 1

2
xA0

)1−(z∕t)
(18.5-21)

From this we evaluate (dxA∕dz)|z=0 and substitute it into Eq. 18.5-10, evaluated at z = 0, to get

NAz =
2c𝒟AB

t
ln

(
1 − 1

2

(
NAz∕k′′1 c

)
1 − 1

2
xA0

)
(18.5-22)
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This is a transcendental equation forNAz as a function of xA0, k
′′
1
, c𝒟AB, and t. When k′′

1
is large,

the logarithm of 1 − 1

2
(NAz∕k′′1 c)may be expanded in a Taylor series (see Eq. C.2-3) and all terms

discarded but the first. This gives

NAz =
2c𝒟AB

t

[
ln

(
1 − 1

2

(
NAz∕k′′1 c

))
− ln

(
1 − 1

2
xA0

)]
=

2c𝒟AB

t

[
− 1

2

(
NAz∕k′′1 c

)
− 1

4

(
NAz∕k′′1 c

)2 − · · · − ln
(
1 − 1

2
xA0

)]
≈

2c𝒟AB

t

[
−

(
1

2

NAz

k′′
1
c

)
+ ln

(
1

1 − 1

2
xA0

)]
(18.5-23)

We can now solve for NAz to get

NAz =
2c𝒟AB∕t

1 +𝒟AB∕k′′1 t
ln

(
1

1 − 1

2
xA0

)
(k′′

1
large) (18.5-24)

Note once again that we have obtained the rate of the combined reaction and diffusion process.

We see that the dimensionless group𝒟AB∕k′′1 tdescribes the effect of the surface reaction kinetics

on the overall diffusion–reaction process. The reciprocal of this group is known as the second
Damköhler number1 DaII = k′′

1
t∕𝒟AB. Evidently we get the result in Eq. 18.5-17 in the limit as

DaII → ∞.

§18.6 DIFFUSION THROUGH A STAGNANT GAS FILM

Let us now analyze the diffusion-convection system shown in Fig. 18.6-1 in which liq-
uid A is evaporating into gas B. We imagine that there is some device that maintains the
liquid level at z = z1. Right at the liquid–gas interface, the gas-phase concentration of A,
expressed as mole fraction, is xA1. This is taken to be the gas-phase concentration of A

Liquid A

1
.0

1
.0

x A
x A

1
x A

2

x B
2

x Ax B

0
0

Gas stream of A and B

z = z1

NAz|z+Δz

NAz|z

z = z2

x B
1

z 1
z 2

z

x B

Δz

x A
 +
 x

B
 =
 1

Fig. 18.6-1. Steady-state diffusion of A
through stagnant B with the

liquid–vapor interface maintained at a

fixed position. The graph shows how

the concentration profiles deviate from

straight lines, because of the convective

contribution to the mass flux.

1G. Damköhler, Z. Elektrochem., 42, 846–862 (1936).Gerhard Damköhler (1908–1944)was a key

figure in the subject of diffusion with chemical reaction; an important publication was in Der

Chemie-Ingenieur, Leipzig (1937), pp. 359–485.
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corresponding to equilibrium1 with the liquid at the interface. That is, xA1 is the vapor
pressure ofAdivided by the total pressure, pvapA ∕p, provided thatA andB form an ideal-gas
mixture and that the solubility of gas B in liquid A is negligible.

A stream of gasmixtureA-B of concentration xA2 flows slowly past the top of the tube,
to maintain the mole fraction of A at xA2 at z = z2. The entire system is kept at constant
temperature and pressure. Gases A and B are assumed to be ideal.

We know that there will be a net flow of gas upward from the gas–liquid interface,
and that the gas velocity near the cylinder wall will be smaller than that in the center of the
tube. To simplify the problem,we ignore this effect and assume that there is no dependence
of the z component of the velocity on the radial coordinate.

A steady-statemass balance (inmolar units) over an increment 2z of the column states
that the amount of A entering at plane z equals the amount of A leaving at plane z + 2z:

SNAz|z − SNAz|z+2z = 0 (18.6-1)

Here S is the cross-sectional area of the column. Division by S2z and taking the limit as
2z → 0 gives

−
dNAz

dz
= 0 (18.6-2)

When this evaporating system attains a steady state, there is a net motion of A away
from the interface and the species B is stationary. Hence, the molar flux of A is given by
Eq. 18.0-1 with NBz = 0, which can therefore be written in the form of Eq. 18.0-2, since xA
is not small,

NAz = xANAz − c𝒟AB
dxA
dz

or NAz(z) = −
c𝒟AB

1 − xA

dxA
dz

(18.6-3)

Substitution of Eq. 18.6-3 into Eq. 18.6-2 then gives

d
dz

(
c𝒟AB

1 − xA

dxA
dz

)
= 0 (18.6-4)

For an ideal-gas mixture, the equation of state is p = cRT, so that, at constant temperature
and pressure, c must be a constant. Furthermore, for gases, 𝒟AB is very nearly indepen-
dent of the concentration, and hence is also position-independent. Therefore, c𝒟AB can be
moved to the left of the derivative operator to get

d
dz

(
1

1 − xA

dxA
dz

)
= 0 (18.6-5)

This is a second-order differential equation for the concentration profile expressed asmole
fraction of A. Integration with respect to z gives

1

1 − xA

dxA
dz

= C1 (18.6-6)

A second integration then gives

− ln(1 − xA(z)) = C1z + C2 (18.6-7)

If we replace C1 by − lnK1 and C2 by − lnK2, and then take the exponential of both sides,
Eq. 18.6-7 becomes

1 − xA(z) = Kz
1
K2 (18.6-8)

1L. J. Delaney and L. C. Eagleton [AIChE Journal, 8, 418–420 (1962)] conclude that, for evaporating
systems, the interfacial equilibrium assumption is reasonable, with errors in the range 1.3% to 7.0%

possible.
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The two constants of integration, K1 and K2, may then be determined from the boundary
conditions

B.C. 1∶ at z = z1, xA = xA1 (18.6-9)

B.C. 2∶ at z = z2, xA = xA2 (18.6-10)

From these boundary conditions, the constants are found to be

K1 =
(
1 − xA2
1 − xA1

) 1

z2 − z1 K2 =
(
1 − xA2
1 − xA1

)−
z1

z2 − z1 (1 − xA1) (18.6-11, 12)

so that from Eqs. 18.6-8, 18.6-11, and 18.6-11, we get finally

(
1 − xA (z)
1 − xA1

)
=

(
1 − xA2
1 − xA1

) z − z1
z2 − z1 (18.6-13)

The profiles for gas B are obtained by using xB = 1 − xA. The concentration profiles are
shown in Fig. 18.6-1. It can be seen there that the slope dxA∕dz is not constant, although
NAz is; this could have been anticipated from Eq. 18.6-3.

Once the concentration profiles are known,we can get average values andmass fluxes
at surfaces. For example, the average concentration of B in the region between z1 and z2 is
obtained as follows:

xB,avg
xB1

=
∫

z2

z1

(xB∕xB1)dz

∫
z2

z1

dz
=

∫
1

0

(xB2∕xB1)rdr

∫
1

0

dr

=
(
xB2∕xB1

)r
ln(xB2∕xB1)

||||||
1

0

(18.6-14)

in which r = (z − z1)∕(z2 − z1) is a dimensionless length variable. Equation 18.6-14 may be
rewritten as

xB,avg =
xB2 − xB1
ln(xB2∕xB1)

(18.6-15)

That is, the average value of xB is the logarithmic mean of the terminal concentrations, i.e.,
(xB)ln = (xB2 − xB1)∕(ln xB2 − ln xB1).

The rate of mass transfer at the liquid–gas interface—that is, the rate of evaporation
of A—may be obtained from Eq. 18.6-3 as follows:

NAz|z=z1 = −
c𝒟AB

1 − xA1

dxA
dz

||||z=z1 = +
c𝒟AB

xB1

dxB
dz

||||z=z1 = c𝒟AB

z2 − z1
ln

(
xB2
xB1

)
(18.6-16)

By combining Eqs. 18.6-15 and 18.6-16 we get finally

NAz|z=z1 = c𝒟AB

(z2 − z1)(xB)ln
(xA1 − xA2) (18.6-17)

This expression gives the evaporation rate in terms of the characteristic driving
force xA1 − xA2.

By expanding the solution in Eq. 18.6-17 in a Taylor series, we can get (see §C.2 and
Problem 18B.17)

NAz|z=z1 = c𝒟AB(xA1 − xA2)
(z2 − z1)

[
1 + 1

2

(
xA1 + xA2

)
+ 1

3

(
x2A1 + xA1xA2 + x2A2

)
+ · · ·

]
(18.6-18)

The quantity in front of the bracketed expression is the simple result that one would get
if the convection term were entirely omitted in Eq. 18.0-1. The bracketed expression then
gives the correction resulting from including the convection term. Another way of inter-
preting Eq. 18.6-18 is that the simple result corresponds to joining the end points of the
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Direction
of flow

xA2 at edge of film

Main fluid stream
in turbulent flow

Slowly
moving
gas film

xA1 at
surface

xA

z

Fig. 18.6-2. Film model for mass transfer; component A
is diffusing from the surface into the gas stream through

a hypothetical stagnant gas film.

curves in Fig. 18.6-1 by a straight line, and the complete result corresponds to using the
curve of xA versus z. If the terminalmole fractions are small, the correction term in brackets
in Eq. 18.6-18 is only slightly greater than unity.

The results of this section have been used for the experimental determinations of gas
diffusivities.2 Furthermore, these results are used in the “film models” of mass transfer.
In Fig. 18.6-2 a solid or liquid surface is shown along which a gas is flowing. Near the
surface is a slowly moving film through which A diffuses. This film is bounded by the
surfaces z = z1 and z = z2. In this “model” it is assumed that there is a sharp transition
from a stagnant film to a well-mixed fluid in which the concentration gradients are negli-
gible. Although this model is physically unrealistic, it has nevertheless proven useful as a
simplified picture for correlating mass-transfer coefficients.

EXAMPLE 18.6-1

Evaporation with a
Moving Interface

Wewant now to examine a problem that is slightly different from the one just discussed. Instead

ofmaintaining the liquid–gas interface at a constant height, we allow the liquid level to subside

as the evaporation proceeds, as shown in Fig. 18.6-3. Since the liquid retreats very slowly, we

can use a quasi-steady-statemethod with confidence.

SOLUTION

First we equate the rate at whichmoles ofA enter the gas phase to themolar rate of evaporation

of A from the liquid phase, the latter being given by Eq. 18.6-17 with z1 replaced by z1(t)

S
i(A)

MA

(
−
dz1
dt

)
=

c𝒟AB

(z2 − z1(t))(xB)ln
(xA1 − xA2)S (18.6-19)

Here i(A) is the density of pure liquid A, and MA is the molecular weight. On the right side

of Eq. 18.6-19, we have used the steady-state evaporation rate evaluated at the current liquid

column height (this is the quasi-steady-state approximation). We first rewrite Eq. 18.6-19 in

terms of h(t) = z1(0) − z1(t), the distance that the interface has descended in time t, and H =
z2 − z1(0), the initial height of the gas column. Then the equation can be integrated to give

∫
h

0

(H + h)dh =
c𝒟AB(xA1 − xA2)
(i(A)∕MA)(xB)ln ∫

t

0

dt (18.6-20)

2C. Y. Lee and C. R. Wilke, Ind. Eng. Chem., 46, 2381–2387 (1954).
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H

Liquid A

z2

z1(0)
z1(t)

z2
t = 0 t > 0

h(t)

Fig. 18.6-3. Evaporation with quasi-steady-state

diffusion. The liquid level goes down very slowly as

the liquid evaporates. A gas mixture of composition

xA2 flows across the top of the tube.

where the overbars on h and t indicate dummy variables of integration. When we abbreviate

the entire right side of Eq. 18.6-20 by 1

2
Ct, the equation can be integrated and then solved for h

to give

h(t) = H
(√

1 +
(
Ct∕H2

)
− 1

)
(18.6-21)

In principle, one could use this experiment to get the diffusivity from measurements of the
liquid level as a function of time.

EXAMPLE 18.6-2

Determination of
Diffusivity

The diffusivity of the gas pair O2 - CCl4 is being determined by observing the steady-state
evaporation of carbon tetrachloride into a tube containing oxygen, as shown in Fig. 18.6-1. The
distance between the CCl4 liquid level and the top of the tube is z2 − z1 = 17.1 cm. The total
pressure on the system is 755mm Hg, and the temperature is 0∘C. The vapor pressure of CCl4
at that temperature is 33.0mm Hg and its liquid density is 1.629 g∕cm3. The cross-sectional
area of the diffusion tube is 0.82 cm2. It is found that 0.0208 cm3 of liquid CCl4 evaporates in a
10-hour period after steady state has been attained. It may be assumed that the partial pressure
of CCl4 at z = z2 is zero. What is the diffusivity of the gas pair O2 - CCl4?

SOLUTION

Let A stand for CCl4 and B for O2. The molar flux of A is then

NAz =
moles of CCl4 evaporated

area ⋅ time

=
(0.0208 cm3)(1.629 g∕cm3)∕(153.82 g∕g-mol)

(0.82 cm2)(3.6 × 104 s)
= 7.46 × 10−9 g-mol∕cm2 ⋅ s (18.6-22)

Then from Eq. 18.6-16 we get

𝒟AB =
(NAz|z=z1 )(z2 − z1)

c ln(xB2∕xB1)
=

(NAz|z=z1 )(z2 − z1)RT
p ln(pB2∕pB1)

=
(7.46 × 10−9 g-mol∕cm2 ⋅ s)(17.1 cm)(82.06 cm3atm∕g-mol ⋅ K)(273 K)

((755∕760) atm)(ln(755∕(755 − 33)))
= 0.0644 cm2∕s (18.6-23)

This method of determining gas-phase diffusivities suffers from several defects: the cooling
of the liquid by evaporation, the concentration of nonvolatile impurities at the interface, the
climbing of the liquid up the walls of the tube by surface tension, and the curvature of the
meniscus.
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EXAMPLE 18.6-3

Diffusion through a
Nonisothermal
Spherical Film

(a) Derive expressions for diffusion through a spherical shell that are analogous to Eq. 18.6-13

(concentration profile) and Eq. 18.6-16 (molar flux). The system under consideration is shown

in Fig. 18.6-4.

(b) Extend these results to describe the diffusion in a nonisothermal film in which the temper-

ature varies radially according to
T(r)
T1

=
(

r
r1

)n
(18.6-24)

in which T1 is the temperature at r = r1. Assume as a rough approximation that 𝒟AB varies as

the 3

2
-power of the temperature:

𝒟AB(T)
𝒟AB,1

=
(

T
T1

)3∕2
(18.6-25)

in which𝒟AB,1 is the diffusivity at T = T1. Problems of this kind arise in connection with drying

of droplets and diffusion through gas films near spherical catalyst pellets.

The temperature distribution in Eq. 18.6-24 has been chosen solely for mathematical sim-

plicity. This example is included to emphasize that, in nonisothermal systems, Eq. 18.0-1 is

the correct starting point rather thanNAz = −𝒟AB(dcA∕dz) + xA(NAz +NBz), as has been given in

some textbooks. (See the discussion in the paragraph following Eq. 17.3-6.)

SOLUTION

(a) A steady-state mass balance on a spherical shell leads to

d
dr

(r2NAr) = 0 (18.6-26)

We now substitute into this equation the expression for the molar flux NAr, with NBr set equal

to zero, since B is insoluble in liquid A. The molar flux is thus the r component (spherical coor-

dinates) analog of Eq. 18.0-2, which gives upon substitution in Eq. 18.6-26

d
dr

(
r2

c𝒟AB

1 − xA

dxA
dr

)
= 0 (18.6-27)

For constant temperature the product c𝒟AB is constant, and Eq. 18.6-27 may be integrated to give

the concentration distribution

(
1 − xA (r)
1 − xA1

)
=

(
1 − xA2
1 − xA1

) (1∕r1) − (1∕r)
(1∕r1) − (1∕r2) (18.6-28)

From Eq. 18.6-28 we can then get

WA = 40r2
1
NAr|r=r1 = 40c𝒟AB

(1∕r1) − (1∕r2)
ln

(
1 − xA2
1 − xA1

)
(18.6-29)

which is the molar flow of A across any spherical surface of radius r between r1 and r2.

Gas film

Temperature T2 = T1

Temperature T1

r1
r2

r2 n

r1

Fig. 18.6-4. Diffusion through a hypothetical

spherical stagnant gas film surrounding a

droplet of liquid A.
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(b) For the nonisothermal problem, combination of Eqs. 18.6-24 and 18.6-25 gives the variation

of diffusivity with position:
𝒟AB(r)
𝒟AB,1

=
(

r
r1

)3n∕2
(18.6-30)

When this expression is inserted into Eq. 18.6-27 and c is set equal to p∕RT, we get

d
dr

(
r2
p𝒟AB,1∕RT1

1 − xA

(
r
r1

)n∕2 dxA
dr

)
= 0 (18.6-31)

After integrating between r1 and r2, we obtain (for n ≠ −2)

WA = 40r2
1
NAr|r=r1 = 40(p𝒟AB,1∕RT1)[1 + (n∕2)]

[(1∕r1)1+(n∕2) − (1∕r2)1+(n∕2)]r
n∕2
1

ln

(
1 − xA2
1 − xA1

)
(18.6-32)

For n = 0, this result becomes that in Eq. 18.6-29.

§18.7 DIFFUSION OF GASES IN A TWO-BULB EXPERIMENT

One way to measure the diffusivity of gas pairs is by means of the two-bulb experiment1

pictured in Fig. 18.7-1. The lower bulb and the tube from z = −L to z = 0 are filled with gas
A. The upper bulb and the tube from z = 0 to z = +L are filledwith gas B (i(B) ≤ i(A), so that
there is no gravity-driven flow). At time t = 0 the stopcock is opened, and diffusion begins.
Because diffusion occurs, the concentration ofA in the twowell-stirred bulbs changes. One
measures the mole fraction of A in the upper bulb, x+A, as a function of time, and from this
one can deduce 𝒟AB, as shown below. We wish to derive the equations describing the
diffusion. We assume that the system is maintained at constant temperature and pressure,
so that the molar density c is constant throughout.

Since the volume of the bulbs is large comparedwith that of the tube, x+A and x−A change
very slowly with time. Hence, at any instant, the diffusion in the tube can be treated as a

z = 0Stopcock

z = –L

Volume V

Volume V

Mole fraction of A in
lower bulb is xA = 1 – xA

Entire gaseous
system is at

constant p and T

Mole fraction of A in
upper bulb is xA (t)

z = L

– +

+

g

Fig. 18.7-1. Sketch of a two-bulb apparatus

for measuring gas diffusivities. The stirrers

maintain uniform concentration in the bulbs.

1S. P. S. Andrew, Chem. Eng. Sci., 4, 269–272 (1955).
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quasi-steady-state problem, with the boundary conditions that xA = x−A and z = −L, and
that xA = x+A at z = +L. That is, we temporarily treat x−A and x+A as constants and solve a
steady-state diffusion problem; then later, we allow x−A and x+A to be functions of time.

A molar shell balance on a segment 2z of the tube with cross section S gives for
species A at steady state

SNAz|z − SNAz|z+2z = 0 (18.7-1)

Division by S2z and taking the limit as 2z goes to zero gives

dNAz

dz
= 0 (18.7-2)

or NAz = constant. Equation 18.0-1, for this problem, may be simplified thus

NAz = xA(NAz +NBz) − c𝒟AB
dxA
dz

= −c𝒟AB
dxA
dz

(18.7-3)

since NAz = −NBz; this is true, because, in a closed system at constant molar concentra-
tion c, for every mole of A that moves upward, a mole of B must move downward. This
situation is referred to as equimolar counterdiffusion.

Equation 18.7-3, withNAz = constant, is a differential equation for xA(z), which can be
integrated to give

xA(z) = −
NAz

c𝒟AB
z + C1 (18.7-4)

At z = L, we know that xA = x+A, so that

x+A = −
NAz

c𝒟AB
L + C1 (18.7-5)

and thus C1 = NAzL∕c𝒟AB + x+A. Substitution of this value of C1 into Eq. 18.7-4 gives

xA(z) − x+A =
NAz

c𝒟AB
(L − z) (18.7-6)

At z = −L, we know that xA = x−A = 1 − x+A (i.e., neglecting the small volume of the tubes,
the total number of moles of A in the two bulbs is constant), so that

(1 − x+A) − x+A =
NAz

c𝒟AB
(L − (−L)) (18.7-7)

from which

NAz =
(

1

2
− x+A

) c𝒟AB

L
(18.7-8)

Thus, we have solved the quasi-steady-state diffusion problem. Now we have to take into
account the fact that x+A is changing with time, albeit rather slowly.

We make an unsteady-state molar balance on A over the upper bulb, stating that the
increase in the moles of A in the upper bulb equals the number of moles of A that is dif-
fusing upward through the connecting tube, to get

d
dt
(Vcx+A) = SNAz (18.7-9)

Then by combining the last two equations we get

Vc
dx+A
dt

= S
(

1

2
− x+A

) c𝒟AB

L
(18.7-10)

This differential equation for x+A(t) can be integrated to give

− ln
(

1

2
− x+A (t)

)
=

S𝒟AB

VL
t + C2 (18.7-11)
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The integration constant may be obtained by using the initial condition that, at t = 0, the

mole fraction of A in the upper bulb is zero, so that C2 = − ln
(

1

2
− 0

)
. Therefore,

ln
(

1

2
− x+A (t)

)
− ln 1

2
= −

S𝒟AB

VL
t (18.7-12)

The left side may be rewritten as

ln 1

2
(1 − 2x+A) − ln 1

2
= ln

1

2
(1 − 2x+A)

1

2

= ln(1 − 2x+A) (18.7-13)

so that, if we take the exponential of both sides, we may write Eq. 18.7-12 as

1 − 2x+A(t) = exp

(
−
S𝒟AB

VL
t
)

(18.7-14)

This suggests that, if we plot−(LV∕S) ln(1 − 2x+A) vs. t, the slopewill be the diffusivity𝒟AB.
Therefore, the two-bulb experiment gives another method for measuring the diffusivity
of a binary gas mixture.

§18.8 DIFFUSION INTO A FALLING LIQUID FILM
(GAS ABSORPTION)1

In this sectionwe present an illustration of forced-convectionmass transfer, inwhich viscous
flow and diffusion occur under such conditions that the velocity field can be considered
virtually unaffected by the diffusion. Specifically, we consider the absorption of gas A by
a laminar falling film of liquid B. The material A is only slightly soluble in B, so that the
viscosity of the liquid is unaffected. We shall make the further restriction that the diffu-
sion takes place so slowly in the liquid film that A will not “penetrate” very far into the
film—that is, that the penetration distance will be small in comparisonwith the film thick-
ness. The system is sketched in Fig. 18.8-1. An example of this kind of system occurs in
the absorption of O2 in H2O.

Let us now set up the differential equations describing the diffusion process. First, we
have to solve the momentum-transfer problem to obtain the velocity profile vz(x) for the
film; this has already been worked out in §2.2 in the absence of mass transfer at the fluid
surface, and we know that the result is

vz(x) = vmax

[
1 −

(x
t

)2
]

(18.8-1)

provided that “end effects” are ignored.
Next we have to establish a mass balance on component A. We note that cA will be

changing with both x and z, as illustrated in Fig. 18.8-1. Hence, as the element of volume
for themass balance, we select the volume formed by the intersection of a slab of thickness
2z with a slab of thickness 2x. Then the mass balance on A over this segment of a film of
width W in the y direction becomes:

NAz|zW2x −NAz|z+2zW2x +NAx|xW2z −NAx|x+2xW2z = 0 (18.8-2)

1S. Lynn, J. R. Straatemeier, and H. Kramers, Chem. Engr. Sci., 4, 49–67 (1955). Professor Hendrik
(“Hans”) Kramers (1917–2006) was the founder of the Laboratory of Physical Technology (now called the

“Kramers Laboratory”) at the Technical University of Delft; in this laboratory, many fascinating

experiments were performed that involved the combination of diffusion, chemical reactions, and flow. He

was the first person in Europe to give a university course in transport phenomena for engineers. He was

an excellent teacher and mentor, much admired by his colleagues and his former research students.
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L

x

x = 0

y
z

W
x = δ

Δz

vz(x)

cA0

cA0

Δx

Fig. 18.8-1. Absorption of A into a falling film of

liquid B.

Dividing by W2x2z and performing the usual limiting processes as the volume element
becomes infinitesimally small, we get

𝜕NAz

𝜕z
+

𝜕NAx

𝜕x
= 0 (18.8-3)

Into this equation we now insert the expressions for NAz and NAx, making appropriate
simplifications of Eq. 18.0-1. For the molar flux in the z direction, we write, assuming
constant c

NAz = xA(NAz +NBz) − 𝒟AB
𝜕cA
𝜕z

----------------

≈ cAvz(x) (18.8-4)

We discard the dashed-underlined term, since the transport of A in the z direction will be
primarily by convection. We have made use of Eq. (F) in Table 17.4-1 and the fact that v is
almost the same as v* in dilute solutions. The molar flux in the x direction is

NAx = xA(NAx +NBx)
---------------------------

−𝒟AB
𝜕cA
𝜕x

≈ −𝒟AB
𝜕cA
𝜕x

(18.8-5)

Here we neglect the dashed-underlined term because in the x direction Amoves predom-
inantly by diffusion, there being almost no convective transport normal to the wall on
account of the very slight solubility ofA in B. Combining the last three equations, we then
get for constant𝒟AB

vz(x)
𝜕cA
𝜕z

= 𝒟AB
𝜕2cA
𝜕x2

(18.8-6)

Finally, insertion of Eq. 18.8-1 for the velocity distribution gives

vmax

[
1 −

(x
t

)2
]
𝜕cA
𝜕z

= 𝒟AB
𝜕2cA
𝜕x2

(18.8-7)

as the differential equation for cA(x,z).
Equation 18.8-7 is to be solved with the following boundary conditions:

B.C. 1∶ at z = 0, cA = 0 (18.8-8)

B.C. 2∶ at x = 0, cA = cA0 (18.8-9)

B.C. 3∶ at x = t,
𝜕cA
𝜕x

= 0 (18.8-10)
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The first boundary condition corresponds to the fact that the film consists of pure B at the
top (z = 0), and the second indicates that at the liquid–gas interface the concentration ofA
is determined by the solubility of A in B (that is, cA0). The third boundary condition states
that A cannot diffuse through the solid wall. This problem has been solved analytically in
the form of an infinite series,2 but we do not give that solution here. Instead, we seek only
a limiting expression valid for “short contact times,” that is, for small values of L∕vmax.

If, as indicated in Fig. 18.8-1, the substance A has penetrated only a short distance
into the film, then the species A “has the impression” that the film is moving throughout
with a velocity equal to vmax. Furthermore, if A does not penetrate very far, it does not
“sense” the presence of the solid wall at x = t. Hence, if the film were of infinite thickness
moving with the velocity vmax, the diffusing material “would not know the difference.”
This physical argument suggests (correctly) that wewill get a very good asymptotic result
(in the limit of short contact times) if we replace Eq. 18.8-7 and its boundary conditions by

vmax

𝜕cA
𝜕z

= 𝒟AB
𝜕2cA
𝜕x2

(18.8-11)

B.C. 1∶ at z = 0, cA = 0 (18.8-12)

B.C. 2∶ at x = 0, cA = cA0 (18.8-13)

B.C. 3∶ as x → ∞, cA → 0 (18.8-14)

An exactly analogous problem occurred in Example 3.8-1, which was solved by the
method of combination of variables. It is therefore possible to take over the solution to
that problem just by changing the notation. The solution is3

cA(x,z)
cA0

= 1 − 2√
0∫

x∕
√
4𝒟ABz∕vmax

0

exp(−k2) dk (18.8-15)

or

cA(x,z)
cA0

= 1 − erf
x√

4𝒟ABz∕vmax

= erfc
x√

4𝒟ABz∕vmax

(18.8-16)

In these expressions “erf x” and “erfc x” are the “error function” and the “complementary
error function” of x, respectively. They are discussed in §C.6 and tabulated in standard
reference works.4

Once the concentration profiles are known, the local mass flux at the gas–liquid inter-
face may be found from Eq. 18.8-5 as follows:

NAx|x=0 = −𝒟AB
𝜕cA
𝜕x

||||x=0 = −cA0𝒟AB

(
− 𝜕
𝜕x

erf
x√

4𝒟ABz∕vmax

)||||||x=0
= +cA0𝒟AB

(
2√
0
e−x

2∕(4𝒟ABz∕vmax) ⋅ 1√
4𝒟ABz∕vmax

)||||||x=0
= cA0

√
𝒟ABvmax

0z
(18.8-17)

2R. L. Pigford, PhD Thesis, University of Illinois (1941). Robert Lamar Pigford (1917–1988) was a

leader in the area of diffusion and mass transfer. He was for many years chairman of the Chemical

Engineering Department at the University of Delaware. Together with W. R. Marshall, Jr., he wrote

Applications of Differential Equations to Chemical Engineering Problems.
3The solution is worked out in detail by the method of combination of variables (or similarity

method) in Example 3.8-1.
4M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York,

9th printing (1972), pp. 310 et seq.
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To get this result, Eq. C.6-3 has been used. Then the total molar flow rate of A across the
surface at x = 0 (i.e., being absorbed by a liquid film of length L and widthW) is

WA = ∫
W

0 ∫
L

0

NAx|x=0 dz dy
=WcA0

√
𝒟ABvmax

0 ∫
L

0

1√
z
dz

=WLcA0

√
4𝒟ABvmax

0L
(18.8-18)

This result can also be obtained by integrating the product vmaxcA over the flow cross
section at z = L (see Problem 18C.2).

Equation 18.8-18 shows that the mass-transfer rate is directly proportional to the
square root of the diffusivity and inversely proportional to the square root of the “expo-
sure time,” texp = L∕vmax. This approach for studying gas absorption was apparently first

proposed by Higbie.5

The problem discussed in this section illustrates the “penetration model” of mass
transfer. This model is discussed further in Chapters 21 and 22.

EXAMPLE 18.8-1

Gas Absorption from
Rising Bubbles

Estimate the rate at which gas bubbles of A are absorbed by liquid B as the gas bubbles rise at

their terminal velocity vt through a clean quiescent liquid.

SOLUTION

Gas bubbles of moderate size, rising in liquids free of surface-active agents, undergo a toroidal

(Rybczynski-Hadamard) circulation as shown in Fig. 18.8-2. The liquid moves downward rel-

ative to each rising bubble, enriched in species A near the interface in the manner of the falling

film in Fig. 18.8-1. The depth of penetration of the dissolved gas into the liquid is slight over

the major part of the bubble, because of the motion of the liquid relative to the bubble and

because of the smallness of the liquid-phase diffusivity 𝒟AB. Thus, as a rough approxima-

tion, we can use Eq. 18.8-18 to estimate the rate of gas absorption, replacing the exposure time

texp = L∕vmax for the falling film by D∕vt for the bubble, where D is the instantaneous bubble

D

Gas bubble
of A

Liquid B

m
o
ti
o
n
 w

it
h
 t
er
m
in
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v
el
o
ci
ty
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t

D
ir
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o
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f 
b
u
b
b
le

Fig. 18.8-2. Absorption of gas A into liquid B.

5R. Higbie, Trans. AIChE, 31, 365–389 (1935). Ralph Wilmarth Higbie (1908–1941), a graduate of the
University of Michigan, provided the basis for the “penetration model” of mass transfer; he worked at

E. I. du Pont de Nemours & Co., Inc., and also at Eagle-Picher Lead Co.; then he taught at the University

of Arkansas and the University of North Dakota.
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diameter. This gives a rough estimate5 of the molar absorption rate, averaged over the bubble

surface, as

(NAr)avg =
√

4𝒟ABvt
0D

cA0 (18.8-19)

Here cA0 is the solubility of gas A in liquid B at the interfacial temperature and partial pressure

of gas A. This equation has been approximately confirmed by Hammerton and Garner6 for gas

bubbles 0.3 cm to 0.5 cm in diameter rising through carefully purified water.

A more refined analysis can be obtained by using the creeping flow7 solution for flow

around a sphere, and the result is

(NAr)avg =
√

4𝒟ABvt
30D

cA0 (18.8-20)

instead of Eq. 18.8-19.

Trace amounts of surface-active agents cause a marked decrease in absorption rates from

small bubbles, by forming a “skin” around each bubble and thus effectively preventing internal

circulation. The molar absorption rate in the small-diffusivity limit then becomes proportional

to the 2

3
power of the diffusivity, as for a solid sphere (see Eq. 22.2-10).

A similar approach has been used successfully for predicting mass-transfer rates during

drop-formation at a capillary tip.8

§18.9 DIFFUSION INTO A FALLING LIQUID FILM
(SOLID DISSOLUTION)1

We now turn to a problem very similar to that discussed in the previous section. Liquid B
is flowing in laminar motion down a vertical wall as shown in Fig. 18.9-1. The film begins
far enough up the wall so that vz depends only on y for z ≥ 0. For 0 < z < L the wall is
coated with a species A that is slightly soluble in B.

L

cA(y, z)
cA = 0

y

δ

z

Insoluble
wall

Near wall

vz ≈
ρgδ y
μ

Parabolic
velocity
profile of
fluid B

cA0 = saturation
concentration

Slightly soluble
wall made of A

Fig. 18.9-1. Solid A dissolving into a falling film

of liquid B, moving with a fully developed

parabolic velocity profile.

6D. Hammerton and F. H. Garner, Trans. Inst. Chem. Engrs. (London), 32, S18–S24 (1954).
7V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ (1962), p. 408,

Eq. 72.9. This reference gives many additional results, including liquid-liquid mass-transfer and

surfactant effects.
8H. Groothuis and H. Kramers, Chem. Eng. Sci., 4, 17–25 (1955).
1H. Kramers and P. J. Kreyger, Chem. Eng. Sci., 6, 42–48 (1956); see also R. L. Pigford, Chem. Eng.

Prog. Symposium Series No. 17, Vol. 51, pp. 79–92 (1955) for the analogous heat-conduction problem.
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For short distances downstream, species A will not diffuse very far into the falling
film. That is, A will be present only in a very thin boundary layer near the solid surface.
Therefore, the diffusing Amolecules will experience a velocity distribution that is charac-
teristic of the falling film right next to the wall, y = 0. The velocity distribution is given in
Eq. 2.2-22. In the present situation cos v = 1, and x = t − y, and

vz(y) =
igt2

24

[
1 −

(
1 −

y
t

)2
]
=

igt2

24

[
2
(y
t

)
−

(y
t

)2
]

(18.9-1)

At and adjacent to the wall (y∕t)2 ≪ (y∕t), so that for this problem the velocity is, to a
very good approximation, a linear function of y: vz(y) = (igt∕4)y ≡ ay. This means that
Eq. 18.8-6, which is appropriate here, becomes for short distances downstream

ay
𝜕cA
𝜕z

= 𝒟AB
𝜕2cA
𝜕y2

(18.9-2)

where a = igt∕4. This equation is to be solved with the boundary conditions

B.C. 1∶ at z = 0, cA = 0 (18.9-3)

B.C. 2∶ at y = 0, cA = cA0 (18.9-4)

B.C. 3∶ as y → ∞, cA → 0 (18.9-5)

In the second boundary condition, cA0 is the solubility of A in B. The third boundary con-
dition is used instead of the correct one (𝜕cA∕𝜕y = 0 at y = t), since for short contact times
we feel intuitively that it will not make any difference. After all, since the molecules of A
penetrate only slightly into the film, they cannot get far enough to “see” the outer edge of
the boundary at y = t, and hence, they cannot distinguish between the true boundary con-
dition and the approximate boundary condition in Eq. 18.9-5. The same kind of reasoning
was encountered in Example 11.5-3.

The form of the boundary conditions in Eqs. 18.9-3 to 18.9-5—that is, cA → 0 both as
z → 0 and as y → ∞—suggests the method of combination of variables, similar to that
employed in Examples 3.8-1 and 11.5-3. Therefore, we try cA(y,z)∕cA0 = f (q), where q =
y(a∕9𝒟ABz)1∕3. This combination of the independent variables can be shown to be dimen-
sionless, and the factor of “9” is included in order to make the solution look neater.

When this change of variables is made, the partial differential equation in Eq. 18.9-2
reduces to an ordinary differential equation

d2f

dq2
+ 3q2

df
dq

= 0 (18.9-6)

with the boundary conditions f (0) = 1 and f (∞) = 0.
This second-order equation, which is of the form of Eq. C.1-9, has the solution

f = C1∫
q

0

e−q
3

dq + C2 (18.9-7)

The constants of integration can then be evaluated using the boundary conditions to give

C2 = 1 (18.9-8)

C1 = −1∕∫
∞

0

e−q
3

dq = −1∕ 1

3∫
∞

0

e−xx−2∕3dx = − 1∕ 1

3
T
(

1

3

)
= −1∕T

(
4

3

)
(18.9-9)

by use of Eqs. C.4-1 and C.4-11. Therefore, we get

cA(q)
cA0

=
∫

∞

q
e−q

3

dq

∫
∞

0

e−q
3

dq
=

∫
∞

q
e−q

3

dq

T
(

4

3

) (18.9-10)



Trim Size: 8in x 10in Bird1e c18.tex V1 - October 30, 2014 2:11 P.M. Page 547

§18.10 Diffusion and Chemical Reaction Inside a Porous Catalyst 547

for the concentration profile, in which T
(

4

3

)
= 0.8930… is the gamma function of 4

3

(see §C.4). Next the local molar flux at the wall can be obtained as follows

NAy|y=0 = −𝒟AB
𝜕cA
𝜕y

|||||y=0 = −𝒟ABcA0

[
d
dq

(
cA
cA0

)
𝜕q

𝜕y

]|||||y=0
= −𝒟ABcA0

⎡⎢⎢⎢⎣−
exp

(
−q3

)
T
(

4

3

) (
a

9𝒟ABz

)1∕3⎤⎥⎥⎥⎦
||||||||y=0

= +
𝒟ABcA0

T
(

4

3

) (
a

9𝒟ABz

)1∕3

(18.9-11)

Then the molar flow of A across the entire mass-transfer surface at y = 0 is

WA = ∫
W

0 ∫
L

0

NAy|y=0dz dx =
2𝒟ABcA0WL

T
(

7

3

) (
a

9𝒟ABL

)1∕3

(18.9-12)

where T
(

7

3

)
= 4

3
T
(

4

3

)
= 1.1907….

The problems discussed in this and the preceding section are examples of two types
of asymptotic solutions that are encountered again in Chapter 22. It is therefore important
that these two problems be thoroughly understood. Note that in §18.8, WA ∝ (𝒟ABL)1∕2,
whereas in this sectionWA ∝ (𝒟ABL)2∕3. The differences in the exponents reflect the nature
of the velocity gradient at themass-transfer interface: in §18.8, the velocity gradient is zero,
whereas in this section, the velocity gradient is nonzero.

§18.10 DIFFUSION AND CHEMICAL REACTION INSIDE
A POROUS CATALYST

Up to this point we have discussed diffusion in gases and liquids in systems of simple
geometry. We now wish to apply the shell mass balance method and Fick’s first law to
describe diffusion within a porous catalyst pellet. Wemake no attempt to describe the dif-
fusion inside the tortuous void passages in the pellet. Instead, we describe the “averaged”
diffusion of the reactant in terms of an “effective diffusivity.”1,2,3

Specifically, we consider a spherical porous catalyst particle of radius R, as shown in
Fig. 18.10-1. This particle is in a catalytic reactor, submerged in a fluid stream containing
the reactant A and the product B. In the neighborhood of the surface of the particular
catalyst particle under consideration, we presume that the concentration is cAR moles of
A per unit volume. Species A diffuses through the tortuous passages in the catalyst and

Stream with
concentrations
cAR and cBR

R

Concentration at
surface is cAR

A B
inside catalyst

Fig. 18.10-1. A spherical catalyst that is porous. For

a magnified version of the inset, see Fig. 18.10-2.

1E. W. Thiele, Ind. Eng. Chem., 31, 916–920 (1939).
2R. Aris, Chem. Eng. Sci., 6, 262–268 (1957).
3A. Wheeler, Advances in Catalysis, Academic Press, New York (1950), Vol. 3, pp. 250–326.
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Solid

Concentration cAR

Pores

A B
on the
catalytic
surfaces

Fig. 18.10-2. Pores in the catalyst, in which diffusion

and chemical reaction occur.

is converted to B on the catalytic surfaces, as sketched in Fig. 18.10-2. We assume that the
concentration of species A, averaged over a volume large compared to the pore size but
small compared to R, is a function of only r.

We start bymaking amolar shell balance for speciesA on a spherical shell of thickness
2rwithin a single catalyst particle

NAr|r ⋅ 40r2 −NAr|r+2r ⋅ 40(r + 2r)2 + RA ⋅ 40r22r = 0 (18.10-1)

Here NAr|r is the number of moles per unit area of A passing in the r direction through
an imaginary spherical surface at a distance r from the center of the sphere. The source
term RA ⋅ 40r22r is the molar rate of production of A by chemical reaction in the shell of
thickness 2r. Dividing by 402r and letting 2r → 0 gives

lim
2r→0

(r2NAr)|r+2r − (r2NAr)|r
2r

= r2RA (18.10-2)

or, using the definition of the first derivative,

d
dr

(r2NAr) = r2RA (18.10-3)

This limiting process is clearly in conflict with the fact that the porous medium is granular
rather than continuous. Consequently, in Eq. 18.10-3 the symbols NAr and RA cannot be
interpreted as quantities having a meaningful value at a point. Rather we have to regard
them as quantities averaged over a small neighborhood of the point in question—a neigh-
borhood small with respect to the dimension R, but large with respect to the dimensions
of the passages within the porous particle.

We now define an “effective diffusivity” for species A in the porous medium by

NAr = −𝒟A,eff
dcA
dr

(18.10-4)

in which cA is the locally averaged concentration of the gas A contained within the pores.
Note that we have neglected the convection term (see Eq. 18.0-1), because the bulk flow
within porous catalyst particles is typically negligible. The effective diffusivity 𝒟A,eff
must be measured experimentally. It depends generally on pressure and temperature
and also on the catalyst pore structure. The actual mechanism for diffusion in pores
is complex, since the pore dimensions may be smaller than the mean-free path of the
diffusing molecules. We do not belabor the question of mechanism here but simply
assume that Eq. 18.10-4 can adequately represent the diffusion process.4

4See R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, revised second edition,

Wiley, New York (2007), Chapter 24.
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When the preceding expression is inserted into Eq. 18.10-3, we get, for constant effec-
tive diffusivity,

𝒟A,eff
1

r2
d
dr

(
r2
dcA
dr

)
= −RA (18.10-5)

We now consider the situationwhere speciesAdisappears according to a first-order chem-
ical reaction on the catalytic surfaces that form all or part of the “walls” of the winding
passages. Let a be the available catalytic surface area per unit volume (of solids + voids).
Then RA = −k′′

1
acA, and Eq. 18.10-5 becomes

𝒟A,eff
1

r2
d
dr

(
r2
dcA
dr

)
= k′′

1
acA (18.10-6)

This equation is to be solved with the boundary conditions that cA = cAR at r = R, and that
cA is finite at r = 0.

Equation 18.10-6 can be solved using Eqs. C.1-6a or C.1-6b. However, equations con-
taining the operator (1∕r2)(d∕dr)[r2(d∕dr)] can frequently be solved by using a “standard
trick”—namely, a change of variable cA(r)∕cAR = (1∕r)f (r). The equation for f (r) is then

d2f

dr2
=

(
k′′
1
a

𝒟A,eff

)
f (18.10-7)

This is a standard second-order differential equation (see Eq. C.1-4a), which can be
solved in terms of exponentials or hyperbolic functions. When it is solved and the result
divided by r, we get the following solution of Eq. 18.10-6 in terms of hyperbolic functions
(see §C.5):

cA(r)
cAR

=
C1

r
cosh

√
k′′
1
a

𝒟A,eff
r +

C2

r
sinh

√
k′′
1
a

𝒟A,eff
r (18.10-8)

Application of the boundary conditions gives C1 = 0 (since otherwise cA would be infinite

at r = 0) and C2 = R∕ sinh
√

k′′
1
a∕𝒟A,effR. Thus, we get finally

cA(r)
cAR

=
(R
r

) sinh
√

k′′
1
a∕𝒟A,eff r

sinh
√

k′′
1
a∕𝒟A,eff R

(18.10-9)

for the concentration distribution inside the catalyst particle.
In studies on chemical kinetics and catalysis, one is frequently interested in the molar

flux NAR or the molar flow WAR at the surface r = R:

WAR = 40R2NAR = −40R2𝒟A,eff
dcA
dr

||||r=R (18.10-10)

When Eq. 18.10-9 is substituted into this expression, we get

WAR = 40R𝒟A,effcAR
⎛⎜⎜⎝1 −

√
k′′
1
a

𝒟A,eff
R coth

√
k′′
1
a

𝒟A,eff
R
⎞⎟⎟⎠ (18.10-11)

This result gives the rate of conversion (in moles/sec) of A to B in a single catalyst particle
of radius R in terms of the parameters describing the diffusion and reaction processes.

If the catalytically active surface were all exposed to the stream of concentration cAR,
then the species A would not have to diffuse through the pores to a reaction site. The
molar rate of conversion would then be given by the product of the available surface and
the surface reaction rate:

WAR,0 =
(

4

3
0R3

)
(a)(−k′′

1
cAR) (18.10-12)
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Taking the ratio of the last two equations, we get

qA =
WAR

WAR,0
= 3

d2
(d coth d − 1) (18.10-13)

in which d =
√

k′′
1
a∕𝒟A,effR is the Thiele modulus,1 encountered in §18.4. The quantity

qA is called the effectiveness factor.1–3,5 It is the quantity by which WAR,0 has to be mul-
tiplied to account for the intraparticle diffusional resistance to the overall conversion
process.

For nonspherical catalyst particles, the preceding results may be applied approxi-
mately by reinterpreting R. We note that, for a sphere of radius R, the ratio of volume
to external surface is R∕3. For nonspherical particles, we redefine R in Eq. 18.10-13 as

Rnonsph = 3

(
VP

SP

)
(18.10-14)

whereVP and SP are the volume and external surface area of a single catalyst particle. The
absolute value of the conversion rate is then given approximately by|WAR| ≈ VPak

′′
1
cARqA (18.10-15)

where

qA = 1

3M2
(3M coth 3M − 1) (18.10-16)

in which the quantity M =
√

k′′
1
a∕𝒟A,eff(VP∕SP) is a generalized modulus.2,3

The particular utility of the quantity M may be seen in Fig. 18.10-3. It is clear that
when the exact theoretical expressions for qA are plotted as a function of M, the curves
have common asymptotes for large and small M and do not differ from one another very

Λ
0.4 0.6 0.8 1.0 2 3 4 1086

0.1

0.2

0.3

ηA
0.4

0.6

0.8

1.0

Flat particles

Long cylindrical particles

Spherical particles

Fig. 18.10-3. Effectiveness
factors for porous solid

catalysts of various shapes.

[R. Aris, Chem. Eng. Sci., 6,
262–268 (1957).]

5O. A. Hougen and K. M. Watson, Chemical Process Principles, Wiley, New York (1947), Part III,

Chapter XIX. See also CPP Charts, by O. A. Hougen, K. M. Watson, and R. A. Ragatz, Wiley, New York

(1960), Fig. E. See also C. G. Hill, Introduction to Chemical Engineering Kinetics and Reactor Design, Wiley,

New York (1977); C. G. Hill and T. W. Root, Introduction to Chemical Engineering Kinetics and Reactor Design,
2nd edition, Wiley, New York (2013); J. B. Rawlings and J. G. Ekerdt, Chemical Reactor Analysis and Design
Fundamentals, 2nd edition, Nob Hill Publishing, Madison, WI (2012).
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much for intermediate values of M. Thus, Fig. 18.10-3 provides a justification for the use
of Eq. 18.10-16 to estimate qA for nonspherical particles.

§18.11 CONCLUDING COMMENTS

Using the shell balance method, we have shown how to formulate and solve a wide vari-
ety of binary diffusion problems. These have included problems in gas absorption, liq-
uid evaporation, solid dissolution, equimolar counterdiffusion of gases, and diffusion in
porous catalyst particles.Wehave introduced the terms “homogeneous chemical reaction”
and “heterogeneous chemical reaction” and illustrated how such reactions are described
in the framework of diffusing systems.

The reader will have noticed that several of the problems in this chapter could be
solved by analogy with heat-conduction problems. This is not surprising, inasmuch as
the form of Fick’s law of diffusion and Fourier’s law of heat conduction often have similar
structure. On the other hand, the heterogeneous catalysis problem in §18.5 and the steady
evaporation problem investigated in §18.6 did not have simple heat-conduction analogs,
because of the role of convective mass transport.

In several sections we solved problems by the use of the “quasi-steady-state”method:
in Example 18.6-1, we assumed that the movement of the liquid level was very slow with
respect to the evaporation of the vapor; in §18.7, we assumed that the concentration in the
large bulbs could be regarded as constant when providing the boundary conditions for
the diffusion problem.

In the next chapter, we advance our problem-solving capability by formulating the
equations of change for binary mixtures, based on the fundamental conservation laws.
Then it will not be necessary to set up shell balances for each problem that we attack.

QUESTIONS FOR DISCUSSION

1. What arguments are used in this chapter for eliminating NBz from Eq. 18.0-1?

2. Suggest ways in which diffusivity 𝒟AB can be measured by means of the examples in this

chapter. Summarize possible sources of error.

3. In what limit do the concentration curves in Fig. 18.6-1 become straight lines?

4. Distinguish between homogeneous and heterogeneous reactions. Which ones are described by

boundary conditions and which ones manifest themselves in the differential equations?

5. What is meant by the term “diffusion-controlled reaction”?

6. Why is the expression in Eq. 18.6-17 called the “evaporation rate”?

7. Explain carefully how Eq. 18.6-19 is set up.

8. Criticize Example 18.6-3. To what extent is it “just a schoolbook problem”? What do you learn

from the problem?

9. What is meant by the term “equimolar counterdiffusion”?

10. In what sense can the quantity NAz in Eq. 18.5-17 be interpreted as a local rate of chemical

reaction?

11. How does the size of a bubble change as it moves upward in a liquid?

12. In what connection have you encountered Eq. 18.8-11 before?

13. What happens if you try to solve Eq. 18.10-7 by using exponentials instead of hyperbolic func-

tions? How do we know to make the simpler choice ahead of time?

14. Compare and contrast the systems discussed in §18.8 and §18.9, specifically the physical prob-

lems, the mathematical methods used to solve them, and the final expressions for the molar

fluxes.

PROBLEMS 18A.1 Evaporation rate. For the system shown in Fig. 18.6-1, what is the evaporation rate in g∕hr of
CCl3NO2 (chloropicrin) into air at 25∘C? Make the customary assumption that air is a “pure

substance.”
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Total pressure 770mm Hg

Diffusivity (CCl3NO2-air) 0.088 cm2∕s
Vapor pressure of CCl3NO2 23.81mm Hg

Distance from liquid level to top of tube 11.14 cm

Density of CCl3NO2 1.65 g∕cm3

Surface area of liquid exposed for evaporation 2.29 cm2

Answer: 0.0139 g∕hr

18A.2 Sublimation of small iodine spheres in still air. A sphere of iodine, 1 cm in diameter, is placed

in still air at 40∘C and 747mm Hg pressure. At this temperature the vapor pressure of iodine

is about 1.03mmHg. It is desired to determine the diffusivity of the iodine-air system by mea-

suring the sublimation rate. To help determine reasonable experimental conditions,

(a) Estimate the diffusivity for the iodine-air system at the temperature and pressure given

above, using the intermolecular force parameters in Table D.1.

(b) Estimate the rate of sublimation, basing your calculations on Eq. 18.6-29. (Hint: Assume r2
to be very large.)

This method has been used formeasuring the diffusivity, but it is open to question because

of the possible importance of free convection.

Answer: (a) 𝒟I2−air = 0.0888 cm2∕s; (b)WI2
= 1.06 × 10−4 g-mol∕hr

18A.3 Estimating the error in calculating the absorption rate. What is the maximum possible error

in computing the absorption rate from Eq. 18.8-18, if the solubility of A in B is known within

±5% and the diffusivity of A in B is known within ±15%? Assume that the geometric quantities

and the velocity are known very precisely.

18A.4 Chlorine absorption in a falling film. Chlorine is being absorbed from a gas in a small exper-

imental wetted-wall tower as shown in Fig. 18A.4. The absorbing fluid is water, which is mov-

ing with an average velocity of 17.7 cm∕s. What is the absorption rate in g-mol∕hr, if the
liquid-phase diffusivity of the chlorine-water system is 1.26 × 10−5 cm2∕s, and if the saturation

concentration of chlorine inwater is 0.823 g chlorine per 100 gwater (these are the experimental
values at 16∘C). The dimensions of the column are given in the figure. (Hint: Ignore the chemical

reaction between chlorine and water.)

Answer: 0.273 g-mol∕hr

L = 13 cm

Film thickness δ

R = 1.4 cm
Water film runs
down the wall

Surface concentration
assumed equal to the

saturation concentration

Chlorine-bearing
gas

Fig. 18A.4 Schematic drawing of a wetted-wall

column.
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18A.5 Determination of diffusivity for ether-air system. The following data on the evaporation of

ethyl ether (C2H5OC2H5), with a liquid density of 0.712 g∕cm3, have been tabulated by Jost.1

The data are for a tube of 6.16mm diameter, a total pressure of 747mmHg, and a temperature

of 22∘C.

Decrease of the ether level
(measured from the open
end of the tube), in mm

Time, in seconds, required
for the indicated
decrease of level

from 9 to 11 590

from 14 to 16 895

from 19 to 21 1185

from 24 to 26 1480

from 34 to 36 2055

from 44 to 46 2655

The molecular weight of ethyl ether is 74.12, and its vapor pressure at 22∘C is 480mm Hg.

It may be assumed that the ether concentration at the open end of the tube is zero. Jost has

given a value of𝒟AB for the ether-air system of 0.0786 cm2∕s at 0∘C and 760mm Hg.

(a) Use the evaporation data to find𝒟AB at 747mmHg and 22∘C, assuming that the arithmetic

average gas-column lengths may be used for z2 − z1 in Fig. 18.6-1. Assume further that the
ether-air mixture is ideal and that the diffusion can be regarded as binary.

(b) Convert the result to𝒟AB at 760mm Hg and 0∘C using Eq. 17.6-1.

18A.6 Mass flux from a circulating bubble.
(a) Use Eq. 18.8-20 to estimate the rate of absorption of CO2 (component A) from a car-

bon dioxide bubble 0.5 cm in diameter rising through pure water (component B) at 18∘C
and at a pressure of 1 atm. The following data2 may be used: 𝒟AB = 1.46 × 10−5 cm2∕s,
cA0 = 0.041 g-mol∕liter, vt = 22 cm∕s.
(b) Recalculate the rate of absorption, using the experimental results of Hammerton and Gar-

ner,3 who obtained a surface-averaged kc of 117 cm∕hr (see Eq. 18.1-2).
Answers: (a) 1.17 × 10−6 g-mol∕cm2s; (b) 1.33 × 10−6 g-mol∕cm2s

18B.1 Diffusion through a stagnant film—alternate derivation. In §18.6 an expression for the evap-

oration rate was obtained in Eq. 18.6-16 by differentiating the concentration profile found a

few lines before. Show that the same results may be derived without finding the concentration
profile. Note that at steady state, NAz is a constant according to Eq. 18.6-2. Then Eq. 18.6-3 can

be integrated directly to get Eq. 18.6-16.

18B.2 Error in neglecting the convection term in evaporation.
(a) Rework the problem in the text in §18.6 by neglecting the convection term xA(NAz +NBz) in
Eq. 18.0-1. Show that this leads to

NAz =
c𝒟AB

z2 − z1
(xA1 − xA2) (18B.2-1)

This is a useful approximation if A is present only in very low concentrations.

(b) Obtain the result in (a) from Eq. 18.6-16 by making the appropriate approximation.

(c) What error is made in the determination of 𝒟AB in Example 18.6-2 if the result in (a)

is used?

Answer: 2.2%

1W. Jost, Diffusion, Academic Press, New York (1952), pp. 411–413.
2G. Tammann and V. Jessen, Z. anorg. allgem. Chem., 179, 125–144 (1929); F. H. Garner and

D. Hammerton, Chem. Eng. Sci., 3, 1–11 (1954).
3D. Hammerton and F. H. Garner, Trans. Inst. Chem. Engrs. (London), 32, S18–S24 (1954).
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18B.3 Effect of mass-transfer rate on the concentration profiles.
(a) Combine the result in Eq. 18.6-13 with that in Eq. 18.6-16 to get

1 − xA(z)
1 − xA1

= exp

(
NAz

(
z − z1

)
c𝒟AB

)
(18B.3-1)

(b) Obtain the same result by integrating Eq. 18.6-3 directly, using the fact thatNAz is constant.

(c) Note what happens when the mass-transfer rate becomes small. Expand Eq. 18B.3-1 in a

Taylor series and keep two terms only, as is appropriate for small NAz. What happens to the

slightly curved lines in Fig. 18.6-1 when NAz is very small?

18B.4 Absorption with chemical reaction
(a) Rework the problem discussed in the text in §18.4, but take z = 0 to be the bottom of the

beaker and z = L at the gas–liquid interface.

(b) In solving Eq. 18.4-7, we took the solution to be of the sum of two hyperbolic functions. Try

solving the problem by using the equally valid solution T(r) = C1 exp(dr) + C2 exp(−dr).
(c) In what way do the results in Eqs. 18.4-10 and 18.4-12 simplify for very large L? for very

small L? Interpret the results physically.

18B.5 Absorption of chlorine by cyclohexene. Chlorine can be absorbed from Cl2-air mixtures by

olefins dissolved in CCl4. It was found4 that the reaction of Cl2 with cyclohexene (C6H10) is
second order with respect to Cl2 and zero order with respect to C6H10. Hence, the rate of dis-

appearance of Cl2 per unit volume is k′′′
2
c2A (where A designates Cl2).

Rework the problemof §18.4whereB is a C6H10 - CCl4 mixture, assuming that the diffusion

can be treated as pseudobinary. Assume that the air is essentially insoluble in the C6H10 - CCl4
mixture. Let the liquid phase be sufficiently deep that L can be taken to be infinite.

(a) Show that the concentration profile is given by

cA(z)
cA0

=
⎡⎢⎢⎣1 +

√
k′′′
2
cA0

6𝒟AB
z
⎤⎥⎥⎦
−2

(18B.5-1)

(b) Obtain an expression for the rate of absorption of Cl2 by the liquid.

(c) Suppose that a substance A dissolves in and reacts with substance B so that the rate of

disappearance ofA per unit volume is some arbitrary function of the concentration, f (cA). Show
that the rate of absorption of A is given by

NAz|z=0 =
√

2𝒟AB∫
cA0

0

f (cA) dcA (18B.5-2)

Use this result to check the result of (b).

18B.6 Oxygen uptake by a bacterial aggregate. Under suitable circumstances the rate of oxygen

metabolism by bacterial cells is very nearly zero orderwith respect to oxygen concentration.We

examine such a case here and focus our attention on a spherical aggregate of cells, which has a

radiusR. Wewish to determine the total rate of oxygen uptake by the aggregate as a function of

aggregate size, oxygen mass concentration i0 at the aggregate surface, the metabolic activity of

the cells, and the diffusional behavior of the oxygen. For simplicity we consider the aggregate

to be homogeneous. We then approximate the metabolic rate by an effective volumetric reac-

tion rate rO2
= −k′′′

0
and the diffusional behavior by Fick’s law, with an effective pseudobinary

diffusivity 𝒟O2m
. Because the solubility of oxygen is very low in this system, both convective

oxygen transport and transient effects may be neglected.5

4G. H. Roper, Chem. Eng. Sci., 2, 18–31, 247–253 (1953).
5J. A. Mueller, W. C. Boyle, and E. N. Lightfoot, Biotechnol. and Bioengr., 10, 331–358 (1968).
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(a) Show by means of a shell mass balance that the quasi-steady-state oxygen concentration

profile is described by the differential equation

1

k2
d
dk

(
k2
dc
dk

)
= N (18B.6-1)

where c = iO2
∕i0, k = r∕R, and N = k′′′

0
R2∕i0𝒟O2m

.

(b) There may be an oxygen-free core in the aggregate, such that c = 0 for k < k0, if N is suffi-

ciently large. Write appropriate boundary conditions to integrate Eq. 18B.6-1 for this situation.

To do this, it must be recognized that both c and dc∕dk are zero at k = k0. What is the physical

significance of this last statement?

(c) Perform the integration of Eq. 18B.6-1 and show how k0 may be determined.

(d) Sketch the total oxygen uptake rate and k0 as functions ofN, and discuss the possibility that

no oxygen-free core exists.

Answer: (c) c = 1 − N
6
(1 − k2) + N

3
k3
0

(
1

k
− 1

)
for k ≥ k0 ≥ 0, where k0 is determined as a function

of N from k3
0
− 3

2
k2
0
+

(
1

2
− 3

N

)
= 0

18B.7 Diffusion from a suspended droplet. A droplet of liquid A, of radius r1, is suspended in a

stream of gas B as shown in Fig. 18.6-4. We postulate that there is a spherical stagnant gas film

of radius r2 surrounding the droplet. The concentration ofA in the gas phase is xA1 at r = r1 and
xA2 at the outer edge of the film, r = r2.
(a) By a shell balance, show that for steady-state diffusion r2NAr is a constant within the gas

film, and set the constant equal to r2
1
NAr1, the value at the droplet surface.

(b) Show that Eq. 18.0-1 and the result in (a) lead to the following equation for xA:

r2
1
NAr1 = −

c𝒟AB

1 − xA
r2
dxA
dr

(18B.7-1)

(c) Integrate this equation between the limits r1 and r2 to get

NAr1 =
c𝒟AB

r2 − r1

(
r2
r1

)
ln

xB2
xB1

(18B.7-2)

What is the limit of this expression as r2 → ∞?

18B.8 Rate of leaching. In studying the rate of leaching of a substance A from solid particles by

a solvent B, we may postulate that the rate-controlling step is the diffusion of A from the

particle surface through a stagnant liquid film of thickness t out into the main stream (illus-

trated in Fig. 18B.8). The molar solubility of A in B is cA0, and the concentration in the main

stream is cAt.

Solid
particle

containing
A

Liquid
film

z = 0 z = δ

cAδ

Main
liquid
stream

of
A and B

cA0

Fig. 18B.8 Leaching of A by diffusion into a stagnant

liquid film of B.
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(a) Obtain a differential equation for cA as a function of z by making a mass balance on A over

a thin slab of thickness 2z. Assume that 𝒟AB is constant and that A is only slightly soluble in

B. Neglect the curvature of the particle.

(b) Show that, in the absence of chemical reaction in the liquid phase, the concentration profile

is linear.

(c) Show that the rate of leaching is given by

NAz =
𝒟AB(cA0 − cAt)

t
(18B.8-1)

18B.9 Diffusionwithhomogeneous andheterogeneous reactions. GasAdiffuses through a stagnant

film to a catalytic surface where A is instantaneously converted to B by a molecular rearrange-

ment, as shown in Fig. 18B.9. When B leaves the surface, it begins to decompose very slowly

by a first-order reaction, with rate constant k′′′
1
. Because the reaction is so slow, the mixture is

composed almost exclusively of species A and B, and thus, we may treat this problem as one

of equimolar counterdiffusion (NAz = −NBz).

z

z = 0

x = 0 x = 1

Edge of hypothetical
stagnant gas film

z = δ

xB(z) xA(z)

xA, xB
xB0 xA0

Catalytic surface
where A→B
irreversibly and
instantaneously

A

B

Fig. 18B.9 Schematic diagram of

diffusion near a catalyst particle

surface, where A is converted to

B. Species B subsequently

decomposes slowly via a

homogeneous reaction. Solid

curves for xA(z) and xB(z) are
calculated for xB0 = 0.2 and b = 1;

dashed lines are for xB0 = 0.2 and
b = 0.

(a) Find the rate at which A is converted to B in this diffusion-plus-chemical-reaction process

at steady state.

(b) What happens to the solution when k′′′
1

→ 0?

(c) Is the solution physically meaningful for all values of k′′′
1
?

Answer: (a) NAz|z=0 = (
c𝒟AB

t

)(
b

sinh b

)
(1 − xB0 cosh b) where b =

√
k′′′
1
t2∕𝒟AB

18B.10 Diffusion with fast second-order reaction. In a steady-state, isothermal flow system, a solid A
is dissolving in a flowing liquid stream S. Assume in accordance with the film model that the

surface of A is covered with a stagnant liquid film of thickness t and that the liquid outside the

film is well mixed (see Fig. 18.6-2).

(a) Develop an expression for the rate of dissolution of A into the liquid if the concentration of

A in the main liquid stream is negligible.

(b) Develop a corresponding expression for the dissolution rate if the liquid contains a sub-

stance B, which reacts instantaneously and irreversibly with A: A + B → P. (An example of this

system would be the dissolution of benzoic acid, C6H5COOH, in an aqueous NaOH solution.)

The main liquid stream consists primarily of B and S, with B at a mole fraction of xB∞. (Hint:
It is necessary to recognize that species A and B both diffuse toward a thin reaction zone as

shown in Fig. 18B.10.)

Answers: (a) NAz|z=0 = (
c𝒟ASxA0

t

)
; (b) NAz|z=0 = (

c𝒟ASxA0
t

)(
1 +

xB∞𝒟BS

xA0𝒟AS

)
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A diffusing
through S

xA0

z = 0

A

z = κδ
(reaction
plane)

z = δ
(outer edge
of stagnant
liquid film)

xB∞

xB

xA

B diffusing
through S

Well-mixed
stream of
B and S

Fig. 18B.10 Concentration profiles for

diffusion with rapid second-order reaction.

The concentration of product P may be

neglected.

18B.11 A sectioned-cell experiment6 for measuring gas-phase diffusivity. Liquid A is allowed to

evaporate through a stagnant gas B at 741mm Hg total pressure and 25∘C. At that tempera-

ture, the vapor pressure of A is known to be 600mm Hg. After steady state has been attained,

the cylindrical column of gas is divided into sections as shown in Fig. 18B.11. For a 4-section

apparatus with a total height of 4.22 cm, the analysis of the gas samples thus obtained gives the

following results:

(z − z1) in cm

Section

Bottom of

section

Top of

section

Mole

fraction of A

I 0.10 1.10 0.757

II 1.10 2.10 0.641

III 2.10 3.10 0.469

IV 3.10 4.10 0.215

The measured evaporation rate of A at steady state is 0.0274 g-mol/hr. Ideal-gas behavior may

be assumed.

(a) Verify the following expression for the concentration profile at steady state:

ln
xB2
xB(z)

=
NAz(z2 − z)

c𝒟AB
(18B.11-1)

(b) Plot the natural log of the mole fraction xB in each cell versus the value of z at the midplane

of the cell. Is a straight line obtained?What are the intercepts at z1 and z2? Interpret these results.
(c) Use the concentration profile of Eq. 18B.11-1 to find analytical expressions for the average

concentrations in each section of the tube.

(d) Find the best value of 𝒟AB from this experiment.

Answer: (d) 0.154 cm2∕s

6E. J. Crosby, Experiments in Transport Phenomena, Wiley, New York (1961), Experiment 10.a.
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Handle for rotating
alternate cell

sections

Sample ports
in cell section

Constant-
temperature bath

Gas manifold with
stream of pure gas B

Screen

Gas manifold

Height of liquid surface

Three stationary
sections

Four rotatable
sections

Diffusion cell
of diameter 2 cm.

Liquid reservoir

Liquid A
added here
to maintain
constant

liquid level

(a) (b)

z1

z2
Screen

Stationary
sections

Rotated
sections

Diffusion cell

Liquid reservoir

Fig. 18B.11 A sectioned-cell experiment for measuring gas diffusivities. (a) Cell configuration during the approach to

steady state. (b) Cell configuration for gas sampling at the end of the experiment. [Adapted from E. J. Crosby, Experiments
in Transport Phenomena, Wiley, New York (1961), Experiment 10.a.]

18B.12 Tarnishing of metal surfaces. In the oxidation of most metals (excluding the alkali and

alkaline-earth metals) the volume of oxide produced is greater than that of the metal con-

sumed. This oxide thus tends to form a compact film effectively insulating the oxygen and

metal from each other. For the derivations that follow it may be assumed that

(a) For oxidation to proceed, oxygenmust diffuse through the oxide film and that this diffusion

follows Fick’s law.

(b) The free surface of the oxide film is saturated with oxygen from the surrounding air.

(c) Once the film of oxide has become reasonably thick, the oxidation becomes diffusion

controlled; that is, the dissolved oxygen concentration is essentially zero at the oxide-metal

surface.

(d) The rate of change of dissolved oxygen content of the film is small compared to the rate of

reaction. That is, quasi-steady-state conditions may be assumed.

(e) The reaction involved is 1

2
xO2 +M → MOx.

We wish to develop an expression for rate of tarnishing in terms of oxygen diffusivity

through the oxide film, the densities of the metal and its oxide, and the stoichiometry of the



Trim Size: 8in x 10in Bird1e c18.tex V1 - October 30, 2014 2:11 P.M. Page 559

Problems 559

reaction. Let cO be the solubility of O2 in the film, cf the molar density of the film, and zf the
thickness of the film. Show that the film thickness is

zf =

√
2𝒟O2 - MOx

t

x
cO
cf

(18B.12-1)

This result, the so-called “quadratic law,” gives a satisfactory empirical correlation for a number

of oxidation and other tarnishing reactions.7 Most such reactions are, however, much more

complex than the mechanism given above.8

18B.13 Effectiveness factors for thin disks. Consider porous catalyst particles in the shape of thin

disks, such that the surface area of the edge of the disk is small in comparison with that of the

two circular faces (see Fig. 18B.13). Apply the method of §18.10 to show that the steady-state

concentration profile is

cA(z)
cAs

=
cosh

√
k′′
1
a∕𝒟A,eff z

cosh
√

k′′
1
a∕𝒟A,eff b

(18B.13-1)

where cAs is the surface concentration at z = ±b, and z and b are described in the figure. Show

that the total mass-transfer rate at the surfaces z = ±b is

|WA| = 20R2cAs𝒟A,effm tanh mb (18B.13-2)

in which m =
√

k′′
1
a∕𝒟A,eff. Show that, if the disk is sliced parallel to the xy plane into n slices,

the total mass-transfer rate becomes

|W(n)
A | = 20R2cAs𝒟A,effmn tanh(mb∕n) (18B.13-3)

Obtain the expression for the effectiveness factor by taking the limit

qA = lim
n→∞

|WA||W(n)
A | = tanh mb

mb
(18B.13-4)

Express this result in terms of the parameter M defined in §18.10.

z = 0
(midplane)

Surface z = + b

Surface z = – b

Catalyst particle

Fig. 18B.13 Side view of a disk-shaped

catalyst particle.

18B.14 Diffusion and heterogeneous reaction in a slender cylindrical tube with a closed end. A
slender cylindrical pore of length L, cross-sectional area S, and perimeter P, is in contact

at its open end with a large body of well-mixed fluid, consisting of species A and B, as
shown in Fig. 18B.14. Species A, a minor constituent of this fluid, disappears into the pore,

diffuses in the z direction and reacts on its walls. The rate of this reaction may be expressed

as (n ⋅ nA)|surface = f (aA0); that is, at the wall the mass flux normal to the surface is some

7G. Tammann, Z. anorg. allgem. Chemie, 124, 25–35 (1922).
8W. Jost, Diffusion, Academic Press, New York (1952), Chapter IX. For a discussion of the oxidation

of silicon, see R. Ghez, A Primer of Diffusion Problems, Wiley, New York (1988), §2.3.
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function of the mass fraction, aA0, of A in the fluid adjacent to the solid surface. The mass

fraction aA0 depends on z, the distance from the inlet. Because A is present in low concen-

tration, the fluid temperature and density may be considered constant, and the diffusion

flux is adequately described by jA = −i𝒟AB∇aA, where the diffusivity may be regarded as a

constant. Because the pore is long compared to his lateral dimension, concentration gradients

in the lateral directions may be neglected. Note the similarity with the problem discussed

in §10.5.

z z + Δz

nA0

nA0

dωA

ωA = ωA0(z)

nAz  z = –ρ AB dz

Δzz

nn
L

Side View(a)

Well-mixed
fluid

ωA = ωAi

(b)

End View

P

z

dωAnAz  z+Δz = –ρ AB dz z+Δz

Fig. 18B.14 (a) Diffusion

and heterogeneous

reaction in a long,

noncircular cylinder.

(b) Region of thickness

2z over which the mass

balance is made.

(a) Show by means of a shell balance that, at steady state,

−
dnAz

dz
= P

S
f (aA0) (18B.14-1)

(b) Show that the steady-state mass-average velocity vz is approximately zero for this system.

(c) Substitute the appropriate form of Fick’s law into Eq. 18B.14-1, and integrate the resulting

differential equation for the special case that f (aA0) = k′′
1
aA0. To obtain a boundary condition

at z = L, neglect the rate of reaction on the closed end of the cylinder; why is this a reasonable

approximation?

(d) Develop an expression for the total rate wA of disappearance of A in the cylinder.

(e) Compare the results of parts (c) and (d) with those of §10.5, both from the standpoint of the

mathematical development and the nature of the assumptions made.

Answers: (c)
aA(z)
aAi

=
cosh N[1 − (z∕L)]

cosh N
where N =

√
PL2k′′

1

Si𝒟AB
; (d) wA = (Si𝒟ABaAi∕L)N tanh N

18B.15 Effect of temperature and pressure on evaporation rate.
(a) In §18.6, what is the effect of a change of temperature and pressure on the quantity xA1?
(b) If the pressure is doubled, how is the evaporation rate in Eq. 18.6-16 affected?

(c) Howdoes the evaporation rate change when the system temperature is raised from T to T′?

18B.16 Reaction rates in large and small particles.
(a) Obtain the following limits for Eq. 18.10-11:

R → 0∶ WAR = −
(

4

3
0R3

)
(k′′a1)cAR (18B.16-1)

R → ∞∶ WAR = −
(

4

3
0R2

)
(k′′a1𝒟A,eff)1∕2cAR (18B.16-2)

Interpret these results physically.
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(b) Obtain the corresponding asymptotes for the system discussed in Problem 18B.13. Com-

pare them with the results in (a).

18B.17 Evaporation rate for small mole fraction of the volatile liquid. In Eq. 18.6-17, expand

1

(xB)ln
=

(
1

xA1 − xA2

)(
ln

1 − xA2
1 − xA1

)
(18B.17-1)

in a Taylor series appropriate for small mole fractions of A. First rewrite the logarithm of the

quotient as the difference of the logarithms. Then expand ln(1 − xA1) and ln(1 − xA2) in Taylor

series about xA1 = 0 and xA2 = 0, respectively. Verify that Eq. 18.6-18 is correct.

18C.1 Diffusion and reaction in a partially impregnated catalyst. Consider a catalytic sphere like

that in §18.10, except that the active ingredient of the catalyst is present only in the annular

region between r = nR and r = R:

In Region I (0 ≤ r < nR), k′′
1
a = 0 (18C.1-1)

In Region II (nR ≤ r ≤ R), k′′
1
a = constant > 0 (18C.1-2)

Such a situation may arise when the active ingredient is put on the particles after pelleting, as

is done for many commercial catalysts.

(a) Integrate Eq. 18.10-6 separately for the active and inactive regions. Then apply the appropri-

ate boundary conditions to evaluate the integration constants, and solve for the concentration

profile in each region. Give qualitative sketches to illustrate the forms of the profiles.

(b) EvaluateWAR, the total rate of reaction in a single particle.

18C.2 Absorption rate in a falling film. The result in Eq. 18.8-18 may be obtained by an alternative

procedure.

(a) According to an overall mass balance on the film, the total moles of A transferred per unit

time across the gas–liquid interface must be the same as the total molar rate of flow of A across

the plane z = L. This is calculated as follows:

WA = lim
t→∞

(Wtvmax)
(
1

t∫
t

0

cA||z=Ldx) = Wvmax∫
∞

0

cA|z=Ldx (18C.2-1)

Explain this procedure carefully.

(b) Insert the solution for cA in Eq. 18.8-15 into the result of (a) to obtain:

WA = WvmaxcA0
2√
0∫

∞

0

(
∫

∞

x∕
√
4𝒟ABL∕vmax

exp
(
−k2

)
dk

)
dx

= WvmaxcA0
2√
0

√
4𝒟ABL
vmax

∫
∞

0

(
∫

∞

u
exp

(
−k2

)
dk
)
du (18C.2-2)

In the second line, the new variable u = x∕
√
4𝒟ABL∕vmax has been introduced.

(c) Change the order of integration in the double integral, to get

WA = WLcA0

√
4𝒟ABvmax

0L
⋅ 2∫

∞

0

exp(−k2)
(
∫

k

0

du
)

dk (18C.2-3)

Explain by means of a carefully drawn sketch how the limits are chosen for the integrals

(see §C.7). The integrals may now be done analytically to get Eq. 18.8-18.

18C.3 Estimation of the required length of an isothermal reactor. Let a be the area of catalyst surface
per unit volume of a packed-bed catalytic reactor (see Fig. 18.5-1), and S be the cross-sectional

area of the reactor. Suppose that the rate of mass flow through the reactor is w (in lbm∕hr, for
example).
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(a) Show that a steady-statemass balance on substanceA over a length dl of the reactor leads to

daA0

dl
= −

SaNAMA

w
(18C.3-1)

(b) Use the result of (a) and Eq. 18.5-17, with the assumptions of constant t and𝒟AB, to obtain

an expression for the reactor length L needed to convert an inlet stream of composition xA(0)
to an outlet stream of composition xA(L). (Hint: Equation (I) of Table 17.4-1 may be useful.)

Answer: (b) L =
(

wtMB

2Sac𝒟AB

)
∫

xA(L)

xA(0)

dxA0[
MAxA0 +MB

(
1 − xA0

)]2
ln

(
1 − 1

2
xA0

)
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Chapter 19

The Equations of Change
for Binary Mixtures

§19.1 The equations of continuity for a binary mixture

§19.2 Summary of the binary mixture conservation laws

§19.3 Summary of the binary mixture molecular fluxes

§19.4 The equations of change and solving steady-state diffusion problems

§19.5 The equations of change and solving unsteady-state diffusion problems

§19.6 Concluding comments

In Chapter 18, problems in diffusion were formulated by making shell balances on one
of the diffusing species. In this chapter, we make a mass balance for one of the chemical
species in a binary mixture over an arbitrary, tiny element of volume fixed in space to
establish the equations of continuity for each species. Insertion of the mass flux vector
expressions then leads to the diffusion equations in a variety of forms. These diffusion
equations can be used to set up any of the problems in Chapter 18 and more complicated
ones as well.

Then we summarize all of the equations of change for binary mixtures: the equations
of continuity, motion, and energy. These include all the equations of change that were
given in Chapters 3 and 11. Next we summarize the expressions for the fluxes. All of these
equations are given in general form, although for problem solving we generally use sim-
plified versions of them.

The remainder of the chapter is devoted to solving problems involving diffusion in
binary mixtures.

§19.1 THE EQUATIONS OF CONTINUITY FOR A BINARYMIXTURE

In this section we apply the law of conservation of mass to each chemical species in a
mixture of A and B. The system we consider is a tiny volume element 2x2y2z fixed in
space throughwhich themixture is flowing (see Fig. 19.1-1).Within thismixture theremay
be a chemical reaction occurring, and we use the symbol rA to indicate the rate at which
species A is being produced, with dimensions of mass per unit volume per unit time.

The various contributions to the mass balance on A are

Rate of increase of mass of
A in the volume element:

(𝜕iA∕𝜕t)2x2y2z (19.1-1)

Rate of addition of mass of
A across the face at x:

nAx|x2y2z (19.1-2)

563
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z

x

(x + ∆x, y + ∆y, z + ∆z)

(x, y, z)y
∆x

∆z

∆y

nAx│x ∆y∆z nAx│x + ∆x ∆y∆z

Fig. 19.1-1. Small fixed

volume element through

which species A is being

transported by convection

and/or diffusion. The arrows

indicate the mass-transfer

rates in and out of the volume

element through the two

shaded surfaces located at x
and x + 2x.

Rate of removal of mass of
A across the face at x + 2x: nAx|x+2x2y2z (19.1-3)

Rate of production of mass of
A by chemical reaction:

rA2x2y2z (19.1-4)

We also need to write down the addition and removal terms for the y and z directions,
analogous to Eqs. 19.1-2 and 19.1-3. The components of the total mass flux vector, nAx, nAy,
and nAz, include both the convective flux and the diffusive flux contributions. When the
entire mass balance is written down and divided by 2x2y2z, one obtains, after letting the
size of the volume element decrease to zero,

𝜕iA
𝜕t

= −
(
𝜕nAx
𝜕x

+
𝜕nAy
𝜕y

+
𝜕nAz
𝜕z

)
+ rA (19.1-5)

This is the equation of continuity for species A in a binarymixture. By replacingA everywhere
by B, we get the equation of continuity for species B. Equation 19.1-5 describes the change
in mass concentration of species A with time at a fixed point in space by the convection
and diffusion of A, as well as by chemical reactions that produce or consume species A.

Equation 19.1-5 can be written in vector notation as

𝜕iA
𝜕t

= − (∇ ⋅ nA) + rA (19.1-6)

Alternatively, we can use Eq. (B) of Table 17.4-1 to write

𝜕iA
𝜕t

= − (∇ ⋅ iAv) − (∇ ⋅ jA) + rA

rate of
increase
of mass
of A per
unit
volume

net rate of
addition
of mass of
A per unit
volume by
convection

net rate of
addition
of mass of
A per unit
volume by
diffusion

rate of
production
of mass of
A per unit
volume by
reaction

(19.1-7)

An analogous equation can be written for species B. When the equations for A and B are
added, we get

𝜕i

𝜕t
= − (∇ ⋅ iv) (19.1-8)

which is the equation of continuity for the binary mixture. This equation is identical to the
equation of continuity for a pure fluid given in Eq. 3.1-4. In obtaining Eq. 19.1-8 we had
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to use Eq. (B) of Table 17.1-1 and also the fact that the law of conservation mass requires

that rA + rB = 0. Finally we note that Eq. 19.1-8 becomes

(∇ ⋅ v) = 0 (19.1-9)

for a binary mixture of constant mass density i.
In the preceding discussion we used mass units, but a corresponding derivation is

possible using molar units. The equation of continuity for species A in molar quantities,

obtained by dividing Eq. 19.1-6 by the molecular weight of species A, is

𝜕cA
𝜕t

= − (∇ ⋅NA) + RA (19.1-10)

where RA is the molar rate of production of A per unit volume. By using Eq. (F) of

Table 17.4-1, the above equation can be rewritten as

𝜕cA
𝜕t

= −
(
∇ ⋅ cAv*

)
−
(
∇ ⋅ J*A

)
+RA

rate of
increase
of moles
of A per
unit
volume

net rate of
addition
of moles of
A per unit
volume by
convection

net rate of
addition
of moles of
A per unit
volume by
diffusion

rate of
production
of moles of
A per unit
volume by
reaction

(19.1-11)

with an analogous equation for species B. When the equations for the two species are

added, we get
𝜕c
𝜕t

= − (∇ ⋅ cv*) + (RA + RB) (19.1-12)

where Eq. (H) of Table 17.3-1 has been used. The chemical reaction terms do not drop out,

because the number of moles is not necessarily conserved in a chemical reaction. Finally

we note that, in a fluid mixture with constant molar density, it is not true that (∇ ⋅ v*) = 0, but

rather that

(∇ ⋅ v*) = 1

c
(RA + RB) (19.1-13)

We have thus seen that the equation of continuity of speciesA in a binarymixturemay

be written in two forms, Eq. 19.1-7 and Eq. 19.1-11. When these equations are rewritten in

terms of the mass fraction and mole fraction, respectively, we get

𝜕
𝜕t
(iaA) = − (∇ ⋅ iaAv) − (∇ ⋅ jA) + rA (19.1-14)

𝜕
𝜕t
(cxA) = −

(
∇ ⋅ cxAv*

)
−

(
∇ ⋅ J*A

)
+ RA (19.1-15)

When the products are differentiated, these equations become

i
𝜕aA

𝜕t
+ aA

𝜕i

𝜕t
= − i(v ⋅ ∇aA) − aA(∇ ⋅ iv) − (∇ ⋅ jA) + rA (19.1-16)

c
𝜕xA
𝜕t

+ xA
𝜕c
𝜕t

= − c(v* ⋅ ∇xA) − xA(∇ ⋅ cv*) − (∇ ⋅ J*A) + RA (19.1-17)

Now it can be seen that when Eq. 19.1-8, multiplied by aA, is subtracted from Eq. 19.1-16,

the dashed-underlined terms disappear and Eq. 19.1-18 below results. Similarly, when
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Eq. 19.1-12, multiplied by xA, is subtracted from Eq. 19.1-17, the dashed-underlined terms
disappear, and a term −xA(RA + RB) appears on the right side, as in Eq. 19.1-19 below.
Therefore, two additional equivalent forms of the species equation of continuity for
A are

i

(
𝜕aA

𝜕t
+

(
v ⋅ ∇aA

))
= −

(
∇ ⋅ jA

)
+ rA (19.1-18)

c
(
𝜕xA
𝜕t

+
(
v* ⋅∇xA

))
= −

(
∇⋅ J*A

)
+RA − xA

(
RA+RB

)
(19.1-19)

These two equations contain the same physical content, but the first is written in mass
quantities and the second in molar quantities. These equations are tabulated in Cartesian,
cylindrical, and spherical coordinates in §B.10. To use these equations, we have to insert
the appropriate expressions for the fluxes and the chemical reaction terms. We give three
special simplifications of the equation of continuity below.

(i) Binary mixtures with constant i𝒟AB
For this assumption, Eq. 19.1-18 becomes, after inserting Fick’s law from Eq. (A) of

Table 17.4-2,

i

(
𝜕aA

𝜕t
+

(
v ⋅ ∇aA

))
= i𝒟AB∇2aA + rA (19.1-20)

with a corresponding equation for species B. This equation is appropriate for describ-
ing the diffusion in dilute liquid solutions at constant temperature and pressure. The left
side may also be written as iDaA∕Dt. Equation 19.1-20 without the reaction term rA is of
the same form as Eqs. 11.2-8 or 11.2-9. This similarity is quite important, because it is the
basis for the analogies that are frequently used between heat and mass transport in flow-
ing fluids with constant physical properties. Equation 19.1-20 is displayed in Cartesian,
cylindrical, and spherical coordinates in §B.11.

(ii) Binary mixtures with constant c𝒟AB
For this assumption, Eq. 19.19 becomes, after inserting Fick’s law from Eq. (D) of

Table 17.4-2,

c
(
𝜕xA
𝜕t

+
(
v* ⋅ ∇xA

))
= c𝒟AB∇2xA +

(
xBRA − xARB

)
(19.1-21)

with a corresponding equation for B. This equation is useful for low-density gases at con-
stant temperature and pressure. The left sidemay not bewritten as cDxA∕Dt because of the
appearance of v* rather than v. Equation 19.1-21 can be written in Cartesian, cylindrical,
and spherical coordinates using §B.11.

(iii) Binary mixtures with zero velocity and no chemical reactions
In the absence of chemical reactions, with v = 0 and i = constant in Eq. 19.1-20 (or

v* = 0 and c = constant in Eq. 19.1-21), then we get

𝜕cA
𝜕t

= 𝒟AB∇2cA (19.1-22)

which is called Fick’s second law of diffusion, or sometimes simply the diffusion equation.
This equation is usually used for diffusion in solids or stationary liquids (that is, v = 0 in
Eq. 19.1-20) and for equimolar counter-diffusion in gases (that is, v* = 0 in Eq. 19.1-21). By
equimolar counter-diffusion we mean that the net molar flux with respect to stationary
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coordinates is zero; in other words, that for every mole of A that moves, say, in the
positive z direction, there is a mole of B that moves in the negative z direction. We had
an example of this in the two-bulb experiment in §18.7. Equation 19.1-22 can be written
in Cartesian, cylindrical, and spherical coordinates by simplifying the corresponding
equations in §B.11.

Note that Eq. 19.1-22 has exactly the same form as the heat-conduction equation of Eq.
11.2-10. This similarity is the basis for analogies between many heat-conduction and dif-
fusion problems in solids. Keep in mind that many hundreds of problems described by
Eq. 11.2-10 or Eq. 19.1-22 have been tabulated in the monographs of Carslaw and Jaeger1

and Crank.2

EXAMPLE 19.1-1

Convection, Diffusion,
and Chemical
Reaction3

In Fig. 19.1-2 we show a system in which a liquid, B, moves slowly upward through a slightly

soluble porous plug of A. Some of the A dissolves in B and then slowly disappears by a

first-order reaction. Assume that the velocity profile is flat across the tube. Assume further

that cA0 is the solubility of unreacted A in B. Because A is only slightly soluble, we can ignore

the presence of reaction products, and treat the system as a binary system (the pseudo-binary
assumption). Neglect temperature effects associated with the heat of reaction.

A C
by first-
order

reaction

Porous plug
of A (slightly
soluble in B)

Liquid
B

Liquid
B with
small

amounts
of A 
and C

z

Fig. 19.1-2. Simultaneous diffusion, convection, and

chemical reaction.

SOLUTION

Equation 19.1-20 is appropriate for dilute liquid solutions. Dividing this equation by themolec-

ular weightMA and specializing for the one-dimensional steady-state problem at hand, we get

for constant i

v0
dcA
dz

= 𝒟AB

d2cA
dz2

− k′′′
1
cA (19.1-23)

which is to be solved with the boundary conditions that cA = cA0 at z = 0, and that cA → 0 as

z → ∞.

1H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, 2nd edition

(1959).
2J. Crank, The Mathematics of Diffusion, Oxford University Press, 2nd edition (1975).
3W. Jost, Diffusion, Academic Press, New York (1952), pp. 58–59.
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Equation 19.1-23 is expected to have a solution of the form of Eq. C.1-7a

cA(z) = C1 exp(n+z) + C2 exp(n−z) (19.1-24)

where n+ and n− are the two solutions of the quadratic equation

𝒟ABn
2 − v0n − k′′′

1
= 0 (19.1-25)

which are

n+ =
v0 +

√
v2
0
+ 4𝒟ABk

′′′
1

2𝒟AB
> 0 (19.1-26)

n− =
v0 −

√
v2
0
+ 4𝒟ABk

′′′
1

2𝒟AB
< 0 (19.1-27)

The boundary condition cA → 0 as z → ∞ requires that C1 = 0. Applying the boundary condi-

tion that cA = cA0 at z = 0, we get C2 = cA0. Therefore, the solution to Eq. 19.1-23 is

cA(z)
cA0

= exp

[
−

(√
1 +

4𝒟ABk′′′

v2
0

− 1

)(
v0z
2𝒟AB

)]
(19.1-28)

and the two boundary conditions are satisfied. This example illustrates the use of the

equation of continuity of A for setting up a diffusion problem with convection and chemical

reaction.

§19.2 SUMMARY OF THE BINARYMIXTURE CONSERVATION LAWS

In the three main parts of this book we have introduced the conservation laws. In
Chapter 3, the conservation of mass and conservation of linear momentum for pure fluids
were presented. In Chapter 11, we added the conservation of energy for pure fluids. In
§19.1, we formulated the mass conservation equations for the chemical species in a binary
mixture.

In Table 19.2-1, we summarize the equations of change for binarymixtures in terms of
the total fluxes—the fluxes with respect to stationary axes. The equation numbers indicate
where each equation first appeared. All these equations have the same form⎧⎪⎪⎨⎪⎪⎩

rate of
increase
of X per
unit

volume

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩

net rate
of addition
of X per

unit
volume

⎫⎪⎪⎬⎪⎪⎭
+

⎧⎪⎪⎨⎪⎪⎩

rate of
production
of X per
unit

volume

⎫⎪⎪⎬⎪⎪⎭
(19.2-1)

in which X refers to mass, momentum, and energy, respectively. In each equation, the net
rate of addition of X per unit volume is the negative of a divergence term. The “rates of
production” arise from a chemical reaction in the first equation and from the external force
field g in the other two. Each equation is the statement of a conservation law.

The three total fluxes (the vector nA, the tensor d, and the vector e) appearing in
Table 19.2-1 may be written as the sum of convective fluxes and molecular fluxes. These
fluxes are displayed in Table 19.2-2, along with the equation numbers corresponding to
their first appearance.

When the flux expressions of Table 19.2-2 are substituted into the conservation
equations in Table 19.2-1 and then converted to the D∕Dt form by means of Eqs. 3.5-6
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Table 19.2-1. The Conservation Statements in Terms of the Total Fluxes

Mass of A: 𝜕
𝜕t
iaA = − (∇ ⋅ nA) + rA (A)a

(Eq. 19.1-6)

Momentum:
𝜕
𝜕t
iv = − [∇ ⋅ d] + ig (B)b

(Eq. 3.2-8)

Energy: 𝜕
𝜕t
i

(
1

2
v2 + Û

)
= − (∇ ⋅ e) + (iv ⋅ g) (C)b

(Eq. 11.1-6)

aWhen the equations of continuity for species A and B are added, the equation of continuity for

the binary mixture is obtained.

𝜕
𝜕t
i = − (∇ ⋅ iv) (D)

(Eq. 3.1-4)

Here v is the mass-average velocity (see Eq. (D) of Table 17.4-1).
bIf each species K is acted on by a different force per unit mass gK (where K is either A or B), then
in Eq. (B), replace ig by (iAgA + iBgB), and in Eq. (C), replace (iv ⋅ g) by (nA ⋅ gA + nB ⋅ gB).
These substitutions are required, for example, if the species are ions with different charges, and

are acted upon by electric fields. Problems of this sort are considered in Chapter 24.

and 3.5-7, we get the equations of change obtained previously, which are summarized in
Table 19.2-3.

In addition to the conservation equations, we need to have the expressions for the
fluxes in terms of the gradients and the transport properties, the latter being functions of
the temperature, density, and concentration. Finally, we need the thermal equation of state
p = p(i,T,xA) and the caloric equation of state Û = Û(i,T,xA), and information about the rates
of any homogeneous chemical reactions occurring.

The equations of motion and energy, given in Table 19.2-3, are not necessarily in their
most convenient forms for solving some problems. Let us first consider the equation of
motion. In §11.3, it was pointed out that the equation of motion as presented in Chapter 3

Table 19.2-2. The Total, Convective, and Molecular Fluxes for Binary Mixtures (All with the

Same Sign Convention)

Entity Total flux = Convective flux + Molecular flux

Mass of A: nA = ivaA + jA (A)a

(Eq. 17.4-1)

Momentum: d = ivv + 0 (B)b

(Eq. 1.3-2)

Energy: e = iv
(

1

2
v2 + Û

)
+ (q +w) (C)c

(Eq. 9.4-1)

aThe velocity v is the mass-average velocity defined in Eq. (A) of Table 17.2-1.
bThe molecular momentum-flux tensor is 0 = pt + f (see Eq. 1.2-15).
cThe molecular energy-flux vector is q +w = q + [0 ⋅ v] = q + pv + [f ⋅ v] (see Eq. 9.4-1), where, for

mixtures, q is the conductive-plus-diffusive heat-flux vector andw is the work-flux vector. The

conductive-plus-diffusive heat-flux vector contains both Fourier’s law of heat conduction and terms for

heat transport that accompanies diffusion, as described in §19.3 (see Eq. 19.3-3). The work-flux vector

arises only in flow systems.
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Table 19.2-3. Equations of Change, Based on Conservation Laws, for Binary Mixtures in

Terms of the Molecular Fluxes

Total mass:
Di

Dt
= −i(∇ ⋅ v) (A)

(Eq. (A) of Table 3.5-1)

Mass of A: i
DaA

Dt
= − (∇ ⋅ jA) + rA (B)a

(Eq. 19.1-18)

Momentum: i
Dv
Dt

= −∇p − [∇ ⋅ f] + ig (C)b

(Eq. (B.) of Table 3.5-1)

Energy: i
D
Dt

(
1

2
v2 + Û

)
= − (∇ ⋅ q) − (∇ ⋅ pv) − (∇ ⋅ [f ⋅ v]) + (iv ⋅ g) (D)b

(Eq. (D) of Table 11.4-1)

aAnalogous to the equation for the conservation of mass of A, there is an equation for the mass of B.
When these two equations are added, we get the conservation of total mass (in Eq. A).
bSee Note (b) of Table 19.2-1 on how the term ig in Eq. (C) and the term (iv ⋅ g) in Eq. (D) need to be

modified when each species is acted on by a different external force. As described in §19.3, for binary

mixtures, the conductive-plus-diffusive heat-flux vector contains both Fourier’s law of heat conduction

and terms accounting for heat transport that accompanies diffusion (see Eq. 19.3-3).
cIn Chapter 3, we also gave an equation of change for angular momentum (Eq. 3.4-1).

is suitable for setting up forced-convection problems, but that an alternative form
(Eq. 11.3-2) is desirable for displaying explicitly the buoyant forces resulting from tem-
perature inequalities in free-convection problems. In binary mixtures with concentration
inequalities as well as temperature inequalities, we write the equation of motion as in Eq.
(B) of Table 3.5-1 and use an approximate equation of state formed by making a double
Taylor expansion of i(T,aA) about the values T,aA:

i(T,aA) = i + 𝜕i

𝜕T

||||T,aA

(T − T) + 𝜕i

𝜕aA

||||T,aA

(aA − aA) + · · ·

≈ i − iv(T − T) − ir(aA − aA) (19.2-2)

Here the coefficient r = −(1∕i)(𝜕i∕𝜕aA)T,p, evaluated at T and aA, relates the den-
sity to the composition. This coefficient is the mass-transfer analog of the coefficient
v = −(1∕i)(𝜕i∕𝜕T)p,aA

introduced in Eq. 11.3-1 in the discussion of free convection in
pure fluids. When this approximate equation of state is substituted into the ig term of
the equation of motion (but not into the iDv∕Dt term, where we set i = i), we get the
Boussinesq equation for a binary mixture,with gravity as the only external force,

i
Dv
Dt

= (−∇p + ig) − [∇ ⋅ f] − igv(T − T) − igr(aA − aA) (19.2-3)

The last two terms describe the buoyant force resulting from the temperature and compo-
sition variations within the fluid.

Next we turn to the equation of energy. Recall that in Table 11.4-1 the energy equation
for pure fluids was given in a variety of forms. The same can be done for binary mixtures,
and a few of the many possible forms for the energy equation are given in Table 19.2-4.
Note that it is not necessary to add a term Sc (as we did in Chapter 10) to account for the
thermal energy released by homogeneous chemical reactions. This information is implic-
itly included in the Û and Ĥ functions, because the energies of formation and mixing of
the various species must be taken into account. Furthermore, information about chemical
reactions is explicitly included as −(HARA +HBRB) in Eq. (D) of Table 19.2-4.
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Table 19.2-4. Various Forms of the Equation of Energy for a Binary Mixture, When Gravity

Is the Only External Force a,b

i
D
Dt

(
1

2
v2 + Û + Ĉ

)
= − (∇ ⋅ q) − (∇ ⋅ pv) − (∇ ⋅ [f ⋅ v]) (A)c

i
D
Dt

(
1

2
v2 + Û

)
= − (∇ ⋅ q) − (∇ ⋅ pv) − (∇ ⋅ [f ⋅ v]) + (iv ⋅ g) (B)

i
DÛ
Dt

= − (∇ ⋅ q) − p(∇ ⋅ v) − (f∶∇v) (C)

iĈp
DT
Dt

= − (∇ ⋅ q) − (f∶∇v) +
(
𝜕 ln V̂
𝜕 lnT

)
p,xA

Dp
Dt

+HA

[(
∇ ⋅

jA
MA

)
− RA

]
+HB

[(
∇ ⋅

jB
MB

)
− RB

] (D)d

𝜕
𝜕t
(cAHA + cBHB) + (∇ ⋅ (NAHA +NBHB)) = (∇ ⋅ k∇T) − (f∶∇v) +

Dp
Dt

(E)e

aFor binary mixtures, q = −k∇T + (HA∕MA)jA + (HB∕MB)jB + q(x), where q(x) is a usually negligible term

associated with the diffusion-thermo effect (see §19.3, and R. B. Bird, W. E. Stewart, and E. N. Lightfoot,

Transport Phenomena, Wiley, New York, Revised 2nd Edition (2007), Eq. 24.2-6).
bThe equations in this table are written for the situation that the same external force is acting on both

species. If this is not the case, then (jA ⋅ gA) + (jB ⋅ gB)must be added to the right sides of Eqs. (A), (C), (D),

and (E); also the last term in Eq. (B) has to be replaced by (nA ⋅ gA) + (nB ⋅ gB).
cExact only if 𝜕Ĉ∕𝜕t = 0.
dEquation (D) was first published by L. B. Rothfeld, PhD Thesis, University of Wisconsin; see also

Problem 19D.2 of R. B. Bird, W. E. Stewart, and E. N. Lightfoot, op cit.
eThe contribution of q(x) to the heat-flux vector has been omitted in this equation.

§19.3 SUMMARY OF THE BINARYMIXTURE MOLECULAR FLUXES

The equations of change have been given in terms of the fluxes of mass, momentum, and
energy. To solve these equations, we have towrite the fluxes in terms of the transport prop-
erties and the gradients of concentration, velocity, and temperature. Here we summarize
the molecular flux expressions for binary mixtures:

Mass: jA = −i𝒟AB∇aA (19.3-1)

Momentum: f = −4[∇v + (∇v)†] +
(
2

3
4 − n

)
(∇ ⋅ v)t (19.3-2)

Energy: q = −k∇T + (HA∕MA)jA + (HB∕MB)jB (19.3-3)

The limitations of these molecular flux expressions need to be summarized:

a. The diffusive mass-flux vector above is for binary systems only (Fick’s law). The
generalization to multicomponent systems has been made (the Maxwell-Stefan
equations), but we do not discuss those equations here (see §24.6). Concentration
gradients (or activity gradients) are not the only driving forces for diffusion. There
are also “cross effects”: temperature gradients can create a mass flux (thermal
diffusion or the “Soret effect”) and pressure gradients can create a mass flux
(pressure diffusion). In addition, there is forced diffusion, caused by unequal forces
acting on the constituent species. These other mechanisms are neglected in the
remainder of this chapter, but they are discussed again briefly in Chapter 24.
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b. The molecular (viscous) momentum-flux tensor for mixtures is the same as that for
pure fluids (a generalization of Newton’s law of viscosity). Once again we mention
that the dilatational viscosity n is seldom important. Of course, for polymers and
other complex fluids, Eq. 19.3-2 has to be replaced bymore complex equations (see
Chapter 8).

c. The conductive-plus-diffusive heat-flux vector given in Eq. 19.3-3 contains a conduc-
tion term (Fourier’s law) and a term that accounts for the heat transported by the
interdiffusing species, which may be quite important. The heat transport by con-
centration gradients (the diffusion thermo effect or the “Dufour effect”) q(x) is often
negligible. The thermal conductivity k for a mixture in Eq. 19.3-3 is defined as the
proportionality constant between the heat flux and the temperature gradient in the
absence of any mass fluxes.

We conclude this discussionwith a few comments about the total energy-flux vector e.
By substituting Eq. 19.3-3 into Eq. (C) of Table 19.2-2, we get after some rearranging

e = i

(
1

2
v2 + Û

)
v + q + pv + [f ⋅ v]

= i

(
1

2
v2 + Û

)
v − k∇T +

(
HA

MA
jA +

HB

MB
jB

)
+ pv + [f ⋅ v]

= −k∇T +

(
HA

MA
jA +

HB

MB
jB

)
+ i(Û + pV̂)v + 1

2
iv2v + [f ⋅ v] (19.3-4)

-------------------

In some situations, notably in films and low-velocity boundary layers, the dashed under-
lined terms are negligible. When they may be discarded, we get

e = −k∇T +

(
HA

MA
jA +

HB

MB
jB

)
+ iĤv

= −k∇T +

(
HA

MA
jA +

HB

MB
jB

)
+ (cAHA + cBHB)v (19.3-5)

or

e = −k∇T +

(
HA

MA
jA +

HB

MB
jB

)
+

(
iA

HA

MA
+ iB

HB

MB

)
v

= −k∇T +

(
HA

MA
nA +

HB

MB
nB

)
= −k∇T + (HANA +HBNB) (19.3-6)

Finally, for ideal-gas mixtures, this expression can be further simplified by replacing the
partialmolar enthalpies (such asHA) by themolar enthalpies (such as H̃A). Equation 19.3-6
is the standard starting point for solving one-dimensional problems in simultaneous heat
and mass transfer.1

1T. K. Sherwood, R. L. Pigford, and C. R. Wilke,Mass Transfer, McGraw-Hill, New York (1975),

Chapter 7. Thomas Kilgore Sherwood (1903–1976) was a professor at MIT for nearly 40 years, and then

taught at the University of California in Berkeley. Because of his many contributions to the field of mass

transfer, the Sherwood number (Sh) was named after him.
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EXAMPLE 19.3-1

The Partial Molar
Enthalpy

The partial molar enthalpy HA, which appears in Eqs. 19.3-3 and 19.3-6, is defined for a binary

mixture as

HA =
(

𝜕H
𝜕nA

)
T,p,nB

(19.3-7)

in which nA is the number of moles of A in the mixture, and the subscript nB indicates that the

derivative is to be taken holding the number of moles of B constant. The enthalpyH(nA,nB;T,p)
is called an “extensive property,” because, if the number of moles of each component is multi-

plied by a constant K, the enthalpy itself will be multiplied by K

H(KnA,KnB;T,p) = KH(nA,nB;T,p) (19.3-8)

Mathematicians refer to this kind of function as being “homogeneous of degree 1.” For such

functions Euler’s theorem2 can be used to conclude that

H = nAHA + nBHB (19.3-9)

(a) Prove that, for a binary mixture, the partial molar enthalpies at a given mole fraction can

be determined by plotting the enthalpy per mole as a function of mole fraction, and then deter-

mining the intercepts of the tangent drawn at the mole fraction in question (see Fig. 19.3-1).

This shows one way to get the partial molar enthalpy from data on the enthalpy of the mixture.

(b) How else could one get the partial molar enthalpy?

SOLUTION

(a) Throughout the remainder of this example, we omit the subscripts p and T, indicating that

they are being held constant. First we write the expressions for the intercepts as follows:

HA = H̃ − xB

(
𝜕H̃
𝜕xB

)
n

and HB = H̃ + xA

(
𝜕H̃
𝜕xB

)
n

(19.3-10,11)

in which H̃ = H∕(nA + nB) = H∕n is the enthalpy per mole.

To verify the correctness of Eq. 19.3-10, we rewrite it in terms of H

HA = H
n

−
xB
n

(
𝜕H
𝜕xB

)
n

(19.3-12)

Now the expression HA = (𝜕H∕𝜕nA)nB implies that H is a function of nA and nB, whereas

(𝜕H∕𝜕xA)n implies that H is a function of xA and n. The relation between these derivatives

is given by the chain rule of partial differentiation. To apply this rule, we need the relations

among the independent variables, which, in this example, are

nA = (1 − xB)n and nB = xBn (19.3-13,14)

Therefore, we may write the chain rule as(
𝜕H
𝜕xB

)
n

=
(

𝜕H
𝜕nA

)
nB

(
𝜕nA

𝜕xB

)
n

+
(
𝜕H
𝜕nB

)
nA

(
𝜕nB

𝜕xB

)
n

= HA(−n) +HB(+n) (19.3-15)

2Euler’s theorem for functions f (x1,x2, · · · xn) that are homogeneous of degree k states that

n∑
j=1

xj
𝜕f
𝜕xj

= kf (19.3-8a)

See, for example, M. D. Greenberg, Foundations of Applied Mathematics, Prentice-Hall, Englewood Cliffs,

NJ (1978), p. 128.
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Composition at
which HA and HB
are determined

xB
nB

nA + nB
= =

HA

HB

nB
n

H
n A

 +
 n

B
H
 =

~
=
H n

0 1

Fig. 19.3-1. The “method of

intercepts” for determining partial

molar quantities in a binary mixture.

Substitution of this into Eq. 19.3-12 and use of Euler’s theorem (H = nAHA + nBHB) then shows

that Eq. 19.3-12 is satisfied. This proves the validity of Eq. 19.3-10, and the correctness of

Eq. 19.3-11 can be proved similarly.

(b) One can also get HA by using the definition in Eq. 19.3-7 and measuring the slope of the

curve of H versus nA, holding nB constant. One can also get HA by measuring the enthalpy of

mixing and using

H = nAHA + nBHB = nAH̃A + nBH̃B + 2Hmix (19.3-16)

Often the enthalpy of mixing is neglected and the enthalpies of pure substances are given as

H̃A ≈ C̃pA(T − T0) and a similar expression for H̃B. This is a standard assumption for gas mix-

tures at low to moderate pressures.

Other methods for evaluating partial molar quantities may be found in current textbooks

on thermodynamics.

§19.4 THE EQUATIONS OF CHANGE AND SOLVING
STEADY-STATE DIFFUSION PROBLEMS

The equations of change in §19.2 can be used to solve all the problems of Chapter 18 (see,
for example, Problems 19B.1 through 19B.3) and more difficult ones as well. Unless the
problems are idealized or simplified, transport phenomena problems for mixtures are
quite complicated, and usually numerical techniques are required.1 Here we solve a few
introductory problems to illustrate the use of the equations of change.

EXAMPLE 19.4-1

Simultaneous Heat and
Mass Transport2

A hot condensable vapor A is diffusing at steady state through a stagnant film of noncondens-

able gas B to a cold surface at y = 0, where A condenses. Develop expressions for the mole

fraction profile xA(y) and the temperature profile T(y) for the system pictured in Fig. 19.4-1,

given the mole fractions and temperatures at both film boundaries (y = 0 and y = t). Assume
ideal-gas behavior and uniformpressure. Furthermore assume the physical properties to be con-
stant, evaluated at some mean temperature and composition. Neglect radiative heat transfer.

This example illustrates how energy and mass transport are combined in separation

processes.

1W. E. Stewart and M. Caracotsios, Computer-Aided Modeling of Reacting Systems, Wiley-Interscience,

New York (2008).
2A. P. Colburn and T. B. Drew, Trans. Am. Inst. Chem. Engrs., 38, 197–212 (1937).
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y = 0
T = T0
xA = xA0

y = δ
T = Tδ  
xA = xAδ

Boundary of
stagnant gas

film

Direction of
movement of
condensable
vapor A

δ 

y

T(y)

xA(y)

Cold
surface

Fig. 19.4-1. Condensation of a hot vapor A
on a cold surface in the presence of a

noncondensable gas B.

SOLUTION

To determine the desired quantities, we have to solve the equations of continuity and energy for

this system. Simplification of Eq. 19.1-10 and Eq. (C) of Table 19.2-1 for steady, one-dimensional

transport, in the absence of chemical reaction and external forces gives, with help of Eq. A of

Table A.7-1,

Continuity of A:
dNAy

dy
= 0 (19.4-1)

Energy:
dey
dy

= 0 (19.4-2)

Therefore, both NAy and ey are constant throughout the film.

Equation 19.3-6 suggests that, in order to get the energy flux, we need first to have infor-

mation about the molar flux. Therefore, we begin by solving the equation of continuity to

determine themole fraction profile. Themolar flux ofA through stagnantBwas given in Eq. 18.0-2

(or 18.6-3):

NAy = −
c𝒟AB

1 − xA

dxA
dy

(19.4-3)

Substitution of Eq. 19.4-3 into Eq. 19.4-1 and integration of the resulting differential equation

gives (see §18.6)

1 − xA(y)
1 − xA0

=
(
1 − xAt
1 − xA0

)y∕t

(19.4-4)

Here we have taken c𝒟AB to be constant at the value for the mean film temperature. We can

then evaluate the constant flux NAy from the last two equations as

NAy =
c𝒟AB

t
ln

1 − xAt
1 − xA0

(19.4-5)

Note that NAy is negative, because species A is condensing, after diffusing in the −y direction.

Equations 19.4-4 and 19.4-5 may be combined to put the concentration profiles into an alterna-

tive form

xA(y) − xA0
xAt − xA0

=
1 − exp

[(
NAy∕c𝒟AB

)
y
]

1 − exp
[(

NAy∕c𝒟AB

)
t
] (19.4-6)
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To get the temperature profile, we use the energy flux from Eq. 19.3-6 for an ideal gas along

with Eq. 9.4-4, and the fact that NBy = 0,

ey = −kdT
dy

+
(
H̃ANAy + H̃BNBy

)
= −kdT

dy
+NAy

(
H̃A0 + C̃pA

(
T − T0

))
(19.4-7)

Here we have chosen the wall temperature T0 as the reference temperature for the enthalpy.

Insertion of this expression into Eq. 19.4-2 and integration between the limits T = T0 at y = 0

and T = Tt at y = t gives

T(y) − T0

Tt − T0

=
1 − exp

[(
NAyC̃pA∕k

)
y
]

1 − exp
[(

NAyC̃pA∕k
)
t
] (19.4-8)

It can be seen that the temperature profile is not linear for this system except in the limit as

NAyC̃pA∕k → 0. Note the similarity between Eq. 19.4-6 and Eq. 19.4-8.

The conduction energy flux at the wall, when accompanied by mass transport, is greater

than that in the absence of mass transport. Thus, using a subscript “0” to indicate zero mass

transport, we may write

−k(dT∕dy)|y=0
−k(dT∕dy)0|y=0 =

−
(
NAyC̃pA∕k

)
t

1 − exp
[(

NAyC̃pA∕k
)
t
] (19.4-9)

We see that the rate of heat transport is directly affected by the simultaneous mass transport,

whereas the mass flux is not directly affected by the simultaneous heat transport. In applica-

tions at temperatures below the normal boiling point of species A, the quantity NAyC̃pA∕k is

small, and the right side of Eq. 19.4-9 is very nearly equal to unity (see Problem 19A.1).

EXAMPLE 19.4-2

Diffusion and Chemical
Reaction in a Liquid

(a) A solid sphere (radius R) of substance A is suspended in a liquid B in which it is slightly

soluble, andwithwhich it undergoes a first-order chemical reactionwith rate constant k′′′
1
. Find

the quasi-steady-state concentration profile; that is, assume that R is constant, and determine

cA(r). The molar solubility of A in B is cA0.

(b) Next, relax the assumption of constant R, and perform amass balance onA over the sphere

volume to obtain an expression for the sphere radius as a function of time.

(c) How does the result in (a) simplify if there is no chemical reaction?

SOLUTION

(a) The differential equation for the steady-state diffusion from a sphere is obtained by simpli-

fying Eq. B.11-3, using the postulate that cA = cA(r). The result is

𝒟AB
1

r2
d
dr

(
r2
dcA
dr

)
− k′′′

1
cA = 0 (19.4-10)

When we introduce the dimensionless quantities

T(k) =
cA(r)
cA0

k = r
R

b =

√
k′′′
1
R2

𝒟AB
(19.4-11,12,13)

the diffusion equation becomes

1

k2
d
dk

(
k2
dT
dk

)
− b2T = 0 (19.4-14)



Trim Size: 8in x 10in Bird1e c19.tex V1 - October 31, 2014 3:50 P.M. Page 577

§19.4 The Equations of Change and Solving Steady-State Diffusion Problems 577

According to Eq. C.1-6b, this differential equation has the solution

T(k) = C1

e−bk

k
+ C2

e+bk

k
(19.4-15)

The boundary conditions that have to be applied are T = 1 at k = 1, and T → 0 as k → ∞. The

constants of integration are then C1 = 1 and C2 = 0. Therefore, the solution to Eq. 19.4-14 is

T(k) = 1

k
e−bk

e−b
(19.4-16)

The molar flux of A at the sphere surface is then

NAr|r=R = −𝒟AB

dcA
dr

|||||r=R = −
cA0𝒟AB

R
dT
dk

|||||k=1 = +
cA0𝒟AB

R
(1 + b) (19.4-17)

and the loss of A from the sphere in moles per unit time is

WA = 40R2

(
cA0𝒟AB

R

)⎛⎜⎜⎝1 +
√

k′′′
1
R2

𝒟AB

⎞⎟⎟⎠ (19.4-18)

Note that it has been assumed that, in the quasi-steady-state diffusion, the radius of the sphere

is not changing significantly with time.

(b) Wemay nowwrite an unsteadymass balance on the dissolving sphere. Since the volume of

the sphere is changing very slowly, it is possible to use the quasi-steady-state result in Eq. 19.4-18

in setting up the equation for the mass balance. Thus, equating the negative of rate of change

of mass ofAwithin the sphere (i.e., the rate of mass loss) to the rate of transport ofA away from

the sphere surface, we obtain

− d
dt

(
4

3
0R3isph

)
= 40R2

(
cA0𝒟ABMA

R

)⎛⎜⎜⎝1 +
√

k′′′
1
R2

𝒟AB

⎞⎟⎟⎠ (19.4-19)

First we divide through by 4

3
0isph and then put all factors containing R on the left side of the

equation to get

− R

1 +
√

k′′′
1
R2∕𝒟AB

dR
dt

=
cA0𝒟ABMA

isph
(19.4-20)

Next we introduce the dimensionless variable Y =
√

k′′′
1
R2∕𝒟AB and then rewrite Eq. 19.4-20 as

− Y
1 + Y

dY
dt

=
k′′′
1
cA0MA

isph
(19.4-21)

Then we integrate from time t0 to time t to get

−∫
Y

Y0

Y
1 + Y

dY =
k′′′
1
cA0MA

isph ∫
t

t0

dt (19.4-22)

or

(Y(t) − Y0) − ln

(
1 + Y (t)
1 + Y0

)
= −

k′′′
1
cA0MA

isph
(t − t0) (19.4-23)

Hence, the final expression for R as a function of t is√
k′′′
1

𝒟AB
(R − R0) − ln

⎛⎜⎜⎜⎝
1 +

√
k′′′
1
R2∕𝒟AB

1 +
√

k′′′
1
R2

0
∕𝒟AB

⎞⎟⎟⎟⎠ = −
k′′′
1
cA0MA

isph
(t − t0) (19.4-24)

This equation would have to be solved numerically to get the radius of the sphere as a function

of time. For example, one can evaluate t − t0 for various values of R, and then plot R vs. t − t0.
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(c) If there is no chemical reaction, b = 0, and the concentration profile and molar flux at the
surface given by Eqs. 19.4-16 and 19.4-17 simplify to

cA(r)
cA0

= R
r

NAr|r=R =
cA0𝒟AB

R
(19.4-25,26)

if we assume that the concentration far from the sphere is still zero. Now if we define a
mass-transfer coefficient by NAr|r=R = kc(cA0 − cA∞)—analogously to the definition of the
heat-transfer coefficient according the Newton’s law of cooling (see Eq. 18.1-2)—we then get
for a sphere of diameter D

kc =
𝒟AB

R
=

2𝒟AB

D
and Sh =

kcD
𝒟AB

= 2 (19.4-27,28)

Here Sh is the Sherwood number (analogous to the Nusselt number). The value Sh = 2 is the
limiting value for this dimensionless group for the situation where the fluid surrounding the
sphere has zero velocity. This limiting value will be encountered again in Chapter 22.

EXAMPLE 19.4-3

Concentration Profile
in a Tubular Reactor

A catalytic tubular reactor is shown in Fig. 19.4-2. A dilute solution of solute A in a solvent S
is in fully developed laminar flow in the region z < 0. When it encounters the catalytic wall
in the region 0 ≤ z ≤ L, solute A is instantaneously and irreversibly rearranged to an isomer
B. Write the diffusion equation appropriate for this problem at steady state, and find the solu-
tion for short distances into the reactor. Assume that the flow is isothermal and neglect the
presence of B.

SOLUTION

For the assumptions stated above, the flowing liquid will always be very nearly pure S. The
quantities i and 𝒟AS can be regarded as constant, and the diffusion of A in S can be described
by the steady-state version of Eq. 19.1-20 (ignoring the presence of a small amount of the reac-
tion product B—the pseudobinary assumption); equivalently, we can use Eq. B.11-2, which is in
cylindrical coordinates, with constant i and 𝒟AS. Note that because the reaction occurs at the
wall, rA = 0 in the species balance. The relevant equations of change for the system are then
(after dividing Eq. 19.1-20 byMA)

Continuity of A: vz
𝜕cA
𝜕z

= 𝒟AS

[
1

r
𝜕
𝜕r

(
r
𝜕cA
𝜕r

)
+

𝜕2cA
𝜕z2

]
(19.4-29)

-------

Motion: 0 = −d𝒫
dz

+ 4
1

r
d
dr

(
r
dvz
dr

)
(19.4-30)

We make the usual assumption that axial diffusion is negligible compared to axial convection,
and therefore we omit the dashed-underlined term (compare with Eqs. 10.9-13 and 10.9-14).
Equation 19.4-30 can be solved to give the parabolic velocity profile, vz(r) = vz,max[1 − (r∕R)2].
When this result is substituted into Eq. 19.4-29, we get

vz,max

(
1 −

( r
R

)2
)

𝜕cA
𝜕z

= 𝒟AS
1

r
𝜕
𝜕r

(
r
𝜕cA
𝜕r

)
(19.4-31)

This is to be solved with the boundary conditions

B.C. 1∶ at z = 0, cA = cA0 (19.4-32)

B.C. 2∶ at r = R, cA = 0 (19.4-33)

B.C. 3∶ at r = 0, cA = finite (19.4-34)

For short distances z into the reactor, the concentration cA differs from cA0 only near the
wall, where the velocity is practically linear. Hence, we can introduce the variable y = R − r,
neglect curvature terms, and replace B.C. 3 by a fictitious boundary condition at y = ∞ (see
Example 11.5-3 for a detailed discussion of this method of treating the entrance region of the
tube for the analogous heat-transfer problem).
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A B irreversibly
and instantaneously
on catalyst surface

Fully-developed
laminar flow before
z = 0 is reached

Dilute solution

of A in S

From z = 0 to z = L the
inner surface of the tube is

coated with a catalyst

Dilute solution of
A and B in S

z = 0 z = L

R

Fig. 19.4-2. Schematic

diagram of a tubular

reactor.

The reformulated problem statement is then

2vz,max

y
R
𝜕cA
𝜕z

= 𝒟AS

𝜕2cA
𝜕y2

(19.4-35)

with the boundary conditions

B.C. 1: at z = 0, cA = cA0 (19.4-36)

B.C. 2: at y = 0, cA = 0 (19.4-37)

B.C. 3: as y → ∞, cA → cA0 (19.4-38)

As in Examples 3.8-1 and 11.5-3, and §18.9, this problem can be solved by the method of com-
bination of independent variables by seeking a solution of the form cA(y,z)∕cA0 = f (q), where
q = (y∕R)(2vz,maxR

2∕9𝒟ASz)1∕3. One thus obtains an ordinary differential equation

f ′′ + 3q2f ′ = 0 (19.4-39)

with boundary conditions

B.C. 1: at q = 0, f = 0 (19.4-40)

B.C. 2: at q = ∞, f = 1 (19.4-41)

Solution of this problem gives (see Eq. C.1-9 and Eq. 18.9-10)

f (q) =
cA(y,z)
cA0

=
∫

q

0

exp(−q3)dq

∫
∞

0

exp(−q3)dq
=

∫
q

0

exp(−q3)dq

T
(

4

3

) (19.4-42)

This solution may be shown to satisfy Eqs. 19.4-39 to 19.4-41.
Experiments of the type described here have proven useful for obtaining mass-transfer

data at high Schmidt numbers.3 A particularly attractive reaction is the reduction of ferri-
cyanide ions on metallic surfaces according to the reaction

Fe(CN)−3
6

+ e− → Fe(CN)−4
6

(19.4-43)

in which ferricyanide and ferrocyanide take the place of A and B, respectively, in the above
development. The electrochemical reaction is quite rapid under properly chosen conditions.
Furthermore, since it involves only electron transfer, the physical properties of the solution are
almost entirely unaffected. The forced-diffusion effects neglected here (i.e., transport caused by
body forces that differ among the molecules) may be suppressed by the addition of an indif-
ferent electrolyte in excess.4,5

3D. W. Hubbard and E. N. Lightfoot, Ind. Eng. Chem. Fundam., 5, 370–379 (1966).
4J. S. Newman, Electrochemical Systems, Prentice-Hall, Englewood Cliffs, N.J., 2nd edition (1991),

§1.10.
5J. R. Selman and C. W. Tobias, Advances in Chemical Engineering, 10, Academic Press, New York,

N.Y. (1978), pp. 212–318.
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§19.5 THE EQUATIONS OF CHANGE AND SOLVING
UNSTEADY-STATE DIFFUSION PROBLEMS

In this section we give two examples of time-dependent diffusion. The first deals with
evaporation of a volatile liquid and illustrates deviations from Fick’s second law that
arise at high mass-transfer rates. The second deals with unsteady diffusion with chemical
reactions.

EXAMPLE 19.5-1

Unsteady Evaporation
of a Liquid (the
“Arnold Problem”)

It is desired to predict the rate at which a volatile liquid A evaporates into pure B in a tube of

infinite length. The liquid level ismaintained at z = 0 at all times. The temperature and pressure

are assumed constant, and the vapors of A and B form an ideal-gas mixture. Hence, the molar

density c is constant throughout the gas phase, and𝒟AB may be considered to be constant. It is

further assumed that species B is insoluble in liquid A, and that the molar-average velocity in

the gas phase does not depend on the radial coordinate.

The problemdiscussed in §18.6 differs from the one treated here in two respects: the former

involves steady-state diffusion, and the latter is an unsteady-state problem; and the former

considers a tube of finite length, whereas the latter has an infinitely long tube.

SOLUTION

For this system, the equation of continuity for the mixture, given in Eq. 19.1-13, becomes

𝜕v*z
𝜕z

= 0 (19.5-1)

in which v*z is the z component of themolar-average velocity. Integrationwith respect to z gives

v*z = v*z0(t) (19.5-2)

which illustrates that v*z depends on time, but is independent of position. Here and elsewhere

in this problem, the subscript “0” indicates a quantity evaluated at z = 0. According to Eq. (H)

of Table 17.4-1, this velocity can be written in terms of the total molar fluxes of A and B as

v*z (t) = v*z0(t) =
NAz0 +NBz0

c
(19.5-3)

However,NBz0 is zero because of the insolubility of species B in liquid A. Then use of Eq. (E) of

Table 17.4-2 gives finally

v*z (t) = −
𝒟AB

1 − xA0

𝜕xA
𝜕z

||||z=0 (19.5-4)

in which xA0 is the interfacial gas-phase concentration, evaluated here on the assumption of

interfacial equilibrium. For an ideal-gas mixture, this is just the vapor pressure of pure A
divided by the total pressure.

The equation of continuity of Eq. 19.1-21 then becomes

𝜕xA
𝜕t

−
(

𝒟AB

1 − xA0

𝜕xA
𝜕z

||||z=0
)

𝜕xA
𝜕z

= 𝒟AB

𝜕2xA
𝜕z2

(19.5-5)

This result can also be obtained using Eq. B.11-1. Equation 19.5-5 is to be solved with the initial

and boundary conditions:

I.C.: at t = 0, xA = 0 (19.5-6)

B.C. 1: at z = 0, xA = xA0 (19.5-7)

B.C. 2: as z → ∞, xA → 0 (19.5-8)

We rewrite Eq. 19.5-5 in terms of X(z,t) = xA∕xA0
𝜕X
𝜕t

−
(
𝒟ABxA0
1 − xA0

𝜕X
𝜕z

||||z=0
)

𝜕X
𝜕z

= 𝒟AB
𝜕2X
𝜕z2

(19.5-9)
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Then based on our experience in Example 3.8-1 (and specifically Eq. 3.8-6), we now try a combi-

nation of variables of the form X(z,t) = X(Z), where Z = z∕
√
4𝒟ABt. However, since Eqs. 19.5-5

and 19.5-9 contain the parameter xA0, we can anticipate that X will depend not only on Z, but
also parametrically on xA0.

We first show how to transform each of the derivatives in Eq. 19.5-9 (compare with
Eqs. 3.8-7 and 3.8-8):

𝜕X
𝜕t

= dX
dZ

𝜕Z
𝜕t

= dX
dZ

z√
4𝒟AB

(
−1

2
t3∕2

)
= dX

dZ

(
− Z

2t

)
(19.5-10)

𝜕X
𝜕z

= dX
dZ

𝜕Z
𝜕z

= dX
dZ

1√
4𝒟ABt

and
𝜕2X
𝜕z2

= d2X
dZ2

1

4𝒟ABt
(19.5-11,12)

𝜕X
𝜕z

||||z=0 = dX
dZ

||||Z=0 1√
4𝒟ABt

(19.5-13)

Substituting Eqs. 19.5-10 to 19.5-13 into Eq. 19.5-9 and then multiplying the entire equation by
4t gives

d2X
dZ2

+ 2ZdX
dZ

+
[
−2 ⋅

(
−1

2

xA0
1 − xA0

dX
dZ

||||Z=0
)]

dX
dZ

= 0 (19.5-14)

If, now, we define the constant quantity inside the parentheses as 3, we get finally

d2X
dZ2

+ 2(Z − 3)dX
dZ

= 0 with 3(xA0) = −1

2

xA0
1 − xA0

dX
dZ

||||Z=0 (19.5-15,16)

We note that 3(xA0) is a dimensionless molar-average velocity, 3 = v*z
√
t∕𝒟AB, as can be seen by

comparing Eqs. 19.5-16 and 19.5-4. Note that since 3 depends only on xA0, it follows that v*z is

inversely proportional to
√
t. The initial and boundary conditions in Eqs. 19.5-6 to 19.5-8 now

become

B.C. 1: at Z = 0 X = 1 (19.5-17)

B.C. 2 and I.C.: as Z → ∞, X → 0 (19.5-18)

Equation 19.5-15 can be solved by first letting dX∕dZ = Y. This gives a first-order differential
equation for Y that can be solved to obtain

Y(Z) = C1 exp
[
−(Z − 3)2

] ≡ dX
dZ

(19.5-19)

This is now a first-order differential equation for X(Z),which gives on integration

X(Z) = C1∫
Z

0

exp
[
−
(
Z − 3

)2]
dZ + C2 (19.5-20)

The integration constants are determined by using Eqs. 19.5-17 and 19.5-18 to get

X(Z) = 1 −
∫

Z

0

exp
[
−
(
Z − 3

)2]
dZ

∫
∞

0

exp
[
−
(
Z − 3

)2]
dZ

= 1 −
∫

Z−3

−3
exp(−W2)dW

∫
∞

−3
exp(−W2)dW

(19.5-21)

where W = Z − 3. Then we use the definition of the error function in §C.6 and some of the
properties of this function, in particular, that −erf(−3) = erf 3 and that erf ∞ = 1. This leads to
the final expression for the distribution of the mole fraction of A:1

X(Z) = 1 − erf (Z − 3) + erf 3

erf ∞+ erf 3
= 1 − erf (Z − 3)

1 + erf 3
(19.5-22)

1J. H. Arnold, Trans. AIChE, 40, 361–378 (1944). Jerome Howard Arnold (1907–1974) taught at MIT,

the University of Minnesota, the University of North Dakota, and the University of Iowa; he worked for

Standard Oil of California (1944–1948) and was the Director of the Contra Costa Transit District

(1956–1960). See also V.-D. Dang and W. N. Gill, AIChE Journal, 16, 793–802 (1970).
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To get the function 3(xA0), this mole-fraction distribution has to be substituted into Eq. 19.5-16.

This gives

3(xA0) =
1√
0

xA0
1 − xA0

exp(−32)
1 + erf 3

(19.5-23)

Rather than solving this by trial and error to get 3 as a function of xA0, it is easier to obtain xA0
as a function of 3:

xA0(3) =
1

1 +
[√

0
(
1 + erf 3

)
3 exp32

]−1 (19.5-24)

A graph of the function 3(xA0) is given in Fig. 19.5-1, and the concentration profiles are shown

in Fig. 19.5-2.

Let VA be the volume of A produced by evaporation up to time t. Then the rate of produc-

tion of vapor volume from a surface of area S is

dVA

dt
= v*z S =

NAz0S
c

= S3

√
𝒟AB

t
(19.5-25)

Here we have used Eq. 19.5-3. Integration with respect to t then gives

VA(t) = S3
√
4𝒟ABt (19.5-26)

This relation can be used for measuring the diffusivity from experimental data on the total rate

of evaporation from a surface below an infinite stagnant film (see Problem 19A.2).

We can now assess the importance of including the convective transport of species A in

the tube. If Fick’s second law (Eq. 19.1-22) had been used to determine X(Z) (i.e., neglecting
convection), we would have obtained for the production of vapor volume

VFick
A (t) = SxA0

√
4𝒟ABt

0
(19.5-27)

Thus, we can rewrite Eq. 19.5-26 as

VA(t) = SxA0

√
4𝒟ABt

0
⋅ b (19.5-28)

The factor b = 3
√
0∕xA0, given in Fig. 19.5-1, is a correction for the deviation from the

Fick’s-second-law results caused by the nonzero molar-average velocity. We see that the devi-

ation becomes especially significant when xA0 is large, that is, for liquids with large volatility.

0
0.0

0.5

1.0

1.5

2.0

ϕ
(x

A
0
),
 ψ
(x

A
0
)

ψ(xA0)

ϕ(xA0)

2.5

3.0

3.5

0.2 0.4 0.6

xA0

0.8 1
Fig. 19.5-1. Graph of 3(xA0) and
b(xA0). Note that both 3 and b
approach ∞ as xA0 → 1.
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X
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Fig. 19.5-2. Concentration profiles in time-dependent evaporation, showing that the

deviation from Fick’s law increases with the volatility of the evaporating liquid.

In the preceding analysis it is assumed that the system is isothermal. Actually, the interface

will be cooled by the evaporation, particularly at large values of xA0. This effect can be mini-

mized by using a small-diameter tube made of a good thermal conductor. For application to

other mass-transfer systems, however, the analysis given here needs to be extended by includ-

ing the solution to the energy equation, so that the interfacial temperature and compositions

can be calculated.

EXAMPLE 19.5-2

Gas Absorption with
Rapid Reaction2,3

GasA is absorbed by a stationary liquid solvent S, the latter containing soluteB. SpeciesA reacts

with B in an instantaneous irreversible reaction according to the equation aA + bB → Products.

It may be assumed that Fick’s second law (Eq. 19.1-22) adequately describes the diffusion

processes, since A, B, and the reaction products are present in S in low concentrations. Obtain

expressions for the time-dependent concentration profiles.

SOLUTION

Because of the instantaneous reaction of A and B, there will be a plane parallel to the

liquid-vapor interface at a distance zR from it, that separates the region containing no A from

that containing no B. The distance zR is a function of t, since the boundary between A and B
retreats as B is used up in the chemical reaction.

The differential equations for cA and cB are then

𝜕cA
𝜕t

= 𝒟AS

𝜕2cA
𝜕z2

for 0 ≤ z ≤ zR(t) (19.5-29)

𝜕cB
𝜕t

= 𝒟BS

𝜕2cB
𝜕z2

for zR(t) ≤ z < ∞ (19.5-30)

2T. K. Sherwood, R. L. Pigford, and C. R. Wilke, Absorption and Extraction, McGraw-Hill, New York,

3rd edition (1975), Chapter 8. See also G. Astarita,Mass Transfer with Chemical Reaction, Elsevier,
Amsterdam (1967), Chapter 5.

3For related problems with moving boundaries associated with phase changes, see H. S. Carslaw

and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, 2nd edition (1959). See also S. G.

Bankoff, Advances in Chemical Engineering, Academic Press, New York (1964), Vol. 5, pp. 76–150; J. Crank,
Free and Moving Boundary Problems, Oxford University Press (1984).
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These are to be solved with the following initial and boundary conditions:

I.C.: at t = 0, cB = cB∞ for z > 0 (19.5-31)

B.C. 1: at z = 0, cA = cA0 (19.5-32)

B.C. 2, 3: at z = zR(t), cA = 0 and cB = 0 (19.5-33)

B.C. 4: at z = zR(t), − 1

a
𝒟AS

𝜕cA
𝜕z

= +1

b
𝒟BS

𝜕cB
𝜕z

(19.5-34)

B.C. 5: as z → ∞, cB → cB∞ (19.5-35)

Here cA0 is the interfacial concentration of A, and cB∞ is the original concentration of B. The
fourth boundary condition is the stoichiometric requirement that amoles ofA consume bmoles

of B (see Problem 19B.6).

The absence of a characteristic length in this problem, and the fact that cB = cB∞ both at t = 0

and z = ∞ suggests trying a combination of variables. Experience has shown that in Example

3.8-1 and Example 19.5-1 (with v*z = 0), we could have assumed at the outset that the solu-

tion would be of the form f = C1 + C2erf Z, where Z is some dimensionless combination of the

independent variables; in Example 3.8-1, Z = y∕
√
4lt, and in Example 19.5-1, Z = z∕

√
4𝒟ABt.

Therefore,maybe itwould not be altogether unreasonable to try the same idea here andpropose

a solution of the form

cA
cA0

= C1 + C2erf
z√

4𝒟ASt
for 0 ≤ z ≤ zR(t) (19.5-36)

cB
cB∞

= C3 + C4erf
z√

4𝒟BSt
for zR(t) ≤ z < ∞ (19.5-37)

These functions satisfy the differential equations, and if the constants of integration, C1 to C4,

can be so chosen that the initial and boundary conditions are satisfied, we will have the com-

plete solution to the problem.

Application of the initial condition and the first three boundary conditions permits the

evaluation of the integration constants in terms of zR(t), thereby giving

From B.C. 1: C1 = 1 (19.5-38)

From B.C. 2: C2 = − 1

erf zR∕
√
4𝒟ASt

(19.5-39)

From solving the I.C. and B.C. 3 simultaneously:

C3 = −
erf zR∕

√
4𝒟BSt

1 − erf zR∕
√
4𝒟BSt

(19.5-40)

C4 =
1

1 − erf zR∕
√
4𝒟BSt

(19.5-41)

With these expressions for C1, C2, C3, and C4, we then get

cA(z,t)
cA0

= 1 −
erf (z∕

√
4𝒟ASt)

erf (zR∕
√
4𝒟ASt)

for 0 ≤ z ≤ zR(t) (19.5-42)

cB(z,t)
cB∞

= 1 −
1 − erf (z∕

√
4𝒟BSt)

1 − erf (zR∕
√
4𝒟BSt)

for zR(t) ≤ z < ∞ (19.5-43)

B.C. 5 is then automatically satisfied. Finally, insertion of these solutions into B.C. 4 gives the

following implicit equation from which zR(t) can be obtained:

1 − erf

√
u

𝒟BS
=

acB∞
bcA0

√
𝒟BS

𝒟AS
erf

√
u

𝒟AS
exp

(
u

𝒟AS
− u

𝒟BS

)
(19.5-44)
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Fig. 19.5-3. Gas absorption with rapid chemical reaction, with concentration profiles given by

Eqs. 19.5-42 to 19.5-44 (for a = b). This calculation was made for𝒟AS = 3.9 × 10−5 ft
2∕hr and

𝒟BS = 1.95 × 10−5 ft
2∕hr. [T. K. Sherwood and R. L. Pigford, Absorption and Extraction,

McGraw-Hill, New York (1952), p. 336.]

This equation can be solved for the constant u, which is defined as z2R∕4t. Thus zR(t), the location
of the reaction plane, increases as

√
t.

To calculate the concentration profiles, one first solves Eq. 19.5-44 for
√
u, and then inserts

this value for zR∕
√
4t in Eqs. 19.5-42 and 19.5-43. Some calculated concentration profiles are

shown in Fig. 19.5-3, to illustrate the rate of movement of the reaction plane.

From the concentration profiles we can calculate the rate of mass transfer at the interface:

NAz0(t) = −𝒟AS

dcA
dz

|||||z=0 = cA0
erf

√
u∕𝒟AS

√
𝒟AS

0t
(19.5-45)

The average rate of absorption up to time t is then

NAz0,avg(t) =
1

t ∫
t

0

NAz0(t) dt = 2
cA0

erf
√
u∕𝒟AS

√
𝒟AS

0t
(19.5-46)

Hence, the average rate up to time t is just twice the instantaneous rate.

§19.6 CONCLUDING COMMENTS

The main purpose of this chapter has been to summarize the principal equations of trans-
port phenomena (see also the summary inside the front cover). The readers should by now
be impressed with the unity of the subject, and the similarities—and differences— among
the equations for mass, momentum, and energy. They should be able to point to each term
in the equations of Tables 19.2-1, 19.2-2, and 19.2-3 and discuss its physical meaning.

The equations of conservation and the expressions for the fluxes have been given in
great generality. In this textbook we have illustrated how the equations may be simplified
in order to solve some straightforward problems for which idealized models can be used
to approximate real systems. Of course, if one wants to use more realistic models, it will
be necessary to keep more terms in the equations and then resort to numerical solutions.

The illustrative examples in this chapter have emphasized problems involving dif-
fusion, with and without chemical reactions. The chemical kinetics involved have neces-
sarily been trivially simple. If one wishes to treat more realistic chemical reactions, then
it is necessary to be able to treat multicomponent systems. Although these have been
extensively studied in the research literature, they are not appropriate for inclusion in
an introductory textbook on transport phenomena. This subject is discussed very briefly
in §24.6.
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QUESTIONS FOR DISCUSSION

1. Under what conditions is it true that (∇ ⋅ v) = 0? (∇ ⋅ v*) = 0?

2. Summarize the content of §19.1, using mass units. What are the main results?

3. Point to each of the terms in Table 19.2-1, and tell exactly what the meaning is. Do the same for

Table 19.2-2.

4. In Eqs. 19.3-5 and 19.3-6, explain how each line follows from the preceding one.

5. How does one know to introduce the dimensionless variables in Eqs. 19.4-11, 19.4-12, and

19.4-13?

6. In Eq. 19.4-24, would it be easier to solve and get t as a function of R?
7. Explain how one goes from Eq. 19.4-31 and its boundary conditions to Eq. 19.4-35 and its

boundary conditions.

8. In Example 19.5-1, does it make physical sense that v*z should be a function of t?What does this

functionality turn out to be at the end of the example?

9. In Eqs. 19.5-10 to 19.5-13, what is being held constant in each of the partial derivatives?

10. Verify that Eq. 19.5-22 satisfies Eq. 19.5-5 and the boundary and initial conditions.

11. In Example 19.5-2, what do you think of the solution method, where one guesses the form of

a solution and then sees if constants of integration can be found that satisfy the boundary and

initial conditions?

12. What are some conditions for which the convection term in the continuity equation can be

neglected (e.g., Eq. 19.1-22)? What are some consequences of neglecting the convection when

it shouldn’t be neglected?

PROBLEMS 19A.1 Dehumidification of air. For the system of Example 19.4-1, let the vapor be H2O and the stag-

nant gas be air. Assume the following conditions (which are representative for air conditioning):

(i) at y = t, T = 80∘F and xH2O
= 0.018; (ii) at y = 0, T = 50∘F in Fig. 19.4-1.

(a) For p = 1 atm, calculate the right side of Eq. 19.4-9.

(b) Compare the conductive and diffusive heat flux at y = 0. What is the physical significance

of your answer?

Answer: (a) 1.004

19A.2 Measurement of diffusivity by unsteady-state evaporation. Use the following data to deter-

mine the diffusivity of ethyl propionate (speciesA) into amixture of 20mole% air and 80mole%

hydrogen (this mixture being treated as a pure gas B).

Increase in vapor volume (cm3)
√
t (s1∕2)

0.01 15.5

0.11 19.4

0.22 23.4

0.31 26.9

0.41 30.5

0.50 34.0

0.60 37.5

0.70 41.5

These data were obtained1 by using a glass tube 200 cm long, with an inside diameter 1.043 cm;

the temperature was 27.9∘C and the pressure 761.2mm Hg. The vapor pressure of ethyl pro-

pionate at this temperature is 41.5mm Hg. Note that t is the actual time from the start of the

evaporation, whereas the volume increase is measured from t ≈ 240 s.

1D. F. Fairbanks and C. R. Wilke, Ind. Eng. Chem., 42, 471–475 (1950).
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19A.3 Rate of evaporation of n-octane. At 20∘C, howmany grams of liquid n-octane will evaporate

into N2 in 24.5 hr in a system such as that studied in Example 19.5-1 at system pressures of

(a) 1 atm, and (b) 2 atm? The area of the liquid surface is 1.29 cm2, and the vapor pressure of

n-octane at 20∘C is 10.45mm Hg.

Answer: (a) 6.8 mg

19A.4 Absorption with rapid second-order reaction. Make the following calculations for the react-

ing system depicted in Fig. 19.5-3:

(a) Verify the location of the reaction zone, using Eq. 19.5-44.

(b) Calculate NA0 at t = 2.5 s.

19A.5 Measurement of diffusivity by the point-source method. It is desired to design a flow sys-

tem to utilize the results of Problem 19C.1 for the measurement of 𝒟AB (see Fig. 19C.1).2 The

approaching stream of pure Bwill be directed vertically upward, and the gas composition will

be measured at several points along the z axis.
(a) Calculate the gas-injection rateWA, in g-mol∕s required to produce amole fraction xA ≈ 0.01
at a point 1 cm downstream of the source, in an ideal gaseous system at 1 atm and 800∘C, if
v0 = 50 cm∕s and𝒟AB ≈ 5 cm2∕s.
(b) What is the maximum permissible error in the radial position of the gas-sampling probe,

if the measured composition xA is to be within 1% of the centerline value?

19B.1 Steady evaporation. Rework the problem solved in §18.6 for the system shown in Fig. 18.6-1,

dealing with the evaporation of liquid A into gas B, starting from Eq. 19.1-21.

(a) First obtain an expression for v* using Eq. (H) of Table 17.4-1, as well as Fick’s law in the

form of Eq. (E) of Table 17.4-2.

(b) Show that Eq. 19.1-21 then becomes the following nonlinear second-order differential

equation

d2xA
dz2

+ 1

1 − xA

(
dxA
dz

)2

= 0 (19B.1-1)

(c) Solve this equation to get the mole-fraction profile given in Eq. 18.6-13. (Hint: let

w = dxA∕dz.)

19B.2 Gas absorption with homogeneous chemical reaction. Rework the problem solved in §18.4

(see Fig. 18.4-1), by starting with Eq. 19.1-20. What assumptions do you have to make to get Eq.

18.4-4.

19B.3 Diffusion in falling films. Using the equations of Chapter 19, show how to set up and solve

the problems discussed in §18.8 and §18.9.

19B.4 Time-dependent evaporation. In Example 19.5-1, obtain the first and second derivatives of

the solution in Eq. 19.5-22, dX∕dZ and d2X∕dZ2. Then use these to verify that the solution does

indeed satisfy the differential equation in Eq. 19.5-15.

Also verify that substitution of the first derivative dX∕dZ into Eq. 19.5-15 gives Eq. 19.5-23.

Finally, show how Eq. 19.5-24 is obtained.

19B.5 Fick’s second law solution for unsteady evaporation of a liquid. Rework Example 19.5-1

using Fick’s second law (Eq. 19.1-22) to obtain Eq. 19.5-27.

2This is a precise method for measurements of diffusivity at high temperatures. For a detailed

description of the method, see R. E. Walker and A. A. Westenberg, J. Chem. Phys., 29, 1139–1146, 1147–1153
(1958). For a summary of measured values and comparisons with the Chapman-Enskog theory, see R. M.

Fristrom and A. A. Westenberg, Flame Structure, McGraw-Hill, New York (1965), Chapter XIII.
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19B.6 Stoichiometric boundary condition for rapid irreversible reaction. The reactant fluxes in
Example 19.5-2 must satisfy the stoichiometric relation

at z = zR(t),
1

a
cA(vAz − vR) = −1

b
cB(vBz − vR) (19B.6-1)

in which vR = dzR∕dt. Show that this relation leads to Eq. 19.5-34 when use is made of Fick’s
first law, with the assumptions of constant c and instantaneous irreversible reaction.

19B.7 Time for a droplet to evaporate. Adroplet of pureA of initial radius R is suspended in a large
body of motionless gas B. The concentration of A in the gas phase is xAR at r = R and zero at an
infinite distance from the droplet.

(a) Assuming that R is constant, show that at steady state

R2NAr|r=R = −
c𝒟AB

1 − xA
r2
dxA
dr

(19B.7-1)

where NAr|r=R is the molar flux in the r direction at the droplet surface, c is the total molar
concentration in the gas phase, and 𝒟AB is the diffusivity in the gas phase. Assume constant
temperature and pressure throughout. Show that integration of Eq. 19B.7-1 from the droplet
surface to infinity gives

RNAr|r=R = −c𝒟AB ln(1 − xAR) (19B.7-2)

(b) We now let the droplet radius R be a function of time, and treat the problem as a
quasi-steady one. Then the rate of decrease of moles of A within the drop can be equated to
the instantaneous rate of loss of mass across the liquid-gas interface

− d
dt

(
4

3
0R3c(L)A

)
= 40R2NAr|r=R = −40Rc𝒟AB ln(1 − xAR) (19B.7-3)

where c(L)A is the molar density of pure liquid A. Show that when this equation is integrated
from t = 0 to t = t0 (the time for complete evaporation of the droplet), one gets

t0 =
c(L)A R2

2c𝒟AB ln[1∕(1 − xAR)]
(19B.7-4)

Does this result look physically reasonable?

19B.8 Concentration-dependent diffusivity. A stationary liquid layer of liquid B is bounded by
planes z = 0 (a solid wall) and z = b (a gas-liquid interface). At these planes, the concentration
of A is cA0 and cAb, respectively. The diffusivity𝒟AB is a function of the concentration of A.
(a) Starting from Eq. 19.1-5 derive a differential equation for the steady-state concentration
distribution.

(b) Show that the concentration distribution is given by

∫
cA0

cA(z)
𝒟AB(c′A)dc

′
A

∫
cA0

cAb

𝒟AB(cA)dcA

= z
b

(19B.8-1)

(c) Verify that the molar flux at the solid-liquid surface is

NAz|z=0 = 1

b∫
cA0

cAb

𝒟AB(cA)dcA (19B.8-2)

(d) Now assume that the diffusivity can be expressed as a Taylor series in the concentration

𝒟AB(cA) = 𝒟AB

[
1 + v1

(
cA − cA

)
+ v2

(
cA − cA

)2 + · · ·
]

(19B.8-3)

in which cA = 1

2
(cA0 + cAb) and 𝒟AB = 𝒟AB(cA). Then show that

NAz|z=0 = 𝒟AB

b

(
cA0 − cAb

) [
1 + 1

12
v2
(
cA0 − cAb

)2 + · · ·
]

(19B.8-4)

(e) How does Eq. 19B.8-4 simplify if the diffusivity is a linear function of the concentration?
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19B.9 Diffusion of a finite sphere of material. At time t = 0, a dilute solute A in solvent B has

a uniform concentration cA0 inside a spherical region of radius R, and zero concentration for

R ≤ r < ∞. For t > 0, diffusion immediately begins to take place. It has been shown3 that the

concentration as a function of position and time is

cA(r,t)
cA0

= 1

2

(
erf

R + r√
4𝒟ABt

+ erf
R − r√
4𝒟ABt

)

−1

r

√
𝒟ABt
0

(
exp

(
−(R − r)2∕4𝒟ABt

)
− exp

(
−(R + r)2∕4𝒟ABt

) )
(19B.9-1)

The quantity cA0 may also be written as nA∕
(

4

3
0R3

)
, where nA is the number of moles of A that

are in the spherical region of radius R.
(a) Show that at t = 0, the concentration given by Eq. 19B.9-1 is cA(r,t) = cA0 for r ≤ R.
(b) Show that, if R → 0 with nA constant, Eq. 19B.9-1 is the same as Eq. 19B.10-1. Solving this

requires a lot of tenacity and the application of L’Hôpital’s rule three times (lengthy!). Alterna-

tively, try expanding Eq. 19B.9-1 about R = 0.

(c) Does Eq. 19B.9-1 satisfy the diffusion equation?

19B.10 Diffusion from an instantaneous point source. At time t = 0, nA moles of A are injected into

a large body of fluid B. Take the point of injection to be the origin of coordinates. The material

A diffuses radially in all directions. The solution of the problem may be found in Carslaw and

Jaeger:4

cA(r,t) =
nA

(40𝒟ABt)3∕2
e−r

2∕4𝒟ABt (19B.10-1)

(a) Verify that Eq. 19B.10-1 satisfies Fick’s second law.

(b) Verify that Eq. 19B.10-1 satisfies the boundary conditions at r = ∞.

(c) Show that Eq. 19B.10-1, when integrated over all space, gives nA, as it should.

(d) What happens to Eq. 19B.10-1 when t → 0?

19B.11 Oxidation of silicon.5 A slab of silicon is exposed to gaseous oxygen (species A) at pressure
p, producing a layer of silicon dioxide (species B) as shown in Fig. 19B.11. The layer extends

from the surface z = 0, where the oxygen dissolves with concentration cA0 = Kp, to the surface

at z = t(t), where the oxygen and silicon undergo a first-order reaction with rate constant k′′
1
.

The thickness t(t) of the growing oxide layer is to be predicted. A quasi-steady-state approach

is useful here, inasmuch as the advancement of the reaction front is very slow.

z = δ(t)

z = 0
z

Si Si + O2 SiO2

SiO2

O2

Fig. 19B.11 Oxidation of silicon.

3J. Crank, The Mathematics of Diffusion, Oxford University Press, 1st edition (1956), p. 27.
4H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, 2nd edition

(1959), p. 257. See also, J. Crank, The Mathematics of Diffusion, Oxford University Press, 1st edition (1956),

p. 27.
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(a) First solve the diffusion equation in Eq. 19.1-22, with the term 𝜕cA∕𝜕t neglected, and apply

the boundary conditions to obtain

cA(z) = cA0 − (cA0 − cAt)
z
t

(19B.11-1)

in which the concentration cAt at the reaction plane is as yet unknown.

(b) Next make a unsteady-state molar O2 balance on the region 0 ≤ z ≤ t(t) to obtain, with the

aid of the Leibniz formula of §C.3,

cAt
dt
dt

= −𝒟AB

dcA
dz

− k′′
1
cAt (19B.11-2)

(c) Now write an unsteady-state molar balance on SiO2 in the same region to obtain

+k′′
1
cAt =

1

ṼB

dt
dt

(19B.11-3)

(d) In Eq. 19B.11-2, evaluate dt∕dt by using Eq. 19B.11-3 and 𝜕cA∕𝜕z from Eq. 19B.11-1. This

will yield an equation for cAt

k′′
1
tṼB

𝒟AB
c2At +

(
1 +

k′′
1
t

𝒟AB

)
cAt = cA0 (19B.11-4)

Inserting numerical values into Eq. 19B.11-4 shows that the quadratic term can be safely

neglected.5

(e) Combine Eqs. 19B.11-3 and 19B.11-4 (without the quadratic term) to get a differential

equation for t(t). Show that this leads to

t2

2𝒟AB
+ t

k′′
1

= ṼBcA0t (19B.11-5)

which agrees with the experimental data.5 Interpret the result.

19B.12 Manipulation of an equation of continuity of A. Show that for constant total density i,
Eq. 19.1-20 can be rewritten in rectangular coordinates as

𝜕cA
𝜕t

= −
(

𝜕
𝜕x

vxcA + 𝜕
𝜕y

vycA + 𝜕
𝜕z

vzcA

)
+𝒟AB

(
𝜕2cA
𝜕x2

+
𝜕2cA
𝜕y2

+
𝜕2cA
𝜕z2

)
+ RA (19B.12-1)

This form will be used in Chapter 20.

19C.1 Diffusion from a point source in a moving stream. A stream of fluid B in laminar motion

has a uniform velocity v0 (as shown in Fig. 19C.1). At some point in the stream, taken to be the

origin of coordinates, speciesA is injected at a small rateWA g-mol∕s. This rate is assumed to be

sufficiently small that the mass-average velocity will not deviate appreciably from v0. Species
A is swept downstream (in the z direction), and at the same time it diffuses both axially and

radially.

5R. Ghez, A Primer of Diffusion Problems, Wiley-Interscience, New York (1988), pp. 46–55; this book

discusses a number of problems that arise in the microelectronics field.
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Origin of coordinates placed at
point of injection; WA moles
of A are injected per second

Uniform 
stream
velocity

v0

∆z

∆r

z

x

y

r = x2 + y2

(x, y, z)s = x2 + y2 + z2

Fig. 19C.1 Diffusion of A from a

point source into a stream of B that

moves with a uniform velocity.

(a) Show that Eq. 19.1-21 for c and𝒟AB assumed constant leads to the following partial differ-

ential equation:

v0
𝜕cA
𝜕z

= 𝒟AB

[
1

r
𝜕
𝜕r

(
r
𝜕cA
𝜕r

)
+

𝜕2cA
𝜕z2

]
(19C.1-1)

(b) Show that Eq. 19C.1-1 can also be written as

v0

(
z
s
𝜕cA
𝜕s

+
𝜕cA
𝜕z

)
= 𝒟AB

[
1

s2
𝜕
𝜕s

(
s2
𝜕cA
𝜕s

)
+

𝜕2cA
𝜕z2

+ 2
z
s
𝜕2cA
𝜕s𝜕z

]
(19C.1-2)

in which s2 = r2 + z2.
(c) Verify (lengthy!) that the solution6

cA =
WA

40𝒟ABs
exp

[
−
(
v0∕2𝒟AB

)
(s − z)

]
(19C.1-3)

satisfies the differential equation above.

(d) Show further that the following boundary conditions are also satisfied by Eq. 19C.1-3:

B.C. 1: as s → ∞, cA → 0 (19C.1-4)

B.C. 2: as s → 0, − 40s2𝒟AB

𝜕cA
𝜕s

→ WA (19C.1-5)

B.C. 3: at r = 0,
𝜕cA
𝜕r

= 0 (19C.1-6)

Explain the physical meaning of each of these boundary conditions.

(e) Show howdata on cA(r,z) for given v0 and𝒟AB may be plotted, when the preceding solution

applies, to give a straight line with slope v0∕2𝒟AB and intercept ln𝒟AB.

(f) How is the solution to this problem related to that in Problem 19B.10?

19C.2 Steady state diffusion from a rotating disk.7 A large disk (taken here to be infinite) is rotating

with an angular velocity1 in an infinite expanse of liquidB. Its surface is coatedwith amaterial

A that is slightly soluble in B. The goal of this problem is to find the rate at whichA dissolves in

B. (Note: The solution to this problem can be applied to a disk of finite radius Rwith negligible

error.) This system has been used for studying removal of behenic acid from stainless steel

surfaces.8

6H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, 2nd edition

(1959), pp. 266–267.
7V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, New Jersey (1962),

§11.
8C. S. Grant, A. T. Perka, W. D. Thomas, and R. Caton, AIChE Journal, 42, 1465–1476 (1996).
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The fluid dynamics of this problem was solved by von Kármán9 and later corrected by
Cochran.10 It was found that the velocity components can be expressed, except near the disk
edge, as

vr(r,r) = 1rF(r); vp(r,r) = 1rG(r); vz(z) =
√
1lH(r) (19C.2-1)

where r = z
√
1∕l. The functions F, G, and H have the following expansions,9 with a = 0.510

and b = −0.616:

F(r) = ar − 1

2
r2 − 1

3
br3 − 1

12
b2r4 − · · · (19C.2-2)

G(r) = 1 + br + 1

2
ar3 + 1

12
(ab − 1)r4 − · · · (19C.2-3)

H(r) = −ar2 + 1

3
r3 + 1

6
r4 + · · · (19C.2-4)

Furthermore, in the limit as r → ∞, H → −0.886, and F, G, F′, and G′ all approach zero. Also, it

is known that the boundary-layer thickness is proportional to
√
l∕1, except near the edge of

the disk.
For the diffusion problem, we have to solve Eq. 19.1-20 with rA = 0 and the velocity field

given by Eq. 19C.2-1. The boundary conditions are

B.C. 1 at z = 0, iA = iA0 (19C.2-5)

B.C. 2 as z → ∞, iA → 0 (19C.2-6)

B.C. 3 at r = 0, 𝜕iA∕𝜕r = 0 (19C.2-7)

B.C. 4 as r → ∞, 𝜕iA∕𝜕r → 0 (19C.2-8)

Equation 19C.2-7 states that there is no diffusion mass flux at r = 0, and Eq. 19C.2-8 states that,
at the outer edge of the disk (here taken to be infinite), there will be no mass flux by diffusion.

Since there can be but one solution to this linear problem, it may be seen that a solution
of the form iA = iA(z)—i.e., the concentration of A is independent of r (!)—can be found that
satisfies the differential equation and all the boundary conditions.

(a) Show that, for this problem, Eq. 19.1-20 becomes

vz
diA
dz

= 𝒟AB

d2iA
dz2

or H(r)
diA
dr

= 1

Sc

d2iA
dr2

(19C.2-9a,b)

This ordinary differential equation is solved by making the substitution p = diA∕dr, thereby
getting a first-order separable equation dp∕dr = ScH(r)p.
(b) Show that the solution of Eq. 19C.2-9b is

ln p = Sc∫
r

0

H
(
r
)
dr + lnC1 or

diA
dr

= C1 exp

(
Sc∫

r

0

H
(
r
)
dr
)

(19C.2-10a,b)

in which the overbars are used to indicate dummy variables of integration. Show that a further
integration gives

iA(r) = C1∫
r

0

exp
⎛⎜⎜⎝Sc∫

r

0

H
(
r
)
dr
⎞⎟⎟⎠ dr + C2 (19C.2-11)

Apply the boundary conditions that iA(0) = iA0 and iA(∞) = 0, and verify that Eq. 19C.2-11
then becomes

iA(r)
iA0

= 1 −
∫

r

0

exp
⎛⎜⎜⎝Sc∫

r

0

H
(
r
)
dr
⎞⎟⎟⎠ dr

∫
∞

0

exp
⎛⎜⎜⎝Sc∫

r

0

H
(
r
)
dr
⎞⎟⎟⎠ dr

(19C.2-12)

9T. von Kármán, Zeits. f. angew. Math. u. Mech., 1, 244–247 (1921).
10W. G. Cochran, Proc. Camb. Phil. Soc., 30, 365–375 (1934).
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(c) In the high Schmidt number limit, we need take only the first term in the expansion ofH(r);
show that this results in

iA(r)
iA0

= 1 −
∫

r

0

exp
⎛⎜⎜⎝Sc∫

r

0

(
−ar

2
)
dr
⎞⎟⎟⎠ dr

∫
∞

0

exp
⎛⎜⎜⎝Sc∫

r

0

(
−ar

2
)
dr
⎞⎟⎟⎠ dr

= 1 −
∫

r

0

exp

(
−1

3
Scar3

)
dr

∫
∞

0

exp

(
−1

3
Scar3

)
dr

(19C.2-13)

(d) Show that the integral in the denominator can be evaluated analytically

∫
∞

0

exp

(
−1

3
Scar3

)
dr =

∫
∞

0

exp(−u3)du

3

√
1

3
Sca

=
1

3
T
(

1

3

)
3

√
1

3
Sca

=
T
(

4

3

)
3

√
1

3
Sca

(19C.2-14)

and that the final expression for the concentration profile is

iA(r)
iA0

= 1 −
3

√
1

3
Sca

T
(

4

3

) ∫
∞

0

exp

(
−1

3
Scar3

)
dr (19C.2-15)

(e) Then verify that the mass flux in the z direction is

jAz = −𝒟AB

diA
dz

= +iA0𝒟AB

3

√
1

3
Sca

T
(

4

3

) exp

(
−1

3
Scar3

)
dr
dz

(19C.2-16)

in which dr∕dz =
√
1∕l.

(f) Finally, show that

jAz|z=0 = iA0𝒟AB

3

√
1

3
Sca

T
(

4

3

) √
1
l

=
3

√
1

3
(0.510)

T
(

4

3

) iA0𝒟ABSc
1∕3

√
1
l

= 0.620iA0𝒟AB

(
l

𝒟AB

)1∕3√1
l

(19C.2-17)

is the mass flux on one side of the disk surface
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Chapter 20

Concentration Distributions
in Turbulent Flow

§20.1 Concentration fluctuations and the time-smoothed concentration

§20.2 Time-smoothing of the equation of continuity of species A

§20.3 Semiempirical expressions for the turbulent mass flux

§20.4○ Enhancement of mass transfer by a first-order reaction in turbulent flow

§20.5 Concluding comments

In the preceding chapters we have derived the equations for diffusion in a fluid or solid,
and we have shown how one can obtain expressions for the concentration distribution,
when no fluid turbulence is involved. In this chapter we turn our attention to mass trans-
port in turbulent flow.

The discussion here is quite similar to that in Chapter 12, and much of that material
can be taken over by analogy. Specifically, §12.4 and §12.5 can be taken over directly by
replacing heat-transfer quantities by mass-transfer quantities. In fact, the problems dis-
cussed in those sections have been tested more meaningfully in mass transfer, since the
range of experimentally accessible Schmidt numbers is considerably greater than that for
Prandtl numbers.

We restrict ourselves here to isothermal binary systems, and make the assumption of
constant mass density and diffusivity. Therefore, the partial differential equation describ-
ing diffusion in a flowing fluid (Eq. 19.1-20) is of the same form as that for heat conduction
in a flowing fluid (Eq. 11.2-9), except for the inclusion of the chemical reaction term in
the former.

The most apparent influence of turbulence on mass transport is the enhanced trans-
port perpendicular to the main flow. Consider the flow of a fluid in catalytic tubular
reactor, where species A must be transported to the wall in order for it to react (e.g., as
in Example 19.4-3). If the flow is laminar with the only nonzero velocity component in
the axial direction, then mass transport perpendicular to the tube wall can occur only by
diffusion. This mode of mass transport can be very slow. On the other hand, if the flow
is turbulent, there is a nonzero, fluctuating component of the velocity perpendicular to
the tube walls, which results in the convective transport of mass from the bulk fluid to
the tube wall. This mode of transport is typically much faster. This enhanced transport
can also be interpreted as mixing—the turbulent motion mixes the fluid within the tube,
creating a more uniform concentration profile than observed in laminar flow.

594
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§20.2 Time-Smoothing of the Equation of Continuity Of species A 595

§20.1 CONCENTRATION FLUCTUATIONS AND THE
TIME-SMOOTHED CONCENTRATION

The discussion in §12.1 about the temperature fluctuations and time-smoothing can be
taken over by analogy for the molar concentration cA. In a turbulent stream, cA will be a
rapidly oscillating function that can be written as the sum of a time-smoothed value cA
and a turbulent concentration fluctuation c′A

cA(t) = cA + c′A(t) (20.1-1)

which is analogous to Eq. 12.1-1 for the temperature. Of course, cA will also depend on
position, andmay also vary slowlywith time if the driving force formotion is not constant.

By virtue of the definition of c′A, we see that c′A = 0. However, quantities such as v′xc
′
A, v

′
yc

′
A,

and v′zc
′
A are not zero, because the local fluctuations in concentration and velocity are not

independent of one another.
The time-smoothed concentration profiles cA(x,y,z,t) are thosemeasured, for example,

by the withdrawal of samples from the fluid stream at various points and various times.
In tube flowwithmass transfer at the wall, one expects that the time-smoothed concentra-
tion cA will vary only slightly with position in the turbulent core, where the transport by
turbulent eddies predominates. In the slowly moving region near the bounding surface,
on the other hand, the concentration cA will be expected to change within a small distance
from its turbulent-core value to the wall value. The steep concentration gradient is then
associated with the slow molecular diffusion process in the viscous sublayer, in contrast
to the rapid eddy transport in the fully developed turbulent core.

§20.2 TIME-SMOOTHING OF THE EQUATION OF CONTINUITY
OF SPECIES A

We begin with the equation of continuity for species A, which we presume is disappear-
ing by an nth-order chemical reaction.1 For the case of constant total density i, Equation
19.1-20 can be written in rectangular coordinates as (see Problem 19B.12)

𝜕cA
𝜕t

= −
(

𝜕
𝜕x

vxcA + 𝜕
𝜕y

vycA + 𝜕
𝜕z

vzcA

)
+𝒟AB

(
𝜕2cA
𝜕x2

+
𝜕2cA
𝜕y2

+
𝜕2cA
𝜕z2

)
− k′′′n cnA (20.2-1)

Here k′′′n is the reaction rate constant for the nth-order chemical reaction, and it is presumed
to be independent of position. In subsequent equations we shall consider n = 1 and n = 2
in order to emphasize the difference between reactions of first and higher order.

When cA is replaced by cA + c′A, and vi by vi + v′i , we obtain after time-averaging

𝜕cA
𝜕t

= −
(

𝜕
𝜕x

vxcA + 𝜕
𝜕y

vycA + 𝜕
𝜕z

vzcA

)
−

(
𝜕
𝜕x

v′xc
′
A + 𝜕

𝜕y
v′yc

′
A + 𝜕

𝜕z
v′zc

′
A

)
---------------------------------

+𝒟AB

(
𝜕2cA
𝜕x2

+
𝜕2cA
𝜕y2

+
𝜕2cA
𝜕z2

)
−

{
k′′′
1

cA or

k′′′
2

(
c2A + c′2A

)
---- (20.2-2)

Comparison of this equation with Eq. 20.2-1 indicates that the time-smoothed equation
differs in the appearance of some extra terms, marked here with dashed underlines.

The terms containing v′i c
′
A describe the turbulent mass transport and we designate them

1S. Corrsin, Physics of Fluids, 1, 42–47 (1958).
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by J
(t)
Ai, the ith component of the turbulent molar-flux vector.2 We have now met the third

of the turbulent fluxes, and we may now summarize their components thus:

Turbulent molar-flux vector components: J
(t)
Ai = v′i c

′
A (20.2-3)

Turbulent momentum-flux vector components: f(t)ij = iv′iv
′
j (20.2-4)

Turbulent energy-flux vector components: q(t)i = iĈpv
′
iT

′ (20.2-5)

All of these are defined as fluxes with respect to the mass-average velocity v.
It is interesting to note that there is an essential difference between the behaviors of

chemical reactions of different orders. The first-order reaction expression has the same
form in the time-smoothed equation as in the original equation. The second-order reac-

tion, on the other hand, contributes on time-smoothing an extra term −k′′′
2
c′2A, this being

the manifestation of the interaction between the chemical kinetics and the turbulent fluc-
tuations.

We now summarize all three of the time-smoothed equations of change for turbulent
flow of an isothermal, binary fluid mixture with constant i, 𝒟AB, and 4:

Continuity: (∇ ⋅ v) = 0 (20.2-6)

Motion: i
Dv
Dt

= −∇p −
[
∇ ⋅

(
f(v) + f(t)

)]
+ ig (20.2-7)

----

Continuity of A:
DcA
Dt

= −
(
∇ ⋅

(
J
(l)
A + J

(t)
A

))
−

{
k′′′
1

cA or

k′′′
2

(
c2A + c′2A

) (20.2-8)

---- ----

Here J
(l)
A = −𝒟AB∇cA, and it is understood that the D∕Dt is to be written with the

time-smoothed mass-average velocity v in it.

§20.3 SEMIEMPIRICAL EXPRESSIONS FOR THE TURBULENT
MASS FLUX

In the preceding section it was shown that the time-smoothing of the equation of

continuity of A gives rise to a turbulent mass flux with components J
(t)
Ai = v′i c

′
A. To solve

mass-transport problems in turbulent flow, itmay be useful to postulate a relation between

J
(t)
Ai and the time-smoothed concentration gradient. A number of empirical expressions
can be found in the literature, but we present here only the two most popular ones.

a. Eddy diffusivity
By analogy with Fick’s first law of diffusion, we may write

J
(t)
Ay = −𝒟 (t)

AB

dcA
dy

(20.3-1)

which is the defining equation for the turbulent diffusivity 𝒟 (t)
AB, also called the eddy dif-

fusivity. As is the case with the eddy viscosity and the eddy thermal conductivity, the

2The symbol JA is used here to represent the molar flux of Awith relative to the mass-average velocity
v. This differs from the symbols jA and J*A defined in Chapter 17 (these are the mass flux of A relative to

the mass-average velocity, and the molar flux of A relative to the molar-average velocity, respectively).

The term J
(t)
A is then the time-averaged turbulent molar flux of A relative to the mass-average velocity. In

general, the molar flux of A relative to the mass-average velocity can be written JA = cA(vA − v).
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eddy diffusivity is not a physical property characteristic of the fluid, but depends on the
position, direction, and the nature of the flow field.

The eddy diffusivity𝒟 (t)
AB and the eddy kinematic viscosity l(t) = 4(t)∕i have the same

dimensions, namely length squared divided by time. Their ratio

Sc(t) = l(t)

𝒟 (t)
AB

(20.3-2)

is a dimensionless quantity, known as the turbulent Schmidt number. As is the case with the
turbulent Prandtl number, the turbulent Schmidt number is of the order of unity (see the
discussion in §12.3). Thus, the eddy diffusivity may be estimated by simply replacing it
by the turbulent kinematic viscosity, about which a fair amount is known. This is done in
§20.4, which follows.

b. The mixing-length expression of Prandtl and Taylor
According to the mixing-length theory of Prandtl, momentum, energy, and mass are

all transported by the same mechanism. Hence, by analogy with Eqs. 4.4-4 and 12.3-3 we
may write

J
(t)
Ay = −l2

|||||dvxdy

||||| dcAdy (20.3-3)

where l is the Prandtl mixing length introduced in Chapter 4. The quantity l2|dvx∕dy|
appearing here corresponds to𝒟 (t)

AB as well as to l(t) and w(t) in Eqs. 4.4-4 and 12.3-3. Thus,

the mixing-length theory satisfies the Reynolds analogy l(t) = w(t) = 𝒟 (t)
AB, or Pr

(t) = Sc(t) = 1.

§20.4 ENHANCEMENT OF MASS TRANSFER BY A FIRST-ORDER
REACTION IN TURBULENT FLOW1

We now examine the effect of the chemical reaction term in the turbulent diffusion
equation. Specifically we study the effect of the reaction on the rate of mass transfer at the
wall for steadily driven turbulent flow in a tube, where the wall (of material A) is slightly
soluble in the fluid (a liquid B) flowing through the tube. Material A dissolves in liquid
B and then disappears by a first-order reaction. We shall be particularly interested in the
behavior with high Schmidt numbers and large reaction rates.

The discussion is divided into two parts: (a) an analysis for infinitely fast reactions,
and (b) an analysis for fast and slow reactions.

a. Infinitely fast reactions and cA independent of z
For tube flow with axial symmetry and with cA independent of the time, Eq. 20.2-8

becomes

vz
𝜕cA
𝜕z

= 1

r
𝜕
𝜕r

(
r
(
𝒟AB +𝒟 (t)

AB

) 𝜕cA
𝜕r

)
− k′′′

1
cA (20.4-1)

Here we have made the customary assumption that the axial transport by both molecular
and turbulent diffusion can be neglected. We want to find the mass-transfer rate at the
wall

+𝒟AB
𝜕cA
𝜕r

||||r=R = kc(cA0 − cA,axis) (20.4-2)

1O. T. Hanna, O. C. Sandall, and C. L. Wilson, Ind. Eng. Chem. Research, 26, 2286–2290 (1987). An

analogous problem dealing with falling films is given by O. C. Sandall, O. T. Hanna, and F. J. Valeri, Chem.
Eng. Communications, 16, 135–147 (1982).
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where cA0 and cA,axis are the concentrations ofA at the wall and at the tube axis. As pointed
out in the preceding section, the turbulent diffusivity is zero at the wall, and consequently
does not appear in Eq. 20.4-2. The quantity kc is amass-transfer coefficient, based on a molar
concentration driving force, which is the analog of the heat-transfer coefficient h. The coef-
ficient h was discussed in Chapter 14, and mentioned in Chapters 9 and 10 in connection
with “Newton’s law of cooling.” In the following development we take cA,axis to be zero,
assuming that the reaction rate is sufficiently rapid that the diffusing species never reaches
the tube axis. Accordingly 𝜕cA∕𝜕r must also be zero at the tube axis. After analyzing the
system under this assumption, we will relax the assumption and give computations for a
wider range of reaction rates.

We nowdefine the dimensionless concentrationC = cA∕cA0. Thenwemake the further
assumption that, for large z, the concentrationwill be independent of z, Eq. 20.4-1 becomes

1

r
𝜕
𝜕r

(
r
(
𝒟AB +𝒟 (t)

AB

)
𝜕C
𝜕r

)
= k′′′

1
C (20.4-3)

This equation may now be multiplied by r and integrated from an arbitrary position to
the tube wall to give:

kcR − r(𝒟AB +𝒟 (t)
AB)

𝜕C
𝜕r

= k′′′
1 ∫

R

r
rC(r)dr (20.4-4)

Here the boundary condition at r = R has been used, as well as the definition of the
mass-transfer coefficient in Eq. 20.4-2. Then a second integration from r = 0 to r = R gives

kcR∫
R

0

1

r(𝒟AB +𝒟 (t)
AB)

dr − 1 = k′′′
1 ∫

R

0

1

r(𝒟AB +𝒟 (t)
AB)

[
∫

R

r
rC (r) dr

]
dr (20.4-5)

Here use has been made of the boundary conditions that C = 0 at r = 0, and that C = 1 at
r = R.

Next we introduce the variable y = R − r, since the region of interest is right next to
the wall. Then we get

kcR∫
R

0

1

(R − y)(𝒟AB +𝒟 (t)
AB)

dy − 1 = k′′′
1 ∫

R

0

1

(R − y)(𝒟AB +𝒟 (t)
AB)

[
∫

y

0

(
R − y

)
C(y)dy

]
dy

(20.4-6)

in which C(y) is not the same function of y as C(r) is of r. For large Sc the integrands
are important only in the region where y ≪ R, so that R − y may be safely approximated
by R. Furthermore, we can use the fact that the turbulent diffusivity in the neighbor-
hood of the wall is proportional to the third power of the distance from the wall (see
Eq. 12.3-5). When the integrals are rewritten in terms of g = y∕R, we get the dimensionless
equation

1

2

(
kcD
𝒟AB

)(
𝒟AB

l

)
∫

1

0

1

(𝒟AB∕l) + Kg3
dg − 1

=

(
k′′′
1

R2

l

)
∫

1

0

1

(𝒟AB∕l) + Kg3

[
∫

g

0

C (g) dg
]
dg (20.4-7)

in which K = Sc(Rv
*
∕14.5l)3, where v

*
=

√
f0∕i is the friction velocity introduced in

§4.3. This equation contains several dimensionless groupings: the Schmidt number
Sc = l∕𝒟AB, a dimensionless reaction-rate parameter Rx = k′′′

1
R2∕l, and a dimensionless

mass-transfer coefficient Sh = kcD∕𝒟AB, known as the Sherwood number (D = 2R being
the tube diameter).
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In the limit that Rx → ∞, the solution to Eq. 20.4-3 under the given boundary condi-
tions is C(g) = exp(−Sh g∕2). Substitution of this into Eq. 20.4-7 then gives after straight-
forward integration

1

2

Sh

Sc
I0 − 1 = 2

Rx

Sh
I0 − 2

Rx

Sh
I1 (20.4-8)

in which

I0 = ∫
1

0

1

Sc-1 + Kg3
dg (20.4-9)

I1 = ∫
1

0

exp(−Sh g∕2)
Sc-1 + Kg3

dg (20.4-10)

Equation 20.4-8 can be solved1 to give Sh as a function of Sc, Rx, and K, that is, the dimen-
sionless mass-transfer rate at the wall in terms of the diffusivity and the reaction rate.

The foregoing solution of Eq. 20.4-3 is reasonable when Sc, Rx, and z are sufficiently
large, and is an improvement over the result given by Vieth, Porter, and Sherwood.2

However, in the absence of chemical reaction, Eq. 20.4-3 fails to describe the downstream
increase of C caused by the transfer of species A into the fluid. Thus, the mass-transfer
enhancement by the chemical reaction cannot be assessed realistically from the results of
either Ref. 1 or Ref. 2.

b. Fast and slow reactions and cA dependent on z
For a better analysis of the enhancement problem, we use Eq. 20.4-1 to get a more

complete differential equation for C:

vz
𝜕C
𝜕z

= 1

r
𝜕
𝜕r

(
r
(
𝒟AB +𝒟 (t)

AB

)
𝜕C
𝜕r

)
− k′′′

1
C (20.4-11)

The assumption that C = 0 at r = 0 is then replaced by the zero-flux condition 𝜕C∕𝜕r = 0

there. We represent 𝒟 (t)
AB in this geometry as l2|dvz∕dr| for fully developed flow, by use of

a position-dependent mixing length as in Eq. 20.3-3. Introducing dimensionless notations

v+ = vz∕v*, z
+ = zv

*
∕l, r+ = rv

*
∕l, and l+ = lv

*
∕l, based on the friction velocity v

*
=

√
f0∕i

of §4.3, we can then express Eq. 20.4-11 in the dimensionless form

v+ 𝜕C
𝜕z+

= 1

r+
𝜕
𝜕r+

(
r+

(
𝒟AB +𝒟 (t)

AB

l

)
𝜕C
𝜕r+

)
−

⟦
k′′′
1

l

v2
*

⟧
C

= 1

r+
𝜕
𝜕r+

(
r+

(
1

Sc
+

(
l+
)2 ||||dv+dr+

||||
)

𝜕C
𝜕r+

)
−DaC (20.4-12)

in which a Damköhler number Da = k′′′
1

l∕v2
*
has been introduced.

We next have to insert into Eq. 20.4-12, an expression for the dimensionless veloc-
ity profile v+(r+). To get this, we simplify Eq. 4.2-12 to obtain the equation of motion for
steadily driven tube flow in the z direction

0 =
𝒫0 −𝒫L

L
− 1

r
d
dr

(
r
(
f(l)rz + f(t)rz

))
(20.4-13)

Next we let f0 = (𝒫0 −𝒫L)R∕2L (the average wall shear stress), use Newton’s law of vis-

cosity for f(l)rz (Eq. B.1-13), and use themixing-length expression for f(t)rz (Eq. 4.4-4) andwrite

−il2
|||||dvzdr

||||| dvzdr
− 4

dvz
dr

= f0
r
R

(20.4-14)

2W. R. Vieth, J. H. Porter, and T. K. Sherwood, Ind. Eng. Chem. Fundam., 2, 1–3 (1963).
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When we introduce the distance from the wall, y = R − r, we can rewrite this equation as

il2
(
dvz
dy

)2

+ 4
dvz
dy

= f0

(
1 −

y
R

)
(20.4-15)

We can now transform to dimensionless quantities, v+ = vz∕v*, y
+ = yv

*
∕l, l+ = lv

*
∕l, and

R+ = Rv
*
∕l, where v

*
=

√
f0∕i, and obtain

(l+)2
(
dv+

dr+

)2

+ dv+

dr+
= 1 −

y+

R+ (for 0 ≤ y+ ≤ R+) (20.4-16)

The quadratic formula may be applied to Eq. 20.4-16 to give

dv+

dy+
=

⎧⎪⎨⎪⎩
−1 +

√
1 + 4(l+)2[1 − (y+∕R+)]

2(l+)2
if y+ > 0

1 if y+ = 0

(20.4-17)

Finallywe insert an expression for themixing length as given by theHanna-Sandall-Mazet
modification3 of the van Driest equation4 (see Eq. 4.4-7), which in dimensionless form is

l+ =
lv
*
l

= 0.4y+
1 − exp(−y+∕26)√
1 − exp(−0.26y+)

for 0 ≤ y+ ≤ R+ (20.4-18)

Then v+(y+) is computable by numerically integrating Eq. 20.4-17. The resulting function
v+(y+) closely resembles the plotted curve in Fig. 4.5-3, with small changes near y+ = 30
where the plotted curve has a slope discontinuity, and near the centerline where the cal-
culated function v+(y+) attains a maximum value dependent on the dimensionless wall
radius R+, whereas the curve in Fig. 4.5-3 incorrectly does not.

Equations 20.4-12, 20.4-17, and 20.4-18 were solved numerically5 for fully developed
flow of a fluid with kinematic viscosity l = 0.6581cm2∕s in a tube with 3 cm inner diam-
eter, at Re = 10,000, Sc = 200, and various Damköhler numbers Da. These calculations
were donewith the software packageAthenaVisualWorkbench.6 The resulting Sherwood
numbers, Sh = kcD∕𝒟AB based on kc as defined in Eq. 20.4-2, are plotted in Fig. 20.4-1 as
functions of z+ for various values of the Damköhler number Da. These results lead to the
following conclusions:

1. In the absence of reaction (that is, when Da = 0), the Sherwood number falls off
rapidly with increasing distance into the mass-transfer region. This behavior is
consistent with the results of Sleicher and Tribus7 for a corresponding heat-transfer
problem, and confirms that the convection term of Eq. 20.4-10 is essential for this
system. This term was neglected in References 2 and 3 by regarding the concentra-
tion profiles as “fully developed.”

2. In the presence of a pseudo-first-order homogeneous reaction of the solute (that
is, when Da > 0) the Sherwood number falls off downstream less rapidly, and ulti-
mately attains a constant asymptote that depends on theDamköhler number. Thus,
the enhancement factor, defined as Sh (with reaction)/Sh (without reaction), can
increase considerably with increasing distance into the mass-transfer region.

3O. T. Hanna, O. C. Sandall, and P. R. Mazet, AIChE Journal, 27, 693–697 (1981).
4E. R. van Driest, J. Aero. Sci., 23, 1007–1011, 1036 (1956).
5M. Caracotsios, personal communication.
6Information on this package is available at www.athenavisual.com and from

stewart_associates.msn.com.
7C. A. Sleicher and M. Tribus, Trans. ASME, 79, 789–797 (1957).

http://www.athenavisual.com
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Fig. 20.4-1. Calculated
Sherwood numbers,

Sh = kcD∕𝒟AB, for turbulent
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*
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§20.5 CONCLUDING COMMENTS

In this, the third and last of the turbulence chapters, relatively little has been added that is
really new in the subject. The notions of time-smoothed quantities, turbulent fluctuations,
and correlations have been discussed in Chapters 4 and 12, and their reappearance here
has not been surprising.

The only new item has been the occurrence of homogeneous chemical reactions in tur-
bulent flows. We have given an example of the interaction of turbulence and a first-order
homogeneous reaction in §20.4. It was seen that there can be a significant enhancement of
the mass transfer resulting from the chemical reaction in the flow system. The interaction
of turbulence and second-order homogeneous reactions has also been analyzed.1

The reader will have noted that a number of assumptions have gone into the above
development. Most of these are probably defensible at high Schmidt numbers and very
rapid reaction rates. Little can be said about their appropriateness otherwise.

QUESTIONS FOR DISCUSSION

1. Discuss the similarities and differences between turbulent heat and mass transport.

2. Discuss the behavior of first- and higher-order reactions in the time-smoothing of the equation

of continuity for a given species. What are the consequences of this?

3. To what extent are the turbulent momentum flux, heat flux, and mass flux similar in form?

4. What empiricisms are available for describing the turbulent mass flux?

5. How can eddy diffusivities be measured, and on what do they depend?

6. In view of the assumptions made in §20.4, would you expect to get trustworthy results

for mass transfer in turbulent tube flow without chemical reaction just by setting Rx = 0

in Eq. 20.4-8?

PROBLEMS 20A.1 Determination of eddydiffusivity. In Problem19C.1we gave the formula for the concentration

profiles in diffusion from a point source in a moving stream (see Fig. 19C.1). In isotropic highly

turbulent flow, Eq. 19C.1-3may bemodified by replacing𝒟AB by the eddy diffusivity𝒟
(t)
AB. This

equation has been found to be useful for determining the eddy diffusivity. The molar flow rate

of carbon dioxide is 1/1000 that of air.

(a) Show that if one plots ln scA versus s − z the slope is −v0∕2𝒟
(t)
AB.

1R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York, Revised 2nd

Edition (2007).
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(b) Use the data on the diffusion of CO2 from a point source in a turbulent air stream shown

in Fig. 20A.1 to get 𝒟 (t)
AB for these conditions: pipe diameter, 15.24 cm; v0 = 1512 cm∕s.

(c) Compare the value of𝒟 (t)
AB with the molecular diffusivity𝒟AB for the system CO2-air.

(d) List all assumptions made in the calculations.

Answer: (b) 𝒟 (t)
AB = 20 cm2∕s

r/R
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1.2 Fig. 20A.1 Concentration traverse data for

CO2 injected into a turbulent air stream with

Re = 119,000 in a tube of diameter 15.24 cm.

The circles are concentrations at a distance

z = 112.5 cm downstream from the injection

point, and the crosses are concentrations at

z = 152.7 cm. [Experimental data are taken

fromW. L. Towle and T. K. Sherwood, Ind.
Eng. Chem., 31, 457–462 (1939).]

20A.2 Heat- and mass-transfer analogy. Write the mass-transfer analog of Eq. 12.4-20. What are the

limitations of the resulting equation?

20B.1 Wall mass flux for turbulent flow with no chemical reactions. Use the diffusional analog of

Eq. 12.4-21 for turbulent flow in circular tubes, and the Blasius formula for the friction factor,

to obtain the following expression for the Sherwood number,

Sh = 0.0160Re7∕8Sc1∕3 (20B.1-1)

valid for large Schmidt numbers.1

20B.2 Alternate expressions for the turbulent mass flux. Seek an asymptotic expression for the tur-

bulent mass flux for long circular tubes with a boundary condition of constant wall mass flux.

Assume that the net mass-transfer rate across the wall is small.

(a) Parallel the approach for laminar flow heat transfer in §10.9 to write

H(k,r) =
aA − aA1

jA0D∕i𝒟AB
= C1r +H∞(k) (20B.2-1)

in which k = r∕D, r = (z∕D)∕ReSc, aA1 is the inlet mass fraction of A, and jA0 is the interfacial

mass flux of A into the fluid.

(b) Next use the equation of continuity for species A to obtain

4
vz(k)⟨vz⟩ = 1

k
d
dk

[(
1 + Sc

Sc(t)
4(t)

4

)
k
dH∞

dk

]
(20B.2-2)

1O. T. Hanna, O. C. Sandall, and C. R. Wilson, Ind. Eng. Chem. Res., 28, 2286–2290 (1987).
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in which Sc(t) = 4(t)∕i𝒟 (t)
AB. This equation is to be integrated with the boundary conditions that

H∞ is finite at k = 0 and dH∞∕dk = −1 at k = 1

2
.

(c) Integrate the above equation once with respect to k to obtain

dH∞

dk
=

1

2
− 4∫

1∕2

k
(vz(k)∕⟨vz⟩)kdk

k[1 + (Sc∕Sc(t))(4(t)∕4)]
(20B.2-3)

If one has information about the time-averaged velocity profile, Eq. 20B.2-3 can be integrated

to obtain the concentration profile.

20B.3 An asymptotic expression for the turbulent mass flux.2 Start with the final results of Problem

20B.2, and note that for sufficiently large Sc all curvature of the concentration profile will take

place very near the wall where vz(k)∕⟨vz⟩ ≈ 0 and k ≈ 1

2
. Assume that Sc(t) = 1 and use Eq. 4.4-2

to obtain
dH∞

dk
= 1

[1 + Sc(4(t)∕4)]
= 1

[1 + Sc(yv*∕14.5l)3]
(20B.3-1)

Introduce the new coordinate q = Sc1∕3(yv
*
∕14.5l) into Eq. 20B.3-1 to get an equation for

dH∞∕dq valid within the laminar sublayer. Then integrate from q = 0 (where aA = aA0) to

q = ∞ (where aA ≈ aAb) to obtain an explicit relation for the wall mass flux jA0. Compare with

the analog of Eq. 12.4-21 obtained in Problem 20B.1.

20B.4 Deposition of silver from a turbulent stream. An approximately 0.1 N solution of KNO3 con-

taining 1.00 × 10−6 g-equiv. AgNO3 per liter is flowing between parallel Ag plates, as shown in

Fig. 20B.4(a). A small voltage is applied across the plates to produce a deposition of Ag on the

cathode (lower plate) and to polarize the circuit completely (that is, to maintain the Ag+ con-

centration at the cathode very nearly zero). Forced diffusion may be ignored, and the Ag+ may

be considered to be moving to the cathode by ordinary (that is, Fickian) diffusion and eddy

diffusion only. Furthermore, this solution is sufficiently dilute that the effects of the other ionic

species on the diffusion of Ag+ are negligible.

y
z

cAg+ (y)

Ag Ag+ + e–

Ag+ + e– Ag

+ –

Anode

Movement of electrons

Cathode

vz (y)

(a) (b)

0.0000

0.0002

0.0004
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0.0008

0.0010

0.0012

0 1 2 3 4 5 6 7

∏
∞

anode

cathode

η

Fig. 20B.4 (a) Electrodeposition of Ag+ from a turbulent stream flowing in the positive z direction between two parallel

plates. (b) Concentration profiles in electrodeposition of Ag at an electrode (dimensionless quantities defined in

Problem 20B.2 and 20B.3).

2C. S. Lin, R. W. Moulton, and G. L. Putnam, Ind. Eng. Chem., 45, 636 (1953).
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(a) Calculate the Ag+ concentration profile, assuming that (i) the effective binary diffusivity

of Ag+ through the water is 1.06 × 10−5 cm2∕s; (ii) the truncated Lin, Moulton, and Putnam

expression of Eq. 4.4-2 for the turbulent velocity distribution in round tubes is valid for “slit

flow” as well, if four times the hydraulic radius is substituted for the tube diameter; (iii) the

plates are 1.27 cm apart, and
√
f0∕i is 11.4 cm/s.

(b) Estimate the rate of deposition ofAgon the cathode, neglecting all other electrode reactions.

(c) Does the method of calculation in part (a) predict a discontinuous slope for the concentra-

tion profile at the center plane of the system? Explain.

Answers: (a) See Fig. 20B.4(b); (b) 6.76 × 10−12equiv∕cm2 ⋅ s
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Chapter 21

Dimensional Analysis for
Flowing Mixtures

§21.1 Dimensional analysis of the equations of change of a binary mixture

§21.2 Concentration distribution about a long cylinder

§21.3 Fog formation during dehumidification

§21.4 Blending of miscible fluids

§21.5 The Buckingham pi theorem

§21.6 Concluding comments

This chapter on dimensional analysis is themass-transfer analog of Chapter 5 (momentum
transfer) and Chapter 13 (heat transfer). Here we dimensionally analyze the equations

of change summarized in §19.2, using special cases of the flux expressions in §19.3. The
aim is to identify the controlling dimensionless parameters of representativemass-transfer
problems, and to provide an introduction to the mass-transfer correlations given in the
next chapter. The focus here is on nonreacting systems, which we will exploit in the next

chapter where we discuss correlations for mass-transfer coefficients.

§21.1 DIMENSIONAL ANALYSIS OF THE EQUATIONS OF CHANGE
OF A BINARYMIXTURE

As in the previous chapters dealing with dimensional analysis, we restrict the discussion
primarily to systems of constant physical properties. Here we are concerned with flow-

ing, nonreacting binary mixtures, in which diffusion may be occurring. The equation of
continuity for the mixture takes the familiar form

Continuity: (∇ ⋅ v) = 0 (21.1-1)

The equation of motion may be written in the Boussinesq approximation (see §11.3) by
putting Eq. 19.3-2 and Eq. 21.1-1 into Eq. 19.2-3, and replacing −∇p + ig by ∇𝒫 . For a

constant-viscosity Newtonian fluid this gives

Motion: i
Dv
Dt

= 4∇2v − ∇𝒫 − igv(T − T) − igr(aA − aA) (21.1-2)

The energy equation—in the absence of chemical reactions, viscous dissipation, and exter-
nal forces other than gravity—is obtained from Eq. (D) of Table 19.2-4, with Eq. 19.3-3.
In using the latter we further neglect the diffusional transport of energy relative to the

605
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mass-average velocity. For constant thermal conductivity, k, this leads to

Energy: DT
Dt

= w∇2T (21.1-3)

in which w = k∕iĈp is the thermal diffusivity. For nonreacting binary mixtures with con-
stant i and𝒟AB, Eq. 19.1-18 becomes

Continuity of A:
DaA

Dt
= 𝒟AB∇2aA (21.1-4)

For the assumptions that have been made, the analogy between Eqs. 21.1-3 and 21.1-4
is clear.

We now introduce the reference quantities l0, v0, and 𝒫0, used in §5.1 and §13.1, the
reference temperatures T0 and T1, and the analogous referencemass fractions aA0 and aA1.
Then the dimensionless quantities that will arise are

x̆ = x
l0

y̆ =
y
l0

z̆ = z
l0

t̆ =
v0t
l0

(21.1-5)

v̆ = v
v0

∇̆ = l0∇
D
Dt̆

=
(
l0
v0

)
D
Dt

�̆� =
𝒫 −𝒫0

iv2
0

(21.1-6)

T̆ =
T − T0

T1 − T0

ăA =
aA − aA0

aA1 − aA0
(21.1-7)

Here it is understood that v is themass-average velocity of themixture. It should be recog-
nized that for some problems other choices of dimensionless variables may be preferable.

In terms of the dimensionless variables defined above, the equations of change may
now be written as1

Continuity: (∇̆ ⋅ v̆) = 0 (21.1-8)

Motion: Dv̆
Dt̆

= 1

Re
∇̆2v̆ − ∇̆�̆� − Gr

Re2

g
g
(T̆ − T̆) −

Gra

Re2

g
g
(ăA − ăA) (21.1-9)

Energy: DT̆
Dt̆

= 1

RePr
∇̆2T̆ (21.1-10)

Continuity of A:
DăA

Dt̆
= 1

ReSc
∇̆2ăA (21.1-11)

The dimensionless Reynolds, Prandtl, and thermal Grashof numbers have been given in
Table 13.1-1, but two additional groups have appeared here:

Sc =
⟦

4

i𝒟AB

⟧
=

⟦
l

𝒟AB

⟧
= Schmidt number (21.1-12)

Gra =

⟦
i2gr

(
aA1 − aA0

)
l3
0

42

⟧
= diffusional Grashof number (21.1-13)

The Schmidt number is the ratio of momentum diffusivity (kinematic viscosity l) to mass
diffusivity and represents the relative ease of molecular momentum and mass transfer.

1The dimensionless equations of change written in terms of the mole fraction are equivalent to Eqs.

21.1-8 through 21.1-11, with ăA replaced by x̆A, and Gra replaced by Grx. These two new dimensionless

quantities are defined x̆A = (xA − xA0)∕(xA1 − xA0), and Grx = ⟦i2gk(xA1 − xA0)l
3
0
∕42⟧, where

k = −(1∕i)(𝜕i∕𝜕xA)T,p.
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It is analogous to the Prandtl number (Pr), which is the ratio of the momentum diffusivity
(l) to the thermal diffusivity (w). The diffusional Grashof number arises because of the
buoyant force caused by the concentration inhomogeneities. The products RePr and ReSc
in Eqs. 21.1-10 and 21.1-11 are known as Péclet numbers, Pé and PéAB, respectively.

The dimensional analysis of mass-transfer problems parallels that for heat-transfer
problems. We illustrate the method by three examples: (i) The strong similarity between
Eqs. 21.1-10 and 21.1-11 permits the solutions of manymass-transfer problems by analogy
with previously solved heat-transfer problems; such an analogy is used in §21.2. (ii) Fre-
quently the transfer of mass requires or releases energy, so that the heat and mass transfer
must be considered simultaneously, as is illustrated in §21.3. (iii) Sometimes, as in many
industrial mixing operations, diffusion plays a subordinate role in mass transfer and need
not be given detailed consideration, as illustrated in §21.4. In §21.5, we illustrate the use
of the Buckingham pi theorem in dimensional analysis of mass-transfer problems.

We shall see then that, just as for heat transfer, the use of dimensional analysis for
the solution of practical mass-transfer problems is an art. This technique is normally most
useful when at least some of the phenomena represented in themany dimensionless ratios
can be neglected. Estimation of the relative importance of pertinent dimensionless groups
normally requires considerable experience.

§21.2 CONCENTRATION DISTRIBUTION ABOUT
A LONG CYLINDER

Herewe consider the prediction of the concentration distribution near a very long, isother-
mal cylinder of volatile solid A, immersed in a gaseous stream of species B, which is
insoluble in solid A. The system is similar to that pictured in Fig. 13.2-1, except that here
we are considering the transfer of mass rather than heat. The vapor pressure of the solid
is assumed to be small compared to the total pressure in the gas, so that the mass-transfer
system is virtually isothermal. The question is: can the results of §13.2 be used to make the
prediction?

We can answer the question in the affirmative, if it can be shown that suitably defined
concentration profiles are identical to the dimensionless temperature profiles in the
heat-transfer system:

ăA(x̆,y̆,z̆) = T̆(x̆,y̆,z̆) (21.2-1)

This equality will be realized if the differential equations and boundary conditions for the
two systems can be put into identical dimensionless form.

We therefore begin by choosing the same reference length, velocity, and pressure
as in §13.2, and an analogous composition function ăA = (aA − aA0)∕(aA∞ − aA0). Here
aA0 is the mass fraction of A in the gas adjacent to the interface, and aA∞ is the value far
from the cylinder. We also specify that aA = aA0, so that ăA = 0. The equations of change
needed here are then Eqs. 21.1-8, 21.1-9, and 21.1-11. Thus, the differential equations here
and in §13.2 are analogous, except for the appearance of the viscous heating term in
Eq. 13.1-3.

As for the boundary conditions, we have here for the mass-transfer problem

B.C. 1: as x̆2 + y̆2 → ∞, v̆ → tx ăA → 1 (21.2-2)

B.C. 2: at y̆2 = 1

4
, v̆ = 1

ReSc

(aA0 − aA∞)
(1 − aA0)

∇ăA ăA = 0 (21.2-3)

B.C. 3: as x̆2 + y̆2 → ∞ and y̆ = 0, �̆� → 0 (21.2-4)

The second boundary condition on v̆, obtained with the help of Fick’s first law, states that
there is an interfacial radial velocity resulting from the sublimation of A.
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If we compare the above description with that for heat transfer in §13.2, we see that
there is no counterpart to the viscous dissipation term in the energy equation and no
heat-transfer counterpart to the interfacial radial velocity component in the boundary con-
dition of Eq. 21.2-3. The descriptions are otherwise analogous, however, with ăA, Sc, and
Gra taking the places of T̆, Pr, and Gr.

When the Brinkman number is sufficiently small, viscous dissipation will be
unimportant, and that term in the energy equation can be neglected. Neglecting the
Brinkman number term is appropriate, except for flows of very viscous fluids with
large velocity gradients or in hypersonic boundary layers (§10.8). Similarly, in situations
where (1∕ReSc)[(aA0 − aA∞)∕(1 − aA0)] is very small, it may be set equal to zero without
introducing appreciable error. If these limiting conditions are met, analogous behavior
will be obtained for heat and mass transfer. More precisely, the dimensionless concentra-
tion ăA will have the same dependence on x̆, y̆, z̆, Re, Sc, and Gra as the dimensionless
temperature T̆ will have on x̆, y̆, z̆, Re, Pr, and Gr. The dimensionless concentration and
temperature profiles will then be identical at a given Re, whenever Sc = Pr and Gra = Gr.

The thermal Grashof number can, at least in principle, be varied at will by changing
T0 − T∞. Hence, it is likely that the desired Grashof numbers can be obtained. However, it
can be seen from Tables 9.5-1 and 17.5-1 that the Schmidt numbers for gases can vary over
a considerably wider range than can the Prandtl numbers. Hence, it may be difficult to
obtain a satisfactory thermal model of the mass-transfer process, except within a limited
range of the Schmidt number.

Another possibly serious obstacle to achieving similar heat- andmass-transfer behav-
ior is the possible nonuniformity of the surface temperature. The heat of sublimationmust
be obtained from the surrounding gas, and this in turn will cause the solid temperature to
become lower than that of the gas. Hence, it is necessary to consider both heat and mass
transfer simultaneously. A very simple analysis of simultaneous heat and mass transfer is
discussed in the next section.

§21.3 FOG FORMATION DURING DEHUMIDIFICATION

A sketch showing the basic elements in a dehumidifier is shown in Fig. 21.3-1. Humid
air enters a tube at temperature T1 and humidity aW1 (the mass fraction of water vapor).
It leaves the tube at a lower temperature T2 (below the dew point) and humidity aW2.
The cooling is accomplished by an outer tube containing a liquid refrigerant that enters at
temperature Tr and then boils off. The liquid refrigerant flow is countercurrent to the air
flow. The cooling is sufficiently effective that the condensed water film can be assumed to
be at Tr.

Wewish to determine the range of refrigerant temperatures that may be usedwithout
the danger of fog formation. Fog is undesirable, because most of the tiny water droplets
constituting the fog will pass through the tube along with the air, unless special collec-
tors are provided. Fog can form if the wet air becomes supersaturated at any point in the
system.

It is convenient to choose the dimensionless variables to be

T̆ =
T − Tr

T1 − Tr
ăW =

aW − aWr

aW1 − aWr
(21.3-1,2)

For the air (A)-water (W) system at moderate temperatures, the assumption of constant i
and 𝒟AW is reasonable, with air regarded as a single species. The heat capacities of water
vapor and air are unequal, but the diffusional transport of energy is expected to be small.
Hence, Eqs. 21.1-9 to 21.1-11 provide a reasonably reliable description of the dehumidifi-
cation process. The boundary conditions needed to integrate the equations include ăW =
T̆ = 1 at the tube inlet, ăW = T̆ = 0 at the gas–liquid boundary, and the no-slip boundary
condition for the velocity v̆.
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Air out at
T2, ωW2

Air in at
T1, ωW1

Refrigerant
vapor out at Tr

Water film at Tr

Liquefied refrigerant
in at Tr

Fig. 21.3-1. Schematic representation of a dehumidifier. Air enters with temperature T1 and

humidity aW1 (the mass fraction of water vapor). It leaves with outlet temperature T2 and

humidity aW2. Because the heat transfer to the refrigerant is very effective, the temperature of

the air-condensate interface is close to the refrigerant temperature Tr.

We find then that the dimensionless profiles are related by

ăW(x̆,y̆,z̆,Re,Gra,Gr,Sc,Pr) = T̆(x̆,y̆,z̆,Re,Gr,Gra,Pr ,Sc) (21.3-3)

Thus, ăW is the same function of its arguments as T̆ is of its arguments in the exact order
given. Since in general Gra is not equal to Gr and Sc is not equal to Pr, the two profiles are
not similar. This general result is too complex to be of much value.

However, for the air-water system, at moderate temperatures and near-atmospheric
pressure, Sc is about 0.6 and Pr is about 0.71.

If we assume for the moment that Sc and Pr are equal, the dimensional analysis
becomes much simpler. For this special situation, the energy and species continuity
equations are identical. Since the boundary conditions on ăW and T̆ are also the same,
the dimensionless concentration and temperature profiles are then identical. It should
be noted that the equality of Gra and Gr is not required. This is because the Grashof
numbers affect the concentration and temperature profiles only by way of the velocity v,
which appears in both the continuity equation and energy equation in the same way.

Therefore, with the assumption that Sc = Pr, we have

ăW = T̆ (21.3-4)

at each point in the system. This means, in turn, that every temperature-concentration pair
in the tube lies on a straight line between (T1, aW1) and (Tr, aWr) on a psychrometric chart.
This is shown graphically in Fig. 21.3-2 for a representative set of conditions. Note that
(Tr, aWr) must lie on the saturation curve, since equilibrium is very closely approximated.

It follows that there can be no fog formation if a straight line drawn between (T1, aW1)
and (Tr, aWr) does not cross the saturation curve. Then the lowest refrigerant temperature
that cannot produce fog is represented by the point of tangency of a straight line through
(T1, aW1) with the saturation curve.

It should be noted that all of the conditions along the line from the inlet (T1, aW1) to
(Tr, aWr) will occur in the gas even though the bulk or cup-mixing conditions vary only
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Fig. 21.3-2. A representative

dehumidification path. The

dehumidification path shown here

corresponds to Tr,min, the lowest refrigerant

temperature ensuring the absence of fog.

The dehumidification path for this situation

is a tangent to the saturation curve through

the point (T1, aW1), representing the given

inlet-air conditions. Calculated

dehumidification paths for lower

refrigerant temperatures would cross the

saturation curve. Saturation water vapor

concentrations would then be exceeded,

making fog formation possible.

from (T1, aW1) to (T2, aW2). Thus, some fog can form even if saturation is not reached in the
bulk of the flowing gas. For air entering at 90∘F and 50% relative humidity, the minimum
safe refrigerant temperature is about 45∘F. It may also be seen from Fig. 21.3-2 that it is not
necessary to bring all of thewet air to its dewpoint in order to dehumidify it. It is necessary
only that the air be saturated at the cooling surface. The exit bulk conditions (T2, aW2) can
be anywhere along the dehumidification path between (T1, aW1) and (Tr, aWr), depending
on the effectiveness of the apparatus used. Calculations based on the assumed equality of
Sc and Pr have proven very useful for the air-water system.

In addition, it can be seen, by considering the physical significance of the Schmidt
and Prandtl numbers, that the above-outlined calculation procedure is conservative.
Since the Schmidt number is slightly smaller than the Prandtl number, dehumidification
will proceed proportionally faster than cooling, and temperature-concentration pairs will
be slightly below the dehumidification path drawn in Fig. 21.3-2. In condensing organic
vapors from air, the reverse situation often occurs. Then the Schmidt numbers tend to
be higher than the Prandtl numbers, and cooling proceeds faster than condensation.
Conditions then lie above the straight line of Fig. 21.3-2, and the danger of fog formation
is increased.

§21.4 BLENDING OFMISCIBLE FLUIDS

Wewant to develop bymeans of dimensional analysis the general form of a correlation for
the time required to blend two miscible fluids in the agitated tank depicted in Fig. 21.4-1.
Assume that the two fluids and their mixtures have essentially the same physical
properties.

It will be assumed that the achievement of “equal degrees of blending” in any two
mixing operations means obtaining the same dimensionless concentration profile in
each. That is, the dimensionless solute concentration ăA is the same function of suitable
dimensionless coordinates (r̆,p,z̆) of the two systems when the degrees of blending are
equal. These concentration profiles will depend on suitably defined dimensionless groups
appearing in the pertinent conservation equations and their boundary conditions, and on
a dimensionless time.
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Fig. 21.4-1. Blending of miscible fluids. At zero time, the

upper half of the tank is solute free, and the lower half

contains a uniform distribution of solute at a

dimensionless concentration of unity, and the fluid is

motionless. The impeller is caused to turn at a constant

rate of rotation N for all times greater than zero.

Positions in the tank are given by the cylindrical

coordinates r, p, z, with rmeasured radially from the

impeller axis, and z upward from the bottom of the tank.

In this problem we select the following definitions for the dimensionless variables:

r̆ = r
D

z̆ = z
D

v̆ = v
ND

t̆ = Nt p̆ =
p − p0
iN2D2

(21.4-1)

HereD is the impeller diameter,N is the rate of rotation of the impeller in revolutions per
unit time, and p0 is the prevailing atmospheric pressure. The dimensionless pressure p̆ is

used here rather than the quantity �̆� defined in §5.1; the formulationwith p̆ is simpler and
gives equivalent results. Note that t̆ is equal to the total number of turns of the impeller
since the start of mixing.

The conservation equations describing the system are Eqs. 21.1-8, 21.1-9, and 21.1-11
with zero Grashof numbers. The dimensionless groups arising in these equations are Re,
Fr, and Sc. The boundary conditions include the vanishing of v on the tank wall and of p
on the free liquid surface. In addition we have to specify the initial conditions

I.C. 1: at t̆ ≤ 0, ăA = 0 for
1

2

H
D

< z̆ ≤ H
D

(21.4-2)

I.C. 2: at t̆ ≤ 0, ăA = 1 for 0 ≤ z̆ < 1

2

H
D

(21.4-3)

I.C. 3: at t̆ ≤ 0, v̆ = 𝟎 for 0 ≤ z̆ < H
D

and 0 ≤ r̆ < 1

2

B
D

(21.4-4)

and the requirement of no slip on the impeller (see Eq. 5.3-4).
We find then that the dimensionless concentration profiles are functions of Re, Sc, Fr,

the dimensionless time t̆, the tank geometry ratios (via H∕D and B∕D), and the relative
proportions of the two fluids. That is,

ăA = f (r̆,z̆,t̆,Re, Fr, Sc, geometry, initial conditions) (21.4-5)

It is frequently possible to reduce the number of variables to be investigated.
It has been observed that, if the tank is properly baffled,1 no vortices of importance

occur; that is, the free liquid surface is effectively level. Under these circumstances, or in
the absence of a free liquid surface, the Froude number does not appear in the system
description, as we found in §5.3.

It is further found that in most operations on low-viscosity liquids, the rate-limiting
step is the creation of a finely divided dispersion of one fluid in the other. In such a dis-
persion, the diffusional processes take place over very small distances. As a result, molec-
ular diffusion is not rate limiting, and the Schmidt number Sc has little importance. It is

1A common and effective baffling arrangement for vertical cylindrical tanks with axially mounted

impellers is a set of four evenly spaced strips along the tank wall, with their flat surfaces in planes

through the tank axis, extending from the top to the bottom of the tank and at least two-tenths of the

distance to the tank center.
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further found that the effect of the Reynolds number (Re) is negligible under most com-
monly encountered conditions. This is because most of the mixing takes place in the inte-
rior of the tankwhere viscous effects are small, rather than in the boundary layers adjacent
to the tank and impeller surfaces, where they are large.2

For most impeller-tank combinations in common use, the Reynolds number (Re) is
unimportant when its value is above about 104. This behavior has been substantiated by
a number of investigators.3

We thus arrive, after extensive experimentation, at a surprisingly simple result. When all
of the assumptions above are valid, the dimensionless concentration profile depends only
on t̆. Hence, the dimensionless time required to produce any desired degree of mixing is a constant
for a given system geometry. In other words, the total number of turns of the impeller
during the mixing process determines the degree of blending, independently of Re, Fr, Sc,
and tank size—provided, of course, that the tanks and impellers are geometrically similar.

For the same reasons, in a properly baffled tank, the dimensionless velocity distribu-
tion and the volumetric pumping efficiency of the impeller are nearly independent of the
Froude number (Fr) and of the Reynolds number (Re), when Re>104.

§21.5 THE BUCKINGHAM PI THEOREM

It was pointed out in §5.5 and §13.5 that the Buckingham pi theorem can often be useful in
suggesting relations among dimensionless groups of the quantities occurring in compli-
cated problems. According to this theorem, if we are dealing with q quantities, x1, x2,…xq,
involving d dimensions, then one can obtain a relation among q − d different dimension-
less groups.

Herewe illustrate the use of this theorem for a transport problem involving amixture.

EXAMPLE 21.5-1

Diffusion into a Falling
Liquid Film

The problem of a gas absorbing into and diffusing within a falling liquid film was considered
in §18.8. Gas A is absorbed into a laminar falling film of liquid B of constant thickness t, width
W and length L (see Fig. 18.8-1). The materialA is only slightly soluble in B (with solubility cA0)
so that the viscosity of the liquid is unaffected and 𝒟AB is constant. Since the flow is laminar,
the velocity profile is vz(x) = vmax[1 − (x∕t)2].

In §18.8, a solution to this problemwas obtained in the limit of short contact times, or small
penetration distances. The objective here is to use dimensional analysis and the Buckingham
pi theorem to obtain relevant dimensionless groups that can be used to correlate data for the
rate of absorptionWA, even when the assumption of small penetration distances is not valid.

SOLUTION

This problem contains seven quantities that contain three dimensions: t [=] L, W [=] L,
L [=] L, cA0 [=] moles∕L3, 𝒟AB [=] L2∕t, vmax [=] L∕t, and WA [=] moles∕t. We can therefore
obtain four dimensionless groups, each of the form

H = taWbLccdA0𝒟
e
ABv

f
maxW

g
A (21.5-1)

2The insensitivity of the required mixing time to the Reynolds number can be seen intuitively from

the fact that the term (1∕Re)∇2v̆ in Eq. 21.1-9 becomes small compared to the acceleration term Dv̆∕Dt̆ at
large Re. Such intuitive arguments are dangerous, however, and the effect of Re is always important in

the immediate neighborhood of solid surfaces. Here the amount of mixing taking place in the

neighborhood of solid surfaces is small and can be neglected.

The insensitivity of the required mixing time to the Schmidt number can be seen from the

time-averaged equation of continuity in Chapter 20. At large Re, the turbulent mass flux is much greater

than that due to molecular diffusion, except in the immediate neighborhood of the solid surfaces.
3E. A. Fox and V. E. Gex, AIChE Journal, 2, 539–544 (1956); H. Kramers, G. M. Baars, and W. H. Knoll,

Chem. Eng. Sci., 2, 35–42 (1953); J. G. van de Vusse, Chem. Eng. Sci., 4, 178–200, 209–220 (1955).
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By substituting the dimensions of the seven quantities into Eq. 21.5-1, we find that the dimen-

sions of H are

H [=] La+b+c−3d+2e+fmoles
d+gt−e−f−g (21.5-2)

The exponents are obtained by requiring that H be dimensionless. This gives the system of

equations

a + b + c − 3d + 2e + f = 0 (21.5-3)

d + g = 0 (21.5-4)

e + f + g = 0 (21.5-5)

This is an underspecified system of three equations and seven unknowns, and thus we can

select values for four of the unknowns a-g to obtain dimensionless groups (as long as the

four selected values do not violate Eqs. 21.5-3 through 21.5-5). Because we seek a relationship

between WA and the other quantities, we will select g = 1 for one of the dimensionless groups

and g = 0 for the other three dimensionless groups.

For the dimensionless group with g = 1, Eq. 21.5-4 gives d = −1. Equation 21.5-5 reduces

to e + f = −1; we select e = −1, because we expectWA to increase with𝒟AB from our knowledge

of mass transfer. Equation 21.5-5 then gives f = 0. Substituting all of this information into Eq.

21.5-3 gives a + b + c = −1. We may select a = b = 0 to obtain c = −1. Thus, the first dimension-

less group is

H1 =
WA

cA0𝒟ABL
= a dimensionless absorption rate (21.5-6)

For a second dimensionless group, we enforce g = 0, and thus Eq. 21.5-4 gives d = 0. We

further let f = 1, and thus Eq. 21.5-5 gives e = −1. Therefore, Eq. 21.5-3 reduces to a + b + c = 1.

We may select a = 0 and b = 0 to obtain c = 1. The second dimensionless group is thus

H2 =
vmaxL
𝒟AB

= a dimensionless velocity (21.5-7)

This dimensionless group is related to other known dimensionless groups byH2 =
3

8
ReSc(L∕t),

where Re = 4⟨vz⟩ti∕4 = 8

3
vmaxti∕4, as defined in §2.2, and Sc = 4∕i𝒟AB.

The remaining two dimensionless groups also use g = 0 and therefore d = 0. For both

we also let e = f = 0, which reduces Eq. 21.5-3 to a + b + c = 0. Two independent solutions of

this equation are (a,b,c) = (1,0, − 1) and (0,1, − 1), yielding the final two dimensionless groups

H3 =
t
L
, and H4 =

W
L

(21.5-8,9)

These two groups could have been obtained by inspection since t, W, and L have the same

dimensions. We also note that some of the choices above are arbitrary; one could have obtained

other dimensionless groups, such asWA∕cA0𝒟ABt, vmaxW∕𝒟AB, L∕t, andW∕t.
In §18.8, the absorption rate was obtained assuming short penetration lengths. The result,

WA = WLcA0

√
4𝒟ABvmax

0L
(21.5-10)

can be rewritten in dimensionless form as

H1 = H4

√
4

0
H2 (21.5-11)

The dimensionless group H3 does not appear because the parameter t does not enter into the

analysis when the penetration length is small. When the penetration length is not small, Eq.

21.5-11 is no longer correct, but dimensional analysis still provides the relationship

H1 = f (H2,H3,H4) (21.5-12)

The precise form of the function f is not obtained using dimensional analysis alone, but can be

obtained empirically from experimental data.
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§21.6 CONCLUDING COMMENTS

In this last chapter dealing with dimensional analysis, four illustrations have been given
for systems with two chemical species. The reader should have been struck by several
features of these examples.

a. The presence of more than one chemical species makes the dimensional analysis
considerably more complex.

b. It was necessary to make more use of intuition than in the analyses done in
Chapters 5 and 13 for pure fluids.

c. It was necessary to make more use of physical property data in some of the argu-
ments regarding the relative magnitudes of Sc and Pr.

d. Experimental verification of some of the results had to be relied upon.

Nonetheless, the use of dimensional analysis can prove very useful for the description of
the performance of some systems, and, at least in some cases, for obtaining useful, simple
working equations.

We have also illustrated the use of the Buckingham pi theorem to obtain dimension-
less groups that can be used to represent data. This approach requires even more insight
to obtain convenient dimensionless groups, and is thus less desirable than dimensional
analysis of the equations of change.

QUESTIONS FOR DISCUSSION

1. What are some of the advantages of writing the equations of change in dimensionless form?

2. Why is nondimensionalizing the equations of change preferred over the method illustrated in

§21.5 for obtaining dimensionless groups? Under what conditions would the method in §21.5

be preferred?

3. Which dimensionless groups contain only physical properties?Which contain physical proper-

ties as well as information about the geometry, the strength of flow, or imposed temperatures?

4. How does one decide if a problem is one of forced convection, free convection, or of an inter-

mediate case?

5. Can the Schmidt number be interpreted as a ratio of phenomena? Explain.

6. When listing the dimensions of the quantities that are important in a problem, what could be

possible implications of a fundamental dimension appearing in only one of the quantities?

7. Given a set of q quantities with d dimensions, describe how the q − d dimensionless groupmay

be obtained from a system of d linear equations.

PROBLEMS 21A.1 Calculating Schmidt numbers. Calculate values for the Schmidt number, Sc = 4∕i𝒟AB, for the

following cases:

(a) 4 = 10−3 Pa ⋅ s, i = 103 kg∕m3,𝒟AB = 10−9 m2∕s
(b) 4 = 6.7 × 10−4 lbm∕ft ⋅ s, i = 62 lbm ∕ft3,𝒟AB = 1.08 × 10−8 ft

2∕s
(c) 4 = 2.07 × 10−5 Pa ⋅ s, i = 0.0817 lbm∕ft

3,𝒟AB = 0.181 cm2∕s

21B.1 Verifying dimensionless groups. Verify that the dimensionless groupsH1 andH2 in Example

21.5-1 are dimensionless.

21B.2 Alternate dimensional analysis. Rework the dimensional analysis of §21.1 using a dimension-

less pressure defined �̆� = (𝒫 −𝒫0)∕(4v0∕l0) instead of �̆� = (𝒫 −𝒫0)∕iv20. Do new dimen-

sionless groups appear?
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21B.3 Dimensional analysis with a homogeneous reaction. Rework the dimensional analysis of

§21.1 when a first order homogeneous reaction is also occurring. Specifically, nondimensional-

ize the equations of change when Eq. 21.1-4 is rewritten

DaA

Dt
= 𝒟AB∇2aA − k′′′

1
aA (21B.3-1)

where k′′′
1
is a constant. What new dimensionless groups appear?

21C.1 Dissolution into a falling film. Use the Buckingham pi theorem to obtain the dimensionless

groups for the problem of a falling liquid film into which a solid is dissolving, as described in

§18.9.

(a) Obtain a relationship between a dimensionless rate of dissolution and other relevant

dimensionless groups when the penetration length is not necessarily small.

(b) Show that the result forWA for short penetration lengths given in Eq. 18.9-12 can be rewrit-

ten in terms of the dimensionless groups you obtained.
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Chapter 22

Interphase Transport in
Nonisothermal Mixtures

§22.1 Definition of mass- and heat-transfer coefficients in one phase

§22.2 Analytical expressions for mass-transfer coefficients

§22.3 Empirical correlations for binary mass- and heat-transfer coefficients in
one phase

§22.4 Definition of mass-transfer coefficients in two phases

§22.5 Concluding comments

Here we build on earlier discussions of binary diffusion to provide means for predicting

the behavior of mass-transfer operations such as distillation, absorption, adsorption,

extraction, drying, membrane filtrations, and heterogeneous chemical reactions. This

chapter has many features in common with Chapters 6 and 14. It is particularly closely

related to Chapter 14, because there are many situations where the analogies between

heat and mass transfer can be regarded as exact.

There are, however, important differences between heat and mass transfer, and we

will devote much of this chapter to exploring these differences. Since many mass-transfer

operations involve fluid-fluid interfaces, we have to deal with distortions of the interfacial

shape by viscous drag resulting from inhomogeneities in temperature and composition.

In addition, there may be interactions between heat and mass transfer. Furthermore, at

high mass-transfer rates, the temperature and concentration profiles may be distorted.

These effects complicate and sometimes invalidate the neat analogy between heat and

mass transfer that one might otherwise expect.

In Chapter 14 the interphase heat transfer involved the movement of heat to or from

a solid surface, or the heat transfer between two fluids separated by a solid surface. Here

we will encounter heat and mass transfer between two contiguous phases: fluid-fluid or

fluid-solid. This raises the question as to how to account for the resistance to diffusion

provided by the fluids on both sides of the interface.

We begin the chapter by defining, in §22.1, the mass- and heat-transfer coefficients for

binary mixtures in one phase (liquid or gas). Then in §22.2 we show how analytical solu-

tions to diffusion problems lead to explicit expressions for the mass-transfer coefficients.

In that section we give some analytic expressions for mass-transfer coefficients at high

Schmidt numbers for a number of relatively simple systems. We emphasize the different

behavior of systems with fluid-fluid and solid-fluid interfaces.

In §22.3 we show how dimensional analysis leads to predictions involving the Sher-

wood number (Sh) and the Schmidt number (Sc), which are the analogs of the Nusselt

number (Nu) and the Prandtl number (Pr) defined in Chapter 14. Here the emphasis is on

616
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the analogies between heat transfer in pure fluids and mass transfer in binary mixtures.
Then in §22.4 we proceed to the definition of mass-transfer coefficients for systems with
diffusion in two adjoining phases. We show there how to apply the information about
mass transfer in single phases to the understanding of mass transfer between two phases.

In this chapterwe have limited the discussion to a few key topics onmass transfer and
transfer-coefficient correlations. Further information is available in specialized textbooks
on these and related topics not covered here, such asmass transferwith chemical reactions,
combined heat and mass transfer by free convection, effects of interfacial forces on heat
and mass transfer, and transfer coefficients at high net mass-transfer rates.1–5

§22.1 DEFINITION OFMASS- AND HEAT-TRANSFER
COEFFICIENTS IN ONE PHASE

In this chapter we relate the rates of mass transfer across phase boundaries to the relevant
concentration differences. We consider binary systems only. These relations are analogous
to the heat-transfer correlations of Chapter 14 and containmass-transfer coefficients in place
of the heat-transfer coefficients of that chapter. The systemmay have a true phase bound-
ary, as in Fig. 22.1-1, Fig. 22.1-2, or Fig. 22.1-4, or an abrupt change in hydrodynamic prop-
erties, as in the system of Fig. 22.1-3, containing a porous solid. Figure 22.1-1 shows the

Vapor A moving
into gas stream

Slab wet with liquid A 

Stream of gas B

Interface

Fig. 22.1-1. Example of

mass transfer across a plane

boundary: drying of a

saturated slab.

Dialysis
Blood oxygenation

Pe << 1:
Microfiltration
Ultrafiltration
Nanofiltration
Reverse osmosis

' Pe >> 1:'

Representative Membrane Processes

Membrane

Fig. 22.1-2. Two rather typical kinds of membrane separators, classified here according to a

Péclet number, Pé = tv∕𝒟eff, for the flow through the membrane. Here t is the membrane

thickness, v is the velocity at which solvent passes through the membrane, and𝒟eff is the

effective solute diffusivity through the membrane. The heavy line represents the membrane,

and the arrows represent the flow along or through the membrane.

1T. K. Sherwood, R. L. Pigford, and C. R. Wilke,Mass Transfer, McGraw-Hill, New York (1975).
2R. E. Treybal, Mass Transfer Operations, 3rd edition, McGraw-Hill, New York (1980).
3E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, 2nd edition, Cambridge University Press

(1997).
4D. E. Rosner, Transport Processes in Chemically Reacting Flow Systems (Unabridged), Dover, New York

(2000).
5R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Revised 2nd Edition, Wiley,

New York (2007).
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Injected gas A moving
away from wall

Porous wall

Interface

Cold gas A pumped
through wall

Stream of hot gas A Fig. 22.1-3. Example of

mass transfer through a

porous wall:

transpiration cooling.

y

r

R

D

Liquid film
of A and B

At interface
   r = R
   y = 0
and
  NAy = NA0
  NBy = NB0

Upward-
moving gas

ΔxAxAb

xA0
xA(r)

Tube wall Fig. 22.1-4. Example of a gas-liquid

contacting device: the wetted-wall

column. Two chemical species A and B
are moving from the downward-flowing

liquid stream into the upward-flowing

gas stream in a cylindrical tube.

evaporation of a volatile liquid, often used in experiments to developmass-transfer corre-
lations. Figure 22.1-2 shows a permselective membrane, in which a selectively permeable
surface permits more effective transport of solvent than of a solute that is to be retained,
as in ultrafiltration of protein solutions and the desalting of sea water. Figure 22.1-3 shows
a macroscopically porous solid, which can serve as a mass-transfer surface or can provide
sites for adsorption or reaction. Figure 22.1-4 shows an idealized liquid-vapor contactor
where the mass-transfer interface may be distorted by viscous or surface-tension forces.

In each of these systems, there will be both heat and mass transfer at the interface,
and each of these fluxes will have a molecular (diffusive) and a convective term (here we
have moved the convective term to the left side of the equation):

NA0 − xA0(NA0 +NB0) = −
(
c𝒟AB

𝜕xA
𝜕y

)|||||y=0 (22.1-1)

e0 − (NA0HA0 +NB0HB0) = −
(
k𝜕T
𝜕y

)|||||y=0 (22.1-2)

These equations are just Eq. 18.0-1 and Eq. 19.3-6 written at the mass-transfer interface
(y = 0). They describe the interphase molar flux of species A and the interphase flux of
energy (excluding the kinetic energy and the contribution from [f ⋅ v]). Both NA0 and e0
are defined as positive in a specific direction, as indicated in Figs. 22.1.1 through 22.1.4.
Caremust be taken to define the direction of positive fluxwhen using interphase transport
coefficients in problems.
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In Chapter 14 we defined the heat-transfer coefficient in the absence of mass transfer
by Eq. 14.1-1 (Q = hA2T). For surfaces with mass and heat transfer, Eqs. 22.1-1 and 22.1-2
suggest that the following definitions are appropriate:

WA0 − xA0(WA0 +WB0) = kxAA2xA (22.1-3)

E0 − (WA0HA0 +WB0HB0) = hA2T (22.1-4)

Here WA0 is the number of moles of species A per unit time going through the trans-
fer surface at y = 0, and E0 is the total amount of energy going through the surface. The
transfer coefficients kxA and h are not defined until the area A and the driving forces 2xA
and 2T have been specified. All the comments in Chapter 14 regarding these definitions
may be taken over in this chapter, with the result that a subscript 1, ln, a, m, or loc can be
added to make clear the type of driving force that is used. Throughout this chapter, how-
ever, we shall mainly use the local transfer coefficients, and occasionally themean transfer
coefficients. Also, in this chapter, molar fluxes of the species will be used, since in chemi-
cal engineering this is traditional. The relations between the mass-transfer expressions in
molar and mass units are summarized in Table 22.2-1.

Local transfer coefficients are defined by writing Eqs. 22.1-3 and 22.1-4 for a differen-
tial area. Since dWA0∕dA = NA0 and dE0∕dA = e0, we get the definitions

NA0 − xA0(NA0 +NB0) = kxA,loc2xA (22.1-5)

e0 − (NA0HA0 +NB0HB0) = hloc2T (22.1-6)

Next, we note that the left side of Eq. 22.1-5 is just J*A0, and that the left side of a similar
equation written for species B is J*B0. But since J*A0 = −J*B0 and 2xA = −2xB, we find that
kxA,loc = kxB,loc, and therefore, we can write both mass-transfer coefficients as kx,loc, which
has units of (moles)∕(area)(time). Furthermore, if the heat of mixing is zero (as in ideal-gas
mixtures), we can replaceHA0 by C̃pA,0(T0 − To), where To is an arbitrarily chosen reference

temperature, as explained in Example 19.3-1. A similar replacement may bemade forHB0.
With these changes we get

NA0 − xA0(NA0 +NB0) = kx,loc2xA (22.1-7)

e0 − (NA0C̃pA,0 +NB0C̃pB,0)(T0 − To) = hloc2T (22.1-8)

We remind the reader that rapid mass transfer across phase boundaries can distort the
velocity, temperature, and concentration profiles, as we have already seen in §18.6 and in
Example 19.4-1. The correlations provided in §22.3, as well as their analogs in Chapters 6
and 14, are all for small mass-transfer rates, that is, for situations in which the convective
terms in Eqs. 22.1-7 and 22.1-8 are negligible compared to the first term. Such situations
are common, and most correlations in the literature suffer from the same limitation. Inter-
phase transport with high mass-transfer rates is discussed extensively elsewhere.1

In much of the chemical engineering literature, the mass transfer coefficients are
defined by

NA0 = k0x,loc2xA (22.1-9)

The relation of this “apparent” mass-transfer coefficient to that defined by Eq. 22.1-7 is

k0x,loc =
kx,loc

[1 − xA0(1 + r)]
(22.1-10)

in which r = NB0∕NA0. Other widely used mass-transfer coefficients are defined by

NA0 = k0c,loc2cA and NA0 = k0
i,loc2iA (22.1-11)

1R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Revised 2nd Edition, Wiley,

New York (2007), §22.8.
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for liquids, and
NA0 = k0p,loc2pA (22.1-12)

for gases. In the limit of low solute concentrations and low net mass-transfer rates, for
which most correlations have been obtained

lim
xA0(1+r)→0

⎧⎪⎪⎨⎪⎪⎩

k0
x,loc

ck0
c,loc

pk0
p,loc

ik0
i,loc

⎫⎪⎪⎬⎪⎪⎭
= kx,loc (22.1-13)

The superscript “0” indicates that these quantities are applicable only for small
mass-transfer rates and small mole fractions of species A.

In many industrial contactors, the true interfacial area is not known. An example of
such a systemwould be a column containing a randompacking of irregular solid particles.
In such a situation, one can define a volumetric mass-transfer coefficient, kxa, incorporat-
ing the interfacial area for a differential region of the column. The rate at which moles
of solute A are transferred to the interstitial fluid in a volume Sdz of the column is then
given by

dWA0 = (kxa)(xA0 − xAb)Sdz + xA0(dWA0 + dWB0)
≈ (k0xa)(xA0 − xAb)Sdz (22.1-14)

Here the interfacial area, a, per unit volume is combined with the mass-transfer coeffi-
cient, S is the total column cross section, and z is measured in the primary flow direction.
Correlations for predicting values of these coefficients are available, but they should be
used with caution. Rarely do they include all the important parameters, and as a result
they cannot be safely extrapolated to new systems. Furthermore, although they are usu-
ally described as “local,” they actually represent a poorly defined average over a wide
range of interfacial conditions.2–6

We conclude this section by defining a dimensionless group widely used in the
mass-transfer literature and in the remainder of this book:

Sh =
kxl0
c𝒟AB

(22.1-15)

which is called the Sherwood number, and which is based on the characteristic length l0.
This quantity can be “decorated” with subscripts 1, a, m, ln, and loc, in the same manner
as kx.

§22.2 ANALYTICAL EXPRESSIONS FORMASS-TRANSFER
COEFFICIENTS

Themain value ofmass-transfer coefficients is that they can be used to relatemass-transfer
rates to concentration differences without requiring knowledge of the concentration pro-
files. Thus, the challenges of solving for concentration profiles can be avoided. However,

2J. Stichlmair and J. F. Fair, Distillation Principles and Practice, Wiley, New York (1998).
3H. Z. Kister, Distillation Design, McGraw-Hill, New York (1992).
4J. C. Godfrey and M. M. Slater, Liquid-Liquid Extraction Equipment, Wiley, New York (1994).
5R. H. Perry, D. W. Green, and J. O. Maloney, Perry’s Chemical Engineer’s Handbook, McGraw-Hill,

New York, 7th edition (1997).
6J. E. Vivian and C. J. King, inModern Chemical Engineering (A. Acrivos, ed.), Reinhold, New York

(1963).
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it is instructive to use concentration profiles obtained for idealized problems to predict

mass-transfer coefficients, and to begin to understand the dependence of mass-transfer

coefficients on other variables.

In the preceding chapters we have obtained a number of analytical solutions for con-

centration profiles and for the associated molar fluxes in idealized situations. From these

solutions we can now derive the corresponding mass-transfer coefficients. These are usu-

ally presented in dimensionless form in terms of the Sherwood numbers. We summarize

these analytical expressions here for use in later sections of this chapter. All of the results

given in this section are for systems with a slightly soluble component A and small diffu-

sivities𝒟AB. It may be helpful to refer to Table 22.2-1 where the dimensionless groups for

heat and mass transfer have been summarized.

a. Mass transfer in falling films on plane surfaces
The absorption of a slightly soluble gas A into a falling film of pure liquid B was

analyzed in §18.8 in the limit of short contact times such that the dissolved species A does

not “penetrate” very far into the film. The rate of absorption WA0 was determined in Eq.

Table 22.2-1. Analogies among Heat and Mass Transfer at Low Mass-Transfer Rates

Heat-transfer

quantities

(pure fluids)

Binary mass-transfer

quantities (isothermal

fluids, molar units)

Binary mass-transfer

quantities (isothermal

fluids, mass units)

Profiles T xA aA

Diffusivity w = k∕iĈp 𝒟AB 𝒟AB

Effect of profiles on density v = −1

i

(
𝜕i

𝜕T

)
p

k = −1

i

(
𝜕i

𝜕xA

)
p,T

r = −1

i

(
𝜕i

𝜕aA

)
p,T

Flux q J*
A
= NA − xA(NA +NB) jA = nA − aA(nA + nB)

Transfer rate Q WA0 − xA0(WA0 +WB0) wA0 − aA0(wA0 + wB0)

Transfer coefficient h =
Q

A2T
kx =

WA0 − xA0(WA0 +WB0)
A 2xA

ka =
wA0 − aA0(wA0 + wB0)

A 2aA

Dimensionless groups common

to all three correlations

Re = l0v0i∕4
Fr = v2

0
∕gl0

Re = l0v0i∕4
Fr = v2

0
∕gl0

Re = l0v0i∕4
Fr = v2

0
∕gl0

Dimensionless groups that are

different

Nu = hl0∕k
Pr = Ĉp4∕k
Gr = l3

0
i2gv2T∕42

Pé = RePr = il0v0Ĉp∕k

Sh = kxl0∕c𝒟AB

Sc = 4∕i𝒟AB

Grx = l3
0
i2gk2xA∕42

Pé = ReSc = l0v0∕𝒟AB

Sh = kal0∕i𝒟AB

Sc = 4∕i𝒟AB

Gra = l3
0
i2gr2aA∕42

Pé = ReSc = l0v0∕𝒟AB

Chilton-Colburn j-factors

jH = NuRe−1Pr−1∕3

= h

iĈpv0

(
Ĉp4

k

)2∕3
jD = ShRe−1Sc−1∕3

=
kx
cv0

(
4

i𝒟AB

)2∕3
jD = ShRe−1Sc−1∕3

=
ka
iv0

(
4

i𝒟AB

)2∕3

Note: (a) the subscript 0 on l0 and v0 indicates the characteristic length and velocity respectively, whereas the subscript 0 on the mole (or

mass) fraction and molar (or mass) flux means “evaluated at the interface.” (b) All three of these Grashof numbers can be written as

Gr = l3
0
ig 2i∕42 , provided that the density change is caused only by a difference of temperature or composition.
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18.8-18, which can be put into the form

WA0 =

(√
4𝒟ABvmax

0L

)
(WL)(cA0 − 0) (22.2-1)

Equation 22.1-3 can be rewritten in terms of a mean mass-transfer coefficient k0c,m (e.g.,
using the ameanmass-transfer coefficient version of Eq. 22.1-11)withmolar concentration
units and for small concentrations (xA ≪ 1) as

WA0 = k0c,mA2cA (22.2-2)

where A = WL is the contact area between the liquid and gas phases. Comparison of Eqs.
22.2-1 and 22.2-2 gives

k0c,m =
√

4𝒟ABvmax

0L
(22.2-3)

or

Shm =
k0c,mL

𝒟AB
=

√
4Lvmax

0𝒟AB
=

√
4

0

(
Lvmaxi

4

)(
4

i𝒟AB

)
= 1.128(ReSc)1∕2 (22.2-4)

This shows that the Sherwood number (the dimensionless mass-transfer coefficient)
depends on the Reynolds number and the Schmidt number, and that Re is defined in
terms of the maximum velocity vmax in the film and the film length L. The Reynolds
number could also be defined in terms of the average film velocity with a different
numerical coefficient.

This “penetration model” for the mean Sherwood number can also be written

Shm =
√

4L2

0𝒟ABtexp
(22.2-5)

where texp = L∕vmax is the time of exposure of a fluid element on the surface of the mov-
ing liquid stream to the gas containing the absorbing species (see §18.8). It is possible to
employ this model to estimate the mean Sherwood number in other geometries in which
a liquid stream is exposed to a gas for a short period.

Similarly, for the dissolution of a slightly solublematerialA from thewall into a falling
liquid film of pure B, we can put Eq. 18.9-12 into the form of Eq. 22.2-2 as follows:

WA0 =
⎛⎜⎜⎜⎝
2𝒟AB

T
(

7

3

) 3

√
a

9𝒟ABL

⎞⎟⎟⎟⎠ (WL)(cA0 − 0) ≡ k0c,mA2cA (22.2-6)

Then, using the definition of a given just after Eq. 18.9-1 and the expression for the maxi-
mum velocity in the film in Eq. 2.2-23, we find the Sherwood number as follows:

Shm =
k0c,mL

𝒟AB
= 2

T
(

7

3

) 3

√
(2vmax∕t)L2

9𝒟AB

= 1

T
(

7

3

) 3

√
16

9

(
L
t

)(
Lvmaxi

4

)(
4

iDAB

)

= 1.017 3

√(
L
t

)
(ReSc)1∕3 (22.2-7)
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In this instance we have not only the Reynolds number and Schmidt number appearing,
but also the ratio of the film length to the film thickness.

These two problems first introduced in Chapter 18—gas absorption by a falling film
and the dissolution of a solid wall into a falling film—illustrate two important situations.
In the first problem, there is no velocity gradient at the gas-liquid interface, and the quan-

tity ReSc appears to the 1

2
-power in the expression for the Sherwood number. In the second

problem, there is a velocity gradient at the solid-liquid interface, and the quantity ReSc

appears to the 1

3
-power in the Sherwood number expression.

b. Mass transfer for flow around spheres
Next we consider the diffusion that occurs in the creeping flow around a spherical gas

bubble and around a solid sphere. This pair of systems corresponds to the two systems
discussed in the previous subsection.

For the gas absorption from a gas bubble surrounded by a liquid in creeping flow, we
can put Eq. 18.8-20 in the form of Eq. 22.2-2 thus:

WA0,avg =
√

4

30

𝒟ABv∞
D

A(cA0 − 0) ≡ k0c,mA2cA (22.2-8)

where A is the surface area of the bubble. The Sherwood number is then

Shm =
k0c,mD

𝒟AB
=

√
4

30

Dv∞
𝒟AB

=

√
4

30

(
Dv∞i

4

)(
4

i𝒟AB

)
= 0.6515(ReSc)1∕2 (22.2-9)

Here the Reynolds number is defined using the approach velocity v∞ of the fluid (or, alter-
natively, the terminal velocity of the rising bubble).

For the creeping flow around a solid sphere with a slightly soluble coating that dis-
solves into the approaching fluid, the analogous heat-transfer problem has been solved
and the heat-transfer rate has been determined;1 by analogy, the flux of dissolvingmaterial
can be written

NA0,avg = (30)2∕3

27∕3T
(

4

3

) 3

√
𝒟 2

ABv∞
D2

(cA0 − 0) ≡ k0c,m2cA (22.2-10)

This result may be rewritten in terms of the Sherwood number as

Shm =
k0c,mD

𝒟AB
= (30)2∕3

27∕3T
(

4

3

) 3

√
Dv∞
𝒟AB

= (30)2∕3

27∕3T
(

4

3

) 3

√(
Dv∞i

4

)(
4

i𝒟AB

)
= 0.991(ReSc)1∕3 (22.2-11)

As in subsection (a) we have ReSc to the 1

2
-power for the gas-liquid system and ReSc to

the 1

3
-power for the liquid-solid system.

Both Eq. 22.2-9 and Eq. 22.2-11 are valid only for creeping flow. However, they are not
valid in the limit that Re goes to zero. As we know from Problem 10B.1 and Eq. 14.4-5, if
there is no flow past the solid sphere or the spherical bubble, Shm = 2. It has been found
that a satisfactory description of the mass transfer all the way down to Re = 0 can be
obtained by using the simple superpositions Shm = 2 + 0.6515(ReSc)1∕2 for flow around
gas bubbles and Shm = 2 + 0.991(ReSc)1∕3 for flow around solid spheres, in lieu of Eqs.
22.2-9 and 22.2-11, respectively.

1R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Revised 2nd Edition, Wiley,

New York (2007), Chapter 12, Eq. 12.4-34.
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c. Mass transfer in the neighborhood of a rotating disk
For a disk of diameterD coated with a slightly soluble material A rotating with angu-

lar velocity 1 in a large region of liquid B, the mass flux at the surface of the disk is
independent of position. According to Eq. 19C.2-17 we have

NA0 = 0.620

(
𝒟 2∕3

AB 11∕2

l1∕6

)
(cA0 − 0) ≡ k0c,m2cA (22.2-12)

This may be expressed in terms of the Sherwood number as

Shm =
k0c,mD

𝒟AB
= 0.620

(
D11∕2i1∕6

𝒟 1∕3
AB 41∕6

)
= 0.620

√
D(D1)i

4
3

√
4

i𝒟AB

= 0.620Re1∕2Sc1∕3 (22.2-13)

Here the characteristic velocity in the Reynolds number is chosen to be D1.

§22.3 EMPIRICAL CORRELATIONS FOR BINARYMASS- AND
HEAT-TRANSFER COEFFICIENTS IN ONE PHASE

In this section we show that correlations for binary mass-transfer coefficients at low
mass-transfer rates can be obtained directly from their heat-transfer analogs simply by
a change of notation. These correspondences are quite useful, and many heat-transfer
correlations have, in fact, been obtained from their mass-transfer analogs.

To illustrate the background of these useful analogies and the conditions under which
they apply, we begin by presenting the diffusional analog of the dimensional analysis
given in §14.3. Consider the steady, isothermal flow of a liquid solution of A in B, in the
tube shown in Fig. 22.3-1. The fluid enters the tube at z = 0 with velocity uniform out to
very near the wall and with a uniform inlet composition xA1. From z = 0 to z = L, the tube
wall is coated with a solid solution of A and B, which dissolves slowly and maintains the
interfacial liquid composition constant at xA0. For themomentwe assume that the physical
properties i, 4, c, and𝒟AB are constant.

The mass-transfer situation just described is mathematically analogous to the
heat-transfer situation described at the beginning of §14.3. To emphasize the analogy, the
equations for the two systems are presented together. Thus, the rate of heat addition by
conduction between 1 and 2 in Fig. 14.3-1 and the molar rate of addition of species A by

r

z

Fluid enters
with uniform

composition xA1

Fluid leaves
with bulk

composition xAb2

Velocity of dissolved A
and B away from wall is
assumed to be small

D

Soluble coating on wall maintains
constant liquid composition xA0

next to wall surface

L

Nozzle

Fig. 22.3-1. Mass transfer in a pipe with a soluble wall.
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diffusion between 1 and 2 in Fig. 22.3-1 are given by the following expressions, valid for
either laminar or turbulent flow:

Heat transfer: Q(t) = ∫
L

0 ∫
20

0

(
+k 𝜕T

𝜕r

||||r=R
)
R dp dz (22.3-1)

Mass transfer: WA0(t) − xA0(WA0(t) +WB0(t))

= ∫
L

0 ∫
20

0

(
+c𝒟AB

𝜕xA
𝜕r

||||r=R
)
R dp dz (22.3-2)

Equating the left sides of these equations to h1(0DL)(T0 − T1) and kx1(0DL)(xA0 − xA1),
respectively, we get for the transfer coefficients

Heat transfer: h1(t) =
1

0DL(T0 − T1)∫
L

0 ∫
20

0

(
+k 𝜕T

𝜕r

||||r=R
)
R dp dz (22.3-3)

Mass transfer: kx1(t) =
1

0DL(xA0 − xA1)∫
L

0 ∫
20

0

(
+c𝒟AB

𝜕xA
𝜕r

||||r=R
)
R dp dz (22.3-4)

We now introduce the dimensionless variables r̆ = r∕D, z̆ = z∕D, T̆ = (T − T0)∕(T1 − T0),
and x̆A = (xA − xA0)∕(xA1 − xA0) and rearrange to obtain

Heat transfer: Nu1(t) =
h1D
k

= 1

20L∕D∫
L∕D

0 ∫
20

0

⎛⎜⎜⎝− 𝜕T̆
𝜕r̆

|||||r̆= 1

2

⎞⎟⎟⎠ dp dz̆ (22.3-5)

Mass transfer: Sh1(t) =
kx1D
c𝒟AB

= 1

20L∕D∫
L∕D

0 ∫
20

0

(
−
𝜕x̆A
𝜕r̆

||||r̆= 1

2

)
dp dz̆ (22.3-6)

Here Nu is the Nusselt number for heat transfer without mass transfer, and Sh is the
Sherwood number for isothermal mass transfer at small mass-transfer rates. The Nus-
selt number is a dimensionless temperature gradient integrated over the surface, and the
Sherwood number is a dimensionless concentration gradient integrated over the surface.

These gradients can, in principle, be evaluated from Eqs. 13.1-7, 13.1-8, and 13.1-9
(for heat transfer) and Eqs. 21.1-8, 21.1-9, and 21.1-11 written in terms of mole fraction of

species A (for mass transfer), under the following boundary conditions (with v̆ and �̆�
defined as in §14.3 and with time averaging of the solutions if the flow field is turbulent):

Velocity and pressure:

at z̆ = 0, v̆ = tz for 0 ≤ r̆ < 1

2
(22.3-7)

at r̆ = 1

2
, v̆ = 𝟎 for z̆ > 0 (22.3-8)

at r̆ = 0 and z̆ = 0, �̆� = 0 (22.3-9)

Temperature:

at z̆ = 0, T̆ = 1 for 0 ≤ r̆ < 1

2
(22.3-10)

at r̆ = 1

2
, T̆ = 0 for 0 ≤ z̆ ≤ L∕D (22.3-11)

Concentration:

at z̆ = 0, x̆A = 1 for 0 ≤ r̆ < 1

2
(22.3-12)

at r̆ = 1

2
, x̆A = 0 for 0 ≤ z̆ ≤ L∕D (22.3-13)

The boundary condition in Eq. 22.3-8, on the velocity at the wall, is accurate for the
heat-transfer system and also for the mass-transfer system, provided that xA0[WA0 +WB0]
is small; the latter criterion is discussed in §22.1. No boundary conditions are needed at
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the outlet plane, z̆ = L∕D, when we neglect the 𝜕2∕𝜕z2 terms of the conservation equations
as discussed in §6.2 and §14.3.

If we can neglect the heat production by viscous dissipation in Eq. 13.1-9, and if there
is no production ofA by chemical reaction as in Eq. 21.1-11, then the differential equations
for heat andmass transport are analogous, along with the boundary conditions. It follows
then that the dimensionless profiles of temperature and concentration (time-smoothed,
when necessary) are similar,

T̆ = F(r̆,p,z̆;Re,Pr); x̆A = F(r̆,p,z̆;Re,Sc) (22.3-14,15)

with the same form of F in both systems. Thus, to get the concentration profiles from the
temperature profiles, one replaces T̆ by x̆A and Pr by Sc.

Finally, inserting the profiles into Eqs. 22.3-5 and 22.3-6 and performing the integra-
tions and then time-averaging gives for forced convection

Nu1 = G(Re,Pr ,L∕D); Sh1 = G(Re,Sc,L∕D) (22.3-16,17)

Here G is the same function in both equations. The same formal expression is obtained
for Nua, Nuln, Nuloc as well as for the corresponding Sherwood numbers. This important
analogy permits one to write down a mass-transfer correlation from the corresponding
heat-transfer correlation merely by replacing Nu by Sh, and Pr by Sc. The same can be
done for any geometry, and for both laminar and turbulent flow.Note, however, that to get
this analogy one has to assume (i) constant physical properties, (ii) small net mass-transfer
rates, (iii) no chemical reactions, (iv) no viscous dissipation heating, (v) no absorption or
emission of radiant energy, and (vi) no pressure diffusion, thermal diffusion, or forced
diffusion. Some of these effects will be discussed in Chapter 24.

For free convection around objects of any given shape, a similar analysis shows that

Num = H(Gr,Pr); Shm = H(Grx,Sc) (22.3-18,19)

Here H is the same function in both cases, and the Grashof numbers are defined similarly
for both processes (see Table 22.2-1 for a summary of the analogous quantities for heat and
mass transfer).

To allow for the variation of physical properties in mass-transfer systems, we extend
the procedures introduced in Chapter 14 for heat-transfer systems. That is, we generally
evaluate the physical properties at some kind of mean film composition and temperature,
except for the viscosity ratio 4b∕40.

We now give three illustrations of how to “translate” from heat-transfer to
mass-transfer correlations:

a. Forced convection around spheres
For forced convection around a solid sphere, Eq. 14.4-5 and its mass-transfer analog

are:

Num = 2 + 0.60Re1∕2Pr1∕3; Shm = 2 + 0.60Re1∕2Sc1∕3 (22.3-20,21)

Equations 22.3-20 and 21 are valid for constant surface temperature and composition,
respectively, and for small mass-transfer rates. They may be applied to simultaneous heat
and mass transfer under restrictions (i)–(vi) given after Eq. 22.3-17.

b. Forced convection along a flat plate
As another illustration of the use of analogies, the Colburn analogy for momentum

and energy transfer in the laminar boundary layer along a flat plate, can be extended to
include mass transfer:

jH,loc = jD,loc =
1

2
floc = 0.332Re−1∕2x (22.3-22)
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The Chilton-Colburn “j-factors,” one for heat transfer and one for diffusive mass transfer,
are defined as1

jH,loc =
Nuloc

RePr1∕3
=

hloc
iĈpv∞

(
Ĉp4

k

)2∕3

(22.3-23)

jD,loc =
Shloc

ReSc1∕3
=

kx,loc
cv∞

(
4

i𝒟AB

)2∕3

(22.3-24)

This three-way analogy in Eq. 22.3-22 is accurate for Pr and Sc near unity within the limi-
tations mentioned after Eq. 22.3-17. For flow around other objects, the friction factor part
of the analogy is not valid because of the form drag, and even for flow in circular tubes

the analogy with 1

2
floc is only approximate (see §14.4).

c. The Chilton-Colburn analogy
The more widely applicable empirical analogy

jH = jD = a function of Re, geometry, and boundary conditions (22.3-25)

has proven to be useful for transverse flow over around cylinders, flow through packed
beds, and flow in tubes at high Reynolds numbers. For flow in ducts and packed beds,
the “approach velocity” v∞ has to be replaced by the average velocity or the superficial
velocity. Equation 22.3-25 is the usual form of the Chilton-Colburn analogy. It is evident
from Eqs. 22.3-20 and 22.3-21, however, that the analogy is valid for flow around spheres
only when Nu and Sh are replaced by (Nu − 2) and (Sh − 2).

It would be very misleading to leave the impression that all mass-transfer coefficients
can be obtained from the analogous heat-transfer coefficient correlations. For mass trans-
fer we encounter a much wider variety of boundary conditions and other ranges of the
relevant variables. The non-analogous behavior is addressed elsewhere.2

EXAMPLE 22.3-1

Evaporation from a
Freely Falling Drop

A spherical drop of water, 0.05 cm in diameter, is falling at a velocity of 215 cm∕s through

dry, still air at 1 atm pressure with no internal circulation. Estimate the instantaneous rate of

evaporation from the drop, when the drop surface is at T0 = 70∘F and the air (far from the drop)

is at T∞ = 140∘F. The vapor pressure of water at 70∘F is 0.0247 atm. Assume quasi-steady-state

conditions.

SOLUTION

Designatewater as speciesA and air as speciesB. The solubility of air inwatermaybe neglected,

so that WB0 = 0. Then assuming that the evaporation rate is small, we may write Eq. 22.1-3 for

the entire spherical surface as

WA0 = kxm(0D2)
xA0 − xA∞
1 − xA0

(22.3-26)

The mean mass-transfer coefficient, kxm, may be predicted from Eq. 22.3-21.

The film conditions needed for estimating the physical properties are obtained as follows:

Tf =
1

2
(T0 + T∞) =

1

2
(70∘F + 140∘F) = 105∘F (22.3-27)

xAf =
1

2
(xA0 + xA∞) =

1

2
(0.0247 + 0) = 0.0124 (22.3-28)

1T. H. Chilton and A. P. Colburn, Ind. Eng. Chem., 26, 1183–1187 (1934).
2R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Revised Second Edition, Wiley,

New York (2007), §22.5-8.
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In computing xAf , we have assumed ideal-gas behavior, equilibrium at the interface, and com-

plete insolubility of air in water. The mean mole fraction, xAf , of the water vapor is sufficiently

small that it can be safely neglected in evaluating the physical properties at the film conditions:

c = 3.88 × 10−5 g-mol∕cm3

i = 1.12 × 10−3 g∕cm3

4 = 1.91 × 10−4 g∕cm ⋅ s (from Table 1.4-1)
𝒟AB = 0.292 cm2∕s (from Eq. 17.6-1)

Sc =
(

4

i𝒟AB

)
=

(1.91 × 10−4 g∕cm ⋅ s)
(1.12 × 10−3 g∕cm3)(0.292 cm2∕s)

= 0.58

Re =
(
Dv∞i
4

)
=

(0.05 cm)(215 cm∕s)(1.12 × 10−3 g∕cm3)
(1.91 × 10−4 g∕cm ⋅ s)

= 63

When these values are used in Eq. 22.3-21, we get

Shm = 2 + 0.60(63)1∕2(0.58)1∕3 = 5.96 (22.3-29)

and the mean mass-transfer coefficient is then

kxm =
c𝒟AB

D
Shm =

(3.88 × 10−5 g-mol∕cm3)(0.292 cm2∕s)
(0.05 cm)

(5.96)

= 1.35 × 10−3 g-mol∕s ⋅ cm2 (22.3-30)

Then from Eq. 22.3-26 the evaporation rate is found to be

WA0 = (1.35 × 10−3 g-mol∕s ⋅ cm2)(0)(0.05 cm)2
(0.0247 atm∕1 atm) − 0

1 − (0.0247 atm∕1 atm)
= 2.70 × 10−7 g-mol∕s (22.3-31)

This result corresponds to a decrease of 1.23 × 10−3 cm∕s in the drop diameter and indicates

that a drop of this size will fall a considerable distance before it evaporates completely.

In this example, for simplicity, the velocity and surface temperature of the dropwere given.

In general, these conditions must be calculated from momentum and energy balances, as dis-

cussed in Problem 22B.1.

EXAMPLE 22.3-2

The Wet- and Dry-Bulb
Psychrometer

We next turn to a problem where the analogy between heat and mass transfer leads to a sur-

prisingly simple and useful, if approximate, result. The system, shown in Fig. 22.3-2, is a pair

of thermometers, one of which is covered with a cylindrical wick kept saturated with water.

The wick will cool by evaporation into the moving air stream, and for steady operation its

temperature will approach an asymptotic value known as the wet-bulb temperature. The bare

thermometer, on the other hand, will tend to approach the actual temperature of the approach-

ing air, and this value is called the dry-bulb temperature. Develop an expression for determining

the humidity of the air from the wet- and dry-bulb temperature readings neglecting radiation

and assuming that the replacement of the evaporating water has no significant effect on the

wet-bulb temperature measurement. In Problem 22B.2 it is shown how radiation can be taken

into account.

SOLUTION

For simplicity, we assume that the fluid velocity is high enough that the thermometer readings

are unaffected by radiation and by heat conduction along the thermometer stems, but not so

high that viscous dissipation heating effects become significant. These assumptions are usu-

ally satisfactory for glass thermometers and for gas velocities of 30 to 100 ft∕s. The dry-bulb

temperature is then the same as the temperature T∞ of the approaching gas, and the wet-bulb

temperature is the same as the temperature T0 of the outside of the wick.
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Wet-bulb
thermometer

Dry-bulb
thermometer

T∞ T0

Gas stream

in a pipe

Reservoir of liquid A
maintained at
temperature T0

Surface 2

Cylindrical
mass transfer
surface of
diameter D
and length L

Plane control
surface 1

Vapor out at
temperature

T0 and
molar rate

WA0

Liquid in at
T1 = T0

and flow rate
WA1 = WA0

Enlargement
of inset

Wick saturated
with liquid A

Fig. 22.3-2. Sketch of a wet-bulb and dry-bulb psychrometer installation. It is assumed that no heat or mass moves across

plane 2.

Let species A be water and species B be air. An energy balance is made on a system that

contains a length L of the wick (the distance between planes 1 and 2 in the figure). The rate

of heat addition to the system by the gas stream is hm(0DL)(T∞ − T0). Enthalpy also enters via

plane 1 at a rate WA1HA1 in the liquid phase, and leaves at the mass-transfer surface at a rate

WA0HA0, both of these occurring at a temperature T0. Hence, the energy balance gives

hm(0DL)(T∞ − T0) = WA0(HA1 −HA0) (22.3-32)

since the water enters the system at plane 1 at the same rate that it leaves as water vapor at the

mass-transfer interface 0. To a very good approximation,HA1 −HA0 may be replaced by 2H̃vap,

the molar heat of vaporization of water.

From the definition of the mass-transfer coefficient

WA0 − xA0(WA0 +WB0) = kxm(0DL)(xA0 − xA∞) (22.3-33)

in which WB0 = 0. Combination of Eqs. 22.2-32 and 22.2-33 gives then

(xA0 − xA∞)
(T∞ − T0)(1 − xA0)

=
hm

kxm2H̃vap

(22.3-34)

Then using the definitions of Num and Shm, and noting that iĈp = cC̃p, we may rewrite

Eq. 22.3-34 as

(xA0 − xA∞)
(T∞ − T0)(1 − xA0)

=
Num

Shm

(
Sc

Pr

) C̃p

2H̃vap

(22.3-35)

Because of the analogy between heat and mass transfer, we can expect that the mean Nusselt

and Sherwood numbers will be of the same form:

Num = F(Re)Prn; Shm = F(Re)Scn (22.3-36,37)

where F is the same function of Re in both expressions. Therefore, knowing the dry- and

wet-bulb temperatures and the mole fraction of the water vapor adjacent to the wick (xA0), we

can calculate the concentration of the water vapor in the air stream from

(xA0 − xA∞)
(T∞ − T0)(1 − xA0)

=
(
Sc

Pr

)1−n C̃p

2H̃vap

(22.3-38)
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The exponent n depends to a slight extent on the geometry, but is not far from 1

3
, and the

quantity (Sc∕Pr)1−n is not far from unity.3 Furthermore, the wet-bulb temperature is seen to be

independent of the Reynolds number as a result of the assumption introduced in Eqs. 22.3-36

and 22.3-37. This result would also have been obtained by using the Chilton-Colburn relations,

which would give n = 1

3
directly.

The interfacial gas composition xA0 can be accurately predicted, at low mass-transfer

rates, by neglecting the heat- and mass-transfer resistance of the interface itself (see §22.4 for

further discussion of this point). One can then represent xA0 by the vapor-liquid equilibrium

relationship:

xA0 = xA0(T0,p) (22.3-39)

A relation of this kind will hold for given species A and B if the liquid is pure A as assumed

above. A commonly used approximation of this relationship is

xA0 =
pA,vap
p

(22.3-40)

in which pA,vap is the vapor pressure of pure A at temperature T0. This relation assumes tacitly

that the presence of B does not alter the partial pressure of A at the interface, and that A and B
form an ideal-gas mixture.

If an air-water mixture at 1 atm pressure gives a wet-bulb temperature of 70∘F and a

dry-bulb temperature of 140∘F, then

pA,vap = 0.0247 atm (see Example 22.3-1)
xA0 = 0.0247, from Eq. 22.3-40

C̃p = 6.98 Btu∕lb-mol ⋅ ∘F at 105∘F, the film temperature4

2H̃vap = 18,900 Btu∕lb-mol at 70∘F4

Sc = 0.58 (see Example 22.3-1)
Pr = 0.74, from Eq. 9.7-16

Substitution into Eq. 22.3-38, with n = 1

3
, then gives

(0.0247 − xA∞)
(140∘F − 70∘F)(1 − 0.0247)

=
(
0.58
0.74

)2∕3 (6.98 Btu∕lb-mol ⋅ ∘F)
(18,900 Btu∕lb-mol)

(22.3-41)

From this the mole fraction of water in the approaching air is

xA∞ = 0.0033 (22.3-42)

Since we assumed that the film concentration was xA = 0 as a first approximation, we could go

back and make a second approximation by using an average film concentration of 1

2
(0.0247 +

0.0033) = 0.0140 in the physical property calculations. The physical properties are not known

accurately enough here to justify recalculation.

The calculated result in Eq. 22.3-42 is in only fair agreement with published humidity

charts, because these are typically based on the adiabatic saturation temperature rather than

the wet-bulb temperature.4

3A somewhat different equation, with 1 − n = 0.56, was recommended for measurements in air by

C. H. Bedingfield and T. B. Drew, Ind. Eng. Chem., 42, 1164–1173 (1950).
4O. A. Hougen, K. M. Watson, and R. A. Ragatz, Chemical Process Principles, 2nd edition, Wiley, New

York, Part I (1954), p. 120.
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EXAMPLE 22.3-3

Creeping-Flow Mass
Transfer in Packed Beds

Many important adsorptive operations, from purification of proteins in modern biotechnology

to the recovery of solvent vapor by dry-cleaning establishments, occur in dense particulate

beds and are typically carried out in steady creeping flow, i.e., at Re = Dpv0i∕4 < 20. Here Dp
is the effective particle diameter, and v0 is the superficial velocity, defined as volumetric flow

rate divided by the total cross section of the bed (see §6.4). It follows that the dimensionless

velocity v∕v0 will have a spatial distribution independent of the Reynolds number. Detailed

information is available only for spherical packing particles.

Using the dimensional analysis discussion at the beginning of this section, predict the form

of the steady-state mass-transfer coefficient correlation for creeping flow.

SOLUTION

The dimensional analysis procedure in §21.1 may be used, with Dp as the characteristic length

and v0 the characteristic velocity. Then, from Eq. 21.1-11, we see that the dimensionless concen-

tration depends only on the product ReSc, in addition to the dimensionless position coordinates

and the geometry of the bed.

The most extensive data are for creeping flow at large Péclet numbers. Experimental data

on the dissolution of benzoic acid spheres in water5 have yielded the result

Shm = 1.09
s

(ReSc)1∕3 ReSc ≫ 1 (22.3-43)

where s is the volume fraction of the bed occupied by the flowing fluid. Equation 22.3-43 is

reasonably consistent with the relation

Shm = 2 + 0.991(ReSc)1∕3 (22.3-44)

which incorporates the creeping-flow solution for flow around an isolated sphere6 (s = 1) (see
§22.2(b)). This suggests that the flow pattern around an isolated sphere is not much different

from that around a sphere surrounded by other spheres, particularly near the sphere surface

where most of the mass transport takes place.

No reliable data are available for the limiting behavior at very low values of ReSc, but

numerical calculations for a regular packing7 predict that the Sherwood number asymptoti-

cally approaches a constant near 4.0 if based on a local difference between interfacial and bulk

compositions.

Behavior within the solid phase is far more complex, and no simple approximation is

wholly trustworthy. However, experiments8 show that where intraparticle mass transport is

described by Fick’s second law, one can use the simpler approximation

Shm =
kc,sDp

𝒟AB
≈ 10 (22.3-45)

where kc,s is the effective mass-transfer coefficient within the solid phase, and 𝒟As is the diffu-

sivity of A in the solid phase. The equation is for “slow” changes in the solute concentration

bathing the particle. This is an asymptotic solution for a linear change of surface concentration

with time,9 and has been justified10 by calculations. For passage of a Gaussian (bell-shaped)

concentration wave moving through the packed column, “slow” means that the passage time

(temporal standard deviation) of the wave is long relative to the particle diffusional response

5E. J. Wilson and C. J. Geankopolis, Ind. Eng. Chem. Fundamentals, 5, 9–14 (1966). See also J. R. Selman

and C. W. Tobias, Advances in Chemical Engineering, 10, 212–318 (1978), for an extensive summary of

mass-transfer coefficient correlations obtained by electrochemical measurements.
6V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ (1962), §14.
7J. P. Sørensen and W. E. Stewart, Chem. Eng. Sci., 29, 811–837 (1974).
8A. M. Athalye, J. Gibbs, and E. N. Lightfoot, J. Chromatography, 589, 71–85 (1992).
9H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford University Press

(1959), §9.3, Eqs. 10 and 11.
10J. F. Reis, E. N. Lightfoot, P. T. Noble, and A. S. Chiang, Sep. Sci. Tech., 14, 367–394 (1979).
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time, which is of the order of D2
p∕6𝒟As. Fick’s second law must be solved with the detailed

history of surface concentration when this inequality is not satisfied.

In packed beds, just as with tube flow, one must keep in mind the fact that there will be

nonuniformities in the concentration as a function of the radial coordinate. This was discussed

in §14.5.

EXAMPLE 22.3-4

Mass Transfer to Drops
and Bubbles

In both gas-liquid11 and liquid-liquid12 contactors, sprays of liquid drops or clouds of bubbles

are frequently encountered. Contrast their mass-transfer behavior with that of solid spheres.

SOLUTION

Many different types of behavior are encountered, and it is found that surface forces can play a

very important role. These latter are discussed in some detail elswhere.2 We consider here only

some limiting cases and refer readers to the above-cited references.

Very small drops and bubbles behave like solid spheres and can be treated by the cor-

relations in Example 22.3-3 and in Chapter 14. However, if both adjacent phases are free of

surfactants and small particulate contaminants, the interior phase circulates and carries the

adjacent regions of the exterior phase along. This stress-driven “Hadamard-Rybczinski circu-

lation”13 increases the mass-transfer rates markedly, often by an order of magnitude, and the

rates can be estimated from the extensions14–17 of the “penetration model” discussed in §18.8.

Thus, for a spherical bubble of gasAwith diameterD rising through a clean liquid B, the exter-
nal Sherwood number (i.e., on the liquid side) lies in the range17√

4

30

Dvt
𝒟AB

< Shm <

√
4

0

Dvt
𝒟AB

(22.3-46)

where vt is the terminal velocity (see Eqs. 18.8-19 and 18.8-20).

The size at which the transition from the solid-like behavior to circulation occurs depends

on degree of surface contamination and is not easily predicted.

Very large drops or bubbles oscillate,14 and both phases follow a modified penetration

theory,

Shm ≈

√
4.8D2a
0𝒟AB

(22.3-47)

with angular frequency of oscillation18

a =

√
192g

D3(3iD + 2iC)
(22.3-48)

where g is the interfacial tension, and iD and iC are the densities of the drops and the continuous

medium.

The success of this model implies that the boundary layer is refreshed once every oscilla-

tion, but there is also a small effect of periodic stretching of the surface.

11J. Stichlmair and J. F. Fair, Distillation Principles and Practice, Wiley, New York (1998).
12J. C. Godfrey and M. M. Slater, Liquid-Liquid Extraction Equipment, Wiley, New York (1994).
13J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Martinus Nijhoff, The Hague

(1983).
14J. B. Angelo, E. N. Lightfoot, and D. W. Howard, AIChE Journal, 12, 751–760 (1966).
15J. B. Angelo and E. N. Lightfoot, AIChE Journal, 14, 531–540 (1968).
16W. E. Stewart, J. B. Angelo, and E. N. Lightfoot, AIChE Journal, 16, 771–786 (1970).
17R. Higbie, Trans. AIChE, 31, 365–389 (1935).
18R. R. Schroeder and R. C. Kintner, AIChE Journal, 11, 5–8 (1965).
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§22.4 DEFINITION OFMASS-TRANSFER COEFFICIENTS
IN TWO PHASES

Recall that in §10.3 we introduced the concept of an overall heat-transfer coefficient, U,
to describe the heat transfer between two streams separated from each other by a wall.
This overall coefficient accounted for the thermal resistance of the wall itself, as well as
the thermal resistance in the fluids on either side of the wall.

We now treat the analogous situation for mass transfer, except that here we are con-
cerned with two fluids in intimate contact with one another, so that there is no wall resis-
tance or interfacial resistance. This is the situation most commonly met in practice. Since
the interface itself contains no significant mass, we may begin by assuming the continuity
of the total mass flux at the interface for any species being transferred. Then for the system
shown in Fig. 22.4-1 we write

NA0|gas = NA0|liquid = NA0 (22.4-1)

for the interfacial fluxes toward the liquid phase. Then using the definition given in Eq.
22.1-9, we get

NA0 = k0y,loc(yAb − yA0) = k0x,loc(xA0 − xAb) (22.4-2)

in which we are now following the tradition of using x for mole fractions in the liquid
phase and y for mole fractions in the gas phase. We now have to interrelate the interfacial
compositions in the two phases.

In nearly all situations this can be done by assuming equilibrium across the interface,
so that adjacent gas and liquid compositions lie on the equilibrium curve (see Fig. 22.4-2),
which is regarded as known from solubility data:

yA0 = f (xA0) (22.4-3)

Exceptions to this are: (i) extremely high mass-transfer rates, observed for gas phases at

high vacuum, where NA0 approaches pA0∕
√
20MART, the equilibrium rate at which gas

molecules impinge on the interface; and (ii) interfaces contaminated with high concentra-
tions of adsorbed particles or surfactant molecules. Situation (i) is quite rare, and situation
(ii) normally acts indirectly by changing the flow behavior, rather than causing deviations
from equilibrium. In extreme cases surface contamination can provide additional trans-
port resistances.

To describe rates of interphase transport, one can either use Eqs. 22.4-2 and 22.4-3 to
calculate interface concentrations and then proceed to use the single-phase coefficients, or

yA0

xA0

xAb

yAb

Distance from interface

M
o
le
 f
ra
ct
io
n
 o
f 
ALiquid phase

Solution of A
in a nonvolatile

solvent C

Gas phase
Mixture of A and B

Interface Fig. 22.4-1. Concentration profiles in

the neighborhood of a gas-liquid

interface.
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else work with overall mass-transfer coefficients

NA0 = K0
y,loc(yAb − yAe) = K0

x,loc(xAe − xAb) (22.4-4)

Here yAe is the gas-phase composition in equilibrium with a liquid at composition xAb,
and xAe is the liquid-phase composition in equilibrium with a gas at composition yAb. The
quantity K0

y,loc
is the overall mass-transfer coefficient “based on the gas phase,” and K0

x,loc
is the overall mass-transfer coefficient “based on the liquid phase.” Here again molar flux

NA0 is taken to be positive for transfer to the liquid phase.

Equating the quantities in Eqs. 22.4-2 and 22.4-4 gives two relations

K0
x,loc(xAe − xAb) = k0x,loc(xA0 − xAb) (22.4-5)

K0
y,loc(yAb − yAe) = k0y,loc(yAb − yA0) (22.4-6)

connecting the two-phase coefficients with the single-phase coefficients.

The quantities xAe and yAe introduced in the above three relations may be used to

define quantities mx and my as follows:

mx =
yAb − yA0
xAe − xA0

; my =
yA0 − yAe
xA0 − xAb

(22.4-7,8)

As may be seen from Fig. 22.4-2,mx is the slope of the line connecting points (xA0,yA0) and
(xAe,yAb) on the equilibrium curve, andmy is the slope of the line from (xAb,yAe) to (xA0,yA0).

From the above relations we can then eliminate the concentrations and get relations

among the single-phase and two-phase mass-transfer coefficients:

k0
x,loc

K0
x,loc

= 1 +
k0
x,loc

mxk
0
y,loc

;
k0
y,loc

K0
y,loc

= 1 +
myk

0
y,loc

k0
x,loc

(22.4-9,10)

The first of these was obtained from Eqs. 22.4-5, 22.4-2, and 22.4-7, and the second from

Eqs. 22.4-6, 22.4-2, and 22.4-8. If the equilibrium curve is nearly linear over the range of

interest, then mx = my = m, which is the local slope of the curve at the interfacial condi-

tions. We see, then, that the expressions in Eqs. 22.4-9 and 22.4-10 both contain a ratio
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of single-phase coefficients weighted with a quantity m. This quantity is of considerable
importance:

(i) If k0
x,loc

∕mk0
y,loc

≪ 1, themass-transport resistance of the gas phase has little effect,

and it is said that themass transfer is liquid-phase controlled. In practice, thismeans
that the system design should favor liquid-phase mass transfer.

(ii) If k0
x,loc

∕mk0
y,loc

≫ 1, then the mass transfer is gas-phase controlled. In a practical sit-

uation, this means that the system design should favor gas-phase mass transfer.

(iii) If 0.1 < k0
x,loc

∕mk0
y,loc

< 10, roughly, one must be careful to consider the interac-

tions of the two phases in calculating the two-phase transfer coefficients. Outside
this range the interactions are usually unimportant. We return to this point in the
example below.

Themean two-phasemass transfer coefficients must be defined carefully, andwe con-
sider here only the special case where bulk concentrations in the two adjacent phases do
not change significantly over the total mass transfer surface S. We may then define K0

xm by

(NA0)m = 1

S∫S
K0
x,loc(xAe − xAb) dS = K0

xm(xAe − xAb) (22.4-11)

so that, when Eq. 22.4-9 is used,

K0
xm = 1

S∫S

1

(1∕k0
x,loc

) + (1∕mxk
0
y,loc

)
dS (22.4-12)

Frequently area mean overall mass-transfer coefficients are calculated from area mean
coefficients for the two adjoining phases:

K0
x,approx =

1

(1∕k0xm) + (1∕mxk
0
ym)

(22.4-13)

The two mean values in Eqs. 22.4-12 and 22.4-13 can be significantly different.

EXAMPLE 22.4-1

Determination of the
Controlling Resistance

Oxygen is to be removed from water using nitrogen gas at atmospheric pressure and 20∘C in
the form of bubbles exhibiting internal circulation, as shown in Fig. 22.4-3. Estimate the relative

importance of the two mass-transfer coefficients k0x,loc and k0y,loc. Let A stand for O2, B for H2O,

and C for N2.

SOLUTION

This can be done by assuming that the penetration model (see Eq. 18.8-19 or Eq. 22.2-5) holds

in each phase, so that

k0x,loc ≈ kx,loc = cl

√
4𝒟AB

0texp
; k0y,loc ≈ ky,loc = cg

√
4𝒟AC

0texp
(22.4-14)

where cl and cg are the total molar concentrations in the liquid and gas phases, respectively.

The effective exposure time, texp, is the same for each of the phases.

The solubility of O2 in water at 20∘C is 1.38 × 10−3 g-mol∕liter at an oxygen partial pres-

sure of 760mm Hg, the vapor pressure of water is 17.535mm Hg, and the total pressure in
the solubility measurements is 777.5mm Hg. At 20∘C, the diffusivity of O2 in water is 𝒟AB =
2.1 × 10−5 cm2∕s, and in the gas phase the diffusivity for O2 −N2 is𝒟AC = 0.2 cm2∕s. Assuming
that mx = my = m, we can then write (from Eq. 22.4-14)

k0x,loc
mk0y,loc

=
cl
cg

√
𝒟AB

𝒟AC
⋅
1

m
(22.4-15)
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Oxygen-
containing

water

Nitrogen
gas

Fig. 22.4-3. Schematic diagram of an oxygen stripper, in

which oxygen from the water diffuses into the nitrogen

gas bubbles.

Into this we must substitute

cl
cg

=
cl

(p∕RT)
=

(55.56 g-mol∕liter)
(777.5 mm Hg∕760 mm Hg∕atm)∕(0.08206 liter ⋅ atm∕g-mol ⋅ K)(293.15 K)

= 1306 (22.4-16)

√
𝒟AB

𝒟AC
=

√
2.1 × 10−5 cm2∕s

0.2 cm2∕s
= 0.0102 (22.4-17)

1

m
=

xAe
yAe

=
(1.38 × 10−3 g-mol∕liter)∕(55.56 g-mol∕liter)

(760 mm Hg)∕(777.5 mm Hg)
= 2.54 × 10−5 (22.4-18)

55.56 g-mol∕liter being the molar concentration of pure water. Substitution of these numerical

values into Eq. 22.4-15 then gives

k0x,loc
mk0y,loc

= (1306)(0.0102)(2.54 × 10−5) = 3.38 × 10−4 (22.4-19)

This corresponds to case (i) below Eq. 22.4-10. Therefore, only the liquid-phase resistance is

significant, and the assumption of penetration behavior in the gas phase is not critical to the

determination of liquid-phase control. It may also be seen that the dominant factor is the low

solubility of oxygen in water. One may generalize and state that absorption or desorption of

sparingly soluble gases is almost always liquid-phase controlled. Correction of the gas-phase

coefficient for net mass transfer is clearly not significant, and the correction for the liquid phase

is negligible.

§22.5 CONCLUDING COMMENTS

We have seen in this chapter that mass-transfer coefficients can be calculated analyti-
cally in some special cases. However, values for a wider range of situations can be esti-
mated using correlations. These correlations are identical to the analogous correlations
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for heat-transfer coefficients when written in dimensionless form. This very useful result
arises because the dimensionless equations of change and the dimensionless interphase
transfer coefficients are the same for energy and mass transport in a wide range of situa-
tions.

There are sometimes, of course, exceptions to the relatively simple results presented
here. Interphase mass transfer can be complicated by a variety of phenomena, such as
chemical reactions, combined heat and mass transfer by free convection, effects of inter-
facial forces, and high net mass-transfer rates. The interested reader is referred to refer-
ences given in the introduction to learn more about these phenomena and their impact on
mass–transfer coefficients.

QUESTIONS FOR DISCUSSION

1. Under what conditions can the analogies in §22.3 be applied? Why is the heat-transfer coeffi-
cient in Eq. 22.1-6 defined differently from that in Eq. 14.1-1—or is it?

2. Some of the mass-transfer coefficients in this chapter have a superscript “0.” Explain carefully
what this superscript denotes.

3. What conclusions can you draw from the analytical calculations of mass-transfer coefficients
in §22.2?

4. What is the significance of the “2” in Eqs. 22.3-20 and 22.3-21?
5. What is the meaning of the subscripts “0,” “e,” and “b” in §22.4?

PROBLEMS 22A.1 Prediction of mass-transfer coefficients in closed channels. Estimate the gas-phase
mass-transfer coefficients for water vapor evaporating into pure air at 2 atm and 25∘C, and a
mass flow rate of 1570 lbm∕hr, in the systems listed below. Take𝒟AB = 0.130 cm2∕s .
(a) A 6-in. i.d. vertical pipe with a falling film of water on the wall. Use the following correla-
tion1 for gases in a wetted-wall column:

Shloc = 0.023Re0.83Sc0.44 (Re > 2000) (22A.1-1)

(b) A 6 in. diameter packed bed of water-saturated spheres, with a = 100 ft
−1
.

22A.2 Calculation of gas composition frompsychrometric data. Astreamofmoist air has awet-bulb
temperature of 80∘F and a dry-bulb temperature of 130∘F, measured at 800mm Hg total pres-
sure and high air velocity. Compute the mole fraction of water vapor in the air stream. For
simplicity, consider water as a trace component in estimating the film properties.

Answer: xA∞ = 0.0169 (using n = 0.44 in Eq. 22.3-38)

22A.3 Calculating the inlet air temperature for drying in a fixed bed. A shallow bed of
water-saturated granular solids is to be dried by blowing dry air through it at 1.1 atm
pressure and a superficial velocity of 15 ft∕s. What air temperature is required to keep the
solids at a surface temperature of 60∘F? Neglect radiation. See §14.5 for forced-convection
heat-transfer coefficients in fixed beds.

22A.4 Rate of drying of granular solids in a fixed bed. Calculate the initial rate of water removal in
the drying operation described in Problem 22A.3, if the solids are cylinders with a = 180 ft

−1
.

22B.1 Evaporation of a freely falling drop. A drop of water, 1.00mm in diameter, is falling freely
through dry, still air at pressure of 1 atm and a temperature of 100∘Fwith no internal circulation.
Assume quasi-steady-state behavior and a small mass-transfer rate to compute (a) the velocity
of the falling drop, (b) the surface temperature of the drop, and (c) the rate of change of the
drop diameter in cm∕s. Assume that the film properties are those of dry air at 80∘F.
Answers: (a) 395 cm∕s; (b) 55.1∘F; (c) −5.55 × 10−4 cm∕s

1E. R. Gilliland and T. K. Sherwood, Ind. Eng. Chem. 26, 516–523 (1934).
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22B.2 Effect of radiation on psychrometric measurements. Suppose that a wet-bulb thermometer

and a dry-bulb thermometer are installed in a long duct with constant inside surface tempera-

ture Ts and that the gas velocity is small. Then the dry-bulb temperature Tdb and the wet-bulb

temperature Twb should be corrected for radiation effects. We assume, as in Example 22.3-2,

that the thermometers are so installed that the heat conduction along the glass stems can be

neglected.

(a) Make an energy balance on a unit area of the dry bulb to obtain an equation for the gas tem-

perature T∞ in terms of Tdb, Ts, hdb, edb, and adb (these last two are the emissivity and absorptivity

of the dry bulb).

(b) Make an energy balance on a unit area of the wet bulb and obtain an expression for the

evaporation rate.

(c) Compute xA∞ for the pressure and thermometer readings of Example 22.3-2, with the

additional information that v∞ = 15 ft∕s, Ts = 130∘F, edb = adb = ewb = awb = 0.93, dry-bulb

diameter = 0.1 in., and wet-bulb diameter = 0.15 in. including the wick.

Answer: (c) xA∞ = 0.0023

22B.3 Oxygen stripping. Calculate the rate at which oxygen transfers from quiescent oxygen-

saturated water at 20∘C to a bubble of pure nitrogen 1mm in diameter, if the bubble acts as

a rigid sphere. Note that it will first be necessary to determine the bubble velocity of rise

through the water. Assume that the equilibrium concentration (solubility) of oxygen in water

is given by2

cO2
= (2.17 − 0.0507T + 5.604 × 10−4T2)p (22B.3-1)

where cO2
[=]mmol∕liter, T [=] ∘C, and p [=] atm. Also assume that the diffusivity of oxygen in

water is given by3

𝒟O2W
= (1.04 + 0.053T) × 10−5 (22B.3-2)

where𝒟O2W
[=] cm2∕s and T [=] ∘C .

22B.4 Controlling diffusional resistance. Water drops 2mm in diameter are being oxygenated by

falling freely through pure oxygen at 20∘C and a partial pressure of 1 atm. Do you need to

know the gas-phase diffusivity to calculate the rate of oxygen transport?Why? The solubility of

oxygen under these conditions is 1.39mmol/liter, and the diffusivity is about 2.1 × 10−5 cm2∕s.

2Obtained from regression of data in J. E. Bailey and D. F. Ollis, Biochemical Engineering Fundamentals,
2nd edition, McGraw-Hill, New York (1986); p. 463.

3Regression of data at 37∘C by E. E. Spaeth and S. K. Friedlander, Biophys. J. (1967), p. 827, and data

at 25∘C reported in T. K. Sherwood, R. L. Pigford, and C. R. Wilke,Mass Transfer, McGraw-Hill, New York

(1975).
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Chapter 23

Macroscopic Balances for
Multicomponent Systems

§23.1 The macroscopic mass balances

§23.2○ The macroscopic momentum and angular momentum balances

§23.3 The macroscopic energy balance

§23.4 The macroscopic mechanical energy balance

§23.5 Use of the macroscopic balances to solve steady-state problems

§23.6○ Use of the macroscopic balances to solve unsteady-state problems

§23.7 Concluding comments

Applications of the laws of the conservation of mass, momentum, and energy to engineer-
ing flow systems have been discussed in Chapter 7 (isothermal systems) and Chapter 15
(nonisothermal systems). In this chapter we continue the discussion by introducing three
additional factors not encountered in the earlier chapters: (a) the fluid in the system is
composed of more than one chemical species; (b) chemical reactions may be occurring,
along with changes of composition and the production or consumption of heat; and (c)
mass may be entering the system through the bounding surfaces (that is, across surfaces
other than planes 1 and 2). Variousmechanisms bywhichmassmay enter or leave through
the bounding surfaces of the system are shown in Fig. 23.0-1.

Surface 2 Surface 2

Surface 1 Surface 1

Air + NH3 + H2O
Water in

F
a
ll
in
g
 w

a
te
r 
fi
lm

Air +
NH3

Cold CH4
Aqueous

ammonia out

(b) (c)

Hot O2

P
o
ro
u
s 
w
a
ll

Heated CH4, O2, and
combustion products

Aqueous
benzoic
acid

Coating of benzoic acidWater

Surface 1 Surface 2

(a)

Fig. 23.0-1. Ways in which mass may enter or leave

through boundary surfaces: (a) benzoic acid enters

system by dissolution of the wall; (b) water vapor

enters the system, defined as the gas phase, by evapo-

ration, and ammonia vapor leaves by absorption;

(c) oxygen enters the system by transpiration through

a porous wall.

639
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In this chapter we summarize themacroscopic balances for themore general situation
described above. Each of these balances will now contain one extra term, to account for
mass, momentum, or energy transport across the bounding surfaces. The balances thus
obtained are capable of describing industrial mass-transfer processes, such as absorption,
extraction, ion exchange, and selective adsorption. Inasmuch as entire treatises have been
devoted to these topics, all we try to do here is to show how the material discussed in
the preceding chapters paves the way for the study of the mass-transfer operations. The
reader interested in pursuing the subject further should consult the available textbooks
and treatises.1−8

The main emphasis in this chapter is on the mass balances for mixtures. For that
reason, §23.1 is accompanied by three examples, which illustrate problems arising in envi-
ronmental science, stagewise processes, and biomedical science. In §23.2 to §23.4 the other
macroscopic balances are given. In Table 23.5-1 they are summarized for systems with
multiple inlets and outlets. The last two sections of the chapter illustrate the applications
of the macroscopic balances to more complex systems.

Although Part III of this book is concerned primarilywith binarymixtures, themacro-
scopic balances can be stated for systems containing three or more chemical species with
very little effort. Therefore, we go directly to multicomponent systems in this chapter, and
treat binary systems as special cases.

§23.1 THE MACROSCOPIC MASS BALANCES

The statement of the law of conservation of mass of chemical species w in a macroscopic
flow system containing N chemical species is

dmw,tot

dt
= −2ww + ww,0 + rw,tot w = 1,2,3,…, N (23.1-1)

This is a generalization of Eq. 7.1-3. Here mw,tot is the instantaneous total mass of w in the
system, and −2ww = ww1 − ww2 = iw1⟨v1⟩S1 − iw2⟨v2⟩S2 is the difference between the mass
rates of flowof species w across planes 1 and 2. The quantityww,0 is themass rate of addition
of species w to the system by mass transfer across the bounding surface. Note that ww,0 is
positive when mass is added to the system, just asQ andWm are taken to be positive in the
total energy balance when heat is added to the system and work is done on the system
by moving parts. Finally, the symbol rw,tot stands for the rate of production of species w by
homogeneous and heterogeneous reactions within the system.1

1W. L. McCabe, J. C. Smith, and P. Harriot, Unit Operations of Chemical Engineering, McGraw-Hill,

New York, 6th edition (2000).
2T. K. Sherwood, R. L. Pigford, and C. R. Wilke,Mass Transfer, McGraw-Hill, New York (1975).
3R. E. Treybal, Mass Transfer Operations, McGraw-Hill, New York, 3rd edition (1980).
4C. J. King, Separation Processes, McGraw-Hill, New York (1971).
5C. D. Holland,Multicomponent Distillation, McGraw-Hill, New York (1963).
6T. C. Lo, M. H. I. Baird, and C. Hanson, eds., Handbook of Solvent Extraction, Wiley-Interscience, New

York (1983).
7R. T. Yang, Gas Separations by Adsorption Processes, Butterworth, Boston (1987).
8J. D. Seader and E. J. Henley, Separation Process Principles, Wiley, New York (1998).
1The quantities mw,tot, ww,0, and rw,tot may be expressed as integrals:

mw,tot = ∫V iw dV; ww,0 = −∫S0 (n ⋅ iwvw) dS; rw,tot = ∫V rw dV + ∫S r
(s)
w dS (23.1-1a,b,c)

in which n is the outwardly directed unit normal vector, and S0 is that portion of the bounding surface

over which mass transfer occurs, here assumed stationary. The integrands in rw,tot are the homogeneous

and heterogeneous reaction rates respectively.
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Recall that, in Table 15.5-1, the molecular and eddy transport of momentum and
energy across surfaces 1 and 2 in the direction of flow have been neglected with respect
to the convective transport. The same is done everywhere in this chapter—in Eq. 23.1-1
and in the other macroscopic balances presented here.

If all N equations in Eq. 23.1-1 are summed, we get

dmtot

dt
= −2w + w0 (23.1-2)

in which w0 =
∑

www,0, and use has been made of the law of conservation of mass in the
form

∑
wrw,tot = 0.

It is often convenient to write Eq. 23.1-1 in molar units:

dMw,tot

dt
= −2Ww +Ww,0 + Rw,tot w = 1,2,3,…, N (23.1-3)

Here the capital letters represent the counterparts of the lowercase symbols in Eq. 23.1-1.
When Eq. 23.1-3 is summed over all species, the result is

dMtot

dt
= −2W +W0 +

N∑
w=1

Rw,tot (23.1-4)

Note that the last term is not in general zero, because the number of moles produced and
the total number of moles consumed are not equal in many reaction systems.

In some applications, such as spatially continuous mass-transfer operations, it is cus-
tomary to rewrite Eqs. 23.1-1 or 23.1-3 for a differential element of the system (that is, in
the “d-form” discussed in §15.4). Then the differentials dww,0 or dWw,0 can be expressed in
terms of local mass-transfer coefficients.

EXAMPLE 23.1-1

Disposal of an
Unstable Waste
Product

A fluid stream emerges from a chemical plant with a constant mass flow rate w = iQ and dis-

charges into a river (Fig. 23.1-1(a)). It contains a waste material A at mass fraction aA0, which is

unstable and decomposes at a rate proportional to its concentration according to the expression

rA = −k′′′
1
iA—that is, by a first-order reaction.

To reduce pollution, it is decided to allow the effluent stream to pass through a holding

tank of volume V, before discharging into the river (Fig. 23.1-1(b)). The tank is equipped with

an efficient stirrer that keeps the fluid in the tank at very nearly uniform composition. At time

t = 0 the fluid begins to flow into the empty tank. No liquid flows out until the tank has been

filled up to the volume V.

Develop an expression for the concentration of the fluid in the tank as a function of time,

both during the tank-filling process and after the tank has been completely filled.

SOLUTION

(a) Webegin by considering the periodduringwhich the tank is being filled—that is, the period

t ≤ iV∕w = V∕Q, where i is the density andQ is the volume flow rate of the fluid mixture. We

apply themacroscopic mass balance of Eq. 23.1-1 to the holding tank. The quantitymA,tot on the

left side iswtaA at time t. Themass rate of flow entering the tank iswaA0, and there is no outflow

during the tank-filling stage. NoA is entering or leaving through amass-transfer interface. The

rate of production of species is rA,tot = (wt∕i)(−k′′′
1
iA) = −k′′′

1
mA,tot. Therefore, the macroscopic

mass balance for species A during the filling period is

d
dt
mA,tot = waA0 − k′′′

1
mA,tot (23.1-5)
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ρA ρA0

ρA0

ρAF = ρA0 (1 – e
–K)/K

t = V/Q

t

ρA∞ =
1 + K

Well-stirred tank
with volume V

Concentration
ρA0

Concentration of A
in effluent ρA0

Volume flow
rate Q = w/ρ

Volume flow rate Q = w/ρ

River River
(a)

(b)

(c)

Fig. 23.1-1. (a) Waste stream with unstable pollutant emptying directly into a river. (b) Waste stream with a holding tank

that allows the unstable pollutant to decay prior to going into the river. (c) Sketch showing the concentration of pollutant

being discharged into the river after the holding tank has been filled (the dimensionless quantity K is k′′′
1
V∕Q).

This first-order differential equation can be solved with the initial condition that mA,tot = 0 at
t = 0 to give

mA,tot =
waA0

k′′′
(1 − exp(−k′′′

1
t)) (23.1-6)

This may be written in terms of the instantaneous mass fraction of A in the tank by using the

relation mA,tot = wtaA:

aA

aA0
=

1 − exp(−k′′′
1
t)

k′′′
1
t

(
t ≤ iV

w

)
(23.1-7)

The mass fraction of A at the instant when the tank is full, aAF, is then

aAF

aA0
= 1 − e−K

K
(23.1-8)

in which K = k′′′
1
iV∕w = k′′′

1
V∕Q.

(b) The mass balance on the tank after it has been filled is

d
dt
(iAV) = waA0 − waA − k′′′

1
iAV (23.1-9)

When we divide this equation by w and introduce the dimensionless time f = (w∕iV)t, it
becomes

daA

df
+ (1 + K)aA = aA0 (23.1-10)

This first-order differential equation can be solved with the initial condition that aA = aAF at

f = 1 to give (see Eq. C.1-2)

aA(f) − [aA0∕(1 + K)]
aAF − [aA0∕(1 + K)]

= e−(1+K)(f−1)
(
t ≥ iV

w

)
(23.1-11)

This shows that as time progresses the mass fraction of the pollutant being discharged into the
river decreases exponentially, with a limiting value of

aA∞ =
aA0

l + K
=

aA0

1 + (k′′′
1
iV∕w)

(23.1-12)
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Waste
W, x, X

Feed
F, z, Z

Product
P, y, Y

Fig. 23.1-2. Binary splitter, in which a feed stream F (a

mixture of A and B) is split into a product stream P (with y
being the mole fraction of A) and a waste streamW (with x
being the mole fraction of A).

The curve for the mass concentration iA = aAi as a function of time after the filling of the tank

is shown in Fig. 23.1-1(c). This curve can be used to determine conditions such that the effluent

concentration will be in the permitted range. Equation 23.1-12 can be used to decide on the

volume V of the holding tank that is required.

EXAMPLE 23.1-2

Binary Splitters

Describe the operation of a binary splitter, one of the commonest and simplest separation

devices (see Fig. 23.1-2). Here a binary mixture ofA and B enters the apparatus in a feed stream

at a molar rate F, and by some separation mechanism it is split into a product stream at a molar

rate P and a waste stream with molar rate W. The mole fraction of A (the desired component)

in the feed stream is z, and the mole fractions of A in the product and waste streams are y and

x, respectively.

SOLUTION

We start by writing the steady-state macroscopic mass balances for component A and for the

entire fluid as

zF = yP + xW (23.1-13)

F = P +W (23.1-14)

It is customary to define the ratio p = P∕F of the molar rates of the product and feed streams as

the cut. Equation 23.1-13 then becomes, after eliminatingW by use of Eq. 23.1-14,

z = py + (1 − p)x (23.1-15)

Normally the cut p and the feed composition z are taken to be known.

We now need a relation between the feed and waste compositions, and it is conventional

to write an equation relating the compositions of the two outgoing streams:

Y = wX (23.1-16)

Here w is known as the separation factor, also usually taken as known, and which characterizes

the separation capability of the splitter. Here Y and X are the mole ratios defined by

Y =
y

1 − y
and X = x

1 − x
(23.1-17,18)

In terms of the mole fractions, Eq. 23.1-16 may be written as

y = wx
1 + (w − 1)x

or x =
y

w − (w − 1)y
(23.1-19,20)

Equations 23.1-15 and 23.1-19 (or 23.1-20) describe completely the splitter operation.

For vapor-liquid splitting—that is, equilibrium distillation—it is typical to define the ideal
splitter in terms of an operation in which the product and waste streams are in equilibrium.

For this situation, w is the relative volatility, and for thermodynamically ideal systems, it is just

the ratio of the component vapor pressures. Even for nonideal systems, w changes relatively

slowly with composition.

For real splitters one can then define w in terms of an empirical correction factor—for

example, the efficiency—defined by

w = Ew* (23.1-21)
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Fig. 23.1-3. Behavior of a binary
splitter when the separation factor is

w = 1.25.

where w* is the separation factor for the ideal model, and E is a correction factor that accounts
for the failure of the actual system to meet the ideal behavior.

We thus find that, for a given feed composition, the enrichment (y − z)∕z produced by the
splitter, is a function of the cut p and the separation factor w. The enrichment can be calculated
from the following equation, which is obtained by combining Eqs. 23.1-15 and 23.1-20:

z = py + (1 − p)
y

w − (w − 1)y
(23.1-22)

This is a quadratic equation for y, which can be solved when z and w are specified, and then the
enrichment (y − z)∕z is obtained. An example is given in Fig. 23.1-3 where both (y − z)∕z and
5p(y − z)∕z are plotted as functions of p for z = 0.5 and w = 1.25 (the latter being a reasonable
value for many processes). It may be seen that, whereas the maximum enrichment (y − z)∕z
is obtained for vanishingly small cuts, the product of enrichment and product rate peaks at
an intermediate p value. Finding an optimum p value is a problem that must be addressed on
economic grounds.

Simple splitters of the general type pictured in Fig. 23.1-2 are very widely used as building
blocks in multistage separation processes. They include evaporators and crystallizers, which
typically have a very high separation factor w per stage, and systems for distillation, gas absorp-
tion, and liquid extraction, where w can vary widely. All of these applications are well covered
in standard texts on unit operations.

Membrane processes are rapidly increasing in importance, and many of the design princi-
pleswere developed for the isotope fractionation industry.2 Discussions ofmodern applications
are also available.3

EXAMPLE 23.1-3

Compartmental
Analysis

One of the simplest and most useful applications of the species macroscopic mass balance is
compartmental analysis, inwhich a complex system is treated as a network of perfectmixers, each
of constant volume, connected by ducts of negligible volume, with no dispersion occurring in
the connecting ducts. Imaginemixing units, labeled 1,2,3,…, n,…, N, containing various species
(labeled with indices w, v, u,…). Then the mass concentration iwn of species w in unit n changes
with time according to the equation

Vn

diwn
dt

=
N∑

m=1
Qmn(iwm − iwn) + Vnrwn (23.1-23)

Here Vn is the volume of unit n, Qmn is the volumetric flow rate of solvent flow from unit m to
unit n, and rwn is the rate of formation of species w per unit volume in unit n.

2E. Von Halle and J. Schacter, Diffusion Separation Methods, in Volume 8 of Kirk-Othmer Encyclopedia of
Chemical Technology (M. Howe-Grant, ed.), 4th edition, Wiley, New York (1993), pp. 149–203.

3W. S. W. Ho and K. K. Sirkar,Membrane Handbook, Van Nostrand Reinhold, New York (1992), p. 954;

R. D. Noble and S. A. Stern,Membrane Separations Technology, Elsevier, Amsterdam (1995), p. 718.
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Body (1)

Blood (2)

G

ρ2 ρ1

Dialyzer

V1

dρ1
dt

= – Q(ρ1 – ρ2) + G

V2

dρ2
dt

= Q(ρ1 – ρ2) – D ρ2

Fig. 23.1-4. Two-compartment model

used to analyze the functioning of a

dialyzer.

Show how such a model can be specialized to describe the removal of toxic metabolic
products (that is, the toxic materials resulting from the human metabolism) from a patient by
hemodialysis. Hemodialysis is the periodic removal of toxic metabolites achieved by contacting
the blood and a dialysis fluid in countercurrent flow, separated by a cellophanemembrane that
is permeable to the metabolite.

SOLUTION

The simple two-compartment model of Fig. 23.1-4 has been found to be adequate for repre-
senting the hemodialysis system. Here the large block, or compartment 1 (labeled “body”),
represents the combined body fluids, except for those in the blood, which are represented
by compartment 2. The blood circulates via a branching system of vessels through compart-
ment 1 at a volumetric rate Q, and in the process extracts solute across the vessel walls. This
process is highly efficient, and a single solute is assumed to leave compartment 1 at concen-
tration i1, equal to the concentration throughout that compartment. At the same time, the
solute is being formed within the body fluids at a constant rate G, and during dialysis it is
being extracted from the blood by the dialyzer at a rate Di2. The proportionality constant
D is known as the “dialyzer clearance” and is fixed by the dialyzer design and operating
conditions.

The very complex process actually taking place is modeled by the two equations

V1

di1
dt

= −Q(i1 − i2) + G (23.1-24)

V2

di2
dt

= Q(i1 − i2) −Di2 (23.1-25)

with D = 0 between the dialysis periods. Because we are considering a single solute, the con-
centrations have only one subscript to indicate the compartment. We measure the time t from
the start of a dialysis procedure, when the blood and body fluids are very nearly in equilibrium
with each other, so that we may write the initial conditions as

I.C.∶ At t = 0, i1 = i2 = i0 (23.1-26)

where i0 is a constant. We now want to get an explicit expression for the toxic metabolite con-
centration in the blood as a function of time.

We start by adding Eqs. 23.1-24 and 23.1-25 and solving for di1∕dt. The latter is then substi-
tuted into the time derivative of Eq. 23.1-25 to obtain a differential equation for the metabolite
concentration in the blood

d2i2
dt2

+
(

Q
V1

+
Q
V2

+ D
V2

)
di2
dt

+
QD
V1V2

i2 =
QG
V1V2

(23.1-27)

with

I.C.∶ At t = 0, i2 = i0 and
di2
dt

= −
Di0
V2

(23.1-28)
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The second initial condition is obtained from using Eqs. 23.1-25 and 23.1-26.

This equation is now to be solved for the following specific parameter values, which are

typical for the removal of creatinine from a 70-kg adult human:

Quantity
V1

(liters)
V2

(liters)
Q

(liters/min)
D

(liters/min)
G

(g/min)
i0

(g/liter)

Magnitude 43 4.5 5.4 0.3 0.0024 0.140

The differential equation and initial conditions now take the form:

d2i2
dt2

+ (1.3922 min−1)
di2
dt

+ (0.00837 min−2)i2 = 6.70 × 10−5 g liter
−1
min−2 (23.1-29)

I.C.∶ At time t = 0, i2 = 0.140 g liter
−1

and
di2
dt

= −0.00933 g liter
−1

min−1 (23.1-30)

in which concentration is in grams per liter, and time is in minutes. The complementary func-

tion that satisfies the associated homogeneous equation is

i2,cf(t) = C1 exp(−0.006043 min−1)t + C2 exp(−1.386 min−1)t (23.1-31)

and the particular integral is

i2,pi = 0.0080 g liter
−1

(23.1-32)

The complete solution to the nonhomogeneous equation is given by the sum of the comple-

mentary function and the particular integral. When the constants of integration are determined

from the initial conditions, we get

i2(t) = 0.1258 g liter
−1

exp
[
(−0.006043 min−1)t

]
+ 0.00621 g liter

−1
exp

[
(−1.386 min−1)t

]
+ 0.0080 g liter

−1
(23.1-33)

di2
dt

= −(0.000760 g liter
−1) exp

[
(−0.006043 min−1)t

]
− (0.0086 g liter

−1) exp
[
(−1.386 min−1)t

]
(23.1-34)

during the dialysis period.

For the recovery period following dialysis, we assume here that the patient has no kidney

function, so that the dialyzer clearance D is zero. Equation 23.1-27 takes the simpler form

d2i′
2

dt′2
+Q

(
V1 + V2

V1V2

) di′
2

dt′
=

QG
V1V2

(23.1-35)

where i′ is the concentration during the recovery period. The complementary function and

particular integral are

i′
2,cf(t

′) = C3 exp

[
−Q

(
V1 + V2

V1V2

)
t′
]
+ C4 (23.1-36)

i′
2,pi(t

′) = Gt′

V1 + V2

(23.1-37)

in which t′ is the time measured from the start of the recovery period. Inserting the numerical

values, we then get for the concentration during the recovery period and its time derivative

i′
2
(t′) = C3 exp

[
(−1.325 min−1)t′

]
+ (5.05 × 10−5 g liter

−1
min−1)t′ + C4 (23.1-38)

di′
2

dt′
= −1.325C3 exp

[
(−1.325 min−1)t′

]
+ (5.05 × 10−5 g liter

−1
min−1) (23.1-39)
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The integration constants are to be determined from the matching conditions at t′ = 0,

At t′ = 0, i′
2
= i2 and i′

1
= i1 (23.1-40,41)

We need a second initial condition for determining the integration constants in Eq. 23.1-38.

This can be obtained from Eq. 23.1-25 and the corresponding equation for i′
2
(i.e., with D = 0),

combined with the two relations in Eqs. 23.1-40 and 23.1-41. This relation is

At t′ = 0,
di′

2

dt′
=

di2
dt

+
Di2
V2

(23.1-42)

For illustrative purposes, we shall end the dialysis at 50 minutes, for which

i2(t = 50 min) = 0.10099 g liter
−1 = i′

2
(23.1-43)

di2
dt

(t = 50 min) = −0.005618 g liter
−1

min−1 (23.1-44)

We now have enough information to determine the constants of integration, and therefore, we

get for the concentration in the blood during the recovery period

i′
2
(t′) = 0.1053 g liter

−1 − (0.00424 g liter
−1) exp

[
(−1.325 min−1)t′

]
+ (5.05 × 10−5 g liter

−1
min−1)t′ (23.1-45)

Equations 23.1-33 and 23.1-45 are plotted Fig. 23.1-5.

Of perhaps more interest is Fig. 23.1-6, which shows the application of Eqs. 23.1-24 and

23.1-25 to an actual patient. Here the points represent data, and the curves are the model pre-

dictions. Here only the dialyzer clearance and the creatinine concentrations are known, and
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the data of the first cycle are used to estimate the remaining parameters. The resulting model

is then used to predict the next three cycles. It may be seen that this approach does an excel-

lent job of correlating data and has predictive value. Note that the sudden rise in creatinine

concentration at 50min results from the fact that the dialyzer is no longer removing it from the

blood. As a result, the disequilibrium between the blood and the rest of the body then becomes

smaller.

Similar compartmentalmodels havewide application inmedicine, where they are referred

to as pharmacokinetic models.4 A priori pharmacokinetic modeling, where model parameters

are determined independently of the process being modeled, was pioneered by Bischoff and

Dedrick.5

§23.2 THE MACROSCOPIC MOMENTUM AND ANGULAR
MOMENTUM BALANCES

The macroscopic statements of the laws of conservation of momentum and angular
momentum for a fluid mixture, with gravity as the only external force, are

dPtot

dt
= −2

(⟨
v2

⟩
⟨v⟩ w + pS

)
u + Fs→f + F0 +mtotg (23.2-1)

dLtot

dt
= −2

(⟨
v2

⟩
⟨v⟩ w + pS

)
[r × u] + Ts→f + T0 + Text (23.2-2)

These (seldom-used) equations are the same as Eqs. 7.2-2 and 7.3-2, except for the addition
of the terms F0 and T0, which are the net influxes1 of momentum and angular momentum
into the system bymass transfer. Formostmass-transfer processes these terms are so small
that they can be safely neglected.

§23.3 THE MACROSCOPIC ENERGY BALANCE

For a fluid mixture, the statement of the law of conservation of energy is

d
dt
(Utot + Ktot +Ctot) = −2

[(
Û + pV̂ + 1

2

⟨
v3

⟩
⟨v⟩ + Ĉ

)
w

]
+Q0 +Q +Wm (23.3-1)

4P. G. Welling, Pharmacokinetics, American Chemical Society (1997).
5K. B. Bischoff and R. L. Dedrick, J. Pharm. Sci., 87, 1347–1357 (1968); AIChE Symposium Series, 64,

32–44 (1968).
1These terms may be written as integrals,

F0 = −∫S0 [n ⋅ ivv] dS (23.2-1a)

T0 = −∫S0 [n ⋅ {r × ivv}] dS (23.2-2a)

in which n is the outwardly directed unit normal vector.
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This equation is the same as Eq. 15.1-2, except that an additional term1 Q0 has been added.

This term accounts for the addition of energy to the system as a result of the mass trans-

fer. It may be of considerable importance, particularly if material is entering through the

bounding surface at a much higher or lower temperature than that of the fluid inside the

flow system, or if it reacts chemically in the system.

When chemical reactions are occurring, considerable heat may be released or

absorbed. This heat of reaction is automatically taken into account in the calculation of

the enthalpies of the entering and leaving streams (see Example 23.5-1).

In some applications, in which the energy-transfer rates across the surface are func-

tions of position, it is more convenient to rewrite Eq. 23.3-1 in the d-form, that is, over a

differential portion of the flow system as described in §15.4. Then the increment of heat

added, dQ, is expressible in terms of a local heat-transfer coefficient.

§23.4 THE MACROSCOPIC MECHANICAL ENERGY BALANCE

A careful examination of the derivation of the mechanical energy balance in §7.7 shows

that the result obtained there applies to mixtures as well as to pure fluids. If we now

include the mass-transfer boundary surface S0, then we get

d
dt
(Ktot +Ctot) = −2

[(
1

2

⟨
v3

⟩
⟨v⟩ + Ĉ +

p
i

)
w

]
+ B0 +Wm − Ec − Ev (23.4-1)

This is the same as Eq. 7.4-2, except for the addition of the term B0, which accounts for the

mechanical energy transport across the mass-transfer boundary.1 The use of this equation

is illustrated in Example 23.5-4.

§23.5 USE OF THEMACROSCOPIC BALANCES TO SOLVE
STEADY-STATE PROBLEMS

The macroscopic balances are summarized in Table 23.5-1 for systems with more than

one entry and exit plane. The terms with subscript 0 describe the addition or removal of

mass, momentum, angular momentum, energy, and mechanical energy at mass-transfer

surfaces. Usually these balances are not used in their entirety for problem solving, but it is

convenient to have a complete listing of them. For steady-state problems, the left sides of

1This term may be written as an integral:

Q0 = −∫S0
(
n ⋅

{
1

2
iv2v + iĈv +

N∑
w=1

cwHwvw

})
dS (23.3-1a)

in which n is the outwardly directed unit normal vector. The origin of this term may be seen by referring

to Eq. 19.3-5.
1In terms of a surface integral, this term is given by

B0 = −∫S0
(
n ⋅

[
1

2
iv2 + iĈ + p

]
v
)
dS (23.4-1a)
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Table 23.5-1. Unsteady-State Macroscopic Balances for Nonisothermal Multicomponent

Systems (w = 1,2,3…N)

Mass:
d
dt
mtot =

∑
w1 −

∑
w2 + w0 =

∑
i1⟨v1⟩S1−

∑
i2⟨v2⟩S2 + w0 (A)

Mass of species w:
d
dt
mw,tot =

∑
ww1 −

∑
ww2 + ww0 + rw,tot w = 1,2,3,…N (B)

Momentum:

d
dt
Ptot =

∑(⟨
v2
1

⟩
⟨v1⟩ w1 + p1S1

)
u1 −

∑(⟨
v2
2

⟩
⟨v2⟩ w2 + p2S2

)
u2

+mtotg + F0 − Ff→s

(C)

Angular momentum:

d
dt
Ltot =

∑(⟨
v2
1

⟩
⟨v1⟩ w1 + p1S1

)
[r1 × u1] −

∑(⟨
v2
2

⟩
⟨v2⟩ w2 + p2S2

)
[r2 × u2]

+ Text + T0 − Tf→s

(D)

Mechanical energy:

d
dt
(Ktot +Ctot) =

∑(
1

2

⟨
v3
1

⟩
⟨v1⟩ + gh1 +

p1
i1

)
w1 −

∑(
1

2

⟨
v3
2

⟩
⟨v2⟩ + gh2 +

p2
i2

)
w2

+Wm + B0 − Ec − Ev

(E)

(Total) energy:

d
dt
(Ktot +Ctot +Utot) =

∑(
1

2

⟨
v3
1

⟩
⟨v1⟩ + gh1 + Ĥ1

)
w1 −

∑(
1

2

⟨
v3
2

⟩
⟨v2⟩ + gh2 + Ĥ2

)
w2

+Wm +Q0 +Q

(F)

Notes:
a
∑

ww1 = ww1a + ww1b + ww1c + · · ·, where ww1a = iw1av1aS1a, and so on; Equations (A) and (B) can be

written in molar units by replacing the lowercase symbols by capital letters and adding to Eq. (A) the

term FwRw,tot to account for the fact that moles need not be conserved in a chemical reaction.

bh1 and h2 are elevations above an arbitrary datum plane.
cĤ1 and Ĥ2 are enthalpies per unit mass (for the mixture) relative to some arbitrarily chosen reference

state; see Example 19.3-1.
dAll equations are written for compressible flow; for incompressible flow, Ec = 0. The quantities Ec and Ev
are defined in Eqs. 7.4-3 and 7.4-4.
eu1 and u2 are unit vectors in the direction of flow.

the equations may be omitted. As we saw in Chapters 7 and 15, considerable intuition is
required in using the macroscopic balances, and sometimes it is necessary to supplement
the equations with experimental observations.

EXAMPLE 23.5-1

Energy Balances for a
Sulfur Dioxide
Converter

Hot gases from a sulfur burner enter a converter, in which the sulfur dioxide present is to

be oxidized catalytically to sulfur trioxide, according to the reaction SO2 +
1

2
O2 ⇄ SO3. How

much heat must be removed from the converter per hour to permit a 95% conversion of the

SO2 for the conditions shown in Fig. 23.5-1? Assume that the converter is large enough for the

components of the exit gas to be in thermodynamic equilibrium with one another. That is, the

partial pressures of the exit gases are related by the equilibrium constraint

Kp =
pSO3

pSO2
p1∕2
O2

(23.5-1)
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Converter

SO2, 7.80 lb-mol hr–1

O2, 10.80 lb-mol hr–1

N2, 81.40 lb-mol hr–1   

1
T1 = 440°C
p1 = 1.05 atm

Coolant out

Coolant in

SO3-rich gas

T2 = ?
p2 = 1.00 atm

2 Fig. 23.5-1. Catalytic oxidation of

sulfur dioxide.

Approximate values of Kp for this reaction are

T (K) 600 700 800 900

Kp (atm−1∕2) 9500 880 69.5 9.8

SOLUTION

It is convenient to divide this problem into two parts: (a) first we use the mass balance and

equilibrium expression to find the desired exit temperature, and then (b) we use the energy

balance to determine the required heat removal.

(a) Determination1 of T𝟐. We begin by writing the steady-state macroscopic mass balance,

Eq. 23.1-3, for the various constituents in the two streams in the form:

Ww2 = Ww1 + Rw,tot (23.5-2)

In addition, we take advantage of the two stoichiometric relations

RSO2 ,tot
= −RSO3 ,tot

(23.5-3)

RO2 ,tot
= 1

2
RSO2 ,tot

(23.5-4)

We can now get the desired molar flow rates through surface 2:

WSO2 ,2
= 7.80 lb-mol∕hr − (0.95)(7.80 lb-mol∕hr) = 0.38 lb-mol∕hr (23.5-5)

WSO3 ,2
= 0 + (0.95)(7.80 lb-mol∕hr) = 7.42 lb-mol∕hr (23.5-6)

WO2 ,2
= 10.80 lb-mol∕hr − 1

2
(0.95)(7.80 lb-mol∕hr) = 7.09 lb-mol∕hr (23.5-7)

WN2 ,2
= WN2 ,1

= 81.40 lb-mol∕hr (23.5-8)

W2 = 0.38 + 7.42 + 7.09 + 81.40 = 96.29 lb-mol∕hr (23.5-9)

Next, substituting numerical values into the equilibrium expression Eq. 23.5-1 gives

Kp =
(7.42∕96.29 atm)

(0.38∕96.29 atm)[(7.09∕96.29 atm)]1∕2
= 72.0 atm−1∕2 (23.5-10)

The ratio (7.42∕96.29) is the mole fraction of SO3 in the mixture at plane 2, where the total pres-

sure is 1 atm; assuming an ideal-gasmixture, the partial pressure of SO3 is then (7.42∕96.29 atm).
Similarly, the other ratios are the partial pressures of SO2 and O2. The value of Kp in Eq. 23.5-10

1See O. A. Hougen, K. M. Watson, and R. A. Ragatz, Chemical Process Principles, Part II, 2nd edition,

Wiley, New York (1959), pp. 1017–1018.
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corresponds to an exit temperature T2 of about 510∘C, according to the equilibrium data
given above.

(b) Calculation of the required heat removal. As indicated by the results of Example 15.3-1,
changes in kinetic and potential energy may be neglected here in comparison with changes in
enthalpy. In addition, for the conditions of this example, we may assume ideal-gas behavior.
Then, for each constituent, Hw = H̃w(T). We may then write the macroscopic energy balance,
Eq. 23.3-1, as

−Q =
N∑
w=1

(WwH̃w)1 −
N∑
w=1

(WwH̃w)2 (23.5-11)

For each of the individual constituents we may write

H̃w = H̃o
w + (C̃pw)avg(T − To) (23.5-12)

Here H̃o
w is the standard enthalpy of formation2 of species w from its constituent elements at

the enthalpy reference temperature To, and (C̃pw)avg is the enthalpy-mean heat capacity2 of the

species betweenT andTo. For the conditions of this problem,wemayuse the following2 numer-
ical values for these physical properties (the last two columns are obtained from Eq. 23.5-12):

H̃o
w

cal∕g-mol

(C̃pw)avg
[cal∕g-mol ⋅ ∘C]
from 25∘C to (WwH̃w)1 (WwH̃w)2

Species at 25∘C 440∘C 510∘C Btu∕hr Btu∕hr

SO2 −70,960 11.05 11.24 −931,900 −44,800
SO3 −94,450 — 15.87 0 −1,158,700
O2 0 7.45 7.53 60,100 46,600

N2 0 7.12 7.17 433,000 509,500
-------------- -------------

Totals −438,800 −647,400

Substitution of the preceding values into Eq. 23.5-11 gives the required rate of heat removal:

−Q = (−438,800) − (−647,400) = 208,600 Btu∕hr (23.5-13)

EXAMPLE 23.5-2

Height of a
Packed-Tower
Absorber3

It is desired to remove a soluble gasA from amixture ofA and an insoluble gas B by contacting
themixture with a nonvolatile liquid solvent L in the apparatus shown in Fig. 23.5-2. The appa-
ratus consists essentially of a vertical pipe filled with a randomly arranged packing of small
rings of a chemically inert material. The liquid L is sprayed evenly over the top of the packing
and trickles over the surfaces of these small rings. In so doing, it is intimately contacted with
the gas mixture that is passing up the tower. This direct contacting between the two streams
permits the transfer of A from the gas to the liquid.

The gas and liquid streams enter the apparatus at molar rates of−WG andWL, respectively,
on an A-free basis. Note that the gas rate is negative, because the gas stream is flowing from

plane 2 to plane 1 in this problem. The molar ratio of A to G in the entering gas stream is YA2 =
yA2∕(1 − yA2), and the molar ratio of A to L in the entering liquid stream is XA1 = xA1∕(1 − xA1).
Develop an expression for the tower height Z required to reduce the molar ratio of A in the gas
stream from YA2 to YA1, in terms of the mass-transfer coefficients in the two streams and the
stream rates and compositions.

2See, for example, O. A. Hougen, K. M. Watson, and R. A. Ragatz, Chemical Process Principles, Part I,
2nd edition, Wiley, New York (1959), pp. 257, 296.

3J. D. Seader and E. J. Henley, Separation Process Principles, Wiley, New York (1988).
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Liquid steam out:
Solute-free liquid rate = WL
Mole ratio of solute = XA2

Liquid stream in:
Solute-free liquid rate = WL
Mole ratio of solute = XA1

(a) Overall section
of column

 2Gas stream in:
Solute-free gas rate = WG
Mole ratio of solute = YA2

Gas stream out:
Solute-free gas rate = WG
Mole ratio of solute = YA1

Z
dz

z

(b)

(c)

1

Distributor

(b) Close-up view of
typical random

packing

Liquid

Gas

(c) Flow over individual
packing particles

Fig. 23.5-2. A packed-column mass-transfer apparatus in which the descending phase is

dispersed. Note that in this drawingWG is negative; that is, the gas is flowing from 2

toward 1.

Assume that the concentration of A is always small in both streams, so that the operation

may be considered isothermal and so that the high mass-transfer rate corrections to the

mass-transfer coefficients are not needed. That is, the mass-transfer coefficients, k0x and k0y,
defined in the second line of Eq. 22.1-14, can be used.

SOLUTION

Since the behavior of a packed tower is quite complex,we replace the true systemby a hypothet-

ical model. We consider the system to be equivalent to two streams flowing side-by-side with

no back-mixing, as shown in Fig. 23.5-3, and in contact with one another across an interfacial

area a per unit volume of the packed column (see Eq. 22.1-14).

We further assume that the fluid velocity and composition of each stream are uniform over

the tower cross section and neglect both eddy and molecular transport in the flow direction.

We also consider the concentration profiles in the direction of flow to be continuous curves, not

appreciably affected by the placement of the individual packing particles.

The model resulting from these simplifying assumptions is probably not a very sat-

isfactory description of a packed tower. The neglect of back-mixing and fluid-velocity

nonuniformity are probably particularly serious. However, the presently available correlations

for mass-transfer coefficients have been calculated on the basis of this model, which should

therefore be employed when these correlations are used.

We are now in a position to develop an expression for the column height, and we do

this in two stages: (a) First we use the overall macroscopic mass balance to determine the exit

liquid-phase composition and the relation between bulk compositions of the two phases at each



Trim Size: 8in x 10in Bird1e c23.tex V1 - October 21, 2014 4:27 P.M. Page 654

654 Chapter 23 Macroscopic Balances for Multicomponent Systems

Liquid steam out:
Solute-free liquid rate = WL
Mole ratio of solute = XA2

Liquid stream in:
Solute-free liquid rate = WL
Mole ratio of solute = XA1

2

Gas stream in:
Solute-free gas rate = WG
Mole ratio of solute = YA2

Gas stream out:
Solute-free gas rate = WG
Mole ratio of solute = YA1

Z
dz
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Fig. 23.5-3. Schematic

representation of a packed-tower

absorber, showing a differential

element on which a mass balance

is made.

point in the tower. (b)We then use these results along with the differential form of the macro-

scopic mass balance to determine the interfacial conditions and the required tower height.

(a) Overall macroscopic mass balances. For the solute A we write the macroscopic mass bal-

ance of Eq. 23.1-3 for each stream of the system between planes 1 and 2 as

Liquid stream WAl2 −WAl1 = WAl,0 (23.5-14)

Gas stream WAg2 −WAg1 = WAg,0 (23.5-15)

Here the subscripts Al and Ag refer to the solute A in the liquid and gas streams, respectively.

Since the number of moles leaving the liquid streammust enter the gas stream across the inter-

face, WAl,0 = −WAg,0, and Eqs. 23.5-14 and 23.5-15 may be combined to give

WAl2 −WAl1 = −(WAg2 −WAg1) (23.5-16)

This can now be rewritten in terms of the compositions of the entering and leaving streams by

settingWAl2 = WLXA2, and so on, and then rearrangement gives

XA2 = XA1 −
WG

WL
(YA2 − YA1) (23.5-17)

Thus, we have found the concentration of A in the exit liquid stream.

By replacing plane 2 by a plane at a distance z down the column, Eq. 23.5-17 may be used

to obtain an expression relating bulk stream compositions at any point in the tower:

XA = XA1 −
WG

WL
(YA − YA1) (23.5-18)

Equation 23.5-18 (the “operating line”) is shown in Fig. 23.5-4 along with the equilibrium dis-

tribution for the conditions of Problem 23A.2.

(b) Application of the macroscopic balances in the d-form. We now apply Eq. 23.1-3 to a small

length dz of the tower, first to estimate the interfacial conditions and then determine the tower

height required for a given separation.

(i) Determination of interfacial conditions. Because only A is transferred across the

interface, we may write, according to the second line of Eq. 22.1-14 (which presumes

low concentrations of A and small mass-transfer rates):

dWAl,0 = (k0xa)(xA0 − xA)Sdz (23.5-19)

dWAg,0 = (k0ya)(yA0 − yA)Sdz (23.5-20)
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Here a is the interfacial area per unit volume of the packed-bed tower, S is the

cross-sectional area of the tower, xA0 and yA0 are the interfacial mole fractions of A
in the liquid and gas phases, respectively, and xA and yA are the corresponding bulk

concentrations (the index b is being omitted here, so that xA, yA, XA, and YA are all

bulk compositions).

Then, since xA = XA∕(XA + 1) ≈ XA and yA = YA∕(YA + 1) ≈ YA, Eqs. 23.5-19 and

23.5-20 may be combined to give

YA − YA0

XA − XA0
= −

(k0xa)
(k0ya)

(23.5-21)

This equation enables us to determine YA0 as a function of YA. For any YA, one may

locateXA on the operating line (mass balance). One then draws a straight line of slope

−(k0xa)∕(k0ya) through the point (YA, XA), as shown in Fig. 23.5-4. The intersection of this

linewith the equilibriumcurve then gives the local interfacial compositions (YA0, XA0).
(ii) Determination of required column height. Application of Eq. 23.1-1 to the gas stream

in a volume Sdz of the tower gives

WGdYA = dWAg,0 (23.5-22)

This expression may be combined with Eq. 23.5-20 for the dilute solutions being con-

sidered to obtain

−WGdYA = (k0ya)(YA − YA0)Sdz (23.5-23)

This equation may now be rearranged and integrated from z = 0 to z = Z:

Z = −
WG

S(k0ya)∫
YA2

YA1

dYA

YA − YA0
(23.5-24)

Equation 23.5-24 is the desired expression for the column height required to effect

the specified separation. In writing Eq. 23.5-24 we have neglected the variation of

Y
A
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Fig. 23.5-4. Calculation of interfacial conditions in the absorption of cyclohexane from air in a

packed column (see Problem 23A.2).
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the mass-transfer coefficient k0y with composition. This is usually permissible only for

dilute solutions.

In general, Eq. 23.5-24 must be integrated by numerical or graphical procedures.

However, for dilute solutions, it may frequently be assumed that the operating and

equilibrium curves of Fig. 23.5-4 are straight lines. If, in addition, the ratio k0x∕k0y is

constant, then YA − YA0 varies linearly with YA. We may then integrate Eq. 23.5-24 to

obtain (see Problem 23B.1)

Z =
WG

S(k0ya)
YA2 − YA1

(YA0 − YA)ln
(23.5-25)

where

(YA0 − YA)ln =
(YA0 − YA)2 − (YA0 − YA)1
ln[(YA0 − YA)2∕(YA0 − YA)1]

(23.5-26)

Equation 23.5-25 can be rearranged to give

WAg,0 = WG(YA2 − YA1) = (k0ya)ZS(YA0 − YA)ln (23.5-27)

Comparison of Eq. 23.5-27 and Eq. 15.4-15 shows the close analogy between packed

towers and simple heat exchangers. Expressions analogous to Eq. 23.5-24, but con-

taining the overall mass-transfer coefficient K0
y may also be derived (see Problem

23B.1). Again, we may use the final results, Eqs. 23.5-25 or 23.5-27, for either cocur-

rent or countercurrent flow. Keep in mind, however, that the simplified model used

to describe the packed tower is not so reliable as the corresponding one used for heat

exchangers.

EXAMPLE 23.5-3

Linear Cascades

We saw in Example 23.1-2 that the degree of separation possible in a simple binary splitter

can be quite limited, and it is therefore often desirable to combine individual splitters in a

countercurrent cascade such as that shown in Fig. 23.5-5. Here the feed to any splitter stage is

the sum of the waste stream from the splitter immediately above it and the product from the

splitter immediately below.

Show how such an arrangement can increase the degree of separation relative to that

obtained in a single splitter.

SOLUTION

For the system as a whole we can write a mass balance for the desired product and for the

solution as a whole. That is, we treat the entire system as a splitter and write

zFF = yPP + xWW; F = P +W (23.5-28,29)

1

P

F

W

2

3

4

5
Fig. 23.5-5. A linear cascade. Upward flows are shown by solid lines,

and downward flows by dashed lines.
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It will be assumed here that all of quantities in these equations are given, so that the problem
is specified insofar as the overall mass balances are concerned. It remains for us to determine
the number of stages required to meet these conditions.

We begin by writing a set of mass balances over the top portion of the column, here the
top two stages for illustrative purposes (see Fig. 23.5-5):

y3U3 − x2D2 = yPP; U3 −D2 = P (23.5-30,31)

Here Un and Dn are the upflowing and downflowing streams from stage n, and the yn and
xn are the corresponding mole fractions of the desired solute. When P is eliminated between
Eqs. 23.5-30 and 23.5-31, we get

y3 − yP
x2 − yP

=
D2

U3

(23.5-32)

This equation gives the relation between the compositions of the downflowing and upflow-
ing streams passing each other at any column cross section above the feed stage, in terms
of the corresponding flow rates. This relation, when shown on an x-y plot (which is called a
McCabe-Thiele diagram3,4) is known as the operating line for the system. We concentrate for the
moment on compositions and return later to the problem of determining stream rate ratios.

The phase compositions in each stage are assumed to satisfy an equilibrium relation such
as (see Eq. 23.1-19)

yn =
wxn

1 + (w − 1)xn
(23.5-33)

or, more generally, yn = f (xn), where f (x) is taken to be a known function.
Equations 23.5-32 and 23.5-33 (or its generalization) now permit determination of all com-

positions in the portion of the column above the feed point, usually known as the rectifying
section, and similar calculations can be made for the stripping section, the portion below the
feed point. We may then determine the number of stages required for the separation under
consideration and the proper location of the feed stage.

First, however, we need to determine the stream rate ratios required in Eq. 23.5-32, and we
consider three special cases here:

(a) Total reflux. This special mode of operation, in which P and W are zero, is important, as
it provides the smallest possible number of stages that can yield the desired output concentra-
tions. Here

Un = Dn−1 (23.5-34)

for all n, and the operating line is given by

yn = xn−1 (23.5-35)

This simple relation holds for all cascades at total reflux. The stage compositions are plotted in
Fig. 23.5-6 (for a product mole fraction of 0.9 and a waste mole fraction of 0.1), along with an
equilibrium curve of the form of Eq. 23.5-33 with w = 2.5.

The steplike lines between the equilibrium and operating lines in this figure suggest a
graphicalmethod of determining stage compositions: each “step” between the equilibrium and
operating lines represents an increment one-component splitter or stage. The diagram thus sug-
gests that five stages are required for this rather simple separation. However, for the situation
of total reflux and constant relative volatility w, it is simplest to recognize that

Yn = Yn−1∕w (23.5-36(a))

so that
YN = Y1∕wN−1 (23.5-36(b))

For the situation pictured in Fig. 23.5-6, we have then

log

(
0.9∕0.1
0.1∕0.9

)
= (N − 1) log 2.5 (23.5-37)

4W. L. McCabe and E. W. Thiele, Ind. Eng. Chem., 17, 605–611 (1925).
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Fig. 23.5-6. McCabe-Thiele diagram for

total reflux, with w = 2.5 and 0.1 ≤ x ≤ 0.9.

or

N = 1 +
log 81

log 2.5
= 5.796 (23.5-38)

which is more accurate, but similar to the graphical estimate.

If products are to be withdrawn, it is necessary to calculate the stream-rate ratios, and the

means for doing so vary with the specific operation under consideration.

(b) Thermodynamic constraints: adiabatic cascades and minimum reflux. For most of the

common stagewise operations, stream ratios are determined by thermodynamic constraints,

and these are thoroughly discussed in a wide variety of unit operations texts. We need not

repeat this readily accessible information here, but we briefly consider distillation, the most

widely used of all, by way of example. In principle, stream ratios in distillation are determined

by assuming adiabatic columns and a set of energy balances.

However, it is very often permissible to assume equal molar heats of vaporization for the

various species and to neglect “sensible heats” (i.e., the C̃p2T contributions to 2H̃). With these

simplifications the stream rates Un and Dn are constants. We may then write for any position

above the feed plate

U = D + P and yn+1U = xnD + yPP (23.5-39,40)

and below the feed plate

D = U +W and xmD = ym+1U + xWW (23.5-41,42)

Here the indices n and m refer, respectively, to the upper or rectifying section (above the feed

point) and to the lower or stripping system of the column (below the feed point).

Byway of examplewe consider the system in part (a) for a saturated liquid feed, equimolar

in the two species involved, and operated at minimum reflux: the smallest amount of returning

liquid from the top plate that can produce the desired separation. This situation will occur

when the operating line touches the equilibrium curve, and in the system being considered,

this “pinch” will occur first at the feed plate. The vapor composition on the feed plate is then

given by

YF = 2.5XF = 2.5 or yF =
YF

1 + YF
= 0.7143 (23.5-43,44)

The operating line then has two branches, one above and one below the feed plate, as shown

in Fig. 23.5-7.

Any real column must operate between the limits of total and minimum reflux, but nor-

mal operation is just a few percent above the minimum. This is because the cost of individual

plates tends to be much lower than the costs associated with increasing the reflux (the liquid

returned to the column by condensation of vapor from the top plate): increasing the steam load

required to return vapor from the liquid leaving the bottom plate, the condenser load to return
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Fig. 23.5-8. McCabe-Thiele diagram for an

ideal cascade, with w = 2.5 and 0.1 ≤ x ≤ 0.9.

the overhead vapor, and the capital costs of larger column diameter, larger reboiler, to return

vapor at the bottom, and condenser, to return liquid at the top.

(c) Transport constraints and ideal cascades. For separation via selectively permeable mem-

branes, the ratio of the product to waste streams is governed by the pressure exerted across the

membrane, and the energy required to produce this pressure must be renewed for every stage
of the cascade. This gives the designer an extra degree of freedom and has led to a wide variety

of cascade configurations. First developed for isotopes,5 membrane cascades have now been

developed for industrial gas separations6 and many other applications.

We consider here by example ideal cascades, which are those in which only streams of

identical composition are mixed. In the terms of this example, that means

Yn+1 = Xn−1 =
Yn−1

w
(23.5-45)

and, by extension,

Yn+1 =
Yn√
w

(23.5-46)

It follows that just twice as many stages are needed as at total reflux, and that the operating

line lies half way between the “equilibrium” curve and the 45∘ line. As shown in Fig. 23.5-8, it

has a continuous derivative across the feed stage.

5E. Von Halle and J. Schacter, Diffusion Separation Methods, in Kirk-Othmer Encyclopedia of Chemical
Technology, Volume 8, Wiley, New York (1993), pp. 149–203.

6R. Agrawal, Ind. Eng. Chem. Research, 35, 3607–3617 (1996); R. Agrawal and J. Xu, AIChE Journal, 42,
2141–2154 (1996).
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Ideal cascades provide the smallest possible total stage stream flows, but the flows now

vary with position: they are highest at the feed stage and decrease toward the ends of the cas-

cade. For this reason they are known as tapered cascades (see Problem 23B.6).

EXAMPLE 23.5-4

Expansion of a
Reactive Gas Mixture
through a Frictionless
Adiabatic Nozzle

An equimolar mixture of CO2 and H2 is confined at 1000K and 1.50 atm in the large insulated

pressure tank shown in Fig. 15.5-9. Under these conditions the reaction

CO2 +H2 ⇐⇒ CO +H2O (23.5-47)

may take place. After being stored in the tank long enough for the reaction to proceed to equi-

librium, the gas is allowed to escape through the small converging nozzle shown to the ambient

pressure of 1 atm.

Estimate the temperature and velocity of the escaping gas through the nozzle throat (a)
assuming that no appreciable reaction takes place during passage of gas through the nozzle,

and (b) assuming instant attainment of thermodynamic equilibrium at all points in the nozzle.

In each case, assume that the expansion is adiabatic and frictionless.

SOLUTION

We begin by assuming quasi-steady-state operation, flat velocity profiles, and negligible

changes in potential energy. We also assume constant heat capacities and ideal-gas behavior,

and we neglect the diffusion in the direction of flow. We may then write the macroscopic

energy balance, Eq. 23.3-1, in the form

1

2
v2
2
= Ĥ1 − Ĥ2 (23.5-48)

Here the subscripts 1 and 2 refer to conditions in the tank and at the nozzle throat, respectively,

and, as in Example 15.5-4, the fluid velocity in the tank is assumed to be zero.

To determine the enthalpy change, we equate d( 1
2
v2) from the d-form of the steady-state

energy balance (Eq. 23.3-1) to d( 1
2
v2) of the d-form of the steady-statemechanical energy balance

(Eq. 23.4-1) to get
1

i
dp = dĤ (23.5-49)

In addition to Eq. 23.5-49, we use the ideal-gas law and an expression for Ĥ(T), obtained with

the help of Eq. B of Table 17.1-2 generalized to multicomponent mixtures (i.e.,M =
∑N

w=1 xwMw),

Eq. 19.3-16, and the relation iĤ = cH̃, to get

p = cRT = iRT
M

= iRT
N∑
w=1

xwMw

(23.5-50)

Ĥ = H̃
i∕c

=

N∑
w=1

xwHw

M
=

N∑
w=1

xw[H̃o
w + C̃pw(T − To)]

N∑
w=1

xwMw

(23.5-51)

Here xw is the mole fraction of the species w at temperature T, and H̃o
w is the molar enthalpy of

species w at the reference temperature To. The evaluation of Ĥ is discussed separately for the

two approximations.

Approximation (a): Assumption of very slow chemical reaction. Here the xw are constant
at the equilibrium values for 1000K, and we may write Eq. 23.5-51 as

dĤ =

(
FwxwC̃pw

FwxwMw

)
dT (23.5-52)
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Hence, we may write Eq. 23.5-49 in the form

d ln p =

(
FwxwC̃pw

R

)
d ln T (23.5-53)

Since xw and C̃pw are assumed constant, this equation may be integrated from (p1,T1) to (p2,T2)
to get

T2 = T1

(
p2
p1

)R∕FwxwC̃pw

(23.5-54)

We may now combine this expression with Eqs. 23.5-48 and 23.5-51 to obtained the desired

expression for the gas velocity at plane 2:

v2 =

{
2T1

[
1 −

(
p2
p1

)R∕FwxwC̃pw
]
FwxwC̃pw

FwxwMw

}1∕2

(23.5-55)

By substituting numerical values into Eqs. 23.5-54 and 23.5-55, we obtain (see Problem 23A.1)

T2 = 919.1K and v2 = 1739 ft∕s. It may be seen that this treatment is very similar to that pre-

sented in Example 15.5-4. It is also subject to the restriction that the throat velocity must be

subsonic; that is, the pressure in the nozzle throat cannot fall below that fraction of p1 required
to produce sonic velocity at the throat (see Eq. 15B.6-2). If the ambient pressure falls below this

critical value of p2, the throat pressure will remain at the critical value, and there will be a shock

wave beyond the nozzle exit.

Approximation (b): Assumption of very rapid reaction. We may proceed here as in part

(a), except that the mole fractions xw must now be considered functions of the temperature

defined by the equilibrium relation

(xH2O
)(xCO)

(xH2
)(xCO2

)
= Kx(T) (23.5-56)

and the stoichiometric relations

xH2O
= xCO; xH2

= xCO2
;

4∑
w=1

xw = 1 (23.5-57,58,59)

The quantity Kx(T) in Eq. 23.5-56 is the known equilibrium constant for the reaction. It may be

considered as a function only of temperature, because of the assumed ideal-gas behavior and

because the number of moles present is not affected by the chemical reaction. Equations 23.5-57

and 23.5-58 follow from the stoichiometry of the reaction and the composition of the gas origi-

nally placed in the tank.

The expression for the final temperature is now considerably more complicated. For this

reaction, where FwxwMw is constant, Eqs. 23.5-49 and 23.5-50 may be combined to give

R ln
p2
p1

= ∫
T2

T1

(
dH̃
dT

)
d ln T (23.5-60)

where, with the heat capacities approximated as constants,

dH̃
dT

=
4∑

w=1
[H̃o

w + C̃pw(T − To)]
dxw
dT

+
4∑

w=1
xwC̃pw (23.5-61)

In general, the integral in Eq. 23.5-60must be evaluated numerically, since the xw and the dxw∕dT
are all complicated functions of temperature governed by Eqs. 23.5-56 to 23.5-59. Once T2 has

been determined from Eq. 23.5-60, however, v2 may be obtained by use of Eqs. 23.5-48 and

23.5-51. By substituting numerical values into these expressions, we obtain (see Problem 23B.2)

T2 = 937 K and v2 = 1748 ft∕s.
We find, then, that both the exit temperature and the velocity from the nozzle are greater

when chemical equilibrium is maintained throughout the expansion. The reason for this
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is that the equilibrium shifts with decreasing temperature in such a way as to release heat

of reaction to the system. Such a release of energy will occur with decreasing temperature

in any system at chemical equilibrium, regardless of the reactions involved. This is one

consequence of the famous rule of Le Châtelier. In this case, the reaction is endothermic as

written and the equilibrium constant decreases with falling temperature. As a result, CO and

H2O are partially reconverted to H2 and CO2 on expansion, with a corresponding release

of energy.

It is interesting that in rocket engines the exhaust velocity, hence the engine thrust, are

also increased if rapid equilibration can be obtained, even though the combustion reactions are

strongly exothermic. The reason for this is that the equilibrium constants for these reactions

increase with falling temperature so that the heat of reaction is again released on expansion.

This principle has been suggested as a method for improving the thrust of rocket engines. The

increase in thrust potentially obtainable in this way is quite large.

This example has been chosen for its simplicity. Note in particular that if a change in the

number of moles accompanies the chemical reaction, then the equilibrium constant, and hence

the enthalpy, are functions of the pressure. In this case, which is quite common, the variables p
and T implicit in Eq. 23.5-60 cannot be separated, and a numerical integration of this equation is

required. Such integrations have been performed, for example, for the prediction of the behav-

ior of supersonicwind tunnels and rocket engines, but the calculations involved are too lengthy

for presentation here.

§23.6 USE OF THEMACROSCOPIC BALANCES TO SOLVE
UNSTEADY-STATE PROBLEMS

In §23.5 the discussion was restricted to steady state. Here we move on to the transient
behavior of multicomponent systems. Such behavior is important in a large number of
practical operations, such as leaching and drying of solids, chromatographic separations,
and chemical reactor operations. In many of these processes heats of reaction as well as
mass transfer must be considered. A complete discussion of these topics is outside the
scope of this text, and we restrict ourselves to two simple examples. More extensive dis-
cussions may be found elsewhere.1

EXAMPLE 23.6-1

Start-up of a Chemical
Reactor

It is desired to produce a substance B from a raw material A in a chemical reactor of

volume V equipped with a stirrer that is capable of keeping the entire contents of the

reactor fairly homogeneous. The formation of B is reversible, and the forward and

reverse reactions may be considered first order, with reaction-rate constants k′′′
1B and k′′′

1A,

respectively. In addition, B undergoes as irreversible first-order decomposition, with a

reaction-rate constant k′′′
1C, to a third component C. The chemical reactions of interest may be

represented as

A ⇄ B → C (23.6-1)

At zero time, a solution of A at a concentration cA0 is introduced to the initially empty reactor

at a constant mass flow rate w.
Develop an expression for the amount of B in the reactor, when it is just filled to its

capacity V, assuming that there is no B in the feed solution and neglecting changes of fluid

properties.

1W. R. Marshall, Jr., and R. L. Pigford, The Application of Differential Equations to Chemical Engineering
Problems, University of Delaware Press, Newark, DE (1947); B. A. Ogunnaike and W. H. Ray, Process
Dynamics, Modeling, and Control, Oxford University Press (1994).
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SOLUTION

We begin by writing the unsteady-state macroscopic mass balances for species A and B. In
molar units these may be expressed as:

dMA,tot

dt
=

wcA0
i

− k′′′
1BMA,tot + k′′′

1AMB,tot (23.6-2)

dMB,tot

dt
= −(k′′′

1A + k′′′
1C)MB,tot + k′′′

1BMA,tot (23.6-3)

Next we eliminate MA,tot from Eq. 23.6-3. First we differentiate this equation with respect to t
to get

d2MB,tot

dt2
= −(k′′′

1A + k′′′
1C)

dMB,tot

dt
+ k′′′

1B

dMA,tot

dt
(23.6-4)

In this equation, we replace dMA,tot∕dt by the right side of Eq. 23.6-2, and then use Eq. 23.6-3 to

eliminate MA,tot. In this way we obtain a linear second-order differential equation for MB,tot as

a function of time:

d2MB,tot

dt2
+ (k′′′

1A + k′′′
1B + k′′′

1C)
dMB,tot

dt
+ k′′′

1Bk
′′′
1CMB,tot =

k′′′
1BwcA0
i

(23.6-5)

This equation is to be solved with the initial conditions

I.C. 1∶ at t = 0, MB,tot = 0 (23.6-6)

I.C. 2∶ at t = 0,
dMB,tot

dt
= 0 (23.6-7)

This equation can be integrated to give (see Eq. C.1-7a)

MB,tot(t) =
wcA0
ik′′′

1C

(
s−

s+ − s−
exp

(
s+t

)
−

s+
s+ − s−

exp(s−t) + 1

)
(23.6-8)

where

2s± = −(k′′′
1A + k′′′

1B + k′′′
1C) ±

√
(k′′′

1A + k′′′
1B + k′′′

1C)2 − 4k′′′
1Bk

′′′
1C (23.6-9)

Equations 23.6-8 and 23.6-9 give the total mass of B in the reactor as a function of time, up

to the time at which the reactor is completely filled. These expressions are very similar to the

equations obtained for the temperature controller in Example 15.5-2. It can be shown, how-

ever, that s+ and s− are both real and negative, and therefore, MB,tot cannot oscillate (see Prob-

lem 23B.3).

EXAMPLE 23.6-2

Unsteady Operation of
a Packed Column

There are many industrially important processes in which mass transfer takes place between

a fluid and a granular porous solid: for example, recovery of organic vapors by adsorption

on charcoal, extraction of caffeine from coffee beans, and separation of aromatic and aliphatic

hydrocarbons by selective adsorption on silica gel. Ordinarily, the solid is held fixed, as indi-

cated in Fig. 23.6-1, and the fluid is allowed to percolate through it. The operation is thus

inherently unsteady, and the solid must be periodically replaced or “regenerated,” that is,

returned to its original condition by heating or other treatment. To illustrate the behavior of

such fixed-bed mass-transfer operations, we consider as a physically simple case, the removal

of a solute from a solution by passage through an adsorbent bed.

In this operation, a solution containing a single solute A at mole fraction xA1 in a solvent

B is passed at a constant volumetric flow rate w∕i through a packed tower. The tower packing

consists of a granular solid capable of adsorbing A from the solution. At the start of the per-

colation, the interstices of the bed are filled with pure liquid B, and the solid is free of A. The
percolating fluid displaces this solvent evenly so that the solution concentration of A is always

uniform over any cross section. For simplicity, it is assumed that the equilibrium concentration

of A adsorbed on the solid is proportional to the local concentration of A in the solution. It is
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Fluid phase in:
Total molar flow rate = WB
Solute concentration = cA1

Fluid phase out:
Total molar flow rate WB

Solute concentration = cA(Z, t)

Z

z

Fixed solid
phase

cA = cA1

cA(Z, t)

cA

t

(a) (b)

Fig. 23.6-1. A fixed-bed

absorber: (a) pictorial
representation of equipment;

(b) a typical effluent curve.

also assumed that the concentration of A in the percolating solution is always small and that

the resistance of the porous solid to intraparticle mass transfer is negligible.

Develop an expression for the concentration of A in the column as a function of time and

distance down the column.

SOLUTION

Paralleling the treatment of the gas absorber in Example 23.5-2, we think of the two phases as

being continuous and existing side by side as pictured in Fig. 23.6-2.We again define the contact

area per unit packed volume of column as a. Now, however, one of the phases is stationary, and

unsteady-state conditions prevail. Because of this locally unsteady behavior, the macroscopic

mass balances are applied locally, over a small increment of the column of height 2z. We may

Fluid in at total
molar rate WB

Fluid out at total
molar rate WB

Z

z

dz

Moving fluid
phase

Fixed solid
phase

Fig. 23.6-2. Schematic model for a fixed-bed absorber,

showing a differential element over which a mass balance

is made.



Trim Size: 8in x 10in Bird1e c23.tex V1 - October 21, 2014 4:27 P.M. Page 665

§23.6 Use of the Macroscopic Balances to Solve Unsteady-State Problems 665

use Eq. 23.1-3 and the assumption of dilute solutions to state that the molar rate of flow of

solvent,WB, is essentially constant over the length of the column and the time of operation. We

now proceed to use Eq. 23.1-3 to write the conservation of mass relations for species A in each

phase of a section the column of height 2z.
For the solid phase in this increment of column we may apply Eq. 23.1-3 locally, keeping in

mind that now MA,tot depends on both z and t:

𝜕MA,tot

𝜕t
= WA0 (23.6-10)

or

(1 − s)S2z
𝜕cAs
𝜕t

= (k0xa)(xA − xA0)S2z (23.6-11)

where use has been made of Eq. 22.1-14, and the symbols have the following meanings:

s = volume fraction of column occupied by the liquid

S = cross-sectional area of (empty) column

cAs =moles of adsorbed A per unit volume of the solid phase

xA = bulk mole fraction of A in the fluid phase

xA0 = interfacial mole fraction of A in the fluid phase, assumed to be in equilibrium with
cAs

k0x = fluid-phase mass-transfer coefficient, defined in Eq. 22.1-14, for small mass-transfer
rates

Note that, in writing Eq. 23.6-11, we have neglected convective mass transfer through the

solid-fluid interface. This is reasonable if xA0 is much smaller than unity. We have also assumed

that the particles are small enough so that the concentration of the solution surrounding any

given particle is essentially constant over the particle surface.

For the fluid phase, in the column increment under consideration, Eq. 23.1-3 becomes

𝜕MA,tot

𝜕t
= −2WA +WA0 (23.6-12)

or

scS2z
𝜕xA
𝜕t

= −WB2z
𝜕xA
𝜕z

− (k0xa)(xA − xA0)S2z (23.6-13)

Here c is the total molar concentration of the liquid. Equation 23.6-13 may be rewritten by the

introduction of a modified time variable, defined by

t′ = t −
(
scS
WB

)
z (23.6-14)

It may be seen that, for any position in the column, t′ is the timemeasured from the instant that

the percolating solvent “front” has reached the position in question. By rewriting Eqs. 23.6-13

and 23.6-11 in terms of t′, we get(
𝜕xA
𝜕z

)
t′
= −

(k0xa)S
WB

(xA − xA0) (23.6-15)(
𝜕cAs
𝜕t′

)
z

=
(k0xa)
(1 − s)

(xA − xA0) (23.6-16)

Equations 23.6-15 and 23.6-16 combine the equations of conservation of mass for each phase

with the assumed mass-transfer rate expression. These two equations are to be solved simul-

taneously along with the interphase equilibrium distribution, xA0 = mcAs, in which m is a con-

stant. The boundary conditions are

B.C. 1∶ at t′ = 0, cAs = 0 for all z > 0 (23.6-17)

B.C. 2∶ at z = 0, xA = xA1 for all t′ > 0 (23.6-18)
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Before solving these equations, it is convenient to rewrite them in terms of the following dimen-

sionless variables:

X(r,f) =
xA
xA1

Y(r,f) =
mcAs
xA1

r =
(k0xa)S
WB

z f =
(k0xa)m
(1 − s)

t′ (23.6-19,20,21,22)

In terms of these variables, the differential equations and boundary conditions take the form

𝜕X
𝜕r

= −(X − Y); 𝜕Y
𝜕f

= +(X − Y) (23.6-23,24)

with the boundary conditions Y(r,0) = 0 and X(0,f) = 1.

The solution2 to Eqs. 23.6-23 and 23.6-24 for these boundary conditions is

X(r,f) = 1 − ∫
r

0

e−(f+r)J0(i
√

4fr)dr (23.6-25)

Here J0(ix) is a zero-order Bessel function of the first kind. The Taylor series of J0(ix) is 1 +
1

4
x2 +

1

64
x4 + · · ·, and hence, J0(ix) is a real quantity. This solution is presented graphically in several

available references.3

§23.7 CONCLUDING COMMENTS

In this the third chapter on the macroscopic balances, there are really no new concepts
introduced. The balances given in Chapter 15 are amended to take into account the pres-
ence of more than one chemical species. They are easily restricted to binary systems by
letting the sums on w go from A to B.

The applications of these macroscopic balances lead right into topics treated in chem-
ical engineering under such labels as “material and energy balances,” “process control,”
and “unit operations.”

QUESTIONS FOR DISCUSSION

1. Howare themacroscopic balances formulticomponentmixtures derived?Howare they related

to the equations of change?

2. In Eq. 23.1-1, how are homogeneous and heterogeneous reactions accounted for? What is the

physical meaning of ww,0?

3. Give a specific example of a system in which the last term in Eq. 23.1-4 is zero.

4. In using Table 23.5-1 one normally specifies the directions of the streams (that is, whether they

are input or output streams). How could one proceed if the flow directions change with time?

5. Summarize the calculation procedures for the enthalpyper unitmass, Ĥ = Û + pV̂, in Eq. 23.3-1,

and the partial molar enthalpy in Eq. 23.3-1a. What are these quantities for ideal-gas mixtures?

6. Review the derivation of the mechanical energy balance in §7.7. What would have to be

changed in that derivation, if one wishes to apply it to a nonisothermal, reacting mixture in a

flow system with no mass–transfer surfaces?

7. Towhat extent does this chapter provide the background for studying the unit operations, such

as absorption, extraction, distillation, and crystallization?

8. What changes would have to be made in this chapter to describe processes in a space ship or

on the surface of the moon?

2This result was first obtained by A. Anzelius, Z. angew. Math. u. Mech., 6, 291–294 (1926), for the
analogous problem in heat transfer. See also H. Bateman, Partial Differential Equations of Mathematical
Physics, Dover, New York (1944), pp. 123–125.

3See, for example, O. A. Hougen and K. M. Watson, Chemical Process Principles, Part III, Wiley, New

York (1947), p. 1086. Their y∕y0, bf, and aZ correspond to our X, f, and r.
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PROBLEMS 23A.1 Expansion of a gas mixture: very slow reaction rate. Estimate the temperature and velocity of

the water-gas mixture at the discharge end of the nozzle in Example 23.5-4 if the reaction rate

is very slow. Use the following data: log10Kx = −0.15, C̃p,H2
= 7.217, C̃p,CO2

= 12.995, C̃p,H2O
=

9.861, C̃p,CO = 7.932 (all heat capacities are in Btu∕lb-mol ⋅ ∘F). Is the nozzle exit pressure equal
to the ambient pressure?

Answers: 919.1 K, 1739 ft∕s; yes, the nozzle flow is subsonic

23A.2 Height of a packed-tower absorber. A packed tower of the type described in Example 23.5-2

is to be used for removing 90% of the cyclohexane from a cyclohexane-air mixture by absorp-

tion into a nonvolatile light oil. The gas stream enters the bottom of the tower at a volumetric

rate of 363 ft
3∕min, at 30∘C, and at 1.05 atm pressure. It contains 1% cyclohexane by volume.

The oil enters the top of the tower at a rate of 20 lb-mol∕hr, also at 30∘C, and it contains 0.3%

cyclohexane on a molar basis. The vapor pressure of cyclohexane at 30∘C is 121mm Hg, and

solutions of it in the oil may be considered to follow Raoult’s law.

(a) Construct the operating line for the column.

(b) Construct an equilibrium curve for the range of operation encountered here. Assume the

operation to be isothermal and isobaric.

(c) Determine the interfacial conditions at each end of the column.

(d) Determine the required tower height using Eq. 23.5-24 if k0xa = 0.32 lb-mol∕hr ⋅ ft3, k0ya =
14.2 lb-mol∕hr ⋅ ft3, and the tower cross section S is 2.00 ft2.

(e) Repeat part (d), using Eq. 23.5-25.

Answer: (d) ca. 62 ft; (e) 60 ft

23B.1 Effective average driving forces in a gas absorber. Consider a packed-tower gas absorber of

the type discussed in Example 23.5-2. Assume that the solute concentration is always low and

that the equilibrium and operating lines are both very nearly straight. Under these conditions,

both k0ya and k0xa may be considered constant over the mass-transfer surface.

(a) Show that (YA − YAe) varies linearly with YA. Note that YA is the bulk mole ratio of A in the

gas phase and YAe is the equilibrium gas-phase mole ratio over a liquid of bulk composition

XA (see Fig. 22.4.2).

(b) Repeat part (a) for (YA − YA0).
(c) Use the results of parts (a) and (b) to show that

WAg,0 = (k0ya)ZS(YA0 − YA)ln (23B.1-1)

WAg,0 = (K0
ya)ZS(YAe − YA)ln (23B.1-2)

The overall mass-transfer coefficient K0
y is defined by Eq. 22.4-4. Note that this part of the prob-

lem may be solved by analogy with the development in Example 15.4-1.

23B.2 Expansion of a gas mixture: very fast reaction rate. Estimate the temperature and velocity

of the water-gas mixture at the discharge end of the nozzle in Example 23.5-4 if the reaction

rate may be considered infinitely fast. Use the data supplied in Problem 23A.1 as well as the

following: at 900K, log10Kx = −0.34; H̃H2
= +6340, H̃H2O

(g) = −49,378, H̃CO = −16,636, H̃CO2
=

−83,242 (all enthalpies are given in cal∕g-mol). For simplicity, neglect the effect of temperature

on heat capacity, and assume that log10Kx varies linearly with temperature between 900K and

1000K. The following simplified procedure is recommended:

(a) It may be seen in advance that T2 will be higher than for slow reaction rates, and

hence greater than 920K (see Problem 23A.1). Show that, over the temperature range to be

encountered, H̃ varies very nearly linearly with the temperature according to the expression

(dH̃∕dT)avg ≈ 12.40 cal∕g-mol ⋅ K.

(b) Substitute the result in (a) into Eq. 23.5-60 to show that T2 ≈ 937K.

(c) Calculate H̃1 and H̃2, and show by use of Eq. 23.5-48 that v2 = 1750 ft∕s.
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23B.3 Start-up of a chemical reactor.
(a) Solve Eq. 23.6-5 along with the given initial conditions to show that Eq. 23.6-8 correctly

describes MB,tot as a function of time.

(b) Show that s+ and s− in Eq. 23.6-9 are area real and negative. Hint: show that

(k′′′
1A + k′′′

1B + k′′′
1C)

2 − 4k′′′
1Bk

′′′
1C = (k′′′

1A − k′′′
1B + k′′′

1C)
2 + 4k′′′

1Ak
′′′
1B (23B.3-1)

(c) Obtain expressions forMA,tot and MC,tot as functions of time.

23B.4 Irreversible first-order reaction in a continuous reactor. A well-stirred reactor of volume V
is initially completely filled with a solution of solute A in a solvent S at concentration cA0. At

time t = 0, an identical solution of A in S is introduced at a constant mass flow rate w. A small

constant stream of dissolved catalyst is introduced at the same time, causing A to disappear

according to an irreversible first-order reaction with rate constant k′′′
1

s−1. The rate constant

may be assumed independent of composition and time. Show that the concentration of A in

the reactor (assumed isothermal) at any time is

cA(t)
cA0

=
(
1 −

wt0
iV

)
e−t∕t0 +

wt0
iV

(23B.4-1)

in which t0 = [(w∕iV) + k′′′
1
]−1.

23B.5 Mass and energy balances in an adiabatic splitter. One hundred pounds of 40% by mass of

superheated aqueous ammonia with a specific enthalpy of 420 Btu∕lbm is to be flashed adi-

abatically to a pressure of 10 atm. Calculate the compositions and masses of the liquid and

vapor produced. For the purposes of this problem you may assume that at thermodynamic

equilibrium

log10YNH3
= 1.4 + 1.53 log10XNH3

(23B.5-1)

where YNH3
and XNH3

are the mass ratios of ammonia to water. The enthalpies of saturated

liquid and vapor at 10 atm may be assumed to be

Ĥ = 1210 − 465yNH3
− 115y12

NH3
(23B.5-2)

Btu∕lbm of saturated vapor, and

ĥ = 330 − 950xNH3
+ 740x2

NH3
(23B.5-3)

Btu∕lbm of saturated liquid. Here xNH3
and yNH3

are mass fractions of ammonia.

Answer: P = 36.4 lbm, yP = 0.750, ĤP = 858 Btu∕lbm, W = 63.6 lbm, xW = 0.20, ĥW = 140 Btu∕lbm

23B.6 Flow distribution in an ideal cascade. Determine the upflowing and downflowing stream

flows of individual stages for the ideal cascade described in Example 23.5-3. Express your

results as fractions of the feed rate, and start from the bottom of the cascade (n = 0). Use 9 stages

as the closest integer providing the desired separation. Begin by calculating the upflowing and

downflowing stream compositions and then use the mass balances

Dn+1 = Un +W; xn+1Dn+1 = ynUn + xWW (23B.6-1)

below the feed plate, and the corresponding balances above it. The bottom’s composition (W)
corresponds to mole fractions of x0 = xW = 0.1.

23C.1 Irreversible second-order reaction in an agitated tank. Consider a system similar to that dis-

cussed in Problem 23B.4, except that the solute disappears according to a second-order reaction;

that is, RA,tot = −k′′′
2

Vc2A. Develop an expression for cA as a function of time by the following

method:

(a) Use a macroscopic mass balance on solute A over the tank to obtain a differential equation

describing the evolution of cA with time.
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(b) Rewrite the differential equation and the accompanying initial condition in terms of the

variable

u(t) = cA(t) +
w

2iVk′′′
2

⎛⎜⎜⎝1 +
√

1 +
4iVk′′′

2
cA0

w

⎞⎟⎟⎠ (23C.1-1)

The nonlinear differential equation obtained in this way is a Bernoulli differential equation.
(c) Now put v = 1∕u and perform the integration. Then rewrite the result in terms of the orig-

inal variable cA.

23C.2 Protein purification. It is desired to purify a binary protein mixture using an ideal cascade of

individual ultrafiltration units of the type shown in Fig. 23C.2. The larger of the twomembrane

units is the source of separation and each protein flux across the membrane is expressed by

Ni = civSi (23C.2-1)

where Ni is the transmembrane protein flux of species i, ci is its concentration in the upstream

solution (assumed to be well mixed), v is the transmembrane superficial velocity, and Si is a

protein-specific sieving factor. The smallermembrane unit is solely tomaintain a solvent balance

and can be ignored for the purposes of this problem.

P

Solvent
return

W F = P + W
  zF = yP + xW

F Fig. 23C.2 A membrane-based binary splitter.

(a) Show that the enrichment of protein 1 relative to protein 2 is given by

Y1 = w12X1 (23C.2-2)

where Y1 and X1 are the mole ratios of protein 1 to protein 2 in the product and waste streams,

respectively, and w12 = S1∕S2.

(b) Determine the number of stages required in an ideal cascade to produce 99% pure protein

1 from a 90% feed in 95% yield as a function of w12. It is suggested that w12 be considered as

having a range of 2 to 200.

(c) Calculate the output concentrations, yield, and stream flow rates for a three-state cascade,

with w12 = 40, and with a feed of 90% purity to the middle stage.
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Chapter 24

Other Mechanisms
for Mass Transport

§24.1○ Nonequilibrium thermodynamics

§24.2○ Concentration diffusion and driving forces

§24.3○ Thermal diffusion and the Clusius-Dickel column

§24.4○ Pressure diffusion and the ultracentrifuge

§24.5○ Ion fluxes and the Nernst-Planck equation

§24.6○ Multicomponent systems; the Maxwell-Stefan equations

§24.7○ Concluding comments

In Part I, Chapters 1 to 7 were concerned with Newton’s “law” of viscosity, but Chapter 8
dealtwith “non-Newtonian fluids.” In Part II, Chapters 9 to 15 described the consequences
of Fourier’s “law” of heat conduction, but Chapter 16 was about an entirely different
mechanism, namely “radiation.” In Part III, Chapters 17 to 23 concerned themselves with
the movement of masses of chemical species according to Fick’s “law” of diffusion. It was
mentioned in Chapter 19 that mass could also be transported by a temperature gradient,
by a pressure gradient, and by external forces acting on the various species. This chapter
describes these mechanisms of mass transport. We conclude the chapter with a brief
discussion of multicomponent systems.

§24.1 NONEQUILIBRIUM THERMODYNAMICS

The topics to be discussed here have been organized under the general heading of nonequi-
librium thermodynamics. This subject is a generalization of classical thermodynamics, the
latter being restricted to systems at equilibrium. It was Onsager1 who first developed this
subject, which has found many applications in physics, chemistry, and biology. Onsager’s
theory is, however, restricted to “linear laws,” such as Newton’s law of viscosity, Fourier’s
law of heat conduction, and Fick’s (first) law of diffusion. If onewishes to consider nonlin-
ear relationships (non-Newtonian fluids being a good example), then one has to use some
kind of more general theory. At the moment, the general formalism of Öttinger is perhaps

1Nobel Laureate Lars Onsager (1903–1976) studied chemical engineering at the Technical University

of Norway in Trondheim. After working with Peter Debye in Zürich for two years, he held teaching

positions at several universities before moving on to Yale University. His famous work on the

thermodynamics of irreversible processes, which led to the Nobel Prize, can be found in L. Onsager, Phys.
Rev., 37, 405–426 (1931); 38, 2265–2279 (1931).

670
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the best approach.2 In this chapter we consider only the Onsager theory, which has been
discussed elsewhere for binary systems3 and multicomponent systems.4,5,6

In the nonequilibrium thermodynamics approach, one starts by writing down the
equation of change for entropy

i
DŜ
Dt

= −(∇ ⋅ s) + gS (24.1-1)

in which Ŝ is the entropy per unit mass of a multicomponent fluid, s is the entropy flux
vector, and gS is the rate of entropy production per unit volume. It can be shown that, for
a binary system,3

s = 1

T
q(h) +

(
SA
MA

−
SB
MB

)
jA (24.1-2)

TgS = −(q(h) ⋅ ∇ lnT) − cRT
iaAaB

(jA ⋅ dA) − (f ∶ ∇v) −

(
GA

MA
−

GB

MB

)
rA (24.1-3)

In these equations q(h) is the heat flux with the diffusional enthalpy flux (which involves
no temperature gradient) subtracted off

q(h) = q −

(
HA

MA
−

HB

MB

)
jA (24.1-4)

The vector dA is the generalized driving force for the diffusion of component A, which
consists of an activity gradient, a pressure gradient, and a difference between the external forces
acting on the two species

dA = xA∇ ln aA + 1

cRT
(dA − aA)∇p +

iaAaB

cRT
(gB − gA) (24.1-5)

Here aA is the activity of species A, dA = cAVA is the volume fraction of species A, and
gA is the external force per unit mass acting on species A. In the operation ∇ ln aA, it is
understood that the derivative is to be taken at constant T and p.

The entropy production term in Eq. 24.1-3 is made up of the products of fluxes and
driving forces. The first two terms involve vector fluxes and vector forces. The following
term involves a tensor flux and a tensor driving force, and the last termhas a scalar driving
force and a scalar flux. According to Curie’s law, there will be coupling between the fluxes
and forces of the same tensorial order, or between the fluxes and forces of orders that differ
by two. That means that the first two fluxes will have the form

q(h) = −w00∇ lnT − w0AdA (24.1-6)

jA = −wA0∇ lnT − wABdA (24.1-7)

According to Onsager’s reciprocal relations the off-diagonal terms of the 2 x 2 w-matrix are
related (w0A = (cRT∕iA)wA0).

2H. C. Öttinger, Beyond Equilbrium Thermodynamics, Wiley, New York (2005).
3L. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd edition, Pergamon Press, Oxford (1987).
4J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, second

corrected printing, Wiley, New York (1964), Chapter 11; C. F. Curtiss and R. B. Bird, Ind. Eng. Chem.
Research, 38, 2515–2522 (1999), errata 40, 1791 (2001); R. B. Bird, W. E. Stewart, and E. N. Lightfoot,

Transport Phenomena, revised 2nd edition, Wiley, New York (2007), Chapter 24;
5S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, 3rd edition,

Cambridge University Press (1970), p. 274.
6R. B. Bird and D. J. Klingenberg, Advances in Water Resources, 62, 238–242 (2013); errata: in Eq. 3.15,

awav on the right side should be in the denominator instead of the numerator; also, in the first sentence

of Sec. 4, the reference should be to Eq. 3.15 rather than Eq. 3.13.



Trim Size: 8in x 10in Bird1e c24.tex V1 - October 21, 2014 4:28 P.M. Page 672

672 Chapter 24 Other Mechanisms for Mass Transport

The expression for the mass flux becomes

jA = −DT
A∇ lnT − i

aAaB

xAxB
DABdA (24.1-8)

Here DAB is theMaxwell-Stefan diffusivity (different from the Fick diffusivity𝒟AB) and DT
A

is the thermal diffusion coefficient. Then, after some manipulation, one can arrive at the fol-
lowing expressions for the heat and mass flux vectors for a binary system:

jA = −i
aAaB

xAxB
DAB

⎡⎢⎢⎢⎣
xA

(
∇ ln aA

)
p,T + 1

cRT

(
dA − aA

)
∇p

+
iaAaB

cRT

(
gB − gA

)
+ kT∇ lnT

⎤⎥⎥⎥⎦ (24.1-9)

q = −k∇T +

(
HA

MA
−

HB

MB

)
jA + 2

cRT
i

xAxB
aAaB

DT
A

DAB
jA (24.1-10)

Note that J*A can also be obtained using J*A∕cxAxB = jA∕iaAaB (see Table 17.3-1).
Equation 24.1-9 states that a flux of mass of species A can result from a gradient in the

Table 24.1-1. Experimental Thermal Diffusion Ratios

for Liquids and Low-Density Gas Mixtures

Liquids:a

Components A–B T(K) xA kT
C2H2Cl4–n-C6H14 298 0.5 1.08

C2H4Br2–C2H4Cl2 298 0.5 0.225

C2H2Cl4–CCl4 298 0.5 0.060

CBr4–CCl4 298 0.09 0.129

CCl4–CH3OH 313 0.5 1.23

CH3OH–H2O 313 0.5 −0.137
cyclo-C6H12–C6H6 313 0.5 0.100

Gases:

Components A–B T(K) xA kT
Ne–Heb 330 0.80 0.0531

0.40 0.1004

N2–H2
c 264 0.706 0.0548

0.225 0.0663

D2–H2
d 327 0.90 0.0145

0.50 0.0432

0.10 0.0166

aR. L. Saxton, E. L. Dougherty, and H. G. Drickamer, J. Chem.
Phys., 22, 1166–1168 (1954); R. L. Saxton and H. G. Drickamer,

J. Chem. Phys., 22, 1287–1288 (1954); L. J. Tichacek, W. S. Kmak,

and H. G. Drickamer, J. Phys. Chem., 60, 660–665 (1956).
bB. E. Atkins, R. E. Bastick, and T. L. Ibbs, Proc. Roy. Soc.
(London), A172, 142–158 (1939).
cT. L. Ibbs, K. E. Grew, and A. A. Hirst, Proc. Roy. Soc. (London),
A173, 543–554 (1939).
dH. R. Heath, T. L. Ibbs, and N. E. Wild, Proc. Roy. Soc. (London),
A178, 380–389 (1941).
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activity of A (ordinary diffusion), from a pressure gradient (pressure diffusion), from
external force inequalities (forced diffusion), and from a gradient in the temperature
(the latter is the thermal diffusion effect or the Soret effect). Equation 24.1-10 states that a heat
flux can result from a temperature gradient (thermal conduction), from heat transport
associated with the mass transport, and finally a presumably small contribution due
to the diffusion thermo effect or the Dufour effect. The thermal diffusion coefficient DT

A is
usually replaced by the thermal diffusion ratio kT, defined by

kT =
DT

A

iDAB

xAxB
aAaB

(24.1-11)

When kT is positive, species A moves toward the colder region, and when it is negative,
speciesAmoves toward thewarmer region. Some sample values of kT for gases and liquids
are given in Table 24.1-1. Finally, we note that Eq. 24.1-10 is the origin of Eq. 19.3-3.

For binary mixtures of dilute gases, it is found by experiment that the species with
the larger molecular weight usually goes to the colder region. If the molecular weights
are about equal, then usually the species with the largest diameter moves to the colder
region. In some instances there is a change in the sign of the thermal diffusion ratio as the
temperature is lowered.5

In the next few sections we give some examples of applications of Eq. 24.1-9.

§24.2 CONCENTRATION DIFFUSION AND DRIVING FORCES

In Chapter 17 we wrote Fick’s first law by stating that the mass (or molar) flux is propor-
tional to the gradient of the mass (or mole) fraction. This is summarized in Table 17.3-1.

On the other hand, in Eq. 24.1-9, it appears that the thermodynamics of irreversible
processes dictates using the activity gradient as the driving force for concentration diffu-
sion. In this sectionwe show that either the activity gradient or themass (or mole) fraction
gradient driving force may be used, but that each choice requires a different diffusivity.
These two diffusivities are related, and we illustrate this for a binary mixture.

Whenwe drop the pressure-, thermal-, and forced-diffusion terms from Eq. 24.1-9, we
get in molar units (using Eq. (I) of Table 17.3-1)

J*A = −cDABxA∇ ln aA (24.2-1)

This may be rewritten by making use of the fact that the activity is a function of the con-
centration to obtain

J*A = −cDABxA

(
𝜕 ln aA
𝜕 ln xA

)
T,p
∇ ln xA = −cDAB

(
𝜕 ln aA
𝜕 ln xA

)
T,p
∇xA (24.2-2)

The activity may be written as the product of the activity coefficient and the mole fraction,
aA = uAxA, so that

J*A = −cDAB

[
1 +

(
𝜕 ln uA
𝜕 ln xA

)
T,p

]
∇ xA (24.2-3)

If the mixture is “ideal,” then the activity coefficient is equal to unity, and Eq. 24.2-1
becomes the same as Eq. (G) of Table 17.3-1, and DAB = 𝒟AB.

If the mixture is “nonideal,” one can define the binary diffusivity 𝒟AB as

𝒟AB = DAB

(
𝜕 ln aA
𝜕 ln xA

)
T,p

= DAB

[
1 +

( 𝜕 ln uA
𝜕 ln xA

)
T,p

]
(24.2-4)

Then Eqs. 24.2-2 and 24.2-3 become

J*A = −c𝒟AB∇xA (24.2-5)
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which is one of the forms of Fick’s law (see Eq. (G) of Table 17.3-1). In order to measure

DAB, one has to have measurements of the activity as a function of concentration, and for
this reason DAB has not been popular.

For ideal mixtures 𝒟AB and DAB are identical, and they are linear functions of the
mole fraction as shown in Fig. 24.2-1. For nonideal mixtures 𝒟AB and DAB are different
nonlinear functions of the mole fraction; an example is shown in Fig. 24.2-2. However,
it has been observed that the product 4DAB has been found for some nonideal mixtures

Mole fraction xA
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b: Toluene (A) – Carbon tetrachloride (B)
c: Decane (A) – Hexadecane (B)

(a)

(b)

(c)

D

Fig. 24.2-1. Diffusivity in ideal liquid

mixtures at 25∘C. [P. W. M. Rutten,

Diffusion in Liquids, Delft University

Press (1992), p. 31.]
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Fig. 24.2-2. Diffusivity in a nonideal

liquid mixture (acetone–chloroform

at 25∘C). [P. W. M. Rutten, Diffusion in
Liquids, Delft University Press (1992),

p. 32.]
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Mole fraction ether
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D
Fig. 24.2-3. Effect of activity on the product of viscosity and

diffusivity for liquid mixtures of chloroform and diethyl

ether. [R. E. Powell, W. E. Roseveare, and H. Eyring, Ind.
Eng. Chem., 33, 430–435 (1941).]
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to be very nearly linear in the mole fraction, whereas 4𝒟AB is not (see Fig. 24.2-3). There
is no compelling reason to prefer one diffusivity over the other. Most of the diffusivities
reported in the literature are𝒟AB, and not DAB.

§24.3 THERMAL DIFFUSION AND THE CLUSIUS-DICKEL COLUMN

In this section we discuss the diffusion of species under the influence of a temperature gra-
dient. To illustrate the phenomenon, we consider the system shown in Fig. 24.3-1, two
bulbs joined together by an insulated tube of small diameter and filled with a mixture of
ideal gases A and B. The bulbs are maintained at constant temperatures of T1 and T2,
respectively, and the diameter of the insulated tube is small enough to eliminate con-
vection currents substantially. Ultimately the system arrives at a steady state, with gas
A enriched at one end of the tube and depleted at the other. We want to find an expression
for xA2 − xA1, the difference of the mole fractions at the two ends of the tube.

After steady state has been achieved, there is no net motion of either A or B, so that
J*A = 0. If we take the tube axis to be in the z direction, then from Eq. 24.1-9 we get

dxA
dz

+
kT
T

dT
dz

= 0 (24.3-1)

Here the activity aA has been replaced by the mole fraction xA, as is appropriate for an
ideal-gas mixture. Usually the degree of separation in an apparatus of the kind being con-
sidered here is small.Wemay therefore ignore the position dependence of kT and integrate
this equation to get

xA2 − xA1 = −∫
T2

T1

kT
T

dT (24.3-2)

Because the dependence of kT on T is rather complicated, it is customary to assume kT
constant at the value for some mean temperature Tm. Performing the integral in Eq. 24.3-2
then gives (approximately)

xA2 − xA1 = −kT(Tm) ln
T2

T1

(24.3-3)

The recommended1 mean temperature is

Tm =
T1T2

T2 − T1

ln
T2

T1

(24.3-4)

Equations 24.3-3 and 24.3-4 are useful for estimating the order of magnitude of thermal
diffusion effects.

Unless the temperature gradient is very large, the separation will normally be quite
small. Therefore, it has been advantageous to combine the thermal diffusion effect with
free convection between two vertical walls, one heated and the other cooled. The heated
stream then ascends, and the cooled one descends. The upward streamwill be richer in one

This bulb maintained
at temperature T1

This bulb maintained
at temperature T2

Insulation Fig. 24.3-1. Steady-state binary thermal

diffusion in a two-bulb apparatus. The

mixture of gases A and B tends to separate

under the influence of the thermal gradient.

1H. Brown, Phys. Rev., 58, 661–662 (1940).
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of the components, say A, and the downward stream will be richer in B. This is the prin-
ciple of the operation of the Clusius-Dickel column.2−4 By coupling many of these columns
together in a “cascade,” it is possible to perform a separation. During World War II
this was one of the methods used for separating the uranium isotopes by using uranium
hexafluoride gas. The method has also been used with some success in the separation of
organic mixtures, where the components have very nearly the same boiling points, so
that distillation is not an option.

The thermal diffusion ratio can also be obtained from the Dufour (diffusion-thermo)
effect, but the analysis of the experiment is fraughtwith problems and experimental errors
difficult to avoid.5

§24.4 PRESSURE DIFFUSION AND THE ULTRACENTRIFUGE

Next we examine the diffusion produced by a pressure gradient. If a sufficiently large
pressure gradient can be established, then a measurable separation can be effected. One
example of this is the ultracentrifuge, which has been used to separate enzymes and
proteins. In Fig. 24.4-1 we show a small cylindrical cell in a very high-speed centrifuge.
The length of the cell, L, is short with respect to the radius of rotation R0, the solution
density may be considered a function of composition only, and the temperature is
constant. It is desired to determine the distribution of the two components at steady state
in terms of their partial molar volumes, position in the cell, the pressure gradient, and the
angular velocity of rotation of the rotating element, 1. The pressure gradient is obtained
from the equation of motion as

dp
dz

= ig1 ≈ −i12R0 (24.4-1)

For simplicity, we assume that the partial molar volumes and the activity coefficients are
constant over the range of compositions existing in the cell.

At steady state J*A = 0, and hence the relevant terms in Eq. 24.1-9 give for species A

dxA
dz

+
MAxA
RT

(
VA

MA
− 1

i

)
dp
dz

= 0 (24.4-2)

z = L

z = 0

Mixture of A and B
in diffusion cell

z

R0

Ω

Fig. 24.4-1. Steady-state pressure diffusion in a

centrifuge. The mixture in the diffusion cell tends to

separate by virtue of the pressure gradient

produced in the centrifuge.

2K. Clusius and G. Dickel, Z. Phys. Chem., B44, 397–450, 451–473 (1939).
3K. E. Grew and T. L. Ibbs, Thermal Diffusion in Gases, Cambridge University Press (1952); K. E. Grew,

in Transport Phenomena in Fluids (H. J. M. Hanley, ed.), Marcel Dekker, New York (1969), Chapter 10.
4R. B. Bird, Advances in Chemical Engineering, 1, 155–239 (1956), §4.D.2; errata, 2, 325 (1958).
5S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases, 3rd edition,

Cambridge University Press (1970), pp. 268–271.
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Inserting the appropriate expression for the pressure gradient, and then multiplying by
(VB∕xA) dz, we get for species A

VB
dxA
xA

= −VB
g1
RT

(iVA −MA)dz (24.4-3)

Then we write a similar equation for species B, which is

VA
dxB
xB

= −VA
g1
RT

(iVB −MB)dz (24.4-4)

Subtracting Eq. 24.4-4 from Eq. 24.4-3 we get

VB
dxA
xA

− VA
dxB
xB

=
g1
RT

(MAVB −MBVA)dz (24.4-5)

We now integrate this equation from z = 0 to some arbitrary value of z, taking account of
the fact that the mole fractions of A and B at z = 0 are xA0 and xB0, respectively. This gives

VB∫
xA

xA0

dxA
xA

− VA∫
xB

xB0

dxB
xB

=
MAVB −MBVA

RT ∫
z

0

g1 dz (24.4-6)

If g1 is constant over the range of integration (which it normally would be), then we get

VB ln
xA
xA0

− VA ln
xB
xB0

=
MAVB −MBVA

RT
g1z (24.4-7)

Then we take the exponential of both sides to find(
xA
xA0

)VB
(
xB0
xB

)VA

= exp

[(
MBVA −MAVB

)(
R012z
RT

)]
(24.4-8)

This describes the steady-state concentration distribution for a binary system in a constant
centrifugal force field. Notice that, since this result contains no transport coefficients at all,
the same result can be obtained by an equilibrium thermodynamics analysis.1 However,
if one wishes to analyze the time-dependent behavior of a centrifugation, then the diffu-
sivity for the mixture A-B will appear in the result, and the problem cannot be solved by
equilibrium thermodynamics.

§24.5 ION FLUXES AND THE NERNST-PLANCK EQUATION

We next consider the diffusion of electrolytes in a solution. This brings us immediately
into a multicomponent problem. Here, however, we consider just a very dilute solution,
in which one species (A) is an ion, and the only other species is the solvent (B). Then we
can omit the term gB and set aB equal to unity.

Then, in the absence of pressure diffusion and thermal diffusion, Eq. 24.1-9 becomes
for ionic species A

jA = −i
aAaB

xAxB
DAB

[
xA

(
∇ ln aA

)
p,T −

iaA

cRT
gA

]
(24.5-1)

Since the ionic species A is quite dilute, we may make the assumption that aA is not very
different from xA so that

J*A = −c𝒟AB

[
∇xA −

iA
cRT

gA
]

(24.5-2)

1E. A. Guggenheim, Thermodynamics, North Holland, Amsterdam (1950), pp. 356–360.
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The force on the ion may be given as gA = −(zAF∕MA)∇d, where zA is the valence of the
ion (positive or negative), F = 96845 abs.-coulombs∕g-equivalent is the Faraday constant,
MA is the molecular weight of the ion, and d is the electric potential. When this is inserted
into Eq. 24.5-2, we get

J*A = −c𝒟AB

[
∇xA +

iA
cRT

(
zAF
MA

)
∇d

]
= −c𝒟AB

[
∇xA +

xA
RT

zAF∇d
]

(24.5-3)

Finally, since c is very nearly a constant in this dilute solution, the expression for themolar
flux can be rewritten as

J*A = −𝒟AB

[
∇cA + cAzA

( F
RT

)
∇d

]
(24.5-4)

which is called theNernst-Planck equation. This can be regarded as amodification of Fick’s
first law for an ionic species in a dilute solution of electrolyte.

§24.6 MULTICOMPONENT SYSTEMS; THE MAXWELL-STEFAN
EQUATIONS

For systems with N chemical species, the story is very similar to that in §24.1, but consid-
erably more complicated. Here we content ourselves with giving only the main results.
Detailed treatments are given elsewhere.1,2

The expressions for the entropy flux s and entropy production rate per unit volume
gS are generalizations of Eqs. 24.1-2 and 24.1-3:

s = 1

T

(
q(h) −

N∑
w=1

TSw
Mw

jw

)
(24.6-1)

TgS = −(q(h) ⋅ ∇ lnT) −
N∑
w=1

(
jw
iw

⋅ cRTdw

)
− (f : ∇v) −

N∑
w=1

Gw

Mw

rw (24.6-2)

where q(h) = q −
N∑
w=1

(Hw∕Mw)jw, and the generalized driving force is

cRTdw = cwRT
N−1∑
v=1

(
𝜕 ln av
𝜕av

)
T,p,a

∇av + (dw − aw)∇p − iwgw + aw

N∑
v=1

ivgv (24.6-3)

We next write down the appropriate generalization of Eqs. 24.1-6 and 24.1-7 and apply the
Onsager reciprocal relations. This gives the fluxes in terms of the driving forces

jw = −DT
w∇ lnT + iw

N∑
v=1

𝔻wvdv w = 1,2,3,…, N (24.6-4)

These are the generalized Fick equations, and the 𝔻wv are the multicomponent Fick diffusivities
(which are not the same as the binary diffusivities). These equations can be inverted to

1J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, Wiley,

New York (1954), second corrected printing (1964), Chapter 11; S. R. de Groot and P. Mazur,

Non-Equilibrium Thermodynamics, North Holland, Amsterdam (1962); R. B. Bird, W. E. Stewart, and

E. N. Lightfoot, Transport Phenomena, revised 2nd edition, Wiley, New York (2007), Chapter 24.
2R. B. Bird and D. J. Klingenberg, Advances in Water Resources, 62, 238–242 (2013); errata: in Eq. 3.15,

awav on the right side should be in the denominator instead of the numerator; also, in the first sentence

of Sec. 4, the reference should be to Eq. 3.15 rather than Eq. 3.13.
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give the driving forces in terms of the fluxes3

dw = −
N∑
v≠w

xwxv
Dwv

(
DT

w

iw
−

DT
v

iv

)
∇ lnT −

N∑
v≠w

xwxv
Dwv

(
jw
iw

−
jv
iv

)
w = 1,2,3,…, N (24.6-5)

These are the generalized Maxwell-Stefan equations, and the Dwv are the multicomponent
Maxwell-Stefan diffusivities. Equations 24.6-4 and 24.6-5 are the generalizations of Eqs. (A)
and (C) of Table 17.4-2. The 𝔻wv and Dwv are interrelated by the Curtiss-Bird equation4

Dwv =
xwxv
awav

∑
u≠w

𝔻wu(adj Bw)uv∑
u≠w

(adj Bw)uv
w,v = 1,2,3,…, N (24.6-6)

in which (Bw)vu = −𝔻vu + 𝔻wu—that is, the vu component of a matrix called Bw, which is
of order (N − 1) × (N − 1) with the v = w row and the u = w column being excluded—and
adj Bw is the matrix adjoint to Bw.

For an isothermal mixture of low-density gases, the Dwv are, to a very good approxi-
mation, the same as𝒟wv. If there is no thermal, pressure, or forced diffusion, then Eq. 24.6-5
reduces to

∇xw = −
N∑
v=1

xwxv
𝒟wv

(
vw − vv

)
= −

N∑
v=1

1

c𝒟wv

(
xvNw − xwNv

)
w = 1,2,3,…, N (24.6-7)

Here the𝒟wv are the binary diffusivities given in Chapter 17. Equations 24.6-7 are referred

to as the Maxwell-Stefan equations, since Maxwell5 suggested them for binary mixtures,
and Stefan6 proposed extending the binary equation to multicomponent mixtures.

Because of the difficulty in getting analytical solutions to the Maxwell-Stefan
equations, various approximate methods have been suggested. One such method, first
suggested by Hougen and Watson,7 is the following: for the diffusion of species i in the
multicomponent mixture, we write

Ni = −c𝒟im∇xi + xi

N∑
w=1

Nw (24.6-8)

by analogy with the binary expression in Eq. (E) of Table 17.4-2. Then we solve Eq. 24.6-8
for ∇xi and equate the result to ∇xi from Eq. 24.6-7 in the Maxwell-Stefan equations to get
for collinear molar fluxesNw,

1

c𝒟im
=

N∑
w=1

(1∕c𝒟iw)(xwNi − xiNw)

Ni − xi

N∑
w=1

Nw

(24.6-9)

In general, the 𝒟im are functions of position. For situations in which this dependence
is slight, we may generalize the binary diffusion formulas and mass-transfer coefficient

3This kind of inversion was first performed by H. J. Merk, Appl. Sci. Res., A8, 73–99 (1959), when he

was a graduate student in engineering physics at the Technical University of Delft.
4C. F. Curtiss and R. B. Bird, Ind. Eng. Chem. Research, 38, 2515–2522 (1999); errata 40, 1791 (2001).
5J. C. Maxwell, Phil. Mag., XIX, 19–32 (1860), XX, 21–32, 33–36 (1868).
6J. Stefan, Sitzungsber. Kais. Akad. Wiss. Wien, LXIII(2), 63–124 (1871), LXV(2), 323–363 (1872).
7O. A. Hougen and K. M. Watson, Chemical Process Principles, Vol. III, Wiley, New York (1947),

pp. 977–979. Methods for evaluating𝒟im for special cases have been developed by C. R. Wilke, Chem.
Engr. Prog., 46, 95–104 (1950) and W. E. Stewart, NACA Tech. Note 3208 (1954).
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correlations by simply replacing𝒟AB by𝒟im. For some special kinds of diffusing systems,
Eq. 24.6-9 becomes particularly simple:

a. For trace components 2,3,…, N in nearly pure 1,

𝒟im = 𝒟i1 (24.6-10)

b. For systems in which the𝒟iw are all the same,

𝒟im = 𝒟iw (24.6-11)

c. For systems in which 2,3,…, N move with the same velocity or are stationary,

1 − x1
𝒟1m

=
N∑
w=2

xw
𝒟1w

(24.6-12)

For systems in which the variation of𝒟im is considerable, the assumption of linear varia-
tion with composition or distance has proven useful.8 The𝒟im approach to solving multi-
component problems seems to give pretty good results for calculatingmass-transfer rates,
but a less satisfactory quantitative description of concentration profiles.

EXAMPLE 24.6-1

Diffusion in a
Three-Component
Gas System

To illustrate the setting up of multicomponent diffusion problems for gases, we rework the
problem of §18.6 when liquid water (species 1) is evaporating into air, regarded as a binary
mixture of nitrogen (2) and oxygen (3) at 1 atm and 352K. We take the air-water interface to be
at z = 0 and the top end of the diffusion tube to be at z = L. We consider the vapor pressure of
water to be known, so that x1 is known at z = 0 (that is, x10 = 341 mmHg∕760 mmHg = 0.449),
and the mole fractions of all three gases are known at z = L: x1L = 0.10, x2L = 0.75, x3L = 0.15.
The diffusion tube has a length L = 11.2 cm.

The conservation of mass leads, as in §18.6, to the following expressions:

dNwz

dz
= 0 w = 1,2,3 (24.6-13)

From this it may be concluded that the molar fluxes of the three species are all constants at
steady state. Since species 2 and 3 are not moving, we conclude that N2z and N3z are both zero.

Next we need the expressions for the molar fluxes from Eq. 24.6-7. Since x1 + x2 + x3 = 1,
we need only two of the three available equations, and we select the equations for species 2
and 3. Since N2z = 0 and N3z = 0, these equations simplify considerably:

dx2
dz

=
N1z

c𝒟12

x2;
dx3
dz

=
N1z

c𝒟13

x3 (24.6-14,15)

Note that the diffusivity𝒟23 does not appear here, because there is no relativemotion of 2 and 3.
These equations can be integrated from an arbitrary height z to the top of the tube at L, to give
for constant c𝒟wv

∫
x2L

x2

dx2
x2

=
N1z

c𝒟12
∫

L

z
dz; ∫

x3L

x3

dx3
x3

=
N1z

c𝒟13
∫

L

z
dz (24.6-16,17)

Integration then gives

x2
x2L

= exp

(
−
N1z (L − z)

c𝒟12

)
;

x3
x3L

= exp

(
−
N1z (L − z)

c𝒟13

)
(24.6-18,19)

and the mole fraction profile of water vapor in the diffusion column will be

x1 = 1 − x2L exp
(
−
N1z (L − z)

c𝒟12

)
− x3L exp

(
−
N1z (L − z)

c𝒟13

)
(24.6-20)

8H. W. Hsu and R. B. Bird, AIChE Journal, 6, 551–553 (1960).
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When we apply the boundary condition at z = 0, we get

x10 = 1 − x2L exp
(
−
N1zL
c𝒟12

)
− x3L exp

(
−
N1zL
c𝒟13

)
(24.6-21)

which is a transcendental equation for N1Z.

According to Reid, Prausnitz, and Poling,9 𝒟12 = 0.364 cm2∕s and 𝒟13 = 0.357 cm2∕s at

352K and 1 atm. At these conditions c = 3.46 × 10−5 g-mol∕cm3. To get a quick solution to

Eq. 24.6-21, we take both diffusivities to be equal10 to 0.36 cm2∕s. Then we get

0.449 = 1 − 0.90 exp

(
−

N1z (11.2)
(3.462 × 10−5)(0.36)

)
(24.6-22)

from which it is found that N1z = 5.523 × 10−7g-mol∕cm2 ⋅ s. This can be used as a first guess

in solving Eq. 24.6-21 more exactly, if desired. Then the entire profiles can be calculated from

Eqs. 24.6-18 to 24.6-20.

§24.7 CONCLUDING COMMENTS

This chapter has been a very brief, introductory discussion of the use of the thermodynam-
ics of irreversible processes to describe the coupling of the heat andmass flux vectors.Most
of our attention has been focused on the mass flux vector and the various types of driving
forces that can produce a species mass flux. According to Curie’s law, there is a coupling
between the momentum-flux tensor and the chemical reaction rate, but no discussion of
this has been given.

If one really wants to delve into the thermodynamic approach to transport phenom-
ena,multicomponent systems have to be dealt with. This is particularly true for electrolyte
and colloidal systems, where the systems are necessarilymulticomponent in nature. How-
ever, that is not a subject for an introductory text such as this.

This chapter has concerned itself only with the basic ideas of the subject. The
reader should now be aware that thermal, pressure, and forced diffusion are part of the
subject of mass transport. For multicomponent systems, there is a set of equations—
the Maxwell-Stefan equations—that describe the diffusion in systems of three and more

chemical species. If there are n chemical species, there will be 1

2
n(n − 1) diffusivities

Dwv. These multicomponent equations admit analytical solutions only for a few simple
problems.

QUESTIONS FOR DISCUSSION

1. Name the four kinds of mass transport that are discussed in this chapter.

2. Do any new transport properties have to be defined in the chapter?

3. Discuss briefly the operation of a Clusius-Dickel column.

4. Discuss the operation of an ultracentrifuge.What kinds of materials may be fractionated in this

kind of instrument?

5. What is the difference between ordinary (equilibrium) thermodynamics and nonequilibrium

thermodynamics?

6. Discuss theMaxwell-Stefan equations, their origin, their use, and themethods of solving them.

9R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th edition,

McGraw-Hill, New York (1987), p. 591.
10The solution to ternary diffusion problems in which two of the binary diffusivities are equal was

discussed by H. L. Toor, AIChE Journal, 3, 198–207 (1957).
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PROBLEMS 24A.1 Thermal diffusion.
(a) Estimate the steady-state separation of H2 andD2 occurring in the simple thermal diffusion

apparatus shown in Fig. 24.3-1 under the following conditions: T1 is 200 K, T2 is 600 K, themole

fraction of D2 is initially 0.10, and the effective average kT is 0.0166.

(b) At what temperature should this average kT have been evaluated?

Answers: (a) The mole fraction of H2 is higher by 0.0183 in the hot bulb; (b) 330 K

24A.2 Ultracentrifugation of proteins. Estimate the steady-state concentration profilewhen a typical

albumin solution is subjected to a centrifugal field 50,000 times the gravitational acceleration

under the following conditions:

Cell length = 1.0 cm

Molecular weight of albumin = 45,000 g∕g-mol

Apparent density of albumin in solution = MA∕VA = 1.34 g∕cm3

Mole fraction of albumin (at z = 0), xA0 = 5 × 10−6

Apparent density of water in the solution = 1.00 g∕cm3

Temperature = 75∘F

Answer: xA = 5 × 10−6 exp(−22.7z), with z in cm

24B.1 Catalytic oxidation of carbon monoxide. Figure 24B.1 shows schematically how oxygen and

carbonmonoxide combine at a catalytic surface (palladium) tomake carbon dioxide, according

to the technologically important reaction1

O2 + 2CO → 2CO2 (24B.1-1)

Assume that the reaction occurs instantaneously and irreversibly at the catalytic surface. The

gas composition at the outer edge of the film (at z = 0) is presumed known, and the catalyst

surface is at z = t. The temperature and pressure are assumed to be independent of position

throughout the film. Label the species as follows: O2 = 1, CO = 2, and CO2 = 3.

(a) Show that the molar fluxes are constant across the film, and that the stoichiometry dictates

that N1z =
1

2
N2z = − 1

2
N3z.

(b) Show that the Maxwell-Stefan equations give

dx3
dz

= −
N3z

c𝒟13

(
1 + 1

2
x3
)

(24B.1-2)

dx1
dz

=
N3z

2c𝒟12

(1 − 3x1 − x3) +
N3z

2c𝒟13

(2x1 + x3) (24B.1-3)

In Eq. 24B.1-2 we have made the approximation that 𝒟23 ≈ 𝒟13; justify this by getting

g13, g23, s13, and s23 from the table of Lennard-Jones potential parameters.

Outer edge of
stagnant gas film
consisting of

O2, CO and CO2

Catalytic
surface where

O2 + 2CO  2CO2
occurs

z = 0

z = δ

O2

CO2 CO2

CO CO

Fig. 24B.1 Three-component

system with a catalytic

chemical reaction.

1B. C. Gates, Catalytic Chemistry, Wiley, New York (1992), pp. 356–362; C. N. Satterfield,

Heterogeneous Catalysis in Industrial Practice, 2nd edition, McGraw-Hill, New York (1991), Chapter 8.
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(c) Integrate2 Eq. 24B.1-2, and then combine the result with Eq. 24B.1-3. Integrate the resulting

equation to get x1(z).
(d) From x1(z) and a similar result for x2(z) obtain x3 at z = t.

(e) Finally, solve the equation for x3(t) to get N3z(t), which is the rate of production of carbon

dioxide at the catalytic surface.

24C.1 The Lightfoot form for theMaxwell-Stefan equations. Wewant to develop an expression for

the mass flux alternative to that given in Eq. 24.6-5, which may be rewritten as

N∑
v=1
v≠w

xwxv
Dwv

(
vw − vv

)
= −xw

(
∇ ln xw

)
T,p

− 1

cRT

[(
dw − aw

)
∇p − iwgw + aw

N∑
v=1

ivgv

]
(24C.1-1)

First, verify that we may rewrite the left side of this equation as

N∑
v=1
v≠w

xwxv
Dwv

(
vw − vv

)
=

N∑
v=1
v≠w

xwxv
Dwv

(
vu − vv

)
+ xw

(
vw − vu

) N∑
v=1
v≠w

xv
Dwv

(24C.1-2)

Next write the sum in the second term as a sum over all v, and then add a term to compensate

for the error introduced to get
N∑
v=1
v≠w

xv
Dwv

=
N∑
v=1
all v

xv
Dwv

−
xw
Dww

(24C.1-3)

Note that this change has introduced into the sum over all v a term containing Dww, which has

never been defined, because it was not needed. Therefore, we are free to defineDww in any way

we choose. Let us choose the following definition:

xw
Dww

= −
N∑
v=1
v≠w

xv
Dwv

or

N∑
v=1
all v

xv
Dwv

= 0 (24C.1-4a,4b)

Then verify that Eq. 24C.1-1 becomes

N∑
v=1
all v

xwxv
Dwv

(
vu − vv

)
= −xw

(
∇ ln xw

)
T,p

− 1

cRT

[(
dw − aw

)
∇p − iwgw + aw

N∑
v=1

ivgv

]
(24C.1-5)

with the auxiliary relation Eq. 24C.1-4b. This expression was first proposed by Lightfoot.3

2Three-component problems with two diffusivities equal have been discussed by H. L. Toor, AIChE
Journal, 3, 198–207 (1957).

3E. N. Lightfoot, Transport Phenomena in Living Systems, Wiley, New York (1974), p. 164.
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Postface

Of all the messages we have tried to convey throughout this book, the most important is
the role of the equations of change. We have shown how these equations may be solved to
obtain the velocity, temperature, and concentration profiles. We have also seen that they
form the starting point for the study of the transport phenomena in turbulent systems.
Also, when they are integrated over large systems, they give the macroscopic balances.

No introductory text can possibly meet the needs of every reader. Therefore, we have
tried to present a solid basis in the fundamentals necessary for tackling problems presently
unforeseen. We have also attempted to give literature citations to works where additional
material may be found.

We have also provided examples to illustrate how to solve simple, straightforward
problems. Problems at the ends of the chapters enable the readers to test their command
of the material. No attempt has been made to discuss numerical methods, inasmuch as
there are many books available for learning that material, as well as software for per-
forming such calculations. The fundamentals provided herein are necessary for setting
up such approaches, troubleshooting implementations, and interpreting and analyzing
the results.

It should be recognized that great advances are being made in the molecular theory
of transport phenomena. Molecular simulation techniques are proving to be very powerful
techniques for the understanding of flow in complex systems, flow in porous materials,
behavior of thin films, and the motions of polymeric materials in flow systems.

Simple models of turbulent flow have been discussed in this book, but these simplified
treatments are but a feeble introduction to an enormous research area. Here, numerical
methods have proven exceptionally useful. Applications include the forces on aircraft,
internal combustion engines, mixer performance, and interpretation of meteorological
observations.

Complex problems, for which analytical solutions are not possible, can also be
approached by dimensional analysis. It is important to understand that the equations of
change play a very important role in this kind of approach.

Of increasing importance is the solving of non-Newtonian flow problems. This includes
polymers, suspensions, emulsions, and biological fluids. Such problems are now being
studied bymolecular theories, which require considerable background in nonequilibrium
statistical mechanics.

No music or oral communication would be possible without compressible flow. This
subject is needed for the study of shockwaves, space vehicle reentry, weather phenomena,
and the awesome destructive power of tornadoes.

Someproblems involving flowwith chemical reactions have been presented in this book,
butwe have given only the simplest possible reactions in our examples. For studying com-
bustion, flame propagation, and explosion phenomena, more complex chemical reactions
must be invoked. The same is true in biological problems and transport in the human
body, where much has yet to be done.

In this book, we have said very little about electrical and magnetic effects in transport
phenomena. The transport in ionic systems is quite important in biological systems.
Magnetic effects appear in situations ranging from semi-active damping systems in
automobiles to various phenomena observed in interstellar space.

No problem in engineering or biotechnology can be solved entirely by reliance on
transport phenomena, thermodynamics, and chemical kinetics, although these topics

685
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are essential to the fundamental understanding of the problems. Those in the business
of solving complex problems may have to resort to heuristic approaches to supplement
reliance on basic theory. And, above all, the ultimate test of any approach will be in
experimentation. As the Dutch Nobel Laureate, H. Kamerlingh Onnes, said: “meten is
weten,” which means “to measure is to know.”

RBB
WES
ENL
DJK
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Appendix A

Vector and Tensor Notation1

§A.1 Vector operations from a geometrical viewpoint

§A.2 Vector operations in terms of components

§A.3 Tensor operations in terms of components

§A.4 Vector and tensor differential operations

§A.5 Vector and tensor integral theorems

§A.6 Vector and tensor algebra in curvilinear coordinates

§A.7 Differential operations in curvilinear coordinates

§A.8 Integral operations in curvilinear coordinates

The physical quantities encountered in transport phenomena fall into three categories:
scalars, such as temperature, pressure, volume, and time; vectors, such as velocity, momen-
tum, and force; and (second-order) tensors, such as the stress,momentumflux, and velocity
gradient tensors. We distinguish among these quantities thus:

s = scalar (lightface Italic)
v = vector (boldface Roman)
f = second-order tensor (boldface Greek)

In addition, boldface Greek letters with one directional subscript (such as ti) are vectors.
For vectors and tensors, several different kinds of multiplication are possible. Some

of these require the use of special multiplication signs to be defined later: the single dot (⋅),
the double dot (:), and the cross (×). We put these special multiplications, or sums thereof,
in different kinds of enclosures to indicate the type of result produced:

parentheses ( ) = scalar

brackets [ ] = vector

braces { } = second-order tensor

No special significance is attached to the kind of parentheses if the only operations
enclosed are addition and subtraction, or a multiplication in which ⋅, :, and × do not
appear. Hence (v ⋅w) and (f : ∇v) are scalars, [∇ × v] and [f ⋅ v] are vectors, and {v ⋅ ∇f}

1This appendix is very similar to Appendix A of R. B. Bird, R. C. Armstrong, and O. Hassager,

Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics, 2nd edition, Wiley-Interscience, New York (1987).

There, in §8, a discussion of nonorthogonal coordinates is given. Also in Table A.7-4, there is a summary

of the del operations for bipolar coordinates.

687
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and {g ⋅ f + f ⋅ g} are second-order tensors. On the other hand, v −w may be written as
(v −w), [v −w], or {v −w}, since no dot or cross operations appear. Similarly vw, (vw),
[vw], and {vw} are all equivalent.

Actually, scalars can be regarded as zero-order tensors and vectors as first-order ten-
sors. The multiplication signs may be interpreted thus:

Multiplication Sign Order of Result

None F
× F − 1

⋅ F − 2

: F − 4

in which F represents the sum of the orders of the quantities being multiplied. For
example, sf is of the order 0 + 2 = 2, vw is of the order 1 + 1 = 2, t1t2 is of the order
1 + 1 = 2, [v ×w] is of the order 1 + 1 − 1 = 1, (g : f) is of the order 2 + 2 − 4 = 0, and {g ⋅ f}
is of the order 2 + 2 − 2 = 2.

The basic operations that can be performed on scalar quantities need not be elaborated
on here. However, the laws for the algebra of scalars may be used to illustrate three terms
that arise in the subsequent discussion of vector operations:

a. For the multiplication of two scalars, r and s, the order of multiplication is imma-
terial so that the commutative law is valid: rs = sr.

b. For the successive multiplication of three scalars, q, r, and s, the order in which
the multiplications are performed is immaterial, so that the associative law is valid:
(qr)s = q(rs).

c. For the multiplication of a scalar s by the sum of scalars p, q, and r, it is immaterial
whether the addition or multiplication is performed first, so that the distributive
law is valid: s(p + q + r) = sp + sq + sr.

These laws are not generally valid for the analogous vector and tensor operations
described in the following paragraphs.

§A.1 VECTOR OPERATIONS FROM A GEOMETRICAL VIEWPOINT

In elementary physics courses, one is introduced to vectors from a geometrical standpoint.
In this section we extend this approach to include the operations of vector multiplication.
In §A.2 we give a parallel analytic treatment.

Definition of a Vector and Its Magnitude

A vector v is defined as a quantity of a given magnitude and direction. The magnitude
of the vector is designated by |v| or simply by the corresponding lightface symbol v. Two
vectors v and w are equal when their magnitudes are equal and when they point in the
same direction; they do not have to be collinear or have the same point of origin. If v and
w have the same magnitude but point in opposite directions, then v = −w.

Addition and Subtraction of Vectors

The addition of two vectors can be accomplished by the familiar parallelogram construc-
tion, as indicated by Fig. A.1-1a. Vector addition obeys the following laws:
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w v + w

v

w
v – w

v

(a) (b)

Fig. A.1-1. (a) Addition of vectors;

(b) subtraction of vectors.

Commutative: (v +w) = (w + v) (A.1-1)

Associative: (v +w) + u = v + (w + u) (A.1-2)

Vector subtraction is performed by reversing the sign of one vector and adding; thus
v −w = v + (−w). The geometrical construction for this is shown in Fig. A.1-1b.

Multiplication of a Vector by a Scalar

When a vector is multiplied by a scalar, the magnitude of the vector is altered but its
direction is not. The following laws are applicable

Commutative: sv = vs (A.1-3)

Associative: r(sv) = (rs)v (A.1-4)

Distributive (q + r + s)v = qv + rv + sv (A.1-5)

Scalar Product (or Dot Product) of Two Vectors

The scalar product of two vectors v andw is a scalar quantity defined by

(v ⋅w) = vw cos dvw (0 ≤ dvw < 0) (A.1-6)

in which dvw is the angle between the vectors v and w. The scalar product is then the
magnitude of w multiplied by the projection of v on w, or vice versa (Fig. A.1-2a). Note
that the scalar product of a vector with itself is just the square of the magnitude of the
vector

(v ⋅ v) = |v|2 = v2 (A.1-7)

The rules governing scalar products are as follows:

Commutative: (u ⋅ v) = (v ⋅ u) (A.1-8)

Not Associative: (u ⋅ v)w ≠ u(v ⋅w) (A.1-9)

Distributive: (u ⋅ {v +w}) = (u ⋅ v) + (u ⋅w) (A.1-10)

Vector Product (or Cross Product) of Two Vectors

The vector product of two vectors v and w is a vector defined by

[v ×w] = {vw sin dvw}nvw (A.1-11)

w
w

[v × w]

v

v
The length of this vector equals
the area of the parallelogram

φvw
φvw

(b)(a)

Area (v · w)

Fig. A.1-2. Products of two vectors: (a) the scalar product; (b) the vector product.
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in which nvw is a vector of unit length (a “unit vector”) perpendicular to both v andw and
pointing in the direction that a right-handed screw will move if turned from v toward w
through the angle dvw. The vector product is illustrated in Fig. A.1-2b. The magnitude of
the vector product is just the area of the parallelogram defined by the vectors v and w. It
follows from the definition of the vector product that

[v × v] = 𝟎 (A.1-12)

Note the following summary of laws governing the vector product operation:

Not Commutative: [v ×w] = −[w × v] (A.1-13)

Not Associative: [u × [v ×w]] ≠ [[u × v] ×w] (A.1-14)

Distributive: [{u + v} ×w] = [u ×w] + [v ×w] (A.1-15)

Multiple Products of Vectors

Somewhat more complicated are multiple products formed by combinations of the mul-
tiplication processes just described:

(a) rsv (b) s(v ⋅w) (c) s[v ×w]
(d) (u ⋅ [v ×w]) (e) [u × [v ×w]] (f) ([u × v] ⋅ [w × z])
(g) [[u × v] × [w × z]]

The geometrical interpretations of the first three of these are straightforward. The magni-
tude of (u ⋅ [v ×w]) can be shown to represent the volume of a parallelepiped with edges
defined by the vectors u, v, andw.

EXERCISES 1. What are the “orders” of the following quantities: (v ⋅w), (v − u)w, (ab : cd), [v ⋅ iwu], [[a × f] ×
[b × g]]?

2. Draw a sketch to illustrate the inequality in Eq. A.1-9. Are there any special cases for which it

becomes an equality?

3. A mathematical plane surface of area S has an orientation given by a unit normal vector n,
pointing downstream of the surface. A fluid of density i flows through this surface with a

velocity v. Show that the mass rate of flow through the surface is w = i(n ⋅ v)S.

4. A constant force F acts on a body moving with a velocity v, which is not necessarily collinear

with F. Show that the rate at which F does work on the body is W = (F ⋅ v).

5. The angular velocity W of a rotating solid body is a vector whose magnitude is the rate of

angular displacement (radians per second) andwhose direction is that in which a right-handed

screw would advance if turned in the same direction. The position vector r of a point is the

vector from the origin of coordinates to the point. Show that the velocity of any point in a

rotating solid body is v = [W × r], relative to an origin located on the axis of rotation.

§A.2 VECTOR OPERATIONS IN TERMS OF COMPONENTS

In this section a parallel analytical treatment is given to each of the topics presented geo-
metrically in §A.1. In the discussion here we restrict ourselves to Cartesian coordinates
and label the axes as 1, 2, 3 corresponding to the usual notation of x, y, z of Cartesian
coordinates; only right-handed coordinates are used. Except when noted, the formulas
given in this and the following section are also valid in cylindrical coordinates (where 1,
2, 3 correspond to r, p, z) and to spherical coordinates (where 1, 2, 3 correspond to r, p, d).
Cylindrical and spherical coordinate systems are illustrated in Fig. A.6-1.
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Many formulas can be expressed compactly in terms of the Kronecker delta tij and the
permutation symbol sijk. These quantities are defined thus:{

tij = +1, if i = j
tij = 0, if i ≠ j

(A.2-1)

(A.2-2)

⎧⎪⎨⎪⎩
sijk = +1, if ijk = 123, 231, or 312
sijk = −1, if ijk = 321, 132, or 213
sijk = 0, if any two indices are alike

(A.2-3)

(A.2-4)

(A.2-5)

Note also that sijk = (1∕2)(i − j)(j − k)(k − i).
Several relations involving these quantities are useful in proving some vector and

tensor identities
3∑
j=1

3∑
k=1

sijkshjk = 2tih (A.2-6)

3∑
k=1

sijksmnk = timtjn − tintjm (A.2-7)

Note that a three-by-three determinant may be written in terms of the sijk||||||
a11 a12 a13
a21 a22 a23
a31 a32 a33

|||||| =
3∑
i=1

3∑
j=1

3∑
k=1

sijka1ia2ja3k (A.2-8)

The quantity sijk thus selects the necessary terms that appear in the determinant and affixes
the proper sign to each term.

The Unit Vectors

Let t1, t2, t3 be the “unit vectors” (i.e., vectors of unit magnitude) in the direction of the
1, 2, 3 axes1 (Fig. A.2-1). We can use the definitions of the scalar and vector products to
tabulate all possible products of each type{

(t1 ⋅ t1) = (t2 ⋅ t2) = (t3 ⋅ t3) = 1

(t1 ⋅ t2) = (t2 ⋅ t3) = (t3 ⋅ t1) = 0

(A.2-9)

(A.2-10)⎧⎪⎨⎪⎩
[t1 × t1] = [t2 × t2] = [t3 × t3] = 𝟎
[t1 × t2] = t3; [t2 × t3] = t1; [t3 × t1] = t2
[t2 × t1] = −t3; [t3 × t2] = −t1; [t1 × t3] = −t2

(A.2-11)

(A.2-12)

(A.2-13)

1 1 1

2 2 2

3 3 3

δ1
δ2

δ3
Fig. A.2-1. The unit
vectors ti; each vector is

of unit magnitude and

points in the ith
direction.

1In most elementary texts the unit vectors are called i, j, k. We prefer to use t1, t2, t3 because the
components of these vectors are given by the Kronecker delta. That is, the component of t1 in the

1-direction is t11 or unity; the component of t1 in the 2-direction is t12 or zero.
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All of these relations may be summarized by the following two relations:

(ti ⋅ tj) = tij (A.2-14)

[ti × tj] =
3∑

k=1
sijktk (A.2-15)

in which tij is the Kronecker delta, and sijk is the permutation symbol defined in the intro-
duction to this section. These two relations enable us to develop analytic expressions for
all the common dot and cross operations. In the remainder of this section and in the next
section, in developing expressions for vector and tensor operations all we do is to break
all vectors up into components and then apply Eqs. A.2-14 and A.2-15.

Expansion of a Vector in Terms of its Components

Any vector v can be completely specified by giving the values of its projections v1, v2,
v3, on the coordinate axes 1, 2, 3 (Fig. A.2-2). The vector can be constructed by adding
vectorially the components multiplied by their corresponding unit vectors:

v = t1v1 + t2v2 + t3v3 =
3∑
i=1

tivi (A.2-16)

Note that a vector associates a scalar with each coordinate direction.2 The vi are called the “com-
ponents of the vector v” and they are scalars, whereas the tivi are vectors, which when
added together vectorially, give v.

The magnitude of a vector is given by

|v| = v =
√

v2
1
+ v2

2
+ v2

3
=

√∑
i

v2i (A.2-17)

Two vectors v andw are equal if their components are equal: v1 = w1, v2 = w2, and v3 = w3.
Also v = −w, if v1 = −w1, and so on.

Addition and Subtraction of Vectors

The sum or difference of vectors v andwmay be written in terms of components as

v ±w =
∑
i

tivi ±
∑
i

tiwi =
∑
i

ti(vi ± wi) (A.2-18)

Geometrically, this corresponds to adding up the projections of v andw on each individual
axis and then constructing a vector with these new components. Three or more vectors
may be added in exactly the same fashion.

v1

v3 v

v2

1

2

3

Fig. A.2-2. The components vi of the vector v are the

projections of the vector on the coordinate axes 1, 2, and 3.

2For a discussion of the relation of this definition of a vector to the definition in terms of the rules for

transformation of coordinates, see W. Prager,Mechanics of Continua, Ginn, Boston (1961).
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Multiplication of a Vector by a Scalar

Multiplication of a vector by a scalar corresponds to multiplying each component of the
vector by the scalar:

sv = s

{∑
i

tivi

}
=

∑
i

ti{svi} (A.2-19)

Scalar Product (or Dot Product) of Two Vectors

The scalar product of two vectors v and w is obtained by writing each vector in terms of
components according to Eq. A.2-16 and then performing the scalar-product operations
on the unit vectors, using Eq. A.2-14

(v ⋅w) =

({∑
i

tivi

}
⋅

{∑
j

tjwj

})
=

∑
i

∑
j

(ti ⋅ tj)viwj

=
∑
i

∑
j

tijviwj =
∑
i

viwi (A.2-20)

Hence the scalar product of two vectors is obtained by summing the products of the cor-
responding components of the two vectors. Note that (v ⋅ v) (sometimes written as v2 or
as v2) is a scalar representing the square of the magnitude of v.

Vector Product (or Cross Product) of Two Vectors

The vector product of two vectors v and w may be worked out by using Eqs. A.2-16 and
A.2-15:

[v ×w] =

[{∑
j

tjvj

}
×

{∑
k

tkwk

}]
=

∑
j

∑
k

[tj × tk]vjwk =
∑
i

∑
j

∑
k

sijktivjwk

=
||||||
t1 t2 t3
v1 v2 v3
w1 w2 w3

|||||| (A.2-21)

Here we have made use of Eq. A.2-8. Note that the ith-component of [v ×w] is given by∑
j
∑

ksijkvjwk; this result is often used in proving vector identities.

Multiple Vector Products

Expressions for themultiple productsmentioned in §A.1 can be obtained by using the pre-
ceding analytical expressions for the scalar and vector products. For example, the product
(u ⋅ [v ×w]) may be written

(u ⋅ [v ×w]) =
∑
i

ui[v ×w]i =
∑
i

∑
j

∑
k

sijkuivjwk (A.2-22)

Then, from Eq. A.2-8, we obtain

(u ⋅ [v ×w]) =
||||||
u1 u2 u3
v1 v2 v3
w1 w2 w3

|||||| (A.2-23)

The magnitude of (u ⋅ [v ×w]) is the volume of a parellelepiped defined by the vectors
u, v,w drawn from a common origin. Furthermore, the vanishing of the determinant is a
necessary and sufficient condition that the vectors u, v, andw be coplanar.
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The Position Vector

The usual symbol for the position vector—that is, the vector specifying the location of a
point in space—is r. In Cartesian coordinates, the components of r are then x1, x2, and x3,
so that

r =
∑
i

tixi (A.2-24)

This is an irregularity in the notation, since the components have a symbol different from

that for the vector. The magnitude of r is usually called r =
√

x2
1
+ x2

2
+ x2

3
, and this r is

the radial coordinate in spherical coordinates (see Fig. A.6-1 for how to write the position
vector in cylindrical and spherical coordinates).

EXAMPLE A.2-1

Proof of a Vector
Identity

The analytical expressions for dot and cross products may be used to prove vector identities;
for example, verify the relation

[u × [v ×w]] = v(u ⋅w) −w(u ⋅ v) (A.2-25)

SOLUTION

The i-component of the expression on the left side can be expanded as

[u × [v ×w]]i =
∑
j

∑
k

sijkuj[v ×w]k =
∑
j

∑
k

sijkuj

{∑
l

∑
m

sklmvlwm

}
=

∑
j

∑
k

∑
l

∑
m

sijksklm4jvlwm =
∑
j

∑
k

∑
l

∑
m

sijkslmkujvlwm (A.2-26)

We may now use Eq. A.2-7 to complete the proof

[u × [v ×w]]i =
∑
j

∑
l

∑
m

(tiltjm − timtjl)ujvlwm = vi
∑
j

∑
m

tjmujwm − wi

∑
j

∑
l

tjlujvl

= vi
∑
j

ujwj − wi

∑
j

ujvj = vi(u ⋅w) − wi(u ⋅ v) (A.2-27)

which is just the i-component of the right side of Eq. A.2-25. In a similar way one may verify
such identities as

(u ⋅ [v ×w]) = (v ⋅ [w × u]) (A.2-28)

([u × v] ⋅ [w × z]) = (u ⋅w)(v ⋅ z) − (u ⋅ z)(v ⋅w) (A.2-29)

[[u × v] × [w × z]] = ([u × v] ⋅ z)w − ([u × v] ⋅w)z (A.2-30)

EXERCISES 1. Write out the following summations:

(a)
3∑

k=1
k2 (b)

3∑
k=1

a2k (c)
3∑
j=1

3∑
k=1

ajkbkj (d)

(
3∑
j=1

aj

)2

=
3∑
j=1

3∑
k=1

ajak

2. Avector v has components vx = 1, vy = 2, vz = −5. A vectorw has componentswx = 3,wy = −1,
wz = 1. Evaluate:

(a) (v ⋅w)
(b) [v ×w]
(c) The length of v
(d) (tx ⋅ v)
(e) [tx ×w]
(f) dvw
(g) [r × v], where r is the position vector.
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3. Evaluate:
(a) ([t1 × t2] ⋅ t3) (b) [[t2 × t3] × [t1 × t3]].

4. Show that Eq. A.2-6 is valid for the particular case i = 1, h = 2.
Show that Eq. A.2-7 is valid for the particular case i = j = m = 1, n = 2.

5. Verify that
∑3

j=1
∑3

k=1 sijkwjk = 0 if wjk = wkj.

6. Explain carefully the statement after Eq.A.2-21 that the ith component of [v ×w] is
∑

j
∑

ksijkvjwk.

7. Verify that ([v ×w] ⋅ [v ×w]) + (v ⋅w)2 = v2w2 (the “identity of Lagrange”).

§A.3 TENSOR OPERATIONS IN TERMS OF COMPONENTS

In the last section we saw that expressions could be developed for all common dot and
cross operations for vectors by knowing how to write a vector v as a sum

∑
i tivi, and by

knowing how to manipulate the unit vectors ti. In this section we follow a parallel pro-
cedure. We write a tensor f as a sum

∑
i
∑

jtitjfij, and give formulas for the manipulation

of the unit dyads titj; in this way, expressions are developed for the commonly occurring
dot and cross operations for tensors.

The Unit Dyads

The unit vectors ti were defined in the preceding discussion and then the scalar products
(ti ⋅ tj) and vector products [ti × tj] were given. There is a third kind of product that can
be formed with the unit vectors—namely, the dyadic products titj (written without any
multiplication symbol). According to the rules of notation given in the introduction to
Appendix A, the products titj are tensors of the second order. Since ti and tj are of unit
magnitude, we will refer to the products titj as unit dyads. Whereas each unit vector in
Fig. A.2-1 represents a single coordinate direction, the unit dyads in Fig. A.3-1 represent
ordered pairs of coordinate directions.

(In physical problems we often work with quantities that require the simultaneous
specification of two directions. For example, the flux of x-momentum across a unit area
of surface perpendicular to the y direction is a quantity of this type. Since this quantity
is sometimes not the same as the flux of y-momentum perpendicular to the x direction, it
is evident that specifying the two directions is not sufficient; we must also agree on the
order in which the directions are given.)

The dot and cross products of unit vectors were introduced by means of the geo-
metrical definitions of these operations. The analogous operations for the unit dyads are
introduced formally by relating them to the operations for unit vectors

(titj : tktl) = (tj ⋅ tk)(ti ⋅ tl) = tjktil

[titj ⋅ tk]= ti(tj ⋅ tk) = titjk

[ti ⋅ tjtk] = (ti ⋅ tj)tk = tijtk

{titj ⋅ tktl}= ti(tj ⋅ tk)tl = tjktitl

{titj × tk}= ti[tj × tk] =
3∑
l=1

sjkltitl

{ti × tjtk} = [ti × tj]tk =
3∑
l=1

sijltltk

(A.3-1)

(A.3-2)

(A.3-3)

(A.3-4)

(A.3-5)

(A.3-6)

These results are easy to remember: one simply takes the dot (or cross) product of the
nearest unit vectors on either side of the dot (or cross); in Eq. A.3-1 two such operations
are performed.
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1

2

3

δ1δ2

1

2

3

δ1δ1

1

2

3

δ1δ3

1

2

3

δ2δ2

1

2

3

δ2δ1

1

2

3

δ2δ3

1

2

3

δ3δ2

1

2

3

δ3δ1

1

2

3

δ3δ3

Fig. A.3-1. The unit dyads
titj. The solid arrows

represent the first unit

vector in the dyadic

product, and the hollow

vectors the second. Note

that t1t2 is not the same as

t2t1.

Expansion of a Tensor in Terms of Its Components

In Eq. A.2-16 we expanded a vector in terms of its components, each component being
multiplied by the appropriate unit vector. Here we extend this idea and define1 a
(second-order) tensor as a quantity that associates a scalar with each ordered pair of coordinate
directions in the following sense:

f= t1t1f11 + t1t2f12 + t1t3f13
+ t2t1f21 + t2t2f22 + t2t3f23
+ t3t1f31 + t3t2f32 + t3t3f33

=
3∑
i=1

3∑
j=1

titjfij (A.3-7)

The scalars fij are referred to as the “components of the tensor f.”
There are several special kinds of second-order tensors worth noting:

1. If fij = fji, the tensor is said to be symmetric.

2. If fij = −fji, the tensor is said to be antisymmetric.

3. If the components of a tensor are taken to be the components of f, but with the
indices transposed, the resulting tensor is called the transpose of f and given the
symbol f†:

f† =
∑
i

∑
j

titjfji (A.3-8)

1Tensors are often defined in terms of the transformation rules; the connections between such a

definition and that given above is discussed by W. Prager, Mechanics of Continua, Ginn, Boston (1961).



Trim Size: 8in x 10in Bird1e a01.tex V2 - October 21, 2014 4:31 P.M. Page 697

§A.3 Tensor Operations in Terms of Components 697

4. If the components of the tensor are formed by ordered pairs of the components of
two vectors v andw, the resulting tensor is called the dyadic product of v andw and
given the symbol vw:

vw =
∑
i

∑
j

titjviwj (A.3-9)

Note that vw ≠ wv, but that (vw)† = wv.

5. If the components of the tensor are given by the Kronecker delta tij, the resulting
tensor is called the unit tensor and given the symbol t:

t =
∑
i

∑
j

titjtij (A.3-10)

The magnitude of a tensor is defined by

|f| = f =
√

1

2
(f : f†)

=
√

1

2

∑
i

∑
j

f2ij (A.3-11)

Addition of Tensors and Dyadic Products

Two tensors are added thus:

g + f =
∑
i

∑
j

titjgij +
∑
i

∑
j

titjfij =
∑
i

∑
j

titj(gij + fij) (A.3-12)

That is, the sum of two tensors is that tensor whose components are the sums of the cor-
responding components of the two tensors. The same is true for dyadic products.

Multiplication of a Tensor by a Scalar

Multiplication of a tensor by a scalar corresponds to multiplying each component of the
tensor by the scalar:

sf = s

{∑
i

∑
j

titjfij

}
=

∑
i

∑
j

titj{sfij} (A.3-13)

The same is true for dyadic products.

The Scalar Product (or Double Dot Product) of Two Tensors

Two tensors may be multiplied according to the double dot operation

(g : f) =

({∑
i

∑
j

titjgij

}
:

{∑
k

∑
l

tktlfkl

})
=

∑
i

∑
j

∑
k

∑
l

(titj : tktl)gijfkl

=
∑
i

∑
j

∑
k

∑
l

tiltjkgijfkl =
∑
i

∑
j

gijfji (A.3-14)

in which Eq. A.3-1 has been used. Similarly, we may show that

(f : vw) =
∑
i

∑
j

fijvjwi (A.3-15)

(uv : wz) =
∑
i

∑
j

uivjwjzi (A.3-16)
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The Tensor Product (the Single Dot Product) of Two Tensors

Two tensors may also be multiplied according to the single dot operation

{g ⋅ f} =

{(∑
i

∑
j

titjgij

)
⋅

(∑
k

∑
l

tktlfkl

)}
=

∑
i

∑
j

∑
k

∑
l

{titj ⋅ tktl}gijfkl

=
∑
i

∑
j

∑
k

∑
l

tjktitlgijfkl =
∑
i

∑
l

titl

(∑
j

gijfjl

)
(A.3-17)

That is, the il-component of {g ⋅ f} is
∑

jgijfjl. Similar operations may be performed with

dyadic products. It is common practice to write {g ⋅ g} as g2, {g ⋅ g2} as g3, and so on.

The Vector Product (or Dot Product) of a Tensor with a Vector

When a tensor is dotted into a vector, we get a vector

[f ⋅ v] =

[{∑
i

∑
j

titjfij

}
⋅

{∑
k

tkvk

}]
=

∑
i

∑
j

∑
k

[titj ⋅ tk]fijvk

=
∑
i

∑
j

∑
k

titjkfijvk =
∑
i

ti

{∑
j

fijvj

}
(A.3-18)

That is, the ith component of [f ⋅ v] is
∑

jfijvj. Similarly, the ith component of [v ⋅ f] is
∑

jvjfji.
Note that [f ⋅ v] ≠ [v ⋅ f] unless f is symmetric.

Recall that when a vector v is multiplied by a scalar s, the resultant vector sv points
in the same direction as v but has a different length. However, when f is dotted into v,
the resultant vector [f ⋅ v] differs from v in both length and direction; that is, the tensor f
“deflects” or “twists” the vector v to form a new vector pointing in a different direction.

The Tensor Product (or Cross Product) of a Tensor with a Vector

When a tensor is crossed with a vector, we get a tensor:

{f × v} =

{(∑
i

∑
j

titjfij

)
×

(∑
k

tkvk

)}
=

∑
i

∑
j

∑
k

[titj × tk]fijvk

=
∑
i

∑
j

∑
k

∑
l

sjkltitlfijvk =
∑
i

∑
l

titl

{∑
j

∑
k

sjklfijvk

}
(A.3-19)

Hence, the il-component of {f × v} is
∑

j
∑

ksjklfijvk. Similarly the lk-component of {v × f} is∑
i
∑

jsijlvifjk.

Other Operations

From the preceding results, it is not difficult to prove the following identities:

[t ⋅ v] = [v ⋅ t] = v (A.3-20)

[uv ⋅w] = u(v ⋅w) (A.3-21)

[w ⋅ uv] = (w ⋅ u)v (A.3-22)

(uv :wz) = (uw: vz) = (u ⋅ z)(v ⋅w) (A.3-23)

(f : uv) = ([f ⋅ u] ⋅ v) (A.3-24)

(uv : f) = (u ⋅ [v ⋅ f]) (A.3-25)
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EXERCISES 1. The components of a symmetric tensor f are

fxx = 3 fxy = 2 fxz = −1
fyx = 2 fyy = 2 fyz = 1

fzx = −1 fzy = 1 fzz = 4

The components of a vector v are

vx = 5 vy = 3 vz = −2

Evaluate

(a) [f ⋅ v]
(b) [v ⋅ f]

(c) (f : f)
(d) (v ⋅ [f ⋅ v])

(e) vv
(f) [f ⋅ tx]

2. Evaluate

(a) [[t1t2 ⋅ t2] × t1]
(b) (t : t1t2)

(c) (t : t)
(d) {t ⋅ t}

3. If w is symmetrical and v is antisymmetrical, show that (w : v) = 0.

4. Explain carefully the statement after Eq. A.3-17 that the il-component of {g ⋅ f} is
∑

jgijfjl.

5. Consider a rigid structure composed of point particles joined by massless rods. The particles

are numbered 1,2,3,…, N, and the particle masses are ml (l = 1,2,…, N). The locations of the

particleswith respect to the center ofmass areRl. The entire structure rotates on an axis passing

through the center of mass with an angular velocityW. Show that the angular momentumwith

respect to the center of mass is

L =
∑
l

ml[Rl × [W × Rl]] (A.3-26)

Then show that the latter expression may be rewritten as

L = [C ⋅W] (A.3-27)

where

C =
∑
l

ml{(Rl ⋅ Rl)t − RlRl} (A.3-28)

is the moment-of-inertia tensor.

6. The kinetic energy of rotation of the rigid structure in Exercise 5 is

K =
∑
l

1

2
ml(Ṙl ⋅ Ṙl) (A.3-29)

where Ṙl = [W × Rl] is the velocity of the lth particle. Show that

K = 1

2
(C :WW) (A.3-30)

§A.4 VECTOR AND TENSOR DIFFERENTIAL OPERATIONS

The vector differential operator ∇, known as “nabla” or “del,” is defined in rectangular
coordinates as

∇ = t1
𝜕
𝜕x1

+ t2
𝜕
𝜕x2

+ t3
𝜕
𝜕x3

=
∑
i

ti
𝜕
𝜕xi

(A.4-1)

in which the ti are the unit vectors and the xi are the variables associated with the 1, 2, 3
axes (i.e., the x1, x2, x3 are the Cartesian coordinates normally referred to as x, y, z). The
symbol ∇ is a vector-operator—it has components like a vector but it cannot stand alone;
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it must operate on a scalar, vector, or tensor function. In this section we summarize the
various operations of ∇ on scalars, vectors, and tensors. As in §A.2 and §A.3, we decom-
pose vectors and tensors into their components and then use Eqs. A.2-14 and A.2-15, and
Eqs. A.3-1 to 6. Keep in mind that in this section equations written out in component
form are valid only for Cartesian coordinates, for which the unit vectors ti are constants;
curvilinear coordinates are discussed in §A.6 and §A.7.

The Gradient of a Scalar Field

If s is a scalar function of the variables x1, x2, x3, then the operation of ∇ on s is

∇s = t1
𝜕s
𝜕x1

+ t2
𝜕s
𝜕x2

+ t3
𝜕s
𝜕x3

=
∑
i

ti
𝜕s
𝜕xi

(A.4-2)

The vector thus constructed from the derivatives of s is designated by∇s (or grad s) and is
called the gradient of the scalar field s. The following properties of the gradient operation
should be noted.

Not Commutative: ∇s ≠ s∇ (A.4-3)

Not Associative: (∇r)s ≠ ∇(rs) (A.4-4)

Distributive: ∇(r + s) = ∇r + ∇s (A.4-5)

The Divergence of a Vector Field

If the vector v is a function of the space variables x1, x2, x3, then a scalar product may be
formed with the operator ∇; in obtaining the final form, we use Eq. A.2-14:

(∇ ⋅ v) =

({∑
i

ti
𝜕
𝜕xi

}
⋅

{∑
j

tjvj

})
=

∑
i

∑
j

(ti ⋅ tj)
𝜕
𝜕xi

vj

=
∑
i

∑
j

tij
𝜕
𝜕xi

vj =
∑
i

𝜕vi
𝜕xi

(A.4-6)

This collection of derivatives of the components of the vector v is called the divergence of
v (sometimes abbreviated div v). Some properties of the divergence operation should be
noted

Not Commutative: (∇ ⋅ v) ≠ (v ⋅ ∇) (A.4-7)

Not Associative: (∇ ⋅ sv) ≠ (∇s ⋅ v) (A.4-8)

Distributive: (∇ ⋅ {v +w}) = (∇ ⋅ v) + (∇ ⋅w) (A.4-9)

The Curl of a Vector Field

A cross product may also be formed between the ∇ operator and the vector v, which is a
function of the three space variables. This cross product may be simplified by using Eq.
A.2-15 and written in a variety of forms

[∇ × v] =

[{∑
j

tj
𝜕
𝜕xj

}
×

{∑
k

tkvk

}]
=

∑
j

∑
k

[tj × tk]
𝜕
𝜕xj

vk =
∑
i

∑
j

∑
k

sijkti
𝜕
𝜕xj

vk

=

|||||||||
t1 t2 t3
𝜕
𝜕x1

𝜕
𝜕x2

𝜕
𝜕x3

v1 v2 v3

|||||||||
= t1

{
𝜕v3
𝜕x2

−
𝜕v2
𝜕x3

}
+ t2

{
𝜕v1
𝜕x3

−
𝜕v3
𝜕x1

}
+ t3

{
𝜕v2
𝜕x1

−
𝜕v1
𝜕x2

}
(A.4-10)
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The vector thus constructed is called the curl of v. Other notations for [∇ × v] are curl v and
rot v, the latter being common in the German literature. The curl operation, like the diver-
gence, is distributive but not commutative or associative. Note that the ith component of
[∇ × v] is

∑
j
∑

ksijk(𝜕∕𝜕xj)vk.

The Gradient of a Vector Field

In addition to the scalar product (∇ ⋅ v) and the vector product [∇ × v] one may also form
the dyadic product ∇v:

∇v =

{∑
i

ti
𝜕
𝜕xi

}{∑
j

tjvj

}
=

∑
i

∑
j

titj
𝜕
𝜕xi

vj (A.4-11)

This is called the gradient of the vector v and is sometimes written grad v. It is a
second-order tensor whose ij-component1 is (𝜕∕𝜕xi)vj. Its transpose is

(∇v)† =
∑
i

∑
j

titj
𝜕
𝜕xj

vi (A.4-12)

whose ij-component is (𝜕∕𝜕xj)vi. Note that ∇v ≠ v∇ and (∇v)† ≠ v∇.

The Divergence of a Tensor Field

If the tensor f is a function of the space variables x1, x2, x3, then a vector product may be
formed with operator ∇; in obtaining the final form we use Eq. A.3-3:

[∇ ⋅ f] =

[{∑
i

ti
𝜕
𝜕xi

}
⋅

{∑
j

∑
k

tjtkfjk

}]
=

∑
i

∑
j

∑
k

[ti ⋅ tjtk]
𝜕
𝜕xi

fjk

=
∑
i

∑
j

∑
k

tijtk
𝜕
𝜕xi

fjk =
∑
k

tk

{∑
i

𝜕
𝜕xi

fik

}
(A.4-13)

This is called the divergence of the tensor f, and is sometimes written div f. The kth com-
ponent of [∇ ⋅ f] is

∑
i (𝜕∕𝜕xi)fik). If f is the product svw, then

[∇ ⋅ svw] =
∑
k

tk

{∑
i

𝜕
𝜕xi

(
sviwk

)}
(A.4-14)

The Laplacian of a Scalar Field

If we take the divergence of a gradient of the scalar function s, we obtain

(∇ ⋅ ∇s) =

({∑
i

ti
𝜕
𝜕xi

}
⋅

{∑
j

tj
𝜕s
𝜕xj

})

=
∑
i

∑
j

tij
𝜕
𝜕xi

𝜕s
𝜕xj

=

{∑
i

𝜕2

𝜕x2i
s

}
(A.4-15)

The collection of differential operators operating on s in the last line is given the symbol
∇2; hence in rectangular coordinates

(∇ ⋅ ∇) = ∇2 = 𝜕2

𝜕x2
1

+ 𝜕2

𝜕x2
2

+ 𝜕2

𝜕x2
3

(A.4-16)

This is called the Laplacian operator. (Some authors use the symbol 2 for the Laplacian
operator, particularly in the older German literature; hence (∇ ⋅ ∇s), (∇ ⋅ ∇)s, ∇2s, and 2s

1Caution: Some authors define the ij-component of 𝛁 v to be (𝜕∕𝜕xj)vi.
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are all equivalent quantities.) The Laplacian operator has only the distributive property,
as do the gradient, divergence, and curl.

The Laplacian of a Vector Field

If we take the divergence of the gradient of the vector function v, we obtain

[∇ ⋅ ∇v] =

[{∑
i

ti
𝜕
𝜕xi

}
⋅

{∑
j

∑
k

tjtk
𝜕
𝜕xj

vk

}]
=

∑
i

∑
j

∑
k

[ti ⋅ tjtk]
𝜕
𝜕xi

𝜕
𝜕xj

vk

=
∑
i

∑
j

∑
k

tijtk
𝜕
𝜕xi

𝜕
𝜕xj

vk =
∑
k

tk

(∑
i

𝜕2

𝜕x2i
vk

)
(A.4-17)

That is, the kth component of [∇ ⋅ ∇v] is, in Cartesian coordinates, just ∇2vk. Alternative
notations for [∇ ⋅ ∇v] are (∇ ⋅ ∇)v and ∇2v.

Other Differential Relations

Numerous identities can be proved using the definitions just given:

∇rs = r∇s + s∇r (A.4-18)

(∇ ⋅ sv) = (∇s ⋅ v) + s(∇ ⋅ v) (A.4-19)

(∇ ⋅ [v ×w]) = (w ⋅ [∇ × v]) − (v ⋅ [∇ ×w]) (A.4-20)

[∇ × sv] = [∇s × v] + s[∇ × v] (A.4-21)

[∇ ⋅ ∇v] = ∇(∇ ⋅ v) − [∇ × [∇ × v]] (A.4-22)

[v ⋅ ∇v] = 1

2
∇(v ⋅ v) − [v × [∇ × v]] (A.4-23)

[∇ ⋅ vw] = [v ⋅ ∇w] +w(∇ ⋅ v) (A.4-24)

(st : ∇v) = s(∇ ⋅ v) (A.4-25)

[∇ ⋅ st] = ∇s (A.4-26)

[∇ ⋅ sf] = [∇s ⋅ f] + s[∇ ⋅ f] (A.4-27)

∇(v ⋅w) = [(∇v) ⋅w] + [(∇w) ⋅ v] (A.4-28)

EXAMPLE A.4-1

Proof of a Tensor
Identity

Prove that for symmetric f:

(f : ∇v) = (∇ ⋅ [f ⋅ v]) − (v ⋅ [∇ ⋅ f]) (A.4-29)

SOLUTION

First we write out the right side in terms of components:

(∇ ⋅ [f ⋅ v]) =
∑
i

𝜕
𝜕xi

[f ⋅ v]i =
∑
i

∑
j

𝜕
𝜕xi

fijvj (A.4-30)

(v ⋅ [∇ ⋅ f]) =
∑
j

vj[∇ ⋅ f]j =
∑
j

∑
i

vj
𝜕
𝜕xi

fij (A.4-31)

The left side may be written as

(f : ∇v) =
∑
i

∑
j

fji
𝜕
𝜕xi

vj =
∑
i

∑
j

fij
𝜕
𝜕xi

vj (A.4-32)

the second form resulting from the symmetry of f. Subtraction of Eq. A.4-31 from Eq. A.4-30
will give Eq. A.4-32.
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Now that we have given all the vector and tensor operations, including the various
∇ operations, we want to point out that the dot and double dot operations can be written
down at once by using the following simple rule: a dot implies a summation on adjacent
indices. We illustrate the rule with several examples.

To interpret (v ⋅w), we note that v and w are vectors, whose components have one
index. Since both symbols are adjacent to the dot, wemake the indices for both of them the
same and then sum on them: (v ⋅w) = Fiviwi. For double dot operations such as (f : ∇v),
we proceed as follows. We note that f, being a tensor, has two subscripts, whereas ∇
and v each have one. We therefore set the second subscript of f equal to the subscript
on ∇ and sum; then we set the first subscript of f equal to the subscript on v and sum.
Hence we get (f : ∇v) = FiFjfji(𝜕∕𝜕xi)vj. Similarly, (v ⋅ [∇ ⋅ f]) can be written down at once
as FiFjvj(𝜕∕𝜕xi)fij by performing the operation in the inner enclosure (the brackets) before
the outer (the parentheses).

To get the ith component of a vector quantity, we proceed in exactly the same way.
To evaluate [f ⋅ v]i we set the second index of the tensor f equal to the index on v and
sum to get Fjfijvj. Similarly, the ith component of [∇ ⋅ ivv] is obtained as Fj(𝜕∕𝜕xj)(ivjvi).
Becoming skilled with this method can save a great deal of time in interpreting the dot
and double dot operations in Cartesian coordinates.

EXERCISES 1. Perform all the operations in Eq. A.4-6 by writing out all the summations instead of using the∑
notation.

2. A field v(x,y,z) is said to be irrotational if [∇ × v] = 𝟎. Which of the following fields are irrota-
tional?

(a) vx = by vy = 0 vz = 0

(b) vx = bx vy = 0 vz = 0

(c) vx = by vy = bx vz = 0

(d) vx = −by vy = bx vz = 0

3. Evaluate (∇ ⋅ v), ∇v, and [∇ ⋅ vv] for the four fields in Exercise 2.

4. A vector v has components

vi =
3∑
j=1

wijxj

with wij = wji and
∑3

i=1 wii = 0; the wij are constants. Evaluate (∇ ⋅ v), [∇ × v], ∇v, (∇v)†, and
[∇ ⋅ vv]. (Hint: In connection with evaluating [∇ × v], see Exercise 5 in §A.2.)

5. Verify that ∇2(∇ ⋅ v) = (∇ ⋅ (∇2v)), and that [∇ ⋅ (∇v)†] = ∇ ⋅ (∇ ⋅ v).

6. Verify that (∇ ⋅ [∇ × v]) = 0 and [∇ × ∇s] = 𝟎.

7. If r is the position vector (with components x1, x2, x3) and v is any vector, show that

(a) (∇ ⋅ r) = 3

(b) [∇ × r] = 𝟎
(c) [r × [∇ ⋅ vv]] = [∇ ⋅ v[r × v]] (where v is a function of position)

8. Develop an alternative expression for [∇ × [∇ ⋅ svv]].

9. If r is the position vector and r is its magnitude, verify that

(a) ∇1

r
= − r

r3

(b) ∇f (r) = 1

r
df
dr
r

(c) ∇ (a ⋅ r) = a if a is a constant vector



Trim Size: 8in x 10in Bird1e a01.tex V2 - October 21, 2014 4:31 P.M. Page 704

704 Appendix A Vector and Tensor Notation

10. Write out in full in Cartesian coordinates

(a) 𝜕
𝜕t
iv = −[∇ ⋅ ivv] − ∇p − [∇ ⋅ f] + ig

(b) f = −4{∇v + (∇v)† − 2

3
(∇ ⋅ v)t}

§A.5 VECTOR AND TENSOR INTEGRAL THEOREMS

For performing general proofs in continuum physics, several integral theorems are
extremely useful.

The Gauss–Ostrogradskii Divergence Theorem

If V is a closed region in space enclosed by a surface S, then

∫V
(∇ ⋅ v)dV = ∫S

(n ⋅ v)dS (A.5-1)

in which n is the outwardly directed unit normal vector. This is known as the divergence
theorem of Gauss and Ostrogradskii. Two closely allied theorems for scalars and tensors
are

∫V
∇s dV = ∫S

ns dS (A.5-2)

∫V
[∇ ⋅ f] dV = ∫S

[n ⋅ f] dS (A.5-3)1

The last relation is also valid for dyadic products vw. Note that, in all three equations, ∇
in the volume integral is just replaced by n in the surface integral.

The Leibniz Formula for Differentiating a Volume Integral1

Let V be a closed moving region in space enclosed by a surface S; let the velocity of any
surface element be vS. Then, if s(x,y,z,t) is a scalar function of position and time,

d
dt∫V

sdV = ∫V

𝜕s
𝜕t
dV + ∫S

s(vS ⋅ n)dS (A.5-4)

This is an extension of the Leibniz formula for differentiating a single integral (see Eq. C.3-2);
keep inmind thatV = V(t) and S = S(t). EquationA.5-4 also applies to vectors and tensors.

If the integral is over a volume, the surface of which is moving with the local fluid
velocity (so that vS = v), then use of the equation of continuity leads to the additional
useful result:

d
dt∫V

isdV = ∫V
i
Ds
Dt

dV (A.5-5)

in which i is the fluid density. Equation A.5-5 is sometimes called the Reynolds transport
theorem.

EXERCISES 1. Consider the vector field

v = t1x1 + t2x3 + t3x2

Evaluate both sides of Eq. A.5-1 over the region bounded by the planes x1 = 0, x1 = 1; x2 = 0,

x2 = 2; x3 = 0, x3 = 4.

1M. D. Greenberg, Foundations of Applied Mathematics, Prentice-Hall, Englewood Cliffs, N.J. (1978),

pp. 163–164.
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2. Consider the time-dependent scalar function:

s = x + y + zt

Evaluate both sides of Eq. A.5-4 over the volume bounded by the planes: x = 0, x = t; y = 0,

y = 2t; z = 0, z = 4t. The quantities x, y, z, t are dimensionless.

3. Evaluate both sides of Eq. A.5-2 for the function s(x, y, z) = x2 + y2 + z2. The volume V is the

triangular prism lying between the two triangles whose vertices are (2, 0, 0), (2, 1, 0), (2, 0, 3),

and (−2, 0, 0), (−2, 1, 0), (−2, 0, 3).

§A.6 VECTOR AND TENSOR ALGEBRA IN CURVILINEAR
COORDINATES

Thus far we have considered only Cartesian coordinates x, y, and z. Although formal
derivations are usually made in Cartesian coordinates, for working problems it is often
more natural to use curvilinear coordinates. The two most common curvilinear coordi-
nate systems are the cylindrical and the spherical. In the following we discuss only these
two systems, but themethod can also be applied to all orthogonal coordinate systems—that
is, those in which the three families of coordinate surfaces are mutually perpendicular.

We are primarily interested in knowing how to write various differential operations,
such as ∇s, [∇ × v], and (f : ∇v) in curvilinear coordinates. It turns out that we can do this
in a straightforward way if we know, for the coordinate system being used, two things:
(a) the expression for ∇ in curvilinear coordinates; and (b) the spatial derivatives of the
unit vectors in curvilinear coordinates. Hence, we want to focus our attention on these
two points.

Cylindrical Coordinates

In cylindrical coordinates, instead of designating the coordinates of a point by x, y, z, we
locate the point by giving the values of r, p, z. These coordinates1 are shown in Fig. A.6-1a.
They are related to the Cartesian coordinates by⎧⎪⎨⎪⎩

x = r cos p (A.6-1) r = +
√
x2 + y2 (A.6-4)

y = r sin p (A.6-2) p = arctan
(
y∕x

)
(A.6-5)

z = z (A.6-3) z = z (A.6-6)

To convert derivatives of scalars with respect to x, y, z into derivatives with respect to r, p,
z, the “chain rule” of partial differentiation2 is used. The derivative operators are readily
found to be related thus:

1Caution: We have chosen to use the familiar r,p,z-notation for cylindrical coordinates rather than to

switch to some less familiar symbols, even though there are two situations in which confusion can arise:

(a) occasionally one has to use cylindrical and spherical coordinates in the same problem, and the

symbols r and p have different meanings in the two systems; (b) occasionally one deals with the position

vector r in problems involving cylindrical coordinates, but then the magnitude of r is not the same as the

coordinate r, but rather
√
r2 + z2. In such situations, as in Fig. A.6-1, we can use overbars for the

cylindrical coordinates and write r, p, z. For most discussions bars will not be needed.
2For example, for a scalar function c(x,y,z) = b(r,p,z):(

𝜕c
𝜕x

)
y,z

=
(
𝜕r
𝜕x

)
y,z

(
𝜕b
𝜕r

)
p,z

+
(
𝜕p
𝜕x

)
y,z

(
𝜕b
𝜕p

)
r,z

+
(
𝜕z
𝜕x

)
y,z

(
𝜕b
𝜕z

)
r,p

Note that we are careful to use different symbols c and b, since c is a different function of x, y, z than b is

of r, p, and z!
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x

y

z

z

r

P

θ

x

y

z

r

P

φ

θ

(a) (b)

Fig. A.6-1. (a) Cylindrical coordinates1 with 0 ≤ r < ∞, 0 ≤ p < 20, −∞ < z < ∞. (b) Spherical
coordinates with 0 ≤ r < ∞, 0 ≤ p ≤ 0, 0 ≤ d < 20. Note that r and p in cylindrical coordinates

are not the same as r and p in spherical coordinates. Note carefully how the position vector r
and its length r are written in the three coordinate systems:

Cartesian: r = txx + tyy + tzz; r =
√
x2 + y2 + z2

Cylindrical: r= trr + tzz; r =
√
r2 + z2

Spherical: r = trr; r = r

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕
𝜕x

= (cos p) 𝜕
𝜕r

+
(
−sin p

r

)
𝜕
𝜕p

+ (0) 𝜕
𝜕z

𝜕
𝜕y

= (sin p) 𝜕
𝜕r

+
(
cos p
r

)
𝜕
𝜕p

+ (0) 𝜕
𝜕z

𝜕
𝜕z

= (0) 𝜕
𝜕r

+ (0) 𝜕
𝜕p

+ (1) 𝜕
𝜕z

(A.6-7)

(A.6-8)

(A.6-9)

With these relations, derivatives of any scalar functions (including, of course, components
of vectors and tensors) with respect to x, y, and z can be expressed in terms of derivatives
with respect to r, p, and z.

Having discussed the interrelationship of the coordinates and derivatives in the two
coordinate systems, we now turn to the relation between the unit vectors. We begin by
noting that the unit vectors tx, ty, tz (or t1, t2, t3 as we have been calling them) are inde-
pendent of position—that is, independent of x, y, z. In cylindrical coordinates the unit
vectors tr and tp will depend on position, as we can see in Fig. A.6-2. The unit vector tr
is a vector of unit length in the direction of increasing r; the unit vector tp is a vector of
unit length in the direction of increasing p. Clearly as the point P is moved around on
the xy-plane, the directions of tr and tp change. Trigonometrical arguments lead to the
following relations:

⎧⎪⎨⎪⎩
tr = (cos p) tx + (sin p)ty + (0)tz
tp = (− sin p)tx + (cos p)ty + (0)tz
tz = (0)tx + (0)ty + (1)tz

(A.6-10)

(A.6-11)

(A.6-12)

These may be solved for tx, ty, and tz to give⎧⎪⎨⎪⎩
tx = (cos p) tr + (− sin p)tp + (0)tz
ty = (sin p)tr + (cos p)tp + (0)tz
tz = (0)tr + (0)tp + (1)tz

(A.6-13)

(A.6-14)

(A.6-15)
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θ

θ

θ

x

y

δθ
δy

δr

δx

P(x, y, z) or P(r, θ, z)

Fig. A.6-2. Unit vectors in Cartesian and

cylindrical coordinates. The z-axis and the

unit vector tz have been omitted for

simplicity.

The utility of these two sets of relations will be made clear in the next section.
Vectors and tensors can be decomposed into components with respect to cylindrical

coordinates as was done for Cartesian coordinates in Eqs. A.2-16 and A.3-7 (i.e., v = trvr +
tpvp + tzvz). Also, the multiplication rules for the unit vectors and unit dyads are the same
as in Eqs. A.2-14 and A.2-15 and A.3-1 to A.3-6. Consequently the various dot and cross
product operations (but not the differential operations!) are performed as described in §A.2
and §A.3. For example,

(v ⋅w) = vrwr + vpwp + vzwz (A.6-16)

[v ×w] = tr(vpwz − vzwp) + tp(vzwr − vrwz)
+ tz(vrwp − vpwr) (A.6-17)

{g ⋅ f} = trtr(grrfrr + grpfpr + grzfzr)
+ trtp(grrfrp + grpfpp + grzfzp)
+ trtz(grrfrz + grpfpz + grzfzz)
+ etc. (A.6-18)

Spherical Coordinates

We now tabulate for reference the same kind of information for spherical coordinates
r, p, d. These coordinates are shown in Figure A.6-1b. They are related to the Cartesian
coordinates by⎧⎪⎨⎪⎩

x = r sin p cos d (A.6-19) r = +
√
x2 + y2 + z2 (A.6-22)

y = r sin p sin d (A.6-20) p = arctan
(√

x2 + y2∕z
)

(A.6-23)

z = r cos p (A.6-21) d = arctan
(
y∕x

)
(A.6-24)

For the spherical coordinates we have the following relations for the derivative operators:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕
𝜕x

= (sin p cos d) 𝜕
𝜕r

+
(cos p cos d

r

)
𝜕
𝜕p

+
(
− sin d

r sin p

)
𝜕
𝜕d

𝜕
𝜕y

= (sin p sin d) 𝜕
𝜕r

+
(
cos p sin d

r

)
𝜕
𝜕p

+
( cos d

r sin p

)
𝜕
𝜕d

𝜕
𝜕z

= (cos p) 𝜕
𝜕r

+
(
−sin p

r

)
𝜕
𝜕p

+ (0) 𝜕
𝜕d

(A.6-25)

(A.6-26)

(A.6-27)

The relations between the unit vectors are⎧⎪⎨⎪⎩
tr = (sin p cos d) tx + (sin p sin d)ty + (cos p)tz
tp = (cos p cos d)tx + (cos p sin d)ty + (− sin p)tz
td = (− sin d)tx + (cos d)ty + (0)tz

(A.6-28)

(A.6-29)

(A.6-30)
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and ⎧⎪⎨⎪⎩
tx = (sin p cos d) tr + (cos p cos d)tp + (− sin d)td
ty = (sin p sin d)tr + (cos p sin d)tp + (cos d)td
tz = (cos p)tr + (− sin p)tp + (0)td

(A.6-31)

(A.6-32)

(A.6-33)

And, finally, some sample operations in spherical coordinates are

(g : f) = grrfrr + grpfpr + grdfdr
+ gprfrp + gppfpp + gpdfdp
+ gdrfrd + gdpfpd + gddfdd (A.6-34)

(u ⋅ [v ×w]) =
|||||||
ur up ud
vr vp vd
wr wp wd

||||||| (A.6-35)

That is, the relations (not involving ∇!) given in §A.2 and §A.3 can be written directly in
terms of spherical components.

EXERCISES 1. Show that

∫
20

0 ∫
0

0

tr sin p dp dd = 𝟎

∫
20

0 ∫
0

0

trtr sin p dp dd = 4

3
0t

where tr is the unit vector in the r direction in spherical coordinates.

2. Verify that in spherical coordinates t = trtr + tptp + tdtd.

§A.7 DIFFERENTIAL OPERATIONS IN CURVILINEAR
COORDINATES

We now turn to the use of the ∇-operator in curvilinear coordinates. As in the previous
section, we work out in detail the results for cylindrical and spherical coordinates.

Cylindrical Coordinates

From Eqs. A.6-10, A.6-11, and A.6-12 we can obtain expressions for the spatial derivatives
of the unit vectors tr, tp, and tz:

𝜕
𝜕r

tr = 𝟎 𝜕
𝜕r

tp = 𝟎 𝜕
𝜕r

tz = 𝟎 (A.7-1)

𝜕
𝜕p

tr = tp
𝜕
𝜕p

tp = −tr
𝜕
𝜕p

tz = 𝟎 (A.7-2)

𝜕
𝜕z

tr = 𝟎 𝜕
𝜕z

tp = 𝟎 𝜕
𝜕z

tz = 𝟎 (A.7-3)

The reader would do well to interpret these derivatives geometrically by considering the
way tr, tp, tz change as the location of P is changed in Fig. A.6-2.

We now use the definition of the ∇-operator in Eq. A.4-1, the expressions in
Eqs. A.6-13, A.6-14, and A.6-15, and the derivative operators in Eqs. A.6-7, A.6-8, and
A.6-9 to obtain the formula for ∇ in cylindrical coordinates
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∇ = tx
𝜕
𝜕x

+ ty
𝜕
𝜕y

+ tz
𝜕
𝜕z

= (tr cos p − tp sin p)
(
cos p

𝜕
𝜕r

− sin p
r

𝜕
𝜕p

)
+ (tr sin p + tp cos p)

(
sin p

𝜕
𝜕r

+ cos p
r

𝜕
𝜕p

)
+ tz

𝜕
𝜕z

(A.7-4)

When this is multiplied out, there is considerable simplification, and we get

∇ = tr
𝜕
𝜕r

+ tp
1

r
𝜕
𝜕p

+ tz
𝜕
𝜕z

(A.7-5)

for cylindrical coordinates. This may be used for obtaining all differential operations in
cylindrical coordinates, provided that Eqs. A.7-1, A.7-2, and A.7-3 are used to differentiate
any unit vectors on which ∇ operates. This point will be made clear in the subsequent
illustrative example.

Spherical Coordinates

The spatial derivatives of tr, tp, and td are obtained by differentiating Eqs. A.6-28, A.6-29,
and A.6-30:

𝜕
𝜕r

tr = 𝟎 𝜕
𝜕r

tp = 𝟎 𝜕
𝜕r

td = 𝟎 (A.7-6)

𝜕
𝜕p

tr = tp
𝜕
𝜕p

tp = −tr
𝜕
𝜕p

td = 𝟎 (A.7-7)

𝜕
𝜕d

tr = td sin p
𝜕
𝜕d

tp = td cos p
𝜕
𝜕d

td = −tr sin p − tp cos p (A.7-8)

Use of Eqs. A.6-31, A.6-32, and A.6-33 and Eqs. A.6-25, A.6-26, and A.6-27 in Eq. A.4-1
gives the following expression for the ∇-operator:

∇ = tr
𝜕
𝜕r

+ tp
1

r
𝜕
𝜕p

+ td
1

r sin p
𝜕
𝜕d

(A.7-9)

in spherical coordinates. This expression may be used for obtaining differential operations
in spherical coordinates, provided that Eqs. A.7-6, 7, and 8 are used for differentiating the
unit vectors.

In Table A.7-1, Table A.7-2, and Table A.7-3 we summarize the differential operations
most commonly encountered in Cartesian, cylindrical, and spherical coordinates.1 The
curvilinear coordinate expressions given can be obtained by the method illustrated in the
following two examples.

EXAMPLE A.7-1

Differential Operations
in Cylindrical
Coordinates

Derive expressions for (∇ ⋅ v) and ∇v in cylindrical coordinates.

SOLUTION

(a) We begin by writing ∇ in cylindrical coordinates and decomposing v into its components

(∇ ⋅ v) =
({

tr
𝜕
𝜕r

+ tp
1

r
𝜕
𝜕p

+ tz
𝜕
𝜕z

}
⋅ {trvr + tpvp + tzvz}

)
(A.7-10)

1For other coordinate systems see the extensive compilation of P. Moon and D. E. Spencer, Field
Theory Handbook, Springer, Berlin (1961). In addition, an orthogonal coordinate system is available in

which one of the three sets of coordinate surfaces is made up of coaxial cones (but with noncoincident

apexes); all of the 𝛁-operations have been tabulated by the originators of this coordinate system, J. F.

Dijksman and E. P. W. Savenije, Rheol. Acta, 24, 105–118 (1985).
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Expanding, we get

(∇ ⋅ v) =
(
tr ⋅

𝜕
𝜕r

trvr
)
+

(
tr ⋅

𝜕
𝜕r

tpvp
)
+

(
tr ⋅

𝜕
𝜕r

tzvz
)

+
(
tp ⋅

1

r
𝜕
𝜕p

trvr

)
+

(
tp ⋅

1

r
𝜕
𝜕p

tpvp

)
+

(
tp ⋅

1

r
𝜕
𝜕p

tzvz

)
+
(
tz ⋅

𝜕
𝜕z

trvr
)
+

(
tz ⋅

𝜕
𝜕z

tpvp
)
+

(
tz ⋅

𝜕
𝜕z

tzvz
)

(A.7-11)

We now use the relations given in Eqs. A.7-1, A.7-2, and A.7-3 to evaluate the derivatives of the
unit vectors. This gives

(∇ ⋅ v) = (tr ⋅ tr)
𝜕vr
𝜕r

+ (tr ⋅ tp)
𝜕vp
𝜕r

+ (tr ⋅ tz)
𝜕vz
𝜕r

+ (tp ⋅ tr)
1

r
𝜕vr
𝜕p

+ (tp ⋅ tp)
1

r
𝜕vp
𝜕p

+ (tp ⋅ tz)
1

r
𝜕vz
𝜕p

+
vr
r
(tp ⋅ tp) +

vp
r
(tp ⋅ {−tr})

+ (tz ⋅ tr)
𝜕vr
𝜕z

+ (tz ⋅ tp)
𝜕vp
𝜕z

+ (tz ⋅ tz)
𝜕vz
𝜕z

(A.7-12)

Since (tr ⋅ tr) = 1, (tr ⋅ tp) = 0, and so on, the latter simplifies to

(∇ ⋅ v) =
𝜕vr
𝜕r

+ 1

r
𝜕vp
𝜕p

+
vr
r
+

𝜕vz
𝜕z

(A.7-13)

which is the same as Eq. A of Table A.7-2. The procedure is a bit tedious, but it is straightfor-
ward.

(b) Next we examine the dyadic product ∇v:

∇v =
{
tr

𝜕
𝜕r

+ tp
1

r
𝜕
𝜕p

+ tz
𝜕
𝜕z

}
{trvr + tpvp + tzvz}

= trtr
𝜕vr
𝜕r

+ trtp
𝜕vp
𝜕r

+ trtz
𝜕vz
𝜕r

+ tptr
1

r
𝜕vr
𝜕p

+ tptp
1

r
𝜕vp
𝜕p

+ tptz
1

r
𝜕vz
𝜕p

+ tptp
vr
r
− tptr

vp
r
+ tztr

𝜕vr
𝜕z

+ tztp
𝜕vp
𝜕z

+ tztz
𝜕vz
𝜕z

= trtr
𝜕vr
𝜕r

+ trtp
𝜕vp
𝜕r

+ trtz
𝜕vz
𝜕r

+ tptr

(
1

r
𝜕vr
𝜕p

−
vp
r

)
+ tptp

(
1

r
𝜕vp
𝜕p

+
vr
r

)
+ tptz

1

r
𝜕vz
𝜕p

+ tztr
𝜕vr
𝜕z

+ tztp
𝜕vp
𝜕z

+ tztz
𝜕vz
𝜕z

(A.7-14)

Hence, the rr-component is 𝜕vr∕𝜕r, the rp-component is 𝜕vp∕𝜕r, and so on, as given in
Table A.7-2.

EXAMPLE A.7-2

Differential Operations
in Spherical
Coordinates

Find the r-component of [∇ ⋅ f] in spherical coordinates.

SOLUTION

Using Eq. A.7-9 we have

[∇ ⋅ f]r =
[{

tr
𝜕
𝜕r

+ tp
1

r
𝜕
𝜕p

+ td
1

r sin p
𝜕
𝜕d

}
⋅ {trtrfrr + trtpfrp + trtdfrd

+ tptrfpr + tptpfpp + tptdfpd + tdtrfdr + tdtpfdp + tdtdfdd

}]
r

(A.7-15)

We now use Eqs. A.7-6, A.7-7, A.7-8 and Eq. A.3-3. Since we want only the r-component, we
select only those terms that contribute to the coefficient of tr:[

tr
𝜕
𝜕r

⋅ trtrfrr
]
= [tr ⋅ trtr]

𝜕frr
𝜕r

= tr
𝜕frr
𝜕r

(A.7-16)[
tp

1

r
𝜕
𝜕p

⋅ tptrfpr

]
= [tp ⋅ tptr]

1

r
𝜕
𝜕p

fpr + other term (A.7-17)[
td

1

r sin p
𝜕
𝜕d

⋅ tdtrfdr

]
= [td ⋅ tdtr]

1

r sin p
𝜕
𝜕d

fdr + other term (A.7-18)
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[
tp

1

r
𝜕
𝜕p

⋅ trtrfrr

]
=

frr
r

[
tp ⋅

{
𝜕
𝜕p

tr
}
tr
]
+

frr
r

[
tp ⋅ tr

{
𝜕
𝜕p

tr
}]

=
frr
r
[tp ⋅ tptr] = tr

frr
r

(A.7-19)[
td

1

r sin p
𝜕
𝜕d

⋅ trtrfrr

]
=

frr
r sin p

[
td ⋅

{
𝜕
𝜕d

tr

}
tr

]
=

frr
r sin p

[td ⋅ td sin p tr] = tr
frr
r

(A.7-20)[
tp

1

r
𝜕
𝜕p

⋅ tptpfpp

]
= tr

(
−
fpp
r

)
+ other term (A.7-21)[

td
1

r sin p
𝜕
𝜕d

⋅ tptrfpr

]
= tr

fpr cos p

r sin p
(A.7-22)[

td
1

r sin p
𝜕
𝜕d

⋅ tdtdfdd

]
= tr

(−fdd
r

)
+ other terms (A.7-23)

Combining the above results we get

[∇ ⋅ f]r =
1

r2
𝜕
𝜕r

(r2frr) +
fpr
r

cot p + 1

r
𝜕
𝜕p

fpr +
1

r sin p

𝜕fdr
𝜕d

−
fpp + fdd

r
(A.7-24)

Note that this expression is correct whether or not f is symmetric.

EXERCISES 1. If r is the instantaneous position vector for a particle, show that the velocity and acceleration

of the particle are given by (use Eq. A.7-2):

v = d
dt
r = trṙ + tprṗ + tzż (A.7-25)

a = tr(r̈ − rṗ2) + tp(rp̈ + 2ṙṗ) + tzz̈ (A.7-26)

in cylindrical coordinates. The dots indicate time derivatives of the coordinates.

2. Obtain (∇ ⋅ v), [∇ × v], and ∇v in spherical coordinates, and [∇ ⋅ f] in cylindrical coordinates.

3. Use Table A.7-2 to write down directly the following quantities in cylindrical coordinates:

(a) (∇ ⋅ iv), where i is a scalar

(b) [∇ ⋅ ivv]r, where i is a scalar

(c) [∇ ⋅ pt]p, where p is a scalar

(d) (∇ ⋅ [f ⋅ v])
(e) [v ⋅ ∇v]p
(f) ∇v + (∇v)†

4. Verify that the entries for ∇2v in Table A.7-2 can be obtained by any one of the following meth-

ods:

(a) First verify that, in cylindrical coordinates the operator (∇ ⋅ ∇) is

(∇ ⋅ ∇) = 𝜕2

𝜕r2
+ 1

r
𝜕
𝜕r

+ 1

r2
𝜕2

𝜕p2
+ 𝜕2

𝜕z2
(A.7-27)

and then apply the operator to v.
(b) Use the expression for [∇ ⋅ f] in Table A.7-2, but substitute the components for ∇v in place

of the components of f, so as to obtain [∇ ⋅ ∇v].
(c) Use Eq. A.4-22:

∇2v ≡ [∇ ⋅ ∇v] = ∇(∇ ⋅ v) − [∇ × [∇ × v]] (A.7-28)

and use the gradient, divergence, and curl operations in Table A.7-2 to evaluate the operations

on the right side.
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Table A.7-1. Summary of Differential Operations Involving the ∇-Operator in Cartesian

Coordinates (x,y,z)

(∇ ⋅ v) =
𝜕vx
𝜕x

+
𝜕vy
𝜕y

+
𝜕vz
𝜕z

(A)

∇2s ≡ (∇ ⋅ ∇s) = 𝜕2s
𝜕x2

+ 𝜕2s
𝜕y2

+ 𝜕2s
𝜕z2

(B)

(f : ∇v) = fxx

(
𝜕vx
𝜕x

)
+ fxy

(
𝜕vx
𝜕y

)
+ fxz

(
𝜕vx
𝜕z

)
+ fyx

(𝜕vy
𝜕x

)
+ fyy

(𝜕vy
𝜕y

)
+ fyz

(𝜕vy
𝜕z

)
+ fzx

(
𝜕vz
𝜕x

)
+ fzy

(
𝜕vz
𝜕y

)
+ fzz

(
𝜕vz
𝜕z

)
(C)

[∇s]x =
𝜕s
𝜕x

(D)

[∇s]y =
𝜕s
𝜕y

(E)

[∇s]z =
𝜕s
𝜕z

(F)

[∇ × v]x =
𝜕vz
𝜕y

−
𝜕vy
𝜕z

(G)

[∇ × v]y =
𝜕vx
𝜕z

−
𝜕vz
𝜕x

(H)

[∇ × v]z =
𝜕vy
𝜕x

−
𝜕vx
𝜕y

(I)

[∇ ⋅ f]x =
𝜕fxx
𝜕x

+
𝜕fyx

𝜕y
+

𝜕fzx
𝜕z

(J)

[∇ ⋅ f]y =
𝜕fxy

𝜕x
+

𝜕fyy

𝜕y
+

𝜕fzy

𝜕z
(K)

[∇ ⋅ f]z =
𝜕fxz
𝜕x

+
𝜕fyz

𝜕y
+

𝜕fzz
𝜕z

(L)

[∇2v]x =
𝜕2vx
𝜕x2

+
𝜕2vx
𝜕y2

+
𝜕2vx
𝜕z2

(M)

[∇2v]y =
𝜕2vy
𝜕x2

+
𝜕2vy
𝜕y2

+
𝜕2vy
𝜕z2

(N)

[∇2v]z =
𝜕2vz
𝜕x2

+
𝜕2vz
𝜕y2

+
𝜕2vz
𝜕z2

(O)

[v ⋅ ∇w]x =vx
(
𝜕wx

𝜕x

)
+ vy

(
𝜕wx

𝜕y

)
+ vz

(
𝜕wx

𝜕z

)
(P)

[v ⋅ ∇w]y =vx
(𝜕wy

𝜕x

)
+ vy

(𝜕wy

𝜕y

)
+ vz

(𝜕wy

𝜕z

)
(Q)

[v ⋅ ∇w]z =vx
(
𝜕wz

𝜕x

)
+ vy

(
𝜕wz

𝜕y

)
+ vz

(
𝜕wz

𝜕z

)
(R)
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Table A.7-1. (Continued)

{∇v}xx =
𝜕vx
𝜕x

(S)

{∇v}xy =
𝜕vy
𝜕x

(T)

{∇v}xz =
𝜕vz
𝜕x

(U)

{∇v}yx =
𝜕vx
𝜕y

(V)

{∇v}yy =
𝜕vy
𝜕y

(W)

{∇v}yz =
𝜕vz
𝜕y

(X)

{∇v}zx =
𝜕vx
𝜕z

(Y)

{∇v}zy =
𝜕vy
𝜕z

(Z)

{∇v}zz =
𝜕vz
𝜕z

(AA)

{v ⋅ 𝛁 f}xx = (v ⋅ 𝛁)fxx (BB)

{v ⋅ 𝛁 f}xy = (v ⋅ 𝛁)fxy (CC)

{v ⋅ 𝛁 f}xz = (v ⋅ 𝛁)fxz (DD)

{v ⋅ 𝛁 f}yx = (v ⋅ 𝛁)fyx (EE)

{v ⋅ 𝛁 f}yy = (v ⋅ 𝛁)fyy (FF)

{v ⋅ 𝛁 f}yz = (v ⋅ 𝛁)fyz (GG)

{v ⋅ 𝛁 f}zx = (v ⋅ 𝛁)fzx (HH)

{v ⋅ 𝛁 f}zy = (v ⋅ 𝛁)fzy (II)

{v ⋅ 𝛁 f}zz = (v ⋅ 𝛁)fzz (JJ)

where the operator (v ⋅ ∇) = vx
𝜕
𝜕x

+ vy
𝜕
𝜕y

+ vz
𝜕
𝜕z
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Table A.7-2. Summary of Differential Operations Involving the ∇-Operator in Cylindrical

Coordinates (r,p,z)

(∇ ⋅ v) = 1

r
𝜕
𝜕r

(rvr) +
1

r
𝜕vp
𝜕p

+
𝜕vz
𝜕z

(A)

∇2s ≡ (∇ ⋅ ∇s) = 1

r
𝜕
𝜕r

(
r𝜕s
𝜕r

)
+ 1

r2
𝜕2s
𝜕p2

+ 𝜕2s
𝜕z2

(B)

(f : ∇v) = frr

(
𝜕vr
𝜕r

)
+ frp

(
1

r
𝜕vr
𝜕p

−
vp
r

)
+ frz

(
𝜕vr
𝜕z

)
+ fpr

(
𝜕vp
𝜕r

)
+ fpp

(
1

r
𝜕vp
𝜕p

+
vr
r

)
+ fpz

(
𝜕vp
𝜕z

)
+ fzr

(
𝜕vz
𝜕r

)
+ fzp

(
1

r
𝜕vz
𝜕p

)
+ fzz

(
𝜕vz
𝜕z

)
(C)

[∇s]r =
𝜕s
𝜕r

(D)

[∇s]p =
1

r
𝜕s
𝜕p

(E)

[∇s]z =
𝜕s
𝜕z

(F)

[∇ × v]r =
1

r
𝜕vz
𝜕p

−
𝜕vp
𝜕z

(G)

[∇ × v]p =
𝜕vr
𝜕z

−
𝜕vz
𝜕r

(H)

[∇ × v]z =
1

r
𝜕
𝜕r

(rvp) −
1

r
𝜕vr
𝜕p

(I)

[∇ ⋅ f]r =
1

r
𝜕
𝜕r

(rfrr) +
1

r
𝜕
𝜕p

fpr +
𝜕
𝜕z

fzr −
fpp
r

(J)

[∇ ⋅ f]p =
1

r2
𝜕
𝜕r

(r2frp) +
1

r
𝜕
𝜕p

fpp +
𝜕
𝜕z

fzp +
fpr − frp

r
(K)

[∇ ⋅ f]z =
1

r
𝜕
𝜕r

(rfrz) +
1

r
𝜕
𝜕p

fpz +
𝜕
𝜕z

fzz (L)

[∇2v]r =
𝜕
𝜕r

(
1

r
𝜕
𝜕r

(
rvr

))
+ 1

r2
𝜕2vr
𝜕p2

+
𝜕2vr
𝜕z2

− 2

r2
𝜕vp
𝜕p

(M)

[∇2v]p =
𝜕
𝜕r

(
1

r
𝜕
𝜕r

(
rvp

))
+ 1

r2
𝜕2vp
𝜕p2

+
𝜕2vp
𝜕z2

+ 2

r2
𝜕vr
𝜕p

(N)

[∇2v]z =
1

r
𝜕
𝜕r

(
r
𝜕vz
𝜕r

)
+ 1

r2
𝜕2vz
𝜕p2

+
𝜕2vz
𝜕z2

(O)

[v ⋅ ∇w]r = vr

(
𝜕wr

𝜕r

)
+ vp

(
1

r
𝜕wr

𝜕p
−

wp

r

)
+ vz

(
𝜕wr

𝜕z

)
(P)

[v ⋅ ∇w]p = vr

(
𝜕wp

𝜕r

)
+ vp

(
1

r
𝜕wp

𝜕p
+

wr

r

)
+ vz

(
𝜕wp

𝜕z

)
(Q)

[v ⋅ ∇w]z = vr

(
𝜕wz

𝜕r

)
+ vp

(
1

r
𝜕wz

𝜕p

)
+ vz

(
𝜕wz

𝜕z

)
(R)
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Table A.7-2. (Continued)

{∇v}rr =
𝜕vr
𝜕r

(S)

{∇v}rp =
𝜕vp
𝜕r

(T)

{∇v}rz =
𝜕vz
𝜕r

(U)

{∇v}pr =
1

r
𝜕vr
𝜕p

−
vp
r

(V)

{∇v}pp =
1

r
𝜕vp
𝜕p

+
vr
r

(W)

{∇v}pz =
1

r
𝜕vz
𝜕p

(X)

{∇v}zr =
𝜕vr
𝜕z

(Y)

{∇v}zp =
𝜕vp
𝜕z

(Z)

{∇v}zz =
𝜕vz
𝜕z

(AA)

{v ⋅ ∇f}rr = (v ⋅ ∇)frr–
vp
r

(frp + fpr) (BB)

{v ⋅ ∇f}rp = (v ⋅ ∇)frp +
vp
r

(frr–fpp) (CC)

{v ⋅ ∇f}rz = (v ⋅ ∇)frz–
vp
r
fpz (DD)

{v ⋅ ∇f}pr = (v ⋅ ∇)fpr +
vp
r

(frr–fpp) (EE)

{v ⋅ ∇f}pp = (v ⋅ ∇)fpp +
vp
r
(frp + fpr) (FF)

{v ⋅ ∇f}pz = (v ⋅ ∇)fpz +
vp
r
frz (GG)

{v ⋅ ∇f}zr = (v ⋅ ∇)fzr–
vp
r

fzp (HH)

{v ⋅ ∇f}zp = (v ⋅ ∇)fzp +
vp
r
fzr (II)

{v ⋅ ∇f}zz = (v ⋅ ∇)fzz (JJ)

where the operator (v ⋅ ∇) = vr
𝜕
𝜕r

+
vp
r

𝜕
𝜕p

+ vz
𝜕
𝜕z
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Table A.7-3. Summary of Differential Operations Involving the ∇-Operator in Spherical

Coordinates (r,p,d)

(∇ ⋅ v) = 1

r2
𝜕
𝜕r

(r2vr) +
1

r sin p
𝜕
𝜕p

(vp sin p) + 1

r sin p

𝜕vd
𝜕d

(A)

∇2s ≡ (∇ ⋅ ∇s) = 1

r2
𝜕
𝜕r

(
r2 𝜕s
𝜕r

)
+ 1

r2 sin p
𝜕
𝜕p

(
sin p

𝜕s
𝜕p

)
+ 1

r2 sin2 p

𝜕2s
𝜕d2

(B)

(f : ∇v) = frr

(
𝜕vr
𝜕r

)
+ frp

(
1

r
𝜕vr
𝜕p

−
vp
r

)
+ frd

(
1

r sin p

𝜕vr
𝜕d

−
vd
r

)
+ fpr

(
𝜕vp
𝜕r

)
+ fpp

(
1

r
𝜕vp
𝜕p

+
vr
r

)
+ fpd

(
1

r sin p

𝜕vp
𝜕d

−
vd
r

cot p

)
+ fdr

(𝜕vd
𝜕r

)
+ fdp

(
1

r

𝜕vd
𝜕p

)
+ fdd

(
1

r sin p

𝜕vd
𝜕d

+
vr
r
+

vp
r
cot p

)
(C)

[∇s]r =
𝜕s
𝜕r

(D)

[∇s]p =
1

r
𝜕s
𝜕p

(E)

[∇s]d = 1

r sin p
𝜕s
𝜕d

(F)

[∇ × v]r =
1

r sin p
𝜕
𝜕p

(vd sin p) − 1

r sin p

𝜕vp
𝜕d

(G)

[∇ × v]p =
1

r sin p

𝜕vr
𝜕d

− 1

r
𝜕
𝜕r

(rvd) (H)

[∇ × v]d = 1

r
𝜕
𝜕r

(rvp) −
1

r
𝜕vr
𝜕p

(I)

[∇ ⋅ f]r =
1

r2
𝜕
𝜕r

(r2frr) +
1

r sin p
𝜕
𝜕p

(fpr sin p) + 1

r sin p
𝜕
𝜕d

fdr −
fpp + fdd

r
(J)

[∇ ⋅ f]p =
1

r3
𝜕
𝜕r

(r3frp) +
1

r sin p
𝜕
𝜕p

(fpp sin p) + 1

r sin p
𝜕
𝜕d

fdp +
(fpr − frp) − fdd cot p

r
(K)

[∇ ⋅ f]d = 1

r3
𝜕
𝜕r

(r3frd) +
1

r sin p
𝜕
𝜕p

(fpd sin p) + 1

r sin p
𝜕
𝜕d

fdd +
(fdr − frd) + fdp cot p

r
(L)

[∇2v]r =
𝜕
𝜕r

(
1

r2
𝜕
𝜕r

(
r2vr

))
+ 1

r2 sin p
𝜕
𝜕p

(
sin p

𝜕vr
𝜕p

)
+ 1

r2 sin2 p

𝜕2vr
𝜕d2

− 2

r2 sin p
𝜕
𝜕p

(vp sin p) − 2

r2 sin p

𝜕vd
𝜕d

(M)

[∇2v]p =
1

r2
𝜕
𝜕r

(
r2
𝜕vp
𝜕r

)
+ 1

r2
𝜕
𝜕p

(
1

sin p
𝜕
𝜕p

(
vp sin p

))
+ 1

r2 sin2 p

𝜕2vp
𝜕d2

+ 2

r2
𝜕vr
𝜕p

− 2 cot p
r2 sin p

𝜕vd
𝜕d

(N)

[∇2v]d = 1

r2
𝜕
𝜕r

(
r2
𝜕vd
𝜕r

)
+ 1

r2
𝜕
𝜕p

(
1

sin p
𝜕
𝜕p

(
vd sin p

))
+ 1

r2 sin2 p

𝜕2vd
𝜕d2

+ 2

r2 sin p

𝜕vr
𝜕d

+ 2 cot p
r2 sin p

𝜕vp
𝜕d

(O)

[v ⋅ ∇w]r = vr

(
𝜕wr

𝜕r

)
+ vp

(
1

r
𝜕wr

𝜕p
−

wp

r

)
+ vd

(
1

r sin p

𝜕wr

𝜕d
−

wd

r

)
(P)
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Table A.7-3. (Continued)

[v ⋅ ∇w]p = vr

(
𝜕wp

𝜕r

)
+ vp

(
1

r
𝜕wp

𝜕p
+

wr

r

)
+ vd

(
1

r sin p

𝜕wp

𝜕d
−

wd

r
cot p

)
(Q)

[v ⋅ ∇w]d = vr

(𝜕wd

𝜕r

)
+ vp

(
1

r

𝜕wd

𝜕p

)
+ vd

(
1

r sin p

𝜕wd

𝜕d
+

wr

r
+

wp

r
cot p

)
(R)

{∇v}rr =
𝜕vr
𝜕r

(S)

{∇v}rp =
𝜕vp
𝜕r

(T)

{∇v}rd =
𝜕vd
𝜕r

(U)

{∇v}pr =
1

r
𝜕vr
𝜕p

−
vp
r

(V)

{∇v}pp =
1

r
𝜕vp
𝜕p

+
vr
r

(W)

{∇v}pd = 1

r

𝜕vd
𝜕p

(X)

{∇v}dr =
1

r sin p

𝜕vr
𝜕d

−
vd
r

(Y)

{∇v}dp =
1

r sin p

𝜕vp
𝜕d

−
vd
r

cot p (Z)

{∇v}dd = 1

r sin p

𝜕vd
𝜕d

+
vr
r
+

vp
r

cot p (AA)

{v ⋅ ∇f}rr = (v ⋅ ∇)frr −
(vp
r

)
(frp + fpr) −

(vd
r

)
(frd + fdr) (BB)

{v ⋅ ∇f}rp = (v ⋅ ∇)frp +
(vp
r

)
(frr − fpp) −

(vd
r

)
(fdp + frd cot p) (CC)

{v ⋅ ∇f}rd = (v ⋅ ∇)frd −
(vp
r

)
fpd +

(vd
r

)
[(frr − fdd) + frp cot p] (DD)

{v ⋅ ∇f}pr = (v ⋅ ∇)fpr +
(vp
r

)
(frr − fpp) −

(vd
r

)
(fpd + fdr cot p) (EE)

{v ⋅ ∇f}pp = (v ⋅ ∇)fpp +
(vp
r

)
(frp + fpr) −

(vd
r

)
(fpd + fdp) cot p (FF)

{v ⋅ ∇f}pd = (v ⋅ ∇)fpd +
(vp
r

)
frd +

(vd
r

)
[fpr + (fpp − fdd) cot p] (GG)

{v ⋅ ∇f}dr = (v ⋅ ∇)fdr −
(vp
r

)
fdp +

(vd
r

)
[(frr − fdd) + fpr cot p] (HH)

{v ⋅ ∇f}dp = (v ⋅ ∇)fdp +
(vp
r

)
fdr +

(vd
r

)
[frp + (fpp − fdd) cot p] (II)

{v ⋅ ∇f}dd = (v ⋅ ∇)fdd +
(vd

r

)
[(frd + fdr) + (fpd + fdp) cot p] (JJ)

where the operator (v ⋅ ∇) = vr
𝜕
𝜕r

+
vp
r

𝜕
𝜕p

+
vd

r sin p
𝜕
𝜕d
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§A.8 INTEGRAL OPERATIONS IN CURVILINEAR COORDINATES

In performing the integrations of §A.5 in curvilinear coordinates, it is important to under-

stand the construction of the volume elements, as is shown for cylindrical coordinates in

Fig. A.8-1 and for spherical coordinates in Fig. A.8-2.

In doing volume integrals, the simplest situations are those in which the bounding sur-

faces are surfaces of the coordinate system. For cylindrical coordinates, a typical volume

integral of a function f (r,p,z)would be of the form

∫
z2

z1
∫

p2

p1
∫

r2

r1

f (r,p,z)r dr dp dz (A.8-1)

and for spherical coordinates a typical volume integral of a function g(r,p,d)would be

∫
d2

d1
∫

p2

p1
∫

r2

r1

g(r,p,d)r2dr sin p dp dd (A.8-2)

Since the limits in these integrals (r1,r2,p1,p2,etc.) are constants, the order of the integration
is immaterial.

In doing surface integrals, the simplest situations are those in which the integration is

performed on one of the surfaces of the coordinate system. For cylindrical coordinates there
are three possibilities:

On the surface r = r0: ∫
z2

z1
∫

p2

p1

f (r0,p,z)r0 dp dz (A.8-3)

On the surface p = p0: ∫
z2

z1
∫

r2

r1

f (r,p0,z) dr dz (A.8-4)

On the surface z = z0: ∫
p2

p2
∫

r2

r1

f (r,p,z0)r dr dp (A.8-5)

x

z

y

(r, θ, z) dr

dz

rdθ

θ

dθ
xz-plane Cylindrical surface

of radius r

Differential
volume element
(dr)(rdθ)(dz)

Fig. A.8-1. Differential

volume element r dr dp dz in
cylindrical coordinates, and

differential line elements dr,
r dp, and dz. The differential
surface elements are:

(r dp)(dz) perpendicular to
the r direction (intermediate

shading); (dz)(dr)
perpendicular to the p
direction (darkest shading);

and (dr)(r dp) perpendicular
to the z direction (lightest

shading).
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x

z

y

(r, θ, φ)

dr

rdθ

φ

xz-plane

Spherical surface
with radius r

Differential
volume element

(dr)(rdθ)(r sin θ dφ)

(r sin θ dφ)

Fig. A.8-2. Differential volume element r2 sin p dr dp dd in spherical coordinates, and the

differential line elements dr, r dp, and r sin p dd. The angle p is measured from the z axis, that
is, downward from the top of the sphere (in contrast to angles of latitude, which are measured

upward from the equator). The differential surface elements are: (r dp)(r sin p dd)
perpendicular to the r direction (lightest shading); (r sin p dd)(dr) perpendicular to the p
direction (darkest shading); and (dr)(r dp) perpendicular to the d direction (intermediate

shading).

Similarly, for spherical coordinates:

On the surface r = r0: ∫
d2

d1
∫

p2

p1

g(r0,p,d)r20 sin p dp dd (A.8-6)

On the surface p = p0: ∫
d2

d1
∫

r2

r1

g(r,p0,d) sin p0 r dr dd (A.8-7)

On the surface d = d0: ∫
p2

p1
∫

r2

r1

g(r,p,d0)r dr dp (A.8-8)

The reader should try making sketches to show exactly what areas are described by each
of the above six surface integrals.

If the area of integration in a surface integral is not one of the surfaces of the coordinate
system, then a book on differential and integral calculus should be consulted.
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Appendix B

The Fluxes and the Equations
of Change

§B.1 Newton’s law of viscosity

§B.20 Fourier’s law of heat conduction

§B.30 Fick’s (first) law of binary diffusion

§B.40 The equation of continuity

§B.5 The equation of motion in terms of f

§B.60 The equation of motion for a Newtonian fluid with constant i and 4

§B.70 The dissipation function Cv for Newtonian fluids

§B.8 The equation of energy in terms of q

§B.90 The equation of energy for pure Newtonian fluids with constant i and k

§B.10 The equation of continuity for species w in terms of 𝐣w
§B.11 The equation of continuity for species A in terms of aA for constant i𝒟AB

§B.1 NEWTON’S LAWOF VISCOSITY
[f = −4(∇v + (∇v)†) + ( 2

3
4 − n)(∇ ⋅ v)t]

Cartesian coordinates (x,y,z):

fxx = −4
[
2
𝜕vx
𝜕x

]
+ ( 2

3
4 − n)(∇ ⋅ v) (B.1-1)a

fyy = −4
[
2
𝜕vy
𝜕y

]
+ ( 2

3
4 − n)(∇ ⋅ v) (B.1-2)a

fzz = −4
[
2
𝜕vz
𝜕z

]
+ ( 2

3
4 − n)(∇ ⋅ v) (B.1-3)a

fxy = fyx = −4
[𝜕vy
𝜕x

+
𝜕vx
𝜕y

]
(B.1-4)

fyz = fzy = −4
[
𝜕vz
𝜕y

+
𝜕vy
𝜕z

]
(B.1-5)

fzx = fxz = −4
[
𝜕vx
𝜕z

+
𝜕vz
𝜕x

]
(B.1-6)

in which
(∇ ⋅ v) =

𝜕vx
𝜕x

+
𝜕vy
𝜕y

+
𝜕vz
𝜕z

(B.1-7)

aWhen the fluid is assumed to have constant density, the term containing (∇ ⋅ v)may be omitted.

For monatomic gases at low density, the dilatational viscosity n is zero.
720
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§B.1 NEWTON’S LAWOF VISCOSITY (continued)

Cylindrical coordinates (r,p,z):

frr = −4
[
2
𝜕vr
𝜕r

]
+ ( 2

3
4 − n)(∇ ⋅ v) (B.1-8)a

fpp = −4
[
2

(
1

r
𝜕vp
𝜕p

+
vr
r

)]
+ ( 2

3
4 − n)(∇ ⋅ v) (B.1-9)a

fzz = −4
[
2
𝜕vz
𝜕z

]
+ ( 2

3
4 − n)(∇ ⋅ v) (B.1-10)a

frp = fpr = −4
[
r 𝜕
𝜕r

(vp
r

)
+ 1

r
𝜕vr
𝜕p

]
(B.1-11)

fpz = fzp = −4
[
1

r
𝜕vz
𝜕p

+
𝜕vp
𝜕z

]
(B.1-12)

fzr = frz = −4
[
𝜕vr
𝜕z

+
𝜕vz
𝜕r

]
(B.1-13)

in which

(∇ ⋅ v) = 1

r
𝜕
𝜕r

(rvr) +
1

r
𝜕vp
𝜕p

+
𝜕vz
𝜕z

(B.1-14)

aWhen the fluid is assumed to have constant density, the term containing (∇ ⋅ v)may be omitted.

For monatomic gases at low density, the dilatational viscosity n is zero.

Spherical coordinates (r,p,d):

frr = −4
[
2
𝜕vr
𝜕r

]
+ ( 2

3
4 − n)(∇ ⋅ v) (B.1-15)a

fpp = −4
[
2

(
1

r
𝜕vp
𝜕p

+
vr
r

)]
+ ( 2

3
4 − n)(∇ ⋅ v) (B.1-16)a

fdd = −4
[
2

(
1

r sin p

𝜕vd
𝜕d

+
vr + vp cot p

r

)]
+ ( 2

3
4 − n)(∇ ⋅ v) (B.1-17)a

frp = fpr = −4
[
r 𝜕
𝜕r

(vp
r

)
+ 1

r
𝜕vr
𝜕p

]
(B.1-18)

fpd = fdp = −4
[
sin p
r

𝜕
𝜕p

( vd
sin p

)
+ 1

r sin p

𝜕vp
𝜕d

]
(B.1-19)

fdr = frd = −4
[

1

r sin p

𝜕vr
𝜕d

+ r 𝜕
𝜕r

(vd
r

)]
(B.1-20)

in which

(∇ ⋅ v) = 1

r2
𝜕
𝜕r

(r2vr) +
1

r sin p
𝜕
𝜕p

(vp sin p) + 1

r sin p

𝜕vd
𝜕d

(B.1-21)

aWhen the fluid is assumed to have constant density, the term containing (∇ ⋅ v)may be omitted.

For monatomic gases at low density, the dilatational viscosity n is zero.
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§B.2 FOURIER’S LAW OF HEAT CONDUCTIONa

[q = −k∇T]

Cartesian coordinates (x,y,z):

qx = −k𝜕T
𝜕x

(B.2-1)

qy = −k𝜕T
𝜕y

(B.2-2)

qz = −k𝜕T
𝜕z

(B.2-3)

Cylindrical coordinates (r,p,z):

qr = −k𝜕T
𝜕r

(B.2-4)

qp = −k1
r
𝜕T
𝜕p

(B.2-5)

qz = −k𝜕T
𝜕z

(B.2-6)

Spherical coordinates (r,p,d):

qr = −k𝜕T
𝜕r

(B.2-7)

qp = −k1
r
𝜕T
𝜕p

(B.2-8)

qd = −k 1

r sin p
𝜕T
𝜕d

(B.2-9)

aFor mixtures, the term Fw(Hw∕Mw)jw must be added to −k∇T (see Eq. 19.3-3).
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§B.3 FICK’S (FIRST) LAW OF BINARY DIFFUSIONa

[jA = −i𝒟AB∇aA]

Cartesian coordinates (x,y,z):

jAx = −i𝒟AB
𝜕aA

𝜕x
(B.3-1)

jAy = −i𝒟AB
𝜕aA

𝜕y
(B.3-2)

jAz = −i𝒟AB
𝜕aA

𝜕z
(B.3-3)

Cylindrical coordinates (r,p,z):

jAr = −i𝒟AB
𝜕aA

𝜕r
(B.3-4)

jAp = −i𝒟AB
1

r
𝜕aA

𝜕p
(B.3-5)

jAz = −i𝒟AB
𝜕aA

𝜕z
(B.3-6)

Spherical coordinates (r,p,d):

jAr = −i𝒟AB
𝜕aA

𝜕r
(B.3-7)

jAp = −i𝒟AB
1

r
𝜕aA

𝜕p
(B.3-8)

jAd = −i𝒟AB
1

r sin p

𝜕aA

𝜕d
(B.3-9)

aTo get the molar fluxes with respect to the molar average velocity, replace jA, i, and aA by J*A, c, and xA.

§B.4 THE EQUATION OF CONTINUITYa

[𝜕i∕𝜕t + (∇ ⋅ iv) = 0] (B.4-1)

Cartesian coordinates (x,y,z):

𝜕i

𝜕t
+ 𝜕

𝜕x
(ivx) +

𝜕
𝜕y

(ivy) +
𝜕
𝜕z

(ivz) = 0 (B.4-2)

Cylindrical coordinates (r,p,z):

𝜕i

𝜕t
+ 1

r
𝜕
𝜕r

(irvr) +
1

r
𝜕
𝜕p

(ivp) +
𝜕
𝜕z

(ivz) = 0 (B.4-3)

Spherical coordinates (r,p,d):

𝜕i

𝜕t
+ 1

r2
𝜕
𝜕r

(ir2vr) +
1

r sin p
𝜕
𝜕p

(ivp sin p) + 1

r sin p
𝜕
𝜕d

(ivd) = 0 (B.4-4)

aWhen the fluid is assumed to have constant mass density i, the equation simplifies to (∇ ⋅ v) = 0.
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§B.5 THE EQUATION OFMOTION IN TERMS OF f

[iDv∕Dt = −∇p − [∇ ⋅ f] + ig]

Cartesian coordinates (x,y,z):a

i

(
𝜕vx
𝜕t

+ vx
𝜕vx
𝜕x

+ vy
𝜕vx
𝜕y

+ vz
𝜕vx
𝜕z

)
= −

𝜕p
𝜕x

−
[
𝜕
𝜕x

fxx +
𝜕
𝜕y

fyx +
𝜕
𝜕z

fzx

]
+ igx (B.5-1)

i

(𝜕vy
𝜕t

+ vx
𝜕vy
𝜕x

+ vy
𝜕vy
𝜕y

+ vz
𝜕vy
𝜕z

)
= −

𝜕p
𝜕y

−
[
𝜕
𝜕x

fxy +
𝜕
𝜕y

fyy +
𝜕
𝜕z

fzy

]
+ igy (B.5-2)

i

(
𝜕vz
𝜕t

+ vx
𝜕vz
𝜕x

+ vy
𝜕vz
𝜕y

+ vz
𝜕vz
𝜕z

)
= −

𝜕p
𝜕z

−
[
𝜕
𝜕x

fxz +
𝜕
𝜕y

fyz +
𝜕
𝜕z

fzz

]
+ igz (B.5-3)

aThese equations have been written without making the assumption that f is symmetric. This means, for

example, that when the usual assumption is made that the stress tensor is symmetric, fxy and fyx may be

interchanged.

Cylindrical coordinates (r,p,z):b

i

(
𝜕vr
𝜕t

+ vr
𝜕vr
𝜕r

+
vp
r
𝜕vr
𝜕p

+ vz
𝜕vr
𝜕z

−
v2p
r

)
= −

𝜕p
𝜕r

−
[
1

r
𝜕
𝜕r

(
rfrr

)
+ 1

r
𝜕
𝜕p

fpr +
𝜕
𝜕z

fzr −
fpp
r

]
+ igr (B.5-4)

i

(
𝜕vp
𝜕t

+ vr
𝜕vp
𝜕r

+
vp
r
𝜕vp
𝜕p

+ vz
𝜕vp
𝜕z

+
vrvp
r

)
= −1

r
𝜕p
𝜕p

−
[
1

r2
𝜕
𝜕r

(
r2frp

)
+ 1

r
𝜕
𝜕p

fpp +
𝜕
𝜕z

fzp +
fpr − frp

r

]
+ igp (B.5-5)

i

(
𝜕vz
𝜕t

+ vr
𝜕vz
𝜕r

+
vp
r
𝜕vz
𝜕p

+ vz
𝜕vz
𝜕z

)
= −

𝜕p
𝜕z

−
[
1

r
𝜕
𝜕r

(
rfrz

)
+ 1

r
𝜕
𝜕p

fpz +
𝜕
𝜕z

fzz

]
+ igz (B.5-6)

bThese equations have been written without making the assumption that f is symmetric. This means, for example, that when the usual

assumption is made that the stress tensor is symmetric, frp − fpr = 0.

Spherical coordinates (r,p,d):c

i

(
𝜕vr
𝜕t

+ vr
𝜕vr
𝜕r

+
vp
r
𝜕vr
𝜕p

+
vd

r sin p

𝜕vr
𝜕d

−
v2p + v2d

r

)
= −

𝜕p
𝜕r

−
[
1

r2
𝜕
𝜕r

(
r2frr

)
+ 1

r sin p
𝜕
𝜕p

(fpr sin p) + 1

r sin p
𝜕
𝜕d

fdr −
fpp + fdd

r

]
+ igr (B.5-7)

i

(
𝜕vp
𝜕t

+ vr
𝜕vp
𝜕r

+
vp
r
𝜕vp
𝜕p

+
vd

r sin p

𝜕vp
𝜕d

+
vrvp − v2d cot p

r

)
= −1

r
𝜕p
𝜕p

−
[
1

r3
𝜕
𝜕r

(
r3frp

)
+ 1

r sin p
𝜕
𝜕p

(fpp sin p) + 1

r sin p
𝜕
𝜕d

fdp +
(fpr − frp) − fdd cot p

r

]
+ igp (B.5-8)

i

(
𝜕vd
𝜕t

+ vr
𝜕vd
𝜕r

+
vp
r

𝜕vd
𝜕p

+
vd

r sin p

𝜕vd
𝜕d

+
vdvr + vpvd cot p

r

)
= − 1

r sin p

𝜕p
𝜕d

−
[
1

r3
𝜕
𝜕r

(
r3frd

)
+ 1

r sin p
𝜕
𝜕p

(fpd sin p) + 1

r sin p
𝜕
𝜕d

fdd +
(fdr − frd) + fdp cot p

r

]
+ igd (B.5-9)

cThese equations have been written without making the assumption that f is symmetric. This means, for example, that when the usual

assumption is made that the stress tensor is symmetric, frp − fpr = 0.
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§B.6 THE EQUATION OFMOTION FOR A NEWTONIAN FLUIDWITH
CONSTANT i AND 4

[iDv∕Dt = −∇p + 4∇2v + ig]

Cartesian coordinates (x,y,z):

i

(
𝜕vx
𝜕t

+ vx
𝜕vx
𝜕x

+ vy
𝜕vx
𝜕y

+ vz
𝜕vx
𝜕z

)
= −

𝜕p
𝜕x

+ 4

[
𝜕2vx
𝜕x2

+
𝜕2vx
𝜕y2

+
𝜕2vx
𝜕z2

]
+ igx (B.6-1)

i

(𝜕vy
𝜕t

+ vx
𝜕vy
𝜕x

+ vy
𝜕vy
𝜕y

+ vz
𝜕vy
𝜕z

)
= −

𝜕p
𝜕y

+ 4

[
𝜕2vy
𝜕x2

+
𝜕2vy
𝜕y2

+
𝜕2vy
𝜕z2

]
+ igy (B.6-2)

i

(
𝜕vz
𝜕t

+ vx
𝜕vz
𝜕x

+ vy
𝜕vz
𝜕y

+ vz
𝜕vz
𝜕z

)
= −

𝜕p
𝜕z

+ 4

[
𝜕2vz
𝜕x2

+
𝜕2vz
𝜕y2

+
𝜕2vz
𝜕z2

]
+ igz (B.6-3)

Cylindrical coordinates (r,p,z):

i

(
𝜕vr
𝜕t

+ vr
𝜕vr
𝜕r

+
vp
r
𝜕vr
𝜕p

+ vz
𝜕vr
𝜕z

−
v2p
r

)
= −

𝜕p
𝜕r

+ 4

[
𝜕
𝜕r

(
1

r
𝜕
𝜕r

(
rvr

))
+ 1

r2
𝜕2vr
𝜕p2

+
𝜕2vr
𝜕z2

− 2

r2
𝜕vp
𝜕p

]
+ igr (B.6-4)

i

(
𝜕vp
𝜕t

+ vr
𝜕vp
𝜕r

+
vp
r
𝜕vp
𝜕p

+ vz
𝜕vp
𝜕z

+
vrvp
r

)
= −1

r
𝜕p
𝜕p

+ 4

[
𝜕
𝜕r

(
1

r
𝜕
𝜕r

(
rvp

))
+ 1

r2
𝜕2vp
𝜕p2

+
𝜕2vp
𝜕z2

+ 2

r2
𝜕vr
𝜕p

]
+ igp (B.6-5)

i

(
𝜕vz
𝜕t

+ vr
𝜕vz
𝜕r

+
vp
r
𝜕vz
𝜕p

+ vz
𝜕vz
𝜕z

)
= −

𝜕p
𝜕z

+ 4

[
1

r
𝜕
𝜕r

(
r
𝜕vz
𝜕r

)
+ 1

r2
𝜕2vz
𝜕p2

+
𝜕2vz
𝜕z2

]
+ igz (B.6-6)

Spherical coordinates (r,p,d):

i

(
𝜕vr
𝜕t

+ vr
𝜕vr
𝜕r

+
vp
r
𝜕vr
𝜕p

+
vd

r sin p

𝜕vr
𝜕d

−
v2p + v2d

r

)
= −

𝜕p
𝜕r

+ 4

[
1

r2
𝜕2

𝜕r2
(
r2vr

)
+ 1

r2 sin p

𝜕
𝜕p

(
sin p

𝜕vr
𝜕p

)
+ 1

r2 sin2 p

𝜕2vr
𝜕d2

]
+ igr (B.6-7)a

i

(
𝜕vp
𝜕t

+ vr
𝜕vp
𝜕r

+
vp
r
𝜕vp
𝜕p

+
vd

r sin p

𝜕vp
𝜕d

+
vrvp − v2d cot p

r

)
= −1

r
𝜕p
𝜕p

+ 4

[
1

r2
𝜕
𝜕r

(
r2
𝜕vp
𝜕r

)
+ 1

r2
𝜕
𝜕p

(
1

sin p
𝜕
𝜕p

(
vp sin p

))
+ 1

r2 sin2 p

𝜕2vp
𝜕d2

+ 2

r2
𝜕vr
𝜕p

− 2 cot p

r2 sin p

𝜕vd
𝜕d

]
+ igp (B.6-8)

i

(
𝜕vd
𝜕t

+ vr
𝜕vd
𝜕r

+
vp
r

𝜕vd
𝜕p

+
vd

r sin p

𝜕vd
𝜕d

+
vdvr + vpvd cot p

r

)
= − 1

r sin p

𝜕p
𝜕d

+ 4

[
1

r2
𝜕
𝜕r

(
r2
𝜕vd
𝜕r

)
+ 1

r2
𝜕
𝜕p

(
1

sin p
𝜕
𝜕p

(
vd sin p

))
+ 1

r2 sin2 p

𝜕2vd
𝜕d2

+ 2

r2 sin p

𝜕vr
𝜕d

+ 2 cot p

r2 sin p

𝜕vp
𝜕d

]
+ igd (B.6-9)

aThe quantity in the brackets in Eq. B.6-7 is not what one would expect from Eq. (M) for [∇ ⋅ ∇v] in Table A.7-3, because we have added

to Eq. (M) the expression for (2∕r)(∇ ⋅ v), which is zero for fluids with constant i. This gives a much simpler equation.
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§B.7 THE DISSIPATION FUNCTION Cv FOR NEWTONIAN FLUIDS
(SEE EQ. 3.3-3)

Cartesian coordinates (x,y,z):

Cv = 2

[(
𝜕vx
𝜕x

)2

+
(𝜕vy

𝜕y

)2

+
(
𝜕vz
𝜕z

)2
]
+

[𝜕vy
𝜕x

+
𝜕vx
𝜕y

]2
+

[
𝜕vz
𝜕y

+
𝜕vy
𝜕z

]2
+

[
𝜕vx
𝜕z

+
𝜕vz
𝜕x

]2
− 2

3

[
𝜕vx
𝜕x

+
𝜕vy
𝜕y

+
𝜕vz
𝜕z

]2
(B.7-1)

Cylindrical coordinates (r,p,z):

Cv = 2

[(
𝜕vr
𝜕r

)2

+
(
1

r
𝜕vp
𝜕p

+
vr
r

)2

+
(
𝜕vz
𝜕z

)2
]
+

[
r 𝜕
𝜕r

(vp
r

)
+ 1

r
𝜕vr
𝜕p

]2
+

[
1

r
𝜕vz
𝜕p

+
𝜕vp
𝜕z

]2
+

[
𝜕vr
𝜕z

+
𝜕vz
𝜕r

]2
− 2

3

[
1

r
𝜕
𝜕r

(
rvr

)
+ 1

r
𝜕vp
𝜕p

+
𝜕vz
𝜕z

]2
(B.7-2)

Spherical coordinates (r,p,d):

Cv = 2

[(
𝜕vr
𝜕r

)2

+
(
1

r
𝜕vp
𝜕p

+
vr
r

)2

+
(

1

r sin p

𝜕vd
𝜕d

+
vr + vp cot p

r

)2
]

+
[
r 𝜕
𝜕r

(vp
r

)
+ 1

r
𝜕vr
𝜕p

]2
+

[
sin p
r

𝜕
𝜕p

( vd
sin p

)
+ 1

r sin p

𝜕vp
𝜕d

]2
+

[
1

r sin p

𝜕vr
𝜕d

+ r 𝜕
𝜕r

(vd
r

)]2
− 2

3

[
1

r2
𝜕
𝜕r

(
r2vr

)
+ 1

r sin p
𝜕
𝜕p

(vp sin p) + 1

r sin p

𝜕vd
𝜕d

]2
(B.7-3)

§B.8 THE EQUATION OF ENERGY IN TERMS OF q

[iĈpDT∕Dt = − (𝛁 ⋅q) − (𝜕 ln i∕𝜕 ln T)pDp∕Dt − (f :𝛁v)]

Cartesian coordinates (x,y,z):

iĈp

(
𝜕T
𝜕t

+ vx
𝜕T
𝜕x

+ vy
𝜕T
𝜕y

+ vz
𝜕T
𝜕z

)
= −

[
𝜕qx
𝜕x

+
𝜕qy
𝜕y

+
𝜕qz
𝜕z

]
−

(
𝜕 ln i

𝜕 ln T

)
p

Dp
Dt

− (f :𝛁v) (B.8-1)a

Cylindrical coordinates (r,p,z):

iĈp

(
𝜕T
𝜕t

+ vr
𝜕T
𝜕r

+
vp
r
𝜕T
𝜕p

+ vz
𝜕T
𝜕z

)
= −

[
1

r
𝜕
𝜕r

(
rqr

)
+ 1

r
𝜕qp
𝜕p

+
𝜕qz
𝜕z

]
−

(
𝜕 ln i

𝜕 ln T

)
p

Dp
Dt

− (f :𝛁v) (B.8-2)a

Spherical coordinates (r,p,d):

iĈp

(
𝜕T
𝜕t

+ vr
𝜕T
𝜕r

+
vp
r
𝜕T
𝜕p

+
vd

r sin p
𝜕T
𝜕d

)
= −

[
1

r2
𝜕
𝜕r

(
r2qr

)
+ 1

r sin p
𝜕
𝜕p

(qp sin p) + 1

r sin p

𝜕qd
𝜕d

]
−

(
𝜕 ln i

𝜕 ln T

)
p

Dp
Dt

− (f :𝛁v) (B.8-3)a

aThe viscous dissipation term, −(f : ∇v), is given in Appendix A, Tables A.7-1, A.7-2, and A.7-3. This term may usually be neglected,

except for systems with very large velocity gradients. The term containing (𝜕 ln i∕𝜕 ln T)p is zero for fluids with constant i.
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§B.9 THE EQUATION OF ENERGY FOR PURE NEWTONIAN FLUIDS WITH
CONSTANTa i AND k

[iĈpDT∕Dt = k∇2T + 4Cv]

Cartesian coordinates (x,y,z):

iĈp

(
𝜕T
𝜕t

+ vx
𝜕T
𝜕x

+ vy
𝜕T
𝜕y

+ vz
𝜕T
𝜕z

)
= k

[
𝜕2T
𝜕x2

+ 𝜕2T
𝜕y2

+ 𝜕2T
𝜕z2

]
+ 4Cv (B.9-1)b

Cylindrical coordinates (r,p,z):

iĈp

(
𝜕T
𝜕t

+ vr
𝜕T
𝜕r

+
vp
r
𝜕T
𝜕p

+ vz
𝜕T
𝜕z

)
= k

[
1

r
𝜕
𝜕r

(
r𝜕T
𝜕r

)
+ 1

r2
𝜕2T
𝜕p2

+ 𝜕2T
𝜕z2

]
+ 4Cv (B.9-2)b

Spherical coordinates (r,p,d):

iĈp

(
𝜕T
𝜕t

+ vr
𝜕T
𝜕r

+
vp
r
𝜕T
𝜕p

+
vd

r sin p
𝜕T
𝜕d

)
= k

[
1

r2
𝜕
𝜕r

(
r2 𝜕T

𝜕r

)
+ 1

r2 sin p

𝜕
𝜕p

(
sin p

𝜕T
𝜕p

)
+ 1

r2 sin2 p

𝜕2T
𝜕d2

]
+ 4Cv (B.9-3)b

aThis form of the energy equation is also valid under the less stringent assumptions k = constant and (𝜕 ln i∕𝜕 ln T)pDp∕Dt = 0. The

assumption i = constant is given in the table heading because it is the assumption more often made.
bThe functionCv is given in §B.7. The term 4Cv is usually negligible, except in systems with large velocity gradients.

§B.10 THE EQUATION OF CONTINUITY FOR SPECIES w

IN TERMSa OF jw

[iDaw∕Dt = −(∇ ⋅ jw) + rw]

Cartesian coordinates (x,y,z):

i

(
𝜕aw

𝜕t
+ vx

𝜕aw

𝜕x
+ vy

𝜕aw

𝜕y
+ vz

𝜕aw

𝜕z

)
= −

[
𝜕jwx
𝜕x

+
𝜕jwy
𝜕y

+
𝜕jwz
𝜕z

]
+ rw (B.10-1)

Cylindrical coordinates (r,p,z):

i

(
𝜕aw

𝜕t
+ vr

𝜕aw

𝜕r
+

vp
r
𝜕aw

𝜕p
+ vz

𝜕aw

𝜕z

)
= −

[
1

r
𝜕
𝜕r

(
rjwr

)
+ 1

r
𝜕jwp
𝜕p

+
𝜕jwz
𝜕z

]
+ rw (B.10-2)

Spherical coordinates (r,p,d):

i

(
𝜕aw

𝜕t
+ vr

𝜕aw

𝜕r
+

vp
r
𝜕aw

𝜕p
+

vd
r sin p

𝜕aw

𝜕d

)
= −

[
1

r2
𝜕
𝜕r

(
r2jwr

)
+ 1

r sin p
𝜕
𝜕p

(jwp sin p) + 1

r sin p

𝜕jwd
𝜕d

]
+ rw (B.10-3)

aTo obtain the corresponding equations in terms of J*w make the following replacements:

Replace i aw jw v rw

by c xw J*w v* Rw − xw

N∑
v=1

Rv



Trim Size: 8in x 10in Bird1e a02.tex V2 - October 21, 2014 4:35 P.M. Page 728

728 Appendix B The Fluxes and the Equations of Change

§B.11 THE EQUATION OF CONTINUITY FOR SPECIES A IN TERMS
OF aA FOR CONSTANTa i𝒟AB

[iDaA∕Dt = i𝒟AB∇2aA + rA]

Cartesian coordinates (x,y,z):

i

(
𝜕aA

𝜕t
+ vx

𝜕aA

𝜕x
+ vy

𝜕aA

𝜕y
+ vz

𝜕aA

𝜕z

)
= i𝒟AB

[
𝜕2aA

𝜕x2
+

𝜕2aA

𝜕y2
+

𝜕2aA

𝜕z2

]
+ rA (B.11-1)

Cylindrical coordinates (r,p,z):

i

(
𝜕aA

𝜕t
+ vr

𝜕aA

𝜕r
+

vp
r
𝜕aA

𝜕p
+ vz

𝜕aA

𝜕z

)
= i𝒟AB

[
1

r
𝜕
𝜕r

(
r
𝜕aA

𝜕r

)
+ 1

r2
𝜕2aA

𝜕p2
+

𝜕2aA

𝜕z2

]
+ rA (B.11-2)

Spherical coordinates (r,p,d):

i

(
𝜕aA

𝜕t
+ vr

𝜕aA

𝜕r
+

vp
r
𝜕aA

𝜕p
+

vd
r sin p

𝜕aA

𝜕d

)
= i𝒟AB

[
1

r2
𝜕
𝜕r

(
r2
𝜕aA

𝜕r

)
+ 1

r2 sin p

𝜕
𝜕p

(
sin p

𝜕aA

𝜕p

)
+ 1

r2 sin2 p

𝜕2aA

𝜕d2

]
+ rA (B.11-3)

aTo obtain the corresponding equations in terms of xA, make the following replacements:

Replace i aA v rA
by c xA v* xBRA − xARB
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Appendix C

Mathematical Topics

§C.1 Some ordinary differential equations and their solutions

§C.2 Expansions of functions in Taylor series

§C.3 Differentiation of integrals (the Leibniz formula)

§C.4 The gamma function

§C.5 The hyperbolic functions

§C.6 The error function

§C.7 Changing the order of integration

§C.8 L’Hôpital’s rule

In this appendix we summarize information on mathematical topics (other than vectors
and tensors) that are useful in the study of transport phenomena.1

§C.1 SOME ORDINARY DIFFERENTIAL EQUATIONS
AND THEIR SOLUTIONS

We assemble here a short list of differential equations that arise frequently in transport
phenomena. The reader is assumed to be familiar with these equations and how to solve
them. The quantities a, b, and c are real constants, and f , g, and h are functions of x or y.
The C’s are constants of integration.

Equation Solution

dy
dx

=
f (x)
g(y)

∫ g dy = ∫ f dx + C1 (C.1-1)

dy
dx

+ f (x)y = g(x) y = e− ∫ f dx (∫ e∫ f dxg dx + C1

)
(C.1-2)

d2y

dx2
+ a2y = 0 y = C1 cos ax + C2 sin ax (C.1-3)

d2y

dx2
− a2y = 0 y = C1 cosh ax + C2 sinh ax or (C.1-4a)

y = C3e
+ax + C4e

−ax (C.1-4b)

1

x2
d
dx

(
x2

dy
dx

)
+ a2y = 0 y =

C1

x
cos ax +

C2

x
sin ax (C.1-5)

1Some useful reference books on applied mathematics are: M. Abramowitz and I. A. Stegun, Hand-
book of Mathematical Functions, Dover, New York, 9th printing (1973); G. M. Murphy, Ordinary Differential
Equations and Their Solutions, Van Nostrand, Princeton, NJ (1960); J. J. Tuma, Engineering Mathematics
Handbook, 3rd edition, McGraw-Hill, New York (1987); M. D. Graham and J. B. Rawlings, Modeling and
Analysis Principles for Chemical and Biological Engineers, Nob Hill Publishing, Madison, WI (2013).
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1

x2
d
dx

(
x2

dy
dx

)
− a2y = 0 y =

C1

x
cosh ax +

C2

x
sinh ax (C.1-6a)

y =
C3

x
e+ax +

C4

x
e−ax (C.1-6b)

d2y

dx2
+ a

dy
dx

+ by = 0 Solve the equation n2 + an + b = 0, and get the
roots n = n+ and n = n−. Then
(a) if n+ and n− are real and unequal,
y = C1e

n+x + C2e
n−x

(C.1-7a)

(b) if n+ and n− are real and equal to n,
y = enx(C1x + C2) (C.1-7b)

(c) if n+ and n− are complex: n± = p ± iq,
y = epx(C1 cos qx + C2 sin qx) (C.1-7c)

d2y

dx2
+ 2x

dy
dx

= 0 y = C1∫
x

0

e−x
2

dx + C2 (C.1-8)

d2y

dx2
+ 3x2

dy
dx

= 0 y = C1∫
x

0

e−x
3

dx + C2 (C.1-9)

d2y

dx2
= f (x) y = ∫

x

0 ∫
x

0

f (x)dx dx + C1x + C2 (C.1-10)

1

x
d
dx

(
x
dy
dx

)
= f (x) y = ∫

x

0

1

x ∫
x

0

xf (x) dx dx + C1 ln x + C2 (C.1-11)

1

x2
d
dx

(
x2

dy
dx

)
= f (x) y = ∫

x

0

1

x2 ∫
x

0

x
2
f (x) dx dx −

C1

x
+ C2 (C.1-12)

d2y

dx2
= h(y) x = ∫

y

0

dy√
2∫

y

0

h(y)dy + C1

+ C2 (C.1-13)

x3
d3y

dx3
+ ax2

d2y

dx2
+ bx

dy
dx

+ cy = 0 (C.1-14)

y = C1x
n1 + C2x

n2 + C3x
n3 , where the the nk are the roots

of the equation n(n − 1)(n − 2) + an(n − 1) + bn + c = 0,
provided that all roots are distinct.

aIn Eqs. C.1-4 and C.1-6 the decisions as to whether to use the exponential forms or the trigonometric (or

hyperbolic) functions are usually made on the basis of the boundary conditions on the problem or the

symmetry properties of the solution.
bEquations C.1-5 and C.1-6 are solved by making the substitution y(x) = u(x)∕x and then solving the

resulting equation for u(x).
cIn Eqs. C.1-8 to C.1-13, it may be convenient or necessary to change the lower limits of the integrals to

some value other than zero.

§C.2 EXPANSIONS OF FUNCTIONS IN TAYLOR SERIES

In physical problems we often need to describe a function y(x) in the neighborhood of
some point x = x0. Then we expand the function y(x) in a “Taylor series about the point
x = x0”:

y(x) = y|x= x0
+ 1

1!

(
dy
dx

|||||x= x0

)
(x − x0) +

1

2!

(
d2y

dx2

|||||x= x0

)
(x − x0)2

+ 1

3!

(
d3y

dx3

|||||x= x0

)
(x − x0)3 + · · · (C.2-1)
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The first term just gives the value of the function at x = x0. The first two terms give a
straight-line fit of the curve at x = x0. The first three terms give a parabolic fit of the curve
at x = x0, and so on. The Taylor series is often used when only the first several terms are
needed to describe the function adequately.

Here are a few Taylor series expansions of standard functions about x = 0:

e±x = 1 ± x
1!

+ x2

2!
± x3

3!
+ · · · (C.2-2)

ln(1 + x) = x − x2

2
+ x3

3
− x4

4
+ · · · (C.2-3)

erf x = 2x√
0

(
1 − x2

1!3
+ x4

2!5
− x6

3!7
+ · · ·

)
(C.2-4)

√
1 ± x = 1 ± 1

2
x − 1 ⋅ 1

2 ⋅ 4
x2 ± 1 ⋅ 1 ⋅ 3

2 ⋅ 4 ⋅ 6
x3 − · · · (C.2-5)

sin x = x − x3

3!
+ x5

5!
− x7

7!
+ · · · (C.2-6)

cos x = 1 − x2

2!
+ x4

4!
− x6

6!
+ · · · (C.2-7)

sinh x = x + x3

3!
+ x5

5!
+ x7

7!
+ · · · (C.2-8)

cosh x = 1 + x2

2!
+ x4

4!
+ x6

6!
+ · · · (C.2-9)

Further examples may be found in calculus textbooks and handbooks. Taylor series can
also be written for two and more independent variables.

§C.3 DIFFERENTIATION OF INTEGRALS
(THE LEIBNIZ FORMULA)

Suppose we have a function f (x,t) that depends on a space variable x and the time t. Then
we can form the integral

I(t) = ∫
v(t)

w(t)
f (x,t) dx (C.3-1)

which is a function of t (see Fig. C.3-1(a)). If we want to differentiate this function with
respect to twithout evaluating the integral, we can use the Leibniz formula

d
dt∫

v(t)

w(t)
f (x,t) dx = ∫

v(t)

w(t)

𝜕
𝜕t
f (x,t) dx +

(
f (v,t) dv

dt
− f (w,t)dw

dt

)
(1) (2) (3) (C.3-2)

Figure C.3-1(b) shows the meaning of the operations performed here: the first term on the
right side gives the change in the integral because the function itself is changingwith time;
the second term accounts for the gain in area as the upper limit is moved to the right; and
the third term shows the loss in area as the lower limit is moved to the right. This formula
finds many uses in science and engineering.1 The three-dimensional analog is given in
Eq. A5.4.

1The Nobel laureate Richard P. Feynman, in his book Surely You’re Joking Mr. Feynman, Bantam
Books, New York (1985), p. 72 and p. 93, tells how he found the Leibniz formula useful on many occasions.
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f (x, t) f (x, t)

f(x, t + Δt)

(a) (b)

α(t) α(t) β(t)α(t + Δt) β(t + Δt)β(t)

3

1

2

x x

Fig. C.3-1. (a) The shaded area represents I(t) = ∫
v(t)

w(t)
f (x,t) dx at an instant t (Eq. C.3-1).

(b) To get dI∕dt, we form the difference I(t + 2t) − I(t), divide by 2t, and then let 2t → 0.

The three numbered shaded areas correspond to the three numbered terms on the right side

of Eq. C.3-2.

§C.4 THE GAMMA FUNCTION

The gamma function appears frequently as the result of integrations:

T(n) = ∫
∞

0

xn−1e−xdx (C.4-1)

T(n) = ∫
1

0

(
ln

1

x

)n−1

dx (C.4-2)

T(n + 1) = ∫
∞

0

exp(−x1∕n) dx (C.4-3)

Several formulas for gamma functions are important:

T(n + 1) = nT(n) (used to define T(n) for negative n) (C.4-4)

T(n) = (n − 1)! (when n is an integer greater than 0) (C.4-5)

Some special values of the gamma function are:

T(1) = T(2) = 1 (C.4-6)

T
(

1

2

)
=

√
0 = 1.77245… (C.4-7)

T
(

3

2

)
= 1

2
T
(

1

2

)
= 1

2

√
0 = 0.88622… (C.4-8)

T
(

1

3

)
= 2.67893… (C.4-9)

T
(

2

3

)
= 1.35412… (C.4-10)

T
(

4

3

)
= 1

3
T
(

1

3

)
= 0.89297… (C.4-11)

T
(

7

3

)
= 4

3
T
(

4

3

)
= 1.19063… (C.4-12)

T(n + 1) ≈ nne−n
√
20n

[
1 + 1

12n
+ 1

288n2
− 139

51840n3
− · · ·

]
(C.4-13)

This last equation is Stirling’s formula for large n. The gamma function is displayed in
Fig. C.4-1.
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–4 –3 –2 –1 1 23

2
3 4

1

2

n

0! 1!

2!
π

1

–1

–2

–3

–4

2

3

4

Γ(n) Fig. C.4-1. The gamma function.

Note that

∫
∞

0

e−x
3

dx = 1

3∫
∞

0

e−yy−2∕3dy = 1

3∫
∞

0

e−yy(1∕3)−1dy = 1

3
T
(

1

3

)
= T

(
4

3

)
(C.4-14)

by performing the change of variables x3 = y.
The function defined in Eqs. C.4-1, C.4-2, and C.4-3, above, is sometimes called

the complete gamma function to distinguish it from the (upper) incomplete gamma function
defined as follows:

T(n,z) = ∫
∞

z
e−xxn−1dx (C.4-15)

If the integral has limits 0 to z, it is called the lower incomplete gamma function.

§C.5 THE HYPERBOLIC FUNCTIONS

The hyperbolic sine (sinh x), the hyperbolic cosine (cosh x), and the hyperbolic tangent
(tanh x) arise frequently in science and engineering problems. They are related to the
hyperbola in very much the same way that the circular functions are related to the circle
(see Fig. C.5-1). The circular functions (sin x and cos x) are periodic, oscillating functions,
whereas their hyperbolic analogs are not (see Fig. C.5-2).

The hyperbolic functions are related to the exponential function as follows:

cosh x = 1

2
(ex + e−x); sinh x = 1

2
(ex − e−x) (C.5-1,2)

The corresponding relations for the circular functions are:

cos x = 1

2
(eix + e−ix); sin x = 1

2i
(eix − e−ix) (C.5-3,4)

Then one can derive a variety of standard relations for the hyperbolic functions, such as

cosh2x − sinh2x = 1 (C.5-5)

cosh (x ± y) = cosh x cosh y ± sinh x sinh y (C.5-6)

sinh (x ± y) = sinh x cosh y ± cosh x sinh y (C.5-7)
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Unit circle
x2 + y2 = 1

Unit hyperbola

x2 – y2 = 1

1 1

P

y

x x

y

O Q

P

O Q

θ = 2 × shaded area
   = POQ θ = 2 × shaded area

sin θ = PQ
cos θ = OQ
tan θ = PQ/OQ
cot θ = 1/tan θ
sec θ = 1/cos θ
csc θ = 1/sin θ

sinh θ = PQ
cosh θ = OQ
tanh θ = PQ/OQ
coth θ = 1/tanh θ
sech θ = 1/cosh θ
csch θ = 1/sinh θ

Fig. C.5-1. Comparison of circular and hyperbolic functions.

y = cosh x
y

x

y = tanh x
1

0

–1

y = sinh x

Fig. C.5-2. Comparison of the shapes of the hyperbolic

functions.

cosh ix = cos x; sinh ix = i sin x (C.5-8,9)

d cosh x
dx

= sinh x; d sinh x
dx

= cosh x (C.5-10,11)

∫ cosh x dx = sinh x; ∫ sinh x dx = cosh x (C.5-12,13)

It should be kept inmind that cosh x and cos x are both even functions of x, whereas sinh x
and sin x are odd functions of x. In Eqs. C.5-12,13 and C.5-12,13, an arbitrary constant of
integration can be added to the right side.

§C.6 THE ERROR FUNCTION

The error function is defined as

erf x =
∫

x

0

exp(−x2)dx

∫
∞

0

exp(−x2)dx
= 2√

0∫
x

0

exp(−x2)dx (C.6-1)
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0.0 0.4 0.6 0.8 1.0

x
1.2 1.4 1.6 1.8 2.00.2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

erfc x

erf x

Fig. C.6-1. The error
function.

This function, which arises naturally in numerous transport phenomena problems, is
monotone increasing, going from erf 0 = 0 to erf∞ = 1, and has the value of 0.99 at about
x = 2. This function is plotted in Fig. C.6-1.

The Taylor series expression for the error function about x = 0 is given in Eq. C.2-4.
The Taylor series about 1∕x = 0 is

erf x = 1 − e−x2

x
√
0

(
1 − 1

2x2
+ 1 ⋅ 3

22x4
− 1 ⋅ 3 ⋅ 5

23x6
+ · · ·

)
(C.6-2)

It is also worth noting that erf (−x) = − erf x, and that

d
dx

erf u = 2√
0
e−u

2 du
dx

(C.6-3)

by applying the Leibniz formula to Eq. C.6-1.
The closely related function erfc x = 1 − erf x is called the “complementary error func-

tion.” The complementary error function is also plotted in Fig. C.6-1.

§C.7 CHANGING THE ORDER OF INTEGRATION

If we have a double integral of the form

∫
1

0 ∫
x

0

f (x,y) dy dx (C.7-1)

we can picture the region of integration as in Fig. C.7-1(a). In the inner integral, we inte-
grate f (x,y) over the area of a thin vertical “strip” from the horizontal line y = 0 axis up to
the diagonal line y = x. Then we add up the integrals over all of the “strips” of width dx
from x = 0 to x = 1.

Alternatively,wemaywant to change the order of integration (Fig. C.7-1(b)) andwrite

∫
1

0 ∫
1

y
f (x,y) dx dy (C.7-2)

That is, we now integrate f (x,y) over the area of a thin horizontal “strip” that goes from
the diagonal line x = y over to the vertical line x = 1. Then we add up the integrals over
all of the “strips” of width dy going from y = 0 to y = 1.

That is, in both Eq. C.7-1(a) and Eq. C.7-1(b), we have to choose the limits of integration
in such a way that we describe exactly the same (shaded) integration area. Since the area
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0

(a)

0

1

1

x

y

0

(b)

0

1

1

x

y

Fig. C.7-1. Interchanging order

of integration.

of integration in this illustration is bounded by straight lines, it is relatively easy to select
the limits for the integrals; if the area of integration is bounded by curves, selecting the
limits for the integrals may be somewhat more complicated.

The principal reason for wanting to change the order of integration is that, whereas it
may be impossible to evaluate the inner integral over y in Eq. C.7-1 analytically, it may be
relatively easy to do the inner integral over x in Eq. C.7-2 analytically.

§C.8 L’HÔPITAL’S RULE

It often happens that it is desired to take the limit of the ratio of two functions f (x)∕g(x)
as x → a. If f (a) = 0 and g(a) = 0, then we obtain 0∕0, which is indeterminate. However,
sometimes the limit really does exist and it can be found by using L’Hôpital’s rule, which
states that

lim
x→a

f (x)
g(x)

= lim
x→a

df∕dx
dg∕dx

if the limit exists (C.8-1)

For example, although sin x and x both go to zero as x goes to zero,

lim
x→0

sin x
x

= lim
x→0

d(sin x)∕dx
d(x)∕x

= lim
x→0

cos x
1

= 1 (C.8-2)

As a further illustration,

lim
x→1

2 ln x
x − 1

= lim
x→1

2d(ln x)∕dx
d(x − 1)∕dx

= lim
x→1

2∕x
1

= 2 (C.8-3)

The same procedure may be followed if f (a) = g(a) = +∞ or −∞.

lim
x→∞

3 ln x
x − 1

= lim
x→∞

3 d(ln x)∕dx
d(x − 1)∕dx

= lim
x→∞

3∕x
1

= 0 (C.8-4)
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§D.1 Intermolecular force parameters and critical properties

§D.2 Functions for prediction of transport properties of gases at low densities

737



Trim Size: 8in x 10in Bird1e a04.tex V1 - October 31, 2014 4:00 P.M. Page 738

Ta
b
le
D
.1
.

L
en

n
a
rd
-J
o
n
es

(6
–
1
2
)
P
o
te
n
ti
a
l
P
a
ra
m
et
er
s
a
n
d
C
ri
ti
ca
l
P
ro
p
er
ti
es

L
en

n
a
rd
-J
o
n
es

p
a
ra
m
et
er
s

C
ri
ti
ca
l
p
ro
p
er
ti
es

g ,
h

M
o
le
cu

la
r

W
ei
g
h
t

g
s∕

K
R
ef
.

T
c

p c
Ṽ
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740 Appendix D Tables for Prediction of Transport Properties

Table D.2. Collision Integrals for Use with the Lennard-Jones (6–12) Potential for the

Prediction of Transport Properties of Gases at Low Densitiesa,b,c

14 = 1k 14 = 1k
KT∕s
or
KT∕sAB

(for viscosity
and thermal
conductivity)

1𝒟 ,AB
(for

diffusivity)

KT∕s
or

KT∕sAB

(for viscosity
and thermal
conductivity)

1𝒟 ,AB
(for

diffusivity)

0.30 2.840 2.649 2.7 1.0691 0.9782

0.35 2.676 2.468 2.8 1.0583 0.9682

0.40 2.531 2.314 2.9 1.0482 0.9588

0.45 2.401 2.182 3.0 1.0388 0.9500

0.50 2.284 2.066 3.1 1.0300 0.9418

0.55 2.178 1.965 3.2 1.0217 0.9340

0.60 2.084 1.877 3.3 1.0139 0.9267

0.65 1.999 1.799 3.4 1.0066 0.9197

0.70 1.922 1.729 3.5 0.9996 0.9131

0.75 1.853 1.667 3.6 0.9931 0.9068

0.80 1.790 1.612 3.7 0.9868 0.9008

0.85 1.734 1.562 3.8 0.9809 0.8952

0.90 1.682 1.517 3.9 0.9753 0.8897

0.95 1.636 1.477 4.0 0.9699 0.8845

1.00 1.593 1.440 4.1 0.9647 0.8796

1.05 1.554 1.406 4.2 0.9598 0.8748

1.10 1.518 1.375 4.3 0.9551 0.8703

1.15 1.485 1.347 4.4 0.9506 0.8659

1.20 1.455 1.320 4.5 0.9462 0.8617

1.25 1.427 1.296 4.6 0.9420 0.8576

1.30 1.401 1.274 4.7 0.9380 0.8537

1.35 1.377 1.253 4.8 0.9341 0.8499

1.40 1.355 1.234 4.9 0.9304 0.8463

1.45 1.334 1.216 5.0 0.9268 0.8428

1.50 1.315 1.199 6.0 0.8962 0.8129

1.55 1.297 1.183 7.0 0.8727 0.7898

1.60 1.280 1.168 8.0 0.8538 0.7711

1.65 1.264 1.154 9.0 0.8380 0.7555

1.70 1.249 1.141 10.0 0.8244 0.7422

1.75 1.235 1.128 12.0 0.8018 0.7202

1.80 1.222 1.117 14.0 0.7836 0.7025

1.85 1.209 1.105 16.0 0.7683 0.6878

1.90 1.198 1.095 18.0 0.7552 0.6751

1.95 1.186 1.085 20.0 0.7436 0.6640

2.00 1.176 1.075 25.0 0.7198 0.6414

2.10 1.156 1.058 30.0 0.7010 0.6235

2.20 1.138 1.042 35.0 0.6854 0.6088

2.30 1.122 1.027 40.0 0.6723 0.5964

2.40 1.107 1.013 50.0 0.6510 0.5763

2.50 1.0933 1.0006 75.0 0.6140 0.5415

2.60 1.0807 0.9890 100.0 0.5887 0.5180

aThe values in this table, applicable for the Lennard-Jones (6–12) potential, are interpolated from the

results of L. Monchick and E. A. Mason, J. Chem. Phys., 35, 1676–1697 (1961). The Monchick–Mason table

is believed to be slightly better than the earlier table by J. O. Hirschfelder, R. B. Bird, and E. L. Spotz, J.
Chem. Phys., 16, 968–981 (1948).
bThis table has been extended to lower temperatures by C. F. Curtiss, J. Chem. Phys., 97, 7679–7686 (1992).
Curtiss showed that at low temperatures, the Boltzmann equation needs to bemodified to take into account

“orbiting pairs” ofmolecules.Only bymaking thismodification is it possible to get a smooth transition from

quantum to classical behavior. The deviations are appreciable below dimensionless temperatures of 0.30.
cThe collision integrals have been curve-fitted by P. D. Neufeld, A. R. Janzen, and R. A. Aziz, J. Chem.
Phys., 57, 1100–1102 (1972), as follows:

14 = 1k =
1.16145

T*0.14874
+ 0.52487

exp(0.77320T*)
+ 2.16178

exp(2.43787T*)
(D.2-1)

1𝒟 ,AB = 1.06036

T*0.15610
+ 0.19300

exp(0.47635T*)
+ 1.03587

exp(1.52996T*)
+ 1.76474

exp(3.89411T*)
(D.2-2)

where T* = KT∕s.
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Appendix E

Constants and Conversion
Factors

§E.1 Mathematical constants

§E.2 Physical constants

§E.3 Conversion factors

§E.1 MATHEMATICAL CONSTANTS
0 = 3.14159…
e = 2.71828…

ln 10 = 2.30259…

§E.2 PHYSICAL CONSTANTS1

Gas law constant (R) 8.31451 J∕g-mol ⋅ K
8.31451 × 103 kg ⋅m2∕s2 ⋅ kg-mol ⋅ K
8.31451 × 107 g ⋅ cm2∕s2 ⋅ g-mol ⋅ K
1.98721 cal∕g-mol ⋅ K
82.0578 cm3 atm∕g-mol ⋅ K
4.9686 × 104 lbm ft2∕s2 ⋅ lb-mol ⋅ ∘R
1.5443 × 103 ft ⋅ lbf∕lb-mol ⋅ ∘R
10.731 ft3 ⋅ psia∕lb-mol ⋅ ∘R

Standard acceleration
of gravity (g0)

9.80665 m∕s2
980.665 cm∕s2
32.1740 ft∕s2

Joule’s constant (Jc)
(mechanical equivalent of heat)

4.1840 J/cal

4.1840 × 107 erg/cal

778.16 ft ⋅ lbf∕Btu

Avogadro’s number (Ñ) 6.02214 × 1023 (g-mol)−1

Boltzmann’s constant
(K = R∕Ñ)

1.38066 × 10−23 J/K

1.38066 × 10−16 erg/K

Faraday’s constant (F) 96485.3 abs. Coulomb/g-equivalent

Planck’s constant (h) 6.62608 × 10−34 J ⋅ s
6.62608 × 10−27 erg ⋅ s

1E. R. Cohen and B. N. Taylor, Physics Today (August 1996), pp. BG9–BG13; R. A. Nelson, Physics

Today (August 1996), pp. BG15–BG16.
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Stefan–Boltzmann constant (g) 5.67051 × 10−8 W∕m2 ⋅ K4

1.3553 × 10−12 cal∕s ⋅ cm2 ⋅ K4

1.7124 × 10−9 Btu∕hr ⋅ ft2 ⋅ R4

Electron charge (e) 1.60218 × 10−19 Coulomb = A ⋅ s

Speed of light in a vacuum (c) 2.99792 × 108 m/s

§E.3 CONVERSION FACTORS

In the tables that follow, to convert any physical quantity from one set of units to another,
multiply it by the appropriate table entry. For example, suppose that p is given as

10 lbf∕in.2 (psia), and we wish to have p in poundals∕ft2. From Table E.3-2 the result is

p = (10)(4.6330 × 103) = 4.6330 × 104 poundals∕ft2

The entries in the shaded rows and columns are those that are needed for converting from
and to SI units.

In addition to the tables, we give a few of the commonly used conversion factors here:

Given a quantity in these units: Multiply by: To get quantity in these units:

Pounds (mass) 453.59 Grams

Kilograms 2.2046 Pounds (mass)

Inches 2.5400 Centimeters

Meters 39.370 Inches

Gallons (U.S.) 3.7853 Liters

Gallons (U.S.) 231.00 Cubic inches

Gallons (U.S.) 0.13368 Cubic feet

Cubic feet 28.316 Liters

Kelvins 1.800000 Degrees Rankine (∘R = ∘F + 459.67)
Degrees Rankine 0.555556 Kelvins (K = ∘C + 273.15)

Table E.3-1. Conversion Factors for Quantities Having Dimensions of F orML∕t2

Given a

quantity in

these units

↓

Multiply by

table value

to convert to

these units →
N = kg ⋅m∕s2
(Newtons)

g ⋅ cm∕s2
(dynes)

lbm ⋅ ft∕s2
(poundals) lbf

N = kg ⋅m∕s2 (Newtons) 1 105 7.2330 2.24881 × 10−1

g ⋅ cm∕s2 (dynes) 10−5 1 7.2330 × 10−5 2.24881 × 10−6

lbm ⋅ ft∕s2 (poundals) 1.3826 × 10−1 1.3826 × 104 1 3.1081 × 10−2

lbf 4.4482 4.4482 × 105 32.1740 1
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Table E.3-4. Conversion Factors for Quantities Having dimensionsa ofM∕Lt or Ft∕L2 (viscosity, density times

diffusivity)

Given a

quantity in

these units

↓

Multiply by

table value

to convert to

these units→
Pa ⋅ s

(kg∕m ⋅ s)
g∕cm ⋅ s
(poises) centipoises lbm∕ft ⋅ s lbm∕ft ⋅ hr lbf ⋅ s∕ft

2

Pa ⋅ s = kg∕m ⋅ s 1 10 103 6.7197 × 10−1 2.4191 × 103 2.0886 × 10−2

g∕cm ⋅ s = (poises) 10−1 1 102 6.7197 × 10−2 2.4191 × 102 2.0886 × 10−3

centipoises 10−3 10−2 1 6.7197 × 10−4 2.4191 2.0886 × 10−5

lbm∕ft ⋅ s 1.4882 1.4882 × 101 1.4882 × 103 1 3600 3.1081 × 10−2

lbm∕ft ⋅ hr 4.1338 × 10−4 4.1338 × 10−3 4.1338 × 10−1 2.7778 × 10−4 1 8.6336 × 10−6

lbf ⋅ s∕ft
2

4.7880 × 101 4.7880 × 102 4.7880 × 104 32.1740 1.1583 × 105 1

aWhen moles appear in the given and the desired units, the conversion factor is the same as for the corresponding mass units.

Table E.3-5. Conversion Factors for Quantities Having Dimensions of ML∕t3T or F∕tT (thermal conductivity)

Given a

quantity in

these units

↓

Multiply by

table value

to convert to

these units→

W∕m ⋅ K
or

kg ⋅m∕s3 ⋅ K

g ⋅ cm∕s3 ⋅ K
or

erg∕s ⋅ cm ⋅ K lbm ft∕s3 ∘F lbf∕s ⋅ ∘F cal∕s ⋅ cm ⋅ K Btu∕hr ⋅ ft ⋅ ∘F
W∕m ⋅ K = kg ⋅m∕s3 ⋅ K 1 105 4.0183 1.2489 × 10−1 2.3901 × 10−3 5.7780 × 10−1

g ⋅ cm∕s3 ⋅ K 10−5 1 4.0183 × 10−5 1.2489 × 10−6 2.3901 × 10−8 5.7780 × 10−6

lbm ft∕s3 ∘F 2.4886 × 10−1 2.4886 × 104 1 3.1081 × 10−2 5.9479 × 10−4 1.4379 × 10−1

lbf∕s ⋅ ∘F 8.0068 8.0068 × 105 3.2174 × 101 1 1.9137 × 10−2 4.6263

cal∕s ⋅ cm ⋅ K 4.1840 × 102 4.1840 × 107 1.6813 × 103 5.2256 × 101 1 2.4175 × 102

Btu∕hr ⋅ ft ⋅ ∘F 1.7307 1.7307 × 105 6.9546 2.1616 × 10−1 4.1365 × 10−3 1

Table E.3-6. Conversion Factors for Quantities Having Dimensions of L2∕t (momentum

diffusivity, thermal diffusivity, molecular diffusivity)

Given a

quantity in

these units

↓

Multiply by

table value

to convert to

these units → m2∕s cm2∕s ft
2∕hr centistokes

m2∕s 1 104 3.8750 × 104 106

cm2∕s 10−4 1 3.8750 102

ft
2∕hr 2.5807 × 10−5 2.5807 × 10−1 1 2.5807 × 101

centistokes 10−6 10−2 3.8750 × 10−2 1
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Notation

Numbers in parentheses refer to equations, sections, or tables in which the symbols are

defined or first used. Dimensions are given in terms of mass (M), length (L), time (t), tem-

perature (T), moles (mol), current (I), and dimensionless (---). Boldface symbols are vectors

or tensors (see Appendix A). Symbols that appear infrequently are not listed.

A = area, L2

a = absorptivity (16.2-1), ---

a = interfacial area per unit volume of packed bed (6.4-4), L−1

aA = activity of species A (24.1-5), ---

Cp = heat capacity at constant pressure (9.2-7),ML2∕t2T
CV = heat capacity at constant volume (9.7-6),ML2∕t2T
c = speed of light (16.1-1), L∕t
c = total molar concentration (Table 17.1-1), mol∕L3

cA = molar concentration of species A (Table 17.1-1), mol∕L3
D = diameter of cylinder or sphere, L
Dp = particle diameter in packed bed (6.4-3), L

𝒟AB = binary diffusivity for system A-B (17.3-1), L2∕t
𝒟wv = binary diffusivity for the pair w-v in amulticomponent system

(24.6-7), L2∕t
Dwv = Maxwell-Stefan multicomponent diffusivity (24.6-5), L2∕t
𝔻wv = Fick multicomponent diffusivity (24.6-4), L2∕t
DT

A = thermal diffusion coefficient (24.1-8), M∕Lt
d = molecular diameter (1.6-3), L
dw = diffusional driving force for species w (24.1-5), L−1

Etot = Utot + Ktot +Ctot = total energy in a macroscopic system
(15.1-2), ML2∕t2

Ec = compression term inmacroscopic mechanical energy balance
(7.4-3), ML2∕t3

Ev = viscous dissipation term inmacroscopic mechanical energy balance
(7.4-4), ML2∕t3

e = 2.71828…
e = emissivity (16.2-3), ---

e = total energy flux vector (9.4-1, 19.3-4),M∕t3
F12, F12 = direct, indirect view factor (16.4-9, 16.5-10), ---

Fs→f = force exerted by the solid on the fluid (7.2-1)ML∕t2

f = friction factor (or drag coefficient) (6.1-1), ---
G = elastic modulus (8.4-2), M∕Lt2
G = H − TS = Gibbs free energy (24.1-3),ML2∕t2
G = ⟨iv⟩ = mass velocity (6.4-8),M∕L2t
g = gravitational acceleration (3.2-8), L∕t2
gA = body force per unit mass acting on species A (Table

19.2-1), L∕t2
gS = entropy production rate (24.1-1),M∕Lt3T

746
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Notation 747

H = U + pV = enthalpy (9.4-2), ML2∕t2
HA = enthalpy of species A (Table 19.2-4),ML2∕t2
h = Planck’s constant (16.1-2), ML2∕t
h = elevation (2.3-11), L

h, h1, hln, hloc, ha, hm = heat-transfer coefficients (10.1-2, 14.1-1 to 6), M∕t3T
I = current density (10.6-1), I∕L2

i =
√
−1 (8.4-8), ---

j(c)A = convective mass flux vector of species A (17.2-5), M∕L2t
jA = diffusive mass flux vector of species A (17.3-5),M∕L2t

J*(c)A = convective molar flux vector of species A (17.2-8),
mol∕L2t

J∗A = diffusive molar flux vector of species A (17.3-11), mol∕L2t
jH, jD = Chilton-Colburn j-factors (14.3-19, Table 22.2-1), ---
Ktot = total kinetic energy in a macroscopic system (7.4-1,

15.1-1),ML2∕t2
Kx, Ky = two-phase mass-transfer coefficients (22.4-4), mol∕L2t

K = R∕Ñ = Boltzmann’s constant (1.6-1),ML2∕t2T
k = thermal conductivity (9.2-1, 9.2-6),ML∕t3T
kx = single-phase mass-transfer coefficient (22.1-3), mol∕L2t;

(for related quantities kc, ki, kp, see 22.1-11, 22.1-12)
kT = thermal diffusion ratio (24.1-11), ---

ke = electrical conductivity (10.6-1), I2t3∕ML3

k′′n = heterogeneous chemical reaction rate constant (18.0-6),

mol1−n∕L2−3nt
k′′′n = homogeneous chemical reaction rate constant (18.0-5),

mol1−n∕L3−3nt
L = length of film, tube, or slit (2.2-1, 2.3-3), L

Ltot = total angular momentum within a macroscopic system
(7.3-1), ML2∕t

l = mixing length (in turbulence) (4.4-4), L
l0 = characteristic length in dimensional analysis (5.1-3), L
M = molar mean molecular weight (Table 17.1-2),M∕mol

MA = molecular weight of species A (Table 17.1-2),M∕mol

Mw,tot = total number of moles of species w in macroscopic system
(23.1-3), mol

mw,tot = total mass of species w in macroscopic system (23.1-1),M
mtot = total mass in macroscopic system (7.1-1),M
m = mass of a molecule (1.6-1), M

m, n = parameters in power-lawnon-Newtonian viscosity model
(8.3-3), M∕Lt2−n, ---

N = rate of shaft rotation (5.3-4), t−1

Ñ = Avogadro’s number, (g-mol)−1
NA = total molar flux vector for species A (17.4-3), mol∕L2t
nA = total mass flux vector for species A (17.4-1), M∕L2t
n = unit normal vector (7.7-2, A.5-1), ---

n = molecular concentration, or number density (1.6-2), L−3

Ptot = total amount of momentum in a macroscopic flow system
(7.2-1), ML∕t
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748 Notation

𝒫 = p + igh = modified pressure (2.3-11), M∕Lt2
𝒫0 = characteristic modified pressure used in dimensional analysis

(5.1-4),M∕Lt2
p = fluid pressure, M∕Lt2
Q = volume rate of fluid flow across a surface (2.2-24), L3∕t
Q = rate of heat flow across a surface (9.2-1),ML2∕t3

Q
1⃗2
= radiant energy flow from surface 1 to surface 2 (16.4-5),

ML2∕t3
Q12 = net radiant energy interchange between surface 1 and surface 2

(16.4-8),ML2∕t3
q = conductive heat-flux vector (9.2-2, 9.2-6),M∕t3

q(c) = convective energy-flux vector (9.1-3),M∕t3

R = gas constant (in pṼ = RT) (9.7-14)ML2∕t2Tmol

R = radius of a cylinder or a sphere, L
Rh = mean hydraulic radius (6.2-15), L
RA = molar rate of production of species A per unit volume by

chemical reaction (18.0-5), mol∕L3t
rA = mass rate of production of species A per unit volume by

chemical reaction (19.1-4),M∕L3t
r = position vector (3.4-1), L
r =

√
x2 + y2 = radial coordinate in cylindrical coordinates

(Fig. A.6-1), L
r =

√
x2 + y2 + z2 = radial coordinate in spherical coordinates

(Fig. A.6-1), L
S1, S2 = cross-sectional area at planes 1 and 2 (7.1-1), L2

S = entropy ( 24.1-1),ML2∕t2T
s = entropy-flux vector (24.1-1),M∕t3T
T = absolute temperature, T

T1 − T0 = characteristic temperature difference used in
dimensional analysis (13.1-5), T

Ts→f = torque exerted by a solid boundary on the fluid (7.3-1),
ML2∕t2

Text = external torque acting on system (7.3-1),ML2∕t2
t = time, t
U = internal energy (9.1-1),ML2∕t2
U = overall heat-transfer coefficient (10.3-15), M∕t3T
u = arithmetic mean molecular speed (1.6-1), L∕t
u = unit vector in direction of flow (7.2-1), ---

u = displacement vector (8.4-2), ---

V = volume, L3

v = mass-average velocity (17.2-1), L∕t
v⋆ = molar-average velocity (17.2-2), L∕t
vA = velocity of species A (17.2-1, Table 17.2-1), L∕t
v0 = characteristic velocity in dimensional analysis (5.1-4), L∕t
vs = speed of sound(9.8-2, 11C.1-4), L∕t
v⋆ =

√
f0∕i friction velocity (4.3-6), L∕t

Wm = rate of doing work on the system by the surroundings
via moving parts (7.4-1),ML2∕t3

W = width (of film, slit) (2.2-1), L
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Notation 749

W = molar rate of flow across a surface (23.1-4), mol∕t
Ww = molar rate of flow of species w across a surface (23.1-3),

mol∕t
w = mass rate of flow across a surface (2.2-26),M∕t
ww = mass flow rate of species w across a surface (23.1-1), M∕t
w = work-flux vector (9.3-5), M∕t3
xA = mole fraction of species A (1.5-2, Table 17.1-1), ---

yA = mole fraction of species A (22.4-2), ---

x, y, z = Cartesian coordinates

y = distance from wall (in turbulence) (4.3-1), L
Z = wall collision frequency (1.6-2), L−2t−1

alpha w = k∕iĈp = thermal diffusivity (9.2-7), L2∕t
beta v = thermal coefficient of volume expansion (10.10-6), T−1

gamma u = Cp∕CV = heat capacity ratio (11.4-40), ---

u̇ = ∇v + (∇v)† = rate-of-deformation tensor (8.3-1), t−1

delta 2X = X2 − X1 = difference between value of X at exit (plane 2)
and value at entry (plane 1) (7.1-3)

t = falling film thickness (2.2-21), boundary-layer thickness
(after 3.8-16), L

t = unit tensor (1.2-13, A.3-10), ---

ti = unit vector in the i-direction (A.2-9), ---

tij = Kronecker delta (1.2-13, A.2-1), ---

epsilon s = fractional void space (6.4-3), ---

s, sAB = maximum attractive energy between two molecules
(1.6-10, 17.7-13),ML2∕t2

sijk = permutation symbol (A.2-3), ---

zeta r = concentration coefficient of volume expansion (19.2-2
and Table 22.2-1), ---

eta q = non-Newtonian viscosity (8.2-1),M∕Lt
q0, q∞ = zero-shear-rate viscosity, infinite-shear-rate viscosity

(8.3-4), M∕Lt
q′, − q′′ = components of the complex viscosity (8.2-4), M∕Lt

q = elongational viscosity (8.2-5), M∕Lt
theta P = dimensionless temperature difference (10.4-1), ---

p = arctan(y∕x) = angle in cylindrical coordinates (A.6-5), ---

p = arctan(
√
x2 + y2∕z) = angle in spherical coordinates

(A.6-23), ---

kappa n = dilatational viscosity (1.2-7),M∕Lt
n = radius ratio for coaxial cylinders or concentric spheres

(2.4-7, 11.4-30), ---

lambda m = wavelength of electromagnetic radiation (16.1-1), L
m = mean-free path (1.6-3), L
m = time constant in viscoelastic rheological models (8.4-3,

8.5-2), t
mu 4 = viscosity (1.2-1), M∕Lt

4(t) = turbulent (eddy) viscosity (4.4-1), M∕Lt
nu l = 4∕i = kinematic viscosity (1.2-3), L2∕t

l = frequency of electromagnetic radiation (16.1-1), t−1
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750 Notation

xi k = concentration coefficient of volume expansion
(Table 22.2-1), ---

pi 0 = 3.14159…
0(c) = convective momentum-flux tensor (1.1-2, 1.1-6),M∕Lt2
0 = f + pt = molecular momentum-flux tensor, molecular

stress tensor (1.2-15),M∕Lt2
rho i = density, M∕L3

iA = mass of species A per unit volume of mixture
(Table 17.1-1),M∕L3

i(A) = density of pure species A (Table 17.1-1),M∕L3
sigma g = Stefan-Boltzmann constant (16.2-10),M∕t3T4

g, gAB = collision diameter (1.6-10, 17.7-11), L
tau f = (viscous)momentum-flux tensor, (viscous) stress

tensor (1.2-2, 1.2-13), M∕Lt2
phi C = potential energy (3.3-2, 7.4-1),ML2∕t2

Cv = viscous dissipation function (3.3-3), t−2

d = ivv + 0 = ivv + pt + f = total momentum-flux tensor
(1.3-1, 1.3-2), M∕Lt2

d = arctan y∕x = angle in spherical coordinates (A.6-24), ---

3 = intermolecular potential energy (1.6-10),ML2∕t2
psi A1, A2 = first, second normal-stress coefficient (8.2-2 and 3), M∕L

Av = viscous dissipation function (3.3-3), t−2

omega 1 = angular velocity (3.7-29), t−1

14, 1k, 1𝒟 = collision integrals (1.6-14, 9.7-13, 17.7-11), ---

aA = mass fraction of species A (Table 17.1-1), ---

aA1 − aA0 = characteristic mass-fraction difference used in
dimensional analysis (21.1-7), ---

Overlines
X̃ = per mole (9.7-6)

X̂ = per unit mass (7.4-7, 9.1-1, 9.2-7)

X = partial molar (19.3-3, 19.3-7, 24.1-2)

X = time-smoothed (4.1-4, 4.2-1)

X̆ = dimensionless (5.1-3)

Brackets ⟨X⟩ = average value over a flow cross section

(X), [X], {X} = used in vector-tensor operations when the brackets
enclose dot or cross operations (Appendix A)

[=] = has the dimensions of, has units of
Superscripts

X† = transpose of a tensor (1.2-13, A.3-8)

X(c) = convective flux (1.1-2, 1.1-6)

X(t) = turbulent (4.2-8)

X(v) = viscous (4.2-9)

X′ = fluctuating quantity (4.2-1)

Subscripts
A, B = species A and B in binary systems

w, v,…= species in multicomponent systems
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a = arithmetic-mean driving force or associated transfer
coefficient (14.1-3)

b = bulk or “cup-mixing” value for an enclosed stream
(10.9-35, 14.1-2)

c = evaluated at the critical point (1.5-1)

ln = logarithmic-mean driving force or associated transfer
coefficient (14.1-4)

loc = local driving force or associated transfer coefficient
(14.1-5)

m = mean transfer coefficient for a submerged object (14.1-6)

r = reduced, relative to critical value (§1.5)

tot = total amount of quantity in a macroscopic system (7.1-1)

0 = quantity evaluated at a surface (23.1-1)

1, 2 = quantity evaluated at cross sections 1 and 2 (7.1-1)

Named dimensionless groups designated with two letters
Bi = Biot number (10.2-20)

Br = Brinkman number (10.8-9, Table 13.1-2)

Da = Damköhler number (18.5-24)

Ec = Eckert number (Table 13.1-2)

Fr = Froude number (5.1-10, Table 13.1-2)

Gr = Grashof number (10.10-17, Table 13.1-2)

Gra = Diffusional Grashof number (21.1-13, Table 22.2-1)

Le = Lewis number (17.3-15)

Ma = Mach number (11.4-52, Table 13.1-2)

Nu = Nusselt number (10.9-37; 14.2-3 and 4)

Pé = Péclet number (9.2-8, Table 13.1-2)

Pr = Prandtl number (9.2-8, Table 13.1-2)

Ra = Rayleigh number (Table 13.1-2)

Re = Reynolds number (5.1-9, Table 13.1-2)

Sc = Schmidt number (17.3-14)

Sh = Sherwood number (22.2-4)

We = Weber number (5.1-11)

Mathematical operations
D∕Dt = substantial derivative (3.5-4), t−1

𝒟∕𝒟 t = corotational derivative (8.5-1), t−1

∇= del operator (3.1-4, A.4-1), L−1

ln x = 2.303 log10x = logarithm of x to the base e
log x = logarithm of x to the base 10

exp x = ex = the exponential function of x

erf x = 2√
0∫

x

0

exp(−t2) dt = error function (3.8-15, §C.6)

erfc x = 1 − erf x = complementary error function (3.8-15, §C.6)

T(x) = ∫
∞

0

tx−1e−tdt = the (complete) gamma function (11.5-58,

§C.4)

T(x,u) = ∫
u

0

tx−1e−tdt = the incomplete gamma function (11.5-62,

§C.4)
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Yarusso, B. J., 234

Yasuda, K., 233, 234

Youngren, G. K., 513

Z
Zaremba, S., 241

Zarraga, I. E., 229

Zigrang, D. J., 167

Zundel, N. A., 262, 275, 502
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A
Abraham’s friction factor expression

for spheres, 174

Absorption,

effective average driving force, 667

from a rising bubble, 544

in a falling film, 541, 561

in a packed tower, 652

of chlorine, 552

of electromagnetic radiation, 465

with chemical reaction, 525, 554,

583, 587

Absorptivity, 465

Acceleration terms, 93

Activity, 671

as driving force for diffusion, 673

coefficient, 673

Adiabatic flow of natural gas in

pipeline, 452

Adiabatic frictionless processes in an

ideal gas, 342, 355

Adiabatic nozzle, flow of reactive gas

mixture, 660

Adiabatic splitter, mass and energy

balances in, 668

Adjacent immiscible fluids, 60

velocity distribution, 61, 69

Agitated tank,

blending of miscible fluids, 610

gas absorption with chemical

reaction, 527

heating of liquid in, 441

heating of slurry in, 458

heat-transfer correlations, 428

irreversible second-order reaction

in, 668

power input to, 161

steady flow in, 153

Air duct, revision of design, 217

Air pressure, effect of altitude on, 112

Analogies among heat and mass

transfer rates, 621

Angle factors (see View factors)

Angular momentum,

conservation in molecular

collisions, 8

equation of change for, 90

internal, 8, 90

macroscopic balance for, 191

Angular velocity,

of a lawn sprinkler, 192

of a rotating body, 690

Annular flow, tangential, 98, 118, 236

with heat generation, 337

Annulus, flow through, 57, 215

average velocity, 59

circulating axial flow, 115

estimation of pressure drop, 181

location of maximum velocity, 76

mass flow rate, 59

momentum flux distribution, 58

Non-Newtonian flow, 246, 248

radiation in, 484

relation to slit formula, 72

turbulent flow in, 145

velocity distribution in, 58

volume flow rate, 59

with inner cylinder moving

axially, 73

Arithmetic mean temperature

difference, 396

Arnold, J. H., 581
Arnold problem, 580

Average temperature, 308

Average velocity,

circular tube, 53

falling film, 47

mass, 492

molar, 492

volume, 518

Axial heat conduction in a wire, 357

B
Bead-rod model for polymers, 244

Bénard cells, 384

Bernoulli, D., 88
Bernoulli equation,

inviscid fluids, 88

viscous fluids, 193

Binary splitters, 643

Bingham fluid (non-Newtonian), 234

Biot, J. B., 283
Biot number, 283, 284, 291

Black bodies, 465, 471

cooling of, 484

radiation between, 471

Stefan-Boltzmann law, 466

Blake-Kozeny equation for packed

beds, 177

Blasius friction factor formula, 167

Blending of miscible fluids, 610

Blood flow and Casson equation,

234, 237

Blood vessels and tube branching, 56

Boltzmann constant, 32, 741

Boltzmann, L. E., 467
Boundary conditions,

diffusion, 522

fluid dynamics, 43

heat conduction, 280

interfacial, 160

Boundary layer,

flow near a wall suddenly set in

motion, 103

flow past a flat plate, 120

flow past a heated flat plate, 363

flow in a heated tube, 354

Boussinesq equation of motion, 333,

570

Boussinesq, J. V., 135
Bridgman’s equation, 271

Brinkman, H. C., 176
Brinkman number, 302, 317, 380

Bubbles,

absorption in a liquid, 544

heat loss from, 411

in agitated tank, 527

mass transfer to, 632, 636

Buckingham pi theorem,

for binary mixtures, 612

for pure isothermal fluids, 156

for pure nonisothermal fluids, 387

Buckingham-Reiner equation, 247

Buffer layer (in turbulence), 132, 369

Bulk temperature, 308

Buoyant force, 67, 303, 311, 334, 381

Burke-Plummer equation for packed

beds, 178

759
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C
Caloric equation of state, 334, 569

Capillary flow meter, 74

Capillary number, 380

Carreau equation (non-Newtonian

fluids), 233, 234

Cascade, 656, 668

Casson equation (non-Newtonian

fluids), 234

Catalyst particles,

diffusion and reaction in, 547

effectiveness factors for, 550

loss of in stack gas, 70

temperature rise in, 360

Catalytic oxidation of carbon

monoxide, 682

Catalytic reactor, 297, 529, 556, 561,

578

Cauchy, A. L., 86
Cavity radiation, 465

Centipoise, 20

c.g.s. units, 20

Chapman-Enskog gas kinetic theory,

34, 267, 508, 510

Chapman, S., 34
Chemical reaction,

and enhancement of mass transfer,

597

heterogeneous, 521, 529

homogeneous, 521, 525

in shell mass balances, 521, 525

in time-smoothing species

equation of continuity, 595

with diffusion, 525, 529, 556, 558,

559, 561, 567, 576, 583, 588, 589

Chemical reactors, 297, 321, 323, 662,

668

Chilton-Colburn,

analogy, 627

j-factors, 621, 627
Chilton, T. H., 208
Chromatographic device, transient

thermal behavior, 457

Circular jet, 141

Circular tube, 50, 95, 115, 157

average flow rate, 53

branching tubes, 56

comparison of laminar and

turbulent flow, 127

compressible fluid, 56

flow regimes, 54

forced convection heat transfer,

336

Knudsen flow in, 74

mass flow rate, 53

momentum balance, 51

momentum flux distribution, 52

non-Newtonian flow, 235, 237

residence time distribution, 76

turbulent flow in, 138

velocity distribution, 53, 77

Clusius-Dickel column, 311, 675

Coaxial cylinders, radial flow

between, 117

Colburn’s j-factors, 409, 410, 626
Collision cross section, 33

Collision integrals, 35, 268, 510, 740

Combination of independent

variables, 104, 347, 543, 546, 579,

581, 584

Compartmental analysis, 644

Complementary error function, (see

Error function)

Complex viscosity, 229

comparison with steady shear

flow functions, 231

from Maxwell model, 240

from rigid dumbbell model, 245

Composite walls, 285, 287, 314, 318

Compressible fluid,

circular tube, 56, 215

flow through

convergent-divergent nozzle,

456

flow through head meters, 447

free batch expansion, 449, 452

in a shock wave, 342

pumping through long pipe, 439

Compression term in mechanical

energy balance, 194

Concentration diffusion, 499

Concentration distribution,

in diffusion with reaction, 525, 529,

554, 556, 559, 568, 576, 578, 583,

588, 589

in falling film, 541, 545

in stagnant film, 533

in porous catalyst, 547, 559

in two-bulb experiment, 539

near a slightly soluble sphere, 524

of gas in solid tube wall, 522

unsteady, in film, 580

with heat transport, 574

Concentrations in binary systems,

490

Concentric spheres, flow between,

113

Condensation, heat transfer with, 420

Conductive heat-flux vector, 255

Cone-and-plate viscometer, 62, 248

torque in, 64, 248

Configuration factors (see View

factors)

Conical region, heat conduction in,

323, 359

Conical tank, draining from, 219

Conservation laws, 12, 81, 82

for angular momentum, 8, 90

for binary mixtures, 568, 569

for chemical species, 570

for energy, 6, 329, 570

for linear momentum, 6, 84, 570

for mass, 5, 82, 570

in binary collisions, 4

in steady-state shell balances, 42,

280, 522

Constants and conversion factors,

741

Continuity equation,

binary mixture, 563, 728

pure fluid, 82, 335, 723

time-smoothed, 129

Contraction, sudden, 118

Controlling resistance in mass

transfer, 635

Convective,

fluxes, 569

energy-flux vector, 254

mass-flux vector, 492

molar-flux vector, 493

momentum flux tensor, 16, 18

Convection, diffusion, and chemical

reaction, 567

Converging tube, 26, 75, 454

Conversion factors, 741

Cooling fin, 290

Coriolis force in tube flow, 54

Correlations in turbulence, 131, 132,

368, 595

Couette flow, 71, 97, 160

Creeping flow,

around a sphere, 65, 93

mass transfer in packed beds, 631

toward a slot, 108

Critical properties, 30, 738

Critically damped control system,

447

Cross effects, 571

Cup-mixing temperature, 308

Curie’s law, 671

Curtiss, C. F., 34
Curtiss-Bird equation, 679

Curtiss-Hirschfelder

multicomponent gas theory, 34
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Curvilinear coordinates, 18, 24, 706,

718, 719

Cylinder,

heat-transfer coefficient, 411, 417

transverse flow around, 116, 150,

184, 383, 607

Cylindrical coordinates, 706

Cylindrical tank, flow from, 208, 219

D
Damköhler, G., 323, 533
De Boer, J., 158
De Boer parameter, 158

Deformation of a fluid line, 124

Dehumidification of air 586, 608

Density,

mixtures, 491

molecular definition, 8

Deposition of silver from a turbulent

stream, 603

d-forms of macroscopic balances, 437

Dialyzer operation, 645

Differential equations and their

solution, 729

Differentiation of integrals, 731

Differentiation of vectors and

tensors, 699, 708, 712, 714, 716

Diffusion,

and activity gradient driving force,

671, 673

and chemical reaction, 525, 529,

556, 558, 559, 561, 567, 576, 583,

588, 589

and external forces as driving

forces, 671

and pressure gradient driving

force, 671

and temperature gradients driving

force, 672

away from a sphere, 524

driving forces for, 671, 678

Fick’s law of, 495, 497

forced, 499, 571

from a point source in a stream,

590

from a rotating disk, 591

from a suspended droplet, 555

from an instantaneous point

source, 589

generalized driving force for, 671,

678

generalized Fick’s law, 678

in a porous catalyst, 547

in multicomponent systems, 678

into a falling film, 541, 545, 587,

612, 621

mass, 499

Maxwell-Stefan equations, 678

mole fraction driving force, 673

notation for, 515

of a finite sphere of material, 589

of gases in a two-bulb experiment,

539

of gases through solids, 522

ordinary, 499, 673

thermal, 499, 571, 675, 682

through a nonisothermal spherical

film, 538

through a stagnant gas film, 533

velocity, 497

with a heterogeneous reaction,

529, 556

with a homogeneous reaction, 525,

556

with convection and chemical

reaction, 567

with fast second-order reaction,

556

with slow heterogeneous reaction,

532

Diffusion-thermo effect, 572, 673

Diffusive,

mass flux vector, 494, 497, 571

molar flux vector, 496, 497

Diffusivity, 495, 497, 499

and gas kinetic theory, 508, 510

and principle of corresponding

states, 504

concentration-dependent, 588

effective, 548

for liquids, 512

from experiments, 501, 537, 539,

553, 557, 586, 587

self-, 509, 511

Maxwell-Stefan, 672, 674, 679

multicomponent Fick, 678

relation between Maxwell-Stefan

and multicomponent Fick

diffusivities, 679

Dilatational viscosity, 22

Dimensional analysis,

and friction factors, 164, 171

and heat transfer coefficients, 404,

414

Dimensional analysis of equations of

change,

for binary mixtures, 605

for pure isothermal fluids, 146

for pure nonisothermal fluids, 378

with homogeneous reaction, 615

Dimensionless groups,

Biot number, 284, 291

Brinkman number, 302, 379, 380,

382

capillary number, 380

Colburn j-factors, 621
Damköhler number, 533, 599

Eckert number, 380

Froude number, 148, 380, 382, 621

Grashof number, 312, 380, 382, 621

Grashof number for binary

mixtures, 606, 621

Lewis number, 497

Mach number, 345, 380, 455

Nusselt number, 308, 621

Péclet number, 257, 308, 380, 607,

621

Prandtl number, 257, 268, 365, 379,

380, 497, 621

Raleigh number, 380, 386

Reynolds number, 148, 379, 380,

382, 621

Schmidt number, 497, 517, 597, 621

Sherwood number, 578, 598, 621

Weber number, 148, 380

Dimerization of CH3CH = CH2, 529

Discharge coefficient, 208

Disk and cylinder experiment, 226

Disks,

radial flow between, 117, 247

view factor for, 485

Dissipation function in various

coordinate systems, 726

Dissipation of energy, 88

Divergence,

of vector, 83, 700, 710, 712, 714, 716

of tensor, 86, 701, 712, 714, 716

Double-pipe heat exchanger, 438,

453

Drag coefficient (see friction factor)

Drag force,

on cylinder, 116, 184

on plate, 121, 128

on sphere, 67, 171

Draining of a spherical tank, 187

Drop(let),

diffusion from, 555

evaporation, 588, 627, 637

freezing of, 359

heat loss from, 411

mass transfer to, 632

Drying,

of air in a fixed bed, 637

of granular solids, 637
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Duct (See also Circular tube),

square, 113, 116

triangular, 112, 116

turbulent flow in, 137

Dufour effect, 572, 673

Dynamic similarity, 150

E
Eckert number. 380

Eddy,

diffusivity, 596

kinematic viscosity, 597

thermal conductivity, 370

viscosity, 135, 140

EE (English Engineering) units, 20

Effective thermal conductivity, 273

Effective viscosity, 37

Effectiveness factors, 550, 559

Effectiveness of a cooling fin, 292

Efficiency of separation, 643

Efflux velocity, 89

Einstein, A., 37
Einstein’s formula for suspension

viscosity, 37

Ejector, liquid-liquid, 202

Elasticity of non-Newtonian fluids,

239

Electric dust collector, 76

Electrical conductivity, 294, 325

Electromagnetic radiation,

frequency, 463

spectrum of, 463, 464

wavelength, 463

Emissivity, 465, 467

Emulsions, rheological

effects, 227

End effects, 50, 55, 98, 310

Energy,

conservation, 6, 329, 430

equation, 330, 331, 332, 335, 570,

571

equation in various coordinate

systems, 726, 727

fluxes, 260, 572

interchange between mechanical

and internal, 331

internal, 7, 329

kinetic, 6, 329

macroscopic balance, 431

potential, 87, 329

shell balances for, 280

Energy production,

by chemical reaction, 297, 321, 323,

360

by flow of electricity, 294, 319

by nuclear reaction, 315, 316

by viscous dissipation, 300, 337,

356

Engineering Bernoulli equation, 193

Enhancement of mass transfer by

chemical reaction, 597

Enskog, D., 34
Enthalpy, 260

of an ideal monatomic gas, 278

partial molar, 573

Entrance length, 55

Entropy,

equation of change for, 671

flux, 671, 678

production, 671, 678

Equation of continuity, 82

effect of chemical reactions, 595

for binary mixture, 564, 566, 595

in turbulent flow, 131

in various coordinate systems, 723,

727

time smoothed for turbulent flow

of mixtures, 595

Equation of motion, 84, 86

Boussinesq, 333

Euler, 93

for forced and free convection, 333

in turbulent flow, 131

in various coordinate systems, 724,

725

Navier-Stokes, 92

simplified forms, 92

Stokes, 93

Equations of change, 81, 84

dimensional analysis of, 146, 149,

378, 605

for binary mixture, 563, 570, 605

for energy, 330, 335, 571

for enthalpy, 332, 571

for entropy, 671

for internal energy, 331

for isothermal systems, 92

for mechanical energy, 86, 87, 123

for nonisothermal flow, 334

for pure fluids, 335

for temperature, 332, 333, 335, 571

in turbulent flow, 131, 368

in various coordinate systems,

723–728

solutions of, 94, 103, 334, 574

substantial derivative form, 90, 92,

335, 570

Equimolar counterdiffusion of gases,

566

Ergun equation for packed beds, 178

Error function, 105, 347, 543, 581,

584, 734

Eucken’s formula for thermal

conductivity (polyatomic gases),

268

Euler equation (inviscid fluids), 93

Euler, L., 93
Euler’s theorem for homogeneous

functions, 573

Evaporation,

effect of temperature and pressure

on, 560

loss from oxygen tank, 321

of droplet, 588 627, 637

of n-octane 587,
steady, 535, 587

unsteady, 580

with a moving interface, 536

with diffusion through a stagnant

gas film, 533

Expansion of gas mixture with

chemical reaction, 667

Expansions in Taylor series, 730

Extinction coefficient, 482

Eyring activated state theory, 513

Eyring, H., 37

F
Fading memory in viscoelastic

fluids, 225, 239

Falling cylinder viscometer, 77

Falling film,

absorption of chlorine, 552

diffusion into, 612

nonisothermal flow, 338

on conical surface, 79

on inclined flat plate, 43, 97

on outside of circular tube, 72

thickness, 47

variable viscosity, 49, 97

with gas absorption, 541

with solid dissolution, 545, 615

Fanning friction factor, 164

Fanning, J. T., 164
Faraday constant, 678

Ferry, J. D., 230
Fick, A. E., 495
Fick’s first law of diffusion, 495, 496,

501, 518

generalized, 678

in various coordinate

systems, 723

Fick’s second law of diffusion, 566

Film models of mass transfer, 536

Fittings and valves, 197
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Flat plate,

boundary-layer development, 105,

120

flow around, 128, 182

forced convection along, 410, 626

free convection, 415, 416

Flow-average temperature, 308

Flow near wall set in motion, 103,

116, 119

Fluctuations in turbulence, 130, 368,

595

Flux, 10

of energy, 254, 255, 258, 259, 571,

572

of mass, 491, 493, 500, 571

of momentum, 16, 18, 26, 571

Fluxes in binary systems, 518, 569,

571

Fog formation during

dehumidification, 608

Force,

buoyant, 67, 311

on a cylinder, 73, 77, 117

on a flat plate, 121, 128, 182

on a sphere, 68, 171

on a pipe, 54

on an inclined plate, 48

on a water tower, 182

Forced convection heat transfer, 303,

318, 333, 336, 379

analogy with mass transfer, 624,

627

heat transfer coefficients 400, 404,

410, 412

turbulent flow, 379

with non-Newtonian fluids, 322

Forced convection mass transfer, 541,

545

analogy with heat transfer, 624, 627

for flow along flat plate, 626

for flow around spheres, 626

for flow near rotating disk, 624

Forced diffusion, 571

Form drag, 67

Fourier, (Baron) J. B. J., 256
Fourier’s law, 255

in various coordinate systems, 722

Free convection heat transfer, 309,

381

from vertical flat plate, 391

heat transfer coefficients, 414

in annulus, 320

in horizontal layer, 384

in slot, 362

in turbulent flow, 381

velocity in, 314

with temperature dependent

viscosity, 320

Free convection mass transfer, 570

analogy with heat transfer, 626

Free turbulence, 136

Freezing of a liquid, 359, 365

Frequency of electromagnetic wave,

463

Friction bearing, temperature in, 355

Friction drag, 67

Friction factors, 163

flow around a flat plate, 182

flow around submerged objects,

164, 171

flow in a slit, 182

flow in conduits, 163, 164, 167

flow in packed columns, 175

problem solving using charts,

168–171, 174–175

rotating disk, 182

Friction loss,

factor, 196, 197

in bearings, 111

in macroscopic mechanical energy

balance, 194, 196, 197, 198

in pipes and conduits, 197

Friction velocity, 134, 164, 598

Froude number, 148, 380

G
Gamma function,

complete, 353, 546, 579, 593, 732

incomplete, 353, 733

Gas absorption, 541, 544

with rapid chemical reaction, 583

Gas-liquid interface, 633

Gas reservoir, inventory variations

in, 218

Gauss divergence theorem, 704

Generalized driving force for

diffusion, 671

Generalized Newtonian models, 232

Geometric similarity, 150

Gradient,

in various coordinate systems, 712,

714, 716

of a scalar, 86, 700

of a vector, 701

Graetz number, 403

Grashof, F., 312
Grashof number, 312, 380, 606

Gravity force, 45, 97

Gray body, 465, 471

H
Haaland’s friction factor formula,

167

Hagen-Poiseuille fomula, 53, 166, 188

Heat capacity, 257, 260, 332

ratio, 342, 345, 436, 455

Heat conduction,

equation for stationary solids, 333

from a sphere in a stagnant fluid,

315

in a cooling fin, 290

in a fixed-bed chemical reactor, 298

in a nuclear fuel rod assembly, 316

in a spherical nuclear fuel element,

315

in a steam pipe, 281, 284

in an annulus, 317

in an electric wire, 294, 325

through composite walls, 285

unsteady (in solids), 347, 348

with forced convection, 303

with phase change, 365

with temperature-dependent

thermal conductivity, 289, 323,

325, 327

with viscous dissipation heating,

300, 327

Heat exchanger, 433, 438, 451, 453,

459

Heat flow, rate of, 395

Heat flux vector, 257, 621, 722

from nonequilibrium

thermodynamics, 672

Heat loss from horizontal pipe, 419,

426, 427, 485

Heat-transfer coefficients, 281, 395,

427, 617

agitated tanks, 428

analogies with mass-transfer

coefficients, 621, 624

condensation of vapors on solid

surfaces, 420

empirical correlations of, 404–409,

624

for temperature-dependent

viscosity, 407

for tubes and slits, 402, 403

forced convection around

submerged objects, 410–412

forced convection through packed

beds, 412

free and mixed convection for

submerged objects, 414–419

from analytical solutions, 400–404

from experimental data, 398
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Heat-transfer coefficients, (continued)
orders of magnitude, 397

overall, 287, 288, 397

Herschel-Bulkley equation

(non-Newtonian fluids), 234

Heterogeneous reaction (see also

Diffusion with a heterogeneous

reaction), 520, 521

Higbie, R. W., 544
Hirschfelder, J. O., 34
Homogeneous chemical reactions

(see also Diffusion with a

homogeneous reaction), 521, 525

Homogeneous functions, 573

Hooke’s law of elasticity, 239

Hot-wire anemometer,

operation of, 426

temperature distribution in, 322

Hougen-Watson method for

multicomponent diffusion, 679

Hydraulic radius, 168, 183

Hydrodynamic derivative, (see

Substantial derivative)

Hyperbolic functions, 527, 528, 549,

733

I
Ice fisherman on Lake Mendota, 426

Ideal cascade, 659

flow distribution in, 668

Ideal gas,

adiabatic frictionless processes in,

342, 345, 432

cooling of, 433

duct flow of, 455

equation of energy for, 333

mixing of two streams, 435, 452

Incompressible fluids, 83, 92, 93, 333

pressure distribution in, 118

Inertial sublayer (in turbulence), 133,

134, 369

Infinitesimal strain tensor, 239

Inlet temperature difference, 396

Instability,

and formation of Bénard cells, 386

in Couette flow, 101

Instantaneous point source, diffusion

from, 589

Insulating power of a wall, 314

Integration, exchange order of, 735

Intensity of turbulence, 131

Interfacial boundary conditions, 160

Interfacial tension, 160, 632

Intermolecular forces, 34

Internal energy,

definition, 7

equation of change for, 331, 571

flux, 10

macroscopic balance for, 433

rate of flow, 10

Interphase transport, 162, 394, 616

Inviscid fluid, 88

Ion fluxes, 677

Isothermal systems,

equations of change for, 92

J
Jaumann (corotational) derivative,

241

Jet,

force exerted by, 190, 195

impinging on surface, 205

Jets emerging from flat wall, 129, 140,

375

j-factors of Colburn, 409, 410, 411,
626, 627

K
Kinematic viscosity, 20

Kinetic energy,

definition, 6

equation of change for, 87

flux, 10

gases, 32

in macroscopic mechanical energy

balance, 194

of rotation, 699

rate of flow, 10

Kinetic force, 68, 164, 171

Kinetic theory of gases,

diffusivity, 508

thermal conductivity, 266

viscosity, 32

Kirchhoff, G. R., 466
Kirchhoff’s law, 466, 477

Knudsen flow, 55
Knudsen, M. H. C., 55
Kramers, H., 541
Kronecker delta, 23, 691, 692, 697

L
Lambert’s law,

cosine law (radiation), 471

law of absorption, 482

Laminar flow, 42

comparison with turbulent flow,

126

heat transfer coefficients for, 400

mass transfer coefficients for, 620

with constant heat flux at wall,

350, 361

Laminar-turbulent transition, 48, 54,

60, 128, 144, 166, 173, 408

Landau, L. D., 21
Leaching, 555

Leibniz formula, 211, 212, 249, 590,

704, 731, 735

Lennard-Jones (6–12) potential

energy, 34, 510

Lennard-Jones parameters, 35, 510,

738

Lewis number, 497

Lewis, W. K., 497
L’Hôpital’s rule, 589, 736

Lightfoot’s form for Stefan-Maxwell

equations, 683

Linear cascades, 656

Linear viscoelasticity, 239

Liquid-liquid ejector, 202

Liquid-liquid interface, 43, 60, 160

Local temperature difference, 396

Local transfer coefficients, 396, 620

Lodge, A. S., 223
Logarithmic mean temperature

difference, 396

Logarithmic velocity profile in

turbulence, 134, 139

Lord Rayleigh (see Strutt, J.W.)
Lorenz number, 272, 276

Lubricant, maximum temperature in,

313

M
Mach number, 345, 380, 455

Macroscopic balances,

d-forms, of 437

for angular momentum, 191, 206,

648

for energy, 430, 648

for internal energy, 433

for mass, 187, 640

for mechanical energy, 193, 211,

431, 649

for momentum, 189, 204, 648

for multicomponent

systems, 639

relation to equations of change,

186

simplifications for turbulent flow,

190, 195

summary of, 200, 434, 442, 650

with multiple entry and exit

planes, 200

Macroscopic systems, 2, 12
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Mass,

average velocity, 492, 493, 495

conservation, 5, 82, 563

density, 491

flux, 10

flux vector (convective), 491, 493

flux vector (diffusive), 495, 621

flux vector (total), 500

flux vector from irreversible

thermodynamics, 672

fraction, 491

macroscopic balance for, 187, 640

per unit volume, 491

rate of flow, 9, 47

Mass transfer,

from rotating disk, 624

mechanisms, 490, 571, 672

to drops and bubbles, 632

Mass-transfer coefficients, 522, 578

analogies with heat-transfer

coefficients, 621, 624

analytical expressions for, 620

apparent, 619

around spheres, 623

definitions, 617

empirical correlations for, 624

for small mass-transfer rates, 620

in closed channels, 637

in two phases, 633

local, 619

Material derivative (see Substantial

derivative)

Material functions and rheometry,

228

Maxwell, J. C., 33
Maxwell model,

corotational, 241

for linear viscoelasticity, 239

superposition of models, 240

Maxwell-Stefan,

diffusivity, 672

equations, 490 equations

(generalized), 679

McCabe-Thiele diagram, 657, 659

Mean,

free path, 32, 266, 508

hydraulic radius, 168, 183

molecular weight, 491

Mechanical energy,

equation of change for, 87, 123

dissipation of, 88

macroscopic balance for, 193, 211,

434, 442, 649

macroscopic balance for, d-form,

437

Memory, fading, 239

Method of intercepts, 574

Microscopic systems, 2, 12

Millikan oil drop experiment, 69

Miscible fluids, blending of, 610

Mixing length in turbulence, 136,

138, 371, 597

Mixing of two ideal gas streams, 435,

452, 455

Mobility, 512

Modified pressure, 52, 92

Modified van Driest equation, 136,

375, 600

Molar,

average velocity, 492, 493, 496

density, 491

flux vector (convective), 491, 493

flux vector (diffusive), 496, 497

flux vector (total), 500

turbulent flux, 596

volume, 37, 541

Mole fraction, 491

Molecular,

fluxes, 280, 500, 569, 571

momentum flux tensor, 18, 23

stress tensor, 23

systems, 2, 12

weight, 491

Molecules to continua, 8

Moles per unit volume, 491

Moment of inertia tensor, 699

Momentum (linear),

conservation, 6, 84

flux tensor (convective), 10, 16, 18

flux tensor (molecular), 23,

flux tensor (total) 26, 27

flux tensor (viscous), 18, 22, 23,

720, 721

macroscopic balance for, 189

rate of flow, 9

turbulent flux, 131, 135, 596

Moody friction factor, 164

Multicomponent diffusion, 678

Hougen-Watson method for, 679

Murphree, E. V., 134

N
Natural convection (see Free

convection)

Navier, C. L. M. H., 21
Navier-Stokes equation, 92, 147, 149,

725

Nernst-Einstein equation, 512

Nernst-Planck equation, 677

Network of tubes, 75

Neumann-Stefan problem, 365

Newton, Sir Isaac, 19
Newton (unit of force), 20

Newtonian fluids, 19

Newton’s law of cooling, 281

Newton’s law of viscosity, 19, 22, 23

in various coordinate systems, 720

Newton’s resistance law, 174

Noncircular tubes, 112, 113, 116, 128,

168

Nonequilibrium thermodynamics,

670

Non-Newtonian fluids, 19, 222

axial tube flow, 224

biaxial stretching, 230

Bingham equation for, 234

Carreau equation for, 233

Casson equation for, 234

corotational Maxwell model for,

241

disk and cylinder experiment, 225

elongational flow, 230, 245

flow down a tilted trough, 226

flow near an oscillating cylinder,

226

generalized Newtonian models

for, 232

Herschel-Bulkley equation for, 234

Maxwell model for linear

viscoelasticity, 239

normal stress effects, 225, 229, 242,

244

oscillatory flow, 230, 240, 245

power-law model for, 233

recoil, 224

rigid dumbbell model for, 244

rod climbing, 225

superposition of viscoelastic

models for, 240, 243

tubeless siphon, 226

with forced-convection heat

transfer, 322

Non-Newtonian viscosity, 229

from tube flow data, 249

Normal stress, 23, 83, 118, 225, 229

Normal stress coefficients, 229, 242

No-slip boundary condition, 43

Nozzle, expansion of reactive gas

mixture in, 660

Nuclear fuel element, heat

conduction in, 315, 316

Nusselt, E. K. W., 395
Nusselt number (see also Heat

transfer coefficients), 308, 315

analytical calculation of, 400–404
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Nusselt number, (continued)
and Colburn’s j-factors, 409, 413
condensation of vapors on solid

surfaces, 420

empirical correlations for forced

convection in tubes, 404–409

forced convection around

submerged objects, 410–412, 626

forced convection through packed

beds, 412

free and mixed convection for

submerged objects, 414–420

free convection around

objects, 626

O
Onsager, L., 670
Onsager’s reciprocal relations, 671

Orifice,

liquid flow through, 206

meter, 448

Oscillatory flow, 229, 240, 245

Overall heat-transfer coefficient, 287,

288, 397

Overall mass-transfer coefficient, 634

Overdamped control system, 447

Oxidation of silicon, 589

Oxygen uptake by bacterial

aggregate, 554

P
Packed columns (towers),

absorber, 652, 667

creeping-flow mass transfer in, 631

estimation of void fraction, 181

for absorption, 652

friction factors, 175

heat-transfer coefficients for, 412

mass-transfer coefficients for, 627

unsteady operation of, 663

Packed tube, pressure drop for

creeping flow in, 156

Parabolic mirror, fabrication of, 112

Parallel-disk,

compression viscometer, 122, 250

viscometer, 114

Parallel disks, radial flow between,

117, 247

Partial molar quantities, 514, 518, 573

Particle trajectories in two

dimensions, 184

Pascal (unit), 20

Péclet, J. C. E., 257
Péclet number, 257, 380

Penetration, 105

model, 622

thickness, 348, 350

Permutation symbol, 90, 691, 692

Photon, 463

Pi theorem (see Buckingham pi

theorem)

Pigford, R. L., 543
Pipe bend, thrust on, 203

Pipeline, adiabatic natural gas flow,

452

Planck, M. K. E. L., 462
Planck distribution law 469, 470

Planck’s constant 464, 470

Plane Couette flow, 71

Plug flow, with heat transfer, 319

Point source,

diffusion from, 589

in a moving stream, 587, 590, 601

Poise, 20

Poiseuille, J. L., 53
Polymeric fluids, 222

Position vector, 694

Potential energy, 87

in macroscopic mechanical energy

balance, 194

Power law model (non-Newtonian

fluids), 233

Power requirement for pipeline flow,

198

Prandtl, L., 136
Prandtl number, 257, 268, 379, 380

Prandtl’s friction factor formula, 167

Prandtl’s mixing length, 136, 138,

371, 597

Pressure diffusion, 499, 571, 672, 673

Pressure drop,

required for pipe with fittings, 180

Pressure rise,

in sudden enlargement, 200, 215

Principle of corresponding states,

for binary diffusivity, 504

for viscosity, 29

for thermal conductivity, 262

Protein purification, 669

Pseudobinary assumption, 526

Pseudocritical properties, 31

Psychrometer, 628, 637

effect of radiation, 638

Pyrex glass, diffusion of helium

through, 498, 522

Q
Quantization of energy, 470

Quantum effects in viscosity, 158

Quantum mechanics origin, 471

Quasi-steady-state assumption, 90,

122, 164, 184, 188, 209, 219, 360,

450, 528, 536, 540, 555, 558, 576,

588, 589, 627, 637, 660

R
Radiant-energy transmission in

absorbing media, 480

Radiation

absorption and emission, 465

and convection heat losses from

pipe, 479

between black bodies, 471

between nonblack bodies, 476

black body, 466

effect on psychrometric

measurement, 638

errors in temperature

measurement, 483

heat transfer by, 462

shields, 478, 484

spectrum of electromagnetic, 463

Radiosity, 477

Rate-of-strain tensor, 232

Rayleigh number, 380, 386

critical value for formation of

Bénard cells, 386

Reaction (see Chemical reaction)

Reactor,

annular, 321

catalytic, 529, 532, 561

packed bed, 297, 321, 323

start-up, 662, 668

tubular, 578

well-stirred, continuous, 668

Rectifying section, 657

Rectilinear flow, 42

Reduced properties, 30, 265, 505

Relative volatility, 643

Relaxation time (viscoelasticity), 239

Reynolds, O., 48
Reynolds analogy, 371, 597

Reynolds number, 48, 54, 128, 148,

166, 196, 380

Reynolds transport theorem, 704

Rheology, 222

objectivity in, 241

Rheometry, 222, 228

material functions, 228

Rotating disk,

diffusion from, 591, 624

friction factor, 182

Rotating liquid, surface shape, 102

Roughness of pipes, 167, 409
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S
Schmidt, E. H. W., 497
Schmidt number, 497, 517, 597, 606,

Secondary flow,

for polymeric liquids in

noncircular tubes, 224

for rotating disk in a cylinder, 225

in tangential angular flow between

cylinders, 100

in turbulent flow in a triangular

duct, 128

near oscillating rod, 226

near rotating sphere, 108

Self-diffusivity, 498, 504, 509, 511

Semi-infinite solid, heating of, 347,

362

Separation factor, 643

Separation of variables, method of,

348

Separation point,

transverse flow around cylinder,

152

transverse flow past a sphere, 172,

173

Shear flow, 16, 18, 70

Shear rate, 228

Shear stress (see Stress)

Shell balances,

for chemical species, 521

for energy, 280

for momentum, 42

Sherwood number (see also

Mass-transfer coefficients), 578,

598, 620

Sherwood, T. K., 572
Shock wave, stationary,

velocity, temperature, pressure

profiles in, 342, 355

Sieder and Tate correlation, 407

Silicon oxidation, 589

SI units, 20

Similarity, geometric and dynamic,

150

Similarity method, 104

Simpson’s rule for numerical

integration, 216

Simultaneous heat and mass

transport, 574

Slip at solid-liquid and liquid-liquid

interface, 74, 513

no slip, 43, 61, 512

Slip coefficient, 74

Slit,

heat-transfer coefficients, 403

laminar flow in, 71

non-Newtonian fluid, 236, 246

relation to annular flow, 72

with uniform cross flow, 118

Slot, creeping flow toward, 108

Solar,

constant, 475

engine (efficiency), 483

Solid dissolution, 545

Solid slab of finite thickness,

heating of, 348

Soret effect, 571, 673

Sound,

speed of propagation of wave, 361

velocity of, 271

Source term,

in continuity equation for species,

564

in energy equation, 329, 333, 354,

390

in shell energy balance, 280, 294,

296, 299, 301, 312, 315, 316

in shell mass balance, 520, 548

Species concentrations, 491

Speed of light, 463, 470

Sphere,

buoyant force, 67

diffusion away from, 524

flow around (rotating), 106

flow around (stationary), 65

forced convection around, 626

form drag, 67

friction drag, 67

heat loss from, 389, 411

mass transfer from, 623, 626

unsteady heating of, 361

velocity distribution, 65

Sphere of material, diffusion from,

589

Sphere, temperature distribution in

embedded, 358

Spheres, concentric, 113, 339

Spherical catalyst pellet, temperature

rise in, 360

Spherical coordinates, 706, 707

Spherical drop, freezing of, 359

Spherical shell, heat conduction in,

356

Splitter,

adiabatic, 668

binary, 643

Spriggs relations, 240

Square duct, 113, 116

Squeezing flow,

Newtonian fluid, 122

non-Newtonian fluid, 250

Stability in exothermic reaction

system, 360

Stagnant film model for mass

transfer, 536

Start-up of chemical reactor, 662, 668

Stefan, J., 466
Stefan-Boltzmann constant, 466, 470

Stefan-Boltzmann law, 466

Stefan-Maxwell equations (see

Maxwell-Stefan)

Stokes, G. G., 21
Stokes-Einstein equation, 512

Stokes flow, 65, 93

Stokes’ law, 68, 173

Strain tensor (infinitesimal), 239

Streamline, 43, 89

Stress,

molecular, 23, 24, 27, 43

normal, 23, 24, 26, 118, 222, 225, 229

Reynolds, 131, 132

shear, 19, 23, 24, 48

sign convention, 24,

viscous (shear), 20, 23, 720

Stripping section, 657

Strutt, J. W. (Lord Rayleigh), 101
Sublimation of iodine spheres, 552

Substantial derivative, 91, 159, 570

Sudden changes in cross section, 118,

197, 200, 217

Sulfur dioxide converter, 650

Sun, radiant energy emission, 471

Superficial velocity, 176

Surface elements, 25

Suspensions,

Einstein’s viscosity formula, 37

Krieger-Dougherty formula, 38

rheology of, 227

T
Tables for predicting transport

properties, 738

Tallmage equation for packed beds,

178

Tapered tube,

Newtonian flow in, 75

non-Newtonian flow in, 247

Tarnishing of metal, 558

Taylor series, 211, 310, 325, 327, 533,

535, 570, 588, 666, 730

Taylor vortices, 100

Temperature,

equation of change for, 332, 333,

335

errors in measurement, 293, 483

fluctuations in turbulence, 368
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Temperature, (continued)
reduced, 30, 265, 505

Temperature controller, operation of,

445

Temperature difference,

arithmetic mean, 396

inlet, 396

local, 396

logarithmic mean, 396

Temperature distribution,

annular region, 289, 317, 361

chemical reactor, 297, 321, 323, 360

composite walls, 284

conical region, 323

cooling fin, 290

electrically heated wire, 294, 325

for turbulent flow in jets, 375

for turbulent tube flow, 372

forced convection slit

flow, 318, 320

forced convection tube

flow, 303, 324, 336, 350

free convection annular

flow, 320

free convection slit flow, 309, 362

hot-wire anemometer,

in boundary layers, 362, 363

in solids, 347, 348, 356, 357, 359

near heated sphere, 315

near wall in turbulent flow, 369

nonisothermal film, 338

nuclear fuel assembly, 315, 316

plug flow, 319

polymer flow, tube and slit, 322

slit flow with viscous heating, 315,

317

sphere, 358, 359, 360, 361

stationary shock wave, 342

steam pipe wall, 281, 325

tangential annular flow with

viscous heating, 300, 327, 337

transpiration cooling, 339, 358

tube flow with viscous heating,

356

with phase change, 365

with simultaneous mass transfer,

574

Tensor,

antisymmetric, 696

in terms of its components, 696

symmetric, 696

transpose, 696

unit, 697

Tensor (and dyadic) operations,

addition, 697

divergence, 701

moment of inertia, 699

multiplication of a tensor by a

scalar, 697

scalar (double dot) product of two

tensors, 697

tensor (single dot) product of two

tensors, 698

vector product of a tensor with a

vector, 698

Thermal conductivity, 256

Bridgman’s equation, 271

data from experiments, 261

from kinetic theory (gases), 266

measurement of, 258

of composite solids, 273

of liquids, 270

of quartz sand, 277

of solids, 272

principle of corresponding states

and, 262

Wiedemann-Franz-Lorenz

equation, 272

Thermal diffusion, 311, 499, 571

and the Clusius-Dickel column,

311, 675

coefficient, 672

ratio, 673

Thermal diffusivity, 257

Thermal radiation, 463

Thermocouple measurement error,

292

Thiele, E. W., 526
Thiele modulus, 526, 550

Time constants in rheological

models, 239, 241, 244

Time-smoothed,

temperature profile near a wall,

370

velocity profile near a wall, 132

Time-smoothing in turbulence, 129,

367, 595

Torque,

in cone-and-plate system, 64

in Couette viscometer, 99

in parallel disk viscometer, 114

on a mixing vessel, 191

on a rotating sphere, 107

on concentric cylinders, 112

on concentric spheres, 112

to turn a friction bearing, 111

Torricelli’s equation, 89

Total,

energy-flux vector, 259, 260

fluxes for binary mixtures, 569, 572

mass and molar flux vectors, 500

momentum-flux tensor, 26

Transpiration cooling, 339, 355, 358

Transport phenomena,

definition, 1

how to study, 11

organization of topics, 4

three levels, 2

Transpose of tensor or dyadic

product, 90, 696

Triangular duct, 112, 128

Trouton viscosity, 230

Tube (see Circular tube, Tapered

tube)

Tube network, 75

Tubular heater design, 409

Tubular reactor concentration profile,

578

Turbulence,

free, 136

wall, 136

Turbulent,

diffusivity, 596

heat (energy) flux vector, 368, 370,

596

molar flux vector, 596

Prandtl number, 371

Schmidt number, 597

temperature distribution for tube

flow, 372

thermal conductivity, 370

viscosity, 135, 140

Turbulent flow, 42, 127

comparison with laminar flow, 126

fluctuations, 130

intensity, 131

time smoothed, 129

Two-phase systems,

mass-transfer coefficients in, 633

rheology of, 227

U
U-bend, force on, 215

Ultracentrifuge, 676, 682

Ultrafiltration, 618, 669

Underdamped control system, 447

Unit dyads, 695

Units, SI, c.g.s, EE, 20, 258

Unit tensor, 697

Unit vectors, 691

in cylindrical coordinates, 706

in spherical coordinates, 708

Unsteady evaporation, 580



Trim Size: 8in x 10in Bird1e subindex.tex V1 - October 28, 2014 9:24 A.M. Page 769

Subject Index 769

V
Van Driest equation (modified), 136,

600

Vapor-free flow in pipeline, 221

Vector,

components, 692

identities, 694

position, 694

Vector and tensor,

algebra in curvilinear coordinates,

705

integral theorems, 704

miscellaneous relations, 702

note on dot product relations, 703

notation, 82, 687

Vector operations,

addition and subtraction, 689, 692

curl, 700

del operator, 699, 709, 712–718

divergence, 700, 709

dyadic product, 697

from a geometrical viewpoint, 688

gradient of scalar, 700

gradient of a vector, 701

in cylindrical coordinates, 708

in spherical coordinates, 709

in terms of components, 690

Laplacian operator, 701

multiple products, 690, 693

multiplication by a scalar, 689

scalar (dot) product, 689, 693

vector (cross) product, 689, 693

Velocity,

average (cross-section), 47

average molecular, 9

fluctuations (in turbulence), 130

friction, 134

mass average, 492

molar average, 492

of chemical species, 493

of sound, 271

superficial, 176

time-smoothed, 130

Velocity distribution,

adjacent immiscible fluids, 60

annulus (axial), 57, 73, 115,

246, 248

around cylinder, 116

around sphere, 65

between concentric spheres, 112,

113

circular tube, 50, 74, 77, 95, 235,

237, 247

coaxial cylinders (radial), 117

cone-and-plate viscometer, 62, 248

falling cylinder viscometer, 77

falling film, 43, 70, 97, 246

flat plate (boundary layer), 120

in free convection, 309

into a slot, 108

narrow slit, 71, 118, 236, 246

near rotating sphere, 106

near wall suddenly set in motion,

103, 119

outside circular tube, 72

parallel disks (radial), 117, 247

parallel-disk viscometer, 114

parallel-disks (squeeze flow), 122,

250

rotating cylinder, 102

simple shear flow, 70

square duct, 113

tangential annular flow

(cylinders), 97, 112, 236

tapered tube, 75, 247

triangular duct, 113

turbulent annulus flow, 145

turbulent tube flow, 127, 139, 144

turbulent jets, 140

Velocity of fluid,

molecular definition, 9

Venturi meter, 448, 452, 456

View factors, 473

Viscoelastic fluids, 222, 239,

241, 244

Viscometer,

capillary, 55, 221

cone-and-plate, 62

Couette, 97

falling cylinder, 77

falling sphere, 68

parallel-disk, 114

parallel-disk compression, 122

Viscosity, 19

complex, 229

data correlation by Buckingham pi

theorem, 158

dilatational, 22

elongational, 230

experimental data, 27–29

kinematic, 20

kinetic theory of gases, 32, 35

liquids, 36

Newton’s law of, 19

non-Newtonian, 229

principle of corresponding states,

29

reduced, 30

suspensions, 37, 38

Trouton, 230

turbulent, 135

units for, 20

zero-shear-rate, 239

Viscous dissipation, 88

in macroscopic mechanical energy

balance, 194, 196

Viscous heating,

in a molten polymer, 317

in annular flow with heat

generation, 337

in flow between two cylinders, 300

in laminar tube flow, 356

in slit flow, 315

with temperature-dependent
viscosity, 327

Viscous momentum flux, 20, 23

Viscous sublayer, 132, 133, 369

Void fraction (packed column), 177

Volume-average velocity in binary

systems, 518

Volume flow rate, 9

circular tube, 53

falling film, 47

Volume fraction of chemical species,

671

Von Kàrmàn vortex street, 152

Vorticity tensor, 241

W
Wall collision frequency, 266

Wall heat flux (turbulence), 371, 377

Wall turbulence, 136

Wall, turbulent flow near, 132

Waste product, disposal of, 641

Wavelength of electromagnetic

wave, 463

Weber number, 380

Weissenberg-Rabinowitsch equation,

249

Weissenberg rod climbing, 225

Wet- and dry-bulb psychrometer, 628

Wiedemann-Franz-Lorenz equation,

272

Wien’s displacement law, 470

Wilhelm, R. H., 323
Wilke-Chang equation for diffusivity,

514

Work-flux vector, 258

Y
Yield stress, 228, 234
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ALGEBRAIC OPERATIONS FOR VECTORS AND TENSORS IN
CARTESIAN COORDINATES

(s is a scalar, v is a vector, and f is a tensor; dot or cross product operations enclosed
within parentheses (…) are scalars, those enclosed within brackets […] are vectors)

(v ⋅w) = vxwx + vywy + vzwz = (w ⋅ v)

[v ×w]x = vywz − vzwy = −[w × v]x
[v ×w]y = vzwx − vxwz = −[w × v]y
[v ×w]z = vxwy − vywx = −[w × v]z

[f ⋅ v]x = fxxvx + fxyvy + fxzvz [v ⋅ f]x = vxfxx + vyfyx + vzfzx
[f ⋅ v]y = fyxvx + fyyvy + fyzvz [v ⋅ f]y = vxfxy + vyfyy + vzfzy
[f ⋅ v]z = fzxvx + fzyvy + fzzvz [v ⋅ f]z = vxfxz + vyfyz + vzfzz

The above may be generalized to cylindrical coordinates by replacing x, y, z by r, p,
z, and to spherical coordinates by replacing x, y, z by r, p, d (see Figures 1.2-2, A.6-1,
A.8-1, and A.8-2).

DIFFERENTIAL OPERATIONS FOR SCALARS, VECTORS, AND
TENSORS IN CARTESIAN COORDINATES

(∇s)x =
𝜕s
𝜕x

(∇s)y =
𝜕s
𝜕y

(∇s)z =
𝜕s
𝜕z

[∇ × v]x =
𝜕vz
𝜕y

−
𝜕vy
𝜕z

[∇ × v]y =
𝜕vx
𝜕z

−
𝜕vz
𝜕x

[∇ × v]z =
𝜕vy
𝜕x

−
𝜕vx
𝜕y

(∇ ⋅ v) =
𝜕vx
𝜕x

+
𝜕vy
𝜕y

+
𝜕vz
𝜕z

(v ⋅ ∇s) = vx
𝜕s
𝜕x

+ vy
𝜕s
𝜕y

+ vz
𝜕s
𝜕z

∇2s ≡ (∇ ⋅ ∇s) = 𝜕2s
𝜕x2

+ 𝜕2s
𝜕y2

+ 𝜕2s
𝜕z2
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[∇2v]x ≡ [∇ ⋅ ∇v]x =
𝜕2vx
𝜕x2

+
𝜕2vx
𝜕y2

+
𝜕2vx
𝜕z2

[∇2v]y ≡ [∇ ⋅ ∇v]y =
𝜕2vy
𝜕x2

+
𝜕2vy
𝜕y2

+
𝜕2vy
𝜕z2

[∇2v]z ≡ [∇ ⋅ ∇v]z =
𝜕2vz
𝜕x2

+
𝜕2vz
𝜕y2

+
𝜕2vz
𝜕z2

[v ⋅ ∇v]x = vx
𝜕vx
𝜕x

+ vy
𝜕vx
𝜕y

+ vz
𝜕vx
𝜕z

[v ⋅ ∇v]y = vx
𝜕vy
𝜕x

+ vy
𝜕vy
𝜕y

+ vz
𝜕vy
𝜕z

[v ⋅ ∇v]z = vx
𝜕vz
𝜕x

+ vy
𝜕vz
𝜕y

+ vz
𝜕vz
𝜕z

[∇ ⋅ f]x =
𝜕fxx
𝜕x

+
𝜕fyx

𝜕y
+

𝜕fzx
𝜕z

[∇ ⋅ f]y =
𝜕fxy

𝜕x
+

𝜕fyy

𝜕y
+

𝜕fzy

𝜕z

[∇ ⋅ f]z =
𝜕fxz
𝜕x

+
𝜕fyz

𝜕y
+

𝜕fzz
𝜕z

(f ∶ ∇v) = fxx
𝜕vx
𝜕x

+ fxy
𝜕vx
𝜕y

+ fxz
𝜕vx
𝜕z

+ fyx
𝜕vy
𝜕x

+ fyy
𝜕vy
𝜕y

+ fyz
𝜕vy
𝜕z

+ fzx
𝜕vz
𝜕x

+ fzy
𝜕vz
𝜕y

+ fzz
𝜕vz
𝜕z

Note: The differential operations may not be simply generalized to curvilinear
coordinates; see Tables A.7-2 and A.7-3.
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